
Towards a Requirements Modeling Language
for Self-Adaptive Systems

Nauman A. Qureshi1, Ivan J. Jureta2, and Anna Perini1

1 Fondazione Bruno Kessler - CIT, Software Engineering Research Group
Via Sommarive, 18, 38050 Trento, Italy

{qureshi,perini}@fbk.eu
2 FNRS & Louvain School of Management,

University of Namur, Belgium
ivan.jureta@fundp.ac.be

Abstract. [Context and motivation] Self-adaptive systems (SAS) monitor and
adapt to changing end-user requirements, operating context conditions, and re-
source availability. Specifying requirements for such dynamic systems is not
trivial. Most of the research on self-adaptive systems (SAS) focuses on finding
solutions to the requirements that SAS is built for. However, elicitation and rep-
resentation of requirements for SAS has received less attention at early stages of
requirements engineering (RE). [Question/problem] How to represent require-
ments for SAS in a way which can be read by non-engineering stakeholders?
[Principal ideas/results] A requirements modeling language with a diagram-
matic syntax to be used to elicit and represent requirements for SAS and perform
analysis based on our recently proposed core ontology to perform RE for SAS.
[Contribution] A modeling language, called Adaptive RML, for the represen-
tation of early requirements for Self-adaptive systems (SAS). The language has
graphical primitives in line with classical goal modeling languages and is for-
malized via a mapping to Techne. Early validation is performed by modeling the
same case study in an established goal modeling language and in Adaptive RML.
The results suggest that context and resource concepts, as well as relegation and
influence relations should be part of graphical modeling languages used to make
early requirements models for SAS and to perform analysis over them.

Keywords: Requirements Engineering, Requirements Modeling, Self-Adaptive
Systems.

1 Introduction

A self-adaptive system (SAS) can change its behavior in response to anticipated and
unanticipated variations in its operating context, its users’ requirements, and the avail-
ability of its resources. Requirements engineering (RE) for SAS is receiving increasing
attention in research and has been recognized as one of the key areas where progress is
needed in order to enable the engineering of SAS [1].

Initial work on high-variability design in [2] models variability in user’s goals and
alternatives for goal achievement, which is reflected in the design and coding of Belief-
Desire-Intention (BDI) agents. This work provided a basis to extend Tropos for adaptive

B. Regnell and D. Damian (Eds.): REFSQ 2012, LNCS 7195, pp. 263–279, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

264 N.A. Qureshi, I.J. Jureta, and A. Perini

systems [3], where design abstraction like goal-conditions and environment modeling
are added to Tropos goal models and correspondingly a mapping is provided to Jadex
BDI architecture. This approach is confined to the design of adaptive BDI agents and
requires fine grained knowledge about the domain to specify the alternative solutions
and goal achievement conditions enabling the agent to switch its behavior in a given
environment.

In [4], Whittle et al. proposed a language to represent uncertainty in requirements via
fuzzy operators and using Fuzzy Branching Temporal logic as the underlying frame-
work. In the context of KAOS [5], mitigation strategies are proposed to accommodate
uncertainty and failures with obstacle analysis [6]. We proposed to engineer adaptive
requirements using goal models and ontologies to make explicit the domain assump-
tions and requirements for feedback loop functions (i.e. monitoring, evaluation criteria,
and adaptation alternative) [7]. Similar ideas were adopted by Baresi et al. [8] to ex-
tend KAOS goal models. The concept of adaptive goals has been introduced to specify
adaptation strategies, while qualitative goals are relaxed by being replaced with fuzzy
goals, the satisfaction of the former being binary, while the latter are associated to a
continuous fuzzy membership function, the value of which is interpreted as the level of
satisfaction of the fuzzy goal.

Ongoing research has also recognized the need to ensure that SAS have a runtime
representation of their own requirements, i.e., that requirements should become artifact
used, processed, and changed at runtime [7–10]. Considerable part of current research
into the RE for SAS focuses on the specification of requirements for SAS, while there
is comparatively less interest in what information should be part of early requirements
models for SAS. In particular, how should early requirements models reflect (i) that
there is uncertainty in the behavior and properties of the operating context and of the
SAS, (ii) that the context of the SAS can vary and that this should influence the behavior
of the SAS, and (iii) that resources of the SAS may vary, and that the SAS should adapt
to those variables.

In our view, this requirements problem in case of SAS should be treated as a dy-
namic RE problem, where changes in requirements, contexts and resources lead to a
new requirements problem – finding new candidate solutions to the changed require-
ments [11]. To fulfill this aim, we build on the core ontology for RE [12] and introduce
two new concepts i.e. context and resource as well as two new relations, relegation and
influence, formalized using Techne expressions [13] that are helpful in the early phases
of RE to formulate the requirements problem for a SAS.

Based on this, we introduce here a new modeling language for early requirements for
SAS, called Adaptive RML, to model the dynamic RE problem and perform analysis
by finding candidate solutions. The aim of this paper is to introduce Adaptive RML,
its concepts, relations, modeling guidelines and analysis features needed for early RE
for SAS. This is a first attempt to provide a concrete RML for early RE that provides
the necessary concepts and relations to model requirements for SAS and enables the
analyst to perform analysis about the candidate solutions as function of contexts, where
not only the conditions or resource demand changes but also the requirements problem
changes. We motivate the need for Adaptive RML to model requirements for SAS using
an example from a travel domain. As a preliminary validation, we model the example

Towards a Requirements Modeling Language for Self-Adaptive Systems 265

iCompUser ScheduleTr
avel

Travel
Booked

Low
Cost

Quick

Book Flight BookFlight
ThroughiComp

HurtH
ur
t

He
lpHelp

Travel
Booked

D

D

Enter Flight
Date Range

D

D

Get Flight
Options

Select Flight
Option

Travel Itinerary
Booked

Flight
Booked

Payment
Made

Confirmation
Message Sent

Pay by Credit
Card

Pay by Bank
Transfer

Less
Costly

He
lpHe

lp

Quick

Hurt

He
lp

Help

Select
Message
Format

Message Transfer
Method Selected

Send Via
SMS

Message
Composed

Send Via
Email

Send Via
PostMail

Send Via
Fax

Hurt
Help

Break

Hel
p

Travel
Itinerary

Mobile
Phone

Travel
Dates

DD

Select
Html

Select
Text

Easy to
Produce

Make

Help

Make

Select
Message
Type

Place Call

Some+

Convenience
He
lp

Fig. 1. Requirements Modeling using iStar Concepts and Relations only

first with i* [14], identify the information needed for early RE of SAS and that cannot
be modeled in i*, then introduce Adaptive RML. In fact, we adopt i* at this stage of the
work due to its wide adoption in requirements modeling and to make Adaptive RML
accessible to researchers using i*.

The rest of the paper is organized as follows. Section 2 introduces the example mod-
eled with i*, and compares it with the same example in Adaptive RML. Section 3
presents Adaptive RML. Section 4 discusses Adaptive RML in light of related work.
Section 5 summarizes conclusions and directions for future work.

2 Modeling the Requirements of iComp

In this section, we focus on a simple scenario for a travel booking application. We
model it with the i* requirements modeling language and identify key elements that are
missing in this language for modeling requirements for SAS. We describe an excerpt
of a scenario from a travel companion case study introduced in our prior work [7], in
which self-adaptive properties of the system are illustrated.

Scenario: The iComp application is a self-adaptive system that aids business travelers
while on the move. It supports them in booking their travels, making payment and re-
ceiving timely updated information about their booking confirmation (e.g., confirmed,
canceled, in progress). The booking confirmation messages must be sent to the user
(customer) via Email or SMS instantly (in less than an hour or maximum less than 1
day) on their device (i.e. laptop or mobile) and depending on their context (e.g. home).
Payment must be ensured before iComp sends the message (i.e. composing the message)
by selecting a suitable message format (e.g., size, scaling, format) to adapt to the device
from which they will be read. Finally, in case there are some problems (i.e. user is not
accessible) and the message cannot be delivered to the user then iComp must send the
message to an alternative recipient (e.g., the customer’s secretary).

266 N.A. Qureshi, I.J. Jureta, and A. Perini

2.1 Requirements Modeling with i*

Fig. 1 shows i* strategic dependency and rationales models for the travel booking sce-
nario. In the main scenario, the user and the system are represented by circles, whereby
the content of the dashed ovals (strategic rationales) represents their goals, tasks, and
resources. We can see in this model that what leads the user to chose the iComp for
travel booking results from the analysis of the root task of Schedule Travel, which
is decomposed into the goal of Travel Booked and the softgoals of Low Cost and
Quick. These softgoals are negatively influenced (shown with contribution links) by the
subtask of BookFlight. The task Book Flight through iComp, however, partially
satisfices the Low Cost and Quick softgoals. This task in turn depends on the iComp
Actor, since the associated goal Travel Itinerary Booked has been assigned to
the system.

The strategic rationale model of iComp reveals a decomposition of goal Travel
Itinerary Booked into three main goals Flight Booked, Payment Made -
and Confirmation Message Sent. For example, we can now reason about
Confirmation Message Sent, which is decomposed into two goals i.e. goals:
Message Transfer Method Selected and Message Composed. Along their sub-
sequent means of accomplishing tasks, and assess their contributions towards softgoals
Quick and Easy to produce, which helps in ranking a particular solution. For ex-
ample, tasks: Send via SMS and Send via Email with means to use resources:
Travel Itinerary and Mobile Phone contributes fully and partially to the soft-
goal Quick, which in turn satisfices softgoal Convenience. The aim of this analysis
is to identify one particular solution that satisfies the high level goals and optimally
satisfies the softgoals.

Modeling iComp in i* lead us to identify some limitations of the language when
used for SAS. i* does not provide concepts for the modeling of alternative solutions
to the requirements problem, which are feasible in different contexts. For instance,
in context (e.g. Home) the candidate solution should be Send Message via Email and
in another context, e.g. Market, Send message via SMS should be more appropriate in
case no 3G or no smartphone is available for the user, and so on. That is we were not
able to model the fact that the context of the user may change as well as resources
availability, and ultimately to capture monitoring conditions and evaluation criteria that
should characterize the dynamically adaptive behavior of the system. Moreover, in i*,
it is not possible to model quality constraints, such as send the message within one
hour after the payment, and domain assumptions that need to be made explicit during
the analysis as they contribute to the definition of the requirement problem, such as
standard Credit Card Options must be Displayed.

Efforts has been made to capture requirements for SAS by extending i*/Tropos
[3, 15]. The main idea behind these extensions is to annotate goal models. For instance,
in [3] goal achievements conditions and environment modeling (using UML class dia-
grams) is used to annotate the i*/Tropos goal model, and transform them for use with
an implementation architecture (e.g. BDI). Similarly in [15] location abstraction is used
to formalize context and annotating the variation point (e.g. AND/OR decomposition)
within a goal model. This approach provides a systematic design-time approach to build
context models based on locations concepts (e.g. using UML class diagrams). Common

Towards a Requirements Modeling Language for Self-Adaptive Systems 267

to both approaches is the use of UML notation to formalize the concept of environment
and context hierarchies. Both approaches are focused on finding a single best solution
in case of adaptation. Moreover, both of the approaches are limited to show how the
system can move across contexts (with changing domain assumptions, resource avail-
ability) by altering the requirements problem with respect to the variety of candidate
solutions.

2.2 Requirements Modeling with Adaptive RML

Differently from the previously mentioned extensions of goal-oriented modeling lan-
guages for SAS, we rest on Techne [13], an abstract modeling language for early re-
quirements, which adopts the core ontology for RE [12]. This core ontology extends the
goal-oriented perspective allowing to model optional requirements, preferences, and to
treat non-functional requirements in terms of approximations and quality constraints.
The basic elements of Techne models are requirements, modeled as natural language
propositions that are labeled as domain assumptions, goals, quality constraints, or tasks.
A requirement can be mandatory or optional. Links between model elements are used
to represent how the satisfaction of an element may impact the satisfaction of the other,
through inference and conflict. Preferences are used to compare requirements in terms
of desirability. Performing the analysis of a requirements problem specified in Techne,
results in finding candidate solutions in terms of tasks and quality constraints that to-
gether satisfy all mandatory goals and cover, as much as possible, optional ones.

The proposed modeling language for SAS, called Adaptive RML, builds on Techne
by adding two new concepts, namely, context and resource, and two relations, i.e. rel-
egation and influence. Adaptive RML has its own visual notation. In the rest of this
section we illustrate an Adaptive RML model of iComp with the aim to provide a
preliminary qualitative evidence about its support in overcoming the limits mentioned
above in modeling requirements for SAS. A detailed account of Adaptive RML will be
given in the following sections.

Fig.2, shows a requirements model for iComp in Adaptive RML (in form of a Techne
r-net). Its root level goal Travel Itinerary Booked is modeled as a mandatory
node (modeled as M node, a unary relationship). It is decomposed via an a binary in-
ference relation (modeled as black I node with a arrow) into the other mandatory goals:
Flight Booked, Payment Made and Confirmation Message Sent, to represent
the fact that it will be satisfied through the joint satisfaction of these three goals.

Let’s focus on the goal: Confirmation Message Sent (i.e. the shaded
part of the model), which is decomposed into two goals: Message Transfer

Method Selected and Message Composed via inference relation. We can add
here information that were missing in i* model, i.e. the domain assumption
Booking Confirmation is sent after the payment is assured (modeled
as rounded rectangle) and the quality constraint Message sent in < 1 hour

after the payment (modeled as diamond shape) connecting them through the same
inference node.

An influence relation is added among the two decomposed goals: Message

Transfer Method Selected and Message Composed (modeled as dotted green
line with arrowhead) to account for the prevailing context conditions and resource

268 N.A. Qureshi, I.J. Jureta, and A. Perini

Travel Itinerary
Booked

Flight Booked
Payment Made

Confirmation
Message Sent

Message Transfer
Method Selected

Message
Composed

Booking confirmation is
sent after the payment is
authrorized

All Flight Options
must be available to
All Users

M M M

M

M

I

I

Standard Credit
Card Option Must
be Displayed

I
I

II I

I

Updates
Instantly <
5 mins

User
Checks
Email

Every Customer
Has Bank
Account

I

Convenience

Quick

I

User has
Mobile and
Laptop

Secure
Payment

Data
Encryption
Standard
(DES)

I Updates in
1 Business

Day

I

Updates
Instantly in
realtime

I

I

Mobile
Phone

I

pref

pref

C

Show Cheap
Flight Option

First
I

Payment
daytime < 3

Laptop
I

Battery
Time < 3 hrs

I

Battery
Time > 24 hrs pref

pref

C Cx: getLocation() =
@Market[]

1

C Cx: getLocation() =
@Home[]2

I I

pref

M

I

pref

pref

@ Market is a
Location{ }

@ Home is a
Location{ }

Rel

I

Size &
Scaling is
Easy

O
I

I

I

All Secretaries
have landline

Phone

Travel
Itinerary

Message sent in
< 1 hour after
the Payment

Itinerary is not valid
before an after the
date of travel

Date of
Travel is not
Today

I

I
Easy to
Produce

Confirmation
Message

I

I

I
Contact
List

Travel
Dates

I S-Inf

I

C Cx: getLocation() =
Null[]3

Place
Call

O
Send via
SMS

Send via
Email

Send via
PostMail

Send via
Fax

Select
Message
Type

Select
Message
Format

Get Flight
Options

Select
Flight Option

Pay by
Credit Card

Pay by Bank
Transfer

Fax
Machine

I

C Cx: getLocation() =
@Office[]4

@ Office is a
Location{ }

Html Text

Conflict pref

O MSoft goalGoal
Quality
constraint

Domain
assumption

Rel

Resource

C Context[]1W-InfS-Inf @ Ontology
Concept{ }Association

Link

Is-Optional Is-Mandatory

inference
relationI

Legend Task/
Service

Fig. 2. Modeling using Adaptive RML Concepts and Relations

availability that influences the achievement of goal: Message Composed. For exam-
ple, if the context conditions support to choose Email as a candidate transfer method,
the ways to satisfy goal:Message Composed is by selection a correct format that is
either text or html.

The analysis of the Message Transfer Method Selected proceeds by link-
ing via inference nodes task-rooted subgraphs, which defines candidate solutions. Be-
sides tasks e.g. Send via SMS (modeled as hollow motion arrow), each candidate
solution includes domain assumptions e.g. User has mobile and laptop, context
e.g. Market, Home (labeled as C with its number, associated to @ symbol1), and re-
sources e.g. Mobile Phone (modeled as a rectangle). Preferences (dotted line with
doubled empty arrow heads) are used to compare requirements in candidate solutions,
and thereby compare candidate solutions; e.g., Send via SMS is preferred over Send
via Email. Requirements can be in conflict (e.g. Send via Email is in conflict with
Send via PostMail. Conflict is shown as a dotted line with C in the middle with red
color). Here, conflict exist due to the difference in the quality constraints e.g. email
updates in < 5 mins, whereas post mail updates in 1 business day.
Notice that it was not possible to model these information with i*.

Optional solutions, in case of problems (e.g. user is not accessible, as men-
tioned in the scenario) can be identified via a relegation relation (drawn as dot-
ted light red line with arrowhead between two possible candidate solutions). For
instance, Place Call relegates Send via SMS. This allows to take into account
the situation in which a user’s context changed resulting in being not accessible

1 @ labels a concept defined in domain ontology e.g. travel.

Towards a Requirements Modeling Language for Self-Adaptive Systems 269

(e.g. C3 [Cx:getLocation()= Null]), and to describe as preferred the solution
to make the user able to access the resources Confirmation Message and Ticket

Itinerary, via contacting her secretary. The Place Call task is inferred via a do-
main assumption (e.g. All secretaries has landline phone) and a resource
(e.g. contact list) and the context (e.g. C3 [Cx:getLocation()= Null]).

Summary. Gain in expressiveness of Adaptive RML with respect to i* models are
summarized below:

– we can model information about context, resources and domain assumptions that
need to be monitored by the SAS in order to enable adaptation;

– softgoals evaluation in i* is subjective and provides no clear evidence to rank a
solution. In Adaptive RML, candidate solutions can be ranked and evaluated via
quality constraints over measurements that may be collected by the SAS;

– candidate solutions can be associated with contexts and requires resource.

3 Definition of Adaptive RML

3.1 Concepts and Relations

We define the concepts and relationships in order to formulate the requirements prob-
lem for SAS. Addition of these concepts and relations leads us to an ontology for
requirements in SAS and the formulation of the runtime requirements adaptation prob-
lem as a dynamic problem of changing (e.g. switching, re-configuring, optimizing) the
SAS from one requirements problem to another requirements problem, whereby the
changing is due to change in requirements, context conditions, and/or resource avail-
ability [11]. We add two new concepts, Context and Resource as well as relations
Relegation and Influence that enhance the tool set for the proposed Adaptive RML to
model and analyze requirements for SAS.

Context: This concept allows modeling information that the stakeholders assume to
hold when they communicate particular requirements. We say that every requirement
depends on one or more contexts to express the fact that the requirement would not be
retracted by the stakeholders in every one of these contexts. This information needs to
be made explicit in the early requirements model for SAS. For instance, in our example
we modeled “context” as information about location (e.g. Office or Market), which are
defined as concepts in a specific domain ontology (e.g. travel), and we linked them to
tasks via an inference relation. In Fig.2, context is shown as e.g. “C1 [Cx:getLocation()=
@Market]” where “@Market” is an instance of a concept term (i.e. Location) defined
in a domain ontology. Combining requirements and context reveals interesting cases,
where we can see requirements maybe in conflict.

Resource: The concept of resource has been well supported in RE methods such as
in goal-oriented approaches [2, 5, 14]. In our case, we define it as an entity that is
referred to by the requirements, e.g., physical/tangible entities such as mobile phone,
ticket itinerary; e.g., intangible entities, such as user assets (social relations or contacts).
In order to introduce resources in the definition of the requirements adaptation problem
for SAS, we need to elicit a resource availability function that tells us which resources

270 N.A. Qureshi, I.J. Jureta, and A. Perini

Visual Notation Concepts & Relations

Goal

Definition: A Goal represents a desired state of affairs, the achievement of which can be measured and is definitively
concluded. Example: “Meeting to be Scheduled”

Definition: A Soft goal represents a desired state of affairs, the achievement of which can only be estimated, not
definitively concluded. Example: “Convenience”, “Easy”

Task/
service

Definition: A Task corresponds to an activity, an action whose achievement leads to the definitive conclusion of its
means. Example: “Download music”, “Show song listed as most viewed”

Definition: A Quality constraint is desired value of non-binary measurable properties of the system-to-be that constrains
a goal or a soft goal. Example: “Music download speed must not be less than 128kbps/sec”

Definition: A Domain assumption is a condition within which the system-to-be will be performing tasks in order to
achieve the goals, quality constraints, and satisfy as best as feasible the soft goals. Example: “Subscribers can download
the music from the online database”

inference
relationI

Definition: An <Inference> relation stands between a requirement that is the immediate consequence of another set of
requirements, the former is called the conclusion, the latter the premises. Alternatively, inference relation can be used to
connect the refined requirement to the requirements that refine it. Example: “Generate revenue from the audio player” has
<inference> relation with two requirements: “Music is available to subscribers”, “Display ads in the player”.

Definition: A <Conflict> relation stands between all members (two or more) of a minimally inconsistent set of
requirements. Example: “Req1: Music is available to subscribers” is in <Conflict> with “Req2: Music is available to users”

Definition: A <Preference> is a binary relation that exists between two requirements and it defines the stakeholder
evaluations of requirements that determine the desirability of a requirement. Example: “The bitrate of music delivered via
the online audio player should be at least 256kb/s” is <Preferred> over “the bitrate of music delivered via the online audio
player should be at least 128kb/s”

Definition: An <is-Optional> relation is unary that states the evaluation of stakeholder of requirement, which may be
desirable. Functional requirements, which are “nice to have”. Example: “Color printing of a meeting schedule” <is-
Optional>.

Definition: An <is-Mandatory> relation is unary that states the evaluation of stakeholder of requirement, which must be
satisfied. Functional requirements. Example: “Each Participant must have meeting schedule available” <is-Mandatory>.

Definition: An <Association> link is used to define a link between two elements. Example: “High level Context (e.g.
Outdoor)” is <associated> to “an ontology concept (e.g. place)”.

Definition: A <Relegation> relation is n-array relation that stands between one or more requirements, to relax or to
suspend conditions imposed over them. A mandatory requirement can have a <relegation> relation with an optional
requirement. Example: “download the music” has <Relegation> relation with the “stream the song online”.

Definition: An <Influence> relation is said to exist between a set of requirements, where satisfaction of one requirement
warrants the satisfaction of the other. This determines the satisfaction of the requirements set. There are two types, weak-
influence (where partial satisfaction is possible) and strong-influence (when there is no way to satisfy the requirement).
Example: “subscribe and pay” have <Strong-Influence> over the “download the music”. “subscribe and make payment”
have <weak-Influence> over the “listen music online”

Definition: A Resource is an entity either tangible or intangible referred to by one or more instances of the information
communicated during elicitation by the stakeholder. Example: Tangible Resource: “Physical e.g. Mobile phone” Intangible
Resource: “Data e.g. Agenda”

Definition: A <Requires> relation is a binary relation that exists between a task and a resource. Example: “Task:
Download song” <requires> “Resource: internet connection”

C Context[]1

Definition: A Context is defined as a set of information (condition) that is presupposed (or believed to be true) by the
stakeholders to hold when they communicate a particular requirements. Example: “System states (e.g. searching a
song)”, “User states (e.g. Listening to music)”, “User Location (e.g. at home)”, “Device Status (e.g. Battery is low)”

@ Ontology
Concept{ }

Definition: An Ontology Concept defines an entity and its characteristics or essential features in a particular domain of
discourse. Example: “Frame rate in Music Ontology”

Fig. 3. Visual guide for concepts and relations in Adaptive RML

Towards a Requirements Modeling Language for Self-Adaptive Systems 271

are available and used in some way, in order to ensure that the relevant domain as-
sumptions and context propositions hold, and that the tasks can be executed. Here again
we may exploit ontology definitions of user-assets and asset modifiers that represents
tasks effects on their resources, as proposed in [16]. In the modeled example shown in
Fig.2, we introduced “Mobile Phone” and “Laptop” as resources available in different
contexts.

Relegation Relation: The purpose of the Relegation relation (Rel for short) is twofold.
First, it facilitates engineer at design-time to analyze requirements (including goals,
quality constraints, preferences) and relegate their associated conditions (e.g. pre/post,
achievement, trigger conditions) by anticipating runtime change scenarios. Secondly, it
enables SAS at runtime to analyze requirements problem in case of changes that can oc-
cur dynamically e.g. change in user’s context, violation of domain assumption, resource
usage or change in user’s need or preference, either through sensing the operational en-
vironment or explicitly given by the end-user.

A Rel is applied to manage unanticipated events, by flexibly relegating some of the
requirements, with the aim to avoid failure in achieving the critical ones. In this case by
applying Rel, either the solution that operationalizes a goal needs to be replaced, or an
instance of the same goal with revised conditions is linked using Rel with the original
goal e.g. in Fig.2, candidate solution “Send via SMS” is relegated by “Place Call”,
when context conditions changes. In this example, the instance of the original goal is
not compromised rather relegation is considered by replacing the preferred solution
with an optional solution.

Influence Relation: An influence relation (Inf) is introduced to analyze the impact of
changes in model elements that define different, mutual dependent requirements. This
means, if change in the operational environment or in end-user requirements happens
at runtime it might cause a change in another requirement. This chain of dependency
needs to be identified, since along them we may identify changes consequences such
as violation of a goal or a invalid solutions. For example, in Fig.2, if no candidate
solution is possible to achieve the goal “Message Transfer Method Selected” due to
invalid context and domain conditions, then this goal will fail, which causes a violation
in satisfying the corresponding goal i.e. “Message Composed”. Similar dependencies
can be collected and subsequent consequences are determined by analyzing the impact
of changed solution.

3.2 Adaptive RML Visual Notations

The Adaptive RML language provides a graphical notation, which is in line with clas-
sical goal modeling languages and is formalized via a mapping to Techne. A detailed
guide on visual elements is presented in the Table shown in Fig. 3: each row contains
a graphical symbol and a short description of it’s intended meaning. For the elements
that map the Techne core ontology, the corresponding semantics is given in [13], while
the formal semantic of the additional concepts is defined in [11].

Worth to be mentioned is that recent research evaluated weaknesses of widely used
goal-oriented modeling notations with respect to principles for cognitively effective
visual notations [17]. The proposed visual notation considers two among the principles

272 N.A. Qureshi, I.J. Jureta, and A. Perini

discussed in [17]. The first is visual expressiveness: notation must comprise of color,
shape and brightness instead of shape only. Second is Semiotic clarity, which postulates
that each graphical symbol must have a 1:1 correspondence with its semantic definition.
Our proposed notation takes as much as possible these principles into account, but fur-
ther effort is needed to fit with the proposed recommendation for improving usability
and communicative effectiveness of visual notations in RE modeling.

3.3 Modeling in Adaptive RML

Modeling requirements in Adaptive RML enables the analyst to construct the require-
ments model by recording and structuring relevant information obtained through elic-
itation. As a result, the runtime requirements adaptation problem is formulated for the
SAS-to-be. New pieces of information are gathered during modeling time to refine the
problem iteratively. At analysis time, all candidate solutions to that problem are sought
along with their differences to each other and are compared with respect to varying
context situations and resource availability.

The modeling process develops by performing iterations of the following activities.

1- Modeling Mandatory and Optional Goals:
We start modeling goals, optative statements that defines the desired properties of

the SAS-to-be, via inference relation (i.e. symbol (I)). We use (I) node to depict refine-
ments (e.g. AND/OR decomposition, or means-end relation). Each (I) node connects
the model element to be refined to simpler or more concrete elements that refine it. In
this way it is concluded that if the requirements defined by the concrete elements are
satisfied then the more abstract one will be achieved. Further, we add softgoals vague
properties of SAS-to-be, which are approximated in terms of quality constraints that
determines the criteria to measure them. Goals can be either mandatory or optional (i.e.
(M)) or (O) respectively), we model this by adding these unary relation over goals.

2- Modeling Domain Assumptions:
While modeling goals we discover domain assumptions that are statements in the

domain which are assumed to be always true. We add them via (I) node and add (if any)
to each goals. Subsequently, during refinement, quality constraints can be inferred. We
add criteria to measure the goal satisfaction via (I) node. During this, new pieces of
information are discovered such as conflicts and preferences among the goals.

3- Modeling Conflicts and Preference Relations:
Conflicts and preferences are identified during refinement. We discover conflicts be-

tween inconsistent / contradictory requirements or tasks node between conflicting set of
requirements / tasks. Further, we identify preferences taking into account stakeholder’s
evaluations about different requirements. We add preference relation between require-
ments where satisfying one is strictly more desirable than satisfying the other.

4- Modeling Mandatory or Optional Tasks:
Likewise, we model tasks as further refinement of goals. Task modeling can be seen

as an analysis activity, where we add tasks via (I) node to operationalize goal. This
means, if the tasks will be successfully completed, the goal will be achieved.

Towards a Requirements Modeling Language for Self-Adaptive Systems 273

5- Modeling Context and Resources:
Once the requirements model is constructed, we further anticipate the various situa-

tions in which requirements or tasks can be either achieved or not. We add context node
to each requirement/task. Context refers to any information, which is presupposed by
the stakeholder and we make it explicit, e.g. a location etc.. A domain ontology com-
pliments this context information by precisely defining the terms (instances of context).
We link context with an ontology annotation (shown as @) via an association link.

While discovering tasks and context that can satisfy requirements, we may also iden-
tify resources that the tasks need to use. We add resource node via (I) node with each
task. Note that resource concept is also available in other RML, however, we distinguish
it as not only tangible e.g. mobile phone, Fax machine, but also intangible e.g. assets
such as money, time, agenda. In our model, each resource may have domain assump-
tions or quality constraint attached to it via (I) node.

6- Modeling Influence and Relegation Relations:
Finally, identify during refinement requirements/tasks may have influence on the

achievement of each other. Influence relation is added between a set of requirements/
task, where the achievement of the former becomes critical due to the achievement of
others (strong influence i.e. s-inf). If achievement of the latter is not critical, it will
be modeled as weak (w-inf). However, it becomes interesting in case of tasks, where
execution of one tasks may have influence of other tasks.

Finally, we look for conflicting context conditions, resource availabilities, quality
criteria which may helps to determine requirements/tasks whose achievement can be
delayed or relaxed. We add relegation relation between requirements/task that are less
critical to the requirements/task more critical/preferred to in corporate uncertainty about
changes in context or resource availability.

3.4 Towards Detailed Specification Analysis

Analysis in Adaptive RML suggests which candidate solutions are relevant in the pre-
vailing context conditions and resource availability. A requirements model defines the
requirements problem for a SAS-to-be, along with candidate solutions. This model is
used by the analyst to discover adaptive requirements by looking at differences between
candidates solutions that are modeled.

Adaptive requirements are requirements that not only hold the definition of func-
tional or non-functional requirements but encompass the notion of variability, by hav-
ing monitoring specification, evaluation criteria and adaptation alternatives. To discover
them detailed analysis is performed on the available information represented in the early
requirements model. We analyze the candidate solutions that remain valid in a partic-
ular situation. We look at the context nodes and domain assumptions, we anticipate
changes as we move to a different context and this leads to different resource availability
requirements. Alternative solutions can be inferred during this process.

Adaptive requirements help specifying alternative ways to adapt to context and re-
source changes via a pattern, details of which are out of the scope of this paper. Consider,
while monitoring runtime changes, SAS moves across different contexts by altering the
requirements problem that leads to change in candidate solutions. At runtime, several
solutions get activated based on context and based on resource availability. Mechanisms

274 N.A. Qureshi, I.J. Jureta, and A. Perini

for adaptation are triggered, therefore, reasoning over the adaptive requirement leads
SAS moves (i.e. enact adaptation) to the candidate solution which is appropriate to the
new current context.

For example, an adaptive requirement can be defined as AR1: Message must be
composed by selecting an appropriate format. From this we determine that appropri-
ate format i.e. HTML or Text, needs to be selected as modeled in Fig.2. But to select
the candidate solution, we need to monitor the user’s context (e.g. Office, Home) and
resources (e.g. Mobile phone or Laptop) and domain assumptions with quality pref-
erences. Along monitoring specification, we need also to specify evaluation criteria
to check the difference between two tasks. Based on this criteria, among the possible
candidate solutions that are adaptation actions e.g. tasks and domain assumptions in a
context, a possible candidate solution will be selected. For instance, while monitoring
the user context, resource, any change can lead to change the selected format, i.e. either
html or text format.

So far, we argued on the need of a requirements modeling language (RML) for SAS
that enable the analyst to capture and analyze requirements for SAS by incorporating
the above core properties of SAS at early stages of RE. Below we present how the SAS
at runtime tries to resolve a runtime requirements adaptation problem, by finding and
comparing a candidate solution in response to changing context, resource variability
using its own requirements model and detailed specification i.e. adaptive requirements.

3.5 Detailed Specification at Runtime

We recognize that in case of SAS, not all information can be collected, defined during
requirements- or at design-time, but that this will depend at runtime when the system
exploits its solutions implemented using different technologies (e.g. exploiting available
services or agents). For example, any variation in the context and resource availability
can be monitored or recorded by gathering the data through sensors, then matching
patterns of data provides implications on the satisfaction of the goals. However, regard-
less of the technologies used, the SAS still needs to be designed to ensure the general
conditions and relations that the requirements problem states: e.g., that the SAS needs
an internal representation of information pertaining to contexts, domain assumptions,
tasks, goals, and so on.

To give an intuition about how the adaptive requirements specification can support
runtime adaptation, in Fig.4, an adaptation sequence is shown along the time dimen-
sion, where the SAS operates as per the candidate solution (S1) selected to satisfy the
particular context and resource variation. At this time (t1) the SAS, while monitoring,
evaluates the user’s current situation and attempts to satisfy a given set of goals (e.g.
Confirmation Message Sent, Message Transfer Format Selected) and quality constraints
via its candidate solution. A candidate solution is composed of tasks, domain assump-
tions that hold valid for a context and available resources to achieve such tasks. E.g.,
candidate solution S1: Context: (@Market), Resource: (Mobile Phone), Task: (Send via
SMS), Domain Assumption: (All Users have Mobile Phone & Laptop) was selected,
but due to traveling, the context is not recognized anymore. Therefore the SAS has to
reason about this change at time (t2) by looking at the difference in candidate solu-
tions with respect to context conditions, resource availabilities and user preferences.

Towards a Requirements Modeling Language for Self-Adaptive Systems 275

S1

t1

¬S1 S4 S4

t2

t3

Before Adaptation After AdaptationDuring Adaptation

¬S1 ^ S4 S3 S2 S1: Context: (C1),
Resource: (Mobile Phone),

Task: (Send via SMS),
Domain Assumption:

(All Users have Mobile Phone & Laptop)

S4: Context: (C3),
Resource: (Contact List),

Task: (Place Call),
Domain Assumption:

(All Secretaries have landline Phone)

Time

S4 -- Rel --> S1

¬C1 ^ ¬C2

¬

Fig. 4. Runtime Adaptation Sequence of SAS

SAS performs the reasoning based on the differences among the alternative candidate
solutions, which states a comparison and ranking of the solutions based on criteria e.g.
(S1) Send via SMS is not valid, (S2) Send via Email is not feasible as user’s context is
not recognized. Thus the change in requirements problem, changes the candidate solu-
tion in different contexts and with different resources. The adaptive requirements play
critical role here, as they operationalize the mechanisms for adaptation i.e. monitor and
evaluating the difference between candidate solutions and provides criteria to compare
and rank them. To reason on adaptive requirements, automated reasoning techniques
(e.g. AI Planning) can be employed. Discussion on such techniques is out of the scope
of this paper.

Finally SAS selects a candidate solution e.g. “Place Call” by evaluating the rele-
gation relation, specified earlier in the adaptive RML model and detailed in adaptive
requirements e.g. S4 � S3 � S2. The new candidate solution S4: Context: (Null), Re-
source: (Contact List), Task: (Place Call), Domain Assumption: (All Secretaries have
landline Phone).

4 Discussion and Related Work

Advantages and open aspects of the proposed language are discussed with respect to
state-of-art work and along well recognized issues in requirements modeling for SAS,
which includes uncertainty about environment conditions and resource availability, con-
text awareness and monitoring, requirements reflection and runtime reasoning. Adap-
tive RML provides visual notations to the concepts defined in the revised core ontology
of RE for SAS. On the correctness of the concepts used to model requirements, we refer
to the definitions in [11].

Systems that operate in an open environment, need to be able to manage uncertainty
about environment conditions and resource availability. So for instance our system has
to be designed in a way that it can communicate through SMS if the cell phone is on and
connection is available, and if not, choose a different way to communicate. An attempt
to address this problem at requirements time has been proposed within the RELAX

276 N.A. Qureshi, I.J. Jureta, and A. Perini

framework [4], through the use of a language that provides three types of operators to
handle uncertainty: temporal (e.g. eventually, until, as early as), ordinal (e.g. as close, as
many), and modal (i.e. shall, may / or). The RELAX language semantics is formalized
in Fuzzy Branching Temporal Logic. In [6], a set of analysis methods are then provided
to support goal modeling refinement towards detailed design, which exploit mitigation
strategies based on obstacle analysis, and lead eventually to relax constraining condi-
tions (i.e. our quality conditions). Analogously, the approaches proposed in [3] and [8]
propose interesting methods to deal with uncertainty at detailed design.

In Adaptive RML, we provide, the Relegate relation, which is more general than
the RELAX operators [4], since we do not commit to fuzzy logic: we only ask for a
way to represent alternatives and to compare them. In this sense, RELAX can be seen
as a particular way to implement the Relegate relation, and obtains a straightforward
interpretation in the language we used here. There are other ways to handle uncertainty
and relaxation of requirements, and our aim in this paper was to remain independent of
particular approaches.

Concerning the knowledge about the resources, which are needed to achieve specific
behavior while the SAS is operating, this notion of resource has been implicit in the
requirements modeling languages like KAOS and i*/Tropos. In case of requirements
for SAS, we believe that it is necessary to model resources in a more explicit way,
not only to express their variability, but also to include dynamic lifecycles that might
describe their availability.

Along the dimension of context, in RE, context has been defined asAn abstraction
of location, an event, environment or as a set of conditions that may change overtime
in [15, 18, 19]. Another common and well accepted definition of context to date is
by Dey in [20], i.e., Context is any information that can be used to characterize the
situation of an entity.

Specifically, in RE for SAS, it has been argued that alternative behaviors must be
supplied to the system, which can be switched to meet the changes in the environment
by monitoring the context [18]. To capture the contextual variability, explicit knowledge
about the domain is required. In [15], variation points are used to annotate the goal
models, for representing pre-defined contexts and alternative behaviors to be exploited
while reasoning over them. To use this approach, a requirements driven reconfiguration
architecture is proposed in [21], which leverages the concept of context and monitor-
diagnosis-compensate loop. Moreover, our Adaptive requirements, follow similar ideas,
but go beyond the above mentioned approaches by making explicit domain assumptions
and requirements for feedback loops [7]. However, the notion of context is trickier and
brings newer requirements to be analyzed while specifying requirements for SAS. In
Adaptive RML, we provided an explicit graphical notation, where context properties
can be modeled exploiting specific domain ontology, which defines the domain concepts
and their instances.

On the basis of recent works, we recognized issues in requirements modeling for
SAS that provide premise to the proposal of Adaptive RML. For instance requirements
monitoring [22–24], where the running systems must be monitored during its execu-
tion as per its own requirements model. Any runtime deviation or violation leads to
needs for the system to reconcile its behavior to its requirements. In case of SAS this is

Towards a Requirements Modeling Language for Self-Adaptive Systems 277

critical, as it operates in an open environment where changes can occur dynamically in
the operating context, availability of resources and end-user needs can change over time.
In Adaptive RML, we propose modeling concepts so as to model early requirements for
SAS, which then guides the detailed specification, which will eventually include mon-
itoring specification. However, implementation of monitoring and linking early models
with runtime events is nontrivial.

Requirements reflection is another issue, where ideas from computational reflec-
tion has been borrowed to provide SAS the capability to be aware of its own require-
ments [10]. Similarly, online goal refinement [25] is of prime importance considering
the underline architecture of the intended SAS. To support runtime reasoning of re-
quirement by SAS itself, in [9, 26, 27], we proposed a Continuous Adaptive RE (Care)
framework and architecture for continuous online refinement of requirements by the
system itself. This work describes different types of runtime adaptation, which are re-
alized by exploiting incremental reasoning over adaptive requirements represented as
runtime artifact. The main aim of this framework is to provide continuous refinement
of requirements and provide solutions (i.e. leveraging available services) by the system
at runtime involving the end-user.

Adaptive RML models and their support in deriving detailed specification in terms of
adaptive requirements, represents a relevant contribution towards realizing continuous
adaptive requirements engineering.

5 Conclusion and Future Work

This paper introduced Adaptive RML, a visual language for the modeling of early re-
quirements for SAS. In contrast to previous proposals [3, 6–8] that rest on well estab-
lished goal-oriented modeling languages (i.e. i*, Tropos, Kaos), Adaptive RML builds
on the abstract requirements modeling language Techne [13], which provides a richer
set of concepts, along the CORE ontology for RE defined in [12], and supports re-
quirements analysis leading to sets of candidate solutions for the stated requirements
problem. A few additional concepts and relationships are used in Adaptive RML (i.e.
context, resource, relegation and influence) to model and represent the runtime require-
ments adaptation problem and perform analysis.

The motivations for Adaptive RML were first introduced by contrasting requirements
modeling of an example of SAS, made with i* and with Adaptive RML, providing also
an early qualitative validation of its advantages. A detailed account of Adaptive RML
was then given in terms of concepts, visual notation, modeling and analysis guide-
lines. Finally, novel features of Adaptive RML were discussed along the research chal-
lenges, which have been recently identified in RE for SAS [1, 10] and open points were
highlighted.

As future work on Adaptive RML, we will focus on investigating easier-to-use visual
syntax, tool support for modeling and automated reasoning methods for the analyst to
find candidate solutions in the model. To further consolidate the approach, a systematic
process to guide the detailed specification in terms of adaptive requirements should also
be provided. A survey is also planned to acquire feedback on the effectiveness of the
proposed visual modeling notions and their adequacy for early requirements modeling
of SAS involving subjects.

278 N.A. Qureshi, I.J. Jureta, and A. Perini

References

1. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J., Becker, B.,
Bencomo, N., Brun, Y., Cukic, B., Di Marzo Serugendo, G., Dustdar, S., Finkelstein, A.,
Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle, H.M., Kramer, J., Litoiu, M., Malek,
S., Mirandola, R., Müller, H.A., Park, S., Shaw, M., Tichy, M., Tivoli, M., Weyns, D.,
Whittle, J.: Software Engineering for Self-Adaptive Systems: A Research Roadmap. In:
Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Self-Adaptive Sys-
tems. LNCS, vol. 5525, pp. 1–26. Springer, Heidelberg (2009)

2. Penserini, L., Perini, A., Susi, A., Mylopoulos, J.: High variability design for software agents:
Extending Tropos. TAAS 2(4) (2007)

3. Morandini, M., Penserini, L., Perini, A.: Towards goal-oriented development of self-adaptive
systems. In: ICSE Workshop on Software Engineering for Adaptive and Self-Managing Sys-
tems (SEAMS 2008), pp. 9–16 (2008)

4. Whittle, J., Sawyer, P., Bencomo, N., Cheng, B.H.C., Bruel, J.-M.: RELAX: Incorporating
Uncertainty into the Specification of Self-Adaptive Systems. In: 17th IEEE Int. Require-
ments Eng. Conf., Atlanta, pp. 79–88 (2009)

5. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisition. Sci.
Comput. Program. 20(1-2), 3–50 (1993)

6. Cheng, B.H.C., Sawyer, P., Bencomo, N., Whittle, J.: A Goal-Based Modeling Approach to
Develop Requirements of an Adaptive System with Environmental Uncertainty. In: Schürr,
A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 468–483. Springer, Heidelberg
(2009)

7. Qureshi, N.A., Perini, A.: Engineering adaptive requirements. In: ICSE Workshop on Soft-
ware Engineering for Adaptive and Self-Managing Systems (SEAMS 2009), pp. 126–131
(2009)

8. Baresi, L., Pasquale, L., Spoletini, P.: Fuzzy goals for requirements-driven adaptation. In:
18th IEEE Int. Requirements Eng. Conf., pp. 125–134 (2010)

9. Qureshi, N.A., Perini, A.: Requirements engineering for adaptive service based applications.
In: 18th IEEE Int. Requirements Eng. Conf., pp. 108–111 (2010)

10. Sawyer, P., Bencomo, N., Whittle, J., Letier, E., Finkelstein, A.: Requirements-aware systems
a research agenda for re for self-adaptive systems. In: 18th IEEE Int. Requirements Eng.
Conf., pp. 95–103 (2010)

11. Qureshi, N.A., Jureta, I., Perini, A.: Requirements Engineering for Self-Adaptive Systems:
Core Ontology and Problem Statement. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011.
LNCS, vol. 6741, pp. 33–47. Springer, Heidelberg (2011)

12. Jureta, I.J., Mylopoulos, J., Faulkner, S.: Revisiting the core ontology and problem in re-
quirements engineering. In: 16th IEEE Int. Requirements Eng. Conf., pp. 71–80 (2008)

13. Jureta, I.J., Borgida, A., Ernst, N.A., Mylopoulos, J.: Techne: Towards a new generation of
requirements modeling languages with goals, preferences, and inconsistency handling. In:
18th IEEE Int. Requirements Eng. Conf., pp. 115–124 (2010)

14. Yu, E.: Towards modeling and reasoning support for early requirements engineering. In:
Proc. 3rd IEEE Int. Symp. on Requirements Eng., pp. 226–235 (1997)

15. Ali, R., Dalpiaz, F., Giorgini, P.: A Goal Modeling Framework for Self-contextualizable
Software. In: Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Soffer, P., Ukor,
R. (eds.) BPMDS 2009 and EMMSAD 2009. LNBIP, vol. 29, pp. 326–338. Springer,
Heidelberg (2009)

16. Marchetto, A., Nguyen, C.D., Di Francescomarino, C., Qureshi, N.A., Perini, A., Tonella,
P.: A design methodology for real services. In: Proceedings of the 2nd International Work-
shop on Principles of Engineering Service-Oriented Systems, PESOS 2010, pp. 15–21. ACM
(2010)

Towards a Requirements Modeling Language for Self-Adaptive Systems 279

17. Moody, D.L., Heymans, P., Matulevicius, R.: Improving the effectiveness of visual repre-
sentations in requirements engineering: An evaluation of i* visual syntax. In: 17th IEEE Int.
Requirements Eng. Conf., pp. 171–180 (2009)

18. Salifu, M., Yu, Y., Nuseibeh, B.: Specifying monitoring and switching problems in context.
In: 15th IEEE Int. Requirements Eng. Conf., pp. 211–220 (2007)

19. Finkelstein, A., Savigni, A.: A framework for requirements engineering for context-aware
services. In: Proc. of 1st International Workshop From Software Requirements to Architec-
tures (STRAW 2001), pp. 200–201 (2001)

20. Dey, A.K.: Understanding and using context. Personal Ubiquitous Comput. 5(1), 4–7 (2001)
21. Dalpiaz, F., Giorgini, P., Mylopoulos, J.: An Architecture for Requirements-Driven Self-

reconfiguration. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009. LNCS,
vol. 5565, pp. 246–260. Springer, Heidelberg (2009)

22. Fickas, S., Feather, M.S.: Requirements monitoring in dynamic environments. In: RE 1995:
Proceedings of the Second IEEE Intl. Symp. on Reqs. Eng., p. 140. IEEE CS (1995)

23. Feather, M.S., Fickas, S., Lamsweerde, A.V., Ponsard, C.: Reconciling system requirements
and runtime behavior. In: IWSSD 1998: Proceedings of the 9th International Workshop on
Software Specification and Design, p. 50. IEEE CS (1998)

24. Robinson, W.: A Roadmap for Comprehensive Requirements Monitoring. Computer 43(5),
64–72 (2009)

25. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: Future of Soft-
ware Engineering, FOSE 2007, pp. 259–268 (May 2007)

26. Qureshi, N.A., Perini, A., Ernst, N.A., Mylopoulos, J.: Towards a continuous requirements
engineering framework for self-adaptive systems. In: RE 2010 Workshops, First International
Workshop on Requirements@Run.Time (RE@RunTime), pp. 9–16 (2010)

27. Qureshi, N.A., Perini, A.: Continuous adaptive requirements engineering: An architecture
for self-adaptive service-based applications. In: First IEEE International Workshop on Re-
quirements@Run.Time (RE@RunTime), pp. 17–24 (2010)

	Towards a Requirements Modeling Language for Self-Adaptive Systems
	Introduction
	Modeling the Requirements of iComp
	Requirements Modeling with i*
	Requirements Modeling with Adaptive RML

	Definition of Adaptive RML
	Concepts and Relations
	Adaptive RML Visual Notations
	Modeling in Adaptive RML
	Towards Detailed Specification Analysis
	Detailed Specification at Runtime

	Discussion and Related Work
	Conclusion and Future Work
	References

