
Requirements Monitoring
for Adaptive Service-Based Applications

Marc Oriol1, Nauman A. Qureshi2, Xavier Franch1, Anna Perini2, and Jordi Marco1

1 Universitat Politècnica de Catalunya, Barcelona, Spain
{moriol,jmarco}@lsi.upc.edu, franch@essi.upc.edu

2 Fondazione Bruno Kessler - CIT, Trento, Italy
{qureshi,perini}@fbk.eu

Abstract. [Context and motivation] Adaptive Service Based Applications
(SBAs) need to cope with continuously changing environments. Monitoring be-
comes a key requirement for engineering Adaptive SBAs. [Question/problem]
Ongoing research on Requirements Engineering (RE) for Adaptive SBAs strives
to answer challenging questions such as how to monitor changes affecting user’s
requirements? and how the monitored information helps in adapting to the can-
didate solutions? [Principal ideas/results] Existing approaches and techniques
to specify requirements monitoring for Adaptive SBAs are either formal or spe-
cialized to a particular domain. A convenient and easy approach to specify re-
quirements monitoring for Adaptive SBAs is still missing. In this paper, we focus
on this issue. [Contribution] We describe a systematic approach for deriving re-
quirements monitoring specifications for the running Adaptive SBA. We use a
running example from a travel domain case study to elaborate our approach.

Keywords: Requirements Monitoring, Self-Adaptive Systems, Services-Based
Application.

1 Introduction

Service-Based Applications (SBA, hereafter) reply on third party services while oper-
ating in an open environment (such as the Internet) [1]. In such a dynamic environ-
ment, SBAs must adapt in response to changing end-user’s needs and preferences (e.g.
book travel using different services), changes in context (e.g. wifi service is available
in downtown, but is not available in a mall nearby) or variation in the availability of re-
sources to exploit such solutions (e.g. mobile battery went down) or the availability of
the service (e.g. travel service is not available due to server maintenance). Research on
self-adaptive systems has started to gain considerable attention from the research com-
munity [2]. However, research on Requirements Engineering (RE) for Adaptive SBAs
has received less attention.

Existing works in the field of service-oriented computing aims at architectural as-
pects when focusing on service monitoring and discovery [3]. In the context of RE,
requirements monitoring has been tackled as a way to observe the deviations in the run-
ning system by instrumenting the code [4,5,6]. However, these approaches anticipate
changes that might occur at runtime, which makes them limited in the case of adaptive

B. Regnell and D. Damian (Eds.): REFSQ 2012, LNCS 7195, pp. 280–287, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Requirements Monitoring for Adaptive Service-Based Applications 281

SBAs. Recently it has been pointed out that to cope with unanticipated changes that
can occur dynamically at runtime, self-adaptive systems need to be aware of their own
requirements and end-user’s needs at runtime [7]. Taking this vision to adaptive SBAs,
in several cases, the decision on how to adapt in response to changes and what to mon-
itor can be postponed to runtime as well with respect to the real environment involving
the end-user. In the context of Self Adaptive Systems, there are many instances where
adaptation decisions cannot be determined at design time. For instance, if a flight is
delayed (unanticipated event) the Self Adaptive System may choose to rebook a similar
flight, cancel the flight and hotel booking or explicitly involving the end-user asking for
what to look for (e.g. travel by train, rent a car, etc). Such decision cannot be pre-fixed,
as dynamic changes may occur at run-time.

In this work, we consider changes that pertain to end-user requirements, operational
contexts and variability in resource’s availability posing challenging questions to the
field of RE. In particular, we aim to address the following research questions: (1) how
to systematically obtain and configure monitors from end-user’s requirements? (2) how
to configure an adaptive SBA to adapt at runtime in response to changes in operating
context, availability of resources and by involving the end-user if needed?

To address these questions, we envision a novel approach to systematically derive
monitoring specifications from the user’s requirements for a running adaptive SBA. We
adopt an operational pattern based on Event-Condition-Action to configure adaptive
SBAs to monitor changes and adapt at runtime.

The paper is organized as follows. Section 2 describes the related work and high-
lights the challenges. Section 3 briefly recalls the baseline of our proposed work [8,9]
and describes our envisioned approach on requirements monitoring for adaptive SBAs.
Section 4 summarizes the next steps.

2 Related Work and Baseline

Relevant works on requirements monitoring are briefly recalled here below. In [4,5] a
formal language (Formal Language for Expressing Assumptions - FLEA) is proposed
to express the assumptions about the environment that has to be monitored as prerequi-
site in order to apply remedial actions if the related requirements are violated. Similarly,
in [10] a monitoring framework, named ReqMon, is proposed for monitoring web ser-
vice requirements expressed using a goal-oriented language (KAOS). KAOS model of
requirements is used to analyze obstacles for specifying monitors. Another framework
to monitor and diagnose failures of software requirements has been proposed in [11].
The framework logs the execution of the system, and a diagnostic component identifies
if there has been any violation of the requirements by means of propositional formula
in CNF and using SAT solvers. In [12] an approach to deal with self-adaptation of
BPEL compositions by means of adaptive goals, which are responsible for the evo-
lution/adaptation of the goal model, is presented. Using the KAOS goal model they
transform the obstacles and additional conditions into the languages of two monitoring
systems: ALBERT, Dynamo which are used to evaluate properties of a BPEL process.

A comparison between these works and our envisioned approached is shown in
table 1.

282 M. Oriol et al.

Table 1. Comparison with the related work

These works on requirements monitoring tend to consider only changes that can
be anticipated at design-time. This limits their applicability in case of adaptive SBAs.
Many decisions need to be postponed to runtime while engineering adaptive SBAs. In
context of RE for adaptive SBA, requirements monitoring demands a flexible approach
to derive and configure application monitoring with respect to the changes in the re-
quirements or in the environment. An easy and convenient approach to support the
analysts at design-time to derive and configure application monitoring with respect to
the requirements and later provide the support to the running adaptive SBA at runtime
to automate it monitoring and adaptation with respect to the changes. To address this
target, we envision a convenient and systematic approach that enables the analyst to
express monitoring specification from requirements (without obfuscating the require-
ments specification using a complex formal language), and provide supporting features
to re-configure at runtime.

The baseline of our envisioned approach is our ongoing works on the Continu-
ous Adaptive Requirements Engineering (CARE) [8] Framework and the SALmon
Framework for Monitoring SLA [9].

The CARE framework attempts at bridging the gap between design-time and run-
time RE. At design-time requirements model is constructed using the concepts (i.e.
goals, tasks, context, resources etc.) defined in the revised core ontology of RE for
self-adaptive systems in [13]. The resulting instances of the requirements specification
(i.e. candidate solutions to the requirements problem) are stored in the requirements
database. At run-time, the CARE is instantiated by a running adaptive SBA, performing
RE by itself. It exploits the requirements specification instances for runtime refinement
of requirements by involving the end-users, if needed, to satisfy their needs exploiting
the available services.

SALMon is a framework focused on monitoring the quality of service (QoS) of web
services, evaluate them accordingly to stated conditions, and notify violations to the
interested parties. For this project, SALMon has been extended with new measurement
capabilities, such as monitoring the change of status of a service, which goes beyond
QoS. SALMon is able to combine both passive monitoring and testing approaches ac-
cordingly to the preferences of the user. The framework has been implemented as a

Requirements Monitoring for Adaptive Service-Based Applications 283

SBA itself, providing hence easy integration with other frameworks. It provides the fol-
lowing two services: the Monitor, responsible to retrieve the data of the target services;
and the Analyzer, responsible for the evaluation of conditions.

3 Requirements Monitoring Framework

In this section, we elaborate our overall envisioned approach to derive monitors from
the requirements, as well as the rules that guides the system adaptation in response
to changes detected from the monitoring data. We exploit a Event-Condition-Action
pattern to operationalize the requirements as a monitoring specification which is used
to configure the running adaptive SBA with respect to the requirements.

3.1 Scenario

We elaborate our approach exploiting a scenario from a Travel Companion exemplar
case study (adopted from [8]). Travel Companion is an adaptive SBA, responsible for
managing users’ travel booking by maintaining users’ goals. In this scenario, the user
must be notified about changes about her flight itinerary i.e. flight booking status (e.g.
flight status changes to delayed or canceled). The notification message about her flight
booking status must be sent on her device (e.g. mobile phone) instantly (e.g. with in less
than 5 mins) exploiting the available services (e.g. the Internet wifi, flight booking ser-
vice, SMS service etc.), keeping in view her preference (e.g. send email on a corporate
mail account while in office) and context (e.g. location: outdoor, indoor).

3.2 The Framework at Design-Time

We describe our envisioned approach that supports the analyst at design-time to conve-
niently specify requirements and derive monitoring specification that is used to config-
ure the components of the running adaptive SBA as shown in Fig. 1. We use the above
scenario to help to clarify the elements of our approach.

Requirements
Model

Operationalization of requirements
in Event-Condition-Action Pattern

Configuration of Monitors,
Analyzer and Decision Maker

1. 2. 3.

Fig. 1. Design-time process for deriving and configuring Monitor, Analyzer and Decision Maker

1. Requirements Model: The requirements model is defined by exploiting the concepts
and relations defined in the revised core ontology of requirements for self-adaptive
systems in [13]. Concepts includes: goals, softgoals, tasks, resources, domain assump-
tions (i.e. conditions considered to be true for the correct behavior of the system), qual-
ity constraints (i.e. requirements that expresses conditions over the expected quality
of service), context (i.e. information that defines the system state, user’s presupposed

284 M. Oriol et al.

information about a requirement etc.) and relations includes: preferences (i.e. defin-
ing priorities over mandatory or optional requirements), conflicts (i.e. inconsistent set
of requirements), inference (i.e. a generalized relation over decomposition such as
AND/OR in goal models). The resulting model describes the requirements specifica-
tion, which not only the mandatory requirements but also encompass monitoring spec-
ification, evaluation criteria and alternative candidate solutions for the intended Travel
companion SBA.

2. Operationalization: To operationalize the given requirements, there exist several al-
ternatives, such as using the Object Constraint Language (OCL) [14], Event-Condition-
Action (ECA) [15] or Temporal Logics [5] [16], beyond others. We adopt a convenient
Event-Condition-Action (ECA) pattern that helps expressing the adaptive requirements
specification. Although, ECA pattern for expressing requirements is not the most com-
pact and only form. We chose this pattern to provide a straight forward operationalization
of adaptive requirement, thereby capturing the feedback loop functions (i.e. monitoring
specification, evaluation criteria and adaptation/trigger actions, making them explicit
using ECA rules). The operationalization of these requirements is as follows:

Specifying Events: The analyst can include either goals or tasks to monitor. The frame-
work navigates through the given defined element in the requirements model until it
reaches the leaf tasks that implement the functionality and generate the events to ob-
serve. For instance, from a high-level goal ‘changes over the flight itinerary being mon-
itored’, the framework reaches the task ‘invoke flight status’ and monitor the events of
this task. The current framework supports the generation of monitors for web services.
In order to automate the generation of monitors, the analyst annotates these tasks with
the required information (i.e. endpoint, WSDL and SOAP action). The invocation of
these tasks are the events to monitor. The concrete properties to monitor on each event
are obtained from the Quality Constraints defined in the requirements model that applies
over the task. The requirements model includes also a set of preferences i.e. Preference
Requirements (PRs). PRs specify preferences regarding how the monitoring should be
performed (i.e. actively invoking the service every time-interval or passively observing
the interaction between the system and the end-user). This information is used to auto-
matically generate a Monitoring Specification, an XML file that describes what is to be
monitored, and is used in order to generate the monitors accordingly.

Specifying Conditions: The list of elements in the condition specify the rules of the
system to analyze. These rules are checked on runtime to detect if the behavior of the
system fulfills the expected functionality with the desired performance. The given ele-
ments involved in the Condition section are the Quality Constraints (QCs) that specify
the conditions to check, and the runtime data obtained as Resources (i.e. the results
of the monitored events). This information is used to automatically generate of the
Condition Specification, which specifies the conditions to be checked at runtime.

Specifying Actions: This part consist on the execution of an action over the defined
elements in the model. There are several kind of actions that can be performed in or-
der to correct or mitigate the malfunction of the system. Currently we have focused
on two kind of actions to perform over the requirements model. Namely, SELECT and
INVOKE. Operationalizing the SELECT(task): the element included as a parameter in

Requirements Monitoring for Adaptive Service-Based Applications 285

the SELECT function is a composite task that can be met by several alternatives. This
action defines the preferred alternative to execute at runtime. For instance, in the given
scenario, there is a task ’NotifyUser’ composed of several alternatives (e.g. Notify-
ByEmail, NotifyBySMS,etc). When a condition over these tasks is not met, the action
SELECT(NotifyUser) is triggered, which updates the selection of the most convenient
device to notify the user. INVOKE(task): the element included in the INVOKE function
is a task that is executed by the system as a result of the failure of the condition. For
instance, if the flight has been delayed, INVOKE(NotifyUser) notifies the user to his
most convenient device that the flight has been delayed. The set of defined actions are
used to generate the actions specification.

3. Configuration: From each generated specification using the ECA rules, the compo-
nents of the running adaptive SBA i.e. Monitor, Analyzer and the Decision Maker are
configured. Here we exploit monitor of SALMon framework, which is configured from
the Monitoring Specification, providing hence at runtime the monitored information of
the target services to the Analyzer. The Analyzer, which is configured from the Condi-
tion Specification, checks if the rules are fulfilled or not and notifies any violation to the
Decision Maker (i.e. part of the adaptive SBA itself, which instantiate CARE frame-
work). The Decision Maker is configured by means of the Action Specification, which
triggers the defined actions.

3.3 The Framework at Run-Time

In this section, we describe our runtime architecture that combines both CARE’s run-
time process (instantiated by Travel Companion) and SALMon that provides runtime
monitoring information to Travel Companion.

Monitoring the Events: The resulting Monitor Specification is used as the input to
configure the monitor of SALMon accordingly. The monitor can be configure in either
passive or active way (i.e. by passively observing the invocation over the defined ser-
vices or by invoking systematically the target services in different time intervals). Once
the service is invoked, the monitor retrieves the desired information, which can be the
value of a quality metric or the result of the invocation.

Analyzing the Conditions: The Analyzer is configured to check the conditions stated
in the Condition Specification. During execution, the analyzer is subscribed to the new
values that the monitor retrieve. That is, for each new monitored value, the analyzer
checks the fulfillment of the conditions. Currently the conditions are stated as a tuple
of < property, operand, value >. If the conditions are not met, the Analyzer notifies
the violation to the Decision Maker.

Triggering the Actions: The Decision Maker retrieves the failure of a condition, and
triggers the defined actions. The Decision Maker is composed of several decisions mod-
ules, each one responsible for a concrete kind of action to perform. As stated previ-
ously, we have defined two kind of actions, namely SELECT(task) and INVOKE(task).
The SELECT action is achieved by means of updating the model with the preferred
concrete task that will realize the composed task. The trigger action is achieved by
means of invoking the specified task. To this aim, the given task is implemented as a

286 M. Oriol et al.

service, and the invocation is performed as a SOAP-based message invocation. In the
given scenario, the status of the flight is monitored actively by the monitor through a
web service interface. For each invocation, the analyzer checks if the status of the flight
is ’OK’. In case the status is ’Delayed’ or ’Canceled’ the Analyzer triggers the Decision
Maker, which performs the action INVOKE(NotifyUser).

4 Conclusions and Future Work

In this paper, we have proposed a systematic tool-supported approach for deriving moni-
toring specifications from the users requirements for a running Adaptive SBA. Our pro-
posal provides a tool set that allows linking requirements models with more concrete
operational artifacts, i.e. adaptive requirements expressed as ECA rules, and deriving
monitoring specifications from requirements model elements. Such specifications are
used to implement and configure our monitoring framework, which is flexible enough
to accommodate changes (e.g. changes in monitoring specification), and to configure
an adaptive SBA to adapt in response to observed runtime changes. We adopted Event-
Condition-Action pattern in order to operationalize the requirements specification. ECA
rules are then used to specify and configure automatically the different components of the
adaptive SBA presented in the framework at design-time. At runtime, the monitors pro-
vides observed data to analyze the execution of the adaptive SBA. Realizing this frame-
work will help bridging the gap between the design-time and run-time, which exists
in the current approaches. To implement monitors and analyzer we exploited SALMon
(for monitoring the events and evaluation the conditions) and for decision maker, we ex-
ploited Companion SBA, which instantiate CARE (for triggering the defined actions).

Currently we have implemented the generation of monitors from the requirements
model. As an ongoing work, we plan to validate the overall process by realizing and
evaluating our envisioned framework. We aim to conduct empirical studies which demon-
strate the suitability of our envisioned approach. By one hand, we will conduct tests to
assess the performance of the implemented framework, by the other, we plan to perform
an evaluation of the usability by means ofstudents using the framework.

Acknowledgments. This work has been supported by the research project ADICT,
TIN2007-64753, MCyT, Spain. Marc Oriol has a FPI grant bound to the project
TIN2007-64753.

References

1. Di Nitto, E., Ghezzi, C., Metzger, A., Papazoglou, M., Pohl, K.: A journey to highly dynamic,
self-adaptive service-based applications. Automated Soft. Eng. 15(3-4), 313–341 (2008)

2. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J., Becker, B.,
Bencomo, N., Brun, Y., Cukic, B., Di Marzo Serugendo, G., Dustdar, S., Finkelstein, A.,
Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle, H.M., Kramer, J., Litoiu, M., Malek,
S., Mirandola, R., Müller, H.A., Park, S., Shaw, M., Tichy, M., Tivoli, M., Weyns, D.,
Whittle, J.: Software Engineering for Self-Adaptive Systems: A Research Roadmap. In:
Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Self-Adaptive Sys-
tems. LNCS, vol. 5525, pp. 1–26. Springer, Heidelberg (2009)

Requirements Monitoring for Adaptive Service-Based Applications 287

3. Baresi, L., Ghezzi, C., Guinea, S.: Smart monitors for composed services. In: ICSOC
2004: Proceedings of the 2nd International Conference on Service Oriented Computing,
pp. 193–202. ACM, New York (2004)

4. Fickas, S., Feather, M.S.: Requirements monitoring in dynamic environments. In: RE 1995:
Proceedings of the Second IEEE Intl. Symp. on Req. Eng., p. 140. IEEE CS (1995)

5. Feather, M.S., Fickas, S., Lamsweerde, A.V., Ponsard, C.: Reconciling system requirements
and runtime behavior. In: IWSSD 1998: Proceedings of the 9th Intl. Workshop on Software
Specification and Design, p. 50. IEEE CS (1998)

6. Robinson, W.: Monitoring web service requirements. In: Proceedings of 11th IEEE Interna-
tional Requirements Engineering Conference, pp. 65–74 (September 2003)

7. Sawyer, P., Bencomo, N., Whittle, J., Letier, E., Finkelstein, A.: Requirements-aware systems
a research agenda for re for self-adaptive systems. In: 18th IEEE Intl. Requirements Eng.
Conf., Sydney, Australia, pp. 95–103 (2010)

8. Qureshi, N.A., Perini, A.: Requirements engineering for adaptive service based applications.
In: 18th IEEE Intl. Requirements Eng. Conf., Sydney, Australia, pp. 108–111 (2010)

9. Oriol, M., Franch, X., Marco, J., Ameller, D.: Monitoring adaptable soa-systems using
salmon. In: Workshop on Service Monitoring, Adaptation and Beyond (Mona+), pp. 19–28
(2008)

10. Robinson, W.N.: A requirements monitoring framework for enterprise systems. Require-
ments Engineering Journal 11(1), 17–41 (2006)

11. Wang, Y., McIlraith, S.A., Yu, Y., Mylopoulos, J.: Monitoring and diagnosing software re-
quirements. Autom. Softw. Eng. 16(1), 3–35 (2009)

12. Baresi, L., Pasquale, L.: Live goals for adaptive service compositions. In: ICSE Workshop
on Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2010 (2010)

13. Qureshi, N.A., Jureta, I., Perini, A.: Requirements Engineering for Self-Adaptive Systems:
Core Ontology and Problem Statement. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011.
LNCS, vol. 6741, pp. 33–47. Springer, Heidelberg (2011)

14. Souza, V.E.S., Lapouchnian, A., Robinson, W.N., Mylopoulos, J.: Awareness requirements
for adaptive systems, Technical Report DISI-10-049, DISI, Universit‘a di Trento, Italy (2010)

15. Knolmayer, G., Endl, R., Pfahrer, M.: Modeling processes and workflows by business rules.
In: Business Process Management, pp. 16–29 (2000)

16. Baresi, L., Pasquale, L., Spoletini, P.: Fuzzy goals for requirements-driven adaptation. In:
18th IEEE Intl. Requirements Eng. Conf., pp. 125–134 (2010)

	Requirements Monitoring for Adaptive Service-Based Applications
	Introduction
	Related Work and Baseline
	Requirements Monitoring Framework
	Scenario
	The Framework at Design-Time
	The Framework at Run-Time

	Conclusions and Future Work
	References

