
B. Regnell and D. Damian (Eds.): REFSQ 2012, LNCS 7195, pp. 288–305, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Release Planning with Feature Trees: Industrial Case

Samuel Fricker1 and Susanne Schumacher2

1 Blekinge Institute of Technology, School of Computing
Campus Gräsvik, 371 79 Karlskrona, Sweden

samuel.fricker@bth.se
2 Zurich University of the Arts

Ausstellungsstrasse 60, 8005 Zurich, Switzerland
susanne.schumacher@zhdk.ch

Abstract. [Context and motivation] Requirements catalogues for software
release planning are often not complete and homogeneous. Current release
planning approaches, however, assume such commitment to detail – at least
implicitly. [Question/problem] We evaluate how to relax these expectations,
while at the same time reducing release planning effort and increasing decision-
making flexibility. [Principal ideas/results] Feature trees capture AND, OR, and
REQUIRES relationships between requirements. Such requirements structuring
can be used to hide incompleteness and to support abstraction. [Contribution]
The paper describes how to utilize feature trees for planning the releases of an
evolving software solution and evaluates the effects of the approach on effort,
decision-making, and trust with an industrial case.

Keywords: features, abstraction, release planning, roadmapping, case study.

1 Introduction

Software releases are planned by allocating requirements to development projects [1].
A strategic release plan aligns the development of an evolving software solution with
market and stakeholder needs, company objectives, and constraints such as time and
resources. Release planning is a central concern in iterative development, where
multiple iterations, rather than a single project, are defined [2].

Release planning involves the following steps [3]. Requirements are elicited and
specified. Criteria [4] are defined to evaluate and prioritize requirements [5]. Releases
are then scoped by allocating the prioritized requirements to development projects.
The resulting release plans are implemented, delivered, and analyzed with
post-release reflections [6].

Requirements that enter release planning are often of low quality [7]. Their
homogeneity [8], completeness, and understanding [9] are hard to ensure due to the
limited effort invested before a development project is funded. This situation
contradicts with the assumptions of release planning approaches that scope projects
simply by prioritizing and allocating available requirements. Consequently, the results
are not trusted and not used for guiding ensuing development steps [10].

 Release Planning with Feature Trees: Industrial Case 289

This paper describes in detail how to hide the requirements-related problems by
structuring the release planning inputs. The approach, whose initial ideas were
introduced in an earlier position paper [11], is based on variability modeling [12] that
allows abstracting from requirements with AND, OR, and REQUIRES relationships
[13]. Variability is here used to structure decision options [14] for product evolution.
This paper then introduces an industrial case [15] to understand how to use variability
modeling in a real-world context of continuous agile product management [16].
Evaluated were feasibility of the approach and its effects on effort, decision-making,
and trust were evaluated.

The paper is structured as follows. Section 2 describes background and motivation.
Section 3 introduces variability-based release planning. Section 4 describes, analyzes,
and interprets the industrial case. Section 5 discusses and concludes.

2 Background and Motivation

Release planning for software products is a key practice of software product management
[17]. Software releases are planned to answer a stream of requirements that approach the
product development organization [18]. The requirements are first homogenized [8] and
pass triage [19] before they enter release planning [3]. Release planning then involves
evaluation and selection of requirements to scope development projects [4]. The
requirements that are closest to implementation are those that are detailed most [16].

Current release planning approaches fit well into this context of continuous
requirements inflow. They require a complete catalogue of comparable requirements
that are evaluated, prioritized, and selected for implementation [20]. Known
prioritization approaches include manual techniques such as top ten, numerical
assignment, ranking, and 100$-test [5], and computer-based techniques such as
Integer Linear Programming [21, 22] and the Analytical Hierarchy Process [23].

Prioritization allows evaluating requirements in a controlled way and leads to
requirements ordering that suits development projects [10]. However, scalability is
limited; and the results are mistrusted and perceived inadequate to guide how to act
[10]. Post-release reflections help improving decision-making over time [6].

We investigated release planning in an organization that developed innovative
software as a service for managing media such as text, sound, pictures, and movies.
The solution provided first-of-its-kind features, was in an early stage of its evolution,
and had a small, but rapidly growing user base.

Responsible for the development was a product manager, a project manager, and a
team of up to five developers. They reported to a company-internal steering
committee with management of the development organization, of the product-owning
organization, and of departments that used the solution. A product reference team was
used to coordinated development with important stakeholder groups.

Surprisingly, there was no stream of requirements that the product organization
was confronted with. No homogenization and triage of incoming requirements was
necessary. Instead the requirements were based on ideas that originated from the
product manager who was an expert in the product’s application domain and on
feedback from pilot users. Ideas were made explicit during product planning and
specified in detail when communicating with the development team.

290 S. Fricker and S. Schumacher

The requirements catalogue was managed in a word processor document and used
as a basis for release planning. It contained 108 requirements. The requirements were
grouped into 12 sections and 19 subsections or themes. In average, a group contained
3.6 requirements and was allocated to 1.93 releases. The grouping, however, did not
show a relationship with requirements allocation to development releases.

The requirements were not prepared and analyzed in a form that was expected by
current release planning approaches. A key concern to the practitioners was development
efficiency. Effort was only put into requirements when the return of such an investment
was obvious.

Requirements that were not likely to be implemented in near future were not
specified. Some requirements were specified with descriptions of up to 245 words,
others only with a few words in a declarative manner, again others were completely
omitted because not relevant within a practical planning horizon. Many requirements
were discovered while development progressed.

Requirements were not evaluated. Isolating a requirement from its context would have
increased the risk of misunderstandings. For example, the requirement thumbnails of
variable sizes would have carried the following ambiguities: When would thumbnails be
shown? For what purpose? Which sizes? What (photos, videos, documents, etc.) would
be depicted by these thumbnails? The many potential interpretations of such a
requirement would have led to different interpretation of importance, dependencies,
implementation cost, and risk.

Requirements were not prioritized. The product organization avoided to compare
requirements. For example, questions like “is the requirement thumbnails of variable
sizes more important than the requirement storage of search results?” have not been
posed. Such comparison would have led to detailed evaluation results. However,
details irrelevant at the given product evolution stage would have been sub-optimized.

The organization wanted to transition from implementing the whole solution with a
single large project to incrementally evolving the solution with short development
iterations. They considered improvements in their release planning capabilities as a
key enabler and asked how release planning can be implemented by abstracting from
the detailed requirements and by focusing on the key product evolution decisions. The
desired approach had to support decision-making, maintain flexibility of how the
solution evolves, and keep effort to be invested at a low level.

3 Feature Trees for Release Planning

The lacking stream of requirements and the tendency of not specifying and evaluating
individual requirements motivated us to identify alternatives to current release
planning approaches. The alternative had to fit the described organization with the
innovative product and the strong leadership of the product manager. Release
planning should remain a low-effort activity, however with improved decision-
making support and flexibility.

Feature diagrams are a widespread approach to document and analyze variability of
software products [12]. They are used to specify how features vary for the products of
a product line (variability in space). Applied to release planning, variability models
can be used for defining the evolution of software (variability in time) [24]. How

 Release Planning with Feature Trees: Industrial Case 291

feature trees are utilized for release planning, has been proposed in this line of
research for the first time [1, 11].

We use AND, OR, and REQUIRE dependencies [13] to structure a solution’s
requirements as a feature tree. Figure 1 illustrates the feature tree of a solution, Online
Shop Sales. A feature is a named group of requirements that are implemented in the
same development increment (AND dependencies). E.g. the Sales feature in Figure 1
refers to six such requirements. To enable acceptable implementation of the feature,
the feature’s requirements are elicited [25] and refined until they comply with the
solution’s environment and design [26].

Sub-features extend a feature. They can only be implemented after their super-
feature has been implemented (REQUIRES dependency). E.g. Enhanced Cart
Display is such a sub-feature to the super-feature Sales. A chain of REQUIRES
dependencies that connects the root with a leaf is called a feature vector [27]. Such a
vector captures the foreseen levels of implementing a functional or non-functional
concern of the software solution. E.g. the OnlineShop Sales solution may support just
Sales or support both Sales and Enhanced Cart Display.

The implementation order of a feature’s sub-features is not constrained a-priori
(OR dependency). E.g. the root’s eight sub-features can be implemented in any order.

Fig. 1. Example of requirements structuring with a feature tree. The tree’s root is OnlineShop
Sales Platform in the middle of the diagram.

Figure 2 shows how we construct a feature tree, starting at the root. Initially,
requirements and constraints related to architecture and infrastructure of the solution are
allocated to the root. Then, feature vectors are built iteratively. For each feature, relevant
requirements are identified and allocated to that feature. Feature-extending sub-features
are identified and related to that feature. Requirements whose implementation can be
postponed are extracted from the feature into these extending sub-features [28]. The
requirements extraction process stops when no requirement can be extracted without
making the concerned feature useless.

OnlineShop Sales Solution

Feature

+ Requirement

Legend

requires

Browsing

Searching

+ R: List prioritized article l ists

+ R: List prioritized articles

+ R: List relevant sponsor links

+ R: Search article

User Management

Recommendations

Contextual Recommendations

Social Recommendations Partner Dialogue

Sales

+ Add Article to Cart

+ Buy Cart Contents

+ Display Cart Contents

+ Edit Cart Contents

+ Log in Customer

+ Save Item for Future Buying

Product Presentation

+ R. Display Correlated Sales

+ R: Dispay Product Tags

+ R: Display Article Information

+ R: Display Customer Feedback

+ R: Display Ensuing Sales

+ R: Display Ensuing Views

+ R: Display Product Description

+ R: Display Product Information

Content Presentation Cart Management Enhanced Cart Display

Order Management

OnlineShop Sales Plattform

+ R: Display Articles

+ R: Display recent relevant views

+ R: Inform about us

+ R: Tailor article display
Advertisement

292 S. Fricker and S. Schumacher

Fig. 2. Iterative feature tree construction process: repeat steps 1 to 3 for each feature until that
feature contains just the minimal set of requirements to be useful. Progress from root to leafs

Figure 3 shows how we use the feature tree to document implementation progress
and to visualize options for evolving the software solution. Initial development starts
with the root. Features are implemented by following the REQUIRES dependencies.
Implementation progress is documented by tagging features as being implemented,
for example with a color code. Candidates for implementation are the features
connected with already implemented or already planned features (connectivity rule).

Fig. 3. Progress tracking and visualization of options for software evolution

ts

ks

User Management

R d ti P t Di l

Sales

+ Add Article to Cart

+ Buy Cart Contents

+ Display Cart Contents

+ Edit Cart Contents

+ Log in Customer

+ Save Item for Future Buying

Product Presentation

+ R. Display Correlated Sales

+ R: Dispay Product Tags

+ R: Display Article Information

+ R: Display Customer Feedback

+ R: Display Ensuing Sales

+ R: Display Ensuing Views

+ R: Display Product Description

+ R: Display Product Information

Cart Management Enhanced Cart Display

Order Management

OnlineShop Sales Plattform

+ R: Display Articles

+ R: Display recent relevant views

+ R: Inform about us

+ R: Tailor article display
Adv ertisement

OnlineShop Sales Solution

Legend
Feature

+ Requirement

requires

1. Identify and allocate
all requirements related

to the feature

Root: requirements /
constraints related to archi-
tecture and infrastructure

3. Extract requirements
that can be postponed

After extraction:

Sales

+ Add Article to Cart

+ Buy Cart Contents

+ Display Cart Contents

+ Log in Customer

Cart Management

+ Edit Cart Contents

+ Save Item for Future Buying

2. Identify exten-
ding subfeatures

Browsing

Searching

+ R: List prioritized article lists

+ R: List prioritized articles

+ R: List relevant sponsor l inks

+ R: Search article

User Management

Recommendations

Contextual Recommendations

Social Recommendations Partner Dialogue

Sales

+ Add Article to Cart

+ Buy Cart Contents

+ Display Cart Contents

+ Log in Customer

Product Presentation

+ R. Display Correlated Sales

+ R: Dispay Product Tags

+ R: Display Article Information

+ R: Display Customer Feedback

+ R: Display Ensuing Sales

+ R: Display Ensuing Views

+ R: Display Product Description

+ R: Display Product Information

Content Presentation Cart Management

+ Edit Cart Contents

+ Save Item for Future Buying

Enhanced Cart Display

Order Management

OnlineShop Sales Plattform

+ R: Display Articles

+ R: Display recent relevant views

+ R: Inform about us

+ R: Tailor article display
Advertisement

OnlineShop Sales Solution

Legend
Feature

+ Requirement

Implemented Feature

Implementation Candidate

requires

 Release Planning with Feature Trees: Industrial Case 293

A feature tree simplifies the handling of a requirements specification in a release
planning context. Features abstract from detail by grouping AND-related
requirements. Allocating features instead of requirements to software releases reduces
the number of release planning decisions. A feature tree hides incompleteness by
handling non-specified features the same way as specified ones. Figure 1 shows ten
features that can be used for feature-level release planning, even-though they do not
contain requirements yet. Feature trees with information about development progress
can be used to focus requirements analysis. Implementation candidates need to be of
higher quality than other features.

A feature tree also captures requirements changes. Emerging requirements, e.g.
discovered during elicitation or development, are added based on the product
manager’s judgment to existing non-implemented features or as new leaf features to
the tree. Urgent changes are introduced as changes to active features according to a
release project’s change management process. Changes to already implemented
features are introduced as part of the solution’s maintenance process. The allocation
of changes to features increases transparency for root-cause analysis and subsequent
process and competence improvements.

4 Industrial Case Study

4.1 Study Definition, Planning, and Operation

Study Definition. Case study research was used to evaluate feature trees for release
planning and to compare the approach with the backlog-oriented practice of using a
flat list of requirements. The study aimed at understanding feasibility and impact of
the approach in a real-world practical context from the perspective of the product
manager responsible for release planning.

We asked the following research questions. RQ1: How are feature trees used for
planning software releases? RQ2: How do feature trees affect effort, decisions-making,
and trust? RQ1 focuses on the documentation of product features and the use of that
documentation. It provides a rich picture of variability-based release planning and the
context in which it is used. RQ2 describes the effects of the approach. It reports lessons-
learned from the practitioner that has performed variability-based release planning. The
answers help implementing the practice and deciding when to adopt the approach.

Case study research is adequate when how or why questions are asked and when
the focus is on a contemporary phenomenon within a real-life context [15]. Case
study research deals with many more variables of interest than data points. Hence,
obtained results cannot be generalized statistically. However, they provide insights for
building theories that are explored and evaluated with ensuing research.

Study Planning. The case study was performed in the organization described in
section 2. This organization is characterized with a software product that is novel, but
already has an initial user base. The product implemented the vision of a product
manager who is an expert in the application domain. Corresponding to the product’s
development stage, the organization was small with many responsibilities bundled on
a few professionals.

294 S. Fricker and S. Schumacher

The organization desired to enhance its project-centered development approach by
strengthening the product perspective. It decided to introduce short- and long-term
planning to increase the impact that it could generate with the limited resources it had
available. It decided to pilot feature-driven release planning and complemented it with
roadmapping to cover timing and resource aspects [29].

The first author of this paper introduced the basic methodology to the organization
and performed the case study research. The second author was the product manager
who tailored and implemented the approach together with stakeholders. Over a period
of a year, work results and experiences were reviewed repeatedly to collect lessons-
learned and to fine-tune the implementation.

Study Operation. The authors obtained data by collecting work results created by the
practitioners during release planning, by performing interviews with the project leader
and steering committee members, and by reflecting on the release planning
experiences. The use of multiple data sources enabled triangulation for reducing
validity threats of the study results.

The collected work results included a description of product stakeholders, the
feature tree, feature specifications, a detailed roadmap, and a project backlog. The
collected data represented the state of the organization after the feature tree-based
practice had been introduced and its use calibrated. Calibration balanced efficiency
and effectiveness with the organization’s needs. The data allows answering RQ1 with
a multi-faceted view of how feature tree-based release planning was implemented.

The interviews surfaced the product manager’s stance towards feature tree-based
release planning and experiences from applying the practice. The interviews were
performed on multiple occasions during and after implementing the approach. The
interviews helped interpreting the work results and allowed answering RQ2.

4.2 Threats to Validity

Every empirical study has limitations. Typical threats to validity were addressed in
this case study as follows.

Conclusion validity: is there a true relationship between the treatment and the
outcome? Triangulation over multiple empirical data sources, accompaniment of the
organization over a year, and review of the research results by the practitioners
reduced threats to conclusion validity. The use of multiple views for describing how
the approach was implemented provides transparency.

Internal validity: does the treatment and not something else cause the outcome?
Particular threats are that second author’s involvement in the release planning affects
researcher bias and that already the awareness of being observed affects the behavior
of practitioners [30]. The former threat was a conscious decision to increase the
accuracy and completeness of the description as practiced in action research [31].
Researcher bias was controlled by triangulating data sources. The latter threat was
reduced through the long-term collaboration and the repeated interviews about why
the practitioner believed that the described effects were achieved.

Construct validity: do the treatment and outcome measurements adequately
represent the theory? The study controlled proper feature tree use by analyzing how

 Release Planning with Feature Trees: Industrial Case 295

well the feature tree construction rules were adhered to and by letting the practitioner
reflect on the technique’s strengths and limitations. Effort, decision-making, and trust
were evaluated by comparing the subjective practitioner views with the results of
artifact analysis.

External validity: can the results of the study be generalized? The study was
performed in a real-world industrial context. Such contexts differ, however, for
example in terms of how innovative and how large the developed products are. It is
likely that the same results can be achieved in organizations that develop new product
features incrementally.

The obtained results should be further tested in follow up studies. Positive and
negative replications in other contexts can corroborate or refute the results.
Experiments that compare feature tree-based and backlog-oriented release planning
can test whether the results generalize statistically.

4.3 Use of Feature Trees for Release Planning

Feature trees were a central element for planning software releases. They acted as
pivotal point for integrating analyses of user groups and of design options, for
planning product development in the form of detailed roadmaps, for steering
development iterations with backlogs, and for capturing progress. This integration of
the core idea, the feature trees, with related practices, the user group analysis and
roadmapping, was not planned, but emerged naturally in the context of the company.
The features and their traces to these other views became a basis for coordinating
stakeholder involvement with product development.

User Groups. The organization desired to address the needs of important stakeholders
groups with the software solution. The product manager refined these groups by defining
personas [32] and by appointing representatives. The needs of these personas affected the
scope of the solution and the supported use scenarios [33]. The availability of the
personas’ representatives for pilot projects affected the timing of corresponding feature
development.

To support such analysis the product manager developed and maintained the
stakeholder tree shown in Figure 4. The tree implemented the VORD viewpoint
structuring concepts [34]. The needs of a given high-level group were valid for
refined groups, but not vice-versa. For example the need finding publishable media of
ZHdK was also valid for Publicity and of Lecturer. The need understand frequency
and sources of site visits of Publicity was not applicable ZHdK in general.

The product manager felt too much uncertainty to draw sharp boundaries between
user groups and their needs. As a consequence, the stakeholder tree was used to build a
vocabulary of stakeholders and to guide analysis, but not for formally defining
traceability to features. Concrete needs were elicited, and feature development re-planned
if necessary, during pilot projects performed with the stakeholder representatives. The
total support of a persona was documented with a bar chart.

296 S. Fricker and S. Schumacher

Fig. 4. Structure of the stakeholder tree. Geometric form: user groups. Photographs: user group
representatives. Arrows: refinement of a generic user group to a special group. No need to read
the feature names for understanding the case study.

Product Features. The feature tree provided an overview on the software solution by
abstracting from requirements to features and by showing the fullest possible scope of
the solution. It supported release planning by grouping requirements into cohesive
units of implementation. The dependencies between these groups affected their order
of implementation.

To support such analysis the product manager developed and maintained the
feature tree shown in Figure 5. The tree captured the AND, OR, and REQUIRE
requirements dependencies described in section 3. For example, the feature Indexing
could not be developed before Media Entry and not after Project-Oriented Indexing.
Not such dependency was defined between the features Indexing and Basic
Administration Interface. The tree structure was not completely adhered to, however:
some sub-features depended on more than one super-feature. The intention of these
features was to combine these super-features. For example Project-Oriented Filtering
and Browsing integrates Filtering and Browsing.

The feature tree captured the product manager’s understanding of how the product
should evolve. The initial tree was constructed by analyzing the originally available
requirements specification based on the product manager’s experience and gut feeling.
The tree then was continuously evolved based on inputs from analyzing inputs elicited in
stakeholder interviews and analysis of interfacing systems.

Legend

Media Archive of the Arts
Stakeholder Tree
April 1, 2011 / Number 2

Representative

Need Satisfaction

User Group

Specialization

 Release Planning with Feature Trees: Industrial Case 297

At the moment of analysis, the tree consisted of 91 features. It contained five
branches with 57 functional features, one branch with 7 usability-related features, and
one branch with 27 features that referred to supported media formats. The three types
of branches interacted with each other. For example, adding a media format such as
Text implied adjusting already implemented functional features. The necessary
changes were planned before the implementation of the concerned media feature.

The product manager used the feature tree for reviewing progress and planned
evolution with the steering committee, the reference team, and the pilot users. Color
codes captured development progress, cooperation with company-external groups,
and long-term scoping decisions. When planning the support of a pilot project, non-
implemented but needed features were identified and integrated into the product’s
development sequence. The pilot projects were chosen so that the solution’s key
features could be implemented and validated as part of the public version 1.0 release.

Fig. 5. Structure of the feature tree. Each geometric form represents a feature. Each arrows
points from a base feature to enhancing features. No need to read the feature names for
understanding the case study.

Feature Specification. The product manager used the features to align the developed
solution with stakeholder needs. A feature was specified with 0 to 39 requirements. The
progress of feature elaboration and development affected how far a feature was specified.

Legend

Next major release

Implemented

Not yet implemented

Outsourced

After next major release

Media Archive of the Arts
Feature Tree
April 1, 2011 / Number 7

298 S. Fricker and S. Schumacher

This practice allowed investing effort into those features that were implemented in
near future.

No formal process was used to group known requirements into features, hence to
define AND dependencies between the requirements. Instead, the product manager
used her experience and gut feeling. Candidate features were then refined by
removing requirements until they contained no optional requirements. The removed
requirements were allocated to already known or ad-hoc defined sub-features, hence
establishing REQUIRES dependencies. Alternatives, the OR dependencies, were
captured by defining multiple sub-features.

Further refinement was done by considering each feature acted as a bridge between
requirements and solution design [9]. The exploration of how a given feature would
be implemented helped the product manager to set the right requirements and the
development team to improve effort estimates. This dialogue also resolved situations
where the requirements were fragmentary or specified at the wrong abstraction level.

To support the dialogue between the product manager and the development team the
features were specified with the attributes shown in Table 1. The feature attributes were
filled incrementally as specification and development progressed. Each feature was
identified with its name. The product manager regularly discussed the features with the
project leader and architect, leading to a description of the chosen of implementation
alternative, early effort estimates, and initial requirements. The requirements were
completed and important design aspects specified just before the feature was
implemented. At the moment of feature implementation, the requirements were used to
form the project backlog. A comments attribute provided a discussion forum for
clarifications and coordinating implementation. Bugs and future requirements were
placeholders for documenting maintenance and future enhancement needs.

Table 1. Feature specification attributes

Attribute Description Example
Name Identifier Indexing
Description Feature’s key ideas: concept

describing the chosen
implementation alternative

Capture as much meta data as possible with
input assistance, resp. an editor. Formalized
metadata can be used for filtering and browsing.

Effort Estimated implementation effort 35 points
Requirements Project backlog 18 concluded requirements:

- Keyword field
- Standardized thesaurus
- Visualize geo data with google maps widget…

Attachments Specification of important
design aspects

(examples of GUI elements)

Comments Discussions related to
clarifications and open issues

We can close Indexing if we close the ticket […].

Bugs Problems with the implemented
solution

20 resolved, 2 pending bugs such as
- Auto complete does not work…

Future
Requirements

List of potential enhancements
of the feature

12 not implemented requirements:
- New media files for already existing meta

data Icons…

 Release Planning with Feature Trees: Industrial Case 299

Formal feature specification in the context of software product lines expects
specification of requirements, domain assumptions, and solution [26]. This
specification practice was calibrated to increase work efficiency and flexibility and
to support depending activities, while accepting dependency on the involved
practitioners for interpreting the documentation. Information used to steer and
track development was specified: the explicit list of requirements, enhanced with
effort estimates and lists of bugs and future requirements. Knowledge related to
understanding the features was kept implicit. Domain assumptions that would
relate the feature to its use scenarios and the users’ personas were not documented.
The solution that would describe how to implement the feature was only
fragmentarily documented. Lack of such information was compensated with the
discussion thread.

Roadmap. The product manager planned a hierarchy of development iterations. Full
version releases, for example version 1.0, had to address all key needs of selected
stakeholder groups, for example the ZHdK stakeholders. Such a version release was
split into feature releases that supported the needs of selected pilot projects. The
development project then had bi-weekly releases to provide transparency and
feedback to the product manager.

The feature trees lacked timing information. To define the feature’s development
timing the product manager decided to use a detailed, layered product roadmap [35]
with a time horizon of two years. Figure 6 shows an extract of the detailed first-year
plan. The second year was more fragmentary. The layer features defined when given
features would be implemented. A feature’s spacing corresponded to its development
duration that was computed based on estimated effort, available resources, and
availability of technologies. For example, Authorization was dependent on AAI and
required roughly one calendar month. The availability of a feature enabled use
scenarios that were needed by the pilot projects. For example, Authorization, Login
for Externals, Work Groups, and Download of Different Resolutions enabled the
Production scenario that was first evaluated in the Z+ and Studio Publications
pilots. The top-most layer referred to milestones such as external events and own
releases.

The roadmap provided the context for release planning. It allowed exploring
planning options together with stakeholders to agree on the implementation sequence.
Time-to-market of version 1.0 was expected to be minimized and piloting aligned
with development activities. The critical path was represented by the sequence of
double-edged key features. Availability of pilot projects was documented by defining
their start and end points. Surprises that affected the planning were discussed with the
steering committee. For example, development staff was increased to account for
development delays. The roadmap simplified release planning to allocating
imminent features, for example Filter and Extended Search to imminent development
iterations.

300 S. Fricker and S. Schumacher

Fig. 6. Product roadmap (extract). Red bar: moment when the snapshot was taken. No need to
read the detailed contents for understanding the case study.

Impact of Feature Trees

Effort. The feature tree, in comparison with a flat backlog of requirements, reduced
complexity of release planning. The abstraction from requirements to features reduced
the total number of elements to be considered by a factor 10.3. Table 2 evaluates the
situation at April 2011. Row 1 describes the effect of the AND grouping. Row 2
describes the effect of adding the REQUIRES dependencies. Row 3 shows the
complexity of prioritizing the implementation candidates, row 4 of the roadmap, and
row 5 of the feature release project where the focus shifted from features to
requirements.

Resour-
ces

Techno-
logies

Featu-
res

Use
Scena-

rios

Pilot
Pro-
jects

Events
and

Mile-
stones

 Release Planning with Feature Trees: Industrial Case 301

Table 2. Comparison of list-based and feature tree-based approach

*: The feature-tree based requirements catalogue was
intentionally incomplete. The estimate is extrapolated from
the statistics of fully specified features.

Flat Backlog:
Requirements

Feature Tree:
Features

1 Total number of elements 937* 91
2 Number of implementation candidates 453* 23
3 Number of comparisons, efficient algorithm: O(n log2n) 3997* 104
4 Number of elements in backlog of major release 206 20
5 Average number of elements in backlog of feature release 21 2

The product manager perceived planning of about twenty items fine-grained
enough and feasible. Still discussions often centered on an even smaller set of features
and did not need as much detail information about context as the tree provided.

Decision-Making. The feature tree and the roadmap were the key instruments used
for deciding what to implement and when to implement. The feature tree provided a
basis to discuss the scope of pilot projects with the stakeholders identified in the
stakeholder tree. Stakeholder needs that could not directly be addressed led to
discovering new potential features.

The roadmap was used for aligning the timing of feature implementation with the
pilot project. The product manager had to ensure that needed features were available
to the pilot users at the right moment in time and that no unnecessary feature was
implemented. The roadmap was useful to check these rules together with the
concerned stakeholders.

A number of criteria are known to evaluate product evolution options [4]. They
include management concerns like development cost-benefit, business concerns like
stakeholder priority and satisfaction, and system concerns like evolvability. Such
information that is typically part of a business case [36] was not specified explicitly.
Instead, the impact of these concerns was discussed in terms of product evolution
scenarios. The agreement on which scenario to pursue was documented in the form of
features in the feature tree and as timing information in the roadmap.

Traceability between features, use scenarios, and pilot projects was difficult to
maintain, however. This difficulty now motivated the product manager to evaluate
how specification of use scenarios, for example in terms of supported user groups and
supporting features, could be used to bundle traceability. This approach could reduce
the number of traces between stakeholders and features by a factor ten to hundred.

Development and use of the so far implemented solution led to massive learning
about the real user needs and about what an effective media management solution is.
Hence, even-though the product manager accepted a feature to be finished, new non-
implemented requirements were added to the feature. These requirements are planned
to be structured as features and enter development through enhancements of the
feature tree shown in Figure 5.

Trust. In comparison to a flat list of requirements, the feature tree allowed building a
mental model of the solution. The reduced number of features allowed building a
shared vocabulary with stakeholders, the color coding visualizing growth of the
solution, and AND-OR feature dependencies understanding design options. This

302 S. Fricker and S. Schumacher

focused discussions and communication with stakeholders on aspects that were
essential for planning. Decisions could be taken together with these stakeholders,
which led to trust in the plans and in the product organization.

Surprises and problems emerged despite the common decision making. For
example, the feature tree only captured usability-related quality requirements. The
pilot projects discovered that the solution’s performance was too low. The resolution
of that problem led to changes in technologies and architecture and required
significant amount of unplanned time. The product manager now started to specify
and plan quality with dedicated feature vectors [37].

5 Discussion and Conclusions

This paper has explained how feature trees [38] can be used to structure requirements
and simplify release planning, hence to support release planning [20], i.e. the planning
of variability over time [24]. AND relationships [13] can be exploited to group
requirements into features. Feature vectors [27] can be built by exploiting
REQUIRES dependencies. Features that have the same super-feature stand in an OR
relationship. The resulting tree can be used for planning the development of the
specified software and for controlling development progress.

The paper has shown a revelatory industrial case to evaluate feasibility and impact
of the approach. The practitioners integrated the feature tree into stakeholder and need
analysis, adapted the feature specification to communicate requirements and to
manage the development project, and integrated the features into a roadmap that
aligned the timing of pilot projects and development.

The approach reduced complexity of release planning that before would have been
made with flat requirements lists [16]. The feature tree, combined with a roadmap,
was a key instrument to plan development that allowed the product manager to make
decision together with stakeholders. The visualization of the requirements as a feature
tree allowed them building a mental model and a shared vocabulary. As a
consequence, the stakeholders developed trust in the decision-making and in the
product organization.

As any other approach, feature-tree based release planning had limitations,
however. Documentation was based on office tools and traceability often kept
implicit. Decisions, even though made together with the concerned stakeholders,
turned out to be wrong because of omissions and rarely perfect estimates. These two
issues made analysis of dependencies and coordination of stakeholders difficult.

The presented work has relations to other research beyond feature trees and release
planning. The described feature trees are a new kind of AND/OR trees that differs
from AND/OR goal trees [39]. The feature trees do not represent means-ends
relationship, but dependencies in the implementation order. The documentation of a
single feature, however, can be made with a goal tree. For example, the feature
specification attributes requirements and description corresponded to two abstraction
levels and were used to capture means-ends relationships [8]. Such feature-oriented
goal trees specification is narrow in scope and can be developed incrementally. It
hence has the potential to improve the scalability of goal modeling.

 Release Planning with Feature Trees: Industrial Case 303

The case shows how feature trees can integrate roadmapping [35] and software
specification. It has extended a the layered form of product roadmaps encountered in
small companies [40] with explicit traceability to product feature. Such traceability
allows understanding the impact of changes, for example changed effort estimates, to
the other aspects of release planning, such as stakeholder support, and piloting.

Future research should replicate the study in different contexts to better understand
when and how feature tree-based release planning should be used. Experimentation
that compares the feature tree-based approach with the use of flat requirements
backlogs provide statistical analysis of effort reduction and eliminate the potential
presence of the Hawthorne effect.

Future research should enhance the presented approach with an understanding of
how traceability, for example between features and stakeholders, can be structured to
enhance understanding of these traces and effort for handling traceability. Also tool
support can greatly simplify consistency management between the feature tree and
related views and ease what-if analyses for exploring software development planning
options.

References

1. Svahnberg, M., Gorschek, T., Feldt, R., Torkar, R., Bin Saleem, S., Usman Shafique, M.:
A Systematic Review on Strategic Release Planning Models. Information and Software
Technology 52, 237–248 (2009)

2. Cohn, M.: Agile Estimating and Planning. Prentice Hall (2006)
3. Amandeep, N.F.N.G., Ruhe, G., Stanford, M.: Intelligent Support for Software Release

Planning. In: Bomarius, F., Iida, H. (eds.) PROFES 2004. LNCS, vol. 3009, pp. 248–262.
Springer, Heidelberg (2004)

4. Wohlin, C., Aurum, A.: What is Important when Deciding to Include a Sotware
Requirement into a Project or Release. In: International Symposium on Empiricial
Software Engineering (2005)

5. Berander, P., Andrews, A.: Requirements Prioritization. In: Aurum, A., Wohlin, C. (eds.)
Engineering and Managing Software Requirements. Springer, Heidelberg (2005)

6. Karlsson, L., Regnell, B., Karlsson, J., Olsson, S.: Post-Release Analysis of Requirements
Selection Quality - An Industrial Case Study. In: 9th International Workshop on
Requirements Engineering: Foundation for Software Quality, RefsQ 2003 (2003)

7. Karlsson, L., Dahlstedt, Å., Regnell, B., Natt och Dag, J., Persson, A.: Requirements
Engineering Challenges in Market-Driven Software Development - An Interview Study
with Practitioners. Information and Software Technology 49, 588–604 (2007)

8. Gorschek, T., Wohlin, C.: Requirements Abstraction Model. Requirements
Engineering 11, 79–101 (2006)

9. Fricker, S., Gorschek, T., Byman, C., Schmidle, A.: Handshaking with Implementation
Proposals: Negotiating Requirements Understanding. IEEE Software 27, 72–80 (2010)

10. Lehtola, L., Kauppinen, M.: Suitability of Requirements Prioritization Methods for
Market-driven Software Product Development. Software Process Improvement and
Practice 11, 7–19 (2006)

11. Fricker, S., Schumacher, S.: Variability-Based Release Planning. In: Regnell, B., van de
Weerd, I., De Troyer, O. (eds.) ICSOB 2011. LNBIP, vol. 80, pp. 181–186. Springer,
Heidelberg (2011)

304 S. Fricker and S. Schumacher

12. Schobbens, P.-Y., Heymans, P., Trigaux, J.-C., Bontemps, Y.: Generic Semantics of
Feature Diagrams. Computer Networks 51(207), 456–479

13. Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B., Natt och Dag, J.: An Industrial
Survey of Requirements Interdependencies in Software Product Release Planning. In: 5th
IEEE International Symposium on Requirements Engineering (2001)

14. Haberfellner, R., Nagel, P., Becker, M., Büchel, A., von Massow, H.: Systems
Engineering: Methodik und Praxis. Verlag Industrielle Organisation (2002)

15. Yin, R.: Case Study Research: Design and Methods. SAGE Publications (2009)
16. Vlaanderen, K., Jansen, S., Brinkkemper, S., Jaspers, E.: The Agile Requirements

Refinery: Applying Scrum Principles to Software Product Management. Information and
Software Technology 53, 58–70 (2011)

17. Bekkers, W., van de Weed, I.: SPM Maturity Matrix. Utrecht University (2010)
18. Regnell, B., Beremark, P., Eklundh, O.: A Market-Driven Requirements Engineering

Process: Results from an Industrial Process Improvement Programme. Requirements
Engineering 3, 121–129 (1998)

19. Davis, A.: Just Enough Requirements Management. Dorset House Publishing (2005)
20. Carlshamre, P.: Release Planning in Market-Driven Software Product Development:

Provoking an Understanding. Requirements Engineering 7, 139–151 (2002)
21. Ruhe, G., Saliu, M.O.: The Art and Science of Software Release Planning. IEEE

Software 22, 47–53 (2005)
22. Li, C., van den Akker, M., Brinkkemper, S., Diepen, G.: An Integrated Approach for

Requirements Selection and Scheduling in Software Release Planning. Requirements
Engineering 15, 375–396 (2010)

23. Karlsson, J., Ryan, K.: A Cost-Value Approach for Prioritizing Requirements. IEEE
Software 14, 67–74 (1997)

24. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foundations,
Principles and Techniques. Springer, Heidelberg (2005)

25. Zowghi, D., Coulin, C.: Requirements Elicitation: A Survey of Techniques. In: Aurum, A.,
Wohlin, C. (eds.) Engineering and Managing Software Requirements. Springer,
Heidelberg (2005)

26. Classen, A., Heymans, P., Schobbens, P.-Y.: What’s in a Feature: A Requirements
Engineering Perspective. In: 11th International Conference on Fundamental Approaches to
Software Engineering, Budapest, Hungary (2008)

27. Nejmeh, B., Thomas, I.: Business-Driven Product Planning Using Feature Vectors and
Increments. IEEE Software 19, 34–42 (2002)

28. Stoiber, R., Glinz, M.: Feature Unweaving: Efficient Variability Extraction and
Specification for Emerging Software Product Lines. In: 4th International Workshop on
Software Product Management (IWSPM 2010), Sydney, Australia (2010)

29. Phaal, R., Farrukh, C., Probert, D.: Strategic Roadmapping: A Workshop-Based Approach
for Identifying and Exploring Strategic Issues and Opportunities. Engineering
Management Journal 19, 3–12 (2007)

30. Draper, S.: The Hawthorne, Pygmalion, Placebo and Other Effects of Expectation: Some
Notes, vol. 2011 (2010)

31. Davison, R., Martinsons, M., Kock, N.: Principles of Canonical Action Research.
Information Systems Journal 14, 65–86 (2004)

32. Pruitt, J., Grudin, J.: Personas: Practice and Theory. In: 2003 Conference on Designing for
User Experience (DUX 2003), New York, NY, USA (2003)

 Release Planning with Feature Trees: Industrial Case 305

33. Carroll, J. (ed.): Scenario-Based Design: Envisioning Work and Technology in System
Development: Envisioning Work and Technology in Systems Development. John Wiley &
Sons (1995)

34. Kotonya, G., Sommerville, I.: Requirements Engineering with Viewpoints. Software
Engineering Journal 11, 5–18 (1996)

35. Phaal, R., Farrukh, C., Probert, D.: Technology Roadmapping - A Planning Framework for
Evolution and Revolution. Technological Forecasting and Social Change 71, 5–26 (2003)

36. Schmidt, M.: The Business Case Guide. Solution Matrix (2002)
37. Regnell, B., Berntsson Svensson, R., Olsson, S.: Supporting Roadmapping of Quality

Requirements. IEEE Software 25, 42–47 (2008)
38. Schobbens, P.-Y., Heymans, P., Trigaux, J.-C., Bontemps, Y.: Generic Semantics of

Feature Diagrams. Computer Networks 51, 456–479 (2007)
39. van Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Guided Tour. In: 5th

IEEE International Symposium on Requirements Engineering (RE 2001), Toronto, Canada
(2001)

40. Vähäniitty, J., Lassenius, C., Rautiainen, K.: An Approach to Product Roadmapping in
Small Software Product Businesses. In: 7th International Conference on Software Quality
(ECSQ 2002), Helsinki, Finland (2002)

	Release Planning with Feature Trees: Industrial Case
	Introduction
	Background and Motivation
	Feature Trees for Release Planning
	Industrial Case Study
	Study Definition, Planning, and Operation
	Threats to Validity
	Use of Feature Trees for Release Planning

	Discussion and Conclusions
	References

