


Lecture Notes in Computer Science 7180
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Madhu Sudan, USA

Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Madhu Sudan, Microsoft Research, Cambridge, MA, USA

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Carnegie Mellon University, Pittsburgh, PA, USA



Nikolaj Bjørner Andrei Voronkov (Eds.)

Logic for Programming,
Artificial Intelligence,
and Reasoning

18th International Conference, LPAR-18
Mérida, Venezuela, March 11-15, 2012
Proceedings

13



Volume Editors

Nikolaj Bjørner
Microsoft Research
One Microsoft Way, Redmond, WA 98052-6399, USA
E-mail: nbjorner@microsoft.com

Andrei Voronkov
University of Manchester
School of computer Science
Kilburn Building, Oxford Road, Manchester, MP13 9PL, UK
E-mail: andrei.voronkov@manchester.ac.uk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-28716-9 e-ISBN 978-3-642-28717-6
DOI 10.1007/978-3-642-28717-6
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012932595

CR Subject Classification (1998): F.3, I.2, D.2, F.4.1, D.3, H.4

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

This volume contains the papers presented at LPAR-18: the 18th International
Conference on Logic for Programming, Artificial Intelligence, and Reasoning,
held on March 11–15, 2012 in Merida, Venezuela.

Following the call for papers, LPAR-18 received 85 abstracts, materializing
in 74 submissions. Each submission was reviewed by at least three of the 36 Pro-
gram Committee members. The committee decided to accept 25 regular papers
and 6 tool descriptions and experimental papers. The program also included talks
by four distinguished invited speakers: Elvira Albert (Complutense University of
Madrid), Kenneth McMillan (Microsoft Research), Aart Middeldorp (University
of Innsbruck), and Boris Motik (University of Oxford); covering areas ranging
from constraint programming and resource analysis of programs, software veri-
fication and interpolation, rewriting and matrix interpretations, and description
logics.

Two workshops were co-located with LPAR-18. The 6th International Work-
shop on Analytic Proof Systems, APS-6, was organized by Matthias Baaz and
Christian Fermüller, both from the University of Technology, Vienna. The 9th
International Workshop on the Implementation of Logics was organized by Euge-
nia Ternovska (Simon Fraser University, Vancouver), Konstantin Korovin (Uni-
versity of Manchester), and Stephan Schulz (TU München). We were fortunate
in having Laura Kovacs (Vienna University of Technology) acting as the LPAR
workshop chair.

LPAR has a distinct track record as a series of high-quality conferences held in
places where no other reasonable conference has gone before. The 18th conference
in Merida takes LPAR to new heights, roughly 3500 meters. The PC Chairs are
grateful for support from EasyChair and sponsorship from Microsoft Research. It
also happens to be the case that one of the chairs is from Microsoft Research, the
other is the author of EasyChair. The Conference Chair, Geoff Sutcliffe, stepped
in for his fourth LPAR organization and secured the domain http://lpar-18.info
for the conference. Finally, we thank the local organizers Blanca Abraham and
José Aguilar for their support.

January 2012 Andrei Voronkov
Nikolaj Bjørner



Organization

Program Committee

José Aguilar Universidad de Los Andes, Venezuela
Elvira Albert Complutense University of Madrid, Spain
Franz Baader TU Dresden, Germany
Gilles Barthe IMDEA Software Institute, France
Peter Baumgartner National ICT Australia
Armin Biere Johannes Kepler University, Austria
Nikolaj Bjørner Microsoft Research, USA
Thierry Coquand Chalmers University, Sweden
Véronique Cortier Loria, France
Luca de Alfaro UCSC / Google, USA
Christian Fermüller TU Vienna, Austria
John Harrison Intel Corporation, USA
Manuel Hermengildo IMDEA Software Institute, France
Barbara Jobstmann CNRS/Verimag, France
Deepak Kapur University of New Mexico, Mexico
Konstantin Korovin Manchester University, UK
Laura Kovacs TU Vienna, Austria
Carsten Lutz Universität Bremen, Germany
Parthasarathy Madhusudan University of Illinois at Urbana-Champaign,

USA
Aart Middeldorp University of Innsbruck, Austria
Dale Miller INRIA Saclay - Île-de-France and LIX/

École Polytechnique, France
César Muñoz National Aeronautics and Space

Administration, USA
Albert Oliveras Technical University of Catalonia, Spain
Lawrence Paulson University of Cambridge, UK
Ruzica Piskac Max Planck Institute for Software Systems,

Germany
Francesca Rossi University of Padova, Italy
Grigore Rosu University of Illinois at Urbana-Champaign,

USA
Torsten Schaub University of Potsdam, Germany
Natarajan Shankar SRI International, USA
Wolfgang Thomas RWTH Aachen, Germany
Cesare Tinelli The University of Iowa, USA
Pascal Van Hentenryck Brown University, USA



VIII Organization

Andrei Voronkov University of Manchester, UK
Toby Walsh NICTA and UNSW, Australia
Christoph Weidenbach Max Planck Institute for Informatics, Germany
Frank Wolter University of Liverpool, UK

Additional Reviewers

Accattoli, Beniamino
Alpuente, Maŕıa
Andres, Benjamin
Arenas, Puri
Audemard, Gilles
Bana, Gergei
Booth, Richard
Boulmé, Sylvain
Brandner, Florian
Böhme, Sascha
Cerny, Pavol
Chaudhuri, Kaustuv
Ciobaca, Stefan
De Nivelle, Hans
Deters, Morgan
Doyen, Laurent
Ellison, Chucky
Everaere, Patricia
Garćıa Pérez, Alvaro
Garoche, Pierre-Loic
Gebser, Martin
Gelfond, Michael
Genaim, Samir
Geser, Alfons
Giesl, Jürgen
Giordano, Laura
Goodloe, Alwyn
Gutierrez, Raul
Gutiérrez, Basulto
Göller, Stefan
Haarslev, Volker

Haemmerlé, Rémy
Hagen, George
Heule, Marijn
Hoder, Krystof
Holloway, Michael
Hustadt, Ullrich
Järvisalo, Matti
Kristensen, Lars
Kutsia, Temur
König, Arne
Lamotte-Schubert,

Manuel
Le Botlan, Didier
Leucker, Martin
Lopez-Garcia, Pedro
Lozes, Etienne
Löding, Christof
Meredith, Patrick
Moeller, Ralf
Montenegro, Manuel
Narkawicz, Anthony
Narodytska, Nina
Nguyen, Kim
Nguyen, Linh Anh
Nigham, Vivek
Olivetti, Nicola
Ostrowski, Max
Pacholski, Leszek
Parker, David
Pattinson, Dirk
Popescu, Andrei

Reynolds, Andrew
Riesco, Adrian
Rozier, Kristin Yvonne
Sabuncu, Orkunt
Schneider, Thomas
Serbanuta, Traian
Serebrenik, Alexander
Silva, Josep
Smyth, Ben
Stefanescu, Andrei
Sticksel, Christoph
Sürmeli, Jan
Tang, Ching Hoo
Thiemann, René
Thrane, Claus
Trunfio, Giuseppe A.
Veanes, Margus
Von Essen, Christian
Vyskocil, Jiri
Waldmann, Johannes
Waldmann, Uwe
Widmann, Florian
Wies, Thomas
Winkler, Sarah
Wintersteiger,

Christoph M.
Wischnewski, Patrick
Zanardini, Damiano
Zankl, Harald
Zeilberger, Noam
Zuleger, Florian



Table of Contents

Automatic Inference of Resource Consumption Bounds . . . . . . . . . . . . . . . 1
Elvira Albert, Puri Arenas, Samir Genaim,
Miguel Gómez-Zamalloa, and Germán Puebla

Matrix Interpretations for Polynomial Derivational Complexity of
Rewrite Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Aart Middeldorp

Parameterized Complexity and Fixed-Parameter Tractability of
Description Logic Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Boris Motik

Enfragmo: A System for Modelling and Solving Search Problems with
Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Amir Aavani, Xiongnan (Newman) Wu, Shahab Tasharrofi,
Eugenia Ternovska, and David Mitchell

The Permutative λ-Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Beniamino Accattoli and Delia Kesner

Automated and Human Proofs in General Mathematics: An Initial
Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Jesse Alama, Daniel Kühlwein, and Josef Urban

Lazy Abstraction with Interpolants for Arrays . . . . . . . . . . . . . . . . . . . . . . . 46
Francesco Alberti, Roberto Bruttomesso, Silvio Ghilardi,
Silvio Ranise, and Natasha Sharygina

Backward Trace Slicing for Conditional Rewrite Theories . . . . . . . . . . . . . 62
Maŕıa Alpuente, Demis Ballis, Francisco Frechina, and
Daniel Romero

Forgetting for Defeasible Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Grigoris Antoniou, Thomas Eiter, and Kewen Wang

Querying Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
David Aspinall, Ewen Denney, and Christoph Lüth

Solving Language Equations and Disequations with Applications to
Disunification in Description Logics and Monadic Set Constraints . . . . . . 107

Franz Baader and Alexander Okhotin



X Table of Contents

Dual-Priced Modal Transition Systems with Time Durations . . . . . . . . . . 122
Nikola Beneš, Jan Křet́ınský, Kim Guldstrand Larsen,
Mikael H. Møller, and Jǐŕı Srba

Finding Finite Herbrand Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Stefan Borgwardt and Barbara Morawska

Smart Testing of Functional Programs in Isabelle . . . . . . . . . . . . . . . . . . . . 153
Lukas Bulwahn

Monitor-Based Statistical Model Checking for Weighted Metric
Temporal Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Peter Bulychev, Alexandre David, Kim Guldstrand Larsen,
Axel Legay, Guangyuan Li, Danny Bøgsted Poulsen, and
Amelie Stainer

Duality between Merging Operators and Social Contraction
Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

José Luis Chacón and Ramón Pino Pérez

Automatic Generation of Invariants for Circular Derivations in
SUP(LA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Arnaud Fietzke, Evgeny Kruglov, and Christoph Weidenbach

Moral Reasoning under Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
The Anh Han, Ari Saptawijaya, and Lúıs Moniz Pereira

Towards Algorithmic Cut-Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Stefan Hetzl, Alexander Leitsch, and Daniel Weller

Conflict Anticipation in the Search for Graph Automorphisms . . . . . . . . . 243
Hadi Katebi, Karem A. Sakallah, and Igor L. Markov

Confluence of Non-Left-Linear TRSs via Relative Termination . . . . . . . . . 258
Dominik Klein and Nao Hirokawa

Regular Expressions for Data Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Leonid Libkin and Domagoj Vrgoč

Automatic Verification of TLA+ Proof Obligations with SMT Solvers . . . 289
Stephan Merz and Hernán Vanzetto

An Asymptotically Correct Finite Path Semantics for LTL . . . . . . . . . . . . 304
Andreas Morgenstern, Manuel Gesell, and Klaus Schneider

On the Domain and Dimension Hierarchy of Matrix Interpretations . . . . 320
Friedrich Neurauter and Aart Middeldorp

iSat: Structure Visualization for SAT Problems . . . . . . . . . . . . . . . . . . . . . . 335
Ezequiel Orbe, Carlos Areces, and Gabriel Infante-López



Table of Contents XI

Linear Constraints over Infinite Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
Martin Hofmann and Dulma Rodriguez

E-Matching with Free Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
Philipp Rümmer

Random: R-Based Analyzer for Numerical Domains . . . . . . . . . . . . . . . . . . 375
Gianluca Amato and Francesca Scozzari

Solving Graded/Probabilistic Modal Logic via Linear Inequalities
(System Description) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

William Snell, Dirk Pattinson, and Florian Widmann

Labelled Superposition for PLTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
Martin Suda and Christoph Weidenbach

The TPTP Typed First-Order Form with Arithmetic . . . . . . . . . . . . . . . . . 406
Geoff Sutcliffe, Stephan Schulz, Koen Claessen, and
Peter Baumgartner

Ordinals and Knuth-Bendix Orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
Sarah Winkler, Harald Zankl, and Aart Middeldorp

r-TuBound: Loop Bounds for WCET Analysis (Tool Paper) . . . . . . . . . . . 435
Jens Knoop, Laura Kovács, and Jakob Zwirchmayr

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445



Automatic Inference

of Resource Consumption Bounds

Elvira Albert1, Puri Arenas1, Samir Genaim1,
Miguel Gómez-Zamalloa1, and Germán Puebla2

1 DSIC, Complutense University of Madrid, Spain
2 DLSIIS, Technical University of Madrid, Spain

Abstract. One of the main features of programs is the amount of re-
sources which are needed in order to run them. Different resources can be
taken into consideration, such as the number of execution steps, amount
of memory allocated, number of calls to certain methods, etc. Unfortu-
nately, manually determining the resource consumption of programs is
difficult and error-prone. We provide an overview of a state of the art
framework for automatically obtaining both upper and lower bounds on
the resource consumption of programs. The bounds obtained are func-
tions on the size of the input arguments to the program and are obtained
statically, i.e., without running the program. Due to the approximations
introduced, the framework can fail to obtain (non-trivial) bounds even if
they exist. On the other hand, modulo implementation bugs, the bounds
thus obtained are valid for any execution of the program. The frame-
work has been implemented in the COSTA system and can provide
useful bounds for realistic object-oriented and actor-based concurrent
programs.

1 Introduction

One of the most important characteristics of a program is the amount of re-
sources that its execution will require, i.e., its resource consumption. Resource
analysis (a.k.a. cost analysis [37]) aims at statically bounding the cost of execut-
ing programs for any possible input data value. Typical examples of resources
include execution time, memory watermark, amount of data transmitted over
the net, etc. Resource usage information has many applications, both during
program development and deployment. Upper bounds are useful because they
provide resource guarantees, i.e., it is ensured that the execution of the program
will never exceed the amount of resources inferred by the analysis. Lower bounds
on the resource usage have applications in program parallelization, they can be
used to decide if it is worth executing locally a task or requesting remote exe-
cution. Therefore, automated ways of estimating resource usage are quite useful
and the general area of resource analysis has received [37,21,33] and is nowadays
receiving [10,23,25] considerable attention. In this paper, we describe the main
components underlying resource analysis of a today’s imperative programming

N. Bjørner and A. Voronkov (Eds.): LPAR-18, LNCS 7180, pp. 1–11, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 E. Albert et al.

language, e.g., such techniques have been applied to analyze the resource con-
sumption of sequential Java, Java bytecode [28], Featherweight X10 [27] and
concurrent ABS programs [26].

The rest of the paper is organized as follows. Section 2 describes the process
of, from the program, generating cost relations which define, by means of recur-
rence equations, the resource consumption of executing the program in terms of
the input data sizes. Section 3 overviews a general approach to, from the cost
relations, obtain upper and lower bounds which are not in recursive form. The
compositionallity and incrementality of the analysis are described in Section 4.
Standard cost analysis can be applied to infer any cumulative type of resource
which always increases along the execution. We discuss in Section 5 the required
extensions to estimate non-cumulative resources like the memory consumption
in the presence of garbage collection. As distribution and concurrency are now
mainstream, one of the most interesting extensions is to handle concurrency in
cost analysis. This will be described in Section 6. The results of the analysis
are correct only if the implementation does not contain bugs. In Section 7, we
describe how the analysis results can be certified by existing program verifica-
tion tools. Finally, in Section 8 we conclude and point out directions for future
research.

2 Generation of Cost Relations

In the first phase, cost analysis takes as input a program, a selection of a cost
model (among those available in the system), and yields a set of recursive equa-
tions which capture the cost of executing the program. For a general purpose
programming language, the following steps are performed in order to generate
the equations:

1 A control flow graph is constructed for each method in the original program
by using standard techniques from compiler theory [1,2].

2 The control flow graph can then be represented by using some intermediate
formalism, with the purpose of making the subsequent static analysis sim-
pler. In [10], we propose that the control flow graph is represented as a set
of procedures (defined by one or more rules) by using a rule-based, recursive
representation.

3 Static analysis can be then performed on the rule-base representation in order
to infer, for each rule, size relations, which define the size relationships among
the input variables to the rule and the variables in the calls performed within
the rule.

4 A parametric notion of cost model is used, which allows specifying the resource
of interest (e.g., steps, memory). In particular, the cost model defines the
cost assigned to each execution step and, by extension, to an entire execution
trace.

5 From the rule-based representation, the size relations, and the selected cost
model, a cost relation system is automatically generated. Cost relations are



Automatic Inference of Resource Consumption Bounds 3

static void m(List x, int i, int n){
while (i<n){

if (x.data) {g(i,n); i++;}
else {g(0,i); n=n-1;}
x=x.next;

}}

(1) 〈Cm(i, n) = 3
, ϕ1 = {i ≥ n}〉

(2) 〈Cm(i, n) = 15 + Cg(i, n) + Cm(i′, n)
, ϕ2 = {i < n, i′ = i+ 1}〉

(3) 〈Cm(i, n) = 17 + Cg(0, i) + Cm(i, n′)
, ϕ3 = {i < n, n′ = n− 1}〉

Fig. 1. Java method and Cost Relation

defined by means of recursive expressions which define the cost of executing
a block in the control flow graph (or rule in the rule-based representation)
in terms of the cost of executing the block itself plus the cost of its successor
blocks.

All details about how to automatically obtain a cost relation from a program
can be found in [8,10,22,32,37]. We illustrate the notion of cost relation systems
by means of a simple example.

Example 1. Consider the Java method m shown in Figure 1 (left), which invokes
the auxiliary method g, where x is a linked list of Boolean values implemented
in the standard way. We have selected a cost model which counts the number
of executed instructions. The cost relation associated to method m is shown in
Figure 1 (right). The relations Cm and Cg capture, respectively, the costs of
executing methods m and g. Intuitively, in cost relations, variables represent the
sizes of the corresponding data structures in the program and in the case of in-
teger variables they represent their integer value. Equation 1 is a base case and
captures the case where the loop body is not executed. It can be observed that
we have two recursive equations (Equations 2 and 3) which capture the respec-
tive costs of the then and else branches within the while loop. The constraints
in the equations (namely ϕ1, ϕ2 and ϕ3) contain the applicability conditions
for the equations and also the size constraints computed in the previous step of
the analysis (see Section 2). As the list x has been abstracted to its length, the
values of x.data are not visible in the cost relation and the two equations have
the same (incomplete) guard, which results in a non-deterministic cost relation.
Also, variables which do not affect the cost (e.g., x) do not appear in the cost
relation [9].

3 Inference of Closed-Form Bounds

The second main phase of cost analysis consists in generating closed-form bounds
from the cost relations, i.e., cost expressions which are not in recursive form.
Let us first see how we can infer an upper bound for m from the equations
in Figure 1. We shall start by computing upper bounds for the cost relations
which do not depend on any other cost relations, referred to as standalone cost
relations, and continue by replacing the computed upper bounds on the equations



4 E. Albert et al.

which call such relations. For instance, assuming that the upper bound for g
is C+

g (a, b)=4+5∗nat(b−a), where nat(v) = max({v, 0}), the cost relation in
Figure 1 becomes standalone:

(1) 〈Cm(i, n) = 3 , ϕ1 = {i ≥ n}〉
(2) 〈Cm(i, n) = 15 + nat(n− i) +Cm(i′, n) , ϕ2 = {i < n, i′ = i+ 1}〉
(3) 〈Cm(i, n) = 17 + nat(i) +Cm(i, n′) , ϕ3 = {i < n, n′ = n− 1}〉

The use of nat in cost expressions is required in order to avoid incorrectly eval-
uating upper bounds to negative values (see [7]), as for instance, when b < a in
C+

g (a, b). The problem is thus now reduced to automatically inferring bounds
from standalone relations. In general, given a standalone cost relation made up
of nb base cases of the form 〈C(x̄)=basej , ϕj〉, 1 ≤ j ≤ nb and nr recursive

equations of the form, 〈C(x̄)=recj+
∑kj

i=1 C(ȳi), ϕj〉, 1 ≤ j ≤ nr , [7] proposes
to compute an upper bound for C(x̄), denoted C(x̄)+, as follows:

(∗) C(x̄)+ = Ib ∗ worst({base1 , . . . , basenb}) + Ir ∗ worst({rec1 , . . . , recnr})

where Ib and Ir are, respectively, upper bounds of the number of visits to the
base cases and recursive equations and worst({Set}) denotes the worst-case (the
maximum) value that the expressions in Set can take. The first challenge is thus
to have an automatic method to compute Ib and Ir. In [7], we have proposed the
use of ranking functions to automatically find Ib and Ir. Intuitively, a ranking
function [30] is a function on the variables of a relation which (1) is positive and
(2) decreases in each iteration. For our example, a ranking function is fCm(i, n) =
n − i since the constraints of the corresponding equations imply the previous
two conditions, i.e., ϕ2 |= f(i, n) > f(i′, n) ∧ f(i, n) > 0 and ϕ3 |= f(i, n) >
f(i′, n) ∧ f(i, n) > 0.

The next challenge is to have an automatic method to compute the maximum
value worst({Set}). Following [6], in order to obtain worst({Set}), first we need
to infer invariants between the equation’s variables and their initial values. For
example, the cost relation Cm(i, n) admits as invariant for the recursive equa-
tions the formula I defined as I((i0, n0), (i, n)) ≡ i ≥ i0 ∧ n ≤ n0 ∧ i < n, which
captures that the values of i (resp. n) are greater (resp. smaller) or equal than
the initial value and that i is smaller than n at all iterations. Once we have the
invariant, we can maximize the expressions w.r.t. these values and take the max-
imal: worst({rec1 , . . . , recnr}) = max(maximize(I, {rec1 , . . . , recnr})) (see [6] for
the technical details of the maximization procedure). For instance, for our cost
relation, we compute:

worst({rec1 , rec2}) = max(maximize(I, {nat(n−i), nat(i)}))

which results in worst({rec1 , rec2}) = max({nat(n0 − i0 ), nat(n0−1 )}). The
same procedure can be applied to the expressions in the base cases. However, it
is unnecessary in our example, because the base case is a constant. By applying



Automatic Inference of Resource Consumption Bounds 5

the same reasoning to the standalone cost relation above, we obtain the following
upper bound (on the number of instructions):

C+
m=6+nat(n−i)∗max({21+5∗nat(n−1), 19+5∗nat(n−i)})

The framework could be adapted to infer closed-form lower bounds by using min-
imization instead of maximization (i.e., using min instead of max when defining
best , the counterpart of worst). However, taking always the best case cost of
all iterations would lead to a too pessimistic lower bound, indeed, the obtained
lower bound would be in most cases zero. In [16], we propose a refined method in
which, instead of assuming the best-case cost for all iterations, we infer tighter
bounds on each of them in an automatic way and then approximate the sum-
mation of the sequence.

4 Modularity and Incrementality

Typically, cost analysis performs a global analysis of the program which requires
that all reachable code is available. Such traditional analysis scheme in which all
code is analyzed from scratch, and no previous analysis information is available,
is unsatisfactory in many situations. For a practical uptake of cost analysis, it is
thus required to reach some degree of compositionallity which allows decompos-
ing the analysis of large programs into the analysis of smaller parts.

In [31], a modular approach for the particular case of termination analysis
is presented, which allows reasoning on a method at a time. This approach is
generalized in [13], where an incremental resource analysis scheme is presented.
The aim of incremental global analysis is, given a program, its analysis results
and a series of changes to the program, to obtain the new analysis results as
efficiently as possible and, ideally, without having to re-analyze fragments of
code which are not affected by the changes. Incremental analysis can significantly
reduce both the time and the memory requirements of analysis.

5 Memory Consumption Analysis for Garbage-Collected
Languages

Predicting the memory required to run a program is crucial in many contexts
like in embedded applications with stringent space requirements or in real-time
systems which must respond to events or signals within a predefined amount of
time. When the considered resource is cumulative, the approach to cost analysis
described so far is parametric w.r.t. the notion of cost model, which defines the
type of resource we are measuring and, which gives a cost unit to each instruction.
It can therefore be directly applied for inferring bounds on the total memory
usage of programs by devising a cost model which assigns the corresponding
cost only to those instructions that consume memory [14].

However, in presence of garbage collection, memory is not a cumulative re-
source but rather it can increase or decrease at any point of the execution.



6 E. Albert et al.

Thus, the above approach, though still correct, can produce too pessimistic esti-
mations. Peak memory analysis [36,19,20], also known as live memory analysis,
aims at approximating the maximum memory usage during a program’s exe-
cution, which provides a much tighter estimation. Whereas analyzing the total
memory consumption needs to observe the consumption at the final state only,
peak memory analysis has to reason on the memory consumption at all program
states along the execution, hence making the analysis much more complicated.
In [15], we present a peak memory analysis which is parametric w.r.t the life-
time of objects and which can therefore be instantiated with different garbage
collection strategies. This requires a non-standard type of recurrence equations.

Example 2. Let us consider method m of Figure. 1, and let us assume that
method g only creates an array of 10 integers. Our memory consumption analysis
obtains an upper bound of 40∗nat(n−i) bytes for the total memory usage of
method m (assuming that the size of an integer is 4 bytes). Let us now consider
a scope-based garbage collection, i.e., one that reclaims the local memory created
in a method call when it finishes. In this case, our memory consumption analysis
obtains a constant upper bound of 40 bytes for the peak memory usage of method
m. This intuitively corresponds to the maximum between the peak usage of
method g (40 bytes) and what escapes (i.e. what the garbage collection cannot
collect) from g plus the consumption after the call to g (which is 0 bytes).

6 Concurrency in Cost Analysis

Distribution and concurrency are now mainstream, as the availability of multi-
processors radically influences software. This brings renewed interest in develop-
ing techniques that help in understanding, analyzing, and verifying the behavior
of concurrent programs. This includes the resource consumption behavior.

In concurrent and distributed settings, the meaning of a resource is not limited
to traditional measures such as memory consumption or number of executed
instructions, but it rather extends to other measures such as the tasks spawned
[11], the number of requests to remote servers, etc. In addition, the consumption
is not anymore associated to a single execution entity, but rather is distributed
over the different components of the system (servers, CPUs, etc). This opens up
new interesting applications for resource guarantees, for example, upper bounds
can be used to predict that one component may be overloaded, while other
siblings are idle most of the time; and lower bounds can be used to decide if it
is worth executing locally a task or requesting remote execution.

In [4], we extended the underlying techniques used in the analysis for a concur-
rency model based on the notion of concurrently running (groups of) objects, in
the spirit of the actor-based and active-objects approaches [34,35]. These models
aim at taking advantage of the inherent concurrency implicit in the notion of
object in order to provide programmers with high-level concurrency constructs
that help in producing concurrent applications more modularly and in a less
error-prone way. The main challenges we had to deal with are: (1) developing a



Automatic Inference of Resource Consumption Bounds 7

size analysis that is able to infer sound size relations taking into account all pos-
sible interleavings between the different tasks. The main problem is that when a
suspended task is resumed, it cannot assume that the global (shared) state has
not been changed since the task has been suspended, but rather it should take
into account that it has been possibly modified by other tasks; and (2) incorpo-
rating the idea of distributing the cost over the system components in the cost
relations.

For (1), we have developed a size analysis that is based on the idea of tracking
the global state when it is possible, and using class invariants at points in which
interleaving might occur, in order to describe how the global state has been
modified. In many cases we are able to automatically infer these invariants, and
in some others the user has to provide them. For (2), we have introduced a new
kind of cost relations which extend those standard ones with explicit cost centers
that represent the system components on which the cost should be distributed.
Example of such centers are classes, objects, and groups of objects.

7 Certified Resource Bounds

Resource guarantees, like any other program property which is automatically
inferred by static analysis tools, are generally not considered to be completely
trustworthy, unless the correctness of the tools or the results have been formally
verified. In the case of static analyzers, verifying the correctness of the tools is
a daunting task, among other things, because of the sophisticated algorithms
used for the analysis and their evolution over time. Thus, in COSTA we take an
alternative approach [18,12] in which we verify the results after each run using
KeY, a state-of-the-art theorem prover for Java programs. This approach, which
apart from being simpler, has the advantage that the proof generated by the
theorem prover can then be translated to independently checkable certificates in
the proof-carrying code style [29].

The certification component of COSTA is based on verifying that all inter-
mediate results produced by COSTA are correct. Then, the correctness of com-
posing them into bounds is straightforward. The intermediate results need to
be verified include: (1) ranking functions, which are used to bound the number
of iterations of each loop; (2) loop invariants, which provide an insight on the
values that each variable can take, and relations between them; (3) size rela-
tions ; which describe how the size of the data change when moving from one
part of the program to another; and (4) heap properties, such as depth of data-
structures and acyclicity, which are essential for inferring resource guarantees
for heap manipulating programs.

8 Conclusions and Future Work

We have described the main techniques used in cost analysis of a today’s pro-
gramming language. Our approach is based on the traditional cost analysis
framework which generates recurrence relations from programs and then solves



8 E. Albert et al.

them to obtain upper and/or lower bounds. There exist other approaches to cost
analysis (e.g., [23,24]) which are not based on recurrence relations. It is hence
not possible to formally compare the resulting upper bounds in the general case
(more details are provided in [16]).

COSTA (available at http://costa.ls.fi.upm.es) is a state-of-the-art cost
and termination analyzer which implements our approach. The system was orig-
inally designed to obtain upper bounds from bytecode programs. Analyzing byte-
code has a much wider application area than analyzing Java source code since
the latter is often not available. The COSTA system can be used online through
a web interface and also from its Eclipse plugin. The user can provide assertions
which state the expected resource consumption of selected methods by using
JML notation. COSTA then tries to verify (or falsify) the assertions [5]. The
assertions can also be written in asymptotic form [3]. This facilitates human rea-
soning, as asymptotic cost expressions are much simpler than the non-asymptotic
ones.

Recently, the system has been extended to obtain upper bounds from concur-
rent ABS programs [26]. The resulting extension is called COSTABS [17]. ABS
is an Abstract Behavioral Specification language for distributed object-oriented
systems. COSTABS is integrated in the ABS development tools (available at
http://www.hats-project.eu), which can be used within the Eclipse devel-
opment environment. Moreover, it can be used through a web-interface1, and
can be downloaded and used through a command-line. In [11], we have applied
similar, but simpler, techniques to an async-finish concurrency model.

As regards certifying the upper bounds, we have succeed to make the COSTA
and KeY system cooperate as follows: COSTA outputs the intermediate results
of the analyzed program by means of extended JML annotations, and then KeY
verifies the resulting proof obligations in its program logic and produces proof
certificates that can be saved and reloaded. Realizing the above cooperation
between COSTA and KeY, and integrating it in the Eclipse development envi-
ronment, has required a number of non-trivial extensions of both systems.

Our current research is mainly focused on improving the accuracy and effi-
ciency of the analysis. Being more accurate is especially relevant in the context
of concurrency as, due to potential tasks interleavings, shared data are currently
lost when the processor is released. We are working on automatically generat-
ing class invariants to improve the abstraction of share data such that we gain
precision when the cost depends on the sizes of such data.

Acknowledgments. This work was funded in part by the Information & Com-
munication Technologies program of the EC, Future and Emerging Technologies
(FET), under the ICT-231620 HATS project, by the Spanish Ministry of Sci-
ence and Innovation (MICINN) under the TIN-2008-05624 DOVES project, the
UCM-BSCH-GR35/10-A-910502 GPD Research Group and by the Madrid Re-
gional Government under the S2009TIC-1465 PROMETIDOS-CM project.

1 http://costa.ls.fi.upm.es/costabs

http://costa.ls.fi.upm.es
http://www.hats-project.eu
http://costa.ls.fi.upm.es/costabs


Automatic Inference of Resource Consumption Bounds 9

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley (1974)

2. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers – Principles, Techniques and Tools.
Addison-Wesley (1986)

3. Albert, E., Alonso, D., Arenas, P., Genaim, S., Puebla, G.: Asymptotic Resource
Usage Bounds. In: Hu, Z. (ed.) APLAS 2009. LNCS, vol. 5904, pp. 294–310.
Springer, Heidelberg (2009)

4. Albert, E., Arenas, P., Genaim, S., Gómez-Zamalloa, M., Puebla, G.: Cost Analysis
of Concurrent OO Programs. In: Yang, H. (ed.) APLAS 2011. LNCS, vol. 7078,
pp. 238–254. Springer, Heidelberg (2011)

5. Albert, E., Arenas, P., Genaim, S., Herraiz, I., Puebla, G.: Comparing Cost Func-
tions in Resource Analysis. In: van Eekelen, M., Shkaravska, O. (eds.) FOPARA
2009. LNCS, vol. 6324, pp. 1–17. Springer, Heidelberg (2010)

6. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Automatic Inference of Upper
Bounds for Recurrence Relations in Cost Analysis. In: Alpuente, M., Vidal, G.
(eds.) SAS 2008. LNCS, vol. 5079, pp. 221–237. Springer, Heidelberg (2008)

7. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Closed-Form Upper Bounds in
Static Cost Analysis. Journal of Automated Reasoning 46(2), 161–203 (2011)

8. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost Analysis of
Java Bytecode. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 157–172.
Springer, Heidelberg (2007)

9. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Removing Use-
less Variables in Cost Analysis of Java Bytecode. In: ACM Symposium on Ap-
plied Computing (SAC) - Software Verification Track (SV 2008), Fortaleza, Brasil,
pp. 368–375. ACM Press, New York (2008)

10. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost Analysis
of Object-Oriented Bytecode Programs. Theoretical Computer Science 413(1),
142–159 (2012)

11. Albert, E., Arenas, P., Genaim, S., Zanardini, D.: Task-Level Analysis for a Lan-
guage with Async-Finish parallelism. In: Vitek, J., De Sutter, B. (eds.) Proceed-
ings of the ACM SIGPLAN/SIGBED 2011 Conference on Languages, Compilers,
and Tools for Embedded Systems, LCTES 2011, Chicago, IL, USA, April 11-14,
pp. 21–30. ACM (2011)

12. Albert, E., Bubel, R., Genaim, S., Hähnle, R., Román-Dı́ez, G.: Verified Resource
Guarantees for Heap Manipulating Programs. In: Proceedings of the 15th Interna-
tional Conference on Fundamental Approaches to Software Engineering, FASE 2012,
Tallinn, Estonia. Springer, Heidelberg (to appear, 2012)

13. Albert, E., Correas, J., Puebla, G., Román-Dı́ez, G.: Incremental Resource Usage
Analysis. In: Proceedings of the 2012 ACM SIGPLAN Workshop on Partial Evalu-
ation and Program Manipulation, PEPM 2012, Philadelphia, Pennsylvania, USA,
January 23-24. ACM Press (to appear, 2012)

14. Albert, E., Genaim, S., Gómez-Zamalloa, M.: Heap Space Analysis of Java Byte-
code. In: 6th International Symposium on Memory Management (ISMM 2007),
pp. 105–116. ACM Press (2007)

15. Albert, E., Genaim, S., Gómez-Zamalloa, M.: Parametric Inference of Memory
Requirements for Garbage Collected Languages. In: 9th International Symposium
on Memory Management (ISMM 2010), pp. 121–130. ACM Press, New York (2010)



10 E. Albert et al.

16. Albert, E., Genaim, S., Masud, A.N.: More Precise Yet Widely Applicable Cost
Analysis. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538,
pp. 38–53. Springer, Heidelberg (2011)

17. Albert, E., Arenas, P., Genaim, S., Gómez-Zamalloa, M., Puebla, G.: COSTABS:
A Cost and Termination Analyzer for ABS. In: Proceedings of the 2012 ACM
SIGPLAN Workshop on Partial Evaluation and Program Manipulation, PEPM
2012, Philadelphia, Pennsylvania, USA, January 23-24, ACM Press (to appear,
2012)

18. Albert, E., Bubel, R., Genaim, S., Hähnle, R., Puebla, G., Román-Dı́ez, G.: Verified
resource guarantees using costa and key. In: Khoo, S.-C., Siek, J.G. (eds.) PEPM,
pp. 73–76. ACM (2011)

19. Braberman, V., Fernández, F., Garbervetsky, D., Yovine, S.: Parametric Prediction
of Heap Memory Requirements. In: ISMM. ACM Press (2008)

20. Chin, W.-N., Nguyen, H.H., Popeea, C., Qin, S.: Analysing Memory Resource
Bounds for Low-Level Programs. In: ISMM. ACM Press (2008)

21. Debray, S.K., Lin, N.W.: Cost Analysis of Logic Programs. ACM Transactions on
Programming Languages and Systems 15(5), 826–875 (1993)

22. Debray, S.K., Lin, N.W.: Cost analysis of logic programs. ACM TOPLAS 15(5),
826–875 (1993)

23. Gulwani, S., Mehra, K.K., Chilimbi, T.M.: SPEED: Precise and Efficient Static
Estimation of Program Computational Complexity. In: The 36th Symposium on
Principles of Programming Languages (POPL 2009), pp. 127–139. ACM (2009)

24. Hoffmann, J., Hofmann, M.: Amortized Resource Analysis with Polynomial Poten-
tial. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 287–306. Springer,
Heidelberg (2010)

25. Hofmann, M., Hoffmann, J., Aehlig, K.: Multivariate Amortized Resource Analysis.
In: The 38th Symposium on Principles of Programming Languages (POPL 2011),
pp. 357–370. ACM (2011)

26. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A Core
Language for Abstract Behavioral Specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011)

27. Lee, J.K., Palsberg, J.: Featherweight X10: A Core Calculus for Async-Finish
Parallelism. In: Principles and Practice of Parallel Programming (PPoPP 2010),
pp. 25–36. ACM, New York (2010)

28. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification. Addison-Wesley
(1996)

29. Necula, G.: Proof-Carrying Code. In: ACM Symposium on Principles of program-
ming languages (POPL 1997). ACM Press (1997)

30. Podelski, A., Rybalchenko, A.: A Complete Method for the Synthesis of Linear
Ranking Functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937,
pp. 239–251. Springer, Heidelberg (2004)

31. Ramı́rez-Deantes, D., Correas, J., Puebla, G.: Modular Termination Analysis of
Java Bytecode and Its Application to phoneME Core Libraries. In: Barbosa, L.S.
(ed.) FACS 2010. LNCS, vol. 6921, pp. 218–236. Springer, Heidelberg (2010)

32. Sands, D.: Complexity Analysis for a Lazy Higher-Order Language. In: Jones, N.D.
(ed.) ESOP 1990. LNCS, vol. 432, pp. 361–376. Springer, Heidelberg (1990)

33. Sands, D.: A Näıve Time Analysis and its Theory of Cost Equivalence. Journal of
Logic and Computation 5(4) (1995)



Automatic Inference of Resource Consumption Bounds 11

34. Schäfer, J., Poetzsch-Heffter, A.: JCoBox: Generalizing Active Objects to Con-
current Components. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183,
pp. 275–299. Springer, Heidelberg (2010)

35. Srinivasan, S., Mycroft, A.: Kilim: Isolation-Typed Actors for Java. In: Ryan, M.
(ed.) ECOOP 2008. LNCS, vol. 5142, pp. 104–128. Springer, Heidelberg (2008)

36. Unnikrishnan, L., Stoller, S.D., Liu, Y.A.: Optimized Live Heap Bound Analysis.
In: Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003.
LNCS, vol. 2575, pp. 70–85. Springer, Heidelberg (2002)

37. Wegbreit, B.: Mechanical Program Analysis. Communications of the ACM 18(9)
(1975)



Matrix Interpretations for Polynomial

Derivational Complexity of Rewrite Systems

Aart Middeldorp

Institute of Computer Science, University of Innsbruck, Austria

Rewrite systems form an attractive model of computation. In the past decades
numerous methods have been developed to prove rewrite systems terminating.
Spurred by the International Termination Competition, the emphasis in recent
years is on powerful methods that can be automated.

Termination is a prerequisite, but to ensure that normal forms can be effectively
computed, one needs termination methods from which a polynomial upper bound
on the lengths of computations can be inferred. Until recently, very few results of
this kind were known: If termination of a rewrite system can be established by a
strongly linear interpretation [3] or by the match-bound technique [2], there is a
linear upper bound on the derivational complexity. The recent matrix method [1]
radically changed the picture. Using results from linear algebra (joint spectral ra-
dius theory) and weighted automata (degrees of ambiguity), conditions on matrix
interpretation can be formulated to ensure a polynomial upper bound on the de-
rivational complexity [4–7]. These conditions can be translated into finite-domain
constraint systems and solved by state-of-the-art SAT/SMT solvers.

In the talk, which is based on joint work with Georg Moser, Friedrich
Neurauter, Johannes Waldmann and Harald Zankl, we summarize the known
results and report on ongoing research.

References

1. Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving ter-
mination of term rewriting. JAR 40(2-3), 195–220 (2008)

2. Geser, A., Hofbauer, D., Waldmann, J., Zantema, H.: On tree automata that certify
termination of left-linear term rewriting systems. I&C 205(4), 512–534 (2007)

3. Hofbauer, D., Lautemann, C.: Termination Proofs and the Length of Derivations
(Preliminary Version). In: Dershowitz, N. (ed.) RTA 1989. LNCS, vol. 355, pp. 167–
177. Springer, Heidelberg (1989)

4. Middeldorp, A., Moser, G., Neurauter, F., Waldmann, J., Zankl, H.: Joint Spectral
Radius Theory for Automated Complexity Analysis of Rewrite Systems. In: Winkler,
F. (ed.) CAI 2011. LNCS, vol. 6742, pp. 1–20. Springer, Heidelberg (2011)

5. Moser, G., Schnabl, A., Waldmann, J.: Complexity Analysis of Term Rewrit-
ing Based on Matrix and Context Dependent Interpretations. In: Hariharan, R.,
Mukund, M., Vinay, V. (eds.) FSTTCS. LIPIcs, vol. 2, pp. 304–315 (2008)

6. Neurauter, F., Zankl, H., Middeldorp, A.: Revisiting Matrix Interpretations for Poly-
nomial Derivational Complexity of Term Rewriting. In: Fermüller, C.G., Voronkov,
A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 550–564. Springer, Heidelberg (2010)

7. Waldmann, J.: Polynomially Bounded Matrix Interpretations. In: Lynch, C. (ed.)
RTA. LIPIcs, vol. 6, pp. 357–372 (2010)

N. Bjørner and A. Voronkov (Eds.): LPAR-18, LNCS 7180, p. 12, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Parameterized Complexity and Fixed-Parameter

Tractability of Description Logic Reasoning

Boris Motik

Department of Computer Science, University of Oxford
Wolfson Building, Parks Road, OX1 3QD, Oxford

An important goal of research in description logics (DLs) and related logic-based
KR formalisms is to identify the worst-case complexity of reasoning. Such results,
however, measure the complexity of a logic as a whole. For example, reasoning in
the basic DL ALCI is ExpTime-complete, which means that ALCI constructors
can be used in a way so that exponential time is strictly required for solving a
reasoning problem. It is, however, well known that, given two ALCI knowledge
bases of roughly the same size, reasoning with one knowledge base may be much
more difficult than with the other, depending on the interaction of the axioms
in the KBs. Thus, existing worst-case complexity results provide only a very
coarse measure of reasoning complexity, and they do not tell us much about the
“hardness” of each individual knowledge base.

Parameterized complexity [2] provides us with a framework for a more fine-
grained analysis of the difficulty of reasoning. The general idea is to measure the
“hardness” of a problem instance of size n using a nonnegative integer parameter
k, and the goal is to solve the problem in time that becomes polynomial in n
whenever k is fixed. A particular goal is to identify fixed parameter tractable
(FPT) problems, which can be solved in time f(k) · nc, where c is a constant
and f is an arbitrary computable function that depends only on k.

Each problem is clearly in FPT if the parameter is the problem’s size, so a
useful parameterization should allow increasing the size arbitrarily while keeping
the parameter bounded. Various problems in AI were successfully parameterized
using the graph-theoretic notions of tree decompositions and treewidth [3–5],
and many FPT results have been obtained using the Courcelle’s Theorem [1].
Applying these ideas to formalisms such as description and modal logics seems
difficult: due to existential and universal quantifiers, solving a reasoning problem
may require exploring very large structures.

In my talk I will present an overview of parameterized complexity, fixed-
parameter tractability, and treewidth, and I will briefly discuss how these notions
can be used to obtain FPT results for formalisms such as propositional logic and
answer set programming. Furthermore, I will discuss the difficulties in applying
these ideas to logics with existential quantifiers, such as DLs. I will then present
a particular parameterization for DL knowledge bases. This result is based on
a novel notion of a decomposition—a structure inspired by tree decompositions,
but extended in a way that captures the effects of quantifiers. I will also discuss

N. Bjørner and A. Voronkov (Eds.): LPAR-18, LNCS 7180, pp. 13–14, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



14 B. Motik

a fundamental tradeoff between decomposition width and length—the two pa-
rameters that characterize the difficulty of DL reasoning. Finally, I will present
what I believe to be the first result FPT result for DL reasoning.

References

1. Courcelle, B.: The monadic second-order logic of graphs. I. recognizable sets of finite
graphs. Information and Computation 85, 12–75 (1990)

2. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

3. Gottlob, G., Pichler, R., Wei, F.: Bounded Treewidth as a Key to Tractability of
Knowledge Representation and Reasoning. In: Proc. AAAI, pp. 250–256 (2006)

4. Gottlob, G., Scarcello, F., Sideri, M.: Fixed-parameter complexity in AI and non-
monotonic reasoning. Artificial Intelligence 138(1-2), 55–86 (2002)

5. Szeider, S.: On Fixed-Parameter Tractable Parameterizations of SAT. In: Proc.
SAT, pp. 188–202 (2003)



Enfragmo: A System for Modelling
and Solving Search Problems with Logic

Amir Aavani, Xiongnan (Newman) Wu, Shahab Tasharrofi,
Eugenia Ternovska, and David Mitchell

Simon Fraser University
{aaa78,xwa33,sta44,ter,mitchell}@cs.sfu.ca

Abstract. In this paper, we present the Enfragmo system for specifying and solv-
ing combinatorial search problems. It supports natural specification of problems
by providing users with a rich language, based on an extension of first order logic.
Enfragmo takes as input a problem specification and a problem instance and pro-
duces a propositional CNF formula representing solutions to the instance, which
is sent to a SAT solver. Because the specification language is high level, En-
fragmo provides combinatorial problem solving capability to users without exper-
tise in use of SAT solvers or algorithms for solving combinatorial problems. Here,
we describe the specification language and implementation of Enfragmo, and
give experimental evidence that its performance is comparable to that of related
systems.

1 Introduction

Computationally hard search and optimization problems are ubiquitous in science, en-
gineering and business. Examples include drug design, protein folding, phylogeny re-
construction, hardware and software design, test generation and verification, planning,
timetabling, scheduling and so on. In rare cases, practical application-specific software
exists, but most often development of successful solution methods requires specialists
to apply technology such as mathematical programming of constraint logic program-
ming systems, or develop custom-refined implementations of general algorithms, such
as branch and bound, simulated annealing, or reduction to SAT.

One goal of development of the Enfragmo system [1] is to provide another practical
technology for solving combinatorial search problems, but one which would require
considerably less specialized expertise on the part of the user, thus making technology
for solving these problems accessible to a wider variety of users. In this approach, the
user gives a precise specification of their search (or optimization) problem in a high-
level declarative modelling language. A solver then takes this specification, together
with an instance of the problem, and produces a solution to the problem (if there is
one).

A natural formalization of search problems in general is as model expansion (MX)
[2], which is the logical task of expanding a given structure by new relations. Formally,
users axiomatize their problems, formalized as model expansion, in some extension
of classical logic. A problem instance, in this formalization, is a finite structure, and
solutions to the instance are expansions of this structure that satisfy the specification

N. Bjørner and A. Voronkov (Eds.): LPAR-18, LNCS 7180, pp. 15–22, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



16 A. Aavani et al.

formula. At present, our focus is on problems in the complexity class NP. For this case,
the specification language is based on classical first-order logic (FO). Fagin’s theorem
[3] states that the problems which can be axiomatized in the existential fragment of
second order logic (∃SO) are exactly those in NP, and thus the problems which can be
axiomatized as FO MX are exactly the NP search problems.

Enframgo’s operation is based on grounding, which is the task of producing a
variable-free first-order formula representing the expansions of the instance structure
which satisfy the specification formula – in other words, the solutions for the instance.
The ground formula is mapped to a propositional CNF formula, which is sent to a SAT
solver. For any fixed FO formula, grounding can be carried out in polynomial time, so
grounding provides a universal polytime reduction to SAT for problems in NP. (Devel-
oping grounding to other languages, for example to use SMT solvers, is a promising
direction which we have begun exploring.) An important advantage in solving through
grounding and transformation to SAT, or other standard ground language, is that the
performance of ground solvers is constantly being improved, and we can always select
from the best solvers available.

Many interesting real-world problems cannot be conveniently expressed in pure FO
MX, in particular if their natural descriptions involve arithmetic or inductive proper-
ties. Examples of the former include Knapsack and other problems involving weights
or costs, while examples of the latter include the Traveling Salesman problem and
other problems involving reachability. To address these issues, Enfragmo’s specifica-
tion language includes a limited use of inductive definitions, and extends classical first
order logic with arithmetic and aggregate operators. The authors of [2] emphasized
the importance of having inductive definitions in a specification language. In the case
of arithmetic, care must be exercised to avoid increasing the expressive power of the
language beyond NP, which would prevent polytime grounding to SAT. A theoretical
investigation of the issues involved appears in [4,5,6]. Extension of the basic grounding
algorithm of Enfragmo to arithmetic terms, including aggregate operators, is described
in [7].

2 Specification Language

The specification language of the Enfragmo system is based on multi-sorted classical
first-order logic extended with inductive definitions, arithmetic functions, and aggregate
operators. We will illustrate the language with two examples, and give brief discussions
of some major features. The examples use the actual ASCII input representation. The
mapping from logical symbols to ASCII symbols used is given in Table 1. For the
full description of the input language, please refer to the Enfragmo manual, which is
available from [1].

An Enfragmo specification consists of four main sections, delineated by keywords.
The GIVEN: section defines the types and vocabulary used in the specification. The
FIND: section identifies the vocabulary symbols for which the solver must find inter-
pretations, that is, the functions and relations which will constitute a solution. Interpre-
tations of the remaining vocabulary symbols are given by the problem instance. The
third part consists of one or more PHASE: sections, each of which contains an optional



Enfragmo: A System for Modelling and Solving Search Problems with Logic 17

Table 1. ASCII Equivalents for Logical Symbols

Logical Symbol ∀ ∃ ∧ ∨ ¬ → ↔

ASCII Representation ! ? & | ˜ => <=>

GIVEN:
TYPES: Vtx Clr;
PREDICATES: Edge(Vtx,Vtx), Colour(Vtx,Clr);

FIND: Colour;
// expansion predicate(s) are listed under FIND
//(instance predicates are those that are not expansion)

PHASE:
SATISFYING:
// every vertex has at least one colour
!v:Vtx : ?c:Clr : Colour(v,c);
// no vertex has more than one colour
!v:Vtx c:Clr : Colour(v,c) => ˜?c2:Clr < c : Colour(v,c2);
// no two vertices of the same colour are adjacent
!u:Vtx v:Vtx c:Clr : Colour(u,c) & Colour(v,c)=> ˜Edge(u,v);

PRINT: Colour; // solution can be printed

Fig. 1. Enfragmo specification of K-colouring

FIXPOINT: part, which provided an inductive definition, followed by aSATISFYING:
part, which consists of a set of sentences in the extended first order logic. If there are
multiple PHASE: sections, the define a sequence of expansions. One way such a se-
quence can be used is to carry out a kind of pre-processing or post-processing, which
may support more convenient axiomatizations or more efficient solving. An example
is provided in the section on inductive definitions below. Finally, the PRINT: section
identifies relations that are to be displayed, if a solution is found.

Example 1 (Graph K-Colouring). Graph colouring is a classic and well-studied NP-
hard search problem. The task is to colour vertices of a given graph using colours from
a given set of K colours, so that no two adjacent vertices have the same colour. To
axiomatize this problem, we introduce two sorts, vertices and colours. The axiomatiza-
tion says that there is a binary relation Colour which must be a proper colouring of the
vertices. The corresponding Enfragmo specification is given in Figure 1.

Arithmetic and Aggregates. Enfragmo specifications have two kinds of types: integer
types and enumerated types. Terms of integer types may use the arithmetic functions
+, −, ∗, and ABS(·), which have their standard meaning for the integers. Arithmetic
terms also include the aggregate operators maximum, minimum, sum, and cardinality.
In the following, if φ(x̄) is a formula with free variables x̄, then φB[ā] denotes the
truth value of φ in structure B when the variables x̄ denote the domain elements z̄, and
similarly for terms t(x̄). The aggregate terms are defined, as follows, with respect to a
structure B in which the formula containing the term is true.



18 A. Aavani et al.

Maxx̄{t(x̄, ȳ) : φ(x̄, ȳ); dM} denotes, for any instantiation b̄ for ȳ, the maximum
value obtained by tB[ā, b̄] over instantiations ā for x̄ for which φB[ā, b̄] is true, or
dM (the default value) if there are none.

Minx̄{t(x̄, ȳ) : φ(x̄, ȳ); dm} is defined dually to Max.
Sumx̄{t(x̄, ȳ) : φ(x̄, ȳ)}, denotes, for any instantiation b̄ for ȳ, the sum of all values
tB[ā, b̄] over instantiations ā for x̄ for which φB[ā, b̄] is true.

Countx̄{φ(x̄, ȳ)} denotes, for any instantiation b̄ for ȳ, the number of tuples ā for
which φB[ā, b̄] is true.

Example 2 illustrates use of arithmetic terms, including sum and count aggregates.

Example 2 (A Knapsack Problem Variant). Consider the following variation of the
knapsack problem: We are given a set of items (loads) L = {l1, · · · , ln}, each with
an integer weightW (li), and m knapsacksK = {k1, · · · , km}. The task is to put the n
items into the m knapsacks, while satisfying the following constraints. 1) Certain items
must go into preassigned knapsacks, as specified by the binary instance predicate P ;
2)H of them knapsacks are high capacity, and can hold items with total weightCapH ,
while the remainder have capacity CapL; 3) No knapsack may contain two items with
weights that differ by more than D. Each of CapH , CapL and D is an instance func-
tion with arity zero, i.e. a given constant. An Enfragmo specification for this problem is
given in Figure 2. Q is the mapping of items to knapsacks that must be constructed.

Inductive Definitions. Enfragmo supports a limited use of inductive definitions. In
the current implementation, the open predicates [2] in a definition must be instance
predicates, or have been constructed explicitly in a previous Phase: section. Even this
limited form has proved to be very useful in practice. These definitions can be used to
efficiently compute useful information, such as a bound or partial solution, which can
be used later to help solve a problem more efficiently. For example, Graph Colouring
can be solved more efficiently by having inductive definitions in an initial group of
phases compute a maximal clique in the graph, and pre-assign distinct colours to the
vertices in that clique. (A further improvement might be to construct a maximal clique
containing a vertex of maximum degree.) Then a final phase can construct a colouring
of the graph restricted by the pre-computed colouring of the large clique. Use of these
inductive definitions can also support writing of natural axiomatizations, by allowing
the introduction of defined terms without incurring a performance penalty.

3 Implementation

Enfragmo’s input is a problem specification, stated in the language described in Sec-
tion 2, together with a description of an instance. (The syntax for specifying instances is
described in the manual. Eventually, instances may be retrieved by queries to a database
or other source.) The phases in the specification are solved one-by-one, in the order
written. For each phase, any predicates defined by an inductive definition are computed,
and then the satisfying phase is solved by grounding. This in turn involves three stages:
1) grounding each formula with respect to the instance to produce a ground FO formula



Enfragmo: A System for Modelling and Solving Search Problems with Logic 19

GIVEN:
TYPES: Item Knaps;
INTTYPES: Weight ItemCount;
PREDICATES: P(Item, Knaps) Q(Item, Knaps);
FUNCTIONS:

W(Item): Weight
Cap_H(): Weight
Cap_L(): Weight
D(): Weight
H(): ItemCount;

FIND: Q;
PHASE:
SATISFYING:
// Q is a function mapping items to knapsacks
!l:Item : ?k:Knaps : Q(l, k);
!l:Item k1:Knaps k2:Knaps : Q(l, k1) & Q(l, k2) => k1 = k2;
// Q agrees with the pre-assignment P
!l:Item k:Knaps : P(l, k) => Q(l, k);
// The total weight in each knapsack is at most Cap_H
!k:Knaps: SUM{l:Item; W(l); Q(l, k)} <= Cap_H();
// At most H knapsacks have total weight greater than Cap_L
COUNT{k:Knaps; SUM{l:Item; W(l); Q(l, k)} > Cap_L()} <= H();
// Items in a knapsack differ in weight by at most D
!k:Knaps l1:Item l2:Item : Q(l1, k) & Q(l2, k)

=> ABS(W(l1) - W(l2)) <= D();
PRINT: Q;

Fig. 2. Enfragmo specification for Knapsack variant

representing the solutions; 2) the ground formula is transformed to a propositional CNF
formula; 3) a SAT solver is called on the CNF formula; 4) if the SAT solver reports a
satisfying assignment, it is mapped back to a description of a solution in the vocabulary
of the specification.

Grounding. Enfragmo computes a grounding of a formula bottom up, in a process
analogous to bottom up evaluation of a database query using the relational algebra.
Here, an extension of the relational algebra is used, in which an formula is associ-
ated with each tuple. A tuple contains domain elements, and the associated formula is
(equivalent to) a ground instance of a sub-formula of the specification formula, with
variables instantiated by constants denoting the domain elements in the tuple. An “an-
swer” to a sub-formula of the specification formula is an extended table representing
all instantiations of the sub-formula. Similarly, and answer to a terms is a set of triples,
each consisting of an instantiation of the arguments, a value the term may denote, and
a formula. Details can be found in [7] and [8]. The answer for a sentence consists of an
empty tuple associated with a formula that is a grounding of the sentence with respect
to the instance.



20 A. Aavani et al.

Efficiency of this grounding method requires using suitable data structures. For effi-
ciency, all formulas in computed answers are represented in a dag which is constructed
as the operations of the algebra are applied. Next we briefly describe some aspects of
the implementation of tables representing answers.

In the tables representing answers to formulas, it is natural have non-existence of a
tuple correspond to associating the formula False with the tuple. However, negating a
sparse table with this convention produces a very dense table in which many tuples are
associated with the formula True. To help keep tables sparse, we employ two kinds of
tables, one in which absence of a tuple corresponds to False, and one where it corre-
sponds to True. Details on design and performance of True/False tables are given in [8].
It is often the case that, in an answer for a sub-formula, the instantiated formulas are
independent of the instantiations of some of the free variables. In this case, the table ex-
plicitly records only the partial instantiations that are needed. This method is described
in [9] and [8] as tables with “hidden variables”.

A simple term is a term whose denotation can be computed (with respect to an in-
stance), just using the assignments to its free variables. For example,W (l) in Example 2
is a simple term. The formula for each tuple in an answer to a simple term is either True
or False. A term which is not simple is called complex. The Count aggregate used in
Example 2 is a complex term, because its value depends on the expansion predicate Q
(the solution). To represent the answer to a complex term occurring as an argument to
sub-formula φ, we have two data-structures: 1) A hash-map which maps each value o
which term tmay denote to a table which is an answer to the formula t(x̄) = o, and 2) A
table which can be viewed as being the answer to the formula φ(x̄, y) : t(x̄) = y. Meth-
ods for efficiently constructing the answers to complex terms, such as terms containing
nested count and sum aggregates, are examined in [7] and [10].

CNF Transformation. The set of answers for the sentences of a specification are then
transformed to a propositional CNF formula. As usual, this is done using a refinement
of Tseitin’s polytime transformation to CNF [11]. Refinements include re-writing the
formula into negation normal form, so negations occur only on atoms; flattening nested
conjunctions and disjunctions; and in some cases merging of identical sub-formulas.

4 Experimental Evaluation

In this section, we compare the performance of Enfragmo to other grounding-based
systems. A set of NP-hard of problems were chosen from [12]. We excluded problems
for which all instances in the collection are easy. We also excluded problems where the
sum aggregate is central, as the current implementation of sum in Enfragmo is prelim-
inary and does not perform well. (We are currently studying better methods for sum.
For example, see [13]). The other solvers are Clingo (v 3.0.3) [14], DLV (v 2010-10-
14) [15], and IDP (v 2.20) [16]. For each system, we used specifications provided by
the system authors, obtained from [12]. The experiments were run on an Intel Xeon
L5420 quad-core 2.5 GHz processor, with a timeout of 600 seconds. All specifications,
instances, and scripts used for the experiments can be downloaded from [1]. The results



Enfragmo: A System for Modelling and Solving Search Problems with Logic 21

are given in Table 2. The entry n/t indicates that n instances were solved, each within
the 600 second timeout, in a total time of t seconds. The time t includes the time for all
the runs that timed out.

Table 2. Performance comparison of Enfragmo and other systems. The entry n/t means that n
instances were solved in total time of t seconds. The 600-second timeouts are included in the
times. The best result for each problem is in bold.

Problem # of Instances Clingo DLV IDP Enfragmo

GraphColoring 29 9/12400 8/13398 9/12199 27/6965

HamiltonianPath 29 29/1.6 20/6856 29/2.1 29/308

SchurNumbers 29 29/889 18/8273 28/1452 29/643

BlockedNQueens 29 29/165 28/9870 29/896 29/1278

ConnectedDominatingSet 20 20/969 13/6190 17/3258 19/2038

DisjunctiveScheduling 10 10/1174 5/3581 10/1008 10/421

Total 146 126/15601 92/48170 122/18818 143/11656

Table 2 shows that Enfragmo was able to solve almost all the instances in the col-
lection, and performed the best on three of the six problems. Enfragmo also performed
the best by the aggregate measures of total number of instances solved and total time
spent.

5 Conclusion

We presented the Enfragmo system for modelling and solving combinatorial search
problems. It provides users with a convenient way to specify and solve computation-
ally hard problems, in particular search problems whose decision versions are in the
complexity class NP. The performance of the Enfragmo system is comparable to that of
related systems.

References

1. http://www.cs.sfu.ca/research/groups/mxp/
2. Mitchell, D., Ternovska, E.: A framework for representing and solving NP search problems.

In: Proc. AAAI, pp. 430–435 (2005)
3. Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets. Complexity

of Computation, 43–74 (1974)
4. Ternovska, E., Mitchell, D.: Declarative programming of search problems with built-in arith-

metic. In: Proc. of IJCAI, pp. 942–947 (2009)
5. Tasharrofi, S., Ternovska, E.: Built-in arithmetic in knowledge representation languages. In:

NonMon at 30 (Thirty Years of Nonmonotonic Reasoning) (October 2010)

http://www.cs.sfu.ca/research/groups/mxp/


22 A. Aavani et al.

6. Tasharrofi, S., Ternovska, E.: PBINT, A Logic for Modelling Search Problems Involv-
ing Arithmetic. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397,
pp. 610–624. Springer, Heidelberg (2010)

7. Aavani, A., Wu, X(N.), Ternovska, E., Mitchell, D.: Grounding Formulas with Complex
Terms. In: Butz, C., Lingras, P. (eds.) Canadian AI 2011. LNCS, vol. 6657, pp. 13–25.
Springer, Heidelberg (2011)

8. Aavani, A., Tasharrofi, S., Unel, G., Ternovska, E., Mitchell, D.: Speed-Up Techniques
for Negation in Grounding. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS,
vol. 6355, pp. 13–26. Springer, Heidelberg (2010)

9. Mohebali, R.: A method for solving NP search problems based on model expansion and
grounding. Master’s thesis, Simon Fraser University (2006)

10. Aavani, A., Wu, X., Mitchell, D., Ternovska, E.: Grounding Cardinality Constraints. In:
LPAR-16 Short Paper (2010)

11. Tseitin, G.S.: On the complexity of derivations in the propositional calculus. Studies in Math-
ematics and Mathematical Logic, 115–125 (1968)

12. Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczyński, M.: The Second An-
swer Set Programming Competition. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009.
LNCS, vol. 5753, pp. 637–654. Springer, Heidelberg (2009)

13. Aavani, A.: Translating Pseudo-Boolean Constraints into CNF. In: Sakallah, K.A., Simon, L.
(eds.) SAT 2011. LNCS, vol. 6695, pp. 357–359. Springer, Heidelberg (2011)

14. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Schneider, M.:
Potassco: The Potsdam answer set solving collection. AI Commun. 24(2), 105–124 (2011)

15. Dell’Armi, T., Faber, W., Ielpa, G., Koch, C., Leone, N., Perri, S., Pfeifer, G.: System
Description: DLV. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS
(LNAI), vol. 2173, pp. 424–428. Springer, Heidelberg (2001)

16. Wittocx, J., Marién, M., Denecker, M.: The IDP system: A model expansion system for
an extension of classical logic. In: Proceedings of the 2nd Workshop on Logic and Search,
pp. 153–165 (2008)



The Permutative λ-Calculus

Beniamino Accattoli1 and Delia Kesner2

1 INRIA and LIX, École Polytechnique
2 PPS, CNRS and Université Paris-Diderot

Abstract. We introduce the permutative λ-calculus, an extension of
λ-calculus with three equations and one reduction rule for permuting
constructors, generalising many calculi in the literature, in particular
Regnier’s sigma-equivalence and Moggi’s assoc-equivalence. We prove
confluence modulo the equations and preservation of beta-strong nor-
malisation (PSN) by means of an auxiliary substitution calculus. The
proof of confluence relies on M-developments, a new notion of develop-
ment for λ-terms.

1 Introduction

Background. The standard operational semantics of λ-calculus is given by
β-reduction. However, this unique notion of reduction is often extended with
some other rewriting rules allowing to permute constructors. This arises in differ-
ent contexts and comes with many different motivations. A typical example is the
postponement of erasing steps, which is obtained by introducing one particular
such permutation rule [5]. Four other notable motivations for introducing per-
mutations are: making redexes more visible [10], analysing the relation between
λ-terms and Proof-Nets [17], proving the completeness of CPS-translation for
the call-by-value λ-calculus [18], translating Moggi’s monadic metalanguage into
λ-calculus [21]. The rewriting theory of these permutation rules is often tricky, in
particular when proving strong normalisation or preservation of strong normal-
isation (PSN) [12,4,14,6,7]. This is indeed the major and usually difficult ques-
tion arising in all these extensions: to prove that if t is a β-strongly-normalising
λ-term then t is also strongly-normalising with respect to the extended reduction
relation.

The Permutative λ-Calculus. The permutative λ-calculus ΛP̂ introduced in
this paper extends λ-calculus with three equations and one rewriting rule for
permuting constructors. It sensibly generalises all previous extended λ-calculi
by taking — when possible — the permutations as equivalences, and not as
reductions. This is a key point of our approach. We show that the permutative
λ-calculus preserves β-strong normalisation and is Church-Rosser modulo the
equivalences, the strongest possible form of confluence for a reduction relation
modulo an equivalence. Whenever an orientation of the equations (or a subset
of them) yields a terminating reduction� then the system where the equations

N. Bjørner and A. Voronkov (Eds.): LPAR-18, LNCS 7180, pp. 23–36, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



24 B. Accattoli and D. Kesner

are replaced by� enjoys PSN. Thus, our result subsumes all PSN results of the
kind in the literature.

The Proof Technique. We study the permutative λ-calculus through an auxil-
iary and new calculus with explicit substitutions (ES) called λsub. In this cal-
culus β-reduction is split into two subsystems: →dB which creates a substituted
term t[x/u], i.e. a term t affected by a delayed/explicit substitution [x/u], and
→sub which executes the ES [x/u] — getting t{x/u} — and hence completes β-
reduction. This simple calculus is then enriched with various equivalences — thus
getting the equational λsub-calculus — obtained by what might be called an ex-
tension by continuity: if t and u are equivalent λ-terms in ΛP̂ and they→dB-reduce
to t′ and u′, respectively, then t′ and u′ are equivalent in the equational λsub. This
requires to consider equivalences on terms with ES and not only on λ-terms.

PSN. We prove PSN for the permutative λ-calculus by reducing this problem
to PSN for the equational λsub-calculus, which in turn reduces to an existing
result for the structural λ-calculus [2].

Confluence. Confluence of the permutative λ-calculus turns out to be delicate,
and our proof is one of the main contributions of the paper. Indeed, confluence
of ΛP̂ does not follow from confluence of λ-calculus. The usual Tait–Martin Löf
technique does not work, since the equations may create/hide redexes. While
confluence of many reduction systems can usually be proved by means of de-
velopments [9], this notion does not suffice in the case of ΛP̂, again because the
equations create redexes. Its stronger variant, known as superdevelopments [13]
or L-developments [1] — which also reduces some created redexes — does not
work either. We then introduce a new form of development called M-development,
show its good properties with respect to ΛP̂ and then derive confluence for ΛP̂. A
key point is that M-developments are defined and studied through the equational
λsub-calculus, where the splitting of β-reduction in terms of dB and sub becomes
crucial to allow a fine analysis of redex creation. A nice fact is that our proof
technique is modular, in the sense that one can choose to arbitrarily orient all or
only some of the equations as rewriting rules while keeping the proof essentially
unchanged. Moreover, our proof does not rely on confluence of λ-calculus.

Proof-Nets. Our work is the final product of a long-term study of the relation
between ES and Linear Logic Proof-Nets. Here we present the implications of our
study on λ-calculus, a language without ES, which is of a more general interest.
No knowledge of Proof-Nets is assumed in this paper. However, in Sec. 4 the
reader accustomed with Proof-Nets will find hints to the graphical intuitions for
the main concepts. In particular, the equations of ΛP̂ have a natural justification
in terms of Proof-Nets.

Roadmap. Sec. 2 introduces the permutative λ-calculus. Sec. 3 explains the dif-
ficulties to prove confluence using the notion of development. Sec. 4 introduces
the equational λsub-calculus and defines M-developments. Sec. 5 proves Church-
Rosser of the reduction relation→β modulo the equations and Sec. 6 extends the
result to the whole calculus. Sec. 7 proves PSN and Sec. 8 concludes the paper.



The Permutative λ-Calculus 25

(λx.t) u �→β t{x/u}
t ((λx.v) u) �→û (λx.t v) u if x /∈ fv(t) & x /∈ fv(v)
(λx.λy.t) u ∼σ̂1 λy.((λx.t) u) if y /∈ fv(u)
(λx.t v) u ∼σ̂2 (λx.t) u v if x /∈ fv(v)
(λx.t v) u ∼

̂box t ((λx.v) u) if x /∈ fv(t) & x ∈ fv(v)

Fig. 1. The permutative λ-calculus ΛP̂

2 The Permutative λ-Calculus

The permutative λ-calculus ΛP̂ is given by the set of λ-terms, written Λ, and a set
of equations and reduction rules. As usual [3], the term x is called a variable, λx.t
an abstraction and t u an application.Free andbound variables of λ-terms are
defined as usual and respectively written fv(t) and bv(t). The equivalence relation
generated by the renaming of bound variables, written ≡α or simply =, is called
α-conversion. The meta-level substitution operation is given, as usual, on α-
equivalence classes; the notation t{x/u}means that all the free occurrences of the
variable x in the term t are substituted by u by avoiding capture of free variables.
Contexts are defined as usual an denoted by C, we write C[[t]] for the context C
where its unique hole has been replaced by the term t.

The rewriting rules and equations of the permutative λ-calculus ΛP̂

are given in Fig. 1. The two equations σ̂1 and σ̂2 are exactly Regnier’s σ-
equivalence [17]. The equation b̂ox and the rule û, called box and void un-
boxing respectively, are instances of a more general equation called badbox

obtained from b̂ox by removing the side condition “x ∈ fv(v)”. The equation
badbox does not belong to ΛP̂ because it is unsound: it breaks PSN as shown
in Sec. 6. In order to simplify the presentation of our results we first treat the
equations of ΛP̂ (i.e. σ̂1, σ̂2 and b̂ox), and consider the void unboxing rule �→û

only later, in Sec. 6. The assoc rule of [16,14,21] is a particular case of b̂ox ∪ û.
A β-redex is any term of the form (λx.t) u. We define P̂ as the set of equa-

tions {σ̂1, σ̂2, b̂ox}. The reduction relation→β (resp.→û) is generated by the
contextual closure of the rewriting rule �→β (resp. �→û). We write →{β,û} for
→β ∪ →û. The permutative equivalence relation ≡P̂ is generated by the
contextual and reflexive-transitive closure of α-conversion and all the equations
in P̂.

Given a reduction (resp. equivalence) relation R (resp. E), the reduction
relation modulo →R/E is defined as R-reduction on E-equivalence classes,
i.e. t →R/E t′ iff ∃t0, t1 s.t. t ≡E t0 →R t1 ≡E t′. In this paper we give
particular attention to the reduction relations →β/P̂ and →{β,û}/P̂.

Given any reduction relation R, we use →+
R (resp. →∗

R) for the transitive
(resp. reflexive-transitive) closure of R. The notation↔R is used for→R ∪ R←
and →k

R for k compositions of →R with itself. A term t is in R-normal form,
written t ∈ R-nf, if there is no t′ such that t→R t′. A term t has an R-normal
form iff there exists t′ ∈ R-nf such that t →∗

R t′. When t has a unique R-
normal form, this one is denoted by R(t). A reduction system R is confluent
iff t→∗

R u and t→∗
R v implies there exists t′ s.t. u→∗

R t′ and v →∗
R t′.



26 B. Accattoli and D. Kesner

3 Towards Confluence of →β/P̂

Well-known notions [3,19] in λ-calculus equipped with β-reduction are those of
residual, created redex, (complete) development, etc. Informally, a λ-term t is
either a normal form or it contains some redexes. However, if one reduces all
the redexes in t it is not always the case that the obtained term is a normal
form: redexes can be dynamically created along a reduction. A development of
a term t is a reduction sequence starting at t in which only residuals of redexes
that already exist in t are contracted along the sequence. Developments always
terminate [19]; moreover all complete (i.e. maximal) developments terminate
on the same term [9].

From now on we only consider complete developments, and to simplify the
text, we omit the adjective complete. Analogously for the other notions of de-
velopments to be introduced in a while. A known method to show confluence
of reduction relations is based on developments, particularly using the so-called
Z-property [20]. A reduction relation R satisfies the Z-property iff there
exists a map � s.t.

for all t, for all u, t→R u implies u→∗
R t� and t� →∗

R u�

The requirement u →∗
R t� expresses the fact that t� is obtained by reducing at

least all redexes in t, hence it abstracts away the role of developments. Note that
if R satisfies the Z-property, and t = t� for every R-normal form, then t→∗

R t�

holds for every term t.

Theorem 1. [20] If R satisfies the Z-property, then R is confluent.

Confluence of β-reduction in λ-calculus can be proved by defining the map � to
be the function which computes the (complete) development of a term. To use
this same technique to prove confluence of the relation →β/P̂, one first needs
to generalise the Z-property to reduction modulo. The reduction relation R
satisfies the Z-property modulo the equivalence relation E if there exists
a map � s.t. for all t, for all u,

1. t→R u implies u→∗
R t� and t� →∗

R u�, and
2. t E u implies t� = u�.

It is easy to show that if R satisfies the Z-property modulo E, then the reduction
relation→R/E is confluent. Actually, it implies that R is Church-Rosser modulo
E, which is the strongest possible notion of confluence in the realm of reduction
modulo.

Lemma 1 (Z-property modulo⇒ Church-Rosser modulo). If R satisfies
the Z-property modulo E, then R is Church-Rosser modulo E, i.e. ∀t, ∀u, ∃t1, ∃u1
s.t. t (↔R ∪ E)∗ u implies t→∗

R t1 E u1
∗
R← u.

Proof. Let � be the map satisfying the Z-property forRmodulo E. Define t�� := t
if t is an R-nf, t�� := t� otherwise. Trivially, also �� satisfies the Z-property for R



The Permutative λ-Calculus 27

modulo E. Moreover, t→∗
R t�� for every term t. Now, by the Z-property, t↔R u

implies t�� ↔∗
R u�� and t E u implies t�� = u��. Thus, t (↔R ∪ E)∗ u implies

t�� ↔∗
R u��. Since R is confluent (Th. 1), then ∃ v s.t. t�� →∗

R v ∗
R← u��. We

then conclude t→∗
R t�� →∗

R v ∗
R← u�� ∗

R← u.

Church-Rosser modulo has two important corollaries.

Corollary 1. [19] Let R be Church-Rosser modulo E. Then:

1. Uniqueness of Normal Forms: if t (↔R ∪ E)∗ u and t →∗
R t1 and

u→∗
R u1 and t1, u1 are R-nf, then t1 E u1.

2. Confluence of the reduction modulo: if t →∗
R/E ui (i = 1, 2), then ∃ t′

s.t. ui →∗
R/E t

′ (i = 1, 2).

The first natural attempt to prove confluence for the reduction relation→β/P̂ is

then to use Lem. 1 by choosing � as the development function. Unfortunately,
this idea does not work: for instance t = (λx.λy.y) z w ≡σ̂1 u = (λy.((λx.y) z)) w
but (λy.y) w, the development of t, is different from w, the development of u.
The reason is that σ̂1 creates redexes.

In λ-calculus creation of redexes can be classified in three types [15]:

(Type 1) ((λx.λy.t) u) v →β (λy.t{x/u}) v.
(Type 2) (λx.x) (λy.t) u→β (λy.t) u.
(Type 3) (λx.C[x v]) (λy.u)→β C{x/λy.u}[(λy.u) v{x/λy.u}]

Developments do not work to show confluence of →β/P̂ because σ̂1 antici-
pates/postpones creations of Type 1, making these creations visible/hidden in
the starting term. However, another well-known notion of development, called
superdevelopment [13] or L-development [1], exists. A (complete) superdevel-
opment [13] of a term t is a reduction sequence starting at t in which only
residuals of redexes that already exist in t and created redexes of Type 1 and 2
are allowed to be contracted along the sequence.

Unfortunately, superdevelopments do not work either: for instance t =
(λx.(x y)) I ≡σ̂2 (λx.x) I y = u, where I is the identity function, but their
superdevelopments are different. Now the reason is more subtle: σ̂2 does not
anticipate creations of Type 2, but it turns future creations of Type 2 (e.g. in u)
into creations of Type 3 (in t), or viceversa. The solution is to weaken the notion
of L-development to that of M-development. A (complete) M-development of a
term t is a reduction sequence starting at t in which only residuals of redexes
that already exist in t and created redexes of Type 1 — but not of Type 2 — are
allowed to be contracted along the sequence. We are going to define the result
t◦ of a (complete) M-development by using an auxiliary calculus, λsub, having
explicit substitutions. On one hand this seems to be necessary, because appar-
ently there is no way to describe such a term by induction on t inside ΛP̂, as it
is the case for (L-)developments. On the other hand the use of λsub will not be
costly: we shall obtain a concise proof of confluence for →β/P̂.



28 B. Accattoli and D. Kesner

(λx.t)L u �→dB t[x/u]L
t[x/u] �→sub t{x/u}

Fig. 2. The λsub-calculus

4 The Auxiliary λsub-Calculus

This section introduces the λsub-calculus which is used as an auxiliary tool
to show confluence of the permutative λ-calculus. The set T of terms of the
λsub-calculus is given by variables x, abstractions λx.t, applications t u and
substituted terms t[x/u]. The object [x/t], which is not a term, is called an ex-
plicit substitution (ES). We consider free and bound variables of terms with
ES as usual [11]. The meta-level substitution operation and the α-conversion
operation are extended from Λ to T as expected. We use L to denote a possibly
empty list of ES [y1/t1] . . . [ym/tm]. We write C to denote a context in λsub.
The rewriting rules of the λsub-calculus are given in Fig. 2.

One feature of λsub is that rule dB acts at a distance, as in Proof-Nets [8].
Indeed, the list L of ES introduces some distance between the function λx.t
and its argument u in a term of the form (λx.t)L u. Rule →dB (resp. →sub)
corresponds exactly to the multiplicative (resp. exponential) cut-elimination rule
of Pure Proof-Nets. Another feature of λsub is that it splits→β , which does not
always terminate, into two terminating and confluent reduction systems dB and
sub (property which follows from [1]), through which →β can be finely studied.

Lemma 2. The reduction system dB (resp. sub) is confluent and terminating,
thus dB (resp. sub)-normal forms always exist and are unique.

From now on, we write dB(t) (resp. sub(t)) for the unique dB-normal form (resp.
sub-normal form) of the term t.

Lemma 3. The sub-function enjoys the following equalities.

sub(x) = x sub(t[x/u]) = sub(t){x/sub(u)}
sub(λx.t) = λx.sub(t) sub(t u) = sub(t) sub(u)

The following property is of course expected, it is shown by induction on the
reduction relation by using the previous characterisation.

Lemma 4 (Projection on →β). If t0 →λsub t1, then sub(t0)→∗
β sub(t1).

We now define the M-development of a term t ∈ T as a special normal form in
λsub:

t◦ := sub(dB(t))

The M-development of t thus reduces all its multiple applications, i.e. applica-
tions of functions to several arguments. Consider a simple example of creation of
Type 1 which applies a function to two arguments: ((λx.λy.y) z) z′ →β (λy.y) z′.
The reduction to dB-normal form:

((λx.λy.y) z) z′ →dB (λy.y)[x/z] z
′ →dB y[y/z][x/z

′]



The Permutative λ-Calculus 29

(λx.t)L u �→dB t[x/u]L
t[x/u] �→sub t{x/u}

(λx.λy.t) u ∼σ̂1 λy.((λx.t) u) if y /∈ fv(u)
(λx.t v) u ∼σ̂2 (λx.t) u v if x /∈ fv(v)
t ((λx.v) u) ∼

̂box (λx.t v) u if x /∈ fv(t) & x ∈ fv(v)

t[x/s][y/v] ∼CS t[y/v][x/s] if x /∈ fv(v) & y /∈ fv(s)
λy.(t[x/s]) ∼σ1 (λy.t)[x/s] if y /∈ fv(s)
t[x/s] v ∼σ2 (t v)[x/s] if x /∈ fv(v)
(t v)[x/u] ∼box1 t v[x/u] if x /∈ fv(t) & x ∈ fv(v)
t[y/v][x/u] ∼box2 t[y/v[x/u]] if x /∈ fv(t) & x ∈ fv(v)

Fig. 3. The calculus λsub/Π

reduces in particular a created dB-redex, then, reduction to sub-normal form
y[y/z][x/z] →∗

sub z completes the M-development. Note that the second dB-step
is possible only because the rule acts at a distance.

Note that the definition of M-development uses the reduction rules of λsub,
which are external to ΛP̂, since they are defined on T and not on Λ. However,
this definition makes sense also when one looks only at ΛP̂, as stated by next
Lemma, which can be shown by induction using Lem. 4.

Lemma 5. Let t be a λ-term. Then t◦ is a λ-term and t→∗
β t

◦.

The Z-property for the permutative λ-calculus can be proved by means of M-
developments. One of the properties to be verified is that t0 ≡P̂ t1 implies t◦0 = t◦1,
which is quite tricky. To simplify this proof, and also to later show PSN for ΛP̂,
we need to extend λsub with some equations, resulting in the equational calculus
λsub/Π in Fig. 3.

The equations are divided in two groups P̂ = {σ̂1, σ̂2, b̂ox} and P =
{CS, σ1, σ2, box1, box2}. We write ≡P̂, ≡P and ≡Π for the contextual, reflexive-
transitive closure of α-conversion and all the equations in P̂, P and P̂∪P, respec-
tively. We use →λsub/Π for reduction →λsub modulo ≡Π .

The first group P̂ of equations is the same of ΛP̂, but now also on terms with
ES. The second group P is obtained by projecting the equations of P̂ acting on
λ-terms into terms with ES by means of →dB:

(λx.λy.t) u ≡σ̂1 λy.((λx.t) u) ((λx.t) u) v ≡σ̂2 (λx.(t v)) u
↓dB ↓dB ↓dB ↓dB

(λy.t)[x/u] ≡σ1 λy.(t[x/u]) (t[x/u]) v ≡σ2 (t v)[x/u]
(A)

Analogously, ≡box1 and ≡box2 are obtained by projecting ≡
̂box. Thus,

t ((λx.v) u) ≡
̂box ((λx.t v) u) (λy.t) ((λx.v) u) ≡

̂box ((λx.(λy.t) v) u)
↓dB ↓dB ↓∗dB ↓∗dB

t v[x/u] ≡box1 (t v)[x/u] t[y/v[x/u]] ≡box2 t[y/v][x/u]

Obtaining ≡CS is more subtle, indeed t[y/v][x/u] ≡CS t[x/u][y/v] can be un-
derstood as the dB-projection of (λx.((λy.t)v))u ≡σ̂1,σ̂2 (λy.((λx.t)u))v. The



30 B. Accattoli and D. Kesner

equivalence relation generated by the equations {CS, σ1, σ2} on the set T can be
understood by means of the translation from terms with ES to Pure Proof-Nets.
Equations {box1, box2} are obtained by taking the box-box commutative rule of
Proof-Nets as an equation rather than a rule (which is a novelty of our study).
The equations of P̂, which are exactly those of ΛP̂, are obtained by lifting those
of P from terms with ES to λ-terms, which is the reason for writing .̂

5 The Z-property Modulo by Means of M-developments

We prove here that →β satisfies the Z-property modulo ≡P̂ by means of the
notion of M-developments introduced in Sec. 4. The new equivalence ≡P on terms
with ES allows to prove that t0 ≡P̂ t1 implies t◦0 = t◦1 by continuously extending
≡P̂ through reduction. This notion of continuity is a strong form of the so-called
local coherence (see [19], pp. 769-770).

Lemma 6. Let t, u, u1, u2 ∈ T .

1. dB-Continuity of ≡Π : if t ≡Π u1 and t→dB u2 then exists v s. t. u1 →dB v
and u2 ≡Π v.

2. Projecting ≡Π by dB-nf: if t ≡Π u then dB(t) ≡P dB(u).
3. Projecting ≡P by sub-nf: if t ≡P u then sub(t) = sub(u).
4. Projecting ≡Π by M-developments: if t ≡Π u then t◦ = u◦.

Proof. 1. By induction on ≡Π . The base case is as in the equations labelled
(A) on Page 29. For instance: if t = (λx.(s w)) r ∼

̂box s ((λx.w) r) = u1 with
x /∈ fv(s) and x ∈ w, and if t →dB (s w)[x/r] = u2 then u1 →dB s w[x/r] = v
and u2 ∼box1 v. The inductive cases are straightforward.
2. By induction on the length of t →∗

dB dB(t) using Point 1. one gets dB(t) ≡Π

dB(u). We conclude since ≡Π coincides with ≡P on dB-nfs.
3. By induction on ≡P using the characterisation in Lem. 3.
4. By composing the two previous points.

Now we need to show the Z-property for →β with respect to M-developments.
This is done by analysing the commutation of→dB and →sub. We first prove the
result for →λsub, thus obtaining the Z-property for →β modulo P̂ as a corollary.

Lemma 7 (Commutation of →∗
sub and →∗

dB). Let t, u1, u2 ∈ T . If t→k
sub u1

and t→h
dB u2 then there exists v s.t. u2 →k

sub v and u1 →∗
dB v.

Proof. By induction on the pair 〈k, h〉 ordered lexicographically, using local com-
mutation (case k = h = 1), which is proved by induction on t.

Lemma 8 (Z-property for →λsub). Let t, u ∈ T . Then:

1. If t→λsub u then u→∗
λsub t

◦.
2. If t→λsub u then t◦ →∗

λsub u
◦.



The Permutative λ-Calculus 31

Proof. 1. If t→dB u then t◦ = u◦ (thus u→∗
λsub u

◦ = t◦ holds). If t→sub u then
by Lem. 7 ∃ v s.t. dB(t)→∗

sub v and u→∗
dB v. We have sub(dB(t)) = sub(v) and

so u→∗
dB v →∗

sub sub(dB(t)) = t◦.
2. If t→dB u then t◦ = u◦. If t →sub u then by Lem. 7 exists v s.t. u→∗

dB v and
dB(t) →∗

sub v. By definition v →∗
dB dB(u) and v →∗

sub t
◦. By Lem. 7 exists w s.t.

dB(u) →∗
sub w and t◦ →∗

dB w. By definition w →∗
sub sub(dB(u)) = u◦, therefore

t◦ →∗
λsub u

◦.

Corollary 2 (Z-property for →β). Let t, u ∈ Λ. Then:

1. If t→β u then u→∗
β t

◦.
2. If t→β u then t◦ →∗

β u
◦.

Proof. 1. If t →β u then t →dB u1 →sub u. We have t◦ = u◦1 and by Lem. 8:1
u →∗

λsub u
◦
1, hence u →∗

λsub t
◦. By Lem. 4 we get sub(u) →∗

β sub(t◦) and we
conclude since both sub(u) = u and sub(t◦) = t◦ hold, given that both u and t◦

are λ-terms.
2. If t→β u, then t→dB u1 →sub u, Lem. 8:2 gives t◦ →∗

λsub u
◦
1 →∗

λsub u
◦. As in

the previous point we conclude t◦ →∗
β u

◦ by Lem. 4.

Thus we get:

Theorem 2. 1. The relation →λsub is Church-Rosser modulo ≡Π .
2. The relation →β is Church-Rosser modulo ≡P̂.

Proof. Lem. 8 and Lem. 6:3 prove the Z-property for →λsub modulo ≡Π . Cor. 2
and Lem. 6:4 prove the Z-property for →β modulo P̂. Church-Rosser modulo
follows in both cases from Lem. 1.

Note that our proof of confluence for ΛP̂ and λsub modulo ≡Π does not use
confluence of λ-calculus.

6 Adding the Unboxing Rule

In this section we add the void unboxing rule in order to lift our confluence result
from →β/P̂ to →{β,û}/P̂.

The application construct t u is linear in t and non-linear in u, in the sense
that u can be duplicated/erased (for instance if t = λx.x x) while t cannot. The
translation of λ-calculus into Linear Logic makes this point explicit: u is placed
in a !-box—the construction allowing non-linearity—while t is not. The natural
permutation (note the absence of the side condition “x ∈ fv(v)”):

t ((λx.v) u) ∼badbox (λx.t v) u if x /∈ fv(t)

is delicate, because it permutes a redex in/out of a non-linear sub-term, and
thus affects reduction lengths. Indeed, we now show that→β plus the equations
{σ̂2, badbox} does not preserve β-strong normalisation, i.e. there exists t ∈ SN β



32 B. Accattoli and D. Kesner

B[[t[x/u]]] �→u B[[t]][x/u] if B does not capture variables in fv(u)

Fig. 4. The unboxing rule

s.t. t /∈ SN β/{σ̂2,badbox} as the following example shows. Let t = (λx.u) u, where
u = (λz.z z) y. Then,

t = (λx.u) u = (λx.((λz.z z) y)) u ≡badbox

(λz.z z)((λx.y) u) →β ((λx.y) u) ((λx.y) u) ≡σ̂2

(λx.y ((λx.y) u)) u ≡badbox (λx.(λx.y y) u) u ≡badbox

(λx.y y) ((λx.u) u) = (λx.y y) t

The term t reduces to a term containing t so that t /∈ SN β/{σ̂2,badbox}. Note
that in the counter-example the equation badbox is used with respect to a λ-
abstraction binding a variable which does not occur in the body.

Thus we split the previous equation ∼badbox in two cases: the case “x ∈ fv(v)”
goes to the equation b̂ox, while the case “x /∈ fv(v)” is captured by the void
unboxing rewriting rule �→û in Fig. 1, which is just an orientation from left
to right of the dangerous equation ∼badbox. The idea behind a reduction step
t ((λx.v) u) →û (λx.t v) u is that both sides of the rule β-reduce to t v, or,
equivalently, the permuted redex simply erases u, which therefore can be con-
sidered as garbage. The interest in permuting garbage is to get it out of the
arguments, so that it does not get duplicated. Indeed, consider the case where t
(in the rule) is λy.y y: a β-reduction step from the left-hand side duplicates u,
while this is not the case for the right-hand side.

Void unboxing is a rewriting rule but it behaves exactly as the other equations
with respect to M-developments, i.e. t0 →û t1 implies t◦0 = t◦1. To show this
property we proceed as for the other equations, i.e. we extend λsub/Π with a
rule �→u reflecting �→û on terms with ES. To specify the rewriting rule �→u, we
first need to define a special notion of context. A boxed context B is given by
the following grammar:

B ::= t C | t[x/C] | B t | B[x/t] | λy.B

where C denotes a context in λsub. The name boxed context is justified by the
Proof-Net representation of λ-terms (with explicit substitutions): every argu-
ment of an application or content of an ES is denoted by a !-box, hence the
hole of a boxed context necessarily occurs inside a !-box. The unboxing rule for
terms with ES is the context closure of the rule in Fig. 4 (for technical reasons
�→u is more general than the projection of �→û by dB-steps). Next lemma relates
unboxing and M-developments.

Lemma 9. Let t, u1, u2 ∈ T .

1. Commutation of →{u,û} and →∗
dB: if t→{u,û} u2 and t→k

dB u1 then there

exists v s.t. u2 →k
dB v and u1 →{u,û} v.

2. Projecting →{u,û} by dB-nf: If t→{u,û} u, then dB(t)→u dB(u).



The Permutative λ-Calculus 33

3. Projecting →{u,û} by M-developments: If t→{u,û} u, then t◦ = u◦.

Proof. 1. By induction on k. The case k = 1 is by induction on t→{u,û} u2. The
only interesting subcases are the root ones for t →û u2 and t →u u2, given by
the following diagrams:

t = s ((λx.w) r) →û (λx.s w) r = u2

↓dB ↓dB
s w[x/u] →u (s w)[x/r]

t = (λy.s)L w[x/u] →u ((λy.s)L w)[x/u] = u2

↓dB ↓dB
s[y/w[x/u]]L →u s[y/w]L[x/u]

The other subcases and inductive cases are all straightforward.
2. By the previous point there exists v s.t. dB(t) →u,û v and u →∗

dB v. But dB-
normal forms cannot →û-reduce, so dB(t) →u v. Moreover, →u cannot create
dB-redexes, so v = dB(v) = dB(u).
3. From 2. we get dB(t) →u dB(u). Thus t◦ = sub(dB(t)) = sub(dB(u)) = u◦

since u-reduction only moves one void substitution.

Thus we can extend our confluence results to void unboxing.

Corollary 3 (Z-property for unboxing). Let t, t0 ∈ Λ and u, u0 ∈ T .

1. If t→{λsub,û,u} t0 then t0 →∗
{λsub,û,u} t

◦ and t◦ →∗
{λsub,û,u} t

◦
0.

2. If u→{β,û} u0 then u0 →∗
{β,û} u

◦ and u◦ →∗
{β,û} u

◦
0.

Proof. 1. For →λsub use Lem. 8. Suppose t →{û,u} t0. Then t0 →∗
λsub t◦0 by

definition and t◦0 = t◦ by Lem. 9:3, which allow us to conclude.
2. For →β use Cor. 2. For →û use u0 →∗

β u
◦
0 (Lem. 5) and Lem. 9:3.

As before we get:

Theorem 3. 1. The relation →{λsub,û,u} is Church-Rosser modulo ≡Π .
2. The relation →{β,û} is Church-Rosser modulo ≡P̂.

The extension of Church-Rosser modulo to unboxing relies on the fact that
t→û u implies t◦ = u◦. Let→P̂ be the reduction system obtained by an arbitrary
orientation of the equations in the set P̂. The reduction →P̂ enjoys the same
property above for →û. Hence, we easily get the Z-property for →{β,û,P̂}, and
thus confluence holds. Note that even a stronger fact holds: it is possible to
orient only some of the equations in P̂ keeping the other(s) as equations, and
Church-Rosser modulo still holds.

7 Preservation of β-Strong Normalisation

In this section we show that ΛP̂ enjoys PSN. As before, we shall actually prove
PSN for {λsub, u, û}/Π and then deduce PSN for ΛP̂. The proof simply consists
in reducing the problem to the following result from [2].

Theorem 4. The calculus {λj, u}/P enjoys PSN.



34 B. Accattoli and D. Kesner

Since λsub can be seen as a sub-calculus of λj (because →λsub⊆→λj, see [1]),
from Th. 4 we immediately get the following corollary:

Theorem 5. The calculus {λsub, u}/P enjoys PSN.

In order to infer PSN for {λsub, u, û}/Π we need to show that ≡Π and →û pre-
serve strong normalisation. The idea is to project reductions of {λsub, u, û}/Π
over dB-normal forms, since ≡Π (resp.→û) collapses on ≡P (resp.→u), and then
show that this projection preserves strong normalisation. But this is trivial:→dB

cannot erase any redex except the one it reduces. For →û this is given by Lem.
9:2, while for →sub it is given by the the following lemma, where we get →+

λsub

and not just →∗
λsub.

Lemma 10. If t→sub u then dB(t)→+
λsub dB(u).

Proof. Lem. 7 applied to the hypothesis and t →∗
dB dB(t) gives v s.t. u →∗

dB v
and dB(t) →sub v. We conclude since v →∗

dB dB(v) = dB(u) and so dB(t) →sub

v →∗
dB dB(u).

Corollary 4. The {λsub, u, û}/Π-calculus enjoys PSN.

Proof. Let t ∈ SN β and suppose t /∈ SN {λsub,u,û}/Π . Then, there is an infi-
nite {λsub, u, û}/Π-reduction starting at t, and since dB modulo Π is a triv-
ial well-founded relation, this reduction has necessarily the following form:
t→∗

dB/Π t1 →+
{sub,u,û}/Π t2 →∗

dB/Π t3 →+
{sub,u,û}/Π t4 . . . . By Lem. 6:2, Lem. 10

and Lem. 9:2, we can transform this infinite reduction into an infinite
{λsub, u}/P-reduction starting at t. Since t ∈ SN {λsub,u}/P by Cor. 5, then also
dB(t) ∈ SN {λsub,u}/P, so we get a contradiction.

The permutative λ-calculus can be (strictly) simulated into the reduction rela-
tion {λsub, u, û}/Π and thus it enjoys PSN.

Corollary 5 (PSN for {β, û}/P̂). The permutative λ-calculus enjoys PSN,
i.e. if t ∈ SN β, then t ∈ SN {β,û}/P̂.

This last corollary is a generalisation of René David’s results [4], where σ̂1 is
taken from left to right while {σ̂2, b̂ox} are taken from right to left.

More generally, consider any orientation of (a subset) of our equations that
yields a terminating reduction �. Then, the system where these equations are
replaced by � turns out to enjoy PSN. Thus, our result strictly subsumes pre-
vious results in the literature [4,7].

To appreciate the power of Cor. 5 note that whenever t is typable with respect
to a system S guaranteing β-strong normalisation (for instance, simple types,
intersection types, second-order types) then t is strongly normalising (SN) in ΛP̂.

Theorem 6 (SN). Typability implies strong normalisation.



The Permutative λ-Calculus 35

8 Conclusions and Future Work

This paper proposes the permutative λ-calculus as a natural generalization of
existing λ-calculi for reasoning about permutation of constructors. In all these
frameworks permutations are reduction rules, while in ΛP̂ they are treated as
equations, which is more general and also requires more sophisticated rewrit-
ing techniques. The one we use for confluence, based on the new notion of
M-developments, is simple and yet powerful: we believe it is interesting by it-
self. We think that M-developments can also be used for proving meta-confluence
of ΛP̂.

It would be also interesting to understand if it is possible to state some ab-
stract conditions on equational extensions of λ-calculus implying the good be-
haviour of equations. Indeed, [7] gives sufficient conditions on reduction systems
extending λ-calculus to guarantee that they enjoy PSN. However, the method
in [7] does not seem to be naturally applicable to equational extensions.

References

1. Accattoli, B., Kesner, D.: The Structural λ-Calculus. In: Dawar, A., Veith, H. (eds.)
CSL 2010. LNCS, vol. 6247, pp. 381–395. Springer, Heidelberg (2010)

2. Accattoli, B., Kesner, D.: Preservation of strong normalisation modulo
permutations for the structural calculus. Submitted to LMCS (2011),
https://sites.google.com/site/beniaminoaccattoli/PSN-modulo.pdf

3. Barendregt, H.: The Lambda Calculus: Its Syntax and Semantics, Revised edition.
North-Holland (1984)

4. David, R.: A short proof that adding some permutation rules to preserves SN.
TCS 412(11), 1022–1026 (2011)

5. de Groote, P.: The Conservation Theorem Revisited. In: Bezem, M., Groote, J.F.
(eds.) TLCA 1993. LNCS, vol. 664, pp. 163–178. Springer, Heidelberg (1993)

6. Esṕırito Santo, J.: Delayed Substitutions. In: Baader, F. (ed.) RTA 2007. LNCS,
vol. 4533, pp. 169–183. Springer, Heidelberg (2007)

7. Esṕırito Santo, J.: A note on preservation of strong normalisation in the λ-calculus.
TCS 412(11), 1027–1032 (2011)

8. Girard, J.-Y.: Linear logic. TCS 50 (1987)
9. Hindley, J.R.: Reductions of residuals are finite. Transactions of the American

Mathematical Society 240, 345–361 (1978)
10. Kamareddine, F.: Postponement, conservation and preservation of strong normal-

ization for generalized reduction. JLC 10(5), 721–738 (2000)
11. Kesner, D.: A theory of explicit substitutions with safe and full composition.

LMCS 5(3:1), 1–29 (2009)

12. Kfoury, A.J., Wells, J.B.: New notions of reduction and non-semantic proofs of
beta-strong normalization in typed lambda-calculi. In: LICS, pp. 311–321. IEEE
Computer Society Press (1995)

13. Klop, J.-W., van Oostrom, V., van Raamsdonk, F.: Combinatory reduction sys-
tems: introduction and survey. TCS 121(1/2), 279–308 (1993)

14. Lengrand, S.: Termination of lambda-calculus with the extra call-by-value rule
known as assoc. CoRR, abs/0806.4859 (2008)

https://sites.google.com/site/beniaminoaccattoli/PSN-modulo.pdf


36 B. Accattoli and D. Kesner

15. Lévy, J.-J.: Réductions correctes et optimales dans le lambda-calcul. PhD thesis,
Univ. Paris VII, France (1978)

16. Moggi, E.: Computational lambda-calculus and monads. In: LICS, pp. 14–23. IEEE
Computer Society Press (1989)

17. Regnier, L.: Une équivalence sur les lambda-termes. TCS 2(126), 281–292 (1994)
18. Sabry, A., Felleisen, M.: Reasoning about programs in continuation-passing style.

In: LFP, pp. 288–298. ACM, New York (1992)
19. Terese: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Sci-

ence, vol. 55. Cambridge University Press (2003)
20. van Oostrom, V.: Z. Slides, http://www.phil.uu.nl/~oostrom/publication/

rewriting.html

21. Esṕırito Santo, J., Matthes, R., Pinto, L.: Monadic Translation of Intuitionistic
Sequent Calculus. In: Berardi, S., Damiani, F., de’Liguoro, U. (eds.) TYPES 2008.
LNCS, vol. 5497, pp. 100–116. Springer, Heidelberg (2009)

http://www.phil.uu.nl/~oostrom/publication/rewriting.html
http://www.phil.uu.nl/~oostrom/publication/rewriting.html


Automated and Human Proofs in General Mathematics:
An Initial Comparison

Jesse Alama1, Daniel Kühlwein2, and Josef Urban2,�

1 New University of Lisbon
2 Radboud University Nijmegen

Abstract. First-order translations of large mathematical repositories allow
discovery of new proofs by automated reasoning systems. Large amounts of
available mathematical knowledge can be re-used by combined AI/ATP systems,
possibly in unexpected ways. But automated systems can be also more easily
misled by irrelevant knowledge in this setting, and finding deeper proofs is typi-
cally more difficult. Both large-theory AI/ATP methods, and translation and data-
mining techniques of large formal corpora, have significantly developed recently,
providing enough data for an initial comparison of the proofs written by mathe-
maticians and the proofs found automatically. This paper describes such an initial
experiment and comparison conducted over the 50000 mathematical theorems
from the Mizar Mathematical Library.

1 Introduction: Automated Theorem Proving in Mathematics

Computers are becoming an indispensable part of many areas of mathematics [6]. As
their capabilities develop, human mathematicians are faced with the task of steering,
comprehending, and evaluating the ideas produced by computers, similar to the players
of chess in recent decades. A notable milestone is the automatically found proof of the
Robbins conjecture by EQP [8] and its postprocessing into a human-comprehensible
proof by ILF [3] and Mathematica [5]. Especially in small equational algebraic theo-
ries (e.g., quasigroup theory), a number of nontrivial proofs have been already found
automatically [11], and their evaluation, understanding, and automated post-processing
is an open problem [18].

This motivates our interest in making ATP useful also for general mathematics,
as done by trained mainstream mathematicians, using standard set-theoretical founda-
tions and a large body of general mathematical knowledge. In the recent years, large
general mathematical corpora like the Mizar Mathematical Library (MML) and the Is-
abelle/HOL library are being made available to automated reasoning and AI meth-
ods [14,10], leading to the development of automated reasoning techniques working
in large theories with many previous theorems, definitions, and proofs that can be re-
used [16,7,9,17]. A recent evaluation (and tuning) of ATP systems on the MML [15]

� J. Alama was funded by the ESF research project Dialogical Foundations of Semantics, FCT
LogICCC/0001/2007. D. Kühlwein and J. Urban were funded by the NWO projects Learn-
ing2Reason and MathWiki. We thank P. Rudnicki for providing computing support for the
work described here, and the anonymous LPAR referees for valuable comments.

N. Bjørner and A. Voronkov (Eds.): LPAR-18, LNCS 7180, pp. 37–45, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



38 J. Alama, D. Kühlwein, and J. Urban

has shown that the Vampire/SInE system (winner of all CASC LTB competitions) can
already re-prove 39% of the MML’s 50000 theorems when the necessary premises are
precisely selected from the human1 proofs, and about 14% of the theorems when the
ATP is allowed to use the whole available library, leading on average to 40000 premises
in such ATP problems. In [1] it is further shown on a subset of 2078 MML problems that
re-using (generalizing and learning) the knowledge accumulated in previous proofs can
further significantly (currently 30–40%, depending on the learning method) improve
the performance of combined AI/ATP systems in large-theory mathematics.

This performance, and the recently developed exact proof analysis for the MML [2],
allowed an experiment with finding automatically all proofs in the MML by a combina-
tion of learning and ATP methods. This is described in Section 2. The 9141 ATP proofs
found automatically were then compared using several metrics to the human proofs.
This is described in Section 3 and in Section 4.

2 Finding Proofs in the MML with AI/ATP Support

To create a sufficient body of ATP proofs from the MML, we have conducted a large
AI/ATP experiment that makes use of several recently developed techniques and signif-
icant computational resources. The basic idea of the experiment is to lift to the whole
MML (approximately 50000 theorems and more than 100000 premises) the setting used
in [1] for large-theory automated proving of 2078 related MML problems. The setting
consists of the following three consecutive steps:

– mining the exact minimal proof dependencies from all human-written MML proofs;
– learning premise selection from the minimal proof dependencies;
– using an ATP (Vampire) to prove new conjectures from the best selected premises.

2.1 Mining the Minimal Dependencies from All Human-Written MML Proofs

This process is in detail described in [2], where it is conducted for the 100 initial articles
from the MML. The difficulty (and interestingness) consists in (partially brute-force)
minimization of the many proof premises (like typing information) that advanced ITPs
like Mizar use implicitly, in order to save their users most of the obvious and tedious
steps. Conducting this data-mining requires nontrivial transformation of all MML items
(theorems, definitions, etc.) into separate micro-articles, followed by the minimization
of the micro-articles’ dependencies. This takes several days for all of MML, however
the precise information thus obtained gives rise to an unparalleled corpus of data about
human-written proofs in the largest available formal body of mathematics. One advan-
tage of this minimization approach over just collecting dependencies from the standard

1 Mizar proofs are initially human-written, but they are formal and machine-understandable.
That allows their automated machine processing and refactoring, which can make them “less
human”. Yet, we believe that their classification as “human” is mostly correct for our purposes,
and that MML/MPTP is probably the most suitable resource today for attempting this initial
comparison of ATP and human proofs.



Automated and Human Proofs in General Mathematics: An Initial Comparison 39

ITP proof objects is that the latter often include many products of “wasteful” (non-
minimized) ITP techniques, like congruence closure over all available ground equal-
ities, and exhaustive application of typing hierarchies. In the final account, the days
of computation devoted to minimization pay off, by providing more precise advice for
proving new conjectures over the whole MML. An approximate estimate of the com-
putational resources taken by this job is about ten days of full (parallel) CPU load (12
hyperthreading Xeon 2.67 GHz cores, 24 GB RAM) of the Mizar server at the Uni-
versity of Alberta. The resulting minimized dependencies for all MML items can be
viewed online at a web page2 presenting them.

2.2 Learning Premise Selection from Proof Dependencies

To learn premise selection from proof dependencies, one characterizes all MMLformulas
by suitable features, and feeds them (together with the detailed proof information) to a
machine learning system that is trained to advise premises for later conjectures. For-
mula symbols have been used previously for this task in [14]. Thanks to sufficient
hardware being available, we have for the first time included also term features gen-
erated by the MaLARea framework, added to it in 2008 [16] for experiments with
smaller subsets of MML. Thus, for each MML formula we include as its characteri-
zation also all the subterms and subformulas contained in the formula, which makes
the learning and prediction more precise. To our surprise, the EPROVER-based [13]
utility that consistently numbers all shared terms in all formulas, written for this pur-
pose in 2008 by the last author, scaled without problems to the whole MML, and this
feature-generation phase took only minutes. This created over one million learning fea-
tures that are used to characterize all the mathematics in MMLfor learning. We have also
briefly explored using validity in finite models (again, introduced in MaLARea in 2008,
building on Pudlák’s previous work [12]) as a more semantic way of characterizing
formulas. However, this has turned out to be very time-consuming, most likely caused
by the LADR-based clausefilter utility struggling with evaluating in the models
some complicated (containing many quantifiers) mathematical formulas from the MML.
Clearly, further optimizations are needed for extracting such semantic characterizations
for all of MML. Even without such features, the machine learning was already pushed to
the limit. The more advanced kernel-based multi-output ranker developed in [1] turned
out to be too slow and memory-exhaustive to handle over one million features and over
hundred thousand training examples without further improvements. The SNoW system
used in naive Bayes mode took several gigabytes of RAM to train on the data, and on
average about a second (ca a day of computation for all of MML) to produce a premise
prediction for each MML problem (based always on incremental training3 on all previ-
ous MML proofs characterized by their exact dependencies, and the formula features).
It seems that pushing such AI methods to handle, for example, the mathematics from the
whole arXiv.org, Elsevier, or Springer corpora (if ever (semi-)formalized), will require
some nontrivial scaling up, going for technologies developed by Google and similar

2 http://mizar.cs.ualberta.ca/mizar-items
3 In the incremental learning mode, the evaluation and training are done at the same time for

each example, hence there was no extra time taken by training.

http://mizar.cs.ualberta.ca/mizar-items


40 J. Alama, D. Kühlwein, and J. Urban

companies for dealing with very large learning tasks. The results of this run are SNoW
premise predictions for all of MML, available online as the raw SNoW output at our
web page4, and also postprocessed into corresponding ATP problems (see below).

2.3 Using ATPs to Prove the Conjectures from the Selected Premises

As the MML grows from axioms of set theory to advanced mathematics, it gives rise
to a chronological ordering of its theorems. When a new theorem C is conjectured, all
the previous theorems and definitions are available as premises, and all the previous
proofs are used to learn which of these premises are relevant for C. The SNoW system
provides a ranking of all premises, and the best premises are given to an ATP which
attempts a proof of C.

There are many ways how to organize several ATP systems to attack C, and how to
try with different numbers of the best-ranked premises and with different time limits.
Several such policies are implemented in MaLARea, which can run for months on the
whole MML while still producing new proofs. Because our main interest here was to
get a sufficient body of automatically found proofs for their further evaluation, we have
fixed the ATP system to be Vampire (version 1.8), and we have always used 200 best
premises and a time limit of 20 seconds. A 12-core 2.67 GHz Xeon server at University
of Alberta was used for (parallelized) proving, which took about a day in real time. This
has produced 9141 automatically found proofs that we further analyze. The overall suc-
cess rate is over 18% of theorems proved which is so far the best result on the whole
MML, but we have not really focused yet on getting this as high as possible. For ex-
ample, running Vampire in parallel with both 40 and 200 best recommended premises
has been shown to significantly improve the success rate, and a preliminary experiment
with the Z3 solver has provided another two thousand proofs from the problems with
200 best premises. Unfortunately, Z3 does not (yet) print the names of premises used in
the proofs, so its proofs would not be directly usable for the analysis that is conducted
here. When using a large number of premises, an ATP proof can often contain unnec-
essary premises. To get more closely the set of premises that an ATP actually needs,
we always re-run the ATP only with the premises that were used in the first run. For
Vampire, such minimization is quite significant. The resulting ATP problems are also
available online5 for further experiments, as well as all the 9141 proofs found.6

3 Proof Metrics

We thus have, for 9141 Mizar theorems φ, the set of premises that were used in the
(minimized) ATP proof of φ. Each ATP proof was found completely independently
of its Mizar proof, i.e., no information (e.g., about the premises used) from the Mizar
proof was transferred to the ATP proof.7 This gives us a notion of dependency for

4 http://mizar.cs.ualberta.ca/˜mptp/proofcomp/snow_predictions.tar.gz
5 http://mizar.cs.ualberta.ca/˜mptp/proofcomp/advised200f1.tar.gz
6 http://mizar.cs.ualberta.ca/˜mptp/proofcomp/proved200f1min.tar.gz
7 The ATP proofs are however always based on the same state of previous theory and proof

knowledge. This could be further relaxed in future experiments.

http://mizar.cs.ualberta.ca/~mptp/proofcomp/snow_predictions.tar.gz
http://mizar.cs.ualberta.ca/~mptp/proofcomp/advised200f1.tar.gz
http://mizar.cs.ualberta.ca/~mptp/proofcomp/proved200f1min.tar.gz


Automated and Human Proofs in General Mathematics: An Initial Comparison 41

Mizar theorems, derived from an ATP. From the Mizar proof dependency analysis we
also know precisely what Mizar items are needed for a given Mizar (human-written)
proof to be successful.

Definition 1. For a Mizar theorem φ, let PH(φ) be the minimal set of premises needed
for the success of the human proof of φ. Let PA(φ) be the set of premises used by an
ATP to prove φ.

This gives rise to the notions of “immediate dependence” and “indirect dependence” of
one Mizar item a upon another Mizar item b:

Definition 2. For Mizar items a and b, a <1 b means that a immediately depends on
b (b ∈ PH(a)). Let < be the transitive closure of <1, ≤ its reflexive version, and let
P∗H(a) � {b: b < a}. For a set S of items, let P∗H(S ) � {b:∃a ∈ S : b ≤ a} .

While theoretically, there are multiple versions of <1 and < induced by different (ATP,
Mizar) proofs, unless we explicitly state otherwise, these relations will always refer to
the dependencies derived from the Mizar proofs. The pragmatic reason is that we do not
have an ATP proof for all Mizar items,8 and hence we do not have the full dependency
graph induced by ATP proofs. Also, the way ATP proofs were produced was by always
relying on the previous Mizar theorems and dependency data, therefore it makes sense
to also use the Mizar data for the transitive closure.

We now define two metrics (and their transitive, human, and ATP versions) D (De-
pendencies) and L (Length) measuring the complexity of proofs of Mizar theorems. The
human alternative of D just (recursively) counts all proof dependencies, based on the
full Mizar dependency graph. The ATP alternative uses the ATP proof, and its transitive
version recurses using the (full) Mizar dependency graph.

Definition 3. For each Mizar item a, let DH(a) � |PH(a)| and D∗H(a) � |P∗H(a)|. For
a set S of items, let D∗H(S ) � |P∗H(S )| . For each ATP-proved theorem a, let DA(a) �
|PA(a)|, and D∗A(a) � D∗H(PA(a)) .

The second metric L adds weighting by (recursive) proof complexity, which is for the
Mizar proofs computed using the assumption that the Mizar weak refutational checker
enforces a relatively uniform degree of derivational complexity on all Mizar proof steps,
which roughly correspond to proof lines in Mizar formalizations. For the ATP version,
we make a similar assumption that the complexity of ATP proof steps is roughly uni-
form.9 For the comparison with human proofs, we first need to define a conversion
ratio cA/H between the number of ATP inference lines and the corresponding number of
Mizar proof lines. This is pragmatically estimated as the average of such ratios for all
the proofs where the ATP used the same premises as the Mizar proof. The actual value
computed (based on 1223 proofs where PA(a) = PH(a)) is cA/H = 81.99 . Formally:

8 We have limited the ATP experiment to Mizar theorems, so even with perfect ATP success rate
we would still miss for example all ATP dependencies of Mizar definitions, that often require
proofs of existence, uniqueness, etc.

9 The precision of such metrics could be further improved, for example by expanding Vampire
proofs into the (really uniform) detailed proof objects developed for Otter/Prover9/IVY.



42 J. Alama, D. Kühlwein, and J. Urban

Definition 4. For a Mizar-proved item a, let LH(a) be the number of Mizar lines of code
used to prove a (direct Mizar proof length). For each ATP-proved item a, let L0

A(a) be
the number of steps in the ATP proof. Let EH=A � {a: PA(a) = PH(a)} (items whose ATP
and Mizar proofs use the same premises). Let cA/H � 1/|EH=A| ∗∑a∈EH=A

L0
A(a)/LH(a)

(the length conversion ratio). Finally, we define the normalized ATP proof length as
LA(a) � L0

A(a)/cA/H . For a set of items S , let again LH(S ) �
∑

a∈S LH(a).

Definition 5. For a Mizar theorem a we define L∗H(a) � LH(a) + LH(P∗H(a)). If we have
an ATP proof, we define L∗A(a) � LA(a) + LH(P∗H(PA(a))) .

The reason for using LH() and P∗H() in the recursive part of L∗A() is again the fact that we
only have the complete line count information for the Mizar proofs. Note that both in
D∗ and in L∗ we always count any lemma on the transitive proof path exactly once. We
believe that this approach captures the mathematician’s intuition of proof complexity
as the set of “the proofs that need to be understood” rather than as their multiset. This
could be further explored by various cognitive experiments.

4 Evaluation

The metrics developed above were used for an initial comparison of the Mizar and ATP
proofs. The detailed evaluation data corresponding to this section are available online.10

First we analyze the data based on the relation between PH() and PA(). For each Mizar
theorem φ that can be proved by an ATP, we have either PH(φ) = PA(φ), PH(φ) ⊂ PA(φ),
PA(φ) ⊂ PH(φ), or neither set is included in the other. Let us say that two sets A and B
are orthogonal if neither A ⊆ B, nor B ⊆ A. The statistics is given in Table 1.

Table 1. Premise statistics for the categories

Category Cases Max A Min A Avg A Max H Min H Avg H Max |H − A| Avg |H − A|
PH(a) = PA(a) 1223 7 0 2.18 7 1 2.11 0 0
PA(a) ⊂ PH(a) 1980 12 0 2.20 59 1 5.58 58 3.40
PH(a) ⊂ PA(a) 386 89 1 6.24 10 1 2.41 83 3.88

Orthogonal 5552 63 1 5.22 58 1 6.33 60 3.86

While the orthogonal category is largest as was expected, it is surprising to see more
than 10% of the proofs to be the same according to the D metric. It is even more sur-
prising to see that 1980 ATP proofs (21.66%) are shorter according to the D metric. An
initial analysis suggested (at least) the following explanations:

– The ATP is naturally oriented towards as short proofs as possible. Getting involved
proofs with many premises is hard, and it may well be the main reason of ATP
failure outside the 9141 proved theorems.

10 http://mizar.cs.ualberta.ca/˜mptp/proofcomp/metrics_evaluation.xls

http://mizar.cs.ualberta.ca/~mptp/proofcomp/metrics_evaluation.xls


Automated and Human Proofs in General Mathematics: An Initial Comparison 43

– In many cases, a human formalizer can overlook the fact that the same or very sim-
ilar theorem is already in the library.11 An example is the theorem LOPBAN 3:2412

which required a 20-line proof in Mizar, but the ATP found an earlier more general
theorem BHSP 4:3 that (using additional typing information) provides an almost
immediate proof.

– ATPs work in untyped first-order logic, and they are not constrained by the Mizar’s
(and other ITPs’) requirement that all types should be inhabited. For example, Mizar
proof checking of GOEDELCP:113 fails if two type non-emptiness declarations are
removed, because the formula is no longer well-typed. The ATP proof however
does not need any of them.

An interesting case is when the ATP finds an inventive way how to re-use previous lem-
mas. Sometimes enough knowledge about advanced concepts is already developed that
can be used for their quite simple (“algebraic”) manipulation, abstracting from their
definitions. An example is COMSEQ 3:4014, proving the relation between the limit of
a complex sequence and its real and imaginary parts. The human proof expands the
definitions (finding a suitable n for a given ε). The ATP just notices that this kind of
groundwork was already done in a “similar” case COMSEQ 3:3915, and notices the “sim-
ilarity” (algebraic simplification) provided by COMPLEX1:2816. Such manipulations can
be used (if noticed!) to avoid the “hard thinking” about the epsilons in the definitions.

4.1 Comparing Weights

For a Mizar theorem φ, a large difference between L∗H(φ) and L∗A(φ) is a sign that the
ATP of φ is importantly different from the human Mizar proof of φ. The Table 2 shows
that with exception of the PH(a) = PA(a) case, which we used to define cA/H , the ATP
proofs have on average higher recursive complexity L∗ than the corresponding human
proofs. Again, we have found several explanations:

– Some cases are due to the failure in minimization of the ATP proofs. For exam-
ple, the ATP proof of FUNCT 7:2017 reports 40 premises and 178715 ATP (non-
normalized) proof steps, largely coming from recent addition of BDDs to Vampire.

11 From this point of view, this analysis is conducted at the right time, because the ATP service
is starting to be used by authors, and such simple repetitions will be prevented by it.

12 http://mizar.cs.ualberta.ca/˜MPTP/cgi-bin/
browserefs.cgi?refs=t24 lopban 3 The theorem says that the partial-sums operator on
normed space sequences commutes with multiplication by a scalar.

13 http://mizar.cs.ualberta.ca/˜MPTP/cgi-bin/
browserefs.cgi?refs=t1 goedelcp

14 http://mizar.cs.ualberta.ca/˜MPTP/cgi-bin/
browserefs.cgi?refs=t40 comseq 3

15 http://mizar.cs.ualberta.ca/˜MPTP/cgi-bin/
browserefs.cgi?refs=t39 comseq 3

16 http://mizar.cs.ualberta.ca/˜MPTP/cgi-bin/
browserefs.cgi?refs=t28 complex1

17 http://mizar.cs.ualberta.ca/˜MPTP/cgi-bin/
browserefs.cgi?refs=t20 funct 7

http://mizar.cs.ualberta.ca/~mptp/cgi-bin/browserefs.cgi?refs=t24_lopban_3
http://mizar.cs.ualberta.ca/~mptp/cgi-bin/browserefs.cgi?refs=t24_lopban_3
http://mizar.cs.ualberta.ca/~mptp/cgi-bin/browserefs.cgi?refs=t1_goedelcp
http://mizar.cs.ualberta.ca/~mptp/cgi-bin/browserefs.cgi?refs=t1_goedelcp
http://mizar.cs.ualberta.ca/~mptp/cgi-bin/browserefs.cgi?refs=t40_comseq_3
http://mizar.cs.ualberta.ca/~mptp/cgi-bin/browserefs.cgi?refs=t40_comseq_3
http://mizar.cs.ualberta.ca/~mptp/cgi-bin/browserefs.cgi?refs=t39_comseq_3
http://mizar.cs.ualberta.ca/~mptp/cgi-bin/browserefs.cgi?refs=t39_comseq_3
http://mizar.cs.ualberta.ca/~mptp/cgi-bin/browserefs.cgi?refs=t28_complex1
http://mizar.cs.ualberta.ca/~mptp/cgi-bin/browserefs.cgi?refs=t28_complex1
http://mizar.cs.ualberta.ca/~mptp/cgi-bin/browserefs.cgi?refs=t20_funct_7
http://mizar.cs.ualberta.ca/~mptp/cgi-bin/browserefs.cgi?refs=t20_funct_7


44 J. Alama, D. Kühlwein, and J. Urban

Table 2. Recursive line count/proof step statistics (L∗) for the categories

Category Cases Max A Min A Avg A Max H Min H Avg H Max |H − A|Avg |H − A|
PH(a) = PA(a) 1223 140176 7 7390.77 140438 1 7385.06 6210 0
PA(a) ⊂ PH(a) 1980 40653 26 7373.31 32652 1 6167.73 40626 1220.52
PH(a) ⊂ PA(a) 386 162308 9 14155.3 162532 3 14768.3 35536 632.329

Orthogonal 5552 139935 13 9893.04 140172 3 9828.81 75114 910.744

– Most of the cases again seem to be due to the ATPs tendency to get a short proof by
advanced lemmas, rather than getting into longer proofs by expanding the defini-
tions. The lemmas typically recursively use the basic definitions anyway, and their
line complexity is then a net contribution to the ATP proof’s recursive complexity.

5 Conclusion

While ATPs in general large-theory formal mathematics are becoming clearly useful, an
initial proof analysis using quite straightforward metrics has not yet found any highly
surprising ATP proofs. Clearly, the general large-theory mathematical setting is still
quite far from producing automated proofs of the order of complexity that some spe-
cialized algebraic theories enjoy. On the other hand, the ATPs have found a surprising
number of proofs that are shorter than the mathematicians’ version, and the ATP’s ideas
are very often relevant. Unlike humans, the combined AI/ATP stack learns new lemmas
and new proofs immediately, and this results in their more extensive use and signifi-
cantly higher value of L∗. An ATP working in unsorted FOL can sometimes find proofs
that, in some sense, get to the “mathematical heart” of a theorem without first going
through the syntactic hoops of ensuring that terms have suitable sorts. The tools pro-
duced for our experiments can produce information that is useful for maintainers of
large formal libraries. We found cases where an ATP was able to find a significantly
shorter proof—sometimes employing only one premise—compared to a human proof.
At times, such highly efficient ATP proofs were due to duplication in the library or fail-
ure to use a generalization to prove a special case. Finally, our work comparing different
proofs could provide a practical “test bed” for theoretical criteria of proof identity [4].

References

1. Alama, J., Kühlwein, D., Tsivtsivadze, E., Urban, J., Heskes, T.: Premise selection for math-
ematics by corpus analysis and kernel methods. CoRR, abs/1108.3446

2. Alama, J., Mamane, L., Urban, J.: Dependencies in formal mathematics. CoRR,
abs/1109.3687 (2011), http://arxiv.org/abs/1109.3687

3. Dahn, I.: Robbins algebras are Boolean: A revision of McCune’s computer-generated solu-
tion of Robbins problem. Journal of Algebra 208, 526–532 (1998)

4. Dosen, K.: Identity of proofs based on normalization and generality. Bulletin of Symbolic
Logic 9, 477–503 (2003)

5. Fitelson, B.: Using Mathematica to understand the computer proof of the Robbins Conjec-
ture. Mathematica In Education and Research 7(1) (1998)

http://arxiv.org/abs/1109.3687


Automated and Human Proofs in General Mathematics: An Initial Comparison 45

6. Hales, T.: Mathematics in the age of the Turing Machine. Lecture Notes in Logic in Com-
memoration of the Centennial of the Birth of Alan Turing (to appear, 2012)

7. Hoder, K., Voronkov, A.: Sine Qua Non for Large Theory Reasoning. In: Bjørner, N.,
Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 299–314. Springer,
Heidelberg (2011)

8. McCune, W.W.: Solution of the Robbins Problem. Journal of Automated Reasoning 19(3),
263–276 (1997)

9. Meng, J., Paulson, L.C.: Lightweight relevance filtering for machine-generated resolution
problems. J. Applied Logic 7(1), 41–57 (2009)

10. Paulson, L.C., Blanchette, J.: Three years of experience with Sledgehammer, a practical link
between automated and interactive theorem provers. In: 8th IWIL (2010)

11. Phillips, J.D., Stanovský, D.: Automated Theorem Proving in Loop Theory. In: Sutcliffe, G.,
Colton, S., Schulz, S. (eds.) ESARM. CEUR Workshop Proceedings, vol. 378, pp. 42–53.
CEUR-WS.org (2008)

12. Pudlák, P.: Semantic selection of premisses for automated theorem proving. In: Sutcliffe,
G., Urban, J., Schulz, S. (eds.) ESARLT. CEUR Workshop Proceedings, vol. 257. CEUR-
WS.org (2007)

13. Schulz, S.: E – a brainiac theorem prover. J. of AI Communications 15(2-3), 111–126 (2002)
14. Urban, J.: MPTP 0.2: Design, implementation, and initial experiments. J. Autom. Reason-

ing 37(1-2), 21–43 (2006)
15. Urban, J., Hoder, K., Voronkov, A.: Evaluation of Automated Theorem Proving on the Mizar

Mathematical Library. In: Fukuda, K., van der Hoeven, J., Joswig, M., Takayama, N. (eds.)
ICMS 2010. LNCS, vol. 6327, pp. 155–166. Springer, Heidelberg (2010)

16. Urban, J., Sutcliffe, G., Pudlák, P., Vyskočil, J.: MaLARea SG1–Machine learner for auto-
mated reasoning with semantic guidance. In: IJCAR, pp. 441–456 (2008)

17. Urban, J., Vyskočil, J., Štěpánek, P.: MaLeCoP Machine Learning Connection Prover.
In: Brünnler, K., Metcalfe, G. (eds.) TABLEAUX 2011. LNCS, vol. 6793, pp. 263–277.
Springer, Heidelberg (2011)

18. Vyskočil, J., Stanovský, D., Urban, J.: Automated Proof Compression by Invention of
New Definitions. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355,
pp. 447–462. Springer, Heidelberg (2010)



Lazy Abstraction with Interpolants for Arrays

Francesco Alberti1, Roberto Bruttomesso2, Silvio Ghilardi2,
Silvio Ranise3, and Natasha Sharygina1

1 Università della Svizzera Italiana, Lugano, Switzerland
2 Università degli Studi di Milano, Milan, Italy

3 FBK-Irst, Trento, Italy

Abstract. Lazy abstraction with interpolants has been shown to be
a powerful technique for verifying imperative programs. In presence of
arrays, however, the method shows an intrinsic limitation, due to the
fact that successful invariants usually contain universally quantified vari-
ables, which are not present in the program specification. In this work
we present an extension of the interpolation-based lazy abstraction in
which arrays of unknown length can be handled in a natural manner. In
particular, we exploit the Model Checking Modulo Theories framework,
to derive a backward reachability version of lazy abstraction that em-
beds array reasoning. The approach is generic, in that it is valid for both
parameterized systems and imperative programs. We show by means
of experiments that our approach can synthesize and prove universally
quantified properties over arrays in a completely automatic fashion.

1 Introduction

The automatic verification of software is a long standing scientific challenge. A
promising line of research is that in which Model Checking techniques are em-
ployed to automatically traverse the state-space of a program, and check it with
respect to a user-specified property. Since the problem is undecidable, complete
and fully automatic techniques cannot exist and the programmer must provide
additional annotations describing, for instance, loop invariants. It is well-known
that the task of providing such annotations is far from trivial. In order to sig-
nificantly alleviate the annotation burden, it is crucial to employ abstraction
techniques. For example, Predicate Abstraction [13], the CEGAR approach [4],
or Lazy Abstraction [16] have been shown successful and are nowadays employed
in many state-of-the-art software verification tools. In particular, Lazy Abstrac-
tion is capable of tuning the abstraction by using different degrees of precision for
different parts of the program by keeping track of both the control-flow graph,
which describes how the program locations are traversed, and the data-flow,
which describes what holds at a program location. The control-flow is repre-
sented explicitly, while the data-flow is symbolically encoded with quantifier-free
first-order formulæ and it is subjected to abstraction. The procedure is therefore
based on a CEGAR loop in which the control-flow graph is iteratively unwinded,
and the data in the newly explored locations is overapproximated. When reach-
ing an error location, if the path is spurious—i.e. the quantifier-free formula

N. Bjørner and A. Voronkov (Eds.): LPAR-18, LNCS 7180, pp. 46–61, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Lazy Abstraction with Interpolants for Arrays 47

representing the manipulations of the data along the path is unsatisfiable, the
abstraction along the path is refined. In state-of-the-art methods, this is done
by means of interpolants [15,21]. The procedure terminates when a non-spurious
path is found, or when reaching an inductive invariant.

When arrays come into the picture the situation is complicated by at least
two problems. First, the need of handling quantified formulæ (as opposed to just
quantifier-free) to take care of meaningful array properties; e.g., a typical post-
condition of a sorting algorithm is the following universally quantified formula:

∀i, j. (0 ≤ i < j ≤ a.length)⇒ a[i] ≤ a[j],

expressing the fact that the array a is sorted, where a.length represents the
symbolic size of a. Second, the difficulty of computing quantifier-free interpolants.
In [18], it is shown that quantifiers must occur in interpolants of quantifier-free
formulæ for the “standard” theory of arrays.

This paper contributes a new verification approach that addresses the above
problems. It redefines the lazy abstraction method based on interpolation (which
is known to be one of the most effective approaches in program verification)
and makes it possible to reason about arrays of unknown length. For that, it
exploits the framework behind the Model Checking Modulo Theory approach
(mcmt) [10, 11]. The reasoning about arrays and the corresponding quantified
formula is performed by means of the symbolic backward reachability algorithm
now extended with the interpolation-based abstraction refinement techniques.
This combination is able to generate the quantified predicates required for the
synthesis of the quantified inductive invariants needed to establish the validity of
the program assertions. Notably, our abstraction-based approach can be applied
to enhance the verification of array-based systems (a wide class of infinite-state
systems currently handled by mcmt). We implemented the new approach and
verified various common-use programs over arrays.

The paper is organized as follows. Section 2 recalls basic notions about array-
based systems as used in MCMT and demonstrates how sequential programs
can be specified using this model. Section 3 introduces the new lazy abstraction
approach and discusses its completeness and termination. Experiments are pre-
sented in Section 4. We conclude in Section 5. Proofs of claims made within the
paper are worked out in the online available extended version [1].

Related Work. The work described in this paper can be considered as part
of the broad line of research in model-checking for infinite state systems that
makes use of abstraction-refinement techniques to cope with the infinite search
space [4, 13, 16]. A challenging task in this setting is to find the right predicates
to ensure convergence; these predicates may be extracted, e.g., from the proof
of unsatisfiability of an infeasible abstract path [15, 21]. When arrays come into
the picture the situation is complicated by the need of using quantifiers to ex-
press meaningful properties (such as “sortedness”). Earlier work in predicate
abstraction approached this issue by using Skolem constants [8], indexed pred-
icates [24], or range predicates [17]. Approaches based on templates [25] may



48 F. Alberti et al.

synthesize more expressive formulæ, but they require manual specification of
templates and predicates. To the best of our knowledge, the closest related work
to ours is that of [23], where a backward reachability procedure for universally
quantified assertions over arrays is described. As in our approach the procedure
visits backward the set of unsafe states to find an intersection with the initial
ones, by performing the coarsest possible abstraction first. However in [23] the
computed abstraction is then refined with predicates obtained by simulating the
“pre” operator on a spurious trace, and by performing classical predicate ab-
straction (requiring injection of, in the worst case, exponentially many bound
constraints between indexes), whereas in our approach we achieve refinement by
means of interpolants.

Proving properties over arrays has also been extensively studied in the context
of abstract domains other than predicate abstraction. The approaches of [5, 6,
12, 14], for example, follow a line of research in which arrays are divided into
segments, based on the access and write operations in the programs. Several
techniques are employed to avoid the combinatorial explosion, e.g., by means of
the introduction of a suitable widening operator. These approaches have been
shown to be useful even at an industrial-scale level [5] to automatically infer a
wide range of properties. The goal of our approach is to automatically verify
that the program satisfy expressive properties.

A further promising direction of research relies on saturation-based theorem-
provers [19, 20] to generate invariants over arrays. These approaches may in
principle produce more expressive invariants than ours, but they require, on the
other hand, to instruct the prover with axioms for handling arithmetic. In our
setting, instead, we use SMT techniques to take care of the necessary arithmetic
operations.

Backward reachability of array-based systems, implemented in the tool mcmt,
has been successfully used for checking the safety of several classes of distributed
algorithms [10]. The work in this paper shows that mcmt combined with Lazy
Abstraction can also be used for verifying expressive properties of sequential
programs manipulating arrays.We also characterize when our method behaves as
a decision procedure for establishing the safety of classes of array-based systems
that cover existing results (e.g., [7]).

2 Background Notions on MCMT

We assume the usual syntactic and semantic notions of many-sorted first-order
logic with equality. We use lower-case latin letters x, a, i, e, . . . for free variables;
for tuples of free variables we use underlined letters x, a, i, e, . . . or bold face
letters like a,v, . . . . With E(x) we denote that the syntactic expression (term,
formula, tuple of terms or of formulæ) E contains at most the free variables
taken from the tuple x. According to [22], a theory T is a pair (Σ, C), where
Σ is a signature and C is a class of Σ-structures; the structures in C are called
the models of T . A Σ-formula ϕ is T -satisfiable if there exists a Σ-structureM
in C such that ϕ is true in M under a suitable assignment to the free variables



Lazy Abstraction with Interpolants for Arrays 49

of ϕ (in symbols, M |= ϕ); it is T -valid (in symbols, T |= ϕ) if its negation
is T -unsatisfiable. Two formulæ ϕ1 and ϕ2 are T -equivalent if ϕ1 ↔ ϕ2 is T -
valid; ψ1 T -entails ψ2 (in symbols, ψ1 |=T ψ2) iff ψ1 → ψ2 is T -valid. The
satisfiability modulo the theory T (SMT (T )) problem amounts to establishing
the T -satisfiability of quantifier-free Σ-formulæ. A theory T has quantifier-free
interpolation iff there exists an algorithm that, given two quantifier free formulæ
φ, ψ such that φ∧ψ is T -unsatisfiable, returns a formula θ such that: (i) φ |=T θ;
(ii) θ ∧ ψ is T -unsatisfiable; (iii) only the free variables common to φ and in ψ
occur in θ.

Array-Based Transition Systems and their Safety. We briefly recall some of
the notions underlying the framework of mcmt; for an extensive discussion,
the reader is pointed to [10]. Array-based systems are a particular class of
guarded assignment systems whose state variables comprise arrays. They are
represented symbolically using certain classes of formulæ and are endowed with
theories specifying the algebraic structures of the indexes and elements of ar-
rays. Roughly, the input language of mcmt for specifying array-based sys-
tems can be seen as a parameterized extension of the one used by UCLID
(http://www.cs.cmu.edu/˜uclid). Formally, it is a sub-set of multi-sorted
first-order logic extended with theories. In particular, we assume a (mono-
sorted) theory TI = (ΣI , CI) for indexes of arrays and a multi-sorted theory
TE = (ΣE , CE) for the elements of the arrays. The unique sort of TI is called
INDEX and a sort of TE is called ELEM�, where  ranges over a given (finite) set.
We also assume that the SMT (TI)- and SMT (TE)-problems are decidable
and that TI and TE have quantifier-free interpolation (further hypotheses
will be discussed below in connection to specific model-checking features).

The theory AE
I = (Σ, C), specifying the algebraic structures of the array state

variables manipulated by an array-based system is obtained by “composing” TI
and TE as follows. The sort symbols of AE

I are INDEX, ELEM�, and ARRAY�, its
signature Σ contains all the symbols in the (disjoint) union ΣI ∪ ΣE ∪ { [ ]�}�
where [ ]� : ARRAY�×INDEX→ ELEM� are the usual “read” operations of an array
on a given cell, and a structureM is in the class C of the models of AE

I when (i)
the restrictions ofM to ΣI , ΣE are models of TI , TE, respectively, (ii) the sorts
ARRAY� are interpreted as (total) functions from INDEXM to ELEMM� , and (iii)
the operations [ ]� are interpreted as function applications. In the following, the
subscript  will be omitted to simplify notation.

In this paper, to simplify technicalities, we adopt the following variant of the
notion of an array-based system [10]. An array-based system (for TI , TE) is
a pair S = 〈v, {τh}h〉, where v = a, c,d is the tuple of system variables and is
such that

- the tuple a = a0, . . . , as contains variables of sort ARRAY;
- the tuple c = c0, . . . , ct contains variables of sort INDEX (called, counters);
- the tuple d = d0, . . . , du contains variables of sort ELEM (called, simple vari-

ables).

http://www.cs.cmu.edu/~uclid


50 F. Alberti et al.

All variables are sorted, e.g., for a, this means that to each i = 0, . . . , t is assigned
some  so that ai is of type ARRAY�. The variable d0 ranges over a finite set
{l0, ..., ln} of program locations and is usually denoted with pc (short for program
counter) instead of d0. Among the program locations, we shall distinguish an
initial location lI and an error location lE . It is assumed that the initial state
of the array-based system S is represented by the formula I(v) := (pc = lI) and
the error state by the formula U(v) := (pc = lE).

It is still possible to specify distributed algorithms considered in [10] using
the notion of array-based systems introduced above. In fact, although using a
program counter may not make sense for such systems, one can nevertheless use
a trivial program counter with three locations only: the initial location lI , the
error location lE , and a “standard” location lS for the body of the distributed
algorithm. Thus, the lazy abstraction technique that we are going to describe be-
low can also be applied, without modifications, to the verification of distributed
systems.

The τh’s are guarded assignments in functional form. To precisely specify
what this means, we need to introduce the following conventions and definitions.
The symbols e range over variables of a sort ELEM in ΣE while i, j, k, z range
over variables of sort INDEX. Notation a[i] abbreviates a1[i1], . . . , as[i1], . . . , as[in]
for a tuple i ≡ i1, . . . , in of variables of sort INDEX. Expressions of the form
φ(i, e), ψ(i, e) (possibly sub/super-scripted) denote quantifier-free (ΣI ∪ ΣE)-
formulæ in which at most the variables i ∪ e may occur. Furthermore, φ(i, t/e)
(or simply φ(i, t)) abbreviates the substitution of the Σ-terms t for the variables
e. Thus, for instance, φ(i, a[i], c,d) denotes the formula obtained by replacing
e, j, e′ with a[i], c,d respectively in the quantifier-free formula φ(i, e, j, e′). A

formula ∀i. φ(i, a[i], c,d) is a ∀I-formula, one of the form ∃i. φ(i, a[i], c,d) is
an ∃I-formula, and a sentence ∃a∃c∃d ∃i ∀j. ψ(i, j, a[i], a[j], c,d) is an ∃A,I∀I-
sentence. A guarded assignment in functional form is a formula of the form

∃k
(
φL(k,a[k], c,d) ∧ a′ = λj. G(k,a[k], c,d, j, a[j]) ∧

∧ c′ = H(k,a[k], c,d) ∧ d′ = K(k,a[k], c,d))

)
(1)

where G = G0, . . . , Gs, H = H0, . . . , Ht, K = K0, . . . ,Ku are tuples of case-
defined functions (roughly, these can be thought of as nested if-then-else expres-
sions, see [10] for a precise definition). As usual, a′, c′,d′ are renamed copies
of the a, c,d, denoting the values of the state variables immediately after the
execution of the guarded assignment. We assume that the guard φL of a guarded
assignment in functional form (1) always contains a conjunct of the form pc = l
and that the update function K0 is of the form pc = l′. In this way, we have
mappings from guarded assignments and locations: if the guarded assignment is
named τ , the locations l and l′ are called the source and the target locations of
τ and are denoted by src(τ) and trg(τ), respectively.

The array-based system
S = 〈v, {τh}h〉 is safe iff the formulæ

I(v(n)) ∧
(∨

h

τh(v
(n),v(n−1))

)
∧ · · · ∧

(∨
h

τh(v
(1),v(0))

)
∧ U(v(0)) (2)



Lazy Abstraction with Interpolants for Arrays 51

function find ( int a[ ] , int n ) {
1 c = 0;

2 while (c < a.length ∧ a[c] �= n) c = c+ 1;

3 if ( c ≥ a.length ∧ ∃x.(x ≥ 0 ∧ x < a.length ∧ a[x] = n) )

4 ERROR;

}

Fig. 1. Pseudo-code for the function find

are AE
I -unsatisfiable for n ≥ 0, where v(0), . . . ,v(n) are renamed copies of v

(at time stamps 0, ..., n). (Recall that, by assumption, I(v) := (pc = lI) and
U(v) := (pc = lE).) If there exists a value of n for which (2) is AE

I -satisfiable,
then this means that there exists an execution of S starting in an initial state
and ending in an error state.

Notice that, although terms of the form a[c] are not allowed in formula (1),
this is without loss of generality. In fact, any formula ψ(· · · a[c] · · · ) containing
such terms can be rewritten to ∃j(j = c ∧ ψ(· · · a[j] · · · )) by using (fresh) exis-
tentially quantified variables j of sort INDEX. (Below, for the sake of brevity
and only when discussing examples, we will write ψ(· · · a[c] · · · ) in place of
∃j(j = c∧ψ(· · · a[j] · · · )).) Interestingly, this syntactic restriction inherited from
the specification language underlying mcmt inspired us an heuristic to abstract
away counters dereferencing arrays and replace them with universally quantified
variables of sort INDEX so as to synthesize universally quantified candidate in-
variants. Such heuristics, called term abstraction, will be described in Section 4.

Example 1. We illustrate how to encode the function find in Fig. 1 as an array-
based system. The theory TI is linear integer arithmetic (but notice that integer
difference logic suffices), enriched with a constant a.length; the theory TE has
one sort constrained to be linear integer arithmetic enriched with a constant
n (again, a very small fragment suffices) and one sort constrained to be the
enumerated datatype theory of the set of locations {1, 2, 3, 4} (where lI = 1 and
lE = 4). The tuple a of array state variables contains only a, c is the unique
counter, and pc is the only simple variable. The following five transitions specify
the instructions of find (for simplicity, we omit mentioning identical updates):

τ1 ≡ pc = 1 ∧ pc′ = 2 ∧ c′ = 0

τ2 ≡ pc = 2 ∧ c < a.length∧ a[c] �= n ∧ c′ = c+ 1

τ3 ≡ pc = 2 ∧ c ≥ a.length∧ pc′ = 3

τ4 ≡ pc = 2 ∧ a[c] = n ∧ pc′ = 3

τ5 ≡ pc = 3 ∧ c ≥ a.length∧ ∃x. (x ≥ 0 ∧ x < a.length∧ a[x] = n) ∧ pc′ = 4.

The error location is unreachable iff ∀x. (x ≥ 0 ∧ x < a.length) ⇒ a[x] �= n

holds when exiting find. �



52 F. Alberti et al.

3 Unwinding Array-Based Systems

We adapt some of the notions in [21] so that they can be easily integrated in
the framework of mcmt. If only simple variables are considered, our approach
closely resembles that in [21]. The main difference is that our technique uses
backward instead of forward reachability to explore the set of reachable states.

If ψ is a quantifier-free formula in which at most the index variables i occur,
we denote by ψ∃ its existential (index) closure, namely the formula ∃i ψ. The
matrix of a guarded assignment in functional form τ(v,v′) of the form (1) is
the formula (1) itself without the existential prefix ∃k; the proper variables of
τ are the k. Below, we shall feel free to apply bounded variables renamings to
formulæ of the form (1) without explicit mention.

Definition 1. A labeled unwinding of S = 〈v; {τh(v,v′)}h〉 is a quadruple
(V,E,ME ,MV ), where (V,E) is a finite rooted tree (let ε be the root) and
ME,MV are labeling functions for edges and vertices, respectively, such that:

(i) for every v ∈ V , if v �= ε, then MV (v) is a quantifier-free formula of
the kind ψ(i, a[i], c,d) such that MV (v) |=AE

I
pc = l for some location l;

otherwise MV (ε) is pc = lE;
(ii) for every (v, w) ∈ E, ME(v, w) is the matrix of some τ ∈ {τh(v,v′)}h;

the proper variables of τ do not occur in MV (w); moreover, we have that
MV (w) |=AE

I
pc = trg(τ), that MV (v) |=AE

I
pc = src(τ), and that

ME(v, w)(v,v′) ∧MV (w)(v′) |=AE
I
MV (v)(v); (3)

(iii) for each τ ∈ {τh(v,v′)}h and every non-leaf vertex w ∈ V such that
MV (w) |=AE

I
pc = trg(τ), there exist v ∈ V and (v, w) ∈ E such that

ME(v, w) is the matrix of τ .

The intuition underlying the definition is that a vertex v in a labeled unwinding
corresponds to a program location (i) and an edge (v, w) to the execution of
a transition, whose source and target locations match with those of v and w,
respectively (ii and iii). It is interesting to more closely analyze condition (3). To
this end, we recall the definition of pre-image of a formula K(v) with respect to
a transition τ(v,v′), which is one of the key ingredients of backward reachability
(see, e.g., [10]): Pre(τ,K) := ∃v′. (τ(v,v′)∧K(v′)). It is not difficult to see that
condition (3) is equivalent to ∃v′. (ME(v, w)(v,v

′)∧MV (w)(v
′)) |=AE

I
MV (v)(v)

which, in turn, implies Pre(τ,MV (w)
∃) |=AE

I
MV (v)

∃, if ME(v, w) is the matrix

of τ . It is now clear that MV (v)
∃, i.e. the set of states associated to vertex v,

overapproximates the set of states in the pre-image ofMV (w)
∃ with respect to τ .

Thus, the disjunction of the (existential index closure of the) formulæ labeling
the nodes of an unwinding is an over-approximation of the set of backward
reachable states and its negation (under suitable completeness conditions, see
Definition 2 below) is an invariant of the system. A set C of vertexes in a labeled
unwinding (V,E,ME ,MV ) covers a vertex v ∈ V iff

MV (v)∃ |=AE
I

∨
w∈C

MV (w)∃. (4)



Lazy Abstraction with Interpolants for Arrays 53

Definition 2. The labeled unwinding (V,E,ME,MV ) is safe iff for all v ∈ V
we have that if MV (v) |= pc = lI , then MV (v) is A

E
I -unsatisfiable. It is complete

iff there exists a covering, i.e., a set of non-leaf vertexes C containing ε and such
that for every v ∈ C and (v′, v) ∈ E, it happens that C covers v′.

The reader familiar with [21] may have noticed that our notion of covering
involves a set of vertexes rather than a single one as in [21]. Indeed, an efficient
implementation of our notion is delicate and is discussed in Section 4. Here, we
focus on abstract definitions which allow us to prove that safe and complete
labeled unwindings can be seen as safety certificates for array-based systems.

Theorem 1. An array-based system is safe if there exists a safe and complete
labeled unwinding for it.

3.1 Lazy Abstraction with Interpolants in MCMT

We are left with the problem of computing labeled unwindings and checking
for their safety and completeness. Similarly to [21], we design a possibly non-
terminating procedure, called Unwind, that, given an array-based system S,
computes a sequence of (increasingly larger) labeled unwindings. The initial
labeled unwinding of S is the tree containing just the root labeled by pc = lE .
Unwind uses two sub-procedures, called Expand and Refine, which can be
non-deterministically applied to a labeled unwinding to obtain a new one, if
possible. When Refine is applicable but fails, S is unsafe. If none of the two
procedures applies, then the current labeled unwinding is safe and complete;
thus S is safe by Theorem 1.

The core of our procedure is the sub-procedure Refine that performs re-
finement of labelings in presence of spurious unsafety traces. The distinguishing
feature of our method is that, despite the fact that we use quantified formulæ to
represent sets of states and transitions, for refinement we need only quantifier-
free interpolation (even in a restricted form). Technically, this is made possible
because the formulæ describing potentially unsafe traces are equisatisfiable with
quantifier-free formulæ obtained by a restricted form of instantiation (see below
for the technical details). We now describe the two sub-procedures.

Let (V,E,ME ,MV ) be the current labeled unwinding of S. From now on, we
assume that the initial location is not a target location, the error location is not
a source location, and that initial and error locations are the only locations that
are not both a source and a target location.

Expand. The applicability condition is that (V,E,ME ,MV ) is not complete and
that there exists a leaf vertex v whose location is such that MV (v) �|=AE

I
pc = lI .

By Definition 1(i), we must have MV (v) |=AE
I
pc = l for some l �= lI . For each

transition τ ∈ {τh}h whose target is l, add a new leaf wτ , label it by pc = src(τ),
add the edge (wτ , v) to the current tree, and label it by τ . �
Refine. The applicability condition is that (V,E,ME,MV ) is not complete and
there exists a vertex v ∈ V whose location is lI and it is such that MV (v) is



54 F. Alberti et al.

AE
I -satisfiable. Consider the path v = v0 → v1 → · · · → vm = ε from v to the

root and let τ1, . . . , τm be the transitions labeling the edges from left to right. If

τ1(v
(0),v(1)) ∧ · · · ∧ τm(v(m−1),v(m)) (5)

is AE
I -satisfiable (notice that this is decidable, see [1] for details), then fail and

report the unsafety of S. Otherwise, update the formulæ labeling v0, . . . , vm by
using interpolants as follows. By recalling (1), rewrite (5) as

m∧
k=1

∃ik

⎛⎜⎜⎜⎜⎜⎝
φk(ik,a

(k−1)[ik], c
(k−1),d(k−1)) ∧

a(k) = λj. Gk(ik,a
(k−1)[ik], c

(k−1),d(k−1), j, a(k−1)[j]) ∧

c(k) = Hk(ik,a
(k−1)[ik], c

(k−1),d(k−1)) ∧

d(k) = Kk(ik,a
(k−1)[ik], c

(k−1),d(k−1))

⎞⎟⎟⎟⎟⎟⎠ (6)

which, by Skolemizing existentially quantified variables, is transformed to the
equi-satisfiable formula (below, by abuse of notation, we consider the symbols
in ik as Skolem constants):

m∧
k=1

⎛⎜⎜⎜⎜⎜⎝
φk(ik,a

(k−1)[ik], c
(k−1),d(k−1)) ∧

a(k) = λj. Gk(ik,a
(k−1)[ik], c

(k−1),d(k−1), j,a(k−1)[j]) ∧

c(k) = Hk(ik,a
(k−1)[ik], c

(k−1),d(k−1)) ∧

d(k) = Kk(ik,a
(k−1)[ik], c

(k−1),d(k−1))

⎞⎟⎟⎟⎟⎟⎠ (7)

Now, observe that a(k) = λj Gk(. . . ) is equivalent to ∀j. a(k)[j] = Gk(. . . j . . . )
and instantiate the variable j with the Skolem constants in ik+1, ..., im to derive

m∧
k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎝

φk(ik,a
(k−1)[ik], c

(k−1),d(k−1)) ∧∧
j∈ik+1,...,im

a(k)[j] = Gk(ik,a
(k−1)[ik], c

(k−1),d(k−1), j, a(k−1)[j]) ∧

c(k) = Hk(ik,a
(k−1)[ik], c

(k−1),d(k−1)) ∧

d(k) = Kk(ik,a
(k−1)[ik], c

(k−1),d(k−1))

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (8)

Formula (8) is AE
I -equisatisfiable to (7), see [1] for a proof. Now, (5) was sup-

posed to be AE
I -unsatisfiable, hence so are (6), (7) and finally (8). Let us ab-

breviate the k-th conjunct in the big conjunction (8) as

τ̃k(ik, . . . , im,a
(k−1)[ik], . . . ,a

(k−1)[im],a(k)[ik+1], . . . ,a
(k)[im], c(k−1), c(k),d(k−1),d(k)) ,

(9)

so that (8) is written as τ̃1 ∧ · · · ∧ τ̃m. Finally, let

ψk(ik+1, . . . , im,a[ik+1], . . . ,a[im], c,d) (10)

be the (quantifier-free interpolants) computed in (8) from right-to-left such that

ψ0 ≡ ⊥, ψm ≡ �, (11)

ψk(ik+1, . . . , im,a(k)[ik+1], . . . ,a
(k)[im], c(k),d(k)) ∧ τ̃k |=AE

I

ψk−1(ik, . . . , im,a(k−1)[ik], . . . ,a
(k−1)[im], c(k−1),d(k−1)),

(12)



Lazy Abstraction with Interpolants for Arrays 55

and update the label of vk as follows:

MV (vk) ≡ MV (vk) ∧ ψk(ik+1, . . . , im, a[ik], . . . , a[im], c,d). (13)

Notice that, since the matrix of τk entails τ̃k, the condition (3) is preserved and
the vertex v = v0 is labeled by an AE

I -unsatisfiable formula. �
Both Expand and Refine prescribe to establish if the current unwinding

is complete. According to Definition 2, this requires to guess a sub-set C of
the set of vertexes in the unwinding and check if C covers v′, for every v ∈ C
and (v′, v) ∈ E. In turn, this may be reduced to repeatedly check the AE

I -
unsatisfiability of an ∃A,I∀I -sentence (recall the definition in Section 2), rea-
soning by refutation from (4). These satisfiability checks are decidable under
suitable conditions [10], which will be briefly recalled in Section 3.2 when dis-
cussing the completeness of our technique. However, even when the conditions
for decidability are not satisfied, it is still possible to use sound but incomplete al-
gorithms which preserves the soundness of Unwind. Concerning Refine, notice
that it is possible to predict the numbers ek of (implicitly existentially quanti-
fied) index variables occurring in the formulæ labeling the vertex vk of a path
of the form v0 → · · · → vm = ε by simply counting the existentially quantified
index variables in τk+1 ∧ · · · ∧ τm from (5). The number of index variables that
will occur in the formula labeling vk after the update (13) is bounded by ek,
because it is derived from the interpolants computed along the path considered
above. On the other hand, the number of index variables labeling the leaves
may grow very quickly, thereby posing a crucial problem for implementation
(e.g., when instantiating universally quantified variables in covering tests). For-
tunately, heuristics [9, 11] designed to reduce the number of index variables in
pre-images developed for the backward reachability procedure of mcmt can also
be put to productive use in the main loop of Unwind.

The third observation on Refine concerns the computation of the inter-
polants. An easy way to derive ψk−1 from ψk would be to use the pre-image
of ψk−1 with respect to the transition labeling the edge connecting the vertexes
whose label is to be updated by ψk−1 and ψk. However, for Unwind to be truly
an abstraction-based procedure, we need to compute interpolants which do not
necessarily reduce to the precise preimage. This can be done by combining the
available interpolation algorithms for TI and TE . Unrestricted combination is
not always possible in general (there are negative results in the literature show-
ing e.g. that the addition of free function symbols can destroy quantifier-free
interpolation [2]); however, because of the form (9) of the above formulæ τ̃k, it
follows that whenever Unwind needs to compute an interpolant for an unsatis-
fiable quantifier-free formula ψ1 ∧ψ2, the formulæ ψ1, ψ2 satisfy the hypotheses
of the following positive result:

Theorem 2. Suppose that ψ1∧ψ2 is an AE
I -unsatisfiable quantifier-free formula

such that all variables of sort INDEX occurring in ψ2 under the scope of the read
operator [ ] occur also in ψ1. Then, there exists a quantifier-free formula ψ0

such that: (i) ψ2 |=AE
I
ψ0; (ii) ψ0 ∧ψ1 is AE

I -unsatisfiable; (iii) all free variables
occurring in ψ0 occur both in ψ1 and ψ2.



56 F. Alberti et al.

The soundness of Unwind is guaranteed by the following result.

Theorem 3. If neither Expand nor Refine can be applied to a labeled un-
winding P = (V,E,ME ,MV ), then P is safe and complete.

Example 2. We briefly discuss how Unwind is applied to the array-based sys-
tem of Example 1. Fig. 2 (without boxed literals) reports an unwinding that,
starting from the error location (MV (ε) |= pc = 4) reaches the initial location
(MV (v25) |= pc = 1). An infeasible trace depicted in Fig. 2. The counterexample
associated to the trace is the following (for the sake of conciseness, we list only
the variables changing their values):

pc(4) = 1 ∧
pc(4) = 1 ∧ pc(3) = 2 ∧ c(3) = 0 ∧
pc(3) = 2 ∧ pc(2) = 2 ∧ a.length > c(3) ∧ c(2) = c(3) + 1 ∧ i1 = c(3) ∧ a(3)[i1] �= n ∧
pc(2) = 2 ∧ pc(1) = 3 ∧ a.length ≤ c(2) ∧
pc(1) = 3 ∧ pc(0) = 4 ∧ a.length ≤ c(1) ∧ a(1)[i0] = n ∧ a.length > i0 ∧
pc(0) = 4

The counterexample is unsatisfiable and it is thus infeasible in the concrete
system. A set of interpolants computed from the trace above contains

ψ0 ≡ ⊥, ψ1 ≡ ⊥, ψ2 ≡ i0 ≤ c ∧ i0 ≥ 0, ψ3 ≡ i0 ≤ c ∧ i0 ≥ 0,

ψ4 ≡ i0 ≤ a.length ∧ i0 ≥ 0, ψ5 ≡ i0 ≥ 0, and ψ6 ≡ 	.

According to (13), the refinement of the infeasible trace is done by adding each
interpolant to the corresponding vertex in the unwinding (see the boxed literals
in Fig. 2). Unwind is then able to generate the invariant

(pc = 3 ∧ c > 0 ∧ a.length ≥ 1) ⇒ ∀i. ((i < c ∧ i ≤ a.length) ⇒ a[i] �= n)

as the negation of the label of v1, which states that if the the loop is executed
at least once (antecedent of the main implication), then at every position i (up
to c) of the array is stored a value distinct from n. Notice that the predicates
c > 0, a.length ≥ 1 and i < c (where i is an universally quantified variable) are
new and have been generated by the interpolation algorithm. �

εv1v3v8v25

{pc = 4}

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

pc = 3 ∧
c > 0 ∧ a[i0] = n ∧
i0 < c ∧ a.length ≥ 1

i0 ≤ a.length

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

pc = 2 ∧
c > 0 ∧
a[i0] = n ∧

i0 ≤ c

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

⎧⎨
⎩

pc = 2 ∧

i0 ≤ c

⎫⎬
⎭

{pc = 1}
{⊥}

τ1τ2τ3τ5

Fig. 2. Counterexample for Example 2. Boxed labels were added by refinement.



Lazy Abstraction with Interpolants for Arrays 57

3.2 Completeness and Termination

The completeness of Unwind depends on the decidability of checking whether a
labeled unwinding is complete according to Definition 2. We have already argued
(see first observation after the description of Refine in Section 3.1) that this
can be reduced to the AE

I -satisfiability of ∃A,I∀I -sentences.
Theorem 4 ([10]). If there are no function symbols in the signature ΣI of TI
and the class CI of models of TI is closed under substructures, then the AE

I -
satisfiability of ∃A,I∀I-sentences is decidable.

In [10], the proof of this result1 is constructive by showing a procedure which
first instantiates the universally quantified index variables with the existentially
quantified index variables (considered as Skolem constants) of the sentence in
all possible ways and then invokes a combination (à la Nelson-Oppen) of the
available decision procedures for the SMT (TI)- and SMT (TE)-problems (recall
the assumptions in Section 2). The procedure is still sound but incomplete when
the assumptions on TI in Theorem 4 do not hold. For efficiency, heuristics [9]
have been designed to reduce the number of possible instantiations.

Conditions for the termination of Unwind are much more restrictive. First, a
fair strategy must be used to apply Expand and Refine. Formally, a strategy
is fair if it does not indefinitely delay the application of one of the two pro-
cedures and does not apply Refine infinitely many times to the label of the
same vertex. Notice that the latter holds if there are no infinitely many non-
equivalent formulæ of the form ψ(i, a[i], c,d) for a given i or, alternatively, if a
refinement based on the computation of interpolants through the precise preim-
age is eventually applied when repeatedly refining a node. The second condition
(since adopting a fair strategy alone is not sufficient) for termination concerns
also the theory TE. To formally state such conditions, we need to adapt some
notions from [3, 10]. A wqo-theory is a theory T = (Σ, C) such that C is closed
under substructures and finitely generated models of T are a well-quasi-order
with respect to the relation � that holds between M1 and M2 whenever M1

embeds into M2.

Theorem 5. Let S = 〈v; {τh(v,v′)}h〉 be an array-based system for TI , TE.
Suppose that TI satisfies the hypotheses of Theorem 4 and that the theory ob-
tained from TI ∪ TE by adding it the symbols v (seen as free constants of appro-
priate sorts) is a wqo theory. Then, Unwind terminates when applied to S with
a fair strategy.

As a consequence, Unwind behaves as a decision procedure for those classes of
array-based systems satisfying the conditions of Theorem 5. This is the case,
for example, of broadcast protocols and lossy channels systems (see [3, 10] for
details). A similar result for broadcast protocols is given in [7] within forward
reachability.

1 Although in this paper, we have also counters and simple variables in the definition
of array-based systems, that were not considered in [10], this does not interfere with
the correctness of the algorithm in [10] which can be easily extended to cope with
them.



58 F. Alberti et al.

4 Implementation and Experiments

We have implemented Unwind on top of a re-engineered version of mcmt2 ; the
following two heuristics are the key ingredients for its practical applicability.

Term Abstraction. While experimenting with our prototype, we realized that
available interpolating procedures seldom permit to refine the abstraction in the
“right” way because some terms are not eliminated. This dramatically decreases
performances or, even worse, prevents to find the inductive invariant, when it
exists. To alleviate this problem, the goal of the term abstraction heuristic is to
compute (if possible) an interpolant where a certain term t does not occur. As
briefly explained in Section 2, the term t is usually some counter which should be
eliminated to synthesize (candidate) invariants involving universally quantified
index variables, even when the problem specification mentions no quantifiers.
Term abstraction proceeds as follows. Given an AE

I -unsatisfiable formula of the
form ψ1 ∧ ψ2, if ψ1(c1/t) ∧ ψ2(c2/t) is AE

I -unsatisfiable, for c1 and c2 fresh
constants, then term abstraction returns the interpolant of ψ1(c1/t) ∧ ψ2(c2/t),
computed by running the available interpolation procedure. Otherwise, term
abstraction returns the interpolant of the original formula ψ1 ∧ ψ2. Our proto-
type tool automatically extracts from the problem specification a list of “rele-
vant” terms, called term abstraction list, which contains candidates for the term
abstraction heuristic (alternatively, the user can provide such a list).

Covering Strategy. We implemented an additional procedure Reduce which
is to be interleaved with Expand so as to reduce as much as possible the
invocations to the latter. Reduce checks, given a vertex v of the unwind-
ing and a set Ṽ of nodes such that every vi ∈ Ṽ is not covered, whether
MV (v) |=AE

I

∨
vi∈Ṽ MV (vi), i.e., it checks if v is covered by a disjunction of

vertexes that share the same value of the program counter. In addition we allow
leaves to be covered by younger vertices (while in [21] a vertex can be covered
only by one older vertex). Reduce agrees with the notion of covering introduced
in Definition 2. Moreover, before expanding a leaf v, we check if there is at least
one v’s ancestor u such that u is covered by its ancestors. If so, a descendant of
u can neither be expanded nor cover other vertices as long as u is covered.

Table 1 reports the results of our experiments (run on an Intel i7 @2.66
GHz, equipped with 4GB of RAM and running OSX 10.7). Our benchmark set
includes simple programs over arrays, e.g., initialization of all elements to 0,
copy of one array into another, etc. They have been taken from other papers
(e.g., [17, 19, 23]), or from standard textbooks on algorithms. All benchmarks
diverge if no abstraction is provided.

The last two benchmarks in Table 1 are trickier to verify, as they feature two
loops. In “init and test”, there are two loops in sequence and the safety condition
consists in reaching an error location. Although the property does not contain
quantifiers, the inductive invariant of the program does need quantifiers. The

2 The executable of the prototype tool and all the input files can be downloaded at
http://www.oprover.org/mcmt_abstraction.html.

http://www.oprover.org/mcmt_abstraction.html


Lazy Abstraction with Interpolants for Arrays 59

Table 1. Table reports: total verification time, number of nodes of the final unwinding,
number of calls to the SMT-solver, number of CEGAR iterations, final safety result.

Benchmark Description Time (s) Nodes SMT-calls Iter. Result

find (v1) Find an element 0.3 5 192 3 SAFE
find (v2) (as above, alternative encoding) 0.07 5 48 1 SAFE
initialization Initialize all elements to 0 0.1 5 96 1 SAFE
max in array Find max element 0.9 72 1192 8 SAFE
partition Partition an array 0.08 20 62 0 SAFE
strcmp Compare arrays 0.4 14 329 4 SAFE
strcpy Copy arrays 0.03 3 15 0 SAFE
vararg Search for end of arguments 0.03 5 17 0 SAFE
integers Numerical property 0.02 5 19 0 SAFE

init and test Init. to 0 and tests 0.3 27 375 3 SAFE
binary sort Sorting with binary search 0.3 48 457 2 SAFE

methodology applied by our tool to introduce extra quantifers is the following:
first, recall from Section 2 that sentences like ψ(..a[c]..) are written as ∃i(i =
c∧ ψ(..a[i]..)), then term abstraction can get rid of (some of) the c thus letting
(some of) the i be genuine new quantifiers. As for nested loops, “binary sort” is
an encoding of the sorting algorithm based on binary search.

To test the flexibility of our approach, we run the prototype on some randomly
generated problems taken from those shipped with the distribution of the ARMC
model-checker (http://www.mpi-sws.org/˜rybal/armc/). They consists
of safety properties of numerical programs without arrays. Our tool can solve
22 out of 28 benchmarks with abstraction, but only 9 without using it. For
those benchmarks that could be solved even without abstraction, the overhead
of abstraction is generally negligible.

5 Conclusion

We have described Unwind, a verification procedure for safety properties based
on the combination of the backward reachability of mcmt and lazy-abstraction
with interpolants. Lazy-abstraction is enabled to handle (unbounded) arrays
while mcmt is now capable to cope with sequential programs in a uniform way
by using abstraction and refinement. Our experiments show that the improved
version of mcmt is able to prove safety properties in no time for common-use
programs over arrays. As future work, we plan to tune the abstraction and re-
finement mechanisms to other classes of systems, such as distributed algorithms.

Acknowledgements. The work of the first author was supported by the Hasler
Foundation under project 09047 and that of the fourth author was partially
supported by the “SIAM” project founded by Provincia Autonoma di Trento in
the context of the “team 2009 - Incoming” COFUND action of the European
Commission (FP7).

http://www.mpi-sws.org/~rybal/armc/


60 F. Alberti et al.

References

1. Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S., Sharygina, N.: Lazy Abstrac-
tion with Interpolants for Arrays. extended version,
http://homes.dsi.unimi.it/˜ghilardi/allegati/ABGRS_LPAR.pdf

2. Brillout, A., Kroening, D., Rümmer, P., Wahl, T.: An Interpolating Sequent Cal-
culus for Quantifier-Free Presburger Arithmetic. In: Giesl, J., Hähnle, R. (eds.)
IJCAR 2010. LNCS, vol. 6173, pp. 384–399. Springer, Heidelberg (2010)

3. Carioni, A., Ghilardi, S., Ranise, S.: Automated Termination in Model Checking
Modulo Theories. In: Delzanno, G., Potapov, I. (eds.) RP 2011. LNCS, vol. 6945,
pp. 110–124. Springer, Heidelberg (2011)

4. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided
Abstraction Refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

5. Cousot, P., Cousot, R., Logozzo, F.: A Parametric Segmentation Functor for Fully
Automatic and Scalable Array Content Analysis. In: POPL (2011)

6. Dillig, I., Dillig, T., Aiken, A.: Fluid Updates: Beyond Strong vs. Weak Updates. In:
Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 246–266. Springer, Heidelberg
(2010)

7. Dimitrova, R., Podelski, A.: Is Lazy Abstraction a Decision Procedure for Broad-
cast Protocols? In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS,
vol. 4905, pp. 98–111. Springer, Heidelberg (2008)

8. Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: POPL,
pp. 191–202 (2002)

9. Ghilardi, S., Ranise, S.: Model Checking Modulo Theory at work: the integration
of Yices in MCMT. In: AFM (2009)

10. Ghilardi, S., Ranise, S.: Backward Reachability of Array-based Systems by SMT
solving: Termination and Invariant Synthesis. LMCS 6(4) (2010)

11. Ghilardi, S., Ranise, S.: MCMT: A Model Checker Modulo Theories. In: Giesl, J.,
Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 22–29. Springer, Heidelberg
(2010)

12. Gopan, D., Reps, T., Sagiv, M.: A Framework for Numeric Analysis of Array
Operations. In: POPL 2005, pp. 338–350 (2005)

13. Graf, S., Säıdi, H.: Construction of Abstract State Graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

14. Halbwachs, N., Mathias, P.: Discovering Properties about Arrays in Simple Pro-
grams. In: PLDI 2008, pp. 339–348 (2008)

15. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
Proofs. In: POPL, pp. 232–244 (2004)

16. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy Abstraction. In: POPL,
pp. 58–70 (2002)

17. Jhala, R., McMillan, K.L.: Array Abstractions from Proofs. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 193–206. Springer, Heidelberg
(2007)

18. Kapur, D., Majumdar, R., Zarba, C.: Interpolation for Data Structures. In:
SIGSOFT 2006/FSE-14, pp. 105–116 (2006)

19. Kovács, L., Voronkov, A.: Interpolation and Symbol Elimination. In: Schmidt, R.A.
(ed.) CADE-22. LNCS, vol. 5663, pp. 199–213. Springer, Heidelberg (2009)

20. McMillan, K.L.: Quantified Invariant Generation Using an Interpolating Saturation
Prover. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963,
pp. 413–427. Springer, Heidelberg (2008)

http://homes.dsi.unimi.it/~ghilardi/allegati/ABGRS_LPAR.pdf


Lazy Abstraction with Interpolants for Arrays 61

21. McMillan, K.L.: Lazy Abstraction with Interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

22. Ranise, S., Tinelli, C.: The Satisfiability Modulo Theories Library (SMT-LIB)
(2006), http://www.SMT-LIB.org

23. Seghir, M.N., Podelski, A., Wies, T.: Abstraction Refinement for Quantified Array
Assertions. In: Palsberg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 3–18.
Springer, Heidelberg (2009)

24. Lahiri, S., Bryant, R.: Predicate Abstraction with Indexed Predicates. TOCL 9(1)
(2007)

25. Srivastava, S., Gulwani, S.: Program Verification using Templates over Predicate
Abstraction. In: PLDI (2009)

http://www.SMT-LIB.org


Backward Trace Slicing

for Conditional Rewrite Theories�

Maŕıa Alpuente1, Demis Ballis2, Francisco Frechina1, and Daniel Romero1

1 DSIC-ELP, Universitat Politècnica de València,
Camino de Vera s/n, Apdo 22012, 46071 Valencia, Spain

{alpuente,ffrechina,dromero}@dsic.upv.es
2 DIMI, Università degli Studi di Udine,
Via delle Scienze 206, 33100 Udine, Italy

demis.ballis@uniud.it

Abstract. In this paper, we present a trace slicing technique for rewrit-
ing logic that is suitable for analyzing complex, textually-large system
computations in rewrite theories that may contain conditional equations
and/or rules. Given a conditional execution trace T and a slicing criterion
for the trace (i.e., a set of positions that we want to observe in the final
state of the trace), we traverse T from back to front, and at each rewrite
step, we incrementally compute the origins of the observed positions,
which is done by inductively processing the conditions of the applied
equations and rules. During the traversal, we also carry a boolean com-
patibility condition that is needed for the executability of the processed
rewrite steps. At the end of the traversal, the trace slice is obtained by
filtering out the irrelevant data that do not contribute to the criterion of
interest.

1 Introduction

The analysis of computation traces plays an important role in many program
analysis approaches. Software systems commonly generate large and complex
execution traces, whose analysis (or even simple inspection) is extremely time-
consuming, and in some cases unfeasible to perform by hand. Trace slicing is
a technique for reducing the size of execution traces by focusing on selected
execution aspects, which makes it suitable for trace analysis and monitoring [10].

Rewriting Logic (RWL) is a very general logical and semantic framework,
which is particularly suitable for formalizing highly concurrent, complex sys-
tems (e.g., biological systems [7] and Web systems [2,5]). RWL is efficiently
implemented in the high-performance system Maude [12]. Roughly speaking, a
(conditional) rewriting logic theory [16] seamlessly combines a (conditional) term
� This work has been partially supported by the EU (FEDER) and the Span-

ish MEC TIN2010-21062-C02-02 project, by Generalitat Valenciana, ref. PROM-
ETEO2011/052, and by the Italian MUR under grant RBIN04M8S8, FIRB project,
Internationalization 2004. Also, D. Romero is supported by FPI-MEC grant BES-
2008-004860 and F. Frechina is supported by FPU-ME grant AP2010-5681.

N. Bjørner and A. Voronkov (Eds.): LPAR-18, LNCS 7180, pp. 62–76, 2012.
© Springer-Verlag Berlin Heidelberg 2012



Backward Trace Slicing for Conditional Rewrite Theories 63

rewriting system (CTRS), together with an equational theory (also possibly con-
ditional) that may include equations and axioms (i.e., algebraic laws such as
commutativity, associativity, and unity) so that rewrite steps are applied mod-
ulo the equations and axioms.

In recent years, the debugging and optimization techniques based on RWL
have received growing attention. However, to the best of our knowledge, the only
trace slicing technique that gives support to the analysis of RWL computations
is [3]. Given an execution trace T , [3] generates a trace slice of T w.r.t. a set
of symbols of interest (target symbols) that appear in a given state of T . The
technique relies on a suitable mechanism of backward tracing that computes the
reverse dependence among the symbols involved in an execution step by using a
procedure that dynamically labels the calls (terms) involved in the steps.

Unfortunately, the technique in [3] is only applicable to unconditional RWL
theories, and hence it cannot be employed when the source program includes
conditional equations and/or rules since it would deliver incorrect and/or in-
complete trace slices. The following example illustrates why conditions cannot
be disregarded by the slicing process, which is what has motivated our work.

Example 1. Consider the Maude specification of the function _mod_ in Figure 1,
which computes the reminder of the division of two natural numbers, and the
associated execution trace 4 mod 5 → 4. Assume
that we are interested in observing the origins of

mod M is inc NAT .
var X : Nat .
var Y : NzNat .
op _mod_ : Nat NzNat -> Nat .
ceq X mod Y = X if Y > X .
ceq X mod Y = (X - Y) mod Y

if Y <= X .
endm

Fig. 1. The mod operator

the target symbol 4 that appears in the final state.
If we disregard the condition Y > X of the first
conditional equation, the slicing technique of [3]
computes the trace slice 4 mod • → 4, whereas
the correct trace slice is 4 mod 5 → 4 since both
arguments of mod are required to prove the rewrite
step that introduces the symbol 4 in the final state.

Contributions. We present the first conditional trace slicing technique for RWL
computations. Our technique is fully general and can be applied for debug-
ging as well as for optimizing any RWL-based tool that manipulates conditional
RWL computations such as those delivered as counterexample traces by the
Maude model-checker [6]. The backward conditional slicing algorithm in this
paper cannot be considered to be a natural extension of the unconditional slic-
ing method of [3], but greatly simplifies [3] by replacing the involved and costly
dynamic labeling procedure, based on [8], with a simple mechanism for substi-
tution refinement that allows control and data dependencies to be propagated
between consecutive rewrite steps. Moreover, the conditional slicing algorithm
copes with three different types of conditions that occur in Maude theories: equa-
tional conditions, matching conditions, and rewrite expressions. Our formulation
takes into account the precise way in which Maude mechanizes the conditional
rewriting process and revisits all those rewrite steps backwards in an instru-
mented, fine-grained way where each small step corresponds to the application
of an equation (conditional equation or equational axiom) or rule. This allows



64 M. Alpuente et al.

us to slice the input execution trace with regard to the set of symbols of interest
(target symbols) by tracing back the target symbols along the execution trace
so that all data that are not antecedents of the observed symbols are simply
discarded.

Related Work. Tracing techniques have been extensively used in functional de-
bugging [11]. For instance, Hat [11] is an interactive debugging system that
enables a computation to be explored backwards, starting from the program
output or an error message (with which the computation aborted). Backward
tracing in Hat is carried out by navigating a redex trail (i.e., a graph-like data
structure that records dependencies among function calls), whereas our tracing
technique does not require handling any supplementary data structure.

There exist very few approaches that address the problem of tracing rewrite
sequences in term rewrite systems [3,8,14,18], and all of them apply to uncon-
ditional systems. The techniques in [3,8,18] rely on a labeling relation on sym-
bols that allows data content to be traced back within the computation; this is
achieved in [14] by formalizing a notion of dynamic dependence among symbols
by means of contexts. In [8,18], non-left linear and collapsing rules are not consid-
ered or are dealt using ad-hoc strategies, while our approach requires no special
treatment of such rules. Furthermore, only [3] describes a tracing methodology
for rewrite theories with rules, equations, sorts, and algebraic axioms.

In this paper, we propose a more general slicing technique for conditional
rewrite theories that generalizes and simplifies the formal development in [3]
by getting rid of the complex dynamic labeling algorithm that was needed to
trace back the origins of the symbols of interest. Our technique also avoids
manipulating the origins by recording their addressing positions; we simply and
explicitly record the origins of the meaningful positions within the computed
term slices themselves, without resorting to any other artifact.

To debug Maude programs, Maude has a tracing facility that allows the exe-
cution sequence to be traced, and is very customizable: it provides some control
over conditions and allows the user to select the statements being applied at
each step. A main difference with the trace slicing technique of ours is that
the tracer of Maude allows the trace size to be reduced by manually focusing
on statements, while slicing is automatic and focuses on terms. Moreover, since
each small rewrite step that is obtained by applying a single conditional equa-
tion, equational axiom or rule is shown in the trace, the user can easily miss the
general view, and when the user detects an incorrect intermediate result, it is
difficult to know where the incorrect inference started. In this regard, the trace
slices computed by our technique can be very helpful in debugging, since they
only consist of the information that is strictly needed to deliver a critical part
of the result (see discussion in [1]).

Plan of the Paper. Section 2 recalls some fundamental notions of RWL and
Section 3 summarizes the conditional rewriting modulo equational theories de-
fined in Maude. In Section 4, the backward conditional slicing technique is



Backward Trace Slicing for Conditional Rewrite Theories 65

formalized by means of a transition system that traverses the execution traces
from back to front. Finally, Section 5 reports on a prototypical implementation
of the proposed slicing technique and its experimental evaluation.

2 Preliminaries

Let us recall some important notions that are relevant to this work. We assume
some basic knowledge of term rewriting [18] and Rewriting Logic [16]. Some
familiarity with the Maude language [12] is also required.

We consider an order-sorted signature Σ, with a finite poset of sorts (S,<)
that models the usual subsort relation [12]. We assume an S-sorted family
V = {Vs}s∈S of disjoint variable sets. τ(Σ,V)s and τ(Σ)s are the sets of terms
and ground terms of sort s, respectively. We write τ(Σ,V) and τ(Σ) for the cor-
responding term algebras. The set of variables that occur in a term t is denoted
by Var(t). In order to simplify the presentation, we often disregard sorts when
no confusion can arise.

A position w in a term t is represented by a sequence of natural numbers that
addresses a subterm of t (Λ denotes the empty sequence, i.e., the root position).
By notation w1.w2, we denote the concatenation of positions (sequences) w1 and
w2. Positions are ordered by the prefix ordering, that is, given the positions w1

and w2, w1 ≤ w2 if there exists a position u such that w1.u = w2. Given a set
of positions P , the prefix closure of P is the set P̄ = {u | u ≤ p ∧ p ∈ P}. Given
a term t, we let Pos(t) denote the set of positions of t. By t|w, we denote the
subterm of t at position w, and by t[s]w, we denote the result of replacing the
subterm t|w by the term s.

A substitution σ is a mapping from variables to terms {X1/t1, . . . , Xn/tn}
such that Xiσ = ti for i = 1, . . . , n (with Xi �= xj if i �= j), and Xσ = X for all
other variables X . Given a substitution σ = {X1/t1, . . . , Xn/tn}, the domain of
σ is the set Dom(σ) = {X1, . . . , Xn}. For any substitution σ and set of variables
V , σ|̀V denotes the substitution obtained from σ by restricting its domain to V ,
(i.e., σ|̀V (X) = Xσ if X ∈ V , otherwise σ|̀V (X) = X). Given two terms s and
t, a substitution σ is a matcher of t in s, if sσ = t. By matchs(t), we denote
the function that returns a matcher of t in s if such a matcher exists, otherwise
matchs(t) returns fail.

We consider three different kinds of conditions that may appear in a condi-
tional Maude theory: an equational condition1 e is any (ordinary) equation t = t′,
with t, t′ ∈ τ(Σ,V); a matching condition is a pair p := t with p, t ∈ τ(Σ,V); a
rewrite expression is a pair t⇒ p, with p, t ∈ τ(Σ,V).

A conditional equation is an expression of the form λ = ρ if C, where λ, σ ∈
τ(Σ,V), and C is a (possibly empty) sequence c1 ∧ . . . ∧ cn, where each ci is
either an equational condition, or a matching condition. When the condition C
is empty, we simply write λ = ρ. A conditional equation λ = ρ if c1 ∧ . . .∧ cn is
1 A boolean equational condition b = true, with b ∈ τ (Σ,V) of sort Bool, is simply

abbreviated as b. A boolean condition is a sequence of abbreviated boolean equational
conditions.



66 M. Alpuente et al.

admissible, iff (i) Var(ρ) ⊆ Var(λ)∪
⋃n
i=1 Var(ci), and (ii) for each ci, Var(ci) ⊆

Var(λ) ∪
⋃i−1
j=1 Var(cj) if ci is an equational condition, and Var(e) ⊆ Var(λ) ∪⋃i−1

j=1 Var(cj) if ci is a matching condition p := e.
A conditional rule is an expression of the form λ → ρ if C, where λ, σ ∈

τ(Σ,V), and C is a (possibly empty) sequence c1 ∧ . . . ∧ cn, where each ci is
an equational condition, a matching condition, or a rewrite expression. When
the condition C is empty, we simply write λ → ρ. A conditional rule λ →
ρ if c1∧ . . .∧cn is admissible iff it fulfils the exact analogous of the admissibility
constraints (i) and (ii) for the equational conditions and the matching conditions,
plus the following additional constraint: for each rewrite expression ci in C of
the form e⇒ p, Var(e) ⊆ Var(λ) ∪

⋃i−1
j=1 Var(cj).

The set of variables that occur in a (conditional) rule/equation r is denoted
by Var(r). Note that admissible equations and rules can contain extra-variables
(i.e., variables that appear in the right-hand side or in the condition of a rule/e-
quation but do not occur in the corresponding left-hand side). The admissibility
requirements ensure that all the extra-variables will become instantiated when-
ever an admissible rule/equation is applied.

3 Conditional Rewriting Modulo Equational Theories

An order-sorted equational theory is a pair E = (Σ,Δ∪B), where Σ is an order-
sorted signature,Δ is a collection of (oriented) admissible, conditional equations,
and B is a collection of unconditional equational axioms (e.g., associativity,
commutativity, and unity) that can be associated with any binary operator of
Σ. The equational theory E induces a congruence relation on the term algebra
T (Σ,V), which is denoted by =E . A conditional rewrite theory (or simply, rewrite
theory) is a triple R = (Σ,Δ ∪ B,R), where (Σ,Δ ∪ B) is an order-sorted
equational theory, and R is a set of admissible conditional rules2.

Example 2. The following Maude rewrite theory defines a simple banking sys-
tem. It includes three conditional rules: credit, debit, and transfer.

mod BANK is inc INT .
sorts Account Msg State Id .
subsorts Account Msg < State .
var Id Id1 Id2 : Id .
var bal bal1 bal2 newBal newBal1 newBal2 M : Nat .
op empty-state : -> State .
op _;_ : State State -> State [assoc comm id: empty-state] .
op <_|_> : Id Nat -> Account [ctor] .
ops credit debit : Id Nat -> Msg [ctor] .
op transfer : Id Id Nat -> Msg [ctor] .
crl [credit] : <Id|bal>;credit(Id,M) => <Id|newBal> if newBal := bal + M .
crl [debit] : <Id|bal>;debit(Id,M) => <Id|newBal> if bal >= M /\ newBal := bal - M .
crl [transfer] : <Id1|bal1>;<Id2|bal2>;transfer(Id1,Id2,M) => <Id1|newBal1>;<Id2|newBal2>
if <Id1|bal1>;debit(Id1,M) => <Id1|newBal1> /\ <Id2|bal2>;credit(Id2,M) => <Id2|newBal2> .

endm

2 Equational specifications in Maude can be theories in membership equational logic,
which may include conditional membership axioms not addressed in this paper.



Backward Trace Slicing for Conditional Rewrite Theories 67

The rule credit contains a matching condition newBal := bal + M. The rule
debit contains an equational condition bal >= M and a matching condition
newBal := bal - M. Finally, the rule transfer has a rule condition that con-
tains two rewrite expressions <Id1|bal1>;debit(Id1,M) => <Id1|newBal1>
and <Id2|bal2>;credit(Id2,M) => <Id2|newBal2>.

Given a conditional rewrite theory (Σ,E,R), with E = Δ ∪ B, the conditional
rewriting modulo E relation (in symbols, →R/E) can be defined by lifting the
usual conditional rewrite relation on terms [15] to the E-congruence classes [t]E
on the term algebra τ(Σ,V) that are induced by =E [9], that is, [t]E is the
class of all terms that are equal to t modulo E. Unfortunately, →R/E is in
general undecidable, since a rewrite step t →R/E t′ involves searching through
the possibly infinite equivalence classes [t]E and [t′]E .

The conditional slicing technique formalized in this work is formulated by con-
sidering the precise way in which Maude proves the conditional rewriting steps
(see Section 5.2 in [12]). Actually, the Maude interpreter implements conditional
rewriting modulo E by means of two much simpler relations, namely →Δ,B and
→R,B, that allow rules and equations to be intermixed in the rewriting pro-
cess by simply using an algorithm of matching modulo B. We define →R∪Δ,B
as →R,B ∪ →Δ,B . Roughly speaking, the relation →Δ,B uses the equations of
Δ (oriented from left to right) as simplification rules: thus, for any term t, by
repeatedly applying the equations as simplification rules, we eventually reach a
term t↓Δ to which no further equations can be applied. The term t↓Δ is called a
canonical form of t w.r.t. Δ. On the other hand, the relation →R,B implements
rewriting with the rules of R, which might be non-terminating and non-confluent,
whereas Δ is required to be terminating and Church-Rosser modulo B in order
to guarantee the existence and unicity (modulo B) of a canonical form w.r.t. Δ
for any term [12].

Formally, →R,B and →Δ,B are defined as follows. Given a rewrite rule r =
(λ → ρ if C) ∈ R (resp., an equation e = (λ = ρ if C) ∈ Δ), a substitution σ,
a term t, and a position w of t, t

r,σ,w→R,B t′ (resp., t
e,σ,w→Δ,B t′) iff λσ =B t|w,

t′ = t[ρσ]w, and C evaluates to true w.r.t σ. When no confusion can arise, we
simply write t→R,B t′ (resp. t→Δ,Bt

′) instead of t
r,σ,w→R,B t′ (resp. t

e,σ,w→Δ,B t′).
Note that the evaluation of a condition C is typically a recursive process,

since it may involve further (conditional) rewrites in order to normalize C to
true. Specifically, an equational condition e evaluates to true w.r.t. σ if eσ↓Δ=B

true; a matching equation p := t evaluates to true w.r.t. σ if pσ =B tσ ↓Δ;
a rewrite expression t ⇒ p evaluates to true w.r.t. σ if there exists a rewrite
sequence tσ →∗

R∪Δ,B u, such that u =B pσ3. Although rewrite expressions and
matching/equational conditions can be intermixed in any order, we assume that
their satisfaction is attempted sequentially from left to right, as in Maude.

3 Technically, to properly evaluate a rewrite expression t ⇒ p or a matching condition
p := t, the term p is required to be a Δ-pattern —i.e., a term p such that, for every
substitution σ, if xσ is a canonical form w.r.t. Δ for every x ∈ Dom(σ), then pσ is
also a canonical form w.r.t. Δ.



68 M. Alpuente et al.

Under appropriate conditions on the rewrite theory, a rewrite step modulo E
on a term t can be implemented without loss of completeness by applying the
following rewrite strategy [13]: (i) reduce t w.r.t. →Δ,B until the canonical form
t ↓Δ is reached; (ii) rewrite t ↓Δ w.r.t. →R,B.

An execution trace T in the rewrite theory (Σ,Δ∪B,R) is a rewrite sequence

s0 →∗
Δ,B s0↓Δ →R,B s1 →∗

Δ,B s1↓Δ . . .

that interleaves →Δ,B rewrite steps and →R,B steps following the strategy men-
tioned above.

Given an execution trace T , it is always possible to expand T in an instru-
mented trace T ′ in which every application of the matching modulo B algorithm
is mimicked by the explicit application of a suitable equational axiom, which is
also oriented as a rewrite rule [3]. This way, any given instrumented execution
trace consists of a sequence of (standard) rewrites using the conditional equations
(→Δ), conditional rules (→R), and axioms (→B).

Example 3. Consider the rewrite theory in Example 2 together with the following
execution trace T : credit(A,2+3);<A|10> →Δ,B credit(A,5);<A|10> →R,B <A|15>

Thus, the corresponding instrumented execution trace is given by expanding the
commutative “step” applied to the term credit(A,2+3);<A|10> using the im-
plicit rule (X; Y → Y; X) in B that models the commutativity axiom for the
(juxtaposition) operator ; .

credit(A,2+3);<A|10> →Δcredit(A,5);<A|10> →B<A|10>;credit(A,5) →R<A|15>

Also, typically hidden inside the B-matching algorithms, some transformations
allow terms that contain operators that obey associative-commutative axioms
to be rewritten by first producing a single representative of their AC congruence
class [3]. For example, consider a binary AC operator f together with the stan-
dard lexicographic ordering over symbols. Given the B-equivalence f(b, f(f(b, a),
c)) =B f(f(b, c), f(a, b)), we can represent it by using the “internal sequence” of
transformations f(b, f(f(b, a), c)) →∗

flatB
f(a, b, b, c) →∗

unflatB
f(f(b, c), f(a, b)),

where the first one corresponds to a flattening transformation sequence that ob-
tains the AC canonical form, while the second one corresponds to the inverse,
unflattening one.

In the sequel, we assume all execution traces are instrumented as explained
above. By abuse of notation, we frequently denote the rewrite relations →Δ,
→R, →B by →. Also, by →∗ (resp. →+), we denote the transitive and reflexive
(resp. transitive) closure of the relation →Δ ∪ →R ∪ →B.

4 Backward Conditional Slicing

In this section, we formulate our backward conditional slicing algorithm for RWL
computations. The algorithm is formalized by means of a transition system that
traverses the execution traces from back to front. The transition system is given
by a single inference rule that relies on a backward rewrite step slicing procedure
that is based on substitution refinement.



Backward Trace Slicing for Conditional Rewrite Theories 69

4.1 Term Slices and Term Slice Concretizations

A term slice of a term t is a term abstraction that disregards part of the in-
formation in t, that is, the irrelevant data in t are simply replaced by special
•-variables, denoted by •i, with i = 0, 1, 2, . . ., which are generated by calling
the auxiliary function fresh•4. More formally, a term slice is defined as follows.

Definition 1 (term slice). Let t ∈ τ(Σ,V) be a term, and let P be a set of
positions s.t. P ⊆ Pos(t). A term slice of t w.r.t. P is defined as follows:

slice(t, P ) = rslice(t, P, Λ), where

rslice(t, P, p) =

⎧⎪⎨⎪⎩
f(rslice(t1, P, p.1), .., rslice(tn, P, p.n)) if t=f(t1, .., tn) and p ∈ P̄

x if t=x and x ∈ V and p ∈ P̄

fresh• otherwise

When P is understood, a term slice of t w.r.t. P is simply denoted by t•.

Roughly speaking, a term slice t w.r.t. a set of positions P includes all symbols
of t that occur within the paths from the root to any position in P , while each
maximal subterm t|p, with p �∈ P , is abstracted by means of a •-variable.

Given a term slice t•, a meaningful position p of t• is a position p ∈ Pos(t•)
such that t•|p �= •i, for some i = 0, 1, . . .. By MPos(t•), we denote the set that
contains all the meaningful positions of t•. Symbols that occur at meaningful
positions are called meaningful symbols.

Example 4. Let t = d(f(g(a, h(b)), c), a) be a term, and let P = {1.1, 1.2}
be a set of positions of t. By applying Definition 1, we get the term slice
t• = slice(t, P ) = d(f(g(•1, •2), y), •3) and the set of meaningful positions
MPos(t•) = {Λ, 1, 1.1, 1.2}.

Now we show how we particularize a term slice, i.e., we instantiate •-variables
with data that satisfy a given boolean condition that we call compatibility con-
dition. Term slice concretization is formally defined as follows.

Definition 2 (term slice concretization). Let t, t′ ∈ τ(Σ,V) be two terms.
Let t• be a term slice of t and let B• be a boolean condition. We say that t′ is
a concretization of t• that is compatible with B• (in symbols t• ∝B•

t′), if (i)
there exists a substitution σ such that t•σ = t′, and (ii) B•σ evaluates to true.

Example 5. Let t• = •1 + •2 + •2 and B• = (•1 > 6 ∧ •2 ≤ 7). Then, 10 + 2 + 2
is a concretization of t• that is compatible with B•, while 4 + 2 + 2 is not.

In the following, we formulate a backward trace slicing algorithm that, given an
execution trace T : s0 →∗ sn and a term slice s•n of sn, generates the sliced
counterpart T • : s•0 →∗ s•n of T that only encodes the information required
to reproduce (the meaningful symbols of) the term slice s•n. Additionally, the
algorithm returns a companion compatibility condition B• that guarantees the
soundness of the generated trace slice.
4 Each invocation of fresh• returns a (fresh) variable •i, which is distinct from any

previously generated variable •j .



70 M. Alpuente et al.

4.2 Backward Slicing for Execution Traces

Consider an execution trace T : s0 →∗ sn. A trace slice T • of T is defined
w.r.t. a slicing criterion — i.e., a set of positions Osn ⊆ Pos(sn) that refer to
those symbols of sn that we want to observe. Basically, the trace slice T • of T is
obtained by removing all the information from T that is not required to produce
the term slice s•n = slice(sn,Osn). A trace slice is formally defined as follows.

Definition 3. Let R = (Σ,Δ ∪ B,R) be a conditional rewrite theory, and let
T : s0

r1,σ1,w1→ s1
r2,σ2,w2→ . . .

rn,σn,wn→ sn be an execution trace in R. Let Osn be a
slicing criterion for T . A trace slice of T w.r.t. Osn is a pair [s•0 → s•1 → . . .→
s•n, B

•], where

1. s•i is a term slice of si, for i = 0, . . . , n, and B• is a boolean condition;
2. s•n = slice(sn,Osn);
3. for every term s′0 such that s•0 ∝B•

s′0, there exists an execution trace
s′0→s′1→ . . .→sn in R such that

i) s′i → s′i+1 is either the rewrite step s′i
ri+1,σ

′
i+1,wi+1→ s′i+1 or s′i = s′i+1,

i = 0, . . . , n− 1;
ii) s•i ∝B

•
s′i, i = 1, . . . , n.

Note that Point 3 of Definition 3 ensures that the rules involved in the sliced steps
of T • can be applied again, at the corresponding positions, to every concrete
trace T ′ that can be obtained by instantiating all the •-variables in s•0 with ar-
bitrary terms. The following example illustrates the slicing of an execution trace.

Example 6. Consider the Maude specification of Example 2 together with the
following execution trace T : (<a|30>;debit(a,5));credit(a,3) debit→ <a|25>;

credit(a,3)
credit→ <a|28>. Let <a|•1> be a term slice of <a|28> generated with

the slicing criterion {1} —i.e., <a|•1>=slice(<a|28>, {1}). Then, the trace slice
for T is [T •, •8 ≥ •9] where T • is as follows

(<a|•8>;debit(a,•9));credit(a|•4)
debit→ <a|•3>;credit(a,•4)

credit→ <a|•1>

Note that T • needs to be endowed with the compatibility condition •8 ≥ •9 in
order to ensure the applicability of the debit rule. In other words, any instance
s•σ of <a|•8>;debit(a,•9) can be rewritten by the debit rule only if •8σ ≥ •9σ.

Informally, given a slicing criterion Osn for the execution trace T = s0 →∗ sn,
at each rewrite step si−1 → si, i = n, . . . , 1, our technique inductively computes
the association between the meaningful information of si and the meaningful
information in si−1. For each such rewrite step, the conditions of the applied rule
are recursively processed in order to ascertain from si the meaningful information
in si−1, together with the accumulated condition B•

i . The technique proceeds
backwards, from the final term sn to the initial term s0. A simplified trace is
obtained where each si is replaced by the corresponding term slice s•i .

We define a transition system (Conf , •→) [17] where Conf is a set of config-
urations and •→ is the transition relation that implements the backward trace
slicing algorithm. Configurations are formally defined as follows.



Backward Trace Slicing for Conditional Rewrite Theories 71

Definition 4. A configuration, written as 〈T , S•, B•〉, consists of three com-
ponents:
– the execution trace T : s0 →∗ si−1 → si to be sliced;
– the term slice s•i , that records the computed term slice of si
– a boolean condition B•.

The transition system (Conf , •→) is defined as follows.

Definition 5. Let R = (Σ,Δ ∪ B,R) be a rewrite theory, let T = U →∗ W
be an execution trace in R, and let V → W be a rewrite step. Let B•

W and B•
V

be two boolean conditions, and W • be a term slice of W . Then, the transition
relation •→⊆ Conf × Conf is the smallest relation that satisfies the following
rule:

(V •, B•
V ) = slice-step(V →W, W •, B•

W )
〈U →∗ V →W, W •, B•

W 〉•→ 〈U →∗ V, V •, B•
V 〉

Roughly speaking, the relation •→ transforms a configuration 〈U →∗ V →
W, W •, B•

W 〉 into a configuration 〈U →∗ V, V •, B•
V 〉 by calling the function

slice-step(V → W, W •, B•
W ) of Section 4.3, which returns a rewrite step slice

for V → W . More precisely, slice-step computes a suitable term slice V • of V
and a boolean condition B•

V that updates the compatibility condition specified
by B•

W .
The initial configuration 〈s0 →∗ sn, slice(sn,Osn), true〉 is transformed until

a terminal configuration 〈s0, s•0, B•
0〉 is reached. Then, the computed trace

slice is obtained by replacing each term si by the corresponding term slice s•i ,
i = 0, . . . , n, in the original execution trace s0 →∗ sn. The algorithm additionally
returns the accumulated compatibility condition B•

0 attained in the terminal
configuration.

More formally, the backward trace slicing of an execution trace w.r.t. a slicing
criterion is implemented by the function backward-slicing defined as follows.

Definition 6 (Backward trace slicing algorithm). Let R = (Σ,Δ ∪ B,R)
be a rewrite theory, and let T : s0 →∗ sn be an execution trace in R. Let Osn

be a slicing criterion for T . Then, the function backward-slicing is computed as
follows:

backward-slicing(s0 →∗ sn,Osn) = [s•0 →∗ s•n, B
•
0 ]

iff there exists a transition sequence in (Conf , •→)

〈s0 →∗ sn, s
•
n, true〉•→ 〈s0 →∗ sn−1, s

•
n−1, B

•
n−1〉•→∗ 〈s0, s•0, B•

0〉
where s•n = slice(sn, Osn)

In the following, we formulate the auxiliary procedure for the slicing of
conditional rewrite steps.



72 M. Alpuente et al.

4.3 The Function slice-step

The function slice-step, which is out-
function slice-step(s

r,σ,w→ t, t•, B•
prev)

1. if w �∈ MPos(t•)
2. then
3. s• = t•

4. B• = B•
prev

5. else
6. θ = {x/fresh• | x ∈ V ar(r)}
7. ρ• = slice(ρ,MPos(t•|w))

8. ψρ = 〈|θ,matchρ•θ(t•|w)|〉
9. for i = n downto 1 do
10. (ψi, B

•
i ) = process-condition(ci, σ,

〈|ψρ, ψn...ψi+1|〉)
11. od
12. s• = t•[λ〈|ψρ, ψn...ψ1|〉]w
13. B• = (B•

prev ∧ B•
n... ∧ B

•
1 )(ψ1ψ2 . . . ψn)

14.fi
15. return (s•, B•)

Fig. 2. Backward step slicing function

lined in Figure 2, takes as input three
parameters, namely, a rewrite stepμ :
s
r,σ,w→ t (with r = λ → ρ if C5),

a term slice t• of t, and a compatibil-
ity condition B•

prev; and delivers the
term slice s• and a new compatibility
condition B•. Within the algorithm
slice-step, we use an auxiliary opera-
tor 〈|σ1, σ2|〉 that refines (overrides) a
substitutionσ1 with a substitutionσ2,
where both σ1 and σ2 may contain •-
variables. The main idea behind 〈| , |〉
is that, for the slicing of the step μ, all
variables in the applied rewrite rule r
are näıvely assumed to be initially bound to irrelevant data •, and the bindings are
incrementally refined as we (partially) solve the conditions of r.

Definition 7 (refinement).Letσ1 andσ2 be two substitutions.The refinement of
σ1 w.r.t. σ2 is defined by the operator 〈| , |〉 as follows: 〈|σ1, σ2|〉 = σ|̀Dom(σ1), where

xσ =

⎧⎨⎩
xσ2 if x ∈ Dom(σ1) ∩Dom(σ2)
xσ1σ2 if x ∈ Dom(σ1) \Dom(σ2) ∧ σ2 �= fail
xσ1 otherwise

Note that 〈|σ1, σ2|〉 differs from the (standard) instantiation of σ1 with σ2. We write
〈|σ1, . . . , σn|〉 as a compact denotation for 〈|〈| . . . 〈|σ1, σ2|〉, . . . , σn−1|〉, σn|〉.

Example 7. Let σ1 = {x/•1, y/•2} and σ2 = {x/a, •2 /g(•3), z/5} be two sub-
stitutions. Thus, 〈|σ1, σ2|〉 = {x/a, y/g(•3)}.

Roughly speaking, the function slice-step works as follows. When the rewrite step
μ occurs at a position w that is not a meaningful position of t• (in symbols, w �∈
MPos(t•)), trivially μ does not contribute to producing the meaningful symbols
of t•. Therefore, the function returns s• = t•, with the input compatibility condi-
tion B•

prev.

Example 8. Consider the Maude specification of Example 2 and the following
rewrite step μ: (<a|30>;debit(a,5));credit(a,3) debit→ <a|25>;credit(a,3).
Let •1; credit(a, 3)be a term slice of <a|25>;credit(a,3).Since the rewrite step
μ occurs at position 1 �∈ MPos(•1; credit(a, 3)), the term <a|25> introduced by
μ in <a|25>;credit(a,3) is completely ignored in •1; credit(a, 3). Hence, the

5 Since equations and axioms are both interpreted as rewrite rules in our formulation,
we often abuse the notation λ → ρ if C to denote rules as well as (oriented) equations
and axioms.



Backward Trace Slicing for Conditional Rewrite Theories 73

computed term slice for (<a|30>;debit(a,5));credit(a,3) is the very same
•1; credit(a, 3).

On the other hand, when w ∈
MPos(t•), the computation of s• and
B• involves a more in-depth analysis
of the rewrite step, which is based on
an inductive refinement process that
is obtained by recursively processing
the conditions of the applied rule.

More specifically,we initially define

function process-condition(c, σ, θ)
1. case c of
2. (p := t) ∨ (t ⇒ p) :
3. if (tσ = pσ)
4. then return ({}, true) fi
5. Q = MPos(pθ)
6. [t• →∗ p•, B•] =

backward-slicing(tσ →∗ pσ, Q)
7. t•′ = slice(t,MPos(t•))
8. ψ = matcht•′θ(t•)
9. e :
10. ψ = { }
12. B• = eθ
12. end case
13. return (ψ, B•)

Fig. 3. Condition processing function

the substitution θ = {x/fresh• | x ∈
V ar(r)} that binds each variable in
r to a fresh •-variable.This corresponds
to assuming that all the information
in μ, which is introduced by the sub-
stitution σ, can be marked as irrele-
vant. Then, θ is incrementally refined using the following two-step procedure.

Step 1. We compute the matcher matchρθ(t•|w), and then generate the refinement
ψρ of θ w.r.t. matchρθ(t•|w) (in symbols, ψρ = 〈|θ,matchρθ(t•|w)|〉). Roughly
speaking, the refinement ψρ updates the bindings of θ with the meaningful
information extracted from t•|w.

Example 9. Consider the rewrite theory in Example 2together with the follow-
ing rewrite step μdebit : <a|30>;debit(a,5) debit→ <a|25> that involves the
application of the debit rule whose right-hand side is
ρdebit =<Id|newBal>. Let t• =<a|•1> be a term slice of <a|25>. Then, the
initially ascertained substitution for μ is θ={Id/•2, bal/•3, M/•4, newBal/•5},
and matchρdebitθ(t•) = match<•2|•5>(<a|•1>) = {•2/a, •5 /•1}. Thus, the
substitution ψρdebit = 〈|θ, ψρdebit |〉 = {Id/a, bal/•3, M/•4, newBal/•1}. That
is, ψρdebit refines θ by replacing the uninformed binding Id/•2, with Id/a.

Step 2. LetCσ = c1σ∧. . .∧cnσ be the instance of the condition in the rule r that
enables the rewrite step μ. We process each (sub)condition ciσ, i = 1, . . . , n, in
reversed evaluation order, i.e., from cnσ to c1σ, by using the auxiliary function
process-condition given in Figure 3 that generates a pair (ψi, B•

i ) such that ψi
is used to further refine the partially ascertained substitution 〈|ψρ, ψn, . . . , ψi+1

|〉 computed by incrementally analyzing conditions cnσ, cn−1σ . . . , ci+1σ, and
B•
i is a boolean condition that is derived from the analysis of the condition ci.

When the whole Cσ has been processed, we get the refinement 〈|ψρ, ψn, . . . , ψ1|〉,
which basically encodes all the instantiations required to construct the term slice
s• from t•. More specifically, s• is obtained from t• by replacing the subterm t•|w
with the left-hand side λ of r instantiated with 〈|ψρ, ψn, . . . , ψ1|〉. Furthermore,
B• is built by collecting all the boolean compatibility conditions B•

i delivered by
process-condition and instantiating them with the composition of the computed



74 M. Alpuente et al.

refinements ψ1 . . . ψn. It is worth noting that process-condition handles rewrite ex-
pressions, equational conditions, and matching conditions differently. More specif-
ically, the pair (ψi, Bi) that is returned after processing each condition ci is com-
puted as follows.

– Matching Conditions. Let c be a matching condition with the form p := m

in the condition of rule r. During the execution of the step μ : s
r,σ,w→ t, recall

that c is evaluated as follows: first,mσ is reduced to its canonical formmσ↓Δ,
and then the condition mσ ↓Δ=B pσ is checked. Therefore, the analysis of
the matching condition p := m during the slicing process of μ implies slicing
the (internal) execution trace Tint = mσ →∗ pσ, which is done by recursively
invoking the function backward-slicing for execution trace slicingwith respect
to the meaningful positions of the term slice pθ of p, where θ is a refinement
that records the meaningful information computed so far. That is, [m• →∗

p•, B•] = backward-slicing(mσ →∗ pσ, MPos(pθ)). The result delivered
by the function backward-slicing is a trace slicem• →∗ p• with compatibility
condition B•.

In order to deliver the final outcome for the matching condition p := m, we
first compute the substitution ψ = matchmθ(m•), which is the substitution
needed to refine θ, and then the pair (ψ, B•) is returned.

Example 10. Consider the the rewrite step μdebit of Example 9 together with
the refined substitution θ = {Id/a, bal/•3, M/•4, newBal/•1}. We process
the condition newBal := bal - M of debit by considering an internal execu-
tion trace Tint = 30− 5 → 25 6. By invoking the function backward-slicing
the trace slice result is [•6 → •6, true]. The final outcome is given by
match•7−•8(•6), that is fail. Thus θ does not need any further refinement.

– Rewrite Expressions. The case when c is a rewrite expression t ⇒ p is han-
dled similarly to the case of a matching equation p := t, with the difference that
t can be reduced by using the rules of R in addition to equations and axioms.

– Equational Conditions. During the execution of the rewrite step μ : s
r,σ,w→ t,

the instance eσ of an equational condition e in the condition of the rule r is
just fulfilled or falsified, but it does not bring any instantiation into the out-
put term t. Therefore, when processing eσ, no meaningful information to fur-
ther refine the partially ascertained substitution θ must be added. However,
the equational condition emust be recorded in order to compute the compati-
bility conditionB• for the considered conditional rewrite step. In other words,
after processing an equational condition e, we deliver the tuple (ψ, B•), with
ψ = { } and B• = eθ. Note that the condition e is instantiated with the up-
dated substitution θ, in order to transfer only the meaningful information of
eσ computed so far in e.

6 Note that the trace 30-5→25 involves an application of the Maude built-in opera-
tor “-”. Given a built-in operator op, in order to handle the reduction a op b → c as
an ordinary rewrite step, we add the rule a op b ⇒ c to the considered rewrite theory.



Backward Trace Slicing for Conditional Rewrite Theories 75

Example 11. Consider the refined substitution given in Example 10
θ = {Id/a, bal/•3, M/•4, newBal/•1} together with the rewrite step μdebit
of Example 9 that involves the application of the debit rule. After processing
the condition bal >= M of debit, we deliver B• = (•3 >= •4).

Soundness of our conditional slicing technique is established by the following the-
orem. The proof can be found in [4].

Theorem 1 (soundness). Let R be a rewrite theory. Let T : s0
r1,σ1,w1→ ...

rn,σn,wn→
sn be an execution trace in the rewrite theory R, with n > 0, and let Osn be a slic-
ing criterion for T . Then, the pair [s•0 → ... → s•n, B

•
0 ] computed by backward-

slicing(T , Osn) is a trace slice for T .

5 Implementation and Experimental Evaluation

The conditional slicing methodology presented so far has been implemented
in a prototype tool that is written in Maude and publicly available at
http://users.dsic.upv.es/grupos/elp/soft.html. The prototype takes in
input a slicing criterion and a Maude execution trace, which is a term of sort Trace
(generated by means of the the Maude metalevel operator metaSearchPath), and
delivers the corresponding trace slice.

Table 1. Backward trace slicing benchmarks

Example Original Slicing Sliced %
trace trace size criterion trace size reduction

Web-TLR.T1 19114 Web-TLR.T1.O1 3982 79.17%
Web-TLR.T1.O2 3091 83.83%

Web-TLR.T2 22018 Web-TLR.T2.O1 2984 86.45%
Web-TLR.T2.O2 2508 88.61%

Web-TLR.T3 38983 Web-TLR.T3.O1 2045 94.75%
Web-TLR.T3.O2 2778 92.87%

Web-TLR.T4 69491 Web-TLR.T4.O1 8493 87.78%
Web-TLR.T4.O2 5034 92.76%

We have tested our prototype on
rather large execution traces, such
as the counterexamples generated by
the model checker for Web applica-
tions Web-TLR [2]. In our exper-
iments, we have considered a Web-
mail application together with four
LTLR properties that have been re-
futed by Web-TLR. For each refuted
property, Web-TLR has produced
the corresponding counterexample in
the form of a huge, textual execution
trace Ti, i = 1, ..., 4, in the range 10− 100Kb that has been used to feed our slicer.

Table 1 shows the size of the original counterexample trace and that of the com-
puted trace slice, both measured as the length of the corresponding string, w.r.t.
two slicing criteria, that are detailed in the tool website. The considered criteria
allow one to monitor the messages exchanged by a specific Web browser and the
Webmail server, as well as to isolate the changes on the data structures of the two
interacting entities. The %reduction column in Table 1 refers to the percentage of
reduction achieved. The results we have obtained are very encouraging, and show
an impressive reduction rate (up to ∼ 95%) in reasonable time (max. 0.9s on a
Linux box equipped with an Intel Core 2 Duo 2.26GHz and 4Gb of RAM mem-
ory). Actually, sometimes the trace slices are small enough to be easily inspected
by the users, who can restrict their attention to the part of the computation that
they want to observe.

http://users.dsic.upv.es/grupos/elp/soft.html


76 M. Alpuente et al.

References

1. Alpuente, M., Ballis, D., Espert, J., Frechina, F., Romero, D.: Debugging of Web
Applications with WEB-TLR. In: 7th Int’l Workshop on Automated Specification
and Verification of Web Systems WWV 2011. EPTCS, vol. 61, pp. 66–80 (2011)

2. Alpuente, M., Ballis, D., Espert, J., Romero, D.: Model-Checking Web Applications
with Web-TLR. In: Bouajjani, A., Chin, W. (eds.) ATVA 2010. LNCS, vol. 6252,
pp. 341–346. Springer, Heidelberg (2010)

3. Alpuente, M., Ballis, D., Espert, J., Romero, D.: Backward Trace Slicing for Rewrit-
ing Logic Theories. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011.
LNCS (LNAI), vol. 6803, pp. 34–48. Springer, Heidelberg (2011)

4. Alpuente, M., Ballis, D., Frechina, F., Romero, D.: Trace Slicing of Conditional
Rewrite Theories. Tech. rep., Universidad Politécnica de Valencia (2012)

5. Alpuente, M., Ballis, D., Romero, D.: Specification and Verification of Web Appli-
cations in Rewriting Logic. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS,
vol. 5850, pp. 790–805. Springer, Heidelberg (2009)

6. Bae, K., Meseguer, J.: A Rewriting-Based Model Checker for the Linear Temporal
Logic of Rewriting. In: 9th Int’l Workshop on Rule-Based Programming RULE 2008.
ENTCS. Elsevier (2008)

7. Baggi, M., Ballis, D., Falaschi, M.: Quantitative Pathway Logic for Computational
Biology. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 68–82.
Springer, Heidelberg (2009)

8. Bethke, I., Klop, J.W., de Vrijer, R.: Descendants and origins in term rewriting. Inf.
Comput. 159(1-2), 59–124 (2000)

9. Bruni, R., Meseguer, J.: Semantic Foundations for Generalized Rewrite Theories.
Theoretical Computer Science 360(1–3), 386–414 (2006)

10. Chen, F., Rosu, G.: Parametric Trace Slicing and Monitoring. In: Kowalewski,
S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 246–261. Springer,
Heidelberg (2009)

11. Chitil, O., Runciman, C., Wallace, M.: Freja, Hat and Hood - A Comparative Eval-
uation of Three Systems for Tracing and Debugging Lazy Functional Programs. In:
Mohnen, M., Koopman, P. (eds.) IFL 2000. LNCS, vol. 2011, pp. 176–193. Springer,
Heidelberg (2001)

12. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: Maude Manual (Version 2.6). Tech. rep., SRI Int’l Computer Science Laboratory
(2011), http://maude.cs.uiuc.edu/maude2-manual/

13. Durán, F., Meseguer, J.: A Maude Coherence Checker Tool for Conditional Order-
Sorted Rewrite Theories. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381,
pp. 86–103. Springer, Heidelberg (2010)

14. Field, J., Tip, F.: Dynamic Dependence in Term Rewriting Systems and its Applica-
tion to Program Slicing. In: Hermenegildo, M., Penjam, J. (eds.) PLILP 1994. LNCS,
vol. 844, pp. 415–431. Springer, Heidelberg (1994)

15. Klop, J.: Term Rewriting Systems. In:Abramsky, S.,Gabbay, D., Maibaum, T. (eds.)
Handbook of Logic in Computer Science, vol. I, pp. 1–112. Oxford University Press
(1992)

16. Meseguer, J.: Conditional Rewriting Logic as a Unified Model of Concurrency. The-
oretical Computer Science 96(1), 73–155 (1992)

17. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr. Pro-
gram., 17–139 (2004)

18. TeReSe (ed.): Term Rewriting Systems. Cambridge University Press, Cambridge
(2003)

http://maude.cs.uiuc.edu/maude2-manual/


Forgetting for Defeasible Logic

Grigoris Antoniou1, Thomas Eiter2, and Kewen Wang3

1 FORTH-ICS, Greece and University of Huddersfield, UK
antoniou@ics.forth.gr

2 Institut für Informationssysteme, Technische Universität Wien, Austria
eiter@kr.tuwien.ac.at

3 School of Information and Communication Technology, Griffith University, Australia
k.wang@griffith.edu.au

Abstract. The concept of forgetting has received significant interest in artificial
intelligence recently. Informally, given a knowledge base, we may wish to for-
get about (or discard) some redundant parts (such as atoms, predicates, concepts,
etc) but still preserve the consequences for certain forms of reasoning. In non-
monotonic reasoning, so far forgetting has been studied only in the context of
extension based approaches, mainly answer-set programming. In this paper for-
getting is studied in the context of defeasible logic, which is a simple, efficient
and sceptical nonmonotonic reasoning approach.

1 Introduction

The concept of forgetting has received significant interest in Artificial Intelligence re-
cently. Informally, given a knowledge base, we may wish to forget about (or discard)
some redundant parts (such as atoms, predicates, concepts, etc) but still preserve the
consequences for certain forms of reasoning. Forgetting has been introduced in many
formalisms for knowledge representation, for instance, in propositional logic [17,18],
first-order logic [19,31], modal logic [25,14,30], description logic [28,27,16], and logic
programming [7,26,29]. The theory of forgetting has also been fruitfully applied in var-
ious contexts, e.g. in cognitive robotics [19], for resolving conflicts and inconsistencies
[18,7], and in particular, in ontology engineering [15].

Regarding nonmonotonic logics, so far forgetting has been studied only in the con-
text of extension based approaches, mainly answer-set programming. On the other hand,
defeasible reasoning is a nonmonotonic reasoning approach in which the gaps due to
incomplete information are closed through the use of defeasible rules. Defeasible log-
ics were introduced by Nute [23] and developed over several years [3,10,6]. They allow
for defeasible reasoning, where a conclusion supported by a rule might be overturned
by the effect of another rule; they also have a monotonic reasoning component, and
a priority on rules. One feature of their design is that they are quite simple, allowing
efficient reasoning; in fact, basic defeasible logics have linear time complexity [20]. Its
properties have been thoroughly studied and analyzed, with strong results in terms of
proof theory [22,3] and semantics [10,21].

Defeasible logic has recently attracted considerable interest. Its use in various appli-
cation domains has been advocated, including the modeling of regulations and business

N. Bjørner and A. Voronkov (Eds.): LPAR-18, LNCS 7180, pp. 77–91, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



78 G. Antoniou, T. Eiter, and K. Wang

rules [2], modeling of contracts [8], legal reasoning [13], agent negotiations [9,24],
modeling of agents and agent societies [12,11], and applications to the Semantic Web
[1,4] and ambient intelligence [5].

However, to our best knowledge, a theory of forgetting for defeasible logic is still
missing. In this paper, we first examine a naive definition of forgetting for defeasi-
ble logic and explain why such a definition is insufficient for practical applications.
Specifically, the naive definition does not preserve any syntactical information of the
original theory. For this reason, we develop a new approach to forgetting for defeasible
logic and establish some of its formal properties, including completeness, computa-
tional complexity, and structure preservation. Salient features of the solution provided
include linear time complexity, and linear size of the output of (iterated) forgetting.

The paper is organised as follows. Section 2 presents the basics of defeasible logic.
Section 3 introduces the problem of forgetting in the context of defeasible logic, and
presents a first, naive solution. An analysis of the weaknesses of this approach leads to
an improved approach, presented in Section 4, where its properties and computational
complexity are also analyzed. We conclude the paper with plans for future work in
Section 5.

2 Defeasible Logic

In this paper we restrict attention to essentially propositional defeasible logic. Rules
with free variables are interpreted as rule schemas, that is, as the set of all ground
instances. If q is a literal,∼ q denotes the complementary literal (if q is a positive literal
p then ∼ q is ¬p; and if q is ¬p, then ∼ q is p).

Rules are defined over a language (or signature) Σ, the set of propositions (atoms)
and labels that may be used in the rule.

A rule r : A(r) ↪→ C(r) consists of its unique label r, its antecedentA(r), which is
a finite set of literals (possibly omitted if empty), an arrow ↪→ (which is a placeholder
for concrete arrows to be introduced in a moment), and its head (or consequent) C(r)
which is a literal. In writing rules we omit set notation for antecedents, and sometimes
we omit the label when it is not relevant for the context. There are three kinds of rules,
each designated by a different arrow:
• → designates strict rules (definitional rules);
• ⇒ designates defeasible rules (nonmonotonic rules that may be attacked by other

rules); and
• � designates defeaters (special rules that do not support positive conclusions but

may only attack other rules).
Given a set R of rules, we denote by Rs the set of all strict rules in R, by Rsd the set of
all strict and defeasible rules in R, and by R[q] the set of rules in R with consequent q.

A superiority relation on R is a binary relation > on R. When r1 > r2, then r1
is called superior to r2, and r2 inferior to r1. Intuitively, r1 > r2 expresses that r1
overrules r2, should both rules be applicable. Typically we assume> to be acyclic (that
is, the transitive closure of > is irreflexive).

A defeasible theory is a tripleD = (F,R,>) where F is a finite set of literals (called
facts), R a finite set of rules, and > is an acyclic superiority relation on R. We call D
decisive, if the atom dependency graph of D is acyclic.



Forgetting for Defeasible Logic 79

Example 1. The following is a theory D = (F,R,>) in defeasible logic, where

F = { }
R = {r0 :→ d

r1 :⇒ a
r2 :⇒ ¬a
r3 : a⇒ b
r4 :⇒ ¬b
r5 : d, b⇒ c
r6 :⇒ ¬c },

and r1 > r2 r3 > r4.

A conclusion of a theoryD in defeasible logic is a tagged literal and can have one of
the following four forms:

– +Δq, which is intended to mean that q is definitely provable in D.
– −Δq, which is intended to mean that we have proved that q is not definitely prov-

able in D.
– +∂q, which is intended to mean that q is defeasibly provable in D.
– −∂q, which is intended to mean that we have proved that q is not defeasibly prov-

able in D.

If we are able to prove q definitely, then q is also defeasibly provable. This is a direct
consequence of the formal definition below. It resembles the situation in, say, Reiter’s
default logic: a formula is sceptically provable from a default theoryT = (W,D) (in the
sense that it is included in each extension) if it is provable from the set W of classical
formulas.

Let us consider the theory in Example 1. Intuitively, d can be derived by the strict rule
r0 and thus +Δd is provable from the theory, and so is +∂d. Also, −Δ¬d is provable,
as an attempt to prove ¬d fails finitely. Similarly, +∂a is provable (as r1 > r2), and so
is −∂¬a is provable (defeasible logic is sceptical, and the rule supporting a is superior
to the rule supporting ¬a).

Provability for defeasible logic is based on the concept of a derivation (or proof )
in D = (F,R,>). A derivation is a finite sequence P = (P (1), ..., P (n)) of tagged
literals constructed by inference rules. There are four inference rules (corresponding to
the four kinds of conclusion) that specify how a derivation may be extended. (P (1..i)
denotes the initial part of the sequence P of length i):

+Δ: We may append P (i+1) = +Δq if either
q ∈ F or
∃r ∈ Rs[q] ∀a ∈ A(r) : +Δa ∈ P (1..i)

To prove +Δq, this means we need to establish a proof for q using facts and strict rules
only. This is a deduction in the classical sense. No proofs for the negation of q need
to be considered (in contrast to defeasible provability below, where opposing chains of
reasoning must be taken into account, too).

To prove−Δq, that is, that q is not definitely provable, q must not be a fact. In addi-
tion, we need to establish that every strict rule with head q is known to be inapplicable.



80 G. Antoniou, T. Eiter, and K. Wang

Thus for every such rule r there must be at least one antecedent a for which we have
established that a is not definitely provable (−Δa).

−Δ: We may append P (i+1) = −Δq if
q /∈ F and
∀r ∈ Rs[q] ∃a ∈ A(r) : −Δa ∈ P (1..i)

It is worth noticing that this definition of nonprovability does not involve loop detection.
Thus if D consists of the single rule p → p, we can see that p cannot be proven, but
defeasible logic is unable to prove−Δp.

+∂: We may append P (i+1) = +∂q if either

(1) +Δq ∈ P (1..i) or
(2) (2.1) ∃r ∈ Rsd[q] ∀a ∈ A(r): +∂a ∈ P (1..i) and

(2.2)−Δ ∼q ∈ P (1..i) and
(2.3) ∀s ∈ R[∼ q] either

(2.3.1) ∃a ∈ A(s): −∂a ∈ P (1..i) or
(2.3.2) ∃t ∈ Rsd[q] such that

∀a ∈ A(t): +∂a ∈ P (1..i) and t > s

Let us illustrate this definition. To show that q is defeasibly provable, we have two
choices: (1) we show that q is already definitely provable; or (2) we need to argue using
the defeasible part of D as well. In particular, we require that there must be a strict or
defeasible rule with head q which can be applied (2.1). But now we need to consider
possible attacks, that is, reasoning chains in support of∼q. To be more specific: to prove
q defeasibly we must show that ∼q is not definitely provable (2.2). Also (2.3) we must
consider the set of all rules (including defeaters) which are not known to be inapplicable
and which have head ∼q. Essentially each such rule s attacks the conclusion q. For q
to be provable, each such rule must be counterattacked by a rule t with head q with the
following properties: (i) t must be applicable at this point, and (ii) t must be stronger
than s. Thus each attack on the conclusion q must be counterattacked by a stronger rule.

The definition of the proof theory of defeasible logic is completed by the condition
−∂. It is nothing more than a strong negation of the condition +∂.

−∂: We may append P (i+1) = −∂q if

(1)−Δq ∈ P (1..i) and
(2) (2.1) ∀r ∈ Rsd[q] ∃a ∈ A(r): −∂a ∈ P (1..i) or

(2.2) +Δ ∼q ∈ P (1..i) or
(2.3) ∃s ∈ R[∼q] such that

(2.3.1) ∀a ∈ A(s): +∂a ∈ P (1..i) and
(2.3.2) ∀t ∈ Rsd[q]

either ∃a ∈ A(t): −∂a ∈ P (1..i) or t �> s

To prove that q is not defeasibly provable, we must first establish that it is not definitely
provable. Then we must establish that it cannot be proven using the defeasible part
of the theory. There are three possibilities to achieve this: either we have established
that none of the (strict and defeasible) rules with head q can be applied (2.1); or ∼q is
definitely provable (2.2); or there must be an applicable rule r with head ∼q such that
no possibly applicable rule s with head ∼q is superior to s (2.3).



Forgetting for Defeasible Logic 81

The elements of a derivation P in D are called lines of the derivation. We say that a
tagged literal L is provable in D = (F,R,>), denoted D � L, if there is a derivation
in D such that L is a line of P . When D is obvious from the context we write � L.

Consider the theory in Example 1 again. Then the conclusions that can be drawn
from this theory are: −Δa, −Δ¬a, +∂a, −∂¬a, −Δb, −Δ¬b, +∂b, −∂¬b, −Δc,
−Δ¬c, −∂c, −∂¬c, +Δd, +∂d, −Δ¬d, −∂¬d.

Two defeasible theories D and D′ are equivalent, denoted D ≡ D′, if for each
tagged literal L, it holds that D � L iff D′ � L.

3 Forgetting in Defeasible Logic: A Naive Approach

Intuitively, given a knowledge base K and a set of atoms A, which we wish to forget
fromK , we are interested in obtaining a knowledge baseK ′ = forget(K,A) such that:
(a) K ′ does not contain any occurrence of any atom in A, and (b) K ′ is equivalent to K
for all atoms not belonging to A.

In the context of defeasible logic, this intuitive idea translates to the following task:

Given a defeasible theory D and a set of atoms A, find a defeasible theory D′

such that (a) D′ does not contain any occurrences of any atom in A, and (b)
D′ � q ⇔ D � q for any tagged literal q that does not contain any atom in A.

We denote such a theory D′ by forget(D,A); for singleton A = {a}, we also write
forget(D, a). Note that, by definition, any two different defeasible theories D′ and D′′

satisfying conditions (a) and (b) above are equivalent. Thus forget(D,A) is uniquely
defined, modulo equivalence of defeasible theories.

A first, naive approach to solving this problem is applying the following algorithm.

Algorithm 1

1. Compute the set cons(D) of all conclusions of D.
2. Delete all conclusions from cons(D) that contain an atom in A.
3. Construct a defeasible theory D′ that has exactly those conclusions contained in

the result of step 2. ��

Before continuing, let us make an initial remark about this approach: While quite naive,
it is computationally feasible, in contrast to, say, propositional logic or description log-
ics where forgetting has already been studied; the reason is that the conclusions of a
defeasible theory (step 1) can be computed in linear time, as shown in [20]. Indeed, the
algorithm provided in that work constitutes the first step in our algorithm.

Thus, the only question that remains is whether step 3 can be carried out. To provide
an answer to this question, we have to carefully analyze the proof theory of defeasible
logic. This analysis provides a number of relationships among different conclusions;
for example, if D � +Δp then also D � +∂p. And also D �� +∂p or D �� −∂p (or
both). In addition, there are interrelationships between possible conclusions involving
an atom p and its negation. For example, if D � +Δ¬p and D � −Δp then D � −∂p.

Maher et al. [22] provide a thorough analysis of the proof theory of defeasible logic,
and reveal that regarding the provability of a set of conclusions involving p and its



82 G. Antoniou, T. Eiter, and K. Wang

Table 1. Distinct cases of provable sets of conclusions involving p and ¬p (cf. [22])

Case Set of conclusions Rules with this outcome

1 p → p,¬p → ¬p
2 +Δ¬p,+∂¬p p → p,→ ¬p
3 −Δ¬p p → p,¬p ⇒ ¬p
4 −Δ¬p,−∂¬p p → p

5 +∂p,−Δ¬p,−∂¬p ⇒ p, p → p

6 +Δp,+∂p,+Δ¬p,+∂¬p → p,→ ¬p
7 +Δp,+∂p,−Δ¬p,−∂¬p → p

8 −Δp,+∂p,−Δ¬p,−∂¬p ⇒ p

9 −Δp,−Δ¬p p ⇒ p,¬p ⇒ ¬p
10 −Δp,−Δ¬p,−∂¬p p ⇒ p

11 −Δp,−∂p,−Δ¬p,−∂¬p

negation, there are essentially eleven distinct cases, out of 28 = 256 syntactically pos-
sible sets of conclusions, which are summarized in Table 1. For each of these cases, we
provide in the rightmost column a respective defeasible theory that contains only the
literals p and ¬p. Thus we demonstrate how step 3 of Algorithm 1 can be carried out.

Let us explain a few of these cases. Case 1 is the one where no conclusion regarding
p or ¬p can be drawn. This outcome is achieved by strict loops for both p and¬p, which
are not detected by the proof theory of Section 2, therefore no conclusion can be drawn.

Case 2 represents that D �� −Δp and D �� +∂p while D � +Δ¬p and D �
+∂¬p. The theory for it has again a loop for p, but ¬p is definitely, thus also defeasibly,
provable.

The theory for case 3 consists of the rules {p→ p,¬p⇒ ¬p}. Here there is a strict
loop for p, but a defeasible loop for ¬p. The latter allows one to derive at least the
definite non-provability of ¬p (as there is no fact nor a strict rule with head ¬p).

Case 6 is the one of inconsistency, which may only occur if both p and ¬p are defi-
nitely (hence also defeasibly) provable, as achieved by the theory provided. Finally, in
case 10 absence of facts or strict rules achieves definite non-provability. The loop on p
prevents us from deriving−∂p, whereas absence of a rule with head ¬p gives us−∂¬p.

Summarizing the discussion so far, all three steps of the algorithm provided in this
section are feasible, and provide a solution to the problem of forgetting.

Proposition 1. Given a defeasible theory D and a set of atoms A, Algorithm 1 com-
putes a defeasible theory D′ = forget(D,A) .

Moreover, the algorithm can be evaluated efficiently: given Table 1, step 1 is the only
involved step which however can be done in linear time [20].

Proposition 2. Algorithm 1 computes forget(D,A) in linear time.

Though these theoretical results are positive, the algorithm is still naive, in the sense
that it completely abandons the original structure of the knowledge base and returns an
artificial theory.



Forgetting for Defeasible Logic 83

Example 2. Take the theory in Example 1 and now suppose we wish to forget about b.
Then Algorithm 1 returns forget(D,A) = (F ′, R′, >′) where

R′ = { → d
⇒ a }

and F ′ and >′ are empty.

This approach is clearly not suitable for practical purposes. The question arises whether
the theoretical properties can be achieved while maintaining the original knowledge
structure to the extent possible. This question is studied in the next section.

4 Forgetting in Defeasible Logic: An Improved Approach

The idea for the improved algorithm is the following: assuming that we have the com-
plete picture regarding the derivability of p and ¬p (one of the eleven cases of the
previous section), we transform the set of rules in a way that takes into account the
derivability of p and ¬p. For example, consider the rules

r1 : p, s→ ¬a
r2 : p, q ⇒ a

and the derivabilityD � −Δp andD � +∂p. Rule r1 cannot fire as we have established
that p is not definitely derivable. And we can delete p from the body of r2 as p is
defeasibly derivable. As a result of this transformation, the resulting set of rules contains
no occurrence of p, and represents the result of forgetting p. Let us now consider another
interesting case. Consider the rule

r : p⇒ s

and the derivability D � −Δp and D �� +∂p and D �� −∂p . Clearly rule r cannot fire
ever, as p cannot be derived. However,−∂p cannot be derived either (indicating a cyclic
situation; see e.g. case 10 in Table 1). Suppose we have in our theory another rule

r′ :⇒ ¬s.

Rule r′ does not fire to prove¬s because it is attacked by r and r cannot be discarded as
we cannot prove non-derivability of its antecedent p. Simply deleting r when forgetting
p would delete this attack on r′, thus enabling derivability of ¬s and altering the set of
conclusions not involving p. The solution to this problem is to turn r into a defeater

r :� s.

This rule fails to support derivation of s but is able to attack r′ and prevents it from
firing.

As a final example, consider the rule

r : p→ q



84 G. Antoniou, T. Eiter, and K. Wang

and suppose D � +∂p and D � −Δp. In this case, the strict rule r fails to prove q
strictly, but is able to prove q defeasibly. If we were to simply remove r in the process
of forgetting p, we would lose this defeasible provability of q. To avoid this problem,
we replace r by the defeasible rule

r :⇒ q

Based on these ideas, we provide in the following the full transformation in all eleven
cases of derivability of p and ¬p.

Case 1: { }

– Replace all rules r : A ↪→ q where p or ¬p appear in A with r : A \ {p,¬p}� q.
– Delete all facts and rules with p or ¬p in their head.

Case 2: {+Δ¬p,+∂¬p}

– Replace all rules r : A ↪→ q such that p appears in A with r : A \ {p}� q.
– Remove all occurrences of ¬p from all rule bodies.
– Delete all facts and rules with p or ¬p in their head.

Case 3: {−Δ¬p}

– Replace all rules r : A ↪→ q such that p appears in A with r : A \ {p}� q.
– Replace all rules r : A ↪→ q such that ¬p appears in A with r : A \ {¬p}� q.
– Delete all facts and rules with p or ¬p in their head.

Case 4: {−Δ¬p,−∂¬p}

– Replace all rules r : A ↪→ q such that p appears in A with r : A \ {p}� q.
– Remove all rules with ¬p as one of its antecedents.
– Delete all facts and rules with p or ¬p in their head.

Case 5: {+∂p,−Δ¬p,−∂¬p}

– Replace all strict rules r : A→ q with p inA by the defeasible rule r : A\{p} ⇒ q.
– Remove all occurrences of p in the bodies of defeasible rules and defeaters.
– Remove all rules with ¬p as one of its antecedents.
– Delete all facts and rules with p or ¬p in their head.

Case 6: {+Δp,+∂p,+Δ¬p,+∂¬p}

– Remove all occurrences of p and ¬p from all rule bodies.
– Delete all facts and rules with p or ¬p in their head.

Case 7: {+Δp,+∂p,−Δ¬p,−∂¬p}

– Remove all occurrences of p from the bodies of all rules.
– Remove all rules with ¬p as one of its antecedents.
– Delete all facts and rules with p or ¬p in their head.



Forgetting for Defeasible Logic 85

Case 8: {−Δp,+∂p,−Δ¬p,−∂¬p}

– Replace all strict rules r : A→ q with p inA by the defeasible rule r : A\{p} ⇒ q.
– Remove all occurrences of p from the bodies of all defeasible rules and defeaters.
– Remove all rules with ¬p as one of its antecedents.
– Delete all facts and rules with p or ¬p in their head.

Case 9: {−Δp,−Δ¬p}

– Replace all rules r : A ↪→ q where p or ¬p appear in A with r : A \ {p,¬p}� q.
– Delete all facts and rules with p or ¬p in their head.

Case 10: {−Δp,−Δ¬p,−∂¬p}

– Replace all rules r : A ↪→ q where p appears in A with r : A \ {p}� q.
– Remove all rules with ¬p as one of its antecedents.
– Delete all facts and rules with p or ¬p in their head.

Case 11: {−Δp,−∂p,−Δ¬p,−∂¬p}

– Remove all rules in which p or ¬p occurs.

This leads us then to the following improved algorithm for forgetting.

Algorithm 2

1. Compute all conclusions concerning atoms in A.
2. For each atom p in A, transform the rules in D to obtain D′.
3. Delete all priority pairs r > s where r or s was deleted in step 2. ��

Step 1 can be carried out, in the worst case, by computing all conclusions of D. Step 2
is based on the analysis provided above.

Example 3. Reconsider the theory D in Example 1. Note that −Δb, +∂b, −Δ¬b, and
−∂¬b} are provable from D. So, by Case 8 above, application of Algorithm 2 yields
the theory D′ = (∅, R′, >′) as forget(D, b), where

R′ = { r0 :→ d
r1 :⇒ a
r2 :⇒ ¬a
r5 : d⇒ c
r6 :⇒ ¬c }

and r1 >′ r2.

Example 4. Consider the defeasible theory D = (F,R,>) where

R = { r1 : a⇒ a
r2 : a⇒ b
r3 :⇒ ¬b }



86 G. Antoniou, T. Eiter, and K. Wang

and F and > are empty. Here ¬b is not defeasibly derivable because a cannot be shown
to be non-provable (−∂a cannot be derived). Thus it would be a mistake to simply delete
r2 when forgetting a. Instead, Algorithm 2 correctly turns a modified rule r2 (without a
in the body) into a defeater, giving as result the defeasible theoryD′ = (∅, R′, ∅) where
R′ contains the rules

r2 :� b
r3 :⇒ ¬b.

The following proposition states that Algorithm 2 indeed provided a correct solution
for forgetting.

Proposition 3. Given a defeasible theory D and a set of atoms A, Algorithm 2 com-
putes a defeasible theory D′ = forget(D,A).

Proof. (Sketch) We want to show that for each tagged literal L whose literal is neither
p nor ¬p, D � L iff D′ � L.

If D � L, then there exists a derivation of L in D: P = (P (1), ..., P (n)). We use
P ′ to denote the sequence of tagged literals obtained from P by removing every tagged
literal whose literal is either p or ¬p. Then we can prove that P ′ is a derivation of L in
D′ by induction on the length n of P . The induction step can be done by examining the
Cases 1-11 in Algorithm 2.

On the other hand, if P ′ = (P ′(1), ..., P ′(m)) is a derivation of L in D′, we can
construct a derivation P of L in D inductively as follows.

Assume that a derivation (P (1), ..., P (u)) of P ′(m− 1) in D has been constructed.
Again, the induction step can be done by examining the Cases 1-11 in Algorithm 2. For
instance, here we consider the Case 7 in Algorithm 2:D � {+Δp,+∂p,−Δ¬p,−∂¬p}.

To construct a derivation of P ′(m) = L in D, consider four possible cases:
Case 1. L = +Δq: Then either q ∈ F or ∃r′ ∈ R′

s[q] ∀a ∈ A(r′) : +Δa ∈ P ′(1..m−
1). If q ∈ F , then it is done. If q �∈ F , by the (last) induction assumption, ∀a ∈ A(r′) :
+Δa ∈ P (1..u). If r′ ∈ R, then (P (1), ..., P (u), L) is already a derivation of L in
D. So we assume that r′ �∈ R. By the Case 7 in Algorithm 2, there exists r ∈ R such
that A(r) = A(r′) ∪ {p}. Let P ′′ = (P ′′(1), ..., P ′′(v)) be a derivation of +Δp; then
P = (P (1), ..., P (u), P ′′(1), ..., P ′′(v), L) is a derivation of L in D.
Cases 2,3,4: L = −Δq, L = +∂q, L = −∂q: we can similarly construct a derivation
of L in D. ��

4.1 Semantic Properties

Algorithm 2 satisfies a number of desirable properties. One is that forgetting atoms
which do not occur in the theory cause no change.

Proposition 4. Let D be a defeasible theory and let A be a set of atoms. Then forget
(D,A) ≡ forget(D,A′) where A′ ⊆ A is the set of atoms from A that occur in D; in
particular forget(D, ∅) = D.

Another such property is irrelevance of syntax with respect to equivalence.



Forgetting for Defeasible Logic 87

Proposition 5. Let D and D′ be defeasible theories such thatD ≡ D′. Then, for every
set A of atoms, forget(D,A) ≡ forget(D′, A).

Proof. Let D and D′ be two defeasible theories that are equivalent. Then, for each
tagged literal L whose literal is not in A,

forget(D,A) � L
iff D � L
iff D′ � L
iff forget(D′, A) � L.

Thus, forget(D,A) and forget(D′, A) are also equivalent. ��

In addition, the result is independent of whether atoms are forgotten successively (in
some order), or altogether.

Proposition 6. Let D be a defeasible theory and let A = {a1, . . . , an, an+1} be a set
of atoms. Then forget(D,A) ≡ forget(forget(D, {a1, . . . , an}), an+1).

Proof. (Sketch) This can be shown by a simple induction on the size n of A. Let An =
{a1, . . . , an}. We need only to observe that

forget(D,A) ≡ forget(D,An) ≡ forget(forget(D,An), an+1). ��

Note that Algorithm 2 is as little disruptive to the original theory as possible. A close
inspection reveals that its only operations are to:

– remove all rules containing atoms in A in their heads;
– remove provable atoms from A from rule bodies;
– remove rules with an atom from A in their body, in cases where this atom is not

provable;
– turn rules into defeaters in certain cases caused by cyclicity (see Example 2);
– remove priority pairs where one of the rules involved was deleted.

All these changes are necessary and as little obstructive as possible in the attempt to
compile the derivability of literals from A into the knowledge base. The following for-
mal property seeks to partially capture this intuitive notion of “structure preservation”.
It makes use of direct dependency. Formally, an atom a is directly dependent on an
atom b iff either a and b are identical, or there is a rule r with head a or ¬a, such that
b or ¬b appears in the body of r. An atom a is dependent on an atom b iff there is a
sequence a1, a2, . . . , at of atoms such that t > 0 and ai is directly dependent on ai+1

for i = 1, . . . , t− 1.

Proposition 7. forget(D,A) differs from D only on rules whose head is directly de-
pendent on an atom in A.

4.2 Complexity

Like Algorithm 1, also Algorithm 2 can be run efficiently, as all steps 1-3 are feasible
in linear time (for steps 2 and 3, suitable standard data structures are used).



88 G. Antoniou, T. Eiter, and K. Wang

Proposition 8. Algorithm 2 computes forget(D,A) in linear time.

Finally, the size of the outcome remains linear, ensuring (in conjunction with Proposi-
tion 5) that the result of iterated forgetting is of linear size. The latter does not neces-
sarily follow from the linear time complexity, as there might be an exponential increase
in the number of iterations.

Corollary 1 (of Propositions 4, 6 and 8). For every defeasible theory D and sets of
atomsA1, . . . , Am, The size of D′ = forget(forget(· · · forget(D,A1), · · · ), Am) com-
puted by Algorithm 2 is linear in the size of D, and D′ is computed in time linear in the
size of D and A1, . . . , Am.

Proof. (Sketch) By Proposition 4, without loss of generality the setsAi are pairwise dis-
joint and nonempty. For each Ai, we can write the forgetting of Ai = {ai,1, . . . , ai,ni}
as iterated forgetting of each ai,j , 1 ≤ j ≤ ni. Thus, we obtain that

D′ = forget(forget(· · · forget(D, a1,1), · · · ), am,nm).

By Proposition 6 again, D′ = forget(D,A) where A =
⋃m

i=1Ai. The result follows
then from Proposition 8. ��

4.3 Modularity

Let us, given any two defeasible theories D1 = (F1, R1, <1) and D2 = (F2, R2, <2),
define their union D1 ∪D2 to be the defeasible theory (F1 ∪ F2, R1 ∪R2, <1 ∪ <2).

Given a theory D and a set A of atoms, it is often the case that D is large but only a
small fraction of D is relevant to A. That is, D can be split into two parts D1 and D2

where D2 is irrelevant to A. In this case, to forget about A in D, one would expect to
perform forgetting only on D1. Unfortunately, this is not true in general. Consider the
following theory D = (F,R,>), where

R = { r1 : a′ ⇒ a
r2 : a⇒ b
r3 : b⇒ c
r4 : → a′ }

and F and > are empty. ThenD = D1∪D2 where D1 = (∅, {r1, r2, r3}, ∅) and D2 =
(∅, {r4}, ∅). Then for A = {b}, forget(D,A) is not equivalent to forget(D1, A) ∪D2:
We note that +∂b is provable fromD and the body of r3 is b. So, ifA = {b} is forgotten
from D, +∂c remains provable from forget(D,A).

On the other hand,+∂b is not provable inD and thus when forgetting aboutA = {b},
the rule r3 is deleted. As a result, even when r5 : a′ is added, +∂c is still not provable
from forget(D1, A) ∪D2.

We see that the solution provided by Algorithm 2 is not modular. But at least the
following restricted form of splitting for forgetting holds, which can be seen from the
correctness of Algorithm 2.

Proposition 9. Let A be a set of atoms and let D = D1 ∪ D2 be a defeasible theory
without defeaters such that (1) no atom in D1 depends on an atom in D2, and (2) no
atoms in A appear in D2. Then forget(D,A) is equivalent to forget(D1, A) ∪D2.



Forgetting for Defeasible Logic 89

Proof. (Sketch) Without loss of generality, we assume that A = {p}. Given a tagged
literal L whose literal is q instead of p, we consider two possible cases.
Case 1. q appears only in D1: Then

D � L
iff D1 � L
iff forget(D1, A) � L
iff forget(D1, A) ∪D2 � L.

Case 2. q appears in D2: It can also be shown that D � L iff forget(D1, A) ∪D2 � L.
The basic idea is that, given a tagged literal L′ whose literal is in D1, we can always re-
place the derivation of a tagged literal L′ in D1 with a derivation of L′ in forget(D1, A)
or vice versa. ��

As a final point, we wish to place this partial modularity result into context. There is
an intuitive trade-off between dependency/derivability of literals and modularity. Intu-
itively, if we want to achieve unrestricted modularity, then information about the con-
nection (derivability) between pairs of literals must be retained in the theory; but to
record such information, without additional symbols, requires quadratic space. Let us
consider as an example the following set of rules:

ai ⇒ b with i ∈ {1, . . . , n},
b⇒ cj with j ∈ {1, . . . , n}.

Here each cj depends on all ai’s, and we have quadratically many “implied rules” ai ⇒
cj to incorporate when forgetting about b, which cannot be done in linear time. And in
lack of any further information to discriminate among different rules, it would also be
unclear which of these implied rules to add, so adding none would make sense; this is
exactly what Algorithm 2 does. So we would argue that Algorithm 2 is a reasonable
core for linear-time forgetting algorithms in the context of defeasible logic. Adding all,
or some (according to some external criteria) “implied rules” would give refinements of
this basic algorithm.

5 Conclusion

In this paper we studied the problem of forgetting in the context of defeasible logic.
We provided two algorithms for computing the result of forgetting a set of literals, a
naive algorithm and an advanced one (Algorithm 2) whose output has several desired
properties. Salient features of the solutions provided are linear time complexity, and the
linear size of iterated forgetting. In addition, Algorithm 2 preserves a lot of structure
of the original defeasible theory; to measure how much in formal terms (e.g., using
similarly via tree edit distance) remains to be considered.

We intend to continue work on forgetting. One task is to determine a modular ap-
proach to forgetting: Algorithm 2 is not modular, as it has to recompute all conclusions
related to p and ¬p every time the theory is changed. An interesting question would be
to define a pure transformation approach, in the spirit of step 2 of Algorithm 2, without



90 G. Antoniou, T. Eiter, and K. Wang

the need for step 1. Many research questions follow on from this, including a thorough
analysis of time complexity, space of the outcome, and tradeoff between modularity and
dependency and derivability, continuing the discussion at the end of Section 4.

Another idea for future work is to apply forgetting to multi-context theories, and in
particular to the work of [5] which is essentially a contextual defeasible logic. Finally,
we might apply forgetting in the context of the Semantic Web, in particular to defeasible
rule systems over RDF [1,4], as a means of information integration and knowledge
dynamics, and to deal with inconsistencies in this context.

Acknowledgments. The authors would like to thank the three anonymous referees for
their helpful comments. This work was partially supported by the Australia Research
Council (ARC) Discovery Projects DP1093652 and DP110101042, by an Olga Taussky
Fellowship of the Wolfgang Pauli Institute (WPI) Vienna, by the Austrian Science Fund
(FWF) project P20841 and by the Vienna Science and Technology Fund (WWTF) grant
ICT 08-020.

References

1. Antoniou, G., Bikakis, A.: DR-Prolog: A system for defeasible reasoning with rules and on-
tologies on the semantic web. IEEE Transactions on Knowledge and Data Engineering 19(2),
233–245 (2007)

2. Antoniou, G., Billington, D., Governatori, G., Maher, M.: On the modeling and analysis of
regulations. In: Proc. Australian Conference Information Systems, pp. 20–29 (1999)

3. Antoniou, G., Billington, D., Governatori, G., Maher, M.: Representation results for defeasi-
ble logic. ACM Transactions on Computational Logic 2(2), 255–287 (2001)

4. Bassiliades, N., Antoniou, G., Vlahavas, I.: A defeasible logic reasoner for the semantic web.
International Journal of Semantic Web Information Systems 2(1), 1–41 (2006)

5. Bikakis, A., Antoniou, G.: Defeasible contextual reasoning with arguments in ambient intel-
ligence. IEEE Transactions on Knowledge and Data Engineering 22(11), 1492–1506 (2010)

6. Billington, D., Antoniou, G., Governatori, G., Maher, M.: An inclusion theorem for defeasi-
ble logics. ACM Transactions on Computational Logic 12(1), 6 (2010)

7. Eiter, T., Wang, K.: Semantic forgetting in answer set programming. Artificial Intelli-
gence 14, 1644–1672 (2008)

8. Governatori, G.: Representing business contracts in RuleML. International Journal of Coop-
erative Information Systems 14(2-3), 181–216 (2005)

9. Governatori, G., Dumas, M., ter Hofstede, A., Oaks, P.: A formal approach to legal negotia-
tion. In: International Conference on Artificial Intelligence and Law, pp. 168–177 (2001)

10. Governatori, G., Maher, M., Antoniou, G., Billington, D.: Argumentation semantics for de-
feasible logic. Journal of Logic Computation 14(5), 675–702 (2004)

11. Governatori, G., Padmanabhan, V., Sattar, A.: A Defeasible Logic of Policy-Based Intention
(Extended Abstract). In: McKay, B., Slaney, J.K. (eds.) Canadian AI 2002. LNCS (LNAI),
vol. 2557, p. 723. Springer, Heidelberg (2002)

12. Governatori, G., Rotolo, A.: Defeasible Logic: Agency, Intention and Obligation. In:
Lomuscio, A., Nute, D. (eds.) DEON 2004. LNCS (LNAI), vol. 3065, pp. 114–128. Springer,
Heidelberg (2004)

13. Governatori, G., Rotolo, A., Sartor, G.: Temporalised normative positions in defeasible logic.
In: Proc. 10th International Conference on Artificial Intelligence and Law, pp. 25–34 (2005)



Forgetting for Defeasible Logic 91

14. Herzig, A., Mengin, J.: Uniform Interpolation by Resolution in Modal Logic. In: Hölldobler,
S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293, pp. 219–231.
Springer, Heidelberg (2008)

15. Konev, B., Walther, D., Wolter, F.: Forgetting and uniform interpolation in large-scale de-
scription logic terminologies. In: Proc. 20th International Joint Conference on Artificial In-
telligence (IJCAI 2009), pp. 830–835 (2009)

16. Kontchakov, R., Wolter, F., Zakharyaschev, M.: Can you tell the difference between DL-Lite
ontologies? In: Proc. 11th International Conference on Principles of Knowledge Representa-
tion and Reasoning (KR 2008), pp. 285–295 (2008)

17. Lang, J., Liberatore, P., Marquis, P.: Propositional independence: Formula-variable indepen-
dence and forgetting. Journal of Artificial Intelligence Research 18, 391–443 (2003)

18. Lang, J., Marquis, P.: Resolving inconsistencies by variable forgetting. In: Proc. 8th Inter-
national Conference on Principles of Knowledge Representation and Reasoning (KR 2002),
pp. 239–250 (2002)

19. Lin, F., Reiter, R.: Forget it. In: Proc. AAAI Fall Symposium on Relevance, New Orleans
(LA), pp. 154–159 (1994)

20. Maher, M.: Propositional defeasible logic has linear complexity. Theory and Practice of
Logic Programming 1(6), 691–711 (2001)

21. Maher, M.: A model-theoretic semantics for defeasible logic. In: Proc. Workshop on Para-
consistent Computational Logic, pp. 67–80 (2002)

22. Maher, M., Antoniou, G., Billington, D.: A Study of Provability in Defeasible Logic. In:
Antoniou, G., Slaney, J.K. (eds.) Canadian AI 1998. LNCS, vol. 1502, pp. 215–226. Springer,
Heidelberg (1998)

23. Nute, D.: Defeasible logic. In: Handbook of Logic in Artificial Intelligence and Logic Pro-
gramming, vol. 3. Oxford University Press (1994)

24. Skylogiannis, T., Antoniou, G., Bassiliades, N., Governatori, G.: Dr-negotiate - a system
for automated agent negotiation with defeasible logic-based strategies. In: Proc. 2005 IEEE
International Conference on e-Technology, e-Commerce and e-Service (EEE 2005) on e-
Technology, e-Commerce and e-Service, pp. 44–49 (2005)

25. van Ditmarsch, H.P., Herzig, A., Lang, J., Marquis, P.: Introspective Forgetting. In: Wobcke,
W., Zhang, M. (eds.) AI 2008. LNCS (LNAI), vol. 5360, pp. 18–29. Springer, Heidelberg
(2008)

26. Wang, K., Sattar, A., Su, K.: A theory of forgetting in logic programming. In: Proc. 20th
National Conference on Artificial Intelligence (AAAI 2005), pp. 682–687 (2005)

27. Wang, K., Wang, Z., Topor, R., Pan, J.Z., Antoniou, G.: Concept and Role Forgetting in ALC
Ontologies. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta,
E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 666–681. Springer, Heidelberg
(2009)

28. Wang, Z., Wang, K., Topor, R., Pan, J.Z.: Forgetting Concepts in DL-Lite. In: Bechhofer,
S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021,
pp. 245–257. Springer, Heidelberg (2008)

29. Zhang, Y., Foo, N., Wang, K.: Solving logic program conflicts through strong and
weak forgettings. In: Proc. 19th International Joint Conference on Artificial Intelligence
(IJCAI 2005), pp. 627–632 (2005)

30. Zhang, Y., Zhou, Y.: Knowledge forgetting: Properties and applications. Artificial Intelli-
gence 173(16-17), 1525–1537 (2009)

31. Zhou, Y., Zhang, Y.: Bounded forgetting. In: Proc. 25th AAAI Conference on Artificial
Intelligence, pp. 280–285 (2011)



Querying Proofs

David Aspinall1,
, Ewen Denney2,

, and Christoph Lüth3,




1 LFCS, School of Informatics, University of Edinburgh,
Edinburgh EH8 9AB, Scotland

2 SGT, NASA Ames Research Center
Moffett Field, CA 94035, USA

3 Deutsches Forschungszentrum für Künstliche Intelligenz
Bremen, Germany

This work is dedicated fondly to the memory of Kostas Tourlas, one
of the originators of hiproofs.

Abstract. Wemotivate and introduce a query language PrQL designed
for inspecting machine representations of proofs. PrQL natively supports
hiproofs which express proof structure using hierarchical nested labelled
trees. The core language presented in this paper is locally structured, with
queries built using recursion and patterns over proof structure and rule
names. We define the syntax and semantics of locally structured queries,
demonstrate their power, and sketch some implementation experiments.

1 Introduction

Automated proof tools and interactive theorem provers are increasingly required
to produce evidence of their claims as formal proof objects that may be inde-
pendently checked or, perhaps, imported into other systems or transformed in
particular ways. Proofs connect together atomic rules of inference and axioms in
a sound way according to an underlying logic. Checking that this has been done
correctly is essentially straightforward, although producing a proof in the first
place may be extraordinarily difficult.

Real proofs can be very large, perhaps consisting of tens or hundreds of thou-
sands of atomic rules of inference. There are many things that are interesting
to know about such objects, beyond the basic fact that they are correctly con-
structed. For example, some natural questions when inspecting a proof are:

– What is the high-level structure of this proof, (how) can we break it down
into pieces to understand it?

– Given a proof of a property which exploits a set of domain-specific axioms,
which axioms actually occurred in the proof?

– Given a problem statement which contains some existential propositions as
sub-formulae, which, if any, witnesses were found to make them true?

� Research supported by EPSRC grant EP/J001058/1.
�� Research supported by NASA contract NNA10DE83C.

��� Research supported by BMBF grants 01IS09044B (IGEL) and 01IW10002 (SHIP).

N. Bjørner and A. Voronkov (Eds.): LPAR-18, LNCS 7180, pp. 92–106, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Querying Proofs 93

– Does a large proof contain duplicated parts that could be abstracted into a
lemma, to reduce the size of the proof?

When the user is trying to understand the proof construction process, there
are natural questions which relate the constructed proof back to the procedures
that produced it. If tactics are our notion of proof producing procedure, some
questions relating the proof to the tactics that produced it are:

– Given a set of tactics and a proof, which tactics were invoked in producing
the proof and what subgoals did they solve?

– Were any tactics used recursively?

– Does one particular tactic always lead to another being invoked?

– Did some tactics get invoked but do no useful work?

These sort of questions are not idle curiosities: they are useful for practical
proof engineering, when managing and maintaining sets of properties, proofs and
programs which create and check them. One of us (Denney) routinely resorts to
low-level scripted tools to perform these kind of examinations when building
large safety cases supported by formal proofs.

We consider querying proofs here in a rigorous, generic manner with the hope
of enabling general tools with clear foundations. In this paper, we introduce the
basis of a query language PrQL designed specifically for querying proofs.

Hierarchical Structured Proofs. The foundation we start from is hiproofs [1,2],
which provide a simple abstract notion of proof tree by composing atomic rules
of inference from an unspecified underlying logic. Going beyond ordinary trees,
they have a notion of hierarchy, by allowing labelling and nesting of subtrees.
This simple addition provides a precise and useful notion of structure in the
proof which can be used, for example, for noting where a lemma was applied, or
where a particular tactic or external proof tool produced a subtree.

Contributions and Paper Outline. This paper contributes towards generic foun-
dational aspects of theorem proving systems. Query languages for tree and graph
structured data have been studied over the last decade or so, but have rarely
been applied to formal proofs. We design a new core proof query language from
first principles, directly connected with a precise abstract notion of proof. With
motivating examples and implementation experiments, we establish its utility.

The rest of this paper is structured as follows. Section 2 introduces the foun-
dation of hiproofs used in the rest of the paper. Section 3 describes the design
decisions we took for our query language, and introduces it with a sequence of
informal examples and their intended meanings. Section 4 describes the meaning
of queries formally, so one can check that example queries indeed have the desired
meanings; it also provides a baseline decidability result. In Section 5 we sketch a
simple prototype implementation, which we use to validate our language design;
full-scale experiments on large proofs remain as future work. We mention some
of our future plans and discuss some related work in the concluding Section 6.



94 D. Aspinall, E. Denney, and C. Lüth

2 Hiproofs

Hiproofs add structure to an underlying derivation system, a simple form of
logical framework. We give a brief recap here, for fuller details please see [1,2].

A hiproof is built from (inverted) atomic inference rules a in the underlying
derivation system, to which we give a functional reading: a hiproof maps a finite
list of input goals [γ1, . . . , γn] to a list of output subgoals [γ′1, . . . , γ

′
m]. Such a

hiproof has the arity n→ m. A nested hiproof, appearing immediately inside a
labelled box, has a single input goal which is the root of the tree at that level.

Informally and graphically, we draw hiproofs as inverted trees with a nested
structure. Denotationally, a hiproof can be understood as a pair of an ordered
tree and a forest with the same set of nodes, subject to some well-formedness
conditions. Syntactically, a hiproof can be written as a term s in this grammar:

s ::= a atomic
| id identity
| [l ] s labelling
| s1 ; s2 sequencing
| s1 ⊗ s2 tensor (juxtaposition)
| 〈〉 empty

(1)

Fig. 1 shows an example hiproof term and its graphical representation in the
middle. Boxes indicate nestings and have labels in their top corners, indicating
the tactic which gave rise to the contents in the box; unlabelled boxes con-
tain atomic rules. Tensor ⊗ places hiproofs side-by-side and sequencing ; builds
“wiring” to connect hiproofs together, using identity to create wires where a
goal is not manipulated. In the example, id exports the second subgoal from
the atomic rule a outside the box labelled l. The empty proof 〈〉 is useful when
building proofs programmatically.

Valid Hiproofs. A hiproof is called valid if it corresponds to a real proof tree
in the underlying derivation system. The hiproof term in Fig. 1 validates the
proof tree shown on the right-hand side, where an input goal γ1 is proved using
the atomic inference rules a, b and c. Validity extends naturally to arbitrary
hiproof terms that have more than one input goal; such a term corresponds to a
finite sequence of proof trees. We write s � g1 −→ g2 if s is valid in this more

([l] a ; b ⊗ id) ; [m] c γ2
b

γ3
c

γ1
a

Fig. 1. A hiproof, its graphical representation and a proof it validates



Querying Proofs 95

γ1···γn
γ

a is an atomic inference

a � γ −→ [ γ1, . . . , γn ] id � γ −→ γ

s � γ −→ g

[l] s � γ −→ g 〈〉 � [ ] −→ [ ]

s1 � g1 −→ g s2 � g −→ g2
s1 ; s2 � g1 −→ g2

s1 � g1 −→ g′1 s2 � g2 −→ g′2
s1 ⊗ s2 � g1 ∧ g2 −→ g′1

∧ g′2

Fig. 2. Validation of hiproofs (the symbol ∧ stands for list append)

general sense, taking a list of input (proven) goals g1 to produce a list of output
(unsolved) goals g2. This relation is defined by the rules in Fig. 2.

Validity checking can be seen as a way of adding goals to a hiproof; corre-
spondingly, a valid hiproof can be seen as a nested labelling applied to a flat
proof. A hiproof thus represents the outcome of a proof process rather than the
method by which it was obtained, and is independent of the direction (forwards
from axioms or backwards from conjecture) of construction. In this paper we re-
strict our attention to valid hiproofs and we assume that the goals are uniquely
determined by the validated hiproof.

3 Local Structured Queries

How should we express queries on proofs such as those in Sect. 1? One design
choice would be to take an existing query language for graph (or semi-structured)
data models (e.g., see surveys [3,4]), and then map from hiproofs into the existing
language and use queries there. The drawback with that approach is that we
immediately lose connection with our particular source language. Since our initial
aim is to understand the concepts and constructs specific to querying proofs,
rather than more general objects, we start from queries written in a minimal
native query language, and investigate a direct semantics for them.

Our queries follow the hiproof structure, matching on leaves with atomics,
structured proofs using labels, or on input or output goals of subproofs. In this
paper, we consider queries that specify structure locally, in the sense that they
cannot directly compare one part of the tree with another, or measure absolute
position within the global proof. This restriction arises intentionally, because
we use only first-order variables that refer to names and goals, not to subtrees
or paths. Despite this, the language is still rather expressive and captures our
desired queries fairly succinctly, so it is a good candidate core query language.

To introduce the language, we begin with constructs for matching leaves,
boxes and goals in proofs, and then build up following the hiproof syntax.

Matches. We build matches inside queries using wildcards and match variables,
constants (atoms, sets and predicates) and negation (to construct the comple-
ment of a match). Let VarN be a set of schematic variables standing for names,



96 D. Aspinall, E. Denney, and C. Lüth

ranged over by N in general and A when we suggest an atomic rule name or L a
label name. Let VarG be a set of variables standing for lists of goals. The name
matches and goal matches are given by:

nm ::= a | l | ∗ | ξ | N | ¬nm
gm ::= [ψ1, . . . , ψn] | G | ¬gm

where ξ stands for a logic-dependent predicate on names, and ψ stands for a
logic-dependent predicate on goals used to check some structural property of
the goal term. For example we might have a predicate that checks whether a
goal γ is in the form of a horn clause, when φhornclause(γ) holds. Most simply,
we suppose that we always have a predicate to check for equality with any specific
goal γ and we overload γ to stand for that predicate.

We use matches to build up the basic queries that specify local structure.
Informally, a basic query may hold for a given hiproof and a substitution of
variables the query contains; we will define the result of a query to be the set of
variable instantiations that make it true. As (merely) a matter of style, we use
a verbose SQL-like textual notation:

q ::= ∗ anything non-empty
| atomic nm atomic rule match
| nothing nothing (matches only identity)
| inside nm q q satisfied inside box with label matching
| q1 then q2 q1 and q2 satisfied by successive nodes in ;
| q1 beside q2 q1 and q2 satisfied by adjacent nodes in ⊗
| ingoals gm goals into sub-proof match
| outgoals gm goals out of sub-proof match

Basic queries are almost the same language as the hiproof syntax itself, omitting
empty proofs and adding the ability to match on goals within. Thus, phrases act
as structural patterns matching against an implicit hiproof subject.

For the hiproof given in Fig. 1, the following queries are each satisfied (the
alignment around then matches the vertical split):

(inside l ∗) then (inside m ∗)
(inside ∗ ∗ then ∗ beside nothing) then ∗

(inside L1 ∗) then (inside ∗ atomic A)

The first two are purely structural, matching the form of the tree. The first
matches the outer structure consisting of the box labelled l followed by the box
labelled m. The second examines the shape inside the first box. The final query
is satisfiable with the unique instantiation {L1 �→ l, A �→ c}.

Connectives. We allow propositional logical connectives to build compound
queries, with familiar intended meanings:

q ::= . . . | q1 ∧ q2 | q1 ∨ q2 | ¬q



Querying Proofs 97

Search and Check. Two important quantifier combinators on queries allow us to
search within a proof for somewhere that a query is satisfied, or check that a
query is satisfied everywhere.

q ::= . . .
| somewhere q q holds in some subproof
| everywhere q q holds in every subproof

With a syntactic interpretation, the natural domain of quantification is by sub-
term; because any subterm of a valid hiproof is also valid, this makes sense and we
take “subproof” to mean subterm. The scope of somewhere and everywhere
extends as far right as possible. These queries might be added directly to the
language, but we will define them instead using recursion (introduced below).

The somewhere combinator is used in many of our examples. For example,
a proof uses a tactic tac if the query

somewhere inside tac ∗

is satisfied. As another example, we use a match on a goal-list variable G to find
the goals passed into a tactic. The query

(somewhere inside m ingoals G) ∨ (somewhere atomic b ∧ ingoals G)

can be read as “tell me the goals that are input to tactic m or the atomic rule
b”. The result should be the pair of instantiations {G �→ [γ2]}, {G �→ [γ3]} for
the hiproof in Fig. 1.

When is everywhere useful? Not for anything that requires a fixed struc-
ture, but with a goal-matching assertion that checks the format of the goals, for
example, the check everywhere outgoals [φhornclause] requires that every goal
appearing in the tree must have that certain form. With conditional queries, we
use it to specify that goals appearing in certain places must have some property.

Recursive Queries. Just as with tactics we can allow recursively defined queries.
Recursively defined queries allow us to build up regular patterns and are defined
using query variables Q:

q ::= . . . | μQ.q

where q is a query in which Q can appear free. An example recursive pattern is:

μQ. (atomic a then (ingoals [γ2] beside Q)) ∨ (inside m ∗)

which is satisfied by proofs that repeatedly apply the atomic rule a, until reaching
a box named m.

Using recursion we can define the searching and checking quantifiers:

somewhere q
def
= μQ. q ∨ (inside ∗ Q) ∨ (Q then ∗) ∨ (∗ then Q) ∨

(Q beside ∗) ∨ (∗ beside Q)

everywhere q
def
= μQ. q ∧ (atomic ∗ ∨ nothing ∨ (inside ∗ Q) ∨

(Q then Q) ∨ (Q beside Q))



98 D. Aspinall, E. Denney, and C. Lüth

these ensure that q holds at one (or every) node following the structure of the
proof; notice that exactly one of the disjuncts must hold in the recursive cases.
Later on we will show that these definitions have the intended meaning.

Derived Forms. Using this core, we can readily add more derived forms:

q1 when q2
def
= ¬q2 ∨ q1

isthen
def
= ∗ then ∗

isbeside
def
= ∗ beside ∗

provesgoal γ
def
= ingoals [γ] ∧ outgoals []

axiom nm
def
= atomic nm ∧ outgoals []

islabel nm
def
= inside nm ∗

whenin nm q
def
= inside nm q when islabel nm

somewherebeside q
def
= μQ. q ∨ (Q beside ∗) ∨ (∗ beside Q)

nearby q
def
= μQ. q ∨ (Q then ∗) ∨ (∗ then Q)

∨ (Q beside ∗) ∨ (∗ beside Q)

separately q1 and q2
def
= μQ. (inside ∗ Q)

∨ (somewhere q1 then somewhere q2)
∨ (somewhere q1 beside somewhere q2)

The when conditional combinator is satisfied if q1 is satisfied whenever q2 is;
by convention, the scope of q1 and q2 extend as far as possible. The last three
combinators again use recursion to expand the scope of the local structure spec-
ifications. The query somewherebeside q is satisfied if q is satisfied in a ⊗-list
of hiproofs; nearby q is an adjusted version of somewhere which restricts to
the same level, without descending into boxes. The query separately q1 and q2
requires that q1 and q2 hold on disjoint portions of the proof.

3.1 Examples

We show some of our motivating examples relating proofs and tactics. First, the
tactic tac occurs recursively in a hiproof if the query

somewhere inside tac somewhere islabel tac

is satisfied. The tactic inner always occurs whenever the tactic outer is invoked
if this query is satisfied:

everywhere whenin outer somewhere islabel inner.

More elaborately, a tactic named base always appears alongside a tactic named
step inside the tactic induct:

everywhere whenin induct somewhere (somewherebeside islabel base)

∧ (somewherebeside islabel step).

Examples returning results are given in Sect. 4.1 after introducing the semantics.



Querying Proofs 99

4 Semantics

We will define the semantics of queries using a satisfaction relation s |=σ q. This
denotes satisfaction of a query on a hiproof s with respect to a substitution σ for
match variables. The substitution maps variables N to names for atomic tactics
and labels, and variables G to lists of the form [γ1, . . . , γn].

Two base satisfaction relations define matching on names and goal lists:

∗ |=σ n always
n′ |=σ n iff n = n′

ξ |=σ n iff ξ(n)
N |=σ n iff σ(N) = n

(¬N) |=σ n iff ¬(N |=σ n)

[ψ1, . . . , ψn] |=σ g iff ∃γ1 · · · γn. g = [γ1, . . . , γn]
and ψ1(γ1) · · ·ψn(γn)

G |=σ g iff σ(G) = g
(¬G) |=σ g iff ¬(G |=σ g)

Before giving the main relation, we consider hiproof terms in more detail. Terms
s in the hiproof grammar denote tree-based models in the denotational semantics
of hiproofs [1]. Under the denotational interpretation, certain terms are equiva-
lent. We will give our interpretation over the syntax, considering valid hiproofs
modulo the following equations generating this equivalence:

s ; id = s id ; s = s id is an identity for sequencing

s ⊗ 〈〉 = s 〈〉 ⊗ s = s 〈〉 is an identity for juxtaposition

s ; 〈〉 = s 〈〉 is a right-identity for sequencing

s1 ; (s2 ; s3) = (s1 ; s2) ; s3 ; is associative

s1 ⊗ (s2 ⊗ s3) = (s1 ⊗ s2) ⊗ s3 ⊗ is associative

(s1 ; s2) ⊗ (s3 ; s4) = (s1 ⊗ s3) ; (s2 ⊗ s4) ; and ⊗ can be exchanged

It is easy to confirm that the equations preserve validity on the same lists of input
and output goals for the rules in Fig. 2. We will write s = s′ if two terms are
equal in the theory generated by these equations (i.e., closing under congruence).

Definition 1 (Query satisfaction). Let s be a valid hiproof and q a query in
the minimal query language. The satisfaction of q for s with the substitution σ
is defined as the least relation s |=σ q satisfying:

s |=σ ∗ when s �= 〈〉
a |=σ atomic nm when nm |=σ a
id |=σ nothing

[l] s |=σ inside nm q when nm |=σ l and s |=σ q
s1 ; s2 |=σ q1 then q2 when s1 |=σ q1 and s2 |=σ q2
s1 ⊗ s2 |=σ q1 beside q2 when s1 |=σ q1 and s2 |=σ q2

s |=σ ingoals gm when gm |=σ g where s � g −→ h
s |=σ outgoals gm when gm |=σ h where s � g −→ h
s |=σ q1 ∧ q2 when s |=σ q1 and s |=σ q2
s |=σ q1 ∨ q2 when s |=σ q1 or s |=σ q2
s |=σ ¬q when ¬(s |=σ q)
s |=σ μQ.q when s |=σ q[μQ.q/Q]
s |=σ q when ∃s′. s′ |=σ q and s′ = s.



100 D. Aspinall, E. Denney, and C. Lüth

Recursive queries μQ.q are interpreted using unfolding; this suffices since we
query only finitely deep trees. More precisely, we can define satisfaction using an
auxiliary relation |=n indexed by the maximum depth of the number of unfoldings
of a recursive query, where μnQ.q can be unfolded at most n times. Then |= is
defined as the union of all finite unfolding relations |=n. The definition works
for singly recursive queries where we do not need to interpret queries with free
query variables, but can be extended for mutually recursive queries.

Proposition 1. Let s be a valid hiproof. Then

1. s |=σ somewhere q iff ∃s′.s′ is a subterm of s and s′ |=σ q,
2. s |=σ everywhere q iff ∀s′.s′ is a subterm of s and s′ |=σ q.

(where quantification ranges over non-empty terms, and s is a subterm of itself).

Thus these important derived forms have the intended meanings.

How precise are our queries? The following proposition establishes, as intended,
that every term can be characterised up to equality by a query. Thus, we can
use queries to describe finite sets of hiproofs.

Proposition 2. Given any hiproof s not containing 〈〉, there is a query Q(s)
which characterises s precisely.

Proof. Let Q(s) be given by the embedding:

Q(a) = atomic a

Q(id) = nothing

Q([l] s) = inside l Q(s)

Q(s1 ; s2) = Q(s1) then Q(s2)

Q(s1 ⊗ s2) = Q(s1) beside Q(s2)

Now we claim that whenever s′ |=σ Q(s) for some s′, we must have s = s′.

Using a simple normal form, Prop. 2 can be extended to cover all hiproofs.

4.1 Examples and Their Results

Now we demonstrate the remainder of our motivating queries; meanings can
be calculated using the semantics above to show that they are correct. The
invocation of a query to get some results can be written in SQL style as:

select e from s where q

which denotes the set of expressions σ(e) for all substitutions σ that satisfy the
query (see Sect. 5 on how this can be implemented). That is:

{σ(e) | s |=σ q}.



Querying Proofs 101

The kind of expressions e chosen here depends on what we want to do with query
results. We don’t consider a general transformation language for query results
here, but one could easily allow expressions that combine pieces of query results
in arbitrary ways. Our examples below restrict to simple query variables.

– To find all the axioms in a valid hiproof s:

Axioms(s) = select A from s where
somewhere axiom A

Applied to s = ([l] a ; b ⊗ id) ; [m] c, this query returns {A �→ c, A �→ b}.
– To find the existential witnesses inside a valid hiproof s, we can find uses of

the existential introduction rule:

Wit(s) = select A from s where
somewhere atomic A ∧ atomic ExIt

Here, the ExI rule is annotated by the witness t that is chosen as part of its
name, and we use ExIt to denote the predicate selecting all such rule names.

– Which tactics are used in a proof?

Tactics(s) = select L from s where somewhere inside L ∗

– Which goals are input to (or output from) a tactic called tac?

Input(tac, s) = select G from s where
somewhere inside tac ingoals G

Output(tac, s) = select G from s where
somewhere inside tac outgoals G

– Which tactics call themselves recursively? (shown earlier for fixed tac)

Rec(s) = select L from s where
somewhere inside L somewhere islabel L

– Which tactic uses atomic tactic a, i.e., inside which label does a occur?
Using the nearby combinator defined in the last section, this query returns
all labels L which contain a directly, i.e., labels which are the immediate
surrounding parent of a, not a more distant ancestor.

Inside(a, s) = select L from s where
somewhere inside L nearby atomic a

– Are there steps in the proof which have no effect?

UselessTacs(s) = select L from s where
somewhere inside L ingoals G ∧ outgoals G

This returns useless tactics that return the same goal that they were given
(necessarily G is a single element list by the hiproof structure). Some tactics
may be even worse and return the same goal that they were given and more
besides! To catch those, we could add subset inclusion to goal matching.



102 D. Aspinall, E. Denney, and C. Lüth

– Are there duplicated subproofs inside a proof? We answer this by finding
labelled subtrees that have the same input and output goals, using the
separately operator introduced earlier:

Duplicates(s) = select L1, L2, Gi, Go from s where

separately inside L1 q and inside L2 q

where q abbreviates ingoals Gi ∧ outgoals Go.

In the last example, we might want to return (or replace) the actual duplicate
subtrees. To do that we would need to add variables ranging over hiproofs (or
paths in hiproofs) to the language; see Sect. 6 for remarks on this extension.

4.2 Query Equivalence and Decidability

Prop. 2 characterises proofs by queries. We can turn this around, and ask whether
queries can be characterised by the proofs that satisfy them. This motivates a
Leibniz-style equality between queries.

Definition 2. Two queries p, q are equivalent, written p ∼= q, if for all proofs
s and substitutions σ, we have s |=σ q ⇐⇒ s |=σ p.

We can now state a number of equations over queries. These are proven by
expanding Def. 2 and using Def. 1. First, conjunction and disjunction commute
over the basic queries; we write this as a family of equations:

inside nm (p ♦ q) ∼= (inside nm p) ♦ (inside nm pq) (2)

(p1 ♦ p2)⊕ q ∼= (p1 ⊕ q) ♦ (p2 ⊕ q) (3)

p⊕ (q1 ♦ q2) ∼= (p⊕ q1) ♦ (p⊕ q2) (4)

for ♦ ∈ {∧,∨} and ⊕ ∈ {then,beside}. Negation distributes over the basic
queries variously. E.g., the query ingoals gm is not satisfied by s iff the goals of
s do not match gm, whereas the query atomic am is not satisfied by s iff either
s is an atom that does not match am, or if it is not an atom. We give three
equations, and omit similar ones for outgoals, inside, then, and nothing:

¬(ingoals gm) ∼= ingoals (¬gm) (5)

¬(atomic am) ∼= atomic (¬am) ∨ (islabel ∗)
∨nothing ∨ isbeside∨ isthen

(6)

¬(p beside q) ∼= ((¬p) beside ∗) ∨ (∗ beside (¬q))
∨ (atomic ∗) ∨ nothing ∨ (islabel ∗) ∨ isthen

(7)

Finally, we have the usual laws of propositional logic: De Morgan equalities, dou-
ble negation, commutativity and distributivity of conjunction and disjunction.
By reading our equations as rewrite rules from left to right, we get a decision
procedure for equivalence of queries, as long as they do not contain any recursion.



Querying Proofs 103

Definition 3 (DNF). A query q is in disjunctive normal form (DNF), if it is
of the shape

∨
i=1...n

∧
j=1...mi

φi,j where φi,j are basic queries, or in other words
a disjunction of conjunctions of basic queries.

Proposition 3. For each recursion-free query q there is an equivalent query q′

in DNF, denoted as DNF(q).

The size of DNF (q) is exponential in the size of q. Most equations are linear in
the query argument (that is, the query arguments occur once on each side of the
equation), and hence only introduce a constant size increase when applied left to
right, but (3) and (4) and similarly distributivity for ∨ and ∧ contain the query
argument q and p twice on the right-hand side. Thus, each of then, besides or
∧ may double the size, leading to exponential increase. Of course, the size of the
resulting DNF(q) will usually be much smaller; we can cut it further down by
eliminating contradictory conjunctions such as atomic a ∧ isthen.

Checking that a basic query q satisfies a given hiproof s is linear in the size of
q, as we just traverse the structure of q and s. Hence, checking that a query q′ in
DNF satisfies a given hiproof s is also linear in the size of q′, as we merely need
to check each of the basic queries φi,j against s. Hence, because of the size of
DNF(q), satisfiability of recursion-free queries is decidable in exponential time.

Proposition 3 does not hold for queries containing the recursion operator. To
check that a given recursive query q and substitution σ satisfy a hiproof s, we
can unfold the recursion in q as often as needed, and then use the DNF of the
unfolded term. The size of the hiproof s bounds the size of the unfolding, as a
hiproof cannot be smaller than a basic query it satisfies, and DNF(q) is always
larger than q. Thus:

Proposition 4. s |=σ q is decidable in exponential time over size(s) + size(q).

This straightforward argument establishes decidability. Better complexity bounds
surely exist, as they are known for related query languages and various fragments
(see e.g., [5]), but mappings into other languages are beyond our scope here.

5 Implementing Queries

We have built a simple implementation of the query language in order to validate
its design by running example queries on small proofs and checking the results.
We directly use the semantics and turn Def. 1 into a function sat(s, q) which
implements the select statement from Sect. 4.1 and returns the (minimal) set
of all substitutions which satisfy q.

Substitutions are given as partial functions Var ⇀ T , where T is the set of
names or goal lists. Given two substitutions ρ and σ, their unification unify(ρ, σ)
is defined iff ∀a ∈ dom ρ ∪ dom σ.ρ(a) = σ(a), and it is defined pointwise to be
σ(a) if σ(a) is defined, ρ(a) if ρ(a) is defined, and undefined everywhere else. To
combine two sets Φ and Ψ of substitutions, as returned by recursive calls of the
sat function, we define the combinator

Ψ ! Φ = {unify(ρ, σ) | ρ ∈ Ψ, σ ∈ Φ, unify(ρ, σ) is defined}



104 D. Aspinall, E. Denney, and C. Lüth

For the basic queries, there are simple functions satN and satG which return
the set of substitutions matching a given name or goal match. Then sat can be
recursively defined as follows (we only give some of the representative cases):

sat(a, atomic nm) = satN(a, nm)

sat([l] s, inside nm q) = satN(l, nm)! sat(s, q)

sat(s1 ; s2, q1 then q2) = sat(s1, q1)! sat(s2, q2)

sat(s, q1 ∧ q2) = sat(s, q1)! sat(s, q2)

sat(s, q1 ∨ q2) = sat(s, q1) ∪ sat(s, q2)

Note that when combining the results for a disjunctive query, we can just take the
union of the results. We can show the correctness of this definition, namely that
if σ ∈ sat(s, q) then s |=σ q, and also that if s |=σ q then there is ρ ∈ sat(s, q)
such that ρ ⊆ σ (so sat returns a minimal set of substitutions).

Implementation. Using this definition, our prototype implements the query lan-
guage for small experiments. It represents queries as an algebraic datatype Q,
and in time-honoured fashion uses SML as both implementation platform and
scriptable command-line interface. Hiproofs are represented modulo the equa-
tions in Sect. 4, following the denotational semantics in [1]. The implementation
is a functor which is generic over the proofs in question, reflecting the generic
nature of the query language.

We provide two instantiations of the generic implementation: one for the syn-
tactic hiproofs, where we have a datatype S as in (1), and one which models
Isabelle proof objects [6] as hiproofs. Taking existing proofs such as those in Is-
abelle as hiproofs, we need to derive the hierarchical structure. We use theorems
to do this. That is, a box [l] s is a theorem named l, together with its proof s.
This leads to an interesting example: the query Rec(s) applied to an Isabelle
hiproof would return all theorems which are used in their own proof.

6 Related Work and Conclusions

This paper introduced locally structured proof queries in our proof query lan-
guage, PrQL. These build up patterns of structure that are matched to a position
in the implicit tree. Using logical connectives, variable substitution and struc-
tural recursion, queries can span and relate different portions of the tree and
express many natural queries on proofs. But, in this locally structured fragment
it is not possible to write a query that directly refers to (or returns) a position in
the tree, or does any counting. This limitation can be lifted, e.g., by adding a no-
tion of path to the language. In future work we will report on globally structured
queries allowed by this, as well as a slightly different language where queries are
defined directly over our semantic models.

Related Work in Theorem Proving. The idea of a general query language for
inspecting formal proofs appears novel, although there are many investigations



Querying Proofs 105

into exploiting proofs in particular ad hoc ways. We can’t survey all but mention
a few. Researchers have connected decision procedures to theorem proving by
grafting invocation records of decision procedures (with possible justifications)
into an overall proof (e.g., [7]). Noteworthy sub-trees may be represented using
names for reference (and then shared to create a dag structure) as in TPTP
and its proof format TSTP [8]. Many systems use debugging output for proof
procedures to create a lengthy log, which explains where things were tried and
failed. Some tools use representations of proof trees in the first place which
connect the proof-producing mechanism to the proof and are equipped with
browsing and editing mechanisms, e.g., NuPrl [9]. Besides checking proofs [10],
other researchers have made efforts to translate proofs between systems [11];
discover dependencies between parts of proofs [12] to help simplify or rearrange;
and data-mine proofs to discover common patterns [13].

To exploit a formal generic proof representation language like hiproofs, it is
appealing to use a generic concrete representation like TSTP. A TSTP proof con-
sists of the sequence of formulas output by an automated theorem prover along
with their sources, and is hence a more “operational” format than hiproofs, which
can be translated into TSTP in either forwards-style (deriving conclusions from
axioms) or backwards-style (decomposing conjectures to back to axioms). Going
in the opposite direction, although TSTP does not represent tactics, inference
rules can be nested, giving a simple form of hierarchy. We could decompose the
derivations in various ways thus deriving an implicit hierarchy, or extend the
language with labels on sub-derivations to represent hierarchy explicitly. Proofs
in the TSTP archive can be queried online [14] using a range of primitive and
quantitative predicates, or by translation [15] into the Proof Markup Language
(PML) [16], which serves as an interlingua representation for the justification of
results produced by Semantic Web services. Queries in PML are simply partial
proofs, rather than expressions in a separate query language (of course, PrQL
also has close ties to its underlying proof language), and query evaluation seeks
to return (possibly partial) proofs that “fill in the blanks” in the initial query.
Our original motivation for developing a query language was to extract informa-
tion from TSTP proofs in order to construct safety cases, and we plan to extend
our prototype implementation to support this.

Query Languages for Structured Data and Programs. Away from theorem prov-
ing, query languages for trees and graphs have been studied for some time.
Languages related to PrQL include those aimed at semi-structured (XML-like)
models such as UnQL [5] which uses structural recursion on tree (and graph) rep-
resentations, similarly to PrQL’s recursive queries, and Graph Logic [17] which
uses a separating conjunction to destruct the graph subject of queries. Checking
for patterns in programs, ASTLog [18] is a Prolog variant for examining syntax
trees and PQL [19] is a more general framework for querying programs at varying
levels of abstraction. Establishing precise connections with PrQL would let us
exploit known complexity results, existing algorithms and their implementations.

Acknowledgements. Wewould like to thankGeoffSutcliffe for help withTPTP.



106 D. Aspinall, E. Denney, and C. Lüth

References

1. Denney, E., Power, J., Tourlas, K.: Hiproofs: A hierarchical notion of proof tree.
Electr. Notes Theor. Comput. Sci. 155, 341–359 (2006)

2. Aspinall, D., Denney, E., Lüth, C.: Tactics for hierarchical proof. Mathematics in
Computer Science 3(3), 309–330 (2010)

3. Angles, R., Gutierrez, C.: Survey of graph database models. ACM Comput. Surv.
40 (February 2008)

4. Bailey, J., Bry, F., Furche, T., Schaffert, S.: Web and Semantic Web Query Lan-
guages: A Survey. In: Eisinger, N., Ma�luszyński, J. (eds.) Reasoning Web. LNCS,
vol. 3564, pp. 35–133. Springer, Heidelberg (2005)

5. Buneman, P., Fernandez, M., Suciu, D.: UnQL: a query language and algebra for
semistructured data based on structural recursion. The VLDB Journal 9(1), 76–110
(2000)

6. Berghofer, S., Nipkow, T.: Proof Terms for Simply Typed Higher Order Logic. In:
Aagaard, M.D., Harrison, J. (eds.) TPHOLs 2000. LNCS, vol. 1869, pp. 38–52.
Springer, Heidelberg (2000)

7. Harrison, J., Théry, L.: A skeptic’s approach to combining HOL and Maple. Journal
of Automated Reasoning 21, 279–294 (1998)

8. Sutcliffe, G., Schulz, S., Claessen, K., Van Gelder, A.: Using the TPTP Language
for Writing Derivations and Finite Interpretations. In: Furbach, U., Shankar, N.
(eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 67–81. Springer, Heidelberg
(2006)

9. Allen, S.F., Bickford, M., Constable, R.L., Eaton, R., Kreitz, C., Lorigo, L., Moran,
E.: Innovations in computational type theory using Nuprl. Journal of Applied
Logic 4(4), 428–469 (2006)

10. Necula, G., Lee, P.: Proof Generation in the Touchstone Theorem Prover. In:
McAllester, D. (ed.) CADE-17. LNCS (LNAI), vol. 1831, pp. 25–44. Springer,
Heidelberg (2000)

11. Denney, E.: A Prototype Proof Translator from HOL to Coq. In: Aagaard,
M.D., Harrison, J. (eds.) TPHOLs 2000. LNCS, vol. 1869, pp. 108–125. Springer,
Heidelberg (2000)

12. Pons, O., Bertot, Y., Rideau, L.: Notions of dependency in proof assistants. In:
Proc. User Interfaces for Theorem Provers, UITP 1998 (1998)

13. Urban, J.: MizarMode - an integrated proof assistance tool for the Mizar way of
formalizing mathematics. J. Applied Logic 4(4), 414–427 (2006)

14. Sutcliffe, G., Suttner, C.: The TPTP problem library for automated theorem prov-
ing, Homepage and online tools, http://www.tptp.org (visited November 2011)

15. da Silva, P.P., Sutcliffe, G., Chang, C., Ding, L., Rio, N.D., McGuinness, D.L.:
Presenting TSTP proofs with inference web tools. In: Konev, B., Schmidt, R.A.,
Schulz, S. (eds.) PAAR/ESHOL. CEUR Workshop Proceedings, vol. 373. CEUR-
WS.org (2008)

16. da Silva, P.P., McGuinness, D., Fikes, R.: A proof markup language for semantic
web services. Information Systems 31(4-5), 381–395 (2006)

17. Cardelli, L., Gardner, P., Ghelli, G.: A Spatial Logic for Querying Graphs. In:
Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R.
(eds.) ICALP 2002. LNCS, vol. 2380, pp. 597–610. Springer, Heidelberg (2002)

18. Crew, R.F.: ASTLOG: A language for examining abstract syntax trees. In: DSL,
USENIX (1997)

19. Jarzabek, S.: Design of flexible static program analyzers with PQL. IEEE Trans.
Software Eng. 24(3), 197–215 (1998)

http://www.tptp.org


Solving Language Equations and Disequations

with Applications to Disunification in
Description Logics and Monadic Set Constraints�

Franz Baader1 and Alexander Okhotin2

1 Institute for Theoretical Computer Science, TU Dresden, Germany
2 Department of Mathematics, University of Turku, Finland

Abstract. We extend previous results on the complexity of solving lan-
guage equations with one-sided concatenation and all Boolean operations
to the case where also disequations (i.e., negated equations) may occur.
To show that solvability of systems of equations and disequations is still
in ExpTime, we introduce a new type of automata working on infinite
trees, which we call looping automata with colors. As applications of
these results, we show new complexity results for disunification in the
description logic FL0 and for monadic set constraints with negation. We
believe that looping automata with colors may also turn out to be useful
in other applications.

1 Introduction

Equations with formal languages as constant parameters and unknowns are
among the basic notions of formal language theory, first introduced by Gins-
burg and Rice [9], who gave a characterization of the context-free languages by
solutions of systems of equations of the resolved form Xi = ϕi(X1, . . . , Xn).
For equations of the general form ϕ(X1, . . . , Xn) = ψ(X1, . . . , Xn) built using
union and two-sided concatenation, testing their solvability is easily shown to
be undecidable [15]. The state-of-the-art in this area as of 2007 is presented in a
survey by Kunc [11]. More recent work shows that undecidability already holds
for equations over a one-letter alphabet with concatenation as the only oper-
ation [10,12]. In contrast, solvability of language equations with concatenation
restricted to one-sided concatenation with constants can often be shown to be
decidable by encoding the problem into monadic second-order logic on infinite
trees (MSO) [16], but this usually does not yield optimal complexity results.

In logic for programming and artificial intelligence, language equations with
one-sided concatenation are, for instance, relevant in the context of monadic set
constraints and unification in description logics (DLs). Unification in DLs has
been proposed [4] as a novel inference service that can, for example, be used to
detect redundancies in ontologies. As a simple example, assume that one knowl-
edge engineer has defined the concept of “women having only daughters” by the

� Supported by DFG (BA1122/14-1) and the Academy of Finland (grant 134860).

N. Bjørner and A. Voronkov (Eds.): LPAR-18, LNCS 7180, pp. 107–121, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



108 F. Baader and A. Okhotin

concept term Woman � ∀child.Woman. A second knowledge engineer might rep-
resent this notion in a somewhat more fine-grained way, e.g., by using the term
Female�Human in place of Woman. The concept terms Woman� ∀child.Woman
and Female�Human� ∀child.(Female�Human) are not equivalent, but they are
meant to represent the same concept. The two terms can obviously be made
equivalent by viewing the concept name Woman as a concept variable and re-
placing it in the first term by the concept term Female � Human. Unification in
DLs checks for the existence of such substitutions, and thus can be used to alert
the knowledge engineers to potential redundancies in the ontology. In [4] it was
shown that unification in the DL FL0 can be reduced to finite solvability1 of lan-
guage equations with one-sided concatenation and union, and that this problem
is in turn ExpTime-complete. In [3] it was shown that the same complexity result
holds for solvability,2 and in [5] this result was extended to language equations
with one-sided concatenation and all Boolean operations, and to other decision
problems than just solvability.

Language equations with one-sided concatenation and all Boolean operations
can also be regarded as a particular case of equations on sets of terms, known as
set constraints, which received significant attention [14] in logic for programming
since they can be used in program analysis. In fact, solvability of such language
equations corresponds to solvability of monadic set constraints, where all func-
tion symbols are at most unary. In [1] it was already shown that solvability of
monadic set constraints is an ExpTime-complete problem.

In the present paper, we extend the existing results for language equations
with one-sided concatenation and all Boolean operations to the case of finite
systems of language equations and disequations (i.e., negated equations). We will
show that solvability and finite solvability of such systems are still in ExpTime.
The motivation comes again from description logics and from set constraints.
Set constraints with negation have been investigated in several papers [8,17,2],
where it is shown that solvability in the general case is NExpTime-complete.
The exact complexity of the monadic case has, to the best of our knowledge,
not been determined yet. In description logics, it makes sense to consider not
only unification, but also disunification problems in order to prevent certain
unifiers. For example the concept term Woman�∀child.Woman also unifies with
Male�Human�∀child.(Male�Human), which could, e.g., be prevented by stating
that Woman should not become a subconcept of Male, i.e., that Woman �Male
must not be unified with Woman.

In Section 2, we formally define language equations and disequations with
one-sided concatenation and all Boolean operations, and show that their (finite)
solvability can be reduced to the existence of certain runs of a corresponding
looping tree automaton. In Section 3, we introduce looping tree automata with
colors, which can express the condition on the runs formulated in the previous
section, and then analyze the complexity of their emptiness problem. Finally,
in Section 4 we use these results to determine the complexity of testing (finite)

1 i.e., existence of a solution consisting of finite languages.
2 i.e., existence of a solution consisting of arbitrary (not necessarily finite) languages.



Solving Language Equations and Disequations 109

solvability of the systems of language (dis)equations introduced in Section 2, and
then in turn apply this result to identify the complexity of solving disunification
problems in FL0 as well as monadic set constraints with negation.

2 Language (Dis)equations With One-Sided
Concatenation

In this section, we first introduce the language (dis)equations that we want to
solve, and then we show how solvability can be reduced to a problem for looping
automata working on infinite trees.

2.1 The Problem Definition

Given a finite alphabet Σ and finitely many variables X1, . . . , Xn, the set of
language expressions is defined by induction:

– any variable Xi is a language expression;
– the empty word ε is a language expression;
– a concatenation ϕa of a language expression ϕ with a symbol a ∈ Σ is a

language expression;3

– if ϕ, ϕ′ are language expressions, then so are (ϕ ∪ ϕ′), (ϕ ∩ ϕ′) and (∼ϕ).
Given a mapping θ = {X1 �→ L1, . . . , Xn �→ Ln} of the variables to languages
L1, . . . , Ln over Σ, its extension to language expressions is defined as

– θ(Xi) := Li for all i, 1 ≤ i ≤ n;
– θ(ε) := {ε};
– θ(ϕa) := θ(ϕ)·{a} for a ∈ Σ;
– θ(ϕ∪ϕ′) := θ(ϕ)∪ θ(ϕ′), θ(ϕ∩ϕ′) := θ(ϕ)∩ θ(ϕ′), and θ(∼ϕ) := Σ∗ \ θ(ϕ).

We call such a mapping a substitution.
A language equation is of the form ϕ = ψ and a language disequation is of the

form ϕ �= ψ, where ϕ, ψ are language expressions. The substitution θ solves the
equation ϕ = ψ (the disequation ϕ �= ψ) iff θ(ϕ) = θ(ψ) (θ(ϕ) �= θ(ψ)). We are
interested in solvability of finite systems of language equations and disequations,
where a substitution θ solves such a system iff it solves every (dis)equation in the
system. Such a solution is called finite iff the languages L1 = θ(X1), . . . , Ln =
θ(Xn) are finite.

Using the fact that, for any sets M1,M2, we have M1 = M2 iff (M1 \M2) ∪
(M2 \M1) = ∅ and M1 = ∅ = M2 iff M1 ∪M2 = ∅, we can transform a given
finite system of language equations and disequations into an equivalent one (i.e.,
one with the same set of solutions) of the form

ϕ = ∅, ψ1 �= ∅, . . . , ψk �= ∅. (1)

In order to test such a system for (finite) solvability, we translate it into a looping
tree automaton.
3 Note that the concatenation is one-sided in the sense that constants (a ∈ Σ) are
only concatenated from the right to expressions.



110 F. Baader and A. Okhotin

2.2 Translation into Looping Tree Automata

Given a ranked alphabet Γ , where every symbol has a nonzero rank, infinite trees
over Γ are defined in the usual way, that is, every node in the tree is labeled
with an element f ∈ Γ and has as many successor nodes as is the rank of f .
A looping tree automaton A = (Q,Γ,Q0, Δ) consists of a finite set of states Q,
a ranked alphabet Γ , a set of initial states Q0 ⊆ Q, and a transition function
Δ : Q × Γ → 2Q

∗
that maps each pair (q, f) to a subset of Qk, where k is the

rank of f . A run r of A on a tree t labels the nodes of t with elements of Q,
such that the root is labeled with q0 ∈ Q0, and the labels respect the transition
function, that is, if a node v has label t(v) in t and label r(v) in r, then the tuple
(q1, . . . , qk) labeling the successors of v in r must belong to Δ(q, t(v)). The tree t
is accepted by A if there is a run of A on t. The language accepted by the looping
tree automaton A is defined as

L(A) := {t | t is an infinite tree over Γ that is accepted by A}.

It is well-known that the non-emptiness problem for looping tree automata, that
is, the question whether, given such an automaton A, the accepted language
L(A) is non-empty, is decidable in linear time [7].

When reducing a finite system of language (dis)equations of the form (1) to a
looping tree automaton, we actually consider a very restricted case of looping tree
automata. Assume that the alphabet used in the system is Σ = {a1, . . . , am}.
Then we restrict our attention to a ranked alphabet Γ containing a single symbol
γ of rankm. Thus, there is only one infinite tree, and the labeling of its nodes by
γ can basically be ignored. Every node in this tree can be uniquely represented
by a word w ∈ Σ∗, where each symbol ai selects the ith successor of a node.
Consequently, any run on this tree of a looping tree automaton with set of states
Q can be represented as a mapping from Σ∗ to Q.

Given a finite system of language (dis)equations of the form (1), let Φ denote
the set of all subexpressions of ϕ, ψ1, . . . , ψk. We assume that ε,X1, . . . , Xn ∈ Φ
(otherwise, we simply add them). In [5] we have shown how to construct a looping
tree automaton A with the set of states Q := 2Φ, and with a 1–1-correspondence
between runs of A and substitutions. To be more precise, given a run r : Σ∗ → Q
of A, the corresponding substitution θr = {X1 �→ Lr

1, . . . , Xn �→ Lr
n} is obtained

by defining
Lr
i := {w ∈ Σ∗ | Xi ∈ r(w)}.

Conversely, given a substitution θ = {X1 �→ L1, . . . , Xn �→ Ln}, the correspond-
ing run rθ is

rθ(w) := {ξ ∈ Φ | w ∈ θ(ξ)}.
Lemma 1 ([5]). The mapping of runs to substitutions introduced above is a
bijection, and the mapping of substitutions to runs is its inverse.

How do runs that correspond to solutions look like? Given a substitution θ, the
corresponding run rθ satisfies

ξ ∈ rθ(w) iff w ∈ θ(ξ)



Solving Language Equations and Disequations 111

for all ξ ∈ Φ. Recall that our system is of the form (1) and that ϕ, ψ1, . . . , ψk

belong to Φ. Thus, θ solves the equation ϕ = ∅ iff ϕ /∈ rθ(w) for all w ∈ Σ∗,
i.e., the run does not use any states containing ϕ. Consequently, if we remove
from A all states containing ϕ, then we obtain an automaton whose runs are in a
1–1-correspondence with the solutions of ϕ = ∅. Let us call the resulting looping
tree automaton Aϕ. Obviously, the size of Aϕ is exponential in the size of the
input system of language (dis)equations, and this automaton can be constructed
in exponential time. To decide solvability of the equation ϕ = ∅ it is enough to
test whether Aϕ has a run, which can be done using the (linear-time) emptiness
test for looping tree automata.

However, some of the runs of Aϕ may correspond to substitutions that do not
solve the disequations. If θ solves the disequation ψi �= ∅, then there is a w ∈ Σ∗

such that w ∈ θ(ψi), which is equivalent to ψi ∈ rθ(w).
Lemma 2. A run r of Aϕ corresponds to a solution of the whole system (1) iff
for every i, 1 ≤ i ≤ k, there is a word w ∈ Σ∗ such that ψi ∈ rθ(w).
If we view the indices 1, . . . , k as colors and assign to each state q of Aϕ the color
set κ(q) := {i | ψi ∈ q}, then the condition in the lemma can be reformulated as
follows: we are looking for runs in which each color occurs in the color set of at
least one state. We will show in the next section how one can check whether a
run satisfying such an additional “color condition” exists.

Finiteness of a solution can also easily be expressed by a condition on runs. In
fact, since we have w ∈ θ(Xi) iff Xi ∈ rθ(w), we need to look for runs in which
the variables Xi occur only finitely often. Let us call a state q of Aϕ a variable
state if Xi ∈ q for some i, 1 ≤ i ≤ n.

Lemma 3. A run r of Aϕ corresponds to a finite solution of ϕ = ∅ iff it
contains only finitely many variable states, i.e., the set {w ∈ Σ∗ | r(w) is a
variable state} is finite.

3 Looping Tree Automata with Colors

In this section, we first introduce a new type of automata that can express the
“color condition” caused by disequations, and then analyze the complexity of
the non-emptiness problem for these automata.

Definition 1. A looping tree automaton with colors is of the form A = (Q,Γ,
Q0, Δ,K, κ), where A = (Q,Γ,Q0, Δ) is a looping tree automaton, K is a finite
set (of colors), and κ : Q→ 2K assigns to every state q a set of colors κ(q) ⊆ K.

A run of A = (Q,Γ,Q0, Δ,K, κ) on a tree t is a run of the underlying looping
tree automaton (Q,Γ,Q0, Δ) on t. The set κ(r) of colors of the run r is defined
as

κ(r) := {ν ∈ K | there is a node v in t with ν ∈ κ(r(v))}.
The run r satisfies the color condition if K = κ(r). The tree t is accepted by the
looping tree automaton with colors A if there is a run of A on t that satisfies
the color condition. The language L(A) accepted by the looping tree automaton
with colors A is the set of all trees accepted by A.



112 F. Baader and A. Okhotin

3.1 Decidability of the Emptiness Problem

In order to show decidability of the non-emptiness problem for looping tree
automata with colors, we reduce it to the non-emptiness problem for Büchi
tree automata. A Büchi tree automaton A = (Q,Γ,Q0, Δ, F ) is a looping tree
automaton that additionally is equipped with a set F of final states. A run r
of this automaton on a tree t satisfies the Büchi acceptance condition if, on
every infinite path through the tree, infinitely many nodes are labeled with final
states. The tree t is accepted by the Büchi tree automaton A if there is a run of
A on t that satisfies the Büchi acceptance condition. Again, the language L(A)
accepted by the Büchi tree automaton A is the set of all trees accepted by A. It
is well-known that the emptiness problem for Büchi tree automata is decidable
in quadratic time [18].

Let A = (Q,Γ,Q0, Δ,K, κ) be a looping tree automaton with colors. The cor-
responding Büchi tree automaton BA = (Q′, Γ,Q′

0, Δ
′, F ) is defined as follows:

– Q′ := Q× 2K ;
– Q′

0 := {(q,K) | q ∈ Q0};
– for q ∈ Q, L ⊆ K, and f ∈ Γ of arity k we define

Δ′((q, L), f) := {((q1, L1), . . . , (qk, Lk)) | (q1, . . . , qk) ∈ Δ(q, f), L \ κ(q) is
the union of disjoint sets L1, . . . , Lk};

– F := Q× {∅}.

The automaton BA simulates A in the first components of its states. The second
component guesses in which subtree the still required colors are to be found.
The Büchi acceptance condition ensures that only runs where these guesses are
correct are accepting runs.

Proposition 1. L(A) = L(BA).

Proof. First, assume that r is a run of A on t that satisfies the color condition,
i.e., κ(r) = K. For each color ν ∈ K, select a node vν of t such that ν ∈ κ(r(vν ))
and vν has minimal distance from the root, i.e., no node u in t strictly above
vν satisfies ν ∈ κ(r(u)). We now construct a run of BA on t by adding to r the
second components of the states of BA. Consider an arbitrary node v in t. We
assign to this node the color set

λ(v) := {ν ∈ K | vν = v or vν lies below v}.

The mapping r′ from the nodes of t to the states of BA is defined as r′(v) =
(r(v), λ(v)). We claim that this mapping is a run of BA on t that satisfies the
Büchi acceptance condition.

To show that r′ is indeed a run of BA, consider an arbitrary node v of t. Let
v1, . . . , vk be the successor nodes of v. We must show that ((r(v), λ(v)), t(v)) →
((r(v1), λ(v1)), . . . , (r(vk), λ(vk))) is a valid transition of BA. Since r is a run of
A, we have (r(v1), . . . , r(vk)) ∈ Δ(r(v), t(v)), and thus it is sufficient to show



Solving Language Equations and Disequations 113

that λ(v) \κ(r(v)) is the disjoint union of λ(v1), . . . , λ(vk). Pairwise disjointness
of the sets λ(v1), . . . , λ(vk) is an immediate consequence of the fact that we have
chosen only one node vν for each color ν, and such a node can belong only to
one of the successor subtrees of v. To show that

λ(v) \ κ(r(v)) = λ(v1) ∪ . . . ∪ λ(vk),

first observe that ν ∈ λ(vi) means that vν = vi or vν lies below vi. Thus, vν lies
below v, which shows that ν ∈ λ(v). Since vν was chosen so that it has minimal
distance from the root, ν ∈ κ(r(v)) is not possible. Thus, we have shown that
ν ∈ λ(vi) implies ν ∈ λ(v) \ κ(r(v)). Conversely, assume that ν ∈ λ(v) \ κ(r(v)).
Then ν ∈ λ(v) means that vν = v or vν lies below v. However, ν /∈ κ(r(v))
shows that the first option is not possible. Consequently, vν belongs to one of
the subtrees below v, which yields ν ∈ λ(vi) for some i, 1 ≤ i ≤ k.

To show that r′ satisfies the Büchi acceptance condition, consider the maximal
distance of the color nodes vν for ν ∈ K from the root. Since K is finite, this
maximal distance is a well-defined natural number d. Any node v that has a
larger distance from the root than d cannot be equal to or have below itself any
of the color nodes. Consequently, λ(v) = ∅. This shows that, in any infinite path
in t, infinitely many nodes are labeled by r′ with a state of BA whose second
component is ∅. Since these are exactly the final states of BA, this shows that
r′ satisfies the Büchi acceptance condition. Thus, we have shown that any tree
accepted by A is also accepted by BA, i.e., L(A) ⊆ L(BA).

To show that the inclusion in the other direction also holds, assume that r′

is a run of BA on t that satisfies the Büchi acceptance condition. Let r be the
mapping from the nodes of t to Q that is obtained from r′ by disregarding the
second components of states, i.e., if r′(v) = (q, L) , then r(v) = q. Obviously, r is
a run of A. It remains to show that it satisfies the color condition. Assume that
there is a color ν ∈ K that does not occur in κ(r). We claim that this implies
that there is an infinite path in t satisfying the following property: (∗) for any
node v in this path, the second component of r′(v) contains ν. Since this would
imply that r′ does not satisfy the Büchi acceptance condition, this then shows
that such a color cannot exist, i.e., K = κ(r).

To show the existence of an infinite path satisfying property (∗), it is sufficient
to show the following: if v is a node in t such that the second component L of
r′(v) contains ν, then there is a successor node vi of v such that the second
component Li of r

′(vi) contains ν. The existence of such a successor node is an
immediate consequence of the definition of the transition relation of BA and the
fact that ν cannot be an element of κ(r(v)) since we have assumed ν �∈ κ(r). ��

As an immediate consequence of this proposition we have that the non-emptiness
problem for looping tree automata with colors is decidable: given a looping tree
automaton with colors A, we can construct BA, and then use the quadratic non-
emptiness test for Büchi automata. Regarding the complexity of this decision
procedure, we can observe that the size of BA is polynomial in the number of
states of A, but exponential in the number of colors.



114 F. Baader and A. Okhotin

Theorem 1. The non-emptiness problem for looping tree automata with colors
can be decided in time polynomial in the number of states, but exponential in the
number of colors.

The non-emptiness for looping tree automata with colors can actually also be
reduced to the one for looping tree automata without colors. However, this re-
duction is not language-preserving, but only emptiness-preserving. In fact, it is
easy to show that looping tree automata with colors are more expressive than
looping tree automata (see [6] for proofs of these results).

3.2 The Exact Complexity of the Emptiness Problem

If we consider the complexity of the emptiness test described in the previous
subsection w.r.t. the overall size of the input automaton, then the test yields an
ExpTime upper bound for the emptiness problem. In this section, we show that
the problem is actually NP-complete.

We show NP-hardness of the non-emptiness problem for looping tree automata
with colors by a simple reduction from SAT, the satisfiability problem for sets
of clauses in propositional logic. Let P = {p1, . . . , pn} be a set of propositional
variables, and L = P ∪ {¬p1, . . . ,¬pn} the corresponding set of literals. Re-
call that a clause c is a set of literals {1, . . . , m}, which stands for the dis-
junction 1 ∨ . . . ∨ m of these literals. A set of clauses C = {c1, . . . , cp} is
read conjunctively, i.e., a propositional valuation satisfies C iff it satisfies all
clauses in C. Given a set of clauses C = {c1, . . . , cp} built using literals from
L = P ∪ {¬p1, . . . ,¬pn}, we define the corresponding looping tree automaton
with colors AC = (Q,Γ,Q0, Δ,K, κ) as follows:

– Γ := {f} where f has arity 1;
– Q := L ∪ {qloop};
– Q0 := {p1,¬p1};
– for 1 ≤ i < n and  ∈ {pi,¬pi} we define Δ(, f) := {pi+1,¬pi+1};
– for  ∈ {pn,¬pn, qloop} we define Δ(, f) := {qloop};
– K := C;
– κ() := {c ∈ C |  ∈ c} for  ∈ L and κ(qloop) := ∅.

Obviously, the size of AC is polynomial in the size of L and C.
A run r ofAC on the unique infinite tree over Γ contains, for every i, 1 ≤ i ≤ n,

either pi or ¬pi, i.e., it determines a propositional valuation. If this run satisfies
the color condition, then every clause c belongs to κ(r), i.e., there is a literal
 that occurs in r (i.e.,  is true in the valuation determined by r) and that is
contained in c. This shows that runs satisfying the color condition determine
valuations that satisfy all clauses in C. Conversely, a propositional valuation
determines a unique run r, by choosing for every i the literal that is true in this
valuation. If the valuation satisfies C, then for each clause c one of its literals
is true, and thus occurs in r. Consequently, each clause occurs in the color set
κ(r), which shows that r satisfies the color condition. Therefore, the clause set
C is satisfiable iff L(AC) �= ∅.



Solving Language Equations and Disequations 115

Since the satisfiability problem for sets of propositional clauses is NP-hard,
this shows that the same is true for the non-emptiness problem for looping tree
automata with colors.

Proposition 2. The non-emptiness problem for looping tree automata with col-
ors is NP-hard.

To show that the non-emptiness problem for looping tree automata with colors
is in NP we consider the Büchi tree automaton constructed in the previous
subsection. But first, we eliminate all states in the given automaton that do not
occur in any run: these states can be identified in polynomial time using the
emptiness test for looping tree automata [7]. The resulting automaton has the
same set of runs on any tree, and thus also accepts the same language.

Let us now assume that all states of the looping tree automaton with colors
A = (Q,Γ,Q0, Δ,K, κ) occur in some run, and that the set of colors K is non-
empty.4 Let BA = (Q′, Γ,Q′

0, Δ
′, F ) be the Büchi automaton constructed from

A in the previous section. Call a transition ((q, L), f) → ((q1, L1), . . . , (qk, Lk))
decreasing if |L| > |Li| holds for all i, 1 ≤ i ≤ k. Otherwise, the transition
is called non-decreasing. The following lemma is an easy consequence of the
definition of Δ′.

Lemma 4. If ((q, L), f)→ ((q1, L1), . . . , (qk, Lk)) is non-decreasing, then κ(q)∩
L = ∅ and there is an i, 1 ≤ i ≤ k, such that Li = L and Lj = ∅ for all j �= i.

Now, assume that r is a run of BA satisfying the Büchi acceptance condition.
This run starts with an initial state (q0,K) ∈ Q′

0 = Q0 × {K}. If the first
transition that is applied is a non-decreasing transition, then there is exactly one
successor node n1 of the root to which r assigns a state with K �= ∅ as second
component, whereas all the other nodes are assigned states with empty second
components (i.e., final states). If another non-decreasing transition is applied to
n1, then there is exactly one successor node of n1 to which r assigns a state
with K �= ∅ as second component, etc. Since r satisfies the Büchi acceptance
condition, after a finite number of non-decreasing steps we reach a node v to
which a decreasing transition is applied. Let this decreasing transition be of the
form ((q,K), ) → ((q1, L1), . . . , (qk, Lk)) (where here and in the following, the
alphabet symbol from Γ is irrelevant). Since the transition is decreasing, we have
|K| > |Li| for all i, 1 ≤ i ≤ k. Let v1, . . . , vk be the successor nodes of v, and
consider all vi such that Li �= ∅. We can now apply the same analysis as for the
root and K to the nodes vi and Li �= ∅, i.e., we follow a chain of non-decreasing
transitions that reproduce Li until we find the next decreasing transition. This
can be done until all color sets are empty. Basically, this construction yields a
finite tree of decreasing transitions satisfying certain easy to check properties (see
Definition 2 below). Our NP-algorithm guesses such a tree and checks whether
the required properties are satisfied. Before we can formally define the relevant
properties of this tree, we need to introduce one more notation.

4 If K = ∅, then A is a normal looping tree automaton, for which the non-emptiness
problem is decidable in polynomial time.



116 F. Baader and A. Okhotin

Let L ⊆ K be a non-empty set of colors and let q, q′ be states in Q. We say that
q′ is directly L-reachable from q if there is a transition (q, )→ (q1, . . . , qk) in Δ
such that q′ = qi for some i, 1 ≤ i ≤ k, and L∩ κ(q) = ∅. Note that this implies
that there is a non-decreasing transition ((q, L), )→ ((q1, L1), . . . , (qk, Lk)) with
Li = L and Lj = ∅ for j �= i in the transition relation Δ′ of BA. We say that q′

is L-reachable from q if there is a sequence of states p0, . . . , p� ( ≥ 0) such that
q = p0, q

′ = p�, and pi+1 is directly L-reachable from pi for all i, 0 ≤ i < .

Definition 2. Given a looping tree automaton with colors A and the correspond-
ing Büchi tree automaton BA, a dt-tree for BA is a finite tree T whose nodes
are decreasing transitions of BA such that the following properties are satisfied:

– the root of T is of the form ((q,K), ) → ((q1, L1), . . . , (qk, Lk)) such that q
is K-reachable from some initial state of A;

– if ((q, L), ) → ((q1, L1), . . . , (qk, Lk)) is a node in T and i1, . . . , i� are all
the indices i with Li �= ∅, then this node has  successor nodes of the form
((q′ij , Lij ), )→ · · · such that q′ij is Lij -reachable from qij for j = 1, . . . , .

Note that the leaves of a dt-tree are labeled with transitions ((q, L), ) →
((q1, L1), . . . , (qk, Lk)) for which L1 = . . . = Lk = ∅.

Lemma 5. We have L(BA) �= ∅ iff there exists a dt-tree for BA.

The lemma, whose proof can be found in [6], shows that it is enough to design
an algorithm that checks for the existence of a dt-tree. For this to be possible in
non-deterministic polynomial time, we need to know that the size of dt-trees is
polynomial in the size of A. We can actually show the following linear bound in
the number of colors.

Lemma 6. The number of nodes of a dt-tree is bounded by 2·|K|.
Proof. We call a decreasing transition ((q, L), ) → ((q1, L1), . . . , (qk, Lk)) re-
moving if L ∩ κ(q) �= ∅ and branching otherwise. Note that, for a branching
transition ((q, L), ) → ((q1, L1), . . . , (qk, Lk)), there must be indices i �= j such
that Li and Lj are non-empty.

In a dt-tree, for every color there is exactly one transition removing it, and
every removing transition removes at least one color. Consequently, a dt-tree can
contain at most |K| removing transitions. Since decreasing transitions that are
leaves in a dt-tree are necessarily removing, this also shows that the number of
leaves of a dt-tree is bounded by |K|.

Any branching transition increases the number of leaves by at least one, which
shows that a dt-tree can contain at most |K| − 1 branching transitions. Since
every decreasing transition is either removing or branching, this completes the
proof of the lemma. ��
Together with Lemma 5, this lemma yields the desired NP upper bound (see [6]
for more details). Given the NP-hardness result of Proposition 2, we thus have
determined the exact worst-case complexity of the non-emptiness problem.

Theorem 2. The non-emptiness problem for looping tree automata with colors
is NP-complete.



Solving Language Equations and Disequations 117

4 Applying the Results

We will first show that the results obtained so far allow us to determine the exact
complexity of (finite) solvability of finite systems of language (dis)equations with
one-sided concatenation.

Proposition 3. For a given finite system of language (dis)equations of the form
(1), solvability and finite solvability are decidable in ExpTime.

Proof. Let Aφ = (Q,Γ,Q0, Δ) be the looping tree automaton constructed from
the system (1) in Section 2.2, and define K := {1, . . . , k} and κ(q) := {i ∈ K |
ψi ∈ q} for all q ∈ Q. According to Lemma 2, the system (1) has a solution
iff the looping tree automaton with colors A = (Q,Γ,Q0, Δ,K, κ) has a run
satisfying the color condition, i.e., accepts a non-empty language. As shown in
the previous section, from A we can construct a Büchi automaton BA such that
L(A) = L(BA) and the size of BA is polynomial in the number of states, but
exponential in the number of colors of A. Since the number of states of A is
exponential in the size of the system (1), but the number of colors is linear in
that size, the size of BA is exponential in the size of the system (1). As the
emptiness problem for Büchi automata can be solved in polynomial time, this
yields the desired ExpTime upper bound for solvability.

For finite solvability, we also must take the condition formulated in Lemma 3
into account, i.e., we are looking for runs of BA such that states of BA whose first
components are variable states of A occur only finitely often. This condition can
easily be expressed by modifying the Büchi automaton BA, as described in a more
general setting in the proof of the next lemma. Since the new Büchi automaton
constructed in that proof is linear in the size of the original automaton, this
yields the desired ExpTime upper bound for finite solvability. ��
Lemma 7. Let B = (Q,Γ,Q0, Δ, F ) be a Büchi automaton and P ⊆ Q. Then
we can construct in linear time a Büchi automaton B′ = (Q′, Γ,Q′

0, Δ
′, F ′) such

that L(B′) = {t | there is a run of B on t that contains only finitely many states
from P}.
Proof. We define Q′ := Q×{1}∪(Q\P )×{0},Q′

0 = Q0×{1}, F ′ := (F \P )×{0},
and

Δ′((q, 1), γ) := {((q1, i1), . . . , (qk, ik)) | (q1, . . . , qk) ∈ Δ(q, γ),
ij = 1 if qj ∈ P,

ij ∈ {0, 1} if qj ∈ Q \ P },
Δ′((q, 0), γ) := {((q1, 0), . . . , (qk, 0)) | (q1, . . . , qk) ∈ Δ(q, γ),

q1, . . . , qk �∈ P }.

Basically, this Büchi automaton guesses (by decreasing the second component of
a state to 0) that from now on only states from Q \P will be seen. In fact, once
the second component is 0, it stays 0 in all successor states, and only states from
Q\P are paired with 0. Since F ′ contains only states with second component 0,
this enforces that on every path eventually only states with second component 0



118 F. Baader and A. Okhotin

(and thus first component in Q \ P ) occur. By König’s lemma, this implies that
a run of B′ satisfying the Büchi acceptance condition contains only finitely many
states with second component 1, and thus only finitely many states whose first
component belongs to P . ��

Since (finite) solvability of language equations that are simpler than the ones
considered here are ExpTime-hard [4,3], we thus have determined the exact
complexity of (finite) solvability of our systems of language (dis)equations.

Theorem 3. The problems of deciding solvability and finite solvability of finite
systems of language (dis)equations of the form (1) are ExpTime-complete.

4.1 Disunification in FL0

Unification in the description logic FL0 has been investigated in detail in [4]. In
particular, it is shown there that solvability of FL0-unification problems is an
ExpTime-complete problem. The ExpTime upper bound is based on a reduction
to finite solvability of a restricted form of language equations with one-sided
concatenation. In this subsection, we use Theorem 3 to show that this upper
bound also holds for FL0-disunification problems.

Due to the space restriction, we cannot recall syntax and semantics of the
description logic (DL) FL0 and the exact definition of unification in FL0 here
(they can be found in [4] and in [6]). For our purposes, it is enough to recall
on an abstract level how such unification problems are translated into language
equations. The syntax of FL0 determines what kind of concept terms one can
build from given finite sets NC of concept names and NR of role names, and
the semantics is based on interpretations I, which assign sets CI to concept
terms C. Two concept terms C,D are equivalent (C ≡ D) iff CI = DI for
every interpretation I. An FL0-unification problem is a finite set of equivalences
C ≡? D, where C,D are FL0-concept patterns, i.e., FL0-concept terms with
variables. Substitutions replace concept variables by concept terms. A unifier σ
of a given unification problem is a substitution that solves all its equivalences,
i.e., satisfies σ(C) ≡ σ(D) for all equivalences C ≡? D in the problem.

As shown in [4], every unification problem can be transformed in linear time
into an equivalent one consisting of a single equation C0 ≡? D0. This equation
can then be transformed into a system of language equations, with one language
equation EC0,D0(A) for every concept name A ∈ NC .

5 The alphabet of these
language equations is the set NR of role names, and the variables occurring in
EC0,D0(A) are renamed copies XA of the variables X occurring in the patterns
C0, D0. In particular, this implies that the equations EC0,D0(A) do not share
variables, and thus can be solved independently from each other.

5 These equations are basically language equations with one-sided concatenation, as
introduced in the present paper, but with concatenation of constants from the left
rather than from the right. However, one can transform them into equations with
concatenation of constants from the right, by reversing all concatenations [4]. We
assume from now on that the equations EC0,D0(A) are already of this form.



Solving Language Equations and Disequations 119

Lemma 8 ([4]). The equivalence C0 ≡? D0 has a unifier iff for all concept
names A ∈ NC , the language equations EC0,D0(A) have finite solutions.

For disunification, we additionally consider finitely many disequivalences
Ci �≡? Di for i = 1, . . . , k. A substitution σ solves such a disequivalence iff
σ(Ci) �≡ σ(Di). Disequivalences can now be translated into language disequa-
tions DCi,Di(A), which are defined like ECi,Di(A), with the only difference that
equality = is replaced by inequality �=. For a disequivalence it is enough to solve
one of the associated language disequations. The following can be shown by a
simple adaptation of the proof of Lemma 8 in [4].

Lemma 9. The disunification problem {C0 ≡? D0, C1 �≡? D1, . . . , Ck �≡? Dk}
has a solution iff for every A ∈ NC, there is a substitution θA such that

– θA(XA) is finite for all A ∈ NC and all variables X occurring in the problem;
– θA solves the language equation EC0,D0(A) for all A ∈ NC ;
– for every index i ∈ {1, . . . , k} there is a concept name A ∈ NC such that θA

solves the language disequation DCi,Di(A).

In order to take care of the last condition of the lemma, we consider functions
f : {1, . . . , k} → NC . Given such a function f , we define, for each A ∈ NC , the
system of language (dis)equations DEf (A) as

DEf (A) := {EC0,D0(A)} ∪ {DCi,Di(A) | f(i) = A}.

The following theorem is then an immediate consequence of Lemma 9.

Theorem 4. The disunification problem {C0 ≡? D0, C1 �≡? D1, . . . , Ck �≡? Dk}
has a solution iff there is a function f : {1, . . . , k} → NC such that, for every
concept names A ∈ NC, the system of language (dis)equations DEf (A) has a
finite solution.

Since there are exponentially many functions f : {1, . . . , k} → NC and finite
solvability of each system of language (dis)equations DEf (A) can be tested in
exponential time by Theorem 3, this yields an overall exponential time complex-
ity. ExpTime-hardness already holds for the special case of unification.

Corollary 1. Solvability of FL0-disunification problems is ExpTime-complete.

4.2 Monadic Set Constraints

As already mentioned in [3] and [5], there is a close connection between language
equations with one-sided concatenation and monadic set constraints, i.e., set con-
straints where all function symbols are unary or nullary. For the case of set con-
straints without negation (i.e., where only inclusions between sets are allowed),
it has been known for a long time [1] that the unrestricted case is NExpTime-
complete and the monadic one (with at least two unary symbols and at least one
nullary symbol) is ExpTime-complete. For the case of set constraints with nega-
tion (i.e., where inclusions and negated inclusions between sets are allowed),



120 F. Baader and A. Okhotin

NExpTime-completeness for the unrestricted case has been shown by several au-
thors [8,17,2], but to the best of our knowledge, the monadic case has not been
investigated.

Because of the space constraints, we cannot formally introduce monadic set
constraints and their translation into language equations here, but it should be
noted that this translation is quite obvious (see [6] for details). In fact, nullary
and unary function symbols correspond to the elements of the alphabet and ap-
plication of unary functions to concatenation. To be more precise, using postfix
notation, the term f1(f2(· · · fk(a) · · · )) can be written as a word afk . . . f1. This
way, sets of terms can be translated into sets of words, where each word starts
with a constant and is followed by a (possibly empty) sequence of unary func-
tion symbols. Since they basically have the same syntax rules, positive set con-
straints can be translated into language equations and negative set constraints
into language disequations, so that solutions of the set constraints translate into
solutions of the language (dis)equations, as sketched above. In order to translate
solutions of the languages (dis)equations back to solutions of the sets constraints,
one must make sure that every word occurring in such a solution starts with a
constant and is followed by a sequence of unary function symbols. This restriction
can easily be enforced by adding appropriate equations. This shows that solvabil-
ity of finite systems of monadic set constraints with negation can be reduced in
polynomial time to solvability of finite systems of language (dis)equations. Since
Theorem 3 states an ExpTime upper bound also for solvability, this yields an
ExpTime upper bound for solvability of monadic set constraints with negation.
ExpTime-hardness already holds for the special case of monadic set constraints
without negation [1].

Corollary 2. Solvability of monadic set constraints with negation is ExpTime-
complete.

5 Conclusion

We have shown that solvability and finite solvability of systems of language
(dis)equations are ExpTime-complete, in contrast to their undecidability (Σ0

2 -
completeness) in the case of unrestricted concatenation [13]. We have used these
results to obtain new complexity results for solving monadic set constraints with
negation, and for disunification problems in the DL FL0. As a tool, we have in-
troduced looping tree automata with colors. Though the results of Section 3 show
that a direct reduction to the emptiness problem for Büchi tree automata would
be possible, using looping tree automata with colors as intermediate formalism
makes the presentation much clearer and easier to comprehend. In addition, we
believe that these automata may be of interest also for other applications in logic.

References

1. Aiken, A., Kozen, D., Vardi, M.Y., Wimmers, E.L.: The Complexity of Set Con-
straints. In: Meinke, K., Börger, E., Gurevich, Y. (eds.) CSL 1993. LNCS, vol. 832,
pp. 1–17. Springer, Heidelberg (1994)



Solving Language Equations and Disequations 121

2. Aiken, A., Kozen, D., Wimmers, E.L.: Decidability of systems of set constraints
with negative constraints. Information and Computation 122(1), 30–44 (1995)

3. Baader, F., Küsters, R.: Unification in a Description Logic with Transitive Closure
of Roles. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI),
vol. 2250, pp. 217–232. Springer, Heidelberg (2001)

4. Baader, F., Narendran, P.: Unification of concept terms in description logic. Journal
of Symbolic Computation 31, 277–305 (2001)

5. Baader, F., Okhotin, A.: On Language Equations with One-sided Concatenation.,
LTCS-Report LTCS-06-01, Chair for Automata Theory, Institute for Theoretical
Computer Science, TU Dresden, A short version has been published in the Pro-
ceedings of the 20th International Workshop on Unification, UNIF 2006 (2006),
http://lat.inf.tu-dresden.de/research/reports.html

6. Baader, F., Okhotin, A.: Solving Language Equations and Disequations Using
Looping Tree Automata with Colors, LTCS-Report LTCS-12-01, Chair for Au-
tomata Theory, Institute for Theoretical Computer Science, TU Dresden (2012),
http://lat.inf.tu-dresden.de/research/reports.html

7. Baader, F., Tobies, S.: The Inverse Method Implements the Automata Approach
for Modal Satisfiability. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001.
LNCS (LNAI), vol. 2083, pp. 92–106. Springer, Heidelberg (2001)

8. Charatonik, W., Pacholski, L.: Negative set constraints with equality. In: Logic in
Computer Science, LICS 1994, Paris, France, pp. 128–136 (1994)

9. Ginsburg, S., Rice, H.G.: Two families of languages related to ALGOL. J. of the
ACM 9, 350–371 (1962)

10. Jeż, A., Okhotin, A.: On the Computational Completeness of Equations over Sets of
Natural Numbers. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 63–74. Springer, Heidelberg (2008)

11. Kunc, M.: What Do We Know About Language Equations? In: Harju, T.,
Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 23–27. Springer,
Heidelberg (2007)

12. Lehtinen, T., Okhotin, A.: On Language Equations XXK = XXL and XM = N over
a Unary Alphabet. In: Gao, Y., Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS,
vol. 6224, pp. 291–302. Springer, Heidelberg (2010)

13. Okhotin, A.: Strict Language Inequalities and Their Decision Problems. In:
Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 708–719.
Springer, Heidelberg (2005)

14. Pacholski, L., Podelski, A.: Set Constraints: A Pearl in Research on Constraints. In:
Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 549–562. Springer, Heidelberg (1997)

15. Parikh,R.,Chandra,A.,Halpern, J.,Meyer,A.:Equationsbetween regular termsand
an application to process logic. SIAM Journal on Computing 14(4), 935–942 (1985)

16. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees.
Transactions of the American Mathematical Society 141, 1–35 (1969)

17. Stefánsson, K.: Systems of set constraints with negative constraints are NEXP-
TIME-complete. In: Logic in Computer Science, LICS 1994, Paris, France,
pp. 137–141 (1994)

18. Vardi, M.Y., Wolper, P.: Automata-theoretic techniques for modal logics of pro-
grams. Journal of Computer and System Sciences 32, 183–221 (1986)

http://lat.inf.tu-dresden.de/research/reports.html
http://lat.inf.tu-dresden.de/research/reports.html


Dual-Priced Modal Transition Systems

with Time Durations�

Nikola Beneš2,��, Jan Křet́ınský2,3,���, Kim Guldstrand Larsen1,
Mikael H. Møller1, and Jǐŕı Srba1

1 Aalborg University, Denmark
2 Masaryk University, Czech Republic

3 Technical University München, Germany

Abstract. Modal transition systems are a well-established specifica-
tion formalism for a high-level modelling of component-based software
systems. We present a novel extension of the formalism called modal
transition systems with durations where time durations are modelled as
controllable or uncontrollable intervals. We further equip the model with
two kinds of quantitative aspects: each action has its own running cost
per time unit, and actions may require several hardware components of
different costs. We ask the question, given a fixed budget for the hard-
ware components, what is the implementation with the cheapest long-run
average reward. We give an algorithm for computing such optimal im-
plementations via a reduction to a new extension of mean payoff games
with time durations and analyse the complexity of the algorithm.

1 Introduction and Motivating Example

Modal Transition Systems (MTS) is a specification formalism [16,2] that aims
at providing a flexible and easy-to-use compositional development methodology
for reactive systems. The formalism can be viewed as a fragment of a temporal
logic [1,9] that at the same time offers a behavioural compositional semantics
with an intuitive notion of process refinement. The formalism of MTS is es-
sentially a labelled transition system that distinguishes two types of labelled
transitions: must transitions which are required in any refinement of the sys-
tem, and may transitions that are allowed to appear in a refined system but are
not required. The refinement of an MTS now essentially consists of iteratively
resolving the presence or absence of may transitions in the refined process.

In a recent line of work [15,3], the MTS framework has been extended to allow
for the specification of additional constraints on quantitative aspects (e.g. time,
power or memory), which are highly relevant in the area of embedded systems.
In this paper we continue the pursuit of quantitative extensions of MTS by

� Supported by VKR Center of Excellence MT-LAB.
�� The author has been supported by Czech Grant Agency, grant no. GAP202/11/0312.

��� The author is a holder of Brno PhD Talent Financial Aid and is supported by the
Czech Science Foundation, grant No. P202/10/1469.

N. Bjørner and A. Voronkov (Eds.): LPAR-18, LNCS 7180, pp. 122–137, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Dual-Priced Modal Transition Systems with Time Durations 123

presenting a novel extension of MTS with time durations being modelled as
controllable or uncontrollable intervals. We further equip the model with two
kinds of quantitative aspects: each action has its own running cost per time
unit, and actions may require several hardware components of different costs.
Thus, we ask the question, given a fixed budget for the investment into the
hardware components, what is the implementation with the cheapest long-run
average reward.

Before we give a formal definition of modal transition systems with dura-
tions (MTSD) and the dual-price scheme, and provide algorithms for computing
optimal implementations, we present a small motivating example.

Consider the specification S in Figure 1a describing the work of a shuttle bus
driver. He drives a bus between a hotel and the airport. First, the driver has to
Wait for the passengers at the hotel. This can take one to five minutes. Since
this behaviour is required to be present in all the implementations of this specifi-
cation, it is drawn as a solid arrow and called a must transition. Then the driver
has to Drive the bus to the airport (this takes six to ten minutes) where he has
to do a SmallCleanup, then Wait before he can Drive the bus back to the hotel.
When he returns he can do either a SmallCleanup, BigCleanup or SkipCleanup
of the bus before he continues. Here we do not require a particular option to be
realised in the implementations, hence we only draw the transitions as dashed
arrows. As these transitions may or may not be present in the implementations,
they are called may transitions. However, here the intention is to require at least
one option be realised. Hence, we specify this using a propositional formula Φ
assigned to the state t over its outgoing transitions as described in [5,6]. After
performing one of the actions, the driver starts over again. Note that next time
the choice in t may differ.

Observe that there are three types of durations on the transitions. First, there
are controllable intervals, written in angle brackets. The meaning of e.g. 〈1, 5〉 is
that in the implementation we can instruct the driver to wait for a fixed number
of minutes in the range. Second, there are uncontrollable intervals, written in
square brackets. The interval [6, 10] on the Drive transition means that in the
implementation we cannot fix any particular time and the time can vary, say,
depending on the traffic and it is chosen nondeterministically by the environ-
ment. Third, the degenerated case of a single number, e.g. 0, denotes that the
time taken is always constant and given by this number. In particular, a zero
duration means that the transition happens instantaneously.

The system S1 is another specification, a refinement of S, where we addi-
tionally specify that the driver must do a SmallCleanup after each Drive. Note
that the Wait interval has been narrowed. The system I1 is an implementation
of S1 (and actually also of S) where all controllable time intervals have already
been fully resolved to their final single values: the driver must Wait for 5 min-
utes and do the SmallCleanup for 6 minutes. Note that uncontrollable intervals
remain unresolved in the implementations and the time is chosen by the environ-
ment each time the action is performed. This reflects the inherent uncontrollable
uncertainty of the timing, e.g. of a traffic.



124 N. Beneš et al.

start
s

t
Φ(t) = (BigCleanup, s) ∨

(SkipCleanup, s) ∨
(SmallCleanup, s)

Wait

〈1, 5〉
Drive

[6, 10] S
m
a
l
l
C
l
e
a
n
u
p

〈4
,
6〉

Wait

〈1, 5〉
Drive

[6, 10]

S
m
a
l
l
C
l
e
a
n
u
p

〈4
,
6
〉

B
i
g
C
l
e
a
n
u
p

〈2
0
,
3
0
〉

S
k
i
p
C
l
e
a
n
u
p

0

(a) Specification S

start
Wait

〈3, 5〉
D
r
i
v
e

[6
, 1

0
]

S
m
a
l
l
C
l
e
a
n
u
p

〈4
, 6〉

(b) Specification S1

start
Wait

5

D
r
i
v
e

[6
, 1

0
]

S
m
a
l
l
C
l
e
a
n
u
p

6

(c) Implementation I1

start
s

t

Wait

〈1, 5〉
Drive

[6, 10] S
m
a
l
l
C
l
e
a
n
u
p

6

Wait

〈1, 5〉
Drive

[6, 10]

S
m
a
l
l
C
l
e
a
n
u
p

[4
,
5
]

B
i
g
C
l
e
a
n
u
p

〈2
0
,
3
0
〉

(d) Specification S2

start
Wait

1

Drive

[6, 10] S
m
a
l
l
C
l
e
a
n
u
p

6

Wait

1

Drive

[6, 10]

B
i
g
C
l
e
a
n
u
p

3
0

(e) Implementation I2

a ∈ Σ r(a)
Wait 8
Drive 10
SmallCleanup 6
BigCleanup 7
SkipCleanup 0

H = {VacuumCleaner, Sponge}

Ψ(a) =

⎧⎪⎨⎪⎩
VacuumCleaner if a = BigCleanup

Sponge ∨ VacuumCleaner if a = SmallCleanup

true otherwise

h ∈ H i(h)
VacuumCleaner 100
Sponge 5

(f) Price Scheme

Fig. 1. Example of Dual-Priced Modal Transition Systems with Time Durations

The system S2 is yet another specification and again a refinement of S, where
the driver can always do a BigCleanup in t and possibly there is also an alterna-
tive allowed here of a SmallCleanup. Notice that both SmallCleanup intervals
have been restricted and changed to uncontrollable. This means that we give up
the control over the duration of this action and if this transition is implemented,
its duration will be every time chosen nondeterministically in that range. Finally,
I2 is then an implementation of S2 and S.



Dual-Priced Modal Transition Systems with Time Durations 125

Furthermore, we develop a way to model cost of resources. Each action is as-
signed a running price it costs per time unit, e.g. Drive costs 10 each time unit it
is being performed as it can be seen in the left table of Figure 1f. In addition, in
order to perform an action, some hardware may be needed, e.g. a VacuumCleaner
for the BigCleanup and its price is 100 as can be seen on the right. This invest-
ment price is paid once only.

Let us now consider the problem of finding an optimal implementation, so that
we spend the least possible amount of money (e.g. the pay to the driver) per time
unit while conforming to the specification S. We call this problem the cheapest
implementation problem. The optimal implementation is to buy a vacuum cleaner
if one can afford an investment of 100 and do the BigCleanup every time as long
as possible and Wait as shortly as possible. (Note that BigCleanup is more costly
per time unit than SmallCleanup but lasts longer.) This is precisely implemented
in I2 and the (worst-case) average cost per time unit is ≈ 7.97. If one cannot
afford the vacuum cleaner but only a sponge, the optimal worst case long run
average is then a bit worse and is implemented by doing the SmallCleanup as
long as possible and Wait now as long as possible. This is depicted in I1 and
the respective average cost per time unit is ≈ 8.10.

The most related work is [12] where prices are introduced into a class of inter-
face theories and long-run average objectives are discussed. Our work omits the
issue of distinguishing input and output actions. Nevertheless, compared to [12],
this paper deals with the time durations, the one-shot hardware investment and,
most importantly, refinement of specifications. Further, timed automata have
also been extended with prices [4] and the long-run average reward has been
computed in [10]. However, priced timed automata lack the hardware and any
notion of refinement, too.

The paper is organized as follows. We introduce the MTS with the time dura-
tions in Section 2 and the dual-price scheme in Section 3. Section 4 presents the
main results on the complexity of the cheapest implementation problem. First,
we state the complexity of this problem in general and in an important special
case and prove the hardness part. The algorithms proving the complexity upper
bounds are presented only after introducing an extension of mean payoff games
with time durations. These are needed to establish the results but are also inter-
esting on their own as discussed in Section 4.1. Due to space limitations, some
of the proofs are in the full version of the paper [7]. We conclude and give some
more account on related and future work in Section 5.

2 Modal Transition Systems with Durations

In order to define MTS with durations, we first introduce the notion of con-
trollable and uncontrollable duration intervals. A controllable interval is a pair
〈m,n〉 where m,n ∈ N0 and m ≤ n. Similarly, an uncontrollable interval is a pair
[m,n] where m,n ∈ N0 and m ≤ n. We denote the set of all controllable intervals
by Ic, the set of all uncontrollable intervals by Iu, and the set of all intervals
by I = Ic ∪ Iu. We also write only m to denote the singleton interval [m,m].



126 N. Beneš et al.

Singleton controllable intervals need not be handled separately as there is no
semantic difference to the uncontrollable counterpart.

We can now formally define modal transition systems with durations. In what
follows, B(X) denotes the set of propositional logic formulae over the set X of
atomic propositions, where we assume the standard connectives ∧,∨,¬.

Definition 1 (MTSD). A Modal Transition System with Durations (MTSD)
is a tuple S = (S, T,D, Φ, s0) where S is a set of states with the initial state
s0, T ⊆ S × Σ × S is a set of transitions, D : T → I is a duration interval
function, and Φ : S → B(Σ × S) is an obligation function. We assume that
whenever the atomic proposition (a, t) occurs in the Boolean formula Φ(s) then
also (s, a, t) ∈ T .

We moreover require that there is no cycle of transitions that allows for zero
accumulated duration, i.e. there is no path s1a1s2a2 · · · sn where (si, ai, si+1) ∈ T
and sn = s1 such that for all i, the interval D((si, ai, si+1)) is of the form either
〈0,m〉 or [0,m] for some m.

Note that instead of the basic may and must modalities known from the classical
modal transition systems (see e.g. [2]), we use arbitrary boolean formulae over the
outgoing transitions of each state in the system as introduced in [6]. This provides
a higher generality as the formalism is capable to describe, apart from standard
modal transition systems, also more expressive formalisms like disjunctive modal
transition systems [17] and transition systems with obligations [5]. See [6] for a
more thorough discussion of this formalism.

In the rest of the paper, we adapt the following convention when drawing
MTSDs. Whenever a state s is connected with a solid arrow labelled by a to
a state s′, this means that in any satisfying assignment of the Boolean formula
Φ(s), the atomic proposition (a, s′) is always set to true (the transition must
be present in any refinement of the system). Should this not be the case, we
use a dashed arrow instead (meaning that the corresponding transition may be
present in a refinement of the system but it can be also left out). For example the
solid edges in Figure 1a correspond to an implicitly assumed Φ(s) = (a, s′) where
(s, a, s′) is the (only) outgoing edge from s; in this case we do not explicitly write
the obligation function. The three dashed transitions in the figure are optional,
though at least one of them has to be preserved during any refinement (a feature
that can be modelled for example in disjunctive MTS [17]).

Remark 2. The standard notion of modal transition systems (see e.g. [2]) is
obtained under the restriction that the formulae Φ(s) in any state s ∈ S have
the form (a1, s1) ∧ . . . ∧ (an, sn) where (s, a1, s1), . . . , (s, an, sn) ∈ T . The edges
mentioned in such formulae are exactly all must transitions; may transitions are
not listed in the formula and hence can be arbitrarily set to true or false.

Let by T (s) = {(a, t) | (s, a, t) ∈ T } denote the set of all outgoing transitions
from the state s ∈ S. A modal transition system with durations is called an im-
plementation if Φ(s) =

∧
T (s) for all s ∈ S (every allowed transition is also

required), and D(s, a, s′) ∈ Iu for all (s, a, s′) ∈ T , i.e. all intervals are uncon-
trollable, often singletons. Figure 1c shows an example of an implementation,



Dual-Priced Modal Transition Systems with Time Durations 127

while Figure 1b is not yet an implementation as it still contains the controllable
intervals 〈3, 5〉 and 〈4, 6〉.

We now define a notion of modal refinement. In order to do that, we first need
to define refinement of intervals as a binary relation ≤ ⊆ I × I such that

– 〈m′, n′〉 ≤ 〈m,n〉 whenever m′ ≥ m and n′ ≤ n, and
– [m′, n′] ≤ 〈m,n〉 whenever m′ ≥ m and n′ ≤ n.

Thus controllable intervals can be refined by narrowing them, at most until they
become singleton intervals, or until they are changed to uncontrollable intervals.
Let us denote the collection of all possible sets of outgoing transitions from a
state s by Tran(s) := {E ⊆ T (s) | E |= Φ(s)} where |= is the classical satisfaction
relation on propositional formulae assuming that E lists all true propositions.

Definition 3 (Modal Refinement). Let S1 = (S1, T1, D1, Φ1, s1) and S2 =
(S2, T2, D2, Φ2, s2) be two MTSDs. A binary relation R ⊆ S1 × S2 is a modal
refinement if for every (s, t) ∈ R the following holds:

∀M ∈ Tran(s) : ∃N ∈ Tran(t) :
∀(a, s′) ∈M : ∃(a, t′) ∈ N : D1(s, a, s′) ≤ D2(t, a, t′) ∧ (s′, t′) ∈ R and
∀(a, t′) ∈ N : ∃(a, s′) ∈M : D1(s, a, s′) ≤ D2(t, a, t′) ∧ (s′, t′) ∈ R .

We say that s ∈ S1 modally refines s′ ∈ S2, denoted by s ≤m s′, if there exists
a modal refinement R such that (s, s′) ∈ R. We also write S1 ≤m S2 if s1 ≤m s2.

Intuitively, the pair (s, t) can be in the relation R if for any satisfiable instan-
tiation of outgoing edges from s there is a satisfiable instantiation of outgoing
edges from t so that they can be mutually matched, possibly with s having more
refined intervals, and the resulting states are again in the relation R.

Observe that in our running example the following systems are in modal
refinement: I1 ≤m S1 ≤m S and thus also I1 ≤m S, and similarly I2 ≤m S2 ≤m

S and thus also I2 ≤m S.
The reader can verify that on the standard modal transition systems (see

Remark 2) the modal refinement relation corresponds to the classical modal
refinement as introduced in [16].

3 Dual-Price Scheme

In this section, we formally introduce a dual-price scheme on top of MTSD in
order to model the investment cost (cost of hardware necessary to perform the
implemented actions) and the running cost (weighted long-run average of run-
ning costs of actions). We therefore consider only deadlock-free implementations
(every state has at least one outgoing transition) so that the long-run average
reward is well defined.

Definition 4 (Dual-Price Scheme). A dual-price scheme over an alphabet Σ
is a tuple P = (r,H, Ψ, i) where



128 N. Beneš et al.

– r : Σ → Z is a running cost function of actions per time unit,
– H is a finite set of available hardware,
– Ψ : Σ → B(H) is a hardware requirement function, and
– i : H → N0 is a hardware investment cost function.

Hence every action is assigned its unit cost and every action can have different
hardware requirements (specified as a Boolean combination of hardware compo-
nents) on which it can be executed. This allows for much more variability than a
possible alternative of a simple investment cost Σ → N0. Further, observe that
the running cost may be negative, meaning that execution of such an action
actually gains rather than spends resources.

Let I be an implementation with an initial state s0. A set G ⊆ H of hardware
is sufficient for an implementation I, written G |= I, if G |= Ψ(a) for every
action a reachable from s0. The investment cost of I is then defined as

ic(I) = min
G|=I

∑
g∈G

i(g) .

Further, a run of I is an infinite sequence s0a0t0s1a1t1 · · · with (si, ai, si+1) ∈ T
and ti ∈ D(si, ai, si+1). Hence, in such a run, a concrete time duration in each
uncontrollable interval is selected. We denote the set of all runs of I by R(I).
The running cost of an implementation I is the worst-case long-run average

rc(I) = sup
s0a0t0s1a1t1···∈R(I)

lim sup
n→∞

∑n
i=0 r(ai) · ti∑n

i=0 ti
.

Our cheapest-implementation problem is now defined as follows: given an MTSD
specification S together with a dual-price scheme over the same alphabet, and
given an upper-bound max ic for the investment cost, find an implementation I
of S (i.e. I ≤m S) such that ic(I) ≤ max ic and for every implementation I ′ of
S with ic(I ′) ≤ max ic, we have rc(I) ≤ rc(I ′).

Further, we introduce the respective decision problem, the implementation
problem, as follows: given an MTSD specification S together with a dual-price
scheme, and given an upper-bound max ic for the investment cost and an upper
bound max rc on the running cost, decide whether there is an implementation I
of S such that both ic(I) ≤ max ic and rc(I) ≤ max rc.

Example 5. Figure 1f depicts a dual-price scheme over the same alphabet Σ =
{Wait, Drive, SmallCleanup, BigCleanup, SkipCleanup} as of our motivating
specification S. The running cost of the implementation I2 is (1 · 8+ 10 · 10+ 6 ·
6+1 ·8+10 ·10+30 ·7)/(1+10+6+1+10+30)≈ 7.97 as the maximum value is
achieved when Drive (with running cost 10) takes 10 minutes. On the one hand,
this is optimal for S and a maximum investment cost at least 100. On the other
hand, if the maximum investment cost is 99 or less then the optimal implemen-
tation is depicted in I1 and its cost is (5 · 8 + 10 · 10 + 6 · 5)/(5 + 10 + 6) ≈ 8.10.



Dual-Priced Modal Transition Systems with Time Durations 129

Remark 6. Note that the definition of the dual-price scheme only relies on having
durations on the labelled transition systems. Hence, one could easily apply this
in various other settings like in the special case of traditional MTS (with may
and must transitions instead of the obligation function) or in the more general
case of parametric MTS (see [6]) when equipped with durations as described
above.

4 Complexity Results

In this section, we give an overview of the complexity of our problem both in
general and in an important special case. We start with establishing the hardness
results. The matching upper bounds and the outline of their proofs follow. When
referring to the size of MTSDs and the dual-price scheme, we implicitly assume
binary encoding of numbers. We start by observing that the implementation
problem is NP-hard even if no hardware is involved.

Proposition 7. The implementation problem is NP-hard even for the hardware
requirement function Ψ that is constantly true for all actions.

Proof. We shall reduce the satisfiability problem of Boolean formulae (SAT) to
our problem. Let ϕ be a Boolean formula over the variables x1, . . . , xn. We define
a MTSD S over the set of actions Σ = {x1, . . . , xn, ∗} such that the running
cost is r(xj) = 1 for all 1 ≤ j ≤ n and r(∗) = 2 and the duration of all actions
is 1. The specification S has one state s and a self-loop under all elements of
Σ with the obligation function Φ(s) = ϕ ∨ (∗, s). The reason for adding the
action ∗ is to make sure that in case ϕ is not satisfiable then we can still have
a deadlock-free, but more running-cost-expensive implementation. Now we set
the hardware to H = ∅ and the hardware requirement function Ψ(a) constantly
true for all a ∈ Σ. It is easy to observe that the formula ϕ is satisfiable iff S has
an implementation I with rc(I) ≤ 1 (and ic(I) = 0). ��

Note that in the proof we required Φ to be a general Boolean formula. If, for
instance, we considered Φ in positive form (i.e. only containing ∧ and ∨ operators
and not ¬), the hardness would not hold. Thus on the one hand, one source of
hardness is the complexity of Φ. On the other hand, even if Φ corresponds to the
simplest case of an implementation (Φ is a conjunction of atomic propositions),
the problem remains hard due to the hardware.

Proposition 8. The implementation problem is NP-hard even for specifications
that are already implementations.

Proof. We reduce the NP-complete problem of vertex cover to our problem.
Let (V,E) where E ⊆ V × V be a graph and k ∈ N be an integer. We ask
whether there is a subset of vertices Vk ⊆ V of cardinality k such that for
every (v1, v2) ∈ E at least v1 ∈ Vk or v2 ∈ Vk. Let us construct an MTSD
specification S with hardware H = V and the investment function i(v) = 1 for
all v ∈ H , such that S has only one state s and a self-loop under a single action



130 N. Beneš et al.

a that is required (Φ(s) = (a, s)) and where the hardware requirement function
is Ψ(a) =

∧
(u,v)∈E(u∨v). There is now a vertex cover in (V,E) of size k iff S has

an implementation I with ic(I) ≤ k. Setting e.g. D(s, a, s) = 1 and the running
cost r(a) = 0 establishes NP-hardness of the implementation problem where we
ask for the existence of an implementation of S with maximum running cost 0
and maximum investment cost k.

Alternatively, we may introduce a self-loop with a new action name a(u,v) for
every edge (u, v) in the graph such that Ψ(a(u,v)) = u∨ v, showing NP-hardness
even for the case where the hardware requirement function is a simple disjunction
of hardware components. ��

In the subsequent sections, we obtain the following matching upper bound which
yields the following theorem.

Theorem 9. The implementation problem is NP-complete.

By analysing the proof of Proposition 8, it is clear that we have to restrict the
hardware requirement function before we can obtain a more efficient algorithm
for the implementation problem. We do so by assuming a constant number of
hardware components (not part of the input). If we at the same time require the
obligation function in positive form, we obtain a simpler problem as stated in
the following theorem.

Theorem 10. The implementation problem with positive obligation function
and a constant number of hardware components is polynomially equivalent to
mean payoff games and thus it is in NP∩coNP and solvable in pseudo-polynomial
time.

The subsequent sections are devoted to proving Theorems 9 and 10. The algo-
rithm to solve the implementation problem first reduces the dual-priced MTSD
into a mean payoff game extended with time durations and then solves this
game. This new extension of mean payoff games and an algorithm to solve them
is presented in Section 4.1. The translation follows in Section 4.2. Since this
translation is exponential in general, Section 4.3 then shows how to translate
in polynomial time with only local exponential blow-ups where negations occur.
Section 4.4 then concludes and establishes the complexity bounds.

4.1 Weighted Mean Payoff Games

We extend the standard model of mean payoff games (MPG) [14] with time
durations. Not only is this extension needed for our algorithm, but it is also useful
for modelling by itself. Consider, for instance, energy consumption of 2kW for 10
hours and 10kW for 2 hour, both followed by 10 hours of inactivity. Obviously,
although both consumptions are 20kWh per cycle, the average consumption
differs: 1kW in the former case and 20/12kW in the latter one. We also allow
zero durations in order to model e.g. discrete changes of states, an essential part
of our algorithm. Another extension of MPGs with dual-cost was studied in [8].



Dual-Priced Modal Transition Systems with Time Durations 131

Definition 11. A weighted mean payoff game is G = (V, Vmin, Vmax, E, r, d)
where V is a set of vertices partitioned into Vmin and Vmax, E ⊆ V ×V is a set
of edges, r : E → Z is a rate function, d : E → N0 is a duration function.

It is assumed that there are no deadlocks (vertices with out-degree 0) and that
there are no zero-duration cycles. The game is played by two players, min and
max. The play is an infinite path such that each player picks successors in his/her
vertices. The value of a play v0v1v2 · · · is defined as:

ν(v0v1v2 · · · ) = lim sup
n→∞

∑n
i=0 r(vi, vi+1) · d(vi, vi+1)∑n

i=0 d(vi, vi+1)
. (∗)

Player min tries to minimize this value, while max aims at the opposite. Let
v(s) denote the infimum of the values min can guarantee if the play begins in
the vertex s, no matter what the player max does.

Note that the standard MPGs where edges are assigned only integer weights
can be seen as weighted MPGs with rates equal to weights and durations equal
to 1 on all edges.

We now show how to solve weighted MPGs by reduction to standard MPGs.
We first focus on the problem whether v(s) ≥ 0 for a given vertex s. As the
durations are nonnegative and there are no zero-duration cycles, the denomina-
tor of the fraction in (∗) will be positive starting from some n. Therefore, the
following holds for every play v0v1v2 . . . and every (large enough) n:∑n

i=0 r(vi, vi+1) · d(vi, vi+1)∑n
i=0 d(vi, vi+1)

≥ 0 ⇐⇒ 1
n

n∑
i=0

r(vi, vi+1) · d(vi, vi+1) ≥ 0 .

We may thus solve the question whether v(s) ≥ 0 by transforming the weighted
MPG into a standard MPG, leaving the set of vertices and edges the same and
taking w(u, v) = r(u, v) ·d(u, v) as the edge weight function. Although the value
v(s) may change in this reduction, its (non)negativeness does not.

Further, we may transform any problem of the form v(s) ≥ λ for any fixed
constant λ into the above problem. Let us modify the weighted MPG as follows.
Let r′(u, v) = r(u, v)−λ and leave everything else the same. The value of a play
v0v1v2 · · · is thus changed as follows.

ν′(v0v1v2 · · · ) = lim sup
n→∞

∑n
i=0(r(vi, vi+1) − λ) · d(vi, vi+1)∑n

i=0 d(vi, vi+1)
= ν(v0v1v2 · · · ) − λ

It is now clear that v(s) ≥ λ in the original game if and only if v′(s) ≥ 0 in the
modified game.

Furthermore, there is a one-to-one correspondence between the strategies in
the original weighted MPG and the constructed MPG. Due to the two equiv-
alences above, this correspondence preserves optimality. Therefore, there are
optimal positional strategies in weighted MPGs since the same holds for stan-
dard MPGs [14]. (A strategy is positional if its decision does not depend on the
current history of the play but only on the current vertex, i.e. can be described
as a function V → V .)



132 N. Beneš et al.

4.2 Translating Dual-Priced MTSD into Weighted MPG

We first focus on the implementation problem without considering the hardware
(H = ∅). We show how the implementation problem can be solved by reduction
to the weighted MPGs. The first translation we present is exponential, however,
we provide methods for making it smaller in the subsequent section.

We are given an MTSD S = (S, T,D, Φ, s0) and a dual-price scheme (r,H, Ψ, i)
and assume that there is no state s with ∅ ∈ Tran(s). Let us define the following
auxiliary vertices that will be used to simulate the more complicated transitions
of MTSD in the simpler setting of weighted MPG (by convention all singleton
intervals are treated as uncontrollable).

Tu = {(s, a, t) | (s, a, t) ∈ T ; D(s, a, t) ∈ Iu}
Tc = {(s, a, t) | (s, a, t) ∈ T ; D(s, a, t) ∈ Ic}
T∗ = {(s, a, j, t) | (s, a, t) ∈ T ; j ∈ D(s, a, t)}

We construct the weighted mean-payoff game with Vmin = S ∪ Tc ∪ T∗, Vmax =
2T ∪ Tu and E defined as follows:

(s,X) ∈ E ⇐⇒ ∃V ∈ Tran(s) : X = {(s, a, t) | (a, t) ∈ V }
(X, (s, a, t)) ∈ E ⇐⇒ (s, a, t) ∈ X

((s, a, t), (s, a, j, t)) ∈ E ⇐⇒ j ∈ D(s, a, t)
((s, a, j, t), t) ∈ E (always)

Further, r((s, a, j, t), t) = r(a), d((s, a, j, t), t) = j and r(−,−) = d(−,−) = 0
otherwise.

Example 12. In Figure 2 we show an example of how this translation to weighted
MPG works. For simplicity we only translate a part of the MTSD S shown in
Figure 2a. The resulting weighted MPG is shown in Figure 2b. The diamond
shaped states belong to min and the squared states belong to max. In the
vertex s, min chooses which outgoing transition are implemented. Only the
choices satisfying Φ(s) are present in the game. Afterwards, max decides which
transition to take. The chosen transition is then assigned by one of the players
a time that it is going to take.

Notice that (s, a, t1) is the only transition controlled by min, because it has
a controllable interval 〈2, 3〉. The remaining transitions with uncontrollable in-
tervals are operated by max who chooses the time from these intervals. All the
“auxiliary” transitions are displayed without any labels meaning their duration
(and rate) is zero. Thus, only the transitions corresponding to “real” transitions
in MTSDs are taken into account in the value of every play.

A strategy for min can now be translated into an implementation of the original
MTSD in a straightforward way. The implemented transitions in s are given by
σ(s), similarly the durations of a transition (s, a, t) with a controllable interval
are given by the third component of σ((s, a, t)).



Dual-Priced Modal Transition Systems with Time Durations 133

start
s

t2

t1

t3

Φ(s) = (a, t1) ∧ ((b, t2) ∨ (c, t3))

a

〈2
, 3
〉

b

[1, 3]

c
3

(a) A part of an MTSD S

s {(s, a, t1), (s, c, t3)}

{(s, a, t1), (s, b, t2)}

{(s, a, t1), (s, b, t2),
(s, c, t3)}

(s, b, t2)

(s, a, t1)

(s, c, t3)

(s, a, 3, t1)

(s, a, 2, t1)

(s, b, 1, t2)

(s, b, 2, t2)

(s, b, 3, t2)

(s, c, 3, t3)

t1

t2

t3

2
r(a)

3

r(a)

1

r(b)

2

r(b)

3

r(b
)

3

r(c)

(b) Resulting weighted MPG from translation of S

Fig. 2. Translating MTSD to weighted MPG

4.3 Optimizations

We now simplify the construction. The first simplification is summarized by the
observation that the strategies of both players only need to choose the extremal
points of the interval in vertices of the form (s, a, t).

Lemma 13. There are optimal positional strategies for both min and max such
that the choice in vertices of the form (s, a, t) is always one of the two extremal
points of the interval D(s, a, t).

We may thus simplify the construction according to the previous lemma so that
there are at most two outgoing edges for each state of the form (s, a, t) are as
follows: ((s, a, t), (s, a, j, t)) ∈ E iff j is an extremal point of D(s, a, t).

We can also optimize the expansion of Tran(s). So far, we have built an
exponentially larger weighted MPG graph as the size of Tran(s) is exponential
in the out-degree of s. However, we can do better if we restrict ourselves to
the class of MTSD where all Φ(s) are positive boolean formulae, i.e. the only
connectives are ∧ and ∨. Instead of enumerating all valuations, we can use the
syntactic tree of the formula to build a weighted MPG of polynomial size.

Let sf (ϕ) denote the set of all sub-formulae of ϕ (including ϕ). Let further
S∗ = {(s, ϕ) | s ∈ S; ϕ ∈ sf (Φ(s))}. The weighted MPG is constructed with

– Vmin = {(s, ϕ) ∈ S∗ | ϕ = ϕ1 ∨ ϕ2 or (ϕ = (a, t) and D(s, a, t) ∈ Ic)} ∪ T∗
– Vmax = {(s, ϕ) ∈ S∗ | ϕ = ϕ1 ∧ ϕ2 or (ϕ = (a, t) and D(s, a, t) ∈ Iu)}



134 N. Beneš et al.

– E is defined as follows:

((s, ϕ1 ∧ ϕ2), (s, ϕi)) ∈ E i ∈ {1, 2}
((s, ϕ1 ∨ ϕ2), (s, ϕi)) ∈ E i ∈ {1, 2}
((s, (a, t)), (s, a, j, t)) ∈ E ⇐⇒ j is an extremal point of D(s, a, t)
((s, a, j, t), (t, Φ(t))) ∈ E (always)

– r((s, a, j, t), (t, Φ(t))) = r(a) and r(−,−) = 0 otherwise
– d((s, a, j, t), (t, Φ(t))) = j and d(−,−) = 0 otherwise.

Example 14. In Figure 3 we show the result of translating the part of an MTSD
from Figure 2a. This weighted MPG is similar to the one in Figure 2b, but
instead of having a vertex for each satisfying set of outgoing transitions, we
now have the syntactic tree of the obligation formula for each state. Further the
vertex (s, b, 2, t2) is left out, due to Lemma 13. Note that the vertices (t1, Φ(t1)),
(t2, Φ(t2)) and (t3, Φ(t3)) are drawn as circles, because the player of these states
depends on the obligation formula and the outgoing transitions.

(s, Φ(s))

(s, (b, t2) ∨ (c, t3))

(s, (a, t1))

(s, (b, t2))

(s, (c, t3))

(s, a, 3, t1)

(s, a, 2, t1)

(s, b, 1, t2)

(s, b, 2, t2)

(s, b, 3, t2)

(s, c, 3, t3)

(t1, Φ(t1))

(t2, Φ(t2))

(t3, Φ(t3))

2

r(a)

3

r(a)

1

r(b)

3

r(b)

3

r(c)

Fig. 3. Result of the improved translation of S in Figure 2a

Remark 15. Observe that one can perform this optimization even in the general
case. Indeed, for those s where Φ(s) is positive we locally perform this transfor-
mation; for s with Φ(s) containing negations we stick to the original expansion.
Thus, the exponential (in out-degree) blow-up occurs only locally.

Lemma 16. Both optimized translations are correct and on MTSDs where the
obligation function is positive they run in polynomial time.



Dual-Priced Modal Transition Systems with Time Durations 135

4.4 The Algorithm and Its Complexity

The algorithm for our problem, given a specification S, works as follows.

1. Nondeterministically choose hardware with the total price at most maxic.
2. Create the weighted MPG out of S.
3. Solve the weighted MPG using the reduction to MPG and any standard algo-

rithm for MPG that finds an optimal strategy for player min and computes
the value v(s0).

4. Transform the strategy to an implementation I.
5. In the case of the cheapest-implementation problem return I;

in the case of the implementation (decision) problem return v(s0) ≤ maxrc.

We can now prove the following result, finishing the proof of Theorem 9.

Proposition 17. The implementation problem is in NP.

Proof. We first nondeterministically guess the hardware assignment. Due to Sec-
tion 4.2, we know that the desired implementation has the same states as the
original MTSD and its transitions are a subset of the transitions of the original
MTSD as the corresponding optimal strategies are positional. The first opti-
mization (Section 4.3) guarantees that durations can be chosen as the extremal
points of the intervals. Thus we can nondeterministically guess an optimal imple-
mentation and its durations, and verify that it satisfies the price inequality. ��

Proposition 18. The implementation problem for MTSD with positive obliga-
tion function and a constant number of hardware components is in NP ∩ coNP
and solvable in pseudo-polynomial time.

Proof. With the constant number of hardware components, we get a constant
number of possible hardware configurations and we can check each configuration
separately one by one. Further, by the first and the second optimization in
Section 4.3, the MPG graph is of size O(|T | + |Φ|). Therefore, we polynomially
reduce the implementation problem to the problem of solving constantly many
mean payoff games. The result follows by the existence of pseudo-polynomial
algorithms for MPGs [18]. ��

Further, our problem is at least as hard as solving MPGs that are clearly a
special case of our problem. Hence, Theorem 10 follows.

5 Conclusion and Future Work

We have introduced a new extension of modal transition systems. The extension
consists in introducing (1) variable time durations of actions and (2) pricing of
actions, where we combine one-shot investment price for the hardware and cost
for running it per each time unit it is active. We believe that this formalism is
appropriate to modelling many types of embedded systems, where safety comes
along with economical requirements.



136 N. Beneš et al.

We have solved the problem of finding the cheapest implementation w.r.t. the
running cost given a maximum hardware investment we can afford, and we es-
tablished the complexity of the decision problem in the general setting and in a
practically relevant subcase revealing a close connection with mean payoff games.

As for the future work, apart from implementing the algorithm, one may
consider two types of extensions. First, one can extend the formalism to cover the
distinction between input, output and internal actions as it is usual in interface
theories [12], and include even more time features, such as clocks in priced timed
automata [4,10]. Second, one may extend the criteria for synthesis of the cheapest
implementation by an additional requirement that the partial sums stay within
given bounds as done in [11], or requiring the satisfaction of a temporal property
as suggested in [12,13].

References

1. Aceto, L., Fábregas, I., de Frutos-Escrig, D., Ingólfsdóttir, A., Palomino, M.:
Graphical representation of covariant-contravariant modal formulae. In: EX-
PRESS. EPTCS, vol. 64, pp. 1–15 (2011)

2. Antonik, A., Huth, M., Larsen, K.G., Nyman, U., Wasowski, A.: 20 years of modal
and mixed specifications. Bulletin of the EATCS (95), 94–129 (2008)

3. Bauer, S.S., Fahrenberg, U., Juhl, L., Larsen, K.G., Legay, A., Thrane, C.R.:
Quantitative Refinement for Weighted Modal Transition Systems. In: Murlak, F.,
Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 60–71. Springer, Heidelberg
(2011)

4. Behrmann, G., Larsen, K.G., Rasmussen, J.I.: Priced Timed Automata: Algorithms
and Applications. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P.
(eds.) FMCO 2004. LNCS, vol. 3657, pp. 162–182. Springer, Heidelberg (2005)

5. Beneš, N., Křet́ınský, J.: Process algebra for modal transition systemses. In:
MEMICS. OASICS, vol. 16, pp. 9–18. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, Germany (2010)

6. Beneš, N., Křet́ınský, J., Larsen, K., Møller, M., Srba, J.: Parametric Modal Tran-
sition Systems. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996,
pp. 275–289. Springer, Heidelberg (2011)

7. Beneš, N., Křet́ınský, J., Larsen, K., Møller, M., Srba, J.: Dual-priced modal tran-
sition systems with time durations. Tech. Rep. FIMU-RS-2012-01, Faculty of In-
formatics MU (2012)

8. Bloem, R., Greimel, K., Henzinger, T.A., Jobstmann, B.: Synthesizing robust sys-
tems. In: Proc. of FMCAD 2009, pp. 85–92. IEEE (2009)

9. Boudol, G., Larsen, K.G.: Graphical versus logical specifications. Theor. Comput.
Sci. 106(1), 3–20 (1992)

10. Bouyer, P., Brinksma, E., Larsen, K.G.: Optimal infinite scheduling for multi-priced
timed automata. Formal Methods in System Design 32(1), 3–23 (2008)

11. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite Runs in
Weighted Timed Automata with Energy Constraints. In: Cassez, F., Jard, C. (eds.)
FORMATS 2008. LNCS, vol. 5215, pp. 33–47. Springer, Heidelberg (2008)

12. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource Interfaces.
In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117–133. Springer,
Heidelberg (2003)



Dual-Priced Modal Transition Systems with Time Durations 137

13. Chatterjee, K., Doyen, L.: Energy Parity Games. In: Abramsky, S., Gavoille, C.,
Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part II.
LNCS, vol. 6199, pp. 599–610. Springer, Heidelberg (2010)

14. Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Inter-
national Journal of Game Theory 8, 109–113 (1979), doi:10.1007/BF01768705

15. Juhl, L., Larsen, K.G., Srba, J.: Introducing modal transition systems with weight
intervals. Journal of Logic and Algebraic Programming (2011)

16. Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS, pp. 203–210. IEEE
Computer Society (1988)

17. Larsen, K.G., Xinxin, L.: Equation solving using modal transition systems. In:
LICS, pp. 108–117. IEEE Computer Society (1990)

18. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs.
Theoretical Computer Science 158, 343–359 (1996)



Finding Finite Herbrand Models

Stefan Borgwardt and Barbara Morawska�

Theoretical Computer Science, TU Dresden, Germany
{stefborg,morawska}@tcs.inf.tu-dresden.de

Abstract. We show that finding finite Herbrand models for a restricted
class of first-order clauses is ExpTime-complete. A Herbrand model is
called finite if it interprets all predicates by finite subsets of the Herbrand
universe. The restricted class of clauses consists of anti-Horn clauses with
monadic predicates and terms constructed over unary function symbols
and constants. The decision procedure can be used as a new goal-oriented
algorithm to solve linear language equations and unification problems
in the description logic FL0. The new algorithm has only worst-case
exponential runtime, in contrast to the previous one which was even
best-case exponential.

1 Introduction

Satisfiability of formulas in First Order Logic (FOL) has always been of interest
for computer science and is an active field of research. The main problem is that
satisfiability of such formulas is not even semi-decidable. Thus, the focus lies
on finding algorithms that decide satisfiability for restricted classes. A possible
approach is to use restrictions on the resolution or superposition calculi to obtain
decision procedures [8,10].

Related to this is the problem of model building that asks for an actual
model witnessing the satisfiability of the given clauses. Additionally, one usu-
ally asks for a finite representation of such a model. For example, the complete-
ness proofs of resolution-style inference systems sometimes explicitly construct
(counter-)models, but there are also other approaches [2,11,16].

Here, we want to study the related problem of finding finite Herbrand models.
We call a Herbrand model finite if each predicate is interpreted by a finite
subset of the Herbrand universe. This problem is semi-decidable since the finite
Herbrand interpretations over a fixed signature can be recursively enumerated.
It has not been studied before and it is unknown whether it is decidable for
arbitrary first-order formulae. The existence of finite Herbrand models implies
the existence of finite models in the usual sense, where the domain is required
to be finite, but the other implication does not hold in general.

We restrict ourselves to finite sets of propagation rules, which are anti-Horn
clauses that use only monadic predicates and function symbols, one constant
symbol, and one variable. In particular, we do not allow the equality predicate.
� The authors are supported by DFG under grant BA 1122/14-1.

N. Bjørner and A. Voronkov (Eds.): LPAR-18, LNCS 7180, pp. 138–152, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Finding Finite Herbrand Models 139

These sets of clauses can be seen as skolemized versions of Ackermann formulas,
for which satisfiability is known to be decidable [7,10]. This class of clause sets
is also similar to the decidable Bernays-Schönfinkel class [10], but neither is
actually included in the other.

In this paper, we show that the problem of deciding the existence of a fi-
nite Herbrand model for a finite set of propagation rules is ExpTime-complete.
Our decision procedure is aided by a new computational model that we call
propagation nets . The process of building a model is simulated by the process
of saturating the net with terms. This process terminates iff a finite Herbrand
model exists. We decide this by analyzing the structure of the net.

The problem of finding finite Herbrand models for a set of propagation rules
occurred while designing a new unification procedure for the description logic
FL0. The unification problem in this logic was shown to be ExpTime-complete
in [1]. There, solving unification in FL0 is shown to be equivalent to solving linear
language equations. The problem of solving these equations reduces in a natural
way to the problem of finding finite Herbrand models for propagation rules. In
this reduction, variables become predicates and their finite interpretation in the
Herbrand universe defines a solution to the original language equation.

Our decision procedure thus provides a new way to solve linear language
equations. It is worst-case exponential, but there are cases in which our algorithm
runs in polynomial time. Thus, it has advantages over the previous algorithm [1],
which is always exponential.

We think that this method of finding finite Herbrand models can be gen-
eralized to larger classes of clauses. As detailed above, it has an immediate
application to unification and solving formal language equations.

This paper does not include the formal proofs of our results. These and more
detailed explanations can be found in the technical report [4].

2 Propagation Rules

We first introduce propagation rules, which are clauses over a signature of finitely
many unary predicates P , finitely many unary function symbols F , one constant
a, and one variable x. Every ground term over this signature is of the form
f1(. . . fn(a) . . . ), which we will abbreviate as f1 . . . fn(a). A propagation rule
is a clause of the form � → P1(a) ∨ · · · ∨ Pn(a) (positive clause), P0(a) →
P1(a) ∨ · · · ∨ Pn(a), or P0(t0) → P1(t1) ∨ · · · ∨ Pn(tn) for P0, . . . , Pn ∈ P and
non-ground terms t0, . . . , tn over F and x.1

We assume that the reader is familiar with Herbrand interpretations (see, e.g.,
[10]). We call a Herbrand interpretation H over the above signature finite if it
interprets every predicate P ∈ P by a finite set PH. The task we are interested in
is to decide the existence of finite Herbrand models for finite sets of propagation
rules. As a first step, we will flatten the propagation rules to get rid of most terms

1 Note that n might be 0, in which case the right-hand side of the clause is ⊥. Positive
clauses must be ground since otherwise no finite Herbrand model could exist.



140 S. Borgwardt and B. Morawska

of depth larger than 0. A finite set C of propagation rules is called normalized if
there is a set D(C) ⊆ P × F such that

– For every (P, f) ∈ D(C), we have P f ∈ P and the clauses P f (x) → P (f(x))
(increasing clause) and P (f(x)) → P f (x) (decreasing clause) in C.

– All other clauses in C must be flat, i.e., of the form � → P1(a)∨ · · · ∨Pn(a),
P0(a) → P1(a) ∨ · · · ∨ Pn(a), or P0(x) → P1(x) ∨ · · · ∨ Pn(x).

For f ∈ F , we denote by Df (C) the set {P ∈ P | (P, f) ∈ D(C)}.
The interesting property of such sets is that in order to check whether a flat

clause P0(x) → P1(x)∨ · · · ∨Pn(x) is satisfied by a ground term, one only needs
to consider this term. Different terms can only occur in the same instance of a
clause if it is an increasing or a decreasing clause, which only allows a very limited
connection between the terms, i.e., adding and removing the leading function
symbol. The set D(C) acts as an “interface” between terms of different lengths:
A clause can only contain different terms if a predicate P f with (P, f) ∈ D(C)
is involved. The special predicate P f represents those terms in P that have the
prefix f : For any Herbrand model H and any word w ∈ F∗, the term f(w(a)) is
in PH iff w(a) is in P fH.

To transform a finite set C of propagation rules into a normalized set C′, we
introduce auxiliary predicates that allow us to replace arbitrary atoms by flat
ones. For example, the atom P (fg(x)) can be replaced by the equivalent atom
P fg(x) if (P, f) and (P f , g) are added to D(C). In contrast to common flattening
procedures for first-order clauses, we do not use new variables or equality [2].

Lemma 1. For every finite set C of propagation rules, we can construct in poly-
nomial time a normalized set C′ of propagation rules such that C has a finite
Herbrand model iff C′ does.

Example 2. Consider the propagation rules

C1 := {� → P0(a), P0(f(x)) → ⊥, P0(g(x)) → ⊥, P3(a) → ⊥, P3(f(x)) → ⊥,
P3(g(x)) → P0(x), P0(x) → P3(g(x)), P0(a) → P1(a), P1(a) → P0(a),
P2(x) → P3(x) ∨ P1(f(x)), P3(x) → P2(x), P1(f(x)) → P2(x)
P1(x) → P2(x) ∨ P1(g(x)), P2(x) → P1(x), P1(g(x)) → P1(x)}.

To construct the normalized set C′
1, we first rename P0 to P g3 and add the

pair (P3, g) to D(C′
1). Afterwards, the pairs (P3, f), (P1, f), (P1, g), (P f3 , g), and

(P g3 , g) are added, together with the corresponding increasing and decreasing
clauses. The resulting flat clauses are the following:

� → P g3 (a), P gf3 (x) → ⊥, P gg3 (x) → ⊥, P3(a) → ⊥, P f3 (x) → ⊥,
P g3 (a) → P1(a), P1(a) → P g3 (a),

P2(x) → P3(x) ∨ P f1 (x), P3(x) → P2(x), P
f
1 (x) → P2(x),

P1(x) → P2(x) ∨ P g1 (x), P2(x) → P1(x), P
g
1 (x) → P1(x).

We will use C′
1 throughout this paper to illustrate the presented algorithms.



Finding Finite Herbrand Models 141

For a flat clause c, the set possibilities(c) contains all predicates occurring
on the right-hand side of c. For a set C = {c1, . . . , cn} of flat clauses, we define
possibilities(C) :={{P1, . . . , Pn} | ∀i ∈ {1, . . . , n} :Pi ∈ possibilities(ci)}.
For example, P1(a) → P2(a) ∨ P3(a) has the possibilities P2 and P3, while
{P1(x) → P2(x)∨P3(x),� → P0(a)} has the possibilities {P2, P0} and {P3, P0}.

In the following, we assume that any normalized set C of propagation rules
contains at most one positive clause, which is of the form � → A(a), and that the
predicate A otherwise only occurs on the left-hand side of other ground clauses.
If this is not the case, we introduce a new predicate A, add the clause � → A(a)
to C, and replace � by A(a) in every other positive clause. It is easy to see that
this modification does not affect the existence of a finite Herbrand model for C.

For the set C′
1 from Example 2, we simply add � → A(a) to C′

1 and replace
the propagation rule � → P g3 (a) by A(a) → P g3 (a).

3 Propagation Nets

We now introduce a new computational model, called propagation net , that
will be used to decide the existence of finite Herbrand models for finite sets of
propagation rules. We use notions borrowed from the theory of Petri nets [12,13].

A propagation net consists of places and transitions which are connected by
directed arcs. A computation moves words from places to other places using the
transitions between them. If a place has several outgoing arcs to transitions,
it can choose one of them to fire. This means that a word from this place is
transported to the transition and then distributed to all places reachable from
this transition. An arc from a place to a transition can also change the word by
adding a letter or removing the first letter. An arc from a transition to a place
can filter out words that should not be transported to the place. The firing of
a transition does not remove the word from the place but just deactivates it.
The goal is to find a computation that starts with a given distribution of words
among places and terminates in the sense that all words are deactivated.

Definition 3. A propagation net N = (P, T,Σ,E, I, π, τ) consists of

– a finite set P of places,
– a finite set T of transitions,
– a finite alphabet Σ,
– a set E ⊆ (P × T ) ∪ (T × P ) of arcs,
– an initial marking I : (P ∪ T ) → P(Σ∗) and Ia : P → P(Σ∗),
– a partial filter function π :

(
E ∩ (T × P )

)
→ Σ ∪ {ε}, and

– a successor function τ :
(
E ∩ (P × T )

)
→ Σ ∪ {f−1|f ∈ Σ} ∪ {ε}.

A token in N is a word over Σ. A marking M of N is a pair of mappings
M : (P ∪ T ) → P(Σ∗) and Ma : P → P(Σ∗) assigning to each place and
each transition finite sets of tokens such that Ma(p) ⊆ M(p) for every p ∈ P .
M(p) contains the tokens of a place p ∈ P , while M(t) contains the tokens of a
transition t ∈ T in the marking M . The set Ma(p) contains the active tokens of
p in M . We assume that I is a proper marking in the above sense.



142 S. Borgwardt and B. Morawska

We say that a token w matches the filter π(t, p) of an arc (t, p) ∈ E ∩ (T ×P )
if either (i) π(t, p) is undefined (no restriction on w), (ii) π(t, p) = ε and then
w = ε, or (iii) π(t, p) = f ∈ Σ and then w starts with f .

There are two elementary operations on markings. A token w is deactivated
at p ∈ P by removing it from Ma(p), if it is in Ma(p), and adding it to M(p), if
it is not already in M(p). Note that w need not be in M(p) to be deactivated.

A token w is produced at a transition t ∈ T by adding it to M(t). This
operation has the side effect of also producing the token at all places p ∈ P with
(t, p) ∈ E. This secondary operation is executed only if w matches the filter
π(t, p). If this is the case and w /∈ M(p), then w is added to M(p) and Ma(p).
Otherwise, the token w is not added to the marking at p.

A firing in N is a triple f = (p, w, t) ∈ P ×Σ∗ × T such that (p, t) ∈ E and
the concatenation τ(p, t)w is defined, i.e., if τ(p, t) = f−1, then w begins with f .
The result of firing f in a marking M is a new marking M ′ as follows:

1. Initialize M ′ := M and M ′
a := Ma.

2. Deactivate the token w at p in M ′.
3. Compute the successor token w′ := τ(p, t)w.
4. Produce w′ at t in M ′, thereby also producing w′ at every place reachable

from t by an outgoing arc whose filter matches w′.

If M ′ is the result of the firing f in M , then we write M f−→ M ′. If M(p) =
M ′(p) for all p ∈ P , this firing is called unproductive in M ; otherwise, it is
called productive. An unproductive firing only removes an active token from the
marking, while a productive firing also introduces new active tokens.

Given a marking M0, a firing sequence (starting in M0) is a finite sequence
M0

f1−→ . . .
fm−−→Mm of firings. If the initial marking is not important, we denote

this sequence by f1, . . . , fm. Mm is called the final marking of this sequence. The
sequence is called terminating if Mm is stable, i.e., Mm,a(p) = ∅ for all p ∈ P .
We say that N terminates if it has a terminating firing sequence that starts in
I. Note that such a firing sequence has to end with a nonproductive firing since
otherwise new active tokens would be created. Figures 1 and 2 depict a simple
propagation net and the effect of a firing on the initial marking.

Other Computational Models. There are several differences between prop-
agation nets and Petri nets. In propagation nets, tokens are not atomic objects,
but words over an alphabet Σ. Additionally, transitions do not need to be syn-
chronized, i.e., do not require the input token to be present at every input place.

Propagation nets behave much more like two-way alternating automata on
finite words [5,9,3] or trees [14,6], where places are existential states and tran-
sitions are universal states. Contrary to word automata, however, propagation
nets do not read an input word, but rather write several words, i.e., the tokens
that are produced. In finite trees, one can represent all these words simultane-
ously. But then propagation nets would represent automata on finite trees that
can also accept with infinite computations, contrary to the standard definition.



Finding Finite Herbrand Models 143

p1

ε

t1 p2

t2 p3

g

t3

f

ε ε f−1

g

f

Fig. 1. A simple propagation net with P = {p1, p2, p3} and T = {t1, t2, t3}. Edge labels
denote the functions π and τ , where filters are depicted as triangles. Filled circles are
the tokens of the initial marking; active tokens have a black background.

p1

ε

t1

f

p2

f

t2 p3

g

t3

f

ε ε f−1

g

f

Fig. 2. The propagation net from Fig. 1 after firing (p1, ε, t1). The token f is produced
at t1 and p2, but not at p3 since f does not match the filter τ (t1, p3) = ε.

From Clauses to Propagation Nets. We will now translate any normalized
set C of propagation rules into a propagation net NC . The goal is to express the
finite Herbrand models of C by stable markings of NC . We will represent terms by
tokens, clauses by places, and predicates by transitions. From a clause, a token
can be transferred to any of its possibilities. From a predicate, a token is then
distributed to all clauses with this predicate on their left-hand side. The filter
function allows to discard those terms (tokens) that are irrelevant for satisfying
the clause. The successor function expresses increasing and decreasing clauses by
adding or removing letters, respectively. For a flat clause, the successor function
is ε, i.e., it leaves the term as it is. The initial marking simply consists of the
active token ε at � → A(a) since this is the only clause without precondition.

Definition 4. Let C be a normalized set of propagation rules. The propagation
net NC := (C,P ,F , EC, IC , πC , τC) has the following components:

– EC :=
{
(c, Pi) | c = . . .→ P1(t1) ∨ · · · ∨ Pn(tn) ∈ C and i ∈ {1, . . . , n}

}
∪
{
(P0, c) | c = P0(t0) → · · · ∈ C

}
– IC,a(c) := IC(c) :=

{
{ε} if c = � → A(a)
∅ otherwise



144 S. Borgwardt and B. Morawska

– πC
(
P0, P0(t0) → . . .

)
:=

⎧⎨⎩
ε if t0 = a
undefined if t0 = x
f if t0 = f(x)

– τC
(
P0(t0) → P1(t1) ∨ · · · ∨ Pn(tn), Pi

)
:=

⎧⎨⎩f if t0 = x, ti = f(x)
f−1 if t0 = f(x), ti = x
ε otherwise

– τC(� → A(a), A) := ε

In this propagation net, every firing (c, w, P ) represents a possibility of c. Firing
sequences can thus be seen as sequences of applying possibilities to tokens on the
left-hand side of clauses: If w(a) is a term in PH for a Herbrand interpretation
H and we want H to satisfy a clause P (x) → P1(x)∨· · ·∨Pn(x), then we have to
find a possibility Pi for which to put w(a) into PH

i . If this process of satisfying
clauses stops, we have found a finite Herbrand model of C.

Lemma 5. C has a finite Herbrand model iff NC terminates.

Example 6. Consider the propagation net NC′
1

for the rules from Example 2.
Ignoring unproductive firings, the following is a terminating firing sequence:

(� → A(a), ε, A), (A(a) → P g3 (a), ε, P g3 ), (P g3 (x) → P3(g(x)), ε, P3),
(P3(x) → P2(x), g, P2), (P2(x) → P1(x), g, P1), (P1(g(x)) → P g1 (x), g, P g1 ),
(P g1 (x) → P1(x), ε, P1)

If we abbreviate firings like (P1(x) → P2(x) ∨ P g1 (x), g, P2) by P1(g) → P2(g)
and join “adjacent” firings, the structure of this sequence becomes apparent:

� A(ε) P g3 (ε)

P3(g) P2(g) P1(g)

P g1 (ε) P1(ε)

It is easy to read off the corresponding finite Herbrand model H of C′
1:

AH = P gH1 = P gH3 = {a}, PH
1 = {a, g(a)}, PH

2 = PH
3 = {g(a)},

P fH1 = P fH3 = P gfH3 = P ggH3 = ∅.

3.1 Behavior of Propagation Nets

Our goal is to decide termination of propagation nets NC obtained from normal-
ized sets of propagation rules C. We will use these propagation nets to formulate
the ideas behind a decision procedure for the existence of finite Herbrand models
for the clause sets.

Termination of Propagation Nets. We first analyze what it means for NC
to have a terminating firing sequence starting in IC . Any such sequence will
start with the token ε at A and gradually distribute it to other predicates, while



Finding Finite Herbrand Models 145

sometimes increasing it. There are two reasons why this might not be possible.
First, it may be impossible to avoid a contradiction, i.e., a clause with ⊥ on
the right-hand side, in any firing sequence starting in IC . The other possibility
is that every firing sequence that avoids all contradictions is forced into a cycle
of creating ever longer tokens. Thus, in order for the sequence to terminate,
the length of the produced tokens has to be bounded. To analyze the detailed
structure of terminating firing sequences, we introduce the following notions.

Definition 7. Let P ∈ X ⊆ P and w = fw′ ∈ F+. A (P,X , w)-replacement
sequence is a firing sequence of NC starting in M0 and ending in Mm such that

– M0 only contains the token w at P and the active token w at all clauses with
P (x) or P (f(x)) on the left-hand side,

– Mm only contains tokens with the suffix w,
– w ∈Mm(Q) iff Q ∈ X , and
– if w′ ∈Mm,a(c), then w′ = w and c = Q(f(x)) → Qf (x).

A (P, ε)-replacement sequence is a firing sequence starting in M0 and ending in
Mm such that

– M0 only contains the token ε at P and the active token ε at all clauses with
P (x) or P (a) on the left-hand side, and

– Mm is stable.

The height of a replacement sequence is the maximal number |w′| − |w| for
any token w′ in Mm.

Every terminating firing sequence starting in IC consists of the firing (� →
A(a), ε, A) and an (A, ε)-replacement sequence. Thus, our goal is to decide the
existence of such replacement sequences. If there is an (A, ε)-replacement se-
quence of height 0, then only the token ε is produced in this sequence. Deciding
the existence of such sequences is easy (see Alg. 2). If the height of an (A, ε)-
replacement sequence is larger than 0, it contains other replacement sequences
of smaller height, as explained in the following.

The sequence has to produce a token w = fw′ �= ε at a predicate P , and
then w is contained in the final marking at all clauses with P (x) or P (f(x)) on
the left-hand side. We can extract a (P,X , w)-replacement sequence as follows:
Starting from the token w at all clauses with P (x) or P (f(x)) on the left-hand
side, we extract all firings that deactivate these tokens and the tokens produced
from these firings, except firings of the form (Q(f(x)) → Qf (x), w,Qf ). The
extracted firings form the replacement sequence and the set X consists of all
predicates Q at which w was produced in this sequence.

Example 8. The terminating firing sequence from Example 6 mainly consists of
an (A, ε)-replacement sequence. The firing (P g3 (x) → P3(g(x)), ε, P3) produces
the token g at all clauses with P3(x) or P3(g(x)) on the left-hand side, which is the



146 S. Borgwardt and B. Morawska

starting point of a replacement sequence. The corresponding (P3, {P3, P2, P1}, g)-
replacement sequence is

(P3(x) → P2(x), g, P2), (P2(x) → P1(x), g, P1),

(P2(x) → P3(x) ∨ P f1 (x), g, P3), (P1(x) → P2(x) ∨ P g1 (x), g, P2).

If a longer token w′ is produced in such a sequence at Q ∈ P , we can use the
same procedure to extract a (Q,Y, w′)-replacement sequence of smaller height.
We continue this until the height of the replacement sequences is 0. Thus, every
terminating firing sequence is decomposed into nested replacement sequences.

To decide termination of NC , we construct all possible replacement sequences,
starting with height 0. These can be used to build replacement sequences of
increasing heights, until we can construct an (A, ε)-replacement sequence.

Replacement Sequences of Height 0. To construct replacement sequences
of height 0 for a predicate P , we define the set possibilities(P ) to contain all
possibilities of the set of all flat clauses with P (x) on the left-hand side. Such a
possibility {Q1, . . . , Qn} represents one way of firing all these flat clauses. After-
wards, we have to consider the possibilities of the reached predicates Q1, . . . , Qn
and repeat this process until no new predicates are reached.

Since we want to find replacement sequences of height 0, we must prevent this
process to reach predicates of the form P f with (P, f) ∈ D(C). Thus, we define
possibilities(P f (x) → P (f(x))) := ∅ and extend the set possibilities(P f )
to also consider this increasing clause. Thus, possibilities(P f ) = ∅, which
indicates that we have no way of dealing with the token w at P f .

Example 9. The (P3, {P3, P2, P1}, g)-replacement sequence from Example 8 can
be constructed as follows: For P3, we have the possibility {P2}, i.e., the firing
(P3(x) → P2(x), g, P2). P2 has the possibilities {P1, P3} and {P1, P

f
1 }. The first

one yields (P2(x) → P1(x), g, P1) and (P2(x) → P3(x)∨P f1 (x), g, P3). The second
possibility would lead to the active token g at P f1 , which we disallow. Finally,
for P1 we choose the unproductive firing (P1(x) → P2(x) ∨ P g1 (x), g, P2).

It is easy to see that a (P,X , w)-replacement sequence can be changed into a
(P,X , w′)-replacement sequence by substituting the suffix w by w′ in every token
in the sequence. Thus, the token w is not necessary to describe the replacement
sequence. Similarly, it is not important which firings are used to deactivate to-
kens, only which predicates are reached. We are thus only interested in so-called
shortcuts (P,X ) with P ∈ X ⊆ P for which a (P,X , w)-replacement sequence
exists. There may be several possibilities for P , and thus several replacement
sequences and several shortcuts (P,X1), (P,X2), . . . representing them.

Example 10. The (P3, {P3, P2, P1}, g)-replacement sequence shown in Example 8
yields the shortcut (P3, {P3, P2, P1}). We can also find replacement sequences for
P1 and P2, represented by the shortcuts (P1, {P1, P2, P3}) and (P2, {P1, P2, P3}).



Finding Finite Herbrand Models 147

Replacement Sequences of Larger Height. If we have shortcuts for all
replacement sequences of height 0, we can construct replacement sequences of
height 1 as follows. Such a sequence will contain firings of increasing clauses
P f (x) → P (f(x)) w.r.t. some token w. This firing produces the token fw at all
clauses having P (x) or P (f(x)) on the left-hand side. This is a possible starting
point for a (P,X , fw)-replacement sequence of height 0.

If we have already computed a shortcut (P,X ), there is a firing sequence that
deactivates the token fw and distributes it to all predicates of X . This leaves
us to consider the tokens that were created at decreasing clauses. These clauses
must be of the form Q(f(x)) → Qf (x) for Q ∈ X since the token begins with f
and is distributed only to predicates in X . We then simply fire these decreasing
clauses, which gets us back to the original token w.

Thus, when looking for replacement sequences of height 1, we can use shortcuts
as possibilities for the predicates P f . Each shortcut (P,X ) yields a possibility
{Qf | Q ∈ X ∩Df (C)} for the increasing clause P f (x) → P (f(x)). If there is at
least one shortcut (P,X ), then possibilities(P f ) can now be non-empty. With
this new definition of possibilities, we can compute shortcuts for replacement
sequences of height 1, similar to the construction of replacement sequences of
height 0. These yield more possibilities, which lead to shortcuts for replacement
sequences of height 2, and so on.

The following procedure implements the computation of all possibilities for a
predicate P w.r.t. a set R of previously computed shortcuts.

Algorithm 1 (possibilities(C,R, P )).

Input: a normalized set C of propagation rules, a set R of shortcuts, and a
predicate P

Output: the set of possibilities for P w.r.t. C and R
if P = Qf with (Q, f) ∈ D(C) then
L ← {{Qf1 , . . . , Qfn} | (Q,X ) ∈ R, {Q1, . . . , Qn} = X ∩ Df (C)}

else L ← {∅}
for all P (x) → P1(x) ∨ · · · ∨ Pn(x) ∈ C do
L ← {Y ∪ {Pl} | Y ∈ L, l ∈ {1, . . . , n}}

return L

For example, if we have the shortcut (P1, {P1, P2, P3}) from Example 10, then
possibilities(C′

1,R, P
f
1 ) is {{P f1 , P

f
3 , P2}} instead of ∅.

Replacement Sequences for ε. To construct a replacement sequence for ε,
we can use the same approach as above, but we also have to consider the ground
clauses of C. Since we only want to decide the existence of such a replacement
sequence, we need not compute any shortcuts.

We call a predicate P ∈ P good if there is a (P, ε)-replacement sequence. All
other predicates are bad. To decide whether A is good, we construct the set B of
all bad predicates using the following procedure. The idea is that a predicate is
bad whenever all its possibilities contain a bad predicate. This is similar to the
emptiness test for looping automata on infinite trees [15].



148 S. Borgwardt and B. Morawska

Algorithm 2 (isTerminating(C,R)).

Input: a normalized set C of propagation rules and a set R of shortcuts
Output: true iff A is good w.r.t. R
B0 ← ∅, k ← 0
repeat
Bk+1 ← Bk
∪ {P ∈ P | ∃P (x) → P1(x) ∨ · · · ∨ Pn(x) ∈ C : {P1, . . . , Pn} ⊆ Bk}
∪ {P ∈ P | ∃P (a) → P1(a) ∨ · · · ∨ Pn(a) ∈ C : {P1, . . . , Pn} ⊆ Bk}
∪ {P f ∈ P | (P, f) ∈ D(C), ∀(P,X ) ∈ R ∃Q ∈ X ∩Df (C) : Qf ∈ Bk}

k ← k + 1
until Bk = Bk−1

return A /∈ Bk

Example 11. Consider the set C′
1 from Example 2 and assume that no shortcuts

are available. The predicates P f1 , P g1 , P f3 , P g3 , P gf3 , and P gg3 are immediately
bad. Because of the clause A(a) → P g3 (a), A is also bad. With the shortcuts
computed in Example 10, the predicates P g3 and A are no longer bad. This
means that there is an (A, ε)-replacement sequence of height 1, as already seen
in Example 6.

4 Deciding Termination

We can now formulate our main algorithm that decides whether NC terminates.
It computes shortcuts representing replacement sequences of increasing height.
The sets Ri are used to store all shortcuts computed so far. In each iteration, the
algorithm checks whether these shortcuts already suffice to prove termination of
NC using isTerminating(C,Ri) (Alg. 2). If not, shortcuts for the next height
are computed. If there are no new shortcuts, the algorithm stops and returns
false, indicating that NC does not terminate.

Algorithm 3 (Main algorithm).

Input: a normalized set C of propagation rules
Output: true iff NC terminates
R0 ← ∅, i← 0
repeat

if isTerminating(C,Ri) then return true
Ri+1 ← nextShortcuts(C,Ri)
i← i+ 1

until Ri = Ri−1

return false



Finding Finite Herbrand Models 149

The procedure nextShortcuts(C,R) implements the computation of the
shortcuts representing replacement sequences of the next height. It uses a set T
of triples of the form (P,RP , VP ), where RP is the set of predicates reached so far
starting from P , and VP ⊆ RP contains the predicates that were already visited,
i.e., for which all possibilities have been considered. Visiting Q corresponds to
firing all clauses starting with Q(x).

The computation of shortcuts for P starts with the triple (P, {P}, ∅). In each
step, we choose a triple (P,RP , VP ) ∈ T that still contains an unvisited predicate
Q ∈ RP \VP and consider its possibilities. For each Y ∈ possibilities(C,R, Q),
we add (P,RP ∪Y, VP ∪{Q}) to T since the predicates from Y have been reached
and Q has just been visited. The original triple is removed from T .

We continue this process until there are no more unvisited predicates. A triple
(P,RP , RP ) then yields the shortcut (P,RP ). We restrict the starting triples
(P, {P}, ∅) to satisfy (P, f) ∈ D(C) for some f ∈ F since only such predicates
can be reached by an increasing clause.

Algorithm 4 (nextShortcuts(C,R)).

Input: a normalized set C of propagation rules and a set R of shortcuts
Output: a set R′ of shortcuts for the next height
T ← {(P, {P}, ∅) | r ∈ F , (P, r) ∈ D(C)}
while there is (P,RP , VP ) ∈ T with RP \ VP �= ∅ do
T ← T \ {(P,RP , VP )}
choose Q from RP \ VP
for all Y ∈ possibilities(C,R, Q) do
T ← T ∪ {(P,RP ∪ Y, VP ∪ {Q})}

return {(P,RP ) | (P,RP , RP ) ∈ T }

Example 12. Consider the set C′
1 from Example 2. We describe the computation

of nextShortcuts(C′
1, ∅), which was already illustrated in Example 9. It starts

with the triples (P1, {P1}, ∅), (P3, {P3}, ∅), (P f3 , {P
f
3 }, ∅), and (P g3 , {P

g
3 }, ∅), but

we consider here only the first one.
The possibilities {P2} and {P g1 } for P1 yield the triples (P1, {P1, P2}, {P1})

and (P1, {P1, P
g
1 }, {P1}). Since there is no shortcut (P1,X ), the set of possi-

bilities for P g1 is empty and the second triple is removed. P2 has the possi-
bilities {P3, P1} and {P f1 , P1}. One of the resulting triples is simply removed,
leaving us with (P1, {P1, P2, P3}, {P1, P2}). Finally, P3 is visited, resulting in
(P1, {P1, P2, P3}, {P1, P2, P3}), and thus in the shortcut (P1, {P1, P2, P3}).

In the following, we show that the computed shortcuts actually represent replace-
ment sequences. More precisely, the shortcuts computed in the i-th iteration of
the main loop of Alg. 3 represent all replacement sequences of height at most
i− 1.

Lemma 13. Let i ≥ 1 be such that Ri was computed by Alg. 3, (P,X ) ∈ Ri,
and w ∈ F+. Then there is a (P,X , w)-replacement sequence of height ≤ i− 1.



150 S. Borgwardt and B. Morawska

On the other hand, every replacement sequence of NC of height at most i cor-
responds to a shortcut computed in the i + 1-th iteration of the algorithm.
However, this shortcut does not need to have the same set X of reached pred-
icates, but only a subset of it. The reason for this is that firings can always
be applied, regardless of whether they are necessary to deactivate some token
or not. This means that replacement sequences might contain irrelevant firings.
However, Alg. 3 computes shortcuts in such a way that only necessary firings
are considered, i.e., only possibilities for predicates that were already reached.

Lemma 14. Consider the variant of Alg. 3 that never returns, but simply com-
putes the sets Ri for all i ≥ 0. Let P ∈ Df (C). If there is a (P,X , fw)-
replacement sequence of height ≤ i, then (P,X ′) ∈ Ri+1 for some X ′ ⊆ X .

These results can be used to show that the algorithm is correct. If Alg. 3 re-
turns true, then Lemma 13 allows us to construct a terminating firing sequence
from the computed shortcuts. On the other hand, if there is such a sequence,
Lemma 14 shows that Alg. 3 computes enough shortcuts to detect its existence.

Theorem 15. Termination of propagation nets of the form NC for normalized
sets C of propagation rules can be decided in time exponential in the size of C.

Proof (Sketch). We have Ri−1 ⊆ Ri after every step of Alg. 3. Since there are
only exponentially many possible shortcuts and nextShortcuts(C,Ri) takes at
most exponential time, the overall runtime is also exponential. ��

Corollary 16. The existence of finite Herbrand models for finite sets of propa-
gation rules can be decided in ExpTime.

Proof. This follows from Theorem 5 and the reductions of Sects. 2 and 3. ��

If all the clauses of C are deterministic, i.e., have at most one possibility, the prop-
agation net NC is called deterministic. Then all places of NC have at most one
outgoing arc and the algorithm runs in time polynomial in the size of C. For ev-
ery additional nondeterministic clause in the set C, the runtime of the algorithm
increases by an exponential factor due to the computation of all possibilities and
all shortcuts in possibilities(C,R, P ) and nextShortcuts(C,R).

5 Hardness

To conclude the complexity analysis, we present a reduction from linear language
equations to finite sets of propagation rules. The equations are of the form

S0 ∪ S1X1 ∪ · · · ∪ SnXn = T0 ∪ T1X1 ∪ · · · ∪ TnXn

for finite sets S0, . . . , Sn, T0, . . . , Tn of words over an alphabet Σ. A solution
assigns finite sets of words to the variables Xi such that the equation holds.
Deciding whether such an equation has a solution is ExpTime-complete [1].



Finding Finite Herbrand Models 151

We can transform such equations into flat linear language inclusions

L0X0 ⊆ L1X1 ∪ · · · ∪ LnXn

for L0, . . . , Ln ⊆ Σ ∪ {ε}. By flat we mean that all coefficients contain only
words of length at most 1. This can be achieved in polynomial time.

Example 17. Consider the equation {rs}∪{s}Y ∪X = {r}Y ∪{s}X∪{ε}.2 If we
abbreviate {r} by r and introduce a new variable Z, we can equivalently write
this problem using the flat equations rZ ∪ sY ∪X = rY ∪ sX ∪ ε and Z = s.
These are then split into the following flat linear language inclusions:

I1 := {rZ ⊆ rY ∪ sX ∪ ε, sY ⊆ rY ∪ sX ∪ ε, X ⊆ rY ∪ sX ∪ ε, Z ⊆ s

rY ⊆ rZ ∪ sY ∪X, sX ⊆ rZ ∪ sY ∪X, ε ⊆ rZ ∪ sY ∪X, s ⊆ Z}.

To solve a finite set I of such inclusions, we translate I into a finite set CI of
propagation rules that express the same restrictions as the inclusions. We will
treat each r ∈ Σ as a unary function symbol, each variable X occurring in I as
a unary predicate. The intention behind CI is that a finite Herbrand model H
of CI represents a solution θ of I with θ(X) = {w | w(a) ∈ XH}.

To express an inclusion L0X0 ⊆ L1X1 ∪ · · · ∪ LnXn by clauses, we use the
following idea. The clauses have to restrict the interpretation of the variables
such that every word w ∈ Σ∗ occurring on the left-hand side of the inclusion
also occurs on the right-hand side. For each word w occurring in L0X0, we make
a case analysis based on the first letter of w. We create one clause for the case
w = ε, and one clause for every possible first letter of w.

Example 18. Consider the inclusion rZ ⊆ rY ∪ sX ∪ ε from Example 17. Every
word w on its left-hand side has to begin with r, so the case analysis can be
narrowed to one case. The corresponding clause is Z(x) → Y (x). Note that the
terms sX and ε can never be responsible for this inclusion to be satisfied, and
thus they are not represented in the clause.

Consider now another inclusion X ⊆ rY ∪ sX ∪ ε, which has to be split
according to s, r, and ε. For the case that a word w on the left-hand side begins
with r, we introduce the clause X(r(x)) → Y (x). Similarly, for s we obtain
X(s(x)) → X(x). The case w = ε is expressed by the clause X(a) → A(a),
where A is a special predicate that is always interpreted as {a}.

Theorem 19. Deciding the existence of finite Herbrand models for finite sets
of propagation rules is ExpTime-hard.

6 Summary and Conclusions

Viewed from a different perspective, Alg. 3 and the reduction from Sect. 5 yield
a new ExpTime-algorithm for deciding solvability of linear language equations.
2 This equation is equivalent to the FL0-unification problem ∀r.∀s.A � ∀s.Y � X ≡?

∀r.Y � ∀s.X � A, where A is a constant and X, Y are variables (see [4] for details).



152 S. Borgwardt and B. Morawska

While the original decision procedure [1] constructs a tree automaton of expo-
nential size and uses a linear-time emptiness test, our algorithm constructs a
polynomial-size propagation net and uses an algorithm that is worst-case expo-
nential, but exhibits a better behavior if the constructed set of propagation rules
contains few nondeterministic clauses.

In future work, we want to modify the algorithm to actually compute solutions
to the language equations and analyze the usefulness of these solutions; it may be
desirable to outputminimal solutionsw.r.t. some order.Wealsowant to implement
the algorithm and compare it with an implementation of the naive tree automaton
construction. To this end, we will have to design optimizations to our algorithm.

Another interesting open question is whether the presented approach can be
applied to finite sets of arbitrary clauses with unary predicates, unary function
symbols and constants. The formalism of propagation nets is certainly powerful
enough to reflect this change, but the decision procedure also has to be adapted.

Acknowledgement. We would like to thank Prof. Franz Baader for helpful
discussions and comments.

References

1. Baader, F., Narendran, P.: Unification of concept terms in description logics. J.
Symb. Comput. 31(3), 277–305 (2001)

2. Baumgartner, P., Fuchs, A., de Nivelle, H., Tinelli, C.: Computing finite models
by reduction to function-free clause logic. J. Appl. Log. 7(1), 58–74 (2009)

3. Birget, J.: State-complexity of finite-state devices, state compressibility and incom-
pressibility. Math. Syst. Theory 26(3), 237–269 (1993)

4. Borgwardt, S., Morawska, B.: Finding finite Herbrand models. LTCS-Report 11-04,
TU Dresden (2011), see http://lat.inf.tu-dresden.de/research/reports.html.

5. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1),
114–133 (1981)

6. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D.,
Tison, S., Tommasi, M.: Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata (2007)

7. Dreben, B., Goldfarb, W.D.: The Decision Problem: Solvable Classes of Quantifi-
cational Formulas. Addison-Wesley (1979)

8. Joyner Jr., W.H.: Resolution strategies as decision procedures. J. ACM 23(3),
398–417 (1976)

9. Ladner, R.E., Lipton, R.J., Stockmeyer, L.J.: Alternating pushdown and stack
automata. SIAM J. Comput. 13(1), 135–155 (1984)

10. Leitsch, A.: The Resolution Calculus. Springer (1997)
11. Peltier, N.: Model building with ordered resolution: Extracting models from satu-

rated clause sets. J. Symb. Comput. 36(1-2), 5–48 (2003)
12. Petri, C.A.: Kommunikation mit Automaten. Ph.D. thesis, Uni Bonn (1962)
13. Reisig, W.: Petri Nets: An Introduction. Springer (1985)
14. Slutzki, G.: Alternating tree automata. Theor. Comput. Sci. 41, 305–318 (1985)
15. Vardi, M.Y., Wolper, P.: Automata theoretic techniques for modal logics of pro-

grams (extended abstract). In: Proc. STOC’84. pp. 446–456. ACM (1984)
16. Zhang, J.: Constructing finite algebras with FALCON. J. Autom. Reasoning 17,

1–22 (1996)

http://www.grappa.univ-lille3.fr/tata


Smart Testing of Functional Programs in Isabelle

Lukas Bulwahn

Technische Universität München

Abstract. We present a novel counterexample generator for the interactive the-
orem prover Isabelle based on a compiler that synthesizes test data generators
for functional programming languages (e.g. ML, Haskell) from specifications in
Isabelle. In contrast to naive type-based test data generators, the smart genera-
tors take the preconditions into account and only generate tests that fulfill the
preconditions.

The smart generators are constructed by a compiler that reformulates the pre-
conditions as logic programs and analyzes them with an enriched mode inference.
From this inference, the compiler can construct the desired generators in the func-
tional programming language.

Applying these test data generators reduces the number of tests significantly
and enables us to find errors in specifications where naive random and exhaustive
testing fail.

1 Introduction

Writing programs and specifications is an error-prone business, and testing is common
practice to find errors and validate software. Being aware that testing cannot prove the
absence of errors, formal methods are applied for safety- and security-critical systems.
To ensure the correctness of programs, critical properties are guaranteed by a formal
proof. Proof assistants are used to develop a proof with trustworthy sound logical in-
ferences. Once one has completed the formal proof, the proof assistant certifies that
the program meets its specification. But in the process of proving, errors could still be
revealed and tracking these down by failed proof attempts is a tedious task for the user.
Undoubtedly, testing is still fruitful on the way to quickly detect errors in programs
and specifications while the user attempts to prove them. Modern interactive theorem
provers therefore do not only provide means to prove properties, but also to disprove
properties in the form of counterexample generators.

Without specifications, it is common practice to write manual test suites to check
properties. However, having a formal specification at hand, we can automatically gen-
erate test data and check if the program fulfills its specification. Such an automatic
specification-based testing technique for functional Haskell programs was introduced
by the popular tool QuickCheck [8], which is based on random testing. The tool Small-
Check [19] also tests Haskell programs against its specification, but is based on exhaus-
tive testing.

The interactive theorem prover Isabelle [22] provides a counterexample generator [3],
which currently incorporates the two approaches, random and exhaustive testing, sim-
ilar to QuickCheck and SmallCheck. It works well on specifications that have weak

N. Bjørner and A. Voronkov (Eds.): LPAR-18, LNCS 7180, pp. 153–167, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



154 L. Bulwahn

preconditions and properties in a form that is directly executable in the functional lan-
guage. If the property to be tested includes a precondition, both approaches generate test
data that seldom fulfill the precondition, and so most of the execution time for testing
is spent generating useless test values and rejecting them.

Our new approach aims to only generate test data that fulfill the precondition. The
test data generator for a given precondition is produced by a compiler1 that analyzes pre-
conditions and synthesizes a purely functional program that serves as generator. For this
purpose, the compiler reformulates the preconditions as logic programs by translating
formulas in predicate logic with quantifiers and recursive functions to Horn clauses. The
compiler then analyzes the Horn clauses with a data flow analysis, which determines
which values can be computed from other values and which values must be generated.
From this analysis, the compiler constructs the desired generators. This way, a much
smaller number of test cases suffices to exhaustively test a program against its spec-
ification. Consequently, we can find errors in specifications where random and naive
exhaustive testing fail to find a counterexample in a reasonable amount of time.

After discussing related work (§1.1), we show examples that motivate the work on
our new counterexample generator (§2). In the main part, we then describe key ideas
of this counterexample generator, the preprocessing, the data flow analysis and compi-
lation (§3 to §6). In the end, we evaluate our counterexample generator compared with
the existing approaches (§7).

1.1 Related Work

The aforementioned Haskell tool QuickCheck has many descendants in interactive the-
orem provers, e.g., Agda/Alfa, ACL2, ACL2 Sedan, Isabelle and PVS, and in a variety
of programming languages. QuickCheck uses test data generators that create random
values to test the propositions. Random testing can handle propositions with strong pre-
conditions only very poorly. To circumvent this, the user must manually write a test
data generator that only produces values that fulfill the precondition. SmallCheck tests
the propositions exhaustively for small values. It also handles propositions with strong
preconditions poorly, but in practice handles preconditions better than QuickCheck be-
cause it gives preference to small values, and they tend to fulfill the commonly occur-
ring preconditions more often. Lazy SmallCheck [19] uses partially-instantiated values
and a refinement algorithm to simulate narrowing in Haskell. This is closely related to
the work of Lindblad [13] and EasyCheck [7], based on the narrowing strategy in the
functional logic programming language Curry [11]. This approach can cut the search
space of possible values to check, if partially instantiated values already violate the pre-
condition. The three approaches, QuickCheck (without manual test data generators),
SmallCheck and Lazy SmallCheck, are examples of black-box testing, i.e., they do not
consider the description of the precondition – they generate (partial) values and test the
precondition.

The counterexample generators in Isabelle translate the conjecture and related def-
initions to an ML program, exploiting Isabelle’s code generation infrastructure [10].

1 Throughout the presentation, we use the term compilation with a very specific meaning: to des-
ignate our translation of Horn specifications in Isabelle into programs written in a functional
programming language.



Smart Testing of Functional Programs in Isabelle 155

Employing this translation yields a very efficient evaluation: The ML runtime envi-
ronment can check millions of test cases within seconds, which is thousands of times
faster than evaluating within the prover. Like the existing counterexample generators
in Isabelle, the new one also builds upon this translation. Previous work [2] on code
generation focused on the verification of the transformation of Horn clauses to func-
tional programs, whereas the focus of this work is the extension and application of the
transformation for counterexample generation. Our new counterexample generator is
a glass-box testing approach, i.e., it considers the description of the precondition and
compiles a purely functional program that generates values that fulfill the precondition.
We reported about this work in an early stage in [5]. Closely related to our work is the
glass-box testing by Fischer and Kuchen [9] for functional logic programs, but they take
advantage of narrowing and nondeterministic execution in Curry.

Another approach to finding values that fulfill the preconditions is to use a CLP(FD)
constraint solver, as done by Carlier et al. [6]. A completely different approach to find-
ing counterexamples is translating the specification to propositional logic and invoking
a SAT solver, as performed by the Isabelle tools Refute [21] and Nitpick [4].

2 Motivation

The previously existing counterexample generators in Isabelle, which test with random
values or exhaustively with small values, perform well on conjectures without precon-
ditions. For example, for the invalid conjecture about lists2

reverse (append xs ys) = append (reverse xs) (reverse ys),

the counterexample generators provide the counterexample xs = [a1] and ys = [a2] (for
atoms a1 �= a2) instantaneously. For conjectures of this kind, random and exhaustive
testing are perfectly suited thanks to their lightweight nature.

But random and exhaustive testing generate values without analyzing the conjecture.
This can lead to many vacuous test cases, as in this simple example:

length xs = length ys ∧ zip xs ys = zs =⇒ map fst zs = xs ∧map snd zs = ys

The random and exhaustive strategies first generate values for xs, ys, and zs in an uncon-
strained fashion and then check the premises, namely that xs and ys are of equal length
and that zs is the list obtained by zipping xs and ys together. For the vast majority of
variable assignments, the premises are not fulfilled, and the conclusion is left untested.
Clearly, it is desirable to take the premises into account when generating values. For
further illustration, we focus on a simpler valid conjecture about distinct lists:

distinct xs =⇒ distinct (tl xs)

The previously existing counterexample generator, testing exhaustively, produces the
following test program in Standard ML to check the validity of this conjecture:

2 We use common notations from functional programming languages: [] and x ·xs denote the two
list constructors Nil and Cons x xs, lists, such as (x · (y · (z ·Nil))), are conveniently written as
[x,y,z]. The tail of a list xs is obtained with tl xs, where tl [] = [] and tl (x ·xs) = xs. Furthermore,
free variables are implicitly universally quantified.



156 L. Bulwahn

val generate-nat size chk = if size = 0 then None else case chk 0 of
Some xs⇒ Some xs
| None⇒ generate-nat (size− 1) (λn. chk (n+ 1))

val generate-list size chk = if size = 0 then None else case chk [] of
Some xs⇒ Some xs
| None⇒ generate-nat (size− 1) (λx. generate-list (size− 1)

(λxs. chk (x · xs)))

val test xs = if distinct xs ∧ ¬ distinct (tl xs) then Some xs else None

val check size = generate-list size (λxs. test xs)

The check function implements a simple generate-and-test loop. It uses the function
generate-list that generates all possible lists (of natural numbers) up to a given bound
and iteratively calls the test function to test the property at hand. It returns the found
counterexample as an optional value, i.e., if the property holds for all values up to the
given bound, the check function returns None, otherwise the counterexample is returned
as result with Some.

Our new approach interleaves generation and checking in a way that avoids generat-
ing lists that are not distinct. From the definition of the distinct predicate,

distinct [] = True
distinct (x · xs) = (x /∈ set xs∧distinct xs),

we can derive how to construct distinct lists: First, the empty list is distinct; secondly,
larger distinct lists can be constructed taking a (shorter) distinct list and appending
an element which is not in the list already to its front. This insight is reflected in the
following test data generator:

val generate-distinct size chk = if size = 0 then None else case chk [] of
Some xs⇒ Some xs
| None⇒ generate-distinct (size− 1) (λxs. generate-nat (size− 1)

(λx. if x /∈ set xs then chk (x · xs) else None))

The function generate-distinct only generates and tests the given property with distinct
lists. It constructs lists by applying the two rules mentioned above. With this generator
at hand, we can check the conclusion more efficiently by:

val test xs = if ¬ distinct (tl xs) then Some xs else None
val check size = generate-distinct size (λxs. test xs)

Using these smart test data generators reduces the number of tests, and as our evaluation
(§7) shows, this allows us to explore test values of larger sizes where exhaustive testing
cannot cope with the explosion of useless test values. More precisely, in our simple ex-
ample, naive exhaustive testing cannot check all lists of size 15 within one hour, where
the smart generator can easily explore all the lists up to this size within 30 seconds.

In the following sections, we describe how we synthesize these test data generators
automatically from the precondition’s definition.



Smart Testing of Functional Programs in Isabelle 157

3 Overview of the Tool

In this section, we present the overall structure of our counterexample generator, and
motivate the key features and design decisions. The detached presentation of individual
components is then discussed in the following three sections.

3.1 Design Decisions

QuickCheck and SmallCheck execute the program with concrete values. Testing with
concrete values has the clear advantage of being natively supported by the functional
programming language, in our case ML, and hence can be executed very fast. But test-
ing with concrete values has the drawback that a large set of test inputs may exhibit
indistinguishable executions. E.g., in our example about distinct lists, the lists [1,1,2],
[1,1,3], [1,1,4], . . . are all non-distinct because of the non-distinct prefix [1,1], and
hence testing the conjecture with all these lists succeeds without even checking its con-
clusion.

An alternative to testing functional programs is executing the program by a needed
narrowing strategy [1], which executes the program symbolically as far as possible. It
avoids symmetric executions, i.e., a set of input values that result in the same execu-
tion. It checks the conjecture for a set of values with one symbolic execution, reducing
the number of tests. In our example, all the lists [1,1,2], [1,1,3], [1,1,4], . . . can be
treated immediately with one symbolic execution 1 · (1 · xs), where xs is a free vari-
able representing any list of natural numbers. Symbolic executions usually result in a
non-deterministic computation, which is implemented with a backtracking mechanism,
as known from Prolog. This execution principle requires some overhead, which then
causes symbolic testing to be slower than testing with concrete values, if the number of
eliminated symmetric executions is too low to compensate for the execution’s overhead.

Two circumstances contribute to the fact that symbolic executions frequently do not
pay off in practice: First, large parts of the program are purely functional executions;
nevertheless one inherits some overhead even in those parts of the execution. Second,
if the conclusion is hyperstrict, i.e., requires checking with all test values, it incurs the
overhead of symbolic executions, but ends up doing all executions necessarily with
concrete values anyway.

Our test data generators aim to find a balance between fast execution with concrete
values and avoiding symmetric executions. The test data generators produce concrete
values during the execution, so that it can be translated directly into the target functional
programming language.

For conjectures without preconditions, we enumerate all possible concrete values.
This is quite effective, because usually there are only very few symmetric executions in
that case. When preconditions occur in conjectures, test data generators only produce
values fulfilling the precondition, and then test the conclusion. We find values fulfill-
ing the precondition by an implementation that queries the precondition’s predicate for
all possible values up to some bound. The generator will enumerate possible values,
similar to a query in Prolog, but returning only ground solutions, i.e., not using logi-
cal variables. The query is integrated in a lightweight fashion into the test program by a



158 L. Bulwahn

compilation. It retains purely functional evaluations, detects values that can be com-
puted by inferring data flow in the program (between variables), and combines it with
generation of values if data flow cannot be inferred.

In the end, this static analysis and the compilation lead to test data generators for
the preconditions. They discard useless test inputs before generating them, and keep
the execution mechanism simple to target functional programming languages. If large
parts of symmetric executions are avoided by the data flow analysis, these generators
can explore the space of test input faster than symbolic and concrete executions.

3.2 Architecture

The counterexample generator performs these steps: As the original specification can
be defined using various definitional mechanisms, the specification is preprocessed by a
few simple syntactic transformations (§4) to Horn clauses. The core component, which
was previously described in [2], consists of a static data flow analysis, the mode analysis
(§5) and the code generator (§6). This core component only works on a syntactic subset
of the Isabelle language, namely Horn clauses of the following form:

Q1 u1 =⇒ ···=⇒ Qn un =⇒ P t

In a premise Qi ui, Qi must be a predicate defined by Horn clauses and the terms ui must
be constructor terms, i.e., only contain variables or datatype constructors. Furthermore,
we allow negation of atoms, assuming the Horn clauses to be stratified. If a premise
obeys these restrictions, the core compiler infers modes and compiles functional pro-
grams for the inferred modes. If a premise has a different form, e.g., the terms contain
function symbols, or a predicate is not defined by Horn clauses, the core compiler will
treat them as side conditions. For side conditions, the mode analysis does not infer
modes, but requires all arguments as inputs. Enriching the mode analysis, we mark un-
constrained values to be generated. Once we have inferred modes for the Horn clauses,
these are turned into test data generators in ML using non-deterministic executions and
type-based generators.

4 Preprocessing

In this section, we sketch how specifications in predicate logic and functions are pre-
processed to Horn clauses. A definition in predicate logic is transformed to a system of
Horn clauses, based on the fact that a formula of the form P x = ∃y. Q1 u1∧·· ·∧Qn un

can be soundly underapproximated by a Horn clause Q1 u1 =⇒ ···=⇒ Qn un =⇒ P x.
Predicate logic formulas in a different form are transformed into the form above by a
few logical rewrite rules in predicate logic. We rewrite universal quantifiers to negation
and existential quantifiers, put the formula in negation normal form, and distribute ex-
istential quantifiers over disjunctions. In the process of creating Horn clauses, it is nec-
essary to introduce new predicates for subformulas, as our Horn clauses do not allow
disjunctions within the premises or nested expressions under negations. Furthermore,
we take special care of if, case and let-constructions.



Smart Testing of Functional Programs in Isabelle 159

Example 1. The distinct predicate on lists is defined by the two equations,

distinct [] = True
distinct (x · xs) = (x /∈ set xs∧distinct xs)

In the preprocessing step, these are made to fit the syntactic restrictions of the core
component, yielding the two Horn clauses:

distinct []
x /∈ set xs =⇒ distinct xs =⇒ distinct (x · xs)

To enable inversion of functions, we preprocess n-ary functions to (n+1)-ary predicates
defined by Horn clauses, which enables the core compilation to inspect the definition of
the function and leads to better synthesized test data generators. This is achieved by flat-
tening a nested functional expression to a flat relational expression, i.e., a conjunction
of premises in a Horn clause.

Example 2. We present how the length function for lists and a precondition containing
this function are turned into relational expressions by flattening. The length of a list is
defined by length [] = 0, and length (x ·xs) = Suc (length xs)3 . We derive a correspond-
ing relation lengthP with two Horn clauses:

lengthP [] 0
lengthP xs n =⇒ lengthP (x · xs) (Suc n)

The precondition length xs = length ys is then transformed into

lengthP xs n ∧ lengthP ys n

In the new formulation, the constraint of the two lists having the same length is ex-
pressed by their shared variable n. This relational description helps our mode analysis
to find a more precise data flow.

This well-known technique of flattening is similarly described by Naish [15] and
Rouveirol [18]. We also support flattening of higher-order functions, which allows in-
version of higher-order functions if the function argument is invertible.

5 Mode Analysis

In order to execute a predicate P, its arguments are classified as input or output, made
explicit by means of modes. Modes can be inferred using a static analysis on the Horn
clauses. Our mode analysis is based on Mellish [14]. There are more sophisticated mode
analysis approaches, e.g., by using abstract domains [20] or by translating to a boolean
constraint system [17]. But for our purpose, we can apply the simple mode analysis,
because if the analysis does not discover a dataflow due to its imprecision, the overall
process still leads to a test data generator.

3 Natural numbers are defined by constructors 0 and Suc.



160 L. Bulwahn

Modes. For a predicate P with k arguments, a mode is a particular dataflow assignment
which follows the type of the predicate and annotates all arguments as input (i) or output
(o), e.g., for lengthP, o⇒ i⇒ bool denotes the mode where the first argument is output,
the last argument is input.

A mode assignment for a given clause Q1 u1 =⇒ ··· =⇒ Qn un =⇒ P t is a list of
modes M,M1, . . .Mn for the predicates P,Q1, . . . ,Qn. Let FV(t) denote the set of free
variables in a term t. Given a vector of arguments t and a mode M, the projection
expression t〈M〉 denotes the list of all arguments in t (in the order of their occurrence)
which are input in M.

Mode Consistency. Given a clause Q1 u1 =⇒ ··· =⇒ Qn un =⇒ P t a correspond-
ing mode assignment M,M1, . . .Mn is consistent if the chain of sets of variables v0 ⊆
·· · ⊆ vn defined by (1) v0 = FV(t〈M〉) and (2) v j = v j−1∪FV(u j) obeys the conditions
(3) FV(u j〈Mj〉)⊆ v j−1 and (4) FV(t)⊆ vn. Mode consistency guarantees the possibility
of a sequential evaluation of premises in a given order, where v j represents the known
variables after the evaluation of the j-th premise. Without loss of generality, we can
examine clauses under mode inference modulo reordering of premises. For side condi-
tions R, condition 3 has to be replaced by FV(R) ⊆ v j−1, i.e., all variables in R must
be known when evaluating it. This definition yields a check whether a given clause is
consistent with a particular mode assignment.

Generator Mode Analysis. To generate values that satisfy a predicate, we extend the
mode analysis in a genuine way: If the mode analysis cannot detect a consistent mode
assignment, i.e., the values of some variables are not constrained after the evaluation
of the premises, we allow the use of generators, i.e., the values for these variables are
constructed by an unconstrained enumeration. In other words, we combine two ways
to enumerate values, either driven by the computation of a predicate or by generation
based on its type.

Example 3. Given a unary predicate R with possible modes i⇒ bool and o⇒ bool and
the Horn clause R x =⇒ P x y, classical mode analysis fails to find a consistent mode
assignment for P with mode o⇒ o⇒ bool. To generate values for x and y fulfilling P,
we combine computation and generation of values as follows: the values for variable x
are built using R with o⇒ bool; values for y are built by a generator.

This extension gives rise to a number of possible modes, because we actually drop
the conditions (3) and (4) for the mode analysis. Instead, we use a heuristic to find a
considerably good dataflow by locally selecting the optimal premise Qj and mode Mj

with respect to the following criteria:

1. minimize missing values, i.e., have
∣∣FV(u j〈Mj〉)− v j−1

∣∣ to be minimal;
2. use functional predicates with their functional mode;
3. use predicates and modes that do not require generators themselves;
4. minimize number of output positions;
5. prefer recursive premises.

Next, we motivate and illustrate these five criteria. In general, we would like to avoid
generation of values and computations that could fail, and to restrain ourselves from
enumerating any values that could possibly be computed. Hence, the first priority is to



Smart Testing of Functional Programs in Isabelle 161

use modes where the number of missing values is minimal. This way, we partly recover
conditions (3) and (4) from the mode analysis.

Example 3 (continued). For mode M1 for R x, one has two alternatives: generating
values for x and then testing R with mode i⇒ bool, or only generating values for x using
R with o⇒ bool. The first choice generates values and rejects them by testing; the latter
only generates fulfilling values and is preferable. The analysis favors o⇒ bool to i⇒
bool due to criterion 1: for v0 = {}, u1 = x and M1 = i⇒ bool, FV(u1〈M1〉)−v0 = {x};
whereas for M1 = o⇒ bool, FV(u1〈M1〉)− v0 = {}. |FV(u1〈M1〉)− v0| is minimal for
M1 = o⇒ bool.

Example 4. Consider a clause R x y =⇒ F x y =⇒ P x y where R is a one-to-many
relation and F is functional. R and F both allow modes i⇒ o⇒ bool and i⇒ i⇒ bool.
For M = i⇒ o⇒ bool, R x y and F x y can be evaluated in either order. Our criterion 2
induces preference for computing y with the functional computation F x y and checking
R x y, i.e., whether the one value for y can fulfill R x y or not.

Criterion 3 induces avoiding the generation of values in the predicate to be invoked.
Furthermore, we minimize output positions, e.g., we prefer checking a predicate (no
output position) before computing some solution (one output position) as we illustrate
by the following example:

Example 5. In a clause R x y =⇒ Q x =⇒ P x y with mode i⇒ o⇒ bool for R and P,
and i⇒ bool for Q, we prefer Q x before R x y, since computing values for y would be
useless if Q x fails. This ordering is enforced by criterion 4.

Finally, we prefer recursive premises – this leads to a bottom-up generation of values.
Generating larger values for predicates from smaller values for the predicate is com-
monly preferable because it takes advantage of the structure of the preconditions.

Example 6. In a clause P xs =⇒ C xs =⇒ P (x · xs), P xs is favored for generation
of xs and C xs for checking. Generating values for P, we apply the generator for P
recursively and check the condition C xs afterwards.

This “aggressive” mode analysis results in moded Horn clauses with annotations for
generators of values. In summary, it does not only discover an existing dataflow, but
helps to create a dataflow by filling the gaps with value generators.

6 Generator Compilation

In this section, we discuss the translation of the compiler from moded Horn clauses to
functional programs. First, we present the building blocks of the compiler, the execution
mechanism and the generators. Then, we sketch the compilation scheme by applying it
to the introductory examples.

Monads for Non-deterministic Computations. We use continuations with type α cps
to enumerate the (potentially infinite) set of values fulfilling the involved predicates – in
other words, the constructed continuations will hold the enumerated solutions. We de-
fine plus monad operations describing non-deterministic computations. Depending on



162 L. Bulwahn

our enumeration scheme, we employ three different plus monads: one for unbounded
computations, and two others for depth-limited computations within positive and nega-
tive contexts, respectively.

A plus monad supports four operations: empty, single, plus and bind. It provides
executable versions of basic set operations: empty= /0, single x = {x}, plus A B= A∪B
and bind A f =

⋃
x∈A f x. Employing these operations in SML results in a Prolog-

like execution strategy, with a depth-first search. This strategy is fine for user-initiated
evaluations, but for counterexample generation, automatically generated values cause
infinite computations escaped from the control of the user. To avoid being stuck in such
a computation, we also employ a plus monad with a different carrier that limits the
computation by a depth-limit. Evaluating predicates with a depth-limited computation,
we must take special care of negation. We implement different behaviors for queries
in different contexts: for positive contexts, we compute an underapproximation; for
negative contexts, an overapproximation.

For positive contexts, we implement a plus monad with the type int → α cps as
carrier. The bind+ operation checks the depth-limit and if reached, returns empty, which
yields a sound underapproximation; otherwise it passes a decreased depth-limit to its
argument. It is defined by:

bind+ xq f = (λi. if i = 0 then empty else bind (xq (i− 1)) (λa. f a i))

In negative contexts, we must explicitly distinguish failure (no solution found) from
reaching the depth limit. To signal reaching the depth-limit, we include an explicit ele-
ment to model an unknown value (as a third truth value), and continue the computation
with this value. This makes the monad carrier type be int → α option cps where the
option value None stands for unknown. If one computation reaches the depth-limit and
another computation fails, then the overall computation fails; in other words failure ab-
sorbs the unknown value (which is consistent with a three-valued logic interpretation).

Because negative and positive occurrences of predicates are intermixed, in actual
enumeration we have to combine the positive and negative monads – the bridge be-
tween them is performed by executable not-operations that handle the unknown value
depending on the context. For instance, when applied to a solution enumeration of a
negated premise, unknown is mapped to false (computation failure); this reflects the
intuition that if we were not able to prove a negated premise ¬Q x within a given depth-
limit for x, then all we can soundly assume is that Q x may hold; hence the computation
cannot proceed further.

The compilation scheme builds abstractly on the monad structure interface and hence
is employed for all three monads. For the rest of the presentation, we write plus and bind
infix as � and >>=.

Type-Based Generators. If values cannot be computed, we enumerate them up to a
given depth. To generate values of a specific type, we make use of type classes in
Isabelle. More specifically we require that the involved types τ come equipped with
an operation gen τ, the generator for type τ that enumerates all values. For inductive
datatypes τ with n constructors C1 τ

1
1 . . . τ

m1
1 | . . . | Cn τ

1
n . . . τ

mn
n we construct generators

that enumerate values exhaustively up to depth d by the following scheme:



Smart Testing of Functional Programs in Isabelle 163

gen τ d =
if d = 0 then empty else
(gen τ11 (d− 1)>>=(λx1. gen τ21 (d− 1)>>= . . . >>=(λxm1−1.

gen τm1
1 (d− 1)>>=(λxm1 . single (C1 x1 . . . xm1))) . . .)) � . . . �

(gen τ1n (d− 1)>>=(λx1. gen τ2n (d− 1)>>= . . . >>=(λxmn−1.
gen τmn

n (d− 1)>>=(λxmn . single (Cn x1 . . . xmn))) . . .))

We already have seen concrete instances of these generators for lists and natural num-
bers, generate-list and generate-nat in §2 – although there, the scheme is disguised by
the fact that we inlined the plus monad operations.

Compilation of Moded Clauses. The central idea underlying the compilation of a pred-
icate P is to generate a function PM for each mode M of P that, given a list of input
arguments, enumerates all tuples of output arguments. The functional equation for PM

is the union of the output values generated by the characterizing clauses. Employing the
data flow from the mode inference, the expressions for the clauses are essentially con-
structed as chains of type-based generators and function calls for premises, connected
through bind and case expressions. All functions PM are executable in ML, because
they only employ the monad operations and pattern matching. The function PM for the
mode M with all arguments as output serves as test data generator for predicate P.

Example 7. For the predicate distinct, we can infer the mode o⇒ bool: The first clause
distinct [] allows the mode o ⇒ bool, as the empty list is just a constant value. The
second clause allows the mode o ⇒ bool by choosing modes for its premises, i.e.,
distinct xs with mode o ⇒ bool and x /∈ set xs with mode i ⇒ i ⇒ bool. This is then
compiled to a test data generator distincto for lists of type τ:

distincto τ= single [] �
(distincto>>=(λxs. gen τ >>=(λx.if x /∈ set xs then single (x · xs) else empty))

Instantiating τ to the natural numbers and unfolding the plus monad operators, the def-
inition of distincto yields the test data generator generate-distinct from section 2.

Example 8. For the precondition length xs = length ys ∧ zip xs ys = zs, we obtain the
following moded clause:

– lengthP xs n with mode o⇒ o⇒ bool,
– lengthP ys n with mode o⇒ i⇒ bool,
– zipP xs ys zs with its functional mode i⇒ i⇒ o⇒ bool

In other words, we enumerate lists with their corresponding length, and as we know
the length of xs, we only enumerate lists ys of equal length, and finally we obtain zs by
executing zip xs ys. The generator for this precondition then is:

lengthP
oo>>=(λ(xs,n). lengthP

oi n
>>=(λys. single (zip xs ys)>>=(λzs. single (xs,ys,zs))))



164 L. Bulwahn

Table 1. Number of test cases for given sizes and preconditions

size
predicate 5 6 7 8 9 10 11 12 13 14

– 24 89 425 2,373 16,072 125,673 1,112,083 10,976,184 119,481,296 1,421,542,641
distinct 16 39 105 315 1,048 3,829 15,207 65,071 297,840 1,449,755
sorted 15 31 63 127 255 511 1,023 2,047 4,095 8,191

Unfolding the definitions of the plus monad operators and reducing the syntactic clutter,
this leads to

if d = 0 then None
else lengthP

oo (d− 1) (λ(xs,n). lengthP
oi n (d− 1) (λys. c xs ys (zip xs ys))

The arguments c and d make the continuation and the limit on the depth of the compu-
tation explicit. The monad operations implicitly pass around the values for c and d.

7 Evaluation

To evaluate our approach, we compared the performance of the new approach against
the three other existing testing approaches in Isabelle: random, exhaustive and nar-
rowing-based testing. Random and exhaustive testing employ concrete values, whereas
narrowing-based testing employs symbolic values. The narrowing-based testing in Is-
abelle is a descendant of Lazy SmallCheck, employing the same evaluation mechanism.

First, we compare their performance validating conjectures with simple preconditions.
Table 1 shows the number of test cases up to a given size, and the number of test cases
(for that size) for which the preconditions distinct and sorted hold. In other words, we
measured the density of the search space if restricted by some precondition, compared
to the unrestricted search space. For example, testing the proposition distinct xs =⇒
distinct (tl xs), the table shows how many test cases are generated by the naive exhaus-
tive testing and by the smart test generators. This already gives a rough estimate on the
possible improvement avoiding useless tests. Table 2 shows the run time4 to validate
properties with values up to a given size on some representative conjectures from Is-
abelle’s library with the precondition distinct (D1, D2, D3) and sorted (S1, S2, S3):

– D1: distinct xs =⇒ distinct (tl xs)
– D2: distinct xs =⇒ distinct (remove1 x xs)
– D3: distinct xs =⇒ distinct (zip xs ys)
– S1: sorted xs =⇒ sorted (remdups xs)
– S2: sorted xs =⇒ sorted (insort-insert x xs)
– S3: sorted xs∧ i≤ j∧ j < length xs =⇒ nth xs i≤ nth xs j

The numbers of D1 indicate the improvement using the smart test generators for distinct.
In case of D2, a more representative conjecture of the Isabelle’s theory of lists, we ob-
serve a similar behaviour. In D3, the exhaustive testing does not enumerate all pairs of

4 All tests ran on a Pentium DualCore P9600 2.6GHz with 4GB RAM using Poly/ML 5.4.1 and
Ubuntu GNU/Linux 11.04



Smart Testing of Functional Programs in Isabelle 165

Table 2. Run time in seconds for given sizes – E, N, S denote exhaustive testing, narrowing,
and smart generators, resp.; 0 denotes time < 50 ms, empty cells denote timeout after 1h; bold
numbers indicate the lowest run time

size
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

D1

E 0 0 0 0.3 3.2 38 509
N 0 0.1 0.4 3.5 32 364
S 0 0 0 0 0.2 0.7 3.8 22 135 862

D2

E 0 0 0 0.4 3.8 45 589
N 0 0.1 0.5 4.0 37 395
S 0 0 0 0.1 0.4 2.5 16 98 671

D3

E 0.1 4.3 155
N 0.9 17 446
S 0.1 4.3 157

S1

E 0 0 0 0.2 2.7 31 404
N 0 0 0 0.1 0.1 0.1 0.2 0.4 0.9 2.0 4.6 10 23 52 115 257 565 1238
S 0 0 0 0 0 0 0 0 0 0.1 0.2 0.3 0.8 1.7 3.6 7.8 17 36

S2

E 0 0 0 0.2 2.5 29 381
N 0 0.1 0.1 0.1 0.1 0.2 0.4 0.8 1.8 3.9 8.8 20 44 98 218 286 1063
S 0 0 0 0 0 0 0.1 0.1 0.2 0.5 1.1 2.5 5.5 12 28 61 135 292

S3

E 0 0 0 0.2 2.3 27 337
N 0 0 0.1 0.1 0.2 0.5 1.3 2.9 6.9 16 38 87 204 467 1064
S 0 0 0 0 0 0.1 0.1 0.2 0.4 0.9 2.2 5.1 12 26 59 136 311 708

lists for xs and ys, but only generates lists ys if the generated list xs is distinct. This
simple optimisation already reduces the number of tests dramatically, i.e., only 0.025
percent of all tests are rejected by the precondition. Due to this fact, using the smart
generator does not add any further significant improvement in the run time behaviour.
Hence our smart generators perform practically the same to the exhaustive testing. Sym-
bolic execution with narrowing performs worst due to its overhead in the execution in
all three cases. On the very sparse precondition, sorted xs, the improvements with smart
test data generators are even more apparent. For example, in S1, naive exhaustive test-
ing times out at size 15 (with a time limit of one hour), where the smart generators
can still enumerate lists up to size 20 within a second. Narrowing performs better than
exhaustive testing, but is still slower than the smart generators. These numbers show
that the test data generators outperform the naive exhaustive testing and the symbolic
narrowing-based testing.

Second, to show that this performance improvement also results in a direct gain
for our users, we apply the counterexample generators on faulty implementations of
typical functional data structures. We injected faults by adding typos into the correct
implementations of the delete operation of 2-3 trees, AVL trees, and red-black trees. By
adding typos, we create 10 different (possibly incorrect) versions of the delete operation
for each data structure. On 2-3 trees, we check two invariants of the delete operation,
keeping the tree balanced and ordered, i.e., balanced t =⇒ balanced (delete k t), and
ordered t =⇒ ordered (delete k t). With the 10 versions, this yields 20 tests, on which we
apply the different counterexample generators. Random testing (with 2,000 iterations



166 L. Bulwahn

for each size) finds errors in 5, and exhaustive testing in 7 of 20 tests within thirty
seconds. The smart generator finds errors in five more cases, uncovering 12 errors in
the 20 tests; the narrowing approach performs equally well. In principle, exhaustive
testing should find the errors eventually: so, on the five more intrinsic cases where the
generators perform well, we increased the time for naive exhaustive testing to finally
discover the fault – even after one hour of testing, exhaustive testing was not able to
detect them. Also increasing the iterations for random testing to 20,000 iterations, it
still discovers only five faults. This shows that using the test data generators in this case
is clearly superior to naive exhaustive testing. In the eight cases, where all approaches
found no fault, even testing more thoroughly for an hour did not reveal any further
errors – most probably the property still holds, as the randomly injected faults do not
necessarily affect the invariant.

On AVL trees, we observe a similar behaviour. When checking the two invariants
of its delete operation on 10 modified versions, random testing uncovers 5, exhaustive
testing 6, the smart generators and narrowing-based approach 11 errors in 20 cases. On
red-black trees, the invariant was formulated in a way by the user that our data flow
analysis cannot discover a reasonable ground data flow and therefore the synthesized
generators perform very poorly. Here, the narrowing-based testing clearly benefits from
its usage of symbolic values.

Beyond data structures, we also check a hotel key card system in Isabelle by
Nipkow [16] which itself was inspired by a model from Jackson [12]. The faulty sys-
tem contains a tricky man-in-the-middle attack, which is only uncovered by a trace of
length 6. The formalisation uses a restrictive predicate that describes in which order
specific events can occurs. Using the smart generators, we can find the attack within a
few seconds. Synthesizing a test data generator for these valid traces requires the pre-
processing techniques (§4), i.e., we can eliminate existential quantifiers, which render
it non-executable for the random and exhaustive testing. Even after manual refinements
to obtain an executable reformulation, random and exhaustive testing fail to find the
counterexample within ten minutes of testing. The narrowing-based testing can han-
dle the existential quantifiers in principle, but practically it performs badly with the
deeply nested existential quantifiers in the specification, rendering it impossible to find
the counterexample. After manual rewriting to eliminate the existentials, we also can
obtain a counterexample with this approach within a few seconds.

8 Conclusion

This counterexample generator described in this paper is included in the current Isabelle
development version and can be invoked by Isabelle’s users to validate their specifica-
tions before proving them correct. It complements the existing naive exhaustive and
narrowing-based testing techniques by combining the strengths of both: it reduces the
number of tests, as narrowing-based testing does, and it executes tests very fast, as the
naive exhaustive testing does.

Acknowledgements. I would like to thank Andrei Popescu, Sascha Boehme, Tobias
Nipkow, Alexander Krauss, Thomas Tuerk, Brian Huffman, Jasmin Blanchette and the
anonymous referees for comments on earlier versions of this paper.



Smart Testing of Functional Programs in Isabelle 167

References

1. Antoy, S., Echahed, R., Hanus, M.: A needed narrowing strategy. J. ACM 47, 776–822 (2000)
2. Berghofer, S., Bulwahn, L., Haftmann, F.: Turning Inductive into Equational Specifications.

In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674,
pp. 131–146. Springer, Heidelberg (2009)

3. Berghofer, S., Nipkow, T.: Random Testing in Isabelle/HOL. In: SEFM 2004, pp. 230–239.
IEEE Computer Society (2004)

4. Blanchette, J.C., Nipkow, T.: Nitpick: A Counterexample Generator for Higher-Order Logic
Based on a Relational Model Finder. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010.
LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010)

5. Bulwahn, L.: Smart test data generators via logic programming. In: ICLP 2011 (Technical
Communications). Leibniz Int. Proc. in Informatics, vol. 11, pp. 139–150. Schloss Dagstuhl,
Leibniz-Zentrum für Informatik ( (2011)

6. Carlier, M., Dubois, C., Gotlieb, A.: Constraint Reasoning in FocalTest. In: ICSOFT 2010
(2010)

7. Christiansen, J., Fischer, S.: EasyCheck — Test Data for Free. In: Garrigue, J.,
Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 322–336. Springer, Heidel-
berg (2008)

8. Claessen, K., Hughes, J.: QuickCheck: A lightweight tool for random testing of Haskell
programs. In: ICFP 2000, pp. 268–279. ACM SIGPLAN (2000)

9. Fischer, S., Kuchen, H.: Systematic generation of glass-box test cases for functional logic
programs. In: PPDP 2007, pp. 63–74. ACM (2007)

10. Haftmann, F., Nipkow, T.: Code Generation via Higher-Order Rewrite Systems. In: Blume,
M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009, pp. 103–117. Springer,
Heidelberg (2010)

11. Hanus, M.: Multi-paradigm Declarative Languages. In: Dahl, V., Niemelä, I. (eds.) ICLP
2007. LNCS, vol. 4670, pp. 45–75. Springer, Heidelberg (2007)

12. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT Press (2006)
13. Lindblad, F.: Property directed generation of first-order test data. In: The Eigth Symposium

on Trends in Functional Programming (2007)
14. Mellish, C.S.: The automatic generation of mode declarations for Prolog programs. Technical

Report 163, Department of Artificial Intelligence (1981)
15. Naish, L.: Adding Equations to NU-Prolog. In: Małuszyński, J., Wirsing, M. (eds.) PLILP

1991. LNCS, vol. 528, pp. 15–26. Springer, Heidelberg (1991)
16. Nipkow, T.: Verifying a Hotel Key Card System. In: Barkaoui, K., Cavalcanti, A., Cerone,

A. (eds.) ICTAC 2006. LNCS, vol. 4281, pp. 1–14. Springer, Heidelberg (2006)
17. Overton, D., Somogyi, Z., Stuckey, P.J.: Constraint-based mode analysis of mercury. In:

PPDP 2002, pp. 109–120. ACM (2002)
18. Rouveirol, C.: Flattening and Saturation: Two Representation Changes for Generalization.

Mach. Learn. 14(2), 219–232 (1994)
19. Runciman, C., Naylor, M., Lindblad, F.: SmallCheck and Lazy SmallCheck: automatic ex-

haustive testing for small values. In: Haskell 2008, pp. 37–48. ACM (2008)
20. Smaus, J.G., Hill, P.M., King, A.: Mode Analysis Domains for Typed Logic Programs. In:

Bossi, A. (ed.) LOPSTR 1999. LNCS, vol. 1817, pp. 82–101. Springer, Heidelberg (2000)
21. Weber, T.: Bounded model generation for Isabelle/HOL. In: PDPAR 2004. Electronic Notes

in Theoretical Computer Science, vol. 125(3), pp. 103–116. Elsevier (2005)
22. Wenzel, M., Paulson, L.C., Nipkow, T.: The Isabelle Framework. In: Mohamed, O.A.,

Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 33–38. Springer, Heidelberg
(2008)



Monitor-Based Statistical Model Checking
for Weighted Metric Temporal Logic�

Peter Bulychev1, Alexandre David1, Kim Guldstrand Larsen1,
Axel Legay2, Guangyuan Li3, Danny Bøgsted Poulsen1, and Amelie Stainer4

1 Computer Science, Aalborg University, Denmark
2 INRIA/IRISA, Rennes Cedex, France

3 State Key Laboratory of Computer Science, Institute of Software, Chinese
Academy of Sciences, Beijing, P.R. of China
4 University of Rennes 1, Rennes, France

Abstract. We present a novel approach and implementation for ana-
lysing weighted timed automata (WTA) with respect to the weighted
metric temporal logic (WMTL≤). Based on a stochastic semantics of
WTAs, we apply statistical model checking (SMC) to estimate and test
probabilities of satisfaction with desired levels of confidence. Our ap-
proach consists in generation of deterministic monitors for formulas in
WMTL≤, allowing for efficient SMC by run-time evaluation of a given
formula. By necessity, the deterministic observers are in general approx-
imate (over- or under-approximations), but are most often exact and
experimentally tight. The technique is implemented in the new tool
Casaal. that we seamlessly connect to Uppaal-smc. in a tool chain.
We demonstrate the applicability of our technique and the efficiency of
our implementation through a number of case-studies.

1 Introduction

Model checking (MC) [14] is a widely used approach to guarantee correctness
of a system by checking that its model satisfies a given property. A typical
model checking algorithm explores a state space of a model and tries to prove
or disprove that the property holds on the model.
Despite a large and growing number of successful applications in industrial

case studies, the MC approach still suffers from the so-called state explosion
problem. This problem manifests itself in the form of unmanageably large state
spaces of models with large number of components (i.e. number of variables,
parallel components, etc). The situation is even worse when a system under
analysis is hybrid (i.e. it possesses both continuous and discrete behaviors), be-
cause a state space of such models may lack finite representation [2]. Another
challenge for MC is to analyze stochastic systems, i.e. systems with probabilistic
assumptions for their behavior.
� The paper is supported by the Danish National Research Foundation, the Na-
tional Natural Science Foundation of China (Grant No.61061130541) for the Danish-
Chinese Center for Cyber Physical Systems and VKR Center of Excellence MT-LAB.

N. Bjørner and A. Voronkov (Eds.): LPAR-18, LNCS 7180, pp. 168–182, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Monitor-Based Statistical Model Checking 169

One of the ways to avoid these complexity and undecidability issues is to use
statistical model checking (SMC) approach [19]. The main idea of the latter is to
observe a number of simulations of a model and then use results from statistics
(e.g. sequential analysis) to get an overall estimate of a system behavior.
In the present paper we consider a problem of computing the probability

that a random run of a given weighted timed automaton (WTA) satisfies a
given weighted metric temporal logic formula (WMTL≤). Solving this problem
is of great practical interest since WTA are as expressive as general linear hy-
brid automata [2], a formalism which has proved to be very useful for modeling
real-world hybrid and real-time systems. Moreover, WMTL≤ [7] is not only a
weighted extension of the well established LTL but can also be seen as an ex-
tension of MTL [15] to hybrid systems. However, the model checking problem
for WMTL≤ is known to be undecidable [7], and in our paper we propose an
approximate approach that computes a confidence interval for the probability.
In most of the cases this confidence interval can be made arbitrary small.

x<=15

x==20

x>=4

x>=2

x:=0

x:=0, c:=c+5.0

c’==4
x<=15

c’==2
x<=20

c’==3
x<=10

c’==0
x<=9

ok

ok

ok

expensive

cheap

problem

(c0<=40)&&
(t0<=10)

(c0<=40)&&
(t0<=10)

(t0>10)||
(c0>40)

(t0>10)||(c0>40)

(t1<=9)
t1<=9

t1>9

t1>9

t0:=0, c0:=0t1:=0

t0:=0, c0:=0

Accept

Reject

problemok

ok

problem

problem

ok

problem
ok

problem

ok

Fig. 1. A model (left) and deterministic monitor (right) for the repair problem

As an example consider a never-ending process of repairing problems [7],
whose Weighted Timed Automata model is depicted at Fig. 1 (left). The re-
pair of a problem has a certain cost, captured in the model by the clock c1. As
soon as a problem occurs (modeled by the transition labeled by action problem)
the value of c grows with rate 3, until actual cheap (rate 2) or expensive (rate
4) repair is taking place. Clock x grows with rate 1 (it’s default behavior un-
less other rate is specified). Being a Weighted Timed Automaton, this model
is equipped with a natural stochastic semantics [10] with a uniform choice on
possible discrete transitions and uniformly selected delays in locations.
Now consider that we want to express the property that a path goes from ok

back to itself in time less than 10 time units and cost less than 40. This can be
formalized by the following WMTL≤ formula:

okUτ≤9(problem∧ (¬ok Uτ≤10 ok) ∧ (¬ok Uc≤40 ok))

1 we will (mis)use the term “clock” from timed automata, though in the setting of
WTAs the clocks are really general real-valued variables.



170 P. Bulychev et al.

Here, the MITL≤-formula ϕ1U
c
≤dϕ2 is satisfied by a run if ϕ1 is satisfied on the

run until ϕ2 is satisfied, and this will happen before the value of the clock c
increases with more than d starting from the beginning of the run (τ is a special
clock that always grows with rate 1).
In order to estimate the probability that a random run of a model satis-

fies a given property, our approach will first construct deterministic monitoring
weighted timed automata for this property. In fact, it is not always possible to
construct an exact deterministic observer for a property, thus our tool can result
in deterministic under- and over-approximations. For our example, the tool con-
structed the exact deterministic monitor presented in Fig. 1 (right). Here rates
of a monitoring automaton are defined by the rates of the automaton being
monitored, i.e. the rate of c0 is equal to the rate of c.
The constructed monitoring WTA permits the SMC engine of Uppaal to use

run-time evaluation of the property in order to efficiently estimate the probability
that runs of the models satisfy the given property. In our example the Uppaal-
smc. returns the 95% confidence interval [0.215, 0.225]. If none of the under- and
over-approximation monitors are exact, then we use both of them to compute
the confidence interval.
Our contribution is twofold. First, we are the first to extend statistical model

checking to the WMTL≤ logic. The closest logic that has been studied so far
is the strictly less expressive MITL≤, that does not allow to use energy clocks
in the U operator. Second, our monitor-based approach works on-the-fly and
can terminate a simulation as soon as it may conclude that a formula will be
satisfied (or violated) by the simulation. Other statistical model checking algo-
rithms that deal with linear-time properties (cf. [1,18,19,20]) require a posterior
(and expensive) check after a complete simulation of a fixed duration has been
generated.

2 Weighted Timed Automata and Metric Temporal Logic

In this section we describe weighted timed automata (WTA) and weighted metric
temporal logic (WMTL≤) as our modeling and specification formalisms. A notion
of monitoring weighted timed automata (MWTA) is used to define automatically
constructed (deterministic) observers for WMTL≤ properties.

2.1 Weighted Timed Automata

Let C be a set of clocks. A clock bound over C has the form c ∼ n where c ∈ C,
∼∈ {<,≤,≥, >} and n ∈ Z≥0. We denote the set of all possible clock bounds
over C by B(C). A valuation over C is a function v : C → IR≥0, and a rate
vector is a function r : C → Q. We let V(C) (R(C), respectively) to be all clock
valuations (rates) over C.



Monitor-Based Statistical Model Checking 171

Definition 1. A Weighted Timed Automaton2 (WTA) over alphabet A is a
tuple (L, 0, Ci, Co, E,W, I,R) where:

– L is a finite set of locations,
– 0 ∈ L is the initial location,
– Ci and Co are finite set of real-valued variables called internal clocks and
observable clocks, respectively,
– E ⊆ L×A× 2B(Ci∪Co) × 2Ci × L is a finite set of edges,
– W : E → R(Ci ∪ Co) assigns weights to edges, weights of observable clocks
should be non-negative (i.e. W (e)(c) ≥ 0 for any e ∈ E and c ∈ Co),
– I : L→ 2B(Ci∪Co) assigns an invariant to each location,
– R : L → R(Ci ∪ Co) assigns rates to the clocks in each location, rates of
observable clocks should be non-negative.

If δ ∈ IR≥0, then we define v + δ to be equal to the valuation v′ such, that for
all c ∈ C we have v′(c) = v(c) + δ. If r is a rate vector, then v + r · δ is the
valuation v′ such that for all clocks c in C, v′(c) = v(c) + r(c) · δ. The valuation
that assigns zero to all clocks is denoted by 0. Given Y ⊆ C, v[Y = 0] is the
valuation equal to 0 over Y and equal to v over C \ Y . We say, that a valuation
v satisfies a clock bound b = c ∼ n (denoted v � b), iff v(c) ∼ n. A valuation
satisfies a set of clock bounds if it satisfies all of them or this set is empty. A
state (l, v) of a WTA consists of a location l ∈ L and a valuation v ∈ V(Ci∪Co).
In particular, the initial state of the WTA is (0,0). From a state a WTA can
either delay for some time δ or it can perform a discrete action a, the rules are
given below:

– (, v)
δ−→ (, v′) if v′ = v +R() · δ and v′ � I().

– (, v)
a−→ (′, v′) if v � g and there exists an edge e ∈ E such that e =

(, g, a, Y, r, ′), v′ = v[Y = 0] +W (e) · 1 and v′ � I(′).

An (infinite) weighted word over actions A and clocks C is a sequence w =
(a0, v0)(a1, v1) . . . of pairs of actions ai ∈ A and valuations vi ∈ V(C). For
i ≥ 0, we denote by wi the weighted word wi = (ai, vi)(ai+1, vi+1) . . . .

A WTA A = (L, 0, Ci, Co, E,W, I,R) over A generates a weighted word
w = (a0, v0)(a1, v1) . . . over actions A and observable clocks Co, iff v0 = 0 and
there exists a sequence of transitions

(0, v
′
0)

δ0−→ (0, v
′′
0 )

a0−→ (1, v
′
1)

δ1−→ . . .
an−−→ (n+1, v

′
n+1) . . . ,

and for any i the valuation vi is a projection of v′i to Co, i.e. vi(c) is equal to
v′i(c) for any observable clock c ∈ Co.
Note, that since observable clocks are never reset and grow only with positive

rates, the values of observable clocks can not decrease in a word generated by a

2 In the classical notion of priced timed automata [6,4] cost-variables (e.g. clocks where
the rate may differ from 1) may not be referenced in guards, invariants or in resets,
thus making e.g. optimal reachability decidable. This is in contrast to our notion of
WTA, which is as expressive as linear hybrid systems [8].



172 P. Bulychev et al.

WTA. In fact, we restrict ourselves to WTAs that generate cost-divergent words
(i.e. for any observable clock c and constant k ∈ IR≥0 there is vi such, that vi(c) >
k). If we consider that the WTA in Fig. 1(left) has only one observable clock c,
then this WTA can generate a weighted word (ok, {c �→ 2.0}), (problem, {c �→
3.1}), (cheap, {c �→ 4.2}), . . . .
We let L(A) denote the set of all weighted words generated by an WTA A

and refer to it as the language of A.
A network of Weighted Timed Automata is a parallel composition of several

WTA that have disjoint set of clocks and same set of actionsA. The automata are
synchronized regarding discrete transitions such that if one automata performs a
transition a−→ all other also must perform an a−→ transition. The notion of language
recognized by WTA is naturally extended to the networks of Weighted Timed
Automata.
In [10] we proposed a stochastic semantics for WTA, i.e. a probability measure

over the set of accepted weighted words L(A). The non-determinism regarding
discrete transitions for a single WTA is resolved using a uniform probabilistic
choice among the possible transitions. Non-determinism regarding delays from
a state (, v) of a single WTA is resolved using a density function μ(�,v) over
delays in R≥0 being either a uniform or an exponential distribution depending
on whether the invariant of  is empty or not.
The stochastic semantics for networks of WTA is then given in terms of repeated
races between the component WTAs of the network: before a discrete transition
each WTA chooses a delay according to its delay density function; then the WTA
with a smallest delay wins the race and chooses probabilistically the action that
the network must perform.

2.2 Monitoring Weighted Timed Automata

A monitoring weighted timed automaton (MWTA) AM is a special kind of WTA
used to define allowed behavior of a given WTA A (or a network of WTAs): a
weighted word generated by A is fed as input to AM for acceptance. For this, the
actions of A and AM coincide and there is a correspondence between the mon-
itoring clocks of AM and the observable clocks A ensuring that corresponding
clocks grow with the same rate.

Definition 2. A Monitoring Weighted Timed Automaton (MWTA) over the
clocks C and the actions A is a tuple (L, 0, a, CM , E,m) where:

– L is a finite set of locations,
– 0 ∈ L is the initial location,
– a ∈ L is the accepting location,
– CM is a finite set of local clocks,
– E ⊆ L×A× 2B(CM) × 2CM × L is a finite set of edges,
– m : CM → C gives the correspondence of local clocks and C.

An MWTA is called deterministic if for any location l ∈ L, action a ∈ A and
valuation v ∈ V(CM ) there exist not more than one edge (l, a, g, Y, l′) ∈ E such
that v |= g.



Monitor-Based Statistical Model Checking 173

An MWTA AM = (L, 0, a, CM , E,m) over clocks C and actions A accepts a
weighted word (a0, v0)(a1, v1) . . . over the same C and A, iff there exists a finite
sequence (l0, v′0), (l1, v

′
1), . . . , (ln, v

′
n) of states of AM such, that:

– v′0(c) = v0(m(c)) for any clock c ∈ CM ,
– for any i there exists an edge (li, ai, gi, Yi, li+1) ∈ E such, that:

• v′i |= gi and
• for every clock c ∈ CM , if c ∈ Yi then v′i+1(c) = 0, and otherwise
v′i+1(c) = v′i(c) + (vi+1(m(c)) − vi(m(c))),

– ln = la is the accepting location of A.

Thus, after reading an element of an input weighted word, a local clock c of the
MWTA is either reset, or it grows with the same rate as the corresponding clock
m(c) in the input word.

2.3 Weighted Metric Temporal Logic WMTL≤

Definition 3. [7] A WMTL≤ formula ϕ over atomic propositions P and clocks
C is defined by the grammar

ϕ ::= p | ¬ϕ |ϕ1 ∧ ϕ2 |Oϕ |ϕ1U
c
≤dϕ2

where p ∈ P , d ∈ N, and c ∈ C.

Let false be an abbreviation for (p∧¬p), and true be an abbreviation for ¬false.
The other commonly used operators in WMTL≤ can be defined by the following
abbreviations: (ϕ1 ∨ ϕ2) = ¬(¬ϕ1 ∧ ¬ϕ2), (ϕ1 → ϕ2) = (¬ϕ1) ∨ ϕ2, �c

≤dϕ =
trueUc≤dϕ, �

c
≤dϕ = ¬�c

≤d¬ϕ, and ϕ1R
c
≤dϕ2 = ¬(¬ϕ1U

c
≤d¬ϕ2), where R is the

“release” operator. We also assume, that there always exists a special clock τ ∈ C
(that grows with a rate 1 in an automaton being monitored).
Assuming that P are atomic propositions over actions A, WMTL≤ formulas

are interpreted over weighted words (we use the pointwise semantics). For a
given weighted word w = (a0, v0)(a1, v1)(a2, v2) . . . over A and C and WMTL≤
formula ϕ over P and C, the satisfaction relation wi |= ϕ is defined inductively:

1. wi |= p iff ai |= p
2. wi |= ¬ϕ iff wi � ϕ
3. wi |= Oϕ iff wi+1 |= ϕ
4. wi |= ϕ1 ∧ ϕ2 iff wi |= ϕ1 and wi |= ϕ2

5. wi |= ϕ1U
c
≤dϕ2 iff there exists j such that j ≥ i, wj |= ϕ2, vj(c)− vi(c) ≤ d,

and wk |= ϕ1 for all k with i ≤ k < j.

We say, that a weighted word w satisfies ϕ, iff w0 |= ϕ, and denote by L(ϕ) the
set of all weighted words that are satisfied by ϕ. ϕ1 and ϕ2 are equivalent if they
are satisfied by the same weighted words, in which case we write ϕ1 ≡ ϕ2.
Given the stochastic semantics of a WTA A, and semantics of WMTL≤ for-

mula ϕ, we can define Pr[A |= ϕ] to be the probability that a random run of A
satisfies ϕ. This probability is well-defined because L(A) ∩ L(ϕ) is a countable
union and intersection of measurable sets and thus it is measurable itself.



174 P. Bulychev et al.

3 From Formulas to Monitors

In this section we present a novel procedure for translating WMTL≤ formulas
into equivalent MWTA monitors, providing an essential and efficient component
of our tool-chain. However, to enable monitor-based, statistical model checking
it is essential that the generated MWTA is deterministic. Unfortunately, this
might not always be possible as there are WMTL≤ formulas for which no equiv-
alent deterministic MWTA exist3. As a remedy, we describe how basic syntactic
transformations prior to translation allow us to obtain deterministic over- and
under-approximating MWTAs for any given formula ϕ. In Section 5, we shall
see that these approximations are tight and often exact.

3.1 Closures and Extended Formulas

In this section, we assume that ϕ is a WMTL≤ formula over propositions P
and (observable) clocks C and has been transformed into negative normal form
(NNF), i.e. an equivalent formula in which negations are applied to the atomic
propositions only. We use Sub(ϕ) to denote all the sub-formulas of ϕ.
In order to further expand ϕ into a disjunctive normal form, we introduce for

each φ1U
c
≤dφ2 ∈ Sub(ϕ) and each φ1Rc≤dφ2 ∈ Sub(ϕ), one local clock x and two

clock bounds x ≤ d and x > d to express some timing information related to
φ1U

c
≤dφ2 and φ1R

c
≤dφ2. Also, we introduce auxiliary formulas φ1U

c
≤d−xφ2 and

φ1R
c
≤d−xφ2 to express some requirements that should be satisfied in the future

when we try to guarantee φ1U
c
≤dφ2 ∈ Sub(ϕ) or φ1Rc≤dφ2 ∈ Sub(ϕ) is true in

the current state.
We define Xϕ = {xφ1Uc≤d

φ2 |φ1Uc≤dφ2 ∈ Sub(ϕ)} ∪ {xφ1Rc≤d
φ2 |φ1Rc≤dφ2 ∈

Sub(ϕ)} to be the set of all local clocks for ϕ, where xφ1Uc
≤d

φ2 is the clock assigned
to φ1U

c
≤dφ2 and xφ1Rc≤d

φ2 is the local clock assigned to φ1R
c
≤dφ2. We call xφ1Uc≤d

φ2

a local clock of U≤-type, and xφ1Rc≤d
φ2 a local clock of R≤-type. The mapping

m from local clocks Xϕ to observable clocks C is defined by m(xφ1Uc
≤d

φ2) = c

and m(xφ1Rc≤d
φ2) = c. The closure of ϕ, write as CL(ϕ), is now defined by the

following rules:

1. true ∈ CL(ϕ), Sub(ϕ) ⊆ CL(ϕ)
2. If φ1U

c
≤dφ2 ∈ Sub(ϕ) and x is the local clock assigned to φ1Uc≤dφ2, then

x ≤d, x >d, φ1Uc≤d−xφ2 ∈ CL(ϕ)
3. If φ1R

c
≤dφ2 ∈ Sub(ϕ) and x is the local clock assigned to φ1Rc≤dφ2, then

x ≤d, x >d, φ1Rc≤d−xφ2 ∈ CL(ϕ)
4. If Φ1, Φ2 ∈ CL(ϕ), then Φ1 ∧ Φ2, Φ1 ∨ Φ2 ∈ CL(ϕ)

Obviously, CL(ϕ) has only finitely many different non-equivalent formulas.
For a local clock x, we use rst(x) to represent that x will be reset at current

step and unch(x) to represent that x will not be reset at current step. The set of
extended formulas for ϕ, write as Ext(ϕ), is now defined by the following rules:
3 For instance, �τ

≤1(p ∧�τ
≤1(¬r)∧�τ

≤1(q)) is an example of a formula not equivalent
to any deterministic MWTA.



Monitor-Based Statistical Model Checking 175

1. If Φ ∈ CL(ϕ), then Φ, OΦ ∈ Ext(ϕ)
2. If x ∈ Xϕ is a local clock of U≤-type, then unch(x) ∈ Ext(ϕ)
3. If x ∈ Xϕ is a local clock of R≤-type, then rst(x) ∈ Ext(ϕ)
4. If Φ1, Φ2 ∈ Ext(ϕ), then Φ1 ∧ Φ2, Φ1 ∨ Φ2 ∈ Ext(ϕ)

Extended formulas can be interpreted using extended weighted words. An ex-
tended weighted word ω = (a0, v0, ν0)(a1, v1, ν1)(a2, v2, ν2) . . . is a sequence where
w = (a0, v0)(a1, v1)(a2, v2) . . . is a weighted word over 2P and C, and for ev-
ery i ∈ N, νi is a clock valuation over Xϕ such that for all x ∈ Xϕ, either
νi+1(x) = vi+1(m(x)) − vi(m(x)) or νi+1(x) = νi(x) + vi+1(m(x)) − vi(m(x)).
The semantics for extended formulas is naturally induced by the semantics of

WMTL≤ formulas:

Definition 4. Let ω = (a0, v0, ν0)(a1, v1, ν1)(a2, v2, ν2) . . . be an extended weigh-
ted word and Φ ∈ Ext(ϕ). The satisfaction relation ωi |=e Φ is inductively defined
as follows:

1. ωi |=e x ∼ d iff νi(x) ∼ d
2. ωi |=e rst(x) iff νi+1(x) = vi+1(m(x)) − vi(m(x))
3. ωi |=e unch(x) iff νi+1(x) = νi(x) + vi+1(m(x)) − vi(m(x))
4. ωi |=e φ iff wi |= φ, if φ ∈ Sub(ϕ)
5. ωi |=e ϕ1U

c
≤d−xϕ2 iff there exists j such that j ≥ i, wj |= ϕ2, vj(c)−vi(c) ≤

d− νi(x), and wk |= ϕ1 for all k with i ≤ k < j
6. ωi |=e ϕ1R

c
≤d−xϕ2 iff for all j ≥ i such that vj(c)− vi(c) ≤ d− νi(x), either

wj |= ϕ2 or there exists k with i ≤ k < j and wk |= ϕ1

7. ωi |=e Φ1 ∧ Φ2 iff ωi |=e Φ1 and ωi |=e Φ2

8. ωi |=e Φ1 ∨ Φ2 iff ωi |=e Φ1 or ωi |=e Φ2

9. ωi |=e OΦ iff ωi+1 |=e Φ

ωi is a model of Φ if ωi |=e Φ and two extended WMTL≤-formulas are said
equivalent if they have exactly the same models.

3.2 Constructing Non-deterministic Monitors

As in the construction of Büchi automata from LTL formulas, we will break
a formula into a disjunction of several conjunctions [9]. Each of the disjuncts
corresponds to a transition of a resulting observer automaton and specifies the
requirements to be satisfied in the current and in the next states. In the rest
of this section, we use rst({x1, x2, . . . , xn}) and unch({y1, y2, . . . , yn}) to denote
the formula of rst(x1) ∧ rst(x2) ∧ . . . ∧ rst(xn) and the formula of unch(y1) ∧
unch(y2)∧. . .∧unch(yn) respectively. A basic conjunction is an extended formula
of the form:

α ∧ g ∧ rst(X) ∧ unch(Y ) ∧O(Ψ),

where α is a conjunction of literals (a literal is a proposition or its negation), g
is a conjunction of clock bounds, X is a set of local clocks of R≤-type, Y is a set
of local clocks of U≤-type, and Ψ is a formula in CL(ϕ). α∧g∧ rst(X)∧unch(Y )



176 P. Bulychev et al.

specifies the requirements to be satisfied in the current state and Ψ specifies the
requirements in the next state. The next Lemma 1 and main Theorem 1 provides
the construction of a monitor from a formula.

Lemma 1. Each formula in CL(ϕ) can be transformed into a disjunction of
several basic conjunctions by using the following rules and Boolean equivalences.

1. f Uc≤d g = g ∨ (f ∧O((x≤d) ∧ (f Uc≤d−xg))), where x is the clock assigned to
f Uc≤d g

2. f Uc≤d−x g = g ∨ (f ∧ unch(x) ∧O((x≤d) ∧ (f Uc≤d−xg)))
3. f Rc≤d g = g ∧ (f ∨ (rst(x) ∧O(((x≤d) ∧ (f Rc≤d−xg)) ∨ (x>d)))), where x is
the clock assigned to f Rc≤d g

4. f Rc≤d−x g = g ∧ (f ∨O(((x≤d) ∧ (f Rc≤d−xg)) ∨ (x>d)))
5. (Of) ∧ (Og) = O(f ∧ g)
6. (Of) ∨ (Og) = O(f ∨ g)

Theorem 1. Let ϕ be a WMTL≤-formula over the propositions P and the clocks
C and is in NNF. Let the MWTA Aϕ= (L, 0, a, CM , E,m) over the clocks C
and the actions A = 2P be defined as follows:

– L = {{φ} |φ ∈ CL(ϕ) } is a finite set of locations, and 0 = {ϕ} is the initial
location;
– a = {true} is the accepting location;
– CM = Xϕ is the set of all local clocks for ϕ;
– ({f1}, a, g, λ, {f2}) ∈ E iff α ∧ g ∧ rst(X) ∧ unch(Y ) ∧O(f2) is a basic con-
junction of f1 and that a satisfies α, and for each x ∈ Xϕ of U≤-type, x ∈ λ
iff x /∈ Y , and for each x ∈ Xϕ of R≤-type, x ∈ λ iff x ∈ X;
– m is defined by m(xφ1Uc≤d

φ2) = c and m(xφ1Rc≤d
φ2) = c.

Then L(ϕ) = L(Aϕ).

Example 1. Fig.2a is a MWTA obtained with our approach for f = (�x
≤1p) ∨

(�y
≤2q) = (trueUx≤1p) ∨ (falseRy≤2q).

3.3 Constructing Deterministic Monitors

The construction of section 3.2 might produce non-deterministic automata. In
fact, as stated earlier, there exist WMTL≤ formulas for which no equivalent
deterministic MWTA exists. To get deterministic MWTA for WMTL≤-formulas,
we further translate formulas in disjunctive form into the following deterministic
form by repeated use of the logical equivalence p⇔ (p ∧ q) ∨ (p ∧ ¬q).

F =

n∨
i=1

(
αi ∧ gi ∧

mi∨
k=1

(rst(Xik) ∧ unch(Yik) ∧O(Ψik))
)

where for all i ∈ {1, . . . , n}: mi is a positive integer, Xik ⊆ Xϕ is a set of local
clocks of R≤-type and Yik ⊆ Xϕ is a set of local clocks of U≤-type, and for all
i �= j: αi ∧ gi ∧ αj ∧ gj is false.



Monitor-Based Statistical Model Checking 177

f

accept

p f1

!p ,  x0 :=0

f2

q&!p,  y0:=0

p & ( x 0 < = 1 )

!p&(x0<=1)  

! ( y 0 < = 2 )

q & ( y 0 < = 2 )

(a) Non-deterministic monitor

f

accept

p

f1

!p&!q,  x0:=0 f1 |  f2

q&!p ,  x0 :=0 ,y0 :=0

p & ( x 0 < = 1 )

!p&(x0<=1)
! ( y 0 < = 2 ) |

(p&(x0<=1) )

!p&!q&(x0<=1)&(y0<=2)  

q&!p&(x0<=1)&(y0<=2)  

f2

q&! (x0<=1)&(y0<=2)

! ( y 0 < = 2 )

q & ( y 0 < = 2 )

(b) Deterministic under-approximation monitor

Fig. 2. Monitoring WTA for f ≡ (�x
≤1p)∨(�y

≤2q), with f1 ≡ (x0 ≤ 1)∧(true Ux
≤1−x0

p)
and f2 ≡ ((y0 ≤ 2) ∧ (false Ry≤2−y0

q)) ∨ (y0 > 2)

Using the facts that O distributes over ∨, and rst(X) and unch(X) are mono-
tonic in X , the following formulas are obviously strengthened (Fu) respectively
weakened (F o) versions of F :

Fu =

n∨
i=1

(
αi ∧ gi ∧ rst(

mi⋃
k=1

Xik) ∧ unch(
mi⋃
k=1

Yik) ∧O(
mi∨
k=1

Ψik)
)

F o =

n∨
i=1

(
αi ∧ gi ∧ rst(

mi⋂
k=1

Xik) ∧ unch(
mi⋂
k=1

Yik) ∧O(
mi∨
k=1

Ψik)
)

Interestingly, by simply applying the construction of Theorem 1 to Fu (F o) we
immediately obtain a deterministic under-approximating (over-approximating)
MWTA Au

ϕ (A
o
ϕ) for ϕ. Moreover, if during the construction of A

u
ϕ we see that

Fu is always semantically equivalent to F , then Au
ϕ is an exact determinization

of ϕ, i.e. L(Au
ϕ) = L(ϕ) (the same is true for overapproximation).

Example 2. (continued) Fig.2b is the under-approximation deterministic MWTA
for f = (�x

≤1p) ∨ (�y
≤2q).

4 The Tool Chain

Figure 3 provides an architectural view of our tool chain. The tool chain takes as
input a WMTL≤ formula ϕ, a WTA model M , as well as statistical parameters
ε, α for controlling precision and confidence level. As a result a confidence interval
for the probability Pr[M |= ϕ] with the desired precision and confidence level is
returned.



178 P. Bulychev et al.

ϕ

Tool chain

Casaal. Uppaal-smc.

Ao
ϕ

Aϕ

Au
ϕ

M ε,α

Pr[M |= ϕ]

Fig. 3. Tool chain architecture

Casaal. The tool chain includes the new tool componentCasaal. for generating
monitors. The tool is implemented in C++ and is build on top of the Spot4 open-
source library for LTL to Büchi automata translation. We also use Buddy5 BDD
package to handle operations over Boolean formulas. Given a WMTL≤ formula
ϕ, Casaal. may construct an exact monitoring WTA Aϕ, as well as two –
possibly approximating – monitoring WTAs, Au

ϕ and A
o
ϕ. The tool also reports

if one of these approximations is exact (i.e. recognizes exactly the language of
ϕ). Table 1 demonstrates some experimental results for Casaal.. The formulas
were also used in [13] and for comparison we list their results as well.

Table 1. Experimental results for WMTL≤ formulas

formula automaton states trans time(s)

pUτ≤1(qU
τ
≤1(rU

τ
≤1s))

nondet 5 14 0.02
under 9 58 0.02
over 9 56 0.04
Geilen 14 30

(p → τ
≤5q)U

τ
≤100�

τ
≤5¬p

nondet 7 19 0.01
under 9 32 0.01
over 9 32 0.01
Geilen 21 64

(((pUτ
≤4q)U

τ
≤3r)U

τ
≤2s)U

τ
≤1t)

nondet 17 121 0.02
under 17 121 0.03
over 17 121 0.03
Geilen 60 271

Uppaal-smc. [10,11] is a tool that allows to estimate and test Pr[M |= φ], i.e.
the probability that a random run of a given WTA model M satisfies φ, where
φ is a WMTL≤ formula restricted to the form �c

≤dψ and ψ is a state predicate.
Estimation is performed by generating a number of random simulations of M ,
where each simulation stops when either it reaches a state when ψ is satisfied,
or c ≤ d is violated.

Combining Casaal. and Uppaal-smc. Let us describe how we use Uppaal-
smc. together with the Casaal. tool to estimate the probability that a random
run of a WTA modelM satisfies a general WMTL≤ property φ, i.e. Pr[M |= φ].
Let us first assume, that one of two deterministic approximations for ϕ re-

turned by Casaal. is exact. This means, that we have MWTA Adet
ϕ = (L, 0, a,

4 http://spot.lip6.fr/wiki/
5 http://sourceforge.net/projects/buddy/develop

http://spot.lip6.fr/wiki/
http://sourceforge.net/projects/buddy/develop 


Monitor-Based Statistical Model Checking 179

CM , E,m) such that L(Adet
ϕ ) = L(ϕ). First, we turn Adet

ϕ into input-enabled au-
tomaton by introducing a rejecting location lr and adding complementary tran-
sitions to lr from all other locations. Then we augment MWTA Adet

ϕ with a clock
c† that will grow with rate 1 in rejecting location r, and with rate 0 in all other
locations. Additionally, for every clock c ∈ CM we duplicate all rates and transi-
tion weights from the corresponding clock m(c) to make sure, that the clocks of
Adet

ϕ grow with the same rate as the corresponding clocks of the automaton M
being monitored. Forming a parallel composition of M and Adet

ϕ , we may now

use Uppaal-smc. to estimate the probability p = Pr[M ||Adet
ϕ |= �c†

≤1(a)]. This
can be done because of the following theorem:

Theorem 2. IfM produces cost-divergent runs only, then each simulation ofM ||
Adet

ϕ will endup in accepting or rejecting location ofA
det
ϕ after finite number of steps.

If none of the two MWTAs Ao
ϕ and A

u
ϕ are exact determinization of Aϕ (i.e.

L(Au
ϕ) � L(ϕ) � L(Ao

ϕ)), then we use both of them to compute upper (using
Ao

ϕ) and lower (using A
u
ϕ) bounds for Pr[M |= ϕ]. Indeed, if n1 (n2, correspond-

ingly) out of m random simulations of M ||Au
ϕ (M ||Ao

ϕ, correspondingly) ended
in accepting location lua (l

o
a, correspondingly), then with significance level of α we

can accept a hypothesis H1 (H2, correspondingly) that Pr[M |= ϕ] ≥ n1/m− ε
(Pr[M |= ϕ] ≤ n2/m+ ε). By combining hypothesis H1 and H2 we can obtain
a confidence interval [n1/m− ε, n2/m+ ε] for Pr[M |= ϕ] with significance level
of 1− (1 − α)2 = 2α− α2.

5 Case Studies

We performed several case studies to demonstrate the applicability of our tool
chain. In the first case study we analyze the performance of Casaal. on a set of
randomly generated WMTL≤ formulas. In the second case study we use a model
of a robot moving on a two-dimensional grid, this model was first analyzed in
[5] using the manually constructed monitoring timed automaton.

5.1 Automatically Generated Formulas

In the first case study we analyze the performance of Casaal. on a set of
randomly generated WMTL≤ formulas. We generated 1000 formulas with 2,
3 and 4 actions, and created deterministic over and approximations for these
formulas. Each of the formulas have 15 connectives (release, until, conjunction
or disjunction) and four clocks.
For the formulas where only one or none of the approximations was exact (i.e.

L(Au
ϕ) �= L(Aϕ) or L(Ao

ϕ) �= L(Aϕ)), we measured the “stochastic difference”
between approximations by generating a number of random weighted words and
estimating the probability that the over approximation accepts a random word,
when the under approximation does not.
Table 2 reports the amount of formulas for which the under or over approxi-

mation was exact and the amount of formulas where none of them was exact. It



180 P. Bulychev et al.

Table 2. Results for the random generated formula test

# exact Avg. time (s) Avg. size Stochastic difference
Actions under over none one under over under over no exact one exact

2 831 542 169 289 0.24 1.01 6.35 6.35 0.27 0.15
3 706 370 294 336 1.42 2.75 12.29 12.29 0.05 0.03
4 586 233 414 353 8.66 13.05 22.97 22.97 0.01 0.02

also contains the average time spent for generating the monitors and the average
number of locations, and the stochastic difference.

5.2 Robot Control

x=0

x=0
fireice

normal

goalfire

normal

goalice

goal
Accept

x<=5x<=3

x<=3

x<=5

Fig. 4. Observer automaton
used in [5]

We consider the case of a robot moving on a two-
dimensional grid that was explored in e.g. [5].
Each field of the grid is either normal, on fire,
cold as ice or it is a wall which that cannot be
passed. Also, there is a goal field that the robot
must reach. The robot is moving in a random fash-
ion i.e. it stays in a field for some time, and then
randomly moves to one of the neighboring fields
(if it is not a wall). Fig. 5 shows a robot controller
implementing this along with the grid we use.
We are interested in the probability that the

robot reaches its goal location without staying on consecutive fire fields for more
than one time units and on consecutive ice fields for more than two time units.
In [5] the authors solved this problem by manually constructing a monitoring

automaton to operate in parallel with the model of the robot. The automaton
they used is depicted in Figure 4. Using WMTL≤ we can express the same
requirement more easily as ϕ ≡ (ϕ1 ∧ ϕ2)U

τ
≤10goal, where:

ϕ1 ≡ ice =⇒ �
τ
≤2(fire ∨ normal ∨ goal)

ϕ2 ≡ fire =⇒ �
τ
≤1(ice ∨ normal ∨ goal)

Casaal. produces an MWTA (6 locations, 55 edges) that is an exact under-
approximation for ϕ. Based on this MWTA, our tool chain estimates the prob-
ability that the random behavior of the robot satisfies ϕ to lie in the interval
[0.373, 0.383] with a confidence of 95%. Fig. 5c shows how we can visualize and
compare the different distributions using the plot composer of Uppaal-smc..

Energy. We extend the model by limiting the energy of the robot that will
stop moving when it runs out of energy. Furthermore, it can regain energy while
staying on fire fields and use additional energy while staying on ice fields. Let c
be the clock accumulating the amount of consumed energy. Now, we can express
the property ϕ ≡ (ϕ1∧ϕ2 ∧¬noEnergy)Uc≤10goal that the robot should not use



Monitor-Based Statistical Model Checking 181

(a)

canMoveDown()

canMoveLeft()

canMoveUp()

canMoveRight()

x:=0

x:=0

x:=0

x:=0
x<=1

moveDown

moveLeft

moveUp

moveRight

(b)

Frozen
Burned
Goal

run duration in time

pr
ob

ab
ili

ty

0

0.06

0.12

0.18

0.24

0.30

0.36

0.5 3.6 6.7 9.8

Cumulative Probability Distribution

(c)

Fig. 5. (a) A 6×6 grid. The black fields are walls, the fields with vertical lines are on fire
and the fields with horizontal lines contain ice. The circle indicates the robot’s starting
position and the square the goal. (b) WTA implementing the random movement of the
robot. (c) Cumulative distribution of the robot reaching the goal, staying too long in
the fire or too long on the ice.

more than 5 units of energy while obeying the requirements from before. The
tool chain estimates the probability that the robot satisfies this requirement to
lie in [0.142; 0.152] with a confidence of 95%.

6 Related and Future Work

To our knowledge, we are the first to propose and implement an algorithm for
translation of WMTL≤ formulas into monitoring automata. However, if we level
down to MITL≤, there are several translation procedures described in the lit-
erature that are dealing with this logic. First, Rajeev Alur in [3] presents a
procedure that is mostly theoretical and is not intended to be practically imple-
mented. Second, Oded Maler et al. [16] proposed a procedure to translate MITL
into temporal testers (not the classic timed automata), their procedure also has
not been implemented. Nir Piterman et al. [17] proposed an approach how to
translate MTL to deterministic timed automata under finite variability assump-
tion (this assumption is not valid for the WTA stochastic semantics that we
use). Finally, Marc Geilen[12] has implemented a procedure to translate MITL≤
to timed automata, but his approach works in the continuous semantics.
For future work we aim at extending our monitor- and approximate deter-

minization constructions to WMTL[a,b] with (non-singleton) cost interval-bounds
on the U modality in order to allow for SMC for this more expressive logic. Here
a challenge will be how to bound the length of the random runs to be generated.

References

1. Agha, G., Meseguer, J., Sen, K.: Pmaude: Rewrite-based specification language
for probabilistic object systems. Electronic Notes in Theoretical Computer Sci-
ence 153(2), 213–239 (2006)

2. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P., Nicollin, X.,
Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theoretical Computer Science 138(1), 3–34 (1995)



182 P. Bulychev et al.

3. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J.
ACM 43, 116–146 (1996)

4. Alur, R., La Torre, S., Pappas, G.J.: Optimal Paths in Weighted Timed Automata.
In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS,
vol. 2034, pp. 49–62. Springer, Heidelberg (2001)

5. Barbot, B., Chen, T., Han, T., Katoen, J.-P., Mereacre, A.: Efficient CTMC Model
Checking of Linear Real-Time Objectives. In: Abdulla, P.A., Leino, K.R.M. (eds.)
TACAS 2011. LNCS, vol. 6605, pp. 128–142. Springer, Heidelberg (2011)

6. Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn,
J., Vaandrager, F.W.: Minimum-Cost Reachability for Priced Timed Automata.
In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS,
vol. 2034, pp. 147–161. Springer, Heidelberg (2001)

7. Bouyer, P., Larsen, K.G., Markey, N.: Model checking one-clock priced timed au-
tomata. Logical Methods in Computer Science 4(2) (2008)

8. Cassez, F., Larsen, K.G.: The Impressive Power of Stopwatches. In: Palamidessi, C.
(ed.) CONCUR 2000. LNCS, vol. 1877, pp. 138–152. Springer, Heidelberg (2000)

9. Couvreur, J.-M.: On-the-Fly Verification of Linear Temporal Logic. In: Wing, J.M.,
Woodcock, J. (eds.) FM 1999. LNCS, vol. 1708, pp. 253–271. Springer, Heidelberg
(1999)

10. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B., van Vliet, J.,
Wang, Z.: Statistical Model Checking for Networks of Priced Timed Automata. In:
Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 80–96.
Springer, Heidelberg (2011)

11. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Wang, Z.: Time for Statistical
Model Checking of Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer, Heidelberg (2011)

12. Geilen, M.: An Improved On-the-Fly Tableau Construction for a Real-Time Tem-
poral Logic. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725,
pp. 394–406. Springer, Heidelberg (2003)

13. Geilen, M., Dams, D.R.: An On-the-fly Tableau Construction for a Real-Time Tem-
poral Logic. In: Joseph, M. (ed.) FTRTFT 2000. LNCS, vol. 1926, pp. 276–290.
Springer, Heidelberg (2000)

14. Clarke Jr., E.M., Grumberg,O., Peled, D.A.:Model Checking.TheMITPress (1999)
15. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Syst. 2, 255–299 (1990)

16. Maler, O., Ničković, D., Pnueli, A.: From MITL to Timed Automata. In: Asarin,
E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 274–289. Springer,
Heidelberg (2006)

17. Ničković, D., Piterman, N.: FromMtl to Deterministic Timed Automata. In: Chat-
terjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 152–167.
Springer, Heidelberg (2010)

18. Sen, K., Viswanathan, M., Agha, G.: On Statistical Model Checking of Stochastic
Systems. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576,
pp. 266–280. Springer, Heidelberg (2005)

19. Younes, H.L.S.: Verification and Planning for Stochastic Processes with Asyn-
chronous Events. PhD thesis, Carnegie Mellon University (2005)

20. Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with
application to simulink/stateflow verification. In: HSCC 2010, pp. 243–252. ACM,
New York (2010)



Duality between Merging Operators

and Social Contraction Operators

José Luis Chacón and Ramón Pino Pérez

Departamento de Matemáticas
Facultad de Ciencias

Universidad de Los Andes
Mérida, Venezuela

{jlchacon,pino}@ula.ve

Abstract. In the AGM (Alchourrón-Gärdenfors-Makinson) framework
there exists a duality between revision operators and contraction opera-
tors. This duality is given by the Levi identity and the Harper identity.
The former allows to define a revision operator starting from a contrac-
tion operator. The latter allows to define a contraction operator starting
from a revision operator. In this work we show that this duality can be
extended to a duality between merging operators and social contraction
operators through some identities in the style of the Levi and Harper
identities.

1 Introduction

In belief change there are many operators aiming to model different situations
in which the beliefs of one (or some) agent(s) evolve over time. Among these
operators one can quote revision [1, 13, 14, 18], contraction [2–4], update [16, 17],
abduction [27], extrapolation [11, 12], etc. The most studied are contraction and
revision. In logic based representation of beliefs, a contraction occurs when we
remove a sentence α from a closed theory K in order to obtain a closed theory
K ′ in which α does not appear. A revision occurs when we wish to incorporate a
sentence α in a closed theory K in order to obtain a new consistent closed theory
K ′ containing α. The most natural procedure to perform contraction might be
to suppress the piece of information and then take the logical closure. In symbols
it is Cn(K \ {α}). Unfortunately, this doesn’t always work because many times
α ∈ Cn(K \ {α}). Analogously, the most natural procedure to perform revision
might be to add the piece of information and then take the logical closure (in
symbols Cn(K ∪ {α})). Unfortunately, this doesn’t work because many times
Cn(K∪{α}) is inconsistent. This explains roughly why modeling contraction and
revision is not a trivial task. The situation is very different with the expansion
which can be modeled by a simple procedure: add the piece of information and
then take the logical closure. Usually the symbol + is used to denote expansion
(which is actually unique), so expansion is defined by the following equation:
K + α = Cn(K ∪ {α}). Of course, expansion can lead to inconsistencies.

N. Bjørner and A. Voronkov (Eds.): LPAR-18, LNCS 7180, pp. 183–196, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



184 J.L. Chacón and R. Pino Pérez

At the end of 70’s Levi [22] proposed a procedure to perform revision based
on contraction: first contractK by the negation of α, then add α and finally take
logical closure. In symbols, that means that we can define a revision operator ∗
in terms of a contraction operator −· by the following identity:

K ∗ α = (K−· ¬α) + α (1)

This identity is known as Levi’s identity.
Almost simultaneously, Harper [15] proposed a procedure to perform contrac-

tion based on revision: first revise K by the negation of α and then intersect this
theory with K. In symbols, we can define a contraction operator −· in terms of
a revision operator ∗ by the following identity:

K−· α = (K ∗ ¬α) ∩K (2)

This identity is known as Harper’s identity.
Some years later contraction operators and revision operators were charac-

terized [1, 13]. Moreover, it was proved that the Harper identity and the Levi
identity define a very strong duality between contraction and revision operators
in the sense that operators defined by Equation (1) are true revision operators
and operators defined by Equation (2) are true contraction operators.

Other change operators aiming to model the process of merging several sources
of information in a unique consistent piece of information have been introduced
[5, 6, 20, 21, 23–26, 28, 29]. Understanding this kind of operators is very useful
in multi-agents systems, distributed information, decision theory etc. Some rep-
resentation theorems have been established and some families of this operators
have been effectively built [20]. It has been proved that these merging operators,
more precisely merging operators with integrity constraints, are extensions of
revision operators. On the other hand, operators extending contraction opera-
tors to many sources of information have been defined by Booth [7, 8]. These
operators are called social contraction operators. They aim to model negotiation
processes in which agents have to produce a consensual belief base in which a
given information is not present and this consensual belief is close to the original
belief base of each agent.

Actually, Booth conjectured that there is a duality between social contraction
operators and merging operators with integrity constraints. The goal of this work
is to establish the strong duality between these classes of operators.

The rest of this work is organized as follows: Section 2 contains the basic
definitions. Section 3 is devoted to the definition and characterization of merging
operators with integrity constraints. Section 4 is devoted to the definition and
characterization of social contraction operators. In Section 5, we establish the
strong duality between the social contraction operators and merging operators
with integrity constraints. We finish this work with a section containing some
concluding remarks.



Duality between Merging Operators and Social Contraction Operators 185

2 Preliminaries

We consider a propositional language L defined from a finite set of propositional
variables P and the standard connectives, including # and ⊥.

An interpretation ω is a total function from P to {0, 1}. The set of all inter-
pretations is denoted by W . An interpretation ω is a model of a formula φ ∈ L
if and only if it makes it true in the usual truth functional way. [[ϕ]] denotes the
set of models of the formula ϕ, i.e., [[ϕ]] = {ω ∈ W | ω |= ϕ}.

A base K is a finite set of propositional formulae. Sometimes, in order to
simplify notation, we will identify the base K with the formula ϕ which is the
conjunction of the formulae of K1. We denote by K the set of bases.

A profile Φ is a non-empty finite multi-set (bag) of bases Φ = {ϕ1, . . . , ϕn}
(hence different agents are allowed to exhibit identical bases), and represents a
group of n agents. In that case n is the size of the profile. Profiles sizes can vary.
We denote by E the set of profiles.

We denote by
∧
Φ the conjunction of bases of Φ = {ϕ1, . . . , ϕn}, i.e.,

∧
Φ =

ϕ1 ∧ . . .∧ϕn. A profile Φ is said to be consistent if and only if
∧
Φ is consistent.

The multi-set union is noted �. By abuse of notation we will write ϕ�Φ instead of
{ϕ}�Φ. We denote by Φn the profile in which Φ appears n times, more precisely
Φn = Φ � . . . � Φ︸ ︷︷ ︸

n

. Two profiles are equivalent, denoted Φ1 ≡ Φ2, iff there is a

bijective function f from Φ1 onto Φ2 such that for any ϕ ∈ Φ1, f(ϕ) ≡ ϕ.
A base (formula) ϕ is complete if it has only one model. A profile Φ is complete

if all the bases of Φ are complete formulae.
If ≤ denotes a pre-order on W (i.e., a reflexive and transitive relation), then

< denotes the associated strict order defined by ∀ω, ω′ ∈ W , ω < ω′ if and only
if ω ≤ ω′ and ω′ �≤ ω. A pre-order is total if ∀ω, ω′ ∈ W , ω ≤ ω′ or ω′ ≤ ω.
A pre-order that is not total is called partial. Let ≤ be a pre-order on A, and
B ⊆ A, then min(B,≤) = {b ∈ B | �a ∈ B a < b}.

If A is a set, we denote |A| the cardinality of A. The symbol ⊆ will denote set
containment and ⊂ strict set containment, i.e., A ⊂ B if and only if A ⊆ B and
A �= B.

Let Δ : E × L �→ K be a function. We will use the notation Δμ(Φ) instead of
Δ(Φ, μ).

There are some set theoretical notions (semantical) which are dual, in the
finite case, to the previous ones. The set of non empty subsets of W will be
denoted B. If S is in B, the set W \ S is denoted by S. We suppose we have
a finite set of sources of information Sources = {1, . . . , n} with n ≥ 1. The
number n of sources of information can vary. The information of a source i
will be a set Ui ∈ B. An s-profile (of information relative to Sources) is an

element
−→
U ∈ Bn. We use

−→
U ,
−→
U

1
, . . . to denote s-profiles. The idea is that in an

1 This identification will be done when the approach is not sensitive to syntactical
representation. When the approach is sensitive to syntactical representation, it will
be important to distinguish between K and the conjunction of its formulae (see e.g.
[19]). The operators in this work are all syntax independent.



186 J.L. Chacón and R. Pino Pérez

s-profile
−→
U = (U1, . . . , Un), Ui is the information of the source i. An s-profile is

consistent if
⋂−→
U =

⋂
i Ui �= ∅, otherwise is inconsistent. Given two s-profiles

−→
U

1
and

−→
U

2
, we write

−→
U

1 ⊆ −→U 2
when U1

i ⊆ U2
i for each source i ∈ Sources. If

f is a function with codomain Bn, we write f i(x) to denote the i−th element of

f(x). If
−→
U ∈ Bn and σ is a permutation2 we define σ(

−→
U ) = (Uσ(1), . . . , Uσ(n)).

If
−→
U ∈ Bn and

−→
V ∈ Bm, the vector (U1, . . . , Un, V1, . . . , Vm) ∈ Bn+m will be

denoted
−→
U � −→V . If

−→
U ,
−→
V ∈ Bn we define

−→
U ∪ −→V = (U1 ∪ V1, . . . , Un ∪ Vn) and−→

U ∩−→V = (U1∩V1, . . . , Un∩Vn). If S ∈ B and
−→
U ∈ Bn we write

−→
U ∪S to denote

the vector (U1∪S, . . . , Un∪S) and
−→
U ∩S to denote the vector (U1∩S, . . . , Un∩S).

We put |−→V | = n when
−→
V ∈ Bn. Finally we define H =

⋃
n≥1 Bn.

3 Merging Operators

Definition 1. Δ : E × L �→ K is said to be an integrity constraints merging
operator (IC-merging operator for short) iff the following properties hold:

(IC0) Δμ(Φ) � μ
(IC1) If μ is consistent, then Δμ(Φ) is consistent
(IC2) If

∧
Φ is consistent with μ, then Δμ(Φ)↔

∧
Φ ∧ μ

(IC3) If Φ1 ↔ Φ2 and μ1 ↔ μ2, then Δμ1(Φ1)↔ Δμ2(Φ2)
(IC4) If ϕ1 � μ and ϕ2 � μ, then Δμ({ϕ1, ϕ2})∧ϕ1 is consistent if and only if

Δμ({ϕ1, ϕ2}) ∧ ϕ2 is consistent
(IC5) Δμ(Φ1) ∧Δμ(Φ2) � Δμ(Φ1 � Φ2)
(IC6) If Δμ(Φ1) ∧Δμ(Φ2) is consistent, then Δμ(Φ1 � Φ2) � Δμ(Φ1) ∧Δμ(Φ2)
(IC7) Δμ1(Φ) ∧ μ2 � Δμ1∧μ2(Φ)
(IC8) If Δμ1(Φ) ∧ μ2 is consistent, then Δμ1∧μ2(Φ) � Δμ1(Φ)

Some of these properties had been proposed by Revesz [29] in order to define his
model fitting operators.

Intuitively Δμ(Φ) is a belief base close to profile Φ satisfying the integrity
constraint μ. This idea is what the postulates try to capture. The meaning of
the postulates is the following: (IC0) assures that the result of the merging
satisfies the integrity constraints. (IC1) states that if the integrity constraints
are consistent, then the result of the merging will be consistent. (IC2) states that
if possible, the result of the merging is simply the conjunction of the belief bases
with the integrity constraints. (IC3) is the principle of irrelevance of syntax, i.e.
if two belief sets are equivalent and two integrity constraints bases are logically
equivalent then the belief bases resulting of the two mergings will be logically
equivalent. (IC4) is the fairness postulate, the point is that when we merge two
belief bases, merging operators must not give preference to one of them. (IC5)
expresses the following idea: if two groups Φ1 and Φ2 agree on some alternatives
then these alternatives will be chosen if we join the two groups. (IC5) and (IC6)
together state that if one could find two subgroups which agree on at least one

2 The set of all permutations of n will be denoted Sn.



Duality between Merging Operators and Social Contraction Operators 187

alternative, then the result of the global merging will be exactly those alternatives
the two groups agree on. (IC7) and (IC8) are a direct generalization of the
(R5-R6) postulates for revision (version Katsuno-Mendelzon or K*7-K*8 version
AGM). They state some conditions about integrity constraints conjunctions.
Actually, they ensure that the notion of closeness is well-behaved. For instance,
if an alternative A is chosen among a set of alternatives, then if the set of
alternatives is narrowed but the alternative A remains in this set, the alternative
A will be still chosen. This quite natural property is found in different rational
choice theories (Social Choice, Decision, etc).

In order to establish a useful representation theorem for this kind of operators
we need the following definition:

Definition 2. A syncretic assignment is a function mapping each profile Φ to
a total pre-order ≤Φ over interpretations such that for any profiles Φ,Φ1, Φ2 and
for any belief bases ϕ, ϕ′ the following conditions hold:

1. If ω |=
∧
Φ and ω′ |=

∧
Φ, then ω %Φ ω

′

2. If ω |=
∧
Φ and ω′ �|=

∧
Φ, then ω <Φ ω

′

3. If Φ1 ↔ Φ2, then ≤Φ1=≤Φ2

4. ∀ω |= ϕ ∃ω′ |= ϕ′ ω′ ≤ϕ�ϕ′ ω
5. If ω ≤Φ1 ω

′ and ω ≤Φ2 ω
′, then ω ≤Φ1�Φ2 ω

′

6. If ω <Φ1 ω
′ and ω ≤Φ2 ω

′, then ω <Φ1�Φ2 ω
′

Theorem 1 ([20]). An operator Δ is an IC merging operator if and only if
there exists a syncretic assignment that maps each profile Φ to a total pre-order
≤Φ such that

[[Δμ(Φ)]] = min([[μ]],≤Φ)

When this equation holds we will say that the assignment represents the operator.

This theorem has been generalized to the framework of infinite Propositional
Logic (see [10]).

4 Social Contraction Operators

In this section we will consider some operators aiming to model the process
of removing one piece of information of a group of agents. Because the pieces
of information are represented in (finite) propositional logic, we can opt for a
syntactical or semantical presentation. Although they are equivalent, we have
chosen giving a semantical presentation of operators and rationality postulates
for at least three reasons: the meaning of postulates is easier to grasp, the set
theoretical aspects of the presentation can be transposable to other domains as
decision theory and game theory and this presentation seems to us easier to
understand.

Formally, we consider functions of the following shape f : B × H → H with
the property |f(S,−→U )| = |−→U |. This kind of functions will be called social con-

traction functions, SC-functions for short. Given an s-profile
−→
U and a special



188 J.L. Chacón and R. Pino Pérez

information S in B considered as the information to contract, f(S,
−→
U ) has to

represent a modification of
−→
U such that the belief in each source and S are mu-

tually consistent. Notice that the natural idea to modify each source is adding
to it some models in S. The postulates of social contraction operators impose
control in performing this task.

When S is fixed we can associate to a SC-function f , a function fS : H → H,
by letting fS(

−→
U ) = f(S,

−→
U ). If fS(

−→
U ) = (T1, . . . , Tn) we define f i

S(
−→
U ) = Ti for

i = 1, . . . , n.
An interesting function associated to a SC-function is the following one:

f̃S(
−→
U ) :=

⋂
fS(
−→
U ) ∩ S, where

⋂
fS(
−→
U ) =

⋂n
i=1 f

i
S(
−→
U ).

Next we define the rationality postulates characterizing the social contraction
operators. After the definition we will comment about the meaning of these
postulates.

Definition 3. Let f : B × H → H be a SC-function. We say that f is a social
contraction operator iff the following properties hold:

(SCm) If ω ∈ f i
S(
−→
U )\Ui, then ω ∈

⋂
fS(
−→
U ).

(SC0) σ(fS(
−→
U )) = fS(σ(

−→
U )), for

−→
U ∈ Bn and σ a permutation.

(SC1)
−→
U ⊆ fS(

−→
U ) ⊆ −→U ∪ S.

(SC2) S �= ∅ ⇒ f̃S(
−→
U ) �= ∅.

(SC3)
⋂−→
U ∩ S �= ∅ ⇒ fS(

−→
U ) =

−→
U .

(SC4) If U ⊆ S and V ⊆ S, then f1
S(U, V ) ∩ V �= ∅ ⇒ f2

S(U, V ) ∩ U �= ∅.
(SC5)

⋂
fS(
−→
U ) ∩

⋂
fS(
−→
V ) ∩ S ⊆

⋂
fS(
−→
U � −→V ) ∩ S.

(SC6) If fS(
−→
U ) ∩ fS(

−→
V ) ∩ S �= ∅ then f̃S(

−→
U � −→V ) ⊆ f̃S(

−→
U ) ∩ f̃S(

−→
V ).

(SC7)
⋂
fS(
−→
U ) ∩ (S ∪ T ) ⊆

⋂
fS∪T (

−→
U ) ∩ (S ∪ T ).

(SC8) If
⋂
fS(
−→
U ) ∩ (S ∪ T ) �= ∅, then⋂

fS∪T (
−→
U ) ∩ (S ∪ T ) ⊆

⋂
fS(
−→
U ) ∩ (S ∪ T )

SCm is a basic postulate guaranteeing that all sources weaken the information in
the same way. It is a sort of monotony or regularity. If a model is added to the
source i, it has to be added to all the sources. In some sense this postulate corre-
sponds to a sort of fairness in the process: all agents have to be treated equally.
SC0 is the postulate of anonymity: the order of the sources is irrelevant. SC1
ensures that the contraction process consists in adding models of S. Actually,
if the size of the s-profile

−→
U is 1, i.e. there is a unique source of information,

this postulate coincides with the semantical version of Recovery postulate3 for
contraction operators (postulate K−· 5, see [1, 13, 14] ). SC2 guarantees that the
output of the contraction will be “consistent” whenever S is not a “tautology”
(here “consistent”means nonempty set and “tautology”means the whole setW).
SC3 says that there is nothing to do when each source does not “entail”S (here
the entailment is understood as the inclusion of sets). SC4 concerns fairness.

3 The Recovery postulate for contraction operators reads:
if α ∈ K then K ⊆ (K−· α) + α.



Duality between Merging Operators and Social Contraction Operators 189

When there are two sources to contract both entailing the negation of the in-
formation to contract, if a model of one source is added to the other source,
then the inverse situation occurs. SC5 says that the common models added to
two s-profiles have to be added to the union (concatenation) of these s-profiles.
SC6, together with SC5, says that if there are really common models added to
two profiles these models are exactly the models added to the union (concate-
nation) of these s-profiles. SC7 establishes that if the models added to perform
the contraction by S are in T , then they are added to perform the contraction
by S ∪ T . SC8 is just the other inclusion in the case where there are effectively
models added to perform the contraction by S which are in T .

5 Duality

Notice that if S ⊂ W there is a formula ϕ such that [[ϕ]] = S. Actually, the set
of such formulas is a class of equivalence under the relation ϕ ≡ ψ iff [[ϕ]] = [[ψ]].
We denote by Sα a formula such that [[Sα]] = S. For any formula ϕ, the set [[ϕ]]
will be denoted by ϕm. It is clear that (Sα)m = S and (ϕm)α ≡ ϕ. The following
relations are very easy to check: Sα ∧ Tα ≡ (S ∩ T )α, ψm ∩ φm = (ψ ∧ φ)m,
Sα ∨ Tα ≡ (S ∪ T )α and ψm ∪ φm = (ψ ∨ φ)m.

For an s-profile
−→
U ∈ Bn, the multiset {(Ui)α : Ui ∈

−→
U } will be denoted (

−→
U )α.

Conversely, for a profile Φ = {ϕ1, . . . , ϕn}, we define
−→
Φm the set of s-profiles

−→
U in

Bn such that there exists a permutation σ verifying σ(
−→
U ) = ((ϕ1)m, . . . , (ϕn)m).

Now we define the identities of Harper and Levi generalized:

fS(
−→
U ) =

−→
U ∪ (ΔSα

(
−→
U )α)m (3)

Δμ(Φ) =
(⋂

f(¬μ)m(
−→
Φm) ∩ μm

)
α

(4)

These identities will be the duality announced. The following theorem establishes
the first duality result:

Theorem 2 (From merging to social contraction). Let Δ be a merging
operator with integrity constraints. Let f be defined by Equation 3 (the identity
of Harper generalized). Then f is a social contraction operator.

Proof. Suppose fS(
−→
U ) =

−→
U ∪ (ΔSα

(
−→
U )α)m with Δ a merging operator with

integrity constraints. We have to verify that all the postulates of Definition 3
hold.

(SCm) This is clearly verified because we are adding the same models

((ΔSα
(
−→
U )α)m) to each source.

(SC0) This condition is also clearly verified because all the sources are weakened

by (ΔSα
(
−→
U )α)m without regard to her position in the s-profile

−→
U .



190 J.L. Chacón and R. Pino Pérez

(SC1) Notice that, by (IC0) we have (ΔSα
(
−→
U )α)m ⊂ ((S)α)m = S. Then

Ui ⊂ Ui ∪ (ΔSα
(
−→
U )α)m ⊂ Ui ∪ S.

(SC2) The postulate (IC1) says that the consistency of μ guarantees the con-

sistency of Δμ(Φ). If S �= ∅, then (S)α is consistent; thus, ΔSα
(
−→
U )α is consis-

tent. That is (ΔSα
(
−→
U )α)m �= ∅. Therefore the condition SC2 is verified because

f̃S(
−→
U ) =

⋂
fS(
−→
U ) ∩ S ⊃ (ΔSα

(
−→
U )α)m.

(SC3) Notice that postulate (IC3) says that if Φ and μ are mutually consistent

then Δμ(Φ) ≡
∧
Φ ∧ μ. Suppose that

⋂
i

−→
U ∩ S �= ∅, that is,

∧
(
−→
U α) ∧ (S)α

is consistent. From this, by (IC3), we have (ΔSα
(
−→
U )α) =

∧
(
−→
U α) ∧ (S)α. Thus,

(ΔSα
(
−→
U )α)m =

⋂
(
−→
U α)m ∩ ((S)α)m =

⋂−→
U ∩ S ⊂ Ui for i = 1, . . . , n, therefore

Ui ∪ (ΔSα
(
−→
U )α)m = Ui, that is fS(

−→
U ) =

−→
U and therefore condition SC3 holds.

(SC4) This condition follows from (IC4). Suppose that U ⊂ S, V ⊂ S and
f1
S(U, V ) ∩ V �= ∅. Thus, (U)α � (S)α, Vα � Sα. By definition

fS(U, V ) = (U ∪ (ΔSα
(Uα � Vα)m, V ∪ (ΔSα

(Uα � V )α)m)

By hypothesis, (U ∪ (ΔSα
(Uα �Vα)m)∩V �= ∅. If U ∩ V �= ∅, by (CS3), we have

fS(U, V ) = (U, V ) and therefore f2
S(U, V ) ∩ U �= ∅. In the case U ∩ V = ∅ we

have (ΔSα
(Uα � Vα))m ∩ V �= ∅. Thus, ΔSα

(Uα � Vα) ∧ Vα is consistent; this
together with Uα � Sα Vα � Sα and Postulate (IC4) entail ΔSα

(Uα � Vα) ∧ Uα

is consistent. Therefore (ΔSα
(Uα � Vα))m ∩U �= ∅; thus, by definition of fS(

−→
U )

we obtain f2
S(U, V ) ∩ U �= ∅.

(SC5) Suppose w ∈
⋂
fS(
−→
U )∩

⋂
fS(
−→
V )∩S. Then w ∈ ((Δ(S)α

(
−→
U )α)m∪(

⋂−→
U ))∩

((Δ(S)α
(
−→
V )α)m) ∪ (

⋂−→
V )) ∩ S. If w ∈

⋂−→
U , since w ∈ S, we have, by (IC2),

(ΔSα
(
−→
U ))m =

⋂−→
U ∩ S. From this, it follows w ∈ (ΔSα

(
−→
U ))m; if w ∈

⋂−→
V ,

then w ∈ (ΔSα
(
−→
V )α)m. In any case w ∈ (ΔSα

(
−→
U )α)m ∩ (ΔSα

(
−→
V )α)m. By

(IC5) ( Δμ(Φ1) ∧ Δμ(Φ2) � Δμ(Φ1 � Φ2)), we obtain w ∈ (ΔSα
(
−→
U � −→V )α)m.

In particular, w ∈
⋂
fS(
−→
U � −→V ) ∩ S. Therefore

⋂
fS(
−→
U ) ∩

⋂
fS(
−→
V ) ∩ S ⊂⋂

fS(
−→
U � −→V ) ∩ S.

(SC6) Take w ∈
⋂
fS(
−→
U � −→V ) ∩ S, then

w ∈ ((ΔSα
(
−→
U � −→V )α)m ∪

(⋂−→
U ∩

⋂−→
V
)
∩ S

as before w ∈ (ΔSα
(
−→
U � −→V )α)m. By hypothesis⋂

fS(
−→
U ) ∩

⋂
fS(
−→
V ) ∩ S �= ∅

Thus, by definition, (ΔSα
(
−→
U )α)m ∩ (ΔSα

(
−→
V )α)m �= ∅, therefore (ΔSα

(
−→
U )α) ∧

(ΔSα
(
−→
V )α) is consistent. By (IC6) we have

ΔSα
(
−→
U � −→V )α � (ΔSα

(
−→
U )α) ∧ (ΔSα

(
−→
V )α)



Duality between Merging Operators and Social Contraction Operators 191

Thus w ∈ (ΔSα
(
−→
U )α)m ∩ (ΔSα

(
−→
V )α)m. Therefore

w ∈ (ΔSα
(
−→
U )α)m ∩ (ΔSα

(
−→
V )α)m

and from this we obtain

w ∈
⋂

fS(
−→
U ) ∩

⋂
fS(
−→
V ) ∩ S

that is, SC6 is verified.

(SC7) We want to see that
⋂
fS(
−→
U ) ∩ (S ∪ T ) ⊂ fS∪T (

−→
U ) ∩ (S ∪ T ). Take

w ∈
⋂
fS(
−→
U ) ∩ (S ∪ T ). Then, w ∈ ((Δ(S)α

(
−→
U )α)m) ∩ T ; by (IC7), we have

w ∈ (ΔSα∧Tα
(
−→
U )α)m = (Δ(S∩T )α

(
−→
U )α)m

But notice that, by definition of f , we have

fS∪T (
−→
U ) =

−→
U ∪ (Δ(S∪T )α

(
−→
U α))m and (Δ(S∪T )α

(
−→
U α))m = (ΔSα∧Tα

(
−→
U α))m

Thus, in particular, we have

w ∈ fS∪T (
−→
U ) ∩ (S ∪ T )

(SC8) Suppose
⋂
fS(
−→
U ) ∩ (S ∪ T ) �= ∅, that is (Δ(S)α

(
−→
U )α) ∧ (T )α is con-

sistent. By (IC8), we have Δ(S)α∧(T )α
(
−→
U )α) � Δ(S)α

(
−→
U )α ∧ (T )α. Then, if

w ∈ fS∪T (
−→
U ) ∩ (S ∪ T ), by definition, w ∈ (Δ(S)α∧(T )α

(
−→
U )α))m. Thus, w ∈

(ΔSα
(
−→
U )α)m ∩ T , therefore w ∈

⋂
fS(
−→
U ) ∩ (S ∪ T ).

This finishes the proof that the function f is a social contraction operator.

Theorem 3 (From social contraction to merging). Let f be a social con-
traction operator. Let Δ be the operator defined by Equation 4 (the generalized
Levi identity). Then Δ is a merging operator with integrity constraints.

Proof. Let Δ be defined by Equation 4, that is

Δμ(Φ) =
(⋂

f(¬μ)m(
−→
Φm) ∩ μm

)
α

Recall that we associate to Φ a vector
−→
Φ where all his elements appear. Then,

to this vector of formulas we associate an s-profile
−→
Φm. By (SC0) we have

σ(fS(
−→
U )) = fS(σ(

−→
U )), for

−→
U ∈ Bn and σ ∈ Sn. Thus

⋂
fS(
−→
U ) =

⋂
fS(σ(

−→
U )),

because intersection is commutative. Then
⋂
f(¬μ)m(

−→
Φm) =

⋂
f(¬μ)m(

−→
U ) for

−→
U ∈ −→Φm. This means that Δ is well defined. Now we proceed to verify that Δ
satisfies the postulates of Definition 1.



192 J.L. Chacón and R. Pino Pérez

(IC0) This postulate is verified because (Δμ(Φ))m ⊆ μm and thereforeΔμ(Φ) � μ

(IC1) Suppose that μ is consistent, that is, μm �= ∅. By (SC2) we have

f̃(¬μ)m(
−→
Φm) �= ∅ and by definition

⋂
f(¬μ)m(

−→
Φm) ∩ μm �= ∅.That is, Δμ(Φ)

is consistent.

(IC2) Suppose that Φ is consistent with μ. That is,
∧
Φ ∧ μ is consistent. Then⋂−→

Φm∩μm �= ∅ and, by (SC3) we have f(¬μ)m(
−→
Φm) =

−→
Φm. Then, by definition,

Δμ(Φ) ≡
(⋂−→

Φm ∩ μm

)
α
≡
∧

Φ ∧ μ

(IC3) Suppose that Φ ≡ Ψ and μ ↔ ν , that is, there exists a bijection g

from Φ into Ψ such that g(ϕ) ≡ ϕ for all ϕ ∈ Φ1 . Thus,
⋂
f(¬μ)m(

−→
Φm) =⋂

f(¬μ)m(
−→
Ψ m), because (g(ϕ))m = (ϕ)m. Moreover μm = νm. Then⋂

f(¬μ)m(
−→
Φm) ∩ μm =

⋂
f(¬μ)m(

−→
Ψ m) ∩ νm

Thus,
Δμ(Φ)↔ Δν(Ψ)

(IC4) Suppose ϕ � μ , ϕ′ � μ and Δμ(ϕ � ϕ′)∧ϕ′ �� ⊥. Then, ϕm ⊆ μm, ϕ′
m ⊆

μm and f1
(¬μ)m

(ϕm, ϕ
′
m) ∩ f2

(¬μ)m
(ϕm, ϕ

′
m) ∩ ϕ′

m �= ∅. Then f1
(¬μ)m

(ϕm, ϕ
′
m) ∩

ϕ′
m �= ∅. By (SC4), we have f2

(¬μ)m
(ϕm, ϕ

′
m) ∩ ϕm �= ∅ and, by (SC1)

ϕm ⊆ f1
(¬μ)m

(ϕm, ϕ
′
m)

Thus, f1
(¬μ)m

(ϕm, ϕ
′
m) ∩ f2

(¬μ)m
(ϕm, ϕ

′
m) ∩ ϕm �= ∅, therefore

Δμ(ϕ � ϕ′) ∧ ϕ �� ⊥

(IC5) Suppose w ∈ (Δμ(Φ) ∧ Δμ(Ψ))m = (Δμ(Φ))m ∩ (Δμ(Ψ))m. Then w ∈⋂
f(¬μ)m(

−→
Φm) ∩

⋂
f(¬μ)m(

−→
Ψ m) ∩ μm. By (SC5), we have⋂

f(¬μ)m(
−→
Φm) ∩

⋂
f(¬μ)m(

−→
Ψ m) ∩ μm ⊆

⋂
f(¬μ)m(

−→
Φm �

−→
Ψ m) ∩ μm

Then w ∈
⋂
f(¬μ)m(

−→
Φm �

−→
Ψ m) ∩ μm = (Δμ(Φ � Ψ))m. Thus,

Δμ(Φ) ∧Δμ(Ψ) � Δμ(Φ � Ψ)



Duality between Merging Operators and Social Contraction Operators 193

(IC6) Suppose Δμ(Φ) ∧ Δμ(Ψ) is consistent, that is
⋂
f(¬μ)m(

−→
Φm) ∩⋂

f(¬μ)m(
−→
Ψ m) ∩ μm �= ∅. In this case the condition (SC6) says⋂

f(¬μ)m(
−→
Φm �

−→
Ψ m) ∩ μm ⊂

⋂
f(¬μ)m(

−→
Φm) ∩

⋂
f(¬μ)m(

−→
Ψ m) ∩ μm

Thus,
Δμ(Φ � Ψ) � Δμ(Φ) ∧Δμ(Ψ)

(IC7) Suppose w ∈ (Δμ(Φ) ∧ ν)m. By the definition of Δ, w ∈
⋂
f(¬μ)m(

−→
Φm) ∩

μm ∩ νm. By (SC7), we have⋂
f(¬μ)m(

−→
Φ ) ∩ (μm ∩ νm) ⊂

⋂
f(¬μ∧ν)(

−→
Φ ) ∩ (μm ∩ νm)

Thus, w ∈
⋂
f(¬μ∧ν)(

−→
Φ ) ∩ (μ ∧ ν)m = (Δμ∧ν(Φ))m. Therefore,

Δμ(Φ) ∧ ν � Δμ∧ν(Φ)

(IC8) Suppose that Δμ(Φ) ∧ ν is consistent, that is(⋂
f(¬μ)m(

−→
Φ
)
∩ μm) ∩ νm �= ∅

Condition (SC8) says in this case⋂
f(¬μ∧ν)m(

−→
Φ ) ∩ μm ∩ νm ⊂

⋂
f(¬μ)m(

−→
Φ ) ∩ (μm ∩ νm)

Then
Δμ∧ν(Φ) � Δμ(Φ) ∧ ν

This completes the proof.

Let’s denote by SC the functional mapping a merging operator Δ into a social
contraction operator through the generalized Harper identity (Equation (3)).
Let’s denote by O the functional mapping a social contraction operator f into a
merging operator through the generalized Levi identity (Equation (4)). Actually,
these functionals are one the inverse of the other. More precisely we have the
following result:

Theorem 4 (Equivalence between merging and social contraction). Let
SC and O be the functionals previously defined. Then for any merging operator
Δ and any social contraction operator f we have

O(SC(Δ)) = Δ and SC(O(f)) = f

Proof. Define S = (¬μ)m and
−→
U =

−→
Φm. If Δ is a merging operator, by Equa-

tion (3)

f(¬μ)m(
−→
Φm) =

−→
Φm ∪ (Δμ(

−→
Φ ))m



194 J.L. Chacón and R. Pino Pérez

Then
⋂
f(¬μ)m(

−→
Φm) ∩ μm =

⋂
(
−→
Φm ∪ (Δμ(

−→
Φ ))m) ∩ μm. From this, it follows⋂

f(¬μ)m(
−→
Φm) ∩ μm =

(⋂−→
Φm ∩ μm

)
∪ (Δμ(Φ))m = (Δμ(Φ))m

The last equality is obtained in the following way: either
⋂−→
Φm ∩ μm = ∅ and

the equality is obvious; or
⋂−→
Φm ∩ μm �= ∅ and, by (IC2), this is (Δμ(Φ))m.

From this the equality is straightforward. This proves that O(SC(Δ)) = Δ.

Now let f be a social contraction operator. Let Δ be the merging operator
obtained by Equation (4). Consider S = (¬μ)m and

−→
U =

−→
Φm. Then

ΔSα
(
−→
U α)↔

(⋂
fS(
−→
U ) ∩ S

)
α

If g(
−→
U ) =

−→
U ∪ (ΔSα

(
−→
U α))m, then g(

−→
U ) =

−→
U ∪ (

⋂
fS(
−→
U ) ∩ S). Suppose that

w ∈ gi(−→U )\Ui. Then, w ∈ (ΔSα
(
−→
U α))m. Therefore w ∈

⋂
fS(
−→
U )∩S. From this,

it follows
g(
−→
U ) ⊂ −→U ∪

(⋂
fS(
−→
U ) ∩ S

)
But

−→
U ∪ (

⋂
fS(
−→
U ) ∩ S) ⊂ −→U ∪ fS(

−→
U ) = fS(

−→
U ). Thus

g(
−→
U ) ⊂ fS(

−→
U )

If w ∈ f i
S(
−→
U )\Ui, by (SCm) and (SC1) we have w ∈

⋂
fS(
−→
U ) ∩ S. Thus, if

w ∈ f i
S(
−→
U ), then w ∈ Ui ∪ (

⋂
fS(
−→
U ) ∩ S) = gi(

−→
U ). Therefore

fS(
−→
U ) ⊂ g(

−→
U )

That is
fS(
−→
U ) = g(

−→
U )

This proves that SC(O(f)) = f .

As a corollary of the previous theorem and of the representation theorem for
merging operators (Theorem 1) we obtain the following representation theorem
for social contraction operators:

Theorem 5 (Representation for social contraction). f is a social contrac-

tion operator iff there exists a syncretic assignment mapping each s-profile
−→
U

into a total preorder ≤−→
U

such that

fS(
−→
U ) =

−→
U ∪min(S, ≤−→

U
) .

6 Concluding Remarks

We have established the duality between merging operators with integrity con-
straints and the social contraction operators through generalized Harper and



Duality between Merging Operators and Social Contraction Operators 195

Levi identities. This duality extends the well known duality between revision
operators and contraction operators. Actually, in order to prove this duality we
have made use of the equivalence between formulas and sets of models in the
finite propositional framework.

The presentation of social contraction operators in a semantical (set theo-
retical) setting, opens the possibility of application of these operators in other
domains, e.g. Decision theory or Social choice theory.

The representation theorem for social contraction operators, Theorem 5, is
very useful because all techniques for building syncretic assignments, can be
directly imported, in order to build social contraction operators.

The duality between between merging operators with integrity constraints
and the social contraction operators gives some other results without effort.
For instance, the social contraction operators are a true generalization of AGM
contraction operators. This is because the merging operators are a true general-
ization of AGM revision operators (see [20]).

Some work in perspective is to explore the relationships between the social
belief remove operators introduced in [9], in particular the notion of equilibrium
therein, and a similar notion (to be found) for merging operators.

References

1. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change:
Partial meet contraction and revision functions. Journal of Symbolic Logic 50,
510–530 (1985)

2. Alchourrón, C.E., Makinson, D.: The logic of theory change: Contraction functions
and their associated revision functions. Theoria 48, 14–37 (1982)

3. Alchourrón, C.E., Makinson, D.: On the logic of theory change: Safe contraction.
Studia Logica 44, 405–422 (1985)

4. Alchourrón, C.E., Makinson, D.: Maps between some different kinds of contraction
function: the finite case. Studia Logica 45, 187–198 (1986)

5. Baral, C., Kraus, S., Minker, J.: Combining multiple knowledge bases. IEEE Trans-
actions on Knowledge and Data Engineering 3(2), 208–220 (1991)

6. Baral, C., Kraus, S., Minker, J., Subrahmanian, V.S.: Combining knowledge bases
consisting of first-order theories. Computational Intelligence 8(1), 45–71 (1992)

7. Booth, R.: Social contraction and belief negotiation. In: Proceedings of the Eighth
Conference on Principles of Knowledge Representation and Reasoning (KR 2002),
pp. 374–384 (2002)

8. Booth, R.: Social contraction and belief negotiation. Information Fusion 7(1), 19–34
(2006)

9. Booth, R., Meyer, T.: Equilibria in social belief removal. Synthese 177(supplement-
1), 97–123 (2010)

10. Chacón, J.L., Pino Pérez, R.: Merging operators: Beyond the finite case. Informa-
tion Fusion 7(1), 41–60 (2006)

11. Dupin de Saint-Cyr, F., Lang, J.: Belief extrapolation (or how to reason about
observations and unpredicted change). Artif. Intell. 175(2), 760–790 (2011)

12. Dupin de Saint-Cyr, F., Lang, J.: Belief extrapolation (or how to reason about
observations and unpredicted change). In: Proceedings of the Eighth Conference
on Principles of Knowledge Representation and Reasoning (KR 2002), pp. 497–508
(2002)



196 J.L. Chacón and R. Pino Pérez

13. Gärdenfors, P.: Knowledge in flux. MIT Press (1988)
14. Gärdenfors, P. (ed.): Belief Revision. Cambridge University Press (1992)
15. Harper, W.L.: Rational conceptual change. In: PSA 1976 East Lansing, vol. 12,

pp. 462–494. Philosophy of Science Association, Mich. (1977)
16. Herzig, A., Rifi, O.: Update operations: a review. In: Proceedings of the Thirteenth

European Conference on Artificial Intelligence (ECAI 1998), pp. 13–17 (1998)
17. Katsuno, H., Mendelzon, A.O.: On the difference between updating a knowledge

base and revising it. In: Proceedings of the Second International Conference on
Principles of Knowledge Representation and Reasoning (KR 1991), pp. 387–394
(1991)

18. Katsuno, H., Mendelzon, A.O.: Propositional knowledge base revision and minimal
change. Artificial Intelligence 52, 263–294 (1991)

19. Konieczny, S., Lang, J., Marquis, P.: DA2 merging operators. Artificial Intelli-
gence 157(1-2), 49–79 (2004)

20. Konieczny, S., Pino Pérez, R.: Merging information under constraints: a logical
framework. Journal of Logic and Computation 12(5), 773–808 (2002)

21. Konieczny, S., Pino Pérez, R.: Logic based merging. Journal of Philosophical
Logic 40, 239–270 (2011)

22. Levi, I.: Subjunctives, dispositions and chances. Synthese 34, 423–455 (1977)
23. Liberatore, P., Schaerf, M.: Arbitration (or how to merge knowledge bases). IEEE

Transactions on Knowledge and Data Engineering 10(1), 76–90 (1998)
24. Lin, J.: Integration of weighted knowledge bases. Artificial Intelligence 83(2),

363–378 (1996)
25. Lin, J., Mendelzon, A.O.: Merging databases under constraints. International Jour-

nal of Cooperative Information System 7(1), 55–76 (1998)
26. Lin, J., Mendelzon, A.O.: Knowledge base merging by majority. In: Dynamic

Worlds: From the Frame Problem to Knowledge Management. Kluwer (1999)
27. Lobo, J., Uzcátegui, C.: Abductive change operators. Fundamenta Informati-

cae 27(4), 385–411 (1996)
28. Revesz, P.Z.: On the semantics of theory change: arbitration between old and

new information. In: Proceedings of the 12th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Databases, pp. 71–92 (1993)

29. Revesz, P.Z.: On the semantics of arbitration. International Journal of Algebra and
Computation 7(2), 133–160 (1997)



Automatic Generation of Invariants

for Circular Derivations in SUP(LA)�

Arnaud Fietzke, Evgeny Kruglov, and Christoph Weidenbach

Max-Planck-Institut für Informatik, Saarbrücken, Germany
Saarland University – Computer Science, Saarbrücken, Germany

{fietzke,ekruglov,weidenbach}@mpi-inf.mpg.de

Abstract. The hierarchic combination of linear arithmetic and first-
order logic with free function symbols, FOL(LA), results in a strictly
more expressive logic than its two parts. The SUP(LA) calculus can be
turned into a decision procedure for interesting fragments of FOL(LA).
For example, reachability problems for timed automata can be decided
by SUP(LA) using an appropriate translation into FOL(LA). In this pa-
per, we extend the SUP(LA) calculus with an additional inference rule,
automatically generating inductive invariants from partial SUP(LA)
derivations. The rule enables decidability of more expressive fragments,
including reachability for timed automata with unbounded integer vari-
ables. We have implemented the rule in the SPASS(LA) theorem prover
with promising results, showing that it can considerably speed up proof
search and enable termination of saturation for practically relevant
problems.

1 Introduction

One important aspect for successful development of automated reasoning calculi
for logical languages is the potential of the calculus to act as a decision pro-
cedure for known decidable classes and to be an instrument for detecting new
decidable fragments. This is because a sound and complete calculus for some
logical language that can at the same time be used as a decision procedure has a
high potential to be successfully applied in practice. The superposition calculus
has been very successful in this respect for first-order logic, e.g., [3,10,17]. This
is further illustrated by the fact that the leading first-order ATPs (E, SPASS,
Vampire) are all superposition-based.

In this paper we continue this line of work for the FOL(LA) language, the
hierarchic combination of first-order logic with linear arithmetic. The hierar-
chic superposition calculus SUP(LA) [1] is a sound calculus for FOL(LA) and
together with a sufficient completeness assumption, also complete. Complete-
ness cannot be achieved in general, because the FOL(LA) language can express
second-order properties. For example, starting with LA over the reals, the nat-
urals can be expressed in FOL(LA) [18] and it is known that the addition of a

� This work has been partly supported by the German Transregional Collaborative
Research Center SFB/TR 14 AVACS.

N. Bjørner and A. Voronkov (Eds.): LPAR-18, LNCS 7180, pp. 197–211, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



198 A. Fietzke, E. Kruglov, and C. Weidenbach

single monadic predicate to the LA language already causes undecidability [15],
in general.

Nevertheless, the SUP(LA) calculus is a decision procedure for the FOL(LA)
ground case [19] and for the FOL(LA) fragment resulting from the translation
of timed automata [13]. In this paper we extend the latter result to the fragment
corresponding to the translation of timed automata extended with unbounded
integer variables. Termination of the SUP(LA) calculus on this fragment is made
possible by a new simplification technique based on the automatic generation of
inductive invariants. The invariant generation rule combines ideas from acceler-
ation for automata [16,5] with the automatic detection of infinite loops [20] in
SUP(LA) derivations.

The following example illustrates the basic idea: assume we have used the
clause x = 1 ‖ → P (x) in a derivation of x = 2 ‖ → P (x) (clauses are in
purified form: arithmetic literals to the left of ‖, first-order literals to the right;
x=1 ‖ → P (x) means ∀x(x=1→ P (x))). Depending on how it was derived, the
same sequence of inferences may be applied to the second clause, yielding a third
clause with right-hand side P (x). For instance, the second clause may have been
obtained by resolving the first one with x′=x+1 ‖ P (x)→ P (x′). Then we could
also derive x=3 ‖ → P (x), x=4 ‖ → P (x) and so on. The idea of the invariant
generation rule is to detect such loops during proof search, in the form of clauses
with the same free (i.e., non-arithmetic) part (up to variable renaming), and
to determine the transformation relating their arithmetic constraints. If it is
possible to express the transitive closure of this transformation as a conjunction
of arithmetic literals, then a corresponding invariant clause is derived. In the
above example, such a clause would be k ≥ 1, x= k ‖ → P (x), where k is an
integer variable.

This paper is organized as follows: Section 2 gives some preliminary defini-
tions relating to superposition modulo linear arithmetic. Section 3 defines the
constraint induction rule in its general form, and presents a class of linear arith-
metic constraints for which it can be effectively implemented. In Section 4, we
define timed automata extended with unbounded integer variables, and we show
that SUP(LA) together with the constraint induction rule provides a decision
procedure for the corresponding reachability problem. Section 5 deals with our
implementation of the rule and shows some promising experimental results. We
end with a summary of the results and an outlook in Section 6. Detailed defini-
tions and proofs can be found in a technical report [12].

2 Preliminaries

We will use the notions and notations for hierarchic superposition modulo lin-
ear arithmetic SUP(LA) [4,1]. In SUP(LA), clauses appear in purified form
Λ ‖ Γ → Δ where Λ is a sequence of linear arithmetic literals over real and
integer variables, called the clause constraint, and Γ,Δ are sequences of free
first-order atoms, called the free part, sharing universally quantified variables
with Λ. Semantically, a clause Λ ‖ Γ → Δ is interpreted as the universal



Automatic Generation of Invariants for Circular Derivations in SUP(LA) 199

closure of the implication (
∧
Λ ∧

∧
Γ ) →

∨
Δ. A constrained empty clause

Λ ‖ � represents a contradiction if Λ is satisfiable.
We use lowercase Latin characters x, y, z to denote variables. Vectors of vari-

ables are denoted by boldface characters (x). We use the notation Λ[x] to mean
that x are the variables occurring in Λ. When x is clear from the context, we also
denote by Λ[y] the result of substituting all occurrences of variables from x in Λ
by the corresponding variables from y. Substitutions are denoted by lowercase
Greek letters (σ, τ). A substitution is called simple, if it maps every variable of
arithmetic sort to an arithmetic term.

The overall superposition calculus is based on a reduction ordering that is total
on ground atoms. In particular all ground terms of the arithmetic sort containing
only arithmetic symbols are assumed to be strictly smaller than any ground
term containing a free function symbol. For example, this can be achieved by
an LPO (lexicographic path ordering) where the arithmetic symbols are smaller
in the precedence than any free symbol. This ordering on the ground atoms is
then lifted via the usual twofold multiset extension to clauses. A ground clause
C is redundant in some clause set N , if it follows from smaller clauses in N .
Redundancy is lifted by instantiation to clauses with variables.

To keep the presentation simple, we use superposition left (ordered resolution)
the only inference rule, and subsumption as the only reduction rule. We will not
need factoring for the types of clause sets considered in this paper.

A clause C1 = Λ1 ‖ Γ1 → Δ1 subsumes a clause C2 = Λ2 ‖ Γ2 → Δ2 if there
is a substitution σ such that Γ1σ ⊆ Γ2, Δ1σ ⊆ Δ2 and ∀x∃y (Λ2 → Λ1σ) holds
in the theory of linear arithmetic, where x are the variables occurring in Λ2 and
y the variables occurring in Λ1σ but not in Λ2. Note that in theorem proving
derivations, forward subsumption (i.e. removing a newly derived clause which is
subsumed by an old clause) does not need to be strict to maintain completeness.

The ordered resolution rule is

Λ1 ‖ Γ1, A→ Δ1 Λ2 ‖ Γ2 → Δ2, B

Λ3 ‖ (Γ1, Γ2 → Δ1, Δ2)σ

such that σ is the most general simple unifier of A and B; A is strictly maximal
in Γ1, A→ Δ1; B is strictly maximal in Γ2 → Δ2, B.

The calculus SUP(LA) is complete for clause sets that enjoy sufficient
completeness, meaning that every ground non-arithmetic term is equal to some
arithmetic ground term. A sufficient condition for a clause set to be sufficiently
complete is the absence of function symbols ranging into the arithmetic sorts
(real or integer).

3 Constraint Induction

Given a relation R ⊆ R2n, the composition R ◦ R is the relation such that
(R ◦ R)(x1, . . . , xn, x′1, . . . , x′n) holds if and only if there exist y1, . . . , yn such
that R(x1, . . . , xn, y1, . . . , yn) and R(y1, . . . , yn, x

′
1, . . . , x

′
n). If we define R1 =



200 A. Fietzke, E. Kruglov, and C. Weidenbach

R and Rk = Rk−1 ◦ R, then the transitive closure of R is the relation R+

such that R+(x1, . . . , xn, x
′
1, . . . , x

′
n) if and only if there exists k ≥ 1 such that

Rk(x1, . . . , xn, x
′
1, . . . , x

′
n).

If a clause in a derivation has an ancestor (i.e., a clause to which it is related
by a sequence of rule applications) with the same free part (modulo variable
renaming), then the clause can be used to derive a third clause with the same
free part, and so on. This yields a potentially infinite sequence of inferences,
where clauses differing only in the arithmetic constraint are being derived.

The idea of the invariant generation rule is to find the transformation relating
the constraints along the sequence and to compute its transitive closure. To
find the transformation, the sequence of inferences is applied to a parameterized
version of the initial clause, as shown in Figure 1. If the closure can itself be
expressed as a constraint, then we can derive a corresponding inductive invariant
clause which can be used to subsume all its instances, thereby avoiding repeated
applications of the same sequence of inference rules.

Λ0 ‖C D1 . . . Dm

Λm ‖C

. . .

(a)

�

x=p‖C[x] D1 . . . Dm

ΛΔ ‖C

. . .

(b)

� Λ0[x], Λ
k
Δ[x,x′] ‖C[x′]

(c)

Fig. 1. After a loop has been detected during proof search (a), the corresponding
inferences are replayed on a parameterized clause (b) and the inductive invariant clause
is derived (c).

The parameterized clause is of the form x1=p1, . . . , xn=pn ‖ C[x1, . . . , xn],
where pi are fresh parameters (i.e., arithmetic constants) not appearing anywhere
in the clause set, one for each arithmetic variable in the clause Λ0 ‖ C. After
the inferences leading from Λ0 ‖ C to Λm ‖ C have been performed on the
parameterized clause, a clause of the form ΛΔ ‖ C is obtained. This replaying of
inferences is always possible, because the SUP(LA) calculus does not take the
clause constraints into account when deciding which inferences to perform (the
constraints are only considered when testing for subsumption, or when checking
satisfiability of an empty clause’s constraint). Also note that the parameters pi
are introduced only for the purpose of replaying the derivation, and do never
appear in the actual clause set, thus they play no semantic role. The constraint
ΛΔ will contain variables from the free part, as well as parameters pi, which
stand for the constraint variables of the original parameterized clause1.

1 Possibly after simplification and variable elimination to get rid of variables not
occurring in C.



Automatic Generation of Invariants for Circular Derivations in SUP(LA) 201

Example 1. Consider the inference

x=1 ‖ → P (x) x′=x+1 ‖ P (x)→ P (x′)

x=2 ‖ → P (x)

from the introduction. We would now perform the inference

x=p ‖ → P (x) x′=x+1 ‖ P (x)→ P (x′)

x=p+1 ‖ → P (x)

to get x = p+ 1 as ΛΔ.

If we replace the parameters by their corresponding variables, and replace the re-
maining variables by their primed versions, we obtain ΛΔ[x1, . . . , xn, x

′
1, . . . , x

′
n],

which describes a relation2 RΔ ⊆ R2n. We write Λk
Δ for the constraint repre-

senting Rk
Δ, if it exists. This constraint will in general contain k as an addi-

tional integer variable (we chose k to be distinct from all xi, x
′
i). Note that

(Λ0[x] ∧ Λk
Δ[x,x

′, k]){k �→ 1} is equivalent to Λm[x].

Definition 2 (Constraint Induction). Let N be a clause set containing two
clauses Λ0 ‖ C,Λm ‖ C with identical free part (up to variable renaming) such
that Λm ‖ C was derived from Λ0 ‖ C using clauses D1, . . . , Dm in N . The
constraint induction rule is the inference rule

Λ0 ‖ C D1 . . . Dm Λm ‖ C

Λ0[x], Λ
k
Δ[x,x′, k] ‖ C[x′]

where ΛΔ is the constraint obtained by replaying the derivation as described
above.

Proposition 3 (Soundness of Constraint Induction). Let N be a clause
set, and assume Λ0[x], Λ

k
Δ[x,x′, k] was derived from Λ0 ‖ C,D1, . . . , Dm, Λm ‖ C

∈ N by constraint induction. Then N |= Λ0[x], Λ
k
Δ[x,x

′, k].

Proof:

C[p], D1, . . . , Dm |= ΛΔ[p,x
′]→ C[x′] (1)

=⇒ D1, . . . , Dm |= (C[p] ∧ ΛΔ[p,x
′])→ C[x′] (2)

=⇒ D1, . . . , Dm |= (C[x] ∧ ΛΔ[x,x′])→ C[x′] (3)

=⇒ D1, . . . , Dm |=
(
C[x] ∧ Λk

Δ[x,x
′, k]
)
→ C[x′] (4)

=⇒ N |=
(
Λ[x] ∧ Λk

Δ[x,x
′, k]
)
→ C[x′] (5)

(1) holds by soundness of SUP(LA) and the fact that x = p ‖ C[x] is equivalent
to C[p]; (2) follows because C[p] is ground; (3) follows because the p do not

2 Some parameters and variables may not occur in ΛΔ, we may then just consider
them to be unconstrained, i.e., they can take any value in R.



202 A. Fietzke, E. Kruglov, and C. Weidenbach

occur outside of C[p] and ΛΔ[p,x
′]; (4) follows by induction on k; (5) follows

because D1, . . . , Dm ∈ N and N |= Λ[x]→ C[x].

Of course, the constraint induction rule is only applicable if Λk
Δ exists and can be

effectively computed. We will now look at a class of linear arithmetic constraints
for which this is always the case. Given two relations R1 ⊆ R2n and R2 ⊆ R2m,
the product of R1, R2 is the relation R ⊆ R2(m+n) such that R(x,y,x′,y′) if
and only if R1(x,x

′) and R2(y,y
′), where x = x1, . . . , xn and y = y1, . . . , ym.

If R is the product of R1, R2, then Rk(x,y,x′,y′) if and only if Rk
1(x,x

′) and
Rk

2(y,y
′). Hence we can compute the transitive closure of a product relation if

we can compute the transitive closure for each component relation.

Proposition 4. Let R(x1, . . . , xn, x
′
1, . . . , x

′
n) ⊆ R2n be defined by∧

i∈I

xi + αijxj + ai # x′i ∧
∧

αij �=0

x′j = 0

for I ⊆ {1, . . . , n}, αij ∈ R, αii = 0 for all 1 ≤ i ≤ n, ai ∈ R ∪ {−∞,∞} and
# ∈ {<,≤,≥, >}. Then Rk(x1, . . . , xn, x

′
1, . . . , x

′
n) holds if and only if∧

i∈I

xi + αi,jxj + kai # x′i ∧
∧

αij �=0

x′j = 0

Proof: By induction on k.

Proposition 5. Let R(x1, . . . , xn, x
′
1, . . . , x

′
n) ⊆ R2n be defined by

m∧
l=1

∑
j∈J

βljxj ≤ dl ∧
∧
j∈J

x′j = δjxj + cj

for J ⊆ {1, . . . , n},m ≥ 1, δj ∈ {0, 1} and cj , βlj , dl ∈ R. Then Rk(x1, . . . , xn, x
′
1,

. . . , x′n) holds for k ≥ 2 if and only if

m∧
l=1

⎛⎝∑
j∈J

βljxj ≤ dl ∧
∑
j∈J

βlj (δj (xj + (k − 2)cj) + cj) ≤ dl

⎞⎠
∧
∧
j∈J

x′j = δj (xj + (k − 1)cj) + cj

Proof: A straightforward proof using matrix operations can be found in [5].

In the following, we will apply the induction rule to constraints that describe
products of the kinds of relations described in Propositions 4 and 5. It turns out
that this is sufficient to turn SUP(LA) with constraint induction into a decision
procedure for timed automata extended with unbounded integer variables, as



Automatic Generation of Invariants for Circular Derivations in SUP(LA) 203

long as they satisfy certain flatness properties (Section 4) and also speed up
proof search, shorten proofs and enable termination of saturation for other kinds
of problems (Section 5).

If we don’t insist on being able to express the transitive closure as a single
conjunction, then it becomes possible to compute the transitive closure of more
involved types of constraints [8,21,14,6]. For instance, if the closure can be ex-
pressed in Presburger arithmetic, we can derive several clauses that together
constitute the inductive invariant (by expressing the closure in disjunctive nor-
mal form and introducing one clause per disjunct). For the time being, we restrict
ourselves to constraints of the above form, as this already yields nice results. We
plan to investigate extensions of the rule in future work.

4 Finite Saturation of Extended Timed Automata

For a set of variables X , the sets CC(X), IG(X) and IA(X) of clock constraints
and integer guards, respectively, are defined as

CC(X) : cc ::= x ◦ c | x− y ◦ c | cc∧ cc

IG(X) : ig ::= a1x1 + · · ·+ anxn ≤ a | ig∧ ig

where x ∈ X , c ∈ N, ◦ ∈ {<,≤,=,≥, >}, and ai, a ∈ Z. The set IA(X) of integer
assignments consists of all substitutions mapping each x ∈ X to a term of the
form a or x+ a, for a ∈ Z.

Definition 6 (Extended Timed Automaton). An extended timed automa-
ton is a tuple

T = (L, l0, X, ig0, {invl}l∈L, E)

where L is a finite set of locations with initial location l0 ∈ L, X is a finite
set of variables partitioned into subsets XC , XD of real-valued clock variables
and integer-valued variables, respectively; ig0 ∈ IG(XD) describes the initial
values of the integer variables; invl ∈ CC(XC) is the invariant of location l;
E ⊆ L × CC(XC) × IG(XD) × IA(XD) × 2XC × L is a finite set of edges. An
edge (l, cc, ig, ia, Z, l′) represents a transition from location l to location l′. The
constraints cc and ig determine when the edge is enabled, and the set Z contains
the clocks to be reset to zero when taking the edge, together with the assignment
ia. If X = XC, T is a classical timed automaton [2,13].

States of an extended timed automaton are tuples (l, ν) consisting of a location
l ∈ L and a valuation ν ∈ RX for all clocks and integer variables. The initial
states are of the form (l0, ν0) where ν0 assigns zero to all clocks and the values
of integer variables satisfy ig0. The automaton can stay in a location as long as
the clock values satisfy the location’s invariant. When the valuation of a state
satisfies the guards cc and ig of an outgoing edge, the corresponding transition
can be taken, resetting the clocks in Z and applying the assignment ia.



204 A. Fietzke, E. Kruglov, and C. Weidenbach

Let T = (L, l0, X, ig0, {invl}l∈L, E) be an extended timed automaton. The
encoding of reachability for extended timed automata is analogous to that for
classical timed automata [13], except that clauses encoding discrete transitions
now also include integer guards and assignments. We use a reachability predicate
Reach, and constant symbols l ∈ L for every location3. The vector x contains
the clock variables variables XC , z contains the integer variables XD. The clause

x=0, ig0(z) ‖ → Reach(x, z, l0).

encodes reachability of the initial states. For every location l ∈ L,

t≥0, x′=x+t, invl[x
′] ‖ Reach(x, z, l)→ Reach(x′, z, l).

encodes time-reachability for location l. For a variable x and set of variables
Z, we define the substitution ρZ to be ρZ(x) = 0 if x ∈ Z, and ρZ(x) = x
otherwise, and we extend it to vectors of variables pointwise. For every edge
e = (l, cc, ig, ia, Z, l′) in E, the clause

cc[x], x′=ρZ(x), ig(z), z
′=ia(z), invl′ [x

′] ‖ Reach(x, z, l)→ Reach(x′, z′, l′).

represents the discrete transition from l to l′ via e. A reachability conjecture is
a clause of the form Λ ‖ Reach(x, z, l)→ .

The states described by the reachability conjecture are reachable if and only
if the empty clause can be derived from the clause set. In [13], we show how to
ensure that the positive literals of such clauses are always strictly maximal in the
clause. This guarantees that starting from the encoding of an extended timed
automaton and one (or more) reachability conjecture, only negative unit clauses
can be derived (that’s why we don’t need factoring). The inferences correspond
to a backward traversal of the automaton’s state space, starting from the states
represented by the reachability conjecture. This restriction to backward traversal
ensures termination of saturation for the encoding of classical timed automata
(without integer variables). In the case of extended timed automata, this alone
is no longer sufficient, since the assignments to the integer variables cannot be
assumed to be monotonic. Thus assignments to integer variables that occur on a
cycle may lead to non-termination of saturation, because such a cycle will induce
a loop during proof search. This loop however can be handled by the constraint
induction rule if the clock constraints and clock resets on such a cycle satisfy
certain properties.

Definition 7 (Acceleratable cycle). Let (L, l0, X, ig0, {invl}l∈L, E) be an ex-
tended timed automaton. A sequence (e0, . . . , en−1) of edges ei = (li, cci, igi, iai,
Zi, l

′
i) ∈ E is called a cycle if l′i = li+1 mod n for all 0 ≤ i < n. It is called a

simple cycle, if additionally li �= lj for all i �= j. Following [16], a simple cycle
is called acceleratable, if all invariants and guards on the cycle contain at most
a single clock variable, which is the same for all invariants and guards on the

3 For readability, we omit the additional terms ensuring maximality of right-hand sides
[13].



Automatic Generation of Invariants for Circular Derivations in SUP(LA) 205

cycle, and this clock, say xm, is reset on all incoming edges to l0. The clock xm is
called the clock of the cycle, and l0 is called the reset location. By acceleratable
cycle, we mean an acceleratable simple cycle. By an integer cycle, we mean a
cycle where at least one edge contains an assignment to integer variables.

In [16] it is shown that for any acceleratable simple cycle, there exists an interval
[a, b] of clock values, such that [a, b] contains exactly all the possible execution
times of the cycle, independently of any path prefix. It follows that any k ≥ 1
consecutive executions of the cycle take time in [ka, kb].

Let us see what happens during saturation when a cycle (e0, . . . , en−1) is
reached. We denote by Ci

t the time-reachability clause for location li, and by
Ci

d the discrete-step clause corresponding to edge ei. Let C0 be a reachability
conjecture referring to location l0. The clause C0 can be resolved with Cn−1

d to
yield a clause C1 referring to location ln−1, which in turn can be resolved with
Cn−1

t . After 2n resolution steps, we obtain a clause C2n which again refers to
location l0, as shown in Figure 2. Since clauses C0 and C2n have the same free
part R(x, z, l0)→, the induction rule may be applied, under the condition that
replaying the derivation (as explained in Section 3) yields a constraint ΛΔ of the
required form.

l0 e0

C2n C2n-1

l1 e1

C2n-2 C2n-3

. . .
ln-1 en-1

C2 C1

l0

C0

Cn-1
dCn-1

tC1
tC0

dC0
t

Fig. 2. Backward traversal of a cycle (e0, . . . , en−1)

The parameterized version of C0 has the form x=q, z=p ‖ Reach(x, z, l0) →
where p,q are vectors of fresh parameters, one for each xi and zi, respectively.
This clause is successively resolved with the clauses Cn−1

d , Cn−1
t , . . . , C0

d , yielding
ΛΔ[p,q,x, z] ‖ Reach(x, z, l0)→. Since there are no atomic constraints contain-
ing both variables from XC and from XD, the constraint ΛΔ is of the form
Λx[p,x], Λz [q, z] and hence represents a product of two independent relations.
After renaming we obtain two constraints Λx[x,x

′] (referring only to clock vari-
ables) and Λz[z, z

′] (referring only to integer variables) which can be shown to
be of the forms required by Proposition 4 and Proposition 5, respectively, by
induction over the derivation.

Theorem 8. Let T be an extended timed automaton such that any integer cycle
is acceleratable, and any location belongs to at most one integer cycle. Let N be
a clause set containing the encoding of T and a reachability conjecture. Then N
can be finitely saturated by SUP(LA) with constraint induction.

Proof: Consider a fair derivation N = N0, N1, N2, . . . from N where Ni+1 =
Ni∪{Ci} and Ci is the non-redundant result of an inference from clauses fromNi,



206 A. Fietzke, E. Kruglov, and C. Weidenbach

and no clause in Ni subsumes Ci. Assume for contradiction that the derivation
is infinite. Since there are only finitely many locations, there must be infinitely
many clauses in the derivation referring to the same location, say l, (those are
clauses of the form Λ ‖ Reach(x, z, l)→) and hence l must lie on a cycle. If no
path from l back to itself involves any integer operations, then l can only repeat
finitely often ([13], Theorem 4.6). Hence l must lie on an integer cycle, which
by assumption is unique and acceleratable, and at least one of its locations
is a reset location, say lr. Furthermore, lr must also repeat infinitely often,
hence there is an infinite sequence Ci1 , Ci2 , . . . of clauses referring to lr. Since
the derivation is fair, we eventually apply the constraint induction rule to two
successive such clauses, say Cij and Cij+1 . Assume the rule is a applied at step
j of the derivation i.e., the resulting invariant clause is Cj . Writing Λij , Λij+1 for
the constraints of clause Cij , Cij+1 , respectively, the invariant clause has the form
Λij [x], Λ

k
Δ[x,x′, k] ‖ Reach(x′, lr)→. This clause cannot eliminated by forward

subsumption, for otherwise there would have to be a clause Λ′ ‖ Reach(x, lr)→
in Nj such that

∀x,x′, k.
(
Λij [x], Λ

k
Δ[x,x′, k]→ ∃y.Λ′[x′,y]

)
would have to hold, where y are the variables of Λ′ different from x,x′, k. But
then the last premise of the constraint induction rule would also be subsumed,
because Λij+1 is equivalent to

(
Λij [x], Λ

k
Δ[x,x′, k]

)
{k �→ 1}, and so the rule could

not have been applied in the first place. It follows that the invariant clause is con-
tained in Nj+1 and all subsequent clause sets, since backward subsumption has
to be strict. The invariant clause can be resolved with the clauses corresponding
to the edges in the cycle, yielding clauses of the form Λ[x,x′, k] ‖ Reach(x′, l)→
for every location l on the cycle. Any further traversal of the cycle then yields
clauses of the form Λ[x,x′, k + 1] ‖ Reach(x′, l)→, which are subsumed, as

∀x,x′, k. (Λ[x,x′, k + 1]→ ∃k′.Λ[x,x′, k′])

holds. Finally, all clauses Cij+m , m > 0, are instances of Cj (via instantiation of
k), and hence eliminated by forward subsumption, so the sequence Ci1 , Ci2 , . . .
cannot be infinite, a contradiction.

Since the encoding of extended timed automata does not introduce any func-
tion symbols ranging into the arithmetic sorts, it is sufficiently complete, and
SUP(LA) is therefore refutationally complete for such encodings. Together with
Theorem 8, this implies that SUP(LA) is a decision procedure for the reachability
problem in extended timed automata.

5 Implementation and Results

We have implemented the constraint induction rule in our SPASS(LA) theo-
rem prover [1]. SPASS(LA) currently uses Z3 [9] as a back end for constraint
solving, both for satisfiability and implication checking. Although Z3 supports



Automatic Generation of Invariants for Circular Derivations in SUP(LA) 207

mixed real/integer constraints, it turned out that when checking implication
between two constraints both containing integer variables (as they arise in our
approach), Z3 almost always returned “unknown”. Since the implication check
is needed for subsumption and hence is ultimately the key to termination, we
decided to implement our own implication test for mixed constraints. The test
consists of a preprocessing step, which tries to eliminate all conjuncts containing
integer variables from the right-hand side of the implication, followed by a call to
Z3 with the resulting implication problem. The preprocessing works as follows:
suppose we are trying to prove the implication ∀x.Λ2 ⇒ ∃y.Λ1, where Λ1, Λ2

are constraints, x are the variables of Λ2 and y are the variables of Λ1 not oc-
curring in Λ2. Suppose there are atomic constraints φ1 ∈ Λ1, φ2 ∈ Λ2 such that
φ1 = x−

∑n
i=1 αiki # c and φ2 = x−

∑
j∈J

J⊆{1,...,n}
αjk

′
j # c+ d, where # is one

of <,≤,=,≥ or >, x is a real (or integer) variable, ki, k
′
j are integer variables

and c, d ∈ R. If d =
∑

l∈L
L⊆{1,...,n}

mlαil (where ml are integer constants ≥ 1) such

that L contains at least the indices missing from J , i.e., ({1, . . . , n} \ J) ⊆ L,
then φ2 implies ∃(k′j)j∈J .φ1: assign ml to k′l, and either kj or kj + mj to the
other k′j . In this case, we can remove φ1 from Λ1. In the implementation, we
currently only consider the case where L = {i} for some i ∈ {1, . . . , n}, and
either J = {1, . . . , n} or J = {1, . . . , n} \L, which is enough to handle all impli-
cation problems arising in our examples. Nevertheless, we are investigating the
use of other solvers that implement complete quantifier elimination for mixed
constraints.

Example 9 (Extended timed automaton). Consider the extended timed automa-
ton in Figure 3, where x1, x2 are clocks and z1, z2 are integer variables. We want
to check whether location L2 is reachable with a valuation such that z1 ≥ z2
and x2 < 12. Since x2 is never reset to zero, its value represents the total time
elapsed since first entering L1. As the cycle at L1 must be traversed four times
before z1 has overtaken z2, and each cycle traversal takes at least three time
units, such a state is not reachable.

L0 L1 L2

x1 := 0,
x2 := 0,
z1 := 0,
z2 := 10

x1≥3?

z1 := z1 + 2,
z2 := z2 − 1

x1 := 0

Fig. 3. An extended timed automaton

This problem can be encoded by the following clause set, where the last clause
is the negated conjecture:4

4 For simplicity, we use Li(. . . ) instead of Reach(. . . , Li), and we also omit L0.



208 A. Fietzke, E. Kruglov, and C. Weidenbach

x1=0, x2=0, z1=0, z2= 0 ‖ →L1(x1, x2, z1, z2)
t≥0, x′1=x1+t, x

′
2=x2+t ‖ L1(x1, x2, z1, z2)→L1(x

′
1, x

′
2, z1, z2)

z′1=z
′
1+2, z′2=z

′
2−1 ‖ L1(x1, x2, z1, z2)→L2(x1, x2, z

′
1, z

′
2)

t≥0, x′1=x1+t, x
′
2=x2+t ‖ L2(x1, x2, z1, z2)→L2(x

′
1, x

′
2, z1, z2)

x′1=0 ‖ L2(x1, x2, z1, z2)→L1(x
′
1, x2, z1, z2)

z1≥z2, x2<12 ‖ L2(x1, x2, z1, z2)→
The clause set is satisfiable, and without the constraint induction rule, SPASS(LA)
does not terminate. With constraint induction activated, the invariant clause

k≥1, x1=0, x2≥3k, z1=2k, z2=10−k ‖ → L1(x1, x2, z1, z2)

is derived as soon as the cycle has been traversed once, and is used to subsume all
other L1-clauses. SPASS(LA) terminates with the answer “completion found”5

after deriving 23 clauses.

The next example shows that the induction rule is also useful for speeding up
proof search and finding shorter proofs in the case of unsatisfiable clause sets.

Example 10 (Water tank controller). Figure 4 depicts a water tank controller [1]
monitoring the water level x in a water tank, into which water is flowing with
a constant rate cin. Whenever the water level is greater than 200, the controller
opens a valve through which water leaves the tank at a constant rate of cout.

S0

S1

S2

x > 200

x ≤ 200

x := x+ cin − cout

x := x+ cin

Fig. 4. Water tank controller

We may want to prove that, starting from an empty tank, the water level can
reach 200 + cin. This problem can be encoded by the following clause set:

x > 200 ‖ S0(x)→S1(x)
x ≤ 200 ‖ S0(x)→S2(x)

x′ = x+ cin − cout ‖ S1(x)→S0(x
′)

x′ = x+ cin ‖ S2(x)→S0(x
′)

x = 0 ‖ →S0(x)
x ≥ 201 ‖ S0(x)→

5 A completion is a satisfiable saturation of the initial clause set.



Automatic Generation of Invariants for Circular Derivations in SUP(LA) 209

For cin = 1 and cout = 26, SPASS(LA) without constraint induction needs to
derive 1212 clauses before finding a proof of length 211. The proof consists of
repeated traversals of the S0 → S1 → S0 cycle with increasing values of x, until
x = 201 is reached.

With constraint induction activated, as soon as the clause x = 1‖ → S0(x)
has been derived from the initial clause x = 0‖ → S0(x) (using the second and
fourth clause) SPASS(LA) detects the cycle and derives the invariant clause

1 ≤ k ≤ 201, x = k ‖ → S0(x).

which is resolved with the negated conjecture, yielding the empty clause. The
proof has length 9 and SPASS(LA) finds it after deriving 13 clauses in total.

If we replace the last clause with x > 201 ‖ S0(x)→, the clause set becomes
satisfiable. Without constraint induction, SPASS(LA) now derives 1214 clauses
before answering “completion found”, whereas with constraint induction, only
23 clauses need to be derived (among them the above invariant clause).

Table 1 shows the results from the above examples, together with the total time
spent on the problem.

Table 1. Summary of experimental results

SUP(LA) SUP(LA)+ind
Problem clauses derived time clauses derived time

Extended TA sat – – 23 0.25s
Water tank unsat 1212 33s 13 0.15s
Water tank sat 1214 33s 23 0.18s

6 Conclusion

We have presented the constraint induction rule that automatically generates
inductive invariants during proof search in the context of superposition modulo
linear arithmetic. The rule applies to loops in which repeated applications of
the same sequence of inferences yield clauses which differ only in their arith-
metic constraints (their free parts being identical up to renaming of universally
quantified variables). The derived invariant summarizes these clauses by repre-
senting the transitive closure of the transformation relating the clauses in the
loop. The loop can thus be avoided, by using the invariant clause to subsumes
its instances, provided that the invariant clause is smaller in the clause ordering
(which is required to maintain completeness of the calculus). In order to find
a well-founded ordering for which this is the case, one has to ensure that the
constraint induction rule is only applied a finite number of times.

6 In principle, cin and cout don’t need to be instantiated, since the invariant computa-
tion does not care about the values of constants, but our implementation does not
yet handle constant symbols in constraints.



210 A. Fietzke, E. Kruglov, and C. Weidenbach

As evidenced by our implementation, the constraint induction rule can consid-
erably speed up proof search, enabling termination of saturation in cases where
it would otherwise diverge, and allowing shorter proofs to be found. Since the
induction rule applies to clauses with the same free part and invariants thus
only talk about the arithmetic constraints, their computation does not require
proof generalization and schematization techniques that are necessary to com-
pute invariants for the full first-order setting [20]. Nevertheless, the induction
rule significantly increases the power of the SUP(LA) calculus, making it possible
to turn it into a decision procedure for reachability in timed automata extended
with unbounded integer variables. The decidability of the reachability problem
for extended timed automata is not a new result in itself, as it can be obtained
from results on counter automata [8,7]. However, we are able to obtain the re-
sult using a general-purpose approach like superposition (which applies to full
first-order logic), extended with an induction rule that is also applicable outside
the specific automata setting.

Preliminary testing of our implementation shows that the rule enables termi-
nation of saturation and the finding of short proofs for practically interesting
problems. We are currently evaluating the use of the rule for problems from
program and protocol verification (particularly in the setting of first-order prob-
abilistic timed automata [11]) and ontology reasoning. Finally, we are working
on extending the rule to handle wider classes of constraints.

References

1. Althaus, E., Kruglov, E., Weidenbach, C.: Superposition Modulo Linear Arithmetic
SUP(LA). In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS, vol. 5749,
pp. 84–99. Springer, Heidelberg (2009)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

3. Bachmair, L., Ganzinger, H., Waldmann, U.: Superposition with Simplification as a
Decision Procedure for the Monadic Class with Equality. In: Mundici, D., Gottlob,
G., Leitsch, A. (eds.) KGC 1993. LNCS, vol. 713, pp. 83–96. Springer, Heidelberg
(1993)

4. Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for
hierarchic first-order theories. Applicable Algebra in Engineering, Communication
and Computing, AAECC 5(3/4), 193–212 (1994)

5. Boigelot, B., Wolper, P.: Symbolic Verification with Periodic Sets. In: Dill, D.L.
(ed.) CAV 1994. LNCS, vol. 818, pp. 55–67. Springer, Heidelberg (1994)

6. Bozga, M., Iosif, R., Konečný, F.: Fast Acceleration of Ultimately Periodic Re-
lations. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 227–242. Springer, Heidelberg (2010)

7. Bozga, M., Iosif, R., Lakhnech, Y.: Flat parametric counter automata. Fundam.
Inform. 91(2), 275–303 (2009)

8. Comon, H., Jurski, Y.: Multiple Counters Automata, Safety Analysis and Pres-
burger Arithmetic. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 268–279.
Springer, Heidelberg (1998)



Automatic Generation of Invariants for Circular Derivations in SUP(LA) 211

9. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

10. Fermüller, C.G., Leitsch, A., Hustadt, U., Tamet, T.: Resolution decision proce-
dures. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning,
vol. II, ch.25, pp. 1791–1849. Elsevier (2001)

11. Fietzke, A., Hermanns, H., Weidenbach, C.: Superposition-Based Analysis of First-
Order Probabilistic Timed Automata. In: Fermüller, C.G., Voronkov, A. (eds.)
LPAR-17. LNCS, vol. 6397, pp. 302–316. Springer, Heidelberg (2010)

12. Fietzke, A., Kruglov, E., Weidenbach, C.: Automatic generation of inductive invari-
ants by SUP(LA). Technical Report MPI-I-2012-RG1-002, Max-Planck-Institut für
Informatik (2012)

13. Fietzke, A., Weidenbach, C.: Superposition as a decision procedure for timed au-
tomata. In: MACIS, pp. 52–62 (2011)

14. Finkel, A., Leroux, J.: How to Compose Presburger-Accelerations: Applications
to Broadcast Protocols. In: Agrawal, M., Seth, A.K. (eds.) FSTTCS 2002. LNCS,
vol. 2556, pp. 145–156. Springer, Heidelberg (2002)

15. Halpern, J.Y.: Presburger arithmetic with unary predicates isΠ1
1 complete. Journal

of Symbolic Logic 56(2), 637–642 (1991)
16. Hendriks, M., Larsen, K.G.: Exact acceleration of real-time model checking. Electr.

Notes Theor. Comput. Sci. 65(6) (2002)
17. Jacquemard, F., Rusinowitch, M., Vigneron, L.: Tree Automata with Equality

Constraints Modulo Equational Theories. In: Furbach, U., Shankar, N. (eds.)
IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 557–571. Springer, Heidelberg (2006)

18. Korovin, K., Voronkov, A.: Integrating Linear Arithmetic into Superposition Calcu-
lus. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 223–237.
Springer, Heidelberg (2007)

19. Kruglov, E., Weidenbach, C.: SUP(T) decides the first-order logic fragment over
ground theories. In: MACIS, pp. 126–148 (2011)

20. Peltier, N.: A General Method for Using Schematizations in Automated Deduction.
In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083,
pp. 578–592. Springer, Heidelberg (2001)

21. Wolper, P., Boigelot, B.: Verifying Systems with Infinite but Regular State. In:
Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 88–97. Springer, Heidelberg
(1998)



Moral Reasoning under Uncertainty

The Anh Han1,�, Ari Saptawijaya1,2,��, and Luı́s Moniz Pereira1

1 Centro de Inteligência Artificial (CENTRIA)
Departamento de Informática, Faculdade de Ciências e Tecnologia

Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
2 Fakultas Ilmu Komputer, Universitas Indonesia, Kampus UI Depok 16424, Indonesia
{h.anh,ar.saptawijaya}@campus.fct.unl.pt, lmp@fct.unl.pt

Abstract. We present a Logic Programming framework for moral reasoning un-
der uncertainty. It is enacted by a coherent combination of our two previously
implemented systems, Evolution Prospection for decision making, and P-log for
probabilistic inference. It allows computing available moral judgments via dis-
tinct kinds of prior and post preferences. In introducing various aspects of uncer-
tainty into cases of classical trolley problem moral dilemmas, we show how they
may appropriately influence moral judgments, allowing decision makers to opt
for different choices, and for these to be externally appraised, even when subject
to incomplete evidence, as in courts.

Keywords: Moral Reasoning, Uncertainty Reasoning, Evolution Prospection,
Logic Programming, P-log.

1 Introduction

There has been growing interest in understanding morality from a scientific point of
view, arising from diverse fields, e.g. primatology [6], cognitive sciences [12,16], neuro-
science [26], and other interdisciplinary perspectives [14]. The study of morality has at-
tracted the artificial intelligence community too. Research on modeling moral reasoning
computationally have been reported assiduously since the AAAI 2005 Fall Symposium
on Machine Ethics [2], and recently in book form [3,27]. We remit to these references
and our own previous work [22,23] for detailed background motivation, techniques, and
promises of this burgeoning field.

In prior work we exploit features of logic programming, e.g. default negation, abduc-
tion and preferences, to model moral reasoning, and employ prospective logic program-
ming with evolution prospection [21,20]. Possible decisions in a moral dilemma are
modeled as abducible hypotheses. Abductive solutions (cf. Def. 1 below) are then com-
putationally generated which capture hypothetical decisions and their consequences.
The solutions violating integrity constraints, e.g. those containing actions involving in-
tentional killing, are ruled out. Finally, a posteriori preferences single out those gen-
erated hypothetical decisions that characterize preferred moral decisions, including the
use of utility functions.

� TAH acknowledges the support from FCT-Portugal, grant SFRH/BD/62373/2009.
�� AS acknowledges the support from FCT-Portugal, grant SFRH/BD/72795/2010.

N. Bjørner and A. Voronkov (Eds.): LPAR-18, LNCS 7180, pp. 212–227, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Moral Reasoning under Uncertainty 213

This paper aims to show how evolution prospection of conceivable scenarios can be
extended to handle moral judgments under uncertainty, by employing a combination
of our XSB-Prolog system with P-log [4,11] for computing scenarios’ probabilities
and utilities. It extends our previous work [22,23] in now further enabling judgmental
reasoning under uncertainty concerning the facts, the effects, and even the actual actions
performed. For illustration, the newly introduced extensions effectively show in detail
how to declaratively model and computationally deal with uncertainty in prototypical
classic moral situations known generically as the trolley problem [7].

The theory’s implemented system can thus prospectively consider moral judgments,
under hypothetical and uncertain situations, to decide on the most likely appropriate
one. The overall moral reasoning is accomplished via a priori constraints and a poste-
riori preferences on abductive solutions tagged with uncertainty and utility measures,
features henceforth made available in prospective logic programming.

The paper is composed by first introducing the trolley problem and its moral dilem-
mas, in Section 2, followed by a formal description of scenario evolution prospection
under uncertainty, in Section 3. Forthwith, illustrative trolley problem examples of de-
cision making under uncertainty are detailed, in Section 4. In Section 5 we adopt in-
stead the external observer’s point of view when passing moral judgment on an agent’s
choices, even if its actions, circumstances, and available evidence are uncertain to a
degree. There follows, in Section 6, a discussion of the examples’ results in the light
of well-known moral principles, and of how these are respected. Some conclusions are
then drawn, in Section 7.

This work is neither a proposal for machine incorporated ethics nor an ethics for
humans who use machines, as often addressed in the literature.

2 The Trolley Problem and the Principle of Double Effect

The trolley problem presents several moral dilemmas that inquire whether it is permissi-
ble to harm one or more individuals for the purpose of saving others. It has the following
initial circumstance [12]: “There is a trolley and its conductor has fainted. The trolley
is headed toward five people walking on the track. The banks of the track are so steep
that they will not be able to get off the track in time.” Given this circumstance, there
exist several cases of moral dilemmas [16]. The following three are considered here
(see Figure 22.2 (1)-(3) of [23] for graphical illustration):

Bystander. Hank is standing next to a switch that can turn the trolley onto a side track,
thereby preventing it from killing the five people. However, there is a man standing on
the side track. Hank can throw the switch, killing him; or he can refrain from doing so,
letting the five die. Is it morally permissible for Hank to throw the switch?

Footbridge. Ian is on the bridge over the trolley track, next to a heavy man, which he
can shove onto the track in the path of the trolley to stop it, preventing the killing of five
people. Ian can shove the man onto the track, resulting in death; or he can refrain from
doing so, letting the five die. Is it morally permissible for Ian to shove the man?

Loop Track. Ned is standing next to a switch that can temporarily turn the trolley onto
a side track, without stopping, only to join the main track again. There is a heavy man
on the side track. If the trolley hits the man, he will slow down the trolley, giving time



214 T.A. Han, A. Saptawijaya, and L. Moniz Pereira

for the five to escape. Ned can throw the switch, killing the man; or he can refrain from
doing so, letting the five die. Is it morally permissible for Ned to throw the switch?

The trolley problem suite has been used in tests to assess moral judgments of sub-
jects from demographically diverse populations [12,16]. Interestingly, although all three
cases have the same goal, i.e. to save five albeit killing one, subjects come to different
judgments on whether the action to reach the goal is permissible or impermissible,
i.e. permissible for the Bystander case, but impermissible for the Footbridge and Loop
Track cases. As reported by [16], the judgments appear to be widely shared among
demographically diverse populations.

Although subjects have difficulty to uncover which moral rules they apply for rea-
soning in the above cases, their judgments appear to be consistent with the so-called the
principle of double effect, enunciated as follows [12]:

Harming another individual is permissible if it is the foreseen consequence of an act
that will lead to a greater good; in contrast, it is impermissible to harm someone else
as an intended means to a greater good.

The key expression is intended means, i.e. performing a (harming) action intentionally
to attain greater good. Humans must not deliberately be harmed as means to an end.

3 Evolution Prospection under Uncertainty with P-log

We describe how P-log can be integrated into an evolving prospective agent system. We
start by briefly recalling the constructs of the Evolution Prospection (EP) system and
P-log, to the extent we use them here.

3.1 Evolution Prospection

The implemented EP system has proven useful for decision making [20,24], under dif-
ferent application domains, including Elder Care and Ambient Intelligence in home
environment [10,9,24]. The ease in expressing preferences in EP [19,20] enables to
take into account agents’ preferences with precision. The EP system is implemented on
top of ABDUAL, a preliminary implementation of [1], using XSB Prolog [28].

Language. Let L be a first order language. A domain literal in L is a domain atomA or
its default negation notA. The latter is used to express that the atom is false by default
(closed world assumption). A domain rule in L is of the form:A← L1, . . . , Lt (t ≥ 0),
where A is a domain atom and L1, . . . , Lt are domain literals. An integrity constraint
(IC) in L is a rule with an empty head. A program P over L is a set of domain rules and
integrity constraints, standing for all their ground instances.

In this paper, we only consider Normal Logic Programs (NLPs), i.e. the head of
a rule is an atom or empty. We focus furthermore on abductive logic programs, i.e.
NLPs allowing for abducibles – user-specified positive literals without rules, whose
truth-value is not fixed. Abducibles instances or their default negations may appear in
bodies of rules, like any other literal. They stand for hypotheses, each of which may
independently be assumed true, in positive literal or default negation form, as the case
may be, in order to produce an abductive solution to a query:



Moral Reasoning under Uncertainty 215

Definition 1 (Abductive Solution). An abductive solution is a consistent collection of
abducible instances or their negations that, when replaced by true everywhere in P ,
affords a model of P (for the specific semantics used on P ), which satisfies the query
and the ICs – a so-called abductive model.

Active Goals. In each cycle of its evolution the agent has a set of active goals or desires.
We introduce the on observe/1 predicate, which we consider as representing active
goals or desires that, once triggered by the observations figuring in its rule bodies,
cause the agent to attempt their satisfaction by launching all the queries standing for
them, or using preferences to select them. The rule for an active goal AG is of the form:
on observe(AG) ← L1, ..., Lt (t ≥ 0), where L1,...,Lt are domain literals. During
evolution, an active goal may be triggered by some events, previous commitments or
some history-related information.

When starting a cycle, the agent collects its active goals by finding all the
on observe(AG) that hold under the initial theory without performing any abduc-
tion, then finds abductive solutions for their conjunction.

Preferring Abducibles. A declared abducible A can be assumed only if it is a consid-
ered one, i.e. if it is expected in the given situation, and, moreover, there is no expecta-
tion to the contrary. The A in the body indicates it is a collected abducible by a search
attempt for a query’s abductive solution whenever this rule is used.

consider(A) ← A, expect(A), not expect not(A)

The rules about expectations are domain-specific knowledge contained in the theory of
the program, and effectively constrain the abducible hypotheses available in a situation.
To express preference criteria among abducibles, we envisage an extended language
L�. A preference atom in L� is of the form a�b, where a and b are abducibles. It means
that if b can be assumed (i.e. considered), then a� b forces a to be assumed too if it may
be allowed for consideration. A preference rule in L� is of the form:

a � b← L1, ..., Lt

where L1, ..., Lt (t ≥ 0) are domain literals over L�.
A priori preferences are used to produce the most interesting or relevant considered

conjectures about possible future states. They are taken into account when generating
possible scenarios (abductive solutions), which will subsequently be preferred amongst
each other a posteriori, after having been generated, and specified consequences of in-
terest taken into account.

A Posteriori Preferences. Having computed possible scenarios, represented by abduc-
tive solutions, more favorable scenarios can be preferred a posteriori. Typically, a poste-
riori preferences are performed by evaluating consequences of abducibles in abductive
solutions. An a posteriori preference has the form:

Ai � Aj ← holds given(Li, Ai), holds given(Lj, Aj)



216 T.A. Han, A. Saptawijaya, and L. Moniz Pereira

where Ai, Aj are abductive solutions and Li, Lj are domain literals. This means that
Ai is preferred to Aj a posteriori if Li and Lj are true as the side-effects of abductive
solutions Ai and Aj , respectively, without any further abduction being permitted when
just testing for the side-effects. Optionally, in the body of the preference rule there can
be any Prolog predicate used to quantitatively compare the consequences of the two
abductive solutions.

A posteriori preferences between two abductive solutions is enacted by comparing
a pair of consequences of each abductive solution. However, more often than not, one
abductive solution might have several relevant consequences that contribute to make it
either more or less preferred than the other abductive solution it is being compared to.
All those relevant consequences are needed to be taken into account for decision making.
This is similar to the problem addressed in standard decision theory [8] which is to decide
between two actions by evaluating each action’s relevant consequences based on an utility
function mapping consequences to utilities, typically assumed to be real valued, and a
given decision rule. The only difference is that here we need to evaluate consequences of
sets of actions which represent the abductive solutions. The decision rule uses the utility
to choose among actions, or abductive solutions in this case. Technically, a decision rule
maps one abductive solution to a real value based on the values of its consequences. Then,
the one having greater utility is preferred to the one having less.

There have been many decision rules studied in the literature. The best-known one is
expected utility maximization. In general, as for any type of decision rules, it has a set of
relevant consequences and a real-valued utility function mapping those consequences
to real numbers are given [8]. This decision rule also requires a probability measure
that characterizes the decision maker’s uncertainty with respect to the consequences
of a hypothetical abductive solution. It orders the abductive solutions according to the
expected utility1 of their consequences given the probability measure. Thus, a posteriori
preferences using expected utility maximization decision rule have the form:

Ai � Aj ← expected utility(Ai, Ui), expected utility(Aj, Uj), Ui > Uj

whereAi, Aj are abductive solutions. This means thatAi is preferred to Aj a posteriori
if the expected utility of relevant consequences ofAi is greater than the expected utility
of the ones of Aj .

3.2 P-log

The P-log system in its original form [4] uses ASP as a tool for computing all stable
models of the logical part of P-log. Although ASP has proven a useful paradigm for
solving a variety of combinatorial problems, its non-relevance property [5] makes the
P-log system sometimes computationally redundant. A new implementation of P-log
[11], which we deploy in this work, uses the XASP package of XSB Prolog [28] for

1 Expected utility of a set of consequences C given a probability measure Pr mapping the
consequences to probability values, i.e. Pr : C → [0, 1], and an utility function U map-
ping consequences to real-value utilities, i.e. U : C → R, is obtained by the formula:
E(C, Pr,U) =

∑
X∈C Pr(X)U(X).



Moral Reasoning under Uncertainty 217

interfacing with Smodels [18], an answer set solver. The power of ASP allows the rep-
resentation of both classical and default negation, to produce 2-valued models. More-
over, using XSB as the underlying processing platform enables collecting the relevant
abducibles for a query, obtained by need with top-down search. Furthermore, XSB per-
mits to embed arbitrary Prolog code for recursive definitions. Consequently, it allows
more expressive queries not supported in the original version, such as meta queries
(probabilistic built-in predicates can be used as usual XSB predicates, thus allowing
the full power of probabilistic reasoning in XSB) and queries in the form of any XSB
predicate expression [11]. In addition, the tabling mechanism of XSB [25] significantly
improves the performance of the system.

In general, a P-log program Π consists of a sorted signature, declarations, a regu-
lar part, a set of random selection rules, a probabilistic information part, and a set of
observations and actions.

Sorted Signature and Declaration. The sorted signature Σ of Π contains a set of
constant symbols and term-building function symbols, which are used to form terms
in the usual way. Additionally, the signature contains a collection of special function
symbols called attributes. Attribute terms are expressions of the form a(t̄), where a is
an attribute and t̄ is a vector of terms of the sorts required by a. A literal is an atomic
expression, p, or its explicit negation, neg p.

The declaration part of a P-log program can be defined as a collection of sorts and
sort declarations of attributes. A sort c can be defined by listing all the elements c =
{x1, ..., xn} or by specifying the range of values c = {L..U} where L and U are the
integer lower bound and upper bound of the sort c. Attribute a with domain c1× ...×cn
and range c0 is represented as follows:

a : c1 × ...× cn --> c0

If attribute a has no domain parameter, we simply write a : c0. The range of attribute a
is denoted by range(a).

Regular Part. This part of a P-log program consists of a collection of XSB Prolog
rules, facts and integrity constraints (IC) formed using literals of Σ. An IC is encoded
as a XSB rule with the false literal in the head.

Random Selection Rule. This is a rule for attribute a having the form:

random(RandomName, a(t̄), DynamicRange) :- Body

This means that the attribute instance a(t̄) is random if the conditions in Body are sat-
isfied. The DynamicRange allows to restrict the default range for random attributes.
The RandomName is a syntactic mechanism used to link random attributes to the
corresponding probabilities. A constant full can be used in DynamicRange to signal
that the dynamic range is equal to range(a).

Probabilistic Information. Information about probabilities of random attribute in-
stances a(t̄) taking a particular value y is given by probability atoms (or simply
pa-atoms) which have the following form:

pa(RandomName, a(t̄, y), d (A,B)):- Body



218 T.A. Han, A. Saptawijaya, and L. Moniz Pereira

meaning that if theBody were true, and the value of a(t̄) were selected by a rule named
RandomName, then Body would cause a(t̄) = y with probability A

B . Note that the
probability of an atom a(t̄, y) will be directly assigned if the corresponding pa/3 atom
is the head of some pa-rule with a true body. To define probabilities of the remaining
atoms we assume that, by default, all values of a given attribute which are not assigned
a probability are equally likely.

Observations and Actions. These are, respectively, statements of the forms obs(l) and
do(l), where l is a literal. Observations obs(a(t̄, y)) are used to record the outcomes y of
random events a(t̄), i.e. random attributes and attributes dependent on them. Statement
do(a(t̄, y)) indicates a(t̄) = y is enforced as the result of a deliberate action.

In an EP program, P-log code is embedded by putting it between reserved keywords,
beginPlog and endPlog. In P-log, probabilistic information can be obtained us-
ing the XSB Prolog built-in predicate pr/2 [11]. Its first argument is the query, the
probability of which is needed to compute. The second argument captures the result.
Thus, probabilistic information can be easily embedded by using pr/2 like a usual Pro-
log predicate, in any constructs of EP programs, including active goals, preferences,
and integrity constraints. What is more, since P-log [11] allows to code Prolog prob-
abilistic meta-predicates (Prolog predicates that depend on pr/2 predicates), we also
can directly use probabilistic meta-information in EP programs. We will illustrate those
features with several examples below.

4 Moral Reasoning under Uncertainty

We modify the trolley problems to introduce different aspects of uncertainty, and show
how that can be modeled in our framework. Undoubtedly, real moral problems might
contain several aspects of uncertainty, and decision makers need to take them into ac-
count when reasoning. In moral situations the uncertainty of the decision makers about
different aspects such as the actual external environment, beliefs and behaviors of other
agents involved in the situation, as well as the success in performing different actual
or hypothesized actions, are inescapable. We show that the levels of uncertainty of sev-
eral such combined aspects may affect the moral decision, reflecting that, with different
levels of uncertainty with respect to the de facto environment and success of actions
involved, the moral decision makers—such as juries—may consider different choices
and verdicts. In the following, we introduce uncertainty into the above mentioned trol-
ley problems. Uncertainty is modeled using probability.

4.1 Revised Bystander Case

The first aspect present in every trolley problem where we can introduce uncertainty
is that of how probable the five people walking will die when the trolley is let head
on to them without outside intervention, or there is intervention though unsuccessful.
People can help each other get off the track. Maybe they would not have enough time
in order for all to get out and survive. That is, the moral decision makers now need
to account for how probable the five people, or only some of them, might die. It is



Moral Reasoning under Uncertainty 219

reasonable to assume that the probability of a person dying depends on whether he
gets help from others; and, more elaborately, on how many people help him. The P-log
program modeling this scenario is as follows:

beginPlog.
1. person = {1..5}. bool = {t,f}.
2. die : person --> bool. random(rd(P), die(P), full).
3. helped : person --> bool. random(rh(P), helped(P), full).
4. pa(rh(P), helped(P,t), d_(3,5)) :- person(P).
5. pa(rd(P), die(P,t), d_(1,1)) :- helped(P,f).

pa(rd(P), die(P,t), d_(4,10)) :- helped(P,t).
6. die_5(V):-pr(die(1,t)&die(2,t)&die(3,t)&die(4,t)&die(5,t),V).
endPlog.

Two sorts person and bool are declared in line 1. There are two random attributes, die
and helped. Both of them map a person to a boolean value, saying if a person either
dies or does not die, and, if a person either gets help or does not get any, respectively
(lines 2-3). The pa-rule in line 4 says that a person might get help from someone with
probability 3/5. In line 5, it is said that a person who does not get any help will surely
die (first rule) and the one who gets help dies with probability 4/10 (second rule in
line 5). This rule represents the degree of conviction of the decision maker about how
probable a person can survive provided that he is helped. Undoubtedly, this degree
affects the final decision to be made. The meta-probabilistic predicate die 5/1 in line 6
is used to compute the probability of all five people dying. Note that in P-log, the joint
probability of two events A and B is obtained by the query pr(A&B, V ).

We can see this modeling is not elaborate enough. It is reasonable to assume that the
more help a person gets, the more the chance he has to succeed in getting off the track
on time. For the sake of clearness of representation, we use a simplified version.

Consider now the Bystander Case with this uncertainty aspect being taken into ac-
count, i.e. the uncertainty of five people dying when merely watching the trolley head
for them. It can be coded as follows:

expect(watching). trolley_straight <- watching.
end(die(5), Pr) <- trolley_straight, prolog(die_5(Pr)).

The abducible of throwing the switch and its consequence is modeled as:

expect(throwing_switch). kill(1) <- throwing_switch.
end(save_men,ni_kill(N)) <- kill(N).

The a posteriori preferences, which model the double effect principle, are provided by:

Ai << Aj <- holds_given(end(die(N),Pr),Ai), U is N*Pr,
holds_given(end(save_men,ni_kill(K)),Aj), U < K.

Ai << Aj <- holds_given(end(save_men,ni_kill(N)),Ai),
holds_given(end(die(K),Pr), Aj), U is K*Pr, N < U.

There are two abductive solutions in this trolley case, either watching or throwing the
switch. In the next stage, the a posteriori preferences are taken into account. It is easily



220 T.A. Han, A. Saptawijaya, and L. Moniz Pereira

seen that the final decision directly depends on the probability of five people dying,
namely, whether that probability is greater than 1/5.

Let PrD denote the probability that a person dies when he gets help, coded in the
second pa-rule (line 5) of the above P-log program. If PrD = 0.4 (as currently in the
P-log code), the probability of five people dying is 0.107. Hence, the final choice is to
merely watch. If PrD is changed to 0.6, the probability of five people dying is 0.254.
Hence, the final best choice is to throw the switch. That is, in a real world situation
where uncertainty is unavoidable, in order to appropriately provide a moral decision,
the system needs to take into account the uncertainty level of relevant factors.

4.2 Revised Footbridge Case

Consider now the following revised version of the Footbridge Case.

Example 1 (Revised Footbridge Case). Ian is on the footbridge over the trolley track
and a switch there. He is next to a man, which he can shove so that the man falls near
the switch and can turn the trolley onto a parallel empty side track, thereby preventing
it from killing the five people. However, the man can die because the bridge is high and
he can also fall on the side track, thus very probably getting killed by the trolley due to
not being able to get off the track, having been injured from the drop. Also, as a side
effect, the fallen man’s body might stop the trolley, though this not being Ian’s actual
intention. In addition, if he is not dead, he may take revenge on Ian.

Ian can shove the man from the bridge, possibly resulting in death or in being
avenged; or he can refrain from doing so, possibly letting the five die. Is it morally
permissible for Ian to shove the man? One may consider the analysis below either as
Ian’s own decision making deliberation before he acts, or else that of an outside ob-
server’s evaluation of Ian’s actions after the fact; a jury’s, say.

There are several aspects in this scenario where uncertainty might emerge. First, sim-
ilarly to the Revised Bystander case, the five people may help each other to escape.
Second, how probably does the shoved man fall near the switch? How probably does
the fallen man die because the bridge is high? And if the man falls on the sidetrack, how
probably can the trolley be stopped by his body? These can be programmed in P-log as:

beginPlog.
1. bool = {t,f}. fallen_position = {on_track, near_switch}.
2. shove : fallen_position. random(rs, shove, full).

pa(rs, shove(near_switch), d_(7,10)).
3. shoved_die : bool. random(rsd, shoved_die, full).

pa(rsd, shoved_die(t), d_(1,1)) :- shove(on_track).
pa(rsd, shoved_die(t), d_(5,10)) :- shove(near_switch).

4. body_stop_trolley : bool. random(rbs, body_stop_trolley, full).
pa(rbs, body_stop_trolley(t), d_(4,10)).

endPlog.

The sort fallen position declared in line 1 represents possible positions the man can
fall at: on the track (on track) or near the switch (near switch). The random attribute
shove declared in line 2 has no domain parameter and gets a value of fallen position
sort. The fallen position of shoving is biased to near switchwith probability 7/10 (pa-
rule in line 2). The probability of its range complement, on track, is implicitly taken



Moral Reasoning under Uncertainty 221

by P-log to be the probability complement of 3/10. The random attribute shoved die
declared in line 3 encodes how probable the man dies after being shoved, depending on
which position he fell at (two pa-rules in line 3). If he fell on the track, he would surely
die (first pa-rule); otherwise, if he fell near the switch, he would die with probability
0.5 (second pa-rule). The random attribute body stop trolley is declared in line 4 to
encode the probability of a body successfully stopping the trolley. Based on this P-log
modeling, the Revised Footbridge Case can be represented as:

1. abds([watching/0, shove_heavy_man/0]).
2. on_observe(decide).

decide <- watching. decide <- shove_heavy_man.
<- watching, shove_heavy_man.

3. expect(watching). trolley_straight <- watching.
end(die(5),Pr) <- trolley_straight, prolog(die_5(Pr)).

4. expect(shove_heavy_man).
5. stop_trolley(on_track, Pr) <- shove_heavy_man,

prolog(pr(body_stop_trolley(t)&shove(on_track), Pr)).
6. not_stop_trolley(on_track, Pr) <- shove_heavy_man,

prolog(pr(body_stop_trolley(f)&shove(on_track), Pr1)),
prolog(die_5(V)), prolog(Pr is Pr1*V).

7. redirect_trolley(near_switch, Pr) <- throwing_switch(Pr).
throwing_switch(Pr) <- shove_heavy_man,

prolog(pr(shoved_die(f)&shove(near_switch), Pr)).
8. not_redirect_trolley(near_switch, Pr) <- shove_heavy_man,

prolog(pr(shoved_die(t)’|’shove(near_switch), Pr1)),
prolog(die_5(V)), prolog(Pr is Pr1*V).

9. revenge(shove, Pr) <- shove_heavy_man,
prolog(pr(shoved_die(f), PrShovedAlive)),
prolog(Pr is 0.01*PrShovedAlive).

10.Ai ’|<’ Aj <- expected_utility(Ai, U1),
expected_utility(Aj,U2), U1 > U2.

beginProlog. % beginning of just Prolog code
11.consequences([stop_trolley(on_track,_),not_stop_trolley(on_track,_),

redirect_trolley(near_switch,_),not_redirect_trolley(near_switch,_),
revenge(shove,_),end(die(_),_)]).

12.utility(stop_trolley(on_track,_),-1).
utility(not_stop_trolley(on_track,_),-6).
utility(redirect_trolley(near_switch,_),0).
utility(not_redirect_trolley(near_switch,_),-5).
utility(revenge(shove,_),-10). utility(end(die(N),_),-N).

13.prc(C, P) :- arg(2,C,P).
endProlog. % end of just Prolog code

There are two abducibles, watching and shove heavy man, declared in line 1.
Both are a priori expected (lines 3 and 4) and have no expectation to the con-
trary. Furthermore, only one can be chosen for the only active goal decide of
the program (IC in line 2). Thus, there are two possible abductive solutions:
[watching, not shove heavy man] and [shove heavy man, not watching].

In the next stage, the a posteriori preference in line 10 is taken into account, in
order to rule out the abductive solution with smaller expected utility. Let us look at the
relevant consequences of each abductive solution. The list of relevant consequences of
the program is declared in line 11.

The one comprising the action of merely watching has just one relevant consequence:
five people dying, i.e. end(die(5), ) (line 3). The other, that of shoving the heavy man,



222 T.A. Han, A. Saptawijaya, and L. Moniz Pereira

has these possible relevant consequences: the heavy man falls on the track and his body
either stops the trolley (line 5) or does not stop it (line 6); the man falls near the switch,
does not die and thus, can throw the switch to redirect the trolley (line 7). But if he
too may die, he consequently cannot redirect the trolley (line 8); one other possible
consequence needed to be taken into account is that if the man is not dead, he might
take revenge on Ian afterwards (line 9).

The utility of the relevant consequences are given in line 12. Their occurrence prob-
ability distribution is captured in line 13, using reserved predicate prc/2, the first argu-
ment of which is a consequence being instantiated during the computation of the built-in
predicate expected utility/2 and the second argument the corresponding probability
value, encoded as second argument of each relevant consequence (line 3 and lines 5-9).

Now we can see how the final decision given by our system varies depending on the
uncertainty levels of the decision maker with respect to the aspects considered above.
Let us denote PrNS, PrDNS, and PrRV the probabilities of shoving the man to fall
near the switch, of the shoved man dying given that he fell near the switch, and of Ian
being avenged given that the shoved man is alive, respectively. In the current encoding,
PrNS = 7/10, PrDNS = 5/10 (lines 2-3 of the P-log code) and PrRV = 0.01.

Table 1 shows the final decision made with respect to different levels of uncertainty
aspects, encoded with the above variables. Columns E(watch) and E(shove) record
the expected utilities of choices watching and shoving, respectively. The last column
records the final decision – the one having greater utility, i.e. less people dying.

Table 1. Decisions made with different levels of Uncertainty

PrNS PrDNS PrD PrRV E(watch) E(shove) Final
1 0.7 0.5 0.4 0.01 -0.8404 -0.7567 shove
2 0.7 0.5 0.2 0.01 -0.3888 -0.4334 watch
3 0.7 0.5 0.4 0.2 -0.8404 -1.4217 watch
4 0.9 0.1 0.4 0.2 -0.8404 -1.8045 watch
5 0.9 0.1 0.2 0.01 -0.3888 -0.1879 shove
6 0.9 0.5 0.2 0.01 -0.3888 -1.1624 watch
7 1.0 0 0 0.01 -0.1562 -0.1 shove
8 1.0 0 0 0.02 -0.1562 -0.2 watch
9 1.0 0 1.0 0.02 -5 -0.2 shove
10 1.0 0 1.0 0.2 -5 -2 shove
11 1.0 0 1.0 0.6 -5 -6 watch

The table gives rise to these (reasonable) interpretations: the stronger Ian believes
five people can get off the track by helping each other (i.e. the smaller PrD is), the more
the chance he decides to merely watch the trolley go (experiment 2 vs. 1; 8 vs. 9); the
more Ian believes the shoved man dies (thus he cannot throw the switch), the greater
the chance he decides to merely watch the trolley go (experiment 6 vs. 5); the more
Ian believes that the shoved person, or his acquaintances, will take revenge on him, the
more the chance he decides to merely watch the trolley go (experiment 3 vs. 1; 8 vs.
7; 11 vs. 10); even in the worst case of watching (PrD = 1) and in best chance of the



Moral Reasoning under Uncertainty 223

trolley being redirected (the shoved man surely falls near the switch, i.e. PrNS = 1.0,
and does not die, i.e. PrDNS = 0), then, if Ian really believes that the shoved person
will take revenge (e.g. PrRV ≥ 0.6), he will just watch (experiment 11 vs. 9 and 10).
The latter interpretation means the decision maker’s benefit and safety precede other
factors.

In short, although the table is not big enough to thoroughly cover all the cases, it
manages to show that our approach to modeling morality under uncertainty succeeds in
reasonably reflecting that a decision maker, or a jury pronouncing a verdict, comes up
with differently weighed moral decisions, depending on the levels of uncertainty with
respect to the different aspects and circumstances of the moral problem.

5 Moral Reasoning Concerning Uncertain Actions

Usually moral reasoning is performed upon conceptual knowledge of the actions. But
it often happens that one has to pass a moral judgment on a situation without actually
observing the situation, i.e. there is no full, certain information about the actions. In
this case, it is important to be able to reason about the actions, under uncertainty, that
might have occurred, and thence provide judgment adhering to moral rules within some
prescribed uncertainty level. Courts, for example, are required to proffer rulings beyond
reasonable doubt. There is a vast body of research on proof beyond reasonable doubt
within the legal community, e.g. [17]. The following example is not intended to capture
the full complexity found in a court. Consider this variant of the Footbridge case.

Example 2. Suppose a board of juries in a court is faced with the case where the action
of Ian shoving the man onto the track was not observed. Instead, they are only presented
with the fact that the man died on the side-track and Ian was seen on the bridge at the
occasion. Is Ian guilty (beyond reasonable doubt), i.e. does he violate the double effect
principle, of shoving the man onto the track intentionally?

To answer this question, one should be able to reason about the possible explanations
of the observations, on the available evidence. The following code shows a model
for this example. Given the active goal judge (line 2), two abducibles are available,
i.e. verdict(guilty beyond reasonable doubt) and verdict(not guilty). Depending on
how probable each possible verdict, either verdict(guilty beyond reasonable doubt)
or verdict(not guilty) is expected a priori (line 3 and 9). The sort intentionality in
line 4 represents the possibilities of an action being performed intentionally (int) or
non-intentionally (not int). Random attributes df run and br slip in line 5 and 6 denote
two kinds of evidence: Ian was definitely running on the bridge in a hurry (df run) and
the bridge was slippery at the time (br slip), respectively. Each has prior probability of
4/10. The probability with which shoving is performed intentionally is captured by the
random attribute shoved (line 7), which is causally influenced by both evidence. Line 9
defines when the verdicts (guilty and not guilty) are considered highly probable using
the meta-probabilistic predicate pr iShv/1, shown by line 8. It denotes the probability
of intentional shoving, whose value is determined by the existence of evidence that
Ian was running in a hurry past the man (signaled by predicate evd run/1) and that the
bridge was slippery (signaled by predicate evd slip/1).



224 T.A. Han, A. Saptawijaya, and L. Moniz Pereira

1. abds([verdict/1]).
2. on_observe(judge).

judge <- verdict(guilty_beyond_reasonable_doubt).
judge <- verdict(not_guilty).

3. expect(verdict(X)) <- prolog(highly_probable(X)).
beginPlog.
4. bool = {t, f}. intentionality = {int, not_int}.
5. df_run : bool. random(rdr,df_run,full).

pa(rdr,df_run(t),d_(4, 10)).
6. br_slip : bool. random(rsb,br_slip,full).

pa(rsb,br_slip(t),d_(4, 10)).
7. shoved : intentionality. random(rs, shoved, full).

pa(rs,shoved(int),d_(97,100)) :- df_run(f),br_slip(f).
pa(rs,shoved(int),d_(45,100)) :- df_run(f),br_slip(t).
pa(rs,shoved(int),d_(55,100)) :- df_run(t),br_slip(f).
pa(rs,shoved(int),d_(5,100)) :- df_run(t),br_slip(t).

:- dynamic evd_run/1, evd_slip/1.
8. pr_iShv(Pr) :- evd_run(X), evd_slip(Y), !,

pr(shoved(int) ’|’ obs(df_run(X)) & obs(br_slip(Y)), Pr).
pr_iShv(Pr) :- evd_run(X), !,

pr(shoved(int) ’|’ obs(df_run(X)), Pr).
pr_iShv(Pr) :- evd_slip(Y), !,

pr(shoved(int) ’|’ obs(br_slip(Y)), Pr).
pr_iShv(Pr) :- pr(shoved(int), Pr).

9. highly_probable(guilty_beyond_reasonable_doubt) :-
pr_iShv(PrG), PrG > 0.95.

highly_probable(not_guilty) :- pr_iShv(PrG), PrG < 0.6.
endPlog.

Using the above model, different judgments can be delivered by our system, subject to
available evidence and attending truth value. We exemplify some cases in the sequel.
If both evidence are available, where it is known that Ian was running in a hurry on
the slippery bridge, then he may have bumped the man accidentally, shoving him un-
intentionally onto the track. This case is captured by the first pr iShv rule (line 8): the
probability of intentional shoving is 0.05. Thus, the atom highly probable(not guilty)
holds (line 10). Hence, verdict(not guilty) is the preferred final abductive solution (line
3). The same abductive solution is obtained if it is observed that the bridge was slip-
pery, but whether Ian was running in a hurry was not observable. The probability of
intentional shoving, captured by pr iShv, is 0.29.

On the other hand, if the evidence shows that Ian was not running in a hurry and
the bridge was also not slippery, then they do not support the explanation that the man
was shoved unintentionally, e.g., by accidental bumping. The action of shoving is more
likely to have been performed intentionally. Using the model, the probability of 0.97
is returned and, being greater than 0.95, verdict(guilty beyond reasonable doubt) be-
comes the sole abductive solution. In another case, if it is only known the bridge was not
slippery and no other evidence is available, then the probability of intentional shoving
becomes 0.79, and, by lines 4 and 10, no abductive solution is preferred. This translates
into the need for more evidence as the available one is not enough to issue judgment.

6 Discussion

We discuss other aspects of the trolley problems when uncertainty may occur. In the
Loop Track Case, we can consider Ned’s uncertainty about how probable the man



Moral Reasoning under Uncertainty 225

standing on the side track with his back turned can realize that the trolley is going
toward him, and get out of the track on time. In this case, one question is whether
the action of throwing the switch, which possibly kills the man on the side track, is
considered as intentional killing like in the original version. We argue that it should,
because Ned’s intention is to use the man as a means to stop the trolley, even if he is not
sure his intention is achievable. If he threw the switch, he must hope that there would
be some chance for the trolley to be slowed down by the man’s body. Otherwise he
would never do it.

Related to the question of permissibility of actions, let us come back to the Revised
Footbridge Case. In the original version, the action of shoving a heavy man from the
bridge to stop the trolley in order to save five people is impermissible according two
both the double and triple effect principles [13,23] since the action is performed in
order to bring about an evil: Ian hopes the shoved man’s body will stop the trolley. The
situation is clearer if we suppose that the shoved man has some chance of surviving
and leaving the track on time, so that the trolley still goes forward onto the five people.
In this situation, Ian would hope the shoved man dead. Thus, we can see clearly that
Ian’s intention is to kill the man to stop the trolley. In the revised version, although Ian
shoved the man as an intended means to stop the trolley, his intention is not to kill the
man to stop the trolley, but rather on the hope the man survives to throw the switch to
stop the trolley. Thus, the action of shoving the man in this version is permissible by the
third effect principle, despite still being impermissible by the double effect one. In the
examples analysis we rely on the double effect principle, and the triple effect one too.

7 Conclusions

This work is neither a proposal for machine incorporated ethics nor an ethics for humans
who use machines, as often addressed in the literature. In contradistinction, it purports
to be a proof of principle that our understanding of ethical behavior, even under uncer-
tainty, can in part be computationally modeled and implemented. To be sure, it can (1)
be a starting point for imbuing machines with ethics but, beyond that, (2) provide a test-
ing ground for our understanding and experimentation with ethical theories for decision
making and moral judgment, and (3) afford us an initial tool to empower the generation
of ethical problems for the teaching and explanation of ethical judgment [15].

References

1. Alferes, J.J., Pereira, L.M., Swift, T.: Abduction in well-founded semantics and generalized
stable models via tabled dual programs. Theory and Practice of Logic Programming 4(4),
383–428 (2004)

2. Anderson, M., Anderson, S.L.: The status of machine ethics: a report from the AAAI Sym-
posium. Minds and Machines 17, 1–10 (2007)

3. Anderson, M., Anderson, S.L.: Machine Ethics. Cambridge U. P. (2011)
4. Baral, C., Gelfond, M., Rushton, N.: Probabilistic reasoning with answer sets. Theory and

Practice of Logic Programming 9(1), 57–144 (2009)



226 T.A. Han, A. Saptawijaya, and L. Moniz Pereira

5. Castro, L., Swift, T., Warren, D.S.: XASP: Answer set programming with XSB and Smodels
(2007),
http://xsb.sourceforge.net/shadow_site/manual2/node129.html

6. de Waal, F.: Primates and Philosophers, How Morality Evolved. Princeton U. P. (2006)
7. Foot, P.: The problem of abortion and the doctrine of double effect. Oxford Review 5, 5–15

(1967)
8. Halpern, J.Y.: Reasoning about Uncertainty. MIT Press (2005)
9. Han, T.A., Pereira, L.M.: Collective intention recognition and elder care. In: AAAI 2010 Fall

Symposium on Proactive Assistant Agents (PAA 2010). AAAI (2010)
10. Han, T.A., Pereira, L.M.: Proactive intention recognition for home ambient intelligence. In:

IE Workshop on AI Techniques for Ambient Intelligence, Ambient Intelligence and Smart
Environments, vol. 8, pp. 91–100. IOS Press (2010)

11. Han, T.A., Kencana Ramli, C.D.P., Damásio, C.V.: An Implementation of Extended P-Log
Using XASP. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366,
pp. 739–743. Springer, Heidelberg (2008)

12. Hauser, M.D.: Moral Minds, How Nature Designed Our Universal Sense of Right and
Wrong. Little Brown (2007)

13. Kamm, F.M.: Intricate Ethics: Rights, Responsibilities, and Permissible Harm. Oxford U. P.
(2006)

14. Katz, L.D. (ed.): Evolutionary Origins of Morality, Cross-Disciplinary Perspectives. Imprint
Academic (2002)

15. Lopes, G., Pereira, L.M.: Prospective Storytelling Agents. In: Carro, M., Peña, R. (eds.)
PADL 2010. LNCS, vol. 5937, pp. 294–296. Springer, Heidelberg (2010),
http://centria.di.fct.unl.pt/∼lmp/publications/slides/padl10/
quick moral robot.avi

16. Mikhail, J.: Universal moral grammar: Theory, evidence, and the future. Trends in Cognitive
Sciences 11(4), 143–152 (2007)

17. Newman, J.O.: Quantifying the standard of proof beyond a reasonable doubt: a comment on
three comments. Law, Probability and Risk 5(3-4), 267–269 (2006)

18. Baral, C., Gelfond, M., Rushton, N.: Probabilistic Reasoning With Answer Sets. In: Lifs-
chitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 21–33. Springer,
Heidelberg (2003)

19. Pereira, L.M., Dell’Acqua, P., Pinto, A.M., Lopes, G.: Inspecting and preferring abductive
models. In: Handbook on Reasoning-based Intelligent Systems. World Scientific Publishers
(2011) (forthcoming), http://centria.fct.unl.pt/∼lmp/publications/
online-papers/rbis.pdf

20. Pereira, L.M., Han, T.A.: Evolution prospection in decision making. Intelligent Decision
Technologies 3(3), 157–171 (2009)

21. Pereira, L.M., Lopes, G.: Prospective Logic Agents. In: Neves, J., Santos, M.F., Machado,
J.M. (eds.) EPIA 2007. LNCS (LNAI), vol. 4874, pp. 73–86. Springer, Heidelberg (2007)

22. Pereira, L.M., Saptawijaya, A.: Moral decision making with ACORDA. In: Short Paper
LPAR 2007 (2007)

23. Pereira, L.M., Saptawijaya, A.: Modelling morality with prospective logic. In: Machine
Ethics, pp. 398–421. Cambridge U. P. (2011)

http://xsb.sourceforge.net/shadow_site/manual2/node129.html
http://centria.di.fct.unl.pt/~lmp/publications/slides/padl10/quick_moral_robot.avi
http://centria.di.fct.unl.pt/~lmp/publications/slides/padl10/quick_moral_robot.avi
http://centria.fct.unl.pt/~lmp/publications/online-papers/rbis.pdf
http://centria.fct.unl.pt/~lmp/publications/online-papers/rbis.pdf


Moral Reasoning under Uncertainty 227

24. Pereira, L.P., Han, T.A.: Intention recognition with evolution prospection and causal bayesian
networks. In: Madureira, A., et al. (eds.) Computational Intelligence for Engineering Sys-
tems: Emergent Applications, vol. 46, pp. 1–33. Springer, Heidelberg (2011)

25. Swift, T.: Tabling for non-monotonic programming. Annals of Mathematics and Artificial
Intelligence 25(3-4), 210–240 (1999)

26. Tancredi, L.: Hardwired Behavior, What Neuroscience Reveals about Morality. Cambridge
U. P. (2005)

27. Wallach, W., Allen, C.: Moral Machines: Teaching Robots Right from Wrong. Oxford U. P.
(2009)

28. XSB. The XSB system version 3.2 vol. 2: Libraries, interfaces and packages (March 2009)



Towards Algorithmic Cut-Introduction�

Stefan Hetzl1, Alexander Leitsch2, and Daniel Weller1

1 Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien
2 Institut für Computersprachen, Technische Universität Wien

Abstract. We describe a method for abbreviating an analytic proof in
classical first-order logic by the introduction of a lemma. Our algorithm
is based on first computing a compressed representation of the terms
present in the analytic proof and then a cut-formula that realizes such
a compression. This method can be applied to the output of automated
theorem provers, which typically produce analytic proofs.

1 Introduction

Computer-generated proofs are typically analytic, i.e. they only contain logical
material that also appears in the theorem shown. This is due to the fact that
analytic proof systems have a considerably smaller search space which makes
proof-search practically feasible. In the case of the sequent-calculus, proof-search
procedures work on the cut-free fragment only. But also resolution is essentially
analytic as all clauses derive from the formula that is shown.

One interesting property of non-analytic proofs is their considerably smaller
length. The exact difference depends on the logic (or theory) under consideration,
but it is typically enormous. In (classical and intuitionistic) first-order logic there
are proofs with cut of length n whose theorems have only cut-free proofs of length
2n (where 20 = 1 and 2n+1 = 22n). The length of a proof plays an important
role in many situations such as human readability, space requirements and time
requirements for proof checking (also in applications such as proof carrying code).
For most of these situations general-purpose data compression methods cannot
be used as the compressed representation is not a proof any more. It is therefore
of high practical interest to develop proof-search methods which produce non-
analytic and hence potentially much shorter proofs. The difficulty in devising
such methods is that it seems impossible to come up with a method for finding
useful cut-formulas during proof search. In this paper we take a different angle
at the problem: we start with a cut-free proof and abbreviate it by computing
useful cuts based on a structural analysis of the cut-free proof.

There is another, more theoretical, motivation which derives from the founda-
tions of mathematics: most of the central mathematical notions have developed
from the observation that many proofs share common structures and steps of

� This work was supported by a Marie Curie Intra European Fellowship within the
7th European Community Framework Programme and by the projects P-22028-N13
and I-603 N18 of the Austrian Science Fund (FWF).

N. Bjørner and A. Voronkov (Eds.): LPAR-18, LNCS 7180, pp. 228–242, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Towards Algorithmic Cut-Introduction 229

reasoning. Encapsulating those leads to a new abstract notion, like that of a
group or a vector space. Such a notion then builds the base for a whole new
theory whose importance stems from the pervasiveness of its basic notions in
mathematics. From a logical point of view this is the introduction of cuts into
an existing proof database. While we cannot claim to contribute much to the
understanding of such processes by the current technical state of the art, this
second motivation is still worthwhile to keep in mind, if only to remind ourselves
that we are dealing with a difficult problem here.

Work on cut-introduction can be found at a number of different places in
the literature. Closest to our approach are [14] which is an algorithm for the
introduction of atomic cuts that is capable of exponential proof compression
and the method [2] for propositional logic which is shown to never increase
the size of proofs more than polynomially. The work [1] is studying a different
approach to cut-introduction which is based on filling a so-called proof skeleton
with formulas in order to obtain a proof with cuts. Yet another approach to the
compression of first-order proofs by introduction of definitions is [13]. A way to
use focusing to avoid proving atomic subgoals twice which results in a proof with
atomic cuts can be found in [8].

In this paper we consider classical first-order logic and treat the problem of
introducing a cut that contains a single quantifier. While this is a modest class,
the present algorithm is to the best of our knowledge the first for the introduction
of quantified non-analytic cuts. The class being simple has the further advantage
of allowing a clear exposition of the basic principles of the algorithm. After some
preparation in Sections 2 and 3 we describe in Section 4 a calculus that allows
to compute compressed representation (“decompositions”) of the terms present
in a cut-free proof. In Section 5 we show how to find a cut-formula that realizes
such a decomposition and in Section 6 we discuss how to further improve the
choice of the cut-formula. Some of the proofs are left out from this paper; the
reader interested in all details is referred to the technical report [6].

2 Proofs and Herbrand-Sequents

A sequent is an ordered pair of sets of formulas (Γ,Δ) written as Γ → Δ.
We use the sequent calculus G3c + Cutcs

1 from [12] and denote it by LK. An
instance of ∀x1 · · · ∀xn A or ∃x1 · · · ∃xn A (for A quantifier-free) is a formula
of the form A[x1\t1, . . . , xn\tn]. A strong quantifier is a ∀ (∃) quantifier with
positive (negative) polarity. We distinguish some important subsets of sequents.

Definition 1. A prenex sequent is a sequent containing only prenex formulas.
A prenex sequent without strong quantifiers is called a Σ1-sequent. A Σ1-sequent
in which every formula has at most one quantifier is called a simple sequent.

The notion of instance extends in a straightforward way to Σ1-sequents. In
this section, we will primarily work with Σ1-sequents which does not constitute

1 G3c+ Cutcs has no structural rules and all its rules are invertible.



230 S. Hetzl, A. Leitsch, and D. Weller

a substantial restriction as one can transform every sequent into a validity-
equivalent Σ1-sequent by skolemisation and prenexification.

Definition 2. Let Γ → Δ be a Σ1-sequent. Then Γ ′ → Δ′ is called Herbrand-
sequent of Γ → Δ if it is a tautology and consists of instances of Γ → Δ. The
complexity of a Herbrand-sequent is defined as |Γ ′ → Δ′| = |Γ ′| + |Δ′|, where
| | denotes cardinality.

Example 1. Consider the language containing a constant symbol a, a unary func-
tion symbol f and a unary predicate symbol P and the sequent

Pa, ∀x (Px ⊃ Pfx)→ Pfma

in this language (we omit parentheses around the argument of a unary symbol).
This sequent has a Herbrand-sequent

Pa, Pa ⊃ Pfa, . . . , Pfm−1a ⊃ Pfma→ Pfma

of complexity m+2. Note that this Herbrand-sequent is of minimal complexity.

The length of a proof π, written as |π|, is defined as the number of inferences.
The following result is shown in [3].

Theorem 1. Let s:Γ → Δ be a Σ1-sequent and π a cut-free proof of s. Then
there is a Herbrand-sequent s′:Γ ′ → Δ′ of s s.t. |s′| ≤ |π|.

Note that given an Herbrand-sequent s′ of s one can find a cut-free proof of s
from s′ by quantifier introductions. Combining this with a propositional proof
of s′ one obtains a cut-free proof of s. Assuming that π is cut-free is essen-
tial for the above theorem to hold. The well-known non-elementary growth of
cut-elimination [9,11,10] shows that it cannot be true if π contains cuts. We gen-
eralize the concept of Herbrand-sequent to extended Herbrand-sequents which
correspond to proofs with cuts (similarly to [4]): define a ∀-cut to be a cut with
cut-formula ∀x A, where A is quantifier-free. There are efficient algorithms for
extracting Herbrand-sequents from cut-free proofs, see e.g. [7].

Definition 3. Let Γ → Δ be a Σ1-sequent, let A be a quantifier-free formula,
α be a variable not appearing in Γ ∪Δ∪{A} and s1, . . . , sk be terms. A sequent
of the form

A[x\α] ⊃
k∧

j=1

A[x\sj ], Γ ′ → Δ′

is called extended Herbrand-sequent if it is a tautology and Γ ′ → Δ′ consists of
instances of Γ → Δ. The complexity of the above extended Herbrand-sequent s
is defined as |s| = k + |Γ ′|+ |Δ′|.

Proposition 1. If π is a proof of a Σ1-sequent Γ → Δ and the only cut of π is
a ∀-cut, then there is an extended Herbrand-sequent s of Γ → Δ with |s| ≤ |π|.



Towards Algorithmic Cut-Introduction 231

Proof. W.l.o.g. the strong universal quantifier in the cut is introduced from a
single eigenvariable α. Obtain a propositional proof π′ of an extended Herbrand-
sequent by replacing the introductions of the weak universal quantifier by ∧l-
inferences and omitting all inferences that introduce quantifiers into the end-
sequent.

Example 2. Consider the sequent Pa, ∀x (Px ⊃ Pfx) → Pfn2

a for n ≥ 1. It
can be derived by a proof πn using one ∀-cut as follows:

(χn
1 )

∀x (Px ⊃ Pfx)→ Pα ⊃ Pfnα

∀x (Px ⊃ Pfx)→ ∀x (Px ⊃ Pfnx)
∀r

(χn
2 )

∀x (Px ⊃ Pfnx), Pa→ P (fn2

a)

Pa, ∀x (Px ⊃ Pfx)→ Pfn2

a
cut

where χn
1 uses the instances α, fα, . . . , fnα of the successor-axiom to prove the

cut formula and χn
2 uses instances a, fna, . . . , f (n−1)na of the cut formula to

prove the claim. The extended Herbrand-sequent of this proof is

C,Pa, Pα ⊃ Pfα, . . . , Pfn−1α ⊃ Pfnα→ Pfn2

a

where

C = (Pα ⊃ Pfnα) ⊃
n−1∧
j=0

(Pf jna ⊃ Pf (j+1)na)

so it has complexity 2(n+ 1).

We have seen in example 1 that the complexity of the minimal Herbrand-sequent
is n2 + 2. So by introducing the cut above we get a quadratic compression. For
the case of a single universal quantifier this bound is sharp. As in the cut-free
case, one can construct a proof with cut from an extended Herbrand-sequent.

Lemma 1. If π is a proof of A ⊃ B,Γ → Δ, then there are proofs π1 of
B,Γ → Δ and π2 of Γ → Δ,A with |π1| ≤ |π| and |π2| ≤ |π|.

Proof. For obtaining π1, replace all ancestors of A ⊃ B by B and the introducing
inferences

Π → Λ,A B,Π → Λ

A ⊃ B,Π → Λ
⊃l by B,Π → Λ .

For π2 proceed analogously.

Proposition 2. Let Γ → Δ be a Σ1-sequent, let s = A[x\α] ⊃
∧k

j=1A[x\sj ],
Γ ′ → Δ′ be an extended Herbrand-sequent of Γ → Δ, ψ be a proof of s and l be
the maximal length of a quantifier prefix in Γ → Δ. Then there is a proof π of
Γ → Δ having exactly one ∀-cut, s as extended Herbrand-sequent and satisfies
|π| = O(|ψ|+ |Γ → Δ| · l).



232 S. Hetzl, A. Leitsch, and D. Weller

Proof. By introducing weak quantifiers to derive Γ → Δ from Γ ′ → Δ′ and by
replacing

∧k
j=1 by universal quantifiers, obtain a proof π1 of A[x\α] ⊃ ∀xA, Γ →

Δ with |π1| ≤ |ψ| + |Γ → Δ| · l + 1. By Lemma 1 there are proofs π2 of Γ →
Δ,A[x\α] and π3 of ∀xA, Γ → Δ with |π2| ≤ |π1| and |π3| ≤ |π1|. Define π as

(π2)
Γ → Δ,A[x\α]
Γ → Δ, ∀xA ∀r (π3)

∀xA, Γ → Δ

Γ → Δ
cut

,

and observe |π| = |π2|+ |π3|+ 2 ≤ 2(|ψ|+ |Γ → Δ| · l + 2).

3 Cut-Elimination and Cut-Introduction

Let S: {σ1, . . . , σn} be a set of substitutions; then by (Γ → Δ)S we denote the
sequent Γσ1, . . . , Γσn → Δσ1, . . . , Δσn.

Proposition 3. Let A[x\α] ⊃
∧k

j=1 A[x\sj ], Γ ′ → Δ′ be an extended Herbrand
sequent of a Σ1-sequent Γ → Δ, then (Γ ′ → Δ′){[α\sj ] | 1 ≤ j ≤ k} is a
Herbrand-sequent of Γ → Δ.

Proof. Consider the proof π of Γ → Δ constructed in the proof of Proposition 2:
by reducing the universal quantifier of the cut using any standard method for cut-
reduction we obtain a proof π′ having only quantifier-free cuts whose Herbrand
sequent is (Γ ′ → Δ′){[α\sj ] | 1 ≤ j ≤ k}.

So we have seen in the previous section that the first-order structure of a
Herbrand-sequent corresponds to that of a cut-free proof and that of an extended
Herbrand-sequent to that of a proof with a single ∀-cut. These observations,
together with Proposition 3 that describes cut-elimination on these structures
motivates the following statement of the

Cut-introduction Problem for a Single ∀-cut: Given a simple sequent Γ →
Δ and a Herbrand-sequent Γ ′ → Δ′ of Γ → Δ, find an extended Herbrand-
sequent s = A[x\α] ⊃

∧k
j=1 A[x\sj ], Γ ′′ → Δ′′ of Γ → Δ s.t.

Γ ′ → Δ′ = (Γ ′′ → Δ′′){[α\sj] | 1 ≤ j ≤ k}.

In order to describe our solution of the above problem, we first give some defini-
tions. For a sequence of terms t = t1, . . . , tn and a formula F (x) (which may or
may not contain x), we write F (t) for the sequence of formulas F (t1), . . . , F (tn).

For the rest of this section, we fix a simple sequent s = ∀x F1(x), . . . , ∀x Fn(x)
→ ∃x Fn+1(x), . . . , ∃x Fm(x) and a Herbrand-sequent s′ = F1(t1), . . . , Fn(tn)
→ Fn+1(tn+1), . . . , Fm(tm) of s where ti = ti,1, . . . , ti,ni .

We define the termset T (s, s′) = {ti,j | i ≤ m, j ≤ ni}. The following result
shows how the termset can give rise to a solution to the cut-introduction problem.



Towards Algorithmic Cut-Introduction 233

Proposition 4. Let U = {u1, . . . , u�} and S = {s1, . . . , sk} be sets of terms
such that T (s, s′) = {ui[α\sj ] | i ≤ , j ≤ k}. Then

s′ = (F1(u), . . . , Fn(u)→ Fn+1(u), . . . , Fm(u)){[α\sj ] | 1 ≤ j ≤ k}

Proof. Let s, s′ be as above. Since T (s, s′) = {ui[α\sj ] | i ≤ , j ≤ k}, for every
i ≤ m, j ≤ ni there exist p, q such that ti,j = up[α\sq]. Inversely, for every p, q
there are i, j s.t. ti,j = up[α\sq].

The first phase of our approach to cut-introduction for simple sequents consists
in determining sets U, S as in Proposition 4. Such sets then induce a schematic
extended Herbrand-sequent.

Definition 4. Let U, S be as in Proposition 4. Then the induced schematic ex-
tended Herbrand-sequent is

Xα ⊃
k∧

j=1

Xsj , F1(u), . . . , Fn(u)→ Fn+1(u), . . . , Fm(u)

where X is a monadic second-order variable.

Let s′′ be the induced schematic Herbrand-sequent corresponding to s, s′, U, S.
The second phase is then to determine a substitution σ = [X\λx.ψ] s.t. s′′σ is
a tautology. We will show that such a substitution σ always exists.

4 A Calculus of Decompositions

We will now describe our algorithmic solution for the first phase. For this whole
section we fix a variable α and a set of ground terms T = {t1, . . . , tn}.
Definition 5. A decomposition of T is a pair of sets of terms, written as U ◦S,
s.t. T = {u[α\s] | u ∈ U, s ∈ S}.
Of course, every T possesses a trivial decomposition by letting U = {α} and
S = T . Keeping our aim of proof compression in mind we are looking for a
decomposition U ◦ S with |U |+ |S| < |T |. We will develop a calculus of decom-
positions along similar lines as a resolution calculus. For a set of terms W and a
term v we writeW [x\v] for {w[x\v] | w ∈W} and v[x\W ] for {v[x\w] | w ∈W}
and V(v) for the set of variables occurring in v.

Definition 6. We define the following axioms and rules for the manipulation
of decompositions. Axioms are of the form

{α} ◦ {t}
ax

if t ∈ T.

The rules are

U1 ◦ S U2 ◦ S
(U1 ∪ U2) ◦ S

R
U ◦ S1 U ◦ S2

U ◦ (S1 ∪ S2)
L

U [α\v] ◦ S
U ◦ v[α\S]

→ U ◦ v[α\S]
U [α\v] ◦ S

←

for any term v with α ∈ V(v).



234 S. Hetzl, A. Leitsch, and D. Weller

To simplify the notation, we often omit the braces of singleton sets. The above
calculus is sound in the sense that it only derives decompositions of subsets of
T . More interestingly, it is also complete in the following sense:

Proposition 5. If T has a decomposition U ◦ S then U ◦ S is derivable using
ax,←,R,L.

Proof. Let T = {ui[α\sj ] | 1 ≤ i ≤ m, 1 ≤ j ≤ k}. First, observe that ui ◦ sj is
derivable by a single left-shift. Secondly, we have

u1 ◦ sj · · · um ◦ sj
{u1, . . . , um} ◦ sj

R · · ·R and finally

{u1, . . . , um} ◦ s1 · · · {u1, . . . , um} ◦ sk
{u1, . . . , um} ◦ {s1, . . . , sk}

L · · ·L
.

A search for decompositions in this calculus is not very efficient due to the
indeterministic nature of the ←-inferences. Fortunately, it is possible to work
with most general forms of decompositions, thereby getting (almost) rid of the
shift-rules. The rest of this section is devoted to the development of such a most
general calculus and a search procedure for it.

Definition 7. A decomposition U ◦ S is called right normal if U = U ′[α\v]
implies v = α.

A first but essential result is that right normal forms are unique. To show this
we need some auxiliary notions.

Definition 8. For terms t, v with α ∈ V(v) ∩ V(t) we write t ≥ v if there is w
s.t. t = w[α\v].

It will be convenient to work with an inductive definition of the set of right shift
terms of a term.

Definition 9. Let α ∈ V(t) and define a set rsterms(t) as follows: rsterms(α) =
{α} and rsterms(f(t1, . . . , tn)) = {α, f(t1, . . . , tn)} ∪

⋂n
i=1,α∈V(ti)

rsterms(ti).

Example 3. f(c, g(α)) ≥ g(α) because f(c, g(α)) = f(c, α)[α\g(α)] but on the
other hand f(α, g(α)) � g(α) because every w with f(α, g(α)) = w[α\g(α)]
would have to start with f whose first argument can then no longer be filled.
Furthermore t ≥ t and t ≥ α for all terms t. We have rsterms(f(c, g(α))) =
{α, g(α), f(c, g(α))} and rsterms(f(α, g(α))) = {α, f(α, g(α))}.

Lemma 2. Let α ∈ V(t). Then v ∈ rsterms(t) iff t ≥ v.

Lemma 3. ≥ is a partial order of the set of terms containing α.

Note that ≥ is not a total order on the set of terms containing α. For example,
consider the terms f(α), g(α), then clearly α ≤ f(α) and α ≤ g(α) but f(α) and
g(α) are incomparable. On the other hand:



Towards Algorithmic Cut-Introduction 235

Lemma 4. Let α ∈ V(t), then ≥ is a total order of rsterms(t).

For a non-empty set of terms U we define rsterms(U) =
⋂

u∈U rsterms(u). Note
that ≥ on rsterms(U) is total as well because it is a substructure of ≥ on
rsterms(u) for any u ∈ U .

Proposition 6. Every decomposition has a unique right normal form.

Proof. Let U ◦S be a decomposition with two different right normal forms U1◦S1

and U2 ◦ S2. Then there are terms v1, v2 s.t. U = U1[α\v1] = U2[α\v2] and

U1[α\v1] ◦ S
U1 ◦ v1[α\S]

→ and
U2[α\v2] ◦ S
U2 ◦ v2[α\S]

→

where S1 = v1[α\S] and S2 = v2[α\S]. As v1, v2 ∈ rsterms(U) we can apply
Lemma 4 to obtain w.l.o.g. v1 ≥ v2. As U1 ◦S1 �= U2 ◦S2 we have v1 �= v2 hence
v1 > v2, i.e. there is a w �= α s.t. v1 = w[α\v2]. Therefore U = U1[α\v1] =
U1[α\w][α\v2] = U2[α\v2] hence U2 = U1[α\w] which is not in right normal
form.

In light of the above proposition we will henceforth speak about the right normal
form of a decomposition. Note that the right normal form of a term t can be
obtained from using the maximal element of rsterms(t) as a right shift term.

Lemma 5 (Lifting Lemma for L). If

U ◦ S1 U ◦ S2

U ◦ (S1 ∪ S2)
L

and U ′ ◦ S′
1 is the right normal form of U ◦ S1 and U ′ ◦ S′

2 is the right normal
form of U ◦ S2, then

U ′ ◦ S′
1 U ′ ◦ S′

2

U ′ ◦ (S′
1 ∪ S′

2)
L

where U ′ ◦ (S′
1 ∪ S′

2) is the right normal form of U ◦ (S1 ∪ S2).

Proof. Being in right normal form depends only on the U -part of the decompo-
sition. Therefore, if U ′ ◦ S′

i is in right normal form so is U ′ ◦ (S′
1 ∪ S′

2).

Right normality is more problematic when it comes to the R-rule. Consider
the two decompositions {f1(α), f2(α)} ◦ {f(g(c))} and {α} ◦ {h(g(c))}. Both
are right normal and they cannot be combined with a R-rule. However shifting
both to the left gives {f1(f(α)), f2(f(α))} ◦ {g(c)} and {h(α)} ◦ {g(c)} which
can be combined with R yielding {f1(f(α)), f2(f(α)), h(α)} ◦ {g(c)} which is
again right normal. Note that shifting by f(g(α)) and h(g(α)) instead would
give {f1(f(g(α))), f2(f(g(α)))} ◦ {c} and {h(g(α))} ◦ {c} whose combination by
R would no longer be right normal. So if a R-combination is made possible by
applying left shifts before, the minimal such left shifts are most general in the
sense that they yield a right normal conclusion of the R-rule. Let us make this
precise:



236 S. Hetzl, A. Leitsch, and D. Weller

Definition 10. For right normal decompositions D1, D2, D3, abbreviate

D1

D′
1

← D2

D′
2

←

D3
R

by
D1 D2

D3
Rmg .

Lemma 6 (Lifting Lemma for R). If
U1 ◦ S U2 ◦ S
(U1 ∪ U2) ◦ S

R and U ′
1 ◦ S1 is the

right normal form of U1 ◦S and U ′
2 ◦S2 is the right normal form of U2 ◦S, then

U ′
1 ◦ S1 U ′

2 ◦ S2

V ◦ T Rmg where V ◦ T is the right normal form of (U1 ∪ U2) ◦ S.

The calculus consisting of ax,Rmg,L is sound in the sense that only right normal
forms of subsets of T are derived and complete in the following sense:

Theorem 2. If T has a decomposition U ◦S then the right normal form of U ◦S
is derivable using ax,Rmg,L.

Proof. By Proposition 5, there exists a derivation of the right normal form of
U ◦ S using ax,←,R,L. We convert this derivation inductively to one using
only ax,Rmg,L of the same structure bringing every line into right normal form
by leaving out the ←-inferences and applying Lemmas 5 and 6 for the L- and
R-inferences respectively.

We can observe that w.r.t. the generality of a derivation, the calculus (ax,Rmg,L)
behaves like resolution and (ax,←,R,L) like ground resolution. It is useful to
observe the following algorithmic

Corollary 1. Let A be the axioms induced by T , let B be the Rmg-closure of A
and let C be the L-closure of B. Then C contains the right normal forms of all
decompositions of T .

Proof. By inspection of the completeness proof.

Example 4. The sequent Pa, ∀x (Px ⊃ Pfx)→ Pfn2

a has a Herbrand-sequent

Pa, Pa ⊃ Pfa, . . . , Pfn2−1a ⊃ Pfn2

a → Pfn2

a of size n2 as in Example 1.
For abbreviating it we have to find a decomposition of T = {a, fa, . . . , fn2−1a}.
Observe that

α ◦ f in+0a · · · α ◦ f in+n−1a

{α, fα, . . . , fn−1α} ◦ f ina
Rmg, . . . ,Rmg

for all i ∈ {0, . . . , n− 1} and that

{α, fα, . . . , fn−1α} ◦ a · · · {α, fα, . . . , fn−1α} ◦ f (n−1)na

{α, fα, . . . , fn−1α} ◦ {a, fna, . . . , f (n−1)na}
L, . . . ,L

which shows that this final decomposition is in C. This decomposition induces
the schematic extended Herbrand-sequent

Xα ⊃
n−1∧
j=0

Xf jna, Pa, Pα ⊃ Pfα, . . . , Pfn−1α ⊃ Pfnα→ Pfn2

a



Towards Algorithmic Cut-Introduction 237

which has complexity 2(n+1) and has the structure of the extended Herbrand-
sequent of the proof πn from Example 2.

5 Computing the Propositional Structure

Let

s
:Γ,Xα ⊃
n∧

i=1

Xsi → Δ

be an induced schematic extended Herbrand-sequent (see Definition 4) for some
fixed sequents s, s′ and a term decomposition of T (s, s′) by U ◦W . The solution
of the second phase consists in finding a substitution ϑ: {X ← λx.F (x)} (where
F (x) is a quantifier-free formula which may contain the variable x but no other
variable) s.t. the β-normal form of s
ϑ is a valid sequent.

The problem of finding a solution can be simplified by applying our (invertible)
version of LK to s and decompose the formulas in s down to a set of two sequents
of the form

S: {Γ → Δ,Xα; Xw1, . . . , Xwn, Γ → Δ}.
where Γ and Δ are sets of ground formulas, W : {w1, . . . , wn} is a set of ground
terms and α is a constant which does not occur in W . Note that α is basically
an eigenvariable, but in this context can be considered as a constant.

Definition 11. Let s be a sequent, s′ a corresponding Herbrand sequent and

s
: Γ,Xα ⊃
n∧

i=1

Xwi → Δ

be a schematic extended Herbrand sequent corresponding to the term decompo-
sition T of T (s, s′) by U ◦W for W = {w1, . . . , wn}. Then the set of sequents
S: {s1, s2} for

s1 = Xw1, . . . , Xwn, Γ → Δ, s2 = Γ → Δ,Xα,

is called a cut-introduction problem (CIP) w.r.t. T . s1 is called the W -sequent,
and s2 the α-sequent of S. The sequent Sconst:Γ → Δ is called the constant part
of S.

Definition 12. Let S be a CIP w.r.t. a term decomposition T and F (x) be a
quantifier-free formula s.t. V (F (x)) ⊆ {x} and α does not occur in F (x) (we call
F (x) admissible for S). The substitution ϑ: {X ← λx.F (x)} is called a solution
of S if s1ϑ ↓ and s2ϑ ↓ are both valid (where ↓ denotes normalization under
β-reduction). S is called solvable if there exists a solution of S.

Remark 1. The restriction that α does not occur in F (x) is necessary as, in case
of solvability, the formula (∀x)F (x) is the cut-formula of the cut-introduction
problem. As α is the eigenvariable of the quantifier-introduction on the left side
of the cut, α may not appear in (∀x)F (x).



238 S. Hetzl, A. Leitsch, and D. Weller

From now on we denote by S a CIP w.r.t. T where T is a decomposition of
T (s, s′) by U ◦W for W = {w1, . . . , wn}, and by F (x) an admissible formula for
S.

Definition 13. Let s1 = Xw1, . . . , Xwn, A1, . . . , An → B1, . . . , Bm and s2 =
A1, . . . , An → B1, . . . , Bm, Xα and S: {s1, s2} be a CIP.
The formula G: A1 ∧ · · · ∧ An ∧ ¬B1 ∧ · · · ∧ ¬Bm is called the characteristic
formula of S.
The system S ′: {Xw1, . . . , Xwn, G →; G → Xα} is called the characteristic
normal form of S.

Lemma 7. ϑ is a solution of a CIP S iff ϑ solves the characteristic normal
form of S.

Proof. Trivial.

Lemma 8. Let S be a CIP w.r.t. T , and let G be the characteristic formula of
S. Then G(w1), . . . , G(wn)→ is valid.

Proof. Let W = {w1, . . . , wn} and S = {s1, s2} such that s1 = Xw1, . . . , Xwn,
Γ ′ → Δ′. By Proposition 4, for the original Herbrand-sequent Γ ′′ → Δ′′ we have

Γ ′′ → Δ′′ ⊆ (Γ ′ → Δ′){α← w | w ∈ W}.

Let Γ ′ = A1, . . . , An and Δ′ = B1, . . . , Bm, then G(α) = A1∧· · ·An∧¬B1∧· · ·∧
¬Bm. The sequent G(w1), . . . , G(wn) → can be transformed (via substitution
application, and applying ∧: l and ¬: l rules backwards) to the equivalent sequent

s′′1 : (A1, . . . , Ak){α← w1}, . . . , (A1, . . . , Ak){α← wn} →
(B1, . . . , Bm){α← w1}, . . . , (B1, . . . , Bm){α← wn} =
(Γ ′ → Δ′){α← w | w ∈ W}.

But
Γ ′′ → Δ′′ = (Γ ′ → Δ′){α← w | w ∈ W} = s′′1 ,

as Γ ′′ → Δ′′ is a Herbrand-sequent s′′1 is valid. Therefore G(w1), . . . , G(wn) →
is valid.

Theorem 3. Let S be a system in characteristic normal form and let G be
the characteristic formula. Then S is solvable and {X ← λx.G{α ← x}} is a
solution of S.

Proof. Let S: {s1, s2} be a cut-introduction problem for s1 = Xw1, . . . , Xwn, Γ
′

→ Δ′, s2 = Γ ′ → Δ′, Xα, and Γ ′ = A1, . . . , Ak, Δ
′ = B1, . . . , Bm, and G be the

characteristic formula of the problem. We prove that θ = {X ← λx.G{α← x}}
is a solution of S.
(a) s′2: s2θ ↓ is valid. In fact,

s′2 = A1, . . . , Ak → B1, . . . , Bm, A1 ∧ · · · ∧ Ak ∧ ¬B1 ∧ · · · ∧ ¬Bm.

Note that (Xα){X ← λx.G{α← x}} ↓= G.



Towards Algorithmic Cut-Introduction 239

(b) s′1: s1θ ↓ is valid:

s′1 = (Xw1)θ↓, . . . , (Xwn)θ↓, Γ ′ → Δ′ =

(λx.G{α ← x})w1 ↓, . . . (λx.G{α ← x})wn ↓, Γ ′ → Δ′ =

G(w1), . . . , G(wn), Γ
′ → Δ′.

Since G(w1), . . . , G(wn)→ is valid by Lemma 8, s′1 is valid.

Corollary 2. Every cut-introduction problem is solvable.

Proof. By Lemma 7 and Theorem 3.

In fact, once we have a decomposition of the substitution terms we find a canon-
ical solution for the cut-formula. Roughly speaking this solution encodes the
whole sequent Γ ′ → Δ′.

6 Improving the Canonical Solution

In the previous section, we have shown in Theorem 3 that for any CIP S there
exists a solution {X ← λx.G{α ← x}}, where G is the characteristic formula
of S, such that |G| = O(|S|). Still for practical application of the method to
the structuring of proofs, it will be important to further simplify the solution
if possible, since the solution of the CIP corresponds to the cut-formula that is
used to structure the proof. As a motivating example, consider the following.

Example 5. Let S be the CIP of the running example. Then the characteristic
formula of S

G(α) = Pa ∧
∧

0≤i<n

(Pf iα ⊃ Pf i+1α) ∧ ¬Pfn2

a

gives rise to a solution. But there also exists a solution of constant logical com-
plexity, using

H(α) = Pα ⊃ Pfnα

which is preferable over the canonical solution based on G(α). Note that G(α) |=
H(α) but H(α) � G(α) and that H(α) only contains atoms that contain α.

We will now show that the observations from this example can be generalized and
used to simplify the canonical solution. We will focus on characteristic formulas
which are in conjunctive normal form. We will first give a sufficient criterion
for simplification of such characteristic formulas, and then present an algorithm
based on propositional resolution and validity checking that, given a solution,
searches for a smaller one. First, note that the canonical solution is most general.

Proposition 7. Let S be a CIP and ϑ = {X ← λx.F} be a solution for S.
Then G{α← x} |= F , where G is the characteristic formula of S.



240 S. Hetzl, A. Leitsch, and D. Weller

Proof. By Lemma 7, ϑ is a solution to the characteristic normal form of S,
and hence (G ⊃ X(α)){X ← λx.F} = G ⊃ F{x ← α} is valid. Therefore
(G ⊃ F{x← α}){α← x} = G{α← x} ⊃ F is valid.

Note that the converse does not hold: in general, G |= # but {X ← λx.#} is
not a solution of the CIP of our running example.

Proposition 8. Let G be a characteristic formula of the CIP S and assume
that G is in conjunctive normal form. Let G′ be obtained from G by removing
all clauses that do not contain α. Then {X ← λx.G′{α ← x}} is a solution
for S.
Let F be a formula in conjunctive normal form, i.e. F =

∧
i∈{1,...,m} Ci, with

clauses Ci =
∨

j∈{1,...,ni} Li,j, where the Li,j are literals. By L we denote the

dual of a literal L. For two clauses Ci, Cj , if there exists exactly one pair (k, )
such that Li,k = Lj,�, we define their resolvent

res(Ci, Cj) =
∨

r∈{1,...,ni}\k
Li,r ∨

∨
q∈{1,...,nj}\�

Lj,q

and leave res(Ci, Cj) undefined otherwise.
Then define

R(F ) = {res(Ci, Cj) ∧
∧

k∈{1,...,m}\{i,j}
Ck | res(Ci, Cj) defined}.

Note that if G ∈ R(F ) then |G| < |F |. Since Ci ∧ Cj ⊃ res(Ci, Cj), we have

Lemma 9. If H ∈ R(F ) then F ⊃ H is valid.

This directly translates to a result on CIPs:

Proposition 9. Let S = {Xw1, . . . , Xwn, Γ → Δ, Γ → Δ,Xα} be a CIP and
H ∈ R(F ).

(1) If F (w1), . . . , F (wn), Γ → Δ is not valid, then {X ← λx.H(x)} is not a
solution for S.

(2) If Γ → Δ,F (α) and H(w1), . . . , H(wn), Γ → Δ are valid, then {X ←
λx.H(x)} is a solution for S.

Proof. For showing (1), assume that H(w1), . . . , H(wn), Γ → Δ is valid. Then
by Lemma 9, F (w1), . . . , F (wn), Γ → Δ is valid.

For (2), it suffices to show that Γ → Δ,H(α) is valid, which follows from the
same Lemma.

Propositions 7, 8 and 9 suggest a resolution-based method to find more efficient
solutions for a CIP {Xw1, . . . , Xwn, Γ → Δ, Γ → Δ,Xα}, starting from a
canonical solution G in conjunctive normal form: First, apply Proposition 8 to
remove unnecessary clauses from G to obtain G′. Then, compute R(G′). Since
G′ yields a solution, we have Γ → Δ,G′(α) and hence it suffices to check for



Towards Algorithmic Cut-Introduction 241

F ∈ R(G′) whether F (w1), . . . , F (wn), Γ → Δ is valid to determine whether F
yields a solution. If it is valid, we iterate the procedure on F . If it is not valid,
then we know that no iteration of R on F will yield a solution, so we can abort
the search on this branch of the search tree. Since on each branch of the search
tree, the size of solutions decreases, the search terminates.

Example 6. Let S be the CIP of the running example for n = 2, which has the
characteristic formula, written in conjunctive normal form,

G(α): Pa ∧ (¬Pα ∨ Pfα) ∧ (¬Pfα ∨ Pf2α) ∧ ¬Pf4a.

Application of Proposition 8 yields

G′(α): (¬Pα ∨ Pfα) ∧ (¬Pfα ∨ Pf2α).

We have R(G′) = {¬Pα ∨ Pf2α}. By (2) of Proposition 9, it suffices to check
whether

Pa,¬Pa ∨ Pf2a,¬Pf2a ∨ Pf4a→ Pf4a

is valid, which is the case. Since R(¬Pα ∨ Pf2α) = ∅, search terminates and
we have found a smaller solution. In general, the algorithm obtains the solution
¬Pα ∨ Pfnα after a linear number of iterations.

7 Conclusion

We have presented a method for cut-introduction which computes a quantified
cut-formula from a structural analysis of a cut-free proof. This paper is a first
step towards algorithmically feasible proof compression by cut-introduction.

As further work we plan to extend the method: the introduction of an ar-
bitrary number of ∀-cuts can be dealt with based on the results in [5] using a
decomposition calculus where lines have a flexible width. The extension from
single quantifiers to blocks of quantifiers consists in replacing a single vari-
able by a vector of variables. The treatment of cuts with quantifier alternations
first requires a description of the structure of Herbrand-sequents obtained from
such proofs (along the lines of Proposition 3) which is an interesting theoretical
problem.

In order to study this method in a realistic context we plan to implement it
within the existing gapt-project2 and to apply it to the output of automated
theorem provers.

References

1. Baaz, M., Zach, R.: Algorithmic Structuring of Cut-free Proofs. In: Martini, S.,
Börger, E., Kleine Büning, H., Jäger, G., Richter, M.M. (eds.) CSL 1992. LNCS,
vol. 702, pp. 29–42. Springer, Heidelberg (1993)

2 http://code.google.com/p/gapt/

http://code.google.com/p/gapt/


242 S. Hetzl, A. Leitsch, and D. Weller

2. Finger, M., Gabbay, D.: Equal Rights for the Cut: Computable Non-analytic Cuts
in Cut-based Proofs. Logic Journal of the IGPL 15(5–6), 553–575 (2007)

3. Gentzen, G.: Untersuchungen über das logische Schließen. Mathematische
Zeitschrift 39, 176–210, 405–431 (1934–1935)

4. Hetzl, S.: Describing proofs by short tautologies. Annals of Pure and Applied
Logic 159(1–2), 129–145 (2009)

5. Hetzl, S.: Applying Tree Languages in Proof Theory. In: Dediu, A.-H.,
Mart́ın-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 301–312. Springer, Hei-
delberg (2012)

6. Hetzl, S., Leitsch, A., Weller, D.: Towards Algorithmic Cut-Introduction. technical
report, http://www.logic.at/people/hetzl/

7. Hetzl, S., Leitsch, A., Weller, D., Woltzenlogel Paleo, B.: Herbrand Sequent Ex-
traction. In: Autexier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk,
F. (eds.) AISC/Calculemus/MKM 2008. LNCS (LNAI), vol. 5144, pp. 462–477.
Springer, Heidelberg (2008)

8. Miller, D., Nigam, V.: Incorporating Tables into Proofs. In: Duparc, J., Henzinger,
T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 466–480. Springer, Heidelberg (2007)

9. Orevkov, V.P.: Lower bounds for increasing complexity of derivations after cut
elimination. Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matem-
aticheskogo Instituta 88, 137–161 (1979)

10. Pudlák, P.: The Lengths of Proofs. In: Buss, S. (ed.) Handbook of Proof Theory,
pp. 547–637. Elsevier (1998)

11. Statman, R.: Lower bounds on Herbrand’s theorem. Proceedings of the American
Mathematical Society 75, 104–107 (1979)

12. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory, 2nd edn. Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press (2000)

13. Vyskočil, J., Stanovský, D., Urban, J.: Automated Proof Compression by Invention
of New Definitions. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS,
vol. 6355, pp. 447–462. Springer, Heidelberg (2010)

14. Woltzenlogel Paleo, B.: Atomic Cut Introduction by Resolution: Proof Structuring
and Compression. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS,
vol. 6355, pp. 463–480. Springer, Heidelberg (2010)

http://www.logic.at/people/hetzl/


Conflict Anticipation in the Search

for Graph Automorphisms

Hadi Katebi, Karem A. Sakallah, and Igor L. Markov

EECS Department, University of Michigan
{hadik,karem,imarkov}@umich.edu

Abstract. Effective search for graph automorphisms allows identifying
symmetries in many discrete structures, ranging from chemical molecules
to microprocessor circuits. Using this type of structure can enhance visu-
alization as well as speed up computational optimization and verification.
Competitive algorithms for the graph automorphism problem are based
on efficient partition refinement augmented with group-theoretic pruning
techniques. In this paper, we improve prior algorithms for the graph au-
tomorphism problem by introducing simultaneous refinement of multiple
partitions, which enables the anticipation of future conflicts in search and
leads to significant pruning, reducing overall runtimes. Empirically, we
observe an exponential speedup for the family of Miyazaki graphs, which
have been shown to impede leading graph-automorphism algorithms.

1 Introduction

An automorphism (symmetry) of a graph is a permutation of the graph’s ver-
tices that preserves the graph’s edge relation. The set of all symmetries of a
graph forms a group1 under functional composition. The graph automorphism
problem seeks a generating set for the automorphism group of a graph. Closely
related to graph automorphism is the problem of canonical labeling which as-
signs a unique signature to a graph that is invariant under all possible labelings
of its vertices. Graph automorphisms and canonical labelings are related to the
functional properties of the combinatorial objects in question. In a representa-
tive application developed in [3,2], a CNF (conjunctive normal form) formula is
modeled by a graph and passed to a symmetry detection program. During sub-
sequent symmetry-breaking, these symmetries are used to augment the formula
with a set of symmetry-breaking predicates. These predicates do not change the
formula’s satisfiability, but help SAT solvers prune away symmetric portions of
the search space.

Graph symmetry and canonical labeling have been extensively studied over
the past five decades. The nauty program [18,19], developed by McKay in 1981,
1 A group is an algebraic structure comprising a non-empty set of elements with a

binary operation that is associative, admits an identity element, and is invertible.
For example, the set of integers with addition forms a group. A generating set of
a group is a subset of the group’s elements whose combinations under the group
operation generate the entire group.

N. Bjørner and A. Voronkov (Eds.): LPAR-18, LNCS 7180, pp. 243–257, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



244 H. Katebi, K.A. Sakallah, and I.L. Markov

pioneered the first high-performance algorithms that inspired all subsequent
tools. Almost two decades later, Darga et al [9] observed that the use of an
adjacency matrix in nauty could lead to asymptotic inefficiencies in dealing
with sparse graphs. This motivated the development of a new tool called saucy
[9,10,16], which was limited to just finding a set of symmetry generators, but
was three orders of magnitude faster than nauty on very large and very sparse
graphs. Closely following nauty’s canonical labeling algorithms were two other
tools, namely, bliss [13,14] and nishe [22]. The search routines in bliss improved
the handling of large and sparse graphs, and the branching heuristics in nishe
facilitated a polynomial-time solution for the Miyazaki graphs [20], a family of
graphs that nauty requires exponential time to process.

Since the emergence of the first version of saucy in 2004 (saucy 1.1) [9],
different algorithmic enhancements improved saucy’s performance over a wide
range of graphs with both theoretical and practical interest. The second ver-
sion of saucy (saucy 2.0) [10] incorporated the observation that the symmetry
generators of sparse graphs were mostly sparse. The major algorithmic changes
that were introduced in saucy 2.0 separated the search for symmetries from the
search for a canonical labeling. Further improvements to saucy’s data structures
and algorithms were reported in saucy 2.1 [16].

In this paper, we present saucy 3.0 which performs simultaneous partition
refinement to anticipate and avoid possible future conflicts. The procedure aug-
ments the method introduced in saucy 2.1 whereby nodes in the search tree rep-
resent sets of vertex permutations encoded by an ordered partition pair (OPP)
of graph vertices. The basic idea of the new procedure is to refine the top and
bottom partitions of an OPP at the same time, making sure that the two parti-
tions conform to each other (according to the graph’s edge relation) after each
refinement step. We implemented this enhancement in saucy 3.0 and tested its
performance on a wide variety of graph benchmarks. Our experimental evalu-
ation shows that this enhancement can significantly prune the search tree for
many graph families, such as the Miyazaki graphs. Furthermore, the concept of
simultaneous refinement helps us better understand and explain the validity of
some of the algorithms that were previously presented in saucy 2.1.

In the remainder, we first review some preliminaries in Section 2. Then, we
discuss saucy’s baseline algorithms in Section 3. The new partitioning algo-
rithm based on the concept of simultaneous refinement is presented in Section 4.
Section 5 establishes the correctness of “matching OPP” pruning (this pruning
mechanism was presented in saucy 2.1). The results of our experimental study
are provided in Section 6. Finally, we discuss conclusions in Section 7.

2 Preliminaries

We assume familiarity with basic notions from group theory, including such
concepts as groups, subgroups, group generators, cosets, orbit partition, etc.
Information on different group theoretic concepts is available in many abstract
algebra texts such as [11]. In this paper, we focus on the automorphisms of an
n-vertex colored graph G whose vertex is V = {0, 1, ..., n − 1}. A permutation



Conflict Anticipation in the Search for Graph Automorphisms 245

of V is a bijection from V to V , and a symmetry of G is a permutation of V
that preserves G’s edge relation. Permutation α, when applied to G, produces
the permuted graph Gα. Every graph has a trivial symmetry, called the identity,
that maps each vertex to itself. The set of symmetries of G forms a group under
functional composition. This group is the symmetry group of G, and is denoted
by Aut(G). Given G, the objective of any symmetry detection tool is to find a
set of group generators for Aut(G).

An ordered partition π = [W1|W2| · · · |Wm] of V is an ordered list of non-empty
pair-wise disjoint subsets of V whose union is V . The subsets Wi are called the
cells of the partition. Ordered partition π is unit if m = 1 (i.e., W1 = V ) and
discrete if m = n (i.e., |Wi| = 1 for i = 1, · · · , n). An ordered partition pair
(OPP) π is specified as

Π =
[
πT
πB

]
=
[
T1 |T2 |· · · |Tm
B1 |B2 |· · · |Bk

]
with πT and πB referred to, respectively, as the top and bottom ordered par-
titions of π. OPP π is isomorphic if m = k and |Ti| = |Bi| for i = 1, · · · ,m;
otherwise it is non-isomorphic. In other words, an OPP is isomorphic if its top
and bottom partitions have the same number of cells, and corresponding cells
have the same cardinality. An isomorphic OPP is matching if its corresponding
non-singleton cells are identical. We will refer to an OPP as discrete (resp. unit)
if its top and bottom partitions are discrete (resp. unit).

OPPs lie at the heart of saucy’s symmetry detection algorithms, since each
OPP compactly represents a set of permutations. This set of permutations might
be empty (non-isomorphic OPP), might have only one permutation (discrete
OPP), or might consist of up to n! permutations (unit OPP). Several OPP
examples and the permutation set encoded by them are provided below.

– Discrete OPP:
[

2
1

∣∣∣∣ 0
2

∣∣∣∣ 1
0

]
= {(0 2 1)}

– Unit OPP:
[
0, 1, 2
0, 1, 2

]
= {ι, (0 1) , (0 2) , (1 2) , (0 1 2) , (0 2 1)}

– Isomorphic OPP:
[

2
1

∣∣∣∣ 0, 1
2, 0

]
= {(1 2) , (0 2 1)}

– Matching OPP:
[

1
3

∣∣∣∣ 0, 2, 4
0, 2, 4

∣∣∣∣ 3
1

]
= (1 3) ◦ S3 ({0, 2, 4})

– Non-isomorphic OPPs:
[

0, 2| 1
1| 2, 0

]
= ∅,

[
2| 0| 1
1| 2, 0

]
= ∅

3 Baseline Algorithms

Similar to other combinatorial search algorithms, saucy explores the space of
permutations by building a search tree and systematically traversing it. However,
the representation of search nodes as OPPs in saucy is unique. The root of the
tree is a unit OPP which is initially refined based on the colors and degrees of the



246 H. Katebi, K.A. Sakallah, and I.L. Markov

vertices of the input graph. The depth-first traversal of the permutation space is
started by choosing a target vertex from a non-singleton cell of the top partition
and mapping it to all the vertices of the corresponding cell of the bottom parti-
tion. To propagate the constraints of the graph (i.e. the graph’s edge relation),
partition refinement is invoked after each mapping decision. The mapping pro-
cedure continues until the OPP becomes discrete, matching, or non-isomorphic
(the latter is referred to as a conflict). In either case, saucy backtracks one level
up, and maps the target vertex to the remaining candidate vertices. The search
ends when all possible mappings are exhausted.

In addition to partition refinement, saucy exploits two types of pruning mech-
anisms: group-theoretical and OPP-based. To enable group-theoretical pruning,
namely coset and orbit pruning, the left-most path of the tree should correspond
to a sequence of subgroup stabilizers ending in the identity. In other words, the
decisions along the left-most path maps each vertex to itself. This phase of
the search is called subgroup decomposition. Note that no such requirement is
needed in the remaining parts of the search tree. In contrast, OPP-based prun-
ing mechanisms are optional techniques that assist saucy’s algorithms to avoid
unnecessary search. Two of these techniques, embedded in saucy 2.1, are non-
isomorphic OPP and matching OPP pruning.

In this paper, we introduce an enhanced partition refinement procedure that
refines the top and bottom partitions of an OPP simultaneously. Our simulta-
neous refinement anticipates the conflicts that might arise in a certain subtree,
and prunes the entire subtree without exploring it. The idea here is to capture
conflicts that might be overlooked by the conventional refinement procedure.

4 Conflict Anticipation via Simultaneous Refinement

Partition refinement in saucy is adapted from nauty, and nauty’s refinement
is based on the concept of equitable partitions. Partition π = [W1|W2| · · · |Wm]
is equitable (with respect to graph G) if, for all v1, v2 ∈ Wi (1 ≤ i ≤ m), the
number of neighbors of v1 in Wj (1 ≤ j ≤ m) is equal to the number of neigh-
bors of v2 in Wj . Although saucy’s partition refinement is adapted from nauty,
the search tree in saucy is completely different from that in nauty. The nodes
of nauty’s tree are single ordered partitions, while the nodes of saucy’s
tree are ordered partition pairs. In nauty, an equitable partition is obtained
by invoking partition refinement after each vertex individualization. Extending
this to OPPs, the refinement procedure in saucy refines both partitions of an
OPP simultaneously after each mapping decision, until 1) both partitions be-
come equitable and the resulting OPP is isomorphic, or 2) the resulting OPP is
non-isomorphic indicating an empty set of permutations, i.e., a conflict. In saucy
2.1 and earlier, simultaneous refinement was basically an algorithmic enhance-
ment that detected conflicts (if any existed) earlier during refinement, without
fully establishing an equitable OPP (an OPP whose top and bottom partitions
are both equitable), and then examining the resulting OPP to see whether it
was isomorphic/non-isomorphic. In implementation, saucy first refines the top



Conflict Anticipation in the Search for Graph Automorphisms 247

Fig. 1. A 20-vertex 46-edge graph with symmetry group of size 32

root

11 11 11 1 11 0

14 4

4 14 4 12 4 13 4 15

14 2

7 19 7 16

14 3

8 16 8 19

14 5

7 16 7 19

11 10

4 gens 1gen Orbit pruned

9 18 9 17 6 17 6 18 9 17 9 18 6 18 6 17 6 17 6 18 9 18 9 17

Fig. 2. The search tree constructed by saucy 2.1 for the graph in Figure 1

partition until it becomes equitable, records where the cell splits occur, then
starts refining the bottom partition, and compares the splitting locations of the
bottom to the top whenever a new split occurs (i.e., checks the isomorphism of
the two partitions after each split).

In this section, we argue that the significance of simultaneous refinement is not
limited to the early detection of “non-isomorphic equitable OPPs”. In particular,
we demonstrate cases where the resulting equitable OPP is isomorphic, but the
OPP still violates the edge relation of the graph. We illustrate such a case, and
explain why conventional refinement fails to detect the conflict in that case.
We then present an enhanced simultaneous refinement procedure that detects
such cases and does not explore them. We discuss the impact of our proposed
refinement procedure on the search tree constructed for our example.

Consider the 20-vertex 46-edge graph shown in Figure 1. The search tree
generated by saucy 2.1 for this graph is shown in Figure 2. This search tree
produces 16 conflicts (non-isomorphic OPPs), indicated by red-shaded nodes.
In the remainder of this section, we focus on the path from the root that maps
11 	→ 0 and then 14 	→ 4. The OPPs in Figure 3a, labeled with (1), (2) and (3),
represent the nodes of the search tree at the root, after mapping 11 	→ 0, and
after mapping 14 	→ 4, respectively.

In saucy 2.1, the isomorphic OPP (3), obtained after mapping 14 	→ 4, is not
considered to be a conflict node and triggers further vertex mappings (namely,
4 	→ 14, 4 	→ 12, 4 	→ 13, and 4 	→ 15). However, this OPP violates the edge
relation of the graph in Figure 1. To see this, consider the edge that connects
13 to 16. This edge, according to OPP (3), should be mapped to another edge



248 H. Katebi, K.A. Sakallah, and I.L. Markov

[
11, 10, 1, 0
11, 10, 1, 0

∣∣∣∣ 15, 12, 14, 13, 5, 2, 4, 3
15, 12, 14, 13, 5, 2, 4, 3

∣∣∣∣ 18, 19, 17, 16, 8, 9, 7, 6
18, 19, 17, 16, 8, 9, 7, 6

]
(1)[

0
11

∣∣∣∣101
∣∣∣∣ 1
10

∣∣∣∣110
∣∣∣∣14, 12, 13, 15

4, 3, 5, 2

∣∣∣∣ 2, 4, 5, 3
13, 14, 12, 15

∣∣∣∣17, 18
9, 6

∣∣∣∣ 8, 7
19, 16

∣∣∣∣ 6, 9
18, 17

∣∣∣∣ 16, 19
7, 8

]
(2)[

0
11

∣∣∣∣101
∣∣∣∣ 1
10

∣∣∣∣110
∣∣∣∣133

∣∣∣∣122
∣∣∣∣155

∣∣∣∣144
∣∣∣∣ 2, 4, 5, 3
13, 14, 12, 15

∣∣∣∣176
∣∣∣∣189

∣∣∣∣ 8, 7
19, 16

∣∣∣∣ 6, 9
18, 17

∣∣∣∣167
∣∣∣∣ 19

8

]
(3)

Fig. 3a. The search nodes of the tree in Figure 2. OPP (1) is at the root, OPP (2) is
after mapping 11 �→ 0, and OPP (3) is after mapping 14 �→ 4.

[
0 10 1 11 12,13,15 14 2,4,5,3 17,18 8,7 6,9 16,19

]
(4)[

0 10 1 11 13 12,15 14 2,4,5,3 18 17 8,7 6,9 16 19
]

(5)[
0 10 1 11 13 12 15 14 2,4,5,3 18 17 8,7 6,9 16 19

]
(6)

Fig. 3b. The refinement of the top partition of OPP (2) to get OPP (3)

[
11 1 10 0 3,5,2 4 13,14,12,15 9,6 19,16 18,17 7,8

]
(7)[

11 1 10 0 3 5,2 4 13,14,12,15 9 6 19,16 18,17 7 8
]

(8)[
11 1 10 0 3 2 5 4 13,14,12,15 9 6 19,16 18,17 7 8

]
(9)

Fig. 3c. The refinement of the bottom partition of OPP (2) to get OPP (3)

that connects 3 to 7, since OPP (3) maps 13 	→ 3, and 16 	→ 7. Nevertheless, no
such edge exists between 3 and 7 in Figure 1, and hence, OPP (3) is a conflict.

The question now is why the refinement procedure failed to detect the above
conflict? Or, in other words, why was OPP (3) found to be isomorphic? To answer
this question, we should follow the trace of the refinement procedure which is
performed on OPP (2) to get OPP (3) after mapping 14 	→ 4. As elaborated
earlier, saucy first refines the top partition until it becomes equitable, then
refines the bottom partition and checks the isomorphism of the bottom to the top
whenever a new split occurs. The step by step refinement of the top and bottom
partitions when 14 	→ 4 is shown in Figure 3b and Figure 3c, respectively.

The refinement on the top starts by first making 14 a singleton cell (partition
(4)). According to the graph of Figure 1, 14 is connected to 12,15,18 and 19,
but not to 13, 17 and 16. Hence, refinement separates 12 and 15 from 13 (this
makes 13 a singleton cell), 18 from 17, and 19 from 16 (partition (5)). The
refinement continues by looking at the connections of one of the newly created
cells. Here, saucy picks the singleton cell 16. According to the graph, 16 is
connected to 11,13,15,17,18 and 19. This separates 15 from 12 (partition (6)).
The top partition is now equitable, i.e., no further refinement is implied.

After refining the top partition, saucy starts refining the bottom partition.
This is done by first making 4 a singleton cell (partition (7)). Since 4 is connected
to 2,5,8 and 9, refinement separates 2 and 5 from 3 (this makes 3 a singleton
cell), 9 from 6, and 8 from 7 (partition (8)). Note that, at this point, partition



Conflict Anticipation in the Search for Graph Automorphisms 249

root

11 11 11 1 11 0

14 4 14 2 14 3 14 5

11 10

4 gens 1gen Orbit pruned

Fig. 4. The search tree constructed by saucy 3.0 for the graph in Figure 1

(8) is isomorphic to partition (5), i.e., no conflict is detected. This time saucy
picks the singleton cell 7, since it had previously chosen 16 from the top, and 7
is at the same index on the bottom as 16 on the top. According to the graph, 7
is connected to 0,2,5,6,8 and 9. Since 7 is connected to both 2 and 5, no further
refinement is implied. At this point, saucy should detect the conflict that 16 on
the top separated 15 from 12, but 7 on the bottom did not distinguish 2 from 5.
However, since no new cell is created on the bottom, saucy does not invoke the
isomorphism check, and falsely assumes that the bottom stays isomorphic to the
top. Note that the failure to detect this conflict is not a bug in refinement, since
nauty’s (and essentially saucy’s) refinement procedure refines one partition at
a time, and checks isomorphism once both partitions are equitable. After refining
based on 7, saucy refines based on 6. Vertex 6 is connected to 1,3,5,7,8 and 9.
Since 6 is connected to 5 but not 2, it separates 5 from 2 (partition 9). The
bottom partition is now equitable and isomorphic to the top.

After the refinement procedure ends, saucy builds isomorphic OPP (3), and
starts exploring it by mapping 4 to 14, 12, 13, and 15. However, this phase of
the search is superfluous, since we know that OPP (3) violates the graph’s edge
relation, and its further exploration will always result in conflicts. Another case
of a conflicting isomorphic OPP is when two corresponding singleton cells of the
top and bottom partitions have different connections to the other singleton cells
of their own partition. In this case, the conflict is again overlooked by saucy’s
conventional refinement procedure, since singleton cells cannot be partitioned to
smaller cells (i.e., no new cell splitting occurs), and hence, the top and bottom
partitions remain isomorphic after this step of refinement.

To detect the conflicts that might remain undetected during partition refine-
ment, we enhanced saucy’s partition refinement in two ways; 1) the isomorphism
of the bottom partition to the top is checked after each refinement step, rather
than after each time a new split occurs, and 2) in addition to the isomorphism
check, we also ensure that the connections of each newly created cell on the bot-
tom match the connections of its corresponding cell on the top. These two new
checks verify that the top and bottom partitions remain isomorphic and con-
forming (according to the graph’s edge relation) after each refinement step. In
our implementation, the overhead of the first check is negligible, as it is per-
formed within the main refinement loop, but the second check requires an extra
iteration over the outgoing edges of the vertices of the newly created cells. We
would like to emphasize that our enhancement is enabled by the OPP-encoding
of permutations that is unique to saucy’s search for automorphisms.



250 H. Katebi, K.A. Sakallah, and I.L. Markov

Figure 4 shows the search tree for the graph in Figure 1 when our new simul-
taneous refinement is invoked. Comparing this search tree to that in Figure 2,
the number of conflicts is reduced from 16 to 4.

5 The Validity of Matching OPP Pruning

When matching OPP π is encountered in the search, saucy “constructs” a
permutation α from π by mapping the vertices in matching cells identically. It
then uses α to prune the entire subtree rooted at this OPP in one of two ways;
either 1) α is an automorphism of the graph, which means that the subtree is a
coset of the stabilizer subgroup, and α is a coset representative, or 2) α is not an
automorphism, which indicates that the subtree is not a coset, and the search for
a coset representative in that subtree will always fail. In this section, we show
that, if π is found to be matching by our enhanced simultaneous refinement
(described in Section 4), the second case cannot occur, i.e., α must always be an
automorphism of the graph. The proof of this claim is presented next.

Assume that π is an OPP that is found matching by our enhanced refinement
procedure. This means that π is equitable, isomorphic, matching, and conforming
according to G’s edge relation. Let α be the permutation that corresponds to π,
i.e., the permutation that maps the vertices in π’s non-singleton cells identically.
To show by contradiction that α is a symmetry of G, assume that it is not. Then,
there must be an edge in Gα that does not exist in G (or vice versa). Assume
that this edge connects v1 to v2. Trivially, both v1 and v2 cannot be mapped
identically in α, otherwise, an edge between v1 and v2 in G would map to the
exact same edge in Gα. Hence, permutation α either maps v1 to v′1 (v1 �= v′1), or
v2 to v′2 (v2 �= v′2), or both. We first consider the case where v1 is mapped to v′1
but v2 is mapped identically (this is similar to the case where v2 is mapped to
v′2 but v1 is mapped identically). This case contradicts our assumption that π
is equitable, since v1 and v′1 were both singleton cells of π, and having an edge
between v1 and v2 but not between v′1 and v2 would imply further refinement
on π. Now consider the case where v1 is mapped to v′1 and v2 to v′2. This case
contradicts our assumption that π is conforming according to G’s edge relation,
since v1, v2, v′1 and v′2 were all singleton cells of π, and having an edge between
v1 and v2 but not between v′1 and v′2 would violate G’s edge relation.

6 Experimental Evaluation

We implemented our simultaneous partition refinement technique in saucy 3.0,
and tested its performance on 1445 graph benchmarks drawn from a wide variety
of domains. Our experiments were conducted on a SUN workstation equipped
with a 3GHz Intel Dual-Core CPU, a 6MB cache and an 8GB RAM, running
the 64-bit version of Redhat Linux. A time-out of 1000 seconds was applied.
Table 1 lists the benchmark families used in our experiments. For these fam-
ilies, the name, the number of instances, the size of the smallest and largest
instances, and a short description are provided. The families are divided into



Conflict Anticipation in the Search for Graph Automorphisms 251

Table 1. Benchmark families

Family Instances Smallest Instance Largest Instance Description
vertices edges vertices edges

mz [20,15] 25 40 60 1,000 1,500 Original Miyazaki graphs
cmz [15] 46 120 90 200 1,900 (mz), and their variants
mz-aug [15] 25 40 92 1,000 2,300 designed to mislead the
mz-aug2 [15] 24 96 152 1,200 1,900 bliss cell selector

circuit [23,1] 33 3,575 14,625 4,406,950 8,731,076 saucy benchmarks from
router [7,12] 3 112,969 181,639 284,805 428,624 place-route, verification,
roadnet [6] 56 1,158 1,008 1,679,418 2,073,394 routers & road networks

application [8] 300 464 2,066 32,813,545 65,487,132 SAT 2011 application,
crafted [8] 300 105 320 776,820 3,575,337 crafted and random
random [8] 600 1,165 5,375 310,000 680,000 CNF instances

binnet [17,4] 33 1,000 720 6,000,000 4,391,515 binary networks

four categories. These categories were chosen based on the general construction
of the graphs, considering metrics such as the number of vertices and edges, con-
nectivity and sparsity. The first category is the Miyazaki graphs [20,15], which
nauty takes exponential time to process. The second category contains bench-
marks used to test earlier versions of saucy. It represents graphs from various
domains, such as logic circuits and their physical layouts [23,1], internet routers
[7,12], and road networks in the US states and its territories [6]. The third cat-
egory includes CNF benchmarks from the international SAT 2011 competition
[8]. The fourth category consists of graphs not previously reported in graph au-
tomorphism or satisfiability research. These graphs were proposed for testing
community-detection algorithms [17,4] 2.

Figure 5 compares the number of conflicts produced by saucy 3.0 and saucy
2.1. If a benchmark is not processed within the time-out, the number of conflicts
encountered right before termination is reported. The results show that saucy
3.0 always produces fewer or the same number of conflicts. This is expected, as
our proposed refinement procedure anticipates and avoids certain conflicts that
might arise in saucy 2.1. Of all the benchmark families, mz-aug and mz-aug2
benefit most from the new refinement procedure. For these two families, the
highest number of conflicts reported by saucy 3.0 was 696 (for mz-aug-50). In
contrast, the number of conflicts reported by saucy 2.1 was at least 10,000 for
46 out of 49 mz-aug and mz-aug2 instances. Of the remaining two Miyazaki
families, mz did not experience any change in its number of conflicts, and cmz
showed a slight improvement for 5 out of its 46 instances (8 fewer conflicts were
reported for those 5 instances). Of the graphs from circuits, internet routers,

2 We used the implementation of the algorithm described in [17] (available at [4])
to generate 33 undirected and unweighted binary networks. We set the number of
nodes to {1, ..., 9} × {103, 104, 105} and {1, ..., 6} × 106 (generating larger networks
required more than 8GB RAM), and fixed the remaining parameters in all instances.
Specifically, we set the average degree to 2, the max degree to 4, the mixing parameter
to 0.1, the minimum community size to 20, and the maximum community size to 50.



252 H. Katebi, K.A. Sakallah, and I.L. Markov

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

1.0E+10

au
cy

 3
.0

 c
on

fl
ic

ts
Miyazaki graphs

saucy benchmarks

SAT 11 benchmarks

binary networks

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+00 1.0E+02 1.0E+04 1.0E+06 1.0E+08 1.0E+10

sa

saucy 2.1 conflicts

Fig. 5. Number of conflicts returned by saucy 3.0 versus saucy 2.1

and road networks, only one instance (from circuit) showed significant conflict
reduction (from 43 million to only 102). The remaining instances produced the
same number of conflicts (not more than 42) in saucy 3.0 and saucy 2.1. Of
the 1200 CNF benchmarks, only 72 (15 from application and 57 from crafted)
encountered conflicts in saucy 2.1, and only 12 (all from crafted) experienced
a reduction in the number of conflicts. The smallest reduction was 1 and the
largest was 2.9 million. The binnet instances also produced the same results
in both versions of saucy. The reported number of conflicts for those instances
ranged from no conflicts to 4,412.

Figure 6 shows the distribution of depth of the conflicts that were captured
and avoided by saucy 3.0. Recall that the new refinement procedure in saucy
3.0 prunes some subtrees that are explored by saucy 2.1. Suppose that one
such subtree is found to be conflicting at level l in saucy 3.0, but leads to c
conflicts in saucy 2.1, where the n-th conflict (1 ≤ n ≤ c) occurs at level ln.
Trivially, ln ≥ l. We define the depth of the n-th conflict as d = ln − l. If d = 0,
both saucy 3.0 and saucy 2.1 capture the conflict at the same time. If d > 0,
saucy 3.0 anticipates and avoids the conflict d levels sooner than it occurs in
saucy 2.1. We use conflict depth as a numeric criterion to evaluate the effec-
tiveness of our new refinement procedure. The results in Figure 6 show that
the deepest conflicts captured by saucy 3.0 occur in the instances of Miyazaki
families. The greatest reported depth was 98, which occurred 2.8×108 times for
mz-aug-50. The only benchmark from the circuit family that had significant



Conflict Anticipation in the Search for Graph Automorphisms 253

1 0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09
er

 o
f 

co
nf

lic
ts

 

Miyazaki graphs
saucy benchmarks
SAT 11 benchmarks

1.0E+00

1.0E+01

1.0E+02

1.0E+03

0 20 40 60 80 100

nu
m

be

conflict depth

Fig. 6. Histogram of the conflict depths captured by saucy 3.0

conflict reduction produced conflict depth of up to 29, where the largest conflict
depth happened 1.3×107 times. For the CNF benchmarks, the deepest reported
conflict had a depth of 11, and occurred roughly 105 times. The histogram in
Figure 6 excludes the results for binary networks, since all those conflicts were
reported at depth 0.

The runtime comparison between saucy 3.0 and saucy 2.1 is depicted in
Figure 7. For the families of mz-aug and mz-aug2, we observed an exponential
speedup when our proposed refinement procedure was invoked. Of the 49 in-
stances in these two families, saucy 3.0 solved all in less than a second, while
saucy 2.1 failed to process 39 within the time-out limit. For the mz and cmz
families, saucy 2.1 and 3.0 had comparable runtimes. The instances of router,
roadnet, and binnet did not experience much change either. For the circuit
family, the results were comparable, except for one benchmark that was solved by
saucy 3.0 in a second but remained unsolved in saucy 2.1. Interestingly enough,
we did not observe any major improvement in the runtimes of the SAT 11 CNF
benchmarks, although conflict reduction of up to 2.9 million was reported for
some of those instances. Our further analysis revealed that high reduction in the
number of conflicts was reported for instances that timed out in both saucy 3.0
and saucy 2.1, and the reduction in the remaining instances was not significant
enough to reflect a major improvement in runtimes. Note that the runtimes re-
ported in Figure 7 match with the number of conflicts reported in Figure 5. In
fact, fewer conflicts generally led to better runtimes.

In order to evaluate the performance of saucy 3.0 versus state-of-the-art
graph automorphism tools, we ran bliss (version 0.72, available at [5]) on all
the 1445 benchmarks listed in Table 1, and compared its runtimes to those
obtained from saucy 3.0. This comparison is shown in Figure 8. Of the four
Miyazaki graph families, bliss showed difficulties in processing the instances of
cmz (took up to 856 seconds to complete all those instances), but processed the



254 H. Katebi, K.A. Sakallah, and I.L. Markov

1

10

100

1000

sa
uc

y 
3.

0 
ru

ti
m

e

Miyazaki graphs

saucy benchmarks

SAT 11 benchmarks

binary networks

0.01

0.1

0.01 0.1 1 10 100 1000

saucy 2.1 runtime

Fig. 7. Runtime of saucy 3.0 versus saucy 2.1 (timeout is 1000 seconds)

1

10

100

1000

sa
uc

y 
3.

0 
ru

ti
m

e

Miyazaki graphs

saucy benchmarks

SAT 11 benchmarks

binary networks

0.01

0.1

0.01 0.1 1 10 100 1000

bliss 0.72 runtime

Fig. 8. Runtime of saucy 3.0 versus bliss 0.72 (timeout is 1000 seconds)



Conflict Anticipation in the Search for Graph Automorphisms 255

1

10

100

1000
ti

m
e 

(s
)

bliss 0.72
saucy 2.1
saucy 3.0

0.01

0.1

1.0E+00 1.0E+02 1.0E+04 1.0E+06 1.0E+08
number of vertices

Fig. 9. Runtimes of saucy 3.0, saucy 2.1, and bliss 0.72 as a function of graph size

remaining three families in less than a second. In contrast, saucy solved all
Miyazaki graphs in less than a second. Furthermore, bliss timed out on 8 and
3 out of 33 and 56 instances of the circuit and roadnet families, respectively,
but solved the remaining instances of those two families and all 3 instances of
router in 550 seconds. This was while saucy solved all the 92 instances of
these three families in 5 seconds (processed 90 in less than a second). For the
CNF benchmarks, saucy and bliss showed mixed results. Of the 600 crafted
and application instances, bliss failed to process 4 crafted and 3 application
instances, whereas, saucy failed to process 17 crafted instances, but solved all
application instances. The 4 crafted benchmarks that were unsolved by bliss
were also unsolved by saucy. This means that bliss solved 13 crafted instances
that saucy failed to process, and saucy solved 3 application instances that bliss
did not solve. Of the remaining crafted and application benchmarks, bliss solved
541 in less than 10 seconds, and 52 in 366 seconds, while saucy solved 577 in less
than 10 seconds, and 6 in 300 seconds. Both saucy and bliss solved all random
benchmarks in less than a second. Overall, the results in Figure 8 indicate that
saucy outperformed bliss on the majority of SAT 11 benchmarks. For binary
networks, saucy consistently produced better results. Specifically, saucy solved
all 33 instances of binnet in 14 seconds (the largest runtime was 13.67 seconds
which was reported for the largest instance of this family with 6× 106 vertices),
but bliss timed out on 19, and solved the remaining in 727 seconds.

As part of our study, we also ran nishe 0.1 [21] on all the graph benchmarks in
our suite, and compared its results to saucy 3.0. In general, we observed that the
runtimes of nishe and saucy were comparable for the Miyazaki graphs. For the
remaining benchmarks, however, nishe exhibited poor performance compared
to saucy and bliss. In particular, it failed to process (either timed out or had
a segmentation fault) 59 out of 92 saucy benchmarks, 950 out of 1200 CNF
instances, and 24 out of 33 binary networks.

Figure 9 shows the runtimes of saucy 3.0, saucy 2.1, and bliss 0.72 as a
function of graph size for all the 1445 benchmarks listed in Table 1. As this



256 H. Katebi, K.A. Sakallah, and I.L. Markov

figure suggests, the smaller instances seem to be more challenging for saucy.
This is particularly not true of bliss, as bliss tends to produce larger runtimes
for larger instances. The smallest instance that saucy 3.0 timed out on had 583
vertices, and the largest had 52,786 vertices, while these numbers were respec-
tively reported to be 1,620 and 33 million for bliss 0.72. Of the 446 benchmarks
with more than 52,786 vertices, saucy 3.0 solved 389 in less than a second, and
processed the rest in 100 seconds, while bliss 0.72 solved 213 in less than a
second, took up to 550 seconds to process 200, and timed out on 33. On the
other hand, of the 999 benchmarks that had less than 52,786 vertices, saucy 3.0
solved 979 in less than a second, timed out on 17, and took up to 550 seconds to
process the rest, whereas, bliss 0.72 processed 946 in less than a second, timed
out on 4, and processed the remaining in 856 seconds. To investigate the reason
why saucy 3.0 did not perform as expected on relatively small instances, we
examined the effect of different decision heuristics on the 17 benchmarks that
saucy failed to process. Interestingly, 4 out of those 17 benchmarks were solved
in less than a second with an alternative decision heuristic. Of those 4, one was
reported to be unsolved by bliss 0.72. These results suggest that branching de-
cisions play a crucial role in minimizing the time for automorphism search. We
plan to pursue the effect of decision heuristics in our future research.

7 Conclusions

In this work, we have advanced the state of the art in algorithms for solving graph
automorphism, which finds applications in many fields. Our technique takes ad-
vantage of a unique feature in the saucy algorithm — the representation of
partial permutations (search nodes) in terms of ordered partition pairs. Previ-
ously, these partitions were refined one at a time, but we have now developed
simultaneous partition refinement, which allows saucy to anticipate possible fu-
ture conflicts and prune the search tree early. This optimization significantly
improves runtime on several benchmark families, including the ones suggested
by Miyazaki [20] for further study because nauty provably requires exponential
time on these benchmarks. Our empirical comparisons show that our implemen-
tation saucy 3.0 outperforms the competition on most available benchmarks.
Our ongoing work is focused on several benchmarks where saucy 3.0 is outper-
formed by bliss 0.72. Preliminary analysis suggests that these benchmarks tend
to be small, which may be due to subtle inefficiencies in our implementation
rather than asymptotic bottlenecks. We hope that our future research will shed
additional light on this.

References

1. ISPD (2005), http://archive.sigda.org/ispd2005/contest.htm
2. Aloul, F.A., Markov, I.L., Sakallah, K.A.: Shatter: Efficient symmetry-breaking for

boolean satisfiability. In: Proc. 40th IEEE/ACM Design Automation Conference
(DAC), Anaheim, California, pp. 836–839 (2003)

http://archive.sigda.org/ispd2005/contest.htm


Conflict Anticipation in the Search for Graph Automorphisms 257

3. Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Solving difficult sat in-
stances in the presence of symmetry. In: Proc. 39th IEEE/ACM Design Automa-
tion Conference (DAC), New Orleans, Louisiana, pp. 731–736 (2002)

4. binary networks, https://sites.google.com/site/santofortunato/inthepress2
5. bliss 0.72 (2011), http://www.tcs.hut.fi/Software/bliss/bliss-0.72.zip
6. U. S. Census Bureau,

http://www.census.gov/geo/www/tiger/tigerua/ua_tgr2k.html.

7. Cheswick, B., Burch, H., Branigan, S.: Mapping and visualizing the internet. In:
USENIX Annual Technical Conference, pp. 1–13 (2000)

8. SAT Competition, http://www.satcompetition.org
9. Darga, P.T., Liffiton, M.H., Sakallah, K.A., Markov, I.L.: Exploiting structure in

symmetry detection for CNF. In: Proc. 41st IEEE/ACM Design Automation Con-
ference (DAC), San Diego, California, pp. 530–534 (2004)

10. Darga, P.T., Sakallah, K.A., Markov, I.L.: Faster symmetry discovery using sparsity
of symmetries. In: Proc. 45th IEEE/ACM Design Automation Conference (DAC),
Anaheim, California, pp. 149–154 (2008)

11. Fraleigh, J.B.: A First Course in Abstract Algebra, 6th edn. Addison Wesley Long-
man, Reading (2000)

12. Govindan, R., Tangmunarunkit, H.: Heuristics for internet map discovery. In: IEEE
INFOCOM, pp. 1371–1380 (2000)

13. Junttila, T., Kaski, P.: Engineering an efficient canonical labeling tool for large and
sparse graphs. In: Ninth Workshop on Algorithm Engineering and Experiments
(ALENEX 2007), New Orleans, LA (2007)

14. Junttila, T., Kaski, P.: Conflict Propagation and Component Recursion for Canon-
ical Labeling. In: Marchetti-Spaccamela, A., Segal, M. (eds.) TAPAS 2011. LNCS,
vol. 6595, pp. 151–162. Springer, Heidelberg (2011)

15. Kaski, P.: http://www.tcs.hut.fi/Software/bliss/benchmarks/index.shtml
16. Katebi, H., Sakallah, K.A., Markov, I.L.: Symmetry and satisfiability: An update.

In: Proc. Satisfiability Symposium (SAT), Edinburgh, Scotland (2010)
17. Lancichinetti, A., Fortunato, S.: Benchmarks for testing community detection al-

gorithms on directed and weighted graphs with overlapping communities. Phys.
Rev. E 80, 016118 (2009)

18. McKay, B.D.: nauty user’s guide (version 2.2),
http://cs.anu.edu.au/~bdm/nauty/nug.pdf

19. Brendan, D.: McKay. Practical graph isomorphism. Congressus Numerantium 30,
45–87 (1981)

20. Miyazaki, T.: The complexity of McKay’s canonical labeling algorithm, p. 239.
Amer. Mathematical Society (1997)

21. nishe 0.1., http://gregtener.com/media/upload/nishe-0.1.tar.bz2
22. Tener, G., Deo, N.: Efficient isomorphism of miyazaki graphs. In: 39th Southeastern

International Conference on Combinatorics, Graph Theory, and Computing, Boca
Raton, FL (2008)

23. Velev, M.N., Bryant, R.E.: Effective use of boolean satisfiability procedures in
the formal verification of superscalar and vliw microprocessors. In: Proc. Design
Automation Conference (DAC), New Orleans, Louisiana, pp. 226–231 (2001)

https://sites.google.com/site/santofortunato/inthepress2
http://www.tcs.hut.fi/Software/bliss/bliss-0.72.zip
http://www.census.gov/geo/www/tiger/tigerua/ua_tgr2k.html.
http://www.satcompetition.org
http://www.tcs.hut.fi/Software/bliss/benchmarks/index.shtml
http://cs.anu.edu.au/~bdm/nauty/nug.pdf
http://gregtener.com/media/upload/nishe-0.1.tar.bz2


Confluence of Non-Left-Linear TRSs

via Relative Termination�

Dominik Klein and Nao Hirokawa

School of Information Science
Japan Advanced Institute of Science and Technology, Japan

{dominik.klein,hirokawa}@jaist.ac.jp

Abstract. We present a confluence criterion for term rewrite systems
by relaxing termination requirements of Knuth and Bendix’ confluence
criterion, using joinability of extended critical pairs. Because computa-
tion of extended critical pairs requires equational unification, which is
undecidable, we give a sufficient condition for testing joinability auto-
matically.

1 Introduction

Applications in various domains [16,20,26], resulted in an interest in proving
confluence of term rewrite systems (TRSs) automatically [3,10,27,28]. Knuth
and Bendix [16] showed that confluence of terminating TRSs is decidable by
testing joinability of critical pairs, which are induced by overlaps. In the case of
non-termination, several powerful techniques have been developed for proving
confluence of left-linear systems [10,23,24]. Still, proving confluence of both non-
left-linear and non-terminating TRSs remains challenging.

Results that tackle this setting can be roughly classified into three categories:
First, by generalizing the notion of overlaps, one can formulate direct criteria
that guarantee confluence [8,9]. The second approach is to decompose a TRS into
smaller ones, show confluence of each of them by existing criteria, and formulate
modularity conditions to ensure that the union remains confluent [1,19,22]. The
third approach is to generalize Knuth and Bendix’ confluence criterion by re-
laxing termination requirements to relative termination. A famous result here is
Jouannaud and Kirchner’s criterion for the Church-Rosser modulo property [13]
based on extended critical pairs. Geser [6] analyzed their proof to derive conflu-
ence criteria based only on syntactical critical pairs.

We present a new confluence criterion that also relies on relative termination,
and can be applied for non-left-linear TRSs. The criterion requires to check
joinability of extended critical pairs, but we show that under certain conditions,
joinability can be concluded from joinability of syntactical critical pairs. With it,
we are able to prove confluence of several non-terminating, non-left-linear TRSs
fully automatically, for which no known criteria exist.

� This work is supported by the Grant-in-Aids for Young Scientists (B) 22700009 and
Scientific Research (B) 23300005 of the Japan Society for the Promotion of Science.

N. Bjørner and A. Voronkov (Eds.): LPAR-18, LNCS 7180, pp. 258–273, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Confluence of Non-Left-Linear TRSs via Relative Termination 259

This paper is structured as follows: In Section 2 we recall notions from rewrit-
ing, unification, and the decreasing diagram technique, which will be used in
proofs later. Our main result is presented in Section 3. Since it requires join-
ability of uncomputable extended critical pairs, we explain in Section 4 how to
automate it, and then report on experiments in Section 5. In Section 6, we com-
pare our criterion with related works, and finally conclude with an outlook on
future work in Section 7.

2 Preliminaries

We assume familiarity with the basics of term rewriting ([4,21]).

Term Rewriting. Terms are inductively defined over a set F of fixed-arity func-
tion symbols, and a set V of variables. For given term t, the set of variables oc-
curring in t is denoted by Var(t). The set of (variable, function) positions in t is
denoted by Pos(t) (PosV(t),PosF (t)). Here positions are expressed by sequences
on natural numbers, and the root position ε is the empty sequence. Given posi-
tions p, q, and o, we write p\q for o if p = qo. We write� for the proper superterm
relation. The domain Dom(σ) of a substitution σ is the set {x ∈ V | x �= xσ}.
A rewrite rule  → r is a pair (, r) of terms with Var(r) ⊆ Var() and  �∈ V .
A TRS is a collection of rewrite rules. A rewrite rule is left-linear if no variable
occurs more than once in . Likewise, a TRS is left-linear, if all of its rules are.
An extended rewrite rule is a pair (, r) of terms with  �∈ V , and an extended
TRS (eTRS ) is a set of extended rewrite rules. A rewrite step of R at position
p is denoted by

p−→R. We write ↓R for the join relation →∗
R · ∗

R←. We write
→1/→2 for →∗

2 · →1 · →∗
2, and →R/S for →R/→S . R is relatively terminating

over a TRS S or R/S is terminating, if →R/S is so.

Unification. We briefly recapitulate some notions from unification theory. An
equality s ≈ t is the ordered pair (s, t) of terms. Let E and S be sets of equalities,
and X the set of all variables in E . Given a substitution σ, we write Eσ for
{sσ ≈ tσ|s ≈ t ∈ E}. An S-unifier of E is a substitution σ such that Eσ ⊆ ↔∗

S .
A substitution σ is more general than a substitution σ′ on X (σ �X

S σ′), if there
exists a substitution τ such that xσ′ ↔∗

S xστ for all x ∈ X . Let U be a set
of S-unifiers of E . We say that U is complete if for every S-unifier of E there
is a more general element in U . If in addition all elements in U are minimal
with respect to �X

S , we call U minimal complete. A substitution σ is an S-most
general unifier (S-mgu) of E , if {σ} is a minimal complete set of S-unifiers of E .
In the special case of S = ∅, we simply speak of (syntactic) unification, unifiers
and mgu’s. A set of equalities E = {x1 ≈ t1, . . . , xn ≈ tn} is in solved form, if
xi are pairwise distinct variables, and no xi occurs in ti. For E in solved form,

we write
−→E for the induced substitution {x1 �→ t1, . . . , xn �→ tn}. Note that in

general, S-unifiability does not ensure presence of an S-mgu, except for S = ∅.



260 D. Klein and N. Hirokawa

Critical Pairs. Conditions for confluence are often based on the notion of over-
laps and critical pairs. Let R1,R2,S be eTRSs. An S-overlap (1 → r1, p, 2 →
r2)σ of R1 on R2 consists of a variant 1 → r1 of a rule in R1 and 2 → r2 of a
rule inR2, a position p ∈ PosF (2) and a substitution σ, such that 1σ ↔∗

S 2|pσ.
If p = ε, then 1 → r1 and 2 → r2 may not be variants of each other. The pair
(2σ[r1σ]p, r2σ) induced from the overlap is an S-extended critical pair (or simply
S-critical pair) of 1 → r1 and 2 → r2 at p, written 2σ[r1σ]p R1←S ∝→R2 r2σ.
We write R1←S∞→R2 for R1←S ∝→R2 ∪ R2←S ∝→R1 . We remark that our
definition of (S-)critical pairs includes pairs originating from non-minimal uni-
fiers, which are usually excluded from the definition to guarantee finiteness of
critical pairs.

Let REN(t) denote a linear term resulting from replacing in t each variable

occurrence by a fresh variable. We write R̂ for the eTRS {REN() → r |  →
r ∈ R}. A TRS S is strongly non-overlapping on R if Ŝ has no overlaps on

R̂. We write SNO(R,S) if both S is strongly non-overlapping on R, and R
is strongly non-overlapping on S. Left-linear TRSs without critical pairs are
called orthogonal. Orthogonal TRSs are confluent. Moreover, Knuth and Bendix’
criterion [16] states that R←∅ ∝→R ⊆ ↓R implies confluence of a terminating
TRS R.

Decreasing Diagrams. Van Oostrom showed a powerful confluence criterion for
abstract rewrite systems (ARSs), called the decreasing diagram technique [25].
Let A = (A, 〈→α〉α∈I) be an ARS and > a proper order on I. For every α ∈ I

we write
∨−→α for {→β| β ∈ I and β < α}, and write

∨−→∗
α for (

∨−→α)
∗. The union

of
∨−→α and α

∨←− is denoted by ←−∨−→α. For α, β ∈ I, the union of
∨−→α and

∨−→β is

written as
∨−→αβ . Two labels α and β are decreasing with respect to > if

α← · →β ⊆ ∨←→∗
α· →=

β · ←−
∨−→∗

αβ · =α← · ∗
β←−

∨−→

An ARS A = (A, 〈→α〉α∈I) is decreasing if there exists a well founded order >
such that all two labels in I are decreasing with respect to >.

Theorem 1 ([25]). A decreasing ARS is confluent. ��

3 Confluence Criterion

First we state our main theorem, which is a proper generalization (when S �= ∅)
of Knuth and Bendix’ confluence criterion.

Theorem 2. Suppose that S is confluent, R/S is terminating, and SNO(R,S).
The union R∪ S of the TRSs is confluent if and only if R←S ∝→R ⊆ ↓R∪S .

In the rest of this section we first prove our main theorem, and afterwards give
examples of its application. Let R and S be TRSs. We introduce an intermedi-
ate relation �, such that→R∪S ⊆ � ⊆ →∗

R∪S . Confluence of this intermediate



Confluence of Non-Left-Linear TRSs via Relative Termination 261

relation readily implies confluence of R ∪ S. The relation � is defined as the
union of →RS and →∗

S , where RS is the TRS

{′σ → rτ | ′ρ→ r ∈ R and σ →∗
S ρτ for some substitution ρ on V }

In the above set σ →∗
S τ means that xσ →∗

S xτ for all variables x. It is important
to note that in the definition linearity of ′ can be assumed without loss of
generality, and that the inclusions →R ⊆ →RS ⊆ →∗

S · →R hold.
We show confluence of � by the decreasing diagram technique with the pre-

decessor labeling [25]: We write b �a c if a �
∗ b � c. Labels are compared with

respect to→+
R/S , denoted by >. Since termination of R/S is presupposed in the

theorem, the relation > forms a well-founded order. The next lemma states a
property of rewriting in substitutions.

Lemma 3. If tσ
p−→R u and p �∈ PosF (t) then u→∗

R tτ for some τ with σ →=
R τ .

Proof. Suppose tσ
p−→R u and p �∈ PosF (t). Then there exists a variable position

q ∈ PosV(t) with q � p and u = (tσ)[u|q ]q. Let Q be the set of all variable
occurrences of t|q in t. Since u|q′ →R u|q holds for all q′ ∈ Q \ {q}, we have
u →R (tσ)[u|q]q′∈Q\{q}. The latter term is identical to (tσ)[u|q]q′∈Q. We define
the substitution τ as follows:

τ(x) =

{
u|q if x = t|q
xσ otherwise

One can verify σ →=
R τ and (tσ)[u|q]q′∈Q = tτ . Hence u→∗

R tτ . ��
We analyze peaks of the form � · �. According to the definition of �, they
fall into the three cases: (a) ∗

S← · →∗
S , (b) RS← · →∗

S , and (c) RS← · →RS . For
case (a) we can apply confluence of S to show decreasingness of the peak. The
remaining cases are more complicated. We start with a localized version of (b).
In the next Lemmata 4, 6, and 7 we assume SNO(R,S) and confluence of S.
Lemma 4. If t RS← s→S u then t→∗

R∪S · ∗
RS
← u.

Proof. We perform induction on s. Suppose t RS
p←− s

q−→S u. By the definition
of RS we may assume 1ρ → r1 ∈ R for some linear term 1 and ρ : V → V ,
s|p = 1σ, t|p = r1τ , and σ →∗

S ρτ , as well as 2 → r2 ∈ S, s|q = 2μ, and
u|q = r2μ. Due to SNO(R,S), neither p\q ∈ PosF(2) nor q\p ∈ PosF(1)
holds. We distinguish several cases concerning the relation of p and q.

– Suppose p = ε. Then there is a variable position q1 of x1 in 1 with q1 � q.
Since x1ρτ

∗
S← x1σ →S u|q1 holds, we have x1ρτ →∗

S v ∗
S← u|q1 for some v

by confluence of S. We define the substitutions μ1 and ν as follows:

μ1(x) =

{
u|q1 if x = x1

xσ otherwise
ν(x) =

{
v if x = x1ρ

xτ otherwise

We have τ →∗
S ν, and also u = 1μ1 by linearity of 1. Moreover, μ1 →∗

S ρν
because xμ1 →∗

S v = x1ρν = xρν if x = x1, and xμ = xσ →∗
S xν otherwise.

Therefore, we obtain t = r1τ →∗
S r1ν RS← 1μ1 = u.



262 D. Klein and N. Hirokawa

– Suppose q = ε. We may presume Var(1)∩Var(2) = ∅, and thus σ = μ can
be assumed. Since 2σ →RS t holds, by Lemma 3 we obtain t →∗

RS
2ν for

some ν with σ →=
RS

ν. Thus, t→∗
RS

2ν →S r2ν
∗

RS
← r2σ = r2μ = u.

– If p = ip′ and q = jq′ for some i, j ∈ N with i �= j, one can easily verify
t

q−→S · RS
p←− u.

– Otherwise, p = ip′ and q = iq′ for some i ∈ N. Since t|i RS← s|i →S
u|i holds, the induction hypothesis yields t|i →∗

R∪S · ∗
RS
← u|i. Therefore

t→∗
R∪S · ∗

RS
← u. ��

In order to handle peaks of shape RS← · →∗
S we show an auxiliary lemma for

ARSs. In the next lemma → stands for →1 ∪ →2 and > for (→1/→2)
+, and we

write b→a c if a→∗ b→ c. We will freely use the next two facts: (1) for all a, b, c
with a > b, we have that b ←−∨−→∗

a · →∗ c implies b ←−∨−→∗
a c, and (2) b →=

1 ·
∨−→∗

a c
whenever a→∗ b→∗

1 c.

Lemma 5. Let 1← · →2 ⊆ →∗ · ∗1←. If b 1← a→∗
2 c then b←−∨−→∗

a · =1← c.

Proof. Let b 1← a →n
2 c. We show the claim by induction on n. If n = 0 then

trivially the claim holds. Otherwise, a →n−1
2 d →2 c for some d. The induction

hypothesis yields b←−∨−→∗
a e

=
1← d for some e. We distinguish two cases.

– If d = e then b←−∨−→∗
a e = d→1 c. Thus b←−∨−→∗

a c by (1).
– Suppose d →1 e. Because we have e 1← d →2 c, by the assumption e →∗

f ∗
1← c for some f . Since a→∗

2 d→1 e→∗ f holds, we obtain e
∨−→∗

a f by (2).
Moreover, c→∗

1 f implies c→=
1 ·

∨−→∗
a f by (2). Hence, b←−∨−→∗

a · =1← c. ��

Lemma 6. If t RS← s→∗
S u then t

∨
��

∗
s · =

RS
← u.

Proof. By Lemma 4 we have that t RS← s→S u implies t→∗
R∪S · ∗

RS
← u. The

claim follows by instantiating Lemma 5 with →1 as →RS and →2 as →S . ��

Lastly, peaks of case (c), of shape RS← · →RS , are considered.

Lemma 7. If t RS← s→RS u then t
∨

��
∗
s u or t→∗

S · R←S∞→R · ∗
S← u.

Proof. We perform induction on s. Suppose t RS
p←− s

q−→RS u. By the definition
of RS we can assume 1ρ1 → r1, 2ρ2 → r2 ∈ R for some linear terms 1, 2 and
ρ1, ρ2 : V → V , and

s|p = 1σ1 t|p = r1τ1 σ1 →∗
S ρ1τ1

s|q = 2σ2 u|q = r2τ2 σ2 →∗
S ρ2τ2

Except for symmetric cases, the relation of p and q falls into the next four cases:

– Suppose q = ε, and p ∈ PosF (2). We have 1ρ1τ1
∗
S← s →∗

S 2|pρ2τ2.
Without loss of generality Var(1ρ1) ∩ Var(2ρ2) = ∅, and thus we may
assume τ = τ1 ∪ τ2 is a well-defined substitution. The substitution τ is an
S-unifier of 1ρ1 and 2ρ2|p. Because xσ2 →∗

S xρ2τ holds for all x ∈ Var(2),

t = (2σ2)[r1τ ]p →∗
S (2ρ2τ)[r1τ ]p R←S ∝→R r2τ = u



Confluence of Non-Left-Linear TRSs via Relative Termination 263

s

t uv

s1 s2

s2 s1

s

t uv

s1 s2

∨
s1

∗ =
s1

s

t u

s1 s2

∨
s1

∗

(a) ∗
S← · →∗

S (b) RS← · →∗
S (c) RS← · →RS

Fig. 1. Decreasingness of �

– Suppose q = ε, and p �∈ PosF (2) and p2 is a variable occurrence of x2 in 2
with p2 � p. Since t|p2 RS← x2σ2 →∗

S x2ρ2τ2, Lemma 6 yields t|p2

∨
��

∗
s|p2

v =
RS
← x2ρ2τ2 for some v. Because s = 2σ2, t|p2

∨
��

∗
s|p2

v, and σ2 →∗
S ρ2τ2

hold, by closure under contexts of rewrite relations and > we obtain

t = (2σ2)[t|p2 ]p2

∨
��

∗
s (2σ2)[v]p2 →∗

S (2ρ2τ2)[v]p2

Thus, t
∨

��
∗
s (2ρ2τ2)[v]p2 . Since x2ρ2τ2 →=

RS
v holds and 2 is linear,

2ρ2τ2 →=
RS (2ρ2τ2)[v]p2

is deduced. Here we distinguish two cases. If 2ρ2τ2 = (2ρ2τ2)[v]p2 , we obtain

t
∨

��
∗
s 2ρ2τ2 →R u

Otherwise, 2ρ2τ2 →RS (2ρ2τ2)[v]p2 . Since by Lemma 3 there exists ν with
τ2 →=

RS
ν such that (2ρ2τ2)[v]p2 →∗

RS
2ρ2ν, finally we obtain

t
∨

��

∗
s (2ρ2τ2)[v]p2 →∗

RS 2ρ2ν →R r2ν
∗

RS← r2τ2 = u

Because s > t and s > u hold, in both cases t
∨

��
∗
s u is concluded.

– If p = ip′ and q = jq′ for some i, j ∈ N with i �= j, one can easily verify
t

q−→RS · RS
p←− u, which implies t←−∨−→∗

s u.
– Otherwise, p = ip′ and q = iq′ for some i ∈ N. Since t|i RS← s|i →RS u|i

holds, by induction hypothesis t|i ←−∨−→∗
s|i u|i or t|i →

∗
S · R←S∞→R · ∗

S← u|i
is deduced. Thus, t←−∨−→∗

s u or t→∗
S · R←S∞→R · ∗

S← u is concluded. ��

Now we are ready to prove the main theorem.

Proof (of Theorem 2). Suppose that S is confluent, R/S is terminating, and
SNO(R,S). We show that R∪ S is confluent if and only if R←S ∝→R ⊆ ↓R∪S .
Since the “only if”-direction is trivial, we only show the “if”-direction. Assume

R←S ∝→R ⊆ ↓R∪S . Because confluence of � implies confluence ofR∪S, accord-
ing to Theorem 1, it is enough to show decreasingness of �. Let t s1� s �s2 u.
As mentioned, following the definition of �, we distinguish three cases.



264 D. Klein and N. Hirokawa

(a) If t ∗
S← s→∗

S u then t→∗
S v

∗
S← u for some v by confluence of S.

(b) If t RS
← s→∗

S u then t
∨

��
∗
s v

=
RS
← u for some v by Lemma 6.

(c) If t RS
← s →RS u then t

∨
��

∗
s u for some v by Lemma 7 and joinability of

S-critical pairs.
In all cases decreasingness is established, as seen in Figure 1. ��

The next examples illustrate Theorem 2. Note that no existing powerful tool
can prove their confluence automatically (see Section 5).

Example 8. Consider the TRS

1: f(x, x)→ (x+ x) + x 2: x+ y → y + x

Take R = {1} and S = {2}. One can easily verify SNO(R,S). Termination of
R/S can be established using a termination tool such as TTT2 v1.06 [17]1, and
confluence of S follows from orthogonality. Because of R←S ∝→R = ∅ ⊆ ↓R∪S ,
we conclude confluence by Theorem 2.

Example 9. Consider the TRS

1: f(x, x)→ s(s(x)) 2 : ∞→ s(∞)

TakeR = {1} and S = {2}. As in Example 8, one can easily verify the conditions
of Theorem 2, including R←S ∝→R = ∅ ⊆ ↓R∪S . Hence the TRS is confluent.

Example 10. Consider the TRS

1: eq(s(n), x : xs, x : ys)→ eq(n, xs, ys) 3 : nats→ 0 : inc(nats)

2 : eq(n, xs, xs)→ T 4: inc(x : xs)→ s(x) : inc(xs)

Take R = {1, 2} and S = {3, 4}. Again, SNO(R,S), termination of R/S and
confluence of S is established. Moreover, one can show

R←S ∝→R = {(eq(s, t, u),T) | s, t, u are terms and t↔∗
S u}

and thus the set is included in ↓R∪S because of confluence of S. Hence by using
Theorem 2 we conclude that R∪ S is confluent.

We conclude this section by mentioning that all conditions of Theorem 2
are essential. One cannot drop SNO(R,S) nor termination of R/S, and even
replacing joinability of S-critical pairs by joinability of syntactical critical pairs
makes the theorem unsound.

Example 11. Consider Huet’s example [11]

1 : f(x, x)→ a 2: f(x, g(x))→ b 3: c→ g(c)

which is known to be non-confluent. If one takes R = {1} and S = {2, 3} then
R/S is terminating, S is confluent, and R←S ∝→R = ∅ ⊆ ↓R∪S . If one takes
R = {3} and S = {1, 2} then, SNO(R,S), S is confluent, and there are no
S-critical pairs of R. Furthermore, if one takes R = {1, 2} and S = {3} then
SNO(R,S), R/S is terminating, S is confluent, and there are no syntactical
critical pairs of R, although S-critical pairs are present.

1 http://colo6-c703.uibk.ac.at/ttt2/

http://colo6-c703.uibk.ac.at/ttt2/


Confluence of Non-Left-Linear TRSs via Relative Termination 265

4 Joinability of S-Critical Pairs

The biggest challenge in applying Theorem 2 is to check R←S ∝→R ⊆ ↓R∪S
automatically. The standard approach is to compute a minimal complete set of
S-unifiers for 1 and 2|p for each combination of rules 1 → r1, 2 → r2 and a
position p ∈ PosF (2). Then, joinability of its induced critical pairs ensures join-
ability for all S-unifiers. However, depending on S, the computation of minimal
complete sets varies, and worse, minimal complete sets may not even exist for
S-unifiable terms. In this section we give sufficient conditions for the joinabil-
ity and non-joinability of S-critical pairs without performing specific equational
unification algorithms.

For the first we show that a most general unifier of strongly S-stable terms
is always a most general S-unifier. As the next lemma shows, this allows us
to compute S-critical pairs by means of syntactic unification. Here a term t
is strongly S-stable if for every position p ∈ PosF (t) there are no term u and

substitution σ such that t|pσ →∗
S ·

ε−→S u. Note that tσ is strongly S-stable if t
and xσ are strongly S-stable for all variables x.

Lemma 12. If SNO(R,S) then  is strongly S-stable for all → r ∈ R. ��

In order to show the claim on mgu’s, we recall the standard inference rules for
syntactic unification from [4]. These rules are defined over sets of equalities on
terms.

Eliminate

{x ≈ t} - E
{x ≈ t} ∪ E{x �→ t} if x �∈ Var(t)

Orient

{t ≈ x} - E
{x ≈ t} ∪ E if t �∈ V

Delete

{t ≈ t} - E
E

Decompose

{f(s1, . . . , sn) ≈ f(t1, . . . , tn)} - E
{s1 ≈ t1, . . . , sn ≈ tn} ∪ E

We write =⇒ for a derivation by the inferences. The following lemma states that
a most general unifier can be computed by a sequence of derivations.

Lemma 13 ([4]). If s and t are unifiable, there exists E in solved form such

that {s ≈ t} =⇒∗ E and
−→E is an mgu of s and t. ��

The next lemma shows that the inferences of syntactic unification preserve strong
S-stability and S-unifiability. We say that a set E of equalities is strongly S-stable
if s and t are strongly S-stable for all s ≈ t ∈ E .

Lemma 14. Let S be a confluent TRS. If E1 is strongly S-stable, E1σ ⊆ ↓S,
and E1 =⇒ E2, then E2σ ⊆ ↓S and E2 is strongly S-stable.



266 D. Klein and N. Hirokawa

Proof. Suppose E1 is strongly S-stable, E1σ ⊆ ↓S , and E1 =⇒ E2. We distinguish
the inference of E1 =⇒ E2. Because the cases of Delete and Orient are trivial,
below we only consider the other two cases:

– Eliminate: Suppose E1 = {x ≈ t} - E ′ and E2 = {x ≈ t} ∪ E ′μ, where
μ = {x �→ t} and x �∈ Var(t). We claim μσ ↔∗

S σ. Actually it follows from
the assumption xσ ↓S tσ. We now prove E2σ ⊆ ↓S . It is sufficient to show
uμσ ↓S vμσ for an arbitrary u ≈ v ∈ E ′. Because uσ ↓S vσ by assumption,
the claim yields uμσ ↔∗

S vμσ. Therefore uμσ ↓S vμσ is concluded from
confluence of S. To show strong S-stability of E2, fix u ≈ v ∈ E ′. Since u, v,
and xμ are strongly S-stable, so are uμ and vμ.

– Decompose: Suppose E1 = {s ≈ t} - E ′ and E2 = {s1 ≈ t1, . . . , sn ≈
tn} ∪ E ′ with s = f(s1, . . . , sn) and t = f(t1, . . . , tn). Since E is strongly
S-stable, and thus s and t are, si and ti are also strongly S-stable for all
1 � i � n. Furthermore, due to strong S-stability of s and t, sσ ↓S tσ implies
siσ ↓S tiσ for all 1 � i � n. Therefore, the claim holds. ��

We arrive at the aforementioned sufficient condition.

Theorem 15. Let S be a confluent TRS. An mgu of strongly S-stable terms s
and t is an S-mgu of s and t.

Proof. Let μ be an arbitrary mgu of strongly S-stable terms s and t. Since μ is
trivially an S-unifier of s and t, it is enough to show that μ is more general than
an arbitrary S-unifier σ of s and t. By using Lemma 13 there is an E in solved

form such that {s ≈ t} =⇒∗ E and
−→E is an mgu of s and t. Because sσ ↔∗

S tσ
and S is confluent, we have {s ≈ t}σ ⊆ ↓S , and thus Eσ ⊆ ↓S is obtained by
induction on the length of =⇒∗ using Lemma 14. Since E is in solved form,

xσ ↓S x
−→E σ holds for all x ∈ Dom(

−→E ). This means σ ↔∗
S
−→E σ. Since μ is an

mgu, there is a substitution ρ with
−→E = μρ. Thus σ ↔∗

S μρσ. Hence μ is more
general than σ. ��

When automating Theorem 2, confluence of S and SNO(R,S) can be assumed.
Therefore, according to Theorem 15 and Lemma 12, a syntactical overlap by
an mgu μ is also an S-overlap by S-mgu μ. Thus joinability of its syntactical
critical pairs implies joinability of S-critical pairs induced by any S-unifier.

Example 16 (continued from Example 10). We consider again the example with
R = {1, 2} and S = {3, 4}. Take the first and second rules renamed:

1 : eq(s(n), x : xs, x : ys)→ eq(n, xs , ys) 2 : eq(m, zs , zs)→ T

We know that there is an overlap between 1 and 2 at root position with the mgu
μ = {m �→ s(n), zs �→ x : xs, ys �→ xs}. Elsewhere, even S-overlaps cannot occur.
The induced critical pair (eq(n, xs, xs),T) is trivially joinable by the second rule.
Hence R←S ∝→R ⊆ ↓R∪S holds.



Confluence of Non-Left-Linear TRSs via Relative Termination 267

Confluence of S cannot be dropped in Theorem 15.

Example 17. Consider the TRS S

g(x, y)→ f(x, x) g(x, y)→ f(x, y)

The terms f(x1, x1) and f(x, y) are both strongly S-stable, and the substitution
μ = {x �→ x1, y �→ x1} is a most general unifier. However, μ is not an S-mgu,
because μ is not more general than the other S-unifier {x1 �→ x}.

Unjoinability of S-critical pairs can be tested similarly to checking non-confluence
of a TRS with the function TCAP ([27]).

Definition 18 ([7]). Let t be a term, and R a TRS. We define TCAPR(t)
inductively as a fresh variable, when t is a variable or when t = f(t1, . . . , tn)
and  and u unify for some (renamed) rule  → r ∈ R, and u, otherwise. Here
u stands for f(TCAPR(t1), . . . ,TCAPR(tn)).

Lemma 19. Let 1 → r1, 2 → r2 ∈ R and p ∈ PosF(2). If 1σ ↔∗
R 2|pσ,

and TCAPR(r2) and TCAPR(2[r1]p) do not unify, R is not confluent. ��

Proof. Using the fact that if sσ ↓R tτ then TCAPR(s) and TCAPR(t) must
unify (see [27]). ��

Example 20 (continued from Example 11). Recall R = {1, 2} and S = {3}:

1 : f(x, x)→ a 2: f(y, g(y))→ b 3: c→ g(c)

where variables are renamed in rule 2. We denote i-th rule by i → ri. While
1 and 2|ε are (R ∪ S)-unifiable with {x, y �→ c}, TCAPR∪S(2[r1]ε) = a and
TCAPR∪S(r2) = b do not unify. Thus, by Lemma 19, R∪ S is not confluent.

In automation we need to test S-unifiability of 1 and 2|p. This can be auto-
mated by first-order theorem provers (for unit equational problems, so-called
UEQ) and indeed non-confluence of the above TRS can be proved automati-
cally, see Section 5. Note that in contrast to [27] this approach only requires
S-unifiability but not S-unifiers.

As a final remark, from the absence of a unifier we may not conclude
non-existence of S-critical pairs, as illustrated in Example 11.

5 Experiments

In order to assess feasibility of our methods, we implemented Theorem 2 together
with Theorem 15 for confluence, and Lemma 19 for non-confluence. In the next
subsections we mention details of our implementation and report on experimental
data.



268 D. Klein and N. Hirokawa

5.1 Implementation

In order to automate Theorem 2 we employed TTT2 v1.06 [17] for checking rel-
ative termination R/S and an extended version of Maxcomp [14] for testing
S-unifiability, using ordered completion. To check confluence of S, we used the
existing three state-of-the-art confluence provers: ACP v0.20 [3]2, CSI v0.1 [27]3,
and Saigawa v1.2 [10]4. Since termination of R∪ S cannot be assumed, we only
test joinability of S-critical pairs by at most four step rewriting for each term.

We give a brief overview of our procedure. Given a TRS P , we output either
YES (P is confluent), NO (P is not confluent), or MAYBE (confluence of P is neither
proven nor disproven). We enumerate all possible partitions P = R-S, and then
for each (R,S), we test whether SNO(R,S), termination of R/S, and confluence
of S holds. If one of these conditions does not hold, we continue with the next
partition; if none is left, we return MAYBE. Otherwise, to check the last remaining
condition of Theorem 2, namely R←S ∝→R ⊆ ↓R∪S , we proceed in the following
way: For all tuples (1 → r1, p, 2 → r2) where 1 → r1 and 2 → r2 are rules
from R and p ∈ PosF(2), we test in the following order:

1. If REN(1) and REN(2|p) are not syntactically unifiable, then no S-overlap
exists, and we continue with the next tuple. Otherwise,

2. if 1 and 2|p are syntactically unifiable with σ, the current tuple forms an
S-overlap, so we test joinability of the induced critical pair.
(a) If joinability holds, we continue with the next tuple.
(b) If joinability cannot be established, we test whether TCAPR∪S(r2σ) and

TCAPR∪S(2σ[r1σ]p) syntactically unify. If they are not unifiable, return
NO. Otherwise, return MAYBE

3. if 1 and 2|p are not syntactically unifiable, we check S |= 1 ≈ 2|p by a
theorem prover:
(a) If unsatisfiability of the formula is detected, no S-overlap exists, and we

continue.
(b) If satisfiability is detected, we test syntactic unifiability of TCAPR∪S(r2)

and TCAPR∪S(2[r1]p). If they are not unifiable, return NO. If they unify,
return MAYBE.

(c) Lastly, if the theorem prover does not provide a conclusive answer, return
MAYBE

If no tuple remains, we have established R←S ∝→R ⊆ ↓R∪S and return YES.
Correctness of the whole procedure can be established using Theorems 2, 15 and
Lemmata 12, 19.

5.2 Experimental Results

We tested the implementation on a collection of 32 TRSs, consisting of 29 non-left-
linear non-terminating TRSs in the Confluence Problem Database (Cops Nos. 1–
116)5 and Examples 8, 9 and 10. Note that Example 11 is part of the 29 TRSs.

2 http://www.nue.riec.tohoku.ac.jp/tools/acp/
3 http://cl-informatik.uibk.ac.at/software/csi/
4 http://www.jaist.ac.jp/project/saigawa/
5 http://coco.nue.riec.tohoku.ac.jp/

http://www.nue.riec.tohoku.ac.jp/tools/acp/
http://cl-informatik.uibk.ac.at/software/csi/
http://www.jaist.ac.jp/project/saigawa/
http://coco.nue.riec.tohoku.ac.jp/


Confluence of Non-Left-Linear TRSs via Relative Termination 269

Table 1. Summary of experimental results (32 TRSs)

ACP ACP∗ CSI CSI∗ Saigawa Saigawa∗

YES 12 19 7 15 0 10
NO 3 4 3 3 0 2

MAYBE 17 9 17 9 32 20
timeout (60 sec) 0 0 5 5 0 0

The tests were single-threaded run on a system equipped with an Intel Core Duo
L7500 with 1.6 GHz and 2 GB of RAM using a timeout of 60 seconds.

The results are depicted in Table 1. 6 Here columns ACP, CSI and Saigawa
show results for running the respective tools, and ACP∗, CSI∗ and Saigawa∗

show results when using the respective tool to show confluence of the S-part in
Theorem 2.

It should be noted, that the criteria implemented by Saigawa apply only to
left-linear systems, whereas CSI is able to show confluence of non-left-linear sys-
tems by order-sorted decomposition [5], and the implementation of ACP includes
criteria based on layer preserving [19] and persistency decompositions [1], and
the criterion by Gomi et al. [9].

For overall results, there are twelve TRSs for which confluence can be shown by
ACP, CSI and Saigawa combined, in fact however all twelve can be shown by ACP
alone. Extending with Theorem 2, there are 19 TRSs, for which confluence can
be shown by ACP∗, CSI∗ or Saigawa∗ combined. Similar to the standalone-case,
ACP∗ subsumes both other combinations. As for Example 8, 9 and 10, neither
CSI, ACP nor Saigawa can show confluence, whereas all CSI∗, ACP∗ and Saigawa∗

succeed. Out of the nine TRSs that ACP∗ missed, four TRSs (Cops Nos. 76, 77,
78, 109) contain AC rules, for which most likely the criterion in [13] applies if
suitable equational unification algorithms were implemented (see Section 6), and
five TRSs (Nos. 16, 24, 26, 27, 47) are variants of Huet’s example (Example 11)
or Klop’s example [15]: {f(x, x)→ a, g(x)→ f(x, g(x)), c→ g(c)}.

6 Related Work

Among others, we compare our criterion with three well-known criteria capable
of proving confluence of non-left-linear and non-terminating TRSs. Note that for
the second criterion below we use reversibility [2] for comparison, because the
original criterion requires equational systems for S rather than rewrite systems.
We say that a TRS S is reversible if S← ⊆→∗

S .

– Criteria by Non-E-Overlappingness. The criterion by Gomi et al. [8],
later extended in [9], is that a root-E-overlapping TRS, that is also strongly

6 Detailed results are available at http://www.jaist.ac.jp/project/saigawa/

http://www.jaist.ac.jp/project/saigawa/


270 D. Klein and N. Hirokawa

weight-preserving or strongly depth-preserving, is confluent. Here E-overlaps
are a generalization of overlaps, and strong non-overlappingness plays a ma-
jor role in deriving sufficient conditions to decide root-E-overlappingness.7

A TRS is strongly depth preserving, if for any rewrite rule and any variable
appearing in both sides, the minimal depth of the variable occurrences in the
left-hand side is greater than or equal to the maximal depth of the right hand
side’s occurrences. Instead of comparing the depth of the variable directly,
one can also assign weights to function symbols and compare the weight of
the variable occurrence, where the weight is the sum of the function sym-
bols from root to its occurrence. For details of the definitions we refer to [9].
Consider the following TRS:

f(x, x)→ a c→ g(c) g(x)→ f(x, x)

Confluence of this TRS can be established, since it is depth-preserving and
root-E-overlapping. However Theorem 2 cannot be applied, since the TRS
cannot be partitioned into a non-empty R and S, such that R/S is termi-
nating — except for R = ∅. On the other hand, weight-preservation and
depth-preservation impose strong syntactic restrictions on the variable posi-
tions. Consider for example the TRS

1: g(x, x)→ f(x) 2 : f(x)→ f(f(x))

By taking R = {1} and S = {2}, Theorem 2 can be applied. However the
second rule violates both strong depth and strong weight-preservation.

– Criteria by Extended Critical Pairs. In [13], based on the preliminary
work in [12], Jouannaud and Kirchner show that the union of a TRS R and
a reversible TRS S is confluent if R/S and �/↔S are terminating and

R←S ∝→R∪S∪S−1 ⊆ →∗
R,S · ↔∗

S · ∗
R,S←

Here s →R,S t if there exist a rule  → r ∈ R, a position p ∈ Pos(s), and a
substitution σ, such that s|p ↔∗

S σ and t = s[rσ]p. Note that S has a serious
restriction: The two termination requirements prohibit application when S
is erasing or collapsing, or even when C[t] ↔∗

S t. For instance, Examples 9
and 10 cannot be handled due to this restriction. On the other hand it is
applicable for mutually overlapping TRSs R and S, for example:

1 : x+ x→ x 2: x+ y → y + x 3: (x+ y) + z → x+ (y + z)

By takingR = {1} and S = {2, 3}, one can easily show confluence ofR∪S by
using their criterion. However, Theorem 2 cannot be applied because R and
S overlap on each other. This criterion forms a foundation of AC-completion.

7 S-overlaps are sometime called E-overlaps but should not be confused with the E-
overlaps defined by Gomi et al. [8], originally introduced by Ogawa [18].



Confluence of Non-Left-Linear TRSs via Relative Termination 271

– Criteria by Relative Termination. Geser [6] introduced several pioneer-
ing applications of relative termination. A result of particular interest in this
context is the following confluence criterion: A TRS R∪ S is confluent if R
is left-linear, S is confluent, and the following two inclusions hold:

S←∅ ∝→R ⊆ (→∗
S · ∗

R∪S←) ∪ (→R · ↓R∪S) R←∅ ∝→R ⊆ ↓R∪S

In contrast to Theorem 2, overlaps between rules in R and S pose no prob-
lem. The following example, due to Geser, shows the power of his approach
beyond pure left-linear systems:

1 : c(s(x), s(y))→ c(x, y) 2 : c(x, x)→ f(c(x, x))

Then confluence can be established by taking R = {1} and S = {2}, whereas
Theorem 2 is not applicable. 8 The reason for being able to handle overlaps
between R and S is, that with the restriction of left-linearity of the R-
part, joinability of syntactical critical pairs suffices to establish confluence.
On the other hand, the requirement of left-linearity prevents application for
Examples 8, 9 and 10, except for choosing R = ∅.

7 Conclusion

In this paper we showed a generalization of Knuth and Bendix’ confluence cri-
terion, which can deal with non-left-linear, non-terminating TRSs. Moreover
we presented its automation technique. As seen in Section 6, conditions re-
quired in our criterion are related to the results by Jouannaud and Kirch-
ner [13] and Geser [6]. Any of them exploits relative termination to overcome
non-termination, however still relative termination poses a strict restriction. We
anticipate that use of critical pair steps [10] relaxes this restriction.

Acknowledgements. We thank the anonymous referees for their valuable
comments.

References

1. Aoto, T., Toyama, Y.: Persistency of confluence. Journal of Universal Computer
Science 3(11), 1134–1147 (1997)

2. Aoto, T., Toyama, Y.: A Reduction-Preserving Completion for Proving Confluence
of Non-Terminating Term Rewriting Systems. In: Proc. 22nd RTA. LIPIcs, vol. 10,
pp. 91–106 (2011)

3. Aoto, T., Yoshida, J., Toyama, Y.: Proving Confluence of Term Rewriting Sys-
tems Automatically. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 93–102.
Springer, Heidelberg (2009)

4. Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge University Press
(1998)

8 All current confluence tools fail to show confluence of the one rule TRS of rule 2.



272 D. Klein and N. Hirokawa

5. Felgenhauer, B., Zankl, H., Middeldorp, A.: Layer systems for proving confluence.
In: Proc. 31st FSTTCS. LIPIcs, vol. 13, pp. 288–299 (2011)

6. Geser, A.: Relative Termination. PhD thesis, Universität Passau, Available as tech-
nical report 91-03 (1990)

7. Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and Disproving Termination
of Higher-Order Functions. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI),
vol. 3717, pp. 216–231. Springer, Heidelberg (2005)

8. Gomi, H., Oyamaguchi, M., Ohta, Y.: On the Church-Rosser property of non-
E-overlapping and strongly depth-preserving term rewriting systems. Trans.
IPSJ 37(12), 2147–2160 (1996)

9. Gomi, H., Oyamaguchi, M., Ohta, Y.: On the Church-Rosser property of root-
E-overlapping and strongly depth-preserving term rewriting systems. Trans.
IPSJ 39(4), 992–1005 (1998)

10. Hirokawa, N., Middeldorp, A.: Decreasing diagrams and relative termination. Jour-
nal of Automated Reasoning 47, 481–501 (2011)

11. Huet, G.: Confluent reductions: Abstract properties and applications to term
rewriting systems: Abstract properties and applications to term rewriting systems.
Journal of the ACM 27, 797–821 (1980)

12. Jouannaud, J.P.: Confluent and Coherent Equational Term Rewriting Systems:
Application to Proofs in Abstract Data Types. In: Protasi, M., Ausiello, G. (eds.)
CAAP 1983. LNCS, vol. 159, pp. 269–283. Springer, Heidelberg (1983)

13. Jouannaud, J.P., Kirchner, H.: Completion of a set of rules modulo a set of equa-
tions. SIAM Journal on Computing 15(4), 1155–1194 (1986)

14. Klein, D., Hirokawa, N.: Maximal completion. In: Proc. 22nd RTA. LIPIcs, vol. 10,
pp. 71–80 (2011)

15. Klop, J.: Combinatory reduction systems. PhD thesis, Utrecht University (1980)
16. Knuth, D.E., Bendix, P.: Simple word problems in universal algebras. In: Compu-

tational Problems in Abstract Algebra, pp. 263–297 (1970)
17. Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean Termination Tool 2.

In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 295–304. Springer, Heidelberg
(2009)

18. Ogawa, M.: Chew’s Theorem Revisited -Uniquely Normalizing Property of Nonlin-
ear Term Rewriting Systems. In: Ibaraki, T., Iwama, K., Yamashita, M., Inagaki,
Y., Nishizeki, T. (eds.) ISAAC 1992. LNCS, vol. 650, pp. 309–318. Springer, Hei-
delberg (1992)

19. Ohlebusch, E.: Modular properties of composable term rewriting systems. Journal
of Symbolic Computation 20, 1–41 (1995)

20. Stump, A., Kimmell, G., Omar, R.E.H.: Type preservation as a confluence problem.
In: Proc. 22nd RTA. LIPIcs, vol. 10, pp. 345–360 (2011)

21. TeReSe: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Sci-
ence, vol. 55. Cambridge University Press (2003)

22. Toyama, Y.: On the Church-Rosser property for the direct sum of term rewriting
systems. Journal of the ACM 34(1), 128–143 (1987)

23. Toyama, Y.: Commutativity of term rewriting systems. In: Programming of Future
Generation Computers II, pp. 393–407. North-Holland (1988)



Confluence of Non-Left-Linear TRSs via Relative Termination 273

24. van Oostrom, V.: Developing developments. Theoretical Computer Science 175(1),
159–181 (1997)

25. van Oostrom, V.: Confluence by Decreasing Diagrams. In: Voronkov, A. (ed.) RTA
2008. LNCS, vol. 5117, pp. 306–320. Springer, Heidelberg (2008)

26. Yamamoto, A.: Completeness of Extending Unification Based on Basic Narrowing.
In: Fujisaki, T., Nakata, I., Tanaka, H. (eds.) Logic Programming 1988. LNCS,
vol. 383, pp. 1–10. Springer, Heidelberg (1989)

27. Zankl, H., Felgenhauer, B., Middeldorp, A.: CSI – A Confluence Tool. In: Bjørner,
N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 499–505.
Springer, Heidelberg (2011)

28. Zankl, H., Felgenhauer, B., Middeldorp, A.: Labelings for decreasing diagrams. In:
Proc. 22nd RTA. LIPIcs, pp. 377–392 (2011)



Regular Expressions for Data Words

Leonid Libkin and Domagoj Vrgoč

School of Informatics, University of Edinburgh

Abstract. In data words, each position carries not only a letter form a finite
alphabet, as the usual words do, but also a data value coming from an infi-
nite domain. There has been a renewed interest in them due to applications in
querying and reasoning about data models with complex structural properties,
notably XML, and more recently, graph databases. Logical formalisms designed
for querying such data often require concise and easily understandable presenta-
tions of regular languages over data words.

Our goal, therefore, is to define and study regular expressions for data words.
As the automaton model, we take register automata, which are a natural analog
of NFAs for data words. We first equip standard regular expressions with limited
memory, and show that they capture the class of data words defined by register
automata. The complexity of the main decision problems for these expressions
(nonemptiness, membership) also turns out to be the same as for register au-
tomata. We then look at a subclass of these regular expressions that can define
many properties of interest in applications of data words, and show that the main
decision problems can be solved efficiently for it.

1 Introduction

Data words are words that, in addition to a letter from a finite alphabet, have a data
value from an infinite domain associated with each position. For example,

(
a
1

)(
b
2

)(
b
1

)
is a data word over an alphabet Σ = {a, b} and N as the domain of values. It can be
viewed as the ordinary word abb in which the first and the third positions are equipped
with value 1, and the second position with value 2.

These were introduced in [13] which proposed a natural extension of finite au-
tomata for them, called register automata. Data words have become an active subject
of research lately due to their applications in XML, in particular in static analysis of
logic and automata-based XML specifications, and in query evaluation tasks. Indeed,
paths in XML trees should account not only for the labels (XML tags) but values of
attributes, which can come from an infinite domain, such as N. While logic and au-
tomata models are well-understood by now for the structural part of XML (i.e., trees)
[15,17,22], adding data values required a concentrated effort for finding good logics
and their associated automata [4,6,5,10,20,23]. Connections between logical and au-
tomata formalisms have been explored as well, usually with the focus on finding logics
with decidable satisfiability problem. A well-known result of [5] shows that FO2, the
two-variable fragment of first-order logic extended by equality test for data values, is
decidable over data words. Another account of this was given in [20], where various
data word automata models are compared to fragments of FO and MSO with regard

N. Bjørner and A. Voronkov (Eds.): LPAR-18, LNCS 7180, pp. 274–288, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Regular Expressions for Data Words 275

to their expressive power. Recently, the problem was studied in [3,8]; in particular it
was shown that the guarded fragment of MSO defines data word languages that are
recognized by non-deterministic register automata.

Data words appear in other areas as well, in particular verification, and querying
databases. In several applications, one would like to deal with concise and easy-to-
understand representations of languages of data words. These can be used, for example,
in extending languages for XML navigation that take into account data values. Another
possible example is in the field of verification, in particular from modeling infinite-state
systems with finite control [9,12]. Here having a concise representation of system prop-
erties is much preferred to long and unintuitive specifications given by e.g. automata.

The need for a good representation mechanism for data word languages is partic-
ularly apparent in the area of querying graph databases [1], a data model that is in-
creasingly common in applications including social networks, biology, Semantic Web,
and RDF. Many properties of interest in such databases are expressed by regular path
queries [18], asking for the existence of a path conforming to a given regular expres-
sion, or their extensions [7,2]. Typical queries are specified by the closure of atomic

formulae x
L→ y under ∧ and ∃; the atoms ask for the existence of a path whose la-

bel is in a regular language L between x and y [7]. Typically, such logical languages
have been studied without taking data values into account. Recently, however, logical
languages that extend regular conditions from words to data words appeared [16]; for
such languages we need a concise way of representing regular languages, which is most
commonly done by regular expressions (as automata tend to be rather cumbersome to
be used in a query language).

The most natural extension of the usual NFAs to data words is register automata, first
introduced in [13] and studied, for example, in [9,21]. These are in essence finite state
automata equipped with a set of registers that allow them to store data values and make
a decision about their next step based not only on the current state and the letter in the
current position, but also by comparing the current data value with the ones previously
stored in registers. They were originally introduced as a mechanism to reason about
words over an infinite alphabet (that is, without the finite part), but they easily extend
to describe data word languages. Note that a variety of other automata formalisms for
data words exist, for example, pebble automata [20,25], data automata [5], and class
automata [6]. In this paper we concentrate on languages specified by register automata,
since they are the most natural generalization of finite state automata to languages over
data words.

As mentioned earlier, if we think of a specification of a data word language, register
automata are not the most natural way of providing them: in fact, even over the usual
words, regular languages are easier to describe by regular expressions than by NFAs.
For example, in XML and graph database applications, specifying paths via regular
expressions is completely standard. In many XML specifications (e.g., XPath), data
value comparisons are fairly limited: for instance, one checks if two paths ends with
the same value. On the other hand, in graph databases, one often needs to specify a
path using both labels and data values that occur in it. For those purposes, we need
a language for describing regular languages of data words, i.e., languages accepted
by register automata. In [16] we started looking at such expressions, but in a context



276 L. Libkin and D. Vrgoč

slightly different from data words. Our goal now is to present a clean account of regular
expressions for data words that would:

1. capture the power of register automata over data words, just as the usual regular
expressions capture the power of regular languages;

2. have good algorithmic properties, at least matching those of register automata; and
3. admit expressive subclasses with very good (efficient) algorithmic properties.

Note that an attempt to find such regular expressions has been made in [14], but it
fell short of even the first goal. In fact, the expressions of [14] are not very intuitive,
and they fail to capture some very simple languages like, for example, the language
{
(
a
d

)(
a
d′

)
| d �= d′}. In our formalism this language will be described by a regular

expression (a↓x) · (a[x�=]). This expression says: bind x to be the data value seen while
reading a, move to the next position, and check that the symbol is a and that the data
value differs from the one in x. The idea of binding is, of course, common in formal
language theory, but here we do not bind a letter or a subword (as, for example, in
regular expressions with backreferencing) but rather values from an infinite alphabet.

We shall call such expressions regular expressions with memory. We formally define
their semantics, give examples, prove that they capture register automata and share
their algorithmic properties. We then introduce a different kind of regular expressions,
regular expressions with equality. The previous language, for example, will be captured
by the expression (aa)�=, saying that the finite part of the data word reads aa, and the
data values at the beginning and at the end are different. We show that such expressions
are strictly weaker than expressions with memory, but enjoy nice algorithmic properties.

Organization. In Section 2 we define register automata, and list their closure properties
and complexity results about nonemptiness and membership. In Section 3 we introduce
regular expressions with memory and show that they define the same class of languages
as register automata. In Section 4 we introduce regular expressions with equality, show
that while they are strictly weaker than register automata, they admit faster algorithms
for decision problems that are based on the close connection of these expressions with
pushdown automata. Due to space limitations, some proofs are only sketched, and com-
plete proofs will appear in the full version of the paper.

2 Register Automata over Data Words

A data word is simply a finite string over the alphabetΣ×D, whereΣ is a finite set of
letters and D an infinite set of data values. That is, in each position a data word carries
a letter from Σ and a data value from D. We will denote data words by

(
a1

d1

)
. . .
(
an

dn

)
,

where ai ∈ Σ and di ∈ D. The set of all data words over the alphabetΣ and set of data
values D is denoted by Σ[D]∗. A data word language is simply a subset L ⊆ Σ[D]∗.

Register automata are an analog of NFAs for data words. They move from one state
to another by reading the appropriate letter from the finite alphabet and comparing the
data value to ones previously stored into the registers. Our version of register automata
will use comparisons which are boolean combinations of atomic =, �= comparisons of
data values.



Regular Expressions for Data Words 277

To define such conditions formally, assume that, for each k > 0, we have variables
x1, . . . , xk. Then the set of conditions Ck is given by the grammar:

c := tt | ff | x=i | x
�=
i | c ∧ c | c ∨ c | ¬c, 1 ≤ i ≤ k.

The satisfaction is defined with respect to a data value d ∈ D and a tuple τ =
(d1, . . . , dk) ∈ Dk as follows:

– d, τ |= tt and d, τ �|= ff;
– d, τ |= x=i iff d = di;
– d, τ |= x�=i iff d �= di;
– d, τ |= c1 ∧ c2 iff d, τ |= c1 and d, τ |= c2 (and likewise for c1 ∨ c2);
– d, τ |= ¬c iff d, τ � c.

In what follows, [k] is a shorthand for {1, . . . , k}.

Definition 1 (Register Data Word Automata). Let Σ be a finite alphabet and k a
natural number. A k-register data word automaton is a tupleA = (Q, q0, F, T ), where:

– Q is a finite set of states;
– q0 ∈ Q is the initial state;
– F ⊆ Q is the set of final states;
– T is a finite set of transitions of the form (q, a, c)→ (I, q′), where q, q′ are states,
a is a label, I ⊆ [k], and c is a condition in Ck.

Intuitively the automaton traverses a data word from left to right, starting in q0, with all
registers empty. If it reads

(
a
d

)
in state q with register configuration τ , it may apply a

transition (q, a, c) → (I, q′) if d, τ |= c; it then enters state q′ and changes contents of
registers i, with i ∈ I , to d.

To define acceptance formally we first define a configuration of a k-register data
word automaton A on data word w =

(
a1

d1

)
. . .
(
an

dn

)
as a triple (q, j, τ), where q is the

current state of A, j is the current position of the symbol in w that A reads and τ is
the current state of the registers. We use the symbol ⊥ to indicate that a register is
unassigned; that is, τ is a k-tuple over D⊥ = D ∪ {⊥}. The initial configuration is
(q0, 1, τ0), where τ0 = (⊥, . . . ,⊥), and any configuration (q, j, τ) with q ∈ F is a final
configuration.

From a configuration (q, j, τ) we can move to a configuration (q′, j + 1, τ ′) if:

– (q, aj , c)→ (I, q′) is a transition in A,
– dj , τ |= c and
– τ ′ is obtained from τ by replacing data values in registers from I by dj .

We say that A accepts w if there is a sequence of configuration of A on w that leadsA
from the initial to a final configuration while reading w.

Remark. Given a k-register data word automaton A and a tuple τ ∈ Dk
⊥, we can turn

A into an automaton A(τ) defined just as A but starting with τ as the register con-
figuration. Such an extension does not affect the class of accepted languages, but will
be useful in inductive constructions when automata need not start with all registers
unassigned.



278 L. Libkin and D. Vrgoč

A useful property of register automata that will be needed throughout this paper is that,
intuitively, such automata can only keep track of as many data values as can be stored
in their registers. Formally, we have:

Lemma 1. Let A be a k-register data word automaton. If A recognizes some word of
length n, then it recognizes a word of length n that uses at most k + 1 different data
values.

Proof. We first set some notation. We will say that two k-register assignments τ and τ
are of the same equality type if we have τ(i) = τ(j) if and only if τ (i) = τ (j), for all
i, j ≤ k. Note that this also implies that τ(i) �= τ(j) if and only if τ (i) �= τ(j).

We will prove a slightly more general claim, allowing our automata to start with
an nonempty assignment of the registers. Let A(τ0) = (Q, q0, F, T ) be a k-register
data word automaton, starting with the initial assignment τ0 in the registers and
w =

(
a1

d1

)
. . .
(
an

dn

)
a word that it accepts. This means that there is a sequence of states

q0, q1, . . . , qn, with qn ∈ F and a sequence of register assignments τ0, τ1, . . . , τn such
that (qi−1, ai, ci) → (Ii, qi) ∈ T , that τi−1, di |= ci and τi is obtained from τi−1by
replacing all registers from Ii with di, for i = 1 . . . n.

Now let S = {τ0(i) : 1 ≤ i ≤ k} − {⊥}. That is S contains all the data values from
the initial assignment, except the one denoting that the register is empty.

Let S be any set of data values such that |S| = k + 1 and S ⊆ S.
We prove by induction on i ≤ n that we can define a data word wi, of length i, such

that wi =
(
a1

di
1

)
. . .
(
ai

di
i

)
, where a1, . . . ai are from w and di1, . . . , d

i
i are from S. We then

show that for this wi there is a sequence of assignments τ ′0, τ
′
1, . . . τ

′
i such that each τ ′j

is of the same equality type as τj , where j ≤ i and it holds that τj−1, dj |= cj , for
all j ≤ i and each τ ′j is obtained from τ ′j−1 by replacing all the data values from Ij
by dj . Note that this actually means that A goes through the same sequence of states
while reading wi as it did while reading w. But then wn is the desired word from the
statement of the lemma.

To prove this we first assume that i = 1. We set τ ′0 = τ0 and select d ∈ S such that
τ0, d |= c1 (note that this is possible since we have k+1 values at disposal and test only
for equality or inequality with a fixed set of k elements) and such that τ1 and τ ′1 are of
the same equality type, where τ ′1 is obtained from τ ′0 by replacing all data values from
I1 by d. Again, this is possible since the original d1 (from w) could have either been
different from all data values in τ0 or equal to some of them, a choice we can simulate
with elements from S. We now set w1 =

(
a1

d

)
.

Assume now that the claim holds for i < n. We prove the claim for i + 1. By the
induction hypothesis we know that there exists a data wordwi =

(
a1

di
1

)
. . .
(
ai

di
i

)
with data

values from S and a sequence of assignments each one obtained from the previous by
the condition dictated by the original accepting run that allowA to go through the states
q0, q1, . . . , qi. We now pick d ∈ S such that τ ′i , d |= ci+1 and τ ′i+1, obtained from τ ′i by
replacing all data values from Ii+1 by d, has the same equality type as τi+1. Note that
this is possible since τi and τ ′i have the same equality type by the induction hypothesis
and we have enough data values at our disposal (again, we have to pick d so that it is in
the same relation to data values from τ ′i as di+1 from w was to data values from τi, but
this is possible since each assignment can remember at most k data values). Now we



Regular Expressions for Data Words 279

simply define wi+1 = wi ·
(
ai+1

d

)
. Note that this wi+1 has all the desired properties and

can take A from q0 to qi+1.
This concludes the proof of the lemma. �

We now show that we can view register automata as NFAs when restricted only to a
finite set of data values.

Let A = (Q, q0, F, T ) be a k-register data word automaton, D a finite set of data
values, and D⊥ = D ∪ {⊥}. We transform A into an NFA AD = (Q′, q′0, F

′, δ) over
the alphabet Σ ×D as follows:

– Q′ = Q×Dk
⊥;

– q′0 = (q0,⊥k);
– F ′ = F ×Dk

⊥;
– Whenever we have a transition (q, a, c)→ (I, q′) in T , we add the transition

((q, τ),

(
a

d

)
, (q′, τ ′))

to T if d, τ |= c and τ ′ is obtained from τ by putting d in positions from the set I .

It is straightforward to check that A accepts a data word over Σ ×D if and only if AD

does. That is we obtain the following.

Lemma 2. LetD be a finite set of data values andA a register automaton overΣ. Then
there exists a finite state automatonAD over the alphabetΣ×D such thatw ∈ L(AD)
iffw ∈ L(A), for everyw with data values fromD. Moreover,AD is of size exponential
in the size ofA and polynomial in the size of D.

Since register automata closely resemble classical finite state automata, it is not sur-
prising that some (although not all) constructions valid for NFAs can be carried over to
register automata. We now recall results about closure properties of register automata
[13]. Although our notion of automata is slightly different than the one used there, all
constructions from [13] can be easily modified to work in the setting proposed here.

Fact 1 ([13]).

1. The set of languages recognized by register automata is closed under union, inter-
section, concatenation and Kleene star.

2. Languages recognized by register automata are not closed under complement.
3. Languages recognized by register automata are closed under automorphisms: that

is, if f : D → D is an automorphism and w is accepted by A, then the data word
f(w) in which every data value d is replaced by f(d) is also accepted by A.

Membership and nonemptiness are some of the most important decidability problems
related to formal languages. We now recall the exact complexity of these problems for
register automata. Since the model of register automata we use here differs slightly from
the one in previous work, we sketch how these results carry over to our model.

Recall that nonemptiness problem for an automaton A is checking whether
L(A) �= ∅.



280 L. Libkin and D. Vrgoč

Fact 2 ([9]). The nonemptiness problem for register data word automata is PSPACE-
complete.

The lower bound will follow from Theorem 1 and Proposition 1. For the upper bound
we convert our k-register automaton A into an NFA AD over the alphabet Σ ×D (as
in the Lemma 2), where D = {0, . . . , k + 1}. We know that AD recognizes all data
words from L(A) using only data values from D. By Lemma 1 and invariance under
automorphisms, we know that checking A for nonemptiness is equivalent to checking
AD for nonemptiness. Using on-the-fly construction we get the desired result (note that
AD can not be created before checking it for nonemptiness).

The membership problem asks, for an automaton A and a word w, whether w ∈
L(A).

Fact 3 ([21]). The membership problem for register data word automata is NP-
complete.

The lower bound will follow from Theorem 1 and Proposition 2. For the upper bound
it simply suffices to guess an accepting run of the automaton.

3 Regular Expressions with Memory

In this section we develop regular expressions capturing register automata in the same
way as the usual regular expressions capture regular languages. To do this notice that
register automata could be pictured as finite state automata whose transitions between
states have labels of the form a[c]↓I , where I is a set of registers. Such an automaton
can move from one state to another using an arrow a[c]↓I if the letter it sees is a, and
the data value (together with the current register assignment) satisfies the condition c. It
then proceeds to the next state and updates the registers in I with the current data value.
This suggests that the basic building blocks for our expressions will be expressions of
the form a[c]↓I .

Definition 2 (Expressions with Memory). LetΣ be a finite alphabet and x1, . . . , xk a
finite set of variables. Regular expressions with memory overΣ[x1, . . . , xk] are defined
inductively as follows:

– ε and ∅ are expressions;
– a[c]↓I is an expression; here a ∈ Σ, c is a condition in Ck, and I ⊆ {x1, . . . , xk};
– If e, e1, e2 are expressions, then so are e1 + e2, e1 · e2, and e∗.

For convenience we will write just a if I = ∅ and the condition c = tt and similarly
when only one of them can be ignored. Also, if I = {x}, we write a[c]↓x, or a↓x when
c = tt, instead of a[c]↓I .

To define the semantics, we first define what it means for an expression e over
Σ[x1, . . . xk], a data word w and a tuple σ ∈ Dk

⊥ to infer another tuple σ′ ∈ Dk
⊥,

viewed as partial assignment of values to variables. We do this inductively on e.

– (ε, w, σ) � σ′ iff w = ε and σ′ = σ.



Regular Expressions for Data Words 281

– (a[c]↓I, w, σ) � σ′ iffw =
(
a
d

)
and σ, d |= c and σ′ is obtained from σ by assigning

d to each xi ∈ I .
– (e1 · e2, w, σ) � σ′ iff w = w1 · w2 and there exists a valuation σ′′ such that
(e1, w1, σ) � σ′′ and (e2, w2, σ

′′) � σ′.
– (e1 + e2, w, σ) � σ′ iff (e1, w, σ) � σ′ or (e2, w, σ) � σ′.
– (e∗, w, σ) � σ′ iff

1. w = ε and σ = σ′, or
2. w = w1 · w2 and there exists a valuation σ′′ such that (e, w1, σ) � σ′′ and

(e∗, w2, σ
′′) � σ′.

We say that a regular expression e induces a tuple σ ∈ Dk
⊥ on a data word w if

(e, w,⊥k) � σ. We then define L(e), the language of e, as the set of all data words
on which e induces some tuple σ. A regular expression with memory e is well-formed
if every variable is bound before being used in a condition. From now on we will assume
that all our expressions are well-formed.

Example 1. We now give a few examples of data word languages definable by regular
expressions with memory.

1. The expression (a↓x) ·(b[x�=])∗ defines the language of data words where word part
reads ab∗ and such that the first data value is different from all others. It binds while
reading the first a, and then it proceeds checking that the letter is b and condition
x�= is satisfied, which is expressed by b[x�=]; the expression is then put in the scope
of ∗ to indicate that the number of such values is arbitrary.

2. The language of data words in which two data values are the same is given by the
expressionΣ∗ ·(Σ↓x)·Σ∗ ·(Σ[x=])·Σ∗, whereΣ is the shorthand for a1+. . .+al,
wheneverΣ = {a1, . . . , al} and Σ↓x is a shorthand for a1↓x+ . . .+ al↓x. It says:
at some point, bind x, and then check that after one or more letters, we have the
same data value.

3. The language of data words in which the last two data values occur elsewhere in
the word with label a is defined by Σ∗ · (a↓x) ·Σ∗ · (a↓y) ·Σ∗ · (Σ[x=] +Σ[y=]) ·
(Σ[x=] +Σ[y=]).

3.1 Equivalence with Register Automata

In this section we prove that every language recognized by register automata can also
be described by a regular expression with memory and vice versa. In fact, we show a
tighter connection, from which the equivalence will follow. Let L(e, σ, σ′) be the set of
all data wordsw such that (e, w, σ) � σ′, and let L(A, σ, σ′) be the set of all data words
w such that w is accepted by A(σ), and there exists an accepting run that ends with a
register configuration σ′.

Theorem 1. 1. For every regular expression with memory e over Σ[x1, . . . , xk] there
exists (and can be constructed in logarithmic space) a k-register data word au-
tomatonAe such that L(e, σ, σ′) = L(Ae, σ, σ

′) for every σ, σ′ ∈ Dk
⊥.

2. For every k-register data word automatonA there exists (and can be constructed in
exponential time) a regular expression with memory eA over x1, . . . , xk such that
L(eA, σ, σ

′) = L(A, σ, σ′) for every σ, σ′ ∈ Dk
⊥.



282 L. Libkin and D. Vrgoč

The structure of the proof follows of course the standard NFA-regular expressions
equivalence, cf. [24], with all the necessary adjustments to handle transitions in-
duced by a[c] ↓ I . Details can be found in the complete version of the paper. Since
L(e) =

⋃
σ L(e,⊥k, σ) and L(A) =

⋃
σ L(A,⊥k, σ), we obtain:

Corollary 1. The classes of languages of data words definable by k-register data word
automata, and by regular expressions with memory over Σ[x1, . . . , xk] are the same.

3.2 Properties of Regular Expressions with Memory

Corollary 1 and closure properties of register automata immediately imply that lan-
guages defined by regular expressions with memory are closed under union, intersec-
tion, concatenation, Kleene star, but are not closed under complement.

We now turn to the nonemptiness problem, i.e., checking whether L(A) �= ∅. Since
going from expressions to automata is polynomial, we get a PSPACE upper bound (see
Fact 2). One can also prove a matching lower bound, by adapting techniques used in a
different but related setting [16] for combined complexity bounds on query evaluation
over graph databases and obtain:

Proposition 1. The nonemptiness problem for regular expressions with memory is
PSPACE-complete.

Next we move to the membership problem, i.e., checking whether w ∈ L(e). Again,
since e can be translated efficiently into an equivalent automaton Ae, Fact 3 gives an
NP upper bound. We can prove a matching lower bound as well:

Proposition 2. The membership problem for regular expressions with memory is NP-
complete.

Proof. For the lower bound we do a reduction from 3-SAT.
Let ϕ = (a1 ∨ b1 ∨ c1) ∧ (a2 ∨ b2 ∨ c2) . . . ∧ (ak ∨ bk ∨ ck), be an arbitrary 3-CNF

formula. We will construct a data wordw and a regular expression with memory e, both
of length linear in the length of ϕ, such that ϕ is satisfiable if and only if w ∈ L(e).

Let x1, x2, . . . , xn be all the variables occurring in ϕ. We define w as the following
data word:

w =
((a

0

)(
b

1

))n (( a1
da1

)(
b1
db1

)(
c1
dc1

))
. . .

(( ak
dak

)(
bk
dbk

)(
ck
dck

))
,

where dai = 1, if ai = xj , for some j ∈ {1, . . . n} and 0, if ai = xj and similarly for
dbi , dci (note that every ai, bi, ci is of the for xj , or xj , so this is well defined).

Also note that we are using ai, bi, ci both for literals in ϕ and for letters of our finite
alphabet, but this should not arise any confusion. The idea behind this data word is
that with the first part that corresponds to the variables, i.e. with (

(
a
0

)(
b
1

)
)n, we guess a

satisfying assignment and the next part corresponds to each conjunct in ϕ and its data
value is set such that if we stop at any point for comparison we get a true literal in this
conjunct.



Regular Expressions for Data Words 283

We now define e as the following regular expression with memory:

e = (a↓x1 + ab↓x1) · b∗ · (a↓x2 + ab↓x2) · b∗ · (a↓x3 + ab↓x3) · · ·
b∗ · (a↓xn + ab↓xn) · b∗ · clause1 · clause2 . . . clausek,

where each clausei corresponds to the i-th conjunct of ϕ in the following manner.
If ith conjunct uses variables xj1 , xj2 , xj3 (possibly with repetitions), then

clausei = ai[x
=
j1 ] · bi · ci + ai · bi[x=j2 ] · ci + ai · bi · ci[x=j3 ].

We now prove that ϕ is satisfiable if and only if w ∈ L(e).
Assume first that ϕ is satisfiable. Then there’s a way to assign a value to each xi

such that for every conjunct in ϕ at least one literal is true. This means that we can
traverse the first part of w to chose the corresponding values for variables bounded in e.
Now with this choice we can make one of the literals in each conjunct true, so we can
traverse every clausei using one of the tree possibilities.

Assume now that w ∈ L(e). This means that after choosing the data values for
variables (and thus a valuation for ϕ, since all data values are either 0 or 1), we are
able to traverse the second part of w using these values. This means that for every
clausei there is a letter after which the data value is the same as the one bounded to the
corresponding variable. Since data values in the second part of w correspond to literal
in the corresponding conjunct of ϕ to evaluate to 1, we know that this valuation satisfies
our formula ϕ. �

4 Regular Expressions with Equality

In this section we define yet another kind of expressions, regular expressions with
equality, that will have significantly better algorithmic properties that regular expres-
sions with memory and register automata, while still retaining much of their expressive
power. The idea is to allow checking for (in)equality of data values at the beginning and
at the end of subwords conforming to subexpressions.

Originally motivation for such expressions came from graph databases, where they
were used to lower combined complexity of queries that mixed data and topology. Such
queries, with conditions specified by register automata, had PSPACE-complete com-
bined complexity; with the restrictions similar to those described here, it dropped to
PTIME, or to NP-complete when such queries were closed under conjunction and exis-
tential quantification [16]. These bounds are the best possible, in light of the results on
regular path queries. We also argue that, although limited in expressive power, they still
allow specification of interesting properties in graph or XML databases.

Definition 3 (Expressions with equality). Let Σ be a finite alphabet. Then regular
expressions with equality are defined by the grammar:

e := ∅ | ε | a | e+ e | e · e | e+ | e= | e �= (1)

where a ranges over alphabet letters. The language L(e) of data words denoted by a
regular expression with equality e is defined as follows.



284 L. Libkin and D. Vrgoč

– L(∅) = ∅.
– L(ε) = {ε}.
– L(a) = {

(
a
d

)
| d ∈ D}.

– L(e · e′) = L(e) · L(e′).
– L(e+ e′) = L(e) ∪ L(e′).
– L(e+) = {w1 · · ·wk | k ≥ 1 and each wi ∈ L(e)}.
– L(e=) = {

(
a1

d1

)
. . .
(
an

dn

)
∈ L(e) | d1 = dn}.

– L(e �=) = {
(
a1

d1

)
. . .
(
an

dn

)
∈ L(e) | d1 �= dn}.

Without any syntactic restrictions, there may be “pathological” expressions that, while
formally defining the empty language, should nonetheless be excluded as really not
making sense. For example, ε= is formally an expression, and so is a �=, although it
is clear they cannot denote any data word. We exclude them by defining well-formed
expressions as follows. We say that the usual regular expression e reduces to ε (respec-
tively, to singletons) if L(e) is ε or ∅ (or |w| ≤ 1 for all w ∈ L(e)). Then we say that
regular expression with equality is well-formed if it contains no subexpressions of the
form e= or e �=, where e reduces to ε, or to singletons. From now on we will assume that
all our expressions are well formed.

Note that we use + instead of ∗ for iteration. This is done for technical purposes (the
ease of translation) and does not reduce expressiveness, since we can always use e∗ as
shorthand for e+ + ε.

We now provide two examples. The expression Σ∗ · (a · Σ∗ · a)= · Σ∗ denotes the
language of data words that contain two a-labelled positions with the same data value.
In XML this simply specifies that a is not a key. The language of data words in which
the first and the last data value are different is given by (Σ ·Σ+)�=.

4.1 Properties of Regular Expressions with Equality

As expected regular expressions with equality will be subsumed by register automata,
but unlike expressions with memory, they will be less expressive, as illustrated by the
following result.

Proposition 3. Regular expressions with equality are strictly weaker than regular ex-
pressions with memory.

When proving this, we simply show that regular expressions with equality can be trans-
lated into register automata using an easy inductive construction. Moreover, this transla-
tion can be carried in PTIME (in fact in NLOGSPACE). To show they are strictly weaker
than expressions with memory or register automata, we show that they cannot define
the language of (a↓x) · (a[x�=])∗. To do so, we introduce another kind of automata,
called weak register automata, and show that they cannot recognize that language and
that they can define any language described by expressions with equality.

As immediately follows from their definition, languages denoted by regular expres-
sions with equality are closed under union, concatenation, and Kleene star. Also, it is
straightforward to see that they are closed under automorphisms. However:

Proposition 4. Languages recognized by regular expressions with equality are not
closed under intersection and complement.



Regular Expressions for Data Words 285

Proof sketch. Observe first that the expression Σ∗ · (Σ ·Σ+)= ·Σ∗ defines a language
of data words containing two positions with the same data value. The complement of
this language is the set of all data words where all data values are different, which is
not recognizable by register automata [13]. By Proposition 3 this implies that regular
expressions with memory are not closed under complement.

To see that they are not closed under intersection we first show that the language

L =

{(
a

d1

)(
a

d2

)(
a

d3

) ∣∣∣∣ d1 �= d2, d1 �= d3 and d2 �= d3

}
is not recognizable by any regular expression with equality. To prove this we simply
try out all possible combinations of expressions that use at most three concatenated
occurrences of a. Note that we can eliminate any expression with more that three as,
or one that uses ∗ (since this results in arbitrary long words), or union (since every
member of the union would have to define words from this language and since we do
not use constants we cannot just split the language into two or more parts). Also, no =
can occur in our expression (for subexpressions of length at least 2). This reduces the
number of potential expressions to denote the language to finitely many possibilities,
and we simply try them all.

Now observe that the expression e1 = ((a · a)�= · a)�= defines the language

L1 =

{(
a

d1

)(
a

d2

)(
a

d3

) ∣∣∣∣ d1 �= d2 and d1 �= d3

}
.

Similarly e2 = a · (a · a)�= defines

L2 =

{(
a

d1

)(
a

d2

)(
a

d3

) ∣∣∣∣ d2 �= d3

}
.

Note that L = L1 ∩ L2, so if regular expressions with equality were closed under
intersection they would also have been able to define the language L. �

To obtain fast membership and nonemptiness testing algorithms for expressions with
equality, we first show how to reduce them to pushdown automata when only finite
alphabets are involved.

Assume that we have a finite set D of data values. We now inductively construct
PDAs Pe,D for all regular expressions with equality e. The words recognized by these
automata will be precisely the words from L(e) whose data values come from D.

We construct these PDAs so that they accept by final state and furthermore have
the property that only transitions of the kind (q0,

(
a
d

)
, X, α, q) leave the initial state

(that is any transition leaving the initial state will consume a letter) and every transition
entering a final state will consume a letter. We will maintain these properties throughout
the inductive construction.

It is quite clear how to construct the automata for e = ε, e = ∅ and e = a. For
e1+e2, e1 ·e2 and e+1 we use standard constructions, while for e = (e1)=, or e = (e1)�=
we push the first data value on the stack, mark it by a new stack symbol and then proceed
with the run of the automaton for e1 which exists by the induction hypothesis. Every
time we enter a final state of that automaton we simply empty the stack until we reach



286 L. Libkin and D. Vrgoč

the first data value (here we use the new stack symbol) and compare it for equality or
inequality with the last data value of the input word. The additional assumptions are
here to assure that the construction works correctly. Details of the proof can be found
in the full version.

Lemma 3. The language of words accepted by each PDA Pe,D is equal to the set of
data words in L(e) whose data values come from D. Moreover, the PDA Pe,D has at
most O(|e|) states and O(|e| × (|D|2 + |e|)) transitions, and can be constructed in
polynomial time.

From this and Lemma 1 it is easy to obtain the following.

Theorem 2. The nonemptiness problem for regular expressions with equality is in
PTIME.

To see this, take an arbitrary expression with equality e and convert it to a n-register
data word automaton A that recognizes the same language. From the translation, we
know that n will be at most the number of times = and �= appear in e. Now do the
construction from Lemma 3 for e and D = {0, 1, . . . , n + 1} to obtain a PDA Pe,D .
Proposition 3 and Lemma 1 now imply that checking if L(e) �= ∅ is equivalent to
checking Pe,D for nonemptiness. Since this automaton is of polynomial size, we can
check it for nonemptiness in PTIME thus obtaining the desired result.

Proposition 5. The membership problem for regular expressions with equality is in
PTIME.

As in the proof of Theorem 2, we construct a PDA Pe,D for e and D = {0, 1, . . . , n},
where n is the length of the input word w. By invariance under automorphisms we can
assume that data values in w come from the set D. Next we simply check that the word
is accepted by Pe,D and since this can be done in PTIME we get the desired result. The
correctness of this algorithm follows from Lemma 3.

It is natural to ask whether NFAs could not have been used instead of pushdown
automata. The answer is that they can be used to capture languages of data words de-
scribed by regular expressions with equality over a finite set of data values, but the cost
is necessarily exponential, and hence we cannot possible use them to derive Theorem
2. That is, we can first show:

Proposition 6. For every regular expression with equality e over the alphabet Σ and
a finite set D of data values there exists an NFA Ae,D , of the size exponential in |e|,
recognizing precisely those data words from L(e) that use data values from D.

Proof sketch. We prove this by structural induction on regular expressions with equality.
All of the standard cases are carried out as usual. Thus we only have to describe the
construction for subexpressions of the form e= and e �=. In both cases by the induction
hypothesis we know that there is an NFA Ae,D recognizing words in L(e) with data
values from D. The automaton for Ae�=,D (and likewise for Ae=,D) will consist of |D|
disjoint copies of Ae,D , each designated to remember the first data value read when
processing the input. According to this, whenever our automaton would enter a final



Regular Expressions for Data Words 287

state we test that the current data value is different (or the same) to the one correspond-
ing to this copy of the original automaton. This is done in a manner analogous to the
one used in the proof of Proposition 3. �

However, the exponential lower bound is the best we can do in the general case. To
see this, we define a sequence of regular expressions with memory {en}n∈N, over the
alphabet Σ = {a}, and each of length linear in n. We then show that for D = {0, 1}
every regular expression over the alphabet Σ × D recognizing precisely those data
words from L(en) with data values in D has length exponential in |en|.

To prove this we will use the following theorem for proving lower bounds of NFAs
[11]. Let L ⊆ Σ∗ be a regular language and suppose there exists a set P = {(xi, yi) :
1 ≤ i ≤ n} of pairs such that:

1. xi · yi ∈ L, for every i = 1, . . . n, and
2. xi · yj /∈ L, for 1 ≤ i, j ≤ n and i �= j.

Then any NFA accepting L has at least n states.
Thus to prove our claim it suffices to find such a set of size exponential in the length

of en.
Next we define the expressions en inductively as follows:

– e1 = (a · a)=,
– en+1 = (a · en · a)=.

It is easy to check that L(en) = {w · w−1 : w ∈ (Σ × {0, 1})n}, where w−1 denotes
the reverse of w.

Now let w1, . . . w2n be a list of all the elements in (Σ × {0, 1})n in arbitrary order.
We define the pairs in P as follows:

– xi = wi,
– yi = (wi)

−1.

Since these pairs satisfy the above assumptions 1) and 2), we conclude, using the result
of [11], that any NFA recognizing L(en) has at least O(2|en|) states, so no regular
expression describing it can be of length polynomial in |en|.

5 Conclusions and Future Work

Here we addressed the problem of finding analogs of regular expressions for register
automata, and explored their language-theoretic properties. We also defined an expres-
sive subclass with good algorithmic properties. In the future we would like to try and
find an intermediate class of expressions that could be used to recognize a larger class
of languages than regular expressions with equality, but still retain low complexity of
nonemptiness and membership checking. We would also like to explore how these new
classes of expressions behave as query languages in graph database models. Since lan-
guage nonemptiness is closely related to query evaluation in that context we are hopeful
to obtain fast and expressive query languages based on these new classes of expressions.

Acknowledgment. We would like to thank Juan Reutter and Tony Tan for helpful
comments during the preparation of this paper. Work partially supported by EPSRC
grant G049165 and FET-Open Project FoX, grant agreement 233599.



288 L. Libkin and D. Vrgoč

References

1. Angles, R., Gutiérrez, C.: Survey of graph database models. ACM Comput. Surv. 40(1)
(2008)

2. Barceló, P., Hurtado, C., Libkin, L., Wood, P.: Expressive languages for path queries over
graph-structured data. In: PODS 2010, pp. 3–14 (2010)

3. Benedikt, M., Ley, C., Puppis, G.: Automata vs. Logics on Data Words. In: Dawar, A., Veith,
H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 110–124. Springer, Heidelberg (2010)

4. Bojanczyk, M., Parys, P.: XPath evaluation in linear time. In: PODS 2008, pp. 241–250
(2008)

5. Bojanczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic on
words with data. ACM TOCL 12(4) (2011)

6. Bojanczyk, M., Lasota, S.: An extension of data automata that captures XPath. In: LICS
2010, pp. 243–252 (2010)

7. Calvanese, D., de Giacomo, G., Lenzerini, M., Vardi, M.Y.: Rewriting of regular expressions
and regular path queries. JCSS 64(3), 443–465 (2002)

8. Colcombet, T., Ley, C., Puppis, G.: On the Use of Guards for Logics with Data. In: Murlak,
F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 243–255. Springer, Heidelberg
(2011)

9. Demri, S., Lazic, R.: LTL with the freeze quantifier and register automata. ACM TOCL 10(3)
(2009)

10. Figueira, D.: Satisfiability of downward XPath with data equality tests. In: PODS 2009, pp.
197–206 (2009)

11. Glaister, I., Shallit, J.: A lower bound technique for the size of nondeterministic finite au-
tomata. IPL 59, 75–77 (1996)

12. Grumberg, O., Kupferman, O., Sheinvald, S.: Variable Automata over Infinite Alphabets. In:
Dediu, A.-H., Fernau, H., Martı́n-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 561–572.
Springer, Heidelberg (2010)

13. Kaminski, M., Francez, N.: Finite memory automata. Theoretical Computer Science 134(2),
329–363 (1994)

14. Kaminski, M., Tan, T.: Regular expressions for languages over infinite alphabets. Fundam.
Inform. 69(3), 301–318 (2006)

15. Libkin, L.: Logics for unranked trees: an overview. Logical Methods in Computer Sci-
ence 2(3) (2006)

16. Libkin, L., Vrgoč, D.: Regular path queries on graphs with data. In: ICDT 2012 (to appear,
2012)

17. Marx, M.: Conditional XPath. ACM TODS 30, 929–959 (2005)
18. Mendelzon, A.O., Wood, P.T.: Finding regular simple paths in graph databases. SIAM J.

Comput. 24(6), 1235–1258 (1995)
19. Neven, F.: Automata theory for XML researchers. SIGMOD Record 31(3), 39–46 (2002)
20. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite alphabets.

ACM TOCL 5(3), 403–435 (2004)
21. Sakamoto, H., Ikeda, D.: Intractability of decision problems for finite-memory automata.

Theor. Comput. Sci. 231(2), 297–308 (2000)
22. Schwentick, T.: Automata for XML – A survey. JCSS 73(3), 289–315 (2007)
23. Segoufin, L.: Automata and Logics for Words and Trees over an Infinite Alphabet. In: Ésik,

Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg (2006)
24. Sipser, M.: Introduction to the Theory of Computation. PWS Publishing (1997)
25. Tan, T.: Graph reachability and pebble automata over infinite alphabets. In: LICS 2009,

pp. 157–166 (2009)



Automatic Verification of TLA+ Proof

Obligations with SMT Solvers

Stephan Merz1 and Hernán Vanzetto1,2

1 INRIA Nancy Grand-Est & LORIA, Nancy, France
2 Microsoft Research-INRIA Joint Centre, Saclay, France

Abstract. TLA+ is a formal specification language that is based on ZF
set theory and the Temporal Logic of Actions TLA. The TLA+ proof
system tlaps assists users in deductively verifying safety properties of
TLA+ specifications. tlaps is built around a proof manager, which in-
terprets the TLA+ proof language, generates corresponding proof obli-
gations, and passes them to backend verifiers. In this paper we present
a new backend for use with SMT solvers that supports elementary set
theory, functions, arithmetic, tuples, and records. Type information re-
quired by the solvers is provided by a typing discipline for TLA+ proof
obligations, which helps us disambiguate the translation of expressions
of (untyped) TLA+, while ensuring its soundness. Preliminary results
show that the backend can help to significantly increase the degree of
automation of certain interactive proofs.

1 Introduction

TLA+ [10] is a language for specifying and verifying systems, in particular con-
current and distributed algorithms. It is based on a variant of Zermelo-Fraenkel
(ZF) set theory for specifying the data structures, and on the Temporal Logic
of Actions (TLA) for describing the dynamic system behavior. Recently, a first
version of the TLA+ proof system tlaps [5] has been developed, in which users
can deductively verify safety properties of TLA+ specifications. TLA+ contains a
declarative language for writing hierarchical proofs, and tlaps is built around a
proof manager, which interprets this proof language, expands the necessary mod-
ule and operator definitions, generates corresponding proof obligations (POs),
and passes them to backend verifiers, as illustrated in Figure 1. While tlaps is
an interactive proof environment that relies on users guiding the proof effort, it
integrates automatic backends to discharge proof obligations that users consider
trivial.

The two main backends of the current version of tlaps are Zenon [4], a tableau
prover for first-order logic and set theory, and Isabelle/TLA+, a faithful encod-
ing of TLA+ in the Isabelle [13] proof assistant, which provides automated proof
methods based on first-order reasoning and rewriting. The backends available
prior to the work presented here also included a generic translation to the input
language of SMT solvers that focused on quantifier-free formulas of linear arith-
metic (not shown in Fig. 1). This SMT backend was occasionally useful because

N. Bjørner and A. Voronkov (Eds.): LPAR-18, LNCS 7180, pp. 289–303, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



290 S. Merz and H. Vanzetto

TLA Proof System

Proof Manager

Isabelle/
TLA+

Zenon SMT
solvers

TLA+
specification
and proofs

interpret module,
expand definitions

certify proof
(when possible)

results,
error

messages

translate & verify
proof obligations

generate
proof obligations

type inference

Fig. 1. General architecture of tlaps

the other backends perform quite poorly on obligations involving arithmetic rea-
soning. However, it covered a rather limited fragment of TLA+, which heavily
relies on modeling data using sets and functions. Assertions mixing arithmetic,
sets and functions arise frequently in TLA+ proofs.

In the work reported here we present a new SMT-based backend for (non-
temporal) TLA+ formulas that encompasses set-theoretic expressions, functions,
arithmetic, records, and tuples. By evaluating the performance of the backend
over several existing TLA+ proofs we show that it achieves good coverage for
“trivial” proof obligations. The new modules comprising our backend appear
shaded in Figure 1.

State of the Art and Context. Over the last years there have been several efforts
to integrate interactive and automatic theorem provers (ATPs). ATP systems
are satisfiability solvers for first-order logic, while the Satisfiability Modulo The-
ories (SMT) approach combines first-order reasoning with decision procedures
for theories such as equality, integer and real arithmetic, arrays and bit-vectors.
For example, Sledgehammer [3] integrates Isabelle/HOL, the encoding of poly-
morphic higher-order logic, with ATPs and SMT solvers. The translation to
SMT is allowed to be unsound, since proof scripts produced by the solvers are
reconstructed and verified in the trusted kernel of Isabelle/HOL.

TLA+ is an untyped language, which makes it very expressive and flexible,
but also makes automated reasoning quite challenging [11]. Since TLA+ variables
can assume any value, it is customary to start any verification project by prov-
ing a so-called type invariant that associates every variable of the specification
with the set of values that variable may assume. Most subsequent correctness
proofs rely on the type invariant. It should be noted that TLA+ type invariants
frequently express more sophisticated properties than what could be ensured by
a decidable type system.



Automatic Verification of TLA+ Proof Obligations with SMT Solvers 291

The input languages of state-of-the-art SMT solvers are based on many-sorted
first-order logic. This allows us to design a unique translation from TLA+ ex-
pressions to an intermediate language, from which the translation to the actual
target languages of particular SMT solvers is straightforward. The considered
languages are: (i) SMT-LIB [1], the de facto standard input format for SMT
solvers (in our experiments we use the CVC3 solver [2] as a “baseline”), (ii) an
extension of SMT-LIB for the solver Z3 [6], and (iii) the native input language
of the solver Yices [8]. Using SMT-LIB as the target of our translation, tlaps
can be independent of any particular solver. Z3 adds support for datatypes, that
allows us to easily encode tuples and records. On the other hand, the Yices
language provides useful concepts such as sub-typing or a direct representation
of tuples, records and λ-terms. The considered TLA+ formulas are translated
to quantified first-order formulas over the theory of linear integer arithmetic,
extended with free sort and function symbols. In particular, we make heavy use
of uninterpreted functions, and we do not restrict ourselves to quantifier-free
formulas.

The first challenge is therefore to design a typing discipline that is compatible
with the logics of SMT solvers but accommodates typical TLA+ specifications.
In a first step of the translation, a suitable type is assigned to every expression
that appears in the proof obligation. We make use of this type assignment during
the translation of expressions. For example, equality between integer expressions
will be translated differently from equality between sets or functions.

Type inference may fail because not every set-theoretic expression is typable
according to our typing discipline, and in this case the backend aborts. Oth-
erwise, the proof obligation is translated to SMT formulas. Observe that type
inference is relevant for the soundness of the SMT backend: a proof obligation
that is unprovable according to the semantics of untyped TLA+ must not be-
come provable due to incorrect type annotation. As a trivial example, consider
the formula x + 0 = x, which should be provable only if x is known to be of
arithmetic sort. Type inference essentially relies on assumptions that are present
in the proof obligation and that constrain the values of symbols (variables or op-
erators).

Paper outline. A brief introduction to TLA+ and the input languages of SMT
solvers appear in the next section. A type system for TLA+ together with its in-
ference algorithm is described in Section 3, and the translation rules in Section 4.
Results for some case studies and conclusions are given in Sections 5 and 6.

2 TLA+ and the SMT Languages

2.1 The Non-temporal Fragment of TLA+

Our backend handles non-temporal TLA+ expressions, which make up the vast
majority of proof obligations that arise in TLA+ developments. For the purposes
of this paper we fix a core subset of the language to illustrate just the main
challenges, where we only include main primitive operators and constructs. This



292 S. Merz and H. Vanzetto

fragment of the language, named ξ, is defined and described below by the fol-
lowing simplified grammar, which defines TLA+ expressions φ, where Id is an
identifier name for a constant, variable, record field or operator with possible
arguments. Other symbols include strings and integer numbers.

φ ::= Id | Id(φ, . . . , φ) | String | Number | (φ)
| true | false | boolean | Nat | Int (atomic expressions)

| if φ then φ else φ | ¬φ (conditional, negation)

| φ [ ∧ | ∈ | ∪ | ⊆ | = |+ | < ] φ (infix operators)

| ∀ Id : φ | ∃ Id : φ (quantifiers)

| {} | {φ, . . . , φ} (enumerated sets)

| [Id ∈ φ �→ φ] | [φ→ φ] | φ[φ] | domain φ (function expressions)

| [Id �→ φ, . . . , Id �→ φ] | φ.Id | 〈φ, . . . , φ〉 (records and tuples)

– The basic set operators consist of ∈, ∪, and ⊆. In TLA+, equality is also an
operator of set theory, since it formally means equality of sets.

– Operators on functions include function application f [e], domain f (domain
of function f), [x ∈ S �→ e] (the function f such that f [x] = e for x ∈ S),
and [S → T ] (the set of functions f with domain S and f [x] ∈ T for x ∈ S).

– TLA+ provides the usual operators of propositional logic; our restricted frag-
ment includes ∧ and ¬. boolean denotes the set {true, false}. Quantified
formulas are of the form Qx : e, where Q ∈ {∀, ∃}.

– A record [h1 �→ e1, . . . , hn �→ en] is a function whose domain is the finite
set of strings {“h1”, . . . , “hn”}. Access to record fields is written r.h, abbre-
viating r[“h”], thus [h1 �→ e1, . . . , hn �→ en].hi = ei. Similarly, an n-tuple
〈e1, . . . , en〉 is a function whose domain is {1, . . . , n} and 〈e1, . . . , en〉[i] = ei,
for 1 ≤ i ≤ n.

– A TLA+ operator is a symbol of arity 0 or higher. Operators are associated
with definitions whose expansion is controlled by the user. Expansion of
defined operators is handled by the proof manager: definitions for operators
that occur in proof obligations passed to backends are hidden. Operators
by themselves are not expressions (they correspond to class functions in set
theory), and they cannot be quantified over.

– Finally, the arithmetic operators include + and <. Nat and Int are the sets
of natural and integer numbers, respectively. We also include the construct
if/then/else for conditional expressions.

We omit several features from this simplified description that can be introduced
as syntactic sugar and that are handled by our backend, such as except con-
structs for functions, and set comprehension. The extension to a larger subset of
the language is straightforward following the TLA+ semantics. A notable TLA+

construct that is not handled by our backend is the choose primitive, known
as Hilbert’s ε operator. A detailed description of the full TLA+ syntax and
semantics can be found in [10, Chap. 16].



Automatic Verification of TLA+ Proof Obligations with SMT Solvers 293

2.2 Input Languages of SMT Solvers

The input languages of SMT solvers are based on a many-sorted first-order
logic. Accordingly, each well-formed expression has a unique sort. The languages
provide syntax and commands for declaring new sort and function symbols, and
for asserting formulas over the resulting signature. With each function symbol
are associated the sorts of its arguments and its result sort. Terms and formulas
are written in a Lisp-like language.

In particular, the SMT-LIB [1] initiative provides a common input format, as
well as a repository of benchmarks, for SMT solvers. In general, an SMT input
file is a sequence of declarations of sorts, functions, assumptions, and a goal. It is
related with a logic, identified by a pre-established name, to which are associated
sort and function declarations, and possibly syntactic and semantic restrictions.
Our backend produces formulas for the SMT-LIB logic AUFLIA, which supports
quantified formulas over the theory of linear integer arithmetic extended with
free sort and function symbols. In this logic the predefined sorts are Bool and
Int. Set theory is not currently supported natively by any pre-defined logic in
SMT-LIB.

Simplified grammars for SMT-LIB sorts and terms can be given as follows:

σ ::= s | (s σ+)

t ::= x | Number | (f t+) | ([forall|exists] (((x σ))+) t)

where σ is a sort, s is a sort identifier, t is a term, x is a variable symbol,
and f is a function symbol. A sort constructor is defined by its name and the
argument sorts. A function declaration is composed of the function symbol, a
list of argument sorts, and the sort of the result. Constants are simply functions
with no arguments. SMT-LIB provides by default a Boolean sort for terms and
the standard functions and, or, not, true and false. The logic AUFLIA provides
a sort for integer numbers and the arithmetic functions +, −, ∗, /, <, <=, >=
and >, to which we add an extra sort of arity 0 to represent the universe of
TLA+ constants of unspecified sort1.

The Z3 input format is an extension of the one defined above, in particular
adding algebraic datatypes that we use for representing tuples and records. The
structure and syntax of the Yices input format are similar to SMT-LIB, and
supports lambda expressions, tuples, and records. Boolean and integer sorts are
also pre-defined, as well as a sort for natural numbers.

3 Type Inference for TLA+

We define a type system for TLA+ expressions that underlies our SMT transla-
tion. We consider types τ according to the following grammar:

τ ::= ⊥ | Bool | Str | Nat | Int | P τ | τ → τ | Rec {hi �→ τi} | Tup [τi].

1 The logic AUFLIA also provides a theory of arrays, that we do not make use of.



294 S. Merz and H. Vanzetto

The atomic types are ⊥ (terms of unspecified type), Bool (propositions), strings,
and natural and integer numbers. Complex types are sets (of base type τ), func-
tions, records (defined by a mapping from field names hi to types) and tuples
(as a fixed-size list of types). A partial order ≤ on types, with ⊥ as the smallest
element, is defined as the least reflexive and transitive relation that satisfies

⊥ ≤ τ for any type τ
P τ1 ≤ P τ2 if τ1 ≤ τ2
τ1 → τ2 ≤ τ ′1 → τ ′2 if τ1 ≤ τ ′1 and τ2 ≤ τ ′2
Rec {hi �→ τi}i∈1..n ≤ Rec {hi �→ τ ′i}i∈1..n′ if n ≤ n′ and τi ≤ τ ′i for 1 ≤ i ≤ n
Tup [τi]i∈1..n ≤ Tup [τ ′i ]i∈1..n if τi ≤ τ ′i for 1 ≤ i ≤ n
Nat ≤ Int

We define an inference algorithm for this type system that is based on an operator
[[e, ε]]I whose arguments are a TLA+ expression e and an expected lower bound ε
for the type of e according to the partial order. The computation either returns
the inferred type or fails. The operator recurses over the structure of TLA+

expressions, gathering information in a typing environment type, that maps each
TLA+ symbol to its type. Therefore, type(x) is the type of symbol x.

Initially, we consider that every symbol has the unspecified type ⊥. Recursive
calls to the operator [[·]]I may update the type of symbols as recorded in type by
new types that are larger than the previous ones. A type assignment is definitive
only when types for all expressions in the proof obligation have been successfully
inferred. For example, consider a proof obligation including two hypotheses S =
{} and S ⊆ Int. After evaluating the first one, S will have type P⊥, but it will
be updated to P Int when the second hypothesis is processed.

The rules of [[·]]I are defined in Figures 2 and 3. Before describing them,
we introduce some preliminary definitions and notations. The rules are defined
operationally: for example, we write [[. . .]]I ≡ f ; g to indicate that f is evaluated
first and the result of the overall rule is the result computed by g. We also use if
and case with their usual meanings, let that performs pattern matching, and :=
for variable assignment. The base function b τ is the dual of P τ , and is defined
by bP τ = τ , whereas b τ fails if τ is not a set type. The function ch(c) fails
when condition c is false. The function ret(c(τ)) returns the type τ if c(τ) is
satisfied, otherwise fails. For example, rule (3.6) first checks that the minimum
type ε is ⊥ or Bool, it tries to “equalize” the type of both subexpressions, and
then the resulting type τ is checked to be Bool before returning it. The function
max returns the greater of two comparable types as defined by

max(τ1, τ2) ≡ if τ1 ≤ τ2 then τ2 else (if τ2 ≤ τ1 then τ1 else fail).

The typing environment is updated only when evaluating symbols (rule 3.1),
where type ⊕ s denotes the typing environment type, updated with the map-
ping s. The rules (3.8) and (3.21) introducing bound variables silently rename
the variables in order to avoid any clashes with symbols already introduced. Just
as any other symbol, these fresh variables are initially assigned type ⊥. Upon
recursive calls to [[·]]I , appropriate return types are passed on to subexpressions,



Automatic Verification of TLA+ Proof Obligations with SMT Solvers 295

Symbols and other constructs

[[x, ε]]I ≡ α := max (type(x), ε); type := type ⊕ {x �→ α};α (3.1)

[[true, ε]]I ≡ ch(ε ≤ Bool);Bool [[false, ε]]I ≡ ch(ε ≤ Bool);Bool (3.2)

[[boolean, ε]]I ≡ ch(ε ≤ PBool);PBool [[“...”, ε]]I ≡ ch(ε ≤ Str);Str (3.3)

[[e(e1, . . . , en), ε]]I ≡ let α1 = [[e1,⊥]]I , . . . , αn = [[en,⊥]]I in

let ( → . . . → → αn+1) = [[e, α1 → . . . → αn → ε]]I in αn+1 (3.4)

[[if p then e1 else e2, ε]]I ≡ ch([[p,Bool]]I = Bool); eq([e1, e2], ε) (3.5)

Logic

[[e1 ∧ e2, ε]]I ≡ ch(ε ≤ Bool); eq([e1, e2],Bool);Bool (3.6)

[[¬ e, ε]]I ≡ ch(ε ≤ Bool); [[e,Bool]]I ;Bool (3.7)

[[Q x : e, ε]]I ≡ ch(ε ≤ Bool); [[e,Bool]]I ;Bool for Q ∈ {∀,∃} (3.8)

Arithmetic

[[e1 + e2, ε]]I ≡ ch(ε ≤ Int);α := eq([e1, e2], ε); ret(α ∈ {Nat, Int}) (3.9)

[[e1 < e2, ε]]I ≡ ch(ε ≤ Bool); ch(eq([e1, e2],Nat) ≤ Int);Bool (3.10)

[[n, ε]]I ≡ ch(ε ≤ Int); ret(Nat ≤ ε) (where n is a number) (3.11)

[[Nat, ε]]I ≡ ch(ε ≤ P Int); ret(PNat ≤ ε) [[Int, ε]]I ≡ ch(ε ≤ P Int);P Int (3.12)

Sets

[[e1 = e2, ε]]I ≡ ch(ε ≤ Bool); eq([e1, e2],⊥);Bool (3.13)

[[S ⊆ T, ε]]I ≡ ch(ε ≤ Bool); eq([S, T ],P⊥);Bool (3.14)

[[e1 ∈ e2, ε]]I ≡ [[{e1} ⊆ e2, ε]]I (3.15)

[[S ∪ T, ε]]I ≡ max (P⊥, eq([S, T ], ε)) (3.16)

[[{}, ε]]I ≡ max (P⊥, ε) (3.17)

[[{e1, . . . , en}, ε]]I ≡ P eq([e1, . . . , en],bε) (3.18)

Functions

[[f [e], ε]]I ≡ α := [[e,⊥]]I ; let (α
′ → β) = [[f, α → ε]]I in (ch(α = α′);β) (3.19)

[[domain f, ε]]I ≡ let (α → ) = [[f,bε → ⊥]]I in Pα (3.20)

[[[x ∈ S �→ e], ε]]I ≡ case ε of | α → β : b[[S,Pα]]I → [[e, β]]I

| ⊥ : b[[S,P⊥]]I → [[e,⊥]]I (3.21)

[[[S → T ], ε]]I ≡ case ε of | P (α → β) : P (b[[S,Pα]]I → b[[T,Pβ]]I )

| ⊥ : P (b[[S,P⊥]]I → b[[T,P⊥]]I) (3.22)

Fig. 2. Rules for the type inference operator [[·]]I



296 S. Merz and H. Vanzetto

Records and Tuples

[[r.h, ε]]I ≡ let Rec {. . . , h �→ α, . . .} = [[r,Rec {h �→ ε}]]I in α (3.23)

[[t[i], ε]]I ≡ let Tup [. . . , αi, . . .] = [[t,⊥]]I in max (αi, ε) (3.24)

[[[h1 �→ e1, . . . , hn �→ en], ε]]I ≡ case ε of | Rec {hi �→ εi} :Rec {hi �→ [[ei, εi]]I}
| ⊥ : Rec {hi �→ [[ei,⊥]]I} (3.25)

[[〈e1, . . . , en〉, ε]]I ≡ case ε of | Tup [εi] : Tup [[[ei, εi]]I ]

| ⊥ : Tup [[[ei,⊥]]I ] (3.26)

Fig. 3. Rules for the type inference operator [[·]]I (continued)

propagating the type information through the formula. The type information
associated with a symbol x is updated to a larger type when so required by the
expected minimum type ε.

The operator [[·]]I assigns types to complex expressions based on the types of
their constituents. Although expressions such as 〈a〉∪0 or 3+true appear silly,
they are allowed in TLA+, yet their meaning is unknown. Our fragment rules out
such expressions by enforcing a typing discipline that requires subexpressions to
have types compatible with the larger expression.

When type inference succeeds on a proof obligation, the typing environment
type will contain the resulting final type assignments. There are two reasons why
the inference algorithm may fail: (1) The expected type ε or the type obtained
from subexpressions can be incompatible with the type associated with primitive
operators, as in the examples given above. The inference rules check for this kind
of mismatch using the operators ch and ret. (2) Type inference can fail to solve
a constraint stating that two or more expressions need to be of the same type,
as we discuss next.

The sorting discipline of SMT solvers requires in several cases that subex-
pressions of a TLA+ expressions be assigned the same type. This is in particular
true for the expressions e1 and e2 in e1 = e2, e1 ⊆ e2, if p then e1 else e2
(rules 3.13, 3.14, 3.5); the second of these expressions moreover requires e1 and
e2 to be of set type. Arithmetic expressions (rules 3.9-3.10) and set operators
(3.16 and 3.18) pose similar constraints. The expression e1 ∈ e2 requires e2 to
be of type Pα and e1 of type α (rule 3.15), and f [e] requires f to be of type
α → α′, and e of type α (rule 3.19), for some types α, α′. Similarly, we do not
allow different applications of the same function or operator symbol to return
values of different types. For those cases, the type inference rules make use of the
function eq([e1, . . . , en], ε) : τ , that given a list of expressions e1, . . . , en and an
expected type ε, returns the common type of all expressions ei (bounded below
by ε), or fails if no such type can be assigned.

Type inference proceeds in three steps, that all rely on (variants of) the opera-
tor [[·]]I . We will explain the algorithm using a proof obligation whose hypotheses
are x ∈ S and S ⊆ Nat and whose conclusions are x+0 = x and y∪{} = y. In the



Automatic Verification of TLA+ Proof Obligations with SMT Solvers 297

first step, the algorithm computes an approximate type assignment for the proof
obligation by applying the operator [[·]]safeI , which differs from [[·]]I by restricting
types to safe types defined by the grammar τs ::= ⊥ | P τs (the rules of Figs. 2
and 3 are adapted accordingly). In other words, this step only distinguishes
between elementary values and sets, and ensures that all symbols that appear in
the proof obligation are used consistently according to these categories. In our
running example, it infers types ⊥ for the symbol x, and P⊥ for y and S.

The second step refines this type assignment by running the operator [[·]]I on
“typing hypotheses”, i.e. available facts of the forms

x⊗ e and ∀a1 ∈ S1, . . . , an ∈ Sn : x(a1, . . . , an)⊗ e,

for ⊗ ∈ {=,∈,⊆}, starting from the typing environment computed during the
first step. In these expressions, x is a constant, variable or operator, and e is
an expression whose type can already be inferred.2 These typing hypotheses
are obtained by decomposing the assumptions present in a proof obligation by
elementary heuristics. In our example, we have the typing hypotheses x ∈ S and
S ⊆ Nat, and the previously inferred types for x and S will be refined to Nat
and PNat. The reason to perform this step on a restricted set of facts is to avoid
the evaluation of [[·]]I on hypotheses such as z /∈ Nat , which would incorrectly
assign type Nat to z.

The third step ensures that the entire proof obligation can be typed using
the typing environment computed in the first two steps. It does so by applying
the operator [[o]]checkI , which differs from [[·]]I in that the rule 3.1 for symbols is
defined as [[x, ε]]I ≡ ch(ε ≤ type(x)). In particular, the typing environment is
not updated. This step will succeed for our running example, given the previ-
ously assumed typing hypotheses for x. (No typing hypothesis is needed for y.)
However, it would fail without an appropriate typing hypothesis because the
subexpression x+ 0 requires x to be of arithmetic type, not ⊥.

Similarly, consider the proof obligation (¬¬P ) = P . While we may infer that
¬¬P is Boolean, the typing rule for equality requires that the expressions on
both sides must be of equal type. However, the type of P inferred during the
first step is just ⊥. If we allowed the algorithm to assign Bool as the type of
P the above proof obligation could be proved without any hypotheses – but its
instance (¬¬42) = 42 should not be provable in TLA+. The soundness of the
type inference algorithm is asserted by the following proposition.

Proposition 1. Assume given a TLA+ proof obligation o for which type infer-
ence succeeds. Then for any expression e occurring in the obligation, to which
the algorithm assigns a non-safe type τ , we have Γ � e ∈ [[τ ]]TLA+ where Γ de-
notes the set of typing hypotheses of o and [[τ ]]TLA+ denotes the TLA+ expression
representing the set of values of type τ .

Proof (idea). The first step of the algorithm assigns only safe types, so there is
nothing to prove. Note that semantically, safe types correspond to the universe

2 For variables, facts of this kind usually come from the type invariant. Our backend
requires similar type-correctness lemmas for operators.



298 S. Merz and H. Vanzetto

of all TLA+ values, so that step cannot introduce any unsoundness. However, if
it fails, the proof obligation cannot be represented in the multi-sorted logic of
SMT solvers. The assertion for the second and third steps is proved by induction
on the expression e, using the rules of Figs. 2 and 3. qed

4 From TLA+ to SMT

Once a type assignment is determined for the symbols in a TLA+ proof obliga-
tion, it can be translated to the input languages of SMT solvers. This is done
in two steps. In a first phase, the proof obligation is pre-processed to eliminate
expressions that are not directly available in SMT, such as set operators or func-
tion expressions. The resulting formula will contain only TLA+ expressions that
have a direct representation in the first-order logic of SMTs, namely, the logi-
cal and arithmetic operators and the if/then/else construct. These are called
basic expressions in the language ξb. The translation to our target languages –
SMT-LIB, Yices and Z3 – is then just a syntactic rewriting.

The operator [[·]]B : ξ → ξb transforms TLA+ expressions to basic expressions,
using the type information gathered previously. During this transformation, we
temporarily introduce λ-terms to represent non-basic expressions such as set
or function operators. We will prove that all λ-terms introduced during the
translation of a well-typed TLA+ expression can be β-reduced to an expression
in ξb, which no longer contains λ-expressions.

Sets are encoded by their characteristic predicate, allowing for the direct trans-
lation of the set membership relation. Set of sets are not considered for this
translation, in order to stay within the realm of first-order logic. Any hypothe-
ses of a proof obligation that fall outside this class are discarded. For example,
hypotheses of the form S ∈ T where T is of type PP τ are useful during type
inference in order to determine the type of S but are then dropped during the
translation.

A similar translation for sets in Event-B was given by Déharbe [7], who also
considers alternative representations of sets, such as via arrays or using a finite
axiomatization of ZF set theory. Hence, if S is an expression of type P τ then
[[S]]B is a λ-abstraction, and [[e ∈ S]]B ≡ [[S]]B([[e]]B). Elementary sets are rep-
resented as uninterpreted functions. The following rules indicate the translation
of more complex set expressions; we simplify the presentation of the rules by
omitting the type annotations.

[[S ∪ T ]]B ≡ λx. [[x ∈ S ∨ x ∈ T ]]B (4.1)

[[S ⊆ T ]]B ≡ [[∀x : x ∈ S ⇒ x ∈ T ]]B (4.2)

[[{}]]B ≡ λx. false (4.3)

[[{e1, . . . , en}]]B ≡ λx. [[x = e1 ∨ . . . ∨ x = en]]B (4.4)

[[Nat]]B ≡ λx. x ≥ 0 (4.5)

[[Int]]B ≡ λx. true (4.6)



Automatic Verification of TLA+ Proof Obligations with SMT Solvers 299

Translation of equality depends on the type of the two sub-expressions, which
must be equal because of typing rule 3.13.

[[e1 = e2]]B ≡ case [[e1,⊥]]I of (4.7)

| P : [[∀x : x ∈ e1 ⇔ x ∈ e2]]B
| → : [[domain e1 = domain e2

∧ ∀x : x ∈ domain e1 ⇒ e1[x] = e2[x]]]B

| : [[e1]]B = [[e2]]B

Similarly to set membership, function application reduces to λ-aplication
(rule 4.8). A function [x ∈ S �→ e] is translated to λy. [[e(x ← y)]]B (rule 4.9),
where x is replaced by y in the expression e (the domain S is represented sepa-
rately, as explained later).

[[f [e]]]B ≡ [[f ]]B([[e]]B) (λ-application) (4.8)

[[[x ∈ S �→ e]]]B ≡ λy. [[e(x← y)]]B (4.9)

[[[S → T ]]]B ≡ λf. [[S = domain f ∧ ∀x ∈ S : f [x] ∈ T ]]B (4.10)

[[domain f ]]B ≡ [[dom(f)]]B (when f is a symbol)

[[domain [x ∈ S �→ e]]]B ≡ [[S]]B (4.11)

The translation of function or operator symbols is guided by their types. In
case of atomic type, they are simply represented by symbols of appropriate type
declared in the SMT output. An n-ary operator or function that returns a set of
individuals is represented as an (n+1)-ary characteristic predicate. For example,
a function symbol f : Int → P Int will be encoded by a binary predicate f over
integers.

Because SMT functions have no notion of function domain other than their
argument type(s), we associate with each function or operator symbol f a set
domain f . We maintain a mapping dom : Id �→ ξ that associates symbols with
their domains. Domains of operators are extracted from the corresponding typing
hypotheses. For every function or operator application that occurs in the proof
obligation, we check that the argument values are in the domain: otherwise
the value of the application would be unspecified. To this end, we define an
auxiliary operator [[·]]F : ξ → ξ that computes corresponding proof obligations. It
maintains the structure of the original proof obligation, preserving the quantified
variables and conditionals, and collects all function or operator applications that
occur in the formula. In particular, we define the following rules.

[[f [e]]]F ≡ [[f ]]F ∧ [[e]]F ∧ e ∈ domain f

[[f(e)]]F ≡ [[f ]]F ∧ [[e]]F ∧ e ∈ dom(f)

[[∀x : e]]F ≡ ∀x : [[e]]F [[e1 ∧ e2]]F ≡ [[e1]]F ∧ [[e2]]F etc.

[[[x ∈ S �→ e]]]F ≡ ∀x : [[x ∈ S ⇒ e]]F

For compound expressions other than logical formulas, the operator [[·]]F recurses
on all subexpressions. For example, [[[e1 ⊆ e2]]]F ≡ [[e1]]F ∧ [[e2]]F . For atomic
expressions x, we define [[x]]F ≡ true.



300 S. Merz and H. Vanzetto

It can be shown that given a well-typed TLA+ expression e from the fragment
ξ, all λ-terms that occur in its translation [[e]]B can be β-reduced, as stated by
the following proposition.

Proposition 2. Given a well-typed TLA+ expression from the fragment ξ that
contains only sets of individuals and functions whose arguments are atomic types,
then the β-normal form of [[e]]B does not contain λ-terms.

Proof (idea). The translation of expressions e ∈ S and f [e] introduces function
applications that, due to the assumption on the types of TLA+ expressions that
appear in the input, remove any λ’s introduced during the translation. The only
atomic formulas that directly involve set or function types are S ⊆ T , S = T , and
f = g, for sets S and T and functions f and g, and in these cases the translation
introduces explicit quantifiers that provide the required function arguments for
β-reduction. qed

After transforming a proof obligation o in ξ to a basic expression, [[o]]B is ready
to be translated to the input format of SMT solvers. Purely arithmetic and first-
order expressions are translated to the corresponding built-in operators of the
target languages. For example, the basic expression e1 + e2 (where e1 and e2
must be of arithmetic type because of type checking) is translated to SMT-LIB
as (+ e1 e2) and ∀x : e as (forall ((x [[τx]]S)) e), where x is a fresh identifier, τx is
the type of x as determined by type inference, and where [[·]]S translates a type
to an SMT sort.

The SMT-LIB, Yices, and Z3 backends mainly differ in the encoding of tuples
and records. SMT-LIB currently does not have a pre-defined theory for these
types, whereas Yices supports them natively, and the Z3 extension of SMT-LIB
provides algebraic data types. These kinds of expressions are therefore translated
differently for each particular solver format. Currently, only constituents of tuples
and records of atomic types are allowed.

In the Yices format, the encoding of records and tuples is almost verbatim. For
example, the TLA+ record [h1 �→ e1, h2 �→ e2] is translated to (mk-record h1::e1
h2::e2) and the expression r.h corresponds to (select r h). The type Rec {h1 �→
τ1, h2 �→ τ2} is represented as the sort (record h1 :: τ1 h2 :: τ2). The translation
of tuples is analogous, with indexes taking the place of record field names.

For every record type r = Rec {h1 �→ τ1, . . . , hn �→ τn}, the Z3 backend
declares the data type

(record-sortr (mk-recordr (h1 τ1) . . . (hn τn))

that introduces the new sort identifier record-sortr, the datatype constructor
mk-recordr, and the selector function hi with their corresponding types. Record
construction and selection are then translated according to the following rules
(the operator [[·]]T : ξ → SMT represents the translation function to SMT
format.)

[[[h1 �→ e1, h2 �→ e2]]]T ≡ λr.[[r = mk-recordr(e1, e2)]]T (4.12)

[[r.h]]T ≡ [[h(r)]]T (4.13)



Automatic Verification of TLA+ Proof Obligations with SMT Solvers 301

In the SMT-LIB backend, records are axiomatized as follows. For each record
sort r that occurs in the proof obligation, we declare a new sort record-sortr
of arity 0. The record constructor and the selector functions are declared sep-
arately as uninterpreted functions with the appropriate sorts. The translation
rules are the same as above (4.12 and 4.13). The logical connection between the
constituents with their function selectors and the constructor are asserted for
each new declared datatype by the axioms

∀x1 : τ1, . . . , xn : τn. xi = hi(mk-recordr x1 . . . xn) for 1 ≤ i ≤ n.

5 Experimental Results

We have used our new backend with good success on several examples that had
previously been proved interactively using tlaps. In particular, we show the
results for two cases in the following table. For each benchmark, we indicate the
size (number of lines) of the interactive proof, the time (in seconds) required to
verify that proof on a standard laptop, as well as the corresponding figures when
parts of the proof are performed using the SMT backend, in its three flavors.

Original SMT-LIB/CVC3 Yices Z3
size time size time size time size time

Bakery 398 24 7 33 76 11 7 5
Memoir 2381 53 208 7 208 5 208 7

The first example concerns the invariant proof for (an atomic version of) the
well-known N -process Bakery algorithm [9], which mainly uses set theory, func-
tions and arithmetic over the natural numbers. It could be reduced from almost
400 lines of interactive proof to a completely automatic proof. The resulting
obligation generates SMT formulas containing 105 quantifiers (many of them
nested), which could be proved by the CVC3 SMT solver in around 33 seconds
and by Z3 in 5 seconds. On the other hand, Yices could not handle the entire
proof obligation at once, and it was necessary to split the theorem into sepa-
rate cases per subaction; it then takes about 11 seconds to prove the resulting
obligations.

More interestingly, the backend could handle significant parts of the type
and safety invariant proofs of the Memoir security architecture [12], a generic
framework for executing modules of code in a protected environment. The proofs
were almost fully automated, except for three sub-proofs that required manual
Skolemization of second-order quantifiers. In terms of lines of proof, they were
reduced to around 10% of the original size. In particular, the original 2381 lines
of proof for the complete type invariant theorems were reduced to 208 lines. Our
three solvers took between 5 and 7 seconds to prove them.

These encouraging results show that significant automation can be gained
by using SMT solver for the verification of standard TLA+ models, without
adapting these models to the SMT backend. There are, however, certain proof



302 S. Merz and H. Vanzetto

obligations that cannot be translated and on which the backend fails. Such ex-
amples typically involve the use of advanced set-theoretic constructs, or even
just sets of sets, which cannot be encoded in first-order logic using characteristic
predicates. For example, our backend cannot prove

∀S ∈ T : S �= {} ∧ (∀x ∈ S : P (x))⇒ ∃x ∈ S : P (x).

In simple cases such as this one, it suffices to Skolemize the outermost quantifier:
the backend will then discard the irrelevant hypothesis S ∈ T that cannot be
translated.

Another source of failures is the use of TLA+ operators that accept arguments
of different SMT sorts and that cannot be type checked according to our typing
discipline. Fortunately, such cases appear rarely in actual specifications.

6 Conclusions

We defined a translation of certain TLA+ proof obligations to the input language
of state-of-the-art SMT solvers. The translation relies on imposing a typing dis-
cipline on the untyped specification language TLA+, and is based on a corre-
sponding type inference algorithm. This discipline restricts the class of TLA+

expressions that can be translated. Nevertheless, a significant fragment of the
source language can be handled. In particular, we support first-order logic, el-
ementary set theory, functions, integer and real arithmetic, records and tuples.
Sets and functions are represented as lambda-abstractions, which works quite ef-
ficiently but excludes handling second-order expressions involving, for example,
sets of sets. The translation of records and tuples relies on an axiomatization
for SMT-LIB, and on appropriate native constructs of Yices and Z3. Our type
inference and translation algorithms provide the formal basis for the implemen-
tation of an SMT-based backend prover for tlaps. Universal set quantifiers that
occur at the outermost level can easily be removed by the user of tlaps, by
introducing Skolem constants. An automatic pre-processing of such terms would
further improve the backend.

In future work, we intend to study the question of interpreting proofs that
many SMT solvers can produce for reconstructing them (as well as the type
assignment) in the trusted object logic of Isabelle/TLA+. This would allow us
to check the results of these solvers, as well as of the translation from TLA+

into SMT input, and would raise the confidence in the SMT backend, just as
currently tlaps can check proofs produced by Zenon.

We also envisage extending our translation to support λ-abstractions (for
functions as basic terms) using, for example, combinators, and to support some
more advanced set-theoretic constructions, perhaps using a different representa-
tion of sets.

Acknowledgements. Denis Cousineau, Damien Doligez, and Leslie Lamport
provided constructive feedback on the design and implementation of the SMT
backend. Helpful comments from the anonymous referees are gratefully acknowl-
edged.



Automatic Verification of TLA+ Proof Obligations with SMT Solvers 303

References

1. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard: Version 2.0. In: Gupta,
A., Kroening, D. (eds.) Satisfiability Modulo Theories (SMT 2010), Edinburgh, UK
(2010), http://www.SMT-LIB.org

2. Barrett, C.W., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 298–302. Springer, Heidelberg (2007)

3. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending Sledgehammer with SMT
Solvers. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS,
vol. 6803, pp. 116–130. Springer, Heidelberg (2011)

4. Bonichon, R., Delahaye, D., Doligez, D.: Zenon: An Extensible Automated Theo-
rem Prover Producing Checkable Proofs. In: Dershowitz, N., Voronkov, A. (eds.)
LPAR 2007. LNCS (LNAI), vol. 4790, pp. 151–165. Springer, Heidelberg (2007)

5. Chaudhuri, K., Doligez, D., Lamport, L., Merz, S.: Verifying Safety Properties
with the TLA+ Proof System. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS,
vol. 6173, pp. 142–148. Springer, Heidelberg (2010)

6. de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

7. Déharbe, D.: Automatic Verification for a Class of Proof Obligations with SMT-
Solvers. In: Frappier, M., Glässer, U., Khurshid, S., Laleau, R., Reeves, S. (eds.)
ABZ 2010. LNCS, vol. 5977, pp. 217–230. Springer, Heidelberg (2010)

8. Dutertre, B., de Moura, L.: The Yices SMT solver. Tool Paper (2006),
http://yices.csl.sri.com/tool-paper.pdf

9. Lamport, L.: A new solution of Dijkstra’s concurrent programming problem. Com-
munications of the ACM 17(8), 453–454 (1974)

10. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, Boston (2002)

11. Lamport, L., Paulson, L.C.: Should your specification language be typed? ACM
Trans. Prog. Lang. Syst. 21(3), 502–526 (1999)

12. Parno, B., Lorch, J.R., Douceur, J.R., Mickens, J., McCune, J.M.: Memoir: Prac-
tical state continuity for protected modules. In: IEEE Symp. Security and Privacy,
Berkeley, California, U.S.A., 2011. IEEE Computer Society. Formal Specifications
and Correctness Proofs: Tech. Report, Microsoft Research (February 2011)

13. Wenzel, M., Paulson, L.C., Nipkow, T.: The Isabelle Framework. In: Mohamed,
O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 33–38.
Springer, Heidelberg (2008)

http://www.SMT-LIB.org
http://yices.csl.sri.com/tool-paper.pdf


An Asymptotically Correct Finite Path
Semantics for LTL

Andreas Morgenstern, Manuel Gesell, and Klaus Schneider

Embedded Systems Group, Department of Computer Science,
University of Kaiserslautern

P.O. Box 3049
67653 Kaiserslautern, Germany

{morgenstern,gesell,schneider}@cs.uni-kl.de
http://es.cs.uni-kl.de

Abstract. Runtime verification of temporal logic properties requires a
definition of the truth value of these properties on the finite paths that
are observed at runtime. However, while the semantics of temporal logic
on infinite paths has been precisely defined, there is not yet an agreement
on the definition of the semantics on finite paths. Recently, it has been
observed that the accuracy of runtime verification can be improved by
a 4-valued semantics of temporal logic on finite paths. However, as we
argue in this paper, even a 4-valued semantics is not sufficient to achieve
a semantics on finite paths that converges to the semantics on infinite
paths. To overcome this deficiency, we consider in this paper Manna
and Pnueli’s temporal logic hierarchy consisting of safety, liveness (guar-
antee), co-Büchi (persistence), and Büchi (recurrence) properties. We
propose the use of specialized semantics for each of these subclasses to
improve the accuracy of runtime verification. In particular, we prove that
our new semantics converges to the infinite path semantics which is an
important property that has not been achieved by previous approaches.

1 Introduction

Runtime verification aims at detecting faults of a system by monitoring its
input/output behavior during runtime. For the specification of the desired be-
havior, temporal logics in general, and linear temporal logic (LTL) in particu-
lar, proved to be convenient formalisms to precisely and conveniently determine
complex temporal properties. During the last two decades, many model-checking
procedures for temporal logics have been developed that improved the efficiency
to become interesting for practical use. As a consequence, the PSL logic (ex-
tending LTL) became now an industry standard that is used by many tools and
programming languages. Since temporal logics are therefore well-established, it
is natural to use them also for runtime verification.

However, while the tools used to solve the model-checking problem refer to
the original LTL semantics that is given for infinite behaviors, runtime verifica-
tion can only reason about the finite behavior that has been observed up to a
considered point of time. Whether a fault occurred at runtime can therefore not
be decided by the existing LTL semantics, and instead one has to consider the
meaning of LTL formulas on finite paths.

N. Bjørner and A. Voronkov (Eds.): LPAR-18, LNCS 7180, pp. 304–319, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://es.cs.uni-kl.de


An Asymptotically Correct Finite Path Semantics for LTL 305

While the semantics of LTL on infinite paths has been precisely defined in
the literature (without producing alternatives), there is not yet such a consensus
on the meaning of LTL properties on finite paths. Several two-valued semantics
for LTL on finite paths have been proposed [6] that are well-suited for safety
properties. In [1], special reset and abort operators have been added to LTL to
cope with finite path semantics, but these do not solve the problem for the other
operators. Recently, it has been observed that at least a three-valued semantics
is necessary to give informative results [14,2,13]. Using three-valued semantics, a
property evaluates to true or false whenever the truth value defined by the LTL
semantics on infinite paths is already determined by its finite prefix. If the finite
prefix does not determine the truth value, an inconclusive result is obtained by
a third truth value. In the first case, the considered prefix is called a good prefix,
otherwise it is called a bad prefix. This scheme is well-suited for pure safety
properties like Gp and simple liveness (guarantee) properties like Fp. Indeed,
it has been observed in [8] that the only properties for which a three-valued
semantics gives satisfactory results consists of boolean combinations of safety
and guarantee properties which form the obligation properties in the temporal
logic hierarchy of Manna and Pnueli [5]. For this reason, the formulas in this
class have been already called prefix properties in [15,16].

However, there are many properties which can not be dealt with such a three-
valued semantics: consider e. g. the request/acknowledge property G (r → Fa)
taken from [2] that states that every request is finally acknowledged. Finite
paths cannot decide the truth of this property since it belongs to the Büchi
(recurrence) class, but not to the prefix (obligation) class. Hence a three-valued
logic will always evaluate to an inconclusive result. In [3], previously proposed
semantics for LTL are compared with each other and a new four-valued semantics
for LTL on finite paths was proposed that is argued to overcome these problems.
For the request/acknowledge property, the proposed RV-LTL semantics yields
value #P (meaning ‘presumable good’) whenever the so-far read finite input path
ends at a point of time where a holds. The value ⊥P (meaning ‘presumably bad’ )
is used whenever the so-far read finite input path ends at a point of time where
r holds, indicating that is is likely that the specification remains unsatisfied.

While the proposed solution gives a reasonable result for the above mentioned
request/acknowledge property, we argue that for other interesting properties,
the proposed RV-LTL semantics gives misleading results: For example, consider
the property FGp1 ∨ FGp2. This property states that from a certain point on,
either always p1 or always p2 holds (note its equivalence to F(Gp1 ∨ Gp2)). For
the behavior p1, p2, p1, p2, . . . , RV-LTL determines the value #P (presumably
good) for every finite prefix, indicating the misleading result that the property
is ‘presumably true’ while the property is not satisfied on the infinite behavior.

In this paper, we therefore define a new semantics of LTL on finite paths to
improve the previously proposed semantics so that the definition on finite paths
converges to the definition of infinite paths. To this end, we consider the temporal
logic hierarchy of Manna and Pnueli [5,16]. Instead of distinguishing between
presumably good and presumably bad in case no definitive answer is possible,
we use truth values that are more specialized to the unknown infinite suffix.
For example, a persistence (co-Büchi) property like FGp1 ∨ FGp2 is evaluated



306 A. Morgenstern, M. Gesell, and K. Schneider

over a four-valued semantics with the truth values {true, false,#FG,⊥FG} with
the intuition that whenever an infinite path satisfies the property from a certain
point of time on, we assign #FG for the corresponding prefixes of that path from
that point on. On the other hand, output ⊥FG is used whenever the system has
not yet stabilized; and outputs true and false are used whenever a definite answer
is possible.

While this modification of the many-valued semantics seems to be only a
notational change, it already improves the evaluation of the above example:
FGp1 ∨ FGp2 is evaluated on every finite prefix of even length of p1, p2, p1, p2 to
⊥FG so that a verification engineer considering the results during simulation or
runtime verification will see that either the system has not yet stabilized or that
something is wrong in the system. Indeed, we prove that our new semantics is
asymptotically correct for persistence properties in the sense that only finitely
many prefixes of a satisfying infinite path of a persistence property yield the
wrong result ⊥FG.

Recurrence properties like the request/response property are evaluated over
a different four-valued set of truth values {true, false,#GF,⊥GF}. For the prefixes
of a satisfying infinite path of a recurrence property, infinitely often the right
result #GF is obtained so that we again obtain an asymptotically correct seman-
tics for recurrence properties. For the simpler classes of safety, guarantee and
prefix (boolean combination of safety and guarantee) properties that can be al-
ready evaluated on a three-valued semantics, we obtain the same semantics as
in RV-LTL (and LTL3). Our improvements are based on a new definition of the
disjunction operator which also considers the prefix of a path, and a context-
dependent interpretation of the next operator.

While we ultimately fail to give a finite path semantics for full LTL, we are
able to provide a solution for all classes of the temporal logic hierarchy. In prac-
tice, this is no restriction: nearly all formulas belong (syntactically) to the most
powerful class of the hierarchy and for others, it is typically not difficult to find
an equivalent formula in that class [11]. This is due to the fact that this class
contains an (semantically) equivalent formula for every LTL formula [16].

The outline of this paper is as follows: In Section 2, the syntax and semantics
of LTL over infinite words and Manna and Pnueli’s temporal logic hierarchy are
reviewed. We reconsider the definition of two previously published definitions
of LTL on finite words in Section 3, namely LTL3 [4] which is essentially the
same as [13] and the four-valued semantics of RV-LTL [3] which is essentially the
logic-based variant of [8]. Since both logics produce misleading results on certain
properties, we present a new semantics of LTL on finite paths in Section 4. We
prove that our new semantics is asymptotically correct in Section 4.3 and add
concluding remarks in Section 5.

2 Syntax and Semantics of LTL

Linear Temporal Logic (LTL) [12,7] is a popular formalism for the specification
of temporal properties. For a given set of boolean variables (propositions) V , we
define the set of LTL formulas by the following grammar: ϕ := V | ¬ϕ | ϕ ∨ ϕ |
Xϕ | [ϕ U ϕ]. Additionally, we define ϕ∧ψ, Fϕ, Gϕ, and [ϕ U ψ] as abbreviations



An Asymptotically Correct Finite Path Semantics for LTL 307

for ¬(¬ϕ ∨ ¬ψ), [1 U ϕ], ¬F¬ϕ, and [ϕ U ψ] ∨ Gϕ, respectively. The semantics
of LTL is usually given with respect to an infinite path through a transition
system. These infinite paths are nothing else than infinite sequences of boolean
assignments to the variables V :

Definition 1 (Infinite Words). Given a set of atomic propositions V, an in-
finite word is a function v : N → ℘(V). For reasons of simplicity, v(i) is often
denoted by v(i) for i ∈ N. Using this notation, words are often given in the
form v(0)v(1) . . . . The suffix starting at t is written as : v(t... ) := v(t)v(t+1) . . . .
For a ∈ V, we define v = aω as v = a(0)a(1)a(2) . . . . Given an infinite word
v = a(0)a(1) . . . , we define v(s...t) as the finite word u = v(s)v(s+1) . . . v(t).

The semantics of LTL is typically defined as follows [7,16]:

Definition 2 (Semantics of LTL). Given an infinite word v, the following
rules define the semantics of LTL:

– [v |=ω p] iff p ∈ v(0) for p ∈ V
– [v |=ω ¬ϕ] iff [v �|=ω ϕ]
– [v |=ω ϕ ∧ ψ] iff [v |=ω ϕ] and [v |=ω ψ]
– [v |=ω ϕ ∨ ψ] iff [v |=ω ϕ] or [v |=ω ψ]
– [v |=ω Xϕ] iff [v(1... ) |=ω ϕ]
– [v |=ω [ϕ U ψ]] iff there is a δ such that [v(δ... ) |=ω ψ] and for all t with t < δ,

we have [v(t... ) |=ω ϕ]

In [5,15,16], a temporal logic hierarchy has been defined in analogy to the hierar-
chy of ω-automata. Following [15], we define the hierarchy of temporal formulas
by the grammar rules of Figure 1:

PG ::= V | ¬PF | PG ∧ PG | PG ∨ PG

| XPG | [PG U PG]
PF ::= V | ¬PG | PF ∧ PF | PF ∨ PF

| XPF | [PF U PF]
PPrefix ::= PG | PF | ¬PPrefix | PPrefix ∧ PPrefix | PPrefix ∨ PPrefix

PGF ::= PPrefix

| ¬PFG | PGF ∧ PGF | PGF ∨ PGF

| XPGF | [PGF U PGF] | [PGF U PF]

PFG ::= PPrefix

| ¬PGF | PFG ∧ PFG | PFG ∨ PFG

| XPFG | [PFG U PFG] | [PG U PFG]
PStreett ::= PGF | PFG | ¬PStreett | PStreett ∧ PStreett | PStreett ∨ PStreett

Fig. 1. Classes of the Temporal Logic Hierarchy

Definition 3 (Temporal Logic Classes). We define the logics TLκ for κ ∈
{G, F, Prefix, FG, GF, Streett} by the grammar rules given in Figure 1, where
TLκ is the set of formulas that can be derived from the non-terminal Pκ (V
represents any variable v ∈ V).

TLG is the set of formulas where each occurrence of a weak/strong temporal
operator is positive/negative, and similarly, each occurrence of a weak/strong
temporal operator in TLF is negative/positive. Hence, both logics are dual to
each other, which means that one contains the negations of the other one. TLPrefix



308 A. Morgenstern, M. Gesell, and K. Schneider

is the boolean closure of TLG and TLF. The logics TLGF and TLFG are constructed
in the same way as TLG and TLF; however, there are two differences: (1) these
logics allow occurrences of TLPrefix where otherwise variables would have been
required in TLG and TLF, and (2) there are additional ‘asymmetric’ grammar
rules. It can be easily proved that TLGF and TLFG are also dual to each other,
and their intersection strictly contains TLPrefix. Finally, TLStreett is the boolean
closure of TLGF and TLFG. While there are syntactic restrictions on TLStreett,
i. e. not every LTL formula is a TLStreett formula, TLStreett contains for each LTL
formula an equivalent formula, and nearly all formulas used in practice belong
to TLStreett [11]. Moreover, for those formulas not in TLStreett, it is typically not
difficult to find an equivalent one in TLStreett.

3 Previous Definitions of LTL on Finite Paths

In the following, we consider the recently proposed semantics for LTL on finite
paths as given in [3]. We also show that this definition has certain deficiencies.

3.1 LTL3

In [2], LTL3 was introduced as an extension of LTL to finite paths which follows
the idea that a finite path is a prefix of a so-far unknown infinite path. LTL3
uses three-valued truth values B3 = {1, 0, ?}. While the syntax of LTL3 coincides
with that of LTL, its semantics is defined on finite words:

Definition 4 (Semantics of LTL3). Let u = u(0)u(1) . . . u(n) ∈ Σ∗ denote a
finite path of length n+1. The truth value of a LTL3 formula ϕ w.r.t. u, denoted
by [u |=3 ϕ] is defined as follows:

[u |=3 ϕ] =

⎧⎪⎨⎪⎩
1 if ∀w ∈ Σω : uw |=ω ϕ

0 if ∀w ∈ Σω : uw �|=ω ϕ

? else

The intuition behind LTL3 is clear: whenever all infinite words obtained by con-
catenating the finite word with an infinite suffix agree on the truth value of ϕ,
this truth value is used also for the prefix. Otherwise, the value ? is used. As
argued in [3], LTL3 can never give a result other than ? for request-response
properties like G(r → Fa) since every prefix of an infinite accepted word can be
both a good or a bad prefix. Hence the authors propose to combine LTL3 with
another logic called FLTL.

3.2 FLTL

In [9,3] it is argued that there is a need to distinguish between a strong (X) and
a weak (X) next operator when interpreting LTL over finite paths. While a weak
next operator should be satisfied whenever no next position exists, a strong next
operator should be evaluated to false in that case. This leads to the following
definition of FLTL:



An Asymptotically Correct Finite Path Semantics for LTL 309

Definition 5 (FLTL). Let u = u(0)u(1) . . . u(n) ∈ Σ∗ denote a finite path of
length n + 1 with u �= ε. The truth value of a FLTL formula ϕ wrt. u, denoted
as [u |=FLTL ϕ], is an element of B2 = {⊥,#} and is inductively defined as
follows: While atomic propositions and boolean operators are defined as for LTL,
the temporal operators are defined as follows:

[u |=FLTL Xϕ] =

{
[u1 |=FLTL ϕ] if u1 �= ε

# else

[u |=FLTL Xϕ] =

{
[u1 |=FLTL ϕ] if u1 �= ε

⊥ else

[u |=FLTL [ϕ U ψ]] =

⎧⎪⎨⎪⎩
# ∃k ∈ {1, . . . n} : [uk |=FLTL ψ] = #∧

∀1 ≤ l ≤ k : [ul |=FLTL φ] = #
⊥ else

[u |=FLTL [ϕ U ψ]] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
# ∀1 ≤ l ≤ n : [ul |=FLTL ϕ] = #∨

∃k ∈ {1, . . . n} : [uk |=FLTL ψ] = #∧
∀1 ≤ l ≤ k : [ul |=FLTL φ] = #

⊥ else

In [3], the two definitions of LTL3 and FLTL are combined in a logic called RV-
LTL. This logic is evaluated over a four-valued de Morgan lattice 0 � ⊥P �
#P � 1 to express false, presumably false, presumably true and true. To obtain
a de Morgan lattice and thus a truth domain, the operators � and � are defined
as expected and 1/0 and #P /⊥P , respectively, are defined to be complementary
to each other. Note that the thereby obtained truth domain B4 is not a boolean
lattice.

RV-LTL is now defined such that the truth value of LTL3 is used whenever it
is conclusive, i.e. gives 1 or 0. If LTL3 provides the inconclusive result (?), the
definition of FLTL is used instead:

Definition 6 (RV-LTL). Let u = u(0)u(1) . . . u(n) ∈ Σ∗ denote a finite path of
length n+1 with u �= ε. The truth value of an RV-LTL formula ϕ wrt. u, denoted
as [u |=FLTL ϕ], is an element of B4 and is defined as follows:

[u |=3 ϕ] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if [uw |=3 ϕ] = 1

0 if [uw |=3 ϕ] = 0

#P if [uw |=3 ϕ] =? ∧ [uw |=FLTL ϕ] = #
⊥P if [uw |=3 ϕ] =? ∧ [uw |=FLTL ϕ] = ⊥

3.3 Problems with RV-LTL

In the following, we consider some examples to show unsatisfactory results of
the RV-LTL semantics.



310 A. Morgenstern, M. Gesell, and K. Schneider

Request/Acknowledge Properties: In [3], it has been shown that Fϕ ≡RV

ϕ∨XFϕ holds, satisfying the intuitive meaning that Fϕ holds, iff either ϕ holds
immediately or there must be a future state satisfying ϕ. If no such future state
exists, the formula evaluates to ⊥P , unless the formula evaluates to one of {1, 0},
in which case the future is not important. Similarly, we have Gϕ ≡RV ϕ ∧ XGϕ
which shows that ϕ must be satisfied in the current state and in all observable
future states. Hence, if there is no future state, the formula evaluates to #P ,
unless the formula evaluates to one of {1, 0}. Hence, the request/acknowledge
property is evaluated as follows:

G (r → Fa) ≡RV (r → Fa) ∧ XG (r → Fa)

≡RV (¬r ∨ a ∨ XFa) ∧ XG (r → Fa)

This formula evaluates to ⊥P under RV-LTL if the path contains an r but
ends before a occurs and evaluates to #P in all other cases. Thus, its se-
mantics seems to be reasonable. However, consider the following generalized
request/acknowledge property:

G (r1 → Fa1) ∧ G (r2 → Fa2) ≡RV

(¬r1 ∨ a1 ∨ XFa1) ∧ XG (r1 → Fa1) ∧ (¬r2 ∨ a2 ∨ XFa2) ∧ XG (r2 → Fa2)

According to the previous discussion, a finite word that satisfies r1 ∧ a2 on odd
positions and r2∧a1 on even positions (the others being false) will be evaluated to
⊥P in all states. This is unfortunate because the infinite word that is obtained
by an infinite concatenation of those odd/even positions clearly satisfies the
specification under the infinite semantics

Stabilization Properties: While having a semantics that evaluates to a ‘bad’
value even if we read a ‘good’ word may be acceptable, the following example
demonstrates that RV-LTL even has the undesirable property that for a non-
accepted word of a LTL property, each finite prefix may be evaluated to #P . To
this end, consider the following RV-LTL equivalence:

FGa ∨ FG¬a ≡RV F
(
a ∧ XGa

)
∨ F
(
¬a ∧ XG¬a

)
Since XGa is evaluated weakly and FGa may start the evaluation of XGa at an
arbitrary position (for example, the last position of the finite word read so far),
every finite word that ends with a evaluates to true. However, with the same
argument, every finite word that ends with ¬a is evaluated to true, too. Hence,
the word with a on even positions and ¬a on odd positions will be evaluated to
#P on each position. Nevertheless, the thereby constructed infinite word is not
accepted by the infinite semantics of LTL. The problem is that the evaluation
of ϕ ∨ ψ in RV-LTL does not consider which property has been responsible for
the satisfaction in previous steps and hence such an infinite shift between good
and bad prefixes for ϕ and ψ is possible. We will later see that this problem can
be fixed by an improved semantics for the disjunction.



An Asymptotically Correct Finite Path Semantics for LTL 311

The Problem with Two Next-Operators: While having weak/strong next
operators may seem plausible at first sight, we argue that it leads to problems
when one is interested in an asymptotically correct semantics for LTL. One might
expect that both X and X will behave asymptotically like the original X operator.
However, this may not hold: Consider e.g. the property GXa. This property is
evaluated to ⊥ on every input at every step. However, since the formula GXa
holds on the word aω with the infinite semantics, one might expect that at
least at some point, GXa yields #, which is however not the case. Moreover, the
intuitive meaning of G should be that it is evaluated to # as long as we have
not detected that the property is violated. This intuitive interpretation does no
longer hold if we allow a X inside a G. A similar problem occurs with FXa. One
might expect that in the limit, this formula behaves like FXa. However, since
Xa is evaluated weak, it is not hard to see that this formula evaluates to #, no
matter which input is read.

To circumvent those problems, we refrain therefore from two different next
operators and evaluate the next operator depending on the context of a formula.
The intuitive idea behind our construction is that if Xϕ is in the scope of a weak
temporal operator, it is evaluated weakly, otherwise it is evaluated strongly.
Hence, for TLG formulas, we evaluate the formula always weakly in accordance
to the intuitive meaning that a safety formula should be evaluated to # as long
as nothing bad happened. Analogously, we evaluate a X operator in the scope of
a strong until operator strongly, as e.g. in F(a∧Xb). This supports the intuitive
meaning that a guarantee property should be evaluated to ⊥ as long as it has
not definitely been satisfied.

4 Asymptotic Finite Linear Temporal Logic (RV∞–LTL)

In this section, we define for each κ ∈ {G, F, Prefix, FG, GF, Streett} specialized
semantics that are intended to replace the FLTL semantics in the definition of
RV-LTL. We call the resulting logics RV∞–TLκ. For better readability of the
following definitions, we assume that the case conditions are evaluated in a top-
down manner, i.e, if the first satisfied case is used (ignoring all remaining ones,
including also possibly satisfied cases).

4.1 The Temporal Logic Classes RV∞–TLG and RV∞–TLF

We start by defining the base class RV∞–TLG:

Definition 7 (Semantics of Linear Temporal Logic RV∞–TLG). Let u =
u(0)u(1) . . . u(n) ∈ Σ∗ denote a finite path of length n + 1. The truth value of
an TLG formula ϕ wrt. u, denoted with [u |=G ϕ], is an element of B3 and is
inductively defined as follows:

– [ε |=G ϕ] = #G

– [u |=G a] =

{
1 if a ∈ u(0)

0 else
, for every a ∈ V



312 A. Morgenstern, M. Gesell, and K. Schneider

– [u |=G ϕ ∧ ψ] =

⎧⎪⎨⎪⎩
1 if ∀w ∈ Σω : uw |=ω ϕ ∧ ψ
#G, if [u |=G ϕ] = #G and [u |=G ψ] = #G

0, otherwise

– [u |=G ϕ ∨ ψ] =

⎧⎪⎨⎪⎩
1 if ∀w ∈ Σω : uw |=ω ϕ ∨ ψ
#G, if [u |=G ϕ] = #G or [u |=G ψ] = #G

0, otherwise

– [u |=G Xϕ] = [u(1...n) |=G ϕ]
– [u |=G [ϕ U ψ]] = [u |=G (ψ ∨ (ϕ ∧ X [ϕ U ψ]))]

Taking into account that the X operator is evaluated weakly in a TLG formula,
the definition of [ϕ U ψ] is exactly the fixpoint evaluation of [ϕ U ψ]. Hence, it
is not hard to see that FLTL and RV∞–LTL are evaluated in the same manner:

Proposition 1. Let ϕ be a TLG formula and u �= ε be a finite word. Let ϕ′

be obtained from ϕ by replacing each X operator by a X operator. Then, the
following holds: [u |=G ϕ] = #G iff [u |=FLTL ϕ

′] = #.

Since the negations of safety properties are guarantee properties, we define:

Definition 8 (Semantics of Linear Temporal Logic RV∞–TLF). Given a
finite prefix u = u(0)u(1) . . . u(n) of an infinite word u∞, the the semantics of

RV∞–TLF is defined by [u |=F ϕ] =

⎧⎪⎨⎪⎩
1, if [u |=G ¬ϕ] = 0

⊥F, if [u |=G ¬ϕ] = #G

0, otherwise

Hence, the following is also obvious:

Proposition 2. Let ϕ be a TLF formula and u �= ε be a finite word. Let ϕ′

be obtained from ϕ by replacing each X operator by a X operator. Then, the
following holds: [u |=F ϕ] = 1 iff [u |=FLTL ϕ′] = #.

4.2 The Temporal Logic RV∞–TLFG

In the following, we will use u |=FG ϕ as shorthand for [u |=FG ϕ] ∈ {1,#FG} and
u �|=FG ϕ as a shorthand for [u |=FG ϕ] ∈ {0,⊥FG}

Definition 9 (Semantics of Linear Temporal Logic RV∞–TLFG). Let u =
u(0)u(1) . . . u(n) ∈ Σ∗ denote a finite path of length n + 1. The truth value of
a TLFG formula ϕ wrt. u, denoted with [u |=FG ϕ], is an element of B4 and is
recursively defined as follows:

[u |=FG ϕ] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if ∀w ∈ Σω : uw |=ω ϕ

0 if ∀w ∈ Σω : uw �|=ω ϕ

#FG
1 if ϕ ∈ TLG

2 and u |=G ϕ

[u |=FG′ ϕ] otherwise



An Asymptotically Correct Finite Path Semantics for LTL 313

where we define [u |=FG′ ϕ] by: 3

– [ε |=FG′ ϕ] = ⊥FG

– [u |=FG′ ϕ ∧ ψ] =
{
#FG, if u |=FG ϕ and u |=FG ψ

⊥FG, otherwise

– [u |=FG′ ϕ∨ψ]=

⎧⎪⎨⎪⎩
#FG, if ∃t

(
u(0...t) �|=FG ϕ ∨ ψ

)
and((

∀nk=t+1u
(0...k) |=FG ϕ

)
or
(
∀nk=t+1u

(0...k) |=FG ψ
))

⊥FG, otherwise

– [u |=FG′ [ϕ U ψ]] =

⎧⎪⎨⎪⎩
#FG, if ∃t

(
u(0...t) �|=FG [ϕ U ψ]

)
and

∃j ≤ t.u(j...n) |=FG ψ ∧ ∀k < j.u(k...n) |=FG ϕ

⊥FG, otherwise

– [u |=FG′ [ϕ U ψ]] =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

#FG, if
(
∀k ≤ n.u(k...n) |=FG ϕ

)
(∗)

or

∃t
(
u(0...t) �|=FG [ϕ U ψ]

)
and

∃j ≤ t.u(j...n) |=FG ψ ∧ ∀k < j.u(k...n) |=FG ϕ

⊥FG, otherwise

Before presenting the proof of asymptotic correctness, we would like to emphasize
the strength of our definition which is the consideration of breakpoints4 in the
definition of the ∨ and the two until operators. This breakpoint is a point of time
where the currently evaluated formula has evaluated to ⊥FG for the last time. In
case of a disjunction, the evaluation of a finite word u of length n+ 1 evaluates
to #FG if and only if after a breakpoint (which can be also at position -1 where
we evaluate the empty word) one of the two formulas invariantly evaluates to
#FG. This ensures that we can not jump freely from evaluating once ϕ and once
ψ, but must instead stick to one particular subformula.

A similar trick is used in the definition of the strong until operator. Here, we
demand that the starting point j from where on ψ holds does not cross the last
breakpoint. This ensures that we can not freely jump to an arbitrary position and
restart the evaluation of ψ in each step in an RV-context. Consider for example
the formula [a U (FGb ∨ FGc)] and the following path for runtime verification: a
holds in every step while in an even step b holds and in an odd step c holds. If
we remove the t-breakpoint from the definition, we would have the unpleasant
behavior that this formula evaluates to #FG in every step which is however not
true. Having the breakpoint ensures that this can not happen.

1 The value �G is also reasonable here.
2 Notice that the case ϕ ∈ TLF is already contained in the first case, because u |=F ϕ
is defined as [u |=F ϕ] = 1, which means that once we found that a TLF is satisfied,
it is satisfied for all suffixes.

3 Notice that the case of propositional variables is handled by the RV∞–TLG evaluation.
4 Readers familiar with Miyano and Hayashi’s breakpoint construction [10] for the non-
determinization of alternating Büchi automata or the closely related determinization
procedure for co-Büchi automata [16] might notice the similarity: in their construc-
tion a set is filled with a new set of states whenever it is discovered that the co-Büchi
condition is falsified.



314 A. Morgenstern, M. Gesell, and K. Schneider

4.3 Asymptotic Correctness

We will now turn to the proof of asymptotic correctness. To this end, we show
that an (infinite) word u is accepted by a TLFG formula if and only if there is
a definitive last breakpoint, called the rv-threshold, so that after this point, the
RV∞–TLFG-definition invariantly evaluates to #FG.

Lemma 1. Let u be an infinite word, and Φ be an TLFG formula. Then, the
following holds: If u |=ω Φ, there exists a rv-threshold t ∈ N such that for every
k > t we have u(0...k) |=FG Φ.

Proof. We neglect the case that at some point the whole formula evaluates to 1
since in that case the claim trivially holds. We prove this lemma by induction
on the formula length. Clearly, if the length is 1, we have a constant value and
our rv-threshold is 1 so that the proof is obtained. Assume now that the claim
holds for every formula of length l. We show that it also holds for formula of
length l + 1. To this end, we split the proof into different cases, depending on
the top-level operator Φ:

ϕ ∨ ψ: According to the definition of LTL, we must have that u |=ω ϕ or u |=ω ψ
holds. W.l.o.g. assume that u |=ω ϕ holds. Thus, we must have a rv-threshold
t for ϕ according to our induction hypothesis. Now assume that we have
infinitely often that u(0...k) �|=FG Φ holds. Thus, we must have a position
t′ > t such that u(0...k) �|=FG ϕ ∨ ψ holds. However, according to the rv-
threshold, we have that u(0...k) |=FG ϕ holds for every k > t. It is not hard
to see that this ensures that ϕ ∨ ψ is evaluated to #FG from that point on.

[ϕ U ψ]: According to the definition of LTL, there must exist a position j such
that u(j... ) |=ω ψ and for all k < j we have u(k... ) |=ω ϕ. According to
the induction hypothesis, there must exists a rv-threshold tψ and for each

k < j a rv-threshold tk such that u(0...t
′) |=FG ψ for every t′ > tψ and

u(k...t
′) |=FG ϕ for every t′ > tk. Thus, the maximum of tψ, t0 . . . tj−1 is our

desired rv-threshold.
[ϕ U ψ]: We can distinguish two cases: if u also satisfies the strong until operator,

we can use the same proof as above. For the second case, notice that ϕ is a
TLG formula (see Figure 1). Since ϕ is satisfied by u, the evaluation function
for RV∞–TLG will always be evaluated to #G. Thus, the claim holds.

Xψ: : According to the definition of LTL, we have u(1... ) |=ω ψ and we can apply
the induction hypothesis on u(1... ) to proof the claim.

ϕ ∧ ψ: According to the definition of LTL, u |=ω ϕ and u |=ω ψ holds. Thus,
according to the induction hypothesis, there must exist tϕ and tψ as rv-
thresholds. The maximum of them is the rv-threshold for ϕ ∧ ψ.

The opposite direction is shown in a similar manner:

Lemma 2. Let u be an infinite word, and Φ be an TLFG formula. Then, the
following holds: If there exists a rv-threshold t ∈ N such that for every k > t we
have u(0...k) |=FG Φ. Then, u |=ω Φ.



An Asymptotically Correct Finite Path Semantics for LTL 315

Proof. Again, we neglect the case that at some point u(0...k) evaluates to 1 in a
rv-context. We prove this lemma by induction on the formula length. Clearly, if
the length is 1, we have a constant value and our rv-threshold is 1 and the proof
is obtained. Assume now that the claim holds for every formula of length l. We
show that it also holds for formula of length l+1. To this end, we split the proof
into different cases, depending on the top-level operator:

ϕ ∨ ψ: According to our assumption, we have a minimal rv-threshold t such
that for every t′ ≥ t u(0...t

′) |=FG ϕ ∨ ψ holds. Since t is minimal, we
have u(0...t−1) �|=FG ϕ ∨ ψ. According to the definition of [u |=FG′ ϕ ∨ ψ],

this means that either
(
∀t′k=tu

(0...k) |=FG ϕ
)

or
(
∀t′k=tu

(0...k) |=FG ψ
)
holds.

In other words, we can not freely switch between evaluating either ϕ or ψ,
but one of the two formulas must be evaluated to #FG in all places after t.
This means that we can apply the induction hypothesis and can conclude
that either u |=ω ϕ or u |=ω ψ holds. Hence, u |=ω ϕ ∨ ψ holds trivially.

[ϕ U ψ]: According to our assumption, a rv-threshold t exists such that for every

t′ ≥ t we have u(0...t
′) |=FG [ϕ U ψ]. This means that for every t′ there must

exist a jt′ ≤ t such that u(jt′ ...t
′) |=FG ψ and ∀k < jt‘.u

(k...t′) |=FG ϕ holds.
Now, notice that although we might have different jt‘ for each t

′, there can
be only finitely many of them (namely those less or equal t). Hence, we must

have a minimal j such that for every t′ > t the following holds: u(j...t
′) |=FG ψ

and ∀k < j.u(k...t
′) |=FG ϕ. Hence, according to our induction hypothesis, we

must have u(j... ) |=ω ψ and ∀k < j. u(k... ) |=ω ϕ.

[ϕ U ψ]: The first case is that for every n ∈ N and every n′ > n.u(n...n
′) |=FG ϕ.

This means that for every n ∈ N the rv-threshold for u(n... ) is one. But
this implies that we can use our induction hypothesis to show that for every
n ∈ N, we have u(n... ) |=ω ϕ. Thus u |=ω [ϕ U ψ] holds. Assume now that
this property does not hold, i. e. for some n ∈ N and some n < n′ ∈ N, we
have that u(n...n

′) �|=FG ϕ. According to the grammar of TLFG, ϕ is a TLG
formula, thus u(n...n

′) �|=G ϕ holds also. However, the safety formula of TLG
are evaluated in a way such that if they are evaluated to 0 for a finite prefix
w, they are evaluated to 0 for every suffix of w. Hence, after position n′, the
first case (*) in the RV∞–TLFG definition of [ϕ U ψ] is never again satisfied.
This means that the second condition must be satisfied from that point on
which is exactly the same as the condition used for defining [ϕ U ψ]. Hence
we can use the same proof as for [ϕ U ψ].

Xϕ, ϕ ∧ ψ: are trivial and omitted here.

Remark 1. The proof for the weak until operator [ϕ U ψ] shows why we restricted
our attention to TLFG formula: we can guarantee that ϕ is evaluated to ⊥FG

whenever a prefix is evaluated to ⊥FG only due the special syntactic requirement
that ϕ is a safety formula, something that is missing in arbitrary LTL formulas.

Remark 2. An alternative definition for the [ϕ U ψ] operator would be based on
the fixpoint iteration scheme known from translating LTL to Büchi automata:



316 A. Morgenstern, M. Gesell, and K. Schneider

[u |=FG [ϕ U ψ]] := [u |=FG (ψ ∨ (ϕ ∧ X [ϕ U ψ]))]. Here, the ∨-operator is eval-
uated according to our breakpoint-definition. The two definitions are indeed
equivalent as one can check by an induction on n. Nevertheless we preferred the
one given above since it simplifies the correctness proof.

The following theorem is therefore our main result:

Theorem 1. Given a finite prefix u = u(0)u(1) . . . u(n) of an infinite word u∞,
we have [u∞ |=ω ϕ] iff �∞k.u(0...k) �|=FG ϕ for every RV∞–TLFG formula ϕ.

Hence, [u∞ |=ω ϕ] iff lim
n→∞

[u(0...n) |=FG ϕ] = #FG.

4.4 The Temporal Logic RV∞–TLGF

Since TLGF is the dual class of TLFG, the following definition together with the
corresponding theorem is rather straightforward:

Definition 10 (Semantics of RV∞–TLGF).
Given a finite prefix u = u(0)u(1) . . . u(n) of an infinite word u∞, the semantics
of RV∞–TLGF is defined by

[u |=GF ϕ] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if [u |=FG ¬ϕ] = 0

#GF if [u |=FG ¬ϕ] = ⊥FG

⊥GF, if [u |=FG ¬ϕ] = #FG

0, if [u |=FG ¬ϕ] = 1

Theorem 2. Given a finite prefix u = u(0)u(1) . . . u(n) of an infinite word u∞,
we have [u∞ |=ω ϕ] iff ∃∞k.u(0...k) |=GF ϕ for every RV∞–TLGF formula ϕ.

Hence, [u∞ |=ω ϕ] iff lim
n→∞

[u(1...n) |=GF ϕ] �∈ {⊥GF, 0}. This means, that either

(1) no limit exists or (2) the limit exists and is neither ⊥GF nor 0. In case (1)
holds, the result of the evaluation must oscillate between the two possible truth
values, hence #GF holds infinitely often (note that 1 is a limit of the evaluation).
If (2) holds, the limit exists and is neither ⊥GF nor 0, hence either #GF must
hold infinitely often or 1 holds from a certain point on.

4.5 The Temporal Logic RV∞–TLStreett

We now consider the most expressive logic RV∞–TLStreett that is obtained from
TLStreett. Looking at the grammar of TLStreett, one sees that this logic is a positive
boolean combination of TLFG and TLGF formulas. Hence, in the following we
assume that our formula is given in conjunctive normal form, meaning that we
have a formula of the following form:

k∧
i=0

⎛⎝ m∨
j=0

ϕi,j ∨
n∨

j=0

ψi,j

⎞⎠



An Asymptotically Correct Finite Path Semantics for LTL 317

where every ϕj ∈ TLFG and every ψj ∈ TLGF. This means that for every i we

have
(∨m

j=0 ϕi,j

)
∈ TLFG and

(∨n
j=0 ψi,j

)
∈ TLGF. Thus, we may even assume

that our formula has the form:
∧k

i=0 ϕi ∨ ψi where ϕi ∈ TLFG and ψi ∈ TLGF.
Hence, we can restrict ourself to formulae of that type, since every formula from
TLStreett can be brought into the desired form. To formally define a semantics
for these formulae, we introduce first the Streett-k class:

Definition 11. A TLStreett-k formula is a formula of the form
∧k

i=0 ϕi∨ψi, where
each ϕi ∈ TLFG and each ψi ∈ TLGF.

Restricting our attention first to TLStreett-1-formulas, a straightforward definition
for their runtime semantics is given as follows:

Definition 12 (Semantics of RV∞–TLStreett-1). Let u = u(0)u(1) . . . u(n) ∈ Σ∗

denote a finite path of length n+1. The truth value of a TLStreett-1 formula ϕ∨ψ
wrt. u, denoted with [u |=Street-1 ϕ], is defined as follows:

[u |=Street-1 ϕ ∨ ψ] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if ∀w ∈ Σω : uw |=ω ϕ ∨ ψ
0 if ∀w ∈ Σω : uw �|=ω ϕ ∨ ψ
#FG if [u |=FG ϕ]

#GF if [u �|=FG ϕ] and

∃t ≤ n.

(
u(0...t) |=GF ψ and

∀t ≤ t′ < n. [u |=Street-1 ϕ ∨ ψ] �= #GF

)
⊥ else

Hence, if from a certain point on the so-far read prefix invariantly evaluates to
#FG, we can be sure that the corresponding ϕ-formula from TLFG is invariantly
satisfied. If, on the other hand, this does not hold, and we have detected that at
some point t ≤ n the following holds: u(0...t) |=GF ψ and this ’good’ event has not
been registered, i. e. for all values between t and n we have [u |=Street-1 ϕ ∨ ψ] �=
#GF, then this ’good’ event must be reported in the current step. Accordingly,
if #GF holds infinitely often, ϕ need not hold, but we know from Theorem 2
that in that case ψ holds in the limit. Hence, the following theorem immediately
follows:

Theorem 3. Given a finite prefix u = u(0)u(1) . . . u(n) of an infinite word u∞,
the following holds for the semantics of RV∞–TLStreett-1:

[u∞ |=ω ϕ] iff

(
∃∞k.[u(0...k) |=Street-1 ϕ] = #GF or
� ∃∞k.[u(0...k) |=Street-1 ϕ] �∈ {#FG, 1}

)
Hence, [u∞ |=ω ϕ] holds iff lim

n→∞
[u(0...n) |=Street-1 ϕ] �∈ {⊥, 0} holds which means

that either no limit exists (i.e., #GF holds infinitely often), or the limit is in
{1,#FG,#GF}.

Finally, we can easily generalize this result to RV∞–TLStreett-k:



318 A. Morgenstern, M. Gesell, and K. Schneider

Definition 13 (Semantics of RV∞–TLStreett-k). Let u = u(0)u(1) . . . u(n) ∈ Σ∗

denote a finite path of length n + 1. The truth value of a TLStreett-k formula∧k−1
i=0 ϕi∨ψi wrt. u, denoted with [u |=Street-k ϕ], is a truth value from the domain

(B5)
k
given by:

[u |=Street-k ϕ ∨ ψ] = [u |=Street-1 ϕ0 ∨ ψ0]× · · · × [u |=Street-1 ϕk−1 ∨ ψk−1]

5 Conclusion

In this paper, we show that the semantics for LTL on finite paths used in run-
time verification so-far have certain deficiencies, in particular, they do not always
converge to the truth values of infinite paths. Therefore, we defined a new se-
mantics for LTL on finite paths that is asymptotically correct in this sense. To
this end, we considered the temporal logic hierarchy of Manna and Pnueli [5,16]
and developed specialized semantics for each temporal logic of this hierarchy.
All classes are evaluated over a different set of truth values which leads to the
surprising result that for the most expressive logic TLStreett of the hierarchy, we
need a n-tuple of five-valued truth values where n is the number of clauses in the
conjunctive normal form of the formula. It would be interesting to investigate
whether this is unavoidable. More precisely: are there formulas in TLStreett such
that an asymptotically correct semantics will need at least 5n different truth
values? We speculate that this is the case and that this question is related to
the Rabin/Streett index of the formula.

References

1. Armoni, R., Bustan, D., Kupferman, O., Vardi, M.: Resets vs. Aborts in Linear
Temporal Logic. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619,
pp. 65–80. Springer, Heidelberg (2003)

2. Bauer, A., Leucker, M., Schallhart, C.: The Good, the Bad, and the Ugly, But
How Ugly Is Ugly? In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839,
pp. 126–138. Springer, Heidelberg (2007)

3. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime
verification. Journal of Logic and Computation 20(3), 651–674 (2010)

4. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Transactions on Software Engineering and Methodology (2011)

5. Chang, E., Manna, Z., Pnueli, A.: Characterization of Temporal Property Classes.
In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 474–486. Springer, Heidelberg
(1992)

6. Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., van Campenhout, D.:
Reasoning with Temporal Logic on Truncated Paths. In: Hunt Jr., W.A., Somenzi,
F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 27–39. Springer, Heidelberg (2003)

7. Emerson, E.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook
of Theoretical Computer Science: Formal Models and Semantics, vol. B, ch.16,
pp. 995–1072. Elsevier (1990)

8. Falcone, Y., Fernandez, J.-C., Mounier, L.: What can you verify and enforce at
runtime? Research Report TR-2010-5, Verimag (January 2010)



An Asymptotically Correct Finite Path Semantics for LTL 319

9. Maler, O., Pnueli, A.: Timing Analysis of Asynchronous Circuits Using Timed
Automata. In: Camurati, P.E., Eveking, H. (eds.) CHARME 1995. LNCS, vol. 987,
pp. 189–205. Springer, Heidelberg (1995)

10. Miyano, S., Hayashi, T.: Alternating automata on ω-words. Theoretical Computer
Science (TCS) 32, 321–330 (1984)

11. Morgenstern, A., Schneider, K., Lamberti, S.: Generating deterministic ω-automata
for most LTL formulas by the breakpoint construction. In: Scholl, C., Disch, S.
(eds.) Methoden und Beschreibungssprachen zur Modellierung und Verifikation
von Schaltungen und Systemen (MBMV), Freiburg, Germany, pp. 119–128. Shaker
(2008)

12. Pnueli, A.: The temporal logic of programs. In: Foundations of Computer Science
(FOCS), pp. 46–57. IEEE Computer Society, Providence (1977)

13. Pnueli, A., Zaks, A.: PSL Model Checking and Run-Time Verification Via Testers.
In: Misra, J., Nipkow, T., Karakostas, G. (eds.) FM 2006. LNCS, vol. 4085,
pp. 573–586. Springer, Heidelberg (2006)

14. Ruf, J., Hoffmann, D., Kropf, T., Rosenstiel, W.: Simulation-guided property
checking based on a multi-valued AR-automata. In: Design, Automation and Test
in Europe (DATE), Munich, Germany, pp. 742–748. ACM (2001)

15. Schneider, K.: Improving Automata Generation for Linear Temporal Logic by Con-
sidering the Automaton Hierarchy. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR
2001. LNCS (LNAI), vol. 2250, pp. 39–54. Springer, Heidelberg (2001)

16. Schneider, K.: Verification of Reactive Systems – Formal Methods and Algorithms.
Texts in Theoretical Computer Science (EATCS Series). Springer, Heidelberg
(2003)



On the Domain and Dimension Hierarchy

of Matrix Interpretations

Friedrich Neurauter� and Aart Middeldorp

Institute of Computer Science, University of Innsbruck, Austria

Abstract. Matrix interpretations are a powerful technique for proving
termination of term rewrite systems. Depending on the underlying do-
main of interpretation, one distinguishes between matrix interpretations
over the real, rational and natural numbers. In this paper we clarify the
relationship between all three variants, showing that matrix interpreta-
tions over the reals are more powerful than matrix interpretations over
the rationals, which are in turn more powerful than matrix interpreta-
tions over the natural numbers. We also clarify the ramifications of ma-
trix dimension on termination proving power. To this end, we establish a
hierarchy of matrix interpretations with respect to matrix dimension and
show it to be infinite, with each level properly subsuming its predecessor.

Keywords: term rewriting, termination, matrix interpretations.

1 Introduction

Since their inception in 2006, matrix interpretations have evolved into one of the
most important (that is, powerful) methods for termination analysis and com-
plexity analysis of term rewrite systems. While originally introduced by Hofbauer
and Waldmann as a stand-alone method for termination proofs in the context
of string rewriting [13, 14], allowing them to solve challenging termination prob-
lems like {aa → bc, bb → ac, cc → ab}, problem #104 on the RTA list of open
problems,1 it was not long until Endrullis et al. [6] generalized (one particular in-
stance of) the matrix method to term rewriting and also incorporated it into the
dependency pair (DP) framework [3, 9–11, 23], the state-of-the-art framework
for establishing termination of term rewrite systems.

The matrix method is based on the well-known paradigm of interpreting terms
into a domain equipped with a suitable well-founded order. In the original ap-
proach of [6], the authors consider the set of vectors of natural numbers as
underlying domain, together with a well-founded order that relates two vectors
if and only if there is a strict decrease in the respective first components and
a weak decrease in all other components. Function symbols are interpreted by
suitable linear mappings represented by square matrices of natural numbers. Re-
cently, another generalization appeared in [5] that employs matrices of natural

� Friedrich Neurauter is supported by a grant of the University of Innsbruck.
1 http://rtaloop.mancoosi.univ-paris-diderot.fr

N. Bjørner and A. Voronkov (Eds.): LPAR-18, LNCS 7180, pp. 320–334, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://rtaloop.mancoosi.univ-paris-diderot.fr


On the Domain and Dimension Hierarchy of Matrix Interpretations 321

numbers as underlying domain and interprets each function symbol by a linear
matrix polynomial. In principle, this approach also allows for non-linear matrix
polynomials. In [1, 7, 24] the method of Endrullis et al. was lifted to the non-
negative rational and real (algebraic) numbers using the same technique that
was already used to lift polynomial interpretations from the natural numbers to
the rationals and reals (cf. [12]). Thus, one distinguishes three variants of ma-
trix interpretations, matrix interpretations over the real, rational and natural
numbers. So the obvious question is: what is their relationship with regard to
termination proving power?

As a starting point, it is instructive to restrict to one-dimensional matrix
interpretations, that is, linear polynomial interpretations, for which the termi-
nation hierarchy is known (cf. [16, 18]) and can be pictured as in Figure 1. That

terminating TRSs

R Q N

Fig. 1. Linear polynomial interpretations

is, linear polynomial interpretations over the real numbers subsume linear poly-
nomial interpretations over the rational numbers, which in turn subsume linear
polynomial interpretations over the natural numbers. Both inclusions are proper.
To this end, [16] introduces the rewrite systems RQ and RR, the first of which
can be shown terminating by a linear polynomial interpretation over the rational
numbers but not over the natural numbers. Similarly, the second system can be
shown terminating by a linear polynomial interpretation over the reals but not
over the rationals. Unfortunately, the usefulness of both RQ and RR is limited
to dimension one (cf. [17]) because, without restricting the dimension, both sys-
tems can be handled with 2-dimensional matrix interpretations over the natural
numbers. In this context, we also mention related work appearing in [8], where a
relative termination problem in the form of a string rewrite system is presented
that can be handled with matrix interpretations over the rationals but not with
matrix interpretations over the natural numbers. However, relative termination
is essential in this example because the relative component is the key ingredient
for precluding matrix interpretations over the natural numbers. As the latter
component consists of a single non-terminating rule, the entire example does
not readily generalize to (real) termination problems. Besides, there is no ev-
idence in [8] demonstrating the benefit of using irrational numbers in matrix



322 F. Neurauter and A. Middeldorp

interpretations. Thus, we conclude that new techniques are required to clarify
the relationship between the aforementioned variants of matrix interpretations.

One of the main results of this paper is to show that the termination hierarchy
depicted in Figure 1 does in fact extend from one-dimensional matrix interpre-
tations to arbitrary matrix interpretations. That is, matrix interpretations over
the reals are more powerful with respect to proving termination than matrix
interpretations over the rationals, which are in turn more powerful than matrix
interpretations over the natural numbers. In particular, we show that this rela-
tionship does not only hold in the context of direct termination (using matrix
interpretations as a stand-alone method) but also in the setting of the DP frame-
work. Moreover, our results point out the limitations of a recent attempt [17]
to simulate matrix interpretations over the rationals with matrix interpretations
over the natural numbers (of higher dimension).

We also investigate the ramifications of matrix dimension on termination prov-
ing power. Clearly, by increasing the dimension, one can never lose power (in
theory; in practice the increased search space may prohibit finding a termina-
tion proof). But what is the exact shape of the inherent dimension hierarchy?
A partial answer to this question was given in [8], where the authors show that
the hierarchy is infinite. Yet no exact information is provided as to which lev-
els are actually inhabited. We close this gap in the second part of this paper,
thus giving a complete answer to the question raised above. To this end, we
establish a hierarchy of matrix interpretations with respect to matrix dimension
and show it to be infinite, with each level properly subsuming its predecessor.
In other words, we show that matrix interpretations of dimension (n + 1) are
strictly more powerful for proving termination than n-dimensional matrix inter-
pretations (for any n � 1). The construction we use for this purpose is entirely
different from the one proposed in [8]. Apart from the fact that it allows to infer
the exact shape of the dimension hierarchy, it has the additional advantage that
it produces witnesses (that is, rewrite systems) that are substantially smaller
than the ones of [8]. To be precise, the construction employed in [8] gives rise
to a family of string rewrite systems (Sd)d�2 having the property that any of
its members S2d (of even index) cannot be handled with matrix interpretations
of dimension d or less (as a consequence of the Amitsur-Levitzki theorem [2]),
but can be handled with dimension d′ = 2d+ 3. Each system Sd consists of the
following rules over the finite alphabet Σd = {s, 1, . . . , d, f}: s ek f → s ok f for
all 1 � k � d!

2 . Here, e1, e2, . . . (o1, o2, . . .) is any enumeration of even (odd)2

permutations of the symbols {1, . . . , d}. Hence, the number of rewrite rules in Sd
exhibits factorial growth in the dimension d. In contrast, the systems created by
our approach have constant size and the dimension d′ is optimal, i.e., d′ = d+1.

The remainder of this paper is organized as follows. In the next section we
recall preliminaries from linear algebra and term rewriting. In particular, we
review the matrix method for establishing termination of term rewrite systems.
Then, in Section 3, we show that matrix interpretations over the reals are more

2 A permutation is called even (odd) if it can be written as a composition of an even
(odd) number of transpositions.



On the Domain and Dimension Hierarchy of Matrix Interpretations 323

powerful than matrix interpretations over the rationals, which are in turn more
powerful than matrix interpretations over the natural numbers. Subsequently, we
present our results on the dimension hierarchy related to matrix interpretations
in Section 4, before concluding with suggestions for future research in Section 5.

2 Preliminaries

As usual, we denote by N, Z, Q and R the sets of natural, integer, rational and
real numbers. A real number is said to be algebraic if it is a root of a non-zero
polynomial in one indeterminate with integer coefficients, otherwise it is said to
be transcendental. The set of all real algebraic numbers is denoted by Ralg. Given
D ∈ {N,Z,Q,Ralg,R} and m ∈ D, >D (resp. > if D is clear from the context)
denotes the natural order of the respective domain, �D (resp. �) its reflexive
closure, and Dm abbreviates {x ∈ D | x � m}; for example, Q0 (R0) refers to
the set of all non-negative rational (real) numbers.

2.1 Linear Algebra

Let R be a commutative ring (e.g., Z, Q, Ralg, R). The ring of all n-dimensional
square matrices over R is denoted by Rn×n and the polynomial ring in n indeter-
minates x1, . . . , xn by R[x1, . . . , xn]. In the special case n = 1, any polynomial
p ∈ R[x] can be written as p(x) =

∑d
k=0 akx

k for some d ∈ N. For the largest
k such that ak �= 0, we call akxk the leading term of p, ak its leading coefficient
and k its degree. The polynomial p is said to be monic if its leading coefficient
is one. It is said to be linear, quadratic, cubic if its degree is one, two, three.

In case R is equipped with a partial order �, the component-wise extension
of this order to Rn×n is also denoted by �. The n×n identity matrix is denoted
by In and the n × n zero matrix by 0n. We simply write I and 0 if n is clear
from the context. We say that a matrix A is non-negative if A � 0 and denote
the set of all non-negative n-dimensional square matrices of Zn×n by Nn×n. As
usual, we write AT for the transpose of a matrix (vector) A.

For a square matrix A ∈ Rn×n, the characteristic polynomial χA(λ) is defined
as det(λIn − A), where det denotes the (matrix) determinant. It is a monic
polynomial of degree n with coefficients in R. The equation χA(λ) = 0 is called
the characteristic equation of A. The solutions of this equation, that is, the roots
of χA(λ), are precisely the eigenvalues of A. If R is a subset of an algebraically
closed field (where each polynomial of degree n with coefficients in the field
is guaranteed to have exactly n roots), then A has exactly n (not necessarily
distinct) eigenvalues in this field.

We say that a polynomial p ∈ R[x] annihilates a square matrix A ∈ Rn×n

if p(A) = 0. The Cayley-Hamilton theorem [21] states that A satisfies its own
characteristic equation, that is, χA annihilates A. Let R be a field and consider
the set { p ∈ R[x] | p(A) = 0 } of annihilating polynomials of A ∈ Rn×n. This
set is generated by the minimal polynomial mA(x) of A, which is the unique
monic polynomial of minimum degree that annihilates A. Any polynomial that



324 F. Neurauter and A. Middeldorp

annihilates A is a (polynomial) multiple of mA(x). In other words, if p(A) = 0 for
p ∈ R[x], then mA(x) divides p(x). In particular, mA(x) divides the characteristic
polynomial of A, and mA(λ) = 0 if and only if λ is an eigenvalue of A (cf. [15]).

2.2 Term Rewriting

We assume familiarity with the basics of term rewriting [4, 22]. Let V denote a
countably infinite set of variables and F a signature, that is, a set of function
symbols equipped with fixed arities. The set of terms over F and V is denoted
by T (F ,V). A rewrite rule is a pair of terms written as �→ r such that � is not
a variable and all variables of r are contained in �. A term rewrite system (TRS
for short) R over T (F ,V) is a finite set of rewrite rules. The rewrite relation
induced by → is denoted by →R. As usual, →∗

R denotes the reflexive transitive
closure of →R.

2.3 Monotone Algebras and Matrix Interpretations

We use the following notation for monotone algebras [6]. An F -algebra A con-
sists of a non-empty carrier set A and a collection of interpretation functions
fA : Ak → A for each k-ary function symbol f ∈ F . By [α]A(·) we denote the
usual evaluation function of A with respect to a variable assignment α : V → A.
A weakly monotone F-algebra (A, >,�) is an F -algebra A together with two
binary relations > and � on A such that > is well-founded, > · � ⊆ > and for
each f ∈ F , fA is monotone with respect to � (in all arguments). If, in addition,
each fA is monotone with respect to >, then we speak of an extended monotone
algebra. Any monotone algebra (A, >,�) (or just A if > and � are clear from
the context) induces the following relations on T (F ,V):

– s >A t if and only if [α]A(s) > [α]A(t) for all assignments α, and
– s �A t if and only if [α]A(s) � [α]A(t) for all assignments α.

We say that a monotone algebra A is compatible with a rewrite rule � → r if
� >A r, it is said to be weakly compatible if � �A r. In the same vein, we say
that A is (weakly) compatible with a TRS R if it is (weakly) compatible with all
rewrite rules of R. We use the following abbreviations: R ⊆ >A for compatibility
and R ⊆ �A for weak compatibility.

It is well-known that a TRS is terminating if and only if there is an extended
monotone algebra that is compatible with it (cf. [6, Theorem 2]). Moreover,
extended monotone algebras facilitate incremental termination proofs (cf. [6,
Theorem 3]). To this end, let A be an extended monotone algebra and suppose
R is a TRS such that R ⊆ �A and S ⊆ >A for some non-empty subset S of R.
Then, after removing all S-rules from R, termination of R\S implies termination
of R. Thus, one is free to choose a different extended monotone algebra for the
remaining rules R\S. This process is continued until eventually all rewrite rules
have been removed.

Weakly monotone algebras play an important role in the context of termi-
nation analysis in the DP framework. In this modular framework, the problem



On the Domain and Dimension Hierarchy of Matrix Interpretations 325

of establishing termination of a TRS is typically split into several subproblems
called DP problems. A DP problem is a pair (P ,S), where P and S are finite
sets of rewrite rules such that the root symbols of the rules in P neither occur
in S nor in proper subterms of the left- and right-hand sides of the rules in P .
In the sequel, we sometimes write ( ,S) to indicate that we are only interested
in the second component of a DP problem. A DP processor is a mapping that
takes a DP problem as input and returns a set of DP problems as output. In the
context of this paper, we only consider DP processors based on reduction pairs.
Given a DP problem (P ,S), the aim of such a processor is to return a simplified
version of its input by removing rules from the P component. It is well-known
that weakly monotone algebras give rise to reduction pairs. One can use them to
simplify DP problems as follows. Let A be a weakly monotone algebra and (P ,S)
a DP problem. If P ∪ S ⊆ �A and P ′ ⊆ >A for some non-empty subset P ′ of
P , then one may remove all rules of P ′ from P , thus simplifying the original DP
problem to the DP problem (P \ P ′,S) containing less rules. In this situation,
we say that the weakly monotone algebra A succeeds on the DP problem (P ,S),
otherwise it fails.

We define matrix interpretations as follows. For matrix interpretations over R,
we fix a dimension n ∈ N \ {0}, some positive real number δ and use the set Rn0
as the carrier of an algebra M, together with the orders >δ and � on Rn0 :

(x1, . . . , xn)T >δ (y1, . . . , yn)T ⇐⇒ x1 >R,δ y1 ∧ xi �R yi for i = 2, . . . , n
(x1, . . . , xn)T � (y1, . . . , yn)T ⇐⇒ xi �R yi for i = 1, . . . , n

Here, x >R,δ y if and only if x �R y + δ. Each k-ary function symbol f is
interpreted by a linear function of the shape

fM : (Rn0 )k → Rn0 , (x1, . . . ,xk) 	→ F1x1 + · · · + Fkxk + f

where x1, . . . ,xk are (column) vectors of variables, F1, . . . , Fk ∈ Rn×n0 and
f ∈ Rn0 . In this way, (M, >δ,�) forms a weakly monotone algebra. If, in ad-
dition, the top left entry (Fi)11 of each matrix Fi is at least one, then we call
M a monotone matrix interpretation over R, in which case (M, >δ,�) becomes
an extended monotone algebra. Note that in any case we have >M ⊆ �M since
>δ ⊆ � (independently of δ).

We obtain matrix interpretations over Ralg by restricting the carrier to the set
of vectors of non-negative real algebraic numbers. Similarly, matrix interpreta-
tions over Q operate on the carrier Qn0 . For matrix interpretations over N, one
uses the carrier Nn and δ = 1, such that

(x1, . . . , xn)T >δ (y1, . . . , yn)T ⇐⇒ x1 >N y1 ∧ xi �N yi for i = 2, . . . , n

According to [20], matrix interpretations over R are equivalent to matrix in-
terpretations over Ralg with respect to proving termination. So transcendental
numbers are not relevant for termination proofs based on matrix interpretations.
Nevertheless, for the sake of brevity of notation, we will stick to the term “matrix
interpretations over the real numbers” for the rest of this paper.



326 F. Neurauter and A. Middeldorp

3 The Domain Hierarchy

In this section we show that matrix interpretations over the real numbers are
more powerful with respect to proving termination than matrix interpretations
over the rational numbers, which are in turn more powerful than matrix inter-
pretations over the natural numbers. To begin with, we show that matrix inter-
pretations over R subsume matrix interpretations over Q, which in turn subsume
matrix interpretations over N. Then, in Sections 3.1 and 3.2, both inclusions are
proved to be proper.

Lemma 1. Let M be an n-dimensional matrix interpretation over N (not nec-
essarily monotone), and let S1 and S2 be finite sets of rewrite rules such that
S1 ⊆ >M and S2 ⊆ �M. Then there exists an n-dimensional matrix interpreta-
tion N over Q such that S1 ⊆ >N and S2 ⊆ �N . Moreover, N is monotone if
and only if M is monotone.

Proof. Let F denote the signature associated with S1 ∪ S2. Then, by assump-
tion, M associates each k-ary function symbol f ∈ F with a linear function
fM(x1, . . . ,xk) = F1x1 + · · ·+Fkxk+f , where F1, . . . , Fk ∈ Nn×n and f ∈ Nn,
such that S1 ⊆ >M and S2 ⊆ �M. Based on this interpretation, we define
the matrix interpretation N by letting δ = 1 and taking the same interpreta-
tion functions, i.e., fN (x1, . . . ,xk) = fM(x1, . . . ,xk) for all f ∈ F . Then N is
well-defined, and it is monotone if and only if M is monotone.

As to compatibility of N with S1, let us consider an arbitrary rewrite rule
�→ r ∈ S1 and show that � >M r implies � >N r, i.e., [α]N (�) >δ [α]N (r) for all
variable assignments α. Because of linearity of the interpretation functions, we
can write [α]N (�) = L1x1+· · ·+Lmxm+� and [α]N (r) = R1x1+· · ·+Rmxm+r,
where x1, . . . , xm are the variables occurring in �, r and xi = α(xi) for i =
1, . . . ,m. Thus, it remains to show that the inequality

L1x1 + · · · + Lmxm + � >δ R1x1 + · · · +Rmxm + r

holds for all x1, . . . ,xm ∈ Qn0 . This is exactly the case if Li � Ri for i = 1, . . . ,m
and � >δ r, i.e., �i � ri for i = 2, . . . , n and �1 � r1 + δ = r1 + 1. Indeed, all
these conditions follow from compatibility of M with � → r because, by the
same reasoning as above (and since the interpretation functions of M and N
coincide), � >M r holds in (M, >,�) if and only if

L1x1 + · · · + Lmxm + � > R1x1 + · · · +Rmxm + r

holds for all x1, . . . ,xm ∈ Nn, which implies Li � Ri for i = 1, . . . ,m and � > r,
i.e., �i � ri for i = 2, . . . , n and �1 >N r1, the latter being equivalent to �1 � r1+1
as �, r ∈ Nn. This shows compatibility of N with S1. Weak compatibility with
S2 follows in the same way. ��

The essence of the proof of this lemma is that any matrix interpretation over
N can be conceived as a matrix interpretation over Q. Likewise, any matrix
interpretation over Q can be conceived as a matrix interpretation over R.



On the Domain and Dimension Hierarchy of Matrix Interpretations 327

Lemma 2. Let M be an n-dimensional matrix interpretation over Q (not nec-
essarily monotone), and let S1 and S2 be finite sets of rewrite rules such that
S1 ⊆ >M and S2 ⊆ �M. Then there exists an n-dimensional matrix interpreta-
tion N over R such that S1 ⊆ >N and S2 ⊆ �N . Moreover, N is monotone if
and only if M is monotone.

Proof. Similar to the proof of Lemma 1, with N defined as follows: δN = δM = δ
and fN (x1, . . . ,xk) = fM(x1, . . . ,xk) for all f ∈ F . ��

As an immediate consequence of the previous lemmata, we obtain the following
corollary stating that matrix interpretations over N are no more powerful than
matrix interpretations over Q, which are in turn no more powerful than matrix
interpretations over R.

Corollary 3. Let R be a TRS and (P ,S) a DP problem.

1. If there is an (incremental) termination proof for R using monotone matrix
interpretations over N (resp. Q), then there is also one using monotone
matrix interpretations over Q (resp. R).

2. If a matrix interpretation over N (resp. Q) succeeds on (P ,S), then there
is also a matrix interpretation over Q (resp. R) of the same dimension that
succeeds on (P ,S). ��

In the remainder of this section we show that the converse statements do not
hold.

3.1 Matrix Interpretations over Q

In order to show that matrix interpretations over Q are indeed more powerful
than matrix interpretations over N, let us first consider the TRS S consisting of
the following rewrite rules:

x+ a → x (1)
x+ a → (x + b) + b (2)
a + x→ x (3)
a + x→ b + (b + x) (4)

This TRS will turn out to be very helpful for our purposes, not only in the
current subsection but also in the subsequent one. This is due to the following
property, which holds for matrix interpretations over N, Q and R.

Lemma 4. Let M be a matrix interpretation (not necessarily monotone) with
carrier set M such that S ⊆ �M. Then +M(x,y) = x + y + v, v ∈M .

Proof. Without loss of generality, let +M(x,y) = A1x + A2y + v, v ∈ M .
As M is weakly compatible with rule (1), we obtain A1 � I; hence, A2

1 � A1

due to non-negativity of A1. Similarly, by weak compatibility with (2), we infer



328 F. Neurauter and A. Middeldorp

A1 � A2
1, which implies A2

1 = A1 � I together with the previous result. Yet this
means that A1 must in fact be equal to I. To this end, we observe that A1 � I
implies (A1 − I)2 � 0, which simplifies to I � 2A1 −A2

1 = A1; hence, A1 = I. In
the same way, we obtain A2 = I from the compatibility constraints associated
with (3) and (4). ��

So in any matrix interpretation that is weakly compatible with the TRS S the
symbol + must be interpreted by a function +M(x,y) = x + y + v that models
addition of two elements of the underlying carrier set (modulo adding a con-
stant). The inherent possibility to count objects can be exploited to show that
matrix interpretations over Q are indeed more powerful than matrix interpre-
tations over N. To this end, we extend the TRS S with the rules (5) and (6),
calling the resulting system R1:

((x + x) + x) + a → g(x+ x) (5)

g(x+ x) → (x + x) + x (6)

By construction, this TRS is not compatible, not even weakly compatible, with
any matrix interpretation over N.

Lemma 5. Let M be an n-dimensional matrix interpretation (not necessarily
monotone) with carrier set M such that R1 ⊆ �M. Then M �= Nn.

Proof. As M is weakly compatible with R1, it is also weakly compatible with
the TRS S. So, by Lemma 4, the function symbol + must be interpreted by
+M(x,y) = x + y + v, v ∈ M . Assuming gM(x) = Gx + g without loss
of generality, we obtain 3I � 2G from weak compatibility of M with (5) and
2G � 3I from weak compatibility with (6); hence, G = 3

2I /∈ Nn×n. Therefore,
M cannot be a matrix interpretation over N. ��

The previous lemma, together with the observation that the TRS R1 admits a
compatible matrix interpretation over Q, directly leads to the main result of this
subsection.

Theorem 6.

1. The TRS R1 is terminating. In particular, R1 is compatible with a monotone
matrix interpretation over Q.

2. There cannot be an (incremental) termination proof of R1 using only mono-
tone matrix interpretations over N.

3. No matrix interpretation over N succeeds on the DP problem ( ,R1).

Proof. The last two statements are immediate consequences of Lemma 5. As to
the first claim, the following monotone one-dimensional matrix interpretation
(i.e., linear polynomial interpretation) over Q is compatible with R1: δ = 1,
aM = 2, bM = 0, gM(x) = 3

2x+ 1 and +M(x, y) = x+ y. ��



On the Domain and Dimension Hierarchy of Matrix Interpretations 329

3.2 Matrix Interpretations over R

Next we show that matrix interpretations over R are more powerful than ma-
trix interpretations over Q. To this end, we extend the TRS S of the previous
subsection with the rules (7) – (9) and call the resulting system R2:

(x+ x) + a → k(k(x)) (7)
k(k(x)) → x+ x (8)

k(x) → x (9)

By construction, this TRS admits only matrix interpretations over R.

Lemma 7. Let M be an n-dimensional matrix interpretation (not necessarily
monotone) with carrier set M such that R2 ⊆ �M. Then M �= Nn and M �= Qn0 .

Proof. As the TRS S is a subsystem of R2, R2 ⊆ �M implies S ⊆ �M. Hence,
by Lemma 4, the function symbol + must be interpreted by +M(x,y) = x +
y +v, v ∈M . Assuming kM(x) = Kx+k without loss of generality, the (weak)
compatibility constraint associated with rule (7) implies 2I � K2. We also have
K2 � 2I by weak compatibility with (8) and K � I due to (9). Hence, the n×n
square matrix K must satisfy the following conditions:

K2 = 2I and K � I (10)

Clearly, for dimension n = 1, the unique solution is K =
√

2; in particular, K
is not a rational number. In fact, for any dimension n � 1, the unique solution
turns out to be K =

√
2I. To this end, let us first show that the conditions

given in (10) imply that K is a diagonal matrix. Because of K � I, we can
write K = I +N for some non-negative matrix N . Then K2 = 2I if and only if
N2 + 2N = I. Now non-negativity of N implies I � N . Hence, N is a diagonal
matrix and therefore also K. So all entries of K2 are zero except its diagonal
entries: (K2)ii = K2

ii for i = 1, . . . , n. But then Kii must be
√

2 in order to
satisfy K2 = 2I and K � I. In other words, K =

√
2I /∈ Qn×n0 . Therefore, M

cannot be a matrix interpretation over N or Q. ��

Remark 8. Rule (9) is essential for the statement of Lemma 7. Without it, the
conditions given in (10) would turn into K2 = 2I and K � 0, the conjunction
of which is satisfiable over Nn×n; for example, by choosing

aM =
(

2
1

)
bM =

(
0
0

)
kM(x) =

(
0 2
1 0

)
x +

(
1
0

)
+M (x,y) = x + y

we obtain a non-monotone 2-dimensional matrix interpretation over N that is
compatible with the TRS R2\{(9)}. However, in case monotonicity of the matrix
interpretation in Lemma 7 is explicitly required, rule (9) becomes superfluous
because K11 � 1 and K2 = 2I imply that all entries of the first row and the first
column of K are zero except K11 (as K must be non-negative). This means that
(K2)11 = K2

11, so K11 must be equal to
√

2, hence irrational, in order to satisfy
K2 = 2I.



330 F. Neurauter and A. Middeldorp

Lemma 7 shows that no matrix interpretation over N or Q is weakly compatible
with the TRS R2. However, R2 can be shown terminating by a compatible
matrix interpretation over R.

Theorem 9.

1. The TRS R2 is terminating. In particular, R2 is compatible with a monotone
matrix interpretation over R.

2. There cannot be an (incremental) termination proof of R2 using only mono-
tone matrix interpretations over N or Q.

3. No matrix interpretation over N or Q succeeds on the DP problem ( ,R2).

Proof. The last two claims are immediate consequences of Lemma 7. Finally, the
first claim holds by the following monotone 1-dimensional matrix interpretation
over R that is compatible with R2: δ = 1, aM = 4, bM = 0, kM(x) =

√
2x + 1

and +M(x, y) = x+ y. ��

4 The Dimension Hierarchy

Unlike the previous section, where we have established a hierarchy of matrix
interpretations regarding the domain of the matrix entries, the purpose of this
section is to examine matrix interpretations with respect to their dimension.
That is, we fix D ∈ {N,Q0,R0} and consider matrix interpretations over the
family of carrier sets (Dn)n�1. The main result is that the inherent termination
hierarchy is infinite with respect to the dimension n, with each level of the
hierarchy properly subsuming its predecessor. In other words, (n+1)-dimensional
matrix interpretations are strictly more powerful for proving termination than n-
dimensional matrix interpretations (for any n � 1). We show this by constructing
a family of TRSs (Tk)k�2 having the property that any of its members Tk can only
be handled with matrix interpretations of dimension at least k. The construction
is based on the idea of encoding (i.e., specifying) the degree of the minimal
polynomial mA(x) of some matrix A occurring in a matrix interpretation in
terms of rewrite rules. Thus, if M is an n-dimensional matrix interpretation
such that the degree of the minimal polynomial of some matrix is fixed to a
value of k, then the degree of the characteristic polynomial of this matrix must
be at least k, i.e., n � k (since the minimal polynomial divides the characteristic
polynomial whose degree is n). In other words, the dimension n of M must
then be at least k. The family of TRSs (Tk)k�2 mentioned above is made up as
follows. For any natural number k � 2, Tk denotes the union of the TRS S of
Section 3 and the following rewrite rules:

fk(x) + d → fk−1(x) + c (11)

fk−1(x) + c → fk(x) (12)

h(fk−2(h(x))) → h(fk−1(h(x))) + x (13)

h(fk−1(h(x))) → x (14)



On the Domain and Dimension Hierarchy of Matrix Interpretations 331

The intuition is that if M is an n-dimensional matrix interpretation that is
weakly compatible with all rules of Tk, then the minimal polynomial mF (x) of
the matrix F associated with the interpretation of the unary function symbol f
is forced to be equal to the polynomial pk(x) = xk − xk−1, a monic polynomial
of degree k. This is the purpose of the rules (11) – (14). More precisely, the first
two rules ensure that pk(x) annihilates F , whereas the latter two specify that
pk(x) is the monic polynomial of least degree having this property.

Lemma 10. Let M be an n-dimensional matrix interpretation (not necessarily
monotone), and let k � 2 be a natural number. Then Tk ⊆ �M implies n � k.

Proof. Let us assume Tk ⊆ �M. Then we also have S ⊆ �M because the TRS
S is contained in Tk. Therefore, the function symbol + must be interpreted
by +M(x,y) = x + y + v according to Lemma 4. Assuming fM(x) = Fx +
f and hM(x) = Hx + h without loss of generality, the (weak) compatibility
constraint associated with rule (11) implies F k � F k−1. We also have F k−1 �
F k due to rule (12); hence, F k = F k−1. Next we consider the compatibility
constraints associated with rule (13) and rule (14). From the former we infer
HF k−2H � HF k−1H + I, which implies F k−2 �= F k−1, whereas the latter
enforces HF k−1H � I, which implies F k−1 �= 0. Thus, the n× n square matrix
F must satisfy the following conditions:

F k = F k−1 F k−2 �= F k−1 F k−1 �= 0 (15)

These conditions imply that the minimal polynomial of F must be equal to the
polynomial pk(x) = xk−xk−1; i.e., mF (x) = xk−xk−1. In order to show this, we
first observe that F k = F k−1 means that the polynomial pk(x) annihilates the
matrix F . So mF (x) divides pk(x). Writing pk(x) = (x− 1)xk−1 as a product of
irreducible factors, we see that if mF (x) �= pk(x) (i.e., mF (x) is a proper divisor of
pk(x) of degree at most k−1), then mF (x) must divide the polynomial (x−1)xk−2

or the polynomial xk−1 (depending on whether (x − 1) occurs as a factor in
mF (x) or not). As in both cases the corresponding polynomial annihilates F , we
obtain F k−2 = F k−1 or F k−1 = 0, contradicting (15). Consequently, pk(x) must
indeed be the minimal polynomial of F , and since it divides the characteristic
polynomial of F , the degree of the latter must be greater than or equal to the
degree of the former, that is, n � k. ��
Remark 11. If one explicitly requires monotonicity of the matrix interpretation
M in Lemma 10, then the condition F k−1 �= 0 is automatically satisfied, such
that rule (14) becomes superfluous in this case.

Lemma 10 shows that no matrix interpretation of dimension less than k can be
weakly compatible with the TRS Tk. However, Tk can be shown terminating by
a compatible matrix interpretation of dimension k.

Theorem 12. Let k � 2.
1. The TRS Tk is terminating. In particular, Tk is compatible with a monotone

matrix interpretation over N of dimension k.
2. There cannot be an (incremental) termination proof of Tk using only mono-

tone matrix interpretations of dimension less than k.



332 F. Neurauter and A. Middeldorp

3. No matrix interpretation of dimension less than k succeeds on the DP prob-
lem ( , Tk).

Proof. The last two claims are immediate consequences of Lemma 10. The first
claim holds by the following monotone k-dimensional matrix interpretation over
N that is compatible with Tk:

aM = cM = (1, 0, . . . , 0)T bM = 0 dM = 2 aM

+M(x,y) = x + y fM(x) = Fx hM(x) = Hx + h

where h = (1, . . . , 1)T, all rows of H have the shape (1, 2, 1, . . . , 1) and F is zero
everywhere except for the entries F11 and Fi,i+1, i = 1, . . . , k − 1, which are all
set to one:

F =

⎛⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 · · · 0
0 0 1 0 · · · 0
...

. . .
. . .

. . .
. . .

...
0 · · · 0 0 1 0
0 · · · 0 0 0 1
0 · · · 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ H =

⎛⎜⎜⎜⎜⎜⎜⎝

1 2 1 1 · · · 1
1 2 1 1 · · · 1
...

...
...

...
...

...
1 2 1 1 · · · 1
1 2 1 1 · · · 1
1 2 1 1 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎠
��

5 Conclusion

In this paper we have established two hierarchies of matrix interpretations. On
the one hand, there is the domain hierarchy stating that matrix interpretations
over the real numbers are more powerful with respect to proving termination
than matrix interpretations over the rational numbers, which are in turn more
powerful than matrix interpretations over the natural numbers (cf. Figure 1).
On the other hand, we have established a hierarchy of matrix interpretations
with respect to matrix dimension, which was shown to be infinite, with each
level properly subsuming its predecessor (cf. Figure 2). Both hierarchies hold in
the context of direct termination (using matrix interpretations as a stand-alone
termination method) as well as in the setting of the DP framework. Concerning
the latter, we remark that the corresponding results in Theorems 6, 9 and 12 do
not only hold for standard reduction pairs (as described in Section 2) but also
for reduction pairs incorporating the basic version of usable rules [3], where the
set of usable rules of a DP problem (P ,S) is computed as follows. First, for each
defined symbol f occurring in the right-hand side of some rule of P , all f -rules
of S are marked as usable. Then, whenever a rule is usable and its right-hand
side contains a defined symbol g, all g-rules of S become usable as well. In this
way, all rules of the TRSs R1, R2 and Tk are usable. It is an easy exercise to
make our TRSs also withstand reduction pairs that incorporate usable rules with
(implicit) argument filters [10] (induced by matrix interpretations).

Our results concerning the domain hierarchy provide a definitive answer to a
question raised in [17] whether rational numbers are somehow unnecessary when



On the Domain and Dimension Hierarchy of Matrix Interpretations 333

terminating TRSs

n = 2n = 3 n = 1

T2

···
T3

···
T4

···
· · ·

Fig. 2. The dimension hierarchy

dealing with matrix interpretations. The answer is in the negative, so the attempt
of [17] to simulate matrix interpretations over Q with matrix interpretations
over N (of higher dimension) must necessarily remain incomplete.

Moreover, we remark that the results of this paper do not only apply to the
standard variant of matrix interpretations of Endrullis et al. [6] (though the tech-
nical part of the paper refers to it) but also to the kinds of matrix interpretations
recently introduced in [19] (which are based on various different well-founded
orders on vectors of natural numbers) and extensions thereof to vectors of non-
negative rational and real numbers. On the technical level, this is due to the
fact that our main Lemmata 5, 7 and 10 only require weak compatibility (rather
than strict) and do not demand monotonicity of the respective matrix interpre-
tations. Also note that the interpretations given in the proofs of Theorems 6,
9 and 12 can be conceived as matrix interpretations over the base order >wΣ ,
which relates two vectors x and y if and only if there is a weak decrease in every
single component of the vectors and a strict decrease with respect to the sum of
the components of x and y (cf. [19]). We expect our results to carry over to the
matrix interpretations of [5]. For linear interpretations, this should be possible
without further ado, whereas non-linear interpretations conceivably require the
addition of new rules enforcing linearity of the interpretations of some function
symbols (e.g. by using techniques from [18]).

We conclude with a remark on future work and related work. For future work,
we mention the extension of the results of this paper to more restrictive classes of
TRSs like left-linear ones and SRSs. In this context we also note that the partial
result of [8] showing that the dimension hierarchy is infinite applies without
further ado since the underlying construction is based on SRSs in contrast to
our approach of Section 4.

Acknowledgements. We thank Bertram Felgenhauer for his helpful comments
in the early stages of this work.

References

1. Alarcón, B., Lucas, S., Navarro-Marset, R.: Proving termination with matrix in-
terpretations over the reals. In: WST 2009, pp. 12–15 (2009)

2. Amitsur, A., Levitzki, J.: Minimal identities for algebras. Proceedings of the Amer-
ican Mathematical Society 1(4), 449–463 (1950)

3. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs.
TCS 236(1-2), 133–178 (2000)



334 F. Neurauter and A. Middeldorp

4. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press
(1998)

5. Courtieu, P., Gbedo, G., Pons, O.: Improved Matrix Interpretation. In: van
Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds.) SOFSEM
2010. LNCS, vol. 5901, pp. 283–295. Springer, Heidelberg (2010)

6. Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving ter-
mination of term rewriting. JAR 40(2–3), 195–220 (2008)

7. Gebhardt, A., Hofbauer, D., Waldmann, J.: Matrix evolutions. In: WST 2007,
pp. 4–8 (2007)

8. Gebhardt, A., Waldmann, J.: Weighted automata define a hierarchy of terminating
string rewriting systems. Acta Cybernetica 19(2), 295–312 (2009)

9. Giesl, J., Thiemann, R., Schneider-Kamp, P.: The Dependency Pair Frame-
work: Combining Techniques for Automated Termination Proofs. In: Baader,
F., Voronkov, A. (eds.) LPAR-11 2004. LNCS (LNAI), vol. 3452, pp. 301–331.
Springer, Heidelberg (2005)

10. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving
dependency pairs. JAR 37(3), 155–203 (2006)

11. Hirokawa, N., Middeldorp, A.: Automating the dependency pair method.
I&C 199(1-2), 172–199 (2005)

12. Hofbauer, D.: Termination Proofs by Context-Dependent Interpretations. In: Mid-
deldorp, A. (ed.) RTA 2001. LNCS, vol. 2051, pp. 108–121. Springer, Heidelberg
(2001)

13. Hofbauer, D., Waldmann, J.: Termination of {aa → bc, bb → ac, cc → ab}.
IPL 98(4), 156–158 (2006)

14. Hofbauer, D., Waldmann, J.: Termination of String Rewriting with Matrix In-
terpretations. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 328–342.
Springer, Heidelberg (2006)

15. Horn, R., Johnson, C.: Matrix Analysis. Cambridge University Press (1990)
16. Lucas, S.: On the relative power of polynomials with real, rational, and integer

coefficients in proofs of termination of rewriting. AAECC 17(1), 49–73 (2006)
17. Lucas, S.: From Matrix Interpretations over the Rationals to Matrix Interpretations

over the Naturals. In: Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau,
L., Rioboo, R., Sexton, A.P. (eds.) AISC 2010. LNCS, vol. 6167, pp. 116–131.
Springer, Heidelberg (2010)

18. Neurauter, F., Middeldorp, A.: Polynomial interpretations over the reals do not
subsume polynomial interpretations over the integers. In: RTA 2010. LIPIcs, vol. 6,
pp. 243–258 (2010)

19. Neurauter, F., Middeldorp, A.: Revisiting matrix interpretations for proving ter-
mination of term rewriting. In: RTA 2011. LIPIcs, vol. 10, pp. 251–266 (2011)

20. Neurauter, F., Zankl, H., Middeldorp, A.: Revisiting Matrix Interpretations for
Polynomial Derivational Complexity of Term Rewriting. In: Fermüller, C.G.,
Voronkov, A. (eds.) LPAR-17 2010. LNCS, vol. 6397, pp. 550–564. Springer,
Heidelberg (2010)

21. Rose, H.E.: Linear Algebra: A Pure Mathematical Approach. Birkhäuser (2002)
22. Terese: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Sci-

ence, vol. 55. Cambridge University Press (2003)
23. Thiemann, R.: The DP Framework for Proving Termination of Term Rewriting.

PhD thesis, RWTH Aachen, available as Technical Report AIB-2007-17 (2007)
24. Zankl, H., Middeldorp, A.: Satisfiability of Non-linear (Ir)rational Arithmetic. In:

Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 481–500.
Springer, Heidelberg (2010)



iSat: Structure Visualization for SAT Problems

Ezequiel Orbe, Carlos Areces, and Gabriel Infante-López


Grupo de Procesamiento de Lenguaje Natural
FaMAF, Universidad Nacional de Córdoba, Argentina

{orbe,areces,gabriel}@famaf.unc.edu.ar

Abstract. We present iSat, a Python command line tool to analyze
and find structure in propositional satisfiability problems. iSat offers an
interactive shell to control propositional SAT solvers and generate graph
representations of the internal structure of the search space explored by
them for visualization, with the final aim of providing a unified envi-
ronment for propositional solving experimentation. iSat was designed to
enable simple integration of both new SAT solvers and new visualization
graphs and statistics with a minimum of coding overhead.

1 Introduction

iSat1 (interactive SAT) is a command line tool implemented in Python that
helps users to analyze and find structure in propositional satisfiability problems.
It can be used, for example, to investigate the behavior of different provers over
a given test set. The main service offered by iSat is a unified interface for ex-
perimentation with different propositional SAT solvers and visualization graphs.
Moreover, it can be use to mechanize the repetitive tasks often performed dur-
ing the development of SAT solvers (e.g., fine tuning heuristics) or the selection
of the appropriate configuration options for a given solver working on a par-
ticular satisfiability problem. iSat computes different visualization graphs (e.g.,
Variable-Clause , Variable, Interaction, etc.) over the current clause set at dif-
ferent points during the exploration of the search space, and computes related
statistics over these graphs (degree mean/max/min/standard deviation, clique
number, clustering, number of cliques, etc.). iSat was designed to facilitate the
integration of new SAT solvers, visualization graphs and statistics with a mini-
mum of coding overhead. iSat is distributed under a GPL license and currently
supports two SAT solvers out of the box: Minisat [3] and CryptoMinisat [11].

1.1 A Brief Overview on SAT Solving

Propositional satisfiability is the problem of deciding whether there exists a
Boolean assignment to variables, such that all clauses in a given propositional for-
mula evaluate to true. Despite its complexity, current SAT solvers (e.g., [3,8,5])
efficiently solve many instances of the SAT problem.

� Consejo Nacional de Investigaciones Cient́ıficas y Técnicas.
1 Available at https://cs.famaf.unc.edu.ar/~ezequiel/software/isat/

N. Bjørner and A. Voronkov (Eds.): LPAR-18, LNCS 7180, pp. 335–342, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

https://cs.famaf.unc.edu.ar/~ezequiel/software/isat/


336 E. Orbe, C. Areces, and G. Infante-López

Current SAT solvers can be classified in two broad classes: incomplete and
complete systems. Incomplete solvers perform different kinds of stochastic lo-
cal search to find a satisfying valuation; if the search is successful, satisfiabil-
ity is established, but search failure does not imply unsatisfiability. Complete
SAT solvers, on the other hand, perform an exhaustive, systematic search, and
hence can establish both satisfiability and unsatisfiability. Most of them imple-
ment variants of the Davis-Putnam-Logemann-Loveland algorithm (DPLL) [2,1].
Complete SAT solvers can be further classified into conflict-driven and look-
ahead. Conflict-driven SAT solvers augment DPLL with conflict analysis, clause
learning, non-chronological backtracking and restarts as its principal compo-
nents. Look-ahead SAT solvers, are also based on DPLL but invest substantial
efforts choosing first the branching variable to be used (the different choice op-
tions are called decision heuristics) and then the truth value this variable will
be assigned (using so called direction heuristics) aiming to achieve the largest
reduction of the remaining search space. [4] provides an excellent overview of
the area.

The SAT solving community is large and very active, with strong industrial
involvement on application areas like planning [6], test pattern generation [7],
etc. As a result of this demand, new algorithms and heuristics are being con-
stantly developed, and the available solvers tuned to obtain the best behavior
on particular problem domains. But interacting with solvers to gather statistics
and explore their behavior when solving particular problems in order to find the
best configuration parameters for a given problem class is a burdensome task.

iSat is a command line tool developed in Python that provides an inter-
active shell for multiple SAT solvers and is capable of producing visualization
graphs and statistics, with the final aim of providing a unified environment
for SAT solving experimentation. Currently, iSat provides access to the Min-
isat [3] and the CryptoMinisat [11] solvers; produces Variable-Clause graphs,
Variable graphs, Literal-Clause graphs, Literal graphs and Interaction graphs
that can be exported in gml and dot format and can be visualized using, for
example, Cytoscape2; and computes statistics over these graphs like degree
mean/max/min/standard deviation, clique number, clustering and number of
cliques. Moreover, the architecture of iSat has been designed to enable simple
integration of new SAT solvers and new analysis tools (i.e., new visualizations
and statistics).

2 A Sample Session

We will describe a typical session with iSat to illustrate its capabilities. The
screen capture of the interaction can be seen in Figure 1.

Consider the case of a researcher who wants to visualize how the structure of
a pigeon hole problem instance evolves during search. She suspects that if she
can identify some structural properties of the problem, she could develop new

2 http://www.cytoscape.org/

http://www.cytoscape.org/


iSat: Structure Visualization for SAT Problems 337

... : Seaching solvers in /.../iSat/solvers . 

... : 1 solvers were found. 

... : -------------------------------------- 

... :  Solver Id: minisat20 

... :  Solver Version: 2.0 

... :  Solver Description: Minisat core solver 

... : -------------------------------------- 

... : Searching graphs in /.../iSat/graphs . 

... : 1 graphs were found. 

... : -------------------------------------- 

... :  Graph Id: litclause 

... :  Graph Description: Literal Clause Graph 

... :  Graph Dump Formats: ['gml', 'dot'] 

... : -------------------------------------- 

... :  Graph Id: varclause 

... :  Graph Description: Variable Clause Graph 

... :  Graph Dump Formats: ['gml', 'dot'] 

... : -------------------------------------- 
isat > loadcnf -p /.../pigeonh/unsat/ph-5-4.cnf
... : Output will be located at: /.../iSat/bin/results/ph-5-4-1304023285 
... : Parsing /.../pigeonh/unsat/ph-5-4.cnf file... 
... : Problem /.../pigeonh/unsat/ph-5-4.cnf was loaded.  
      20 vars (40 literals) and 45 clauses were parsed. 
isat > setup -s minisat20
... : Creating instance of minisat20. 
... : Loading the problem into the solver. 
... : The instance-id of the solver is: 0 
... : The results for this instance will be stored at 
      /.../iSat/bin/results/ph-5-4-1304023285/minisat20-0 
isat > dumpgph -g litclause -f gml
... : litclause graph for instance 0 of solver minisat20 dumped in 
      /.../iSat/bin/results/ph-5-4-1304023285/minisat20-0/litclause-1304023285.gml 
isat > setconf -s minisat20 -i 0 -v [(3,2),(4,1)]
isat > getconf
... : Solver: minisat20 
... :  Instance 0 
... :  0 - var_decay = 1.05263157895 (float) 
... :  1 - clause_decay = 1.001001001 (float) 
... :  2 - random_var_freq = 0.02 (float) 
... :  3 - restart_first = 2 (int) 
... :  4 - restart_inc = 1.0 (float) 
... :  5 - learntsize_factor = 0.333333333333 (float) 
... :  6 - learntsize_inc = 1.1 (float) 
... :  7 - expensive_ccmin = True (bool) 
... :  8 - polarity_mode = 1 (int) 
... :  9 - verbosity = 0 (int) 
... : -------------------------------------- 
isat > reset
... : Solver: minisat20 
... : Resetting instance 0 
isat > psolve -r 1
... : Solver: minisat20 
... :  Instance 0  
... : Status => UNDEF 
isat > ssts
... : Solver: minisat20 
... :  Instance 0 
... :  starts = 1 
... :  decisions = 7 
... :  rnd_decisions = 0 
... :  propagations = 25 
... :  conflicts = 2 
... :  clauses_literals = 100 
... :  learnts_literals = 9 
... :  max_literals = 9 
... :  tot_literals = 9 
... :  nAssigns = 0 
... :  nClauses = 45 
... :  nLearnts = 2 
... :  nVars = 20 
... : -------------------------------------- 
isat > dumpgph -g litclause -f gml
... : litclause graph for instance 0 of solver minisat20 dumped in 
      /.../iSat/bin/results/ph-5-4-1304023285/minisat20-0/litclause-1304023287.gml 
isat > psolve -r 4
... : Solver: minisat20 
... :  Instance 0  
... : Status => UNDEF 
isat > ssts
... : Solver: minisat20 
... :  Instance 0 
... :  starts = 5 
... :  decisions = 44 

... :  nLearnts = 15 

... :  nVars = 20 

... : -------------------------------------- 
isat > dumpgph -g litclause -f gml
... : litclause graph for instance 0 of solver minisat20 dumped in 
      /.../iSat/bin/results/ph-5-4-1304023285/minisat20-0/litclause-1304023288.gml 
isat > psolve -r 8
... : Solver: minisat20 
... :  Instance 0  
... : Status => UNSAT
isat > save * /.../script.txt 
... : Saved to /../script.txt

Loading solver modules

Loading the problem

Creating the instance

Configuring the instance

Creating Literal-Clause graph

Getting statistics from the 
solver

Partial Solving

Loading graph modules

Saving the session

Fig. 1. A typical session



338 E. Orbe, C. Areces, and G. Infante-López

heuristics to improve the search. She uses iSat with Minisat as SAT solver and
the Literal-Clause graph to visualize the problem structure.

She loads (command loadcnf) the problem instance into the tool. iSat first
parses and loads the problem, and then creates an output folder where result files
of the session will be stored. Then she creates an instance of Minisat (command
setup) and iSat loads the problem into the solver and creates an output folder
where files related to this instance will be stored. Then she builds the Literal-
Clause graph (command dumpgph) for the original problem. This will be the
baseline against which to compare the different graphs generated during the rest
of the session. Before solving the problem, she configures the solver instance
(command setconf) to make it restart search after 2 conflicts have been found
and to keep this bound constant during execution. Next, she checks that the other
configuration options of the instance are correctly set (command getconf).

Now, she starts exploring how Minisat solves the problem. As she wants to
see the structure of the problem at different points, she runs a partial solving
(command psolve)3. Once this ends, she retrieves some statistics from the solver
(command ssts) to check how the search is performing, and then builds another
graph representation from the current state of the problem. She repeats this
process until the problem is proved to be unsatisfiable. Finally, she saves the
session a script (command save) so she can easily re-run her experiments later.

After quitting iSat, she will be able to visualize and analyze the generated
graphs (see Figure 2) using a suitable graph analysis tool like Cytoscape, looking
for structural properties that can be used in the heuristic she is developing.

(a) (b) (c)

Fig. 2. Evolution of the problem structure: a) Original problem. b) After one restart.
c) After five restarts.

3 Services Provided by iSat

Most modern SAT solvers are complex procedures that iteratively modify the
internal state of the set of clauses still to be solved together with a partial
assignment. The computation starts with the initial state given by the set of
clauses in the original formula and an empty assignment. The solver modifies

3 Currently, psolve in Minisat stops search after a specific number of restarts. Other
options are possible (e.g., returning the control to iSat after a fix number of steps).



iSat: Structure Visualization for SAT Problems 339

C
1

addc: Adds a list of clauses to a given instance. If no instance is given, they are added to
all instances.

simplify: Simplifies the set of clauses in a given instance. If no instance is given, it sim-
plifies all instances.

solve: Attempts to solve the problem in a given instance; it lets the solver compute a final
state. If no instance is given, it solves all instances.

psolve: Performs a partial solve in a given instance. If no instance is given, it partially
solves all instances using the same number of restarts.

reset: Resets the internal state. If no instance is given, it resets all instances.

C
2

ssts: Gather statistics from the given instance. If no instance is specified, it gathers statis-
tics from all instances.

gsts: Gathers statistics from a specific visualization graph. If no instance is given, it
gathers statistics from all instances.

dumpgph: Generates a file with the visualization graph of the current state of a given
instance. If no instance is specified, it generates visualization graphs for every instance.

getconf: Gets the current configuration options from a given instance. If no instance is
specified, it gets the current configuration options from all instances.

C
3

loadcnf: Loads a problem into memory and creates a folder where the results of the session
are stored.

setup: Creates an instance of a solver and feeds it with the last problem that was loaded
using loadcnf. For each instance, it creates a subfolder where it outputs information
particular to the instance.

setconf: Configures a SAT solver instance with the given configuration options.

C
4

save: Saves the current session as a script.
load: Loads and execute a script file.

Fig. 3. iSat commands

this state step by step adding and removing clauses, and assigning variables.
iSat is a tool that instruments this computation. It enables users to retrieve the
solver state, explore it, represent it as a graph and manually modify it.

iSat can run many instances of the same or different SAT solvers in the same
session. In this way, users can compare different intermediate states that might
come from different solvers or from the same solver at different stages. Since
iSat groups instances according to the underlying SAT solver, it is possible to
interact with one specific instance, with all instances of one specific solver or
with all instances of all solvers. The current version of iSat can interact with
Minisat and CryptoMinisat, but other SAT solvers can be easily integrated.

Users can also save sessions and reproduce them as scripts. The shell interface
(implemented with cmd24) enables users to retrieve command history, search the
history, and execute Python code and shell commands. iSat provides means to
inspect the computation state through visualization graphs. Currently, iSat can
compute Interaction graphs [10], Variable-Clause graphs [9], Variable graphs [9],
Literal-Clause graphs, and Literal graphs (the last two are similar to the previous
two but using literals as nodes instead of variables). Users can select the type of
graph and the instance to export as a file for further analysis.

iSat commands can be grouped in four categories: C1) those that handle and
modify the state of the SAT solver, C2) those used to inspect the current state
(by means of relevant statistics or visualization graphs), C3) commands to create
instances of a problem; and C4) commands to save sessions and to execute saved
sessions. Most relevant commands are described in Figure 3.

4 http://packages.python.org/cmd2/

http://packages.python.org/cmd2/


340 E. Orbe, C. Areces, and G. Infante-López

iSat is a powerful tool that offers users relevant information. It let them
interact with different solver instances easily and intuitively. Moreover, its ar-
chitecture enables easy integration of new solvers and visualization graphs.

4 Extending iSat

iSat has been designed to be easily extended to include new SAT solvers and
different visualization graphs, with their respective statistics.

iSat uses a Client/Services architecture. The Client layer implements the
user interface as an interactive shell. The Services layer provides the interface
to different solvers and visualization graphs. Services can be either Solvers or
Graphs. A graphical description of the architecture is shown in Figure 4.

SOLVER 1

INTERACTIVE SHELL

GRAPH 1

CLIENT

SERVICES

build(clauses)
analyze_graph
analyze_nodes(nodes)
dump(format, filename)

Graph

load(clauses, params)
set_conf_params(params)
add_clause(clause)
reset_state()
solve(assumptions)
partial_solve(assumptions)
get_stats()
get_clauses()
get_learnt_clauses()
get_conf_params()
get_model()

Solver

SOLVER N GRAPH M. . . . . .

Fig. 4. The architecture of iSat

Two components are needed to integrate a new SAT solver into iSat. The
first wraps the API of the SAT solver into Python and provides Python bind-
ings. Since this wrapper only translates the SAT solver’s API into Python, the
resulting bindings might not be the ones required by the interactive shell. The
second component addresses this issue adapting the wrapper to the specific needs
of the interactive shell. Both components are SAT solver dependent and both
have to be implemented when a new solver is added to iSat.

For SAT solvers developed in C/C++ (this is the case for most current SAT
solvers), the first component can be defined with the help of tools like the Sim-
plified Wrapper and Interface Generator (Swig)5 or the Boost libraries6 which
assist in the definition of bindings for a number of target programming lan-
guages, including Python. But even with the help of these tools, defining this
component requires careful work and knowledge of the particular solver involved.

5 http://www.swig.org/
6 http://www.boost.org/

http://www.swig.org/
http://www.boost.org/


iSat: Structure Visualization for SAT Problems 341

In particular it is in this component where we should ensure that the resulting
Python bindings provide all the necessary basic functionality required by iSat
(like the ability to stop the run of the solver at a certain point, and retrieve the
current state). For example, to build the Python bindings for Minisat, its origi-
nal C++ API was first extended in the native language to provide the missing
functionality required by iSat. Besides providing a simplified interface to some
of the methods already present in the solver, this extension includes a partial
solving method that continues the search till the next restart, and methods that
returns the current set of clauses and learnt clauses. The Python bindings for
this extension were then obtained using Swig.

The second component, on the other hand, is mostly bookkeeping, and adapts
the previous functionality to the concrete function interfaces and datatypes used
by iSat. In particular, implementing this component boils down to the definition
of a subclass of the Python class Solver and uses the functionality provided by
the wrapper in its implementation. The Solver class interface is shown in Fig-
ure 4. Methods in this class can be grouped into three categories: configuration
methods, information methods, and solving methods. In the configuration cate-
gory we have methods to load a problem in the solver (load and add clause),
methods to configure the solver parameters (set conf params), and methods to
reset the internal state of the solver (reset state). In the information category,
we havemethods that grant access to the internal state of the solver (get clauses,
get learnt clauses), a method to obtain statistics (get stats), a method that
returns a model of the current problem, if available (get model), and a method
that returns the current configuration parameters (get conf params). Finally,
the solving category includes methods to run the solver, or to run it till a certain
predefined condition is met, over the current problem (solve and partial solve).

Integrating new visualization graphs into iSat follows a similar strategy but
is usually simpler as we don’t have to deal with the internal complexity of a
SAT solver. The common interface is defined by the class Graph also shown in
Figure 4. This interface includes methods to build the graph (build), dump the
graph to a file (dump), and gather statistics both at graph and at node level
(analyze graph and analyze node). There is no restriction on how the graph is
implemented internally, or on how the statistics are gathered. Graphs modules
already implemented in iSat have been developed using the Python package
NetworkX7 to build graphs and to gather associated statistics.

5 Conclusions

iSat is an interactive command line tool that can be used to investigate the
internal structure of the search space explored by propositional SAT solvers. It
can be used to assist developing new heuristics and to compare different stages of
the same or different solvers. iSat generates different graph representations of the
current problem state, and related statistics. The current version of iSat provides
the general architecture, integration with the Minisat and CryptoMinisat solvers,

7 http://networkx.lanl.gov/

http://networkx.lanl.gov/


342 E. Orbe, C. Areces, and G. Infante-López

and implementations for computing Variable-Clause, Variable, Literal-Clause,
Literal and Interaction graphs; it provides access to the statistics obtained from
Minisat and CryptoMinisat (number of decisions made, propagations, conflicts
detected, current number of variables, etc.) together with statistics over the
graphs computed (degree mean/max/min/standard deviation, clique number,
clustering, number of cliques, etc.). iSat was developed with two concrete design
goals in mind: to simplify extensibility and to provide an agile interaction with
different provers. The outcome is a unified interface for experimentation where
new SAT solvers and visualization graphs can be easily integrated.

As far as we known, there exists only one similar tool called DPViz [10]. It
offers a tightly integrated environment to visualize different runs of the DPLL
procedure and the structure of propositional satisfiability problems. In contrast
to our tool, DPViz constructs only one type of graph, and its emphasis is on
displaying the internal structure of the problem by using advanced laying out
algorithms. Moreover DPViz, does not provide a suitable extension mechanism
that allows the user to add new SAT solvers or visualization graphs.

This is the first release of iSat. We are currently working on the integration
of new SAT solvers, and different graph visualizations. The flexibility offered by
the current implementation opens the way to many customizations possibilities.
It would be interesting to see in which ways the SAT solving community will
make use of iSat and contribute to its development.

References

1. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Comm. of the ACM 5(7), 394–397 (1962)

2. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. of the
ACM 7(3), 201–215 (1960)

3. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

4. Heule, M.: SmArT solving: Tools and techniques for satisfiability solvers. PhD
thesis, TU Delft (2008)

5. Heule, M., vanMaaren, H.: March dl: Adding adaptive heuristics and a new branch-
ing strategy. J. on Sat., Boolean Modeling and Comp. 2, 47–59 (2006)

6. Kautz, H., Selman, B.: Planning as satisfiability. In: Proc. of ECAI 1992. John
Wiley and Sons, Inc. (1992)

7. Marques-Silva, J., Sakallah, K.: Robust search algorithms for test pattern genera-
tion. In: Proc. of the Fault-Tolerant Computing Symp. IEEE (1997)

8. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering
an efficient SAT solver. In: Proc. of the 38th Design Automation Conf. (2001)

9. Nudelman, E., Leyton-Brown, K., Hoos, H., Devkar, A., Shoham, Y.: Understand-
ing Random SAT: Beyond the Clauses-to-Variables Ratio. In: Wallace, M. (ed.)
CP 2004. LNCS, vol. 3258, pp. 438–452. Springer, Heidelberg (2004)

10. Sinz, C., Dieringer, E.-M.: DPvis – A Tool to Visualize the Structure of
SAT Instances. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569,
pp. 257–268. Springer, Heidelberg (2005)

11. Soos, M.: CryptoMiniSat — a SAT solver for cryptographic problems (2009),
http://www.msoos.org/cryptominisat2

http://www.msoos.org/cryptominisat2


Linear Constraints over Infinite Trees

Martin Hofmann and Dulma Rodriguez

Department of Computer Science, University of Munich
Oettingenstr. 67, D-80538 München, Germany

{martin.hofmann,dulma.rodriguez}@ifi.lmu.de

Abstract. In this paper we consider linear arithmetic constraints over
infinite trees whose nodes are labelled with nonnegative real numbers.
These constraints arose in the context of resource inference for object-
oriented programs but should be of independent interest. It is as yet open
whether satisfiability of these constraint systems is at all decidable. For a
restricted fragment motivated from the application to resource inference
we are however able to provide a heuristic decision procedure based on
regular trees. We also observe that the related problem of optimising
linear objectives over these infinite trees falls into the area of convex
optimisation.

Keywords: Constraints, Infinite trees, Resource analysis.

1 Introduction

In this paper we present a new algorithmic problem related to linear arithmetic
over D = R+ ∪ {∞}. Indeed, it can be seen as a special case of linear arithmetic
with infinitely many variables (with some schematic notation so as to make
instances of the problem finite objects).

While in general linear arithmetic with infinitely many variables is easily seen
to be undecidable (introduce a variable xit for every position i and time t of a
computation on a Turing machine) the question of decidability for our special
case remains open. We do, however, provide a heuristic solution for an important
subcase motivated by practical considerations.

We begin with an informal description of our constraint systems. We have
arithmetic variables that take on values in D = R+ ∪ {∞} and tree variables
whose values are infinite trees whose nodes are labelled with elements of D. We
fix a finite set L = {1, . . . , n} of labels to address the children of a node, e.g.
L = {L,R} for infinite binary trees and L = {tl} for infinite lists.

Such trees can be added, scaled, and compared componentwise; furthermore,
we have an operation ♦(.) that extracts the root label of a tree, thus if t is a tree
expression then ♦(t) is an arithmetic expression. Finally, if t is a tree expression
and l ∈ L then l(t) is a tree expression denoting the l-labelled immediate subtree
of t.

Given a system of constraints built from these constructions we can ask for sat-
isfiability and for values of selected arithmetic variables. Asking for values of tree

N. Bjørner and A. Voronkov (Eds.): LPAR-18, LNCS 7180, pp. 343–358, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



344 M. Hofmann and D. Rodriguez

variables makes no sense in general as these are infinite objects. We can also ask
for the optimum value of some linear combination of the arithmetic variables.

In Figure 1 two infinite trees t1, t2 over label set L = {L,R} are defined. It also
contains two infinite trees over label set L = {tl} which are effectively infinite
lists. Within one and the same constraint system we can only use trees over one
and the same label set. These trees satisfy for example: L(t1) = R(t1) = t1,
t1 . t2, l2 . l1, ♦(t1) = 1, ♦(t2) = 2. We also have t1 + t1 = t2 and 2t1 = t2 and
tl(l1) = l1 + l2.

Now, the constraint system tl(x) / x ∧ ♦(x) ≥ 1 is satisfiable, for example
with x = l1 and its optimum value with respect to the objective c = ♦(x) to be
minimised equals 1. The constraint system L(x) / x ∧ R(x) / x ∧ ♦(x) ≥ 6 is
satisfiable, for example with x = 6t1.

The constraint system ♦(x) ≥ 1 ∧ 2tl(x) = tl(x) is also satisfiable, namely by
x = 10ω, but ♦(x) ≥ 1 ∧ 2tl(x) = tl(x) ∧ x = tl(x), however, is unsatisfiable.

2 2

2 222

2

... ...

t  =

L L

RL

R R

2 

1

l    =2

tl tl tl tl

l   =

...tl1 2 3 4 5

1 1 1 1 ...tl tl tl tl

1 1

1 111

1

... ...

L L

RL

R R

t  =1

Fig. 1. Some infinite trees

As already mentioned, we currently do not know whether satisfiability of
such constraint systems is in general decidable, but the heuristic method we
shall present covers all the constraint systems given so far. This is because, the
trees witnessing satisfiability were regular in the sense that their set of subtrees
is finite. So, t1, t2, l2 are regular, but l1 is not. Accordingly, a constraint system
like ♦(x) ≥ 1 ∧ tl(x) / x ∧ tl(y) / x + y is not amenable to our heuristic as it
does not admit a regular solution.

In order to decide satisfiability of constraints in general it is tempting to use
Büchi tree automata; however, in order to represent our “arithmetic” trees as a
tree whose nodes are labelled with letters from a finite alphabet, we would have
to represent the numerical annotations using extra branches and then primitive
predicates such as equality cannot be recognised by a Büchi tree automaton.
Indeed, we conjecture that the algebraic structure of arithmetic trees is not
“automatic” in the sense of [BG00].

Nevertheless, we believe that satisfiability of our constraint systems is decid-
able; in support of this conjecture, we can enlist the fact that the set of solutions
to a constraint system is convex in the sense that if t1 and t2 are both solutions
then so is (1 − λ)t1 + λt2 for λ ∈ [0, 1]. Furthermore, constraint systems can
be reduced by algebraic manipulations and elimination steps to canonical forms
from which solutions can be read off.



Linear Constraints over Infinite Trees 345

We encountered these constraint systems as part of our endeavour of devel-
oping an automatic type inference for the object-oriented resource type system
presented in [HJ06,HR09]. Indeed, we were able to reduce the type inference
problem for that system to satisfiability of arithmetic tree constraint systems.
While we do not describe this rather intricate reduction in this paper we try to
give a rough indication of it so as to provide further motivation for the potential
usefulness of arithmetic tree constraint systems.

The type system presented in loc.cit. ascribes refined types to objects in such a
way that a concrete object together with its type defines a nonnegative number—
the potential of that object. The typing rules are formulated in such a way that
the potential of all reachable objects under their current typing furnishes an up-
per bound on the resource usage of any subsequent statement plus the potential of
all reachable objects after its execution. In this way, by telescoping, the potential
of the initial heap configuration furnishes an upper bound on the total resource
usage of a program and this then can be used to read off an input dependent re-
source bound, e.g. in the form of a linear function of the resource consumption of a
program. Through a very coarse lens we can represent the refined type of an object
of some class C with fields L and R also of class C as an arithmetic tree over label
set {L,R}. The potential of such an object is then given as the sum of all non-null
access paths. If, e.g., the “type” of some object o is t2 from Fig. 1 and its L,R fields
are both null then this object carries a potential of 2. If, on the other hand, object
o′ satisfies o′.L = o′.R = o then the potential of o will equal 6 (and not 4 because
ascription of potential is oblivious to aliasing).

In order to infer types one can then introduce an appropriate tree variable
wherever a type is required and generated constraints from side conditions of
typing rules. Constraints of the form t / t′ arise from subtyping, whereas con-
straints of the form t / t′ + t′′ arise from sharing, i.e. multiple use of a variable.

We hope, though, that due to their compact and general formulation our arith-
metic tree constraint systems will find other applications beyond type inference
as well.

We were surprised to find practically no directly related work. One notable
exception is [DV07] where constraint satisfaction problems with infinitely many
variables are introduced and studied. The difference to our work is twofold: first,
the range of individual variables in loc.cit. is finite, e.g. Boolean in contrast to
D in our case; secondly, the access policy is much more general and leads to
undecidability in general. Interestingly, the near absence of related work has
also been noted in loc.cit.

2 Infinite Trees

In this section we present infinite trees labelled with nonnegative real numbers.
Fix a finite set of labels L = {l1, . . . , ln}. The set TL

D of infinite trees is given
by TL

D = {t | t : L∗ → D} where D = R+ ∪ {∞} with 0 ∈ R+. We will refer
to elements w ∈ L∗ as paths. We write |w| for the length of w, where |ε| = 0
and |lw| = |w| + 1. A tree t′ is a sub-tree of a tree t if there exists w ∈ L∗ so
that t′(p) = t(w p) for all p ∈ L∗. Further, we say that an infinite tree is regular



346 M. Hofmann and D. Rodriguez

if it contains a finite number of different sub-trees. The set TL
D carries a final

coalgebra structure consisting of the function

〈♦, step〉 : TL
D → D× (L → TL

D)
t �→ 〈t(ε), λl w . t(l w)〉

where step li returns the ith subtree, and ♦ gives the label of the root node tree
[SR10]. We write li as a short notation for step li. For any domain U , every family
of functions lti : U → U and o : U → D defines a unique function h : U → TL

D ,
such that ♦(h(x)) = o(x) and li(h(x)) = h(lti(x)). We define a preorder .
between trees as follows:

Definition 1. Let t, t′ ∈ TL
D . We define t . t′ coinductively by t . t′ ⇐⇒

♦(t) ≤ ♦(t′) and li(t) . li(t
′) for all li ∈ L.

Alternatively, we can define the same preorder pointwise by:

Definition 2. Let t, t′ ∈ TL
D . Then t .ind t

′ ⇐⇒ for all w ∈ L∗ . t(w) ≤ t′(w).

Lemma 1. t .ind t
′ ⇐⇒ t . t′.

We define addition of trees (+ : TL
D × TL

D → TL
D) by: ♦(t + t′) = ♦(t) + ♦(t′)

and li(t+ t′) = li(t)+ li(t
′) and multiplication of trees with a nonnegative scalar

(· : R+×TL
D → TL

D) by: ♦(c · t′) = c ·♦(t′) and li(c · t′) = c · li(t′) for each li ∈ L.

Defining a Complete Lattice For the following we recall that the domain
D = R+ ∪ {∞} is a complete lattice under its usual order by the completeness
axiom for R and because it has top and bottom elements: ∞ and 0. For each

d ∈ D we define d̂ ∈ TL
D by ♦

(
d̂
)

= d and li(d̂) = d̂ for each li ∈ L. Then,
∞̂ is the top element in TL

D and 0̂ the bottom. We will show that (TL
D ,.) is a

complete lattice. For each subset of TL
D , we define its least upper bound and its

greatest lower bound as follows.

–
∧

: P(TL
D) → TL

D is totally determined by ♦(
∧
T ) = mint∈T (♦(t)) and

li(
∧
T ) =

∧
li(T ).

–
∨

: P(TL
D) → TL

D is totally determined by: ♦(
∨
T ) = maxt∈T (♦(t)) and

li(
∨
T ) =

∨
li(T ).

Lemma 2 (Complete Lattice). Let t ∈ TL
D and T ⊆ TL

D . Then:

1. ∞̂ . t and t . 0̂.
2.
∨
T is the least upper bound of T and

∧
T is the greatest lower bound of T .

3. (TL
D ,.) is a complete lattice.

3 Constraints

Next, we consider a system of inequalities among tree expressions and a system of
linear arithmetic constraints. Let X be a fixed, countably infinite set of variables



Linear Constraints over Infinite Trees 347

and Λ be a fixed countably infinite set of arithmetic variables where X ∩Λ = ∅.
We write TAExp to denote the set of tree expressions that represent a path. We
call these expressions atomic. The set TExp denotes expressions that represent
either a path or a sum of paths. We call expressions in TExp, that are not atomic,
compound. Moreover, we write AExp to denote linear arithmetic expressions.
An arithmetic expression is either a number n, an arithmetic variable λ, an
expression representing a potential found at some path ♦(tae) or a sum of two
expressions ae1 + ae2. We build the sets of valid expressions TExp and AExp by
the following grammar, where x ∈ X , n ∈ D, λ ∈ Λ and l ∈ L.

tae ::= x | l(tae) ∈ TAExp
te ::= tae | te+ te ∈ TExp
ae ::= n | λ | ♦(tae) | ae+ ae ∈ AExp
tc ::= te . te ∈ TConstr
ac ::= ae ≤ ae ∈ AConstr

A system of constraints is a set of valid tree constraints and arithmetic con-
straints, i.e. a pair C = (T C,AC) where T C and AC are finite subsets of TConstr
and AConstr respectively. We write Vars(te) ⊆ X for the set of tree variables
that occur in the tree expression te and Vars(ae) ⊆ X ∪ Λ for the set of tree
and arithmetic variables that appear in the arithmetic expression ae. Moreover,
we write Vars(C) for the set of tree and arithmetic variables that appear in C.
Sometimes we write C(x,λ) as a short notation for Vars(C) = x,λ.

Meaning ofConstraints. Let π = (πt, πa) where πt : X → TL
D and πa : Λ→ D.

The meaning of arithmetic expressions π(ae) : D is defined in the obvious way, e.g.
π(λ) = πa(λ) and π(♦(tae)) = ♦(π(tae)). The meaning of tree expressions π(te) :
TL
D is defined as one might expect, e.g. π(x) = πt(x) and π(l(tae)) = l(π(tae)).

Then, π satisfies a tree constraint te . te′ (written π |= te . te′) if π(te) .
π(te′). Similarly, π satisfies an arithmetic expression ae1 ≤ ae2 (π |= ae1 ≤ ae2) if
π(ae1) ≤ π(ae2). Finally, we say π satisfies a system of constraints C = (T C,AC)
if π |= tc for each tc ∈ T C and π |= ac for each ac ∈ AC.

We say that the variable x occurs only positively in the system of constraints
C (and write C(x+)) when it appears only on the right hand side of constraints.
Conversely, we say that it appears only negatively (and write C(x−)) when it
appears only on the left hand side. Finally, if the variable appears sometimes on
the left, sometimes on the right, we write C(x+, x−).

Lemma 3. Let C(x+) and D(x−) be systems of constraints and t, t̂ ∈ TL
D with

t . t̂.

1. If π[x �→ t] |= C(x+) then π[x �→ t̂] |= C.
2. If π[x �→ t̂] |= D(x−) then π[x �→ t] |= D.

Given a tree expression te and a path w we define tew : AExp inductively by
teε = ♦(te) and telw = l(te)w. The resulting expression may not be valid, but
it can easily be transformed into an equivalent valid one with the following
transformations



348 M. Hofmann and D. Rodriguez

l(tae1 + tae2) = l(tae1) + l(tae2) ♦(tae1 + tae2) = ♦(tae1) + ♦(tae2) (3.1)

For example, (x+ y)l = ♦(l(x+ y)) is not valid but it is equivalent to ♦(l(x)) +
♦(l(y)). Moreover, we define substitution of tree variables with tree expressions in
constraints C [te/x] as usual and ensure that the resulting constraints are valid,
again by the transformations (3.1).

3.1 Algorithmic Problems

In this section we discuss algorithmic problems regarding a system of constraints
C whose study would be of interest.

Satisfiability. One important problem, with a direct application to type in-
ference for the RAJA typing system[HJ06], is satisfiability. That is, if we have
given a system of constraints, we would like to know whether it is satisfiable.
Moreover, we would like to obtain a valuation π that satisfies the constraints.
Here we give a slightly weaker definition of the satisfiability problem. We are in-
terested in a finite set of arithmetic constraints that is satisfiable iff the system
of constraints C is satisfiable. Since the trees we are studying are infinite, it is
not possible to obtain a valuation πt : X → TL

D in general. However, we will see
in Section 4 that we can effectively deliver a valuation πt when all the values in
ran(πt) are regular trees.

Reducing the satisfiability problem to the problem of satisfying a finite set of
arithmetic constraints is advantageous because there are effective ways of solving
linear arithmetic constraints. Moreover, we remark that the problem of obtaining
an infinite set of arithmetic constraints equivalent to C is trivial. If we follow
the definition of inequality (.ind) we notice that a set of inequalities over trees
T C =

⋃
i tei . te′i is satisfiable iff the following set of arithmetic constraints

is satisfiable: Γ (T C) = {teiw ≤ te′iw | w ∈ L∗}. In Section 4 we provide an
algorithm for solving satisfiability that is sound in all cases and complete for
constraints systems of a restricted form.

Example 1. Let L = {l} and T C = {x . l(x), l(x) + l(x) . z} and AC = {1 ≤
♦(x)}. The set AC′ = {1 ≤ λ, λ+λ ≤ δ} is equivalent to (T C,AC). This example
can be analysed by our algorithm.

Elimination of a Tree Variable. The problem of eliminating a variable x
from a system of constraints C while keeping the satisfiability of the constraints
(Fig. 2) is interesting for various reasons. The first one is efficiency. Eliminating
variables can reduce significantly the size of a system of constraints. Thus, it is a
good idea to eliminate variables first, and then try to solve the resulting system.
On the other hand, eliminating variables can help in bringing constraints in a
form that is particularly suitable for applying a given algorithm (see Section
4.3). In Section 5 we give an algorithm for variable elimination that, however,
does not succeed in eliminating all variables. If we had an algorithm that solved



Linear Constraints over Infinite Trees 349

Satisfiability
Given: A finite system of constraints C = (T C,AC).
Wanted: A finite set of linear arithmetic constraints AC′ such that: there

is πa with πa |= AC′ iff there is πt such that (πt, πa) |= C.
Optimisation
Given: A finite system of constraints C = (T C,AC) and a linear objective

function f defined on the arithmetic variables.
Wanted: A valuation πa of the arithmetic variables such that (πt, πa) |= C

for some valuation of the tree variables and whenever (π′
t, π

′
a) |= C

then f(π′
a) ≤ f(πa).

Elimination of a tree variable
Given: A finite system of constraints C = (T C,AC) and a variable x ∈ X .
Wanted: A finite system of constraints C′ with x /∈ Vars(C′) ⊆ Vars(C) and

π |= C′ iff ∃t.π[x �→ t] |= C.

Fig. 2. Algorithmic problems

the elimination problem, the algorithm would solve satisfiability as well, since a
finite system of constraints without tree variables is automatically a finite set of
arithmetic constraints.

Example 2. Assume we wish to eliminate y from C = {x . y, y . l(x)}, {1 ≤
♦(y)}. Then our algorithm would return C′ = {x . l(x)}, {1 ≤ ♦(l(x))} which is
equivalent to C. However, our algorithm is not able to eliminate x from C′.

4 Solving a System of Constraints

In this section we present an algorithm for solving a system of constraints C =
(T C,AC). The linear arithmetic constraints AC can be solved easily by an LP-
Solver. Thus, the challenge is to deal with constraints over trees. Our goal is
to reduce the problem of solving these constraints to the problem of solving
a finite set of linear arithmetic constraints. We noticed in last section that the
canonical set Γ (T C) is infinite. But in some particular cases when the constraints
admit regular solutions, we can obtain a finite set of arithmetic constraints. Our
algorithm seeks solutions to the constraints in the case that the trees must also
satisfy some (given) regular structure. When the algorithm is given a regular
structure for the tree variables that occur in T C, that we call a tree schema Ts,
it calculates a finite set of arithmetic constraints. We prove that the algorithm
is sound. Clearly, the algorithm is not complete in the general case since not
all constraints admit a regular solution. Further, we give in Lemma 4 an upper
bound on the size of the resulting set of arithmetic constraints in terms of the
sizes of T C and Vars(T C).

Tree Constraints in Normal Form. We say that tree expressions are in
normal form when they are either atomic or a compound expression of the
restricted form: tae+ tae′. Moreover, we say that a tree constraint tc = te1 . te2



350 M. Hofmann and D. Rodriguez

is in normal form if te1 and te2 are in normal form and only one of them is
compound. Arbitrary tree constraints tc ∈ TConstr can be brought into this
form by introducing new variables, for example the tree constraint x . y+z+w
is equivalent to {x . y + v, v = z +w}. In the following section we assume that
the tree constraints are in normal form. This will simplify our computation of
|ΓTs(T C)| because we will be able to use the fact that |Vars(tc)| ≤ 3 for each
constraint tc.

4.1 Tree Schema Substitution and ΔTs(C)
In the following we define tree schemas: a finite set of tree variables, a finite set
of regular trees and a pair of maps, which represent a regular structure for a set
of infinite trees.

Definition 3 (Tree Schema). A tree schema Ts consists of

– a finite subset Ts.X ⊆ X.
– a finite subset Ts.TL

D ⊆ TL
D closed under l(.) for every l ∈ L.

– a total map Ts.next : L × Ts.X → Ts.X ∪ Ts.TL
D .

– a total injective map Ts.♦ : Ts.X → Λ.

A valuation π = (πt, πa) matches tree schema Ts if the following conditions hold
for every x ∈ Ts.X:

– if Ts.♦(x) = λ ∈ Λ then ♦(πt(x)) = πa(λ);
– if Ts.next(l, x) = y ∈ Ts.X then l(πt(x)) = πt(y).
– if Ts.next(l, x) = t ∈ TL

D then l(πt(x)) = t.

Example 3 (Tree schema). Assume x1, x2 ∈ X and λ1, λ2 ∈ Λ and L = {l}. Let
Ts be a tree schema defined by Ts.X = {x1, x2} and Ts.♦(xi) = λi for i ∈ {1, 2}
and Ts.next(l, x1) = x2 and Ts.next(l, x2) = x1. Now define the trees t1 and t2
by ♦(t1) = 1, l(t1) = t2 and ♦(t2) = 2, l(t2) = t1. The valuation π given by
πt(xi) = ti and πa(λi) = i matches Ts.

The reason why the set Γ (T C) is infinite is that it contains expressions tew for
each w ∈ L∗. The main advantage of having a tree schema is that we can elimi-
nate expressions containing labels (like x1ll = l(l(x1))) from a set of constraints.
The substitution of such expressions with tree schemas delivers a variable. In this
case l(l(x1))[Ts] delivers x1 because Ts. next(l, x1) = x2 and Ts. next(l, x2) = x1.
We define the functions tae[Ts] : X ∪ TL

D , te[Ts] : TExp and ae[Ts] : AExp for-
mally in Fig. 3. These functions simplify the given expressions with respect to a
particular tree schema so that T C[Ts] returns a set of constraints over trees with
no (sub)expressions of the form l(tae), while AC[Ts] returns a set of arithmetic
constraints that contains no tree variables.

In Fig. 3 we also define the set ΓTs(T C), a set of arithmetic constraints whose
satisfiability implies satisfiability of T C. We build the set ΓTs(T C) as follows:
for each constraint te . te′ ∈ T C and each path w ∈ L∗, we add the arithmetic
constraints tew[Ts] ≤ te′w[Ts] to the set. The use of tree schema substitution



Linear Constraints over Infinite Trees 351

te[Ts]

x[Ts] = x

l(tae)[Ts] =

{

Ts.next(l, y) if tae[Ts] = y ∈ Ts.X
l(t) if tae[Ts] = t ∈ Ts.TL

D

(te1 + te2)[Ts] = te1[Ts] + te2[Ts]

ae[Ts]

n[Ts] = n
λ[Ts] = λ

♦(tae)[Ts] =

{

Ts.♦(tae[Ts]) if tae[Ts] = y ∈ Ts.X
♦(t) if tae[Ts] = t ∈ Ts.TL

D

(ae1 + ae2)[Ts] = ae1[Ts] + ae2[Ts]

T C[Ts] =
⋃

i{tei[Ts] � te′i[Ts]} for T C =
⋃

i{tei � te′i}

AC[Ts] =
⋃

i{aei[Ts] ≤ ae′i[Ts]} for AC =
⋃

i{aei ≤ ae′i}

ΓTs(T C) =
⋃

te�te′ ∈ T C{tew[Ts] ≤ te′w[Ts] | w ∈ L∗}

ΔTs(C) = ΓTs(T C) ∪ AC[Ts]

Fig. 3. Tree schema substitution and ΓTs(T C) and ΔTs(C)

ensures that ΓTs(T C) is finite, in contrast to Γ (T C). In the following Lemma we
compute an upper bound on the size of ΓTs(T C) as a function of the sizes of T C
and Vars(T C).
Lemma 4 (Cardinality of the Set ΓTs(T C)). Let T C be a set of constraints
and Ts a tree schema with Ts.X = Vars(T C). Then |ΓTs(T C)| ≤ |T C| · |Ts.X |3.
The set of arithmetic constraints ΔTs(C), also defined in Fig. 3, is obtained
by adding the constraints in AC, after their substitution with the tree schema
Ts, to the set ΓTs(T C). Thus, ΔTs(C) is a finite set of arithmetic constraints
without tree variables. We will show below that satisfiability of ΔTs(C) implies
satisfiability of C.
Example 4. Let X,Λ,L and Ts be defined as in Example 3. Moreover, let C =
{l(x1) . x2, l(x2) . x1}, {1 ≤ ♦(x1), 2 ≤ ♦(x2)}. Then ΓTs(T C) = {λ2 ≤
λ2, λ1 ≤ λ1} and ΔTs(C) = {λ2 ≤ λ2, λ1 ≤ λ1, 1 ≤ λ1, 2 ≤ λ2}.
In the following we would like to show the soundness of the algorithm for com-
puting ΔTs(C): if we have a solution for ΔTs(C), we can also find a solution for
C. This result is based on the following Lemma, which states that, given a tree
schema Ts and a valuation π = (πt, πa) that matches Ts, π satisfies C iff πa
satisfies ΔTs(T C). Moreover we show that all the trees in ran(πt) are regular.

Lemma 5. Let Ts be a tree schema with Ts.X = Vars(T C) and π = (πt, πa) be
a valuation that matches Ts. Then:

1. πa |= ΓTs(T C) ⇐⇒ π |= T C.
2. πa |= ΔTs(C) ⇐⇒ π |= C.
3. if t ∈ ran(πt) then t is regular.



352 M. Hofmann and D. Rodriguez

subst(x,Ts, πa) = t
where ♦(t) = πa(Ts.♦(x))
and l(t) =

{
subst(y,Ts, πa) if Ts.next(l, x) = y ∈ Ts.X
t′ if Ts.next(l, x) = t′ ∈ Ts.TL

D

for each l ∈ L

Ts[πa] = {x �→ subst(x,Ts, πa) | x ∈ Ts.X}

Fig. 4. Extending a tree schema Ts to a valuation Ts[πa] : X → TL
D

Given a tree schema Ts and a valuation πa that satisfies ΔTs(C), we can build
a valuation Ts[πa] : Ts.X → TL

D , as shown in Fig. 4, such that the valuation
(Ts[πa], πa) matches Ts. Thus, by Lemma 5, (Ts[πa], πa) satisfies C.

Theorem 1 (Soundness of ΔTs(C)). Let Ts be a tree schema with Ts.X =
Vars(T C) and πa : Λ → D be a valuation with πa |= ΔTs(C). Then there exists
a valuation πt : Ts.X → TL

D such that (πt, πa) |= C and if t ∈ ran(πt) then t is
regular.

Lemma 5 also provides a sufficient condition on C which guarantees that its
satisfiability implies satisfiability of ΔTs(C). If it is possible to construct a tree
schema such that there is a satisfying valuation for C that matches it, then
ΔTs(C) is satisfiable. Moreover, it follows that C must admit regular solutions.

Lemma 6 (Condition for Completeness ofΔTs(C)). Let Ts be a tree schema
with Ts.X = Vars(T C) and let π |= C with π matches Ts. Then πa |= ΔTs(C).

4.2 Computation of ΔTs(C)
In last section we described the set ΔTs(C) and proved that its satisfiability
implies the satisfiability of C. The natural question that arises is how to com-
pute ΔTs(C). Computing AC[Ts] is simple, the challenge is the computation of
ΓTs(T C). Adding constraints to the set for each path w ∈ L∗ according to the
definition is clearly infeasible since there are infinitely many paths. However, we
can calculate the desired set by iteration: we build a set Γ i

Ts(T C) iteratively. In
the i-th step of the iteration the set contains exactly the constraints correspond-
ing to the paths w with |w| ≤ i. We prove that the iteration terminates, i.e. that
there is an index j with Γ j

Ts(T C) = Γ j+1
Ts (T C) and that this set contains all the

constraints in ΓTs(T C).
The sets Γ i

Ts(T C) are useful for proving the soundness of the iteration and for
understanding how it works. However, actually building the sets in each iteration
would be inefficient. Instead, we build a set of tree constraints T CiTs iteratively
(Fig. 5), by adding new constraints in each step, so that the following invariant
holds: for all i, Γ 0

Ts(T C
i
Ts) = Γ i

Ts(T C). In the following, we prove the soundness
of the iteration: ΓTs(T C) = Γ 0

Ts(T C∞Ts) that follows directly from the invariant.



Linear Constraints over Infinite Trees 353

Γ i
Ts(T C) =

⋃
te	te′∈T C{tew[Ts] � te′w[Ts] | w ∈ L∗, |w| ≤ i}

treeConstrs(T C) = {l(te)[Ts] � l(te′)[Ts] | te � te′ ∈ T C, l ∈ L}

T C0
Ts = T C[Ts]

T Ci+1
Ts = T Ci

Ts ∪ treeConstrs(T Ci
Ts)

T C∞
Ts =

⋃
i≥0 T Ci

Ts

Fig. 5. Γ i
Ts(T C) and T Ci

Ts

Lemma 7 (Soundness of Iteration). Let T C be a set of constraints and Ts
be a tree schema. Then:

1. For all i, Γ 0
Ts(T C

i) = Γ i
Ts(T C).

2. ΓTs(T C) = Γ 0
Ts(T C

∞).

Next, we prove termination of the iteration. The proof consists of two parts.
First we notice that, since T CiTs ⊆ T Ci+1

Ts for all i, if there exists an index
n0 with treeConstrs(T Cn0

Ts ) ⊆ T Cn0

Ts , then T C
n0

Ts = T Cn0+1
Ts and for all i ≥ n0

T CiTs = T Cn0

Ts . The second part of the proof consists in showing that such an
index exists for this sequence. It follows from the soundness of the iteration and
from the fact that the set ΓTs(T C) is finite.

Lemma 8 (Termination of Iteration). Let T C be a set of constraints and
Ts be a tree schema. Then:

1. If there is n0 with treeConstrs(T Cn0

Ts ) ⊆ T C
n0

Ts then ∀i ≥ n0 . T CiTs = T Cn0

Ts .
2. There is n0 with T Cn0

Ts = T C
n0+1
Ts and T C∞Ts = T Cn0

Ts .

Example 5 (Computation of ΓTs(T C)). Let Ts and L be defined as in Example
3 and T C be defined as in Example 4. Then, we can build ΓTs(T C) as follows:
T C0Ts = {x2 . x2, x1 . x1} and T C1Ts = {x1 . x1, x2 . x2}. Since T C0Ts = T C1Ts,
it follows T C∞Ts = T C1Ts. Moreover ΓTs(T C) = Γ 0

Ts({x1 . x1, x2 . x2}) = {λ1 ≤
λ1, λ2 ≤ λ2}.

4.3 Linear Constraint System (LCS)

We proved in a previous section that our algorithm for solving satisfiability for
a system of constraints is sound for any given tree schema. We also noticed that
the algorithm can not be complete, because it imposes a regularity condition on
the solutions. In this section we study the following questions: Is there a subset
of TConstr, for which the algorithm is complete? Then, how do we find the right
tree schemas?

A set of tree constraints T C induces a graph G = (V,E) whose vertices V
are the tree variables occurring in T C. The set of edges E is defined as follows:
for each te . te′ ∈ T C, for each x ∈ Vars(te) and y ∈ Vars(te′), we add (x, y) to E.



354 M. Hofmann and D. Rodriguez

Then, we say that a set of tree constraints T C contains a loop, when its cor-
responding graph G contains a closed path. Moreover, we say that a subset
T C′ ⊆ T C is a loop, if the graph G contains a closed path P and for all tc ∈ T C′
there exists a variable xi ∈ P with xi ∈ Vars(tc) and for all xi ∈ P there exists
tc ∈ T C′ with xi ∈ Vars(tc).

We wish to describe a subset LCS of TConstr such that for each C ∈ LCS we
can effectively construct a tree schema TsC with the following property: there
exists a valuation π matching TsC and satisfying C. We will describe that set
as a collection of loops of a certain restricted form together with constraints
defining relations between the variables that appear in the loops. In particular,
the loops should not contain compound expressions. Moreover, every variable x
that appear in a loop may appear in arithmetic constraints only in subexpressions
♦(x). The following grammar describes the restricted sets of tree constraints
LTConstr, RTConstr and the restricted set of arithmetic constraints LAConstr.

ltc ::= l(x) . x ∈ LTConstr
rtc ::= x . l(x) ∈ RTConstr
pae ::= n | λ | ♦(x) | pae+ pae ∈ PAExp
lac ::= pae ≤ pae ∈ LAConstr

Definition 4 (Linear Loop). Let T C′ ⊆ T C be a loop.

1. We say that T C′ is a left linear loop if T C′ ⊆ LTConstr and for all x ∈ T C′
holds x occurs only positively in T C \ T C′.

2. Further, we say that T C′ is a right linear loop if T C′ ⊆ RTConstr and for
all x ∈ T C′ holds x occurs only negatively in T C \ T C′.

3. We say that T C′ is a linear loop if it is a left linear or a right linear loop and
for all x ∈ Vars(T C′) holds if x ∈ Vars(ac) for some arithmetic constraint ac
then ac ∈ LAConstr.

Definition 5 (Linear Constraint System (LCS)). We say that T C is linear
if T C = T C′ ∪ (

⋃
i=1,...,n T Ci) where each T Ci is a linear loop with Vars(T Ci) ∩

Vars(T Cj) = ∅ for i �= j and Vars(T C′) ⊆ Vars(
⋃

i=1,...,n T Ci).

T C′ does not contain loops. This follows by the definition since the variables in
T C must appear either only positively or only negatively in T C′.

Example 6. Let L = {l}. Let C = T C = {l(x1) . x2, l(x2) . x1}, {♦(x1) ≤
♦(x2) + 1, 1 ≤ ♦(x2)}. Then, T C is a left linear loop and C ∈ LCS.

In Fig. 6 we define a tree schema for a LCS C. We show in the following Lemma
that if C is satisfiable there is a valuation that both satisfies C and matches
the tree schema TsC . For the construction of such valuation we use a valuation
π
(πt,Ts)
a : Λ→ D (Fig. 6) that we build on the basis of another valuation πt and

a tree schema Ts.

Lemma 9. Let C = (T C,AC) be a satisfiable LCS. Then there is a valuation π′

with π′ |= C and π′ matches TsC.



Linear Constraints over Infinite Trees 355

TsC .X = Vars(T C)
TsC .T

L
D = {0̂, ∞̂}

∀ xi ∈ TsC.X :
TsC.♦(xi) = λi where λi /∈ Vars(AC)

∀lj ∈ L .TsC.next(lj , xi) =

⎧⎨⎩
xk if (lj(xi) � xk) ∈ T C or (xk � lj(xi)) ∈ T C
∞̂ otherwise, if xi occurs in a left linear loop.

0̂ otherwise, if xi occurs in a right linear loop.

π
(πt,Ts)
a = {δ �→ ♦(πt(x)) | x ∈ Ts.X,Ts.♦(x) = δ}

Fig. 6. Tree schema for a LCS C = (T C,AC)

Proof. We have given a valuation π = (πt, πa) with π |= C. Let T C = T C′ ∪
(
⋃

j=1,...,m T Cj(xj)). For ease of notation, let us assume that |xj | = 1. Thus,

xj = xj and let π(xj) = tj . We define t̂j by:

Case T Cj = l(xj) . xj). We set lk(t̂j) = ∞̂ for lk �= l ∈ L.
Case T Cj = xj . l(xj). We set lk(t̂j) = 0̂ for lk �= l ∈ L.

Moreover we set ♦
(
t̂j
)
= ♦(tj) and l(t̂j) = t̂j . Now we set π̂t = πt[xj �→ t̂j ] and

π̂a = πa ∪ π(π̂t,TsC)
a and π̂ = (π̂t, π̂a). We show π̂ |= C and π̂ matches TsC : π̂

matches TsC by construction, π̂ |= T Cj follows by construction and π̂ |= AC
follows by π |= AC and ♦

(
t̂j
)
= ♦(tj). Moreover, π̂ |= T C′ follows by Lemma 3

because if T Cj is a left linear loop then T C′(x+j ) and ti . t̂i and if T Cj is a right

linear loop then T C′(x−j ) and t̂i . ti.

Theorem 2 (Completeness of ΔTs(C)). Let C be a satisfiable LCS. Then
there is a tree schema Ts and a valuation πa with πa |= ΔTs(C).
Proof. By Lemma 9 we obtain a valuation π |= C with π = (πt, πa) matches TsC .
Moreover, by Lemma 6, we obtain πa |= ΔTsC(C).
The restriction to linear constraint systems could seem very strong. However,
we will show an algorithm for eliminating variables from constraints while main-
taining their satisfiability in the next section. In most cases we are able to elim-
inate the variables that are not part of a loop with that procedure. Further,
we can often bring the loops in the required form by eliminating intermedi-
ate variables. For example, the loop {l(x) . y, y . x} can be transformed
into l(x) . x if we eliminate y. On the other hand, there are systems such as
{x+x . l(x)}, {1 ≤ ♦(x)} that can not be transformed into an equivalent linear
one. In fact, there is no regular solution for that system.

5 Elimination of Tree Variables

In this section we define an algorithm for eliminating tree variables from a set
of tree constraints while keeping their satisfiability.



356 M. Hofmann and D. Rodriguez

C(y+) or C(y−)

erase y from C ( � Prune)
(
⋃

i=1..n{y � tei}) ∪ D(y+),AC(y+)⋃
i=1..n (D,AC) [tei/y]

( � Elim+)

(
⋃

i=1..n{tei � y}) ∪ D(y−),AC(y−)⋃
i=1..n (D,AC) [tei/y]

( � Elim−)

C(y+, y−) C(yproj) ∩ C(ywhole) = ∅ li ∈ L and z, λ new

C(yproj) ∪ unfold(C(ywhole)) [zi/li(y)][λ/♦(y)]
( � Elim+/−)

Fig. 7. Elimination of tree variables from a set of tree constraints

We say that a variable x occurs projected in a set of tree constraints when
x appears exclusively in (sub)expressions l(tae), ♦(tae). If x appears exclusively
as a variable (sub)expression “x” we say that x occurs as a whole. We write
C(xproj) for the subset of C where x occurs projected and we write C(xwhole) for
the subset of C where x appears as a whole. The following function unfold(T C)
unrolls the definition of inequality (.) in the constraints once. The validity of
the resulting constraints is ensured by applying the transformations (3.1).

Definition 6 (Unfold Constraints). Let T C be a set of tree constraints. We
define a function unfold(T C) by unfolding the definition of inequality:
unfold(T C) =

⋃
te�te′∈T C

⋃
l∈L{l(te) . l(te′)},

⋃
te�te′∈T C{♦(te) ≤ ♦(te′)}.

In the following we define the algorithm elim.(.) as a set of inference rules (Fig. 7).
If the tree variable y appears only positively or negatively in the constraints then
it can be safely removed altogether from the system of constraints ( # Prune).
If the variable appears in a constraint such as tae1(y) + tae2 . tae, then we
return tae2 . tae. Otherwise, when it appears in a constraint tae1 . tae2 then
we remove the whole constraint. Further, if the variable appears in an arithmetic
constraint ♦(tae(y)) + ae2 ≤ ae, we return ae2 ≤ ae.

Next, we consider the case when the variable has at least one upper or lower
bound and appears otherwise only positively ( # Elim+) or only negatively ( #
Elim−) in the constraints. Then, the elimination takes place by substituting the
variable in the constraints with its upper bounds, if the variable occurs only
positively, or with its lower bounds, if the variable appears only negatively.

The last and more complicated case is when the variable appears both posi-
tively and negatively. Then we calculate C(yproj) and C(ywhole). If they are disjoint
sets, we unfold C(ywhole) and substitute li(y) and ♦(y) with fresh variables zi and
λ, respectively. If C(yproj) and C(ywhole) are not disjoint sets, then the variable
cannot be eliminated. The reason for this restriction is that, with this rule, we
create new variables and we want to eliminate them as well. However, if C(yproj)
and C(ywhole) are not disjoint sets, we would keep eliminating variables and cre-
ating new ones without ever coming to an end. Suppose we have the constraint



Linear Constraints over Infinite Trees 357

Table 1. Experimental results. |Vars(C)| represents the number of tree variables in the
constraints before the elimination. |Ts.X| represents the number of variables remaining
after the elimination which is equal to the number of variables in the created tree
schema Ts.

Program LoC |Vars(C)| |Ts.X|

List Duplication 37 362 4

Doubly-linked Lists 47 568 6

Constant-time List Append 60 674 12

Insertion Sort 66 872 32

List Append 80 1116 8

Merge Sort 127 2818 10

Bank Account 200 3566 10

l(x) . x and L = {l} and we want to eliminate the variable x. If we applied the

rule (#Elim+/−) we would obtain l(l(x)) . l(x) after unfolding and l(z) . z after
substituting l(x) with a fresh variable z. If we now tried to eliminate z, we would
go through the same procedure again and would never be able to eliminate the
variable. The correctness of the elimination procedure follows from the fact that
the trees form a complete lattice.

Theorem 3 (Correctness of elim()). Let C(x, y,λ) be a system of constraints.
If elimy(C) = C′(x,λ) then for all π : π |= C′ ⇐⇒ there exists t with π ∪ {y �→
t} |= C.

6 Applications to Resource Analysis

We have implemented the algorithms described in this paper in Ocaml and used
them for solving the constraints that arose during our static heap-space analysis
of object-oriented programs. Our implementation consists of the following steps:

1. Eliminate variables from the constraints until the only remaining variables
are those that appear in a loop.

2. Check if the resulting constraint system is a LCS. In the positive case, con-
struct the tree schema as described in Section 4.3, otherwise construct a tree
schema using a heuristic procedure.

3. Compute ΔTs(C) and solve it with an LP-Solver.

Table 1 shows the programs that we could analyse with our tool. For each ex-
ample, we could solve the constraints and resultantly provide a (linear) upper
bound for its heap-space requirements. Notice that the number of tree variables
that were generated is proportional to the size of the programs, while the number
of variables that remain after the elimination reflects the amount of loops in the
constraints and the amount of variables in the loops. There is a demo website
where all the examples can be analysed and downloaded [raj].



358 M. Hofmann and D. Rodriguez

7 Conclusions

We have presented a system of constraints over infinite trees and we have stud-
ied their satisfiability and elimination problems. We have given an algorithm
that solves satisfiability for a subcase. Moreover, we have presented a correct
algorithm that eliminates a tree variable in most cases. We hope to settle the
question of decidability of our tree constraints in general and plan to identify
larger tractable subproblems relevant for resource analysis.

Acknowledgements. We acknowledge support by the DFG Graduiertenkolleg
1480 Programm- und Modell-Analyse (PUMA). We also thank Luke Ong for
valuable comments.

References

BG00. Blumensath, A., Grädel, E.: Automatic structures. In: LICS, pp. 51–62 (2000)
DV07. Dantchev, S., Valencia, F.D.: On infinite csp’s (2007)
HJ06. Hofmann, M.O., Jost, S.: Type-Based Amortised Heap-Space Analysis. In:

Sestoft, P. (ed.) ESOP 2006. LNCS, vol. 3924, pp. 22–37. Springer, Heidelberg
(2006)

HR09. Hofmann, M., Rodriguez, D.: Efficient Type-Checking for Amortised Heap-
Space Analysis. In: Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771,
pp. 317–331. Springer, Heidelberg (2009)

raj. http://raja.tcs.ifi.lmu.de

SR10. Silva, A., Rutten, J.J.M.M.: A coinductive calculus of binary trees. Inf.
Comput. 208(5), 578–593 (2010)

http://raja.tcs.ifi.lmu.de


E-Matching with Free Variables

Philipp Rümmer

Department of Information Technology, Uppsala University, Sweden

Abstract. E-matching is the most commonly used technique to handle
quantifiers in SMT solvers. It works by identifying characteristic sub-
expressions of quantified formulae, named triggers, which are matched
during proof search on ground terms to discover relevant instantiations of
the quantified formula. E-matching has proven to be an efficient and prac-
tical approach to handle quantifiers, in particular because triggers can be
provided by the user to guide proof search; however, as it is heuristic in
nature, e-matching alone is typically insufficient to establish a complete
proof procedure. In contrast, free variable methods in tableau-like calculi
are more robust and give rise to complete procedures, e.g., for first-order
logic, but are not comparable to e-matching in terms of scalability. This
paper discusses how e-matching can be combined with free variable ap-
proaches, leading to calculi that enjoy similar completeness properties as
pure free variable procedures, but in which it is still possible for a user
to provide domain-specific triggers to improve performance.

1 Introduction

SAT and SMT solvers form the backbone of many of today’s verification sys-
tems, responsible for discharging verification conditions that encode correctness
properties of hardware or software designs. Such verification conditions are often
generated in the context of intricate theories, including various kinds of arith-
metic, uninterpreted functions and equality, the theory of arrays, or the theory
of quantifiers. Despite much research over the past years, efficient and scalable
reasoning in the combination of such theories remains challenging: in particu-
lar for handling quantifiers, most state-of-the-art SMT solvers have to resort to
heuristic techniques like e-matching and triggers [7,8]. E-matching is a popu-
lar method due to its simplicity and performance, but offers little completeness
guarantees and is sensitive to syntactic manipulations of input formulae.

This paper takes the standpoint that heuristics like e-matching should be
considered as optimisations, and triggers as hints, possibly affecting the perfor-
mance, but not the completeness of an SMT solver. In other words, the set of
formulae that a solver can prove should be independent from chosen triggers.
Working towards this goal, the paper presents calculi integrating constraint-
based free variable reasoning with e-matching, the individual contributions being
(i) a free variable sequent calculus for first-order logic (Sect. 3), with support for
e-matching and user-provided triggers to guide instantiation of quantified formu-
lae, partly inspired by the positive unit hyper-resolution calculus [14,15]; (ii) a

N. Bjørner and A. Voronkov (Eds.): LPAR-18, LNCS 7180, pp. 359–374, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



360 P. Rümmer

similar calculus for first-order logic modulo linear integer arithmetic (Sect. 5),
extending the calculus in [23]; (iii) as a component of both calculi, an approach to
capture functions and congruence closure procedures (commonly used in SMT)
as uninterpreted predicates (Sect. 4); (iv) a complete implementation of the cal-
culus in (ii), called Princess, and experimental evaluation against SMT solvers
competing in the SMT competition 2011 (AUFLIA category) (Sect. 6).

The calculus in (i) is sound and complete for first-order logic, while (ii) is sound
and complete for fragments such as Presburger arithmetic, the universal and
the existential fragment of first-order logic modulo integers, and the languages
accepted by related methods like ME(LIA) [4] and the complete instantiation
method in [9]. The completeness results are significantly stronger than those
guaranteed by most SMT solvers, and hold independently from the application
of e-matching or the choice of triggers in proofs.

1.1 Introductory Example

We start by illustrating e-matching and free variable methods using an exam-
ple. The first-order theory of non-extensional arrays [16] is often encoded using
uninterpreted function symbols sel and sto by means of the following axioms:

∀x, y, z. sel(sto(x, y, z), y) .
= z (1)

∀x, y1, y2, z.
(
y1

.
= y2 ∨ sel(sto(x, y1, z), y2)

.
= sel(x, y2)

)
(2)

Intuitively, sel(x, y) retrieves the element of array x stored at position y, while
sto(x, y, z) denotes the array that is identical to x, except that position y stores
value z. In order to prove that some formula holds over the theory of arrays, the
underlined expressions can be used as triggers that determine when and how the
axioms should be instantiated. Generally, triggers consist of a single or multiple
expressions (normally sub-expressions in the body of the quantified formula)
that contain all quantified variables. For instance, to prove that the implication

b
.
= sto(a, 1, 2) → sel(b, 2)

.
= sel(a, 2) (3)

holds over the theory of arrays, we can observe that the term sel(sto(a, 1, 2), 2)
occurs in the implication, modulo some equational reasoning. This term matches
the underlined pattern in (2), and suggests to instantiate (2) to obtain the in-
stance 1

.
= 2 ∨ sel(sto(a, 1, 2), 2)

.
= sel(a, 2). In fact, (3) follows for this instance

of (2), when reasoning in the theories of uninterpreted functions and arithmetic,
which allows us to conclude the validity of (3).

Axioms and triggers as shown above are commonly used in SMT solvers,
and give rise to efficient decision procedures for ground problems over arrays.1

However, in the presence of quantifiers, e-matching might be unable to determine
the right instantiations, possibly because required instantiations do not exist as
ground terms in the formula. For instance, variants of (3) might include:

b
.
= sto(a, 1, 2) → ∃x. sel(b, x) .

= sel(a, 2) (4)

b
.
= sto(a, 1, 2) → ∃x. sel(b, x+ 1)

.
= sel(a, 2) (5)

b
.
= sto(a, 1, 2) → ∃x. sel(b, x) .

= sel(a, x) (6)



E-Matching with Free Variables 361

Although the formulae are still valid, the match sel(sto(a, 1, 2), 2) used previ-
ously has been eliminated, which makes proof search more intricate. The state-
of-the-art e-matching-based SMT solver CVC3 ([3], version 2.4.1) is able to solve
(3), but none of (4), (5), (6). A more realistic example, though similar in na-
ture to the formulae shown here, was reported in [12, Sect. 3.3], where a simple
modification (Skolemisation) of a small formula prevented Z3 [19] from finding
a proof. The goal of the calculus developed in this paper (and of our imple-
mentation Princess) is to obtain a system that is more robust against such
modifications, by combining e-matching with constraint-based free variable rea-
soning, while retaining the scalability of SMT solvers.

The general philosophy of free variable methods [11] is to delay the choice of
instantiations for quantified formulae with the help of symbolic reasoning. For
example, we could instantiate the formula ∃x.sel (b, x+ 1)

.
= sel(a, 2) using a free

variable X , resulting in sel(b,X + 1)
.
= sel(a, 2). Modulo equational reasoning,

this creates the term sel(sto(a, 1, 2), X+1), which can be unified with the trigger
in (2) under the constraintX

.
= 1. It is then possible to proceed with the proof as

described above. After closing the proof, we can conclude that (5) indeed holds,
since the derived constraint X

.
= 1 is satisfiable: it is possible (retrospectively)

to instantiate ∃x.sel(b, x+ 1)
.
= sel(a, 2) with the concrete term X = 1.

This example demonstrates that a free variable calculus can be used to com-
pute answers to queries, in a manner similar to constraint logic programming.
The system developed in this paper is more general than “ordinary” logic pro-
gramming, however, since no restrictions on the use of quantifiers are imposed.

2 Background

2.1 Syntax and Semantics of Considered Logics

We assume familiarity with classical first-order logic (FOL, e.g., [11]). Let x range
over an infinite set X of variables, c over an infinite set C of constant symbols,
p over a set P of uninterpreted predicates with fixed arity, f over a set F of
uninterpreted functions with fixed arity, and α over the set � of integers. The
syntax of the unityped logics in this paper is defined by the following grammar:

φ ::= φ ∧ φ || φ ∨ φ || ¬φ || ∀x.φ || ∃x.φ || t
.
= 0 || t ≤ 0 || p(t, . . . , t)

t ::= α || c || x || αt+ · · ·+ αt || f(t, . . . , t)

The symbol t denotes terms constructed using functions and arithmetic opera-
tions. A formula φ is called closed if all variables in φ are bound by quantifiers,
and ground if it does not contain variables or quantifiers. A location within a
formula φ is called positive if it is underneath an even number of negations ¬,
otherwise negative. Simultaneous substitution of terms t̄ = (t1, . . . , tn) for vari-
ables x̄ = (x1, . . . , xn) in φ is denoted by [x̄/t̄]φ; we assume that variable capture

1 We are grateful to the anonymous referees pointing out that a further trigger (not
shown here) is needed in (2) for a complete array procedure.



362 P. Rümmer

is avoided by renaming bound variables as necessary. For simplicity, we some-
times write s

.
= t as a shorthand of 1 · s+ (−1) · t .= 0. The abbreviation true

(false) stands for 0
.
= 0 (1

.
= 0), and implication φ→ ψ for ¬φ ∨ ψ.

We consider fragments of the syntax shown above, including function-free
first-order logic (Sect. 2.3, 3), full first-order logic (Sect. 4), and first-order logic
with linear integer arithmetic (Sect. 5). Semantics of any such logic L is defined
by identifying a class SL of structures (U, I), where U is a non-empty universe,
and I is an interpretation that maps predicates p ∈ P to relations over U , func-
tions f ∈ F to set-theoretic functions over U , and constants c ∈ C to values in
U . Given (U, I), the evaluation of terms and formulae is defined recursively as
is common. A closed formula is called valid if it evaluates to true for all struc-
tures (U, I) ∈ SL, and satisfiable if it evaluates to true for at least one structure.

2.2 Sequent Calculi with Constraints

Throughout the paper we will work with the constraint sequent calculus that is
introduced in [23]. The calculus differs from normal Gentzen-style sequent cal-
culi [11] in that every sequent Γ � Δ is annotated with a constraint C (written
Γ � Δ ⇓ C) that captures unification conditions derived in a sub-proof. Such
unification conditions come into play when free variables (which technically are
treated as constants) are used to instantiate quantified formulae. All calculi in
this paper are designed such that constraints cannot contain uninterpreted predi-
cates or functions, so that validity/satisfiability of constraints is decidable. Proof
procedures and refinements for the calculi are discussed in [23,22].

More formally, if Γ , Δ are finite sets of closed formulae (the antecedent and
succedent) and C is a closed formula, then Γ � Δ ⇓ C is called a constrained
sequent. A sequent Γ � Δ ⇓ C is called valid if the formula (

∧
Γ ∧ C)→

∨
Δ

is valid. A calculus rule is a binary relation between finite sets of sequents (the
premises) and single sequents (the conclusion). Proof trees are defined as is com-
mon as trees growing upwards in which each node is labelled with a constrained
sequent, and in which each node that is not a leaf is related with the nodes
directly above through an instance of a calculus rule. A proof is closed if it is
finite, and if all leaves are justified by a rule instance without premises.

2.3 The Basic Calculus for Function-Free First-Order Logic

At the core of all calculi introduced in this paper is a calculus for first-order logic
with equality, at this point including uninterpreted predicates, but no functions:

φFOL ::= φ ∧ φ || φ ∨ φ || ¬φ || ∀x.φ || ∃x.φ || s
.
= s || p(s̄) s ::= c || x

Since functions and arithmetic are not included in the logic, terms can only be
(symbolic) constants or bound variables. Semantics is defined over the class SFOL

of structures (U, I) with arbitrary non-empty universe U . The constraint calcu-
lus PredEqC for the logic is shown in Fig. 1, with constraints consisting of
(possibly negated) equalities, Boolean connectives, and quantifiers. The validity



E-Matching with Free Variables 363

Γ, φ � Δ ⇓ C Γ,ψ � Δ ⇓ D

Γ, φ ∨ ψ � Δ ⇓ C ∧ D
∨l

Γ, φ, ψ � Δ ⇓ C

Γ, φ ∧ ψ � Δ ⇓ C
∧l

Γ � φ,Δ ⇓ C

Γ,¬φ � Δ ⇓ C
¬l

Γ � φ,Δ ⇓ C Γ � ψ,Δ ⇓ D

Γ � φ ∧ ψ,Δ ⇓ C ∧ D
∧r

Γ � φ, ψ,Δ ⇓ C

Γ � φ ∨ ψ,Δ ⇓ C
∨r

Γ, φ � Δ ⇓ C

Γ � ¬φ,Δ ⇓ C
¬r

Γ, [x/c]φ,∀x.φ � Δ ⇓ [x/c]C

Γ, ∀x.φ � Δ ⇓ ∃x.C ∀l
Γ, [x/c]φ � Δ ⇓ [x/c]C

Γ, ∃x.φ � Δ ⇓ ∀x.C ∃l
Γ � Δ ⇓ C

Γ, s
.
= t � Δ ⇓ s � .= t ∨ C

=l

Γ � [x/c]φ,∃x.φ,Δ ⇓ [x/c]C

Γ � ∃x.φ,Δ ⇓ ∃x.C ∃r
Γ � [x/c]φ,Δ ⇓ [x/c]C

Γ � ∀x.φ,Δ ⇓ ∀x.C ∀r
∗

Γ � s
.
= t,Δ ⇓ s

.
= t

=r

∗
Γ, p(s1, . . . , sn) � p(t1, . . . , tn), Δ ⇓

∧

i si
.
= ti

pc

[s/t]Γ, s
.
= t � [s/t]Δ ⇓ C

Γ, s
.
= t � Δ ⇓ C

=red

Fig. 1. The rules of the calculus PredEqC for first-order predicate logic. In all rules,
c is a constant that does not occur in the conclusion: in contrast to the use of Skolem
functions and free variables in tableaux, the same kinds of symbols (constants) are
used to handle both existential and universal quantifiers. Arbitrary renaming of bound
variables is allowed in the constraints when necessary to avoid variable capture.

of formulae of this kind is decidable by quantifier elimination [11]. The calculus is
analytic and contains two rules for each formula constructor, as well as a closure
rule pc to unify complementary literals. As an optimisation, the rule =red can
be used to destructively apply equations; the rule is not necessary to establish
completeness, but relevant (together with further refinements) to turn PredEqC

into a practical calculus [23,22].

Lemma 1 (Soundness [22]). If a sequent Γ � Δ ⇓ C is provable in PredEqC ,
then it is valid (holds in all SFOL-structures).

In particular, proving a sequent Γ � Δ ⇓ C with a valid constraint C implies
that also the implication

∧
Γ →

∨
Δ is valid. This gives rise to a constraint-

based proof procedure that iteratively constructs proof trees for an input se-
quent Γ � Δ ⇓ ? with a yet unknown constraint. The constraints in a proof
can be filled in once all proof branches have been closed. In each iteration, the
procedure checks whether the constraint generated by the current proof is valid,
in which case the procedure can terminate with the result that the input prob-
lem has been proven; otherwise, the current proof has to be unfolded further.
Strategies for generating proofs (without the need for backtracking, i.e., undoing
previous proof steps) are discussed in [23].

Example 2. We show how to prove ¬∀x.(¬p(x) ∨ x .
= c) ∨ ¬p(d) ∨ p(c), in which

p ∈ P is a unary predicate and c, d ∈ C are constants:

∗
p(d) � p(a) ⇓ d

.
= a

pc

¬p(a), p(d) � . . . ⇓ d
.
= a

¬l

∗
a

.
= c, p(d) � p(c) ⇓ d

.
= c

pc

a
.
= c, p(d) � p(c) ⇓ a � .= c ∨ d

.
= c

=l

. . . ,¬p(a) ∨ a
.
= c, p(d) � p(c) ⇓ d

.
= a ∧ (a � .= c ∨ d

.
= c)

∨l

∀x.(¬p(x)∨ x
.
= c), p(d) � p(c) ⇓ R

∀l

� ¬∀x.(¬p(x) ∨ x
.
= c) ∨ ¬p(d) ∨ p(c) ⇓ R

∨r∗,¬r∗



364 P. Rümmer

In order to instantiate the universal quantifier, the fresh constant a is introduced;
the constant is quantified existentially in the derived constraints, and therefore
can be seen as a “free variable.” The constraints on the right-hand side of ⇓ are
practically filled in after closing the proof using pc. The validity of the original
formula follows from the validity of R = ∃x.(d .

= x ∧ (x � .= c ∨ d .
= c)).

Lemma 3 (Completeness [24]). Suppose φ is closed and valid. Then there is
a valid constraint C such that � φ ⇓ C is provable in PredEqC .

3 Positive Unit Hyper-Resolution

As argued in Sect. 1.1, axioms and quantified formulae (in particular in verifica-
tion problems) are often manually formulated with a clear, directed application
strategy in mind. This makes it possible to systematically instantiate axioms in
a manner that more resembles the execution of a functional or logic program
than the search for a proof. From a practical point of view, providing support
for this style of reasoning (even if it is only applicable to a subset of input prob-
lems) is crucial to achieve the scalability needed for applications. We integrate
such user-guided reasoning into our calculus with the help of concepts from the
positive unit hyper-resolution (PUHR) calculus, an approach first used in the
SATCHMO theorem prover [14,15]. PUHR will be used in Sect. 4 to simulate
the e-matching method common in SMT solvers.

PUHR is a tableau procedure in which clauses are instantiated by matching
negative literals on (ground) literals already present on a proof branch. Starting
from the calculus PredEqC defined in the last section, we introduce a similar
rule in our hyper-resolution sequent calculus PredEqHRC , instantiating quanti-
fied formulae that are “guarded” by negative literals ¬p1(t̄1), . . . ,¬pn(t̄n) using
symbols from matching literals p1(s̄1), . . . , pn(s̄n) in the antecedent of a sequent:

Γ,
{
pi(s̄i)

}n
i=1

, ∀x̄.
(∨n

i=1 ¬pi(t̄i) ∨ φ
)
, simp

(
∀x̄.
(∨n

i=1 s̄i �
.
= t̄i ∨ φ

))
� Δ ⇓ C

Γ,
{
pi(s̄i)

}n
i=1

, ∀x̄.
(∨n

i=1 ¬pi(t̄i) ∨ φ
)

� Δ ⇓ C
∀l-m

Given literals {pi(s̄i)}ni=1 in a sequent, a quantified formula ∀x̄. (
∨n

i=1 ¬pi(t̄i) ∨ φ)
can be instantiated using the argument terms s̄i by simultaneously solving the
systems s̄i

.
= t̄i of equalities. In contrast to the original PUHR [14], we do not

require formulae to be range restricted. Note that the formula φ might be false
and disappear, and that the literals {pi(s̄i)}ni=1 are not necessarily distinct. The
solving of equalities is formulated using a recursive simplification function simp:

simp(∀x̄.(t � .= t ∨ φ)) = simp(∀x̄.φ)
simp(∀x̄.(xi � .= t ∨ φ)) = simp(∀x̄.[xi/t]φ) (xi �= t)
simp(∀x̄.(t � .= xi ∨ φ)) = simp(∀x̄.[xi/t]φ) (xi �= t)
simp(∀x̄.(s � .= t ∨ φ)) = s � .= t ∨ simp(∀x̄.φ) (s, t �∈ x̄)

simp(∀x̄.φ) = ∀(x̄ ∩ fv (φ)). φ (otherwise)

A rule ∃r-m similar to ∀l-m is introduced for existentially quantified formu-
lae ∃x̄. (

∧n
i=1 pi(t̄i) ∧ φ) in the succedent. The soundness of the new rules is



E-Matching with Free Variables 365

immediate, since the rules only introduce instances of quantified formulae al-
ready present in a sequent. After adding ∀l-m and ∃r-m, it is possible to impose
the side-condition that the rule ∀l is no longer allowed to be applied to formu-
lae ∀x̄. (

∨n
i=1 ¬pi(t̄i)∨φ); similarly for ∃r. In other words, the ordinary rules ∀l

and ∃r may only be applied to formulae that do not start with negative literals.
We denote the resulting calculus by PredEqHRC .

Example 4. We show how the proof from Example 2 can be carried over to
PredEqHRC . To this end, observe that the formula ∀x.(¬p(x) ∨ x .

= c) in the
antecedent is amenable to hyper-resolution, so that it is no longer necessary to
introduce the constant a in the proof. Also proof splitting can now be avoided:

∗
d

.
= c, p(d) � p(c) ⇓ d

.
= c

pc

. . . , d
.
= c, p(d) � p(c) ⇓ d � .= c ∨ d

.
= c

=l

∀x.(¬p(x) ∨ x
.
= c), p(d) � p(c) ⇓ true

∀l-m

� ¬∀x.(¬p(x) ∨ x
.
= c) ∨ ¬p(d) ∨ p(c) ⇓ true

∨r∗,¬r∗

∀l-m introduces the formula simp(∀x.(d � .= x ∨ x .
= c)), which can be simplified

to d
.
= c. A further optimisation is the use of =red to minimise constraints.

Lemma 5 (Completeness [24]). Suppose φ is closed and valid. Then there is
a valid constraint C such that � φ ⇓ C is provable in PredEqHRC.

Importantly for efficiency, a variety of refinements [22] restricting applications
of ∃r-m, ∀l-m can be imposed, without losing this completeness result.

4 E-Matching through Relational Encoding

For practical applications, uninterpreted functions are more common and of-
ten more important than uninterpreted predicates. Uninterpreted functions and
equalities are in SMT solvers normally represented using congruence closure
methods [21], which build a congruence graph (also called e-graph) containing
nodes for all function terms present in a problem, with edges representing as-
serted equalities. More formally, given a finite subterm-closed set T of terms and
a finite set E of equalities, the congruence graph is the undirected graph (T,E′),
where E′ ⊇ E is the smallest transitive and reflexive set of edges satisfying:

if f(s1, . . . , sn), f(t1, . . . , tn) ∈ T are nodes with {(s1, t1), . . . , (sn, tn)} ⊆ E′,
then also (f(s1, . . . , sn), f(t1, . . . , tn)) ∈ E′.

The relation E′ can be constructed by fixed-point iteration, starting from the
given equalities E. Congruence graphs can be used to efficiently decide whether
an equality s

.
= t follows from the set E of equalities. The congruence graph is

also used as the underlying datastructure for e-matching, since matching terms
(modulo equations) can efficiently be found using the congruence graph. We
discuss in this section how both congruence closure and e-matching can be un-
derstood as an encoding of functions as uninterpreted predicates, enabling the
integration of e-matching with free variables, without preventing the implemen-
tation of congruence closure with the help of efficient native datastructures.



366 P. Rümmer

4.1 Relational Encoding of Functions

We consider first-order logic including function symbols, which means that the
grammar for terms shown in the beginning of Sect. 2.3 is extended to:

s ::= c || x || f(s, . . . , s)

where f ∈ F ranges over function symbols. For the purpose of the encoding of
functions into relations, we assume that a fresh (n+ 1)-ary uninterpreted pred-
icate fp ∈ P exists for every n-ary uninterpreted function f ∈ F , representing
the graph of f . The relation fp satisfies two axioms, functionality and totality:

Funf = ∀x̄, y1, y2.
(
¬fp(x̄, y1)∨¬fp(x̄, y2)∨y1 .

= y2
)
, Totf = ∀x̄.∃y. fp(x̄, y) .

We can then translate from formulae φ over the functional vocabulary F (and re-
lational vocabulary P ) to formulae φRel purely over the relational vocabulary P .
This can be done by means of the following rewriting rules:

∃-enc: ψ[f(t̄)] � ∃x. (fp(t̄, x) ∧ ψ[x])
∀-enc: ψ[f(t̄)] � ∀x. (¬fp(t̄, x) ∨ ψ[x])

Both rules have the side condition that rewritten occurrences of f(t̄) must not
be in the scope of quantifiers binding variables in the terms t̄; furthermore, the
variable x must be fresh in ψ[f(t̄)]. It is possible, however, to apply the rewriting
rules to arbitrary sub-formulae of a given formula φ; in other words, the predicate
and quantifier that encode a function application f(t̄) can be placed arbitrarily
in the rewritten formula, as long as the function application remains in the scope
of the quantifier. Rewriting strategies are discussed later in this section.

Lemma 6. Suppose φ is a closed formula over the vocabulary F , and φRel is a
function-free formula obtained from φ by application of the rewriting rules ∃-enc
and ∀-enc. Then φ is valid iff

∧
f∈F

(
Funf ∧ Totf

)
→ φRel is valid.

Since the calculi PredEqC and PredEqHRC are sound and complete for first-
order logic without function symbols, we can therefore construct calculi for first-
order logic including functions by first encoding functions as relations.

4.2 Ground Reasoning and Congruence Closure

We first concentrate on quantifier-free first-order formulae with functions. In this
setting, it is easy to see that the hyper-resolution calculus PredEqHRC , in com-
bination with the functionality axioms Funf for functions f , is able to simulate
congruence closure procedures. This is supported by the following strengthened
version of Lem. 6, which observes that totality axioms are not necessary when
solving essentially ground formulae:

Lemma 7. Suppose φ is a closed formula over the vocabulary F , and φRel a
function-free formula obtained from φ by application of the rewriting rules ∃-enc
and ∀-enc that contains ∀-quantifiers only in positive positions, and ∃-quantifiers
only in negative positions. Then φ is valid iff

∧
f∈F Funf → φRel is valid.



E-Matching with Free Variables 367

The assumptions of the lemma require that the rewriting rule ∀-enc is only ap-
plied in positive, and ∃-enc only in negative positions when deriving φRel from φ.
As a result, there are only two kinds of quantifiers in the last formula in Lem. 7:
quantifiers in φRel that can be eliminated with the help of the rules ∃l and ∀r
by means of Skolem symbols, and the quantifiers in the axioms Funf . Since the
latter can be handled using ∀l-m, formulae

∧
f∈F Funf → φRel can be proven

in the calculus PredEqHRC purely through ground reasoning, without ever re-
sorting to the rules ∀l/∃r that introduce existentially quantified constants. This
style of reasoning closely corresponds to congruence closure, with literals fp(t̄, s)
in the antecedent of sequents representing equivalence classes of nodes of the con-
gruence graph (T,E′), and instantiation of axioms Funf simulating the addition
of further edges to the congruence relation E′.

Example 8. We show how φ = (p(f(a)) ∧ a .
= b ∧ b .

= c→ p(f(c))) is proven us-
ing the relational encoding. The corresponding formula φRel is obtained by re-
placing the function terms f(a), f(b) with fresh quantified variables x, y:

φRel = ∀x, y.
(
fp(a, x) ∧ fp(c, y) ∧ p(x) ∧ a .

= b ∧ b .
= c → p(y)

)
We can then construct a proof of Funf → φRel using the rules =red and ∀l-
m. The central step in the proof is to conclude u

.
= v by instantiating the ax-

iom Funf using the symbols occurring in the literals fp(c, u) and fp(c, v):

∗
Funf , u

.
= v, fp(c, v), p(v) � p(v)

pc

Funf , u
.
= v, fp(c, u), fp(c, v), p(u), . . . � p(v)

=red

Funf , fp(c, u), fp(c, v), p(u), a
.
= c, b

.
= c � p(v)

∀l-m

Funf , fp(b, u), fp(c, v), p(u), a
.
= b, b

.
= c � p(v)

=red

Funf , fp(a, u), fp(c, v), p(u), a
.
= b, b

.
= c � p(v)

=red

� Funf → φRel
∀r, . . .

a b c

f(a)/u f(c)/v

p(f(a)) p(f(c))

The constraint ⇓ true of each of the sequents has been left out. The proof can
also be visualised using the congruence graph shown on the right.

4.3 Relational E-Matching and Free Variables to Handle Quantifiers

E-matching instantiates quantified formulae ∀x.φ by means of pattern matching:
triggers are identified in the matrix φ, and are compared with the expressions oc-
curring in the congruence graph to determine relevant instances of the formula.
This process can be simulated using the relational function encoding, in combi-
nation with the hyper-resolution calculus PredEqHRC , by deliberately choosing
whether literals fp(t̄, x) in the relational formula ∀x.φRel are introduced with
positive or negative sign: since the unit-hyper-resolution rule ∀l-m only consid-
ers negative literals in the matrix φRel of ∀x.φRel for matching, it is possible
to encode triggers by negating the respective literals fp(t̄, x) (i.e., by using the
rewriting rule ∀-enc to generate such literals), and keeping all other literals pos-
itive using the rule ∃-enc.



368 P. Rümmer

Example 9. Consider the quantified formula ∀x.f(x) .
= g(x). Four possible ways

of encoding the formula using relations, corresponding to different strategies
when applying the rules ∀-enc and ∃-enc, are:

∀x.∃y, z.
(
fp(x, y) ∧ gp(x, z) ∧ y .

= z
)

(7)

∀x, y.
(
¬fp(x, y) ∨ ∃z.(gp(x, z) ∧ y .

= z)
)

(8)

∀x, z.
(
¬gp(x, z) ∨ ∃y.(fp(x, y) ∧ y .

= z)
)

(9)

∀x, y, z.
(
¬fp(x, y) ∨ ¬gp(x, z) ∨ y .

= z
)

(10)

Each of the relational formulae corresponds to a particular selection of triggers
in ∀x.f(x) .

= g(x):

– in (7), no triggers have been chosen, with the result that the hyper-resolution
rule ∀l-m is not applicable. Instantiation of (7) is only possible using the
rule ∀l, replacing the bound variable x with an existentially quantified con-
stant that can later unified with some term.

– in (8), the term f(x) (corresponding to the negative literal fp(x, y)) has

been selected as trigger. In the calculus PredEqHRC , (8) can only be in-
stantiated using the rule ∀l-m, and only in case a literal fp(s, t) occurs in
the antecedent of a sequent, substituting the terms s, t for the variables x, y.
This corresponds to e-matching the expression f(x) on a node f(t) of a
congruence graph. No free variables are needed to instantiate (8).

– similarly, in (9) the term g(x) is trigger.
– in (10), both f(x) and g(x) have been chosen as a multi-trigger, which means

that (10) only can be instantiated if literals fp(s, t) and gp(s
′, t′) occur in

an antecedent. In this case, the instance s � .= s′ ∨ t .= t′ will be generated,
expressing that the equality t

.
= t′ can be assumed if s and s′ are unifiable.

In terms of e-graphs, the formula would only be instantiated if the e-graph
contains nodes f(s), g(s′) such that s, s′ are in the same equivalence class.

The following proof fragment illustrates how (9) can be instantiated referring to
a literal gp(a, b) in the antecedent, effectively adding fp(a, b) to the sequent:

gp(a, b), (9), fp(a, b), b
.
= u � ⇓ [y/u]C

gp(a, b), (9), fp(a, u), u
.
= b � ⇓ [y/u]C

=red

gp(a, b), (9), ∃y.(fp(a, y) ∧ y
.
= b) � ⇓ ∀y.C

∃l,∧l

gp(a, b), (9) � ⇓ ∀y.C ∀l-m
(11)

The way in which a formula φ is translated to φRel determines how quantified
sub-formulae are instantiated, in the same way as SMT solvers can be guided
by specifying triggers (Alg. 1 shows how the translation can be done system-
atically, for a given set of triggers). However, it can be observed that the four
encodings (7)–(10) are all equivalent w.r.t. provability of theorems: in combina-
tion with the axioms Funf , Fung, Totf , Totg each of the formulae can simulate
each other formula. The choice of triggers in formulae therefore only influences
efficiency, not completeness. For instance, formula (9) in (11) can be replaced



E-Matching with Free Variables 369

Algorithm 1. EncodeTrigger: relational encoding of a quantified for-
mula for a specific set of triggers

Input: Formula ∀x̄.φ, set T of trigger terms with variables from x̄
Output: Relational formula φRel

qvars ← {x | x ∈ x̄};
premises ← ∅;
while T contains function terms do

pick (sub)term f(t̄) in T s.t. t̄ does not contain functions;
pick fresh variable y;
qvars ← qvars ∪ {y};
premises ← premises ∪ {fp(t̄, y)};
substitute y for f(t̄) everywhere in T and φ;

end
apply ∃-enc exhaustively to φ;
return ∀x∈qvars .

(∨
p∈premises ¬p ∨ φ

)
;

with (8) in the following way (the constraints of the sequents have been left out
for sake of brevity):

∗
. . . � x

.
= a

=r

fp(x, b), gp(x, b), gp(a, b), v
.
= b �

fp(x, v), gp(x, v), gp(a, b), v
.
= b �

=red

. . . , fp(x, v), gp(x, v), gp(a, b), x � .= a ∨ v
.
= b �

∨l,¬l

Fung , fp(x, v), gp(x, v), v
.
= u, gp(a, b) � ∀l-m

Fung , fp(x, u), gp(x, v), u
.
= v, gp(a, b) �

=red

Fung, . . . , fp(x, u), ∃z.(gp(x, z) ∧ u
.
= z), gp(a, b) �

∃l,∧l

Fung ,Totf , fp(x, u), gp(a, b), (8) � ∀l-m

Fung ,Totf , gp(a, b), (8) �
∀l,∃l

This illustrates that PUHR/e-matching-based reasoning (through ∀l-m and
∃r-m) can be mixed freely with free variable reasoning (through ∀l and ∃r).
Proofs constructed without applying the rules ∀l and ∃r closely correspond
to the ground reasoning in an SMT solver, while each application of ∀l or ∃r
conceptually introduces a free variable that, at a later point during proof con-
struction, can be unified with other terms, extracting unification conditions in
the form of constraints.

5 Extension to Linear Integer Arithmetic

All techniques discussed so far carry over to first-order logic modulo the the-
ory of linear integer arithmetic (FOL(LIA)), via integration into the calculus
defined in [23]. The syntax of FOL(LIA) is defined by the grammar in the begin-
ning of Sect. 2.1 and combines first-order logic (with uninterpreted predicates
and functions) with arithmetic terms and predicates. Semantics is defined over
structures (�, I) with the set of integers as universe.



370 P. Rümmer

Γ, t
.
= 0 � φ[s+ α · t],Δ ⇓ C

Γ, t
.
= 0 � φ[s],Δ ⇓ C

=red-�
Γ, s ≤ 0, t ≤ 0, αs+ βt ≤ 0 � Δ ⇓ C

Γ, s ≤ 0, t ≤ 0 � Δ ⇓ C
≤l-�

Γ, p(s1, . . . , sn) � p(t1, . . . , tn),
∧

i si − ti
.
= 0,Δ ⇓ C

Γ, p(s1, . . . , sn) � p(t1, . . . , tn),Δ ⇓ C
pu-�

∗
Γ, φ1, . . . , φn � ψ1, . . . , ψm, Δ ⇓ ¬φ1 ∨ · · · ∨ ψ1 ∨ · · · close

Fig. 2. A selection of rules of the calculus PresPredC ; for a complete list see [23]. In
=red-�, α is a literal; we write φ[s] in the succedent to denote that s occurs in an
arbitrary formula in the sequent, which can in particular also be in the antecedent. In
≤l-�, α, β > 0 are positive literals. In close-�, the formulae φ1, . . . , φn, ψ1, . . . , ψm do
not contain uninterpreted predicates.

As for FOL, we first introduce a calculus for the function-free fragment of
FOL(LIA). The integration of functions is then done in the same way as in
Sect. 3, 4 with the help of a relational encoding. The calculus PresPredC for the
function-free fragment consists of the rules in Fig. 1, together with a number
of rules specific for linear integer arithmetic, a selection of which are shown in
Fig. 2 (as a result, the rules =l, =r, =red, and pc of the first-order calculus
can be removed); in the full calculus, also simplification and splitting rules are
needed [23]. A more general closure rule close has to be used than in PredEqC

to support disjunctive constraints. Constraints in PresPredC are always formulae
in Presburger arithmetic (PA), i.e., do not contain uninterpreted predicates.

Lemma 10 (Soundness [23]). If a sequent Γ � Δ ⇓ C can be proven in
PresPredC , then it is valid.

The logic FOL(LIA) subsumes Presburger arithmetic. Since the logic of quan-
tified Presburger arithmetic with predicates is Π1

1 -complete [10], no complete
calculi can exist for FOL(LIA); however, it can be shown that the calculi intro-
duced in this section are complete for relevant and non-trivial fragments:

Lemma 11 (Completeness [23]). Suppose φ is a closed formula without func-
tions or constants in one of the following fragments:

(i) φ does not contain uninterpreted predicates (i.e., in Presburger arithmetic);
(ii) φ contains universal (exist.) quantifiers only in positive (negative) positions;
(iii) φ contains universal (exist.) quantifiers only in negative (positive) positions;
(iv) φ is of the form ∀x̄.(σ → ψ), where σ is a formula in Presburger arithmetic

(without uninterpreted predicates) that has only finitely many solutions in x̄,
and ψ contains universal (existential) quantifiers only in negative (positive)
positions (i.e., a formula accepted by the ME(LIA) calculus [4]).

Then there is a valid constraint C such that � φ ⇓ C is provable in PresPredC .

Practically, it can be observed that PresPredC can often also be applied suc-
cessfully to formulae outside of those fragments.



E-Matching with Free Variables 371

5.1 Hyper-Resolution and E-Matching for FOL(LIA)

The unit hyper-resolution rule ∀l-m (and similarly the rule ∃r-m) defined in
Sect. 3 can be integrated in the calculus PresPredC in the same way as in the
earlier first-order calculi, in order to instantiate formulae ∀x̄. (

∨n
i=1 ¬pi(t̄i) ∨ φ)

by matching. In this context, the simplification function simp can be (but does
not have to be) replaced with a function tailored to integer arithmetic, i.e., a
function that is able to solve the system

∨n
i=1 s̄i �

.
= t̄i modulo integer arithmetic.

The calculus PresPredHRC is derived from PresPredC by adding the rules
∀l-m and ∃r-m, and by imposing the side condition that the rule ∀l is no longer
applied to formulae of the shape ∀x̄. (

∨n
i=1 ¬pi(t̄i)∨φ); similarly for the rule ∃r.

As before, the soundness of the rules ∀l-m and ∃r-m is immediate. We can also
observe that PresPredHRC is relatively complete, in the sense that formulae
that are provable in PresPredC can also be proven using PresPredHRC :

Lemma 12. Suppose Γ � Δ ⇓ C is provable in PresPredC , where C is valid.
Then there is a valid constraint C′ so that PresPredHRC can prove Γ � Δ ⇓ C′.

Encoding of functions. The relational encoding of functions from Sect. 4 can be
used to obtain a calculus for the full logic FOL(LIA) with functions. Although
there are no complete calculi for the full logic, we can observe that PresPredC

(and therefore, by Lem. 12, PresPredHRC) can handle at least all formulae that
can be proven by considering a finite set of ground instances:

Lemma 13. Suppose ∃x̄.φ is a closed formula in FOL(LIA), with functions
taken from a finite set F , such that φ is quantifier-free. If there is a valid disjunc-
tion

∨n
i=1[x̄/t̄i]φ of ground instances of ∃x̄.φ, then there is a valid constraint C

such that {Funf ,Totf}f∈F � (∃x̄.φ)Rel ⇓ C is provable in PresPredC .

The lemma directly generalises to disjunctions of existentially quantified for-
mulae, which in particular entails that PresPredC is complete for the class of
essentially uninterpreted formulae F (modulo linear integer arithmetic) with fi-
nite ground instantiation F∗ defined in [9], and thus also for the array property
fragment [6] (PresPredC cannot easily be turned into a decision procedure, how-
ever, since it would be unclear how to ensure termination on invalid problems).

6 Experiments and Related Work

We have implemented the described calculus PresPredHRC for FOL(LIA) in the
theorem prover Princess,2 and are in the process of adding further optimisa-
tions. Princess uses the relational encoding from Sect. 4 to represent functions,
and heuristics similar to the ones in Simplify [7] to automatically identify triggers
in quantified formulae; redundancy criteria [22] and theory propagation help to
reduce the number of instances generated from quantified formulae. Princess
is able to handle all of the examples discussed in Sect. 1.1.

2 http://www.philipp.ruemmer.org/princess.shtml

http://www.philipp.ruemmer.org/princess.shtml


372 P. Rümmer

AUFLIA+p (193) AUFLIA-p (193)

Z3 191 191

Princess 145 137

CVC3 132 128

Fig. 3. Number of solved benchmarks, out of 2×193 unsatisfiable (scrambled) AUFLIA
benchmarks selected in the SMT competition 2011. Experiments with Princess were
done on an Intel Core i5 2-core machine with 3.2GHz, with a timeout of 1200s, heap-
space limited to 4Gb. The benchmarks in AUFLIA+p contain hand-written triggers
for most of the quantified formulae, while all triggers have been removed in AUFLIA-p.
The corresponding figures for Z3 and CVC3 are the results obtained during the SMT
competition 2011 (http://www.smtexec.org/exec/?jobs=856).

To evaluate the overhead of the relational function encoding, we compared
the performance of Princess with the SMT solvers CVC3 [3] and Z3 [19], using
benchmarks selected in the SMT competition 2011. Since our work concentrates
on proof construction, we only considered unsatisfiable benchmarks, removing 13
satisfiable AUFLIA problems in each category. The results show that Princess,
while currently not being able to compete with the fastest SMT solver Z3, per-
forms better than the (state-of-the-art) e-matching-based CVC3. This is promis-
ing, since Princess does not (yet) use SMT techniques like lemma learning,
which are important for large or propositionally complex problems. Princess
can solve most benchmarks using e-matching alone, but uses free variables in 17
of the (solved) benchmarks, typically in smaller (but harder) instances.

Related Work. E-matching is today used in most SMT solvers, based on tech-
niques that go back to the Simplify prover [7] and The Stanford Pascal Veri-
fier [20]; since then, various refinements of the e-matching approach have been
published, for instance [8,18]. To the best of our knowledge, e-matching has not
previously been combined with free variable methods. An instantiation method
similar to e-matching, but with much stronger completeness results, has been
published in [9] and is used in Z3; a comparison with our method is in Sect. 5.1.

There is a large body of work on integrating theories into resolution and
superposition calculi (e.g., [25,2,13,1]), as well as on the integration of resolution
into SMT [17]. These approaches completely avoid e-matching, offering stronger
completeness guarantees but limiting the possibility of user-provided guidance.

The model evolution calculus has been extended to theories, including integer
arithmetic [4,5]. Our approach resembles model evolution in that it also uses free
variables in a tableaux setting, albeit in a more “rigid”/global manner. Further
differences are that ME(LIA) works on clauses, only supports a restricted form
of existential quantification, and has a more explicit representation of models.

References

1. Althaus, E., Kruglov, E., Weidenbach, C.: Superposition Modulo Linear Arithmetic
SUP(LA). In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS, vol. 5749,
pp. 84–99. Springer, Heidelberg (2009)

http://www.smtexec.org/exec/?jobs=856


E-Matching with Free Variables 373

2. Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for
hierarchic first-order theories. Appl. Algebra Eng. Commun. Comput. 5 (1994)

3. Barrett, C.W., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 298–302. Springer, Heidelberg (2007)

4. Baumgartner, P., Fuchs, A., Tinelli, C.: ME(LIA) - Model Evolution with Linear
Integer Arithmetic Constraints. In: Cervesato, I., Veith, H., Voronkov, A. (eds.)
LPAR 2008. LNCS (LNAI), vol. 5330, pp. 258–273. Springer, Heidelberg (2008)

5. Baumgartner, P., Tinelli, C.: Model Evolution with Equality Modulo Built-in Theo-
ries. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803,
pp. 85–100. Springer, Heidelberg (2011)

6. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s Decidable About Arrays? In: Emer-
son, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442.
Springer, Heidelberg (2005)

7. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A theorem prover for program check-
ing. Journal of the ACM 52(3) (2005)

8. Ge, Y., Barrett, C.W., Tinelli, C.: Solving Quantified Verification Conditions Using
Satisfiability Modulo Theories. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI),
vol. 4603, pp. 167–182. Springer, Heidelberg (2007)

9. Ge, Y., de Moura, L.: Complete Instantiation for Quantified Formulas in Satis-
fiabiliby Modulo Theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 306–320. Springer, Heidelberg (2009)

10. Halpern, J.Y.: Presburger arithmetic with unary predicates isΠ1
1 complete. Journal

of Symbolic Logic 56 (1991)
11. Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge

University Press (2009)
12. Klebanov, V., Müller, P., Shankar, N., Leavens, G.T., Wüstholz, V., Alkassar, E.,

Arthan, R., Bronish, D., Chapman, R., Cohen, E., Hillebrand, M., Jacobs, B.,
Leino, K.R.M., Monahan, R., Piessens, F., Polikarpova, N., Ridge, T., Smans, J.,
Tobies, S., Tuerk, T., Ulbrich, M., Weiß, B.: The 1st Verified Software Competition:
Extended experience report (2011)

13. Korovin, K., Voronkov, A.: Integrating Linear Arithmetic into Superposition Calcu-
lus. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 223–237.
Springer, Heidelberg (2007)

14. Manthey, R., Bry, F.: A hyperresolution-based proof procedure and its implemen-
tation in Prolog. In: GWAI, pp. 221–230. Springer, Heidelberg (1987)

15. Manthey, R., Bry, F.: SATCHMO: A Theorem Prover Implemented in Prolog. In:
Lusk, E., Overbeek, R. (eds.) CADE 1988. LNCS, vol. 310, pp. 415–434. Springer,
Heidelberg (1988)

16. McCarthy, J.: Towards a mathematical science of computation. In: Popplewell,
C.M. (ed.) Information Processing 1962, pp. 21–28. North-Holland (1963)

17. de Moura, L., Bjørner, N.S.: Engineering DPLL(T) + Saturation. In: Armando,
A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195,
pp. 475–490. Springer, Heidelberg (2008)

18. de Moura, L., Bjørner, N.S.: Efficient E-Matching for SMT Solvers. In: Pfenning,
F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 183–198. Springer, Heidelberg
(2007)

19. de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)



374 P. Rümmer

20. Nelson, G.: Techniques for program verification. Tech. Rep. CSL-81-10, Xerox Palo
Alto Research Center (1981)

21. Nelson, G., Oppen, D.C.: Fast decision procedures based on congruence closure. J.
ACM 27, 356–364 (1980)

22. Rümmer, P.: Calculi for Program Incorrectness and Arithmetic. Ph.D. thesis, Uni-
versity of Gothenburg (2008)

23. Rümmer, P.: A Constraint Sequent Calculus for First-Order Logic with Linear
Integer Arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008.
LNCS (LNAI), vol. 5330, pp. 274–289. Springer, Heidelberg (2008)

24. Rümmer, P.: E-matching with free variables. Tech. rep (to appear, 2012)
25. Stickel, M.E.: Automated deduction by theory resolution. Journal of Automated

Reasoning 1(4), 333–355 (1985)



Random: R-Based Analyzer

for Numerical Domains

Gianluca Amato and Francesca Scozzari

Università “G. d’Annunzio” di Chieti–Pescara — Dipartimento di Scienze

Abstract. We present the tool Random (R-based Analyzer for Numerical
DOMains) for static analysis of imperative programs. The tool is based
on the theory of abstract interpretation and implements several abstract
domains for detecting numerical properties, in particular integer loop
invariants. The tool combines a statistical dynamic analysis with a static
analysis on the new domain of parallelotopes. The tool has a graphical
interface for tuning the parameters of the analysis and visualizing partial
traces.

1 Introduction

In the abstract interpretation framework [14], the expressive power of an analyzer
strictly depends on the choice of the abstract domain. In the last 20 years,
many abstract interpretation frameworks have been proposed based on different
semantics (see, for instance, [19,10,2]), equipped with many abstract domains,
with different trade-offs between expressivity and efficiency. The expressivity
of an abstract domain mostly depends on the kind of constraints (assertions)
that the abstract domain can represent. The simplest constraint is a constant
bound on the value of a program variable, such as −20 ≤ x ≤ 100. The abstract
domain of intervals [13], which can handle conjunctions of these constraints, is
very efficient but not very expressive, since it cannot prove relationships between
variables, such as x1+x2 ≤ 100. On the contrary, the abstract domain of (convex)
polyhedra [15] can represent any linear constraint between program variables,
such as a1x1+a2x2+ . . .+anxn ≤ b, where x1, . . . , xn are program variables and
a1, . . . , an, b are numerical constants (which may be integer, rational or floating
point). The abstract domain of polyhedra is very precise for linear constraints
but its computational cost is very high.

Many other abstract domains, which reduce the expressive power of general
polyhedra while improving efficiency, have been proposed. In most cases, new ab-
stract domains are derived by considering linear constraints subject to syntactic
restrictions. This is the case of the difference bound matrices domain [20], which
allows only the constraints a ≤ x1 ≤ b and a ≤ x1− x2 ≤ b, and for the octagon
domain [21] which allows the constraints a ≤ x1 + x2 ≤ b and a ≤ x1 − x2 ≤ b.
A slight generalization is the two-variables per-inequality domain [26] whose
constraints may only contain two variables, such as a1x1+a2x2 ≤ b, and the oc-
tahedron abstract domain [12], which can handle constraints whose coefficients
are 0, 1,−1, that is ±x1 ± x2 + . . .± xn ≤ b.

N. Bjørner and A. Voronkov (Eds.): LPAR-18, LNCS 7180, pp. 375–382, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



376 G. Amato and F. Scozzari

A different approach has been followed in the template polyhedra abstract
domain [24]. This is a parametric domain which, given a finite set {a1ix1 +
. . .+anixn}i of linear forms fixed a priori (the template), allows the constraints
a1ix1+. . .+anixn ≤ bi. The template approach may be viewed as a generalization
of difference bound matrices, octagon and octahedron, since it allows any kind
of linear constraints. However, the computational cost of its abstract operators
is higher, since any algorithm should be able to deal with any kind and any
number of constraints. Moreover, it remains the key problem of how to find the
template.

The recently proposed abstract domain of template parallelotopes [3,5] tries
to retain the advantages of both approaches. Like template polyhedra, it allows
to represent any kind of linear constraint, but the number of constraints in the
template is n – the number of variables in the program – and the constraints
are required to be linearly independent. Bounding the number of constraints
is the key to find very efficient algorithms for the abstract operators. In fact,
parallelotopes can be thought of as intervals expressed in a non-standard basis
in the vector space of variable’s values.

Our tool Random (R-based Analyzer for Numerical DOMains) implements
three different ways of using parallelotopes. First, we have implemented the
template parallelotope domain, using a fixed template to analyze the whole pro-
gram. In order to find the coefficients in the template, we use two statistical
tools, namely the Principal Component Analysis (PCA) and the Independent
Component Analysis (ICA) [17]. Second, we have implemented a template par-
allelotope approach where we can associate a template to each program point
(or to some selected program points). Third, we provide an implementation of
the parallelotope abstract domain (without templates), which exploits the full
expressive power of parallelotopes. At the end, Random annotates each program
point of the input program with the constraints discovered by the static analysis.

In the tool, we have privileged the implementation of efficient (and obviously
correct) operators, disregarding optimality and completeness (see, for instance,
[14,6,16,25]), in particular in the parallelotope abstract domain.

1.1 Template Parallelotopes

The tool can analyze a given program by using the domain of template paral-
lelotopes. In order to find the template, we have implemented a technique based
on the pre-analysis of the partial execution traces of the program. Consider the
example program in Figure 1. Initially, we run an instrumented version of the
program to collect the values of numerical variables in some specific program
points for different inputs. Figure 2 shows the set of values collected at the
program points ① and ②, where the grey rectangle is the abstraction on the
interval domain. Then, we apply to the sample data a statistical technique in
order to find the template. The tool implements two different techniques: the
Principal Component Analysis and a new technique combining the PCA with
the Independent Component Analysis.



Random: R-Based Analyzer for Numerical Domains 377

x = 42

y = 0

while (x>y) {

① x = x-1

② y = y+2

}

Fig. 1. The example
program

Fig. 2. Interval abstraction
of a partial execution trace,
observed at program points
① and ②

Fig. 3. Parallelotope ab-
straction with axes rotated
according to PCA

The principal component analysis finds a new orthonormal coordinate system
maximizing the variance of the collected values. More explicitly, PCA finds new
axes such that the variance of the projection of the data points on the first axis
is the maximum among all possible directions, the variance of the projection of
the data points on the second axis is the maximum among all possible directions
which are orthogonal to the first axis, and so on. For instance, if we apply PCA
to the values collected from partial executions traces of the program in Figure
1, we get the new basis (x′, y′) in Figure 3.

On the contrary, the independent component analysis looks for components
that are both independent and non-Gaussian. Two variables are independent if
knowing something about the value of one variable does not yield any information
about the value of the other one. Independence is a stronger property than
uncorrelatedness, and it is immediate to see that if two variables are independent,
then their covariance is zero. In practice, ICA cannot find a representation whose
components are really independent, but it can at least find components that are
as independent as possible. We have implemented a combination of PCA and
ICA, where we combine the most promising PCA components (those with very
low variance) with the most promising ICA components.

The result of the statistical analysis is further refined by a simplification proce-
dure, which stabilizes the result and avoids approximation errors. We supply two
simplification procedures which return an approximation of the principal com-
ponents which are proportional to vectors of small integers. The first procedure,
namely the Orthogonal Simple Component Analysis (OSCA) [7], minimizes the
angle between a principal component and its approximation, while the second
procedure analyzes the ratio between the coefficients in a single component.

For the program shown in Figure 1, OSCA finds the change of basis matrix
[

1 2
−2 1

]

whose columns correspond to the axes (x′, y′) in Figure 3. With this

template, we can represent the constraints a ≤ x − 2y ≤ b and c ≤ 2x + y ≤ d,
thus proving that 2x+ y = 84 holds at the program point ①. Note that none of
these constraints may be expressed either in the interval domain or in octagon.
The result of the analysis is shown in Figure 4.



378 G. Amato and F. Scozzari

{

[ x=0 , y=0 : -x+2*y=0 , 2*x+y=0 ( ) ]

x = 42

[ x=42 , y=0 : -x+2*y=-42 , 2*x+y=84 ( ) ]

y = 0

[ x=42 , y=0 : -x+2*y=-42 , 2*x+y=84 ( ) ]

while ({

[ 27<=x<=42 , 0<=y<=30 : -42<=-x+2*y<=33 , 2*x+y=84 ( ) ]

x > y

}) {

[ 28<=x<=42 , 0<=y<=28 : -42<=-x+2*y<=28 , 2*x+y=84 ( ) ]

x = x - 1

[ 27<=x<=41 , 0<=y<=28 : -41<=-x+2*y<=29 , 2*x+y=82 ( ) ]

y = y + 2

[ 27<=x<=41 , 2<=y<=30 : -37<=-x+2*y<=33 , 2*x+y=84 ( ) ]

}

[ 27<=x<=28 , 28<=y<=30 : 28<=-x+2*y<=33 , 2*x+y=84 ( ) ]

}

Fig. 4. The result of the static analysis

1.2 Multiple Template Parallelotopes

The tool is able to change the template in specific program points, marked by
a call to the function .tag(n). The parameter n is optional and can be used to
glue the collected data coming from different program points, thus creating a
virtual program point.

Random uses statistical tools to compute different templates for any (virtual)
program point, and then selects each template in the corresponding program
point. In order to switch from a template to the next one, the tool projects the
data on the new template with standard algebraic operations. In practice, this
approach amounts to partition the source code in fragments, and to apply a
different template to each fragment. Thus, in each fragment we can represent up
to n different constraints, which must be linearly independent, and do not need
to be related to the constraints in other fragments.

Using multiple templates improves the precision of the template parallelotope
domain, but can significantly reduce efficiency.

1.3 Parallelotope Abstract Domain

We have implemented the full domain of parallelotopes. The domain changes the
template at each program point, according to the operation to be performed. The
key points in the design of this domain are the join and widening operators. Both
are implemented as a variant of the inverse join [23], which allows us to discover
new constraints at a reasonable computational cost. It is also crucial, at least in
our implementation, to use delayed widening, so that new invariants may be dis-
coveredwithout being immediately discarded. For instance, consider the following
program.



Random: R-Based Analyzer for Numerical Domains 379

x = 1

y = 1

while (y < 100) {

y = y + y

y = y + y

x = x + x

x = x + x

}

The tool starts the analysis with the standard interval domain. After the first
two lines, the constraints are x = 1, y = 1. At the end of the first while iteration
we obtain the constraints x = 4, y = 4. Since we use delayed widening, in the
first iteration we simply join the two constraints. The inverse join of x = 1, y = 1
and x = 4, y = 4 yields −x+ y = 0, 1 ≤ x ≤ 4 and 1 ≤ y ≤ 4. The heuristic we
have developed chooses two linearly independent constraints from the result, in
this case −x+ y = 0 and 1 ≤ x ≤ 4. The constraint −x+ y = 0 is preferred to
1 ≤ y ≤ 4 since it is saturated by both constraints x = 1, y = 1 and x = 4, y = 4.

When processing the assignment y = y + y the analyzer changes the template
by transforming −x+ y = 0 in the new constraint −2x+ y = 0. After the second
assignment y = y+y, we get−4x+y = 0.Nowwe process the assignmentx = x+x
and get the constraints −2x+ y = 0, 2 ≤ x ≤ 8, and after the last assignment we
get the constraints −x + y = 0, 4 ≤ x ≤ 16. By applying the widening operator,
we discard all the constraints which are changed w.r.t. the previous iteration, and
we get −x+ y = 0, 1 ≤ x which is the final result of the analysis.

2 The Tool Interface

Figure 5 shows the tool’s interface. On the left side, there are the four main
panels. The Source code panel allows to upload and edit a program, while the
Analysis result shows the result of the analysis. The Matrix panel shows the tem-
plates used in the analysis, while the Partial Trace panel shows the collected
values to be analyzed with the statistical engines.

On the right side we may choose the abstract domains and tune the precision.
In the first section Partial Execution Traces, we instruct the tool on the program
points to be considered and we may select a subset of the variables for the
analysis. In the Trace Analysis section we choose the statistical engine (either
PCA or ICA), or we can provide a user-defined template matrix. We can also
choose whether to use a single template for the whole program or to change the
template at the program points selected in the previous section.

In the Trace Analysis Simplification section we choose the simplification strat-
egy to be applied to the result of the statistical engine. The OSCA procedure can
be fine-tuned by choosing several parameters. The most important is the Thresh-
old, which misures the distance between the original matrix and the simplified
one. In the Static Analysis section we choose the abstract domains to be used
in the analysis: the intervals, the template parallelotopes, a combination of the
two, or the parallelotope domain. In the last section Output options we can tune



380 G. Amato and F. Scozzari

Fig. 5. A screenshot of Random

the output of the analysis. The Displayed forms textbox allows to insert a list of
linear forms (such as 3*x+2*z). The result of the analysis is projected on these
linear forms. This may be useful to compare the result of analyses performed
with different templates. The print debug info option shows, on the console, the
intermediate computations of the static analysis, and the graphics option draws
the values in the partial execution traces and the principal components.

3 Implementation Details

The tool is available at http://www.sci.unich.it/~amato/random under the
terms of the GNU GPLv3. A previous and partial version of the tool appeared
in [4], without the multiple template parallelotopes, the general parallelotope
abstract domain, the ICA analysis, the graphical user interface, the graphical
display of partial execution traces and most of the options.

The tool is written in R, a language and environment for statistical computing
[22]. It is a functional language with powerful meta-programming features and a
vast library of statistical functions. However, it does not excel in efficiency and
convenience of debugging facilities.

We analyze programs written in an imperative fragment of the R language,
which includes assignments, conditionals and while loops. In addition, the pro-
grammer can use the built-in functions brandom(), which returns a random

http://www.sci.unich.it/~amato/random


Random: R-Based Analyzer for Numerical Domains 381

boolean value, and assume(·), in order to make assumptions on program vari-
ables, such as assume(x>0). The function .tag(·) allows to declare specific
program points to be traced. The programmer can insert in the source code the
calls .tag(0), .tag(1),.tag(2), . . . , even multiple times, in order to create
virtual program points. In case of programs with parameters, the user should
provide some input values, in order to generate the partial execution traces.
The analyzer instruments the program to record the values of the variables in
specific program points, computes the partial execution traces starting from the
input values, performs the PCA or ICA statistical analysis, simplifies the re-
sults, and finally executes the static analysis. PCA and ICA are computed using
respectively the standard built-in functions of R and the fastICA package.

The static analyzer uses a recursive chaotic iteration strategy on the weak
topological ordering induced by the program structure (see [9]). Correctness of all
the abstract operators is ensured by using either rational arithmetic through the
GNU Multiple Precision Arithmetic Library or, when it is possible, by changing
the rounding mode of the floating point arithmetic. To this aim, we have written
an auxiliary R package ieeeround [1] to control the rounding mode of the CPU.

4 Conclusion and Future Work

In order to improve usefulness and to ease further developments of Random,
many changes are necessary. First of all, the domains should be ported to C/C++,
preferably inside well known libraries such as PPL [8] or APRON [18]. The an-
alyzer engine and the program tracer should be ported to a faster and more
robust language than R. Finally, the analyzer should support a mainstream
target language. To this aim, we could exploit Frama-C [11], an extensible
platform for source-code analysis of C programs, or the Clang static analyzer
(http://clang-analyzer.llvm.org/).

References

1. Amato, G.: ieeeround: Functions to set and get the IEEE rounding mode (2011),
R package version 0.2-0, http://CRAN.R-project.org/package=ieeeround

2. Amato, G., Lipton, J., McGrail, R.: On the algebraic structure of declarative pro-
gramming languages. Theoretical Computer Science 410(46), 4626–4671 (2009)

3. Amato, G., Parton, M., Scozzari, F.: Deriving Numerical Abstract Domains via
Principal Component Analysis. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS,
vol. 6337, pp. 134–150. Springer, Heidelberg (2010)

4. Amato, G., Parton, M., Scozzari, F.: A Tool Which Mines Partial Execution
Traces to Improve Static Analysis. In: Barringer, H., Falcone, Y., Finkbeiner, B.,
Havelund, K., Lee, I., Pace, G., Roşu, G., Sokolsky, O., Tillmann, N. (eds.) RV
2010. LNCS, vol. 6418, pp. 475–479. Springer, Heidelberg (2010)

5. Amato, G., Parton, M., Scozzari, F.: Discovering invariants via simple component
analysis. Journal of Symbolic Computation (to appear, 2012),
doi:10.1016/j.jsc.2011.12.052

6. Amato, G., Scozzari, F.: Optimality in goal-dependent analysis of sharing. Theory
and Practice of Logic Programming 9(5), 617–689 (2009)

http://clang-analyzer.llvm.org/
http://CRAN.R-project.org/package=ieeeround


382 G. Amato and F. Scozzari

7. Anaya-Izquierdo, K., Critchley, F., Vines, K.: Orthogonal simple component analy-
sis: a new, exploratory approach. Annals of Applied Statistics 5(1), 486–522 (2011)

8. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Science of Computer Programming 72(1–2), 3–21 (2008)

9. Bourdoncle, F.: Efficient Chaotic Iteration Strategies with Widenings. In: Pottosin,
I.V., Bjorner, D., Broy, M. (eds.) FMP&TA 1993. LNCS, vol. 735, pp. 128–141.
Springer, Heidelberg (1993)

10. Bruynooghe, M.: A practical framework for the abstract interpretation of logic
programs. The Journal of Logic Programming 10(1/2/3 & 4), 91–124 (1991)

11. Canet, G., Cuoq, P., Monate, B.: A value analysis for C programs. In: SCAM 2009,
Proceedings, pp. 123–124. IEEE Computer Society Press (2009)

12. Clarisó, R., Cortadella, J.: The octahedron abstract domain. Science of Computer
Programming 64, 115–139 (2007)

13. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs.
In: Proc. Second Int’l Symposium on Programming, Dunod, pp. 106–130 (1976)

14. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
POPL 1979, Proc., pp. 269–282. ACM Press (1979)

15. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL 1978, Proc., pp. 84–97. ACM Press (1978)

16. Giacobazzi, R., Ranzato, F., Scozzari, F.: Making abstract domains condensing.
ACM Transactions on Computational Logic 6(1), 33–60 (2005)

17. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John
Wiley & Sons (2001)

18. Jeannet, B., Miné, A.: Apron: A Library of Numerical Abstract Domains for
Static Analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643,
pp. 661–667. Springer, Heidelberg (2009)

19. Marriott, K., Søndergaard, H., Jones, N.D.: Denotational abstract interpretation of
logic programs. ACM Transactions on Programming Languages and Systems 16(3),
607–648 (1994)

20. Miné, A.: A New Numerical Abstract Domain Based on Difference-Bound Matri-
ces. In: Danvy, O., Filinski, A. (eds.) PADO 2001. LNCS, vol. 2053, pp. 155–172.
Springer, Heidelberg (2001)

21. Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computa-
tion 19(1), 31–100 (2006)

22. R Development Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria (2011),
http://www.R-project.org/

23. Sankaranarayanan, S., Colón, M., Sipma, H.B., Manna, Z.: Efficient Strongly Re-
lational Polyhedral Analysis. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI
2006. LNCS, vol. 3855, pp. 111–125. Springer, Heidelberg (2005)

24. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable Analysis of Linear Sys-
tems Using Mathematical Programming. In: Cousot, R. (ed.) VMCAI 2005. LNCS,
vol. 3385, pp. 25–41. Springer, Heidelberg (2005)

25. Scozzari, F.: Abstract Domains for Sharing Analysis by Optimal Semantics. In:
SAS 2000. LNCS, vol. 1824, pp. 397–412. Springer, Heidelberg (2000)

26. Simon, A., King, A., Howe, J.M.: Two Variables Per Linear Inequality as an Ab-
stract Domain. In: Leuschel, M. (ed.) LOPSTR 2002. LNCS, vol. 2664, pp. 71–89.
Springer, Heidelberg (2003)

http://www.R-project.org/


Solving Graded/Probabilistic Modal Logic via Linear
Inequalities (System Description)

William Snell, Dirk Pattinson, and Florian Widmann

Dept. of Computing, Imperial College, London

Abstract. We present the experience gained from implementing a new decision
procedure for both graded and probabilistic modal logic. While our approach uses
standard tableaux for propositional connectives, modal rules are given by linear
constraints on the arguments of operators. The implementation uses binary deci-
sion diagrams for propositional connectives and a linear programming library for
the modal rules. We compare our implementation, for graded modal logic, with
other tools, showing average performance. Due to lack of other implementations,
no comparison is provided for probabilistic modal logic, the main new feature of
our implementation.

Introduction

Both graded modal logic [9] and probabilistic modal logic [7] extend (classical) propo-
sitional logic by modal connectives that constrain the number of successor states in a
Kripke frame or the probability of events in a Markov chain.

Graded modalities are used in description logic to represent number restrictions in
(extensions of) the logicALCQ [1], which is supported by a large number of tools such
as Pellet [20], Fact++ [21], RACER [11] or Hermit [16]. Probabilities do not feature as
prominently in description logic, where they do not describe Markov chains but model
uncertainty in the form of a single distribution over non-probabilistic models [14].

Most formalisms for describing the behaviour of probabilistic systems [17,6] rely on
probabilistic modal logic in some form or other. While dedicated model checkers such
as Prism [13] support the analysis of probabilistic systems, there is currently no tool
support for reasoning in probabilistic (modal) logics with Markov-chain semantics.

This paper is a first step towards filling this gap: we present the experience gained
from implementing a satisfiability checker that supports both graded and probabilistic
modal logic in the same framework. The calculus that we implement uses standard
tableau rules together with linear inequalities to describe the arithmetic or probabilistic
constraints on successor states/events. The distinguishing feature of this calculus (see
[19] for the dual treatment of validity) is that it does not try to construct a model.
Instead, it produces linear constraints whose (un-)solvability guarantees the existence of
a model. The calculus proceeds in two steps: in the first step, propositional connectives
are eliminated in a standard way, leading to conjunctive clauses over modal literals.
The modal rules applied subsequently are given in terms of linear inequalities over
the arguments of the operators in the premise. Every solution (together with a side
condition) represents a modal rule. The structural similarity of the rules for graded and
probabilistic modal logic allows us to treat both logics in the same framework.

N. Bjørner and A. Voronkov (Eds.): LPAR-18, LNCS 7180, pp. 383–390, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



384 W. Snell, D. Pattinson, and F. Widmann

The implementation of this calculus naturally reflects both steps. We represent modal
formulae using binary decision diagrams [2] where modal atoms are represented by
(BDD) variables. Propositional tableau rules then correspond to analysing all satisfy-
ing assignments of the corresponding BDD. In a second step, we calculate the set of all
modal rules applicable to a set of modal literals where solvability of an associated linear
programming problem is equivalent to validity of the corresponding tableau rule. Com-
pared to other tools, our implementation of graded modal logic shows average perfor-
mance, but allows for the treatment of probabilistic modalities in the same framework
which is not currently supported by other implementations.

To eliminate artefacts such as the particular choice of blocking or caching techniques
used, we focus on the satisfiability problem of both logics over empty TBoxes. We
describe syntax and semantics of both graded and probabilistic modal logic and briefly
introduce the underlying calculus. We then discuss implementation details and present
a brief comparison with other tools.

Related Work. Linear inequalities have been used for graded modal logic as an addition
to a tableau calculus [8] where they are used (along with the usual completion rules)
to detect inconsistency in ABoxes. Our approach, in contrast, uses linear inequalities
directly to determine valid completion steps (tableau rules). There are also approaches
reducing ALCQ to SMT(C) [12]. A proof-of-concept implementation demonstrating
compositionality of modal logics, containing graded and probabilistic modal logic as
building blocks, was presented in [4] using a naive brute-force approach that was orders
of magnitude slower than other tools (including the system presented here).

1 Syntax, Semantics and Tableau Calculus

Both graded modal logic and probabilistic modal logic are extensions of propositional
logic by unary modal operators, given by the grammar

L 	 φ, ψ ::= p | φ ∧ ψ | ¬φ | 〈x〉φ
where p ∈ V is a propositional variable and where x ∈ N in the case of graded modal
logic and x ∈ [0, 1] ∩Q for probabilistic modal logic.

For graded modal logic, we read 〈n〉φ as ’φ holds in more than n successor worlds,
and the probabilistic operator 〈p〉φ stipulates that ’φ holds with probability ≥ p in the
next state’. We interpret graded modal logic over multigraph frames [5] (W, σ, π) where
W is a set of worlds, σ : W → B(W) assigns a finite multiset (a ’bag’, formally a
function W → N with finite support) of elements of W to every world w and π : W →
P(V) is a valuation of the propositional variables. Truth of a formula at a point is
defined in the standard way, with the clause on the left below for the modal operators.

w |= 〈n〉φ ⇐⇒
∑

w′ |=φ
σ(w)(w′) > n w |= 〈p〉φ ⇐⇒

∑

w′ |=φ
σ(w)(w′) ≥ p

Similarly, probabilistic modal logic is interpreted over discrete Markov chains (W, σ, π)
where W and π are as above, and σ assigns a finitely supported probability distribution
(formally a function μ : W → [0, 1] with finite support such that

∑
w∈W μ(w) = 1) to



Graded and Probabilistic Modal Logics 385

every world w. For modal operators, truth is given by the clause on the right above,
together with the standard clauses for the remaining propositional connectives.

While graded modal logic is usually interpreted over Kripke frames (rather than
multigraphs), it is easy to see that both semantics induce the same satisfiability problem.
We obtain truth-preserving translations by considering a Kripke frame as a multigraph
where every edge has multiplicity one, and multigraphs can be converted to Kripke
frames by inserting the appropriate number of copies of each successor state. Similarly,
the probabilistic logics of non-discrete and discrete Markov chains are equivalent.

Our focus in this paper is the satisfiability problem for graded and probabilistic modal
logic, and as usual, a formula φ ∈ L is satisfiable iff there exists a model (W, σ, π)
and a world w ∈ W such that w |= φ. Our implementation is based on the following
characterisation of satisfiability in terms of a tableau calculus over tableau sequents,
that is, finite sets of formulae that we read conjunctively. We have the standard rules

Γ, p,¬p Γ, A ∧ B
Γ, A, B

Γ,¬(A ∧ B)
Γ,¬A Γ,¬B

Γ,¬¬A
Γ, A

〈x0〉p0, . . . , 〈xn〉pn,¬〈y0〉q0, . . . ,¬〈ym〉qm∑n
i=0 ri pi −∑m

j=0 s jq j > k

together with all substitution instances of the rule on the right for graded and prob-
abilistic modal logic, subject to (different) side conditions, depending on whether we
deal with graded or probabilistic modal logic. For graded modal logic, we have k = 0
and require the side condition on the left below, while for probabilistic modal logic,

∑

1≤i≤n

ri(xi + 1) −
∑

1≤ j≤m

s jy j ≥ 1
∑

1≤i≤n

ri xi −
∑

1≤ j≤m

s jy j � k

we have k ∈ Z and require the side condition on the right above, where � equals ≥ if
m > 0 and � equals > if m = 0. For both logics, ri, s j ∈ N \ {0}.

The linear inequality in the rule conclusions is a compact shorthand, and denotes
a (possibly empty) set of conclusions. More precisely, we associate to each function
v : {p1, . . . , pn, q1, . . . , qm} → {0, 1} a propositional sequent s(v) containing pi if v(pi) =
1 and ¬pi if v(pi) = 0, analogously for q j. The inequality

∑n
i=0 ri pi − ∑m

j=0 s jq j >
k then stands for the set of conclusions containing all s(v) for which

∑n
i=0 riv(pi) −∑m

j=0 s jv(q j) > k. That is, the conclusion encodes the set of binary valuations, seen as a
tableau sequent, for which the inequality holds.

The calculus above is sound and complete for both graded and probabilistic modal
logic [19,15]. That is, a sequentΓ is (conjunctively) unsatisfiable iff there exists a closed
tableau with rootΓ. In particular, every solution of the side condition in terms of weights
r j and s j induces a modal rule, but one can establish a polynomial bound on the weights
retaining completeness of the calculus [19, Lemma 6.16].

2 Implementation Details

We describe the representation of formulae in terms of binary decision diagrams, the
representation of tableau rules and the reasoning algorithm.



386 W. Snell, D. Pattinson, and F. Widmann

Representation of Formulae. We represent formulae of both graded and probabilis-
tic modal logic using binary decision diagrams [3], where propositional variables and
modal atoms (that is, formulae of the form 〈x〉φ) are represented using BDD variables.
A tableau sequent is represented by the conjunction of the formulae it contains. This
allows us to effectively delegate propositional reasoning to binary decision diagrams:
every satisfying valuation of (the BDD representing) a tableau sequent Γ corresponds
to a leaf of a propositional tableau with root Γ. We maintain a look-up table to en-
sure that multiple occurrences of the same propositional variable are represented by
the same BDD variable. In particular, modal atoms that have propositionally equivalent
arguments are presented by the same BDD variable. We note two consequences.

Deep Congruence. We call two formulae congruence equivalent if their equivalence can
be established by propositional reasoning and the congruence rule φ ↔ ψ/♥φ ↔ ♥ψ
where ♥ is a modal operator. As modal atoms with propositionally equivalent argu-
ments are represented by the same BDD variable, congruence-equivalent formulae are
represented by the same BDD.
Semantic Branching. The implementation of propositional tableau rules by means of
computing satisfying assignments of the associated BDD implies an implicit use of
semantic branching. This is a consequence of computing satisfying assignments using
BDDs, where the set of satisfying assignments corresponds to the set of paths from
the root node to the leaf representing logical truth. For example, the set of satisfying
assignments of the (BDD encoding of the) formula p0 ∨ p1 ∨ p2 will be p0, ¬p0 ∧ p1

and ¬p0 ∧ ¬p1 ∧ p2 in the variable order p0 < p1 < p2.
While BDDs conveniently relieve us of the task of implementing the rules for propo-

sitional reasoning, one obvious disadvantage of using BDDs as a ’black box’ is the
impossibility of implementing other optimisations, in particular backjumping.

Application of Modal Rules. Given a sequent Γ consisting of possibly negated modal
atoms and propositional variables, we compute the set of modal rules applicable to Γ on
the fly. While every solution of the side condition gives rise to an instance of the rule,
we can compute a polynomial bound on the size of the search space: Lemma 17.1b
in [18] guarantees that all possible rules are generated if we limit the weights to non-
negative integers of (binary) size ≤ 6n3w where w is the size of the side condition and n
is the number of modal literals. As numbers are represented in binary, the search space
to be explored is of size 26n4w (as every of the n coefficients may vary between 0 and
26n3w). This bound is exponential unlike the doubly exponential bound 22n

on the num-
ber of possible rules applicable to a sequent containing n modal literals. In practice,
the doubly exponential bound 22n

will be below the size of the search space computed
above for sequents containing less than approximately 34 modal literals, which appears
to be enough to cover all practical applications. We therefore implement rule genera-
tion using a doubly exponential algorithm. Given a sequent Γ consisting of n positive
modal atoms of the form 〈x〉pi with arguments p1, . . . , pn and m negated modal atoms
¬〈x〉q j with arguments q1, . . . , qm, we iteratively check for all propositional formulae φ
in variables p1, . . . , pn, q1, . . . , qm whether Γ/dnf(φ) is a valid rule by encoding both the
side condition and the conclusion φ into a system of linear inequalities. (Here dnf(φ)
denotes the disjunctive normal form of φ in the form of a set of tableau sequents.) In



Graded and Probabilistic Modal Logics 387

more detail, Γ/dnf(φ) is a rule of graded / probabilistic modal logic if the system of
linear inequalities consisting of the side condition together with the inequalities

⎧⎪⎪⎨⎪⎪⎩
∑n

i=1 riv(pi) −∑m
j=1 s jv(q j) > k if φ evaluates to � under v∑n

i=1 riv(pi) −∑m
j=1 s jv(q j) ≤ k otherwise,

where v ranges over all valuations {p1, . . . , pn, q1, . . . , qm} → {0, 1}, has a solution. We
use an external library [10] to determine whether systems of linear inequalities have a
solution. This (doubly exponential) search space can be pruned significantly.
Rule Subsumption. We say that a modal rule Γ/dnf(φ) subsumes the rule Γ/dnf(ψ) if
φ → ψ is propositional tautology. Intuitively, the conclusion φ is ‘harder’ to satisfy, so
that any application of Γ/dnf(ψ) in a closed tableau can be replaced by an application of
Γ/dnf(φ). In other words, omitting the rule Γ/dnf(ψ) does not jeopardise completeness
of the calculus. Given a sequent Γ consisting of positive atoms 〈x〉pi with arguments
p1, . . . , pn and negative modal atoms ¬〈x〉q j with arguments q1, . . . , qm, we arrange the
set of propositional formulae in variables {p1, . . . , pn, q1, . . . , qm} in a directed, rooted,
acyclic graph where the edge relation represents subsumption. Let Θ = {v1, . . . , v2n+m}
be the set of all possible valuations of the propositional variables present. A node
in the subsumption graph contains a subset N ⊆ Θ of valuations that represent the
propositional formula φN =

∨
v∈Θ
∧

v(a)=1 a ∧ ∧v(a)=0 ¬a where a ranges over the set
{p1, . . . , pn, q1, . . . , qm} of propositional variables. Two (different) nodes N and M are
related by a direct edge N → M if M = N ∪ {v j} and j > max{1 ≤ i ≤ 2n+m | vi ∈ N},
and the root of the subsumption graph is the empty set. This arrangement guarantees
that a rule with conclusion φN subsumes all rules with conclusions φM provided that N
is a (direct or indirect) ancestor of M. We generate rule conclusions using breadth first
search through the subsumption tree, pruning all children of a node N as soon as it has
been established that Γ/dnf(N) is a valid rule instance.

Reasoning Algorithm. Completeness of the tableau calculus allows us to reduce satis-
fiability of the root formula to the non-existence of a closed tableau. We check for the
existence of a closed tableau using standard depth-first search. At the moment, we have
not implemented any optimisations such global caching or unsat caching.

3 Experimental Evaluation

As mentioned already, we are not aware of any other reasoner that supports proba-
bilistic modal logic. We therefore restrict ourself to graded modal logic in this sec-
tion. We do not claim to conducting a thorough system comparison, but merely want
to gauge whether the approach described in the previous section is feasible. In par-
ticular, we only consider satisfiability over the empty TBox to factor out artefacts
like the particular choice of caching or blocking techniques used and concentrate on
formulae whose main “complexity” is due to graded modalities. All formulae, and
our tool Program: Probabilistic and Graded Modalities, are available on the web at
http://www.doc.ic.ac.uk/˜dirk/Software/Program/.

http://www.doc.ic.ac.uk/~dirk/Software/Program/


388 W. Snell, D. Pattinson, and F. Widmann

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0  10  20  30  40  50  60

tim
e 

pe
r 

fo
rm

ul
a 

in
 s

ec
on

ds

value of n

FaCT++
Program

Pellet
Racer

(a) φunsat(n) (not satisfiable)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0  10  20  30  40  50  60

tim
e 

pe
r 

fo
rm

ul
a 

in
 s

ec
on

ds

value of n

FaCT++
Program

Pellet
Racer

(b) φsat(n) (satisfiable)

Fig. 1. Increasing the cardinality

Table 1. Randomly generated formulae

No. of timeouts n = 10 20 30 40 50 60 70 80 90 100
Fact 1 0 2 4 4 5 3 6 6 8

Program 0 1 5 20 23 40 33 55 61 72
Pellet 3 13 31 30 41 46 42 60 57 71
Racer 0 0 0 0 0 0 0 0 0 0

We compare our prover (Program) with Fact++ [21], Pellet [20], and RACER [11].
The benchmarks were run on a 64 bit Linux system with an Intel Core i5-650 CPU and
a memory limit of 4 GB, and out of memory errors were treated as timeouts.

The first two sets of benchmarks show how the provers are affected by increasing
numbers in cardinality constraints. The formulae are of the form

φx(n) = 〈n − 1〉¬p1 ∧ 〈n − 1〉p1 ∧ ¬〈n〉p0 ∧ ¬〈mx〉¬p0

where x ∈ {unsat, sat} and munsat = n − 1 and msat = n. Figure 1a shows the results
for φunsat(n) for 1 ≤ n ≤ 60 and a timeout of 500 seconds. Since Fact++ and Pellet ap-
pear to treat number restrictions naively, they fail for larger instances, whereas Program
and Racer are not affected by the cardinality. In the satisfiable case, see Fig. 1b, Pro-
gram takes longer because all modal rule applications have to be constructed, whereas
Pellet behaves much better, presumably because it can find a model fast.

As a sanity check, we also used randomly generated formulae without any structure.
Despite not being overly informative, it is useful for testing provers for discrepancies.
(Indeed, one bug in Fact++ was discovered which has been fixed prior to our bench-
marks.) The size of these formulae, denoted by n, is the number of symbols, counting
1 for cardinalities. The formulae were created by randomly choosing a connective with
equal probability and recursively creating the subformulae. Cardinalities were chosen
randomly between 0 and 99 inclusive. We tested 100 formulae for each size with a
timeout of 30 seconds. Table 1 shows the number of timeouts relative to the size (n) of
formulae, as this is more informative than average runtime.



Graded and Probabilistic Modal Logics 389

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1  2  3  4  5  6  7  8  9  10
 0

 20

 40

 60

 80

 100

av
er

ag
e 

tim
e 

pe
r 

fo
rm

ul
a 

in
 s

ec
on

ds

pe
rc

en
ta

ge
 o

f s
at

is
fia

bl
e 

fo
rm

ul
ae

value of n

FaCT++
Program

Pellet
Racer

satisfiable formulae

(a) ψunsat(n) (tree-shaped)

 0

 5

 10

 15

 20

 25

 30

 1  2  3  4  5  6  7  8  9  10
 0

 20

 40

 60

 80

 100

av
er

ag
e 

tim
e 

pe
r 

fo
rm

ul
a 

in
 s

ec
on

ds

pe
rc

en
ta

ge
 o

f s
at

is
fia

bl
e 

fo
rm

ul
ae

value of n

FaCT++
Program

Pellet
Racer

satisfiable formulae

(b) χ(1,m) (constraints)

Fig. 2. Tree-shaped models and simple constraint problems

Table 2. χ(2, 2) (constraints)

Fact Program Pellet Racer
Number of timeouts 15 0 7 0

Average time per formula 123s 79s 80s <1s

The next benchmark formulae enforce tree shaped models and are of the form

ψ(0) = � and ψ(n) = 〈cn
1 − 1〉� ∧ ¬〈cn

2〉� ∧ ¬〈0〉¬ψ(n − 1)

where 1 ≤ cn
1, c

n
2 ≤ 100 are drawn randomly so that cn

1 ≤ cn
2 with probability 0.8. For

each 1 ≤ n ≤ 10 we generated 100 formulae and the average time (per n) is plotted in
Fig. 2a. The timeout was 30 seconds which was only exceeded by Pellet occasionally.
The figure also shows the percentage of satisfiable formulae which naturally drops as
the depth of the trees increases.

The last two sets of benchmarks mimic simple constraint problems of the form

χ(n,m) =
n∧

i=1

〈ci〉(wishi ∧ disji) ∧
m∧

j=1

¬〈d j〉r j

where 0 ≤ ci, d j < 100 are drawn randomly and wishi is a simple randomly generated
propositional formula in the variables r j and disji is a (fixed) propositional formula not
containing r j such that disji ∧ disji′ is unsatisfiable for i � i′: if two children want ice
cream (r0) and three want ice cream or an apple (r1), and you have two ice creams and
three apples, we get the formula 〈1〉(r0 ∧ q) ∧ 〈2〉((r0 ∨ r1) ∧ ¬q) ∧ ¬〈2〉r0 ∧ ¬〈3〉r1.
Figure 2b shows the results for n = 1 fixed. For each m we tested 100 formulae, again
with a timeout of 30 seconds. Unfortunately, Program cannot compete for large m as
the performance of the linear solver degrades when the number of modal formulae in a
sequent becomes too big. We also tested 30 formulae of the form χ(2, 2) with a timeout
of 300 seconds and the results are given in Table 2.

4 Conclusion

While our implementation of graded modal logic was not quantitatively better in com-
parison to other tools, our implementation also supports probabilistic modal logic. The



390 W. Snell, D. Pattinson, and F. Widmann

experimental results indicate that the method itself can be made competitive. The struc-
tural similarity between graded and probabilistic modal logic insinuates that this also
applies to probabilistic modal logic, and our tests with probabilistic modal logic formu-
lae show roughly equivalent performance (comparing formula size).

References
1. Baader, F., Nutt, W.: Basic description logics. In: Baader, F., et. al. (ed.) Description Logic

Handbook, pp. 43–95. Cambridge University Press (2003)
2. Bryant, R.E.: Symbolic Boolean Manipulation with Ordered Binary Decision Diagrams.

ACM Computing Surveys 24(3), 293–317 (1992)
3. BuDDy, http://sourceforge.net/projects/buddy/
4. Calin, G., Myers, R., Pattinson, D., Schröder, L.: COLOSS: The coalgebraic logic satisfia-

bility solver. In: Proc. M4M 5 (2007). ENTCS, vol. 231, pp. 41–54 (2009)
5. D’Agostino, G., Visser, A.: Finality regained: A coalgebraic study of Scott-sets and multisets.

Arch. Math. Logic 41, 267–298 (2002)
6. Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for labelled markov processes. Inf.

Comput. 179(2), 163–193 (2002)
7. Fagin, R., Halpern, J.: Reasoning about knowledge and probability. J. ACM 41, 340–367

(1994)
8. Farsiniamarj, N., Haarslev, V.: Practical reasoning with qualified number restrictions: a hy-

brid Abox calculus for the description logic SHQ. AI Comms. 23(2–3), 205–240 (2010)
9. Fine, K.: In so many possible worlds. Notre Dame J. Formal Logic 13, 516–520 (1972)

10. GNU linear programming kit (glpk), http://www.gnu.org/s/glpk/
11. Haarslev, V., Möller, R.: RACER System Description. In: Goré, R.P., Leitsch, A., Nipkow,

T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 701–705. Springer, Heidelberg (2001)
12. Haarslev, V., Sebastiani, R., Vescovi, M.: Automated Reasoning in ALCQ via SMT. In:

Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 283–298.
Springer, Heidelberg (2011)

13. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A Tool for Automatic Veri-
fication of Probabilistic Systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS,
vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

14. Klinov, P.: Practical Reasoning in Probabilistic Description Logic. PhD thesis, University of
Manchester, Manchester, UK (2011)

15. Kupke, C., Pattinson, D.: On modal logics of linear inequalities. In: Goranko, V., Shehtman,
V. (eds.) Proc. AiML 2010. College Publications (2010)

16. Motik, B., Shearer, R., Horrocks, I.: Hypertableau Reasoning for Description Logics. Journal
of Artificial Intelligence Research 36, 165–228 (2009)

17. Parma, A., Segala, R.: Logical Characterizations of Bisimulations for Discrete Probabilis-
tic Systems. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 287–301. Springer,
Heidelberg (2007)

18. Schrijver, A.: Theory of linear and integer programming. Wiley Interscience (1986)
19. Schröder, L., Pattinson, D.: PSPACE bounds for rank-1 modal logics. ACM Transactions on

Computational Logics 10(2) (2009)
20. Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL

reasoner. Journal of Web Semantics (2006)
21. Tsarkov, D., Horrocks, I.: FaCT++ Description Logic Reasoner: System Description. In:

Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 292–297.
Springer, Heidelberg (2006)

http://sourceforge.net/projects/buddy/
http://www.gnu.org/s/glpk/


Labelled Superposition for PLTL

Martin Suda1,2,3,
 and Christoph Weidenbach1,



1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
2 Saarland University, Saarbrücken, Germany
3 Charles University, Prague, Czech Republic

Abstract. This paper introduces a new decision procedure for PLTL
based on labelled superposition. Its main idea is to treat temporal for-
mulas as infinite sets of purely propositional clauses over an extended sig-
nature. These infinite sets are then represented by finite sets of labelled
propositional clauses. The new representation enables the replacement
of the complex temporal resolution rule, suggested by existing resolution
calculi for PLTL, by a fine grained repetition check of finitely saturated
labelled clause sets followed by a simple inference. The completeness ar-
gument is based on the standard model building idea from superposition.
It inherently justifies ordering restrictions, redundancy elimination and
effective partial model building. The latter can be directly used to ef-
fectively generate counterexamples of non-valid PLTL conjectures out of
saturated labelled clause sets in a straightforward way.

1 Introduction

Propositional linear temporal logic [15] is an extension of classical propositional
logic for reasoning about time. It introduces temporal operators such as ♦P
meaning P holds eventually in the future, 	P meaning P holds always in the
future, and©P meaning P holds at the next time point. Time is considered to be
a linear discrete sequence of time points represented by propositional valuations,
called worlds. Such a potentially infinite sequence forms a PLTL interpretation.
A decision procedure for PLTL takes a PLTL formula P and checks whether it is
valid, i.e., that all PLTL interpretations are actually models for P . For example,
the PLTL formula 	P → ©P is valid (a theorem) whereas the PLTL formula
©P → 	P is not, but is satisfiable, i.e., there is a PLTL model for it.

Attempts to use clausal resolution to attack the decision problem for PLTL
appeared first in [3, 21]. The most recent resolution-based approach is the one of
[6]. It relies on a satisfiability preserving clausal translation of PLTL formulas,
where, in particular, all nestings of temporal operators are reduced to formulas
(and, eventually, clauses) of the form P , 	(P →©Q), and 	(P → ♦Q), where
P and Q do not contain temporal operators. Classical propositional resolution is
extended to cope with “local” temporal reasoning within neighbouring worlds,

� Supported by Microsoft Research through its PhD Scholarship Programme.
�� Supported by the German Transregional Collaborative Research Center SFB/TR 14

AVACS.

N. Bjørner and A. Voronkov (Eds.): LPAR-18, LNCS 7180, pp. 391–405, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



392 M. Suda and C. Weidenbach

while an additional inference rule called temporal resolution is introduced to deal
with eventuality (	♦) clauses. The temporal resolution rule is quite complex.
It requires a search for certain combinations of clauses that together form a
loop, i.e. imply that certain sets of worlds must be discarded from consideration,
because an eventuality clause would be unsatisfied forever within them. This is
verified via an additional proof task. Finally, the conclusion of the rule needs to
be transformed back into the clause form.

Our labelled superposition calculus builds on a refinement of the above clause
normal form [4]. It introduces a notion of labelled clauses in the spirit of [12]
and replaces the temporal resolution rule by saturation and a new Leap rule. Al-
though in PLTL equality is not present, the principles of superposition are funda-
mental for our calculus. Our completeness result is based on a model generation
approach with an inherent redundancy concept based on a total well-founded
ordering on the propositional atoms.

The main contributions of our paper are: 1) we replace the temporal reso-
lution rule by a much more streamlined saturation of certain labelled clauses
followed by a simple Leap inference, 2) our inference rules are guided by an or-
dering restriction that is known to reduce the search space considerably, 3) the
completeness proof justifies an abstract redundancy notion that enables strong
reductions, 4) if a contradiction cannot be derived, a temporal model can be
extracted from a saturated clause set.

The paper is organized as follows. We fix our notation and formalize the
problem to be solved in Sect. 2. Then in Sect. 3 we show how to use labelled
clauses as a tool to “lift” the standard propositional calculus to reason about
PLTL-satisfiability. Our calculus is introduced in Sect. 4 and used as a basis for
an effective decision procedure in Sect. 5. We deal with abstract redundancy, its
relation to the completeness proof, and model building in Sect. 6. Discussion of
previous work and an experimental comparison to existing resolution approaches
appear in Sect. 7. Finally, Sect. 8 concludes. Detailed proofs and additional
material are available in a technical report [20].

2 Preliminaries

In this section we fix our notation and briefly recall the standard notions we will
be using. We assume the reader to be familiar with ordered resolution calculus
for propositional logic and its completeness proof [2] including the concepts of
redundancy, saturation, and model construction. In the following, the symbol N
stands for the naturals, and N+ denotes the set N \ {0}.

The language of propositional formulas and clauses over a given signature
Σ = {p, q, . . .} of propositional variables is defined in the usual way. We denote
propositional clauses by letters C orD, possibly with subscripts, and understand
them as multisets of literals. By propositional valuation, or simply a world, we
mean a mapping V : Σ → {0, 1}. We write V |= P if a propositional formula P
is satisfied by V . The semantics of PLTL is based on a discrete linear model of
time, where the structure of possible time points is isomorphic to N. A PLTL-
interpretation is a sequence (Vi)i∈N of propositional valuations.



Labelled Superposition for PLTL 393

In order to be able to talk about several neighbouring worlds at once we
introduce copies (i.e. pairwise disjoint, bijectively equivalent sets) of the basic
signature Σ. We use priming to denote the shift from one signature to the next
(thus Σ′ is the set of symbols {p′, q′, . . .}), and shorten repeated primes by paren-
thesised integers (e.g. p′′′ is the same thing as p(3)). This notational convention
can be extended from symbols and signatures to formulas, and also to valua-
tions in a natural way. For example, if V is a valuation over Σ(i) we write V ′

for the valuation over Σ(i+1) such that V ′(p(i+1)) = V (p(i)) for every p ∈ Σ. We
also need to consider formulas over two consecutive joined signatures, e.g. over
Σ ∪ Σ′. Such formulas can be evaluated over the respective joined valuations.
When both V1 and V2 are valuations over Σ, we write [V1, V2] as a shorthand
for the mapping V1 ∪ (V2)

′ : (Σ ∪Σ′)→ {0, 1}.
As usual in refutational theorem proving, our method starts with negating the

input formula and translating the result into a clause normal form. Then the task
is to show that the translated form is unsatisfiable, which implies validity of the
original formula. We build on the Separated Normal Form to which any PLTL
formula can be translated by a satisfiability preserving transformation with at
most linear increase in size [6, 4]. We skip here the details of the transformation
due to lack of space and instead directly present its final result, the starting
point for our method:

Definition 1. A PLTL-specification S is a quadruple (Σ, I, T,G) such that

– Σ is a finite propositional signature,
– I is a set of initial clauses Ci (over the signature Σ),
– T is a set of step clauses Ct ∨D′

t (over the joint signature Σ ∪Σ′),
– G is a set of goal clauses Cg (over the signature Σ).

The initial and step clauses match their counterparts from [6] in the obvious
way. Our goal clauses are a generalization of a single unconditional sometimes
clause that can be obtained using the transformations described in [4]. The whole
specification represents the PLTL formula:(∧

Ci

)
∧	

(∧
(Ct ∨©Dt)

)
∧	♦

(∧
Cg

)
.

Example 1. We will be using the valid PLTL formula 	((a → b) → ©b) →
♦	(a ∨ b) as a running example that will guide us through the whole theorem
proving process presented in this paper. By negating the formula and performing
standard transformations we obtain 	(a∨©b)∧	(¬b∨©b)∧	♦(¬a∧¬b), which
gives us the following PLTL-specification S = ({a, b}, ∅, {a∨b′,¬b∨b′}, {¬a,¬b}).

It is a known fact that when considering satisfiability of PLTL formulas attention
can be restricted to ultimately periodic [18] interpretations. These start with
a finite sequence of worlds and then repeat another finite sequence of worlds
forever. This observation, which is also one of the key ingredients of our approach,
motivates the following definition.



394 M. Suda and C. Weidenbach

Definition 2. Let K ∈ N, and L ∈ N+ be given. A PLTL-interpretation (Vi)i∈N

is a (K,L)-model of S = (Σ, I, T,G) if

1. for every C ∈ I, V0 |= C,
2. for every i ∈ N and every C ∈ T , [Vi, Vi+1] |= C,
3. for every i ∈ N and every C ∈ G, V(K+i·L) |= C.

A PLTL-specification is satisfiable if it has a (K,L)-model for some K and L.

Note that the eventuality represented by the goal clauses of S is satisfied in-
finitely often as the standard PLTL semantics dictates. Moreover, we keep track
of the worlds where this is bound to happen by requiring they form an arith-
metic progression with K as the initial term and L the common difference. This
additional requirement doesn’t change the notion of satisfiability thanks to the
observation mentioned above. We will call the pair (K,L) the rank of a model.

3 Labelled Clauses

Recall that we defined a PLTL-interpretation as an infinite sequence of proposi-
tional valuations over the finite signature Σ. Alternatively though, it can be
viewed as a single propositional valuation over the infinite signature Σ∗ =⋃

i∈NΣ
(i). We simply index the signature symbols by the time moments to obtain

this isomorphic representation. If we now examine Definition 2 of (K,L)-models
from this perspective, we can reveal a simple (though at first sight not very use-
ful) reduction of satisfiability in a (K,L)-model to propositional satisfiability of
a potentially infinite set of clauses over Σ∗. For a specification S = (Σ, I, T,G)
this clause set will consist of copies of the clauses from I, T , and G that are
“shifted in time” to proper positions, such that the whole set is (proposition-
ally) satisfiable if and only if S has a (K,L)-model. Formally, the set is the union
of {C(0) |C ∈ I}, {C(i) |C ∈ T, i ∈ N}, and {C(K+i·L) |C ∈ G, i ∈ N}. See Fig. 1
for the intuition behind this idea.

Σ Σ′
Σ(2) Σ(3) Σ(4) Σ(5)

C1 ∈ I

C2 ∈ T

C3 ∈ G

K K + L

. . .

. . .

Fig. 1. Schematic presentation of the potentially infinite set of clauses that is satisfiable
iff a PLTL-specification S = (Σ, I, T, G) has a model of rank (2, 3)

In order to make use of the above described reduction we need to show how
to solve for infinitely many values of K and L the propositional satisfiability
problem consisting of infinitely many clauses. We do this by assigning labels to



Labelled Superposition for PLTL 395

the clauses of S such that a labelled clause represents up to infinitely many
standard clauses over Σ∗. Then an inference performed between labelled clauses
corresponds to infinitely many inferences on the level of Σ∗. This is not dissim-
ilar to the idea of “lifting” from first-order theorem proving where clauses with
variables represent up to infinitely many ground instances. Here, however, we
deal with the additional dimension of performing infinitely many proof tasks “on
the ground level” in parallel, one for each rank (K,L).

Formally, a label is a pair (b, k) where b is either ∗ or 0, and k is either ∗ or
an element of N. A labelled clause is a pair (b, k) ||C consisting of a label and a
(standard) clause over Σ ∪Σ′. Given a PLTL-specification S = (Σ, I, T,G), the
initial labelled clause set NS for S is defined to contain

– labelled clauses of the form (0, ∗) ||C for every C ∈ I,
– labelled clauses of the form (∗, ∗) ||C for every C ∈ T , and
– labelled clauses of the form (∗, 0) ||C for every C ∈ G.

We can think of the first label component b as relating the clause to the beginning
of time, while the second component relates the clause to the indices of the form
K + i ·L, where the goal should be satisfied. In both cases, ∗ stands for a “don’t
care” value, thus, e.g., the label (∗, ∗) marks clauses that occupy every possible
index. It turns out that during inferences we also need to talk about clauses that
reside k steps before indices of the goal. That is why the second label component
may assume any value from N. The semantics of labels is given via a map to
world indices.

Let (K,L) be a rank. We define a set R(K,L)(b, k) of indices represented by
the label (b, k) as the set of all t ∈ N such that

[b �= ∗ → t = 0] ∧ [k �= ∗ → ∃s ∈ N.t+ k = K + s · L] .

Observe that while R(K,L)(0, k) ⊆ {0}, the sets R(K,L)(∗, k) are always infinite,
and for k ∈ N constitute a range of an arithmetic progression with difference L.
Now a standard clause of the form C(t) is said to be represented by the labelled
clause (b, k) ||C in (K,L) if t ∈ R(K,L)(b, k). We denote the set of all standard
clauses represented in (K,L) by the labelled clauses N by the symbol N(K,L).

N(K,L) = {C(t) | clause (b, k) ||C ∈ N and t ∈ R(K,L)(b, k)} .

Example 2. Our example specification S = ({a, b}, ∅, {a ∨ b′,¬b ∨ b′}, {¬a,¬b})
contains among others the single literal goal clause ¬a. In the initial labelled
clause set NS this goal clause becomes (∗, 0) || ¬a. If we now, for example, fix
the same rank (2, 3) as in Fig. 1, our labelled clause will in that rank represent
all the standard clauses (¬a)(t) with t ∈ R(2,3)(∗, 0) = {2, 5, 8, . . .}.

We summarize the main message of this section in the next lemma. Its proof
follows from the definitions and ideas already given.

Lemma 1. Let a rank (K,L) and a PLTL-specification S be given and let NS

be the initial labelled clause set for S. Then the set (NS)(K,L) is satisfiable if and
only if S has a (K,L)-model.



396 M. Suda and C. Weidenbach

4 The Labelled Superposition Calculus LPSup

In this section we present our calculus for labelled clauses LPSup. We lift the
ordered resolution calculus of [2], which we call PSup for Propositional Super-
position, and transfer to LPSup its valuable properties, including the ordering
restrictions of inferences. For that purpose, we parameterize LPSup by a total
ordering < on the symbols of the signature Σ, which we implicitly extend to
indexed signatures by first comparing the indices and only then the actual sym-
bols. This means that p(i) < q(j) if and only if i < j, or i = j and p < q.1 We
then use the standard extension of this ordering to compare literals in clauses.

Before we proceed to the actual presentation of the calculus, we need to define
how labels are updated by inferences. Two labelled clauses should only interact
with each other when they actually represent standard clauses that interact
on the ground level. Moreover, the resulting labelled clause should represent
exactly all the possible results of the interactions on the ground level. We define
the merge of two labels (b1, k1) and (b2, k2) as the label (b, k) such that

– if b1 = b2 = ∗ then b = ∗, otherwise b = 0,
– if k1 = ∗ then k = k2; if k2 = ∗ then k = k1; if k1 = k2 �= ∗ then k = k1 = k2.

In the case when k1, k2 ∈ N and k1 �= k2, the merge operation is undefined. The
idea is that the merged label represents the intersection of the sets of indices
represented by the arguments.

The calculus LPSup consists of the inference rules Ordered Resolution, Or-
dered Factoring, Temporal Shift, and Leap. They operate on a clause set N , an
initial labelled clause set of a given PLTL-specification. While Ordered Reso-
lution and Ordered Factoring constitute the labelled analogue of inferences of
PSup, Temporal Shift and Leap are “structural” in nature, as they only mod-
ify the syntactic format, but the underlying represented set of standard clauses
remains the same.

(i) Ordered Resolution

I (b1, k1) ||C ∨ L (b2, k2) ||D ∨ L̄
(b, k) ||C ∨D

where literal L is maximal in C, its complement L̄ is maximal in D, and
the merge of labels (b1, k1) and (b2, k2) is defined and equal to (b, k),

(ii) Ordered Factoring

I (b, k) ||C ∨ A ∨ A
(b, k) ||C ∨A

where A is an atom maximal in C,

1 In the case of labelled clauses this amounts to saying that the symbols of Σ′ are
considered larger than those of Σ. Our definition, however, also makes sense over
the infinite signature Σ∗ and it is this particular ordering that restricts the inferences
on the level of standard clauses.



Labelled Superposition for PLTL 397

(iii) Temporal Shift

I (∗, k) ||C
(∗, k′) || (C)′

where C is a clause over Σ only, and k = k′ = ∗ or k ∈ N and k′ = k + 1,
(iv) Leap

I {(b, u+ i · v) ||C}i∈N derivable from N

(b, u− v) ||C
where u ≥ v > 0 are integers and C is an arbitrary standard clause.

Further explanation is needed for the inference rule Leap. In its present form it
requires an infinite number of premises, one for each i ∈ N, and thus cannot,
strictly speaking, become applicable in any finite derivation. Here it is only a
mathematical abstraction. In the next section we show how to effectively gener-
ate and finitely represent infinite sets of labelled clauses from which it will follow
that Leap is, in fact, effective.

Going back to the other inferences note that the merge operation on labels
ensures that the conclusion of Ordered Resolution represents exactly all the
conclusions of the standard ordered resolution inferences between the standard
clauses represented by the premises. Ordered Factoring carries over from PSup
in a similar fashion.2 The Temporal Shift operates only on clauses over the
signature Σ. We will from now on call such clauses simple. Notice that the
restriction to simple clauses is essential as it keeps the symbols of the conclusion
to stay within Σ ∪Σ′.

Example 3. The initial labelled clause set NS of our running example contains
among others also clauses (∗, ∗) || a ∨ b′ and (∗, 0) || ¬b. We can apply Temporal
Shift to the second to obtain (∗, 1) || ¬b′. Now b′ is the only literal over Σ′ in the
first clauses and therefore maximal. So the first clause and the newly derived
one can participate in Ordered Resolution inference with conclusion (∗, 1) || a.

Although the rules Temporal Shift and Leap derive new labelled clauses, the
represented sets of standard clauses remain the same in any rank (K,L). This
is easy to see for Temporal Shift, but a little bit more involved for Leap, where
it relies on the periodicity of (K,L)-models. The overall soundness of LPSup is
established by relating it to the same property of the standard calculus PSup.

Theorem 1 (Soundness of LPSup). Let NS be the initial labelled clause set
for a PLTL-specification S, and (b, k) ||C a labelled clause derivable from NS by
LPSup. Then for any rank (K,L) and any t ∈ R(K,L)(b, k) the standard clause

C(t) is derivable from (NS)(K,L) by PSup.
If an empty labelled clause (b, k) || ⊥ is derivable from NS by LPSup, such that

R(K,L)(b, k) �= ∅, then S doesn’t have a (K,L)-model.

2 Here we present the rule in a form as close as possible to the one in [2]. In practical
implementation, however, it is reasonable to remove duplicate literals as soon as they
occur without regard to ordering restrictions.



398 M. Suda and C. Weidenbach

Notice that in LPSup the fact that an empty labelled clause (b, k) || ⊥ is derived
does not necessarily mean that the whole clause set is unsatisfiable. It only rules
out those (K,L)-models for which R(K,L)(b, k) is non-empty. This motivates the
following definition.

Definition 3. An empty labelled clause (b, k) || ⊥ is called conditional if b = 0
and k ∈ N, and unconditional otherwise. We say that a set of labelled clauses
N is contradictory if it contains an unconditional empty clause, or (0, k) || ⊥ is
in N for every k ∈ N.

In Sect. 6 we demonstrate that a (K,L)-model can be found for any non-con-
tradictory set of labelled clauses that is saturated by LPSup.

To complete the picture of LPSup we move on to mention reduction rules.
As we discuss in detail in Sect. 6, these are justified by the abstract redundancy
notion [2] which our calculus inherits from PSup. Thus the following are only
examples and other reductions can be developed and used as long as they satisfy
the criteria of abstract redundancy.

Tautology Deletion allows us to remove from the search any labelled clause
the standard part of which contains both a literal and its complement. Another
useful reduction is Subsumption3

R (b1, k1) ||C (b2, k2) ||D
(b1, k1) ||C

where C is a sub-multiset of D and the merge of labels (b1, k1) and (b2, k2) is
defined and equal to (b2, k2).

5 Decision Procedure

In this section we explain how to turn the calculus LPSup into an effective
decision procedure for PLTL. First, we have a look at termination.

Example 4. We have already derived the labelled clause (∗, 1) || ¬b′ from our set
NS of initial clauses for S by Temporal Shift. Ordered Resolution between this
clause and the clause (∗, ∗) || ¬b∨ b′ yields (∗, 1) || ¬b to which Temporal Shift is
again applicable, giving us (∗, 2) || ¬b′. We see that the clause we started with
differs from the last one only in the label where the k-component got increased
by one. The whole sequence of inferences can now be repeated, allowing us to
eventually derive labelled clauses (∗, k) || ¬b and (∗, k) || ¬b′ for any k ∈ N+.

The example demonstrates how the Temporal Shift inference may cause non-
termination when the k-component of the generated labelled clauses increases
one by one. It also suggests, however, that from a certain point the derived
clauses don’t add any new information and the inferences essentially repeat in

3 We use the letter I and R to distinguish between inference rules, whose premises are
kept after the conclusion has been added to the given set of clauses, and reduction
rules, whose premises are replaced by the conclusion.



Labelled Superposition for PLTL 399

cycles. Detecting these repetitions and finitely representing the resulting infinite
clause sets is the key idea for obtaining a termination result for our calculus.

Given a set of labelled clauses N , it is convenient to think of N as being
separated into layers, sets of clauses with the same value of their labels’ second
component k. This way we obtain the ∗-layer of clauses with the label of the
form (b, ∗) for b ∈ {∗, 0}, and similarly layers indexed by k ∈ N. The following
list of observations forms the basis of our strategy for saturating clause sets by
LPSup.

(1) In an initial labelled clause set only the ∗-layer and 0-layer are non-empty.
(2) If all premises of Ordered Resolution, Factoring or Temporal Shift inference

belong to the ∗-layer, so does the conclusion of the respective inference.
(3) If a premise of Ordered Resolution or Factoring inference belongs to the

k-layer for k ∈ N, so does the inference’s conclusion.
(4) If a premise of Temporal Shift belongs to the k-layer for k ∈ N, the inference’s

conclusion belongs to the layer with index (k + 1).
(5) The number of clauses in each layer is bounded by a constant depending

only on the size of the signature.

We are ready to describe what we call layer-by-layer saturation of an initial
labelled clause set. During this process we don’t yet consider the Leap infer-
ence, which will be incorporated later. It follows from our observations that the
∗-layer can always be finitely saturated. We then perform all the remaining Or-
dered Resolution and Factoring inferences (together with possible reductions) to
saturate the 0-layer, again in a finite number of steps. After that we exhaustively
apply the Temporal Shift rule to populate the 1-layer and again saturate this
layer by Ordered Resolution and Factoring. This process can be repeated in the
described fashion to saturate layers of increasing indices. It is important that the
new clauses of the higher layers can never influence (by participating on infer-
ences or reductions) clauses in the lower, already saturated, layers. Eventually,
thanks to point (5) above, we will encounter a layer we have seen before and
then we stop. More precisely, in a finite number of steps we are bound to obtain
a set of labelled clauses N such that there are integers o ∈ N and p ∈ N+ and

– the o-layer of N is equal to the (o+ p)-layer of N (up to reindexing4),
– the clause set is saturated by LPSup (without Leap), except, possibly, for

Temporal Shift inferences with premise in layer (o+ p),
– the layers with index larger than (o+ p) are empty.

Now we need a final observation to finish the argument. The applicability of
Ordered Resolution, Factoring and Temporal Shift (as well as that of the re-
ductions of LPSup) is “invariant under the move from one layer to another”.
In other words, exactly the same (up to reindexing) inferences (and reductions)
that have been performed to obtain, e.g., the saturated layer of index (o + 1),
can now be repeated to obtain the saturated layer of index (o + p+ 1). We can
therefore stop the saturation process here and define:

4 Meaning the first mentioned set would be identical to the second if we changed the
second label component of all its clauses from o to (o+ p).



400 M. Suda and C. Weidenbach

Definition 4. Let N be a clause set obtained by layer-by-layer saturation as
described above. We call the numbers o and p the offset and period of N , re-
spectively. The infinite extension of such N is the only set of labelled clauses N∗

for which N ⊆ N∗ and such that for every i ∈ N the (o+ i)-layer of N∗ is equal
to the (o+ i mod p)-layer of N (up to reindexing).

The infinite extension of N is completely saturated by LPSup (without Leap).

Example 5. In our running example, the ∗-layer and 0-layer are already satu-
rated. The next layers we obtain are

{(∗, 1) || ¬a′, (∗, 1) || ¬b′, (∗, 1) || a, (∗, 1) || ¬b} , (1)

{(∗, 2) || a′, (∗, 2) || ¬b′, (∗, 2) || a, (∗, 2) || ¬b} (2)

As the 3-layer is then equal to the previous (up to reindexing), layer-by-layer
saturation terminates with offset 2 and period 1.

In layer-by-layer saturation we always give priority to Ordered Resolution and
Factoring inferences, and only when these are no longer applicable in the current
clause set, we perform all the pending Temporal Shift inferences, and possibly
repeat. Similarly, the overall saturation procedure which we present next com-
bines layer-by-layer saturation phases with an exhaustive application of the Leap
inference:

1. Set N1 to the initial labelled clause set NS of a given PLTL-specification S.
2. Set N2 to the layer-by-layer saturation on N1.
3. If the clause set N∗

2 is contradictory, stop and report UNSAT.
4. Set N3 to be the set N2 enriched by all the possible conclusions of Leap

inference with premises in N∗
2 , possibly reduced.

5. If N3 = N2 stop and report SAT, else go back to step 2 resetting N1 := N3.

Note that if we go to line 2 for the second time, N1 is no longer an initial
labelled clause set. Although we didn’t discuss it previously, it is straightforward
to perform layer-by-layer saturation of any finitely represented clause set.

On lines 3 and 4 we refer to the infinite extension N∗
2 . It actually means

that we operate with the layer-by-layer saturation N2 together with offset o
and period p. Now N∗

2 is bound to be contradictory if and only if N2 contains
an unconditional empty clause or (0, k) || ⊥ is in N2 for every 0 ≤ k < o + p.
Similarly, a labelled clause (b, j) ||C with j < o5 can be derived by Leap inference
with premises in N∗

2 if and only if there is a clause (b, i) ||C in N2 such that
o ≤ i < o+ p and p divides i− j.

Finally note that while the values of offset and period associated with N2 may
change from one repetition to another, their sum is each time bounded by the
same constant depending only on the size of the signature, namely the number
of different possible layers (up to reindexing). Moreover, thanks to the fact that
we only work with a fixed finite signature, there is also a bound on the number
of non-trivial additions to the individual layers on line 4. These together ensure
that the procedure always terminates.

5 Leap conclusion with j ≥ o is always redundant.



Labelled Superposition for PLTL 401

Example 6. In our example, the infinite extension of the layer-by-layer saturation
contains the premises {(∗, 1 + i) || a}i∈N of a Leap inference with conclusion
(∗, 0) || a. This clause together with the already present (∗, 0) || ¬a gives us the
empty clause (∗, 0) || ⊥ by Ordered Resolution, which eventually terminates the
overall procedure, because the empty clause is unconditional and therefore the
overall set becomes contradictory.

6 Redundancy, Completeness and Model Building

The calculus LPSup comes with an abstract notion of redundancy in the spirit of
[2]. Also here one can recognize the idea of “lifting”, which relates the standard
level of PSup to the level of labelled clauses. Recall that a standard clause C is
called redundant with respect to a set of standard clauses N if there are clauses
C1, . . . , Cn ∈ N such that for every i = 1, . . . n, Ci < C, and C1, . . . , Cn |= C.
On the level of labelled clause we define:

Definition 5. A labelled clause (b, k) ||C is redundant with respect to a set of
labelled clauses N , if for any rank (K,L) every standard clause represented by
(b, k) ||C in (K,L) is redundant w.r.t. N(K,L).

A set of labelled clauses N is saturated up to redundancy with respect to
LPSup, if for every inference from N such that its premises are not redundant
w.r.t. N , the conclusion is either redundant w.r.t. N or contained in N .

Note that the reductions of LPSup described in Sect. 4 are instances of redun-
dancy elimination. This is easy to see for Tautology deletion, and follows from
the semantics of the merge operation on labels for the Subsumption reduction.
It is important to note that these are just examples and further reductions can
be developed and used. As long as they fit into the framework prescribed by
Definition 5, they are guaranteed to preserve completeness and the underlying
proof need not be changed.

Our main theorem relates completeness of LPSup to the same property of the
underlying calculus PSup via the notion of redundancy.

Theorem 2 (Completeness of LPSup). Let N be a labelled clause set sat-
urated in a layer-by-layer fashion with offset o and period p and let N∗, the
infinite extension of N , be a non-contradictory set of labelled clause saturated up
to redundancy w.r.t. LPSup. We set K to be the smallest number from N such
that (0,K) || ⊥ is not in N∗ (note that N∗ is non-contradictory), and further
set L to the smallest positive multiple of p that is not smaller than o. Then the
set N∗

(K,L) does not contain the (standard) empty clause and is saturated up to
redundancy w.r.t. PSup.

Recall the overall saturation procedure of the previous section. Its input is a
PLTL-specification which is immediately transformed into the initial labelled
clause set. If the procedure reports UNSAT, we know the input is unsatisfi-
able, because we derived (using a sound calculus) a contradictory set of labelled
clauses, which rules out any (K,L)-model. If, on the other hand, the procedure



402 M. Suda and C. Weidenbach

reports SAT, we may apply Theorem 2 together with completeness of PSup to
conclude that the set N∗

(K,L) is satisfiable, and, therefore, the specification we

started with has a (K,L)-model. Thus the overall saturation procedure decides
satisfiability of PLTL-specifications.

We close this section by commenting on the possibility of using our method to
provide counterexamples to non-valid PLTL formulas. Due to space restrictions,
we cannot describe the method in full detail, but to those familiar with the
model construction for classical logic based on PSup [2], it should be clear that
with Theorem 2 proven, we are practically done.

Given a non-contradictory set of labelled clauses N∗ that is saturated up to
redundancy w.r.t. LPSup, we pick (K,L) as described in Theorem 2 and generate
the standard clauses of N∗

(K,L) one by one with increasing <. We apply classical

model construction to these clauses to gradually build a (partial) valuation over
Σ∗ =

⋃
i∈NΣ

(i), which, as we know, corresponds in the obvious way to a (K,L)-
model (Vi)i∈N. We can stop the generation as soon as a particular (already
completed) valuation repeats (i.e. Vi = Vi−j for some j ∈ N+) and the goal has
already been reached (i.e. i > K). An ultimately periodic model is then output
as a result.

7 Final Discussion and Experiments

We now compare our calculus to Clausal Temporal Resolution [6]. Older reso-
lution based approaches to PLTL are [3, 21], but they don’t seem to be used
or developed any further nowadays. Besides resolution there are approaches to
PLTL satisfiability based on tableaux deduction [22, 17], and on automata theory
[16]. These seem to be less related and we don’t discuss them here further.

It can be shown that operationally there is a close connection between LPSup
and the Clausal Temporal Resolution (CTR) of [6]. From this perspective, our
formalism of labelled clauses can be seen as a new way to derive completeness of
CTR that justifies the use of ordering restrictions and redundancy elimination.
This has not been achieved yet in full by previous work: [9] contains a proof
theoretic argument, but only for the use of ordering restrictions, [11] sketches
the idea how to justify tautology removal and subsumption, but not the general
redundancy notion in the style of [2] that we provide.

Moreover, there is also a correspondence between our layer-by-layer saturation
followed by the application of the Leap inference and the BFS-Loop search of
CTR as described in [7, 13]. Apart from being interesting in its own right, this
view sheds new light on explaining BFS-Loop search, as it gives meaning to the
intermediate clauses generated in the process, and we thus don’t need to take
the detour through the DNF representation of [5]. Even here, the idea of labels
clearly separates logical content of the clauses from the meta-logical one (c.f. the
ad hoc marker literal of [7]).

Despite these similarities between LPSup and CTR, the calculi are by no
means identical. As discussed before, a temporal model can be extracted in a
straightforward way from a satisfiable set of labelled clauses saturated by LPSup.



Labelled Superposition for PLTL 403

This doesn’t hold for CTR, where a more complex approach that simulates the
model construction of [2] only locally needs to be applied [14]. In particular,
because saturation by CTR doesn’t give the model building procedure any guid-
ance as to where to look for the goal, in each considered world all the possible
orderings on the signature (in the worse case) need to be tried out in a fair way
to make sure a goal world is eventually reached. As each change of the order-
ing calls for a subsequent resaturation of the clause set in question (so that the
local model construction still works), it obviously diminishes the positive effect
orderings in general have on reducing the search space.

Finally note that since we eventually rely on propositional superposition, we
can also take into account the explicit use of partial models to further guide
the search for a proof or saturation. The idea is to build a partial model based
on the ordering on propositional literals. Then it can be shown that resolution
can be restricted to premises where one is false and the other true in the partial
model [1]. This superposition approach on propositional clauses is closely related
to the state of the art CDCL calculus (see, e.g. [23]) for propositional logic. The
missing bit is to “lift” this setting to our labelled clauses. This will be one
direction for future research.

We implemented a simple prototype of both LPSup and CTR (with BFS
loop-search in the style of [7]), in order to compare the two calculi on non-trivial
examples. In this section we briefly report on our experiment. The prototype,
written in SWI-Prolog, is available along with the test examples at [19].

For the experiment we choose two formula families described in [10], which
we call C1n and C2n. In addition, we also tested the calculi on formulas from two
families specifically constructed to highlight the respective weaknesses of LPSup
and CTR. These we call the implicit and explicit cycles problems, respectively,
and denote them by I(l1+···+lk) and E(l1+···+lk). The problems are parameterized
by the sequence of numbers l1, . . . , lk, which denote the cycles’ lengths.

Table 1. Results of comparing our implementations of LPSup and CTR with TRP++

LPSup-Prolog CTR-Prolog TRP++
Problem Size Cl-gen Lits-gen Cl-subs Cl-gen Lits-gen Cl-subs Cl-gen Cl-subs

C1
10 56 53 202 100 174 576 110 363 300

C1
15 81 78 377 145 334 1161 240 688 595

C1
20 106 103 602 190 544 1946 420 1113 990

C2
3 22 442 1376 324 984 3972 909 1146 968

C2
4 30 1937 7649 1612 5298 26086 5047 3560 3053

C2
5 38 6287 28576 5635 18724 102704 18134 7925 6922

I(3+5) 62 406 1563 368 203 1022 194 86 160
I(3+5+8) 253 8010 42024 7356 1087 7613 1145 390 745

E(2+3) 8 23 25 4 131 424 78 177 77
E(2+3+4) 13 52 55 6 1061 4490 595 1597 627



404 M. Suda and C. Weidenbach

Table 7 summarizes the results of our experiments. For each problem and
for both calculi we report the number of clauses in the input, the number of
derived6 clauses and literals, and the number of subsumed clauses. For compar-
ison, we also include in the last two columns clause data obtained by running
the temporal prover TRP++ [8]7, which also implements the CTR calculus, to
provide evidence that our experimental results are not biased. We decided not
to report on running times as our aim here is to compare the calculi rather than
the implementations. The number of generated clauses (literals) should provide
a good measure on the amount of data to be processed by any prover, which
is, moreover, independent on the choice programming language or the use of
particular data structures.

As we can see, LPSup needs to generate consistently less clauses to draw
its conclusion for both C1n and C2n. It only behaves worse on the implicit cycles
examples I, which are constructed in such a way that the number of iterations of
the layer-by-layer saturation is much higher for LPSup than CTR. The examples
E , on the other hand, present much more work for CTR, where the equivalent of
Temporal Shift rule causes the clause set to “blow-up”. All in all, LPSup seems
to come considerably better off out of our experiments.

8 Conclusion

We applied the ideas of labelled superposition to develop a new decision proce-
dure for propositional linear temporal logic. On the presentation level, it replaces
the complex temporal resolution rule from the previously proposed calculus by a
simple check for repetition in the derived clause set and a subsequent inference.
Its unique treatment of goal clauses enables straightforward partial model build-
ing of satisfiable clause sets which could potentially be used to further restrict
inferences. Moreover, the experimental comparison to previous work suggests
that the new calculus typically explores smaller search spaces to derive its con-
clusion. Development of an optimized implementation, to be tested on a set of
representative benchmarks, will be part of our future work.

References

[1] Bachmair, L., Ganzinger, H.: On Restrictions of Ordered Paramodulation with
Simplification. In: Stickel, M.E. (ed.) CADE 1990. LNCS, vol. 449, pp. 427–441.
Springer, Heidelberg (1990)

[2] Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, J.A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 19–99. Elsevier and
MIT Press (2001)

6 This covers all the resolvents, plus the clauses derived by non-trivial Leap inference.
(Leap conclusions subsumed by other clauses are not generated at all.)

7 We used version 2.1 available at http://www.csc.liv.ac.uk/~konev/software/

trp++/.

http://www.csc.liv.ac.uk/~konev/software/trp++/
http://www.csc.liv.ac.uk/~konev/software/trp++/


Labelled Superposition for PLTL 405

[3] Cavalli, A., del Cerro, L.: A Decision Method for Linear Temporal Logic. In:
Shostak, R.E. (ed.) CADE 1984. LNCS, vol. 170, pp. 113–127. Springer, Heidelberg
(1984)

[4] Degtyarev, A., Fisher, M., Konev, B.: A Simplified Clausal Resolution Procedure
for Propositional Linear-Time Temporal Logic. In: Egly, U., Fermüller, C. (eds.)
TABLEAUX2002. LNCS (LNAI), vol. 2381, pp. 85–99. Springer, Heidelberg (2002)

[5] Dixon, C.: Search Strategies for Resolution in Temporal Logics. In: McRobbie,
M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 673–687. Springer,
Heidelberg (1996)

[6] Fisher, M., Dixon, C., Peim, M.: Clausal temporal resolution. ACM Trans. Com-
put. Logic 2, 12–56 (2001)

[7] Fernández Gago, M.C., Fisher, M., Dixon, C.: Algorithms for Guiding Clausal
Temporal Resolution. In: Jarke, M., Koehler, J., Lakemeyer, G. (eds.) KI 2002.
LNCS (LNAI), vol. 2479, pp. 235–252. Springer, Heidelberg (2002)

[8] Hustadt, U., Konev, B.: TRP++ 2.0: A Temporal Resolution Prover. In: Baader, F.
(ed.) CADE-19. LNCS (LNAI), vol. 2741, pp. 274–278. Springer, Heidelberg (2003)

[9] Hustadt, U., Konev, B., Schmidt, R.A.: Deciding Monodic Fragments by Temporal
Resolution. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp.
204–218. Springer, Heidelberg (2005)

[10] Hustadt, U., Schmidt, R.: Scientific benchmarking with temporal logic decision
procedures. In: KR 2002, pp. 533–546. Morgan Kaufmann (2002)

[11] Konev, B., Degtyarev, A., Dixon, C., Fisher, M., Hustadt, U.: Mechanising first-
order temporal resolution. Inf. Comput. 199, 55–86 (2005)

[12] Lev-Ami, T., Weidenbach, C., Reps, T., Sagiv, M.: Labelled Clauses. In: Pfenning,
F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 311–327. Springer, Heidelberg
(2007)

[13] Ludwig, M., Hustadt, U.: Fair Derivations in Monodic Temporal Reasoning. In:
Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 261–276. Springer, Heidelberg
(2009)

[14] Ludwig, M., Hustadt, U.: Resolution-based model construction for PLTL. In:
TIME 2009, pp. 73–80. IEEE Computer Society (2009)

[15] Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, pp. 46–57. IEEE (1977)

[16] Rozier, K.Y., Vardi, M.Y.: LTL Satisfiability Checking. In: Bošnački, D., Edelkamp,
S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 149–167. Springer, Heidelberg (2007)

[17] Schwendimann, S.: A New One-Pass Tableau Calculus for PLTL. In: de Swart, H.
(ed.)TABLEAUX1998. LNCS (LNAI), vol. 1397, pp. 277–291. Springer, Heidelberg
(1998)

[18] Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics.
J. ACM 32, 733–749 (1985)

[19] Suda, M., Weidenbach, C.: Prototype implementation of LPSup. (2011),
http://www.mpi-inf.mpg.de/~suda/supLTL.html

[20] Suda, M., Weidenbach, C.: Labelled Superposition for PLTL. Research Report
MPI-I-2012-RG1-001, Max-Planck-Institut für Informatik, Saarbrücken (2012)

[21] Venkatesh, G.: A Decision Method for Temporal Logic Based on Resolution. In:
Maheshwari, S.N. (ed.) FSTTCS 1985. LNCS, vol. 206, pp. 272–289. Springer,
Heidelberg (1985)

[22] Wolper, P.: The tableau method for temporal logic: An overview. Logique et Anal-
yse 28, 119–136 (1985)

[23] Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven
learning in boolean satisfiability solver. In: ICCAD, pp. 279–285 (2001)

http://www.mpi-inf.mpg.de/~suda/supLTL.html


The TPTP Typed First-Order Form

with Arithmetic

Geoff Sutcliffe1, Stephan Schulz2, Koen Claessen3, and Peter Baumgartner4

1 University of Miami, USA
2 Technische Universität München, Germany

3 Chalmers University, Sweden
4 NICTA and ANU, Australia

Abstract. The TPTP World is a well established infrastructure sup-
porting research, development, and deployment of Automated Theorem
Proving systems. Recently, the TPTP World has been extended to in-
clude a typed first-order logic, which in turn has enabled the integration
of arithmetic. This paper describes these developments.

1 Motivation and History

The TPTP World [32] is a well established infrastructure that supports research,
development, and deployment of Automated Theorem Proving (ATP) systems.
The TPTP World is based on the Thousands of Problems for Theorem Provers
(TPTP) problem library [30], and includes the TPTP language, the SZS ontolo-
gies, the Thousands of Solutions from Theorem Provers (TSTP) solution library,
various tools associated with the libraries, and the CADE ATP System Competi-
tion (CASC). This infrastructure has been central to the progress that has been
made in the development of high performance first-order ATP systems – most
state of the art systems natively read the TPTP language, many produce proofs
or models in the TSTP format, much testing and development is done using the
TPTP problem library, and CASC is an annual focal point where developers
meet to discuss new ideas and advances in ATP techniques.

Originally the TPTP supported only first-order problems in clause normal
form (CNF). Over the years support for the full first-order form (FOF) and
typed higher-order form (THF) have been added. Recently the simply typed
first-order form (TFF) has been added. TFF has in turn been used as the basis
for supporting arithmetic. Problems that use these new features have been added
to the TPTP problem library, and ATP systems that can solve these problems
have been developed. This paper describes the key steps of these developments.

While the development of the TPTP World for typed first-order logic is new,
several similar logics have been described previously, e.g., [36,26,13]. However,
there are no contemporary ATP systems that implement those logics. There is
active related research in the SMT community, which started in 2003 [24]. There
are high performance systems for the various logics of the SMT-LIB1, e.g., those

1 See the SMT-LIB web page http://combination.cs.uiowa.edu/smtlib/

N. Bjørner and A. Voronkov (Eds.): LPAR-18, LNCS 7180, pp. 406–419, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://combination.cs.uiowa.edu/smtlib/


The TPTP Typed First-Order Form with Arithmetic 407

that performed well in the SMT-COMP competitions.2 While the TFF language
was designed independently, there are inevitable parallels between the TFF and
SMT languages. The TPTP and SMT languages both fully support a typed first-
order logic, and both have specific features for arithmetic theories. Some features
of the TPTP TFF language were adopted from SMT, and some differences were
motivated by differences between the two communities’ idioms (e.g., the TPTP
arithmetic includes the Euclidean quotient used in the SMT-LIB Ints theory,
but also other quotients requested by TPTP users). Salient commonalities and
differences between the two languages are evident in this paper. At the level of
the TPTP and SMT-LIB problem collections, the problems in SMT-LIB are cat-
egorized with respect to their underlying logics and theories (e.g., the admissible
quantifier prefixes and the kind of arithmetic used). Those categories and the
problems in them typically reflect the capabilities of the available SMT solvers.
The TPTP library uses its “specialist problem class” categorization (e.g., the use
of equality and the SZS status of problems [29]) only for the analysis of results,
and in this way encourages the submission of problems and the development of
tools without a specific reasoner or language fragment in mind. There is a grow-
ing linkage between the SMT and TPTP worlds, stimulated and made possible
by the developments described in this paper. One example was the entry of the
SMT-based systems CVC3 and Z3 in the TFA division of CASC-23 [34]. Tools
for translating between the TPTP and SMT formats have (or should be by the
time this paper is published) been developed – the TPTP2X utility distributed
as part of the TPTP is used to translate TPTP TFF problems to SMT2 format
for input by CVC3 (see Section 4).

2 The TPTP Typed First-Order Form Language

The design of the TPTP’s TFF language was based on consideration of various
features of type systems. These fall into four broad categories – the sorts (atomic
types) that are available, the possibilities for the types of terms, the syntax of
expressions, and the semantics of the logic. The decisions made for the first
two categories, and the effects of the decisions on ATP systems, are discussed
in Section 2.1. The syntax is described in Section 2.2, and semantic issues are
discussed in Section 2.3. There were many possibilities for each issue, and the
decisions aimed to impose a low initial entry barrier for ATP system developers
and users, and to allow for future additions to the language. The initial language
is thus known as “TFF0” (much like THF0 [8]).

2.1 Decisions About Types and Terms

The decisions made for TFF0 provide a useful and simple extension of the ex-
isting untyped FOF logic. The decisions are:

– TFF0 is a simple many-sorted logic. Sorts are interpreted by non-empty,
pairwise disjoint, domains.

2 http://www.smtcomp.org/

http://www.smtcomp.org/


408 G. Sutcliffe et al.

– All uninterpreted functions and predicates are monomorphic. Although ad-
hoc polymorphism over sorts is conceptually simple, allowing it would require
extending the TPTP syntax to provide sort annotations on symbols (as
supported in the SMT language version 2).

– Equality is ad-hoc polymorphic over the sorts. An equation between terms
that have different sorts is ill-typed.

– Subtyping is not employed. (Subtyping may be added in the future.)

This simple many-sorted type system is an extension of untyped first-order logic.
As all symbols are monomorphic, all terms except for variables are automatically
typed. For problems without equality, satisfiability of well-typed formulae is not
affected by ignoring types. For problems with equality, variables need to carry
explicit type information because context does not provide the type information,
e.g., the variables in an equation x = y.

Many proof calculi generalize directly to the typed case, so that existing tech-
niques and implementations can be carried over without prohibitive effort. In
particular, unique most general unifiers and matches still exist, and can be com-
puted by straightforward generalizations of existing algorithms. Standard infer-
ences and simplifications remain correct as long as variable instantiations are
type-preserving. Systems based on direct instantiation need to check every vari-
able instantiation. Systems based on unification need to check variable instan-
tiations in equational inferences, e.g., paramodulation and superposition, when
paramodulating from (or into, but that is not required in most calculi) a variable
term. These checks reject inferences that are allowed when using sort predicates
(see Section 2.3), and proof search can be simpler. For finite model finders type
information is valuable because it restricts the space of possible models that
need to be explored. The domains of some of the sorts can be smaller than the
domains of other sorts, leading to possibly more efficient algorithms. While some
systems, e.g., Paradox [11], try to derive type information to exploit this, user
specified type information can be more precise.

For ATP users, typing leads to much simpler encodings than using type pred-
icates, and the requirement of well-typedness helps to correctly encode prob-
lems. A typed language is also necessary for correct encoding of problems with
arithmetic.

2.2 Syntax

The TFF0 syntax implements the decisions described in Section 2.1. A new
TPTP language variant has been introduced, using tff as the language symbol
of annotated formulae.3

– The sorts $i (individuals) and $o (booleans) are defined. (Note, as is ex-
plained below, $o is used only as the result sort in predicate type declara-
tions, i.e., there is no built-in theory of boolean terms.) Other defined sorts
are associated with specific theories. In particular, $int, $rat, and $real

are defined for interpreted arithmetic – see Section 3.

3 The BNF is available at http://www.tptp.org/TPTP/SyntaxBNF.html

http://www.tptp.org/TPTP/SyntaxBNF.html


The TPTP Typed First-Order Form with Arithmetic 409

– $tType is used to introduce users’ sorts, by declaring them to be of the
psuedo-sort $tType. For example

tff(fruit_type,type, tff(list_type,type,

fruit: $tType ). list: $tType ).

This is the only use of $tType. Declaration of users’ sorts is not required,
i.e., sorts can be introduced on the fly. TFF problems in the TPTP problem
library have all sorts declared, so as to provide a typo check (pun intended).

– Every function and predicate symbol has at most one declared type that
specifies the argument and result sorts. For example

tff(cons_type,type, tff(is_empty_type,type,

cons: (fruit * list) > list ). isEmpty: list > $o ).

The argument sorts cannot be $o. The result sort of a function cannot be
$o, and the result sort of a predicate must be $o. Note that symbols of arity
greater than one use the * for a cross-product type – currying is not possible.
If a symbol’s type is declared more than once, and the types are not the same,
that is an error. Multiple identical type declarations for a symbol are allowed
(to support, e.g., the merging of specifications from multiple different input
files).

– Defined functions and predicates have preassigned types.
• $true is of type $o

• $false is of type $o

• = is ad-hoc polymorphic over the sorts except $o. The two arguments
must be of the same sort, and the result sort is $o. The equality symbol
thus represents distinct predicate symbols for each sort.

• The types of numbers and the arithmetic functions and predicates are
defined in Section 3.

– Every variable can be given a sort at quantification time. For example

tff(list_not_empty,axiom,

! [X: fruit,Xs: list] : ~isEmpty(cons(X,Xs)) ).

– If a symbol is used and its type has not been declared, then default types
are assumed:
• All untyped predicates get the type ($i * ... * $i) > $o.

• All untyped functions get the type ($i * ... * $i) > $i.

• All untyped variables are of the sort $i.
If a symbol’s type is declared later to be different from an assumed type,
that is an error.

TPTP file names for TFF problems use a separator (in the way that ^ is used
for THF, + is used for FOF, and - is used for CNF). Use of the TFF0 language
is demonstrated in the following example. The formulae are given in Figure 1.



410 G. Sutcliffe et al.

Every student is enrolled in at least one course. Every professor teaches
at least one course. Every course has at least one student enrolled. Every
course has at least one professor teaching. The coordinator of a course
teaches the course. If a student is enrolled in a course then the student
is taught by every professor who teaches the course. Michael is enrolled
in CSC410. Victor is the coordinator of CSC410. Therefore, Michael is
taught by Victor.

%--------------------------------------------------------------------
tff(student_type,type, student: $tType ).
tff(professor_type,type, professor: $tType ).
tff(course_type,type, course: $tType ).
tff(michael_type,type, michael: student ).
tff(victor_type,type, victor: professor ).
tff(csc410_type,type, csc410: course ).
tff(enrolled_type,type, enrolled: ( student * course ) > $o ).
tff(teaches_type,type, teaches: ( professor * course ) > $o ).
tff(taught_by_type,type, taughtby: ( student * professor ) > $o ).
tff(coordinator_of_type,type, coordinatorof: course > professor ).

tff(student_enrolled_axiom,axiom,
! [X: student] : ? [Y: course] : enrolled(X,Y) ).

tff(professor_teaches,axiom,
! [X: professor] : ? [Y: course] : teaches(X,Y) ).

tff(course_enrolled,axiom,
! [X: course] : ? [Y: student] : enrolled(Y,X) ).

tff(course_teaches,axiom,
! [X: course] : ? [Y: professor] : teaches(Y,X) ).

tff(coordinator_teaches,axiom,
! [X: course] : teaches(coordinatorof(X),X) ).

tff(student_enrolled_taught,axiom,
! [X: student,Y: course] :
( enrolled(X,Y)
=> ! [Z: professor] : ( teaches(Z,Y) => taughtby(X,Z) ) ) ).

tff(michael_enrolled_csc410_axiom,axiom,
enrolled(michael,csc410) ).

tff(victor_coordinator_csc410_axiom,axiom,
coordinatorof(csc410) = victor ).

tff(teaching_conjecture,conjecture,
taughtby(michael,victor) ).

%--------------------------------------------------------------------

Fig. 1. Example TFF problem

2.3 Type Checking and Semantics

A formula is well-typed iff all the atoms in the formula are well-typed. A non-
equality atom is well-typed iff all the terms in the atom are well-typed, and the
sorts of the arguments of the atom conform to the predicate symbol’s type. An
equality atom is well-typed iff both the terms of the equation are well-typed and
are of the same sort. A term is well-typed iff all the subterms in the term are
well-typed, and the sorts of the arguments of the term conform to the function
symbol’s type.



The TPTP Typed First-Order Form with Arithmetic 411

The semantics of TFF0 (without arithmetic) is a standard and straightforward
generalization of the standard semantics of untyped first-order logic. A semantics
consistent with the one below has been given, e.g., in [15].

Assume a TFF0 language with sorts s1, . . . , sn and variables V = Vs1 - . . . -
Vsn , where variables from Vsi have the sort si. Further, assume a formula (or set
of formulae) build over V , function symbols from F and predicate symbols from
P . An interpretation I consists of a domain D = Ds1 - . . . -Dsn with disjoint,
non-empty sub-domains for each sort, and a sort and arity-respecting mapping of
function symbols to functions and predicate symbols to relations (representing
the tuples of which the predicate holds true). In other words, if the function
symbol f ∈ F is declared as f : (s1 ∗ . . . ∗ sn) > s, then its interpretation is a
function I(f) : Ds1×. . .×Dsn → Ds. If the predicate symbol p ∈ P is declared as
p : (s1∗. . .∗sn) > $o, then its interpretation is a relation I(p) ⊆ (Ds1×. . .×Dsn).
A typed valuation is a function φ : V → D with the property that φ(Vs) ⊆ Ds

for all sorts s. φx←d denotes a valuation that is equal to φ for all variables but
X , and maps X to d.

The value of a term under an interpretation I and valuation φ is: evalI,φ(X) =
φ(X) forX ∈ V , and evalI,φ(f(t1, . . . , tn) = I(f)(evalI,φ(t1), . . . , evalI,φ(tn)) for
f ∈ F . Let {T, F} be the truth values. For atoms evalI,φ(p(t1, . . . , tn)) = T iff
(evalI,φ(t1), . . . , evalI,φ(tn)) ∈ I(p). Formulae with connectives are interpreted
as usual. Quantifiers, on the other hand, respect the type of the bound variable:
evalI,φ(∀X : s . G) = T iff evalI,φX←d

(G) = T for all d ∈ Dt and evalI,φ(∃X :
s . G) = T iff evalI,φX←d

(G) = T for at least one d ∈ Dt. Note that for closed
formulae the valuation of the variables is determined by the quantifiers, and the
value of a closed formula depends only on the interpretation.

Recall that the equality symbol represents distinct predicate symbols for each
sort, each written here as as =s for a sort s. An interpretation I is an E-
interpretation, if I(=si) is the equality relation on Dsi , i.e., I(=si) = {(d, d) |
d ∈ Dsi}, for i = 1, . . . , n.4 An E-interpretation I is a TFF model of a formula
F if evalI(F ) = T . As usual, a formula is TFF satisfiable if it has at least one
TFF model, TFF unsatisfiable otherwise. A formula is a TFF tautology if every
E-interpretation is a TFF model.

The semantics is alternatively given by the following standard (e.g., [36])
translation into untyped first-order logic with equality. A well-typed formula F
has a typed model iff its translated untyped counterpart F ′ has an (untyped)
model. Each sort becomes a new unary predicate in the untyped world. Then

– ATFFsort declarationa sort : $tTypeproduces aFOFaxiom∃X .a sort(X).
This ensures that sorts are inhabited.

– Pairs of TFF sort declarations one sort : $tType and two sort : $tType
produce a FOF axiom ∀X,Y . one sort(X) ∧ two sort(Y ) ⇒ X �= Y . This

4 In refutational theorem proving it is customary to work with Herbrand interpreta-
tions and congruence relations on them to provide semantics for the equality symbol.
This approach can still be used in the context of (in particular) clause logic and the-
ory reasoning, see e.g., [19]. However, it cannot be used when arbitrary quantification
is allowed, as Herbrand’s theorem no longer holds, even without theories.



412 G. Sutcliffe et al.

ensures that sorts are pairwise disjoint. These axioms are not logically nec-
essary, because a model of the FOF formulae without these axioms can be
used to construct a model of the TFF formulae [12], i.e., a formula has a
model with disjoint domains iff it has a model with one domain. However,
for model generation these axioms are useful because they force terms with
different types to be interpreted as different domain elements, i.e., the do-
main of the FOF model can be divided into subdomains for the different
sorts.

– A TFF function type declaration f : (s1∗. . .∗sn) > sf produces a FOF axiom
∀X1, . . . , Xn . sf (X1, . . . , Xn). It is unnecessary to have an implication with
the antecedent checking the sorts of the arguments X1,...,Xn, because it is
impossible to use incorrectly sorted arguments in a well-typed formula.

– Predicate type declarations are ignored.

– A TFF universally quantified formula ∀X1 : s1, . . . , Xn : sn . p(X1, . . . , Xn)
produces aFOF formula∀X1, . . . , Xn . s1(X1)∧. . .∧sn(Xn)⇒ p(X1, . . . , Xn).

– A TFF existentially quantified formula ∃X1 : s1, . . . , Xn : sn . p(X1, . . . , Xn)
produces a FOF formula ∃X1, . . . , Xn . s1(X1)∧. . .∧sn(Xn)∧p(X1, . . . , Xn).

3 TPTP Arithmetic

The TFF0 language has features that facilitate the addition of interpreted func-
tions and predicates for integer, rational, and real arithmetic. Arithmetic requires
a separate name space for numeric constants (i.e., numbers) and operators. Sep-
arate structures are assumed for integer, rational, and real arithmetic, each com-
prised of denumerably many numeric constants, and certain defined function and
predicate symbols.

3.1 Syntax

The TPTP syntax for numeric constants5 and the defined function and predi-
cate symbols are given in Table 1. Each function and predicate symbol is ad-
hoc polymorphic over the numeric sorts (with one exception – $quotient is
not defined for $int). All arguments must have the same numeric sort. All
the functions, except for the coercion functions $to int and $to rat, have the
same result sort as their arguments. For example, $sum can be used with the
types ($int * $int) > $int, ($rat * $rat) > $rat, and ($real * $real)

> $real. The coercion functions $to ??? always have a $??? result. All the
predicates have a $o result. For example, $less can be used with the types
($int * $int) > $o, ($rat * $rat) > $o, and ($real * $real) > $o.

TPTP file names for TFF problems with arithmetic use a = separator. Use
of the TFF0 language with integer arithmetic is demonstrated in the following
example. The formulae are given in Figure 2.

5 See http://www.tptp.org/TPTP/SyntaxBNF.html for the precise syntax in BNF.

http://www.tptp.org/TPTP/SyntaxBNF.html


The TPTP Typed First-Order Form with Arithmetic 413

Table 1. The TPTP arithmetic syntax

Symbol Usage, comments, examples

$int The type of integers. Examples: 123, -123
$rat The type of rationals. Examples: 123/456, -123/456, +123/456

The denominator must be unsigned and positive.
$real The type of reals. Examples: 123.456, -123.456, 123.456E789.
= (infix) See Section 2.2
$less/2 Less-than comparison of two numbers.
$lesseq/2 Less-than-or-equal-to comparison of two numbers.
$greater/2 Greater-than comparison of two numbers.
$greatereq/2 Greater-than-or-equal-to comparison of two numbers.
$uminus/1 Unary minus of a number.
$sum/2 Sum of two numbers.
$difference/2 Difference between two numbers.
$product/2 Product of two numbers.
$quotient/2 Exact quotient of two $rat or $real numbers. For zero divisors the

result is not specified.
$quotient ?/2 Integral quotient of two numbers, ? is one of e, t, or f.

$quotient e is the Euclidean quotient. $quotient t and $quotient f

are respectively the truncation and floor of the real division of the
arguments. For zero divisors the result is not specified.

$remainder ?/2 Remainder after integral division of two numbers using $quotient ?.
For zero divisors the result is not specified.

$floor/1 Floor of a number.
$ceiling/1 Ceiling of a number.
$truncate/1 Truncation of a number.
$round/1 Rounding of a number.
$is int/1 Test for coincidence with an integer.
$is rat/1 Test for coincidence with a rational.
$to int/1 Coercion of a number to $int, using $floor.
$to rat/1 Coercion of a number to $rat. For reals that are not (known to be)

rational the result is not specified.
$to real/1 Coercion of a number to $real.

Lists of integers are constructed from a head element and a tail list, with
the empty tail being represented by nil. A list is Fibonacci sorted if it
is sorted, and every element is greater or equal to the sum of its two
predecessors (from the third element onwards). Therefore the list [1, 2, 4]
is Fibonacci sorted.

The TFF arithmetic language aims to provide a comprehensive basis for au-
tomated reasoning with arithmetic. There are some minor differences between
the TFF arithmetic and SMT-LIB’s Ints, Reals, and Reals Ints theories, e.g.,
rationals are not explicitly available in SMT, negative numbers are available in
TFF, and the available defined predicates and functions are different. Some of
the decisions regarding the TFF defined predicates and functions warrant jus-
tification: The decision to support the three integral quotients (and hence the



414 G. Sutcliffe et al.

%--------------------------------------------------------------------
tff(list_type,type, list: $tType ).
tff(nil_type,type, nil: list ).
tff(mycons_type,type, mycons: ( $int * list ) > list ).
tff(sorted_type,type, fib_sorted: list > $o ).

tff(empty_fib_sorted,axiom,
fib_sorted(nil) ).

tff(single_is_fib_sorted,axiom,
! [X: $int] : fib_sorted(mycons(X,nil)) ).

tff(double_is_fib_sorted_if_ordered,axiom,
! [X: $int,Y: $int] :
( $less(X,Y)
=> fib_sorted(mycons(X,mycons(Y,nil))) ) ).

tff(recursive_fib_sort,axiom,
! [X: $int,Y: $int,Z: $int,R: list] :
( ( $less(X,Y)

& $greatereq(Z,$sum(X,Y))
& fib_sorted(mycons(Y,mycons(Z,R))) )

=> fib_sorted(mycons(X,mycons(Y,mycons(Z,R)))) ) ).

tff(check_list,conjecture,
fib_sorted(mycons(1,mycons(2,mycons(4,nil)))) ).

%--------------------------------------------------------------------

Fig. 2. Example TFF problem with arithmetic

corresponding remainder functions) came from John Harrison’s observations [17]
that most programming languages and hardware uses the “t” definition, most
interactive theorem provers use the “f” definition, Boute’s [9] arguments for
the “e” definition are quite sound, and the “e” definition fits better with the
generalization to other Euclidean rings. The decision to separate the floor, ceil-
ing, and truncation functions from the $to ??? type coercion functions allows
the production of integral numbers from non-integral numbers without changing
their type. The type coercion functions can be used separately to change the
type of a number. The decision to overload the type coercion functions for all
three numeric types provides the flexibility to change the types of variables in
formulae without having to change the formula structure, e.g., ! [X:$real] :

p($to int(X)) can be changed to ! [X:$int] : p($to int(X)). Feedback on
the TFF arithmetic language is welcome.

3.2 Semantics

The semantics of TFF formulae with arithmetic is defined as a refinement of
the semantics of TFF0 formulae in Section 2.3. An E-interpretation I extends
arithmetic iff (i) the domains of the numeric sorts $int, $rat and $real are Z, Q
andR, respectively, and, (ii), the numeric constants and operators are interpreted
as described in Table 1. Note that in the case of $quotient, $quotient ? and
$remainder ? the result is not specified for zero divisors. An interpretation may
assign any value to a quotient term whose divisor evaluates to zero. This way,
for instance, $quotient(5,0) = 4 is true in some interpretations and false in
others. With these provisions, the semantics of TFF in Section 2.3 carries over



The TPTP Typed First-Order Form with Arithmetic 415

to TFA in the expected way. A TFA model of a formula F is a TFF model of
F that extends arithmetics. A formula is TFA satisfiable if it has at least one
TFA model, TFA unsatisfiable otherwise. A formula is a TFA tautology if every
E-interpretation that extends arithmetic is a TFA model.

The above definitions are intended to encompass existing theorem proving
approaches, such as [3,19,6,25,2], in the sense that the TFA tautologies are the
same on the common logical languages and theories. For example, the approaches
in [19,6,25,2] all assume a single arithmetic background theory and linear arith-
metic expressions. Restricting TFA correspondingly then is intended to provide
a reference semantics for these fragments.

The translation from typed to untyped logic (Section 2.3) can still be used
in presence of arithmetic, to “translate away” uninterpreted sorts. Variables of
a numeric sort lead to new sort predicates that recognize numeric constants.
Additionally, for the overloaded arithmetic functions, e.g., $sum, $difference,
etc., the translations need to have an implication with the antecedent check-
ing the sorts of the arguments. ATP systems must build in these numeric sort
predicates in order to completely and correctly process translated problems with
arithmetic.

3.3 Solvability and Decidability

The extent to which ATP systems are able to work with the arithmetic predi-
cates and functions is expected to vary, from a simple ability to do arithmetic
by evaluating ground numerical terms, e.g., $sum(2,3) might be evaluated to 5,
through an ability to instantiate variables in equations involving such functions,
e.g., ? [X:$int] : $product(2,$uminus(X)) = $uminus($sum(X,2)) might
instantiate X to 2, to extensive algebraic manipulation capability and ability
to prove general arithmetic statements, e.g., ! [X: $int] : ? [Y: $int] :

$greater(Y,X).
The TFA language is rich enough to accommodate virtually any interesting

formula class, and asking whether a formula is TFA valid just requires stating
that formula as a conjecture. Unfortunately, decision procedures or even semi-
decision procedures for that validity problem can exist for only rather restricted
fragments of TFA. For example, it is well-known that linear arithmetic (over all
three numeric domains) is decidable.6 However, as soon as free predicate symbols
are allowed, semi-decidability is lost. Just adding one unary predicate symbol
to linear integer arithmetic gives a validity problem that is Π1

1 -hard [16], and
hence no complete calculus can exist. Whether function symbols with result sort
$int are allowed or not does not make a difference, as they can be encoded using
predicate symbols (recall that full quantification is available).

Most theorem proving calculi are based on clause logic. Without full quantifi-
cation, it makes a significant difference whether free function symbols with re-
sult sort $int are allowed or not.7 Without free function symbols, but with free

6 See [21] for a recent study of decision methods based on quantifier elimination, for
linear integer and for linear real arithmetic.

7 Free function symbols with the result type $i are less problematic.



416 G. Sutcliffe et al.

predicate symbols, (refutationally) complete calculi still exist (e.g., [3,6,25]). Al-
lowing free function symbols with result sort $int leads again to a Π1

1 -hard
unsatisfiability problem, even for formulaswithout $int-sortedvariables [19]. This
applies to all three numeric domains, as the integers can be encoded in the ratio-
nals (and the real numbers) [19,18]. However, completeness can be achieved under
certain assumptions – see [3,19,6] for (different) approaches.

4 TFF Problems, ATP Systems, TPTP Software

Prior to the development of the TFF part of the TPTP World, ATP users and
developers had long expressed support for extending the TPTP language to in-
clude the typed first-order form and arithmetic. However, there had not been
a corresponding production of TPTP problems that use typing or arithmetic,
or the development of ATP systems that could solve TPTP problems that use
typing or arithmetic. This was a chicken-and-egg situation – without such prob-
lems in the TPTP problem library there was little infrastructure support for
developing the systems, and without the systems there was little motivation for
ATP users to produce such problems. It is hoped that the TFF0 developments
have broken the cycle: TFF0 problems have been added to the TPTP prob-
lem library, systems that can solve TFF0 problems have been developed (with
great potential for further work!), and the TPTP World infrastructure has been
extended to process TFF0 problems and solutions.

TFF0 problems without and with arithmetic were added to the TPTP in
release v5.0.0. The problems came from various sources. Firstly, problems were
found in the many papers that describe type systems, e.g., [36,13]. Not all the
problems were suitable, mainly because they employ subtyping, but others were
translated to the TFF0 syntax. Secondly, existing TPTP CNF problems were
analyzed for implicit type information. The CNF problems were converted in an
obvious way to FOF, and then combined with the type information to produce
TFF0 problems. Thirdly, TPTP users were asked for such problems, and several
replied. Finally, a suite of purely arithmetic conjectures was produced, aimed at
testing the basic arithmetic capabilities of ATP systems (these are in the ARI
domain of the TPTP problem library). Since then some users have contributed
TFF0 problems with and without arithmetic, and TPTP v5.3.0 contains 970
TFF0 problems, of which 846 include arithmetic.

Twelve ATP systems have been written for or adapted to problems written
in TFF0, eleven of which have some arithmetic capability. They are CVC3 [5]
H2WO4 [33], leanCoP-Ω [31], Otter [20], MELIA [7], MetiTarski [1], SNARK
[28], SPASS+T [22], SPASS-XDB [35], ToFoF, Vampire, Z3 [14]. ToFoF is the
system that has no arithmetic capability – it is simply the TPTP2X implementa-
tion of the translation described in Section 2.3, combined with either the E prover
[27] for theorem proving or Paradox [11] for model finding. For input, H2WO4,
leanCoP-Ω, MELIA, SNARK, Vampire, and Z3 read TFF0 natively. For CVC3,
TPTP2X is used to translate the formulae to SMT2 syntax [4]. For the other
five systems, TPTP2X is used to translate the formulae to FOF. SPASS-XDB



The TPTP Typed First-Order Form with Arithmetic 417

and the ToFoF backends read FOF natively. For leanCoP-Ω, Otter, and Meti-
Tarski, TPTP2X is further used to export the formulae in their input syntaxes.
Six of the systems rely, to a greater or lesser extent, on external procedures for
dealing with the arithmetic aspects of problems. H2WO4 and SPASS-XDB use
Mathematica, leanCoP-Ω uses the Omega test system [23], SPASS+T uses the
Yices or CVC3 SMT solver, and MetiTarski uses the QEPCAD-B decision pro-
cedure for the theory of real closed fields [10]. All the systems are available in
the SystemOnTPTP interface.8 Seven of the systems entered the TFA division
of CASC-23, which was won by SPASS+T [34].

The TPTP World infrastructure includes various tools to support ATP users
and developers. This infrastructure has been extended to process TFF0 formulae.
The Prolog, Java, lex/yacc, and C parsers, which are available as part of the
TPTP World, have been updated to support TFF0. These developments make
it possible to extend other TPTP World tools, e.g., the GDV derivation verifier
and the IDV derivation viewer, to TFF0 data. A utility for checking that all
symbols have declared types has been implemented, and a full type checker is
being developed. This is ongoing work.

5 Conclusion

This paper has described the TPTP World infrastructure for typed first-order
form logic, and its use for expressing arithmetic. The aim of developing the
infrastructure is to support research, development, and deployment of ATP for
the TFF logic, as a step towards satisfying a long-standing demand from ATP
users. Propagation of the TFF language is partially reliant on contributions
of TFF problems to the TPTP, and the automated reasoning community is
encouraged to make contributions.

Current work includes the addition of conditional terms and formulae, let-
binders, and a $distinct predicate to implement unique names. Other TPTP
users are extending TFF0 with polymorphic types.9 Future work includes devel-
oping a general framework for specifying further theories, e.g., booleans, arrays,
bit-vectors, in a machine readable way, along the lines of the SMT-LIB theory
specifications.

Acknowledgments. Alexandre Riazanov did the analysis of TPTP CNF prob-
lems for implicit type information. Michael Schick and Peter Watson produced
many of the TFF and arithmetic problems. Mark Stickel provided a lot of use-
ful feedback on the arithmetic syntax, and the selection of defined arithmetic
functions and predicates. Uwe Waldmann provided valuable feedback on precise
formulation of parts of the specification. John Harrison helped with insights on
computability issues. Andrei Voronkov made some helpful suggestions.

8 http://www.tptp.org/cgi-bin/SystemOnTPTP
9 https://sites.google.com/site/polymorphictptptff/home

http://www.tptp.org/cgi-bin/SystemOnTPTP
https://sites.google.com/site/polymorphictptptff/home


418 G. Sutcliffe et al.

References

1. Akbarpour, B., Paulson, L.: MetiTarski: An Automatic Theorem Prover for Real-
Valued Special Functions. Journal of Automated Reasoning 44(3), 175–205 (2010)

2. Althaus, E., Kruglov, E., Weidenbach, C.: Superposition Modulo Linear Arithmetic
SUP(LA). In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS, vol. 5749, pp.
84–99. Springer, Heidelberg (2009)

3. Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational Theorem Proving for Hi-
erachic First-Order Theories. Applicable Algebra in Engineering, Communication
and Computing 5(3/4), 193–212 (1994)

4. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: Gupta,
A., Kroening, D. (eds.) Proceedings of the 8th International Workshop on Satisfi-
ability Modulo Theories (2010)

5. Barrett, C.W., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 298–302. Springer, Heidelberg (2007)

6. Baumgartner, P., Fuchs, A., Tinelli, C.: ME(LIA) - Model Evolution with Linear
Integer Arithmetic Constraints. In: Cervesato, I., Veith, H., Voronkov, A. (eds.)
LPAR 2008. LNCS (LNAI), vol. 5330, pp. 258–273. Springer, Heidelberg (2008)

7. Baumgartner, P., Pelzer, B., Tinelli, C.: Model Evolution with Equality - Revised
and Implemented. Journal of Symbolic Computation (2011) (page to appear)

8. Benzmüller, C.E., Rabe, F., Sutcliffe, G.: THF0 – The Core of the TPTP Language
for Higher-Order Logic. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJ-
CAR 2008. LNCS (LNAI), vol. 5195, pp. 491–506. Springer, Heidelberg (2008)

9. Boute, R.: The Euclidean Definition of the Functions div and mod. ACM Trans-
actions on Programming Languages and Systems 14(2), 127–144 (1992)

10. Brown, C.E.: QEPCAD B - A Program for Computing with Semi-algebraic sets
using CADs. ACM SIGSAM Bulletin 37(4), 97–108 (2003)

11. Claessen, K., Sörensson, N.: New Techniques that Improve MACE-style Finite
Model Finding. In: Baumgartner, P., Fermueller, C. (eds.) Proceedings of the
CADE-19 Workshop: Model Computation - Principles, Algorithms, Applications
(2003)

12. Cohn, A.G.: Many Sorted Logic = Unsorted Logic + Control? In: Bramer, M. (ed.)
Proceedings of Expert Systems 1986, The 6th Annual Technical Conference on
Research and Development in Expert Systems, pp. 184–194. Cambridge University
Press (1986)

13. Cohn, A.G.: A More Expressive Formulation of Many Sorted Logic. Journal of
Automated Reasoning 3(2), 113–200 (1987)

14. de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

15. Gallier, J.: Logic for Computer Science: Foundations of Automated Theorem Prov-
ing. Computer Science and Technology Series. Wiley (1986)

16. Halpern, J.: Presburger Arithmetic With Unary Predicates is Π1
1 -Complete. Jour-

nal of Symbolic Logic 56(2), 637–642 (1991)
17. Harrison, J.: Email to Cesare Tinelli
18. Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge

University Press (2009)
19. Korovin, K., Voronkov, A.: Integrating Linear Arithmetic into Superposition Cal-

culus. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS (LNAI), vol. 4646,
pp. 223–237. Springer, Heidelberg (2007)



The TPTP Typed First-Order Form with Arithmetic 419

20. McCune, W.W.: Otter 3.3 Reference Manual. Technical Report ANL/MSC-TM-
263, Argonne National Laboratory, Argonne, USA (2003)

21. Nipkow, T.: Linear Quantifier Elimination. Journal of Automated Reasoning 45(2),
189–212 (2010)

22. Prevosto, V., Waldmann, U.: SPASS+T. In: Sutcliffe, G., Schmidt, R., Schulz, S.
(eds.) Proceedings of the FLoC 2006 Workshop on Empirically Successful Com-
puterized Reasoning, 3rd International Joint Conference on Automated Reasoning.
CEUR Workshop Proceedings, vol. 192, pp. 19–33 (2006)

23. Pugh, W.: The Omega Test: A Fast and Practical Integer Programming Algorithm
for Dependence Analysis. Communications of the ACM 31(8), 4–13 (1992)

24. Ranise, S., Tinelli, C.: The SMT-LIB Format: An Initial Proposal. In: Nebel, B.,
Swartout, W. (eds.) Proceedings of the Workshop on Pragmatics of Decision Pro-
cedures in Automated Reasoning (2003)

25. Rümmer, P.: A Constraint Sequent Calculus for First-Order Logic with Linear
Integer Arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008.
LNCS (LNAI), vol. 5330, pp. 274–289. Springer, Heidelberg (2008)

26. Schmidt-Schauss, M.: A Many-Sorted Calculus with Polymorphic Functions Based
on Resolution and Paramodulation. In: Joshi, A. (ed.) Proceedings of the 9th
International Joint Conference on Artificial Intelligence, pp. 1162–1168 (1985)

27. Schulz, S.: E: A Brainiac Theorem Prover. AI Communications 15(2-3), 111–126
(2002)

28. Stickel, M.E.: SNARK - SRI’s New Automated Reasoning Kit,
http://www.ai.sri.com/ stickel/snark.html

29. Sutcliffe, G.: The SZS Ontologies for Automated Reasoning Software. In: Sutcliffe,
G., Rudnicki, P., Schmidt, R., Konev, B., Schulz, S. (eds.) Proceedings of the
LPARWorkshops: Knowledge Exchange: Automated Provers and Proof Assistants,
and The 7th International Workshop on the Implementation of Logics. CEUR
Workshop Proceedings, vol. 418, pp. 38–49 (2008)

30. Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure. The FOF
and CNF Parts, v3.5.0. Journal of Automated Reasoning 43(4), 337–362 (2009)

31. Sutcliffe, G.: Proceedings of the 5th IJCAR ATP System Competition. Edinburgh,
United Kingdom (2010)

32. Sutcliffe, G.: The TPTP World – Infrastructure for Automated Reasoning. In:
Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 1–12.
Springer, Heidelberg (2010)

33. Sutcliffe, G.: Proceedings of the CADE-23 ATP System Competition. Wroclaw,
Poland (2011)

34. Sutcliffe, G.: The CADE-23 Automated Theorem Proving System Competition -
CASC-23. AI Communications (page to appear, 2012)

35. Sutcliffe, G., Suda, M., Teyssandier, A., Dellis, N., de Melo, G.: Progress Towards
Effective Automated Reasoning with World Knowledge. In: Murray, C., Guesgen,
H. (eds.) Proceedings of the 23rd International FLAIRS Conference, pp. 110–115.
AAAI Press (2010)

36. Walther, C.: A Many-Sorted Calculus Based on Resolution and Paramodulation.
In: Bundy, A. (ed.) Proceedings of the 8th International Joint Conference on Ar-
tificial Intelligence, pp. 882–891 (1983)



Ordinals and Knuth-Bendix Orders

Sarah Winkler
, Harald Zankl, and Aart Middeldorp

Institute of Computer Science, University of Innsbruck, 6020 Innsbruck, Austria

Abstract In this paper we consider a hierarchy of three versions of
Knuth-Bendix orders. (1) We show that the standard definition can be
(slightly) simplified without affecting the ordering relation. (2) For the
extension of transfinite Knuth-Bendix orders we show that transfinite
ordinals are not needed as weights, as far as termination of finite rewrite
systems is concerned. (3) Nevertheless termination proving benefits from
transfinite ordinals when used in the setting of general Knuth-Bendix
orders defined over a weakly monotone algebra. We investigate the rela-
tionship to polynomial interpretations and present experimental results
for both termination analysis and ordered completion. For the latter it
is essential that the order is totalizable on ground terms.

Keywords: Knuth-Bendix order, termination, ordered completion.

1 Introduction

The Knuth-Bendix order (KBO) [10] is a popular criterion for automated termin-
ation analysis and theorem proving. Consequently many extensions and general-
izations of this order have been proposed and investigated [2–4,6,12,13,15,18,19].
Despite the fact that this order is so well-studied we show that the definition of
KBO can be simplified without affecting the ordering relation.

Concerning generalizations of this ordering, Dershowitz [2, 3] suggested to
extend the semantic component beyond weight functions and Middeldorp and
Zantema [15] presented the generalized Knuth-Bendix order (GKBO) using
weakly monotone algebras. Independently in the theorem proving community,
McCune [14] suggested linear functions for computing weights of terms. Re-
cently Ludwig andWaldmann [13] introduced the transfinite Knuth-Bendix order
(TKBO), which allows linear functions over the ordinals and Kovács et al. [12]
show that for finite signatures one can restrict to ordinals below ωωω

without
losing power. However, for finite rewrite systems (which is the typical case for
proving termination) we show that finite weights suffice. This is in sharp con-
trast to GKBO where transfinite ordinals are beneficial. We also show how a
restricted version of this ordering can be implemented. To this end (a fragment
of) ordinal arithmetic is encoded as a constraint satisfaction problem. The use-
fulness of the different versions of KBO is illustrated by experimental results for
both termination analysis and theorem proving.

� Supported by a DOC-fFORTE fellowship of the Austrian Academy of Sciences.

N. Bjørner and A. Voronkov (Eds.): LPAR-18, LNCS 7180, pp. 420–434, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Ordinals and Knuth-Bendix Orders 421

The remainder of this paper is organized as follows. In the next section we
recall preliminaries. In Section 3 we prove that the weight of variables can be
fixed a priori without affecting the power of KBO. Section 4 shows that for
finite rewrite systems no transfinite ordinals are needed for TKBO. Section 5
shows the benefit of transfinite ordinals for GKBO and studies the relationship
to polynomial interpretations. Implementation issues and experimental results
are discussed in Section 6. Section 7 concludes.

2 Preliminaries

Term Rewriting: We assume familiarity with term rewriting and termination [21].
Let F be a signature and V a set of variables. By T (F ,V) we denote the terms
over F and V . For a term t let Pos(t) be the set of positions in t and Posx(t) the
set of positions of the variable x in t. A (well-founded F -)algebra (A, >) consists
of a non-empty carrier A, a well-founded relation > on A, and an interpretation
function fA for every f ∈ F . By [α]A(·) we denote the usual evaluation function
of A according to an assignment α. An algebra (A, >) is called (weakly) mono-
tone if every fA is (weakly) monotone with respect to >. Any algebra (A, >)
induces an order on terms, as follows: s >A t if for any assignment α the con-
dition [α]A(s) > [α]A(t) holds. The order 
A is defined similarly based on the
reflexive closure of >. We say that a TRS R is compatible with relation > (an
algebra A) if → r ∈ R implies  > r ( >A r). It is well-known that every TRS
that is compatible with a monotone algebra is terminating.

An interpretation fA is simple if fA(a1, . . . , an) > ai for all a1, . . . , an ∈ A
and 1 � i � n. An algebra A is simple if all its interpretation functions are
simple. A polynomial interpretation N is a monotone algebra over the car-
rier N = {0, 1, 2, . . .}, using >N as ordering and where every fN is a polyno-
mial. A polynomial interpretation where every fN is linear is called a linear
interpretation.

Ordinals: We assume basic knowledge of ordinals [9]. Let + and · denote standard
addition and multiplication on ordinals (and hence also on natural numbers).
Likewise let ⊕ and 3 denote natural addition and multiplication of ordinals.
Let O be the set of ordinals strictly less than ε0. Recall that every ordinal α ∈ O
can be uniquely represented in Cantor Normal Form (CNF):

α =
∑

1�i�n

ωαi · ai

where a1, . . . , an ∈ N\ {0} and α1, . . . , αn ∈ O are also in CNF, with α1 > · · · >
αn. Ordinals below ω—the natural numbers—are called finite.

3 KBO

A precedence is a strict order on a signature. A weight function for a signature F
is a pair (w,w0) consisting of a mapping w : F → N and a positive constant
w0 ∈ N such that w(c) 
 w0 for every constant c ∈ F . A weight function (w,w0)



422 S. Winkler, H. Zankl, and A. Middeldorp

is admissible for a precedence 4 if for every unary f ∈ F with w(f) = 0 we
have f 4 g for all g ∈ F \ {f}. The weight of a term is computed as follows:
w(x) = w0 for x ∈ V and w(f(t1, . . . , tn)) = w(f) + w(t1) + · · ·+ w(tn). By |t|x
we denote how often a variable x occurs in a term t.

Definition 1. Let 4 be a precedence and (w,w0) a weight function. We define
the Knuth-Bendix order 4kbo inductively as follows: s 4kbo t if |s|x 
 |t|x for all
variables x ∈ V and either w(s) > w(t), or w(s) = w(t) and one of the following
alternatives holds:

(1) s = fk(x) and t = x for some k > 0, or
(2) s = f(s1, . . . , sn), t = g(t1, . . . , tm), and f 4 g, or
(3) s = f(s1, . . . , sn), t = f(t1, . . . , tn), s1 = t1, . . . , sk−1 = tk−1, and sk 4kbo tk

with 1 � k � n.

To indicate the weight function (w,w0) used for 4kbo we write 4(w,w0)
kbo . A TRSR

is called compatible with KBO if there exists a weight function (w,w0) admissible

for a precedence 4 such that R is compatible with 4(w,w0)
kbo .

Theorem 2 ([4, 10]). A TRS is terminating if it is compatible with KBO. ��

Below we examine if restricting w0 to one decreases the power of KBO. We
are not aware of any earlier investigations in this direction. A bit surprisingly
indeed w0 can be chosen one, which simplifies the definition of KBO. Note that
it does not suffice to just replace w0 by one. Consider the rule h(x, x) → f(x)
and w(h) = 0, w(f) = 2. Using w0 = 3 the constraints on the weight give 6 > 5
but w0 = 1 yields 2 �> 3. But a KBO proof with w0 > 1 can be transformed into
a KBO proof with w0 = 1 by adapting (according to their arity) the weights of
function symbols. Formally, we define a new weight function with

(w0)
1 := 1 w1(f) := w(f) + (n− 1) · (w0 − 1) (1)

for every n-ary function symbol f . Obviously w1(f) 
 0 for all f ∈ F and in
particular w1(c) 
 (w0)

1 for constants c ∈ F since w(c) 
 w0. Note that this
transformation is not invertible since one could get negative weights for function
symbols of higher arity. To cope with the reverse direction, i.e., transforming a
KBO proof with arbitrary w0 into a KBO proof with w0 = k for some k ∈ N\{0}
we define a weight function with

(w0)k := k wk(f) := w1(f) · k (2)

Lemma 3. For terms s and t we have w(s) > w(t) if and only if w1(s) > w1(t)
if and only if wk(s) > wk(t) for any k ∈ N \ {0}.

Proof. The first statement follows from w(s) = w1(s) + w0 − 1, which we show
by induction on the term s. In the base case s ∈ V and w(s) = w0 = w1(s)+w0−1
since w1(s) = 1. In the step case s = f(s1, . . . , sn) and we have



Ordinals and Knuth-Bendix Orders 423

w(s) = w(f) + w(s1) + · · ·+ w(sn)

= w(f) + w1(s1) + w0 − 1 + · · ·+ w1(sn) + w0 − 1

= w1(f)− (n− 1) · (w0 − 1) + w1(s1) + w0 − 1 + · · ·+ w1(sn) + w0 − 1

= w1(f) + w1(s1) + · · ·+ w1(sn) + w0 − 1 = w1(s) + w0 − 1

where the induction hypothesis is used in the second step. The reasoning for the
second statement is similar and based on wk(s) = w1(s) · k. ��

Note that Lemma 3 implies that for terms s and t we have w(s) = w(t) if and
only if w1(s) = w1(t) if and only if wk(s) = wk(t) for any k ∈ N \ {0}.

Corollary 4. We have 4(w,w0)
kbo = 4(w1,1)

kbo = 4(wk,k)
kbo for all k ∈ N \ {0}. ��

Lemma 5. The weight function (w,w0) is admissible for a precedence 4 if and
only if the weight functions (w1, 1) and (wk, k) are admissible for 4.

Proof. The result follows from the fact that w1(f) = w(f) for unary f ∈ F and
w(f) �= 0 if and only if wk(f) = w1(f) · k �= 0. ��

From the above results we immediately obtain that fixing the value of w0 does
not affect the power of KBO. Our implementation (see Section 6) benefited
slightly from fixing w0 = 1.

By now we have the machinery to show that KBO cannot demand lower
bounds on weights (apart from unary function symbols to have weight zero).

This can be supported as follows. Consider 4(w2,2)
kbo . By Corollary 4

4(w2,2)
kbo = 4((w2)

1,1)
kbo = 4(((w2)

1)k,k)
kbo

for any k ∈ N \ {0}. Note that (w2)
1(f) 
 1 for all non-unary f ∈ F due to (1).

Now choosing an appropriate k, all f ∈ F (with the possible exception of a unary
function symbol of weight zero) satisfy ((w2)

1)k(f) 
 k by (2). This does not
contradict [23, Theorem 1], which allows to compute an a priori upper bound
on the weights.

A KBO with w0 = 0 is not well-founded. The nonterminating TRS consist-

ing of the rule h(h(a, a), a) → h(a, h(h(a, a), a)) is compatible with 4(w,0)
kbo where

w(a) = w(h) = 0 and h 4 a.

4 Transfinite KBO

We will now consider the transfinite Knuth-Bendix order (TKBO) [13]. In this
setting a weight function for a signature F is a pair (w,w0) consisting of a map-
ping w : F → O and a positive constant w0 ∈ N such that w(c) 
 w0 for every
constant c ∈ F . A subterm coefficient function is a mapping s : F ×N → O such
that for a function symbol f of arity n we have s(f, i) > 0 for all 1 � i � n.
A TKBO where w0,

1 all weights and subterm coefficients are finite will be

1 Although w0 ∈ N by definition, Theorem 13 is valid also for transfinite w0.



424 S. Winkler, H. Zankl, and A. Middeldorp

called finite. Let (w,w0) be a weight function and s a subterm coefficient func-
tion. We define the weight of a term inductively as follows: w(t) = w0 for t ∈ V
and w(t) = w(t1) 3 s(f, 1) ⊕ · · · ⊕ w(tn) 3 s(f, n) ⊕ w(f) if t = f(t1, . . . , tn).
Given a term t and a subterm coefficient function s, the coefficient of a position
p ∈ Pos(t) is inductively defined by coeff(p, t) = 1 if p = ε and s(f, i)3coeff(q, ti)
if t = f(t1, . . . , tn) and p = iq. The variable coefficient of x ∈ V is vcoeff(x, t) =⊕

p∈Posx(t)
coeff(p, t).

Definition 6. Let 4 be a precedence, (w,w0) a weight function and s a subterm
coefficient function. We define the transfinite Knuth-Bendix order 4tkbo induct-
ively as follows: s 4tkbo t if vcoeff(x, s) 
 vcoeff(x, t) for all variables x ∈ V and
either w(s) > w(t), or w(s) = w(t) and one of the following alternatives holds:

(1) s = fk(x) and t = x for some k > 0, or
(2) s = f(s1, . . . , sn), t = g(t1, . . . , tm), and f 4 g, or
(3) s = f(s1, . . . , sn), t = f(t1, . . . , tn), s1 = t1, . . . , sk−1= tk−1, and sk 4tkbo tk

with 1 � k � n.

A TRS R is called compatible with TKBO if there is a weight function (w,w0)
admissible for a precedence 4 and a subterm coefficient function s such that R
is compatible with 4tkbo.

Theorem 7 ([12,13]). A TRS is terminating if it is compatible with TKBO. ��

In fact 4tkbo still satisfies the subterm property if admissibility is relaxed to
requiring that a unary function symbol f with w(f) = 0 and s(f, 1) = 1 satisfies
f 4 g for all g ∈ F \ {f}. Hence Theorem 7 remains valid. Thus in the sequel
we will use this less restrictive definition of admissibility.

One motivation in [13] for allowing subterm coefficients is to cope with du-
plicating rules such as f(x)→ h(x, x). We agree with this observation but show
that the benefit is not limited to this case, i.e., subterm coefficients are even
useful for string rewrite systems (where all function symbols are unary).

Example 8. Consider the SRS consisting of the following rule

f(g(x))→ g(g(f(x)))

For KBO this rule demands w(g) = 0 and the admissibility condition induces
g 4 f which does not orient the rule from left to right. On the other hand the
SRS is compatible with the TKBO using weights w(f) = 1 and w(g) = 1 and a
subterm coefficient function satisfying s(f, 1) = 3 and s(g, 1) = 1.

In the remainder of this section we show that if a finite TRS is compatible with
a TKBO then it also is compatible with a finite TKBO. Assume termination of
a finite rewrite system R is shown by a TKBO with weight function (w,w0) and
subterm coefficient function s. If some weights or subterm coefficients are infinite
thenR is compatible with the finite TKBO which is obtained if one “substitutes”
a large enough natural number for ω in the given weight and subterm coefficient
functions. The next example demonstrates the proof idea while the proof of
Theorem 13 provides a suitable choice for this natural number.



Ordinals and Knuth-Bendix Orders 425

Example 9. The TRS R consisting of the following three rules

f(x)→ g(x) h(x)→ f(f(x)) k(x, y)→ h(f(x), f(y))

is compatible with the TKBO using the weight function

w0 = 1 w(g) = 0 w(f) = 5 w(h) = ω w(k) = ω2 + 1

and g greatest in the precedence. (All subterm coefficients are set to one.) Sub-
stituting 13 for ω makes R also compatible with the finite TKBO using

w0 = 1 w(g) = 0 w(f) = 5 w(h) = 13 w(k) = 132 + 1 = 170

and g greatest in the precedence.

Definition 10. For an ordinal α =
∑

1�i�n ω
αi ·ai in CNF, letM(α) denote the

maximal natural number occurring as coefficient, i.e., the maximum of a1, . . . , an
and all coefficients occurring in α1, . . . , αn. (If α = 0 thenM(α) = 0.) We denote
by α(k) the natural number obtained when α—considered as a function in ω—is
evaluated for the natural number k, i.e., α(k) :=

∑
1�i�n k

αi(k) · ai.

Let α = ωω·3 + ω2 · 2+ 1. Then M(α) = 3 and α(3) = 33·3 +32 · 2+ 1 = 19, 702.
The next result follows from a statement in [7, p. 34].

Lemma 11. Let α, β ∈ O and k ∈ N with k > M(α),M(β). If α = β then
α(k) = β(k) and if α > β then α(k) > β(k). ��

Note that the restriction on k in Lemma 11 is essential: if k = 2, α = ω, and
β = 2 then α > β but α(k) = β(k) = 2.

Lemma 12. For α, β ∈ O we have

(1) (α⊕ β)(k) = α(k) + β(k)
(2) (α3 β)(k) = α(k) · β(k)

Proof. Let α =
∑

1�i�n ω
αi · ai and β =

∑
1�j�m ωβj · bj be in CNF.

(1) We may also write α =
∑

1�i�l ω
γi · a′i and β =

∑
1�i�l ω

γi · b′i such that
{γ1, . . . , γl} = {α1, . . . , αn} ∪ {β1, . . . , βm} where some a′i and b′i may be
zero. We then have

(α⊕ β)(k) =

⎛⎝ ∑
1�i�l

ωγi · (a′i + b′i)

⎞⎠ (k) (definition of ⊕)

=
∑

1�i�l

kγi(k) · (a′i + b′i)

=
∑

1�i�l

kγi(k) · a′i +
∑

1�i�l

kγi(k) · b′i

= α(k) + β(k)



426 S. Winkler, H. Zankl, and A. Middeldorp

(2) We have

(α3 β)(k) =

⎛⎝ n⊕
i=1

m⊕
j=1

ωαi⊕βj · ai · bj

⎞⎠ (k) (definition of 3)

=

n∑
i=1

m∑
j=1

kαi(k)+βj(k) · ai · bj (%)

=

(
n∑

i=1

kαi(k) · ai

)
·

⎛⎝ m∑
j=1

kβj(k) · bj

⎞⎠
= α(k) · β(k)

where in step (%) we used part (1). ��
Using Lemmata 11 and 12 we can prove the following result.

Theorem 13. If a finite TRS is compatible with TKBO then it is compatible
with a finite TKBO.

Proof. Let R be a finite TRS compatible with a TKBO using weight function
(w,w0) and subterm coefficient function s. Since R is finite the natural number

k := max{M(w()),M(w(r)) | → r ∈ R}+ 1

is well-defined (the maximum of the empty set is zero). We have k > M(w(t))
for all terms t occurring in R. Consider the weight function given by w′(f) :=
α(k) whenever w(f) = α and w′

0 := β(k) if w0 = β together with the subterm
coefficient function s′(f, i) := α(k) whenever s(f, i) = α, which assigns only
natural numbers as weights and subterm coefficients. For any term t we then
have w′(t) = (w(t))(k), as is easily verified by induction: if t ∈ V then w′(t) =
w′

0 = (w0)(k) = (w(t))(k) and

w′(f(t1, . . . , tn)) =

(
n∑

i=1

w′(ti) · s′(f, i)
)

+ w′(f)

=

(
n∑

i=1

(w(ti))(k) · (s(f, i))(k)
)

+ (w(f))(k)

=

((
n⊕

i=1

w(ti)3 s(f, i)

)
⊕ w(f)

)
(k)

= (w(f(t1, . . . , tn)))(k)

where in the second step we used the induction hypothesis and the definition of
w′(f) and s′(f, i), respectively, and the last but one step applies Lemma 12. Thus
by Lemma 11 w() > w(r) implies w′() = (w())(k) > (w(r))(k) = w′(r) and
w() = w(r) implies w′() = (w())(k) = (w(r))(k) = w′(r) for each → r ∈ R.
Note that admissibility is not affected. Hence R is compatible with the TKBO
having weight function (w′

0, w
′) and subterm coefficient function s′. ��



Ordinals and Knuth-Bendix Orders 427

We remark that Theorem 13 does not make transfinite ordinal weights in TKBO
superfluous since they are beneficial for hierarchic theorem proving [13]. Further-
more, Theorem 13 only applies to finite TRSs as [12, Theorem 5.8] shows that
there are TRSs over finite signatures that need transfinite ordinals (larger than

ωωk

for any k ∈ N) for weights and subterm coefficients in TKBO. However, due
to Theorem 13 the TRS showing the need for transfinite weights is necessarily
infinite.

5 Generalized KBO

In this section we elaborate on the question if transfinite ordinals increase the
power of KBO. As long as natural addition and multiplication of ordinals are
considered, Theorem 13 shows that (for finite TRSs) coefficients beyond N can
be ignored. Although standard addition and multiplication of ordinals are only
weakly monotone, they can still be employed for KBO, as we recall in this section.
To this end we consider the generalized Knuth-Bendix order (GKBO) [15] which
computes weights of terms according to a weakly monotone simple algebra.2

Similar extensions have been presented in [2, 3, 6, 19].

Definition 14. Let (A, >) be a weakly monotone simple algebra and 4 a pre-
cedence on F . We define the general Knuth-Bendix order 4gkbo inductively as
follows: s 4gkbo t if s >A t, or s 
A t and either

(1) s = f(s1, . . . , sn), t = g(t1, . . . , tm), and f 4 g, or
(2) s = f(s1, . . . , sn), t = f(t1, . . . , tn), s1 = t1, . . . , sk−1= tk−1, and sk 4gkbo tk

with 1 � k � n.

Theorem 15 ([15]). A TRS R is terminating if it is compatible with 4gkbo. ��

The condition that A is simple ensures admissibility with 4 since it e.g. rules out
interpretations of the form fA(x) = x. Next we elaborate on the use of standard
addition and multiplication of ordinals for GKBO.

Example 16. Consider the SRS R containing the rules

1 : a(x)→ b(x) 2 : a(b(x))→ b(c(a(x))) 3 : c(b(x))→ a(x)

The following weakly monotone interpretation

aO(x) = x+ ω + 1 bO(x) = x+ ω cO(x) = x+ 2

is simple and induces a strict decrease between left- and right-hand sides:

x+ ω + 1 >O x+ ω x+ ω · 2 + 1 >O x+ ω · 2 x+ ω + 2 >O x+ ω + 1

Hence R can be oriented by GKBO.

2 Note that in contrast to [15] we restrict to the case where all function symbols have
lexicographic status and arguments are compared from left to right.



428 S. Winkler, H. Zankl, and A. Middeldorp

Below we show that R cannot be shown terminating by GKBO using a linear
interpretation over N. To this end we assume abstract interpretations fN (x) =
f1x+ f0. Since N must be simple we need f1, f0 
 1. For rule (2) the constraint
on variable coefficients induces a1b1 
 b1c1a1, which requires c1 = 1. Rules (1)
and (3) demand a1 
 b1 and b1 
 a1, so b1 = a1. Rule (2) further requires
a1b0 + a0 
 b1a0 + b1c0 + b0. Because a0 
 b0 due to rule (1), this demands
a0 
 a1c0+b0 = (a1−1)c0+(c0+b0). Rule (3) demands c0+b0 
 a0, and hence
(a1 − 1)c0 = 0. Since N must be simple, c0 > 0 which requires a1 = 1. But then
rule (2) implies the constraint b0 + a0 
 a0 + c0 + b0, which again contradicts
that c0 is positive.

Hence one might conclude that standard addition and multiplication of ordinals
is more useful for termination proving (where one usually deals with finite TRSs)
than their natural counterparts. But standard addition of ordinals might cause
problems for (at least) binary function symbols since the absolute positiveness
approach [8] to compare polynomials no longer applies. To see this note that
f1 
 g1 and f2 
 g2 does not imply x · f1 + y · f2 
 y · g2 + x · g1 for all values
of x and y if f1, f2, g1, g2 ∈ N and x, y ∈ O. Next we show that a combination
of standard and natural addition is helpful.

Example 17. Consider the TRS R consisting of the single rule

s(f(x, y))→ f(s(y), s(s(x)))

The weakly monotone interpretation fO(x, y) = (x ⊕ y) + ω and sO(x) = x + 1
is simple and induces a strict decrease between left- and right-hand side:

(x ⊕ y) + ω + 1 >O ((y + 1)⊕ (x+ 2)) + ω = (x⊕ y) + 3 + ω = (x⊕ y) + ω

Hence R can be oriented by GKBO. Again, linear interpretations with coef-
ficients in N are not sufficient: Assuming abstract interpretations fN (x, y) =
f1x+ f2y + f0 and sN (x) = s1x+ s0, we get the constraints

s1f1 
 f2s1s1 s1f2 
 f1s1 s1f0 + s0 
 f1s0 + f2(s0 + s1s0) + f0

Since sN and fN must be simple s1, f1, f2 
 1. From the first two constraints we
conclude s1 = 1, such that the third simplifies to f0+s0 
 f0+(f1+2f2)s0. This
contradicts f1, f2, and s0 being positive, which is needed for N being simple.

GKBO vs. Polynomial Interpretations

Finally we investigate the relationship of polynomial interpretations and GKBO
using a weakly monotone simple algebra (N , >N) over N assigning polynomi-
als fN to every f ∈ F . In the sequel we refer to this restricted version of GKBO
by PKBO. We first show that there are TRSs that can be shown terminating by
PKBO but not by polynomial interpretations.



Ordinals and Knuth-Bendix Orders 429

Example 18. Consider the SRS R consisting of the rules

a(b(x))→ b(b(a(x))) a(c(x))→ c(c(a(x))) b(c(x))→ c(b(x))

The GKBO with aN (x) = 3x+1, bN (x) = cN (x) = x+1 and b 4 c is compatible
with R. To orient the first two rules by a polynomial interpretation N , bN and
cN must be linear and monic. But then the last rule is not orientable.

The open question deals with the reverse direction, i.e., can any TRS that admits
a compatible polynomial interpretation also be shown terminating by PKBO?
Polynomial interpretations are monotone and hence also weakly monotone. Con-
sequently polynomials can only exceed PKBO with respect to power if a non-
simple interpretation can be enforced. Below we show that linear interpretations
cannot enforce such an interpretation, in contrast to (non-linear) polynomial
interpretations.

Linear Interpretations: In this subsection we refer to a PKBO where all inter-
pretation functions are linear by LKBO. In the sequel we show that any linear
interpretation can be transformed into a linear interpretation where all inter-
pretation functions are simple.

Let N be a linear interpretation. For each fN (x1, . . . , xn) = f1x1 + · · · +
fnxn + f0 and m ∈ N let fNm(x1, . . . , xn) = f1x1 + · · ·+ fnxn +m · f0. Let α0

be the assignment such that α0(x) = 0 for all variables x.

Lemma 19. If s >N t then [α]Nm(s) > [α]Nm(t) + (m− 1) holds for all α.

Proof. We first prove

[α]Nm(t) = [α]N (t) + (m− 1)[α0]N (t) (3)

by induction on t. In the base case t ∈ V and

[α]Nm (t) = α(t) = α(t) + (m− 1) · 0 = [α]N (t) + (m− 1)[α0]N (t)

In the step case let t = f(t1, . . . , tn). Then

[α]Nm(f(t1, . . . , tn)) = m · f0 +
∑

1�i�n

fi · [α]Nm(ti)

= m · f0 +
∑

1�i�n

fi · ([α]N (ti) + (m− 1)[α0]N (ti))

= [α]N (t) + (m− 1)[α0]N (t)

where the induction hypothesis is applied in the second step.
From the assumption s >N t we obtain [α]N (s) > [α]N (t) and in particular

[α0]N (s) 
 [α0]N (t) + 1. Hence

[α]Nm(s) = [α]N (s) + (m− 1)[α0]N (s) > [α]N (t) + (m− 1)[α0]N (s)


 [α]N (t) + (m− 1)([α0]N (t) + 1) = [α]Nm(t) + (m− 1)

where the two equality steps follow from (3). ��



430 S. Winkler, H. Zankl, and A. Middeldorp

Definition 20. Let A be an algebra. We define the algebra A′ to be as A but for
each function symbol g with [α0]A(g(x1, . . . , xn)) = 0 we define gA′(x1, . . . , xn) =
gA(x1, . . . , xn)+1. For a finite TRS R letM := max {[α0]A′(r) | → r ∈ R}+1.

Lemma 21. If a finite TRS is compatible withN then it is compatible with (NM )′.

Proof. A straightforward induction proof shows that any term t satisfies

[α]Nm (t) + [α0]N ′(t) 
 [α](Nm)′(t) (4)

Compatibility yields  >N r for every  → r ∈ R. The claim follows from
[α](NM )′() 
 [α]NM () > [α]NM (r)+M−1 
 [α]NM (r)+[α0]N ′(r) 
 [α](NM )′(r)
where Lemma 19 is used in the second step, M > [α0]N ′(r) in the third step,
and the last step is an application of (4). ��

As (NM )′ is simple we obtain the following result from Lemma 21.

Theorem 22. If a finite TRS is compatible with a linear interpretation then it
is compatible with an LKBO.

Proof. Let R be a finite TRS that is compatible with a linear interpretation N
and by Lemma 21 also with (NM )′. By construction (NM )′ is simple and all its
interpretation functions are linear. Since (NM )′ is monotone it is also weakly
monotone. Hence based on (NM )′ we have  4gkbo r for every  → r ∈ R and
empty precedence 4. ��

Non-linear Interpretations: To show that PKBO does not subsume polynomial
interpretations we give a TRS that can be shown terminating by a polynomial
interpretation but not by PKBO. The reason for failure is that compatibility
with PKBO can enforce interpretation functions that are not simple.

Theorem 23. The TRS R consisting of s(x)→ t(t(t(x))) and the rules

R1 f(0)→ 0 f(s(0))→ s(0) f(s2(0))→ s6(0)

R1 s2(0)→ f(0) s3(0)→ f(s(0)) s8(0)→ f(s2(0))

R2 g(x)→ h(x, x) s(x)→ h(x, 0) s(x)→ h(0, x)

R3 f(g(x))→ g(g(f(x))) g(s(x))→ s(s(g(x))) h(f(x), g(x))→ f(s(x))

can be shown terminating by a polynomial interpretation but not by PKBO.

Proof. The TRS R is compatible with the following polynomial interpretation:

fN (x) = 2x2 − x+ 1 sN (x) = x+ 1 gN (x) = 4x+ 5

hN (x, y) = x+ y tN (x) = x 0N = 0

To see thatR cannot be shown terminating by PKBOwe adopt the idea from [16]
where the shape and the coefficients of a compatible polynomial interpretation
can be determined by the rewrite rules in R1 ∪R2 ∪R3. However, in our setting



Ordinals and Knuth-Bendix Orders 431

we have to re-inspect the results from [16] since PKBO allows  
A r in contrast
to a polynomial interpretation which requires  >A r for all rules. Furthermore
monotonicity has to be replaced by weak monotonicity and the algebra has to
be simple.

Next we investigate which interpretation functions are enforced by the rules
in R. Inspecting [16, Lemma 16] using the first two rules from R3 we obtain
that sN and gN must be linear. Moreover sN (x) = x + d for some d ∈ N and
fN is not linear. Since N must be simple we have d > 0. From [16, Lemma 21]
and R2 we obtain hN (x, y) = x + y + p. Now [16, Lemma 20] and the last rule
of R3 limit the degree of fN to at most two.

Next we focus on [16, Lemma 18]. Let z = 0N . The last rule of R1 yields

z + 8d 
 fN (z + 2d)

Note that f(x) >N x since fN must be simple. Since the degree of fN is two we
have fN (x) = ax2+bx+c with a 
 1. For well-definedness of fN we need a 
 −b
and c 
 0. Next we show that d � 2. To this end we assume d 
 3 and arrive at
a contradiction. Now

fN (z + 2d) = a(z2 + 4zd+ 4d2) + b(z + 2d) + c = f(z) + a(4zd+ 4d2) + 2bd

> z + a(4zd+ 4d2) + 2bd 
 z + 4ad2 + 2bd = z + d(4ad+ 2b)

= z + d((4d− 2)a+ 2(a+ b)) 
 z + 10d

which is a contradiction to the constraint z+8d 
 fN (z+2d) from above. Hence
d � 2. But then s(x) → t(t(t(x))) requires tN (x) = x. Hence PKBO cannot
prove termination of the TRS R. ��

6 Implementation and Evaluation

To establish a termination proof by KBO the task is to search for suitable weights
and a precedence. For efficiently finding a compatible KBO by linear program-
ming we refer to [23]. TKBO with finite weights can easily be encoded in non-
linear integer arithmetic (similarly to [23]) for which powerful but (necessarily)
incomplete tools exist [24]. Since these tools are typically overflow-safe the prob-
lems sketched in [12, 13] do not appear in our setting (termination proving).

In the remainder of this section we sketch how one can implement a version
of GKBO using transfinite ordinal weights (below ωω) with the standard addi-
tion and multiplication of ordinals. This is sound by Theorem 15, provided the
interpretation functions are weakly monotone and simple. We restrict ourselves
to string rewrite systems and interpretations of the (canonical) form

fO(x) = x · f ′ + ωd · fd + · · ·+ ω1 · f1 + f0 (5)

where f ′, fd, . . . , f0 ∈ N. As illustration, we abstractly encode the rule

a(b(x))→ b(a(a(x)))



432 S. Winkler, H. Zankl, and A. Middeldorp

with d = 1. For the left-hand side we get

x · b′ · a′ + ω1 · b1 · a′ + b0 · a′ + ω1 · a1 + a0

which can be written in the canonical form

x · b′ · a′ + ω1 · (b1 · a′ + a1) + (a1 > 0 ? 0 : b0 · a′) + a0

where the (· ? · : ·) operator implements if-then-else, i.e., if a1 is greater than zero
then the summand b0 · a′ vanishes. To determine whether

x · l′ + ω1 · l1 + l0 
 x · r′ + ω1 · r1 + r0

for all values of x, we use the criterion l′ 
 r′ ∧ (l1 > r1 ∨ (l1 = r1 ∧ l0 
 r0)).
Finally, f ′ 
 1 ∧ (f1 
 1 ∨ f0 
 1) ensures that the interpretation fO is simple
while the interpretation functions are then weakly monotone for free. Hence
the search for suitable weights, subterm coefficients, and the precedence can be
encoded in non-linear integer arithmetic, similar as in [24].

Termination: For termination analysis we considered the 1416 TRSs and 720
SRSs from TPDB 7.0.2.3 The experiments4 have been performed single-threaded
with TTT2 [11]. The leftmost part of Table 1 shows how many TRSs can be proved
terminating (column yes) and the average duration of finding a termination proof
(column time) in seconds.5 Coefficients for polynomials and weights/subterm
coefficients for (T)KBO have been represented by at most six bits (to get a
maximum number of termination proofs). As termination criteria we considered
Theorem 2 (row KBO) and Theorem 7 using finite weights and subterm coef-
ficients (row TKBO). We list the data for linear interpretations (POLY) and
the lexicographic path order (LPO) for reference. For SRSs the entry TKBOω

corresponds to an implementation of Theorem 15 using interpretation functions
as in (5) with d = 1 while for KBOω in addition we fixed f ′ = 1 in (5). Different
values for d did not increase the number of systems proved terminating in this
setting. However, it is possible to construct systems that need an arbitrarily
large d (based on the derivational complexity of the system). In both categories
(TRS and SRS) TKBO subsumes KBO and POLY (which is no surprise in light
of Theorem 22). Hence the additional systems stem from LPO.

Ordered Completion: Ordered completion [1] is one of the most frequently used
calculi in equational theorem proving. Classical ordered completion tools require
a reduction order as input that can be extended to a total order on ground terms.
This parameter is critical for the success of a run, but a suitable choice is hardly
predictable in advance. Ordered multi-completion with termination tools [22] ad-
dresses this challenge by employing automatic termination tools and exploring
different orientations in parallel, instead of sticking to one fixed ordering. This

3 http://termcomp.uibk.ac.at/status/downloads/tpdb-7.0.2.tar.gz
4 Details are available from http://colo6-c703.uibk.ac.at/ttt2/tkbo/
5 This includes the “start-up time” of TTT2 which is around 0.3 seconds.

http://termcomp.uibk.ac.at/status/downloads/tpdb-7.0.2.tar.gz
http://colo6-c703.uibk.ac.at/ttt2/tkbo/


Ordinals and Knuth-Bendix Orders 433

Table 1. Termination and Ordered Completion

Termination Ordered Completion

1416 TRSs 720 SRSs 42 TPTP theories
method yes time yes time yes time tc

KBO/KBOω 107/- 0.5 33/34 0.5/0.7 31/- 16 19%
TKBO/TKBOω 192/- 0.9 43/44 1.7/2.9 34/- 56 35%
POLY 149 0.9 22 1.6 15 4 70%
LPO 159 0.5 5 0.5 26 37 7%∑

262 - 45 - 34

approach is implemented in the tool OMKBTT [22]. However, only termination
techniques that guarantee total termination [5] are applicable in order to ob-
tain a TRS that is indeed ground-complete. In practice, applicable termination
techniques are thus restricted to classical reduction orders such as LPO, KBO
or polynomial interpretations. We thus compared the power of OMKBTT using
TKBO besides other reduction orders on a test set of 42 theories underlying
TPTP [20]. Indeed TKBO is able to produce ground-complete systems for more
problems than any of the other reduction orders. The right part of Table 1 shows
that TKBO significantly extends the class of orientable TRSs, although more
time is required (column time). The column tc indicates the percentage of the
execution time spent on termination checks.

7 Conclusion

In this paper we considered three variants of the Knuth-Bendix order and showed
that some extensions do not add power (as far as termination proving of finite
TRSs is considered) while others do. We have implemented the finite version of
TKBO [12, 13] as an SMT problem in non-linear integer arithmetic. Since our
solver uses arbitrary precision arithmetic, overflows (as reported in [12, 13]) are
not an issue. However, since already standard KBO can demand arbitrarily large
weights (see [23, Example 2]) overflows are not specific to TKBO (as the discus-
sions in [12,13] convey). We have also implemented a KBO using ordinal weights,
which has been identified as one challenge in [12]. Also Vampire [17] uses ordinal
numbers (see [12, Section 7]), but only for weights of predicate symbols. Since
they occur at the root only no ordinal arithmetic is needed but only compar-
ison. Hence the same effect could be achieved by allowing a (quasi-)precedence
on predicate symbols.

Acknowledgments. We thank the anonymous reviewers, BertramFelgenhauer,
and Georg Moser for helpful comments.

References

1. Bachmair, L., Dershowitz, N., Plaisted, D.: Completion without failure. In: Kaci,
H.A., Nivat, M. (eds.) Resolution of Equations in Algebraic Structures 1989. Re-
writing Techniques of Progress in Theoretical Computer Science, vol. 2, pp. 1–30.
Academic Press (1989)



434 S. Winkler, H. Zankl, and A. Middeldorp

2. Dershowitz, N.: Orderings for term-rewriting systems. TCS 17, 279–301 (1982)
3. Dershowitz, N.: Termination of rewriting. J. Symb. Comp. 3(1-2), 69–116 (1987)
4. Dick, J., Kalmus, J., Martin, U.: Automating the Knuth Bendix ordering. AI 28,

95–119 (1990)
5. Ferreira, M., Zantema, H.: Total termination of term rewriting. AAECC 7(2), 133–

162 (1996)
6. Geser, A.: An improved general path order. AAECC 7(6), 469–511 (1996)
7. Goodstein, R.L.: On the restricted ordinal theorem. J. Symb. Log. 9(2), 33–41

(1944)
8. Hong, H., Jakuš, D.: Testing positiveness of polynomials. JAR 21(1), 23–38 (1998)
9. Jech, T.: Set Theory. Springer, Heidelberg (2002)

10. Knuth, D., Bendix, P.: Simple word problems in universal algebras. In: Leech, J.
(ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press,
New York (1970)

11. Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean Termination Tool 2.
In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 295–304. Springer, Heidelberg
(2009)

12. Kovács, L., Moser, G., Voronkov, A.: On Transfinite Knuth-Bendix Orders. In:
Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 23. LNCS (LNAI), vol. 6803,
pp. 384–399. Springer, Heidelberg (2011)

13. Ludwig, M., Waldmann, U.: An Extension of the Knuth-Bendix Ordering with
LPO-Like Properties. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS
(LNAI), vol. 4790, pp. 348–362. Springer, Heidelberg (2007)

14. McCune, B.: Otter 3.0 reference manual and guide. Technical Report ANL-94/6,
Argonne National Laboratory (1994)

15. Middeldorp, A., Zantema, H.: Simple termination of rewrite systems. TCS 175(1),
127–158 (1997)

16. Neurauter, F., Middeldorp, A., Zankl, H.: Monotonicity Criteria for Polynomial
Interpretations over the Naturals. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010.
LNCS (LNAI), vol. 6173, pp. 502–517. Springer, Heidelberg (2010)

17. Riazanov, A., Voronkov, A.: The design and implementation of VAMPIRE. AI
Commun. 15(2-3), 91–110 (2002)

18. Steinbach, J.: Extensions and Comparison of Simplification Orders. In: Dershowitz,
N. (ed.) RTA 1989. LNCS, vol. 355, pp. 434–448. Springer, Heidelberg (1989)

19. Steinbach, J., Zehnter, M.: Vademecum of polynomial orderings. Technical Report
SR-90-03, Universität Kaiserslautern (1990)

20. Sutcliffe, G.: The TPTP problem library and associated infrastructure: The FOF
and CNF parts, v3.5.0. JAR 43(4), 337–362 (2009)

21. TeReSe: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Sci-
ence, vol. 55. Cambridge University Press (2003)

22. Winkler, S., Middeldorp, A.: Termination Tools in Ordered Completion. In: Giesl,
J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 518–532. Springer,
Heidelberg (2010)

23. Zankl, H., Hirokawa, N., Middeldorp, A.: KBO orientability. JAR 43(2), 173–201
(2009)

24. Zankl, H., Middeldorp, A.: Satisfiability of Non-linear (Ir)rational Arithmetic.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16. LNCS (LNAI), vol. 6355,
pp. 481–500. Springer, Heidelberg (2010)



r-TuBound: Loop Bounds for WCET Analysis
(Tool Paper)

Jens Knoop, Laura Kovács, and Jakob Zwirchmayr


TU Vienna

Abstract. We describe the structure and the usage of a new software tool, called
r-TuBound, for deriving symbolic loop iteration bounds in the worst-case execu-
tion time (WCET) analysis of programs. r-TuBound implements algorithms for
pattern-based recurrence solving and program flow refinement, and it was suc-
cessfully tested on a wide range of examples. The purpose of this article is to
illustrate what r-TuBound can do and how it can be used to derive the WCET of
programs.

1 Introduction

One of the most challenging tasks in the worst-case execution time (WCET) analysis
of programs with loops comes with the task of providing precise bounds, called loop
bounds, over the number of loop iterations.

In this article we describe the r-TuBound tool for deriving automatically loop bounds
in the WCET analysis of programs. Several software packages for this purpose have
already been developed in the past and can be classified within two categories. One
line of research uses powerful symbolic computation algorithms to derive loop bounds
(see e.g. [1]), but makes very little, if any, progress in integrating these loop bounds
in the program analysis environment of WCET. Another line of research makes use
of abstract interpretation based static analysis techniques to provide good WCET esti-
mates; however, often loop bounds are assumed to be a priori given, in part, by the user
(see e.g. [10,4,7]).

The philosophy of our tool is somewhat in the middle of these two research trends.
Rather than a package integrating powerful symbolic computation algorithms, r-Tu-
Bound uses pattern-based recurrence solving (Section 2.4) for a restricted, yet in practice
quite general class of programs. Loop bounds are inferred to be satisfiable instances of a
system of arithmetic constraints over the loop iteration variable. r-TuBound can thus de-
rive non-trivial loop bounds, but not only that. The inferred loop bounds are further used
in the WCET analysis of programs. To make the loop bound computation techniques
scale for the WCET analysis, r-TuBound translates loops with nested conditionals into
loops without conditionals (Section 2.3) using SMT reasoning in conjunction with pro-
gram flow refinement. When evaluated on a large class of benchmarks, our experiments
indicate the applicability of r-TuBound in the WCET analysis of programs (Section 3).

� This research is supported by the CeTAT project of TU Vienna. The second author is supported
by an FWF Hertha Firnberg Research grant (T425-N23). This research is partly supported by
the FWF National Research Network RiSE (S11410-N23) and the WWTF PROSEED grant
(ICT C-050).

N. Bjørner and A. Voronkov (Eds.): LPAR-18, LNCS 7180, pp. 435–444, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



436 J. Knoop, L. Kovács, and J. Zwirchmayr

Fig. 1. The r-TuBound tool

The goal of this article is to describe what r-TuBound can do, explain how to use
it, and give implementation details about the structure of r-TuBound. We describe only
briefly how r-TuBound obtains its results and refer to [6] for more details.

Implementation and Availability. r-TuBound is implemented in C++ and the Termite
library [9] for Prolog. It is available at www.complang.tuwien.ac.at/jakob/
tubound/. All results presented in this article were obtained on a machine with a
2.53GHZ Intel Core i5 CPU and 4GB of RAM. To improve readability, we employed
minor simplifications over the input and output format of the examples discussed in the
article.

2 r-TuBound: Tool Description and Usage

2.1 Workflow

The overall workflow of r-TuBound is given in Figure 1.
Inputs to r-TuBound are arbitrary C/C++ programs. In the first part of r-TuBound,

the input program is parsed and analysed. As a result all loops and unstructured goto
statements of the input code are extracted. To this end, various static analysis tech-
niques from [10] are applied, such as parsing by the EDG C/C++ frontend, building the
abstract syntax trees and the control-flow graph of the program, interval analysis over
program variables, and points-to analysis. Further, the extracted loops and goto state-
ments are rewritten, whenever possible, into the format given in equation (M). Doing
so requires, among others, the following steps: rewriting while-loops into equivalent
for-loops, rewriting if-statements into if-else statements, translating multi-path loops
with abrupt termination into loops without abrupt termination, and approximating non-
deterministic variable assignments. The aforementioned steps for parsing, analysing
and preprocessing C/C++ programs are summarized in the loopExtraction part of
Figure 1. If a program loop cannot be converted into equation (M) by the loopEx-
traction part of r-TuBound, r-TuBound does not compute a loop bound and hence
the WCET computation step of r-TuBound will fail.

Next, the loops extracted in the format given in equation (M) are analysed and trans-
lated into equation (S), required by the loop bound computation engine of r-TuBound



r-TuBound: Loop Bounds for WCET Analysis 437

1 void test() {
2 int i, a[16];
3 i = 0;
4 while (i < 100) {
5 if (a[i] > 0) i = i ∗ 2 + 2;
6 else i = i ∗ 2 + 1;
7 i = i + 1; }}

Fig. 2. Input C program test.c

1 void test() {
2 int i, a[16];
3 for (i = 0; i < 100; i = i + 1)
4 if (a[i] > 0) i = i ∗ 2 + 2;
5 else i = i ∗ 2 + 1;
6 }

Fig. 3. C program test.c satisfying the format requirements of equation (M)

(see Section 2.3). This step is performed in the loopRefine part of Figure 1. As a
result of loopRefine, the multi-path loops of equation (M) are translated into the
simple loops presented in equation (S).

For deriving loop bounds in the loopBounds step of Figure 1, each loop is ana-
lysed separately and bounds are inferred using recurrence solving. The computed loop
bounds are added as annotations to the loops and are further used to calculate the WCET
of the input program, as illustrated in the wcetComputation engine of Figure 1.
Outputs of r-TuBound are thus the WCET of the input programs. For simplicity, in the
current version of r-TuBound, the execution time of a processor cycle is assumed to be
of 20 nanoseconds per cycle.

Let us note that in the wcetComputation and loopExtraction steps of Fig-
ure 1, r-TuBound makes use of the static analysis framework of [10]. The distinc-
tive features of r-TuBound, and the main contributions of this article, come with the
automatic inference of loop bounds (steps loopRefine and loopBounds of Fig-
ure 1). To this end, r-TuBound implements pattern-based recurrence solving and pro-
gram flow refinement techniques, and integrates these techniques in the WCET analysis
of programs.

To invoke r-TuBound, one uses the following command.

Command 2.1 : rTuBound program.c

Input: C/C++ program
Output: WCET of program.c
Assumption: Loops of program.c are or can be transformed in equation (M)

EXAMPLE 2.1 Consider the test.c program given in Figure 2. The WCET returned
by r-TuBound is listed below.

Input: rTuBound test.c
Output: 26

The WCET of test.c is thus inferred to be of 26 time units. For doing so, the while-
loop of Figure 2 is first translated into equation (M), as given in Figure 3. Next, in the
WCET computation of Figure 3, we assume for simplicity that all program expressions
take one time unit to execute. Therefore, the execution of one iteration of the loop
between lines 3-5 of Figure 3 takes 4 time units: 1 unit each to check the boolean
conditions of the loop and of the if-statement, 1 unit to execute the assignment statement
i = i+1 from the loop header, and 1 unit to execute the assignment from one branch of
the if-statement, depending on the boolean test a[i] > 0. Further, r-TuBound computes



438 J. Knoop, L. Kovács, and J. Zwirchmayr

for (i = 0; i < 100; i = i + 1) {
if (a[i] > 0) i = i ∗ 2 + 2;
else i = i ∗ 2 + 1;

}

Fig. 4. Multi-path loop from test.c
(mpath1.c)

for (i = 0; i < 100;
i = 2 ∗ i + 3) {

}

Fig. 5. Over-approximation
(simple1.c)

for (i = 0; i < 100;
i = 2 ∗ i + 3) {

#wcet loopbound(6)
}

Fig. 6. Annotated with loop
bound (annot1.c)

6 to be the loop bound, from which it infers that the execution of all loop iterations takes
altogether 24 time units. As the initialisation of the loop counter i, as well as the last test
of the loop condition takes one unit each, the WCET for test.c is hence computed to
be 26 time units.

2.2 Loop Restrictions

The syntax of program loops that can be handled by the loop bound computation part
of r-TuBound is given below.

for (i = a; i 5 b; i = c ∗ i+ d) {
i = f0(i);
if (g1) i = f1(i); else i = f2(i);
if (g2) i = f3(i); else i = f4(i);
... ;
if (gm) i = f2m−1(i); else i = f2m(i);

}

(M)

where 5 ∈ {<,>}, g1, . . . , gm are boolean expressions, and a, b, c, d are symbolic
integer-valued constants such that a, b, c, d do not depend on i and c > 0. The expres-
sions fs, with s = 0, . . . , 2m, are non-constant linear integer arithmetic functions over
i; that is, fs(i) = cs ∗ i+ ds where cs, ds are symbolic integer-valued constants that do
not depend on i and cs > 0. Moreover, either i < c∗ i+d and i ≤ fs(i) hold for i ≥ a,
or i > c ∗ i+ d and i ≥ fs(i) are valid for i ≤ a.

Let us make the following observation over the restrictions of (M). As c > 0 and
cs > 0 in equation (M), the functions i �→ c ∗ i + d and f0(i), . . . , f2m(i) are all
monotonically increasing. Therefore, when translating arbitrary loops into the format
of equation (M) in the loopExtract part of r-TuBound, we proceed as follows. To
ensure that i < c ∗ i + d and i ≤ fs(i) hold it suffices to check whether i < c ∗ i + d
and i ≤ fs(i) are valid for i = a.

In what follows, we fix some terminology used in the rest of the article. In the sequel
whenever we write loop (M) or (M) we refer to a multi-path loop as given in equa-
tion (M). We refer to the variable i in equation (M) as the loop counter or the loop
iteration variable, whereas the assignment i = c ∗ i + d in the loop header is called
the update expression of the loop. The constant a is called the initial value of i. We
consider a loop a simple loop if there is only one execution path through the body, i.e.
if m = 0 in equation (M). Otherwise, if m > 0, the loop (M) is said to be a multi-path
loop. Finally, the assignments i = fs(i), with s = 1, . . . , 2m, are called the conditional
updates of the loop.



r-TuBound: Loop Bounds for WCET Analysis 439

2.3 Program Flow Refinement

Given a multi-path loop (M), the loopRefine part of r-TuBound translates (M) into
a simple loop, such that the loop bound of the simple loop is also a loop bound of the
multi-path loop (M).

To this end, the multi-path behavior of (M) is safely over-approximated, as follows.
The boolean conditions g1, . . . , gm are first ignored, yielding thus a loop body with

non-deterministic conditional statements.
Next, for each s = 1, . . . ,m, we are left with choosing ks ∈ {2s− 1, 2s} such that

fks(i) ≤ f2s−1(i) and fks(i) ≤ f2s(i) for every i # a, (1)

where # ∈ {≤,≥} is defined as follows:
- # is ≥ if i < c ∗ i+ d in (M);
- # is ≤ if i > c ∗ i+ d in (M).

The conditional update i = fks(i) determined by (1) yields thus the minimal increase,
respectively the minimal decrease, over i after an arbitrary execution of the if-statement
with ignored test condition gs. Therefore, by replacing each if-statement with the corre-
sponding i = fks(i) at every iteration of (M), a safe loop bound for (M) can be derived.

However, a ks ∈ {2s− 1, 2s} might not always be computed from (1), as (1) needs
to hold for every i ≥ a (respectively, for every i ≤ a). That is, the existence of ks ∈
{2s−1, 2s} such that (1) is valid depends crucially on the initial value of a. To overcome
this limitation, we proceed as follows. Whenever ks ∈ {2s−1, 2s} cannot be computed
from (1), we take fks(i) = i . Based on the restrictions of equation (M), we clearly have
fks(i) = i ≤ f2s−1(i) and fks(i) = i ≤ f2s(i) for every i ≥ a (respectively, fks(i) =
i ≥ f2s−1(i) and fks(i) = i ≥ f2s(i) for every i ≤ a). That is, i = fks(i) yields
a smaller increase (respectively, decrease) over i than any branch of the if-statement
with ignored test condition gs. Therefore, if ks cannot be computed from (1), we define
fks(i) = i and replace the if-statement with the ignored test condition gs by i = fks(i).
The loop bound for (M) is thus safely over-approximated.

Based on the above observations, equation (M) is translated into the simple loop (T),
given below.

for (i = a; i 5 b; i = c ∗ i+ d) {
i = f0(i); i = fk1(i); . . . ; i = fkm(i)}

(T)

Let us write φ(i) = c ∗ i + d, and let ◦ denote the standard operation of function
composition. Using this notation, (T) is further rewritten into the simple loop:

for (i = a; i 5 b; i = (fkm ◦ · · · ◦ fk1 ◦ f0 ◦ φ)(i)) {} (S)

In the sequel whenever we write loop (S) or (S) we refer to a simple loop as given in
equation (S).

Note that as linear functions are closed under composition, (fkm ◦· · ·◦fk1 ◦f0◦φ)(i)
yields a non-constant linear integer arithmetic function over i in (S).

The behavior of loopRefine is summarised below.



440 J. Knoop, L. Kovács, and J. Zwirchmayr

for (i = 0; i < 100; i = i + 1) {
if (a[i] > 0) i = i ∗ 3 + 2;
else i = i ∗ 2 + 10;

}

Fig. 7. A multi-path loop (mpath2.c)

for (i = 0; i < 100;
i = i + 1) {

}

Fig. 8. Over-approximation
(simple2.c)

for (i = 0; i < 100;
i = i + 1) {

#wcet loopbound(100)
}

Fig. 9. Annotated loop
(annot2.c)

Command 2.2 : loopRefine loop.c

Input: Loop
Output: a simple loop as in (S)
Assumption: loop.c as in (M)

EXAMPLE 2.2 For translating the multi-path loop given in Figure 4, loopRefine
infers that the conditional update corresponding to the else-branch of the conditional
statement of mpath1.c yields the minimal update over i. The multi-path loop of Fig-
ure 4 is thus rewritten into the simple loop given in Figure 5, as listed below.

Input: loopRefine mathp1.c

Output: simple1.c

EXAMPLE 2.3 Consider now the multi-path loop given in Figure 7. Note that 3∗i+2 ≤
2 ∗ i + 10 does not hold for every i ≥ 0. Similarly, 2 ∗ i + 10 ≤ 3 ∗ i + 2 does not
hold for every i ≥ 0. Hence, no conditional update can be chosen by loopRefine
as the update yielding the minimal increase over i. Therefore, the conditional statement
of Figure 7 is over-approximated by the update i = i, and Figure 7 is rewritten into
Figure 8, as shown below.

Input: loopRefine mpath2.c

Output: simple2.c

The task of choosing ks in (1) such that fks(i) yields the minimal increase over i, is
encoded in r-TuBound as a set of SMT queries. For doing so, we interfaced loopRe-
fine with the Boolector SMT solver [2]. To this end, for each variable in the program,
a bit vector variable is introduced by loopRefine. An array is used to model the
values of the variables involved. This representation allows loopRefine to capture
the loop behavior in a symbolic manner, by using symbolic values to model the updates
to the loop counter.

2.4 Pattern-Based Recurrence Solving

Loop bounds of simple loops (S) are derived by the loopBounds part of r-TuBound.
For doing so, loopBounds implements a pattern-based recurrence solving algorithm,
as follows.

An additional variable, denoted by n, is introduced to speak about the value i(n) of
the variable i at the nth iteration of the loop. Using this notation, the update expres-
sion of (S) can be modeled by a linear recurrence equation with constant coefficient.



r-TuBound: Loop Bounds for WCET Analysis 441

Such recurrences can always be solved [3]. Hence, i(n) is expressed as a function,
i.e. the closed form, over n and the initial value of i. However, loopBounds does
not implement the general algorithm for solving linear recurrences of arbitrary orders,
but it makes use of the restrictions imposed over (S). Since i is modified in (S) by
a non-constant linear expression over i, the resulting recurrence equation of i(n) is a
(homogeneous) linear recurrence of order 2. Using the generic closed form pattern of
such recurrences, loopBounds derives the closed form of i(n) by instantiating the
symbolic constants in the generic closed form with expressions over the initial value
of i.

The loop bound of (S) is then inferred by computing the smallest n such that the loop
condition holds at the nth loop iteration but it is violated at the n+1th iteration (see [6]
for more details). That is, the loop bound is obtained as a satisfying assignment over n
such that the formula below holds:

n ≥ 0 ∧ i(n) < b ∧ i(n+ 1) ≥ b, (2)

where the constant b is as given in (S).
The usage of the loop bound computation part of r-TuBound is listed below.

Command 2.3 : loopBounds simple.c

Input: Simple loop as in (S)
Output: Loop annotated with its loop bound

EXAMPLE 2.4 For the simple1.c loop given in Figure 5 we obtain:

Input: loopBounds simple1.c

Output: annot1.c

where annot1.c is listed in Figure 6. The annotation #wcet loopbound(6) spec-
ifies that loopBounds computed 6 as the loop bound of simple1.c.

Similarly, the annotated loop derived by loopBounds for Figure 8 is given in
Figure 9.

The pattern-based recurrence solving algorithm and the satisfiability checking of (2)
are implemented in loopBounds on top of Prolog. loopBounds operates on the
TERM representation offered by the Termite library [9]. Let us note that the closed
form representation of i(n) in equation (2) involves, in general, exponential sequences
in n. Therefore, to compute the value of n such that (2) holds, loopBounds makes
use of the logarithm, floor and ceiling built-in functions of Prolog.

3 r-TuBound: Experimental Results

The overall flow of r-TuBound is given in Figure 1. The program analysis framework
loopExtraction, the loop refinement step loopRefine and the WCET compu-
tation part wcetComputation of r-TuBound are written in C++. The loop bound



442 J. Knoop, L. Kovács, and J. Zwirchmayr

computation engine loopBounds of r-TuBound is implemented on top of the Termite
library of Prolog. The loopExtraction and wcetComputation components of
r-TuBound are based on the work presented in [10]. Our contribution in r-TuBound
comes with extending [10] with an automatic inference of symbolic loop bounds. r-
TuBound offers thus software support for the timing analysis of programs by recurrence
solving and SMT based flow refinement in conjunction with WCET techniques
(TuBound).

The loopRefine part of r-TuBound comprises about 1000 lines of C++ code,
whereas the loopBounds engine of r-TuBound contains about 350 lines of Prolog
code. The loopRefine and loopBounds parts of r-TuBound are glued together
using a 50 lines shellscript code.

Experimental Evaluation and Comparison. We evaluated r-TuBound on a number
of benchmarks coming from the WCET community, as well as on some industrial ex-
amples coming from Dassault Aviation. The results are summarized in Table 1. The first
column of Table 1 contains the name of the analysed benchmark suite. The second and
third columns give respectively the lines of code and the total number of loops in the
benchmark suite. The fourth column presents the number of loops for which r-TuBound
inferred loop bounds. For a detailed evaluation of r-TuBound we refer to [5].

The Debie-1d and Mälardalen examples come from the WCET community and were
used in the WCET tool challenges [11]. These examples are fine tuned for the WCET
analysis of programs. Loop bounds need to be either inferred or assumed to be a priori
given as program annotations. r-TuBound inferred loop bounds for 180 loops out of the
227 loops coming from the WCET community; some of the 180 loops could not yet
be treated by other WCET tools, such as [10,8]. The remaining 47 loops could not be
handled by r-TuBound as various restrictions of equation (M) were violated. Namely,
the loops had a nested-loop structure, loop updates contained operations over arrays and
pointers, and non-linear and/or floating point arithmetic was used in the loop body,

We also run r-TuBound on 77 loops coming from Dassault Aviation. These examples
have not yet been optimised for the WCET analysis of programs. When compared to
[10], r-TuBounds infers non-trivial loop bounds for 46 loops. Out of these 46 loops,
the approach of [10] can only handle 39 loops. The 7 loops that can only be treated
by r-TuBound involved nested loops and multi-path reasoning with non-trivial linear
arithmetic updates over the loop counter. r-TuBound failed on 31 loops coming from
Dassault Aviation, as these loops required the analysis of nested loops with floating
point arithmetic.

The current version of r-TuBound has successfully participated in the WCET 2011
tool challenge [11]. When compared to other WCET tools, such as Sweet [4] and
OTAWA+oRange [7], we observed that the annotation language of r-TuBound has very
little support for specifying variable input ranges or program execution frequencies.
Moreover, r-TuBound was the only WCET tool whose results were obtained on the
C16x microcontroller; the other WCET tools target the ARM7 or the Freescale
MPC555x microcontrollers. Extending the annotation language and microcontroller
support of r-TuBound is left for further work.

Experiments and Runtime. We also analysed the runtime of the flow refinement and
recurrence solving parts of r-TuBound. The pattern-based recurrence solving approach



r-TuBound: Loop Bounds for WCET Analysis 443

Table 1. Experimental results with r-TuBound

Benchmark Suite # LoC # Loops r-TuBound
Mälardalen ∼ 7500 152 121
Debie-1d ∼ 6100 75 59
Dassault ∼ 1000 77 46

Total ∼ 14700 304 226

of loopBounds essentially takes no time: for every loop we tried, a loop bound is
inferred in less than 0.5 seconds. The runtime performance of loopRefine is also
relatively good; the flow refinement (i.e. parsing the code, executing the required SMT
queries and writing back the simplified loop) of multi-paths loops with 1000 lines of
code takes on average 5 - 20 seconds.

Our experiments thus suggest that r-TuBound is quite fast in practical application.
We believe that improving the SMT based reasoning engine of loopRefine, for ex-
ample by applying program slicing before monotonicity analysis, would yield overall
better execution times for r-TuBound. We leave this task for further investigation.

4 Conclusion

r-TuBound offers software support for generating loop bounds in the WCET analysis
of programs. The distinctive features of r-TuBound come with a pattern-based recur-
rence solving algorithm and over-approximating loop bounds of multi-path loops. For
doing so, multi-path loops are translated into simple loops by using SMT encodings
and deriving minimal updates over the loop counter. We presented the workflow of r-
TuBound, illustrated how r-TuBound can be used on some example problems, and gave
an overview on experimental results.

References

1. Blanc, R., Henzinger, T.A., Hottelier, T., Kovács, L.: ABC: Algebraic Bound Computation
for Loops. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 103–
118. Springer, Heidelberg (2010)

2. Brummayer, R., Biere, A.: Boolector: An Efficient SMT Solver for Bit-Vectors and Ar-
rays. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 174–177.
Springer, Heidelberg (2009)

3. Everest, G., van der Poorten, A., Shparlinski, I., Ward, T.: Recurrence Sequences. Mathemat-
ical Surveys and Monographs, vol. 104. American Mathematical Society (2003)

4. Gustafsson, J., Ermedahl, A., Sandberg, C., Lisper, B.: Automatic Derivation of Loop Bounds
and Infeasible Paths for WCET Analysis Using Abstract Execution. In: Proc. of RTSS, pp.
57–66 (2006)

5. Knoop, J., Kovacs, L., Zwirchmayr, J.: An Evaluation of WCET Analysis using Symbolic
Loop Bounds. In: Proc. of WCET (2011)

6. Knoop, J., Kovacs, L., Zwirchmayr, J.: Symbolic Loop Bound Computation for WCET Anal-
ysis. In: Proc. of PSI, p. 116 (2011)

7. De Michiel, M., Bonenfant, A., Cassé, H., Sainrat, P.: Static Loop Bound Analysis of C
Programs Based on Flow Analysis and Abstract Interpretation. In: RTCSA, pp. 161–166
(2008)



444 J. Knoop, L. Kovács, and J. Zwirchmayr

8. Schoeberl, M., Puffitsch, W., Pedersen, R.U., Huber, B.: Worst-case Execution Time Analysis
for a Java Processor. Software: Practice and Experience 40/6, 507–542 (2010)

9. Prantl, A.: The Termite Library,
http://www.complang.tuwien.ac.at/adrian/termite/Manual/

10. Prantl, A., Schordan, M., Knoop, J.: TuBound - A Conceptually New Tool for WCET Anal-
ysis. In: Proc. of WCET, pp. 141–148 (2008)

11. von Hanxleden, R., et al.: The WCET Tool Challenge 2011: Report. In: Proc. of WCET
(2011) (under journal submission)

http://www.complang.tuwien.ac.at/adrian/termite/Manual/


Author Index

Aavani, Amir 15
Accattoli, Beniamino 23
Alama, Jesse 37
Albert, Elvira 1
Alberti, Francesco 46
Alpuente, Maŕıa 62
Amato, Gianluca 375
Antoniou, Grigoris 77
Areces, Carlos 335
Arenas, Puri 1
Aspinall, David 92

Baader, Franz 107
Ballis, Demis 62
Baumgartner, Peter 406
Beneš, Nikola 122
Bøgsted Poulsen, Danny 168
Borgwardt, Stefan 138
Bruttomesso, Roberto 46
Bulwahn, Lukas 153
Bulychev, Peter 168

Chacón, José Luis 183
Claessen, Koen 406

David, Alexandre 168
Denney, Ewen 92

Eiter, Thomas 77

Fietzke, Arnaud 197
Frechina, Francisco 62

Genaim, Samir 1
Gesell, Manuel 304
Ghilardi, Silvio 46
Gómez-Zamalloa, Miguel 1
Guldstrand Larsen, Kim 122, 168

Han, The Anh 212
Hetzl, Stefan 228
Hirokawa, Nao 258
Hofmann, Martin 343

Infante-López, Gabriel 335

Katebi, Hadi 243
Kesner, Delia 23
Klein, Dominik 258
Knoop, Jens 435
Kovács, Laura 435
Křet́ınský, Jan 122
Kruglov, Evgeny 197
Kühlwein, Daniel 37

Legay, Axel 168
Leitsch, Alexander 228
Li, Guangyuan 168
Libkin, Leonid 274
Lüth, Christoph 92

Markov, Igor L. 243
Merz, Stephan 289
Middeldorp, Aart 12, 320, 420
Mitchell, David 15
Møller, Mikael H. 122
Moniz Pereira, Lúıs 212
Morawska, Barbara 138
Morgenstern, Andreas 304
Motik, Boris 13

Neurauter, Friedrich 320

Okhotin, Alexander 107
Orbe, Ezequiel 335

Pattinson, Dirk 383
Pino Pérez, Ramón 183
Puebla, Germán 1

Ranise, Silvio 46
Rodriguez, Dulma 343
Romero, Daniel 62
Rümmer, Philipp 359

Sakallah, Karem A. 243
Saptawijaya, Ari 212
Schneider, Klaus 304
Schulz, Stephan 406
Scozzari, Francesca 375
Sharygina, Natasha 46
Snell, William 383
Srba, Jǐŕı 122



446 Author Index

Stainer, Amelie 168
Suda, Martin 391
Sutcliffe, Geoff 406

Tasharrofi, Shahab 15
Ternovska, Eugenia 15

Urban, Josef 37

Vanzetto, Hernán 289
Vrgoč, Domagoj 274

Wang, Kewen 77

Weidenbach, Christoph 197, 391

Weller, Daniel 228

Widmann, Florian 383

Winkler, Sarah 420

Wu, Xiongnan (Newman) 15

Zankl, Harald 420

Zwirchmayr, Jakob 435


	Title
	Preface
	Organization
	Table of Contents
	Automatic Inference of Resource Consumption Bounds
	Introduction
	Generation of Cost Relations
	Inference of Closed-Form Bounds
	Modularity and Incrementality
	Memory Consumption Analysis for Garbage-Collected Languages
	Concurrency in Cost Analysis
	Certified Resource Bounds
	Conclusions and Future Work
	References

	Matrix Interpretations for Polynomial Derivational Complexity of Rewrite Systems 
	References

	Parameterized Complexity and Fixed-Parameter Tractability of Description Logic Reasoning
	References

	Enfragmo: A System for Modelling and Solving Search Problems with Logic
	Introduction
	Specification Language
	Implementation
	Experimental Evaluation
	Conclusion
	References

	The Permutative λ-Calculus 
	Introduction
	The Permutative λ-Calculus
	Towards Confluence of β/P
	The Auxiliary sub-Calculus
	The Z-property Modulo by Means of M-developments
	Adding the Unboxing Rule
	Preservation of β-Strong Normalisation
	Conclusions and Future Work
	References

	Automated and Human Proofs in General Mathematics: An Initial Comparison
	Introduction: Automated Theorem Proving in Mathematics
	Finding Proofs in the MML with AI/ATP Support
	Mining the Minimal Dependencies from All Human-Written MML Proofs
	Learning Premise Selection from Proof Dependencies
	Using ATPs to Prove the Conjectures from the Selected Premises

	Proof Metrics
	Evaluation
	Comparing Weights

	Conclusion
	References

	Lazy Abstraction with Interpolants for Arrays
	Introduction
	Background Notions on MCMT
	Unwinding Array-Based Systems
	Lazy Abstraction with Interpolants in MCMT
	Completeness and Termination

	Implementation and Experiments
	Conclusion
	References

	Backward Trace Slicing for Conditional Rewrite Theories
	Introduction
	Preliminaries
	Conditional Rewriting Modulo Equational Theories
	Backward Conditional Slicing
	Term Slices and Term Slice Concretizations
	Backward Slicing for Execution Traces
	The Function slice-step

	Implementation and Experimental Evaluation 
	References

	Forgetting for Defeasible Logic
	Introduction
	Defeasible Logic
	Forgetting in Defeasible Logic: A Naive Approach
	Forgetting in Defeasible Logic: An Improved Approach
	Semantic Properties
	Complexity
	Modularity

	Conclusion
	References

	Querying Proofs
	Introduction
	Hiproofs
	Local Structured Queries
	Examples

	Semantics
	Examples and Their Results
	Query Equivalence and Decidability

	Implementing Queries
	Related Work and Conclusions
	References

	Solving Language Equations and Disequations with Applications to Disunification in Description Logics and Monadic Set Constraints
	Introduction
	Language (Dis)equations With One-Sided Concatenation
	The Problem Definition
	Translation into Looping Tree Automata

	Looping Tree Automata with Colors
	Decidability of the Emptiness Problem
	The Exact Complexity of the Emptiness Problem

	Applying the Results
	Disunification in FL0
	Monadic Set Constraints

	Conclusion
	References

	Dual-Priced Modal Transition Systems with Time Durations
	Introduction and Motivating Example
	Modal Transition Systems with Durations
	Dual-Price Scheme
	Complexity Results
	Weighted Mean Payoff Games
	Translating Dual-Priced MTSD into Weighted MPG
	Optimizations
	The Algorithm and Its Complexity

	Conclusion and Future Work
	References

	Finding Finite Herbrand Models
	Introduction
	Propagation Rules
	Propagation Nets
	Behavior of Propagation Nets

	Deciding Termination
	Hardness
	Summary and Conclusions
	References

	Smart Testing of Functional Programs in Isabelle
	Introduction
	Related Work

	Motivation
	Overview of the Tool
	Design Decisions
	Architecture

	Preprocessing
	Mode Analysis
	Generator Compilation
	Evaluation
	Conclusion
	References

	Monitor-Based Statistical Model Checking for Weighted Metric Temporal Logic
	Introduction
	Weighted Timed Automata and Metric Temporal Logic
	Weighted Timed Automata
	Monitoring Weighted Timed Automata
	Weighted Metric Temporal Logic WMTL

	From Formulas to Monitors
	Closures and Extended Formulas
	Constructing Non-deterministic Monitors
	Constructing Deterministic Monitors

	The Tool Chain
	Case Studies
	Automatically Generated Formulas
	Robot Control

	Related and Future Work
	References

	Duality between Merging Operators and Social Contraction Operators
	Introduction
	Preliminaries
	Merging Operators
	Social Contraction Operators
	Duality
	Concluding Remarks
	References

	Automatic Generation of Invariants for Circular Derivations in SUP(LA)
	Introduction
	Preliminaries
	Constraint Induction
	Finite Saturation of Extended Timed Automata
	Implementation and Results
	Conclusion
	References

	Moral Reasoning under Uncertainty
	Introduction
	The Trolley Problem and the Principle of Double Effect
	Evolution Prospection under Uncertainty with P-log
	Evolution Prospection
	P-log

	Moral Reasoning under Uncertainty
	Revised Bystander Case
	Revised Footbridge Case

	Moral Reasoning Concerning Uncertain Actions
	Discussion
	Conclusions
	References

	Towards Algorithmic Cut-Introduction
	Introduction
	Proofs and Herbrand-Sequents
	Cut-Elimination and Cut-Introduction
	A Calculus of Decompositions
	Computing the Propositional Structure
	Improving the Canonical Solution
	Conclusion
	References

	Conflict Anticipation in the Search for Graph Automorphisms
	Introduction
	Preliminaries
	Baseline Algorithms
	Conflict Anticipation via Simultaneous Refinement
	The Validity of Matching OPP Pruning
	Experimental Evaluation
	Conclusions
	References

	Confluence of Non-Left-Linear TRSs via Relative Termination
	Introduction
	Preliminaries
	Confluence Criterion
	Joinability of S-Critical Pairs
	Experiments
	Implementation
	Experimental Results

	Related Work
	Conclusion
	References

	Regular Expressions for DataWords
	Introduction
	Register Automata over Data Words
	Regular Expressions with Memory
	Equivalence with Register Automata
	Properties of Regular Expressions with Memory

	Regular Expressions with Equality
	Properties of Regular Expressions with Equality

	Conclusions and Future Work
	References

	Automatic Verification of TLA+ Proof Obligations with SMT Solvers
	Introduction
	TLA+ and the SMT Languages
	The Non-temporal Fragment of TLA+
	Input Languages of SMT Solvers

	Type Inference for TLA+
	From TLA+ to SMT
	Experimental Results
	Conclusions
	References

	An Asymptotically Correct Finite Path Semantics for LTL
	Introduction
	Syntax and Semantics of LTL
	Previous Definitions of LTL on Finite Paths
	LTL3
	FLTL
	Problems with RV-LTL

	Asymptotic Finite Linear Temporal Logic (RV–LTL)
	The Temporal Logic Classes RV–TLG  and RV–TLF 
	The Temporal Logic RV–TLF G 
	Asymptotic Correctness
	The Temporal Logic RV–TLG F 
	The Temporal Logic RV–TLStreett

	Conclusion
	References

	On the Domain and Dimension Hierarchy of Matrix Interpretations
	Introduction
	Preliminaries
	Linear Algebra
	Term Rewriting
	Monotone Algebras and Matrix Interpretations

	TheDomainHierarchy
	Matrix Interpretations over Q
	Matrix Interpretations over R

	The Dimension Hierarchy
	Conclusion
	References

	iSat: Structure Visualization for SAT Problems
	Introduction
	A Brief Overview on SAT Solving

	A Sample Session
	Services Provided by iSat
	Extending iSat
	Conclusions
	References

	Linear Constraints over Infinite Trees
	Introduction
	Infinite Trees
	Constraints
	Algorithmic Problems 

	Solving a System of Constraints
	Tree Schema Substitution and Ts(C)
	Computation of Ts(C)
	Linear Constraint System (LCS)

	Elimination of Tree Variables
	Applications to Resource Analysis
	Conclusions
	References

	E-Matching with Free Variables
	Introduction
	Introductory Example

	Background
	Syntax and Semantics of Considered Logics
	Sequent Calculi with Constraints
	The Basic Calculus for Function-Free First-Order Logic

	Positive Unit Hyper-Resolution
	E-Matching through Relational Encoding
	Relational Encoding of Functions
	Ground Reasoning and Congruence Closure
	Relational E-Matching and Free Variables to Handle Quantifiers

	Extension to Linear Integer Arithmetic
	Hyper-Resolution and E-Matching for FOL(LIA)

	Experiments and Related Work
	References

	Random: R-Based Analyzer for Numerical Domains
	Introduction
	Template Parallelotopes
	Multiple Template Parallelotopes
	Parallelotope Abstract Domain

	The Tool Interface
	Implementation Details
	Conclusion and Future Work
	References

	Solving Graded/Probabilistic Modal Logic via Linear Inequalities (System Description)
	Syntax, Semantics and Tableau Calculus
	Implementation Details
	Experimental Evaluation
	Conclusion
	References

	Labelled Superposition for PLTL
	Introduction
	Preliminaries
	Labelled Clauses
	The Labelled Superposition Calculus LPSup
	Decision Procedure
	Redundancy, Completeness and Model Building
	Final Discussion and Experiments
	Conclusion
	References

	The TPTP Typed First-Order Form with Arithmetic
	Motivation and History
	The TPTP Typed First-Order Form Language
	Decisions About Types and Terms
	Syntax
	Type Checking and Semantics

	TPTP Arithmetic
	Syntax
	Semantics
	Solvability and Decidability

	TFF Problems, ATP Systems, TPTP Software
	Conclusion
	References

	Ordinals and Knuth-Bendix Orders
	Introduction
	Preliminaries
	KBO
	Transfinite KBO
	Generalized KBO
	Implementation and Evaluation
	Conclusion
	References

	r-TuBound: Loop Bounds for WCET Analysis (Tool Paper)
	Introduction
	r-TuBound: Tool Description and Usage
	Workflow
	Loop Restrictions
	Program Flow Refinement
	Pattern-Based Recurrence Solving

	r-TuBound: Experimental Results
	Conclusion
	References

	Author Index



