

Lecture Notes in Computer Science 7195
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Björn Regnell Daniela Damian (Eds.)

Requirements Engineering:
Foundation for
Software Quality

18th International Working Conference, REFSQ 2012
Essen, Germany, March 19-22, 2012
Proceedings

13

Volume Editors

Björn Regnell
Lund University
Department of Computer Science
221 00 Lund, Sweden
E-mail: bjorn.regnell@cs.lth.se

Daniela Damian
University of Victoria
Department of Computer Science
P.O. Box 3055, Victoria, BC, V8W 3P6 Canada
E-mail: danielad@cs.uvic.ca

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-28713-8 e-ISBN 978-3-642-28714-5
DOI 10.1007/978-3-642-28714-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: Applied for

CR Subject Classification (1998): D.2, C.2, H.4, F.3, K.6.5, D.4.6

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This LNCS volume contains the papers accepted for presentation at the 18th
Working Conference on Requirements Engineering: Foundation for Software Qual-
ity (REFSQ 2012), held in Essen, Germany, during March 19–22, 2012.

Requirements engineering (RE) has long been recognized as a major factor for
achieving high-quality software-intensive, computer-based systems and services.
REFSQ seeks reports of novel ideas and techniques that enhance RE processes
and artifacts as well as reflections on current research and industrial practice
about and in RE. In proudly presenting this program of 2012, we are confident
that the REFSQ motto “I heard it first at REFSQ!” will be agreed upon by the
conference participants.

REFSQ, in this 18th incarnation, provided a well-established, leading interna-
tional forum with its special working conference format that promotes intensive
interaction and hands-on research work involving both academics and practition-
ers. In particular, the appreciated REFSQ format involves, unlike many confer-
ences and workshops, a discussion time following a paper’s presentation that is
(at least) as long as the presentation.

A total of 103 submissions were received, of which 84 papers entered the
review process (after rejecting those papers that were late, oversized, or clearly
out of scope). Each paper received reviews by three different members of the
Program Committee. Whenever the reviews for a paper showed any divergence,
the reviewers were asked to conduct a discussion electronically with the aim of
reaching a consensus. Eleven members of our Program Committee met in person
in Essen on December 2 to discuss the reviews of all papers and to agree on the
papers to be presented at the conference and included in the proceedings. Out
of the 84 peer-reviewed submissions, a total of 27 papers were accepted (14 long
papers, including 10 Full Research papers and 4 Experience Report papers; as
well as 13 short papers, including 9 Research Preview papers, 1 Vision paper,
and 3 Problem Statement papers). This yields an 18% acceptance rate for long
papers, and a 32% overall acceptance rate.

As in previous years, these proceedings serve not only as the record of one
meeting of REFSQ, but also as a snapshot of the state of research and practice
about and in RE. Therefore, these proceedings are of interest to the whole RE
community, ranging from students beginning their PhD studies, through expe-
rienced scholars doing sustained RE research, novice requirements analysts, to
experienced practitioners interested in emerging knowledge.

Anyone interested in an account of the discussions that took place during the
working conference should consult the post-conference summary published, as is
usual, in ACM SIGSOFT’s Software Engineering Notes.

Above all, REFSQ is a collaborative effort. First, we thank Klaus Pohl for his
continuing work as General Chair of the working conference. We would also give

VI Preface

our sincerest thanks to Vanessa Stricker, who very ably served as Organization
Chair. We thank the Steering Committee, listed here, consisting of past REFSQ
Program Committee and General Chairs, for their seasoned advice.

We thank also the organizers of the four workshops held on the day before
the conference and Samuel Fricker for chairing the workshop selection process.
We thank Barbara Paech for organizing the Doctoral Symposium for the second
time, Neil Maiden for organizing the Industry Track, and Richard Berntsson
Svensson for serving as Publication Chair.

For the second year, REFSQ 2012 had two innovative events: (1) the Em-
pirical Fair organized by Joerg Dorr, Norbert Seyff and Daniel Berry, in which
practitioners and researchers propose empirical studies sought by their organi-
zations or which they would like to conduct in such organizations, and (2) the
Empirical Studies at REFSQ in which practitioners and academics are given
the opportunity to conduct empirical studies during the working conference it-
self. Both of these activities are designed to bring together the community of
researchers and practitioners who are interested in empirical studies.

As the Program Committee Co-chairs for REFSQ 2012, we thank especially
the members of the Program Committee, listed here, for their careful, thorough,
and timely reviews and for their lively consensus e-discussions. We thank in par-
ticular those of the Program Committee who attended the Program Committee
meeting and those who volunteered to serve as anonymous gatekeepers for con-
ditional accepts. Finally, we thank all the sponsors, also listed, who contributed
generously to this edition of the REFSQ working conference.

January 2012 Björn Regnell
Daniela Damian

Conference Organization

General Chair

Klaus Pohl University of Duisburg-Essen, Germany

Program Co-chairs

Daniela Damian University of Victoria, Canada
Björn Regnell Lund University, Sweden

Workshops Chair

Samuel Fricker Blekinge Institute of Technology, Sweden

Empirical Track Chair

Jörg Dörr Fraunhofer-IESE, Germany

Industry Chair

Neil Maiden City University London, UK

Doctoral Consortium Chair

Barbara Paech University of Heidelberg, Germany

Organization Chair

Vanessa Stricker University of Duisburg-Essen, Germany

Publication Chair

Richard Berntsson Svensson Lund University, Sweden

VIII Conference Organization

Program Committee

Aybuke Aurum University of New South Wales, Australia
Brian Berenbach Siemens Corporate Research, USA
Daniel Berry University of Waterloo, Canada
Sjaak Brinkkemper Utrecht University, The Netherlands
David Callele University of Saskatchewan, Canada
Jane Cleland-Huang DePaul University, USA
Eric Dubois CRP Henri Tudor, Luxembourg
Jörg Dörr Fraunhofer-IESE, Germany
Armin Eberlein American University of Sharjah, United Arab

Emirates
Xavier Franch Technical University of Catalonia, Spain
Samuel Fricker Blekinge Institute of Technology, Sweden
Donald Gause Binghamton University, USA
Vincenzo Gervasi University of Pisa, Italy
Martin Glinz University of Zurich, Switzerland
Tony Gorschek Blekinge Institute of Technology, Sweden
Olly Gotel Independent Researcher, USA
Paul Gruenbacher Johannes Kepler University Linz, Austria
Peter Haumer IBM Rational, USA
Mats Heimdahl University of Minnesota, USA
Patrick Heymans University of Namur, Belgium
Matthias Jarke RWTH Aachen University, Germany
Natalia Juristo Polytechnic University of Madrid, Spain
Erik Kamsties University of Applied Sciences and Arts

Dortmund, Germany
Marjo Kauppinen Aalto University, Finland
Kim Lauenroth University of Duisburg-Essen, Germany
Soren Lauesen IT University of Copenhagen, Denmark
Pericles Loucopoulos Loughborough University, UK
Nazim Madhavji University of Western Ontario, Canada
Sabrina Marczak PUCRS, Brazil
Raimundas Matulevicius University of Tartu, Estonia
Ana Moreira New University of Lisbon, Portugal
John Mylopoulos University of Toronto, Canada
Cornelius Ncube Bournemouth University, UK
Andreas L. Opdahl University of Bergen, Norway
Barbara Paech University of Heidelberg, Germany

Conference Organization IX

Oscar Pastor Lopez Polytechnic University of Valencia, Spain
Anne Persson University of Skövde, Sweden
Jolita Ralyte University of Geneva, Switzerland
Gil Regev Federal Polytechnic University of Lausanne,

Switzerland
Colette Rolland University of Paris 1, Panthéon Sorbonne,

France
Camille Salinesi University of Paris 1, Panthéon Sorbonne,

France
Kristian Sandahl Linköping University, Sweden
Pete Sawyer University of Lancaster, UK
Kurt Schneider University of Hannover, Germany
Norbert Seyff University of Zurich, Switzerland
Guttorm Sindre Norwegian University of Science and

Technology, Norway
Janis Stirna Royal Institute of Technology, Sweden
Christer Thörn Jönköping University, Sweden
Inge Van De Weerd Utrecht University, The Netherlands
Roel Wieringa University of Twente, The Netherlands
Eric Yu University of Toronto, Canada
Konstantinos Zachos City University London, UK
Didar Zowghi University of Technology Sydney, Australia

External Reviewers

Abelein, Ulrike
Acher, Mathieu
Barnes, Raymond
Barney, Sebastian
Bos, Rik
Carrizo Moreno, Dante
Daneva, Maya
Delater, Alexander
Galster, Matthias
Gross, Anne
Jansen, Slinger
Jeanneret Wueest, Cdric Dustin
Jung, Christian
Koziolek, Anne
Mahaux, Martin

Merten, Thorsten
Myllärniemi, Varvana
Naab, Matthias
Raspotnig, Christian
Rifaut, Andre
Solari, Martin
Spruit, Marco R
Stoiber, Reinhard
Todoran, Irina
Torkar, Richard
Unterkalmsteiner, Michael
Vlaanderen, Kevin
Vriezekolk, Eelco
Zikra, Iyad
Zorn-Pauli, Gabriele

X Conference Organization

Steering Committee

Dan Berry University of Waterloo, Canada
Daniela Damian University of Victoria, Canada
Jörg Dörr Fraunhofer-IESE, Germany
Xavier Franch Technical University of Catalonia, Spain
Vincenzo Gervasi University of Pisa, Italy
Martin Glinz University of Zurich, Switzerland
Patrick Heymans (Chair) University of Namur, Belgium
Andreas Opdahl University of Bergen, Norway
Barbara Paech University of Heidelberg, Germany
Anne Persson University of Skövde, Sweden
Björn Regnell Lund University, Sweden
Camille Salinesi University of Paris 1, Panthéon Sorbonne,

France
Pete Sawyer (Vice-Chair) University of Lancaster, UK
Roel Wieringa University of Twente, The Netherlands

Requirements Engineering for Enterprise Systems:
A Keynote to the REFSQ’2012 Conference

Ian Sommerville

St Andrews University, United Kingdom
ian.sommerville@st-andrews.ac.uk

Abstract. Many approaches to requirements engineering are behavioural
and attempt to define required system features and functionality. They,
typically, have a ’single system’ focus. In this talk, I will argue that
this approach to requirements engineering is inappropriate for extending
’enterprise systems’ - systems of systems that support many different
operations in an organization. I will discuss an approach to requirements
engineering which moves away from the behavioural approach to require-
ments engineering to focus on the information requirements of stakehold-
ers in the enterprise. Information requirements are concerned with the
information needed by stakeholders, the channels used to deliver that
information and the issues and problems that arise if the information is
not delivered in a timely manner. I will propose that a model of stake-
holder responsibilities is an effective way of understanding and analyzing
these information requirements.

Biography

Ian Sommerville is a Professor of Computer Science at the University of St An-
drews, Scotland and was previously Professor of Software Engineering at Lan-
caster University. He is currently a principal investigator in the UK’s Large Scale
Complex IT Systems research and training programme with interests in modeling
complex systems of systems and in cloud computing. He has published exten-
sively in software and requirements engineering and is the author of a widely-used
software engineering textbook. He was awarded the 2011 ACM SIGSOFT Out-
standing Educator award for his work in software and requirements engineering
education.

Sponsors

Platinum Level Sponsors

Gold Level Sponsors

Silver Level Sponsors

Table of Contents

Session 1: Contractual Requirements

Why the Electronic Land Registry Failed . 1
Soren Lauesen

Answering a Request for Proposal – Challenges and Proposed
Solutions . 16

Barbara Paech, Robert Heinrich, Gabriele Zorn-Pauli,
Andreas Jung, and Siamak Tadjiky

Impediments to Requirements-Compliance . 30
Md. Rashed Iqbal Nekvi, Nazim H. Madhavji, Remo Ferrari, and
Brian Berenbach

Session 2: Quality Requirements

How Architects See Non-Functional Requirements: Beware of
Modifiability . 37

Eltjo R. Poort, Nick Martens, Inge van de Weerd, and Hans van Vliet

Research Preview: Prioritizing Quality Requirements Based on Software
Architecture Evaluation Feedback . 52

Anne Koziolek

A Simulation Approach for Impact Analysis of Requirement Volatility
Considering Dependency Change . 59

Junjie Wang, Juan Li, Qing Wang, He Zhang, and Haitao Wang

Session 3: Collaboration, Complexity and Creativity

Collaborative Resolution of Requirements Mismatches When Adopting
Open Source Components . 77

Nguyen Duc Anh, Daniela S. Cruzes, Reidar Conradi, Martin Höst,
Xavier Franch, and Claudia Ayala

High-Level Requirements Management and Complexity Costs in
Automotive Development Projects: A Problem Statement 94

Tim Gülke, Bernhard Rumpe, Martin Jansen, and Joachim Axmann

Choose Your Creativity: Why and How Creativity in Requirements
Engineering Means Different Things to Different People 101

Martin Mahaux, Alistair Mavin, and Patrick Heymans

XIV Table of Contents

Session 4: Requirements Analysis

Supporting Failure Mode and Effect Analysis: A Case Study with
Failure Sequence Diagrams . 117

Christian Raspotnig and Andreas Opdahl

Aligning Mal-activity Diagrams and Security Risk Management for
Security Requirements Definitions . 132

Mohammad Jabed Morshed Chowdhury, Raimundas Matulevičius,
Guttorm Sindre, and Peter Karpati

Towards a More Semantically Transparent i* Visual Syntax 140
Nicolas Genon, Patrice Caire, Hubert Toussaint,
Patrick Heymans, and Daniel Moody

Session 5: Templates and Heuristics

Providing Software Product Line Knowledge to Requirements
Engineers – A Template for Elicitation Instructions 147

Sebastian Adam

Supporting Learning Organisations in Writing Better Requirements
Documents Based on Heuristic Critiques . 165

Eric Knauss and Kurt Schneider

Managing Implicit Requirements Using Semantic Case-Based Reasoning
Research Preview . 172

Olawande Daramola, Thomas Moser, Guttorm Sindre, and
Stefan Biffl

Session 6: Requirements Traceability

Trace Queries for Safety Requirements in High Assurance Systems 179
Jane Cleland-Huang, Mats Heimdahl, Jane Huffman Hayes,
Robyn Lutz, and Patrick Maeder

Which Traceability Visualization Is Suitable in This Context? A
Comparative Study . 194

Yang Li and Walid Maalej

Session 7: Tools and Quality

The Case for Dumb Requirements Engineering Tools 211
Daniel Berry, Ricardo Gacitua, Pete Sawyer, and Sri Fatimah Tjong

Automatic Analysis of Multimodal Requirements: A Research
Preview . 218

Elia Bruni, Alessio Ferrari, Norbert Seyff, and Gabriele Tolomei

Table of Contents XV

10 Myths of Software Quality . 225
Elke Hochmüller

Empirical Analysis of the Impact of Requirements Engineering on
Software Quality . 232

�Lukasz Radliński

Session 8: Services and Clouds

A Systematic Literature Review on Service Description Methods 239
Abelneh Y. Teka, Nelly Condori-Fernandez, and
Brahmananda Sapkota

A Pattern-Based Method for Identifying and Analyzing Laws 256
Kristian Beckers, Stephan Faßbender, Jan-Christoph Küster, and
Holger Schmidt

Session 9: Self-adaptivity

Towards a Requirements Modeling Language for Self-Adaptive
Systems . 263

Nauman A. Qureshi, Ivan J. Jureta, and Anna Perini

Requirements Monitoring for Adaptive Service-Based Applications 280
Marc Oriol, Nauman A. Qureshi, Xavier Franch, Anna Perini, and
Jordi Marco

Session 10: Industrial Case Studies

Release Planning with Feature Trees: Industrial Case 288
Samuel Fricker and Susanne Schumacher

Goal-Oriented Requirements Engineering and Enterprise Architecture:
Two Case Studies and Some Lessons Learned . 306

Wilco Engelsman and Roel Wieringa

Author Index . 321

B. Regnell and D. Damian (Eds.): REFSQ 2012, LNCS 7195, pp. 1–15, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Why the Electronic Land Registry Failed

Soren Lauesen

IT University of Copenhagen, Denmark
slauesen@itu.dk

Abstract. [Context and motivation] In 2009 Denmark got a compulsory IT
system for Land Registration of ownership. It soon created a national disaster
because selling houses and getting mortgages might take months, rather than a
couple of days. In this period, house owners had to pay a much higher interest
rate. [Question/problem] The press claimed it was yet another IT failure, but
actually the IT system worked as intended. What was the real cause? [Principal
ideas/results] The visible problem was overloaded staff in the Registry Office,
but behind this were optimistic estimates of human performance, lack of us-
ability, insufficient user interface requirements, unrealistic SOA requirements,
immature risk analysis, and other factors. [Contribution] This paper shows
details of the requirements, what went wrong, and what could have been done,
e.g. early design of the user interface and giving the supplier more influence on
the architecture.

Keywords: information system failures, software failures, public software ac-
quisition, organizational implementation, usability, user interface requirements,
SOA architecture, risk analysis.

1 Background

In September 2009 Denmark got an Electronic Land Registry system (e-LR) that
overnight became the only way to register ownership of land and mortgage deeds. All
registrations had to be entered online or through system-to-system interfaces to finan-
cial IT systems. It was planned that 30% of the registrations should be selected for
manual checking based on confidential criteria. All stakeholders had known about the
new system for a long time and had been advised to prepare for the change.

Figure 1 shows the system and its context. Real-estate agents, lawyers and ordinary
citizens were expected to use a web interface (the external portal), the registry staff
used an internal user interface (the internal portal). The e-LR system integrated to
several government systems, e.g. the national digital signature (DanID), the civil
registration system, the business registry, one of the tax systems (for collecting the
registration fee) and the land plot registry.

Based on historical data, it was estimated that 5 million registrations would be
handled per year, corresponding to about 2 per second during peak load in daytime.
(Denmark has around 5 million inhabitants). The customer (the Land Registry) had
carefully estimated the number of employees needed to support this load, but the
estimate turned out to be far too small.

2 S. Lauesen

e-LR

Bank systems

Citizen

DanID

Business registry

Tax . . .

Land plot registry

Lawyer

Real-estate agent

Registry
employee

30%
manual
checks

Jan 2010: 50,000
registrations in backlog for 50+ days

5 mio registrations/year
2/s in peak load

Civil registration

Hotline reply:

3-30 weeks

Startu
p: 4

000

authorizations

How to ?

Fig. 1. Electronic Land Registry – Big-Bang Sept 2009

Technically the system worked as intended, but the staff immediately became
overloaded. Early 2010, more than 50,000 registrations were waiting for manual
checking with a delay of 50 days. The lucky 70% who were not selected for manual
checking, got their registration within a minute.

The unfortunate 30% lost money because they had to pay a much higher interest
rate in these 50 days. Since selling and buying real-estate is financially stressful to an
ordinary family, this loss could have serious consequences.

The situation could have been much worse. Due to the financial crisis in 2009,
there were only half as many registrations as expected. If the expected number had
occurred, the situation had become a true disaster.

This paper reports on how the overload could happen. There are many studies on
systems that fail or vastly exceed the budget and deadline [1, 2, 3, 4, 5, 6, 7, 17], but
the explanations are usually on a high level, such as poor project management, lack of
senior management support, or lack of user involvement. Poor project management
doesn't directly create a disaster. It is created through many specific flaws, such as
ignoring certain risks or not watching what the system supplier is doing. These spe-
cific flaws are rarely reported, and probably vary a lot from project to project. How-
ever, one study goes into detail: Leveson & Turner's investigation of the Therac-25
accidents, where patients were seriously harmed when treated by an electron beam
[11]. The cause was believed to be operator mistakes or faulty switches, but turned
out to be an error in the central real-time software where concurrent activities com-
municated through shared memory locations without proper synchronization.

In this paper we start with the visible problem - the overloaded staff - and identify
the main causes behind it. Some of the root causes are well known factors such as
poor project management, but some other causes are not covered by literature.

 Why the Electronic Land Registry Failed 3

Unfortunately, in complex systems the network of causes is not a precise concept.
Several factors contribute in each link of the chain [5, 11, 16]. All we can do is try to
identify the major ones and their approximate relationships.

2 Project History

The e-LR system was developed and operated by a large software house that won the
contract after a tender process. The customer was the Danish Courts. Denmark has
around 30 courts and most of them operated a land registration office for properties in
their own district. The plan was to locate the electronic land registration in only one
of the courts, in that way saving around 220 staff.

The history was as follows.

• Early 2005. A consultancy company had made a business case that showed that
the registration office could save around $20 M a year, and citizens and the finan-
cial sector around $80 M. (For simplicity, we have defined 1 USD = 5 DKK.)

• June 2006. The customer and his consultant had developed tender material
(including the requirements specification) and made a request for proposals.

• December 2006. The customer selected one of the suppliers and they signed the
contract. Expected deployment of the system was March 2008.

• 2007. It became obvious that the system couldn't be delivered on time. The new
deployment time was changed several times.

• 2007-2008. The huge archives of existing registered documents (40 million pages)
were scanned and filed, ready for the new system.

• Early 2009. The 220 staff were dismissed with the standard notice time of around
6 months. It was planned to be around three months after deployment, but the
schedule slipped once more, and as a result these employees had left when the
system was deployed.

• September 2009. The system was deployed as a big-bang. The registry office soon
became the overloaded bottleneck.

• Late 2010. The registration office managed to get rid of the backlog, and from the
end of 2010, 99% of the manual checks were handled within 15 days. The re-
maining cases were the very complex ones.

The development time had increased from the planned 18 months to 36 months. The
software cost had increased from the budgeted $15 M to $21 M (+40%).

Today the system is a definitive success. As an example, a citizen can walk into his
bank, and in less than an hour get a mortgage and $200,000 on his bank account.

3 Method

Late 2009, the Danish State Auditors (Statsrevisorerne, members of the parliament)
asked the National Auditors (Rigsrevisionen) to audit the project. They contracted
with Lauesen to help them with the IT aspects. The team agreed that an important
aspect of the audit was to identify issues that other IT projects could learn from.

4 S. Lauesen

The team gathered information in several ways. We read the existing documents
about the system. From an IT perspective, the most interesting ones were:
1. The requirements specification (406 pages with 413 requirements).
2. The supplier's proposal (600 pages).
3. The contract (32 pages with requirements and proposal as appendices).
4. Design specification, change specifications, etc. (more than 2000 pages).

We interviewed real-estate staff and lawyer staff to hear about the system and the
problems it caused. They also showed us how the system worked and how they used
it.

We conducted a focus group with senior representatives for the stakeholders: the
financial sector, the land surveyors, the lawyers, the real-estate agents, the customer
(the Land Registry) and the customer's consultant. We asked about good and bad
points in the system, and the stakeholders' priorities for improvements.

We had expected that the ordinary staff member's opinion differed from the senior
representative's opinion, and that stakeholders disagreed with each other. This turned
out to be wrong. Everybody agreed on good and bad points, although they gave them
somewhat different priorities.

We met with experts from the financial institutions to hear about their experiences
with the system-to-system integration, and with senior representatives for the cus-
tomer and his consultant.

Later we met with the supplier's senior staff and developers to discuss our findings
and the relationship between supplier, customer, and the customer's consultant. This
brought a quite different perspective to what had happened and why.

We wrote our findings as a preliminary report and submitted it to the customer for
review, discussed disagreements, and published the final report [15].

Later, Lauesen interviewed and exchanged mails with the president of the Danish
Courts and the supplier in order to get further insight into the overload and related
issues.

4 What Caused the Overload?

Why did the registry become overloaded? We found several reasons, but the most
important were these:

Cause 1: An unexpected number of requests for authorization. It was expected
that citizens would sign the various registrations digitally, using DanID, but few
did. Although DanID had been operational for several years, few citizens used it.
It was far too complex to install and maintain. (In contrast, most citizens used
the bank's shared digital signature without trouble.) The result was that lawyers
and real-estate agents needed to digitally sign on behalf of their clients, but to do
so required authorization from the Registry. The Registry was surprised to get
4000 authorization requests, and handling them caused much trouble.

Cause 2: An unexpected, huge number of requests to the Registry's hotline. The
requests came from lawyers and real-estate agents who couldn't figure out how
to use the system.

 Why the Electronic Land Registry Failed 5

Cause 3: Registry staff was much less productive than expected. They were not
comfortable with the user interface, although they had received training.

Cause 4: Mistakes in recent registrations. Since the old registry staff had been
dismissed, registrations until the big-bang were done by temporary staff, who
made many mistakes. After the big bang, many of these mistakes were revealed
during the manual checks and caused further delays.

Cause 5: Big-bang without a pilot test. Could the causes above have been antici-
pated? In hindsight it looks possible, but systems of this kind are so complex
that there always are surprises. One way to detect them is by running a pilot test,
for instance deploying the system in only one of the 30 Danish courts. This
would have revealed all the causes above, and it would have been far easier to
deal with them.

Below we will discuss the secondary causes, e.g. why the customer (the Land Regis-
try) didn't ensure proper usability, which would have reduced cause 2 and 3.

5 Usability and User Interface Requirements

Cause 2 and 3 above are consequences of low usability, so we will look at the usabil-
ity and how it was handled in the project. By definition we have a usability problem if
the system can support the user's tasks, but the user is unable to find out how or un-
able to perform the tasks efficiently [10, 12, 13].

There are some examples in literature where low usability seems to be the root
cause of the system failure, e.g. the London Ambulance [1], the FAA Air Traffic
Control System [5] and the Sydney health record system [16].

Here are four of the many usability problems real-estate agents and lawyers told us
about in the e-LR system:

1. How do you register a condominium deed? There were several options in the menu:
Single-family housing, cooperative apartment, farm – but no condominiums.

The professionals were stuck and called the e-LR hotline. It was busy, so they might
wait for an hour and then try the next day at a different time. It might take three weeks
to succeed. Once they got through, there was an immediate reply: Select single-family
housing – it includes condominiums. Since hotline had got this question frequently,
one might wonder why developers didn't change the menu. The reason was that the
judge in charge of the entire project refused: the law was clear and the term
single-family housing covered also condominiums.

Amazingly, the Land Registry was not aware that the essential waiting time was
three weeks. To his staff, it looked as nobody waited for more than an hour.

2. Is it free to make a trial registration? And how much does it test?
The user interface offered trial registration, but there was no hint at what it did and
whether there was a fee. Professionals knew that there was a fee (a tax) for registering a
mortgage, but would they be charged already at the trial? They had also experienced that
a registration was accepted in trial mode, but rejected when they tried to make it final. So
what was checked? Again it would take a long time to get a reply from hotline.

6 S. Lauesen

3. "Registration rejected". But why? Just try again?
When a registration was rejected, there was no explanation of the cause. Professionals
experimented wildly to find out why.

4. When are requests selected for manual checking?
The system told you that your request had been picked for manual check, but profes-
sionals had no idea why. When time approached Xmas, some professionals wrote
"Merry Xmas" in the field "message to the registry staff" - just to show sympathy
with the Registry staff. They didn't realize that the result was that the registration was
picked for manual checking (otherwise the staff couldn't see the message). The con-
sequence was a delay of two months.

Usability Testing
How could these usability problems have been avoided? Usability specialists recom-
mend that you make usability tests where potential users try to perform realistic tasks
with the system [10, 12, 13, 14]. They are given the same help as they would have in
real life. One or two usability specialists or developers observe what the user does and
record the problems. To help them understand the problems, the users are asked to
think aloud. Next the development team tries to remedy the serious problems, and
then run the test again until the result is acceptable.

With this approach, all four usability problems above would have been easy to de-
tect. The first two usability problems would also have been easy to repair even a few
days before the big-bang. The last two problems are harder to deal with. They might
require much programming. The last problem would even need some strategic re-
thinking, because some rules for picking a registration were measures against tax
evasion, etc. So these rules had to be secret. But others could be open to help the
users.

Usability experts also recommend that designers make an early prototype or
mockup of the user interface. It is used for testing and improving the user interface. In
this way, it would also have been possible to deal with the last two problems.

Usability Requirements
What did the requirements say about usability? The main requirement was this:

Req. 153: The supplier must during development test the usability of the
external portal. The bidder must describe how.

This is actually a great usability requirement, compared to what most requirements
say about usability. The supplier's reply to this requirement is also great:

Reply to req. 153: [We will test with] Rolf Molich's principles from his
book . . .

Molich is a Danish usability specialist and he too recommends thinking aloud with
early prototypes [12, 14]. However, the supplier's reply to appendix 21 about quality
assurance interprets Molich's approach in a different way:

Reply to app. 21, quality assurance: . . . this means that the test manager
guides the test participants through the tasks, asks explorative questions,
and helps as needed.

 Why the Electronic Land Registry Failed 7

This completely ruins the approach because the help available in real life is very dif-
ferent from this test approach. In real life nobody is available for guiding the user and
helping as needed.

Apparently, none of these approaches were carried out in the project. Five months
before the big bang, we find this change note among several others:

Change 32, 30-03-2009: Usability tests are replaced by a very close dialog
between [a supplier expert and a land registry expert]

This means that a domain expert (a land registration judge) and the supplier's designer
defined the user interface, but didn't do any usability testing. Usability experts know
that a user interface designed in this way is only understandable to a domain expert.
And this turned out to be the case also in this project. The lawyers and real-estate
agents didn't understand.

During our interview with 10 key participants on the supplier's team, they admitted
that they didn't know what usability testing was and hadn't done any. They had made
some user testing, which seemed to be more like the procedure suggested in the reply
about quality assurance.

The information we gathered from the customer (the land registry) showed that us-
ability testing was considered a nice thing to do at the end - if time allowed, but it
didn't. The attitude was that it was the professional user's own problem to learn about
the system. They had not taken the opportunity to make courses, etc. The customer
(and the supplier) used as an excuse that the system was not intended for the ordinary
citizen. It was hard to make them realize that the problems we reported were experi-
enced by professionals, not by the ordinary citizen.

Concerning usability, the Danish Tax authorities are strikingly different. Tax rules
are very complex, yet the Tax authorities have very successful web sites for reporting
your actual income and your expected income. These sites are not compulsory, but the
Tax authorities measure their success by how many citizens use the sites. In principle,
the e-LR could have been launched the same way.

User Interface Requirements
While usability requirements specify the quality of the user interface, user interface
requirements specify the functionality of the user interface. This can be done in sev-
eral ways, for instance listing the functions that should be available or describing
situations where the user will use the system. Both approaches were used in the e-LR
requirements. Use cases served as a list of functions and user stories as descriptions
of situations. Use cases as well as user stories come in many versions, but the versions
used in the e-LR were not effective.

Fig. 2 shows part of a user story from the requirements specification. The full user
story is 5 pages and in the story the user has to click a lot of buttons. It is a vivid sce-
nario where you as a reader can imagine the situation. It is obvious that the writer has
imagined a very concrete user interface with screens, pictures, menus and buttons to
click. There are a total of 7 user stories for the external portal and 11 for the internal.

Are these user stories requirements? This would mean that the final system should
have screens and buttons as described here. This would give the supplier little free-
dom and would mean that the customer had taken responsibility for usability.
Fortunately, the specification says that these user stories are not requirements.

8 S. Lauesen

Notification of division of property
Hansel and Gretel got married in 1989, but now they will divorce. Throughout the marriage they
have lived in Hansel's house and they have agreed that Gretel stays.

Hansel logs on to www.landregistry.dk. A welcome text appears. There is text and picture for land
registry of real estate, car mortgage . . . He can see an icon for Information Center . . .

Hansel clicks on the text real estate. Then he is shown a login picture . . . Hansel has his digital
signature stored on his PC . . . He is asked whether he wants to register or ask about real estate . .
. and his e-mail address . . . and whether he will work with information on ownership, mortgages,
easements or other.

He selects ownership and is asked whether it is
- Final deed
- Final deed on several properties
- Deed upon purchase price payment
- (And four other options, including division of property)

In total 5 pages
for this user story.
The spec says it isn't
requirements.

Fig. 2. From the requirements: User stories

However, the main idea of a long sequence of clicks, questions and screens to fill,
is visible in the final system. For instance it takes 22 screens to specify ownership of a
property.

Fig. 3 shows a use case that describes how the user can make a test registration. It
is a typical use case with an elaborate template with goal, precondition, post condition
and exceptions. In this example it is just a lengthy way of writing this:

Use case A.5: Test registration
1. The user chooses a filled out registration.
2. The system performs a test registration.
3. The user gets the result.

An even shorter version is a requirement in traditional IEEE-830 style:
Requirement A.5: The system must provide a function for test registration.

The user gets the result of the test.

The user has filled out a registration and wants to check it against the Land
Registry

It must be possible to perform a test registration of a deed that has been filled out
in the portal, in order that the user gets a quick reply whether the deed can be
registered.

Post condition:

Exceptions:

2. Test register The system performs a test regi-
stration of the selected item.

1. Select the The user must select the
registration registration to be tested.

Step: Actor: System: Proposer's solution:

Precondition:

Goal:

Name: Test registration Actor: External user Ver: 1.0 ID: A.5

USE CASE

Context
missing

Fig. 3. From the requirements: Use cases

 Why the Electronic Land Registry Failed 9

The main problem is that in the e-LR use cases we see too little of the context. Al-
though use cases are supposed to explain the context, they rarely do in practice. Some
of the user-story aspects are missing. When would the user do this? And what will he
do afterwards? Notice that a system that just reports Registration rejected fully meets
the requirement expressed by the use case.

The specification contained 23 similar use cases for the external portal, for instance
fill out registration, attach file, sign digitally. The internal portal had 31 use cases. A
note added that the use cases were not a full list of the user interface requirements.

Although these specifications go too far in the design direction (the user stories) or
don't cover the context of use (the use cases), they are actually quite good compared
to average requirement specifications. Most requirements deal poorly with the user
interface, and the traditional techniques offer no help.

Task descriptions are an alternative that combines the best parts of user stories and
use cases [9, 10]. Fig. 4 shows user interface requirements for registration of owner-
ship, expressed as a task description. Based on the interviews with the professionals,
the author wrote this task description in half an hour.

The left part of the task description lists what user and computer have to do together to
register ownership. During a physical session on the web site, the user may do some of
the steps, preferably in a free order. He should be able to park the case, for instance
waiting for other persons to sign the registration. In this example, the system must
enforce some preconditions between the steps. For instance it must not be possible to
modify the registration without getting new sign offs. In order not to obscure the user's
picture of the process, these preconditions need not be part of the task description.

The left part also mentions problems the user may have, for instance whether a test
registration costs something.

C1: Register ownership
Frequency: A few times in the citizen's life
User: Ordinary citizen

Subtasks and variants:

1. Fill out the registration (see data in
Chapter D).

1a. Select a parked registration.

2. Maybe attach documents

3. Test register and see what has to be changed.
Maybe test register again.

3p. What does it cost? Also when errors?

4. Provide payment information and send for final
registration.

5. Sign as needed.

6. Maybe park the case.

Solution examples:

The system indicates the data to be filled.

The system explains the error in plain
language.
Prices are shown up front.

The system explains what will happen and
how long it takes.

The system uses digital signature.

Example of computer's part
- not requirements

Carried out by
human + computer

Covers context plus 6 use cases

Optional subtasks.
Almost free sequence.

Fig. 4. Task descriptions: The system must support C1 . . .

10 S. Lauesen

The right part of the task description gives examples of what the system could do
to support the user, for instance inform about the prices and what is wrong. The right-
hand side is not requirements, but just examples. The true requirement is that the
system must support this task (and maybe 20 other tasks).

Compared to the other approaches, this single task description covers the context,
six use cases, and several usability problems. The description has not been carefully
reviewed by domain experts, but the immediate reaction has been: yes, we could have
done it this way.

6 Architecture and SOA Integration

One of the secondary causes of the staff overload was that development was late, so
there was no time for a pilot test. This again had several causes, one of them being
that there were time-consuming, unnecessary requirements in the architectural area.
We will look at some of the causes here.

Availability and Open Target
The customer (and his consultant) had specified that the system had to be available 99.9%
of the time. It is easy to ask for this, but customers don't think about the consequences.
Experienced system operators can meet this requirement, but it is expensive. The system
must run in several copies distributed geographically, maintenance and upgrades are
complex, etc. If the customer had asked for 99.5%, it would be a routine matter.

In the e-LR case, the cost of operating the system with 99.5 availability is around
$1 M per year. A 99.9% availability costs around $3 M per year. Is it worth it? In the
old system, the availability was 25% because the Registry office was open 8 hours
every weekday. Going for 99.9% in the future seems hard to justify.

The basic issue is that the customer may not be aware of the technical possibilities and
their costs. This can be remedied by requirements with a more open target, such as this:

Req. 120: The customer expects availability around 99.8%.

The supplier could then offer two alternatives:
Req 120, alternative 1: 99.5% at 1M $ per year.
Req 120, alternative 2: 99.9% at 3M $ per year.

Such requirements and alternatives must be supported by rules in the contract, for
instance as shown in [8]

Service-Oriented Architecture (SOA)
The customer (or rather his consultant) had suggested an advanced service-oriented
architecture, and this was what the requirements asked for. We have summarized the
requirements in this area as follows:

R1. The system must consist of modules connected with XML-services and a ser-
vice broker. Each possible check of a registration must be a separate service.

R2. The system must connect to the external systems with XML-services. The data
must always be retrieved from the external systems and not stored as a local copy.

A note added that all the external systems were stable and had well-defined XML
interfaces.

 Why the Electronic Land Registry Failed 11

These requirements sounded okay, but they caused many problems in practice.
Here are some of them:

SOA Eats Computer Power. Using an XML-interface requires 10-50 times more
computer power (CPU time) than traditional approaches. With the high demand at
peek load, this might become a problem. The supplier knew about this, but if he made
reservations in his proposal, he ran a risk of being non-compliant. He ended up saying
that he could make it as the customer asked for, but that he strongly suggested the
traditional approach being used for the internal interfaces.

Not surprisingly, in the final system, the traditional approach is used internally.

Always Getting Data from the Source Degrades Availability and Response Time.
The reason is that if the external system is out of service, the e-LR system will
essentially be out of service too. A similar argument holds for response time.

In this case the supplier made reservations in his proposal. The availability and re-
sponse times in the external systems had to be "deducted" from the availability and
response times of the e-LR system. The supplier also explained that he would con-
struct the system so that it would be easy to change each external connection to a
local copy with nightly synchronization.

Not surprisingly, the final system has a local copy of all the external data with nightly
synchronization of changes. The only exception is the digital signatures in DanID. Here a
high data actuality is justified, so that theft and other abuse can be stopped immediately.

In general, instead of asking for a specific architecture, the customer should ask for
a specific data actuality, i.e. how old the data may be [8]. As an example, it is not a
problem if a citizen's address is a few days old. This allows the supplier to come up
with a suitable architecture.

The External Systems Were Not Stable. The customer's consultant's dream of stable
external systems was just a dream. All of these systems (except the civil registration
system) were under major revision. Furthermore, all of the systems had to accommo-
date changes made specifically for the e-LR system. These issues were very costly
and time consuming to deal with for the supplier.

The supplier was lucky not to be judged non-compliant. Lauesen has seen some
public acquisitions with unrealistic requirements such as 100% availability. All bid-
ders except one made reservations. As a result the customer judged all of them non-
compliant except the unrealistic one. Later in the project it turned out, of course, that
the supplier couldn't meet the requirements, but the parties kept this confidential.

The ambitious SOA requirements were not really the customer's needs, but an ide-
alistic concept enforced by the customer's consultant's IT architect. It took a long time
to replace these ideals with something pragmatic.

7 Risk Analysis

Several of the causes above could have been prevented with proper risk management.
During the project the parties made regular risk analyses, but they seemed to be used
mainly for arguing that the risk wasn't important. Most of the bad things that actually
happened had been identified as a risk, but no action was taken. As an example, we
find these risks early 2007 (abbreviated):

12 S. Lauesen

ID Risk Level:
5 highest

Consequence Status/comment

1 SOA is immature 1 Tax uses SOA
2 Has the customer low IT

experience?
1 Has much experience

3 Supplier staff leaves 3 Less time for
test

Tight project
management

4 Interfaces to many sys-
tems

3 The systems are
stable

Comments:

Risk 1: The Tax department actually used SOA, but the large projects were not suc-
cessful or not yet completed.

Risk 2: The customer (the Danish Courts) had experience with IT systems for internal
use, but had not made a system for public use. With internal systems, they
could easily support the users, but a system for large-scale public use was very
different.

Risk 3: The supplier had planned to use a team with strong expertise in this kind of
projects. However, the entire team was bought by Google. This stalled the
project for a year, but the customer didn't notice. He just expected that the
system would be delivered according to the contract. When the customer found
out, he asked his consultant to manage the project. Together they succeeded
making the supplier give the project a high priority.

Risk 4: As explained above, the systems were not stable.

Five days before the big bang, this risk analysis was made:

ID Risk Level Consequence Status/comment
5 Low usability

shows up at de-
ployment

[none
stated]

Lack of usability The case is closed.
Probability reduced.

6 Lack of staff at
customer site

4 Long delays The customer assesses
the situation.

Comments:

Risk 5: The status "the case is closed" refers to the agreement four months earlier about
usability being replaced with a close dialog between customer and supplier. It is
scaring that the consequence of low usability wasn't understood: high load on
hotline and low productivity in the Registry office, causing further delay.

Risk 6: This is a clear statement that the risk is high, but the supplier will not take
responsibility for the consequences. Earlier the supplier had recommended a
pilot test and on-line help, but the customer claimed it was impossible.

It should be obvious that the risk analysis was not used correctly. There were no
safeguards and nobody took action for the high risks.

 Why the Electronic Land Registry Failed 13

8 Discussion and Conclusion

Above we have identified many causes on various levels. Fig. 5 gives a graphical
overview of them. We can see the network of causes and effects that resulted in low
usability. We can also see the causes that made it impossible to run a pilot test. Notice
that some causes have effect on several other causes, and some are caused by several
lower-level causes in combination.

Cause 17 (staff fired and funding cut too early) has not been mentioned above. When
a project like e-LR is funded by the government, the expected benefits are part of the
project plan. Once the decision is made, the government cuts the funding according to the
project plan. When the project becomes delayed, it is extremely hard to get the funding
back. Further, if the customer waits too long to dismiss the redundant staff, he has to pay
several months salary for no good. In the e-LR case, staff was dismissed so early and the
project delayed so much that there was no time for pilot testing.

The figure also shows some broad root causes that were clearly in play here: Poor
understanding of user capabilities and needs, poor use of established usability tech-
niques, poor risk analysis, and poor project management. More surprisingly, a major
root cause was that state-of-the-art in user interface requirements is insufficient.

Conclusion
The table below compares the findings in the e-LR project with the root causes reported
by others. The list of root causes is compiled from Glass [5, 1998], Ewusi-Mensah [4,
2003] and Charette [2, 2005]. If we ignore the somewhat different wordings, there is a
large overlap between these lists. From the comparison, we can conclude this:

11: Poor understanding of
user capabilities and needs

18: Poor risk
analysis

0: Overloaded registry staff

1: Unexpected need
for authorizations

6: Low usability 5: No pilot test

15: Costly, unnecessary
requirements

10: Poor user interface
requirements

14: Key staff left

13: Project delay
17: Staff fired and

funding cut too early
7: Usability planned

but later dropped

2: Unexpected many
hotline requests

3: Low staff
productivity

4: Mistakes in recent
registrations

8: Didn't understand
usability consequences

9: Poor use of
usability techniques

12: State of the art
is insufficient

16: Didn't watch
the supplier

19: Poor project
management

Arrow from cause to effect

Fig. 5. Causes and effects

14 S. Lauesen

Human-Performance Causes Are Not Covered by the Literature: Most of the
causes that directly related to the long delays are not covered by root causes from
literature (causes 0, 2, 3, 4, 6). Although it seems obvious in hindsight, none of the
authors suggest that you should estimate and test user performance, and that usability
is a key factor for human performance.

Practices beyond State-of-the-Art Are Needed: Poor development practice (D) and
poor requirements (B) do in principle cover the issues about low usability and poor
user interface requirements, but unfortunately the relevant techniques are not widely
known. They are beyond state-of-the-art in software engineering.

Customers State Ambitious Requirements without Caring about the Cost: Al-
though good requirements practice would guard against this, it doesn't happen in
public acquisitions. It is all too easy for the customer to state very ambitious require-
ments, and in the tender process it is dangerous for a supplier to reply with an
adequate, but less ambitious proposal. He might be deemed non-conforming.

The remaining causes are covered in principle, meaning that if project manage-
ment, risk analysis, etc. had been carried out perfectly according to state-of-the-art,
these causes should not occur.

Root causes from literature Causes found in e-LR

A. Too ambitious project 15 (costly unnecessary requirements)

B. Poor requirements 10 (poor user interface requirements),
15 (costly unnecessary requirements)

C. Technology new to the organization

D. Poor development practices 8 (didn't understand usability consequences),
9 (didn't master usability techniques),
12 (state-of-the-art is insufficient)

E. Inability to handle the project's complexity

F. Poor performance by hardware/software
suppliers

14 (key staff left)

G. Poor system performance

H. Poor project management 5 (no pilot test),
16 (didn't watch the supplier)

I. Bad planning and estimating 13 (project delay)

J. Poor status reporting

K. Poor risk management 7 (usability planned but later dropped)

L. Poor communication between customers,
developers and users

1 (unexpected need for authorizations),
11 (poor understanding of user capabilities
and needs)

M. Insufficient senior management involve-
ment

N. Stakeholder politics 17 (staff fired and funding cut too early)

O. Commercial pressures

P. Causes not covered 0, 2, 3, 4, 6 (human performance)

 Why the Electronic Land Registry Failed 15

Implications for Requirements Research and Practice: There is a large gap
between best practice in requirements and best practice in usability. As an example,
early mockups of the user interface combined with usability tests of the mockups are
not considered a crucial technique in requirements. It should be a standard approach.

Further, current practice is inadequate for specifying requirements to the user inter-
face. Neither traditional shall-requirements, nor user stories or use cases are adequate.
Task descriptions [9] cover much better and should be widely used.

Finally, there is a need to include user performance and organizational implemen-
tation in requirements. Little has been done in this area and literature is weak.

References

1. Beynon-Davies, P.: Human error and information systems failure: the case of the London
ambulance service computer-aided despatch system project. Interacting with Computers
11(6), 699–720 (1999)

2. Charette, R.N.: Why software fails. IEEE Spectrum (September 2005) (Lists 31 failed US
projects from 1992 to 2005)

3. Emam, K.E., Koru, A.G.: A replicated survey of IT software project failures. IEEE
Software (September/October 2008)

4. Ewusi-Mensah, K.: Software development failures. The MIT press (2003)
5. Glass, R.L.: Software runaways. Prentice Hall (1998)
6. Jones, C.: Patterns of large software systems: failure and success. IEEE Computer

(March 1995)
7. Keil, M., Rai, A., Mann, J.E.C., Zhang, P.: Why software projects escalate: The

importance of project management constructs. IEEE Transactions on Engineering
Management 50(3) (August 2003)

8. Lauesen, S.: Guide to Requirements SL-07 - Template with Examples (2007),
http://www.itu.dk/people/slauesen/SorenReqs.html#SL-07
ISBN: 978-87-992344-0-0

9. Lauesen, S., Kuhail, M.: Task descriptions versus use cases. Requirements Engineering
Journal (2011), doi:10.1007/s00766-011-0140-1

10. Lauesen, S.: User Interface Design - A Software Engineering Perspective. Addison-
Wesley (2005)

11. Leveson, N.G., Turner, C.S.: An investigation of the Therac-25 accidents. IEEE Computer
(July 1993)

12. Molich, M.: Usable Web Design. Nyt Teknisk Forlag, Denmark (2007)
13. Preece, J., Rogers, Y., Sharp, H.: Interaction Design – Beyond Human–Computer

Interaction. John Wiley & Sons, New York (2002)
14. Redish, J., Molich, R., Bias, R.G., Dumas, J., Bailey, R., Spool, J.M.: Usability in Practice:

Formative Usability Evaluations — Evolution and Revolution. In: CHI 2002, Minneapolis,
USA, April 20-25 (2002)

15. Rigsrevisonen: Beretning til Statsrevisorerne om det digitale tinglysningsprojekt (in
Danish) (August 2010), http://www.rigsrevisionen.dk/media(1610,1030)/14-2009.pdf

16. Southon, G., Sauer, C., Dampney, K.: Lessons from a Failed Information Systems
Initiative: Issues for complex organisations. In: APAMI/HIC 1997, Sydney (August 1997)

17. Wallace, L., Keil, M.: Software project risks and their effect on outcomes.
Communications of the ACM (April 2004)

B. Regnell and D. Damian (Eds.): REFSQ 2012, LNCS 7195, pp. 16–29, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Answering a Request for Proposal –
Challenges and Proposed Solutions

Barbara Paech1, Robert Heinrich1, Gabriele Zorn-Pauli1

Andreas Jung
2
, and Siamak Tadjiky2

1 University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
{paech,heinrich,zorn-pauli}@informatik.uni-heidelberg.de

2 S4M - Solutions for Media GmbH - Broadcast Management Systems.
Am Coloneum 3, 50829 Köln, Germany

{andreas.jung,siamak.tadjiky}@s4m.com

Abstract. [Context and motivation] The tender process is a special
requirements engineering process. The customer provides a request for proposal
(RFP) with requirements of varying detail. Several software companies answer
with a solution proposal. The customer chooses the supplier according to the
price and the quality of the proposed solution. So far very little has been
published on how the requirements engineering process of the suppliers in
producing the solution proposal should be performed. [Question/problem] The
main challenges of the tender process for the supplier are that the RFP is very
big and the solution proposal has to be produced in a very tight time frame.
Furthermore, there is typically very little direct communication between
customer and supplier, which is needed to clarify the requirements in the RFP.
So, the supplier needs to guess the meaning of the requirements. [Principal
ideas/results] The main idea to overcome these challenges is to produce a
structured documentation of available solutions and typical risks experienced in
former tender processes. This documentation can be used to identify the most
important risks of the current tender process and to efficiently produce a viable
solution proposal. [Contribution] In this paper we report on the experiences of
a supplier company with tender processes. We summarize the challenges of the
requirements engineering for tender processes from the viewpoint of the
supplier and we describe the solutions envisaged by this company for these
challenges.

Keywords: Tender process, requirements engineering, request for proposal,
risk assessment, knowledge management.

1 Introduction

In the area of requirements engineering (RE) very often continuous communication
between customer and supplier is assumed. In practice this is often not the case. In
market-driven development the supplier produces software for a vast number of
unknown customers [8]. Another situation where such communication is not possible
is a tender process. The customer provides a request for proposal (RFP) with a big

 Answering a Request for Proposal – Challenges and Proposed Solutions 17

number of requirements of varying detail. Several software companies answer with a
solution proposal. The customer chooses the supplier according to price and quality
of the proposed solution. The main problem of such a tender process for the supplier
is that the RFP is very big and the solution proposal has to be produced in a very tight
time frame. Furthermore, there is typically no direct communication between
customer and supplier, which is needed to clarify the requirements in the RFP. So the
supplier needs to guess the meaning of the requirements. Very few papers have been
published dealing with RE for tender processes. Lauesen [2] is one of the few
exceptions. He provides guidelines for the creation of the RFP by the customer. These
guidelines could also support the suppliers. However, experience of the authors of this
paper shows that they are not applied by the customers. We did not find specific
guidelines for the suppliers in the literature.

In this paper we report on the experiences of a supplier company with tender
processes. This company has 15 years of experience. Most of the supplier’s projects
are acquired by proposal submission.. The supplier has been continuously improving
their software engineering processes and the RFP phase.

In the following we summarize the challenges of RE during the tender process
from the viewpoint of the supplier and we describe the solutions envisaged by this
company for these challenges. We only refer to the RE process after the tender has
been won, if it is important to understand the RE during the tender process. In
Section 2 we discuss related work and introduce Lauesen’s guidelines. Section 3
describes the situation of the supplier and the resulting challenges. Company-specific
details are left out on purpose. The solutions for these challenges have been
developed in several internal workshops at the supplier company and in one workshop
moderated by the first author of this paper. The last workshop is sketched out in
Section 4. The outcome of the last workshop – guidelines on how to improve the RE
process of the supplier – is summarized in Section 5. Section 6 concludes the paper
and proposes future research work on this topic.

2 Related Work

A literature search concerning RFP (or call for tender) surfaced a paper about an agile
RFP process [1]. It advocates a careful RE process from the customer based on user
stories of different detail. RE for tender processes is also discussed in the area of
COTS selection e.g. [5], but again there the focus is on the customer view. Similarly,
in [9] the customer RE process is targeted by re-using former requirements through
patterns. In [6] requirements interchange in complex customer supplier relationships,
such as in the car industry, is discussed. This also includes a tender process, but
because of long-term relationships, a collaborative communication is advocated. This
is not the case in most other domains. The consultant Tom Searcy published a book
on RFP from the supplier viewpoint [10]. This book provides guidance on the
decision whether to get involved in a tender process or not, and how to organize a
response to the RFP. It does not comprise guidelines on the elicitation and
management of the system features to be included in the response.

Most detailed are the mentioned guidelines by Lauesen. He discusses the tender
process for public organizations in the EU from the viewpoint of the customer [2].

18 B. Paech et al.

The processes have to follow strict rules to protect against corruption. Private RFPs
do not have to follow these rules, but often adapt them.

Lauesen’s guidelines are based on his Task and Support approach [4]. In his Guide to
Requirements SL-07 he provides a template for a better handling of requirements by the
customer within a tender process [3]. It is aimed at coping with the major challenges such
as risk balance between customer and supplier, solution-focused customer requirements
or requirements which do not cover important customer demands. The approach provides
two main artifacts which are explained in the following:

• Task descriptions to illustrate customer demands and to differentiate them from
solution specifications.

• A template for associating customer requirements with proposed solutions that
also provides information about gaps by using codes to categorize solution
specifications.

Tasks

In Lauesen’s approach user tasks capture customer requirements as shown in Table 1.

“A user task is something user and computer do together from start
to end without essential interruptions. A good start point is something
that happens in the user's world, for instance that a client calls. A good
end point is that nothing more can be done about the case right now -
the user deserves a "coffee break" (task closure).” [3]

Table 1. Requirement Template SL-07 Used for RFP (taken from [3])

Task: Handle request
Subtasks and variants: Example solutions:

1. Receive the request through
phone or email. Or look at the
pending requests.

2. Record the request, particularly
the user's phone, email and the
cause of the request.

In case of an email request, the
system automatically transfers
data from the email.

2p. Problem: Cumbersome to
record, particularly when it is an
on-the-spot solution.

2a. It may be an update of an
existing request. Find it.

The system shows possible
matches with the caller's name or
parts of it.

Table 1 is taken from an example Hotline development project. It describes the

first part of the main hotline task of handling requests. The first column of the table
lists the subtasks. Subtasks can also capture variants. The user decides which subtasks

 Answering a Request for Proposal – Challenges and Proposed Solutions 19

are done in which sequence. The advantage of using task descriptions is to be able to
state problems (see Table 1, row 2p.) without specifying how to cope with the
problem. Additionally, further context information related to a task can be captured,
such as the actors (users) or the environment where the task is performed. Tasks
which are related to the same environment can be bundled into work areas. A work
area provides information about the user profiles (roles) and the environment.

Requirement Template

The template, as illustrated in Table 1, provides two columns. In column 1 the
customer´s demands are shown and column 2 presents solution possibilities regarding
specific needs. This could be used to capture specific requirements in the RFP by the
customer. In the example there are two subtasks (receiving the request and recording
the request). R 2a indicates a variant for the subtask 2. Row 2p captures a specific
problem when performing subtask 2. Column 2 indicates two example solutions
proposed by the customer. The supplier, however, is free to provide a different
solution for the subtask or problem.

Table 2. Requirement SL-07 Template Used as RFP Response (taken from [3], example codes
are from an earlier version)

Task: Handle request
Subtasks and variants: Example solutions: Code

1. Receive the request
through phone or
email. Or look at the
pending requests.

5

2. Record the request,
particularly the user's
phone, email and the
cause of the request.

In case of an email request, the system
automatically transfers data from the
email.
(The system has a semi-automatic
capture of email. The user must
initiate the recording.)

1

2p. Problem: Cumbersome
to record, particularly
when it is an on-the-
spot solution.

A. The present version records the
caller based on the email.

B. Release 18 will provide buttons for
easy recording of the most frequent
causes

4.18

2a. It may be an update of
an existing request.
Find it.

The system shows possible matches
with the caller's name or parts of it.

The system also provides phonetic
search. See screen 12 in App. x.

1

The supplier could use the provided template for the response to detail the solution

by filling column 2 in accordance with the supplier’s system. The supplier may

20 B. Paech et al.

indicate alternative solutions or deviations from solutions proposed by the customer
as shown in Table 2 (row 2). For subtask 2, the solution proposed by the customer is
cancelled and another solution mentioned. For the problem 2p, two new solutions are
proposed.

In addition, a further column can be added to capture further information
depending on the nature of the project. The customer may specify priorities of the
requirements, or give a score for the supplier's solution. Another possibility is that the
supplier fills in column 3 with a code that specifies the delivery (see Table 3) to
support effort and time estimations. Example applications are shown in Table 2.

Table 3. Codes for Solution Specifications (taken from [3])

Code Description

1 Part of the supplier’s system

2.x
An extension of the supplier’s system, but the extension is covered by
the ordinary maintenance agreement. Will be available from delivery
stage x.

3.x
Custom-made software or an extension of the supplier’s system that is
not covered by the ordinary maintenance agreement. Will be available
from delivery stage x.

4.y
Part of a future release that will be supplied under the ordinary
maintenance agreement. Will be available from release y.

5 No solution is offered for this requirement.

alt.z Alternative solutions are offered. This solution is part of alternative z.

3 Being a Supplier in a Tender Process

The situation of the supplier is as follows: a customer has provided a list of
requirements – often phrased as questions – and the supplier is requested to detail
which requirements can be met and how the solution could look like. Often the RFP is
made available via a web portal for online editing or with sophisticated Excel-sheets
where each requirement has a specific identification key. This key is used for tracing
by the customer, but also by the supplier. The answers to the questions have to be
provided in the same manner as the questions. The supplier derives the answers to the
questions from existing systems which have been developed earlier for other
customers. During this phase (which we call RFP phase in the following) the supplier
has to make difficult decisions as to which kinds of gaps exist between the request
and the existing systems and how much effort it is to develop a system filling these
gaps. In particular, it is important that the sketched solution system and the estimated
cost are competitive compared to other suppliers.

In the following, we sketch the roles involved on the supplier’s side in producing
the response to the RFP and their information responsibilities. Based on this, we
explain the challenges of this process.

 Answering a Request for Proposal – Challenges and Proposed Solutions 21

3.1 Roles

Several roles need to be involved to create a response to an RFP. This includes RE
experts, who have worked in former tender processes and who also have been
involved in the projects following a successful tender process, as well as development
experts, who have been involved in the creation of previous systems.

In detail, the following roles are important:

Consultants are responsible for the elicitation and specification of the requirements
during the RE phase after the proposal has been won. As experts for the customer
view, they are involved during the RFP phase. They do not have detailed technical
knowledge and contact the module specialists when needed during RE. Their work
during the RE phase is based on the outcome of the RFP phase. Thus, they are very
interested in producing a good response during the RFP phase.

Management makes the main decisions regarding the price offered to the customer
and the internal resources.

Module specialists are responsible for one or more modules which are used in the
different existing systems. They know the technical details of the modules and how
the modules interact with one another. They know when to consult the software
architects. During the response creation they are important to decide on the detailed
technical risks of the envisioned system.

Sales specialists are the persons mainly responsible during the RFP phase. They talk
to the customer and answer the RFP. Therefore, they have to decide about the features
to be offered to the customers. This decision is based on existing systems from the
supplier. They delegate some of the work to answer the questions to consultants.

Software architects are responsible for the architecture of the system delivered to the
customer. They know how the different modules work together. During the RFP
phase they are involved as experts for the architecture-related technical risks of the
envisioned system.

3.2 Information Responsibilities

The purpose of this subsection is to characterize the RE process of the supplier for the
response to the RFP. As described in [7] we prefer to characterize a process by an
information model instead of a process model. It would involve too much detail to
describe all the activities of the roles. Furthermore, one would need to describe a
control flow between the activities, which cannot be given in general. An information
model answers the following questions:

• Which viewpoints (the level of technical detail and intended audience) are
captured, and in which documents?

• Who creates which information, and for which audience?
• Who approves the documents?
• Who reviews the documents?
• Who checks consistency?
• Who approves and propagates change?

22 B. Paech et al.

Customer Supplier RFP Team Supplier Product Team

Test scenario(Customer)

Request for proposal (Customer)

Response
(Sales,Mgt)

External gap list
(Sales)

Risk estimations (Consultants)
Sales
Level

Questions
(Consultant)

Contract scheme, time and
ressource plan,references

(Management,Sales)

Previous response (Sales)

Functional specification (C, SA)

Roadmap
(Sales)

Running
reference system

(Sales)

User
Requirements
Level

System
Requirements
Level

Actual system
(Customer)

Existing systems
(e.g. screenshots)

(Consultant)

Virtual reference system
(Sales) Module

(MS)

System from competitor
(Sales)

Technical spec.
(SA,MS)

Audience:

Module interaction
(SA)

Risk estimations (SA,MS)

Internal gap list
(Sales)

Fig. 1. Information Model

For the purpose of this paper we focus on the first two questions. In Figure 1 the
information model is depicted. It shows the information (which is documented or just
in the head of some person) currently used for RFP phase decisions. Each information
item is represented by a box. Information which is only sometimes available is
indicated with a dotted line. The information is categorized with respect to the creator
(who creates the document or who is responsible for the information). The creator is
shown in brackets in the box. The information is also categorized with respect to the
audience (who is the intended reader of the document or the intended receiver of the
information – shown in the upmost row) and the level of technical detail (shown in
the left column). Three levels are distinguished:

Sales Level: This is the level used by the customer in the RFP and by the supplier in
the response. It describes the system in terms of features (represented in the response
to the RFP questions). On this level sometimes technical details are involved, but they
are not backed up by a detailed understanding of the user requirements.

User Requirements Level: This level captures the business processes and use cases
from the viewpoint of the user. It details the features and thus makes clear how the
features support the user.

System Requirements Level: This level captures the functionality and quality
characteristics of the system. It details the user requirements and thus makes clear which
system functions and data and qualities are needed to realize the user requirements.

 Answering a Request for Proposal – Challenges and Proposed Solutions 23

The audience can be the customer or the supplier team involved in the RFP phase.
Furthermore, for the supplier, the product development team providing the products
(in part by adapting existing systems) is involved as well.

The following can be seen from Figure 1:

Sales Level

• The customer provides the RFP
• The customer answers questions by the consultants (sometimes).
• Sales provide the response to the customer. This includes cost and project

resources.
• Sales create a roadmap. This is a list of features which are to be developed in

following releases, but which are included in the cost to the customer.
• Sales use previous responses to identify features which can be offered.
• Management provides constraints for the contract, time and resource

planning as well as references to be included in the response.
• Consultants provide estimations of risks for selected features (as requested by

sales).
• Sales create a list describing the gaps between the requested requirements and

existing systems (for internal purposes and with adaptations also for the
customer).

User Requirements Level

• The customer provides test scenarios describing business processes and use
cases (sometimes). The supplier has to demonstrate that they can satisfy these
scenarios.

• Sales use functional specification documents describing use cases for parts of
existing systems (sometimes).

System Level

• The customer requests a running reference system (sometimes).
• The customer provides information on their actual system (sometimes).
• Software architects and module specialists provide estimations of technical

risks for selected features (as requested by sales or consultants).
• Sales base their response on a reference system. This system is mostly virtual,

that means it combines features of different existing systems, but this
combination is not yet implemented at the time the response is created.

• Sales (with the help of consultants) use knowledge about the supplier’s
existing systems.

• Sales use knowledge about the systems of the competitors (sometimes).
• Module specialists and software architects use technical specifications of

existing modules (sometimes).
• Module specialists provide knowledge about the modules and their

dependencies and conflicts with one another.
• Software architects provide knowledge about the interaction of the modules.

24 B. Paech et al.

3.3 Challenges

This section describes the main challenges for the supplier. They are clustered into two
categories: the first category comprises challenges incurred by the behavior of the
customer. Typically, it is not possible to alter this behavior. So the supplier has to
develop countermeasures to deal with this behavior. In the second category are problems
relating to RFP phase communication and decision making within the supplier.

Customer-Incurred Challenges

• The RFP is of low quality so that many questions are difficult to understand.
• The customer requests specific solutions. It would be helpful to understand

the business processes and user requirements behind these solutions, because
sometimes the supplier could offer a (better) realization of the user
requirements, but not of the specific RFP requirements.

• Very rarely a direct communication with the customer is possible to clarify the
requirements. Sometimes questions from the supplier to the customer are
possible, but mostly the answers do not give much further insight. Furthermore,
often answers to these questions are made available also to the competitors so
that through questions supplier-specific features can become public. Therefore,
the supplier has to decide very carefully which question to pose how.

• The supplier RFP team must estimate cost and effort without a detailed
understanding of the requirements.

• The customer not always answers questions timely. This slows down the
creation of the response.

• The time for response creation is very short.

Internal Challenges with RFP Handling

• The following challenges are typical for any offer. They are particularly
difficult in the RFP process, because of the customer-incurred challenges
mentioned above:

o The decisions about what to offer to what price are high risk
decisions. Wrong decisions induce high cost.

o Effort estimation is difficult.
o The balance between customer satisfaction and cost is difficult.

• It is dangerous to include screenshots in the response as the customer might
get too focused on this exact solution.

• Communication between sales and consultants on the one side and module
specialists and software architects on the other side must be very efficient.

• Gaps and risks are not always identified correctly: Often they can only be
recognized by looking at the whole reference system. Individual systems or
modules may offer solutions which are incompatible.

• A reliable basis for the creation of the response is not always given, as some
knowledge regarding the existing systems is implicit. This knowledge is often
captured in responses to previous RFPs, but not consolidated to be reusable in
other responses or projects.

 Answering a Request for Proposal – Challenges and Proposed Solutions 25

• The identification of experts and generalists who can provide important
information is not easy.

• The response creation process is slowed down because experts are busy with
other projects.

4 The Workshop

The supplier had discussed the challenges in internal workshops, but then decided to
have one more workshop with an external moderator. In preparation of the workshop
a one-day meeting was held with the first author and two representatives of the
supplier. During this meeting the roles involved in the RFP phase, documents created
and activities performed during these phases were discussed. In addition, also a
preliminary list of challenges was identified and the goals for the workshop were
determined. The latter were:

• To make clear the complexity of the RFP RE process and of the involved
decisions, as well as the challenges faced during and after the decisions.

• To motivate the whole team for the importance of these decisions.
• To learn about existing techniques to support these decisions.
• To create a common view of the current processes and their challenges.
• To create a common view of possible solutions and a vision of applying the

solutions.

Thus, the agenda of the workshop comprised the following topics:

• General introduction of participants, terminology and RE basics (including
the template by Lauesen)

• Brainstorming of typical challenges of the RFP phase
• Creation of an information model for the current RFP process
• Discussion of solutions for particular challenges in two groups and

presentation of group work results
• Discussion of workshop results, identification of next steps and feedback on

the workshop

In addition to three members of the Heidelberg Software Engineering group, there
were 10 participants from the supplier side comprising representatives of the different
roles. The outcome of the workshop is presented in the next section.

5 Proposed Solutions for the Challenges

The following three main solutions for the challenges emerged during the workshop:

1. Development of a risk classification checklist for customer-incurred risks
2. Improved documentation of knowledge about existing systems
3. Improved documentation of knowledge from the RFP process.

These solutions are detailed in the following three sub-sections.

26 B. Paech et al.

5.1 Risk Assessment Checklist

The first group identified types and indicators for customer incurred risks. These
types and indicators deal with the specification and communication problems (the first
three customer incurred challenges described in subsection 3.3), as the time
constraints cannot be influenced. They should provide a checklist to review the RFP
with respect to important risks. Examples are the following:

Type 1: Incomplete Customer Requirements
Many times the customers are influenced by the functionality of the actual system or
an ideal system they have in mind. Therefore, the set of requirements contains often
requirements to extend the functionality of the actual system. A lot of information or
knowledge about customer needs or processes is available only implicitly.
Additionally, interface requirements are often neglected, but they potentially involve
risks and problems.
Indicators:

• Customer references a running or hypothetic system.
• Customer business processes or system interfaces are not transparent.

Type 2: Customer Requirements Are Specified on the Solution Level
If the customers specify requirements on a solution level, the solution alternatives are
unnecessarily constrained.
Indicators:

• Customer references a running or hypothetic system.
• Customer requirements do not describe What is required of the new system,

but How this should be implemented instead.
• Attachments such as screenshots, reference to interfaces, provided technical

data suggest requirements on solution level.

Type 3: Customer Requirements Are Too Generic (e.g. Non-functional
Requirements)
Every requirement that is specified in a vague manner poses potential risks. For
example, “The system must provide filter functionality as in Excel”.
Indicator:

• Requirements are specified in a way, that they are not testable.

Type 4: Customer Requirements Specification Is Very Domain-specific
Depending on the customer context specific domain knowledge is necessary to
understand customer needs. Missing joint understanding of terminology involves
potential risks.
Indicator:

• A comprehensive glossary is absent.

Type 5: Customer Requirements Contain Conflicts
To identify conflicts within customer requirements, a link to business processes or
workflows, which provide additional context information, would be helpful.

 Answering a Request for Proposal – Challenges and Proposed Solutions 27

Conflicts will only become apparent if viewed in the context, but there are difficulties
of an end-to-end view for requirements that span multiple systems or processes.

Indicators:
• Requirements could not be assigned to already known workflows or use

cases.
• Customer business processes are not transparent.

Type 6: Customer Requirements Are Not Realizable
Every “must have”-statement in the RFP involves potential risks, because this
specification represents non-negotiable requirements which must be provided by the
solution. Additionally, technology-specific requirements also involve potential risks
related to the technical realization possibilities.

Indicator:

• Requirements specification contains “must have”-statements.
• Data migration needs
• New technologies involved
• Interfaces to other systems are needed.

This preliminary list developed in the workshop should be consolidated by looking at
previous tender processes. Furthermore, it should be continuously updated. Related to
the approach of Lauesen (see Section 2) a tagging approach for requirements in the
RFP could be developed. Codes corresponding to the risk types could be used to tag
every requirement. This provides a better overview of the risk level of the whole RFP.

5.2. Documentation of the Existing System

As can be seen from the previously presented list of internal challenges (see sub-
section 3.3.), knowledge capture and communication are very critical. To be prepared
for a quick assessment of the RFP the following knowledge should be readily
available:

• Which existing system uses which module?
• Which module supports which features?
• Which feature is in conflict with which other feature? A conflict occurs when

two features cannot be realized in the same system.

This knowledge should thus be documented compactly. The conflicts could be
documented between modules or features. A conflict matrix between modules would
describe which modules exclude one another. Similarly conflicts between features
could be captured (which are typically induced by conflicts between the modules
implementing the features). In both cases only the indication of the conflicts would
not be enough, because it is not clear why this conflict exists. Thus, descriptions of
the conflicts need to be captured as well.

28 B. Paech et al.

Based on this documented knowledge it can easily be documented

• which feature (and thus which module) is used in the reference system and
• which known conflicts are contained in the proposed reference system?

The main effort for such documentation is to come up with a good set of features (not
too detailed) and to find good representations for conflict relationships. In the long
run visualizations of the conflict relationships will be helpful to get a quick overview.
However, this requires high maintenance effort. Depending on the numbers of
features, modules and systems, a database or an Excel sheet is sufficient. In both cases
it is necessary to analyze which information is used when (e.g. when and how often
does someone want to know which features a module has and when and how often
does someone want to know which modules or systems are used for a feature). Then a
format should be chosen according to these usages. This also applies to the definition
of the conflict representation.

This documentation should be updated during development. New conflicts detected
during the RFP phase or implementation of an offered system should be captured.

5.2 Documentation of the RFP Knowledge

As many people are involved in response creation at different times, as much
knowledge as possible on assumptions and decisions made should be documented.

Such knowledge includes

• the features and modules of existing systems used for the reference system
together with cost estimations and development risk estimations.

• the external and internal gaps. It should be clearly documented when a gap is
identified. This applies when the gap is communicated to the customer
(external), but also when the gap is closed in the response by a hypothetical
feature in the reference system (internal). As described in Lauesen’s approach
(see Table 2) a gap should be treated as a feature (whose realization has to be
paid by the customer or by the supplier in a future release).

• the lessons learned from the RFP negotiations.

The first two bullets correspond to a draft response consisting of a list of features
which are tagged as external gap or as internal gap or as existing features. Each
feature is also tagged with cost and development risk estimates. Clearly, only part of
this information is passed on to the customer.

6 Conclusion

In this paper we have presented challenges and proposed solutions for the RE of the
supplier in a tender process. To our knowledge this is the first description of the
supplier view. The solutions have not yet been fully applied in practice. The company
reviewed the workshop results one month after the workshop and decided to start
implementing the proposed solutions. They will be applied in the next RFP phase.

 Answering a Request for Proposal – Challenges and Proposed Solutions 29

Currently the company is consolidating the description of the conflicts and of the gaps
identified in previous responses. Furthermore, they are refining the risk list and
improving means to cope with these risks.

From the research view it seems interesting to study the following questions:

• What is a good way to document existing systems so that they can easily be
compared with a RFP? For the documentation of features and their relationships
product line approaches could be relevant. However, there is not that much
overlap between the systems offered to different customers. Thus, product line
approaches need to be adapted for efficient use in the tender process.

• What is a good way to document gaps between requirements and system
descriptions on different levels? So far the literature mainly concentrates on
the refinement of high-level descriptions to low-level descriptions and on the
capturing of traces of these refinements. However, in the RFP context a pure
top-down process is not possible. High-level requirements of the RFP have to
be mapped to low-level descriptions of features of the existing systems. A list
of features necessary for the RFP but not yet provided is a first idea of such a
gap description. However, it bears the risk that the features are very specific
to the given RFP. Thus, from several RFPs a huge list of small gaps would be
collected. Also, the organization of the list for efficient search is a problem.

Acknowledgements. We thank all the participants of the workshop for the
stimulating discussions and their commitment during the group work.

References

1. Andrea, J.: An Agile Request for Proposal (RFP) Process. In: Agile Development
Conference, pp. 152–161. IEEE (2003)

2. Lauesen, S.: COTS Tender and Integration Requirements. Requirements Engineering
Journal 11(2), 111–122 (2006)

3. Lauesen S.: Guide to Requirements SL-07: Template with Examples, version 4 (2011),
http://www.itu.dk/~slauesen/SorenReqs.html

4. Lauesen, S., Kuhail, M.A.: Use Cases versus Task Descriptions. In: Berry, D., Franch, X.
(eds.) REFSQ 2011. LNCS, vol. 6606, pp. 106–120. Springer, Heidelberg (2011)

5. Maiden, N.A., NCube, C.: Acquiring COTS Selection Criteria. IEEE Software, 46–56
(March 1998)

6. Monteiro, M.R., Ebert, C., Recknagel, M.: Improving the Exchange of Requirements and
Specifications between Business Partners. In: Int. Conf. Requirements Engineering,
pp. 253–260. IEEE (2009)

7. Paech, B., Doerr, J., Köhler, M.: Improving Requirements Engineering Communication in
Multi-project Contexts. IEEE Software 22(1), 40–47 (2005)

8. Regnell, B., Brinkkemper, S.: Market-Driven Requirements Engineering for Software
Products. In: Aurum, A., Wohlin, C. (eds.) Engineering and Managing Software
Requirements, pp. 287–308. Springer, Heidelberg (2005)

9. Renault, S., Mendez, O., Franch, X., Quer, C.: A pattern-based method for building
requirements documents in call-for-tender processes. Int. Journal of Computer Science and
Applications 6(5), 175–202 (2009)

10. Searcy, T.: RFPs Suck! Channel V Books (2009)

B. Regnell and D. Damian (Eds.): REFSQ 2012, LNCS 7195, pp. 30–36, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Impediments to Requirements-Compliance

Md. Rashed Iqbal Nekvi1, Nazim H. Madhavji1,
Remo Ferrari2, and Brian Berenbach2

1 University of Western Ontario, London, Canada
2 Siemens Corporate Research

mnekvi@csd.uwo.ca, madhavji@gmail.com,
{remo.ferrari,brian.berenbach}@siemens.com

Abstract. [Context & motivation] Large contractual projects often have to
comply against government regulations and standards. [Question/problem] In
such a context, the contractual document can be voluminous, and there can be a
large number of standards and regulations to follow. These documents typically
form a complex interrelationship network. This means that in the requirements
engineering (RE) process, this network needs to be analysed for deriving
project requirements to be implemented. A key activity of this RE process is to
demonstrate compliance by showing, through appropriate traces, that all rele-
vant requirements have been elicited from the regulatory documents. [Principal
ideas/results] [Contribution] In this problem-statement paper, we describe
some key impediments to achieving requirements-compliance that we have
identified in a large systems engineering project.

Keywords: requirements-compliance, systems engineering, impediments.

1 Introduction and Overview of Related Work

Large systems engineering projects, involving a multitude of technical domains, typically
have to comply with governmental regulations and standards. A railway infrastructure
upgrade project, for example, could involve various technical domains (such as software,
hardware, networks, communications, power, signalling and others), requiring the up-
graded system to comply with regulations and standards to do with public safety, railway
system, electrical devices, underlying operating system interfaces, etc.

The requirements engineering (RE) process in such a project is fundamental to en-
suring the system’s compliance, not only because it is a foundation for quality for
downstream development and the resultant system [8], but also because requirements
are a core part of the project’s contract (in contractual projects) and of the applicable
standards. It is unimaginable how one could attain compliance without explicitly
dealing with the system’s requirements and the regulatory documents.

In a large-scale systems engineering project, however, the number and sizes of the
various regulatory and contractual documents, and their inter-relationships, is mind-
boggling. As will be shown later in the paper, there can be hundreds of documents to
contend with and many are thousands of pages long with countless cross-references,
making RE quite a mountain to climb.

 Impediments to Requirements-Compliance 31

Related work on compliance-challenges describes experiences with, and opinions
about, ambiguity [5] and domain specific terms [1] in regulatory text; cross-referencing
among regulatory documents [1, 2, 3]; legislative conflicts [2, 5]; the changing nature of
the applicable laws [2, 4, 5]; complexity in a distributed environment [4]; and contractual
specification practices [6]. Typically, these are based on the analysis of one regulatory
document, e.g., Federal Regulations (CFR 40) [1] and HIPAA [3].

This paper, however, differs from previous research on at least three fronts:

(i) context of the investigation: an actual case study we are currently conducting on a
multi-domain, systems engineering contractual project that aims to upgrade a railway
infrastructure;
(ii) quantitative insight into certain impediments1, e.g.: size of regulatory documents,
the spread of regulatory requirements in the contract, and spread of regulatory docu-
ments across various legislature authorities; and
(iii) impediments due to large-scale project, e.g.: the large number and size of the
documents, contractual complexity, and complexity of the system to be developed.

The observed impediments are new and add to the growing body of knowledge on
how to possibly design RE processes that ensure system compliance against regula-
tions and standards. It is important to note, nevertheless, that this is a “problem state-
ment” paper; the results are still emerging and they await further analysis in the
on-going empirical study.

2 Study Overview

The studied case is a RE project, a sub-project within a large-scale development
project that aims to upgrade a rail corridor infrastructure system. The RE project is
steered by a contract (over 1000 pages) made between the company and the customer
organization. The contract outlines high-level requirements and contains regulatory
requirements referencing to approximately 300 engineering standards and 30 regula-
tions to which the project is expected to demonstrate compliance. Typically, a regula-
tion is denoted by a specific document representing a legislated act, a law, and is
legally binding on the population affected.

The RE project used DOORS (www-01.ibm.com/software/awdtools/doors) to cap-
ture the project requirements and establish traceability among the various artefacts
(such as the contract, project requirements specifications, standards and regulations,
etc.). The requirements management tool was populated with information by the
organisation in charge of the project.

Ethnographically, we identified regulatory requirements from the recognised doc-
uments, often involving clarification sessions with appropriate domain experts. We
also attended two workshops where we learnt about, amongst other things, the types
of different documents that describe regulatory requirements, the role of domain ex-
perts in the RE process, and the difficulties the organisation was facing in tracing
contractual requirements to standards and regulations.

1 An impediment (in this project) is a hindrance or obstruction in achieving compliance of

system requirements against regulations and standards.

32 Md.R.I. Nekvi et al.

Based on the gained understanding, we are analyzing project data such as the
project contract, relevant regulations and standards, and requirements documents in
order to yield a quantitative and qualitative understanding of the impediments. Analy-
sis thus far has led to the identification of artefact types and their compliance-oriented
inter-relationships [7]. In [7], however, we only cursorily mention some impediments
related to these artefacts and inter-relationships; the current paper takes a significant
step forward in describing many other impediments, quantitatively, and in much
greater detail.

3 Impediments to Requirements-Compliance

Below, we describe a few impediments due to size and nature of regulatory text, con-
tractual complexity, and large-scale system development. We also describe the impact
of the impediments on the RE process.

3.1 Size and Nature of Regulatory Text

In the project under study, as described in Section 2, over 300 distinct standards and
regulations (each one a separate document) are referenced from the contract (through
the contained approx. 12,000 requirements). Complex as this already is, the situation
is in fact more daunting. That is, the contract also mentions: “The list [for standards
and regulations] is provided as a convenience only, and is not considered exhaustive.”
The implication of this is that: (a) the number of regulatory documents in the project
scope is not clear; (b) it can be higher than that specified in the contract; and (c) the
analysts need to circumspectively map out the project scope in terms of the applicable
regulatory documents in the project.

0 10 20 30 40 50 60 70 80 90 100 110 120

Very small (0-49 pages)

Small (50-99 pages)

Medium (100-299 pages)

Large (300-799 pages)

Very large (800+ pages)

Number of regulatory documents

 (We analysed the 190 available standards and regulations in the project)

Fig. 1. Size of regulatory documents

Not only is the number of regulatory documents huge, the sizes of some of these
documents are substantial too; see Figure 1. Examples of large-to-very large

 Impediments to Requirements-Compliance 33

documents include: CSA A23.1-09/A23.2-09 for Concrete materials and methods
(573 pages), IEEE Std. 1003.1 for IT--Portable O/S Interface (3,760 pages), and
AREMA for American railway standard (2,049 pages). Such sizes add to the impedi-
ments in the compliance project.

Concurring to the findings reported in [1, 2, 3], our cursory analysis of the project
documents suggests existence of cross-references among the documents and use of
domain specific terms. Without appropriate support tools and domain knowledge,
these characteristics can also add to the impediments in the compliance project.

3.2 Contractual Complexity

The contract is in excess of 1,000 pages, and contains (as mentioned earlier) approx.
12,000 (regulatory and non-regulatory) requirements referred to as contractual require-
ments which encompass both functional and quality aspects. Regulatory requirements are
specified non-contiguously in the contract (see Figure 2 for a sample view).

Now, the contractual document is organized into ten domain-specific “divisions”
(such as electrical, mechanical, doors and windows, metals, etc.) and so when identifying
regulatory requirements for a particular sub-system from the contract, one needs to go
through all the divisions carefully to identify the applicable ones in the mixed set of re-
quirements. There is no straightforward predictability as to when next to expect a regula-
tory requirement (as can be seen from Figure 2), which makes the identification task
manual, extremely slow and arduous.

Thus far, we have identified approximately 600 regulatory requirements in the con-
tractual document, giving an overall ratio of regulatory to non-regulatory requirements as
1:19. Note that this is twice the ratio of the chunk of pages (1:10) in Figure 2, implying
that identifying the regulatory requirements in the overall contractual document is more
difficult than in the chunk in Figure 2.

Also, this level of complexity is dilute when one considers the 300-odd regulatory
documents (see Section 3.1) to be examined for regulatory requirements. For exam-
ple, with reference to Figure 2, the following two requirements: (i) p. 622:
“All (switch clearing device) products shall comply with CSA B149”, and (ii) p.629:
“Provide all materials and installation to ground the switch clearing devices housing
including rods and conductors in accordance with Division 16 of AREMA” – (which
are from the same system component – “switch clearing device”) refer to two differ-
ent standards (CSA and AREMA), complicating the elicitation of requirements
(because it may need different domain experts to comprehend the requirements).

The complexity of identifying regulatory requirements from the contract translates
into difficulties in other project tasks, for example: (a) deriving project requirements
(i.e., those actually used for system implementation) from the contract, ensuring con-
sistency and style; (b) creating traces for the derived requirements to/fro the sources
in the contract; and (c) monitoring progress of the degree of requirements-compliance
attained at any given time in the project life-cycle.

34 Md.R.I. Nekvi et al.

0

5

10

15

20

25

600 605 610 615 620 625 630

(#
 o

f
R

eq
ui

re
m

en
ts

)

(Page Numbers of the Contract)

Regulatory Requirements Non-regulatory Requirements

 (We selected randomly a 30 page-chunk of the contract (using the avarage of 10
random numbers between 1 and 1086 pages of the contract as a starting page. Ratio

of regulatory to non-regulatory requirements in this chunk is 1:10)

Fig. 2. Non-contiguous requirements in the contract

Also, we have noticed that standards and regulations are referenced by the contract
in several principal ways, for example: (i) through the customer’s high-level
requirements specified in the contract (e.g., the depth of buried gas supply pipe shall
be in accordance with CSA B149.1); (ii) through the overall system requirement
(e.g., the system shall comply with the requirements of AREMA); and (iii) through a
reference to a particular part of the standard or regulatory document (e.g., nuts and
washers shall be in conformance with the AREMA, Part 14.1.11), or to the entire
document (e.g., the wayside track circuits shall be furnished in accordance with (the
applicable sections) of the AREMA). The above permutations suggest further compli-
cations in conducting and managing system requirements and to demonstrate system
compliance.

We also noticed in our project that approximately 50% of the standards and regula-
tions are referenced at a high level from the contract to some arbitrary part of the
system -- as described in (i) above); whereas, the rest are referenced at even higher-
level (i.e., system level, without denoting any particular part of the system -- as
described in (ii) above). The latter is quite staggering because it suggests that in order
to elicit concrete project requirements (for a particular part of the system) the set of
standards and regulatory documents referenced in (ii) above must be analysed (by
relevant domain experts).

3.3 ‘Large-Scale’ System

The studied system has planned seven major sub-systems (civil structures, network
management, communication, power supply, signalling, switch clearing device, and
building services) consisting of thirty six components. For example, the signalling
sub-system consists of the components: signals, switch, cables, circuits, relay and six
others. Table 1 shows the distribution of requirements. From the compliance point of
view, we can see that the three-level hierarchy (system, sub-system and component)

 Impediments to Requirements-Compliance 35

and the cross-cutting requirements at each of these levels suggest a need for lateral
and vertical compliance-related communications among the personnel responsible.
Currently, we are still analysing this aspect.

Table 1. Distribution of requirements (regulatory and non-regulatory)

Requirements Type # of Requirements (all) # of Regulatory Requirements
System Level 1221 12
Project Execution 1185 62
Cross-cutting 1911 240
Switch clearing device subsystem 360 29
Building service subsystem 928 32
Civil structures subsystem 165 46
Communication subsystem 328 10
Network management subsystem 3799 6
Power supply subsystem 1146 97
Signalling subsystem 767 60

Total 11,810 594

Further complications stem from “cross-cutting” requirements – those that span mul-
tiple sub-systems or components. We noted that approximately 40% of the regulatory
requirements from the contract were cross-cutting requirements (see Table 1 – 240 v.
594). These requirements do not mention explicitly where in the system or subsystem(s)
or component(s) they span. Furthermore, in most cases, they are not detailed (see Section
3.2 – (i) to (iii)), meaning that the referenced sections of the regulatory documents need
to be understood and interpreted to yield detailed cross-cutting requirements that address
the need of the relevant planned subsystems or components. Given that many domain
experts are assigned to the sub-systems and components, it is important that they interpret
the numerous contractual sections similarly (semantically) so that uniformity of associat-
ing regulatory requirements to the various sub-systems and components is maintained.
As can be appreciated, this is quite complicated and error-prone.

In the case study RE project, the organisation used tracing technology2 to attempt
to cope partially with this complexity. For this purpose, they define tracing require-
ments, such as: (i) the contract links to standards and regulations (without giving any
more details than this); (ii) project requirements should be traced to relevant standards
and regulations; and (iii) project requirements should be traced to their respective
contractual requirements. However, the tracing technology used by the organisation,
by itself, would not be adequate in dealing with the fundamental problems inherent in
large requirements-compliance projects. For example, recognising where in the multi-
level system hierarchy the cross-cutting regulatory requirements exist requires human
expertise on the domain issues in the contract, various standards and regulations, and
the railway system so that: (i) one can identify the relevant regulatory documents, (ii)
determine the requirements therein, and (iii) recognise precisely the locations in the
system or subsystem(s) or component(s) where the regulatory requirements apply.

2 This technology resembles the tracing models described in the literature (e.g., Ramesh et al. [9]

and Zhenyu et al. [10] that indicate, for example, how requirements, assumptions, decisions,
rationale, source, etc., are inter-connected).

36 Md.R.I. Nekvi et al.

4 Conclusions, Implications and Future Work

In compliance-oriented projects, there are specific impediments in the RE process
some of which are cited in the literature (see Section 1). In contrast, through a case
study of a large-scale systems engineering project, we have identified, quantitatively
and qualitatively, numerous managerial and technical impediments to achieving re-
quirements-compliance. Section 3 describes three clusters of impediments: size and
nature of regulatory text; contractual complexity; and the large-scale of the system.
The sheer scale of the impediments and their associated quantitative figures is new
knowledge, and provides much-needed details on requirements-compliance issues
faced in industry. However, note that this is still preliminary work.

Future work includes two primary areas: (i) investigating the contract-writing
process to gain an improved insight into the problems injected during this process for
the development project; and (ii) determining technological support (e.g., methods,
processes, tools, techniques) for the RE process to handle impediments in large,
compliance-oriented, contractual projects - not only in the systems engineering
domain but other domains such as healthcare, automobile, finance, etc.

Acknowledgments. Our sincere thanks to the reviewers for their excellent and en-
couraging comments.

References

1. Kerrigan, S., Law, K.H.: Logic-based Regulation Compliance-Assistance. In: 9th Int.
Conf. on AI and Law, pp. 126–135. ACM, Scotland (2003)

2. Otto, P.N., Antón, A.I.: Addressing Legal Requirements in Requirements Engineering,
pp. 5–14. IEEE Computer Society, CA (2007)

3. Breaux, T.D., et al.: Towards Regulatory Compliance: Extracting Rights and Obligations
to Align Requirements with Regulations. In: 14th IEEE Int. RE Conf., pp. 49–58. IEEE
Computer Society, Minnesota (2006)

4. Penzenstadler, B., et al.: Complying with Law for RE in the Automotive Domain. In: 1st
Int. Workshop on RELAW, pp. 11–15. IEEE Computer Society, Barcelona (2008)

5. Kiyavitskaya, N., et al.: Why Eliciting and Managing Legal Requirements is Hard. In: 1st
Int. Workshop on RELAW, pp. 26–30. IEEE Computer Society, Barcelona (2008)

6. Berenbach, B., Lo, R., Sherman, B.: Contract-based Requirements Engineering. In: 3rd Int.
Workshop on RELAW, pp. 27–33. IEEE Computer Society, Sydney (2010)

7. Nekvi, R.I., Ferrari, R., Berenbach, B., Madhavji, N.H.: Towards a Compliance Meta-
model for System Requirements in Contractual Projects. In: 4th Int. Workshop on
RELAW, pp. 74–77. IEEE Computer Society, Trento (2011)

8. Damian, D., et al.: Requirements Engineering and Downstream Software Development:
Findings from a Case Study. Empirical Software Engineering 10(3), 255–283 (2005)

9. Ramesh, B., Jarke, M.: Towards Reference Models for Requirements Traceability. IEEE
Trans. Software Eng. 27(1), 58–93 (2001)

10. Wang, Z., et al.: ACCA: An Architecture-Centric Concern Analysis Method. In: 5th Work.
IEEE/IFIP Conf. on WICSA, pp. 99–108. IEEE Comp. Soc., Pennsylvania (2005)

How Architects See Non-Functional Requirements:
Beware of Modifiability

Eltjo R. Poort1, Nick Martens2, Inge van de Weerd2, and Hans van Vliet3

1 Logica, Amstelveen, The Netherlands
eltjo.poort@logica.com

2 Utrecht University, The Netherlands
namartens@gmail.com, i.vandeweerd@cs.uu.nl

3 VU University, Amsterdam, The Netherlands
hans@cs.vu.nl

Abstract. This paper presents the analysis and key findings of a survey about
dealing with non-functional requirements (NFRs) among architects. We find that,
as long as the architect is aware of the importance of NFRs, they do not adversely
affect project success, with one exception: highly business critical modifiability
tends to be detrimental to project success, even when the architect is aware of it.
IT projects where modifiability is perceived to have low business criticality lead
to consistently high customer satisfaction. Our conclusion is that modifiability
deserves more attention than it is getting now, especially because in general it
is quantified and verified considerably less than other NFRs. Furthermore, IT
projects that applied NFR verification techniques relatively early in development
were more successful on average than IT projects that did not apply verification
techniques (or applied it relatively late in development).

Keywords: Software Architecture, Requirements Management, Software Project
Management, NFR, Modifiability, Empirical Software Engineering.

1 Introduction

Organizations are investing heavily in Information Technology (IT) in order to stay
competitive [3]. For many of those organizations, improving IT project success rates
is critical for their survival. Failure of IT projects is often linked to shortcomings in
the requirements phase [12, 19]. Especially dealing with non-functional requirements1

(NFRs), requirements that represent quality characteristics, is a promising area for im-
provement, because dealing with NFRs is viewed as a particularly difficult part of re-
quirements engineering [2]. Not properly taking NFRs into account is considered to be
among the most expensive and difficult of errors to correct once an information sys-
tem is completed [16] and it is rated as one of the ten biggest risks in requirements
engineering [11]. NFRs are widely seen as the driving force for shaping IT systems’

1 The term “non-functional requirements” is widely disparaged, many prefer “quality attribute
requirements” or “extra-functional requirements”. However, because in the survey target audi-
ence the term is much better established and understood than its alternatives, we have chosen
to maintain it throughout the survey and in this paper.

B. Regnell and D. Damian (Eds.): REFSQ 2012, LNCS 7195, pp. 37–51, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

38 E.R. Poort et al.

architectures [1, 4, 15, 17]. According to [8], ”there is a unanimous consensus that non-
functional requirements are important and can be critical for the success of a project”.

One could say that architects are responsible for facilitating and realizing NFRs
during software development; they are the population that has to “deal” with NFRs.
Knowledge about how architects perceive and address NFRs can help IT organizations
improve their architecting practices and project success rates. Therefore, we set up a
survey among the members of the architecture community of practice in a major Dutch
IT services company2 to gather such knowledge. The survey was aimed at investigating
how architects perceive the importance of NFRs, and which approaches they use to deal
with them. We were also interested to see whether we could link these findings with IT
project success.

1.1 Conceptual Model

The context of this study is bespoke software development in ABC, a major Dutch IT
services company. More specifically, it is about IT Development Projects, defined as a
project where an IT system (application, software, infrastructure or other IT system) is
designed, constructed and implemented.

The focus of the survey is on investigating the two relationships depicted in the
conceptual model, shown in Fig. 1, within the context of bespoke software development,
and from the perspective of the architects. On the one hand, the more important non-
functional requirements are, the greater the implied risk to IT project success if they are
not fulfilled. On the other hand, several NFR approaches could help an IT project deal
with NFRs. To put it another way, the assumption is that IT project success depends on
the importance of the NFRs and the application of approaches for dealing with NFRs.
We are interested in the following questions:

1. How do architects perceive the importance of non-functional requirements?
2. Is there a significant relationship between the perceived importance of non-

functional requirements and IT project success?
3. What approaches for dealing with non-functional requirements do practitioners

apply?
4. Is there a significant relationship between applying approaches for dealing with

non-functional requirements and IT project success?

A complicating factor in this model is the fact that we are by necessity looking at all this
through the architect’s eyes. Since the measuring instrument is a survey among archi-
tects, we are not actually measuring the importance of NFRs, but rather the architect’s
awareness of their importance. Architecture is a risk driven discipline [7]. Awareness
of a risk is a prerequisite to dealing with it. The more an architect is aware of the im-
portance of a requirement and its implicit risk of not being fulfilled, the better he is
able to address it. This mechanism works against the expected negative impact of NFR
importance on project success; it can even completely negate it when the architect is
fully successful in addressing the NFRs he is aware of.

2 In this paper, this company will be identified as ABC.

How Architects See Non-Functional Requirements: Beware of Modifiability 39

Fig. 1. Conceptual model

2 Survey Description

The core of this study is an on-line survey that was conducted in 2010 among prac-
ticing architects. In addition to the survey itself, we organized two expert workshops,
consisting of a guided discussion with a select group of architecture experts in the ABC
company. One workshop was held prior to the survey itself, and its prime objective was
to align the survey’s contents with the vocabulary and way of working within ABC.
The second workshop was held after the survey, and its purpose was to enrich the initial
quantitative analysis results with qualitative knowledge from practicing architects.

The invitation to participate in the survey was sent out by e-mail to around 350
members of the Netherlands (NL) Architecture Community of Practice (ACoP) of the
ABC company. The ACoP consists of experienced professionals practicing architecture
at various levels (business, enterprise, IT, software, and systems architecture) in project
or consultancy assignments. The survey was closed after 16 days. By that time, 133
responses were collected. After elimination of duplicates (1), incomplete responses (51)
and responses from respondents that indicated they had not fulfilled the role of architect
on their latest project (41), 39 responses remained.

The survey consists of 23 questions divided over four sections. The first section con-
sists of questions that are related to the general characteristics of the latest completed

40 E.R. Poort et al.

project of the respondent. The second section asks the respondent to evaluate the suc-
cess of his or her latest completed project from a number of perspectives. Respondents
were asked to characterize their latest completed project in terms of NFRs in the third
section of the survey. The fourth section evaluates the approaches deployed for manag-
ing and dealing with NFRs in their latest completed project. The survey concludes by
presenting a number of statements about NFRs to the respondent. Examples of what the
survey questions looked like are shown in Fig. 2.

Fig. 2. Example survey questions

2.1 Constructs

Considerable time and effort was spent on translating the key concepts of the conceptual
model into operationalized constructs for use in the survey. The four key concepts were
Non-Functional Requirements, NFR importance, project success and NFR approach.
Each of these concepts was first operationalized by looking for useful descriptions and

How Architects See Non-Functional Requirements: Beware of Modifiability 41

classifications in literature, which resulted in a draft survey. The draft survey was then
the subject of an expert workshop, in which it was discussed by eight architecture ex-
perts from ABC’s central technical unit (a kind of architecture board). The constructs
were the main topic of the workshop discussion - especially the use of terms and models
that would be commonly understood by the ABC company’s architecture community.
The workshop outcome led to a modified, final version of the survey.

Non-Functional Requirements The Non-Functional Requirements concept had to be
made more specific. To be able to analyze the impact of different NFRs, the NFR con-
cept had to be classified into subtypes. The problem of choosing a specific scheme to
sub-classify NFRs lies in the observation that even well-known classification schemes
are terminologically and categorically inconsistent with each other [4]. Many of the
published classifications and definitions of NFRs have their own communities in sci-
ence and practice [1]. Since a significant number of architects of ABC had been trained
in the software architecture practices of the Software Engineering Institute, the six most
common and important types of NFRs distinguished by those practices were used in the
survey. Their basic descriptions were taken from [1], and were slightly enhanced with
examples by the pre-survey expert workshop to increase understandability in the ABC
architecture community context:

Availability concerns system failure and its associated consequences. A system failure
occurs when the system no longer delivers a service consistent with its specifica-
tion. Such a failure is observable by the system’s users (either humans or other
systems). Reliability and recoverability are examples that belong to this type.

Performance events (interrupts, messages, requests from users, or the passage of time)
occur, and the system must respond to them. Performance is concerned with how
long it takes the system to respond when an event occurs. Efficiency and throughput
are examples that belong to performance.

Modifiability considers how the system can accommodate anticipated and unantici-
pated changes and is largely a measure of how changes can be made locally, with
little ripple effect on the system at large. Adaptability, maintainability and compat-
ibility are examples that belong to this type.

Security is a measure of the system’s ability to resist unauthorized usage while still
providing its services to legitimate users. An attempt to breach security is called
an attack and can take a number of forms. It may be an unauthorized attempt to
access data or services or to modify data, or it may be intended to deny services to
legitimate users.

Usability is concerned with how easy it is for the user to accomplish a desired task
and the kind of user support the system provides. It can be broken down into the
following areas: learning system features, using a system efficiently, minimizing
the impact of errors, adapting the system to user needs, increasing confidence and
satisfaction.

Testability refers to the ease with which software can be made to demonstrate its faults
through (typically execution-based) testing.

42 E.R. Poort et al.

NFR Importance. How does one measure the importance of each type of NFR for
a project? The experts in the pre-survey workshop agreed that simply asking for the
number of requirements for each type of NFR is not valid. Intuitively, a project could
have only a few performance requirements that are nevertheless critical for the system.
Conversely, it could have more requirements of another type that are not critical. Fur-
thermore, when you measure the number of requirements for each type of NFR, you
are only measuring NFRs that were documented or elicited. The problem with NFRs
often is that certain NFRs are not documented or elicited. Therefore, the suggestion of
the experts was to use the concept of business criticality: a certain type of NFR is more
important if it is relatively more critical for the system and the business of the customer.
This is a concept that can be judged by the respondent in hindsight and is more valid
than a simple requirement count. An NFR is considered business critical when it is vi-
tal to the customer’s business. The measure in which highly business critical NFRs are
fulfilled has a high impact on the system’s business value, and vice versa. Respondents
were asked to rate the business criticality of each of the six types of NFRs on a 5-point
Likert-scale (very low, low, medium, high, very high).

Project Success. The project success construct consists of five dimensions, that are
designed to reflect the interests of the three main stakeholders (cf. [6]). Meeting time
and budget corresponds to project success from a managerial perspective, as does ef-
ficient use of resources. Customer satisfaction is included to reflect the perspective of
the customers, and solution quality is the dimension that measures the success from the
perspective of the development team. Respondents are asked to rate the success of their
latest completed project in terms of these dimensions on a 5-point Likert-scale (very
unsuccessful, unsuccessful, neutral, successful, very successful). The overall project
success parameter is the sum of the responses for the 5 values. Cronbach’s α [5] was
used as a reliability test to assess internal consistency of this construct; at α = .858, the
construct proves to be valid (> .8).

NFR Approach. The survey asks the respondents to indicate what approaches were
applied for dealing with NFRs during their latest completed IT project. Practitioners
find dealing with NFRs the most difficult part of requirements engineering [2]. The
need for ways to manage NFRs has led several researchers to propose methods and
techniques for dealing with NFRs. A set of similar methods and techniques, related to
the same requirements engineering activity, that can be used to deal with or manage
NFRs (or requirements in general) is defined as an NFR approach.

Svensson [2] and Paech [18] both provide classifications of activities aimed at deal-
ing with NFRs. After merging these two classifications and discussing the result in the
pre-survey expert workshop, the following approaches were included in the survey:

Elicitation interacting with stakeholders (customers, users) of a system to discover,
reveal, articulate, and understand their requirements.

Documentation requirements are written down in order to communicate them to stake-
holders (designers, developers, testers, customers).

Quantification NFRs are made explicit by giving them numbers on a measurable scale.
This makes the NFRs verifiable.

How Architects See Non-Functional Requirements: Beware of Modifiability 43

Prioritization assigning priorities among the different NFRs on the basis of their rela-
tive importance.

Conflict analysis identifying the interdependencies and conflicts among the NFRs.
Verification verifying that a system fulfills requirements, e.g. by prototyping, simula-

tion, analysis, testing or other means.

For a full operationalization of the NFR Approach construct, we not only need a classi-
fication of sub-types, but also a way to measure their usage in the projects. The simplest
way to determine which of the approaches were applied would be to ask respondents
using a yes/no format. However, this is not sufficient. We want to be able to distinguish
between situations where the approaches were used early on in the project (”on time”)
and late in the project (”after the fact”). Several studies [9,20] have pointed out that the
relative costs of correcting (requirements) errors increases during the development life
cycle. In line with these findings, one may expect that applying an approach later in the
development life cycle is less effective; in other words, the earlier an approach for deal-
ing with NFRs is applied, the stronger its positive impact on project success is expected
to be. Therefore, respondents are asked to indicate when the approaches were applied
during the development life cycle for each type of NFR on a 6-point Likert-scale. The
Likert-scale represents five phases of a generic systems development life cycle (require-
ments phase, design phase, realization phase, testing phase, deployment phase) and a
later/never option.

3 Analysis

In this section, we present the most interesting results of the quantitative analysis of the
survey responses. The outcome of this quantitative analysis was discussed by a post-
survey workshop with architecture experts in the ABC company. The results of this
post-survey workshop will be presented in the Discussion section of this paper.

In Fig. 3, an overview is given of how the software architects rated the business
criticalities of the NFRs.

Availability and (to a slightly lesser degree) usability are generally considered highly
business critical, while modifiability and testability score relatively low. Performance
and security are somewhere in the middle.

Overall, the types of NFRs are almost never unimportant: very few respondents rated
the business criticality of any type of NFR as very low or low. This suggests that each
type of NFR has at least some basic level of business criticality in every project. There-
fore, each project involves dealing with every type of NFR at least to some degree.

Figure 4 shows how many of the 39 architects applied each of the approaches, dif-
ferentiated per NFR. Again, modifiability scores low: almost all approaches are applied
less for modification than for other NFRs, especially quantification and verification.

3.1 Non-Functional Requirements and Project Success

Based on the theory described earlier, the expectation is that the business criticality
of NFRs is negatively correlated with IT project success, but that this effect may be

44 E.R. Poort et al.

Fig. 3. Perceived business criticality of NFRs

Fig. 4. Application of approaches per NFR

dampened by the architect’s awareness bias. For each NFR category, this hypothesis is
tested using Kendall’s τ (one-tailed) and the level of statistical significance is .05 (α =
.05). The value of Kendall’s τ ranges between -1 (perfect negative correlation) and +1
(perfect positive correlation).

A summary of the results is presented in Table 1. Statistically, we should ignore
correlation coefficients where the significance Sig. > .05, which are indicated by “ns”
(not significant) in the table. Only Modifiability shows a significant correlation between
its perceived business criticality and project success. In other words, projects where
modifiability is highly business critical tend to be less successful than projects where
modifiability is less important.

Further analysis in Table 2 shows that this correlation can be attributed largely to
one project success factor: customer satisfaction. This result is visualized in Fig. 5.
The figure shows a remarkably consistent level of customer satisfaction for all projects

How Architects See Non-Functional Requirements: Beware of Modifiability 45

Table 1. NFRs, correlation coefficient with IT project success

Type of NFR Kendall’s τ Sig. (1-tailed)
Availability .086 ns
Performance -.181 ns
Modifiability -.257 .023
Security .078 ns
Usability -.102 ns
Testability .095 ns

Table 2. IT project success factors, correlation with perceived business criticality of modifiability

Success Factor Kendall’s τ Sig. (1-tailed)
Time -.212 ns
Budget -.219 ns
Efficient use of resources -.207 ns
Customer satisfaction -.324 .010
Solution quality -.233 ns

where the architect judged business criticality of modifiability to be low or very low. As
business criticality of modifiability grows, customer satisfaction ratings are spread over
a wider range, and decrease on average.

3.2 Approaches and Project Success

The six requirements engineering approaches we consolidated from literature are ex-
pected to have a positive correlation with IT project success. For each identified ap-
proach, respondents had to indicate if it was applied and when it was applied during
their latest completed project. The earlier the application of an approach in the systems
development life cycle the higher the score, measured on a 6-point Likert-scale where
each rating represents a project phase (requirements phase, design phase, realization
phase, testing phase, deployment phase, later/never). The rationale behind this argu-
ment was described earlier. Statistical techniques are used to test the hypotheses and
the results are presented in this section.

A summary of the results is presented in Table 3.
As seen from the table, only applying verification is positively correlated with IT

project success.

Fig. 5. Cross-table of business criticality of modifiability and customer satisfaction

46 E.R. Poort et al.

Table 3. NFR Approaches and their correlation coefficient with IT project success

NFR Approach Kendall’s τ Sig. (1-tailed)
Elicitation .054 ns
Documentation .065 ns
Quantification .024 ns
Prioritization .057 ns
Conflict analysis -.128 ns
Verification .256 .014

Fig. 6. Boxplot of the correlation between the application of verification and project success

The correlation between verification and project success is visualized in Fig. 6. The
horizontal axis in this figure represents a score based on when verification was applied,
accumulated for all NFRs listed in 2.1: the higher the score, the earlier in the project
verification was applied. There is a significant positive relationship between applying
verification and IT project success, τ = .256, p (one-tailed) < .05. In other words, we
find that projects where NFRs are verified in an early stage tend to be more successful
than projects where NFRs are not verified or only at a later stage in the project.

4 Discussion and Related Work

In this section, we further discuss the results found above, and share the key contri-
butions from the post-survey analysis expert workshop. We will also discuss threats to
validity, and relate our work to additional material found in literature.

How Architects See Non-Functional Requirements: Beware of Modifiability 47

4.1 Availability Most Business Critical

In the perception of architects, on average the business criticality of availability is high-
est. Earlier studies found similar results. For instance, in [10] reliability was identified
as the most important type of NFR in software platform development. Furthermore,
in [13] reliability was ranked as the most important NFR and availability was ranked as
the most important sub-characteristic for intranet applications. These studies used the
six quality characteristics from the ISO/IEC 9126 standard as types of NFRs, where
availability is a sub-characteristic of reliability. Furthermore, their definition of reliabil-
ity is very similar to the definition of availability used in this research.

4.2 Non-Functional Requirements and Project Success

The results show that the perceived business criticality of modifiability is negatively
correlated with IT project success. In other words: on average, IT projects where modi-
fiability is seen as relatively important are significantly less successful than IT projects
where modifiability is considered to be relatively unimportant. This correlation is largely
due to the level of customer satisfaction.

The following three possible explanations for this phenomenon were generated by
the post-survey workshop with architecture experts:

1. A high demand for modifiability might be an indication that the customer does not
know what he wants. This means that a customer that demands high modifiability,
is a customer that is more likely to change his requirements later on. A development
team is trying to hit a moving target in such a situation. This explanation is in line
with the leading role of customer satisfaction in the correlation.

2. Modifiability leads to complexity. Known techniques to realize high modifiabil-
ity (such as layering, late binding and parameterizing) quickly lead to increas-
ing complexity, with an adverse effect on budget and timescale. If this were the
case, projects where modifiability is highly business critical would be expected not
only to be less successful, but also larger and more prone to budget and schedule
overruns. Thus, one would expect significant correlations between modifiability
and project size, time and budget success factors. None of these correlations were
found; in fact, some of the respondents that indicated low criticality for modifia-
bility were working in some of the larger projects compared to other respondents.
Thus, the survey yields no evidence supporting this theory.

3. Modifiability gets too little attention. This explanation appears to be confirmed
by the relatively low scoring of modifiability in terms of perceived business crit-
icality and application of techniques reported above. Expert workshop members
experienced multiple reasons for “underappreciation” of modifiability:

– modifiability is harder to quantify or measure, less “mathematical” than other
NFRs; even though there are well known modifiability related code analysis
metrics like cyclomatic complexity [14], such metrics are seen as only indi-
rectly related to the actual modifiability business goals, and easily “cheated”

48 E.R. Poort et al.

– other NFRs have a more direct effect on the project’s business stakeholders
(end-users, managers), while modifiability is sometimes perceived to become
important only after the project is over - a dangerous view in light of the re-
search presented here

No correlation is found between the business criticality of the other types of NFRs
(availability, performance, security, usability and testability) and IT project success.
This can either mean that the negative impact of NFRs is too small to be measured in a
population this size, or that the dampening effect discussed before is in play: architects
can only respond that NFRs are highly business critical if they are aware of this busi-
ness criticality at the time of the survey. If an architect is aware of an NFR’s business
criticality at the time of creating the architecture, this awareness normally leads to ad-
dressing of the NFR in the architecture, thus reducing the risk to project success. The
expert workshop produced anecdotal evidence confirming the second theory. For exam-
ple, the ABC company has a project unit that is specialized in highly reliable system
construction. Projects where availability is highly business critical get assigned to this
unit. This leads to economies of learning and thus more successful projects.

All this leads to the following conclusion regarding the link between NFRs and
project success:

As long as the architect is aware of the business criticality of NFRs, they do not ad-
versely affect project success, with one exception: highly business critical modifiability
tends to be detrimental to project success, even when the architect is aware of it.

4.3 Approaches and Project Success

The application of verification is positively correlated with IT project success. More
specifically: IT projects that apply verification early in the development life cycle are
significantly more successful than IT projects that apply verification late in the devel-
opment life cycle. Verification was defined earlier as: verifying that a system fulfills
NFRs, e.g. by prototyping, simulation, analysis, testing or other means. Although it is
quite trivial that verification techniques reduce errors, there are apparently obstacles
that prevent early verification of NFRs. This result indicates that practitioners should
spend effort to overcome those obstacles.

It is surprising that none of the other approaches were found to have a significant
effect on project success. After all, to be able to apply verification, shouldn’t one at
least have elicited and quantified the NFRs first? When evaluating the operationaliza-
tion of the questions, some limitations come to mind. First, it might be more meaningful
to measure how a certain approach was applied instead of measuring when it was ap-
plied. In the current situation, IT projects that very carefully elicited NFRs with multiple
stakeholders using a formal method are not necessarily discriminated from IT projects
where elicitation is informally applied in an ad-hoc fashion by a single stakeholder;
moreover, the approaches are not really orthogonal with respect to the development
phases. Second, the 6-point Likert-scale used is based on a general waterfall systems
development life cycle and does not map very well unto iterative development method-
ologies. During the validation session, the experts judged that they were sufficiently

How Architects See Non-Functional Requirements: Beware of Modifiability 49

aligned with the majority of the projects carried out by ABC. However, at least one re-
spondent had trouble answering the questions about the application of the approaches,
because his projects always use iterative development. These limitations mean we have
to be careful interpreting this result, beyond that it is good to have some statistical ev-
idence that early NFR verification is correlated with successful projects in at least one
company.

4.4 Threats to Validity and Opportunities for Further Research

A few important limitations of this survey have to do with generalizability. First, the
context of the research is architecture, since it has such a strong link with dealing with
NFRs. This was a conscious choice, but it does mean that all results are subject to
the perception of the projects’ architects. It would be interesting to also investigate the
impact of NFRs from other perspectives and compare the results. In particular, a study
that would be able to distinguish between NFRs’ business criticality and the architect’s
awareness of that criticality might shed more light on the material.

Second, the data was collected using respondents from a single organization. A cross-
organizational approach would have been preferred, but this was not feasible due to
practical limitations. Strictly speaking, the results are valid only in the context of this
single organization. However, the IT services company where this research was carried
out has many similarities with other similar companies. Moreover, from other surveys
we know that over half of the ACoP architects fulfil their roles on-site in customer
organizations; so the results represent a mix of experiences in ABC and its customer
base in the government, utilities, financial and other industrial sectors. Nevertheless,
some results could be specific to the ABC company, and cannot be generalized without
further research.

The measurement of the applied approaches was already mentioned as a limitation of
this study. This could be a reason why no significant relationships were found between
applying the approaches and IT project success except for verification. A study that
focuses on measuring maturity of the applied approaches might be better capable to
differentiate successful IT projects from unsuccessful ones. Another recommendation
for future research would be to use a different kind of measurement for project success,
e.g. including the actual customer and his evaluation of a project’s success.

Other suggested extensions to future versions of this research are:

– extend the definition of business criticality (see Section 2.1) to the company de-
veloping the software, rather than only its customers, which might yield a more
balanced view on e.g. testability

– include Designing for NFRs in the list of approaches; this key activity of architects
is left implicit in this survey, but making it explicit may yield additional interesting
results

– ask the architects when they became aware of the business criticality of NFRs, to
validate the conclusion at the end of Section 4.2.

50 E.R. Poort et al.

5 Conclusions

We set out on this survey with the goal to investigate the awareness and handling of
non-functional requirements among architects, and their effect on IT project success.

The first part focused on trying to identify if certain types of NFRs have a relation-
ship with IT project success. In other words, are there under-performing IT projects
based on the types of NFRs they deal with? A significant negative relationship between
the business criticality of modifiability and IT project success was found. Therefore,
it can be concluded that IT projects where modifiability is relatively business critical
perform significantly worse on average. Even though this result might be local to the
ABC company, it provides a warning to all practitioners dealing with IT projects with
a strong focus on modifiability. Aspects like quantification, verification and managing
customer expectations around modifiability might require additional attention, because
it seems that customer satisfaction especially is significantly lower on average in this
type of IT projects.

The second part views the research question from another perspective: do approaches
for dealing with NFRs have a positive influence on IT project success? From the results
it can be concluded that the application of verification (starting as early as possible
during the software development life cycle) has a positive influence on IT project suc-
cess. In other words: IT projects that applied verification techniques relatively early
in development were more successful on average, than IT projects that did not apply
verification techniques (or applied it relatively late in development). As said earlier,
practitioners should be aware that the long term benefits of verification outweigh the
short term extra costs.

References

1. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. Addison
Wesley (2003)

2. Berntsson Svensson, R.: Managing Quality Requirements in Software Product Development.
PhD thesis, Department of Computer Science, Lund University (2009)

3. Centraal Bureau voor de Statistiek. Nationale rekeningen 2006 (2007)
4. Chung, L., Nixon, B., Yu, E.S., Mylopoulos, J.: Non-Functional Requirements in Software

Engineering. Kluwer Academic (1999)
5. Cronbach, L.J.: Coefficient alpha and the internal structure of tests. Psychometrika 16(3),

297–334 (1951)
6. Dvir, D., Raz, T., Shenhar, A.J.: An empirical analysis of the relationship between project

planning and project success. International Journal of Project Management 21, 89–95 (2003)
7. Fairbanks, G.: Just Enough Architecture: The Risk-Driven Model. Crosstalk (Novem-

ber/December 2010)
8. Glinz, M.: On non-functional requirements. In: 15th IEEE International Requirements Engi-

neering Conference RE 2007, pp. 21–26. IEEE (2007)
9. Grady, R.B.: An economic release decision model: Insights into software project manage-

ment. In: Proceedings of the Applications of Software Measurement Conference, Orange
Park, Software Quality Engineering, pp. 227–239 (1999)

How Architects See Non-Functional Requirements: Beware of Modifiability 51

10. Johansson, E., Wesslén, A., Bratthall, L., Höst, M.: The importance of quality requirements
in software platform development - a survey. In: HICSS 2001: Proceedings of the 34th An-
nual Hawaii International Conference on System Sciences, vol. 9, p. 9057. IEEE Computer
Society, Washington, DC (2001)

11. Lawrence, B., Wiegers, K., Ebert, C.: The top risks of requirements engineering. IEEE
Softw. 18(6), 62–63 (2001)

12. Leffingwell, D.: Calculating your return on investment from more effective requirements
management. American Programmer 10(4), 13–16 (1997)

13. Leung, H.K.N.: Quality metrics for intranet applications. Information and Manage-
ment 38(3), 137–152 (2001)

14. McCabe, T.: A complexity measure. IEEE Transactions on Software Engineering 2, 308–320
(1976)

15. Mylopoulos, J.: Goal-oriented requirements engineering, part ii. In: RE 2006: Proceedings of
the 14th IEEE International Requirements Engineering Conference, IEEE Computer Society,
Washington, DC (2006)

16. Mylopoulos, J., Chung, L., Nixon, B.: Representing and using nonfunctional requirements:
A process-oriented approach. IEEE Trans. Softw. Eng. 18(6), 483–497 (1992)

17. Paech, B., Detroit, A., Kerkow, D., von Knethen, A.: Functional requirements, non-functional
requirements, and architecture should not be separated - a position paper. In: REFSQ, Essen,
Germany (September 2002)

18. Paech, B., Kerkow, D.: Non-functional requirements engineering - quality is essential. In:
10th Anniversary International Workshop on Requirements Engineering: Foundation for
Software Quality (2004)

19. Sheldon, F.T., Kavi, K.M., Tausworth, R.C., Yu, J.T., Brettschneider, R., Everett, W.W.: Re-
liability measurement: From theory to practice. IEEE Software 9(4), 13–20 (1992)

20. Westland, J.C.: The cost of errors in software development: evidence from industry. Journal
of Systems and Software 62(1), 1–9 (2002)

Research Preview:

Prioritizing Quality Requirements Based on
Software Architecture Evaluation Feedback

Anne Koziolek

Department of Informatics, University of Zurich, Switzerland
koziolek@ifi.uzh.ch

Abstract. [Context and motivation] Quality requirements are a
main driver for architectural decisions of software systems. Although
the need for iterative handling of requirements and architecture has
been identified, current architecture design processes do not provide
systematic, quantitative feedback for the prioritization and cost/benefit
considerations for quality requirements. [Question/problem] Thus, in
practice stakeholders still often state and prioritize quality requirements
before knowing the software architecture, i.e. without knowledge about
the quality dependencies, conflicts, incurred costs, and technical feasi-
bility. However, as quality properties usually are cross-cutting architec-
ture concerns, estimating the effects of design decisions is difficult. Thus,
stakeholders cannot reliably know the appropriate required level of qual-
ity. [Principal ideas/results] In this research proposal, we suggest an
approach to generate feedback from quantitative architecture evaluation
to requirements engineering, in particular to requirements prioritization.
We propose to use automated design space exploration techniques to gen-
erate information about available trade-offs. Final quality requirement
prioritization is deferred until first feedback from architecture evalua-
tion is available. [Contribution] In this paper, we present the process
model of our approach enabling feedback to requirement prioritization
and describe application scenarios and an example.

1 Introduction

Quality attributes such as performance, reliability, and maintainability, are cru-
cial for the success of any software system. The software architecture largely
influences the quality properties a software system will exhibit.

However, while quality requirements are defined in many companies mainly
upfront, they are not systematically incorporated during development and thus
are often dismissed later [2,3]. In particular, interdependencies and trade-offs
among quality requirements often remain unclear. Major difficulties compli-
cate quality requirements prioritization tasks: First, quality attributes are of-
ten pervasive, so that their effect and costs are difficult to estimate in advance
[2, pp. 3,9]. Second, for many types of quality requirements, a value on a contin-
uous scale, such as a response time of 5 seconds, needs to be defined. Choosing

B. Regnell and D. Damian (Eds.): REFSQ 2012, LNCS 7195, pp. 52–58, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Prioritizing Quality Requirements with Architecture Evaluation Feedback 53

the right required value (i.e. the required level of quality, which is a subtask of
requirements prioritization) is difficult for managers [3, p. 74].

Although the need for iterative handling of requirements and architecture has
been identified decades ago, and several processes have been proposed [13,14],
no approaches provide systematic and quantitative feedback from software archi-
tecture design to support quality requirement prioritization.

Quantitative architecture evaluation approaches allow to predict quality prop-
erties (such as performance [10] and reliability [9]) based on models of the soft-
ware architecture and underlying theories (such as queueing networks or Markov
chains). They improve design decisions with respect to quality attributes and
help to understand the incurred costs. However, these approaches assume fixed
quality requirements and thus try to help the software architect to achieve these
requirements, thus not reflecting the iterative nature of the development process.

As the contribution of this paper, we propose a new approach to prioritize
quality requirements, relying on feedback from architecture evaluation and auto-
mated design space exploration. The approach requires identification of relevant
quality attributes upfront but defers the decision for required quality levels. Only
after initial architecture evaluation and design space exploration, the trade-off
between quality attributes and the costs for achieving quality levels can be re-
liably estimated. To validate our research idea, we will (1) extend the existing
design space exploration tool PerOpteryx [11] to explicitly support quality re-
quirements prioritization and (2) evaluate its benefits in empirical studies, which
include business reporting and industrial automation systems. The expected re-
sults of our approach are (1) better informed quality level definition, (2) guidance
in quality requirement prioritization, and, as a result, (3) higher trust in quality
requirements during the development process. Ultimately, our approach shall
enable iterative handling of quality requirements and architecture.

The remainder of this paper is organized as follows. In Sec. 2, we discuss the
current state and related approaches in more detail. Then, Sec. 3 describes our
idea how to bring quality requirements and software architecture closer together
and enable feedback. Finally, Sec. 4 concludes.

2 Related Work

The need for iterative handling of requirements and architecture has been identi-
fied decades ago [5]. The Twin Peaks model [13] suggests to concurrently develop
requirements specification and architecture by using insight from one activity in
the other. Woods and Rozanski [14] describe how insight from software archi-
tecture design can frame and inspire requirements specification. However, while
both methods describe a mindset for software architects, they do not provide
concrete methods and tool support to combine the two worlds.

2.1 Quality Requirements in Software Architecture Evaluation

Most approaches for quantitative software architecture evaluation only focus on
one quality attributes (e.g. performance [10] or reliability [9]). Some qualitative

54 A. Koziolek

approaches such as ATAM specifically trade off quality attributes based on ar-
chitecture insights.

In ATAM, the main steps with respect to quality requirement prioritization
are the following. In step 2, the business drivers, among them main quality
attributes, are discussed and defined. In step 5, a utility tree is defined for quality
attributes which capture the importance of quality requirements and the value
of achieving a certain level of quality. Thus, the utility tree is a form of quality
requirements prioritization. Then, in step 6, possible architectural approaches are
evaluated with respect to this utility tree, e.g. by using performance prediction
techniques based on queuing networks. Trade-off points where quality attributes
conflict with each other are highlighted. However, ATAM does not explicitly
support the architect and stakeholders to question and revise the previously
defined utility tree based on the evaluation results, but rather focuses on the
effects of architecture decisions to find a combination of decisions that together
optimize the given utility tree. Our approach complements ATAM by enabling
systematic feedback for revising the utility tree after architecture evaluation.

Recently, approaches to help the software architect to improve a given software
architecture model have been proposed (e.g. PerOpteryx, ArchE, Performance
Booster, Archeopteryx [11]). Such approaches automatically vary a given ar-
chitectural model based on predefined degrees of freedom, such as component
allocation to servers, component selection, change of hardware and software pa-
rameters, or other, custom defined design decisions expressed as simple model
transformations. The reached variants of the architecture are called architec-
ture candidates and are evaluated using multiple quantitative quality prediction
techniques. Thus, the approaches explore a part of the design space. Still, so
far these approaches only provide feedback to the software architect, and their
connection to decisions on the requirements side remains unexplored. In this
work, we address the question how to feed the gained information back to the
requirements engineering phase.

2.2 Quality Requirements Prioritization in Research

While numerous approaches to handle quality requirements have been suggested
[6], few approaches address the prioritization of quality requirements. A survey
from 2008 on quality requirements prioritization [8] found that many approaches
rely on converting quality requirements into functional requirements first for
cost estimation. For example, a security requirement is operationalized to a
requirement for a login functionality first.

However, operationalization does not reflect the pervasive nature of such qual-
ity requirements as performance or reliability. Furthermore, quality requirements
often have the before-mentioned continuous scale, trade-offs among each other,
and effect on the utility of each other and the utility of functional require-
ments [1]. Thus, prioritization techniques for functional requirements are not
properly applicable to quality requirements [1,3].

As an exception, the QUPER approach [4] specifically supports to prioritize
quality requirements and supports analysts to define appropriate quality levels.

Prioritizing Quality Requirements with Architecture Evaluation Feedback 55

However, reasoning in QUPER is qualitative and relies on estimating quality
costs. Our proposed approach is complementary and could be used to determine
QUPER costs barriers and also trade-offs among quality attributes based on
quality prediction.

3 Prioritization by Architecture Feedback

Our planned approach provides feedback for requirements prioritization (Fig. 1).
Because an initial understanding of quality requirements is required for archi-
tecture design, the process starts with the requirements engineering activities
and with the design of an initial architecture as before. Compared to previous
approaches, more information is collected (design space exploration and analysis
of trade-off and dependencies) and a feedback loop from architecture evaluation
to requirements prioritization is introduced.

Note that according to Berntsson Svensson et al. [2,3], the definition of re-
quired quality levels is a subtask of requirements prioritization. Quality require-
ments elicitation is concerned with identifying relevant quality attributes and
quality requirements specification is concerned with defining how to measure
(or, more generally, test) the quality requirements1.

Identify Relevant
Quality Attributes

Specify Quality
Requirements

Prioritize Quality
Requirements

Design Software
Architecture

Requirements
Engineering
Activities

Software
Architecture
Evaluation
Activities

Evaluate Software Architecture
and Explore Design Space

Feedback

Further
development

activities

Analyze Trade-offs
and Dependencies

Fig. 1. Prioritizing Quality Requirements using Software Architecture Evaluation (new
activities are underlined)

This process can for example be instantiated for a business reporting sys-
tem (BRS). Only quality requirements are discussed in the following, functional
requirements and project requirements are neglected here.

Step 1: Identify relevant quality attributes (stakeholders and requirements
engineers): Performance, reliability, and operating costs are relevant for the BRS.

Step 2: Specify quality requirements (stakeholders and requirements engi-
neers): For performance, a response time requirement is defined for the “report-
ing” use case. For reliability, the up-time of “reporting” per month is defined.
The operating costs are hardware (servers, network, etc.) and maintenance costs.

1 That is, a quality requirement specification thus only specifies the quality to measure
with all its details and environmental conditions (e.g. “the response time of service X
must be low under workload Y”), but does not yet define a level of quality (here e.g.
“lower than 5 seconds”). If we understood quality level definition as a subactivity
of requirements specification instead, Fig. 1 would be changed accordingly and also
provide some feedback into the requirements specification phase.

56 A. Koziolek

Step 3: Prioritize quality requirements (stakeholders and requirements engi-
neers): Initially, stakeholders agree that reliability and costs are more relevant
than performance. The required quality levels are only roughly defined at this
point: The up-time should be as high as economically sensible, while the response
time should be low enough that users do not notice waiting times.

Step 4: Design initial architecture (software architect): Based on the initially
prioritized quality requirements, the software architect designs an initial archi-
tecture and creates an architecture model with quality annotations required for
evaluation.

Step 5: Evaluate software architecture and explore design space (software ar-
chitect and tools): Based on the defined architecture model and existing model-
based quality prediction techniques, a design space exploration tool such as
PerOpteryx [11] automatically searches the design space for optimal architec-
ture candidates, e.g. by varying component allocation to servers, by changing the
hardware to procure, by adding load-balancing or redundancy measures, and by
selecting from several available third-party components. Complex architecture
models can be handled by such tools, as shown in several case studies [11,12,7].
The result is a set of architecture candidates with optimal trade-off between
the quality attributes (i.e. Pareto-optimal candidates), as shown in Fig. 2. Each
point represents a Pareto-optimal architecture candidate and is plotted for the
predicted response time and costs of this candidate. Architects can inspect fur-
ther properties of each found candidate, such as the allocation, with the tool.

Step 6: Analyze trade-offs (software architect): Based on the design space
exploration results (Fig. 2), the software architect notes that all three quality
attributes are in conflict. Optimal response time and costs form a typical trade-
off curve (�), but these architecture candidates have a lower availability of 98%
per year. To achieve an availability of 99% per year (×), sacrifices for response
time and/or costs need to be made. As a result of this step, the discovered quality
dependencies and insights are fed back into the requirements prioritization. If
more quality attributes are analyzed, advanced tool support from multi-criteria
decision support research is required to efficiently explore the found trade-offs.

Step 7: Re-prioritize quality requirements (stakeholders and requirements en-
gineers): Based on the results by the software architect, stakeholders discuss and
negotiate on the required quality levels. Finally, they agree that 98% availability
is actually sufficient and allows them to achieve a response time of 3 seconds
while having low operating costs of less than 500 T EUR

Step 8: Re-design software architecture (software architect): The software
architect updates the architecture accordingly by selecting the found optimal
architecture candidates just below 500 T EUR. Alternatively, if the stakeholders
would not have come to an agreement yet, the software architects could try to
make high-level, manual changes to the architecture (e.g. changing the architec-
ture style), and rerun the design space exploration (indicated by the backward
arrow to design in Fig. 1).

Step 9: Further development: The architecture design is used to implement
the system. The architecture model should be continuously updated, especially

Prioritizing Quality Requirements with Architecture Evaluation Feedback 57

with insights for quality properties. For example, the model should be updated
by continuous performance measurements of prototypes and first versions of the
system. If the quality properties change, the steps above may be revisited.

0

5

10

15

20

0 500 1000 1500 2000 2500

M
ea

n
re

sp
on

se
 ti

m
e

in

se
co

nd
s

Operating costs in T€/year

Candidates with optimal performance
and costs (avail. 98%)
Candidates with optimal reliability (avail.
99%)

Fig. 2. PerOpteryx Results of BRS Design Space Exploration

As a result, our process supports the iterative and deferred definition of qual-
ity requirements, and thus provides a structured approach for stakeholders and
software architects to revisit requirements engineering activities after software
architecture design.

The design space exploration itself is already realized in the PerOpteryx
tool [11] (cf. Sec. 2.1), but no support for interpreting the results (Fig. 2) is avail-
able so far. Thus, to support our new process, we will investigate the new step
of trade-off and dependency analysis based on design space exploration results
as next steps in this research. Here, the main research question is how to extract
and represent quality dependencies relevant to stakeholders and requirements
engineers, such as conflicts and necessary trade-offs, to support prioritization.

Prioritization by architecture feedback could be applied in more scenarios
than the described development process. The prerequisites are (1) that an archi-
tecture model of a system is available, and (2) that several quantifiable quality
attributes are relevant and can be predicted based on the available architecture
model. The architecture model can be (a) an initial architecture model based on
initial quality requirements as described above, (b) an initial architecture model
based on functional requirements only, (c) a reference architecture for the target
domain which is to be adjusted, or (d) the architecture of an existing system
which is to be extended or maintained.

4 Conclusion

We present an approach to support quality requirements prioritization by provid-
ing feedback from quantitative architecture evaluation and design space
exploration. Applying our approach, stakeholders, requirements engineers, and
software architects gain a better understanding of the dependencies of quality
attributes and the effects of achieving certain quality values. Thus, it helps them

58 A. Koziolek

to prioritize quality requirements and decide for an optimal trade-off. However,
the approach is currently limited to quantitatively evaluated quality properties.

As next steps, we will investigate how the dependencies of quality properties
can best be extracted from design space exploration results and how the insight
can best be presented to the stakeholders, especially if more than three quality
requirements are present.

References

1. Berander, P., Andrews, A.: Requirements prioritization. In: Aurum, A., Wohlin, C.
(eds.) Engineering and Managing Software Requirements, pp. 69–94. Springer, Hei-
delberg (2005)

2. Berntsson Svensson, R., Gorschek, T., Regnell, B., Torkar, R., Shahrokni, A., Feldt,
R.: Quality requirements in industrial practice – an extended interview study at
eleven companies. IEEE Trans. on Software Engineering (preprint:1, 2011)

3. Berntsson Svensson, R., Gorschek, T., Regnell, B., Torkar, R., Shahrokni, A., Feldt,
R., Aurum, A.: Prioritization of quality requirements state of practice in eleven
companies. In: RE 2011, pp. 69–78. IEEE (2011)

4. Berntsson Svensson, R., Sprockel, Y., Regnell, B., Brinkkemper, S.: Setting quality
targets for coming releases with QUPER: an industrial case study. In: Requirements
Engineering, pp. 1–16

5. Boehm, B.W.: A spiral model of software development and enhancement. Com-
puter 21(5), 61–72 (1988)

6. Chung, L., do Prado Leite, J.C.S.: On Non-Functional Requirements in Soft-
ware Engineering. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.)
Mylopoulos Festschrift. LNCS, vol. 5600, pp. 363–379. Springer, Heidelberg (2009)

7. de Gooijer, T., Jansen, A., Koziolek, H., Koziolek, A.: An industrial case study
of performance and cost design space exploration. In: ICPE 2012 , Boston, USA
(to appear, 2012)

8. Herrmann, A., Daneva, M.: Requirements prioritization based on benefit and cost
prediction: An agenda for future research. In: RE 2008, pp. 125–134. IEEE (2008)

9. Immonen, A., Niemelä, E.: Survey of reliability and availability prediction methods
from the viewpoint of software architecture. Software and System Modeling 7(1),
49–65 (2008)

10. Koziolek, H.: Performance evaluation of component-based software systems: A sur-
vey. Performance Evaluation 67(8), 634–658 (2010)

11. Martens, A., Koziolek, H., Becker, S., Reussner, R.H.: Automatically improve soft-
ware models for performance, reliability and cost using genetic algorithms. In:
WOSP/SIPEW 2010, pp. 105–116. ACM, New York (2010)

12. Meedeniya, I., Buhnova, B., Aleti, A., Grunske, L.: Reliability-driven deploy-
ment optimization for embedded systems. Journal of Systems and Software 84(5),
835–846 (2011)

13. Nuseibeh, B.: Weaving together requirements and architectures. IEEE Com-
puter 34(3), 115–117 (2001)

14. Woods, E., Rozanski, N.: How software architecture can frame, constrain and
inspire system requirements. In: Avgeriou, P., Grundy, J., Hall, J.G., Lago, P.,
Mistrk, I. (eds.) Relating Software Requirements and Architectures, pp. 333–352.
Springer, Heidelberg (2011), doi:10.1007/978-3-642-21001-3 19

B. Regnell and D. Damian (Eds.): REFSQ 2012, LNCS 7195, pp. 59–76, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Simulation Approach for Impact Analysis of
Requirement Volatility Considering Dependency Change

Junjie Wang1,2, Juan Li1, Qing Wang1, He Zhang3, and Haitao Wang1,4

1 Laboratory for Internet Software Technologies, Institute of Software
Chinese Academy of Sciences, Beijing 100190, China

2 Graduate University of Chinese Academy of Sciences, Beijing 100039, China
3 National ICT Australia, University of New South Wales, Sydney, Australia

4 nfschina Inc, Beijing
{wangjunjie,lijuan,wq,wanghaitao}@itechs.iscas.ac.cn,

he.zhang@nicta.com.au

Abstract. Requirement volatility is a common and inevitable project risk which
has severe consequences on software projects. When requirement change oc-
curs, a project manager wants to analyze its impact so as to better cope with it.
As the modification to one requirement can cause changes in its dependent re-
quirements and its dependency relationship, the impact analysis can be very
complex. This paper proposes a simulation approach DepRVSim (Requirement
Volatility Simulation considering Dependency relationship) to assessing this
sort of impact. We abstract the general patterns of the influence mechanism,
which may trigger modification in its dependency relationship and bring
changes in other requirements through dependency. DepRVSim can generate
such information as the probability distribution of effort deviation and schedule
deviation. As a proof-of-concept, the applicability of DepRVSim is demonstrat-
ed with an illustrative case study of a real software project. Results indicate that
DepRVSim is able to provide experimental evidence for decision making when
requirement changes.

Keywords: Requirement Volatility, Requirement Dependency, Software
Process Simulation.

1 Introduction

It is widely reported that requirements often change during the software/system devel-
opment process. These changes are caused by several factors, such as evolving customer
needs, errors in original requirements, technological changes, and changes in the busi-
ness environment or organization policy. Requirements volatility often results in cost
and schedule overruns, unmet functions and, at times, cancelled projects [1, 2]. Houston
et al. [3] described an approach to modeling risk factors and simulating their effects.
The effects of six common and significant software development risk factors were stu-
died, including inaccurate cost estimation, staffing attrition and turnover, etc. Simulation
results reflected that requirements volatility is the most significant risk factor modeled.

60 J. Wang et al.

Most requirements cannot be treated independently, since they are related to and
affect each other in complex manners [4, 5]. When a certain requirement changes,
other requirements would be influenced through dependency relationship in ways not
intended or not even anticipated. Apart from that, the requirement dependency rela-
tionship would not remain the same when requirement changes happen. Hence, during
the impact analysis of requirement changes, dependency relationship is one of the
important factors need to be carefully considered.

Several simulation approaches have emerged to assessing the impact of require-
ment volatility on project performance. Pfahl et al. [6] built a system dynamic simula-
tion model for Siemens Corporate Technology to demonstrate the impact of require-
ment volatility on project duration and effort. His work modeled the relationship be-
tween unstable definition of requirements and rework cycles, rework cycles and de-
velopment productivity, development productivity and project duration, and so on.
This model captured a specific real-world development process in sufficient detail,
but was not easily adaptable to new application contexts. Ferreira et al. [7] utilized
empirical survey results and built an executable system dynamics model to demon-
strate the impact of requirement volatility on cost, schedule and quality. These studies
are conducted applying system dynamics simulation approach. This type of research
focuses on phenomenological observations of external behaviors of process, such as
job size, overall project effort, requirement defects and so on [8].

Compared with system dynamics, discrete-event simulation allows more detailed
descriptions of activity, resource and work product and more suitable for building
fine-grained software process simulation models [8]. Liu et al. [9] proposed a simula-
tion approach to predict the impact of requirement volatility on software project plans.
This discrete-event simulation model can capture internal behaviors of software
process, such as traceability and dependency relationship. But his approach did not
consider dependency relationship in sufficient detail and did not model the changes in
dependency relationship.

In this paper, we propose a simulation approach named DepRVSim (Requirements
Volatility Simulation considering Dependency relationship) to analyze the impact of
requirement volatility on project plan. In DepRVSim, we model the dependency rela-
tionship and traceability relationship, as well as the changes in dependency relation-
ship. We abstract the general patterns of the influence mechanism, which may trigger
modification in its dependency relationship and bring changes in other requirements
through dependency. DepRVSim can generate such information as the probability
distribution of schedule deviation.

Among previous studies, only a part of the simulation approaches were validated in
industrial settings. Others just used industrial context as simulation inputs. We not
only base our validation on real industrial context, but also compare model outputs
with actual process data and obtain statistical results. Simulation results indicate that
for 10 man hours offset from real effort deviation and 10 hours offset from real sche-
dule deviation, DepRVSim can reach a correct rate of approximately 45% and 70%
respectively. DepRVSim can assist project managers in decision making process and
help understand the impact of requirement volatility in depth.

Note that, there is no standard definition of requirements volatility. Usually it ex-
presses the changing nature of requirements over the system development life cycle

 A Simulation Approach for Impact Analysis 61

[10, 11]. Here we use these two terms – requirements volatility and requirements
change – interchangeably in this paper.

The remainder of the paper is structured as follows. Section 2 describes mechanism
of DepRVSim in detail. Section 3 illustrates the applicability and usefulness of
DepRVSim with the help of a case study. Section 4 discusses threats to validity. Sec-
tion 5 discusses related work. Finally, Section 6 concludes the paper and gives direc-
tions of our future work.

2 The DepRVSim Approach

DepRVSim is a discrete-event simulation approach, which adopts the framework of
RVSim [9]. There are four components in DepRVSim as shown in Figure 1.

Fig. 1. DepRVSim structure

Requirements Repository stores description for requirements attributes, including
requirements’ traceability information and dependency information. Requirements
traceability is concerned with tracing information between requirements and its re-
lated tasks, while requirements dependency deals with the relationship between re-
quirements. One change on a certain requirement not only influences its related tasks
through traceability, but also probably impacts other requirements through dependen-
cy, furthermore the dependency relationship can go through changes.

Requirements Change Event Generator generates events which represent require-
ments changes in simulation. There are three kinds of events in DepRVSim: Re-
quirements Addition, Requirements Deletion and Requirements Modification.

Requirements Change Event Routines includes three routines responsible for han-
dling the three kinds of events respectively in simulation.

Software Project Plan is the plan of the software project which is analyzed by
DepRVSim.

Firstly, Requirements Change Event Generator generates requirements change
events and sends them to Requirements Change Event Routines. Secondly, the cor-
responding routines are started to deal with these events in order utilizing the informa-
tion in Requirements Repository. Thirdly, the routines analyze the effects of these

62 J. Wang et al.

events, and then change the related part in Software Project Plan and Requirements
Repository, so users can easily see how requirements volatility impacts on project
plan.

In the following section, we will first present an overview about how we model the
dependency and traceability relationship, then give a detailed description of the simu-
lation process.

2.1 Requirements Dependency/Traceability Relationship

We assume a set of requirements Req1, Req2, … , ReqN will be developed. We use
ReqId to distinguish these requirements.

Requirements relate to each other and these relationships are called dependency.
Researches on it have different classification of dependency [12, 13]. Dahlstedt et al.
compiled these different classifications into an integrated view and developed “an
overall, neutral model of requirement dependencies” [14].

Table 1. Dependency classification [14]

Category Description Type
STRUCTURAL The structure of the requirement

set
Requires, Explains, Similar_to,
Conflict_with, Influences

COST/VALUE The cost and value of realizing
requirement

Increase/Decrease_cost_of,
Increase/Decrease_value_of

Since the purpose of our approach is to estimate the impact of requirements
change, we apply a general representation to model the dependency relationship, in
which we focus on the similar influence of different types of dependencies.

DependencySet denotes the set of dependencies. Each item in DependencySet is
represented as follows: (ReqId, DepDirection, DepStrength). DepDirection specifies
the dependency direction, which is IN or OUT. The IN direction denotes that other
requirements depend on this one, while the OUT direction denotes that this require-
ment depends on others. DepStrength specifies the degree of the dependency relation-
ship, which is STRONG or WEAK.

As the COST/VALUE category has little relevance to this paper, we only handle
the STRUCTURAL category of dependencies. Table 2 shows how to transform the
detailed dependency to our general representation.

Table 2. Rule for transforming detailed dependency to general representation

Original Dependency General representation
 RA ’s dependency RB ’s dependency
RA Requires RB (RB , OUT, strength) (RA , IN, strength)
RA Explains RB (RB , OUT, strength) (RA , IN, strength)
RA Similar_to RB Do not consider it because of its little relevance to impact analysis.
RA Conflict_with RB Suppose this type of dependency has been resolved before using this approach.
RA Influences RB (RB , IN, strength) (RA , OUT, strength)

Requirements traceability refers to the ability to describe and follow the life of a
requirement [15]. This is done mainly by establishing the traces from the requirement

 A Simulation Approach for Impact Analysis 63

to other artifacts. As our method supports the impact analysis before coding begins,
we utilize the software project plan to construct the traceability relationship. So, the
traceability in this paper refers to the relationship between a requirement and the cor-
responding tasks for realizing the requirement.

RelatedTaskSet denotes the set of traceability relationship. Each item in Related-
TaskSet is one of the related tasks for realizing the requirement and is represented as
follows: (TaskId, Type, Effort). Typical task types are design, code and test. Effort
denotes the estimated effort needed to fulfill a task. Note that certain dependency
relationships between tasks are applied, e.g., test cannot be started before some or all
of the code has been finished.

2.2 Requirements Change Event Generator

The first step of the simulation process is to generate requirements change events by
Requirements Change Event Generator. Change event is described as a tuple: (ReqId,
RChangeType, RChangeTime, ModifyLevel).

ReqId corresponds to the requirement which is added, modified or deleted.
RChangeType defines the type of requirements change event, which are Require-

ments Addition, Requirements Modification and Requirements Deletion.
RChangeTime is the time when requirements change event happens.
ModifyLevel specifies the degree to which one requirement is modified for the

change type Requirements Modification. Possible values of ModifyLevel are
MAJOR, MODERATE and MINOR, which are calibrated based on historical project
data and expert judgement.

DepRVSim allows users to specify how Requirements Change Event is generated.
There are two modes for generating events: definite events inputted by users and au-
tomatically generated events according to user-defined rules. Rules can be obtained
by analyzing historical project data (like [16, 17]) or by expert experience. Users can
also do “what-if” analysis by setting up different rules.

2.3 Requirements Change Event Routines

The second and third step of the simulation process is to handle the generated change
events and change related parts of Software Project Plan and Requirements Reposito-
ry. This is done by Requirements Change Event Routines. There are three general
routines for the three types of requirements change events in simulation, which is
represented as follows. Assume the changed requirement is Ri, the requirement that Ri
depends on is Rout, the requirement that depends on Ri is Rin.

Requirements Addition Event Routine
This routine has three steps as follows:

 Step1: Add Ri to Requirements Repository with related tasks

 Step2: Generate Ri.DependencySet

Assume the total number of requirements is N, the parameter dper (dependency per-
cent) of Ri is defined as follows: dper = (Nd / N) * 100.

64 J. Wang et al.

Nd can be calculated easily by N and dper. dper is generated based on the uniform
distribution of the type UNIFORM (dperMin, dperMax), with two user-input parame-
ters. Choose Nd requirements as ones with which Ri has dependency relationship.
Randomly generate DepDirection and DepStrength.

 Step3: Rearrange tasks properly in Software Project Plan.

In DepRVSim, overlapping of the phases for one requirement is not allowed. Design
tasks have precedence relationship the same as the dependency of requirements re-
lated to them. In code and test phases, tasks do not have such precedence relationship
and can be parallel.

Requirements Deletion Event Routine
This routine has three different steps from addition routine, which is shown as

follows:

 Step1: Delete Ri from Requirements Repository

 Step2: Modify the influenced requirements

When deleting Ri from current project plan, the requirements with which Ri has de-
pendency relationship might be influenced. The ModifyLevel of these requirements is
shown in Table 3, where “none” indicates that the requirement is not influenced.

Table 3. Rule for ModifyLevel of Rout and Rin in deletion routine

Ri’s ModifyLevel DepStrength Rin’s ModifyLevel Rout’s ModifyLevel
delete STRONG delete none
delete WEAK major none

 Step3: Adjust the Software Project Plan.

Requirements deletion may cause idle time between tasks, so the Software Project
Plan needs to be adjusted.

Requirements Modification Event Routine
There are four steps in the routines:

 Step1: Modify corresponding tasks’ effort of Ri

Set up a parameter emp (effort modified percent). DepRVSim distinguish the variant
effort for the situation that a task has not been started and the situation that a task has
been finished, which is signified by RChangeTime. Suppose the original task effort is
Effi. If the task has not been started, the effort after modification is Effi*(1+emp). If
the task has been finished, apply the parameter reworkRate to signify this difference.
The rework effort is Effi*emp*reworkRate. If the task has been started but not fi-
nished, divide the task into two parts and calculate new effort respectively.

The parameter emp is generated based on uniform distribution, parameters of
which are determined based on ModifyLevel. The reworkRate is an input parameter
calibrate based on particular project.

 Step2: Modify the dependency relationship of Ri

 A Simulation Approach for Impact Analysis 65

Experiences from software development show that requirement dependency relation-
ship would not remain unchanged when the certain requirement is modified.
DepRVSim model this situation. When analyzing the changes in dependency relation-
ship, we distinguish adding content and deleting content of certain requirements, as
well as the direction of the dependency relationship. Detailed rules are described as
follows:

Rule1: When the modification to Ri is adding its content, Ri might newly depend on
other requirements.

Set up a parameter dperAdd to represent the dependency percent of newly added
dependency relationship. We generate dperAdd based on the same uniform distribu-
tion as emp. We also apply an input parameter fAdd to revise the generated dperAdd.
The parameter fAdd is different among software projects and can be decided based on
expert judgement.

The number of newly added dependency relationship can be calculated using dpe-
rAdd, fAdd and N. Randomly choose requirements and generate the dependency rela-
tionship for Ri where DepDirection is OUT.

Rule2: When the modification to Ri is adding its content, for the dependency relation-
ship that Ri depends on others, current dependency might be strengthened.

We apply a parameter dpermp to represent the modified percent of dper. Generate
dpermp based on the same uniform distribution as emp. The number of changed de-
pendency relationship can be calculated by N * dper * dpermp.

Randomly choose the influenced relationship. If current DepStrength is WEAK,
change it to STRONG. If current DepStrength is STRONG, keep it unchanged.

Rule3: When the modification to Ri is deleting its content, for the two kinds of de-
pendency relationship, current dependency relationship is weakened or disappears.

Apply the parameter dpermp to decide the number of changed relationship as
Rule2. Randomly choose the influenced dependency relationship. Change the
STRONG strength to WEAK, and delete the WEAK relationship.

 Step3: Modify the influenced requirements

When modification to Ri happens, the requirements with which Ri has dependency
relationship might be influenced. The ModifyLevel of these requirements is shown in
Table 4.

Table 4. Rule for ModifyLevel of Rout and Rin in modification routine

Ri’s ModifyLevel DepStrength Rin’s ModifyLevel Rout’s ModifyLevel
major STRONG major none
major WEAK moderate none
moderate STRONG moderate none
moderate WEAK minor none
minor STRONG minor none
minor WEAK none none

 Step4: Adjust the Software Project Plan

66 J. Wang et al.

Requirement modification may change duration and precedence relationship of re-
lated project tasks, or cause idle time between tasks, so the Software Project Plan
needs to be adjusted.

3 Case Study

The method in this paper is mainly applied to the matured software organizations,
such as the ones which have achieved CMMI (Capability Maturity Model Integration)
maturity level 4 or higher. Such organizations have stable development and mainten-
ance processes. After a long-period accumulation of process execution data, they can
analyze and determine the dependency strength, the modification level and other pa-
rameters with sufficient data.

We utilized a real software project – Qone [18] in such an organization to demon-
strate the applicability of the proposed approach. With more than 600 thousand source
lines of code, this product has been developed and maintained for more than 7 years.
More than 300 Chinese software organizations are using this tool to manage their
projects.

The whole project was developed in iterative process. This case study was con-
ducted applying the real development data of one release – Qone 5.1. During the de-
velopment phase, change request were forwarded to project manager. For example,
changes in business environment might require a certain requirement to be enhanced.
These changes made the schedule prolonged and one or several weeks’ delay was the
common case.

We have developed a tool named DepRVSimulator which implements the
DepRVSim model. DepRVSimulator is developed based on an open source simula-
tion package SimJava [19]. It has a user-friendly graphical interface which can dis-
play the adjusted software project plan evolved due to requirements volatility.

The preparation for this simulation concerns collecting the requirements related in-
formation and deciding the model parameters’ values. For requirements related data,
we developed a questionnaire and asked the project manager to complete it utilizing
the stored process data. For parameters’ values, we conducted a semi-structured inter-
view with the project manager, a requirement analyst and a programmer. These values
were determined according to the stored empirical data and the interviewees’
experience.

3.1 Project Introduction

There are 24 requirements (R1~R24) generated through the requirement phase in this
release. Table 5 shows the requirement-related information, including ReqId, re-
quirement name and the estimated task-specific efforts per requirement.

Table 6 presents the estimated task-specific productivities per developer. Produc-
tivity represents the amount of work done per hours. Figure 2 shows the require-
ments’ dependency information. For example, the dependency relationship between
R1 and R2 is that R2 strongly depends on R1.

 A Simulation Approach for Impact Analysis 67

Table 5. Requirements information of Qone 5.1

ReqId Requirement name Design
(man hour)

Code
(man hour)

Test
(man hour)

Total
(man hour)

R1 Generate new PIIDS table 48 104 90 242
R2 Search PIIDS related in- 48 104 90 242
R3 Maintain PIIDS table 48 104 90 242
R4 Export PIIDS table 48 104 90 242
R5 Import evaluation tools 48 104 90 243
R6 Approve change request 44 56 73 173
R7 Timing task notification 44 56 73 173
R8 Table handling notifica-

tion
44 56 73 173

R9 Table selection conflict 44 56 73 173
R10 Project problem submis-

sion notification
44 56 73 173

R11 Identity authenticate 23 18 72 113
R12 Access control 20 21 72 113
R13 Data security 16 18 72 106
R14 Import and export file 16 40 122 178
R15 Import and export project 20 37 122 179
R16 Project data matching 18 37 122 177
R17 Import and export failure

handling
18 43 122 183

R18 Import and export infor-
mation modification

18 38 122 178

R19 Related project handling 16 40 110 166
R20 Department report import

and export
16 40 110 166

R21 Add configuration files 4 3 1 8
R22 Bug comment 4 3 1 8
R23 Size restriction of change 4 3 1 8
R24 Add links for project 4 3 1 8

Table 6. Estimated productivity of developers for different task types

Developers Design (dimension-
less)

Code (dimension-
less)

Test (dimen-
sionless)

Dev1 2 1 1
Dev2 1 0 2
Dev3 1.2 2 1.4
Dev4 1 1.5 2

Fig. 2. Dependency relationship between requirements of Qone 5.1

Software project plan specifies the planned start time and end time for each task, as
well as the allocated developer for the task. Due to the limited space, we do not
present the whole plan here. Part of it is shown in Figure 3.

68 J. Wang et al.

Fig. 3. Part of the initial software project plan

We collected the change data of Qone 5.1, as summarized in Table 7. It has 10 re-
quirement changes. Effort deviation and schedule deviation information was also
recorded in change database. Effort deviation denotes the difference between the new
total effort under requirement changes and the planned total effort. Schedule deviation
is the difference between the new project duration after changes and the planned
project duration. The ModifyLevel is obtained based on the actual change degree and
expert judgement.

Table 7. Change data of Qone 5.1

ReqId ModifyLevel
Effort deviation
(man hour)

Schedule deviation
(hour)

R14 MAJOR 176 49
R15 MAJOR 176 49
R16 MAJOR 176 49
R17 MAJOR 176 49
R18 MAJOR 176 49
R19 MAJOR 176 49
R20 MAJOR 176 49
R11 MODERATE 115 38
R12 MODERATE 115 38
R13 MODERATE 115 38

The parameters defined in Section 2 are set as follows: dperMin =0, dperMax =
0.4; major = 0.45, moderate = 0.3, minor = 0.15; reworkRate = 0.5; fAdd = 0.15.
These parameters are determined by the semi-structure interview. Take reworkRate as
an example, this parameter works in Step 1 of modification routine. Together with the
parameter emp, this parameter decides the rework effort for the finished tasks. The
interviewees can refer to similar circumstances of historical projects to obtain such
information as the added workload of rework task. This parameter can then be deter-
mined through statistical techniques utilizing these project data.

3.2 Simulation Scenario and Impact Analysis

Due to limit space, we only demonstrate how Requirements Modification Event Rou-
tine works. This scenario is based on actual change data in Table 7. During project
development, customers requested the requirement “import and export project” to be

 A Simulation Approach for Impact Analysis 69

enhanced and refined. Hence, the modification to R15 is adding its content. The
change time is 130 hours and ModifyLevel for R15 is MAJOR, which is obtained in
the change databases.

Note that, many of the parameters below are just random values generated based
on certain distribution during this certain simulation scenario. We applied these para-
meters to illustrate how DepRVSim works. The ultimate simulation outcome is based
on 10000 simulation scenarios of this kind, in which these parameters might differ
among simulation scenarios.

According to Requirement Modification Event Routine, there are four steps to
handle this change event.

 Step1: Modify corresponding tasks’ effort of R15

R15 has three tasks, respectively Desing15, Code15 and Test15. When this change event
happens at 130 hours, Design15 has been finished, as Figure3 shows, and the other two
tasks have not been started. The original effort for Design15 is 20 hours, as Table 5
shows. The rework effort for Design15 is 20*emp*reworkRate. Suppose the randomly
generated emp is 0.38 in this simulation scenario based on UNIFORM(0.3, 0.45). The
reworkRate is 0.5, so the rework effort for Design15 is 4 hours. The new effort for
Code15 and Test15 can be calculated in the similar way, which is not shown due to
space limit.

 Step2: Modify the dependency relationship of R15

Current dependency relationship of R15 is {(R14, IN, WEAK), (R19, IN, WEAK), (R20,
IN, STRONG)} as Figure 2 shows. DepRVSim would utilize Rule1 and Rule2 to
handle dependency change of R15.

According to Rule1, R15 might newly depend on other requirements. Suppose the
generated dperAdd is 0.32 in this simulation scenario based on UNIFORM(0.3, 0.45).
The input parameter fAdd is 0.15. So the number of newly added dependency is
24*0.32*0.15 ≈ 1. Suppose the newly added dependency is (R10, OUT, WEAK) in
this simulation scenario.

According to Rule2, the current dependency relationship of DepDirection = IN is
strengthened. dper for R15 is 3/24 = 0.125, suppose the generated dpermp is 0.36 in
this simulation scenario, the number of changed dependency is 24*0.125*0.36 ≈1.
Suppose the randomly chosen dependency is (R14, IN, WEAK), change it to (R14, IN,
STRONG). The dependency relationship of R15 after change happens is {(R10, OUT,
WEAK), (R14, IN, STRONG), (R19, IN, WEAK), (R20, IN, STRONG)}.

 Step3: Modify the influenced requirements

There are requirement changes in these requirements that depend on R15, which are
R14, R19 and R20. These requirement changes are reflected through the changes in
corresponding tasks’ effort. When this change event happens at 130 hours, Design14,
Design19 and Design20 are all on-going tasks, as Figure 3 shows. The effort after mod-
ification can be calculated similar with Step1.

 Step4: Adjust the Software Project Plan

70 J. Wang et al.

The adjusted project plan of Figure 3 is shown in Figure 4. The red box denotes the
rework for finished tasks, while the green box denotes the modification for unfinished
tasks. The purple box denotes the tasks which are indirectly influenced. We can see
from Figure 4 that due to the postponement of Design14 and rework of Design15, Dev1
is late for conducting Design16. And the follow-up tasks would be influenced.

Fig. 4. Part of the adjusted software project plan

To avoid the influence of exceptional values on outcomes, we simulated 10000
times for this change event. The simulated effort deviation and schedule deviation are
shown in Figure 5 and Figure 6.

The real development data in Table 7 showed that the effort deviation and schedule
deviation for this requirement change are respectively 176 man hours and 49 hours.
From Figure 5 and Figure 6, the probability that the simulated effort deviation has 10
man hours offset with real project data is 41.7%, while the probability for 10 hours
offset of schedule deviation is 65.6%.

Fig. 5. Simulation results of
effort deviation

Fig. 6. Simulation results of
schedule deviation

3.3 Evaluation of DepRVSim

We utilize the change data in Table 7 to carry out the evaluation of DepRVSim. We
simulate these requirement change events and generate the effort deviation and schedule

100 120 140 160 180 200 220 240
0

50

100

150

200

250

300

350

400

450

Effort deviation (man hours)

F
re

qu
en

cy

20 30 40 50 60 70 80
0

50

100

150

200

250

300

350

400

450

500

Schedule deviation (hours)

F
re

qu
en

cy

 A Simulation Approach for Impact Analysis 71

deviation information. Our work obtains the minimum, maximum and average value, as
well as the probability of offset with real project data. These results are listed in Table 8
and Table 9.

Table 8. Effort deviation information of DepRVSim

ReqId Minimum effort
deviation

Maximum
effort deviation

Average effort
deviation

Effort devia-
tion±10

Effort devia-
tion±20

R14 110 238 172 42.6% 67.5%
R15 110 235 174 41.7% 66.5%
R16 110 232 172 42.9% 67.2%
R17 105 212 166 41.3% 66.0%
R18 105 218 168 42.1% 68.2%
R19 102 215 172 43.3% 69.2%
R20 102 214 172 43.4% 69.2%
R11 67 155 110 45.0% 63.6%
R12 68 156 110 46.7% 65.5%
R13 57 145 99 49.2% 64.7%

Effort deviation±K signify the probability that simulation results have K man hours
offset from real effort deviation. Take R14 as an example, Table 7 shows that the real
effort deviation is 176 man hours, so effort deviation±10 means the probability that
the simulated effort deviation falls into the interval from 166 man hours to 186 man
hours. The results in Table 8 show that for 10 and 20 man hours offset from real effort
deviation, DepRVSim can predict correctly in the probability of around 45% and
approximately 70%.

Table 9. Schedule deviation information of DepRVSim

ReqId Minimum
schedule devia-
tion

Maximum sche-
dule
deviation

Average
schedule
deviation

Schedule devia-
tion ±5

Schedule devia-
tion ±10

R14 34 75 52 40.2% 68.5%
R15 34 77 52 37.9% 65.6%
R16 34 76 54 37.8% 64.0%
R17 35 73 54 39.7% 63.9%
R18 36 76 54 40.9% 66.4%
R19 33 74 50 41.1% 68.9%
R20 33 73 51 41.3% 68.7%
R11 32 58 42 45.2% 69.2%
R12 29 58 43 48.8% 67.4%
R13 32 55 40 46.3% 64.4%

Similar with effort deviation information, the results in Table 9 show that for 5 and
10 hours offset from real schedule deviation, DepRVSim can reach a correct rate of
49% and 70%.

We can notice that the simulated schedule deviation is often bigger than the actual
project data. Through interviews with the project manger of this project, we found
that there is rescheduling process to better utilize the human resources during re-
quirement changes in real software project. However, in our work, the added task
effort caused by changes is assigned to the original developer. Even so, the simulation

72 J. Wang et al.

results accord well with the real effort deviation and schedule deviation. Project man-
ager can refer to these simulation results to decide whether to accept a particular
change request or not.

The previous discussion showed what can be benefited from interpreting the simu-
lation outcome. When it comes to the cost to prepare the simulation, the main work is
to collect the requirements related information and decide the model parameters’ val-
ues. This is done by the project manger, a requirement analyst and a programmer in
our study. As the organization has a stable development process and long-period ac-
cumulation of process execution data, the preparation only takes 14 person hours.
From this point, we can expect this simulation approach is a beneficial one.

4 Threats to Validity

From running a series of simulation scenarios we have gained additional insight into
the nature of requirement volatility. The results from our case study provide an indi-
cation that there is a good chance to support project managers in decision making
about requirement change request. In order to better judge the meaningfulness and
applicability of the results, we have to carefully check their validity status.

Construct validity: a central construct in our work is the mechanism for impact of
requirement volatility. Since no generally accepted mechanism for requirement
change, we had to base our routines on empirical study and real software development
process. We assume that this impact can be model through dependency relationship
and traceability relationship. Another construct in our work is the mechanism for
changes in dependency relationship. We assume that deleting requirement content
might weaken its current dependency, while adding requirement content might streng-
then its dependency generally. We also distinguish the direction of these dependency
relationships. It is shown that the applied routines work well in general. However, as
is the case for routines in general, we cannot precisely evaluate the quality of the solu-
tion for other particular project process. This might also impact the comparability
between the different projects slightly.

Internal validity concerns the extent to which observed differences can be attri-
buted to an experimental manipulation. Since our work heavily relies on a compute-
rized simulation model, in principle, this should be one of the easiest types of validity
to maximize. The simulated environment offers the experimenter a sterile setting in
which entities adhere strictly to whatever routines they are assigned and within se-
lected parameter bounds.

External validity is the degree to which the findings in a local setting, containing a
single set of sampling units, are applicable to the population of sampling units as well
as other setting. In our particular case, external validity is enhanced in many ways.
First of all, we base our study on real software project and apply real project change
data to do the evaluation. Apart from that, we provide customizable parameters in our
model and users can assign their own value according to their specific software
projects. These all increase the external validity of our results. However, to further
prove external validity, we need to conduct our evaluation on more software projects.

 A Simulation Approach for Impact Analysis 73

While stressing the limitations of the applicability of the results, we also want to
emphasize that the overall methodology is applicable more broadly in the context of
simulation-based analysis. The only difference would be the adjustment of the simula-
tion model and the inherent heuristics.

5 Related Work

The idea of using software process simulation for predicting project performance or
evaluating processes is not new. Beginning with pioneers like Abdel-Hamid [20],
Bandinelli [21], Gruhn [22], Kellner [23], Scacchi [24], dozens of process simulation
models have been developed for various purposes. The primary purposes of simula-
tion models are summarized as: strategic management, planning, control and opera-
tional management, process improvement and technology adoption, as well as train-
ing and learning [25].

Planning involves the prediction of project effort, cost, schedule, quality, and so
on. The impact analysis of requirement volatility is among this purpose. Pfahl et al.
[6] built a simulation model for Siemens Corporate Technology to demonstrate the
impact of requirement volatility on project cost and effort. Ferreira et al. [7] derived
related factors from empirical survey and built a system dynamic simulation model to
demonstrate the impact of requirement volatility on cost, schedule and quality.

Control and operational management involves project tracking and oversight.
Project can be monitored and compared against planned values computed by simula-
tion, to help determine when corrective action may be needed. The management of
software development risks is within this purpose. Houston et al. [5] described an
approach to modeling risk factors and simulating their effects as a means of support-
ing certain software development risk management activities. His approach consi-
dered requirements volatility as one of the six risk factors and simulated its influence
on project cost and duration.

Apart from software process simulation, empirical study is often applied in the im-
pact analysis of requirement volatility on development productivity [26], project cost
[27], defect density [28], project effort [27], project schedule [10] and change effort
[30]. Zowghi et al. [26] conducted a survey of 430 software development companies
in Australia, and the results showed that over 80% projects were late because of re-
quirement volatility. Stark et al. [10] developed a regression analysis model to predict
the schedule change percent due to requirements volatility. These empirical studies
can serve as the basis for parameter calibration and general mechanism of simulation
model.

The simulation method presented above focus on phenomenological observations
of external behaviors of software process. Our model focused on the study of the in-
ternal details and working of process. We modeled the changes in dependency rela-
tionship when requirement changes occur. This is common in software development
and a key factor for impact analysis of requirement volatility, but is not well explored
yet. We abstracted the general patterns of dependency changes and provided custo-
mizable parameters for users’ own process models.

74 J. Wang et al.

6 Conclusions and Future Work

In this paper, we presented a simulation approach DepRVSim which can predict the
impact of requirement volatility on software project plans. DepRVSim adopts dis-
crete-event simulation which is able to provide many kinds of project data for users
besides the project effort and schedule in the case study.

Our primary contribution is modeling the dependency relationship to assist the im-
pact analysis of requirement volatility. Besides, we evaluate the effectiveness and
applicability of DepRVSim applying the real software development data.

One significant feature of DepRVSim is that it supports fine-grained requirement
change and detail change impact analysis. This feature not only provides users with
such information as probability distribution of effort deviation and schedule deviation,
but also assists project managers to understand the impact of requirements volatility
deeply.

It should be pointed out, however, that the presented material is just the starting
point of the work in progress. Future work will focus on calibration of model parame-
ters applying data mining techniques. Another enhancement aims at validation of the
proposed approach in more industrial environment, quantitative cost-benefit analysis,
improvement of model usability, and – more importantly – enhancement of the
DepRVSim model. Enhancement of DepRVSim will in particular aim at distinguish-
ing specific dependency types when conducting the impact analysis and adding a
heuristic that takes manpower resources into consideration.

Acknowledgment. This work is supported by the National Natural Science Founda-
tion of China under grant No.60803023, No.60873072 and No.60903050, the Nation-
al Basic Research Program (973 Program) of China under grant No.2007CB310802.

References

1. Boehm, B.W.: Software Risk Management: Principles and Practices. IEEE Software 8(1),
32–41 (1991)

2. Kotonys, G., Sommerville, I.: Requirements Engineering Process & Techniques. John
Wiley & Sons (2002)

3. Houston, D.X., Mackulak, G.T., Collofello, J.S.: Stochastic simulation of risk factor poten-
tial effects for software development risk management. JSS 59(3), 247–257 (2001)

4. Dahlstedt, Å., Persson, A.: Requirements interdependencies - Moulding the State of Re-
search into a Research Agenda. In: The Ninth International Workshop on Requirements
Engineering: Foundation for Software Quality (REFSQ 2003), Klagenfurt/Velden, Austria,
pp. 71–80 (2003)

5. Wohlin, C., Aurum, A.: What is important when deciding to include a software require-
ment in a project or a release? In: Fourth International Symposium on Empirical Software
Engineering, Noosa Heads, Australia, November 17–18 (2005)

6. Pfahl, D., Lebsanft, K.: Using Simulation to Analyze the Impact of Software Requirements
Volatility on Project Performance. Information and Software Technology 42(14),
1001–1008 (2000)

 A Simulation Approach for Impact Analysis 75

7. Ferreira, S., Collofello, S.J., Shunk, D., Mackulak, G.: Understanding the Effects of Re-
quirements Volatility in Software Engineering by Using Analytical Modeling and Soft-
ware Process Simulation. The Journal of Systems and Software 82, 1568–1577 (2009)

8. Zhang, H., Kitchenham, B., Pfahl, D.: Software Process Simulation Modeling: An Ex-
tended Systematic Review. In: Münch, J., Yang, Y., Schäfer, W. (eds.) ICSP 2010. LNCS,
vol. 6195, pp. 309–320. Springer, Heidelberg (2010)

9. Liu, D., Wang, Q., Xiao, J., Li, J., Li, H.: RVSim: A Simulation Approach to Predict the
Impact of Requirements Volatility on Software Project Plans. In: Wang, Q., Pfahl, D.,
Raffo, D.M. (eds.) ICSP 2008. LNCS, vol. 5007, pp. 307–319. Springer, Heidelberg
(2008)

10. Stark, G., Skillicorn, A., Ameele, R.: An Examination of the Effects of Requirements
Changes on Software Releases. CROSSTALK. The Journal of Defense Software Engi-
neering, 11–16 (December 1998)

11. Al-Emran, A., Pfahl, D., Ruhe, G.: Decision Support for Product Release Planning based
on Robustness Analysis. In: Proc. IEEE International Requirements Engineering Confe-
rence (RE), pp. 157–166 (2010)

12. Ramesh, B., Jarke, M.: Toward Reference Models for Requirements Traceability. IEEE
Transactions on Software Engineering 27(1), 58–93 (2001)

13. Robinson, W.N., Pawlowski, S.D., Volkov, V.: Requirements Interaction Management,
GSU CIS Working Paper 99-7, Department of Computer Information Systems, Georgia
State of University, Atlanta (1999)

14. Dahlstedt, A.G., Persson, A.: Requirements Interdependencies - Moulding the State of Re-
search into a Research Agenda. In: Ninth International Workshop on Requirements Engi-
neering: Foundation for Software Quality in Conjunction with CAiSE 2003 (2003)

15. Gotel, O., Finkelstein, A.: An Analysis of the Requirements Traceability Problem. In:
Proc. IEEE International Requirements Engineering Conference (RE 1994), pp. 94–101
(1994)

16. Nurmuliani, N., Zowghi, D., Powell, S.: Analysis of Requirements Volatility During Soft-
ware Development Life Cycle. In: Proceedings of the 2004 Australian Software Engineer-
ing Conference (ASWEC 2004), Melbourne, Australia (2004)

17. Nurmuliani, N., Zowghi, D., Williams, S.P.: Characterising Requirements Volatility: An
Empirical Analysis. In: Proceedings of the 4th International Symposium on Empirical
Software Engineering (ISESE 2005), Noosa, Australia (2005)

18. http://qone.nfschina.com/qone/
19. http://www.icsa.inf.ed.ac.uk/research/groups/hase/simjava/
20. Abdel-Hamid, T.K., Madnick, S.E.: Software Projects Dynamics – an Integrated Ap-

proach. Prentice-Hall, Englewood Cliffs (1991)
21. Bandinelli, S., Fuggetta, A., Lavazza, L., Loi, M., Picco, G.P.: Modeling and Improving an

Industrial Software Process. IEEE Trans. on Soft. Eng. 21(5), 440–453 (1995)
22. Gruhn, V., Saalmann, A.: Software Process Validation Based on FUNSOFT Nets. In:

Derniame, J.-C. (ed.) EWSPT 1992. LNCS, vol. 635, pp. 223–226. Springer, Heidelberg
(1992)

23. Kellner, M.I., Hansen, G.A.: Software Process Modeling: A Case Study. In: Proc. AHICSS
1989, vol. II - Software Track, pp. 175–188 (1989)

24. Mi, P., Scacchi, W.: A knowledge-based environment for modeling and simulating soft-
ware engineering processes. IEEE Trans. on Know. and Data Eng. 2(3), 283–294 (1990)

25. Kellner, M.I., Madachy, R.J., Raffo, D.M.: Software process simulation modeling: Why?
What? How? The Journal of Systems and Software 46(2/3), 91–105 (1999)

76 J. Wang et al.

26. Zowghi, D., Offen, R., Nurmuliani, N.: The Impact of Requirements Volatility on the
Software Development Lifecycle. In: Proc. International Conference on Software Theory
and Practice (IFIP World Computer Congress) (2000)

27. Zowghi, D., Nurmuliani, N.: A Study of the Impact of Requirements Volatility on Soft-
ware Project Performance. In: Proc. Asia-Pacific Software Engineering Conference
(APSEC 2002), Gold Coast, Australia, pp. 3–11 (2002)

28. Malaiya, Y.K., Denton, J.: Requirements Volatility and Defect Density. In: Proc. Interna-
tional Symposium on Software Reliability Engineering (ISSRE 1999), pp. 285–294
(1999)

29. Nurmuliani, N., Zowghi, D., Williams, S.: Requirements Volatility and Its Impact on
Change Effort: Evidence Based Research in Software Development Projects. In: Proc.
Australian Workshop on Requirements Engineering (AWRE 2006), Adelaide, Australia
(2006)

30. Ferreira, S., Collofello, J., Shunk, D., Mackulak, G., Wolfe, P.: Utilization of Process
Modeling and Simulation in Understanding the Effects of requirements volatility in Soft-
ware Development. In: International Workshop on software process Simulation and Mod-
eling (proSim 2003), Portland, Oregon, USA, May 3-4 (2003)

B. Regnell and D. Damian (Eds.): REFSQ 2012, LNCS 7195, pp. 77–93, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Collaborative Resolution of Requirements Mismatches
When Adopting Open Source Components

Nguyen Duc Anh1, Daniela S. Cruzes1, Reidar Conradi1,
Martin Höst2, Xavier Franch3, and Claudia Ayala3

1 Norwegian University of Science and Technology,
Department of Computer and Information Science, Trondheim, Norway

{anhn,dcruzes,Reidar.Conradi@idi.ntnu.no}
2 Lund University, Department of Computer Science, Lund, Sweden

martin.host@cs.lth.se
3 Technical University of Catalunya, Department of Service Engineering

and Information Systems, Barcelona, Spain
{franch,cayala@essi.upc.edu}

Abstract. [Context and motivation] There is considerable flexibility in require-
ments specifications (both functional and non-functional), as well as in the
features of available OSS components. This allows a collaborative matching and
negotiation process between stakeholders such as: customers, software contractors
and OSS communities, regarding desired requirements versus available and thus
reusable OSS components. [Problem] However, inconclusive research exists on
such cooperative processes. Not much empirical data exists supporting the con-
duction of such research based on observation of industrial OSS adoption
projects. This paper investigates how functional and non-functional requirement
mismatches are handled in practice. [Results] We found two common approaches
to handle functional mismatches. The main resolution approach is to get the com-
ponents changed by the development team, OSS community or commercial
vendor. The other resolution approach is to influence requirements, often by post-
poning requirements. Overall, non-functional requirements are satisfactorily
achieved by using OSS components. Last but not least, we found that the custom-
er involvement could enhance functional mismatch resolution while OSS
community involvement could improve non-functional mismatch resolution.
[Contribution] Our data suggests that the selecting components should be done
iteratively with close collaboration with stakeholders. Improvement in require-
ment mismatch resolution to requirements could be achieved by careful consid-
eration of mismatches size, requirements flexibility and components quality.

Keywords: Requirements elicitation; Requirement mismatches; Open source
software; Collaboration; Empirical study.

1 Introduction

The rapid growth in scale and complexity of software systems, together with the
availability of third party software components, such as Commercial Off-The-Shelf

78 N.D. Anh et al.

(COTS) or Open Source Software (OSS) components, increase the adoption of
component-based software development (CBSD) in software industry [1]. This
adoption demands specialized software development processes that aim at supporting
Off-The-Shelf (OTS, including both COTS and OSS) component acquisition,
especially Requirements Engineering (RE) processes.

Traditional RE basically consists of eliciting stakeholder’s needs, refining the ac-
quired goals into non-conflicting requirements statements, and finally validating these
requirements with stakeholders [2].The RE process for OSS based development is
quite different from this traditional one since integration with third party components
is the essential part of software development. It is an intertwined process between
requirements engineering activities and OTS component selection to select the best-
matched set of components and requirements. Therefore, requirements elicitation and
negotiation becomes more likely a collaborative activity, which involves customers,
software suppliers and third party vendors/communities. This collaborative process
closely relates to the OSS component identification and selection processes [3]. The
main challenge comes from the dynamic nature of requirements and evolution of OSS
components [4, 5]. The continuously evolved requirements and updated versions of
chosen components could make the component features differ from the requirements
in post-selection phases. These mismatches between components and requirements
are unavoidable and need to be resolved during the project lifetime.

Since the process of matching requirements and selected components is crucial for
a successful adoption of OSS components in software projects, it is necessary to ex-
plore the relevant industrial collaboration practices, such as requirement elicitation,
component selection and mismatch handling [4, 6]. Several studies have focused on
the COTS component selection processes [6, 7]. However, less effort has been allo-
cated to the investigation RE practices in the context of OSS component adoption and
even less to empirical studies in this topic.

In this paper, we present a mixed quantitative and qualitative survey of how
such requirement/OSS component selection and requirements mismatches are han-
dled in fifteen European software-intensive companies in Norway, Sweden and
Spain. The main purpose of the study is to explore the requirements and compo-
nent selection practices and their relationships to the requirement-component mis-
match resolution.

The remainder of the paper is organized as follows: Section 2 presents previous RE
studies on OTS-based development. Section 3 describes our research approach. The
results are provided in Section 4 and discussed in Section 5. The threats to validity
and conclusions are given in Section 6 and Section 7.

2 Research Background

2.1 Requirements-Components Matching Processes

Requirement - component matching and mismatch resolving process are overlapping
activities but occurs in different phases of CBSD. While component matching consists

 Collaborative Resolution of Requirements Mismatches 79

of eliciting requirements and finding matching components in early development phase
[7, 8], mismatch resolution concerns about detecting the problems with selected
components and resolving it in later development [9].

Literature reveals a significant amount of research on matching process [7, 10, 11,
12, 13]. Mohamed et al. summarized the evolution of COTS selection practices in 18
COTS selection approaches [7]. The common steps include defining the evaluation
criteria using requirements, COTS search, filter search results, evaluation of COTS
components, and selection of best-fit COTS. Stol et al. summarized 20 different initia-
tives for OSS component selection and evaluation [10]. Morisio et al. surveyed 15
COTS adoption projects and characterize the COTS adoption process [11]. The com-
mon steps for the requirement phase are requirement analysis, system requirements
review, COTS identification and selection, glueware and integration requirement
identification. The authors also found two major issues, namely dependence on the
vendor and flexibility in requirements. Paech and Reuschenbach [13] present a re-
quirements engineering process for OSS selection. In this process, the choice of prod-
uct is based on a comparison of prioritized requirements from the stakeholders and
evaluation results for candidate products. Höst et al. summarize experience from a set
of organizations on how to select open source components in software projects, and
observe for example that it is important to understand the requirements for the identi-
fied components [12].

These studies, nevertheless do not consider the dynamic nature of requirements as
well as OSS components, which lead to the issues of requirement mismatches after
selecting the best-fit component at the mentioned time.

2.2 Requirements-Components Mismatches Resolution Process

Since component features are predetermined when selecting components, the changes
in requirements introduce challenges to adoption of the components. A requirement-
component mismatch is a difference in functional feature or non-functional quality
attributes from a given component and a desired requirement.

On one hand, some studies see requirement negotiation as an approach to resolve
the mismatches [2, 4, 8, 9, 14, 15]. In these cases, the component is fixed beforehand
and requirements are the target of changes [8]. Maiden and Ncube observed that this
process is iterative: from an initial stage with all the customer wish-list and the full
market-place available, mismatches progressively force requirements negotiation and
candidate filtering until the final COTS component is selected [14]. Rolland proposed
a goal-oriented approach for considering mismatches at the business level and then
defined goal matching as the conceptual framework for resolving them [8]. Other
approaches focused on lower level but highly challenging requirement problems, with
integration requirements in call-for-tender processes [15].

On the other hand, a mismatch can be solved by modifying or adapting the selected
components to fit to the requirements [4, 9, 16]. The components are modified when it
takes a long time for external support [4] or when there is a need to adapt to new
changes in requirement [9].

80 N.D. Anh et al.

There is although a lack of empirical investigations of industrial practices on mis-
match resolution. Consequently, there is no attempt to explore which approach is
conducted in which scenario.

3 Research Approach

3.1 Research Questions

It is important to understand industrial practices on both requirement and component
perspectives in order to investigate the mismatches between them in the later phases.
The source of requirements and how they are described could infer how flexible the
requirements can be. Besides, the component search and selection process could
indicate potential problems with components while implementing requirements. The
understanding of both perspectives leads to a comprehension of factors that influence
requirement-component mismatches. This argument leads us to RQ1:

RQ1: What are the general practices of requirement elicitations and OSS compo-
nent selection in OSS adoption software projects?
Secondly, we distinguish the concepts of functional and non-functional requirements
with regarding to requirement mismatches. In this study, we define functional mis-
matches as the differences between functional requirements and features provided by
the components. These functional mismatches are investigated in the component lev-
el. Since the functional requirements are often explicitly described, it is not proble-
matic to identify the functional mismatches when they occur. We are interested in
investigating how the functional mismatch between a requirement and a component is
handled by project stakeholders. It is hypothesized as an intertwined process of nego-
tiation and technical resolution that involve customer, developers and OSS communi-
ty. To investigate this scenario in industry, we propose the RQ2:

RQ2: How are the functional mismatches between requirements and OSS compo-
nents collaboratively managed in OSS adoption software projects?
Thirdly, in addition to discovering what functionalities are important to users at the
system level, qualities associated with particular functionality/user goals should be
elicited. The qualities may need to be translated by developers from user-level objec-
tives, values and concerns into specific technical quality requirements, though non-
functional requirements are often not well-described and poorly understood [17, 18],
hence the mismatches between non-functional requirements and components are hard
to investigate and assess. Besides, non-functional requirements are normally system
characteristics. Therefore, they are often verified in the later phases of system devel-
opment, when the modules are integrated and tested. Consequently, instead of inves-
tigating the mismatches between non-functional requirements and components, we
investigated which and how non-functional requirements are fulfilled by using OSS
components. This rationale leads to RQ3:

RQ3: How are non-functional requirements fulfilled by using OSS components in
OSS adoption software projects?

 Collaborative Resolution of Requirements Mismatches 81

3.2 Data Collection and Analysis

The study was performed in the period between September 2010 and September 2011,
including study design, piloting, data collection and analysis.

Fig. 1. Research questions mapping

Population: Our target is software-intensive organizations that adopt OSS in produc-
ing software product. This population includes organizations with different sizes and
in different application domains. 64 companies from our contact list were selected and
contacted by phone call and email, in which fifteen stakeholders (developers or
project leaders), who represented for 15 projects, agreed to participate in the survey.
Some of the contacts were not eligible for participating due to several reasons, such as
lack of adoption of OSS components in the projects, the companies changed the OSS
adoption policy or the adoption strategy was not publishable.

Interview Guide (Survey): The method used in this study is semi-structured inter-
views. The interview guide was adjusted after three pilot interviews. The purpose of
the survey is to discover the practices in OSS adoption, such as Requirements elicita-
tion, Component selection, Requirement mismatch resolution and Collaboration
process in adopting OSS components. In the scope of this study we focused on results
extracted on RE practices. The survey was designed as a 5-section survey, with both
closed and open questions. The closed questions were used to solicit information on
interviewee and project context. The open questions were used to gather information
on component-requirement mismatches resolution practices and communication to the
community. The survey also included explanation for important terminology and
description of context background in order to offer a common understanding for all
participants. The relevant survey questions are given in the Appendix.

Data Collection Procedure: The interview survey was sent to all participants some
days before the interview meeting. In this way, the participants could be well-prepared

82 N.D. Anh et al.

for the interview. The participants were asked to fill in the first two parts of the survey
and give back to us before hand. The next three parts of the survey were asked directly
to the participant during the interview. Each interview session lasted between 40 to 75
minutes. Interviews were attended by one to three interviewers. The conversations
were recorded and transcribed for posterior analysis. The transcripts vary from 13 to 21
pages in size.

Analysis Procedure: We analyzed the filled-in questions and transcripts using a qua-
litative research tool NVIVO. The approach is a tailored thematic synthesis [19]. The
analysis consists of four steps: extracting data from the interview transcription; group-
ing data into fundamental groups based on the structure of the survey; coding data
within each category; translating codes into themes and linking relevant themes to-
gether. The first two authors examined the categories from different perspectives and
searched for explicitly stated or concealed opinions about how Requirement-
Component mismatches are handled in industry. The results from the analysis are
described in Section 4. For each research question, we conducted a quantitative sum-
mary of answers on closed questions from each interview and qualitative analysis of
taped conversations to support the quantitative part.

4 Results

4.1 Projects Description

We surveyed the requirement mismatch resolution process in fifteen projects from
Norway, Sweden and Spain. Table 1 shows some of the projects characteristics of the
surveyed projects. The team size ranges from two to 250 people. The project life
cycles include ad hoc development, waterfall, iterative development and agile, with a
prevalence of the agile model in seven projects. The adoption of lightweight devel-
opment life cycles, such as Agile or Scrum, introduces flexibility in requirements
elicitation and component selection. The application domain covers a wide variety of
domains, including Communication system, Information system, Web application and
Public-sector support, with a dominant of Public sector support in five cases.

The OSS components portion represents the interviewees’ estimation about the
proposition of actual use part of OSS components in total product size in LOC. The
OSS portion ranges from 10 to 90%. In one project, the interviewee could not provide
a percentage due to absent information about the total product size. The large portion
of OSS shows the importance of OSS components in the software, which could influ-
ence the priority of components during the mismatch resolution process.

The “Selection in RE” column indicates whether the component selection is de-
cided in the RE phase or not. Interestingly, in seven projects, the components selec-
tion is not considered in the RE phase. In projects 5, 6, 13 and 15, the requirements
are predetermined (i.e. subcontract or outsourcing) and selecting components are
considered and design or coding level as an approach to implement given require-
ments. In Project 9, the company provides services to customers and selection of
components is transient in RE phase.

 Collaborative Resolution of Requirements Mismatches 83

Table 1. Projects characteristics

ID Team
size

Development
process

Application domain OSS
portion

Selection
in RE?

Req.
source

P1 20-25 Iterative Communication system 90% Yes External
P2 4 UNK Audio/ Video processing 10% Yes Internal
P3 2 Agile Search engine 80% Yes Internal
P4 18 Waterfall + Scrum Embedded system ca.

17000
KLOC

Yes Internal

P5 2 Iterative Oil/gas support product 77% No Internal
P6 200 Scrum Public sector support 75% No External
P7 4 Scrum Document processing 10% Yes External
P8 20 Agile Public sector support 66% Yes External
P9 2 Agile Information system 90% No External
P10 2 Iterative Public sector support 60% Yes External
P11 250 Agile Telecommunication 90% No External
P12 3 Ad-hoc, require-

ment-driven
University 90% No External

P13 3 Ad-hoc Information system 5% No Internal
P14 5 Tailored waterfall Public sector support 80% Yes External
P15 6 Iterative Public sector support 20% No External

4.2 RQ1: What Are the General Practices of Requirements Elicitation and
OSS Component Selection in OSS Adoption Software Projects?

4.2.1 Requirements Elicitation Practices
Source of Requirements: In eight projects, requirements come from external cus-
tomers, and in one of the cases, managed by an external consulting company, as
shown in Table 1. In one project the requirements come from both external customers
and internal development team since customers required a system with similar func-
tionalities of existing system. In this project, the requirements are flexible since the
customers require the product to confront a predetermined standard and development
team has to find out the detail requirements themselves.

In five projects, requirements are market-driven, coming from an internal develop-
ment team. In three of them, developers also play the role of customers. Moreover, in
the fourth one, they consulted other development teams that deployed similar systems,
whilst in the fifth case the marketing department also had a stake. Another project’s
requirements come solely from the marketing department. In this project, the software
is a part of an embedded system to sale.

Requirement Description Level: Figure 2 shows that among investigated projects,
seven projects have requirements coarsely described. We categorize the requirement
specification according to three categories: coarsely, medium and detail based on
requirement description and notation. The detail level of requirement specification
infers the flexibility of the requirements since the coarser one is probably the more
flexible one. The coarse description of requirements in major projects is probably

84 N.D. Anh et al.

caused by the adoption of agile methodology. Only three projects have requirements
described in detail and three in-between. Concerning specification notations, free text
is used as much as structured text. Both of these requirement notations are used in
seven projects. Use cases and test cases are used in three projects each, and one case
used “informal” flow diagrams for expressing navigational-related requirements in a
web application.

4.2.2 Component Identification and Selection Practices
Component Identification: Figure 3 describes the approaches to identify the OSS
components in company’s projects. Projects often used more than one approach. The
most common approach is based on previous experiences without formal search and
evaluation processes, which are used by ten out of fifteen interviewees. The second
option (8 out of 15 interviewees) is either to use a search engine or to ask friends,
colleagues or someone that has experience from before with the component. Both of
these options were six interviewees mentioned about peer-review or grey literature as
another source to find components. Only two projects contact customers during com-
ponent identification process. One of the interviewees could not provide details in this
questions nor the rest of this subsection since the selection process was entirely run by
a team of software architects.

Component Selection Process: none of the interviewees reported the usage of
formal evaluation processes, which are abundant in literature [7, 10], in their
projects. This observation is similar to findings from a previous study [20]. The
evaluation activity is normally undertaken in ad hoc manner. For small compo-
nents, reading the documents or looking into the code is probably sufficient. For
the more significant components, a survey may be conducted to search for
alternative options. A short trial with the goal to “try to get it work as a proof-of-
concept” is also one possibility.

0

1

2

3

4

5

6

7

8

very sketchy coarsely medium detailed very fine-
grained

Requirement description detail level

No of
interviewee

Fig. 2. Requirement description detail level

 Collaborative Resolution of Requirements Mismatches 85

0 2 4 6 8 10 12

Used a formal method
Used some systematic/documented methods

Consulted with customers
Heard from trade fairs, seminars, workshops and …

Read/heard from the ”grey” literature
Read/heard from ”peer-review” literature

Searched by general search engine (google, …)
Consulted with colleagues/engineers

Searched by general portals or in domain-specific ones.
Previous experience with the components

OSS Component identification approaches

No of
interviews

Fig. 3. OSS Component - Requirement identification approaches

4.3 RQ2: How Are the Functional Mismatches Between Requirements and OSS
Components Collaboratively Managed in OSS Adoption Software Projects?

4.3.1 Functional Mismatches Identification
Grounded from interview’s conversation, there are three main criteria used to decide
on a mismatch between a requirement and an open source component, namely fit to
functional requirements, fit to non-functional requirement and fit to legal requirement.
As the basic purpose of using external components, the OSS components should have
the basic functionalities that fit to the requirements. The functional mismatch is the
ratio between part of the component that satisfies the requirement and the full set of
requirement features. In case of small or fine-grained requirement (as in Figure 4a),
the mismatch appears when there is a relative small portion of overlap functionality
between the requirement and component. In case of large or coarse-grained require-
ment or product feature (as in Figure 4b), the mismatch happens when the component
only provide part of required requirements.

With respect to non-functional requirements, reliability of the components is a
highly cited criteria, and concerns the number of defects in the component; if the
component is functionally fit to the requirement, but it contains many bugs then it
would take a time and effort to use the components.

Last but not least, third criteria concern about component license issue. OSS com-
ponents employ different types of licenses that would be taken into consideration, as
one interviewee mentioned: “a lot of GPL license components cannot be used …
doing a mistake like shipping a GPL license component in a commercial product is
very bad PR, and kind of legal problem …”.

(a) Fine-grained requirement (b) Coarse-grained requirement

Fig. 4. Functional mismatch type

86 N.D. Anh et al.

Fig. 5. Requirement - component mismatch resolution approaches

4.3.2 Mismatches Resolution Approaches
Figure 5 Requirement - component mismatch resolution approaches provides the
scenarios in which mismatches are handled. The majority answered that they change
the components in some way, such as creating a glueware or addware, modifying the
components and replacing the components, rather than get requirements affected.
Nine interviewees said to modify or add adjustments to the OSS components by
themselves. Six of them chose to make the changes globally, and send it back to the
OSS community. Three interviewees make the changes locally, which are reserved for
internal use only. Only two interviewees utilize community support for adapting the
components while three interviewees chose commercial vendors instead.

4.3.3 When Are Requirements Changed?
In most of the cases, the requirement is not a subject to change or relax as it is often at
the higher priority over components. Some interviewees said: “… there is no case
giving up on the requirements. Requirements are usually at first priority”, “… select-
ing an OSS component does not impact the requirement so much. It is not so much
you can relax your requirement a bit or replace five hour of coding with existing
component, it is not possible.” “… normally requirement is not in the position to
relax it a lot.”, “... requirements were not negotiated because the project was about
reengineering a legacy system into a web application; the requirements were the ones
for the departing system”.

In three projects, requirements come from predefined standards, government
reform and they are not possible to negotiated or modified. In some other projects, the
adopted components are of small to moderate size, and are implemented by domain

 Collaborative Resolution of Requirements Mismatches 87

specific libraries or as part of a framework. Since the integrated components serve for
small and fine-grained functional requirement, it does not affect much on the overall
requirements of the system. Some interviewees said: “requirements usually do not
really affect choice of components that much, as most components we use are small
and not visible to the customer”, “… we use smaller components rather than larger
sort of application server or something, the customer doesn’t really see the compo-
nent as a separate components, it is a part of the product”.

Besides, OSS components offer an opportunity to modify/adjust the components
upon the mismatches. This flexibility of OSS components gives more chances to sa-
tisfy the requirements, as some interviewees said: “If there is a partial mismatch, I
think we just use it for what we could use it for.”, “…was quite simple to extend the
open source project to get the functionality we needed …”, “… one of the reasons to
select one of the components was that it provides a proprietary script language that
allows specifying its behavior when starting the system”. Particularly, in one project,
the mismatched component was rewritten from the scratch since it was a small
library.

We found only one case where the option of relaxing requirements was selectively
taken. The development team adopted a compensatory strategy: whilst explaining to
the customer which (non-critical) requirements were not satisfied, they emphasized
additional functionalities that the OSS component was covering and could be incorpo-
rated into the delivered system. It was also helpful that the customer had a very tech-
nical profile and was able to understand the consequences (in terms of cost) of not
relaxing the requirements.

4.3.4 When Are Requirements Postponed?
While there is only one case where requirements is relaxed or modified, it is worth-
noticed that seven interviewees mention scenarios where some requirements were
postponed. The requirements were postponed in some critical cases. In one case, re-
quirements were postponed due to the quality of components: “... we have postponed
the project because there are a lot of bugs in [Component name]. We have to look for
a new library”. In the other case, the customer accepted to postpone some non-
essential requirements, the strategy followed by the development team to convince the
client was to highlight those features that were not required by the customer and were
offered by the component.

4.4 RQ3: How Are Non-functional Requirements Fulfilled by Using OSS
Components in OSS Adoption Software Projects?

Figure 6 shows the perceptions of interviewee about non-functional requirements
achieved by using OSS components. For each of non-functional requirement attribute,
the grey column represents for the number of interviewees that mentioned about it.
The black column shows the number of interviewees that satisfy with the quality
attribute of the OSS component. The most concerned non-functional requirements
regard to OSS components are performance, reliability, maintainability and cost.

88 N.D. Anh et al.

0

2

4

6

8

10

12

Non-functional requirement fullfillment

Concerned requirements

Satisfied requirements

Fig. 6. Non-functional requirement fulfillment by OSS components

The list of concerned non-functional requirements in our study is different from
the most concerned requirements in Berntsson Svensson et al., namely usability, per-
formance and flexibility [21]. Their context was limited to the embedded system and
market-driven projects and it may be the reason for the conflicting results.

4.4.1 Performance
Performance is satisfied by using OSS components in nine out of eleven interviews.
The performance is perceived as sufficient or at least not affecting much the overall
performance of the system. Some interviewees mention the problem with perfor-
mance problems but these mainly come from hardware and infrastructure issues.

4.4.2 Reliability
There are contradictory opinions about reliability of OSS component. Seven intervie-
wees experienced good reliability, with little or few bugs, with the correctness of the
system exceeding expectation. Four interviewees had experiences with both reliable
and unreliable OSS components. There is a misunderstanding during the conversa-
tions with some interviewees between Reliability and Maintainability. Some people
said the OSS component turned out to have sufficient reliability because the code is
available and then it is easy to fix the bug.

4.4.3 Maintainability
Maintainability is an important feature for OSS components. Eight out of ten inter-
viewees are satisfied with the maintainability of the components. The factors that that
contribute positively to the maintainability of OSS components are:

− The openness of the code, that allows developers to “dive into the code” to
fix bugs.

 Collaborative Resolution of Requirements Mismatches 89

− Synchronization with the upstream development: the OSS community offer a
chance for the company to escape from the burden of maintenance since the
components can be synchronized with the upstream development, contact
with the OSS community (in comparison with a commercial component),
significantly influence the maintainability of the components.

− Documentation of the code that facilitate understanding and using compo-
nents.

As maintainability is as important as reliability for selecting suitable OSS compo-
nents, practitioners should look for components that are not only reliable but also has
a high bug fixing rate.

4.4.4 Time and Cost
Concerning time and cost, all of the interviewees are happy with the reduction of
deliver time by using OSS components. Eight out of ten interviewees are happy with
the cost due to the saving of licensing and implementation. There are two cases where
cost is not satisfied. In one project, a lot of problems were reported due to the technic-
al misuse of OSS component. At the end the team had governance problems that
resulted in higher costs and poor reliability, performance and particularly maintaina-
bility, because the team in charge was not very big and the learning curve too steep.

5 Discussion

Our observations from fifteen projects with different context settings and requirement
practices offer some implications for improvements in requirement mismatch handing
process. The findings are consolidated in five propositions.

Proposition 1: market driven requirements are more flexible than bespoken re-
quirements while resolving functional mismatches in OTS based development.

The result suggests that the choice of requirement mismatch handling approaches
varies across projects and most likely do not depend on project context factors, such
as: team size, application domain, development life cycle, portion of OSS components
and component selection phase. Therefore, the decision whether to modify OSS com-
ponents or influence requirements is influenced by the nature of requirements and
components themselves, e.g. type of requirement source. Among five projects with
requirements from internal development teams, four of them have requirements post-
poned. The requirements from internal teams (or market-driven type of requirement)
would be more flexible due to consideration of given functionality and implementa-
tion effort. The requirements from external customers (or bespoken type of require-
ment) are less flexible due to contractual predetermination in required functionality.

Proposition 2: A functional mismatch with a flexible requirement is resolved by
postponing the requirement, rarely by changing it.

Although flexibility of requirement does not hinder the requirement priority, it is
beneficial for mismatch resolution by extending the resolution time. Regardless of re-
quirement source type, requirement is normally in the first priority. Therefore, the defi-
nition of requirement flexibility is associated with the ability to postpone requirements,

90 N.D. Anh et al.

rather than with the ability to change or give up on the requirements [11]. Postponing
requirements often occurs with customer negotiation and debugging process.

Proposition 3: A small functional mismatch is resolved by modifying OSS component
while a large functional mismatch is resolved by replacing it by another OSS compo-
nent or a COTS one.
Our data suggests that the detail level of requirement and the size of components in-
fluence how mismatches are resolved. Given the flexibility of OSS components, the
small mismatch (a fine-grained requirement with small component) require less effort
to modify or rewrite while a large mismatch take much more effort to close the gap by
adapting the components. This observation recommends that component selection in
early phase, such as requirement elicitation, would be risky when the requirement is
not clear enough and in general level. However, selecting components for fine-
grained requirements in later phase, such as design or implementation also have
threats of extra cost in integrating small components.

Proposition 4: Component reliability issues lead to postponed requirements by fixing
the component or replacing it.
Reliability is one of the most concerned non-functional attributes while adopting OSS
component. It also receive contradict perception from interviewees. It is difficult to
correctly evaluate component reliability in component selection phases. The informa-
tion that are used as early quality indicators and selection criteria, such as number of
fixed bugs, component reputation and project roadmap, is not sufficient. The problem
in this non-functional attributes would influence functional requirements by delaying
the accomplishment of these requirements. The fewer bugs in components would take
more time to fix while many bugs in components would require for the replacement.
In later case, the selection and matching process will be conducted again, which cost
much more time and effort. This suggests a better care of non-functional requirements
of OSS components when selecting components.

Proposition 5: A functional mismatch that gets support from the OSS community is asso-
ciated with a perceived increase in satisfaction regarding component maintainability.
Three collaborative resolving requirement mismatch involve customers, OSS
community and commercial vendor, alternatively. Keeping changes in components
synchronized with OSS community is beneficial for fixing and maintaining these
components. In resolving requirement mismatch, community involvement would not
only reduce the developer’s effort in maintaining the components but also bringing
more confidence on component quality as “given enough eyeballs, all bugs are shal-
low”. As maintainability is as important as reliability for selecting suitable OSS com-
ponents, practitioners should look for components that are not only reliable but also
has a high bug fixing rate.

6 Threats to Validity

In this study, most variables are taken directly, or with little modification, from the
existing literatures. To ensure that the given concepts are understood correctly by the

 Collaborative Resolution of Requirements Mismatches 91

interviewees, we sent the interview guide with a detailed description of the survey to
the interviewee beforehand. One of the possible threats to the internal validity is our
misunderstanding of respondents’ answers. Although at least two interviewers carried
out the interviews and there was only one interviewee in each interview, we taped all
interviews. Listening to the tape helped to ensure correct interpretation of answers and
comments. However, having an independent (third) person to listen to the tape might
increase data quality. During the interview, we tried to ensure the interviewee under-
stand what they are asked. The primary threat to external validity is that the study is
based on few and possibly not typical projects. In general, most empirical studies in
industry suffer from non-representative participation. In the data sampling step, we
tried to have projects with all sizes, from various domain application and have differ-
ent portion of OSS adoption in the projects. Besides, this study is still a preliminary
study. Future studies with more interviews will be implemented to give more statisti-
cally significant results.

7 Summary and Future Works

The main purpose of this study is to gain understanding of how requirements
mismatches are collaboratively handled in OSS adoption projects. We found two
scenarios in solving functional mismatches. The main resolution approach is to get the
components changed by the development team themselves, OSS community or
commercial vendor. The choice of adapting or replacing components depends on the
mismatch size, component reliability and level of community support. The other
resolution approach is to influence requirements, often by postponing requirements.
This scenario is associated with issues of component reliability and maintainability.
Non-functional requirements are satisfactorily achieved by using OSS components in
general. Finally, we found that the customer involvement enhance functional
mismatch resolution while OSS community collaboration could improve non-
functional mismatch resolution.

The study identifies topics for future research on the requirement mismatches han-
dling process. One of the potential future extensions of the study is a supporting
framework for OSS component selection decision-making. The main purpose of the
framework is to find out indicators of components reliability and maintainability from
the OSS component community. Besides, some of the context factors show potential
impact on requirement mismatch resolution decision, such as source of requirement or
reliability of components. However, we do not have enough data to conduct a quantit-
ative analysis on these factors. In future studies with more data points, a more quan-
titative analysis of impacting factors could be implemented. Last but not least, we
highlighted the importance of stakeholder involvement in mismatch resolving
process. The deeper understanding of stakeholder involvement would help to improve
the matching process.

Acknowledgements. This work has been supported by the Spanish project TIN2010-
19130-C02-01 and partly funded by the Industrial Excellence Center EASE -
Embedded Applications Software Engineering, (http://ease.cs.lth.se).

92 N.D. Anh et al.

References

1. Hauge, Ø., Ayala, C.P., Conradi, R.: Adoption of Open Source Software in Software-
Intensive Industry - A Systematic Literature Review. Information and Software Technolo-
gy 52(11), 1133–1154 (2010)

2. Alves, C.: COTS-Based Requirements Engineering. In: Cechich, A., Piattini, M.,
Vallecillo, A. (eds.) Component-Based Software Quality. LNCS, vol. 2693, pp. 21–39.
Springer, Heidelberg (2003)

3. Parra, A., Seaman, C., Basili, V., Kraft, S., Condon, S., Burke, S., Yakimovich, D.: The
Package-Based Development Process in the Flight Dynamics Division. In: 22nd Software
Engineering Workshop, NASA/Goddard Space Flight Center, pp. 21–56 (1997)

4. Alves, C., Finkelstein, A.: Negotiating Requirements for COTS-Based Systems. In: 8th
Int. Workshop on Requirements Engineering: Foundation for Software Quality, Essen
(2002)

5. Li, J., Conradi, R., Bunse, C., Torchiano, M., Slyngstad, O., Morisio, M.: Development
with Off-the-Shelf Components: 10 Facts. IEEE Software 26(2), 80–87 (2009)

6. Morisio, M., Seaman, C.B., Basili, V.R., Parra, A.T., Kraft, S.E., Condon, S.E.: COTS-
based software development: processes and open issues. Journal of System and
Software 61(3), 189–189 (2002)

7. Mohamed, A., Ruhe, G., Eberlein, A.: COTS Selection: Past, Present, and Future. In: 14th
IEEE Int. Conf. on the Engineering of Computer-Based Systems, Tucson, pp. 103–114
(2007)

8. Rolland, C.: Requirements Engineering for COTS based Systems. Information and Soft-
ware Technology 41, 985–990 (1999)

9. Mohamed, A., Ruhe, G., Eberlein, A.: MiHOS: an approach to support handling the mis-
matches between system requirements and COTS products. Requirement Engineer-
ing 12(3), 127–143 (2007)

10. Stol, K.-J., Ali Babar, M.: A Comparison Framework for Open Source Software Evalua-
tion Methods. In: Ågerfalk, P., Boldyreff, C., González-Barahona, J.M., Madey,
G.R., Noll, J. (eds.) OSS 2010. IFIP AICT, vol. 319, pp. 389–394. Springer, Heidelberg
(2010)

11. Morisio, M., Seaman, C.B., Parra, A.T., Basili, V.R., Kraft, S.E., Condon, S.E.: Investigat-
ing and improving a COTS-based software development. In: 22nd International Confe-
rence on Software Engineering, Limerick, pp. 32–41 (2000)

12. Höst, M., Oručević-Alagić, A., Runeson, P.: Usage of Open Source in Commercial Soft-
ware Product Development – Findings from a Focus Group Meeting. In: Caivano, D.,
Oivo, M., Baldassarre, M.T., Visaggio, G. (eds.) PROFES 2011. LNCS, vol. 6759, pp.
143–155. Springer, Heidelberg (2011)

13. Peach, B., Reuschenbach, B.: Open Source Requirements Engineering. In: 14th Interna-
tional Requirements Engineering Conference, Minnesota, pp. 252–259 (2006)

14. Maiden, N.A.M., Ncube, C.: Acquiring Requirements for Commercial Off-The-Shelf
Package Selection. IEEE Software 15(2), 46–56 (1998)

15. Lauesen, S.: COTS tenders and integration requirements. Requirements Engineering 11(2),
111–122 (2006)

16. Li, J., Conradi, R., Slyngstad, O.P.N., Bunse, C., Torchiano, C.M., Morisio, M.: An Em-
pirical Study on Decision Making in Off-the-shelf Component-based Development. In:
Proc. 28th International Conference on Software Engineering, Shanghai, pp. 897–900
(May 2006)

 Collaborative Resolution of Requirements Mismatches 93

17. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software
Engineering. Kluwer Academic Publishers, Norwell (2000)

18. Jacobs, S.: Introducing Measurable Quality Requirements: A Case Study. In: 4th ISRE
1999, pp. 172–179. IEEE Comput. Soc. (1999)

19. Cruzes, D.S., Dybå, T.: Recommended Steps for Thematic Synthesis in Software Engi-
neering. In: 5th Empirical Software Engineering and Measurement, Banff (2011)

20. Ayala, C.P., Hauge, Ø., Conradi, R., Franch, X., Li, J.: Selection of Third Party Software
in Off-The-Shelf-Based Software Development - An Interview Study with Industrial Prac-
titioners. Journal of Systems and Software 84, 620–637 (2011)

21. Berntsson Svensson, R., Gorschek, T., Regnell, B.: Quality Requirements in Practice: An
Interview Study in Requirements Engineering for Embedded Systems. In: Glinz,
M., Heymans, P. (eds.) REFSQ 2009. LNCS, vol. 5512, pp. 218–232. Springer,
Heidelberg (2009)

Appendix

Part 1: Background Questions on Project and System (to be filled up prior to the meeting)
1.1 What was the mean annual staff-size of the project (both full- and part-time employees)?
1.2 What part of the staff had previous experience with OSS-based development?
1.3 Did you have previous experience with OSS-based development before joining the

project?
1.4 What was the total effort of the project?
1.5 What was (roughly) the starting time of the project?
1.6 What was the time of the first complete delivery from the project?
1.7 What were the major application domain(s) of the system?
1.8 Where did the requirements come from?
1.9 How were the functional Requirements described with regard to level of detail?
1.10 What was the overall, software development process/environment of the project?

Part 2: Identify initially some OSS Component candidates that may satisfy the Require-
ments

2.1 In which lifecycle phases were such OSS Components selected?
2.2 How was the search process and initial evaluation for such OSS Components done?
2.3 What were the main information sources in deciding whether the OSS Component can-

didates from point 2.2 could (partly) match your functional Requirements?

Part 3: Final evaluation and decision process to resolve possible Requirements mis-
matches vs. OSS Components

3.1 What did you do when the functional Requirements could not be sufficiently matched by
OSS Component candidates?

3.2 How well were the major non-functional Requirements (“quality attributes”) achieved?
3.3 Focusing on the 5 most important functionalities from the Requirements, can you name

and explain the matching OSS Components that you finally integrated into your system?
3.4 How big part of the system do the OSS Components now occupy?

High-Level Requirements Management

and Complexity Costs in Automotive
Development Projects: A Problem Statement

Tim Gülke1, Bernhard Rumpe1, Martin Jansen2, and Joachim Axmann2

1 Software Engineering, RWTH Aachen University
2 Volkswagen AG, Wolfsburg

Abstract. Effective requirements management plays an important role
when it comes to the support of product development teams in the auto-
motive industry. A precise positioning of new cars in the market is based
on features and characteristics described as requirements as well as on
costs and profits. [Question/problem] However, introducing or chang-
ing requirements does not only impact the product and its parts, but
may lead to overhead costs in the OEM due to increased complexity.
The raised overhead costs may well exceed expected gains or costs from
the changed requirements. [Principal ideas/results] By connecting re-
quirements with direct and overhead costs, decision making based on
requirements could become more valuable. [Contribution] This problem
statement results from a detailed examination of the effects of require-
ments management practices on process complexity and vice versa as
well as on how today’s requirements management tools assist in this
respect. We present findings from a joined research project of RWTH
Aachen University and Volkswagen.

Keywords: requirements management, complexity costs, automotive,
product development.

1 Today’s Requirements Management in Automotive
Practice

The automotive industry is facing several challenges ranging from entirely new
engine concepts to customer-configurable infotainment systems and networks of
computers and infrastructure. The trend of increasing product complexity has
not yet been stopped and is still gaining speed [9], which also leads to grow-
ing complex structures within the companies [12]. For the automotive industry,
Schleich et al. [16] already linked increasing numbers of variants with rising
complexity and overhead costs.

Requirements management plays a vital role by providing supportive pro-
cesses and tools for the employees engaged in development activities [8,13].
Particularly in the process of defining a product’s characteristics – e.g., what in-
fotainment features will be available to the customer, how many different types of
engines for which sort of fuels, or how many passengers the car will be designed

B. Regnell and D. Damian (Eds.): REFSQ 2012, LNCS 7195, pp. 94–100, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Requirements Management and Complexity Costs 95

for – and later changes to those, requirements management aids in the engineers
day to day work. For the last few years, ideas which have been developed in
theory have proven themselves functional in practice, although much work still
remains to be done [18]. This refers, e.g., to the application of templates in re-
quirements elicitation, the usage of clear and non-ambiguous words, traceability
in general and the inclusion of suppliers into the requirements work [6,15]. When
two or three decades ago a single group of employees was able to keep track of
the requirements for a car with pen and paper and in their heads, nowadays col-
lected information is spread through countless documents, systems, and people.
The evolutionary step from vehicle platforms to modules and modular toolkits
makes it even more difficult, since now links between requirements and parts are
not limited to one vehicle anymore. Requirements management can therefore
be seen as a measure to handle the increasing complexity by providing a way of
keeping all necessary information connected. It enables engineers to estimate the
impact of proposed changes and equips the project leaders with powerful tools
to track status.

The underlying concept of requirements management is traceability, which
means the connection of different artifacts throughout one or multiple projects.
Therefore, a requirements management tool can only be as good as the level of
traceability it operates on when it comes to impact analysis of changes or ad-
ditional requirements. So far, traceability connects most product-related things
like parts, functions, all kind of documents and specifications, scenarios and tests
with requirements. The amount to which this is done differs in companies and
also in projects. The complexity of electronic systems in vehicles forces the auto-
motive industry to maintain a high level of traceability within their projects [7].
This is why it is current practice to be able to estimate the costs of changes on
a very detailed level, knowing the impact of a proposed change by tracing all
connected artifacts.

Today, there are several programs available on the market supporting devel-
opment teams in eliciting, organizing, tracing, linking, and generally managing
requirements. Tools like IBM DOORS, Borland CaliberRM, Jama Contour, and
others provide the ability to describe requirements in a specific way, implement
hierarchies and most possess modeling-functionality for the underlying struc-
ture [5]. However, they’re all limited to product-centric models and do not pro-
vide any way of including costs originating in processes far from the product (or
even costs at all).

2 Requirements and Costs

Changes in requirements or the introduction of new requirements (regardless in
what stage the current project is in) lead to three different types of costs:

1. Investment Costs: Costs originate from necessary investments into the
development of a product and its parts. This includes, e.g., the purchase of
tools and machines as well as the production of prototypes.

96 T. Gülke et al.

2. Direct Costs: These are the later internal ”pricetags” on parts or whole
systems, whether they’re bought from a supplier or made in-house when it
comes to the production of the car. There are usually targets defined for
every individual part or function to stay within a defined price-range for the
whole car with which it is placed on the market.

3. Overhead/Indirect Costs: Overhead costs are costs which occur in the
production-phase of the car that cannot be related to a definite cost object
(i.e. a vehicle sold on the market). They’re generated by employees filling
out excel-sheets, making phone-calls, etc.

If a requirement is added or changed, two things happen: First, additional in-
vestment costs are generated because a new or different feature is included into
the car. Reasons behind the requirement can be manifold and range from com-
petitors providing a new function with their vehicles that has to be matched to
regulatory/legal problems. Second, overhead costs may rise due to an increased
complexity in the processes of the company [16]. The estimation of investment
costs for a proposed change is done very accurately, but mostly relies on the
knowledge of the engineers regarding the type of the change. This slows down
the decision process which then again slows down the early phases of a vehicle
development project. Decision-makers are left with three choices when it comes
to predicting the overall costs caused by a requirement:

1. Huge manual effort can be put into figuring out which departments are af-
fected by a change (purchasing department? engineering? marketing? which
ones exactly?) and then ask each of those to estimate the amount of work
needed. These two steps are time- and cost-intensive and the results are not
guaranteed to be exact.

2. Another way is to use a fixed amount of money based on prior experiences
with similar changes. This might cause problems, since it’s unclear whether
this amount is accurate to the actual costs, but it’s quick and feasible.

3. Last, those costs can simply be added to the affected departments overhead
costs and not be counted against a project’s budget.

While investment costs can at least be estimated, the prediction of the change of
complexity in OEMs (and suppliers) is difficult and rarely done. A new variant,
caused by a changed requirement, leaves only small traces in the company – e.g.,
one more line to be added to an MS Excel sheet, one more item to be synchro-
nized between two systems, one more line in a report, etc. – and mostly causes
administrative work [4]. It is estimated though, that if the number of variants
are doubled, overhead costs rise 20%-30% because of increased complexity [19].
Strikingly it is the combined number of small steps that can cause this increase,
but they are not part of the decision process, since it is difficult to predict where
exactly what amount of additional work is caused [16].

Complexity’s impact on products is currently under research and approaches
are being proposed [11], some work is done with regard to complexity [12] and
of course many new developments in the field of requirements management are
being published [10], although many focus on software-only projects [14]. It

Requirements Management and Complexity Costs 97

seems promising to combine these different areas of research for practical use
and extend the current focus of the product in requirements management to
processes and their complexity. Almefelt et al. [2] for example already recommend
the conduction of a cost/benefit-analysis for requirements changes.

3 Example

Automotive OEMs follow a combined sequential/iterative process-model during
the development of a new vehicle. This leads to an early declaration of require-
ments in a so-called product definition phase, where different business units col-
lect, exchange and adjust their requirements for the new car. Based on an early
bill of materials, costs are estimated for the realization of the requirements.
These costs include necessary investment costs and expected direct costs of the
car in later production. Requirements may lead to a decrease of direct costs, e.g.,
by making a single part of the car available in two or more different variants,
some applying inexpensive materials, the others with the standard ones and us-
ing these accordingly in different variants of the car (e.g., in different ”lines” or
brands). If the installation rate of the lower-cost part is high enough, revenues
will be raised.

However, the new variant of the part has not only to be constructed or pro-
grammed, bought from suppliers, stored in factories, databases, etc. but to be
maintained in different systems and processes as an artifact – and these make
up of most for the overhead costs. It has already been published in Schleich et
al. [16] that with an increased variability, overhead costs rise in the field of pro-
duction and logistics, but the figures of how this rising variability combined with
construction kits and platforms affects costs in product development and change
processes cannot yet be answered. It is therefore to be suspected that changed or
new requirements might partially lead to costs that exceed revenues gained from
them. If an accepted methodology and software were available that estimated
how a requirement affects the companies complexity, the raise of overhead costs
could at least be controlled. It can be assumed that certain topics might be
decided differently, if complexity costs were considered in the decision-making
process. Last, the approach would allow a cleanup of variants with complexity
costs that are significantly higher than their revenues and thus lower a company’s
overhead costs.

4 Extending Traceability

Today’s automotive companies are confronted with increasing complexity not
only in it’s products, but also in their internal organizations. This is seldom
considered when it comes to requirements changes during vehicle development
projects. Doing this manually for each change is error-prone and cost-intensive.
Requirements management tools should widen their focus from a straight prod-
uct view towards a process view that includes all aspect of a company since very
few tools provide the ability to model processes at all or they do only focus on
automating simple tasks and routines.

98 T. Gülke et al.

The key to this problem might be the thorough modeling of corporate struc-
tures and artifacts. Making knowledge of this kind available to software will
enable it to consider far more aspects of decisions than it does now. But so far,
the creation of models from a company’s artifacts decoupled from a concrete
software project is seldom done, since the benefit is not immediately visible.
Even the formal description of processes will only be done if the need arises to
automate some parts of the process or in optimization projects.

But first of all, requirements management tools need to implement cost-
structures (e.g., from product data management systems) and connect them
with their data models. This will enable decision-makers to anticipate how a
certain change would affect direct costs. Afterwards, process-engineering tools
like ARIS [1] can be connected to extend the decision-process by the inclusion of
the affected processes. Once all this data is present, modeling of artifacts inside
the processes can begin, providing an even deeper insight into how, e.g., a new
variant will be processed throughout the whole company.

The mentioned topics can be seen as an extension to the already powerful
concept of traceability. Making not only parts or documents, but all artifacts of
a company traceable, will enable decision-makers to estimate investment costs
faster and predict the change of complexity. This can only be done if tools are
available that have the ability to include these artifacts or at least be able to
communicate with systems that do.

A company-wide repository for models of artifacts like processes or documents
would need a standardized description language, which is able to both capture
the models and set them into context with each other. Efficient modeling tools
need to be available as well that support model developers in creating those
models fast enough to keep up with the pace of change in a company. Next,
requirements management tools would need to use the available models and
their contexts and wave them into their own traceability model – and maybe
even provide a way other tools could reuse those models.

The research area of semantic networks already provides languages and
concepts to capture information as described above. Connecting these with the
powerful tools available in the requirements management world might prove valu-
able. Languages like OWL/RDFS which are thoroughly documented [3] could be
used to construct a knowledge repository that requirements management tools
could use. Approaches providing a way of automated ontology creation for the
gathering of this semantic data might be helpful [17].

Knowing the financial benefit beforehand is difficult, since the costs that are
going to be addressed are not traceable so far – otherwise this problem would
not exist. Therefore, only the careful introduction of an approach like this will
definitely show its benefits. But since the automotive world is getting more
complex every day with a widened portfolio in brands and products and more
detailed markets being all deeply connected, it needs the ideas and concepts
traceability and requirements management provide.

There is no denying that more research is needed on how requirements and
costs play together. Also, a solution for the efficient and easy modeling of process

Requirements Management and Complexity Costs 99

artifacts is necessary, as well as how to use that knowledge in a requirements man-
agement tool. To come to an end, not only might this problem be an automotive-
industry specific one, but it could also be extended into other domains.

References

1. ARIS, ARIS Platform, http://www.softwareag.com/de/products/aris platform

/default.asp (visited 2011-12-14)

2. Almefelt, L., Berglund, F., Nilsson, P., Malmqvist, J.: Requirements management
in practice: findings from an empirical study in the automotive industry. Research
in Engineering Design 17(3), 113–134 (2006)

3. Antoniou, G., van Harmelen, F.: A Semantic Web Primer, 2nd edn. Cooperative
Information Systems series. The MIT Press (2008)

4. Bensberg, F., vom Brocke, J., Schultz, M.B.: Trendberichte zum Controlling:
Festschrift für Heinz Lothar Grob (German Edition), 1st edn. Physica-Verlag HD
(2004)

5. Bühne, S., Lauenroth, K., Pohl, K.: Anforderungsmanagement in der Automo-
bilindustrie: Variabilität in Zielen, Szenarien und Anforderungen. In: Dadam, P.,
Reichert, M. (eds.) Beiträge der 34. Jahrestagung der Gesellschaft für Informatik
e.V (GI). GI-Edition - Lecture Notes in Informatics (LNI), vol. 2, pp. 23–27 (2004)

6. Fricker, S.: Pragmatic Requirements Communication: The Handshaking Approach.
Ph.D. thesis, Universität Zürich (2009)

7. Gladigau, J.: Anforderungsmanagement - Vom Anfänger zum Profi. OBJEKTspek-
trum RE/2010 (2010)

8. Hood, C., Wiedemann, S., Fichtinger, S., Pautz, U.: Introduction to Require-
mentsManagement. In: RequirementsManagement, pp. 59–78. Springer, Heidelberg
(2008)

9. Houdek, F.: Requirements Engineering Erfahrungen in Projekten der Automobilin-
dustrie. Softwaretechnik-Trend 23 (2003)

10. Langer, B., Tautschnig, M.: Navigating the Requirements Jungle. In: Leveraging
Applications of Formal Methods, Verification and Validation, pp. 354–368 (2009)

11. Lindemann, U., Maurer, M.: Facing Multi-Domain Complexity in Product Devel-
opment The Future of Product Development. In: Krause, F.-L. (ed.) The Future
of Product Development, ch.35, pp. 351–361. Springer, Heidelberg (2007)

12. Lindemann, U., Maurer, M., Braun, T.: Structural Complexity Management: An
Approach for the Field of Product Design, 1st edn. Springer, Heidelberg (2008)

13. Luhmann, J., Langenheim, F., Hofmann, P.M.: Herausforderungen eines An-
forderungsmanagement im Automotivbereich. In: ReConf. 2007, HOOD Group,
Munich, Germany (2007)

14. Pohl, K.: Requirements Engineering. Dpunkt.Verlag GmbH, 2., korrigierte Auflage.
edn. (2007)

15. Roy, R., Kerr, C., Sackett, P.: Requirements Management for the Extended Au-
tomotive Enterprise. In: ElMaraghy, H.A., ElMaraghy, W.H. (eds.) Advances in
Design. Springer Series in Advanced Manufacturing, ch. 22, pp. 269–279. Springer,
London (2006)

16. Schleich, H., Schaffer, J., Scavard, L.F.: Managing complexity in automotive
production. In: 19th International Conference on Production Research (2007)

http://www.softwareag.com/de/products/aris_platform/default.asp
http://www.softwareag.com/de/products/aris_platform/default.asp

100 T. Gülke et al.

17. Wang, Y., Völker, J., Haase, P.: Towards Semi-automatic Ontology Building Sup-
ported by Large-scale Knowledge Acquisition. In: AAAI Fall Symposium On Se-
mantic Web for Collaborative Knowledge Acquisition. vol. FS-06-06, pp. 70–77.
AAAI Press, Arlington (2006)

18. Weber, M., Weisbrod, J.: Requirements engineering in automotive development-
experiences and challenges. In: Proceedings of IEEE Joint International Conference
on Requirements Engineering, pp. 331–340 (2002)

19. Wirtz,B.W.:Komplexitätsmanagement. In:Multi-Channel-Marketing, pp. 354–362.
Gabler (2008)

B. Regnell and D. Damian (Eds.): REFSQ 2012, LNCS 7195, pp. 101–116, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Choose Your Creativity: Why and How Creativity
in Requirements Engineering

Means Different Things to Different People

Martin Mahaux1, Alistair Mavin2, and Patrick Heymans1,3

1 PReCISE Research Centre, University of Namur, Belgium
{Martin.Mahaux,Patrick.Heymans}@fundp.ac.be

2 Rolls-Royce PLC, Derby, UK
Alistair.Mavin@rolls-royce.com

3 INRIA Lille-Nord Europe, Université de Lille 1 – LIFL – CNRS, France

Abstract. [Context and Motivation] The word “creativity” is used widely in
business and academia, but its meaning may differ greatly depending on context.
This may cause confusion in the minds of requirements engineers who have to
determine which kinds of creativity are relevant to their project and which
creativity tools to use. [Question/Problem] The main goal of this work is to
understand why and how the meaning of the word “creativity” varies, and study
the impacts of these variations on requirements engineering. [Principal ideas /
results]. A comparative review of creativity-related literature from Social
Sciences and Requirements Engineering was performed. [Contributions] This
study results in a new framework for understanding the precise local meaning of
creativity used in a specific context, before deciding on the adequate support for
it. Since creativity in RE is still a relatively new topic, research directions are
also proposed.

1 Introduction

Creativity is now recognised as an important topic in Requirements Engineering (RE)
[1]. However, it is still a fuzzy concept for the Requirements Engineer (REer).
Consider, for example, that at the kick-off meeting of a new development project, the
sponsor emphasised the importance of creativity. Now, as the REer on this project,
you feel in trouble: are you supposed to get together in a funny workshop using sticky
notes? Or are you supposed to use new technology? Do you have to make a
revolution in your product line? Or do you have to find new ways of collaborating?
Are you supposed to take risks? Should you challenge the very problems you are
asked to solve?

As this story indicates, there are many ways one could be creative during the
development of a socio-technical system, and many ways one could support creativity
during the project. In its early phases, the REer will manage an important part of the
creativity on the project. So the REer has to choose a certain creativity, and find ways
to support it. The Research Question of this paper can be formulated this way:

102 M. Mahaux, A. Mavin, and P. Heymans

RQ: How can we help the REer to find the adequate creativity for a project?

To address this question, this paper proposes an actionable framework that the
REer can use to guide interviews with projects sponsors, and to structure the results in
a way that a specific creativity is determined.

After a brief description of the method (Section 2) and related work (Section 3),
the rest of this paper summarises the history of the understanding of creativity in the
Social Sciences (Section 4). It then reviews the definitions of creativity in RE
(Section 5), and introduces a two-dimensional framework meant to explain why and
how the meaning of creativity varies in RE (Section 6). Concrete usage of the
framework in practice is also discussed (Section 7). Finally, creativity in RE is re-
examined in the light of the proposed framework, which triggers various questions
and new research directions (Section 8).

2 Method

In order to grasp what was lacking in REer’s understanding of creativity in general (a
pre-requisite to understanding the creativity needed on his specific project), a
comparative literature review on creativity in RE and in other fields was performed.
Doing so, the authors realized that bringing a summary of the understanding of
creativity in social sciences would benefit to the RE community. During the review,
the authors also gathered elements that had an influence on creativity, as well as
elements characterizing creativity itself, and analyzed which of these would apply to
RE. The first were called contextual factors, and the latter dimensions, and were
summarized in the framework described below.

The comparative review involved selecting appropriate papers in many disciplines.
RE literature was initially collected from reference databases (DBLP [3], Google
Scholar [4]) using keyword searches. These initial results were manually filtered from
an analysis of the abstracts. Snowballing (discovery of new papers through analysis of
a paper’s references) was then applied until no new significant reference could be
found.

For the other disciplines, the sheer volume of multi-disciplinary creativity-related
literature made rigorous analysis impractical. For the Social Sciences, Keith Sawyer’s
book “Explaining Creativity” [5] was used as a guide. This recent book, rich with
approximately 500 references, sets out to be a summary of what is known in the field
about creativity. This prominent source introduces bias in this study. It was however
judged preferable to be biased by a recognised figure in the field than by the
inevitably superficial analysis that would have otherwise been made. The survey was
complemented by literature from Design, Management Sciences and the Arts.

3 Related Work

This work builds on existing work, which is referenced throughout the report, so
citing all sources here would be redundant. However, the relationship with Nguyen
and Shanks’ framework for understanding creativity in RE [6] merits specific

 Choose Your Creativity: Why and How Creativity in Requirements Engineering 103

explanation. The two studies share initial goals (understanding creativity in RE) and
many opinions, but also partly diverge in their results. This work uses different
sources, leading to a separate model and new research directions. Although there are
significant overlaps with Nguyen and Shanks, the architecture and formulation of the
frameworks are quite distinct. They suggest creativity can be understood by analysing
in turn the creative product, the process leading to that product, the people behind that
process, the domain of application and the context surrounding the project. In
contrast, the present study structures its framework in such a way that contextual
factors and creativity dimensions are distinguished, and the interactions between
factors and dimensions are emphasized. This study does not claim more validity than
Nguyen and Shanks’ study, but rather suggests another viewpoint that is likely to be
complementary. An empirical comparison would be helpful to assess the applicability
of each of these frameworks in specific situations.

4 A Brief History of Creativity in the Social Sciences

In his book Explaining Creativity [5], Sawyer describes the history of the understanding
of creativity. Starting in the 1950’s, psychologists tried to define creativity as a
personality trait. Consequently they attempted to measure it, similarly to using an IQ test
to measure intelligence. By the 1970’s, their failure was clear, and it convinced many
psychologists that creativity is not a distinct personality trait or mental process, but a
combination of everyday cognitive processes [5]. Studies that tried to relate creativity to
mental illness or to explain creativity based on the brain’s biological components failed
for the same reasons; that creativity is not a personality trait. Another reason for
psychologists’ failure to define creativity is that creativity is a culturally and historically
specific idea that changes from one country to another, and from one century to another
(as noted by Sawyer [5]).

Understanding that creativity was a combination of more basic cognitive processes,
cognitive psychologists studied and analysed creativity as a process. Major
contributions include those from Wallas [7] and Hadamard [8], who argued that
creativity involved four main phases: preparation (accumulation of knowledge),
incubation (cognitive release), illumination (the “aha”, or “eureka” moment) and
verification (evaluation and elaboration of ideas). Boden [9] explained three possible
phases that the human brain experiences during a creative problem solving process:
exploration of a possible solution space, combination of two or more existing ideas,
and transformation of the solution space to make previously impossible things
possible. More pragmatic contributions include those from Osborn (Brainstorming,
Creative Problem Solving (CPS)) [10] and Gordon (Synectics) [11] who developed
processes for creative problem solving.

While cognitivist models have proven useful, criticisms exist, in particular towards
the sequential nature of the aforementioned creativity process. Some researchers
(such as Rothenberg and Vinacke in [5]) argue that Wallas’ phases are not easy to
distinguish from one another in practice, and adopt an approach where all the steps
are quasi-concurrent in the creative person’s head, describing very short cycles. The
single important illumination moment is also replaced by many mini-insights,

104 M. Mahaux, A. Mavin, and P. Heymans

supported by hard work (Weisberg in [5]). To illustrate this, they take the example of
a painter, whose creativity is developed as a back-and-forth movement from an idea
in the head to its elaboration as a set of brushstrokes, and the immediate evaluation
(judging the observable result) that will lead to the next idea. Cycles are very short, so
that the elaboration and evaluation instantly feed back into the preparation process.
This is similar to the work of Philosopher John Dewey [12], who suggested in 1910
that human thought is a continual repeating cycle of problem, solution and evaluation.

By the 1980’s, psychologists started to think that they needed the help of other
social sciences (such as sociology, anthropology and history) to understand creativity.
This lead to the adoption of a sociocultural approach, defined as follows [5]:
creativity is specific to a domain, of which the existing artefacts and conventions are
the input to the creative person’s own work; the latter will then be judged as creative
or not by influential people: the field. The creative artefact, new in its domain and
judged valuable by the field, is then added to the domain. The creative person is one
that is able to come up with such artefacts. Research, artistic disciplines and business
all require an explanation of the sociocultural approach to creativity [5]. Many
authors share this view, but fail to emphasize the importance of domain and field, and
rather add an emphasis on surprisingness. For example, Boden suggests that
creativity is the ability to come up with ideas or artefacts that are new, surprising and
valuable [9]. Similarly, Sternberg and Lubart define creativity as the ability to
produce work that is both novel (original and unexpected) and appropriate [13].

In the sociocultural view, the short creative cycles in the creator’s head are
embedded in a macro-cycle at the level of the sociocultural entity formed by the
person, domain and field [5]. As in a fractal, the small follows the same pattern as the
large. For example, in painting, each brushstroke entails preparation, incubation,
illumination and verification. The final painting follows the same cycle. Indeed, the
artist lives in a society that possesses a culture, is aware of centuries of painting
tradition, and continuously exchanges with peers in one way or another (preparation
and incubation). Then, once the canvas is painted (illumination), gallerists evaluate it
and chose to promote it. This selection provides feedback on what is valuable, which
is complemented by the public choices (verification). This endorses the view that,
even in disciplines like painting that are known to be solitary, no creative work exists
in isolation, as our interactions with the field and the domain are important
contributors to the creative process [14]. Collaboration is absolutely central to
creativity in the sociocultural view [5], [15]. As Graham Bell stated: “Great
discoveries and improvements invariably involve the cooperation of many minds!”
(cited in [5]).

These advances led some researchers to focus on group creativity while their
predecessors had mainly focused on the individual [5]. Their use of the sociocultural
model challenged one of the main western myths about creativity: that it is the result
of an unconscious dream of a lone unrecognized genius having a sudden burst of
insight [5]. The sociocultural view argues that creativity is a collaborative, social
phenomenon that requires hard work and is made of many mini-insights [5], [15]. It
suggests that group creativity is qualitatively different from individual creativity, and
it must be analysed as a collective social phenomenon, incorporating concepts from
sociology, communication and organizational behaviour [15].

 Choose Your Creativity: Why and How Creativity in Requirements Engineering 105

5 A Review of Creativity Definitions in RE Literature

The DBLP [3] database returns around 700 publications for the main RE source, the
IEEE “RE” conference series. Selecting papers using the search query “creativ” OR
“invent” OR “innovat” in the title returns only 13 papers. As a comparison, the word
“goal” yields 45 references, and the word “scenario” yields 39 references. This gives
a crude indication of the maturity of the creativity sub-field within RE.

Many of the RE authors have chosen a simple interpretation of the sociocultural
definition for creativity; that creativity is something novel and valuable. However,
they frequently omit definitions of the terms novel and valuable, and rarely mention
the person-domain-field triad. Consequently, the emphasis on collaboration that the
sociocultural approach suggests is also neglected in most cases. For example Jones
et al. [16] cite [9] and [13] above, while Nguyen and Shanks [6] chose novelty, value
and surprisingness as three characteristics of the creative outcome in RE. Mich et al.
[17] also insist on surprisingness, Regev et al. use the sociocultural person-domain-
field model, and add this intuitive formulation: “Creative as the contrary of usual,
obvious, i.e. unexpected, unusual, new. Independent thinking. Taking distances from
the rules. Breaking the norms (…)” [18]. Pennel and Maiden formulate this practical
definition: “From a practical point of view, generating genuinely creative ideas was
less important than to enable participants to produce ideas for requirements that
would not normally have been elicited.” [19].

Maiden et al. [1] resolve the creativity definition problem by using the proxy of the
Creative Problem Solving (CPS) process [10], a framework that suggests a series of
steps to follow in order to be creative. Taking this view, any discipline that follows
the CPS is likely to be a creative discipline. Therefore, if a software development
project follows the CPS in the earlier stages corresponding to RE, then the project
must be creative. They propose a way to measure the novelty of requirements, by
computing dissimilarity between new requirements documents and existing ones. This
ongoing research is expected to help define what novelty means for requirements.

Nguyen and Cybulski [20] chose an alternate view of creativity. They see it as an
act of constructivist learning; an authentic and (inter-)personal construction of
knowledge. Their model involves three dimensions: endogenous (learning from the
inner self), exogenous (from others) and dialectic (with others). They argue that in
order to be creative, both analysts and developers must become learners in their
application domain and in the domain of general problem solving.

Nguyen and Shanks [6] argue that “Creativity in problem solving involves
individuals engaged in a cognitive and social collaborative process to produce a
novel and valuable outcome, which will be subject to evaluation within a specific
domain and social context.” This perspective is clearly indebted to the sociocultural
definition of creativity, by acknowledging the importance of collaboration and the de
facto situated character of creativity. Ocker focused on the development of distributed
computer systems to support group interaction. Consequently, his definition of
creativity looks at the collaborative side of creativity: “Creativity is a complex
interaction of person and situation that takes place at both the individual and group
levels.” [21].

106 M. Mahaux, A. Mavin, and P. Heymans

6 Why and How the Meaning of Creativity Changes

Creativity is all about bringing something new in a domain, which will be judged
valuable by a field. However, the breadth of discussion on this simple definition in the
Social Sciences suggests that creativity cannot be reduced to a single clear concept.
For a REer, it is important to define creativity for a particular organisation, or for a
particular project within that organisation, or even for a particular moment within a
project. Indeed, within each project, combinations of different creativities appear to
be the most likely reality.

This section reports three contextual factors that explain why creativity can be
understood differently in RE, and five dimensions that explain qualitatively how
creativity’s meaning can vary in RE. Together they form a conceptual framework for
choosing and defining a project-specific creativity, which is represented graphically
on Figure 1. For each of the fifteen combinations of contextual factor and dimension,
there are possibly two important questions to ask. The first assumes a given context:
“In what context am I working, and how does that impact this dimension of creativity
for me?”. The second goes in the reverse direction, and assumes that one has specific
goals for creativity: “What is my desired value for this dimension, and how should I
change my context consequently?”. In practice, both context and goals are likely to be
partly given and partly free to define. In any case, both have to be discovered in order
to choose a specific creativity. Consequently, we expect that the practitioner will at
times ask the first question, at other times the second, and frequently both.

Below, each of the contextual factors and dimensions are presented and discussed in
detail. As for now, this study only points the practitioner to good questions he should ask.
It illustrates the relevance of these questions by briefly discussing the likely interactions
between contextual factors and dimensions (labelled with “Interactions:” at the end of
each of the sub-sections in section 6.2). It must be understood that these questions may
be extremely difficult to answer. For example, the contextual factor “culture”
is probably an even broader concept than creativity is. So understanding the
interactions between both can be a very tricky job, and certainly is for a REer who is
not a specialist of these questions. In the future, it is hoped that research can help in
giving good answers to these good questions. To this end, this paper systematically
suggests appropriate Research Agenda items (numbered with “RAx:” at the end of
each of the sub-sections in sections 6.1 and 6.2).

6.1 Contextual Factors

Culture. Culture is the set of shared values, goals, attitudes, and practices that
characterises a group of people. Culture is subject to changes over time. As
mentioned above, the notion of creativity depends on culture and history [5]. For
example, before the Renaissance, a creative painter was one who was able to
accurately reproduce nature. In traditional cultures, artistic creativity was linked with
the ability to communicate with superior spirits. In modern western cultures, an
artist’s creativity is often seen as the exteriorisation of their unique inner self.

 Choose Your Creativity: Why and How Creativity in Requirements Engineering 107

Fig. 1. Three contextual factors and five dimensions for creativity in RE

In recent years, the way organizations undertake creative efforts has changed,
including in the software industry, and consequently in RE. For example, Yilmaz
discusses modern conceptions of creativity in Software Engineering, such as
collaborative creativity, open innovation and socio-technical ecologies [22]. The
creativity that REers must consider on a project is likely to be very different today
than five or ten years ago. Additionally, not only does each organization have a
unique culture, but each of its sites might have a different way of implementing that
culture, and each project will have its own “local” culture. For these reasons, cultural
impacts ensure that no two RE projects ever have the same relation to creativity.

All the definitions of creativity used in RE literature assume a modern, western
vision of creativity. This is implicit and most likely due to the fact RE research
essentially exists in the modern western culture. Sawyer argues that a characteristic of
the modern western vision of creativity is its focus on originality, in the sense of
“uncommon” or “surprising” [5]. Originality is also a key requirement for academic
excellence, and industry sometime argues that originality must precede value. In the
RE literature, creativity definitions emphasise words like “surprising” and “not
normal”. What is not clear, however, is why RE creativity is so interested in surprise.
Is it rational to have a preference for unexpected value (surprise) over expected value
(no surprise)? Surprise is a scary word for some managers [18]. Some of them even
reject creativity upfront as they think it is novel and surprising instead of novel and
valuable, as defined in the sociocultural definition of creativity above. It appears that
cultural bias might play an important hidden role here.

This discussion leads us to identify the following research agenda (RA) items:

RA1. Explore the relationship between culture and creativity in RE.
RA2. Is RE research biased towards surprisingness? If so, what are the positive and
negative consequences of this bias?

Application Domain. Authors like Baer and Kaufman [23] suggest that creativity entails
both domain-independent and domain-specific elements. Domain-independent factors
include characteristics and skills such as intelligence, motivation and openness. These
imply that some personality traits will help you to be creative in more than one domain.

108 M. Mahaux, A. Mavin, and P. Heymans

On the other hand, domain-specific factors are things that must be known about a domain
in order to bring something new and valuable to it. These imply that a creative cook is
not necessarily creative in science or music. This is consistent with the sociocultural view
of creativity that requires a domain to define creativity. Consequently, when REers
change their application domain, they change the nature of creativity. Furthermore, all
application domains (video game industry or medical software, for example) have their
own characteristics, including: a unique culture; a specific way to interact with a market;
a level of competition; an innovation rate; an acceptable risk level. All of these factors,
and more, drive different kinds of creativity for the REer to consider.

The application domain has an important influence on the whole software
development process, including RE [24]. REers should be able to tailor RE processes
to specific projects and situations. As soon as a project is different from the previous
one to some degree, the RE process might also have to be novel to some degree, and
hopefully be as valuable as possible. Building the right RE process is perhaps the first
creative task for the REer. Some might argue that this is the most important, or even
the only, place where the REer is responsible for the content of a creative artefact.
This view is consistent with the Participatory Design view where requirements are the
collective responsibility of the stakeholders, including the REer as a facilitator [25].
In this view, the REer should be as neutral as possible in terms of content, but as
active as possible in the role of catalyst for value creation. This initiates discussion on
the role of the REer who is, depending on the point of view, a translator, a discoverer,
a business expert, a learner, an inventor, a facilitator, or some combination of these.
The broader understanding of creativity reopens this important discussion, and offers
a new point of view. In the RE literature, only Cybulski et al. [26] explicitly
distinguish between the domain-specific and general abilities needed to be creative.
They argue that research should clarify the distinctions, and education should support
both explicitly.

RA3: Explore the relationship between Application Domain and creativity.
RA4: Explore the role of the REer in the creative process.
RA5: Clarify the distinction between general and domain-specific creative abilities in RE.

Resources (time, money, skills). The amount of resources available for a project will
inevitably influence creativity. However, this relationship is certainly not as simple as
“no money, no creativity”. Indeed, money and time-pressure could be factors, or even
triggers, for certain kinds of creativity. Studies have shown that recent movies
budgets had no correlation with best picture awards and were negatively correlated
with critical acclaim [27]. Cowen and Tabarrok [28] discuss how money and other
resources lead artists to adopt different creative styles. In terms of human resources, it
is implicit that group creativity can only be used when there is more than one
participant available, and that any creative effort relies on suitable skills.

Lack of resources is a major factor preventing REers from producing good quality
work in general [29]. Research on more resource-efficient RE techniques is in
progress [30]. However, RE authors have different opinions on the impact of
resources on creativity. Maiden et al. [1] recall that incubation requires time and that
external consultants cost money, so lack of resources is a barrier to creativity in their
view. While Gorshek et al. [31] recognise that innovation-driven requirements
compete for resources with the day-to-day urgent requirements, they propose a

 Choose Your Creativity: Why and How Creativity in Requirements Engineering 109

lightweight creativity style to deal with that barrier. Finally, Regev et al. [18] take an
opposite stance and claim that ample resources may not encourage creativity at all.
Fricker and Seyff [30] suggest that smart collaboration processes and novel ways of
doing RE can be the basis for increasing the productivity of requirements engineering,
while reducing the required effort. Given these issues, it seems logical that RE should
follow other disciplines and recognise that different quantities and types of resources
will lead to different forms of creativity.

RA6: Explore the relationship between resources and creativity in RE.

6.2 Dimensions

The Creative Group. There is a qualitative difference between individual and group
creativity [15]. The creative process in a person’s head has only little similarity to the
creative process within a group. Activities and outcomes are different. The
relationship between creative individuals and creative teams is not simple; for
example, the fact that brainstorming is usually inefficient [32] shows that it is not
enough to put creative people together to have a creative team. The size of the group
matters, as well as the way the members interact. Is the group a small informal group,
a company, a community of interest, or the human society as a whole? Each group
will have its own understanding of creativity and its own way to handle it.

Many authors claim that RE is essentially a collaborative social endeavour. For
example, according to Arias et al. [33] and Boehm et al. [34], requirements emerge
from the interactions, sometimes the conflicts, in the stakeholders group. Coughlan
and Macredie [35] therefore adopt a more collaborative and emergent view of
requirements elicitation. Holtzblatt and Beyer state: “All aspects of Requirements
definition ultimately succeed or fail based on how well people work together” [36].
Having studied creativity workshops in some depth (see [37], for example), Maiden
and colleagues also argue that collaboration is key in RE creativity. Maiden et al. [1]
suggest tools and trainings to support collaboration, a research track that they
continue to pursue. Through the constructivist learning framework, Nguyen and
Cybulski [20] clearly distinguish between individual and collaborative creativity, and
suggest that specific support is required for each. Innovative research in this direction
was recently showcased at the RE conference [38].

The arguments above suggest that this dimension deserves particular attention in
the RE domain. However, Nguyen and Shanks [6] stress the particularly low level of
understanding of collaboration-centric processes. They identify this topic as a major
research challenge, a view that is shared by the authors. Group creativity theories
already exist [15] and could be transferred to RE to address this challenge.
Interactions: Some cultures promote individuality, some actively foster collaboration,
others will be in between. In some domains, the complexity of interdependent systems
will leave no other choice than explicit company-wide or even inter-company
collaboration. In other domains, it will be possible to innovate alone. Collaboration is
likely to require both time and skilled people, but in the appropriate circumstances,
collaboration could be a way to save resources.

RA7: Explore how to support collaborative creativity in RE.

110 M. Mahaux, A. Mavin, and P. Heymans

The Field. Authors see different types of creativity depending on the scale of the
social recognition of the creative work [9], [39], [40]. The literature discusses the field
and its size. Creativity ranges from everyday insights that an individual
experiences (the field is just the creator); through hobby-level creativity (the field is a
small local group of pairs); the creativity of the talented professional (the field is a set
of important people working in an area); to creativity that leaves the creator’s name in
history (the field consists of thousands of people). For the socio-culturalists, creativity
is by definition always relative to its field. For example, the fact that a movie can be a
box office success while not being acclaimed by the critics [27] is a sign that
creativity is specific to its field.

The size of the field is discussed by a number of RE authors. Maiden et al. [1] and
Nguyen and Shanks [6], for example, use Sosa’s situated creativity [39]. Some
authors ([18], [19]) perceive that the typical RE project’s field is made of the project
stakeholders, and the domain is restricted to the existing ideas and products in the
company. This is perhaps more likely to be the case for the development of bespoke
products and services. In market-driven contexts, the domain corresponds to the
products already on the market, and the field is made of the many people in the
market, from a small number of big clients to many thousands of retailers and end-
users. Neither is more genuinely creative than the other, but they require different
strategies towards creativity.

Interactions: Most application domains have a particular market structure. However,
in many cases a project/organisation can choose the target market, for example
choosing a specific niche versus going worldwide. Large field innovation is likely to
require more resources, and culture will play an important role in such choices.

RA8: Explore how to support creativity in RE depending on the size of the field (for
example in custom versus market driven contexts).

The Size of the Novelty Increment. Many authors of business-oriented creativity
research make a distinction between creativity leading to incremental innovation
(“evolution”), and creativity leading to radical innovation (“revolution”) [41–43]. The
difference is that, in radical innovation, there is a major break with the domain’s current
conventions. This intuitively suggests that the risk of non-acceptance is higher, but the
potential pay-off is higher, too. Management Sciences acknowledge the need for a
balance between exploration and exploitation [43], and stress that both are needed for
creativity [42].

Regev et al. [18] discuss innovation in the light of the change it causes for
adopters. They stress the need to control the size of the increment to balance novelty
and stability in the adopting organisation. They argue that an idea will be accepted if
and only if the risk of accepting it is less than, or equal to, the risk of rejecting it.
Mich et al. [17] suggest that creativity can be seen as a threat too, and Dallman [44]
experimentally analysed willingness to take risk and conformism as factors
influencing the creative process. However, the authors are not aware of any study that
compares RE creativity support for evolution versus revolution.

Interactions: Culture is likely to have a significant impact on the novelty increment.
Some organisations define themselves as “big innovators” while others find a way to
make products cheaper. Innovation must not always be seen as desirable, and creativity

 Choose Your Creativity: Why and How Creativity in Requirements Engineering 111

might then simply be a question of having the right mindset to solve conflicts more
efficiently. More mature application domains may make revolution harder, while newer
market segments might see revolutionary shifts every week. All else being equal, bigger
novelty increments are likely to require more resources.

RA9: Explore creativity support depending on the size of the novelty increment.
RA10: Explore how to define the ideal balance of evolution/revolution on a project.

Performance and Product-Orientation. Sawyer [15] studied the difference between
performance-oriented creativity and product-oriented creativity. In performance-oriented
creativity, there is no tangible product at the end of the creation process, since the process
itself is the deliverable. A jazz concert is an example of performance-oriented creativity,
while writing a book is an example of a product-oriented creative process. Sawyer argues
that most creative genres use a combination of both.

There appear to be no RE authors who explicitly make the above distinction.
Perhaps under the influence of the prevailing business culture, RE has implicitly
focused on product-related creativity. However, requirements workshops can
certainly be considered as a group performance, just like a musical or theatre show
[15], [45]. Ellen Gottesdiener [46] advises on how to run requirements workshops.
Although she does not refer to the work on group creativity discussed above, her
advice is largely consistent with it. Workshops are an important technique in RE [46],
together with other human-interaction intensive techniques like interviews.
Consequently, there are good reasons to be interested in performance-related
creativity. Depending on one’s RE process or methodology, there will be more or less
performance moments. REers have to choose the right mix of performance-oriented
and product-oriented collaboration moments.

In his study of group performances [15], Sawyer suggested that any performance
relies on some structure, but is also inherently partly chaotic. The goal for the REer is
then to find the right amount of structure for the project. This must be done in parallel
with considerations for the level of agility of the development process as a whole.
Maiden et al. [1], suggest that the increasing importance of the Agile paradigm is seen
as a driver for creativity. This is due to Agile’s emphasis on collaboration, parallel
work and shortened iteration cycles. Agility, structure and performance-oriented
creativity seem to be strongly related.

Sawyer noted that “group creative performance could be viewed as the creative
process in microcosm” and concluded that “observation of group creativity could
provide valuable insights into creative fields in which the creative process takes too long
to observe directly” [15]. This is another argument for further research into group
performance creativity.

Interactions: Culture, as well as skills, influence the number of performance-oriented
moments during RE projects. Performance-related moments are likely to require more
openness and more experience, both of which are cultural factors. Performance
moments like effective workshops can save time, but are likely to cost more money.

RA11: Explore the amount of structure needed to support creativity on a project.
RA12: Explore the relationship between agile processes and creativity in RE.
RA13: Explore how artistic performance can inform group work in RE.
RA14: Explore how to determine the ideal balance of performance- and product- oriented
creativity moments for a specific project.

112 M. Mahaux, A. Mavin, and P. Heymans

Problem-Finding and Problem-Solving Orientation. Another dimension identified
by Sawyer is the difference between problem-finding and problem-solving creativity.
Problem-finding is an emergent and divergent form of creativity. Problem-solving is a
well planned and convergent form of creativity, that aims to lead from a known
problem to a solution. For example, an abstract painter who does not know what a
painting will look like until it is completed is engaged in a problem-finding activity.
In contrast, a painter who faithfully reproduces a photograph is engaged in problem-
solving. The two are likely to work in a fundamentally different way. Sawyer explains
that in most creative genres, “the creative process is a constant balance between
finding a problem and solving that problem, and then finding a new problem during
the solving of the last one” [5].

Visser suggests that RE requires both problem understanding and problem solving
[47]. There is, however, less consensus on whether RE follows a constant movement
between problem-finding and problem-solving, or a more CPS-like process where
problem-finding and problem-solving are sequential steps. Maiden et al. [1] explicitly
compare RE to CPS, while Nguyen et al. suggest that RE processes involve
oscillations of complexity, described by the “catastrophe-cycle model” [48]. They
showed how the intertwining of problem understanding and solving is reflected in the
incremental structuring and occasional restructuring of the requirements model during
the requirements process. Meanwhile, Jones et al. [16] have been experimenting with
divergent and convergent creativity techniques during requirements workshops.
Maiden et al. [1] have argued that problem finding in RE was extensively supported
by goal-oriented approaches. Authors agree that creativity in RE should be supported
by rational and structured processes as well as by emergent and more chaotic
processes, and by more collaboration-centric processes [1], [6].

Interactions: Whether a company favours emergence or structured processes is likely
to strongly depend on its culture. Emerging processes may seem to involve more risk.
Risk, in turn, has an impact on project resources. Safety-critical application domains,
for example, are likely to be reluctant to take risks during their creativity process.

RA15: Explore how to support problem solving and problem finding creativity in RE.
RA16: Explore how to define the right interactions between problem finding and
problem solving on a specific project.

7 Using the Framework

To make things more concrete, we provide below an example of how the framework
could be used to engineer creativity support on a project.

BankMessages is a company that offers messaging services to banks. It establishes
messaging standards so that banks can communicate with each other. Recently the
company has committed a small multidisciplinary team (16 highly skilled,
experienced people) to develop a new product, supposed to enhance the service to a
level that is above what clients expect. Figure 2 summarizes the creativity analysis
that one could do for their case. On the left column are the contextual factors, as well
as the main goals for being creative on the project. On the right, one can see the

 Choose Your Creativity: Why and How Creativity in Requirements Engineering 113

corresponding discussion for each dimension of creativity. The lines in the middle
(better seen in color) give an idea of the complex interactions that link contextual
factors and creativity dimensions. This one-hour work made with, and validated by,
key stakeholders helps us decide about the support we need to give to this specific
creativity. In this example, one might want to support creativity with an agile
development method, including numerous workshops with clients to discover and
validate requirements (e.g. through prototyping) and maybe some specific creativity
techniques.

Fig. 2. BankMessage creativity analysis

R1
16 highly skilled,

experienced people,
multidisciplinary

R2
People are locally

available

R3
Money: translated to

time as team is
internal

R4
Time = 3x6 months.
Judged SHORT but

feasible

D1
Banking Messaging
Services (standards)

D2
Mature but still
moving due to

technology changing

D3
Critical systems

D4
Few deciding

important
stakeholders (20-30)

C1
Team is set apart

from the organization:
open, customer-

oriented, responsible

R
E
S
O
U
R
C
E
S

D
O
M
A
I
N

C
U
L
T

G1
Set a real competitive
adv. by establishing
never seen service

G
O
A
L

Creators:
R1, D4, C1, G1 seem to make a

good ground for a highly
collaborative approach, where
the creators team is made of the

whole internal team + many
customer representatives.

Field:
D1 means we want massive

adoption, so target is 100% of
the market. D4 recalls that this
means max 30 people, which is

still small.

Novelty Increment:
G1 sets it high, as well as D2

and C1. But R4 and D3 require
that we manage the risk

carefully.

Problem Finding or Solving:
R4 and D3 mean we can't spend

too much time finding a
problem. D2 says we know our

problems quite well. But G1
requires "never seen". Let's say

"rather solving".

Product or Performance:
R2, C1, D4, G1 recommend

performance-oriented
moments with customers. R4

and D3 recall product-
orientation is needed too.

114 M. Mahaux, A. Mavin, and P. Heymans

8 Discussion

Partial Analysis and Validation. During the literature review, the identification of
the contextual factors and dimensions was based on the authors’ analytical sense. This
work would probably benefit from a more systematic way of deriving a framework,
and empirical validation would be useful in strengthening the framework. Moreover,
as suggested earlier, creativity is a relatively immature topic in RE. Other research
disciplines are more mature in their study of creativity, but include a great many
references, that are only partially covered by this analysis. This study therefore
presents an initial framework proposal, which may not be complete. There may be
more contextual factors and dimensions, which it is hoped will be uncovered as this
work continues beyond that reported here.

Innovation versus Creativity. Innovation and creativity are two overlapping
concepts. The boudary between both is not very clear. A common view is that
creativity is about having ideas, and innovation is about making them real, in
particular selling them. The definitions of creativity that we have used through this
work reject this interpretation, as elaboration is part of creativity. While the term
"innovation" is frequently used in management sciences, social sciences almost do not
use it; the prefer the term "creativity". Our study focused on this latter body of work,
and might benefit from a deeper investigation of the innovation literature.

Creativity in RE versus in Systems Engineering. In this study, we focused on RE.
However, as we have shown, the modern understanding of creativity blurs the
boundary between an idea and its execution, and shows how both are really part of the
creative process. In this context, the RE effort cannot be considered in isolation from
the rest of the development. Hence, a natural next step for this work would be to study
how far its results can be applied in the broader context of software and systems
engineering rather than RE. Studying creativity in agile teams, for example, would be
a good candidate in this direction.

9 Conclusion

RE strives to create a new (version of a) system that brings value. Creativity is therefore
by definition needed on 100% of RE projects. However, it is not always the same type of
creativity that is required. Consequently, the first step in providing adequate support for
creativity is defining which creativity has to be supported. This study lays the
foundations of a method that will eventually guide practitioners in determining their
situation-specific creativity needs and choosing adequate support. In this paper, this
endeavour was started by studying the creativity literature in Social Sciences and RE, and
by confronting them. Three contextual factors and five dimensions of creativity were
identified and discussed. These can readily be used by a practitioner to structure the
analysis of the creativity needed on a project, for example by asking how each contextual
factor interacts with each dimension. The reasoning can flow in both directions: from a
given context to dimensions, or from given dimensions to context. This study also
highlights that a significant amount of research is needed in exploring, comparing and

 Choose Your Creativity: Why and How Creativity in Requirements Engineering 115

combining the various creativity situations uncovered, in order to help the practitioner
answer these complex questions and choose an adequate support accordingly.

Acknowledgments. This work is sponsored by (1) the Interuniversity Attraction
Poles Programme of the Belgian State, Belgian Science Policy, under the MoVES
project, (2) the Walloon Region under the European Regional Development Fund
(ERDF) and (3) the FNRS.

References

[1] Maiden, N., Jones, S., Karlsen, K., Neill, R., Zachos, K., Milne, A.: Requirements
Engineering as Creative Problem Solving: A Research Agenda for Idea Finding. In: IEEE
RE 2010, Sydney, Australia, pp. 57–66 (2010)

[2] Deming, W.E.: Out of the crisis, Massachusetts Institute of Technology (1986)
[3] Ley, M., Bast, H.: Computer Science Bibliography, http://www.dblp.org
[4] Google Scholar, http://scholar.google.be/ (accessed: October 8, 2011)
[5] Sawyer, R.K.: Explaining Creativity: The Science of Human Innovation, 1st edn. Oxford

University Press, USA (2006)
[6] Nguyen, L., Shanks, G.: A framework for understanding creativity in requirements

engineering. Information and Software Technology 51(3), 655–662 (2009)
[7] Wallas, G.: The Art of Thought, Abridged ed. Watts and Co. (1949)
[8] Hadamard, J.: An essay on the psychology of invention in the mathematical field. Courier

Dover Publications (1954)
[9] Boden, M.: The creative mind: myths & mechanisms, 2nd edn. Routledge, London (2004)

[10] Osborn, A.F.: Principles and procedures of creative problem-solving. Scribner (1963)
[11] Gordon, W.J.J.: Synectics: the development of creative capacity. Collier Books (1961)
[12] Dewey, J.: How We Think. Dover Publications (1997)
[13] Sternberg, R.J., Lubart, T.I.: Investing in creativity. American psychologist 51(7) (1996)
[14] Fischer, G.: Social creativity: turning barriers into opportunities for collaborative design.

In: Procs. 8th Conference on Participatory Design, vol. 1, pp. 152–161 (2004)
[15] Sawyer, R.K.: Group genius: the creative power of collaboration. Basic Books (2007)
[16] Jones, S., Lynch, P., Maiden, N.A.M., Lindstaedt, S.N.: Use and Influence of Creative Ideas

and Requirements for a Work-Integrated Learning System. In: RE, pp. 289–294 (2008)
[17] Mich, L., Anesi, C., Berry, D.M.: Requirements engineering and creativity: An

innovative approach based on a model of the pragmatics of communication. In: Proc.
REFSQ, pp. 3–922602 (2004)

[18] Regev, G., Cause, D.C., Wegmann, A.: Creativity and the Age-Old Resistance to Change
Problem in RE. In: Procs. IEEE RE 2006, pp. 291–296 (2006)

[19] Pennel, L., Maiden, N.A.M.: Creating Requirements – Techniques and Experiences in the
Policing Domain

[20] Nguyen, L., Cybulski, J.: Into the future: inspiring and stimulating users’ creativity. In:
Proceedings of the Pacific Asia Conference on Information Systems PACIS (2008)

[21] Ocker, R.J.: Promoting Group Creativity in Upstreal Requirements Engineering. In: The
Right Concepts for the Right Problems, p. 55 (2010)

[22] Yilmaz, L.: On the Synergy of Conflict and Collective Creativity in Open Innovation
Socio-technical Ecologies. In: Procs. CSE 2009., vol. 4, pp. 502–508 (2009)

[23] Baer, J., Kaufman, J.C.: Bridging Generality and Specificity: The Amusement Park
Theoretical Model of Creativity. Roeper Review: A Journal on Gifted Education (2005)

116 M. Mahaux, A. Mavin, and P. Heymans

[24] Glass, R.L., Vessey, I.: Contemporary application-domain taxonomies. IEEE
Software 12, 63–76 (1995)

[25] Vaajakallio, K., Mattelmäki, T.: Collaborative design exploration, p. 223 (2007)
[26] Cybulski, J., Nguyen, L.: Learning to Become a Creative Systems Analyst. In: The PSI

Handbook of Virtual Environments for Training and Education (2008)
[27] Simonton, D.K.: Cinematic creativity and production budgets: Does money make the

movie? The Journal of Creative Behavior 39(1), 1–15 (2005)
[28] Cowen, T., Tabarrok, A.: An Economic Theory of Avant-Garde and Popular Art, or High

and Low Culture. Southern Economic Journal 67(2), 232–253 (2000)
[29] Wever, A., Maiden, N.A.M.: The day-to-day factors that are preventing business analysts

from effective business analysis. In: Procs IEEE RE 2011, Trento, Italy (2011)
[30] Fricker, S., Seyff, N.: 1st international requirements engineering efficiency workshop.

ACM SIGSOFT Software Engineering Notes 36, 26 (2011)
[31] Gorschek, T., Fricker, S., Palm, K., Kunsman, S.: A Lightweight Innovation Process for

Software-Intensive Product Development. IEEE Software 27(1), 37–45 (2010)
[32] Mullen, B., Johnson, C., Salas, E.: Productivity loss in brainstorming groups: A meta-

analytic integration. Basic and Applied Social Psychology (1991)
[33] Arias, E., Eden, H., Fischer, G., Gorman, A., Scharff, E.: Transcending the individual

human mind. ACM TOCHI 7(1), 84–113 (2000)
[34] Boehm, B., Grunbacher, P., Briggs, R.O.: Developing groupware for requirements

negotiation: lessons learned. IEEE Software 18(3), 46–55 (2001)
[35] Coughlan, J., Macredie, R.D.: Effective communication in requirements elicitation: A

comparison of methodologies. Requirements Engineering 7(2), 47–60 (2002)
[36] Holtzblatt, K., Beyer, H.R.: Requirements gathering: the human factor. Communications

of the ACM 38(5), 31–32 (1995)
[37] Maiden, N., Robertson, S.: Integrating creativity into requirements processes:

Experiences with an air traffic management system (2005)
[38] Mahaux, M., Maiden, N.A.M., Heymans, P.: Making it all up: getting on the act to

improvise creative requirements. In: IEEE RE 2010, Sydney, Australia (2010)
[39] Sosa, R., Gero, J.: Design and change: a model of situated creativity, Sydney (2003)
[40] Kaufman, J.C., Beghetto, R.A., Baer, J., Ivcevic, Z.: Creativity polymathy: What Benjamin

Franklin can teach your kindergartener. Learning and Individual Differences 20(4) (2010)
[41] Vera, D., Crossan, M.: Improvisation and innovative performance in teams. Organization

Science 16(3), 203–224 (2005)
[42] Castiaux, A.: Radical innovation in established organizations: Being a knowledge

predator. JETM 24(1-2), 36–52 (2007)
[43] March, J.G.: Exploration and exploitation in organizational learning. Organization

Science 2(1), 71–87 (1991)
[44] Dallman, S., Nguyen, L., Lamp, J., Cybulski, J.: Contextual factors which influence

creativity in requirements engineering. In: Procs. ECIS (2005)
[45] Mahaux, M., Maiden, N.: Theater Improvisers Know the Requirements Game. IEEE

Software 25(5), 68–69 (2008)
[46] Gottesdiener, E.: Requirements by Collaboration: Workshops for Defining Needs.

Addison-Wesley Professional (2002)
[47] Visser, W.: Designers’ activities examined at three levels: organization, strategies and

problem-solving processes. Knowledge-Based Systems 5(1), 92–104 (1992)
[48] Nguyen, L., Carroll, J., Swatman, P.A.: Supporting and monitoring the creativity of IS

personnel during the requirements engineering process. In: HICSS, p. 7008 (2000)

B. Regnell and D. Damian (Eds.): REFSQ 2012, LNCS 7195, pp. 117–131, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Supporting Failure Mode and Effect Analysis:
A Case Study with Failure Sequence Diagrams

Christian Raspotnig and Andreas Opdahl

Department of Information Science and Media Studies, University of Bergen
NO-5020 Bergen, Norway

{Christian.Raspotnig,Andreas.Opdahl}@uib.no

Abstract. [Context and motivation] In air traffic management (ATM) safety
assessments are performed with traditional techniques such as failure mode and
effect analysis (FMEA). [Question/problem] As system modelling is becoming an
increasingly important part of developing ATM systems, techniques that integrate
safety aspects and modelling are needed. [Principal ideas/results] This paper
proposes an approach for thorough failure analysis of ATM systems that consist of
several interacting components and similar systems. The new technique is called
failure sequence diagrams (FSD) and supports FMEA in modelling failures and
their effects through interactions between system components. FSD has been used
in a case study by safety and system engineers in three different ways.
[Contribution] The study suggests that FSD was easy to use and supported FMEA
well, but did not cover its weakness in analysing multiple failures.

Keywords: Failure analysis, safety, sequence diagrams.

1 Introduction

Air traffic management (ATM) in Europe is about to undergo the most extensive
technological change in its history through the Single European ATM Research
(SESAR) program [1]. A part of the change is describing the current and future
systems of ATM, where modelling is becoming crucial. Modelling languages such as
UML [2] are widely used in many domains, and the ATM community in Europe is
becoming increasingly interested in using modelling for systems development.

The current safety assessments conducted in the European ATM community are
following methods such as Eurocontrol’s Safety Assessment Methodology [3], which
includes the Functional Hazard Analysis [4]. This method can include traditional
techniques, such as Hazard and Operability studies (HazOp) and Failure Mode and Effect
Analysis (FMEA) [5], which are used at lower abstraction levels. While these techniques
sometimes use models as an input, they typically use worksheets to discuss and
document the hazards and failures. However, using models more actively in safety
assessments can give benefits, such as better discussions and understanding of the system
under assessment, along with integration of model-based system engineering. For ATM
systems that consist of several interacting components, there is a need for a thorough
failure analysis of the interactions, which are not easily analysed with the traditional
techniques.

118 C. Raspotnig and A. Opdahl

The purpose of this industry case study is to obtain real experiences on combining
FMEA with Failure Sequence Diagrams (FSD), a specialized version of Misuse
Sequence Diagrams (MUSD) [6] from the security field. FSD is a new technique in
the safety field and in this paper the technique and the results obtained when
combining the technique with FMEA in a safety assessment are presented.

The paper is structured as follows; in section 2 the background for the research is
described along with the relevant work. Section 3 describes the research method used
for obtaining the results presented in section 4, which are analysed in section 5 and
further discussed in section 6. Finally, in section 7, we conclude upon the research
and look ahead at further work, before we direct our acknowledgements.

2 Background

A system failure is defined as “an event that occurs when the delivered service
deviates from the correct service” [7]. The relationship between fault, error and failure
is described together with how it relates to interacting system components in [7].
FMEA is not only used for identifying the failure modes of system components and
their effects, but also for finding the causal factors causing the failure to occur and
thereby follows the idea with respect to faults, errors and failures. Although FMEA
relates failure modes to system components and to the complete system, it does not
address interactions between components. Most FMEA worksheets contain
information about local or immediate effect and system effect, where the latter is a
description of the failure propagated to system level. However, there is no support by
FMEA to investigate failure propagation, except reasoning about the local and system
effect of a failure mode.

FSD addresses failures and propagation between the interacting components. In
Fig. 1 the notation for the FSD is presented, showing how the notation extends UML
sequence diagrams. The notation includes current control and recommended action
(indicated by dashed/green symbols), also referred to as mitigations. FSD also
includes a notation for indicating component failure that can be used to differentiate
whether a component fails (indicated by red/dashed symbols) to deliver its service, or
if the failure only propagates through the component (indicated by a black/solid
component symbols) without causing it to fail.

In Fig. 2 the use of FSD is presented by an example that is similar to the system
that was analysed in the case study with FMEA. It shows that a corrupted flight
coordination message, indicated by a red/dashed arrow, is sent into the system and not
detected by the router or the LAN. When the corrupted message is received by the
flight processor (FP) component, it causes the FP to crash and the FP is not able to
send an alert to the monitoring system (MON). The MON continuously sends
heartbeat messages to FP as current control. It registers that no response is given by
the FP. Although the MON has a current control of sending an alert message (last
message in the diagram) to the supervisor (SUP), a recommended action is to include
new messages through the flight display (FD) to alert the air traffic control officer
(ATCO) of the failure of the FP.

 Supporting Failure Mode and Effect Analysis 119

Failure: marks with failure item number from
FMEA

Failure effect: shows how the failure developes
with messages

Event message: shows normal sequence of
messages

Object or component: shows a component or object
in a system

Actor: an operator/user or external system

Hazardous actor: an operator/user or external
system that has a hazard connected to itself

Failure component: shows a component or object
that has an associated failure

Failure note: explains or gives extra information
about a failure situation

Note: explains or gives extra information
about a normal situation

Current controls/detection/rec. action: marks with current
control number from FMEA

Mitigation note: explains or gives extra information about a
mitigation (current control, detection or rec. action) situation

Recommended action: shows a new recommended
action with messages

Fig. 1. Notation for the Failure Sequence Diagrams

Fig. 2. Example in the use of the FSD

120 C. Raspotnig and A. Opdahl

There are several related works to ours: on combining UML and failure identification
has been done before, e.g., using FMEA on UML models for improving the interaction
between design and dependability analysis [8], comparing system sequence diagrams
with textual use cases in an experiment, for evaluating what is better for identifying
hazards related to a system [9], or, closest to our work, the use of UML diagrams for
safety analysis of a medical robot [10]. In the latter work, FMEA is used together with
sequence diagrams and errors are modelled. However, in comparison to our work the
three approaches do not extend the UML diagrams with an own notation for supporting
FMEA specifically. To our knowledge they do also not attempt to improve the FMEA
process with focus on interactions and failure propagation. Finally, they do not evaluate
the optimal combination of interactive failure visualization and a structured use of a
worksheet.

3 Method

The purpose of the case study was to evaluate how FSD could be used together with
FMEA. In particular, we wanted to gain experiences on the industrial use of FSD and
the interaction between the two techniques.

3.1 Research Questions

For the case study design we developed three research questions with sub-questions to
guide our observations in the meetings to obtain qualitative data on the usage of FSD
together with FMEA.

1. Can FSD support FMEA?
a. Is it possible to use FSD along with FMEA?
b. Is it easy to use FSD in combination with FMEA?
c. Can FSD improve discussions among participants?
d. Can FSD increase understanding of the system?

2. How should the two techniques be used together?
a. What are the pros and cons of the ways of combining the techniques?
b. What is the optimal way to combine the techniques?

3. Can FSD cover the weaknesses of FMEA?
a. Can FSD show multiple failures?
b. Can FSD help relating failures and their effects to interactions?
c. Integration of safety assessments and model-based system engineering?

3.2 Choice of Research Method

Case study as a method was discussed with the Air Navigation Service Provider
(ANSP) organization according to their needs for safety analysis of system changes.
A research method that would let them conduct the safety analysis as required, but at
the same time could allow for research taking place within their organization, was
seen as beneficial to both parties. Therefore, case study was selected for observing the
use of the two techniques together in a real setting. In the following sub-sections the
case study design is described.

 Supporting Failure Mode and Effect Analysis 121

3.3 The ANSP Case

We followed a European ANSPs assessing the safety of introducing the Flight
Management Transfer Protocol (FMTP) [11], [12]. A procedure based on [3] was
used for deciding the scope of the change, whether a safety assessment was required
and which technique to use. The ANSP decided to use FMEA and to structure the
safety assessment through FMEA meetings. An earlier safety assessment of the
coordination function between air traffic control units was used to establish the
required safety level and possible hazards.

Meetings were organized, taking place in a meeting room with the needed
facilities, e.g., a big table, a video projector and a white board. An FMEA team was
established, with a facilitator, a secretary, three systems engineers and an air traffic
control officer. Several of the participants were familiar with UML, but only one of
them had previous experience with sequence diagrams.

In advance all participants received a document describing the FMTP system and
the overall system, relevant safety documentation and a procedure for conducting the
FMEA. The latter consisted of a worksheet with the columns component number,
component, failure mode, causal factor, immediate effect, system effect, current
controls and recommended action. Furthermore, it included a list of typical failure
modes for components and software as described in [5].

3.4 Procedure for Conducting the Case Study

During the case study we observed three strategies of using the two techniques
together in the meetings. Below the activities taking place during each strategy is
described and referred to as sessions:

1. First session (day one – five hours’ meeting)
a. Introduction of case study, purpose, techniques and basic usage
b. Explaining a simplified notation without mitigation
c. Conducting the FMEA
d. Applying the FSD to the FMEA result
e. Summarizing the FSD and FMEA session

2. Second session (day two and three – six and two and a half hours’ meetings)
a. Summary of the first session
b. Explaining the full notation with example similar to Fig. 2
c. Conducting the FMEA together with FSD
d. Summarizing the FSD and FMEA session

3. Third session (day four – three hours’ meeting)
a. Repeating the full notation
b. Conducting the FSD
c. Summarizing the results with FMEA
d. Summary of all sessions

3.5 Data Collection during the Sessions

In the first two sessions, the first author acted as an observer. The participants were
encouraged to use FSD and FMEA as seen beneficial to their task. Whenever

122 C. Raspotnig and A. Opdahl

experiencing difficulties, they were told to discuss among themselves and identify a
natural solution. If they were not able to find a solution, they could ask the observer for
advice. For the third session, the first author supported the facilitator and drew the FSDs
as a participating observer, before taking a passive role with the FMEA.

For collecting relevant data, we decided to focus on three types of data:

1. Verbal – which questions were asked, e.g., to us or between themselves,
discussions and general comments regarding the technique.

2. Interactions – how was the interaction with FSD, e.g., drawing, pointing, referring
to, looking at while talking or thinking.

3. Notes – which parts of the notation were or weren’t used, and which parts of the
notation were used wrongly or correctly.

For the data types, all relevant observations from the sessions were written down. The
sessions were also video-taped for extracting more information relevant to our data
types. Pictures were taken of the FSD diagrams for each component, which we used
together with our notes to reconstruct how the notation was used. The video recorder
only captured the participant standing next to the white board and it was not possible
to reconstruct the interaction of participants pointing to the drawing by analysing the
video recordings.

In the last session the first author did not take notes as he facilitated the meeting
and relied solely on the video recordings for the data collection. When summarizing
the FMEA worksheet, we did not video record the worksheet and the participants. The
video camera was directed towards the white board, only recording the use of FSD to
support the summary. However, we reconstructed the discussions by using the audio
part of the recording.

3.6 Data Collection through Interviews

The first author interviewed the participants after the sessions as follows:

1. Explaining the purpose and procedure for the interview
2. Asking for their own comments
3. 11 questions based on Technology Acceptance Model (TAM) [13]
4. Asking for comments on a summary of our analysis

For the interviews it was only possible to conduct two face to face meetings. Of the
remaining three participants we were able to interview two of them through email,
with the same structure for the interview. The answers were returned and analysed
along with the notes from the two other interviews. The last participant, a system
engineer, was not able to respond due to time constraints.

In the interview they gave their general opinion on the usage of FSD to support
FMEA, before answering the TAM questions regarding perceived usefulness,
perceived ease of use and intention of use. In the end of the interview they discussed
the summary of the case study and either agreed or disagreed with our findings.

 Supporting Failure Mode and Effect Analysis 123

4 Using FSD for Supporting FMEA

In this section we describe how the techniques were used in each session.

4.1 First Session

The participants started the regular FMEA process and discussed some components
for clarification. FSD was used after finishing the FMEA analysis of the first
component. There was a discussion on how to use the FSD, where the participants
concluded to use it for supplementing FMEA. A natural start for them was to draw up
all components identified in the FMEA worksheet, but they discussed this and also
asked us as observers. Another issue discussed and questioned was to use one or more
FSD diagram per failure mode. As they progressed some modifications were done,
e.g., that power supply was not included as it seemed hard fit it to the FSD as a
specific component. The participants agreed that a good start would be to draw the
normal sequence of messages in the FSD, before analysing the failure, its causes,
related effects and mitigations.

While drawing the normal sequence there were several discussions on the
functions of the components involved. There were a number of clarifications, e.g., the
role of a monitoring system and what kind of functionality that was allocated to this
component. These clarifications led to statements such as “we are better in thinking
around graphical notation” and “FSD gives us an overview of the system”. At the
same time they commented on only using one FSD diagram per failure mode, or else
“the FSD would become too complex”.

The participants used wrong notation on some occasions, e.g., not including
message text above the arrows or using the lifeline for symbolizing an external actor.
Furthermore, the only FSD specific notation used was the failure markings.

Several participants engaged in diagram drawing. In the beginning the task was left
to one of the system engineers, but several times the facilitator and another system
engineer participated in the drawing. All participants used the drawings when
discussing, either by pointing to components or referring to them by name. Several of
the participants went up to the white board when explaining details about the system.

4.2 Second Session

This session started with summarizing the advantages of using FSD for bringing
clarity of components and how they interrelate, and giving a good overview of the
system. The participants also discussed further use of FSD and it was decided that
FSD should support FMEA in a more iterative manner. Furthermore, they discussed
using FSD for identifying failure modes and causal factors, but concluded FMEA
better suited for this. They used FSD for investigating the immediate and system
effects, along with the current controls.

The participants used FSD from the beginning of the session and shortly discussed
which messages to look at before using FSD to draw a normal sequence of messages
in the system. They also marked the failure mode in the FSD, but used the FMEA
worksheet to discuss the causal factors. Immediate effects and system effects together
with the current control were usually discussed by use of FSD, with recommended

124 C. Raspotnig and A. Opdahl

actions identified from these discussions. This continued throughout the session,
where FSD and FMEA were used iteratively on the components.

Support for Discussion. Inclusion of both inbound and outbound messages in the
FSD drawings was also discussed by the participants. Most of the discussions were on
understanding the system and components, along with interactions, not on usage of
FSD. Nevertheless, the facilitator found it hard to draw some of the messages, as
different levels of the OSI model [14] were discussed with respect to corrupted data
and detection of such data. In the end diagrams were drawn and notes were used to
state at which level the messages were drawn. Sometimes they used an FSD as
starting point for discussion on failures, but only marked the failure of a component in
FSD and then summarizing it in the worksheet. They also commented that they did
not see the need to draw diagrams of failures of the external system. However, they
used FSD to draw and discuss how such failures would affect the system under
analysis.

Use of Notation. The participants were able to use the notation for drawing situations
of corrupted data going into the system, and wrote assumption as notes of the data
going unnoticed through the system. Often they used the numbering from FMEA for
failure modes and current control and also wrote names above the messages correctly.
Still, for component failure they often only drew the initial failure marking and then
used the FSD more for discussions than drawing the complete sequence of messages.
Once they also left the FSD drawings and drew a sketch for explaining how the
messages could be switched by the system. Moreover, the note notations were seldom
used to comment their drawings. For current control green arrows were used instead
of the combining green circles and black arrows. They repeatedly used a component
symbol for representing an external system as opposed to the actor symbol suggested.
Once they used the actor symbol, but did not include the name. The participants also
suggested using a red cross over a message to indicate that it did not reach
the receiver as intended, as a new notation. Later, when looking at specific part of the
system, they did not draw all the components, but only those interacting with the
specific component. In the beginning they used wrong notation for corrupted data,
i.e., black arrows instead of red, but it was used correctly later.

Combining the Techniques. In this session they combined FSD and FMEA in an
interesting way. They often drew failure modes, but went back to the FMEA worksheet
for discussing causal factors and immediate effects. FSD was still used in these
discussions, either for looking at and referring to parts in the FSD or for letting the
facilitator point out things in the drawings. All participants pointed to FSD for identifying
components and messages in discussions, and for reasoning about messages at different
levels in the OSI model. They also used FSD more systematically to show how corrupted
data went unnoticed through the system and explaining intermittent loss of messages or
handshake functionality. Once a recommended action was found by use of FSD, but
usually the FMEA worksheet was used for this. Sometimes system engineers corrected
the facilitator in drawing current control wrongly, but they also corrected each other’s
representations of message flow in the system. Although FSD was not used for drawing
failure of power supply, they used it to get an overview of which components that would
be affected by such a failure. Some participants also used FSD as reminder for further

 Supporting Failure Mode and Effect Analysis 125

discussions, when the secretary needed time to update the FMEA worksheet. In some
circumstances they also asked each other for oral explanations, and used the FSD to
follow the explanation given.

4.3 Third Session

Before the FMEA meeting started, small icons of the FSD notation was prepared by
the first author on the sides of the white board. The participants and first author
agreed to only use FSD for facilitating the meeting, but let the secretary note the
discussions in the FMEA worksheet (not visible to the participants). After finishing
the analysis with FSD, the worksheet was shown for further refinement. In this
session we also analysed the software of some components, compared to the other
sessions where the analysis was more concerned with components at a system level.

Although the first author drew the FSD with the defined notation it was not always
straightforward. He found some problems drawing software components, as the
decomposition feature of UML sequence diagrams [2] was not used. The diagrams
became too complex, as software components were added to the lifelines with the
specialized FSD notation. Often all the information would not fit on the white board.
Nevertheless, the relevant FSD notation was used and a new alt operator [2] notation
was introduced, which worked well for representing system effects of failure modes.
The participants seemed to understand this operator as they referred to it as different
scenarios of system effects. The participants also corrected the FSD, e.g., when the
notation was used incorrectly or messages were drawn to the wrong components.

The session was facilitated by drawing the FSD and then asking for comments.
Drawing the FSD in front of everyone allowed for corrections of everyone’s
understanding. Many corrections were also made by walking through the drawings,
pointing to the flow of messages and asking the participants to explain accordingly. This
was evident as the FSD was changed gradually, as discussions revealed new aspects both
with respect to system effects of failures and functionality in the system. When the
FMEA worksheet was brought up in the last part of the session, some corrections also
had to be made here. The facilitator used FSD to point out these corrections to the
secretary.

There were few discussions or questions on how to use the FSD, perhaps because
the first author drew the diagrams and facilitated the meeting. Nevertheless, when he
suggested drawing a recommended action the participants agreed that it was out of
scope, but it was further discussed and noted in the FMEA worksheet. In the end
everybody discussed facilitating with FSD and summarizing the results with FMEA
worksheet. The participants had used the FSD repeatedly to understand the system
and ensure a common understanding, but missed the structure of the FMEA
worksheet and preferred to use it for brainstorming failure modes first and then using
FSD. It was argued that with FSD only the focus became more on how the system
works and the interaction of the components than on failure modes and causal factors.

5 Results

In this section we present the results from analysing the data from the previous
section. We present the results for each research question from section 3.1.

126 C. Raspotnig and A. Opdahl

5.1 Can FSD Support FMEA?

Verbal. We noted no direct questions related to whether FSD was able to support
FMEA. Mainly there were discussions and general comments regarding the support.
In the first and last session, the participants clearly stated that FSD gave an overview
of the system and allowed for better reasoning due to use of graphical notation.
Additionally, FSD ensured common understanding among the participants. This
shows that using FSD supports FMEA. The participants were not being able to use
FSD for representing failure of power supply. From this we conclude that the support
is not possible for analysing all aspects of a system and is limited to the notation of
sequence diagrams. This is further supported by the representation of corruption of
messages at different layers in the OSI model.

Interactions. Although the main use of the FSD was to draw diagrams, the
participants also used them actively in discussions, both in explaining to each other
and for checking their understanding, by pointing at or referring to names of
components or messages and the related failure notations in the drawings. Often they
used the FSD to make all participants join the discussion. The FSD supported the
FMEA by giving the participants a common overview of both system artefacts and the
relevant failures aspects, which was used for discussions and understanding.
Notes. From the data collected we saw that the notation was improved gradually
during the sessions. Although the participants did not use much time for learning the
notation in advance, they applied it quite easily. From this we conclude that FSD is a
light-weight technique that can easily be used to support FMEA. The entire notation
was not used, but the notation that was used was helpful and adequate in supporting
the FMEA.

5.2 How Should the Two Techniques Be Used Together?

Verbal. How FSD and FMEA can be used together was commented on several times in
the three sessions. Firstly, there was a discussion about in which order the techniques
should be applied, resulting in three strategies of using the techniques together:
sequentially, with either technique being used before the other, or in parallel. The benefit
from using the techniques in sequence, done in the first and second sessions, seemed
lower than parallel use. The FMEA worksheet structure was missed when using the
techniques sequentially compared to when using them in parallel. Secondly, it was
discussed that the FMEA allowed for more specific brainstorming on the failure modes,
which was neglected when only using FSD. From this we conclude that it is best to use
the techniques in parallel. It allows for better brainstorming and a more structured
approach through FMEA, while FSD offers the overview of components and details
about their interactions, along with relevant failure effects.

Interactions. FSD was used interactively for explaining and exploring how the system
works and for ensuring a common understanding among the participants. We could see
from the increased common understanding of the participants that there was a benefit
from first drawing the normal sequence of messages with FSD, then using the FMEA for
brainstorming on the failure modes and causal factors, before going back to the FSD to

 Supporting Failure Mode and Effect Analysis 127

discuss and explore the effects of the failures. Whereas completing the FMEA worksheet
first, and then using the FSD for drawing the results gave a good verification, the
understanding of the system was not as good among the participants. Conversely, when
using the FSD first and then summarizing with the FMEA worksheet, understanding was
better, but there was a lack of structure and brainstorming. We conclude that using the
two techniques in parallel gave the best results and the optimal use of the two techniques
together.

Notes. Only parts of the notation were used and the notation that was used was not
always used correctly during the first two sessions. For the last session more of the
notation was used, as the FMEA worksheet was used after the FSD and not in parallel.
However, for the parallel use the notation that was particularly useful was failure, failure
effect, component, event message and current control. We conclude that the FMEA
worksheet covered the need for the three types of notes and the recommended action.

5.3 Can FSD Cover the Weakness of FMEA?

Verbal. The previously described common understanding between the participants could
be compared to the use of adequate system documentation as input to the FMEA without
support from FSD. It is a general weakness of techniques that do not allow for
interactively exploring a system while assessing it. The use of FSD generated discussions
on how the system worked, especially how the components interact with respect to
failures. Some of the discussions would not have taken place only using FMEA and
system documentation. FMEA’s weakness is that it does not allow for assessing multiple
failures. The discussion suggests that FSD would become too complex for showing
multiple failures in one diagram. Although multiple failures were not modelled with
FSD, the discussions revealed that FSD gave a good overview and understanding of the
system. Through the graphical notation and overview obtained it supports the participants
in keeping other identified failures in mind.

Interactions. Much time was spent on investigating the interaction between components.
In the first session FMEA was used before FSD. When the participants started using FSD
they did not only draw the diagrams, but used the FSD for pointing, referring and
explaining the interaction of components and how failure effects propagated through the
system. Although FMEA had already been used, the interactive use of FSD, exploring
and explaining to each other, increased the participants’ understanding of the system
failures and interaction between components in particular.

Notes. While our observations indicate that FSD is not suitable for modelling multiple
failures, we find the use of the alt operator promising for showing multiple system
effects. The effects of a failure propagating through the system could be connected to
other failures identified in the system. Nevertheless, we conclude that FSD is limited
in covering this weakness of FMEA.

5.4 Analysis of the Interview

The interviews mainly showed that the FSD increased the understanding among the
participants of how the system worked, especially through the visual notation and

128 C. Raspotnig and A. Opdahl

allowing for an interactive use. They preferred to use FSD and FMEA in parallel, not
in sequence, but saw the benefit of using FSD first to ensure a common understanding
of the system. They stressed that FMEA should be used to give the structure of the
analysis. Some of the participants also stated that more time was spent, but that they
felt more sure about the analysis being thorough.

From the answers to our questions we observed that the participants perceived the
technique as useful. It indicated that FSD was easy to use, but that more time would
be needed for learning the notation, and remembering it. All participants would use
the technique again, but some made it contingent on using it in a group and if they
believed that it would help making all participants understand the system under
assessment. Most of the participants agreed with our findings from the case study, but
some of them mentioned not always paying attention to use the notation correctly.

5.5 Threats to Validity and Reliability

There are several threats to validity of case studies [15] and in the following we
discuss construct validity, external validity, internal validity and reliability.

A threat to construct validity is whether we identified the correct operational
measures for the concepts being studied. To handle this threat we have focussed on
using common, well-understood vocabularies that are common in the security, safety
and modelling areas, and we have used the interviews to let the participants comment
on our summary of the case study.

Threats to external validity are concerned with whether a study’s findings can be
generalized. As is common for a single case study, external validity is limited for our
study, since we studied a specific system in a specific organization with only one
project. However, there may be some generalizability because we used FSD together
with a commonly used technique on a change in natural environments that will have
to be implemented in all ATM systems of the European ANSPs.

In this work internal validity can be threatened when concluding on the data
collected. To address this threat we have used video recording for analysing the data,
allowing thorough data analysis. Nevertheless, the threat could have been further
reduced if including more researchers in the analysis of the data, but was not possible
due to the wish of the ANSP to be anonymous.

Reliability is concerned with whether the data collection can be repeated with the
same data obtained. For this we have addressed our procedure for conducting the case
study. As the ANSP organization preferred anonymity, it was not possible to include
examples of the data collected. They did not wish the organization’s procedures and
documentation related to their systems to be published or referenced. However, most
of the procedures are based on standards and guidelines which are commonly used by
ANSPs in Europe.

6 Discussion

Previous sections show that the participants were able to use FSD with little prior
training. In the first session they were enthusiastic about using the FSD. Several were
involved in drawing and explaining by use of FSD. We observed that the mutual

 Supporting Failure Mode and Effect Analysis 129

understanding of the different components and their role in the total system increased
when using the FSD. Furthermore, when developing the FSD in parallel with FMEA,
we also saw their mutual understanding of the system increase. In the third session we
witnessed the same, but it also became evident that not using the FMEA worksheet
gave a disadvantage due to the lack of structure with respect to brainstorming for
failure modes and causal factors. Although some information was recorded in the
worksheet, the participants felt that it was important to have a brainstorming session,
ensuring the complete set of failure modes and causal factors being assessed.

6.1 Sequence Diagrams and Failure Notation

One could argue that performing FMEA on a sequence diagram (SD) without the
failure notation could give the same effect. From our observations however it is clear
that the interaction between the participants when drawing the diagrams and including
failure notation has an own benefit, particularly evident when modelling how the
effects of a failure propagate through the system. The notation forces the participants
to identify how the interacting components react to failures. Also the related notation
for mitigations of the failures and their effects is valuable, as it makes the participants
consider the different components for best possible failure mitigation. Although the
notation was not used correctly in the beginning, it was clear that it improved and that
the participants needed to gain experience. Their understanding of the notation also
became clear as they corrected each other during the study. We conclude that FSD
was easy to use for the participants. Using existing SDs as an input to FSD and extend
them with the failure notation, would give a further benefit with respect to time and
effort. The ANSP organization does model some of their systems with UML, but not
with SD at the time. However, SD is utilized in ATM [16], and our work of
integrating it with safety should be of particular interest. Other safety domains can
also benefit of using our approach, especially those familiar with SD and FMEA.

6.2 The System Assessed and Decomposition

Only parts of the notation were used by the participants, but we do not conclude that
there is no need for the full notation. The system analysed was only a small part of a
system, and the analysis was only about a minor change of this system. Therefore, not
all the parts of the notation fitted. If the analysis would be on a system under
development we believe that, e.g., the use of recommended action would increase and
current control decrease accordingly.

When using the notation we observed challenges caused by increased complexity
when assessing software components with the FSD and recognize the necessity of
reducing such complexity. SD offers this through decomposition and we see the need
for incorporating decomposition into FSD when used for detailed assessment of
software components. In this case the participants felt that such a detailed level was
not necessary, since no major software changes were needed for introducing FMTP.
Specialized versions of FMEA exist for assessing software, and FSD should be
capable of supporting these if the decomposition feature is adopted.

130 C. Raspotnig and A. Opdahl

6.3 Tool Support

While using FSD we also noted general comments about tool support. The
participants perceived FSD as helpful, but pointed out that a tool would make it
possible to integrate FMEA and FSD further. A tool could give FSD the needed
structure from the FMEA worksheet and allow for collecting all the relevant
information directly in the FSD. Although this was not within the scope of our case
study, we believe it shows their interest for FSD and possible future use.

7 Conclusion and Further Work

In this paper we have presented the new technique FSD with the results of using it to
support FMEA. This was done by a case study in an ANSP organization, where the
introduction of FMTP was assessed with respect to safety. FSD, when used together
with FMEA, allowed for an interactive failure-oriented approach, ensuring a mutual
understanding among the participants on how the system would work and would not
work during failures. It allowed for looking at failure propagation through the system,
with particular focus on components and their interactions.

We have shown that it is possible to use FSD for supporting FMEA and outlined
an optimal usage of the techniques together. FSD is not able to cover all weaknesses
of FMEA, especially not the assessment of multiple failures. FSD addresses
components and their interactions in particular, which we conclude is an improvement
of the FMEA technique and the overall safety assessment.

The optimal use of FSD and FMEA is to draw SDs first, then use FMEA to do a
structured brainstorming for failure modes and causal factors, before drawing
the effects of the failures along with mitigations. Depending on the completeness of
the FSD, it should be kept for documentation purposes and have clear relations to the
FMEA worksheet. During our case study, the participants in some cases used the
numbering of, e.g., failure modes and system effects from of the FMEA worksheet in
the FSD. If done consistently, it is an adequate way of keeping the link between the
FSD and FMEA and for documenting the joint results.

Even though not emphasized by the participants, the discussions showed that FSD
supports visualization of error propagation very well. One goal of FMEA is to relate
an identified failure’s immediate effect with the system effect, in order to analyse
whether the failure can lead to system hazards. By drawing this error propagation
with failure effect messages in FSD, it allows for a very sound and structured way of
following a failure through the system. In the interviews the participants emphasized
that by using FSD they had higher belief of correctness and completeness of the
identified effects of failures, than compared to only using FMEA.

The case study gives valuable industrial experience. It shows practical use of a new
technique that may not only be used for drawing diagrams, but can facilitate
discussions, explore and correlate the understanding among the participants. This is
valuable input to our understanding of several practical aspects on the use of these
techniques. However, the FSD was not evaluated for its effectiveness to identify
failures, related effects and mitigations. Therefore, experiments on comparing it to
other techniques would be valuable, such as [6].

 Supporting Failure Mode and Effect Analysis 131

Further work will explore the decomposition feature of SD and how it can be
incorporated into FSD to support FMEA of software components. We will also
investigate how FSD can support FMEA in analysing multiple failures, as the
overview of components and their interactions should be suitable for this. Finally, we
will conduct further evaluations by applying our approach to a system under
development, to further investigate the techniques for mitigation identification.

Acknowledgement. We would like to thank Peter Karpati and Guttorm Sindre for
sharing their observations and viewpoints. Furthermore, we thank Vikash Katta for
sharing his ideas and material on MUSD. Finally, the Norwegian Research Council is
thanked for financing our research.

References

1. SESAR Joint Undertaking, http://www.sesarju.eu/about
2. Unified Modeling Language, http://www.uml.org/
3. Eurocontrol: Air Navigation System Safety Assessment Methodology. Ed. 2.1 (2006)
4. Eurocontrol Safety Assessment Methodology Task Force: Functional Hazard Assessment

– Guidance Material B1. Ed. 2.0 (2004)
5. Ericson, C.A.: Hazard Analysis Techniques for System Safety. John Wiley & Sons Inc.,

New Jersey (2005)
6. Katta, V., Karpati, P., Opdahl, A.L., Raspotnig, C., Sindre, G.: Comparing Two

Techniques for Intrusion Visualization. In: van Bommel, P., Hoppenbrouwers, S.,
Overbeek, S., Proper, E., Barjis, J. (eds.) PoEM 2010. LNBIP, vol. 68, pp. 1–15. Springer,
Heidelberg (2010)

7. Avizienis, A., Laprie, J., Randell, B.: Fundamental Concepts of Dependability. Research
Report No 1145, LAAS-CNRS (2001)

8. David, P., Idasiak, V., Kratz, F.: Towards a better interaction between design and
dependability analysis: FMEA derived from UML/SysML models. In: Proc. ESREL 2008
and 17th SRA-Europe Annual Conference, Valencia (2008)

9. Stålhane, T., Sindre, G., du Bousquet, L.: Comparing Safety Analysis Based on Sequence
Diagrams and Textual Use Cases. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051,
pp. 165–179. Springer, Heidelberg (2010)

10. Guiochet, J., Vilchis, A.: Safety analysis of a medical robot for tele-echography. In: Proc.
of the 2nd IARP IEEE/RAS Joint Workshop on Technical Challenge for Dependable
Robots in Human Environments, Toulouse, pp. 217–227 (2002)

11. Eurocontrol: EUROCONTROL Specification of Interoperability and Preformance
Requirements for the Flight Message Transfer Protocol (FMTP). EUROCONTROL-
SPEC-0100 (2007)

12. Commission of the European Communities: Regulation 633/2007 Laying down
requirements for the application of a flight message transfer protocol used for the purpose
of notification, coordination and transfer of flights between air traffic control units (2007)

13. Davis, F.D.: Perceived Usefulness, Perceived Ease of Use, and User Acceptance of
Information Technology. MIS Quarterly 13, 319–340 (1989)

14. Stallings, W.: Data and computer communications. Prentice Hall, New Jersey (2000)
15. Yin, R.K.: Case Study Research. SAGE, California (2009)
16. Eurocontrol: EUROCONTROL Specification For On-Line Data Interchange (2007)

B. Regnell and D. Damian (Eds.): REFSQ 2012, LNCS 7195, pp. 132–139, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Aligning Mal-activity Diagrams and Security Risk
Management for Security Requirements Definitions

Mohammad Jabed Morshed Chowdhury1, 2, Raimundas Matulevičius1,
Guttorm Sindre2, and Peter Karpati2

1 University of Tartu, Estonia
2 Norwegian University of Science and Technology, Norway,

jabedmorshed@gmail.com, rma@ut.ee,
{guttors,kpeter}@idi.ntnu.no

Abstract. [Context and motivation] Security engineering is one of the
important concerns during system development. It should be addressed
throughout the whole system development process. There are several languages
for security modelling that help dealing with security risk management at the
requirements stage. [Question/problem] In this paper, we are focusing on Mal-
activity diagrams that are used from requirement engineering to system design
stage. More specifically we investigate how this language supports information
systems security risks management (ISSRM). [Principal ideas/results] The
outcome of this work is an alignment table between the Mal-activity diagrams
language constructs to the ISSRM domain model concepts. [Contribution]
This result may help developers understand how to model security risks at the
system requirement and design stages. Also, it paves the way for
interoperability between the modelling languages that are analysed using the
same conceptual framework, thus facilitating transformation between these
modelling approaches.

Keywords: Mal-activity diagrams, Information system security risk
management, Requirement engineering, Risk management.

1 Introduction

Nowadays, business critical functions in various organisations depend on information
systems (IS). Thus, the significance of security technologies in IS is widely accepted
and receiving increased attention. But the security is not free; it requires investment.
The return on security investment (ROSI) has become a major concern [5] in many
organisations. This involves a risk management process to justify investment for
security measures. To support systematic security risk management, security should be
addressed and realised at all the stages of IS development.

Different modelling approaches (e.g., [3] [4]) have been proposed to cope with
security in different development stages. In this work we focus on Mal-activity
diagrams [6] to define security requirements. Mal-activity diagrams, henceforth,
abbreviated MAD, are proposed as an extension of UML activity diagrams. Their
major objective is to describe procedural logic, business process, and workflow. MAD

 Aligning Mal-activity Diagrams and Security Risk Management 133

extend activity diagrams with harmful behaviour of security attackers. A basic way to
build a MAD is to draw a normal process first, then add unwanted behaviour by extra
concepts, such as Mal-activity, Mal-swimlane and Mal-decision. In [6] MAD were
applied to model 46 social engineering scenarios. However, they still lack clear and
structured application guidance. In this paper, based on the running example, we align
MAD to the domain model of the information systems security risk management
(ISSRM) [2] [5]. This yields a grounded and fine-grained reasoning for how MAD can
be used to understand system security risks. The analysis is illustrated through a
running example gradually establishing guidelines for the application of MAD.

The structure of this paper is as follows: Section 2 introduces the ISSRM domain
model, which is the basis for analysing MAD. Section 3 illustrates how MAD could be
applied for security risk management and how Mal-activity constructs are aligned to
the concepts of the ISSRM domain model. Section 4 presents the lessons learnt.

2 The ISSRM Domain Model

A domain model (Fig. 1) for IS security risk management (ISSRM) [2] [5] is
influenced by and derived from different security risk management standards and
methods, security-related standards, security-oriented frameworks (see [2] and [5] for
concrete details). We have selected ISSRM to analyse MAD because it has already
been successfully applied to analyse other security-modelling languages (see [3] and
[4]). In addition, this domain model defines security risk management concepts at three
interrelated levels, which help developers identify specific IS security risk management
constructs of the analysed language.

Fig. 1. The ISSRM Domain Model (adapted from [2] [5])

Asset-related concepts (i.e., business and IS assets, IS assets, and security criterion)
explain the organisation’s values that need to be protected. The needed protection level
is defined as the security needs, typically in terms of confidentiality, availability and
integrity. Risk-related concepts (i.e., risk, impact, event, vulnerability, threat, attack

134 M.J. Morshed Chowdhury et al.

method, and threat agent) define the risk itself and its components. Risk is a
combination of threat with one or more vulnerabilities, which leads to a negative
impact, harming some assets. An impact shows the negative consequence of a risk on
an asset if the threat is accomplished. A vulnerability is a weakness or flaw of one or
more IS assets. An attack method is a standard means by which a threat agent executes
a threat. Risk treatment-related concepts (i.e., risk treatment decision, security
requirement and control) describe how to treat the identified risks. A risk treatment
leads to security requirements mitigating the risk, implemented as security controls.

3 Alignment of MAD to ISSRM

Our research goal is to understand how MAD help model assets, security risks, and
countermeasures during IS development. We approached this goal through three steps.
Firstly, we developed a meta-model for Mal-activity diagrams in [1]. The second step
was to understand how MAD could be applied to manage security risk and how their
constructs correspond to the concepts of the ISSRM domain model. We approach this
goal through a running example from online-banking discussed in Section 3.1. Finally,
we have recorded the observations and discuss them in Section 3.2.

3.1 Running Example

The running example describes a correspondence between a bank officer and customer,
and how a hacker could potentially harm such a correspondence. We model it using
MAD following the steps of the ISSRM process [2] [5].

The ISSRM process consists of six steps. The first step is content and asset
identification. Fig. 2 shows a Bank officer’s request to the bank Customer to update
the home address using the Online banking system. Hence the major business process
starts by email request to update home address sent by the bank officer and continues
to activities executed by Customer, e.g., Open email, Agree to update home address,
etc. Each business activity requires support from the Online banking system; for
example, after the customer opens the email (see activity Open email), email content is
displayed (see activity Display email content). The second ISSRM step is security
objective determination. In our example these are integrity of the home address
updating process and confidentiality of the login name and password.

The third ISSRM step is risk analysis and assessment. Fig. 3 introduces a Hacker
who sends an email with malware to the Customer. If the customer opens the email the
malware is installed in the Online banking system. Using this Malware, the Hacker is
capable to receive customer’s login name and password.

In the fourth step the risk treatment decision – in our case, a decision to reduce risk
– is made. The fifth step is security requirements definition. In Fig. 4 we introduce
activities, such as Enable email filtering, Check for malware, and Enable traffic
scanner, which potentially reduce the effect of the mal-activities. Finally, the sixth
step of ISSRM is security control selection and implementation.

3.2 MAD and the ISSRM Domain Model

Our observations are summarised in Table 1.

 Aligning Mal-activity Diagrams and Security Risk Management 135

Fig. 2. Content and Asset Identification

Fig. 3. Risk Analysis

136 M.J. Morshed Chowdhury et al.

Asset-related Concepts. The ISSRM asset represents something of value for the
organisation. The business asset is defined as the information, process, or skill that is
essential for the business. Activity diagrams are used to show the (business) workflow
by combining together constructs, like: Activity, Decision and ControlFlow. We map
these constructs to the ISSRM business asset. In addition we recognise that data (e.g.,
Login name and password) could be important to business participants. Thus,
implicitly we can identify such data as an ISSRM business asset, too. The ISSRM IS
asset is an IS component that supports a business asset. The Swimlane construct (e.g.,
Online banking system) holds the constructs (i.e., like Activity and Decision) that are
needed to support execution of business workflows. Thus we align all these constructs
(i.e., Swimlane, Activity, Decision and ControlFlow) to the IS assets. So, we consider
Activity, Decision, ControlFlow and Swimlane as IS asset. We find no construct that
would help representing the ISSRM security criterion. However the diagram gives an
implicit understanding (see Table 1) of such criteria regarding the business assets.

Fig. 4. Security Requirements Definition

Risk-related Concepts. An ISSRM threat agent is characterised by expertise, available
means and motivation to harm the IS, and the ISSRM attack method are means by which
a threat agent carries a threat. In MAD, Mal-swimlane is used to define malicious actor
(e.g., Hacker) that will harm the system by malicious activities (e.g., Send email with
malware), i.e., the Mal-activity constructs that are combined using Mal-decision and
ControlFlow constructs. We align Mal-swimlane to the ISSRM threat agent and process
defined by combining Mal-activity constructs, to the ISSRM attack method. In

 Aligning Mal-activity Diagrams and Security Risk Management 137

addition we observe that in MAD the malicious actor could use some means
(e.g., Malware), which are defined as Mal-swimlane. Thus we align the Mal-swimlane
construct to the concept of ISSRM attack method, too. Although we are able implicitly
to define the vulnerabilities of the modelled system (see Table 1), we have not found
any Mal-activity construct to represent the ISSRM vulnerabilities.

Table 1. Alignment Between MAD and ISSRM Domain Model

ISSRM domain model Mal-activity diagram Example

A
ss

et

Asset – –
Business
asset

- Process described using
Activity, Decision and
ControlFlow constructs.
- Objects used to perform
activities (implicit)

- Email request to update home address,
Open email, Agree to update home address,
Enter login name and password, and
Update home address;
- Login name and password.

IS asset - Swimlane;
- Activity, Decision
(connected using
ControlFlow constructs)

- Online banking system;
- Validate user, Register email, Display
email, Load website, Validate user, Is valid?,
Redirect ..., and Send error message.

Security
criterion

– Integrity of the message sending process;
Confidentiality of login name and password.

R
is

k

Risk – –
Impact Mal-activities Silent installation of malware, Capture/Send

login name and password
Event – –
Vulnerability – No email scanning, No installation controls,

No controls for outgoing traffic.
Threat Combination of constructs

that represent a Threat agent
and Attack method

Hacker Sends an email with malware and
Receives login name and password.

Threat agent Mal-Swimlane Hacker
Attack
method

- Process described using
Mal-activities, Mal-decision,
and ControlFlow
- Mal-Swimlane

- Send an email with malware and Receive
login name and password;
- Malware.

R
is

k
tr

ea
t-

m
en

t

Risk treatm. – Risk reduction.
Security
requirement

MitigationActivity,
MitigationLink

Enable email filtering, Check for malware,
Enable traffic scanner.

Control Swimlane Security module

The ISSRM impact is a negative consequence of a risk that harms two or more
assets (at least one business and one IS asset). In MAD we can express the ISSRM
impact using Mal-activity constructs that belong to the Mal-swimlane, characterised as
the ISSRM attack method. For example, in Fig. 3 Mal-activity Silent installation of
malware shows how the Online banking system (an ISSRM IS asset) is harmed by
illegal installation of malware; Mal-activity Capture login name and password
illustrates how this risk harms the business asset, i.e., the login name and password;
finally Mal-activity Send login name and password to hacker specifies negation of the
ISSRM security criterion, i.e., the Confidentiality of login name and password.

138 M.J. Morshed Chowdhury et al.

Risk Treatment-related Concepts. In MAD the MitigationActivity construct is
understood as a countermeasure (i.e., ISSRM security requirement). The Swimlane
(e.g., Security module in Fig. 4) holding the MitigationActivity constructs implements
the countermeasures. Thus, we align such a Swimlane to the ISSRM controls.

4 Lessons Learnt

This paper has shown how the ISSRM domain model could guide application of MAD.
Our analysis has a certain level of subjectivity to interpret the language constructs
regarding the ISSRM concepts. To mitigate this threat other examples could be
analyzed by other people (e.g., practitioners, if they are willing to use MAD).

Our study results in the alignment of the Mal-activity constructs to the ISSRM
domain model. This has shown several limitations of MAD to address security risk:

• MAD do not provide guidelines on how to use its constructs. For example, Activity
addresses both the ISSRM business asset and IS asset; Mal-activity represents both
the ISSRM impact and attack method; and others.

• MAD are unable to specify some ISSRM concepts, like security criterion,
vulnerability, event, and risk. Although risk and event constructs could be
expressed using other constructs, constructs for security criterion and vulnerability
should be introduced. Anyway, the ISSRM process helps developers understand
(not represent) these concepts, at least implicitly.

MAD is not the only language assessed for the IS security risk management. The
ISSRM domain model has been used to evaluated Secure Tropos [4], misuse cases [3],
and KAOS extensions to security [5]. We envision that after analyzing a number of
security languages it will be possible to facilitate model transformation and
interoperability between different security languages that are analysed using the
ISSRM domain model. This would allow representing IS using different perspectives
and ensuring IS sustainability through different development stages.

Acknowledgement. This research is partly funded by an ETF grant (contract number
ETF8704, Estonian Science Foundation).

References

1. Chowdhury, M.J.M.: Modeling Security Risks at the System Design Stage: Alignment of
Mal-activity Diagrams and SecureUML to the ISSRM Domain Model. Master Theses
(2011), http://nordsecmob.tkk.fi/thesis.html

2. Dubois, E., Heymans, P., Mayer, N., Matulevičius, R.: A Systematic Approach to Define
the Domain of Information System Security Risk Management. In: Nurcan, S., Salinesi,
C., Souveyet, C., Ralytė, J. (eds.) International Perspectives on Information Systems
Engineering, pp. 289–306. Springer, Heidelberg (2010)

3. Matulevičius, R., Mayer, N., Heymans, P.: Alignment of Misuse cases with Security Risk
Management. In: 3rd International Conference on Availability, Reliability and Security,
pp. 1397–1404. IEEE Computer Society, Washington (2008)

 Aligning Mal-activity Diagrams and Security Risk Management 139

4. Matulevičius, R., Mayer, N., Mouratidis, H., Dubois, E., Heymans, P., Genon, N.:
Adapting Secure Tropos for Security Risk Management in the Early Phases of Information
Systems Development. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS,
vol. 5074, pp. 541–555. Springer, Heidelberg (2008)

5. Mayer, N.: Model Based Management of Information System Security Risk. Doctoral
Thesis, University of Namur (2009)

6. Sindre, G.: Mal-Activity Diagrams for Capturing Attacks on Business Processes. In:
Sawyer, P., Paech, B., Heymans, P. (eds.) REFSQ 2007. LNCS, vol. 4542, pp. 355–366.
Springer, Heidelberg (2007)

Towards a More Semantically Transparent
i* Visual Syntax

Nicolas Genon1, Patrice Caire1, Hubert Toussaint1,
Patrick Heymans1,2, and Daniel Moody3

1 PReCISE Research Centre, University of Namur, Belgium
2 INRIA Lille-Nord Europe, Université Lille 1 – LIFL – CNRS, France

3 Ozemantics Pty Ltd., Sydney, Australia
{nge,pca,hto,phe}@info.fundp.ac.be,

daniel@ozemantics.com.au

Abstract. [Context and motivation] i* is one of the most popular modelling
languages in Requirements Engineering. i* models are meant to support commu-
nication between technical and non-technical stakeholders about the goals of the
future system. Recent research has established that the effectiveness of model-
mediated communication heavily depends on the visual syntax of the modelling
language. A number of flaws in the visual syntax of i* have been uncovered
and possible improvements have been suggested. [Question/problem] Produc-
ing effective visual notations is a complex task that requires taking into account
various interacting quality criteria. In this paper, we focus on one of those cri-
teria: Semantic Transparency, that is, the ability of notation symbols to suggest
their meaning. [Principal ideas/results] Complementarily to previous research,
we take an empirical approach. We give a preview of a series of experiments
designed to identify a new symbol set for i* and to evaluate its semantic trans-
parency. [Contribution] The reported work is an important milestone on the path
towards cognitively effective requirements modelling notations. Although it does
not solve all the problems in the i* notation, it illustrates the usefulness of an em-
pirical approach to visual syntax definition. This approach can later be transposed
to other quality criteria and other notations.

Keywords: i*, Goal-oriented modelling, Empirical evaluation, Physics of
Notation, Semantic Transparency.

1 Introduction

i* [1] is one of the most popular modelling languages for Requirements Engineering
(RE). It provides conceptual and visual means to express, and reason on, the functional
and non-functional goals of a system. Its visual syntax is meant to facilitate commu-
nication between technical and non-technical stakeholders. However, this assumption
has been challenged recently. Moody et al. [2,3] have evaluated the visual syntax of
i* against the Physics of Notations [4] (PoN). PoN is a theory comprised of nine prin-
ciples, namely Semiotic Clarity, Perceptual Discriminability, Semantic Transparency,
Complexity Management, Cognitive Integration, Visual Expressiveness, Dual Coding,
Graphic Economy and Cognitive Fit. A major advantage of those principles is that they

B. Regnell and D. Damian (Eds.): REFSQ 2012, LNCS 7195, pp. 140–146, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Towards a More Semantically Transparent i* Visual Syntax 141

are evidence-based: they do not rely on common sense and experience but on theory
and empirical evidence from a wide range of fields, including linguistics, cartography,
cognitive psychology. . .

Following these principles is meant to lead to more cognitively effective notations,
i.e. notations which diagrams can be understood quickly, easily and accurately. In [2,3],
a number of suggestions were made in order to improve the cognitive effectiveness of
i*. Although those were made on the basis of the evidence-based principles of PoN,
an open question remained: how and to which extent the principles coming from other
disciplines transpose to software engineering, and more particularly to RE.

Moody et al.’s analysis uncovered a number of flaws in the visual syntax of i* and
suggested various improvements. One of them was to improve the Semantic Trans-
parency of i*. Semantic Transparency refers to the ability of the symbols of a notation
to suggest their meaning. Semantically transparent symbols can be seen as the visual
equivalent of onomatopoeia. For example, a stick figure is more semantically transpar-
ent than an abstract shape (e.g., a circle) to represent the concept of person. According
to the PoN, Semantic Transparency has a major influence on the cognitive effectiveness
of a notation.

In [2,3], Moody et al. proposed a set of supposedly more semantically transparent
symbols for i*. Our work aims at evaluating and complementing their proposal with
experimental studies. We defined a series of controlled experiments to identify a “su-
per” symbol set for i* and to assess its semantic transparency. The main difference
with previous research lies in the way new symbols were obtained: the authors of the
present work did not design a new symbol set by themselves, based on some theory.
On the contrary, an experiment was set up where participants were asked to draw what
they thought would be the most appropriate symbols given the i* concepts and their
definitions.

We present the plan of this experiment series in Section 2. Then, we describe the
three experiments of that series that were already performed: the “production of draw-
ings” experiment (Section 3), the “population stereotype” experiment (Section 4), and
the “population prototype” experiment (Section 5). We share the preliminary results
obtained for each experiment. Section 6 wraps up the paper and gives an overview of
future work.

2 Experiment Plan

This series of controlled experiments consists in identifying a “super” symbol set for i*
and assessing its semantic transparency. By “super symbol set”, we mean the symbols
that are judged the most semantically transparent by i* users. The eligible symbols are
taken from 4 sources: the original i* symbol set [1], the symbols proposed in [3], and 2
sets based on the outcome of the present experiments. In this work, we do not evaluate
the semantic transparency of the symbol sets in context, i.e, by exposing participants to
diagrams and letting them perform RE tasks based on these diagrams. Instead, we focus
on the symbols on their own. Thereby, we avoid the biases that occur when dealing with
diagrams (e.g., bias due to the relative positioning of symbols; bias due to the number
of symbols on the diagram; bias due to the complexity of the diagram; shift of attention
introduced by the colour and size of some symbols on the diagram, etc.).

142 N. Genon et al.

Experiment 1 is concerned with the production of drawings. The goal of this ex-
periment is to obtain drawings hand-sketched by participants to represent each i* con-
cept. We used a sign production technique that relies on the following assumption:
“[experiment] subjects, when properly instructed, can actually produce signs for refer-
ent concepts and will do so in frequencies proportional to stereotype strength” [5]. The
population stereotype refers to the sign(s) that is/are the most frequently produced by
participants to denote the referent concept. The outcome of the experiment are symbols
designed by i* users for i* users, contrary to the symbols proposed in [2,3]. Indeed, the
latter may suffer from a strong bias of the authors being RE experts, which could result
in symbols that are ineffective for novices or non-technical users.

Experiment 2 focused on identifying the stereotypical drawings out of the results
of Experiment 1. All the stereotypes resulting from Experiment 2 would constitute our
first new set of hand-sketched symbols for i*. However, the population stereotype is not
sufficient by itself because it does not take into account the level of approximation of
the idea depicted by the drawing wrt. the referent i* concept. Actually, the drawing that
is the most frequently produced to denote a concept, is not necessarily expressing the
idea that is the closest approximation to that concept. Conversely, the most “evocative”
drawing is usually designed by only a small part of the participants, and then not iden-
tified by population stereotype. In other words, while population stereotype can be seen
as the best median drawing, creativity and originality is captured through the population
prototype.

Population prototype is the purpose of Experiment 3. This experiment looks for the
drawing that best represents the corresponding i* concept. We rely on the personal
opinion of participants to elect the drawing that is the most semantically transparent for
a given referent concept. The outcome of Experiment 3 would be the second new set of
hand-sketched symbols for i*.

Instead of addressing all the i* concepts, we limited the scope of this work to 13 con-
cepts: actor, agent, role, position, actor boundary, goal, softgoal, task, resource, belief,
means-end link, decomposition link and dependency link. The rationale for this choice
is to focus on the subset of the i* language that appears to be most used in practice.

3 Experiment 1: Production of Drawings

The question we addressed in the experiment is the following: “What kinds of drawings
can novices produce when presented with a set of concepts and their definitions?”

Experiment Design. The participants were composed of 104 students (53 females and
51 males) in 1st year Bachelor in Economics and Management from the University of
Namur. These students had no previous knowledge of i* or modelling in general, which
is a profile we expect to find in many real-life RE settings, for stakeholders like users,
subject matter experts, and managers. The participants were not remunerated for their
contribution.

Each participant was provided with a 14-page booklet, a pencil and an eraser. The
first page presented a form to collect participants’ demographic data. The remaining 13
pages were respectively dedicated to the 13 i* concepts. A 2-column table was added

Towards a More Semantically Transparent i* Visual Syntax 143

at the top of each page. The first column provided the name of the i* concept in French
and English. The second column contained the French definition of the concept1.

A (3” x 3”) frame where participants were asked to sketch their drawing was printed
in the middle of the page. The sketching instructions were repeated on each page and
placed above the frame. A 5-point scale and the corresponding instructions were added
at the bottom of the page. The 5 values of the scale were “easy”, “fairly easy”, “neither
easy nor difficult”, “fairly difficult” and “difficult”.

We deliberately decided not to randomise the presentation order of the concepts be-
cause the definitions of part of the i* concepts rely on the definitions of other concepts,
e.g. Agent, Role and Position refer to Actor; Softgoal refers to Goal.

The 104 students were brought together in an auditorium. The average time for com-
pletion of this experiment was around 45 minutes. For each i* concept, participants
were asked (a) to sketch what they estimate to be the best drawing to represent the
name and the definition of this concept. There was no time limit but they were asked to
sketch as quickly as possible. The intent was to capture their intuition. We drew their
attention on the fact that we would focus on the idea(s) expressed by the drawing, not
the quality of the sketching. (b) Each time a drawing was produced, the participant had
to evaluate the difficulty of the task on the 5-point scale. Participants were also told to
respond one page at time and not to go back in the booklet.

Results. We eventually retrieved 1352 drawings (blank and null drawings included2).
One of the main observations is that participants had much more difficulty sketching
drawings for concepts denoting relationships than for the concepts denoting objects or
persons. The reasons to this observation still have to be investigated. We also observed
that the produced drawings often do not rely on both the name and the definition of the
concept. Moreover, some participants depicted concepts not through a single symbol
but through several symbols interacting in a scene (e.g., the concept of Task can be
represented by a stick figure performing some action on an object).

4 Experiment 2: Population Stereotype

The question we addressed in this experiment is the following: “Among the presented
drawings, what is the stereotypical representation for the selected concepts?” The pop-
ulation stereotype is the best median drawing, that is the representation that is most
frequently recognised and selected by people to depict the concept.

Experiment Design. We applied a judges’ ranking method [6]. Concept per concept,
three of the authors categorised the drawings obtained from Experiment 1 based on
the similarity of ideas that they expressed. Hence, 13 times (because we considered
13 i* concepts), each author had to split the 104 drawings into piles. All the drawings
from a pile depicted the same idea(s) and thus form a category. The three judges were
instructed to define as many categories as needed relying on their personal opinion.

The categorisation process was inevitably prone to a certain degree of interpretation
and subjectivity. However, it was required for the judges to follow instructions and to

1 The French version was used to avoid bias regarding the English skills of the participants.
2 These range from 5 to 15% of the drawings, depending on the concept.

144 N. Genon et al.

perform the work independently. Afterwards, the judges compared their respective cat-
egories and agreed on a common set of categories. In this operation, several categories
from different judges were merged into one common category. Finally, for each concept,
the judges selected, from the category that contained the largest number of drawings,
the drawing that best expressed the ideas of the category.

Results. The outcome of this experiment is the set of 13 stereotypical drawings (one per
concept) presented in Figure 1. It is noteworthy that, except for relationship concepts,
there is no abstract shape in the population stereotypes.

Fig. 1. The population stereotypes for the i* concepts

5 Experiment 3: Population Prototype

The question we addressed in this experiment is the following: “Among the presented
drawings, what is the prototypical representation for selected concepts?”

Experiment Design. We conducted this experiment on a different sample of population
(no overlap) but the participants had the same profile, i.e. they had neither knowledge of
i* nor modelling in general. We opened the experiment to students in 1st year Bachelor
in Computer Science or Economics and Management. We welcomed 30 participants (1
female, 29 males). They were not remunerated for their participation. Instructions were
to choose one best drawing per concept. As for the drawing production experiment,
they were provided with the name and the definition of the concept. The eligible set of
drawings was composed of 160 drawings: the 13 stereotypes along with one represen-
tative of each category of the 13 i* concepts. It was a deliberate decision not to expose
the participants to all 1352 drawings. This would have been counter-productive: taking
them too much time and leading to bias caused by tiredness.

Towards a More Semantically Transparent i* Visual Syntax 145

An online questionnaire was set up. The participants were asked to enter their de-
mographic data on the first page and then they navigated through 13 pages, one per i*
concept. Each page displayed the French name and the definition of the concept at the
top of the page. The middle of the page was dedicated to instructions for selecting (us-
ing radio buttons) the best drawing among the matrix of representatives. The difficulty
of the selection task was evaluated on a visual analogue scale (VAS) at the bottom of
the page. The order the concepts appearing in the questionnaire as well as the position
of the drawings in each matrix were randomised for each participant.

As we built an online questionnaire, we booked a pool hosting 30 computers. To be
as compliant as possible with the students’ schedules, we ran the experiment from 10.30
AM to 6.00 PM. The 30 students came at their best convenience. The experiment was
not constrained by time limit and the average duration was between 5 to 15 minutes.

Results. We have only preliminary results and observations to report. The population
prototype obtained for each concept is shown in Figure 2. There was most of the time
one indisputable leader – low level of vote dispersal – except for the concept of Depen-
dency Link where we had an ex-aequo.

We also noticed that four prototypical drawings matched the stereotype of the con-
cepts: Actor, Goal, Task and Decomposition Link. These drawings can be assumed to
have a significant level of semantic transparency: they depict the idea that is the most
frequently used by participants and that evokes the referent i* concept most clearly.

Regarding the difficulty to select the best drawing (measured on the VAS), the value
ranged from 30% to 60%. As discussed in the results of Experiment 1, drawings depict-
ing concrete objects or persons seem to be preferred. Except for relationship concepts,
there is no abstract shape in the population prototypes.

Fig. 2. The population prototypes for the i* concepts

146 N. Genon et al.

We observed an adequacy between the nature of the concepts denoting relationships
and the nature of their representations: these concepts are depicted with “links”.

6 Conclusion and Future Work

In this paper, we gave a preview of a series of empirical studies that aim at improving
the semantic transparency of the i* symbols. So far, we have performed 3 experiments:
the first one is concerned with the empirical production of drawings for the i* concepts
by inexperienced subjects. Based on the drawings from Experiment 1, Experiment 2
looked for population stereotypes, i.e., drawings that are the most frequently produced
to denote a referent concept. Experiment 3 aimed at identifying population prototypes,
i.e., drawings depicting the idea that is the closest approximation to the semantics of
a referent concept. At this stage, we have empirically obtained two new i* symbols
sets: one set is composed of the stereotypical drawings; the second set gathers the best
drawings selected in Experiment 3. We also have promising preliminary results that
allow us to envision the next steps of our work. We plan to confront our two new symbol
sets with two other sets of i* symbols: the original i* symbols [1] and the symbols
proposed in [3]. The final objective is twofold: to empirically evaluate which of the
four symbol sets is the more semantically transparent, and to propose a new super i*,
that could be a combination of all 4 symbol sets.

From a broader perspective, the reported work is an important milestone on the path
towards cognitively effective notations in RE and software engineering. Although it
does not solve all the problems in the i* notation [7], it illustrates the usefulness of an
empirical approach to visual syntax definition. This approach can later be transposed to
other quality criteria and other notations.

Acknowledgement. This work was supported by the Interuniversity Attraction Poles
Programme - Belgian State - Belgian Science Policy (MoVES) and the BNB.

References

1. Yu, E.: Towards Modeling and Reasoning Support for Early-Phase Requirements Engineering.
In: Proc. of RE 1997, pp. 226–235 (1997)

2. Moody, D.L., Heymans, P., Matulevičius, R.: Improving the Effectiveness of Visual Represen-
tations in Requirements Engineering: An Evaluation of i* Visual Syntax (Best Paper Award).
In: Proc. of RE 2009, pp. 171–180 (2009)

3. Moody, D.L., Heymans, P., Matulevičius, R.: Visual syntax does matter: improving the cogni-
tive effectiveness of the i* visual notation. Requirements Engineering 15(2), 141–175 (2010)

4. Moody, D.L.: The “Physics” of Notations: Towards a Scientific Basis for Constructing Visual
Notations in Software Engineering. TSE 35, 756–779 (2009)

5. Howell, W.C., Fuchs, A.H.: Population Stereotype in Code Design. Organizational Behavior
and Human Performance 3, 310–339 (1968)

6. Jones, S.: Stereotypy in Pictograms of Abstract Concepts. Ergonomics 26, 605–611 (1983)
7. Mussbacher, G., Amyot, D., Heymans, P.: Eight Deadly Sins of GRL. In: Proc. of the 5th

International i* Workshop, Trento, Italy (August 2011)

B. Regnell and D. Damian (Eds.): REFSQ 2012, LNCS 7195, pp. 147–164, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Providing Software Product Line Knowledge
to Requirements Engineers –

A Template for Elicitation Instructions

Sebastian Adam

Fraunhofer IESE, Fraunhofer Platz 1, 67663 Kaiserslautern
sebastian.adam@iese.fraunhofer.de

Abstract. [Context & Motivation] Developing new software systems based on
a software product line (SPL) in so-called application engineering (AE) projects
is still a time-consuming and expensive task. Especially when a large number of
customer-specific requirements exists, there is still no systematic support for
efficiently aligning these non-anticipated requirements with SPL characteristics
early on. [Question/problem] In order to improve this process significantly,
sound knowledge about an SPL must be available when guiding the
requirements elicitation during AE. Thus, an appropriate reflection of SPL
characteristics in process-supporting artifacts is indispensable for actually
supporting a requirements engineer in this task. [Principal ideas/results] In
this paper, a validated template for elicitation instructions that aims at providing
a requirements engineer with knowledge about an underlying SPL in an
appropriate manner is presented. This template consists of predefined text
blocks and algorithms that explain how SPL-relevant product and process
knowledge can be systematically reflected into capability-aware elicitation
instructions. [Contribution] By using such elicitation instructions,
requirements engineers are enabled to elicit requirements in an AE project more
effectively.

1 Motivation

As a key concept for streamlining software development, software product lines (SPL)
[2] have proven to be a promising strategy, especially when time to market is a crucial
success factor. Nevertheless, developing new systems based on an SPL (which is
denoted as application engineering (AE) in the community) is still a time-consuming
task [3], and the benefits of using an SPL approach are often less than expected [4].

One important reason for the low efficiency in AE is the non-systematic mapping of
customer-specific requirements [6], even though it has been recognized that the
success of AE mainly depends on how requirements are treated. This is especially a
problem in SPLs, in which a significant number of requirements cannot be anticipated
during domain engineering (DE) by means of explicitly predefined variants only, what
is, for instance, often the case in information systems (IS).

On the one hand, current approaches rather foster the direct reuse of predefined SPL
requirements than the effective alignment of a customer’s actual needs with the

148 S. Adam

available SPL capabilities [8] [9]. However, especially IS development that is merely
based on picking reusable requirements, which then imply a predefined system
behavior, is not feasible, because such systems also have to reflect a large number of
individual requirements in order to allow the customer to stand out from the
competition. Therefore, many costly corrections are typically needed during AE until a
delivered system fulfills its expectations. On the other hand, eliciting customer
requirements without considering SPL characteristics early on is also not an
appropriate option. Particularly since selecting an SPL implies a certain set of
constraints, it becomes apparent that not all customer requirements can be realized as
initially stated. Rather, trade-offs between ideal requirements and rapid development
benefits must be made. However, making this trade-off is challenging, because
information about the realizability of requirements is (beyond predefined variability
models) neither formalized nor available in the early requirements phase.
Requirements elicitation therefore becomes an error-prone task, and it relies on experts
to predict the impact of requirements that can only be realized with additional
development [6]. Unfortunately, guidance on how to proactively elicit and negotiate
actual customer requirements and align them with SPL capabilities is not supported
systematically yet [6] [8]. Hence, it is still hard to elicit requirements during AE,
especially when the number of requirements that can be explicitly anticipated and
described by means of variability or decision models is limited.

A requirements engineering (RE) approach for AE (called AERE) that precisely
guides the elicitation based on the characteristics of a given SPL in a more flexible and
rather constraint-based than enumerative manner is therefore needed. However, as
making requirements engineers aware of SPL characteristics is not easy (and typically
limited to anticipated variants only), the scientific problem to be addressed therefore
deals with the question of how requirements engineers can be enabled to use sound
SPL product and process knowledge for appropriately guiding the elicitation (i.e., how
can they made aware of important SPL capabilities, constraints and needs). This
includes two research questions:

1. How can SPL product and process knowledge be economically extracted and
incorporated into the AERE process when a complete, explicit anticipation of
customer requirements is neither economic nor possible?

2. How can this knowledge be represented to an AE requirements engineer to guide
their elicitation without the need to adhere to predefined variants only?

While we have already discussed our ideas on how to cope with the first issue (see [10]
[24]), this paper focuses on the second1. In the next section, related work is discussed.
In section 3, we then introduce a template for elicitation instructions including the
underlying research approach. An evaluation of this template is then shown in
section 4, while section 5 summaries the whole paper.

1 The work presented in this paper was performed in the context of the Software-Cluster project

EMERGENT (www.software-cluster.org). It was partially funded by the German Federal
Ministry of Education and Research (BMBF) under grant no. "01IC10S01". The authors
assume responsibility for the content.

 Providing Software Product Line Knowledge to Requirements Engineers 149

2 Related Work

While much effort has been spent on how to build up SPLs during the so-called
domain engineering phase (DE), actual reuse during AE has not received sufficient
attention yet [4] [11] [12]. This holds especially true for RE activities: While there are
many publications about product line scoping (e.g., [13]) or RE in DE (see [1] for an
overview), only few exist that focus on AE [12].

In this regard, many proposed AE approaches share the ideas of Deelstra et al. [3]
and distinguish an initial configuration phase and a phase of tuning iterations. The
purpose of the latter is to modify and extend the initial configuration until all customer
requirements are sufficiently met. Thus, additional development is typically required
also [3][6], as it is unusual that all requirements can be fulfilled by existing assets only.

Within AERE, one can therefore distinguish the instantiation of variable
requirements that were created during DE, and the elicitation of customer-specific
requirements from scratch [14]. Even if both activities are important, most approaches
such as from Sinnema et al. [15] only focus on the instantiation step. For this purpose,
AE requirements engineers are only provided with feature catalogues, variability
models, or decision models that have to be processed during elicitation. Indeed, these
approaches work very efficiently, but they are applicable only in highly predictable and
stable domains, as they rely on the restrictive assumption that all requirements can be
explicitly prescribed during the DE phase (which is otherwise neither economic nor
feasible due to the size and complexity of modern SPLs [3]). Thus, even for
requirements that differ only slightly from the foreseen variants, these approaches are
not applicable anymore [9], which results in manual, typically not guided, and thus
costly extensions. Guelfi et al. [9][11] therefore propose a constraint-based rather than
enumerative approach that allows deriving products that are not explicitly foreseen but
close enough to the SPL. However, their approach only addresses the actual
instantiation, but does not support the requirements elicitation in a systematic manner.

For eliciting new requirements that have not been covered during DE, only some
initial work exists [12]. So far, mostly the tasks of communicating the variability [17],
selecting variants, specifying system requirements (i.e., selected variants), and
supporting trade-off decisions have been proposed as being important in this context
[18]. For this purpose, Bühne et al. [19] describe a scenario-based approach and
Rabiser et al. [12], too, introduce an approach for more systematic AERE. However,
one remaining problem is the fact that requirements are still identified in a solution-
driven (bottom-up) way instead of in a problem-driven way [8], as the aim is rather to
obtain a large degree of direct requirements reuse than to satisfy actual needs with
available assets. Hence, when high individuality is required in order to satisfy a
customer, guidance on how to elicit such needs and reconcile them with reuse
capabilities more flexibly is not supported systematically yet. In particular, unaligned
approaches such as from Djebbi et al. [8] or those from “traditional top-down”
elicitation make a sufficient fit almost impossible without costly rework.

Beyond AERE, RE for COTS-based development does not seem to be sufficient
either, as it just deals with the selection [20] and adaptation [21] of COTS components.
Furthermore, existing COTS-RE approaches do not give any guidance on how
requirements are to be elicited and negotiated in order to fit existing assets.

150 S. Adam

Tailoring AERE processes based on existing SPL capabilities and constraints is
probably the only means to solve the introduced problem. The work of Doerr et al.
[22], for instance, aimed at improving RE processes, is maybe one of the few existing
approaches that explicitly reflects the specific needs and constraints of a development
organization in an RE process. However, this approach lacks both a systematic
identification of important product and process knowledge, and an appropriate
reflection of this knowledge in process-supporting artifacts. Furthermore, the specific
context of SPL organizations is not considered. Also more recent work dealing with
the identification of (information) needs such as [23], does not offer guidance on how
to derive important issues in this regard either. So far, the problem mentioned in the
motivation cannot be solved satisfactorily yet with current approaches.

3 Research Approach

The general idea for defining a template for elicitation instructions as mentioned
before has been based on our practical experience in industry, where we discovered
(however, outside SPLs) that precise instructions are able to support systematic
elicitation even for non-experts. In a consulting project some years ago, for instance,
our requirements engineering team at Fraunhofer IESE enabled people with low RE
experience to perform rather good elicitation merely by following precise instructions.
However, when we then performed a literature analysis, we found out that similar
work has not been proposed yet. Rather, most approaches found still “lack sufficiently
precise and prescriptive instructions” [16].

A first step towards our template for elicitation instructions was the clarification of
important SPL concepts and their interplay with AERE processes. For this purpose,
we iteratively developed a comprehensive conceptual AE model based on literature
reviews and several discussions with SPL experts (parts of this model are published in
[10]). The elements of this model (e.g., assumptions, existing realizations, etc.) were
then used to derive hypothetic requirements regarding the content that the elicitation
instructions should provide to AE requirements engineers. As we assume our model
to be complete, we also assume the derived hypothetic requirements to be rather
complete. However, based on our own elicitation experience, we additionally defined
a couple of hypothetic requirements regarding the general nature of elicitation
instructions that could not already be expressed in our model.

In a third step, we then performed a survey with eight experienced requirements
engineers in order to elicit their requirements on elicitation instructions for AERE.
What all involved engineers had in common was that they had an academic
background but also much experience in performing RE in industry. Besides one
internationally renowned professor, two heads of a leading German requirements
engineering group participated in the study. In general, five participants had elicited
requirements in more than 12 projects already, so, it can be assumed that they were
aware of the most important success factors and pitfalls there.

The survey was done by means of a questionnaire with open and closed questions.
The open questions were used to gain new insights about content and structure
suitable for elicitation instructions. The closed questions (using the scale “totally
disagree, …, totally agree”) were additionally used to get confirmation for our

 Providing Software Product Line Knowledge to Requirements Engineers 151

hypothetic requirements, and for eliciting the general acceptance of the intended
instructions. In this regard, we considered a hypothetic requirement as confirmed if
the median in the answers was “rather agree” or “totally agree” and the minimum in
the answers not lower than “neither agree nor disagree”.

Based on the confirmed requirements (22 of 33 hypothetic requirements could be
confirmed), we then developed the template for elicitation instructions. A central step
during this task was the definition of text blocks (called “phrases”) to be used for
providing the required information. For choosing appropriate formulations for these
text blocks, as well as for determining rules regarding their incorporation in a
meaningful order, we then recapitulated, discussed, and formalized our own way of
how we have successfully performed requirements elicitation in many projects so far.

In one of the last steps, we then checked by means of traceability links whether our
template addressed all requirements. Furthermore, we developed a tool for
automatically generating concrete elicitation instructions based on our template. The
purpose of this tool development was twofold: first, to demonstrate the preciseness of
our template via its ability to be implemented in software, and, second, to avoid the
tedious work when defining corresponding instructions manually.

In order to finally validate the benefits and applicability of the template, we
prepared a two-step evaluation approach that includes an expert validation and a
controlled experiment. During the former step, which is described at the end of this
paper, we let eight requirements engineering experts use and review an exemplary
instruction according to our template to validate whether it is basically applicable and
useful. During the latter step, which is still in progress, requirements engineering
students are going to use another exemplary instruction for eliciting requirements in a
realistic role play. The goal of this second study is to objectively evaluate the
elicitation performance in comparison to state-of-the-art instructions. Furthermore,
subjective assessment of the material will also be gathered.

4 A Template for Elicitation Instructions

Our basic idea for representing SPL knowledge is to provide precise and prescriptive
AERE instructions (i.e., elicitation instruction) that define a meaningful sequence of
elicitation steps based on a given SPL (see Figure 1). If AE requirements engineers
have such instructions, they are expected to perform the elicitation better, even if not
all customer requirements have been explicitly defined during DE. This is especially
important for SPLs in which not all requirements have been documented.

To realize this notion, AERE instructions have to describe regarding which issues
requirements have to be elicited and which constraints must be considered. Hence,
detection, negotiation, and correction of unrealizable, missing, or superfluous
requirements can be done much more proactively and thus faster during AE projects
leading to a more efficient AE in general. The main benefit of this approach in
contrast to the decision model or feature diagram questionnaires traditionally applied
in AE is that instead of purely asking which features a system should have (solution-
oriented requirements), the really necessary requirements can be systematically
derived based on the given business problems (problem-oriented requirements). Thus,
requirements that are already part of the SPL and those which are not can be handled

152 S. Adam

in an integrated manner. Despite this, the approach always enables a requirements
engineer to be aware of all the basic SPL capabilities and limitations when a certain
issue is discussed. Thus, (s)he is always able to immediately start negotiations about
requirements that might lead to unexpected project delay. For this purpose, however,
a constraint-based rather than enumerative description of the SPL is applied in order
to cope with the challenge that an explicit variability expression is often limited.

Of course, we are aware that each elicitation instruction is basically rigid, and that
it may be complicated to keep it in mind during real customer conversations.
However, we do not expect that our AERE instructions are straightly used, but that
they are used as an abstract process or even just as a mnemonic to inform
requirements engineers about the content to elicit and the constraints that exist.
Whether this works has been checked during an evaluation described in chapter 4. In
this section, a template for such AERE elicitation instructions (called elicitation
instructions below) and the research that has led to it is introduced.

Fig. 1. Usage of tailored AERE instructions during AE

4.1 Requirements on Elicitation Instructions

Basically, six (75%) of the RE experts we involved in the requirements elicitation
mentioned that a precise elicitation instruction would be of high or even very high
value to support their elicitation activities in AERE. Especially some sort of clear,
stepwise, procedural guidance that allows achieving a high degree of completeness in
a constructive manner was demanded by almost all of the interviewed engineers in the
open questions section. In this regard, the interviewed persons also mentioned that
each statement in the instruction must be easy to understand and allow a requirements
engineer to deviate if necessary. This means that an instruction should only guide and
support a requirements engineer but not force him to do something that does not make
sense in a concrete situation. Nevertheless, the instructions should be precise enough
that a requirements engineer does not get lost when performing elicitation.

Besides this open feedback, the hypothetic requirements shown in Table 1 were
confirmed by the survey participants based on their answers to the closed questions.

Domain Engineering

Application EngineeringApplication Engineering

Reuse Asset Base

Domain EngineeringDomain Engineering

AERE Tailoring

AERE
Instruct ion

 Providing Software Product Line Knowledge to Requirements Engineers 153

Table 1. Requirements on Elicitation Instructions

 An elicitation instruction should…
R.N.2. clearly mention a sequence of steps to be carried out (clear how-to)
R.N.3. explain how to proceed with the elicited requirements (e.g., visualizing,

describing, classifying, …)
R.N.4. be specific, i.e., customized for a certain development context or SPL
R.S.1. make clear in which order elicitation steps should be performed best
R.S.2. be modularized and allow taking breaks between sessions
R.S.4. provide good indications for knowing when finished with elicitation
R.C.1. mention the issues that are relevant for discussion
R.C.2. make clear until which point in time certain issues have to be discussed
R.C.3. name the typical stakeholders needed in a certain step
R.C.4. inform about the details to be elicited with regard to a certain issue
R.C.6. make clear about which issues a discussion is unnecessary (e.g., because

no one in the subsequent development process will care about them)
R.C.7. inform about which requirements are implemented by default anyway

(e.g., common requirements / features)
R.C.8. inform about whether requirements concerning a certain issue are

restricted by architectural constraints
R.C.9. make clear which properties a requirement must fulfill in order to be

implementable
R.C.10. inform about capabilities that already exist
R.C.12. inform about conceptual dependencies between issues

4.2 Basic Structure

The overall purpose of elicitation instructions is to guide requirements engineers
through a requirements elicitation process. Thus, the general structure of elicitation
processes must be appropriately covered in the elicitation instruction template.

Basically, a requirements elicitation process consists of phases in which several
(requirements) activities are performed. Phases are logical timespans reaching a
milestone at which a certain result is achieved. Thus, the activities within a phase are
needed to elaborate the outcome at the phase’s milestone.

In Figure 2, our basic template for elicitation instructions according to a
requirements elicitation process structure is depicted. For each phase, respectively
requirements milestone, within a process, the elicitation instruction should provide a
corresponding milestone section. The purpose of a milestone section is to collect
concrete instructions for all activities that are needed to elaborate the requirements
that must exist before the corresponding requirements milestone can be reached
(addresses R.C.2 and R.S.4). If, for instance, a phase “business analysis” is part of a
requirements process, the corresponding milestone section has to guide all activities
that are needed to elaborate the business-relevant issues such as business goals,
business objects, business rules, business processes, etc.

Each milestone section is therefore further subdivided into issue sections, which
provide instructions for the elicitation of all requirements concerning one specific

154 S. Adam

issue (e.g., for business pro
issue is a conceptual class
system’s usage environmen
always deals with the elic
elements.

Fig. 2. Basic structure of elic

Within each issue secti
requirements concerning a
purpose, an issue section (s
single instructions and hin
(addresses R.S.2). While
requirements engineer on w
these phrases in order to
classifying, clarifying, etc
therefore always depend on
and relationships (addresses

4.3 Single Instructions

The phrases, i.e., the singl
instruction as they form the

ocess, business objects, ,…). In the context of our work
of elements that are either part of system or a part of
nt. Thus, a requirements activity according to our mo
citation of requirements regarding one specific class

citation instructions and its interplay with a requirements proce

ion, concrete guidance on how to elicit and analyze
a specific issue is then given (addresses R.N.2). For
see Figure 3 for an example) contains precise phrases (
ts), which are organized into so-called instruction blo

e the phrases comprise concrete statements for
what to do or what to consider, the instruction blocks gro

align different sub-activities such as asking, describi
c. more logically. Both instruction blocks and phra
n the actual issues of interest, respectively their proper
s R.N.4).

and Hints

le instructions and hints, are the core of each elicitat
e elements that provide a requirements engineer with act

k, an
the

odel
s of

ess

the
this
i.e.,

ocks
the

oup
ing,
ases
rties

tion
tual

 Providing Software Product Line Knowledge to Requirements Engineers 155

knowledge. While the single instructions support the requirements elicitation through
the predefined description of actions that are typically needed, the hints contain
information that the requirements engineers should be aware of. This is especially
needed to avoid the elicitation of non-fitting, superfluous, or missing requirements
and, thus, to accelerate the alignment of customer requirements with SPL
characteristics.

So far, we have identified 14 phrases (eight single instructions and six hints).
Below, we briefly explain each of these. The underlined words in the examples are
the words that are variable within the phrase’s text block. However, besides the
shown examples, other text block variants also exist to cover more specific situations.

Identifying Instruction. The purpose of this instruction is to find out what a customer
basically wants or needs without defining his / her requirements in detail. The instruction
therefore provides templates for “which”-questions based on the issue for which
requirements are to be elicited (addresses R.C.1). In this context, the instruction makes
use of an issue’s relationships (addresses R.C.12). Example: “Ask the stakeholder the
following question: Which User Groups are performing this Use Case?”

Collecting Instruction. The purpose of this instruction is to collect all identified
requirements in an enumerative manner (e.g., bullet list) in order to handle the mass
of gathered information (again without specifying details). The notion to focus only
on enumeration reflects our strategy that details for each requirement should not be
defined before a quite stable set of requirements has been achieved. Example:
“Collect the identified User Groups in a corresponding list and add a link back to the
related Use Case.”

Describing Instruction. While identifying and collecting instructions just focus on
gathering keywords of requirements without defining any details, the purpose of
describing instructions is exactly to elicit and record this information (addresses
R.N.3. and R.C.4). Describing instructions should therefore help a requirements
engineer to motivate the stakeholders to provide detailed information about a
requirement according to the attributes of the issue the requirement is concerned with.
Example: “Ask the stakeholders the following question: Could you please describe
this User Group especially with regard to average age, experience, …”

Classifying Instruction. The purpose of this instruction is to support the
classification of requirements into more specific groups (addresses R.N.3). The
rationale for this instruction is based on the observation that requirements concerning
different issues are sometimes identified and collected in an integrated way, but need
to be separated before they can be described in detail. Example: “Discuss with the
stakeholders if this User Group is a Primary User Group or Secondary User Group
and categorize it accordingly.”

Visualizing Instruction. In elicitation sessions, requirements are often visualized,
because visualization helps to clarify details or relationships much better than just
spoken words. The visualizing instruction therefore aims at motivating a requirements
engineer to use graphical representations during elicitation sessions (addresses
R.N.3). Example: “Draw an Exchange Diagram to clarify the interplay between all
User Groups.”

156 S. Adam

Decomposing Instruction. The purpose of this instruction is to prompt a
requirements engineer to decompose hierarchical structures in order to elaborate the
included requirements (addresses R.N.3). The rationale for decomposing instructions
is based on the fact that requirements are sometimes too coarse-grained to provide
sufficient information for development. Example: “Decompose the hierarchy of this
User Group until no further decomposition is possible. Collect the identified User
Groups in a corresponding list and add a link to the parent User Group.”

Selecting Instruction. The purpose of the selection instruction is to foster the reuse
of requirements already defined during DE wherever possible. This instruction
prompts a requirements engineer to consider the SPL specification, and to motivate
the stakeholders to choose predefined requirements instead of letting them state these
from scratch (addresses R.C.10). Example: “Motivate the stakeholders to select a best
fitting Use Case from the SPL specification and map it accordingly. If the required
Use Case is not covered sufficiently in the SPL specification, describe this Use Case
especially with regard to name, precondition, flow of events, … from scratch.”

Involving Instruction. The purpose of this instruction is to invite the stakeholders
who are needed for a certain elicitation step (addresses R.C.3). This instruction is
needed in order to assure that the right stakeholder group is available when
requirements that concern a certain issue are discussed. Example: “Invite and involve
a (group of) Business Area Managers to an elicitation session in order to discuss
requirements concerning User Groups.”

Influence hint. The purpose of this hint is to inform about influence relationships that
exist between different issues, and that may also apply to corresponding requirements
(addresses R.C.12). Example: “Important hint: Consider especially the Business Area
when determining the User Groups.”

Commonality Hint. The purpose of the commonality hint is to inform about
requirements that are implemented by default anyway in order to proactively avoid
unnecessary elicitations (addresses R.C.7). Example: “Important hint: Be aware that a
set of Use Cases is already implemented by default and need not to be elicited again.
Consider the list of these Use Cases in the SPL specification and break discussions
immediately as soon as stakeholders start asking for the collection of these common
requirements. Additional requirements are of course allowed.”

Assumption Hint. The assumption hint is probably the most important hint for
reflecting SPL characteristics and constraints in an elicitation instruction without the
need to specify all possible requirements in an explicit manner upfront. Assumption
hints describe the assumptions the product line architecture makes about a certain
issue with respect to the flexibility the architecture has intentionally been designed for
(addresses R.C.9). The purpose of this hint is therefore the description of constraints a
requirement must meet in order to be assessable as being realizable by a requirements
engineer without expert involvement. Example: “Important hint: Be aware that there
are constraints defined for Business Document requirements. Hence, the Business
Documents stakeholders may ask for are restricted as follows: pages<10,
words<10000. If the stakeholders require something that contravenes these
constraints, inform them about possible (significant) extra costs and that an expert
check must be done before you can accept this requirement.”

 Providing Software Product Line Knowledge to Requirements Engineers 157

Selection Hint. The purpose of the selection hint is also to support SPL alignment.
However, in contrast to assumption hints, selection hints directly aim at considering
predefined requirements in the SPL specification and are therefore to be used together
with selection instructions (addresses R.C.10). Example: “Consider the set of existing
Adapters in the SPL specification.”

Flexibility Hint. The purpose of the flexibility hint is to inform about possible extra
costs when stakeholders require specific extensions or modifications even though
reuse candidates already exist. Example: “If the stakeholders require specific
Adapters that are not covered in the SPL yet, inform them about high extra costs even
if the mentioned assumptions are kept.”

Documentation Hint. There are issues that are actually relevant for development, and
those that are only implicitly relevant for the elicitation of the former. The purpose of
documentation hints is to inform the requirements engineer for which requirements it
is not worthwhile spending effort for the description of corresponding details
(addresses R.C.6). Example: “Important hint: It is not necessary to elicit or describe
details about Business Processes.”

4.4 Implemented Elicitation Strategy

It is evident that the milestone sections, the issue sections, as well as the phrases
within each issue section must be ordered in a meaningful way in order to provide
actual support. Besides a basic structure and several text blocks, our template for
elicitation instructions therefore also comprises a set of rules to make that happen.
These rules constitute an overall strategy that is implemented in the template.

The milestone sections basically define clear points until which certain
requirements types (i.e., issues) have to be discussed. The idea behind this approach is
that requirements concerning different issues are typically needed at different points
in time during subsequent development. For instance, the requirements concerning the
technical environment in which a system should be integrated may be needed very
early, while requirements concerning concrete functionality may be sufficient at a
later point in time. Therefore, the order of the milestone sections must be the same as
the order of the requirements milestones within the requirements (elicitation) process.

Within each milestone section, the issue section of the issues belonging to the
corresponding milestone must also be ordered in a meaningful way in order to avoid
redundancies. To define this order, the conceptual relationships between the issues
must be considered. Basically, issues can have an “Influence”, “Require”, “Contain”
and “Specialize” relationship (according to [5], [7]). When defining a logical order of
requirements activities and corresponding issue sections, it is evident that
requirements cannot be elicited in a random order. Therefore, the order of issue
sections must be defined based on these relationships. In our template, we have
defined several rules addressing this fact:

1. Discuss all issues in a random order that do not have any relationship to
another issue.

2. Discuss all issues in a random order that are not required by, not contained
in, not influenced by, and not a specialization of another issue. If there is none,

158 S. Adam

discuss at least those issues in a random order that are influenced by an issue already
discussed, but that have no further relationships.

3. Discuss all those issues that are required by, contained in, influenced by, or a
specialization of an issue already discussed, and that are neither required by,
contained in, influenced by, nor a specialization of an issue that has not been
discussed yet. If there is more than one, discuss them in the following order: 1) issues
that specialize an already discussed one, 2) issues that are contained in an already
discussed one, 3) issues that are required by an already discussed one, 4) issues that
are influenced by an already discussed one. If there is more than one in each sub-
order, discuss them in the order in which the specialized / containing / requiring /
influencing issue has appeared. Adapt the order continuously and repeat this
procedure until all issues related to a certain milestone have been discussed.

Fig. 3. Example of issue section “System Function”

When developing elicitation instructions based on these rules, it can be
constructively assured that all requirements are available before the elicitation of
related requirements starts. This is a key concept in our approach, as it is based on the

6. Elicitation Section for System Function

Definition: An atomic reaction (i.e., state change or response) of the system under development that
is triggered by an external stimulus, e.g., an environmental change, or an explicit request of a user or
an external system.

Invite and involve a (group of) process participantss to an elicitation session in order to discuss
requirements concerning System Functions.

Important hint: Be aware that a set of System Functions is already implemented by default and need
not to be elicited again. Consider the list of these System Functions in the SPL specification and break
discussions immediately as soon as stakeholders start asking for the collection of these common
requirements. Additional requirements are of course allowed.

For each System Activity:

Ask the stakeholders the following question: Which System Functions are realizing this
System Activity (*)?

Collect the identified System Functions in a corresponding list (if not yet done) and add a
link to the related System Activity.

For each System Use Case:

Ask the stakeholders the following question: Which System Functions are invoked by this
System Use Case (*)?

Collect the identified System Functions in a corresponding list (if not yet done) and add a
link to the related System Use Case.

Ask the stakeholders the following question: Which (additional) System Functions are required?

Collect the identified System Functions in a corresponding list (if not yet done).

Consider the set of predefined System Functions in the SPL specification.

For each System Function identified so far:

Motivate the stakeholders to select a best fitting System Function from the SPL specification
and map it accordingly. If the required System Function is not covered sufficiently in the SPL
specification, describe this System Function especially with regard to logic from scratch.

Important hint: If the stakeholders require specific System Functions that are not covered in
the SPL yet, inform them about high extra costs (even if the given constraints are hold).

 Providing Software Product Line Knowledge to Requirements Engineers 159

assumption that stakeholders can name requirements concerning a certain issue better
when they consider the context of this issue by means of its conceptual relationships.

Within an issue section, our template therefore also proposes to elicit all
requirements concerning a certain issue by considering its relationships to other issue.
Thus, each issue section should first contain phrases that aim at identifying and
collecting requirements, while the definition of requirements details should then take
place afterwards; i.e., when all requirements have been identified by processing the
issue’s relationships. At the beginning of each issue section, one or more instruction
blocks should therefore be implemented, where each instruction block reflects one
(contained in or required by) relationship that the issue of interest has to another issue.
For instance, a system function that is required by system activities and by system use
cases would have two instruction blocks reflecting these relationships (see Figure 3).

The selection and instantiation of concrete phrases within an issue section is then
based on the properties of the issue to be discussed, respectively on the properties of
its related issues. The most important properties in this regard are the status of an
issue and the degree of freedom provided by the underlying SPL. While the former
expresses whether and how many instances an issue may have (normal = n, singleton
= 1, abstract = 0), the latter expresses whether requirements concerning an issue are
already predefined in the SPL, respectively restricted by the SPL architecture or
strategy. In Figure 3, for instance, the degree of freedom states that a couple of system
functions are already covered in the SPL specification, but that additional system
functions may be specified also. Hence, corresponding hints and single instructions
that inform a requirements engineer about this fact are included in the issue section.

5 Evaluation

To evaluate our template, we prepared a two-step approach comprising an expert
validation and a controlled experiment. While the purpose of the first validation step,
which is described below, was just to assess the practical applicability and usefulness
of the elicitation instructions in general, its concrete benefits with regard to elicitation
effectiveness are still to be evaluated in the second study that will be subject of a
future publication.

Taking into account the individual background, a similar subject sample as during
the requirements analysis was chosen for the expert validation (including the
renowned professor). The overall goal of this first study was to assess our template
with regard to its practical applicability and basic usefulness from the viewpoint of
requirements engineering experts in the context of fictive interviews. In these fictive
interviews, we let the experts use an exemplary elicitation instruction that was defined
based on our template before. However, as we were only interested in an assessment
of the instruction itself, the requirements stated by the interviewees were not
considered here and often just brainstormed, non-controlled ideas.

5.1 Results

For the purpose of measuring the quality of the elicitation instruction, we used a
questionnaire similar to the one for the requirements elicitation described above,

160 S. Adam

including a set of open questions and closed (agreement) questions. In Table 2, the
assessments ranging from “very small” to “very high” received by the eight experts
are listed, where MIN is the minimum, MED the medium, MAX the maximum, and
Q1 the 25%-quartile respectively Q2 the 75%-quartile in the expert ratings.

Table 2. Expert assessment

Assessment Criterion Statistics
Overall helpfulness in a SPL-based project MIN = very small, Q1 = medium,

MED = high,
Q2 = very high , MAX = very high

Readability / understandability MIN = low, Q1 = high,
MED = high,
Q2 = very high , MAX = very high

Usability / applicability MIN = very low, Q1 = medium,
MED = high,
Q2 = very high, MAX = very high

Conformance with experts’ personal
elicitation style

MIN = very low, Q1 = low,
MED = high,
Q2 = very high, MAX = very high

Improvement of elicitation effectiveness
(quality)

MIN = very low, Q1 = medium,
MED = medium,
Q2 = high, MAX = very high

Improvement of elicitation efficiency MIN = very low, Q1 = very low,
MED = medium,
Q2 = high, MAX = high

Improvement in comparison to state of the
art material

MIN = very low, Q1 = medium,
MED = high,
Q2 = very high, MAX = very high

Benefits for average requirements engineers MIN = very low, Q1 = medium,
MED = high,
Q2 = very high, MAX = very high

The overall usefulness of the elicitation instruction according to our template was
assessed as “high” or even “very high” by most involved experts. In particular, all
participants stated that the detailed and consistent nature of the elicitation instruction
as well as the provision of precise hints and clear instructions could support their
work, even if they were experienced experts. Most RE experts also found the
elicitation instruction easy to read and easy to use. Furthermore, five of the eight
participants would use such instructions at least as an abstract process to follow
during a project, as for most of them the elicitation instruction is compliant to their
personal style of elicitation. Thus, it is expected that elicitation instructions following
our template can be actually used in industry.

Regarding elicitation quality and efficiency, most of the experts expected a
“medium” improvement in their own work when using instructions according to our
template. In direct comparison to known (state-of-the-art) material in AE
requirements elicitation, these improvements were even assessed as “high” in

 Providing Software Product Line Knowledge to Requirements Engineers 161

average. Thus, even if not every requirement engineer will benefit to the same degree
from using instructions according to our template, there seems to be a real target
audience. In particular, the RE experts expected that at least less or average-
experienced requirements engineers could highly benefit from using such elicitation
instructions (what is to be evaluated in our second study).

However, with regard to the fulfillment of the requirements on the requirements
elicitation instructions (see section 4.1), only the following requirements were
considered as fulfilled in the expert ratings. In this regard, we considered a
requirement fulfillment as confirmed if the median in the answers was “rather agree”
or “totally agree” and the 25%-quartile in the answers not lower than “neither agree
nor disagree”.

• R.S.1. The elicitation instruction should make clear in which order
elicitation steps should be performed best

• R.C.1. The elicitation instruction should mention the issues that are
relevant for discussion

• R.C.3. The elicitation instruction should name the typical stakeholders
needed in a certain step

• R.C.4. The elicitation instruction should inform about the details to be
elicited with regard to a certain issue

The main reason for the low confirmation of the other requirements is the fact that the
corresponding information in the exemplary elicitation instructions was not
sufficiently highlighted and that a concrete application context was missing in order
to assess the fulfillment of the requirements more thoroughly. This was also
mentioned in the open part of the questionnaire, in which the involved RE experts
made a few (minor) suggestions on what should be improved.

First of all, more rationales and background information about the elicitation
instruction itself were required. In particular, this should include an explanation on
how the instructions are to be used (e.g., regarding the order of steps, etc.) and what
exactly they aim at. Second, the reasons behind each mentioned SPL constraint
should be reflected in the instructions too in order to be aware why something works
or does not. Third, links to notations and specific elicitation techniques should be
included in order to provide a requirements engineer with access to more information
on how to use them. Forth, more information should be provided regarding the
purpose and content of the milestone sections in order to understand why the listed
issues are to be discussed in its given order. Fifth, additional information on how to
combine different steps into an elicitation workshop is required, including a coarse
estimation of the time required for each step. Sixth, examples should be incorporated
in order to show what the results of each step should look like. As a general feedback,
we therefore claim that it is critical that the elicitation instruction itself is explained
exhaustively to requirements engineers before they will use them in real projects.

5.2 Threats to Validity and Outlook on Controlled Experiment

The insights gathered by the expert validation confirmed the basic suitability of our
template and also enabled us to improve it according to the feedback comments.

162 S. Adam

However, there are a few threats to validity that need to be discussed and also
considered during the preparation of the controlled experiment.

Construction Validity. An important threat to construction validity was the fact that
only one exemplary elicitation instruction based on our template was used for
validation (mono-operation bias). Thus, there was neither a second elicitation
instruction based on our template, nor a control group using an elicitation instruction
based on another template. Another threat with regard to construction validity is the
usage of only a questionnaire to measure data (mono-method bias). In particular, only
subjective impressions and no objective data (e.g., regarding effectiveness) were
collected. In order to avoid these threats in the controlled experiment, we will
therefore setup two groups here; one using an elicitation instruction based on our
template, and another group using a similar elicitation instruction according to best
practice. Furthermore, both subjective data (based on questionnaires) and objective
data (based on measurable observations) will be collected.

Conclusion Validity. Regarding conclusion validity the low statistical power due to
the small sample size of only eight participants is an important threat to validity. In
order to avoid this threat in the controlled experiment, we will involve approximately
30 participants here.

Internal Validity. The internal validity of the expert validation is mainly affected by
the participant selection and the low degree of control during the study itself.
Regarding the former, the experts were not randomly selected from a larger
population, but only personally known experts were asked to participate. Regarding
the latter, the study was done offline by each expert why we did not have any control
how the fictive interviews were done. In particular, there is a risk that the elicitation
instructions were rather reviewed than actually used. In the controlled experiment, we
will therefore select the participants randomly from a set of unknown RE students,
and perform their interviews in a controlled and comparable environment.

External Validity. As we involved real requirements engineers, the external validity
is basically high. However, as elicitation instructions or methods in general do
typically not address experienced experts, but rather less or only average-experienced
requirements engineers, it would be interesting to gather also feedback from such
people. In the controlled experiment, we will therefore give the same questionnaire to
the participating students.

6 Conclusion and Future Work

AE based on an SPL is still a time-consuming task in practice. One important reason
is the misfit between customer requirements and a given SPL, especially when a high
degree of customizability is required. In order to resolve this misfit, AE requirements
engineers must be enabled to use sound knowledge about a given SPL to better guide
the elicitation of customer requirements.

As a first step towards this aim, this paper has introduced a template for elicitation
instructions. Even if this template can basically be used in non-SPL environments
also, its intended purpose is to appropriately provide requirements engineers with all

 Providing Software Product Line Knowledge to Requirements Engineers 163

the important information they need for performing more effective elicitation in AE
projects. A first validation with RE expert has confirmed that the template is basically
suitable for this purpose, even if some minor issues still have to be improved.

However, as a concrete elicitation instruction always depends on a specific
development context, each elicitation instruction must be defined individually for an
SPL organization. Thus, the template introduced here is just one part of a larger
research program. As mentioned in the introduction, the question, “How can
knowledge about an SPL be economically extracted and incorporated into the AERE
process?” cannot be answered by the template only, of course. For this purpose, we
are developing a tailoring approach that systematically guides a method engineer in in
incorporating SPL knowledge into elicitation instructions (see [24] for a first version
of this approach). The work described in this paper presents valuable input for this
aim, as it clarifies how the extracted knowledge shall be represented appropriately.

References

1. Alves, V., Niu, N., Alves, C., Valenca, G.: Requirements engineering for software product
lines. A systematic literature review. In: Information and Software. Elsevier (2010)

2. Clements, P., Northrop, L.: Software Product Lines: Patterns and Practice. Addison
Wesley (2001)

3. Deelstra, S., Sinnema, M., Bosch, J.: Product derivation in software product families: a
case study. The Journal of Systems and Software 74 (2005)

4. Rabiser, R., Grünbacher, P., Dhungana, D.: Supporting Product Derivation by Adapting
and Augmenting Variability Models. In: SPLC. IEEE (2007)

5. Vicente-Chicote, C., Moros, B., Toval, A.: REMM-Studio: an Integrated Model-Driven
Environment for Requirements Specification, Validation and Formatting. Journal of Object
Technology, ETH Zurich 6(9) (2007)

6. O’Leary, P., Rabiser, R., Richardson, I., Thiel, S.: Important Issues and Key Activities in
Product Derivation: Experiences from Independent Research Projects. In: SPLC (2009)

7. Goknil, A., Kurtev, I., van den Berg, K.: A Metamodeling Approach for Reasoning about
Requirements. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA 2008. LNCS,
vol. 5095, pp. 310–325. Springer, Heidelberg (2008)

8. Djebbi, O., Salinesi, C.: RED-PL, a Method for Deriving Product Requirements from a
Product Line Requirements Model. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE
2007 and WES 2007. LNCS, vol. 4495, pp. 279–293. Springer, Heidelberg (2007)

9. Guelfi, N., Perrouin, G.: A Flexible Requirements Analysis Approach for Software Product
Lines. In: Sawyer, P., Heymans, P. (eds.) REFSQ 2007. LNCS, vol. 4542, pp. 78–92.
Springer, Heidelberg (2007)

10. Adam, S.: Towards Faster Application Engineering through Better Informed Elicitation –
A Research Preview. In: REEW@RefSQ 2011, Essen (2011)

11. Perrouin, G., Klein, J., Guelfi, N., Jezequel, J.: Reconciling Automation and Flexibility in
Product Derivation. In: Software Product Line Conference. IEEE (2008)

12. Rabiser, R., Dhungana, D.: Integrated Support for Product Configuration and
Requirements Engineering in Product Derivation. In: SEAA. IEEE (2007)

13. Schmid, K.: Planning Software Reuse - A Disciplined Scoping Approach for Software
Product Lines. PhD Theses in Experimental Software Engineering 12. Fraunhofer (2003)

14. Eriksson, M., Börstler, J., Borg, K.: Managing requirements specifications for product
lines – An approach and industry case study. Journal of Systems and Software (2009)

164 S. Adam

15. Sinnema, M., Deelstra, S., Hoekstra, P.: The COVAMOF Derivation Process. In: Morisio,
M. (ed.) ICSR 2006. LNCS, vol. 4039, pp. 101–114. Springer, Heidelberg (2006)

16. Cheng, B., Atlee, J.: Research Directions in Requirements Engineering. In: Proceedings of
Future of Software Engineering (FOSE). IEEE Computer Society (2007)

17. Halmans, G., Pohl, K.: Communicating the variability of a software-product family to
customers. In: Software and System Modeling 2003/2. Springer, Heidelberg (2003)

18. Pohl, K.: Requirements Engineering – Grundlagen, Prinzipien, Techniken. dpunkt (2007)
19. Bühne, S., Halmans, G., Lauenroth, K., Pohl, K.: Scenario-Based Application

Requirements Engineering. In: Software Product Lines. Springer, Heidelberg (2006)
20. Alves, C.: COTS-Based Requirements Engineering. In: Cechich, A., Piattini, M.,

Vallecillo, A. (eds.) Component-Based Software Quality. LNCS, vol. 2693, pp. 21–39.
Springer, Heidelberg (2003)

21. Alves, C., Franch, X., Carvallo, J.P., Finkelstein, A.: Using Goals and Quality Models to
Support the Matching Analysis During COTS Selection. In: Franch, X., Port, D. (eds.)
ICCBSS 2005. LNCS, vol. 3412, pp. 146–156. Springer, Heidelberg (2005)

22. Doerr, J., Paech, B., Koehler, M.: Requirements Engineering Process Improvement Based
on an Information Model. In: Requirements Engineering Conference. IEEE (2004)

23. Sommerville, I., Lock, R., Storer, T., Dobson, J.: Deriving Information Requirements from
Responsibility Models. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009.
LNCS, vol. 5565, pp. 515–529. Springer, Heidelberg (2009)

24. Adam, S., Doerr, J., Ehresmann, M., Wenzel, P.: Incorporating SPL Knowledge into a
Requirements Process for Information Systems. In: PLREQ @ REfSQ 2010. Essen (2010)

Supporting Learning Organisations in Writing Better
Requirements Documents Based on Heuristic Critiques

Eric Knauss and Kurt Schneider

Software Engineering Group, Leibniz Universität Hannover, Germany
{eric.knauss,kurt.schneider}@inf.uni-hannover.de

Abstract. Context & motivation: Despite significant advances in requirements
engineering (RE) research and practice, software developing organisations still
struggle to create requirements documentation in sufficient quality and in a re-
peatable way. Question/problem: The notion of good-enough quality is domain
and project specific. Software developing organisations need concepts that i) al-
low adopting a suitable set of RE methods for their domain and projects and ii)
allow improving these methods continuously. Principal ideas/results: Automatic
analysis of requirements documentation can support a process of organisational
learning. Such approaches help improve requirements documents, but can also
start a discussion about its desired quality. Contribution: We present a learning
model based on heuristic critiques. The paper shows how this concept can support
learning on both the organisational and individual levels.

Keywords: heuristic critiques, requirements documentation, learning software
organisations, experience management.

1 Introduction

Requirements Engineering is a key success factor for software projects. A number of
approaches exist to support assessing the quality of software requirements automat-
ically [1–4]. If such approaches identify problems in requirements documents, these
documents can be improved in a most efficient way. Still, there remains an important
question: What is good requirements quality?

Existing approaches focus on removing ambiguity [4, 5]. But ambiguity is not always
bad [6]. Removing ambiguous wording might lead to false precision. False precision is
always bad. The notion of good requirements documentation is often specific to an or-
ganisation or even a project. Automatic checks of requirements documents are even
more valuable if they support writing requirements in the specific structure. Therefore,
automatic checks of requirements documents need to be adjustable. In this paper we
investigate if adjustable automated requirements checkers (= experience based require-
ments tools) can support organisational learning.

Research Question: Can experience based requirements tools support organisational
learning?

Contribution. In this paper we describe a learning model based on adjustable auto-
matic checks of requirements documents. We show how organisational and individual
learning is supported and that requirements engineers can adjust such checkers to their
needs, thus encoding their experiences.

B. Regnell and D. Damian (Eds.): REFSQ 2012, LNCS 7195, pp. 165–171, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

166 E. Knauss and K. Schneider

2 Related Work

Requirements are often specified using natural language, if only as an intermediate solu-
tion before formal modelling. As natural language is inherently ambiguous [7], several
approaches have been proposed to automatically analyse natural language requirements
in order to support requirements engineers in creating good requirements specifications
[1–4]. Typically, such approaches define a specific quality model first. Then indicators
are defined for the quality aspects that can be automatically evaluated, as in the ARM
tool by Wilson et al. [1]. Often these indicators are based on simple mechanisms, e.g.
keyword lists. Newer approaches leverage sophisticated analysis of natural language,
e.g. the search for under specification in the QuARS tool [8]. Kof, Lee et al. work on
extracting semantics from natural language texts [2, 3] by focusing on the semi auto-
matic extraction of an ontology from a requirements document. Their goal is to identify
ambiguities in requirements specifications. Gleich and Kof present a tool that is able to
detect a comprehensive set of ambiguities in natural language requirements [4].

Often, the discussion of tools that automatically analyse requirements documenta-
tion is limited to the discussion of their recall and precision [5]. In this paper, we use
a broader model for requirements analysis tools that allows us to describe their use-
fulness for supporting continuous improvement and organisational learning in require-
ments engineering activities. We feel supported in this goal by Gervasi’s discussion on
why ambiguity is not always bad [6]. He argues that people are able to articulate missing
knowledge in ways that are then identified as ambiguities. Removing these ambiguities
can only be beneficial, if the underlaying uncertainty is removed.

3 Experience Based Tools and Learning

In this paper, we continue previous work on learning (c.f. [9]). Here, we focus on ex-
perience based requirements tools: tools that automatically check requirements, give
constructive feedback (i.e. an experience), and can be extended with new experience
from its users. For further discussion, we introduce the concept of heuristic critiques:

Definition 1: Heuristic Critique — Computer based feedback to an activity or work product
(e.g. requirements documentation) based on experience. A heuristic critique consists of

– a heuristic rule that can be evaluated by a computer,
– a notion of the critique’s criticality (e.g. info, warning, error),
– a meaningful and constructive message.

A heuristic critique represents a single automatic requirements check. Furthermore, it
supports organizational learning, when integrated in requirements engineering tools [9]:
A heuristic critique is a suitable representation of an experience (defined as (i) an ob-
servation, associated with (ii) an emotion and (iii) a conclusion or hypothesis [10]).

Example. A developer observes that requirements are misunderstood, because they do
not specify who is responsible for an action. The developer is annoyed (emotion), and
concludes that passive voice should be avoided. Based on this experience, a heuristic
critique can be created: If a heuristic rule detects passive voice, it could give a warning
(i.e. medium criticality), and ask the user to use active voice and state responsibility
constructive message.

Supporting Learning Organisations with Heuristic Critiques 167

Document
Requirements Wishes and raw

requirements

___ Requirements

Document

Actor Experience
Base

Individual Learning Organisational
Learning

apply
reflect

encode
reuse

(→) →

(→) - can cause a Breakdown
 → - caused by a Breakdown

→

dashed lines - irreproducible information flows
gray / black - experience / project information

Fig. 1. Learning model: Heuristic Critiques stimulate information flows by causing breakdowns

We call this concept a heuristic critique to emphasize the fact that neither 100%
recall nor precision is required. It is more important that these heuristic critiques can
be adopted to a specific domain or project environment. By this, it becomes easier to
encode new experiences. This is important to support learning. Figure 1 shows two
areas of learning, supported by heuristic feedback. Learning occurs on individual and
organizational levels during the activity of writing requirements.

Individual Learning: Reflect and Apply. If a heuristic critique fires its warning, the re-
quirements engineer is interrupted in his task. This enables him to reflect about the cur-
rent activity and status, a breakdown occurs. Thus, heuristic critiques facilitate learning
through reflection. The requirements engineer might already know how to write good
requirements in general. Nevertheless, passive sentences may slip into a specification
during periods of intense writing. Reminders and warnings help to apply and repeat
the knowledge. Thus, they support internalizing abstract knowledge into skills and help
writing good requirements.

Organizational Learning: Reuse and Encode. Heuristic critiques allow codifying ex-
periences in a useful way. They support reuse of experience, because they enable com-
puters to find situations matching the observation that led to the original experience.
Based on the emotion reported, a more or less disruptive message points to potential im-
provements. Heuristic warnings are not always correct, e.g. an actor could be specified
even in a passive sentence. Furthermore, they are not always applicable. If a condition
is stated in requirements documentation, use of passive voice is unproblematic. If such
a situation is observed during a breakdown, the requirements engineer can refine the
heuristic warning and specify that it should not be applied to conditions. Thus, experi-
ence is added to the organizations knowledge base. As a by-product, the growing body
of codified experience adopts a manageable granularity for an organisation’s knowledge
base. These advantages have a price: encoding experiences as heuristic critiques is more
difficult than just writing them down as plain text. In the scope of this paper, we want
to concentrate on encoding of new experience.

168 E. Knauss and K. Schneider

4 Study: Encoding of New Experience

In this section, we evaluate whether typical requirements engineers are able to encode
experiences as heuristic critiques. For the evaluation we need an examplary imple-
mentation of an experience based tool. We chose the Heuristic Requirements Assis-
tant (HeRA) [11], a smart use case editor. In HeRA, heuristic critiques can be directly
changed by its user during runtime. All users can change the message of the critique or
parameters (e.g. keyword lists). In addition, heuristic rules (encoded in Javascript) can
be adjusted. All use cases written in HeRA can be accessed from these scripts.

HeRA has been widely used by students in projects at the end of their Bachelors or
during their Masters. We consider this group to be representative for our evaluation:
(tomorrow’s) young professionals with good background knowledge (software engi-
neering, requirements engineering), but limited experience. In our evaluation, we want
to investigate whether a representative selection from this target group is able to solve
defined tasks under laboratory conditions. We were able to recruit seven volunteers.,
two of them still in their Bachelors (3rd and 5th year / regular: 3 years).

If a heuristic critique is encoded, it needs to be stored and managed. These rather
technical aspects (c.f. [10]) are beyond the scope of this paper. Thus, our research ques-
tion can be detailed as follows:

Specific Research Question. Can our subjects change existing or create new heuristic
critiques? In this evaluation we focus on the heuristic rules, because we consider them
most difficult when encoding experiences as heuristic critiques. We approach this ques-
tion based on the goal question metric paradigm [12]. Accordingly, we have to define
beforehand, when we would accept the results to be positive (see Baseline Hypothesis
in Table 1).

Evaluation Approach. Our subjects were asked to solve a number of tasks (c.f. Table 1)
under supervision within 45 minutes. First, the subjects should show if they were able to
understand an intermediate and a complex heuristic rule (Task 1.a). Then, the subjects
should change an existing heuristic rule (Task 1.b) and create new rules; a simple, an
intermediate, and a complex rule (Task 2). All subjects had a language description with
the most important language constructs for the heuristic rules at hand. In addition, they
had the data model of use cases in HeRA.

The first part should show our subjects how heuristic rules work. The heuristic rules
in this part served as examples for the other tasks. This part was considered part of the
instrumentation and not used in the evaluation. The subjects were asked to log their
time for completing tasks.

Discussion of Validity. We give a short discussion of the validity of our study to sup-
port correct interpretation of our results.

Internal Validity. The most important internal aspect concerns learning effects. It is
much more difficult and takes longer to solve a task of a new type. It can be expected
that subjects will learn and solve even more difficult subsequent tasks of the same type
better and faster. Our evaluation design reflects this aspect by using Task 1.a only for
instrumentation. The experiment was conducted in the late afternoon. Many participants

Supporting Learning Organisations with Heuristic Critiques 169

Table 1. Overview of the tasks

Task Description Baseline
Hypothesis

Task 1.a.1 Describe the goal of a heuristic rule (correct answer: triggers
warning, if use case title has more characters than description).

n/a

Task 1.a.2 Describe the goal of a heuristic rule (correct answer: triggers
warning, if condition part of an use case extension is empty).

n/a

Task 1.b Change rule from Task 1.a.2 to trigger a warning if the
reference to the extended step is empty.

> 75% correct
< 10 minutes time

Task 2.1 Create a heuristic rule that triggers a warning
. . . if the title of a use case is empty.

> 75% correct
< 15 minutes time

Task 2.2 . . . if the main success scenario has less than three or more
than 9 steps.

> 75% correct
< 15 minutes time

Task 2.3 . . . if two use cases have the same title. > 50% correct
< 15 minutes time

∗ Answers with small errors are counted as 0.5.

had a class before and might have been tired. Task sheet and language description had
minor errors. Luckily, these errors could be accounted for during analysis.

Construct Validity. The main construct aspect concerns our baseline hypothesis. Is it
valid to conclude from 75% (50%) correct answers under exam conditions that users
are able to create correct simple (complex) heuristic rules? Are 10 minutes for changing
and 15 minutes for creating heuristic rules short enough to allow users doing this during
their workday? Because of the strict evaluation of the answers, we consider such results
to be good compared to exams in programming language classes. Analysts could inte-
grate these tasks in their daily work, given they take less than 15 minutes. As opposed
to our experiment, analysts would be supported by error messages from a compiler and
could directly observe the effects of their rules in HeRA.

Conclusion Validity. Because of the low statistical power, small or medium derivations
in the result could be expected in case of replication of the experiment. The specific
time of the experiment in the late afternoon after another class could have affected the
performance of the subjects negatively in comparison to a replication.

External Validity. For an analyst in industry it might be hard to bring herself to work on
heuristic critiques on top of their main tasks. As opposed to our subjects, the analyst has
to switch her cognitive context from the current task to the programming of a heuristic
rule. We expect the effort for this to be lowest, while the analyst is concerned with
quality assurance of requirements documentation.

Results. Figure 2 shows the results of our study. The figure shows the minimal, aver-
age, and maximal time it took our subjects to solve the tasks (black). In addition the
percentage of correct answers is shown in gray. The working time for Task 1.a.2 is
considerably lower then for Task 1.a.1, probably due to learning effects. It took the sub-
jects only 1–2 minutes to change a heuristic rule (a rule they had already understood

170 E. Knauss and K. Schneider

1.a.1 1.a.2 1.b 2.1 2.2 2.3
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0

2

4

6

8

10

12

14

16

18

correct answ ers
w orking time (min,avg,max)

task

co
rre

ct
 a

ns
w

er
s

[%
]

w
or

ki
ng

 ti
m

e
[m

in
ut

es
]

Fig. 2. Results of the experiment. The working time for each task is depicted in black, the per-
centage of correct answers is shown in gray.

when solving task 1.a.2). The rising difficulty of Tasks 2.1 – 2.3 shows in the maximal
working time. The average time goes down from Task 2.2 to Task 2.3. At this time
our students were well trained and could easily cope with the complexity. All in all
we received 89% correct answers: 100% of the changes at existing heuristic rules were
correct and 86% of the newly created heuristic rules. Small changes lasted less than 2
minutes. A new heuristic rule could be created in less than 7 minutes. We expect that
these values will even improve if the programming is not performed with pen and paper
but with suitable tool support. Thus, this study indicates that users of experience based
requirements tools are able to encode new experiences or to adjust existing ones.

5 Discussion and Outlook

Automatic requirements checking has been reported to be beneficial. Yet, automatic
requirements checkers are not widely accepted in industry, especially by tool vendors.
We argue that existing approaches are either too generic or specific to a too narrow ap-
plication domain for being widely used. In this paper, we propose to regard automatic
requirements checkers as experience based requirements tools. We presented a learning
model that helps to tackle effects that follow from the notion of experience based re-
quirements tools. In short, there is more to these tools than just improving requirements
documentation. In Section 4 we presented evidence that requirements engineers are able
to add new experience to these tools. From a knowledge management perspective, this
is an encouraging result. Computational rules that allow to check given documentation
allow to formalise knowledge of an organisation in a most useful way. Individuals are
confronted with these heuristic critiques and are invited to discuss them, based on ex-
amples they encounter in their daily work. Our evaluation results suggest that analysts
are able to write useful critiques with reasonable effort: Our subjects encoded heuristic
critiques that we identified to be useful in less than 7 minutes. Even without special tool
support (e.g. wizards, compiler) they did this at a surprisingly low error rate. We con-
clude that analysts with a computer science background are perfectly capable to express

Supporting Learning Organisations with Heuristic Critiques 171

their experience as heuristic critiques. Based on these results, tools are imaginable that
help organisations build an experience base of heuristic critiques specialised on their
domain. Our work leads to a number of questions that demand future research. Based
on the learning model in Figure 1, we only investigated the encoding of new experi-
ence. There is still need to gather prove that automated requirements checkers improve
requirements documentation. The impact of heuristic critiques on individual learning
and on the reuse of experience should be further investigated.

References

1. Wilson, W.M., Rosenberg, L.H., Hyatt, L.E.: Automated analysis of requirement specifica-
tions. In: Proceedings of the 19th International Conference on Software Engineering (ICSE
1997), pp. 161–171. ACM, New York (1997)

2. Kof, L.: Text Analysis for Requirements Engineering. PhD thesis, Technische Universität
München, München (2005)

3. Lee, S.W., Muthurajan, D., Gandhi, R.A., Yavagal, D.S., Ahn, G.J.: Building Decision Sup-
port Problem Domain Ontology from Natural Language Requirements for Software Assur-
ance. International Journal of Software Engineering and Knowledge Engineering 16(6), 851–
884 (2006)

4. Gleich, B., Creighton, O., Kof, L.: Ambiguity Detection: Towards a Tool Explaining Am-
biguity Sources. In: Wieringa, R., Persson, A. (eds.) REFSQ 2010. LNCS, vol. 6182, pp.
218–232. Springer, Heidelberg (2010)

5. Kiyavitskaya, N., Zeni, N., Mich, L., Berry, D.M.: Requirements for tools for ambiguity
identification and measurement in natural language requirements specifications. Require-
ments Engineering Journal 13(3), 207–239 (2008)

6. Gervasi, V., Zowghi, D.: On the Role of Ambiguity in RE. In: Wieringa, R., Persson, A.
(eds.) REFSQ 2010. LNCS, vol. 6182, pp. 248–254. Springer, Heidelberg (2010)

7. Berry, D., Kamsties, E.: 2. Ambiguity in Requirements Specification. In: Perspectives on
Requirements Engineering, pp. 7–44. Kluwer (2004)

8. Fabbrini, F., Fusani, M., Gnesi, S., Lami, G.: An Automatic Quality Evaluation for Nat-
ural Language Requirements. In: Proceedings of the Seventh International Workshop on
RE: Foundation for Software Quality (REFSQ 2001), Interlaken, Switzerland, pp. 150–164
(2001)

9. Knauss, E., Schneider, K., Stapel, K.: Learning to Write Better Requirements through
Heuristic Critiques. In: Proceedings of the 17th IEEE Requirementes Engineering Confer-
ence (RE 2009), pp. 387–388. IEEE Computer Society, Atlanta (2009)

10. Schneider, K.: Experience and Knowledge Management in Software Engineering. Springer,
Heidelberg (2009)

11. Knauss, E., Lübke, D., Meyer, S.: Feedback-Driven Requirements Engineering: The Heuris-
tic Requirements Assistant. In: Proceedings of the 31st International Conference on Software
Engineering (ICSE 2009), Vancouver, Canada, pp. 587–590 (May 2009)

12. van Solingen, R., Berghout, E.: The Goal/Question/Metric Method: A Practical Guide for
Quality Improvement of Software Development. McGraw-Hill Publishing Company (1999)

B. Regnell and D. Damian (Eds.): REFSQ 2012, LNCS 7195, pp. 172–178, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Managing Implicit Requirements
Using Semantic Case-Based Reasoning

Research Preview

Olawande Daramola1, Thomas Moser2, Guttorm Sindre1, and Stefan Biffl2

1 Department of Computer and Information Science
Norwegian University of Science and Technology, Trondheim, Norway

{wande,guttors}@idi.ntnu.no
2 Christian Doppler Laboratory for Software Engineering

Integration for Flexible Automation Systems
Vienna University of Technology, Austria

{thomas.moser,stefan.biffl}@tuwien.ac.at

Abstract. [Context and motivation] Implicit requirements (ImRs) are defined
as requirements of a system which are not explicitly expressed during require-
ments elicitation, often because they are considered so basic that developers
should already know them. Many products have been rejected or users made
unhappy because implicit requirements were not sufficiently addressed.
[Question/Problem] Requirement management tools have not addressed the is-
sue of managing ImRs, also despite the challenges of managing ImRs that exist
in practice the issue has not received sufficient attention in the literature.
[Principal Idea/results] This planned research will investigate how automated
support can be provided for managing ImRs within an organizational context,
which is currently lacking in practice. This work proposed an approach that is
based on semantic case-based reasoning for managing ImRs. [Contribution]
We present the concept of a tool which enables managing of ImRs through the
analogy-based requirements reuse of previously known ImRs. This ensures the
discovery, structured documentation, proper prioritization, and evolution of
ImRs, which improves the overall success of software development processes.

Keywords: implicit requirements, requirement reuse, case-based reasoning,
analogy-based reuse, semantic analysis.

1 Introduction and Motivation

Implicit requirements (ImRs) are hidden or assumed requirements that a system is
expected to fulfill even though not explicitly elicited during requirements gathering.
According to [1, 2] the quality of software is dependent on the measure of its confor-
mance to both explicit and implicit requirements. Hence good quality cannot be
guaranteed if only explicit requirements are satisfied while implicit requirements are
omitted [2-4]. So far, issues of ImRs have not received as much attention in require-
ment management related discussions compared to explicit requirements, but yet it

 Managing Implicit Requirements Using Semantic CBR Research Preview 173

remains a problem in practice [3-6]. ImRs are handled by requirements engineers
using their own initiative and personal experience so as to ensure that delivered prod-
ucts satisfy implicit customer expectations [7-9]. In cases of omission of important
ImRs from the requirements specification (RS), the Software Architect (SA) must be
able to identify them and ensure that they are well addressed during the design phase.
Often, this is done without any corresponding modification to the RS, which creates
an information gap between the RS and the design specification.

According to Glinz [10], it may not be necessary to specify ImRs when there is an
implicit shared understanding among all stakeholders about a quality requirement, but
when this is not the case, failures to make ImRs explicit could lead to serious prob-
lems. Examples of instances when identifying and specifying ImRs becomes crucial
include: when software products are developed in a new domain by a software devel-
opment organization, or when products have been subcontracted to external organiza-
tions that belong to different cultural or operational contexts through outsourcing or
offshoring [11]. In these cases, lack of adequate approach to effectively manage ImRs
could lead to poor quality of the software products or failure of projects as a whole.

Generally, managing ImRs presents a number of challenges: I- there are instances
when ImRs are not well known by developers – e.g. developing a product in a new
domain; II - ImRs can lead to budget overrun if not well managed and properly pri-
oritized; III - ImRs evolve over time – this could be due to increasing sophistication
of users or new technologies; IV - some ImRs concerns (on issues like scalability,
security, usability) carry certain risks, and have costly and far reaching effects on the
software architecture, if not discovered and addressed early enough [1, 6, 9].

Although the issues I-IV can be partly addressed through good requirements
elicitation procedures or inclusive software development paradigms such as agile
approaches, there are many practical situations in which these alternatives are not the
preferred choice. Regardless, within an organizational context, there exists significant
merit in providing tool support for managing ImRs. The existence of such tool sup-
port would ensure that 1) previously documented ImRs can be reused in a systematic
way and leveraged for improved requirements engineering (RE) in new projects; 2)
hidden ImRs can be discovered, particularly those that have been overlooked during
requirements elicitation – avoiding extra cost; and 3) ImRs are addressed based on
established organizational standards, in terms of the required scope and level of
priority.

Existing requirements management tool such as DOORS, Requisite PRO,
CaliberRM [12] have failed to directly address these issues. Also, requirement analy-
sis techniques like the KANO model [13, 14] can only assist to classify already
known (elicited) requirements into basic needs (implicit), performance needs (expli-
cit), and excitements (delighters) categories, and thus helps with requirements priori-
tization, it cannot ensure the discovery of non-elicited ImRs. This scenario motivates
the need for “systematic tool support” to be used for managing ImRs. Typically, we
envision a recommender system tool that will suggest probable ImRs to users based
on documentation of requirements from previous projects that tend to be implicit. We
define “systematic tool support” as a framework which can be integrated into an or-
ganization’s RE procedures with the potential to improve the efficiency of the RE
process, and ultimately the entire software development task.

174 O. Daramola et al.

This paper presents an approach that enables systematic tool support for managing
ImRs using semantic case-based reasoning (CBR). The remainder of this paper is
organized as follows. Section 2 presents related work. Section 3 gives an overview of
our approach including an example. Section 4 discusses the potential merits of the
approach and concludes.

2 Related Work

Reports on tool-based support for the management of ImRs are scarce in the literature
despite the reality of challenges that exists in practice. Prominent requirement
management tools such as DOORS, Requisite Pro or CaliberRM [12] lack specific
provisions for managing ImRs. KANO analysis [13, 14] is a requirement analysis
activity which enables the classification of elicited requirements into implicit, expli-
cit, and exciters categories in order to correctly prioritize requirements. Requirements
reuse, which is the core basis of our approach, is one of more interesting topics of RE
discourse in recent years. A few of the more recent works include practical approach-
es to requirements reuse in product families [15]. It is an experience report of re-
quirement reuse in a case study of On-Board systems. The study aims at discovering
how requirements reuse can be integrated into DOORS. However, the focus is not to
provide systematic support for RE within a framework as proposed in this work.

A model for requirements reuse based of the forecast of user needs using factual
knowledge of users was proposed by Perednikas [16]. However the reuse model did
not distinguish between the specific types of requirements to be reused. Singer et al.
[6] report on the application of rules derivation for the elicitation of ImRs in IT eco-
systems. The emphasis was the discovery of new ImRs by using agents to monitor
deviations from predefined rules in the IT infrastructure, as users interact with the IT
ecosystem. It is then expected that data mining can be applied on the observed devia-
tions to uncover new implicit requirements that will ensure effective evolution of
services provided by the IT ecosystem. In summary, the novelty of our proposal stems
from the provision of systematic tool support for managing ImRs within an organiza-
tional context, which has not be adequately addressed in other published research.

3 Semantic CBR for Implicit Requirements

This section describes the proposed approach. First, a model for the reuse of implicit
requirements in introduced, and then an application example from the e-Banking do-
main is described. Furthermore a conceptual overview of the approach is given, and
the two major components, semantic matching for requirements similarity and analo-
gy-based reasoning for fine-grained cross domain reuse, are described in more details.

3.1 Model for Implicit Requirement Reuse

In order to manage ImRs, a reuse-based implicit requirements model (RM) is essential
in order to facilitate the reuse of ImRs across projects whenever substantial similarity
can be established between a new requirement and older requirements. An RM is a
formal representation of requirements that creates a basis for the reuse of implicit

 Managing Implicit Requirements Using Semantic CBR Research Preview 175

requirements associated with existing requirements in order to discover the implicit
concerns of new requirements. Our RM is influenced by Maiden [17], where it was
stated that in order to realistically reuse software specifications by analogy, three
types of knowledge about reusable artifacts must be provided: 1) domain knowledge –
concepts that describe the real world domain that the artifact can be associated with;
2) solution knowledge – concepts that are described in the reusable specification; 3)
goal knowledge – concepts that describe the purpose of the reusable artifact. These
three dimensions have been considered in the formulation of the RM. Hence the RM
is a seven tuple denoted as RM = < D, S, G, Rid, RQi, Mid, Mi> where D is a descrip-
tion of the domain of the software project; S is a description of the solution approach
adopted by software project; G is a description of goals of the system under develop-
ment; Rid is the unique id of a requirement; RQi is the requirement statement
represented by Rid; Mid is the unique id of the implicit requirements associated with
Rid; and Mi is the description of implicit aspects associated with the requirement RQi
denoted as Rid.

3.2 E-Banking Application Example

Consider the example of an e-Banking application, whose goal is to facilitate dependable
on-line transactions by the bank’s customers with the following sample requirements:

• A1: The system shall allow transfer of funds from a customer’s account to a
valid payee account.

• A2: The system shall allow transfer of funds between two separate accounts
owned by the same person in the bank.

Two categories of implicit requirements exist here which are: 1) domain ImRs -
which are general for systems in the e-banking domain, e.g. expectations for a secure
financial transaction on the web such as user access control, authentication or privacy;
2) ImRs directly associated with the each of A1 and A2 – which relate to issues of
data validation and conformity with established banking rules. Both categories of
ImRs must be well addressed to produce a good e-Banking system. Some ImRs are
stated below:

• A1-IR1: The system shall ensure that account balance after fund transfer to
payee does not fall below set minimum limit by the bank for such accounts.

• A1-IR2: The system shall ensure that amount transferred to payee is stated
in one of the acceptable currencies and transaction done at prevailing
exchange rate set by the bank.

• A2-IR1: The system shall ensure that accounts listed for own fund transfer
belong to the same owner and balance in drawn account must not fall below
the minimum limit set by the bank for such accounts.

3.3 Approach Overview

An overview of our planned solution approach is presented next. It is a concise de-
scription of the systematic workflow for managing ImRs using our approach.
Typically, a description of the approach is defined as follows:

176 O. Daramola et al.

1. The user inputs requirements document captured in boilerplate format [18].
2. The requirement document (req. doc) is parsed by the prototype tool.
3. The tool identifies viable domains for analogy-based requirements reuse.
4. The user selects a domain for reuse out of candidates presented by the tool.
5. For each requirements statement in the req. doc, search requirements reposi-

tory for similar requirements in the domain for reuse using semantic match-
ing. If candidates found then tool ranks the retrieved candidates based on
computed similarity score.

6. The tool generates new requirements specification report.

Semantic-Matching for Requirements Similarity - The objective of semantic
matching (SM) – which originates from the field of lexical semantics - is to improve
syntactic matches by exploring the semantic relatedness of terms using a concept
hierarchy or ontology. Usually, graph representations of entities to be compared are
extracted and then SM done either at the element level or at the structural level [19].
Generally, element level matchers compare information contained in elements of two
graphs and return the semantic relation that exist between them (equivalence, part-of,
kind-of, disjoint etc.), while structure level matchers often aggregates the results of
several element level matchers and also compare the structural properties of the two
graphs to determine the overall similarity coefficient (between 0 and 1) of the two
graphs. In performing SM for requirements similarity, we favor the use of general
knowledge bases or upper level ontologies such as WordNet, ResearchCyc, DBpedia
as concept hierarchy. The proposed framework also supports using an existing do-
main ontology as concept hierarchy where such an ontology already exists or can be
developed. The selected concept hierarchy then provides basis for computing the
semantic relatedness of two requirements. We believe that the right basis to associate
similar ImRs with two separate requirements is, if they are contextually equivalent to
some degree, and not necessarily their structural similarity. Hence, element level SM
is preferred, such that we are able to compare the semantic-relatedness of concepts of
the two graphs at the atomic level using a knowledge base and ultimately obtain a
cumulative score that represents the contextual similarity between two requirements.

Analogy-Based Reasoning for Fine-Grained Cross-Domain Reuse - While CBR is
mostly associated with reuse within the same domain, analogy-based reasoning
(ABR) facilitates reuse across different domains. However, cross domain reuse for
ImRs is only realistic when fine-grained. ABR for cross domain ImRs reuse is facili-
tated in our approach through the specification of the domain, solution, and goal
knowledge of the software project in RM. The requirements repository is also indexed
along these dimensions. However, according to Maiden [17] goal knowledge is too
generic to provide adequate basis for analogy-based reuse, but could be very comple-
mentary to domain and solution knowledge. Hence, a weighted semantic similarity
metric for determining the most appropriate base analogy model for cross domain
reuse is preferred. Weights should be assigned to domain, solution and goal know-
ledge respectively, in the order of their perceived importance to influencing the choice
of a good base analogy for reuse.

 Managing Implicit Requirements Using Semantic CBR Research Preview 177

4 Discussion and Conclusion

The proposed approach has the potential to address management of implicit require-
ments. The ability to discover unknown and un-elicited requirements will mitigate
many risks that can adversely affect system architecture design and project cost.

We are aware that this is early stage work where not all issues of the proposed ap-
proach have been addressed, however we plan to implement a prototype based on the
concepts canvassed in this paper. The idea is to build an Eclipse plug-in tool that can
be integrated with other Eclipse based requirements management tools such as
Papyrus or other emerging open source requirements management tools. Another
promising aspect of this proposal is that there exists a lot of openly available tool
support in particular in the areas of semantic analysis, NLP and conceptual graphs to
facilitate implementation.

In conclusion, we have presented a conceptual framework for managing ImRs.
This is a direct response to problems in the practice of many organizations which
have not been addressed by existing requirements management tools. Hence, the
provision of systematic tool support for managing ImRs will be useful for RE practi-
tioners. We see many more opportunities for research in this area, particularly in faci-
litating more elaborate but realistic analogy-based reuse in RE. Also the issues of
interdependencies among ImRs and their effect on impact analysis will be interesting
to study. Additionally, an investment in developing an upper level ontology of reusa-
ble software artifacts in several domains can provide a more realistic basis for analo-
gy-based reuse, and selection of reusable artifacts through semantic clustering and
other semantic based methods.

Acknowledgments. This work has been supported by the Norwegian Research Council
through the ReqSec project, Norway and by the Christian Doppler Forschungsgesellschaft
and the BMWFJ, Austria.

References

1. ISO/IEC 9126: Software Engineering – Product Quality- Part 1: Quality Model. Int’l Or-
ganization for Standard (2001)

2. Ahamed, R.: An Integrated and Comprehensive Approach to Software Quality. Interna-
tional Journal of Engineering Science and Technology 2(2), 59–66 (2010)

3. Leffingwell, D., Widrig, D.: Managing Software Requirements: A Unified Ap-proach.
Addison-Wesley Longman Publishing Co., Boston (2000) ISBN: 0-201-61593-2

4. Drysdale, D.: High-Quality Software Engineering: Lessons from Six-Nines World. David
Drysdale (2007)

5. Grehag, Å.: Requirements Management in a Life-Cycle Perspective - A Position Paper. In:
Proceedings of the 7th International Workshop on REFSQ 2001, Interlaken, Switzerland,
pp. 183–188 (2001)

6. Singer, L., Brill, O., Meyer, S., Schneider, K.: Utilizing Rule Deviations in IT Ecosystems
for Implicit Requirements Elicitation. In: Proceedings of the Second International Work-
shop on Managing Requirements Knowledge (MaRK), pp. 22–26 (2009)

7. Jha, R.: Gathering Implicit Requirements (10-06-2009), http://alturl.com/ocyb5

178 O. Daramola et al.

8. Parameswaran, A.: Capturing Implicit Requirements (02-08-2011),
http://alturl.com/emeej

9. Douglass, D.: Understanding Implicit Requirements of Software Architecture (06-08-2009),
http://alturl.com/wauae

10. Glinz, M.: A Risk-based Value-oriented Approach to Quality Requirements. IEEE Soft-
ware, 34–41 (2008)

11. Deshpande, S., Richardson, I.: Management at the Outsourcing Destination - Global Soft-
ware Development in India. In: Int’l Conf. on Global Software Engineering, pp. 217–225.
IEEE Press (2009)

12. Larsson, A., Steen, O.: Tool Support for Requirements Management Quality from a User
Perspective. In: Proceedings of IRIS29, Helsingör, Denmark (2008)

13. Kano, N., Nobuhiku, S., Fumio, T., Shinichi, T.: Attractive Quality and Must-be Quality.
Journal of the Japanese Society for Quality Control 14(2), 39–48 (1984)

14. Xu, Q.L., Jiao, R.J., Yang, X., Helander, M.G., Khalid, H.M., Anders, O.: Customer Re-
quirement Analysis Based on an Analytical Kano Model. In: Industrial Engineering and
Engineering Management, pp. 1287–1291. IEEE Press (2007)

15. Monzon, A.: A Practical Approach to Requirements Reuse in Product Families of On-
Board Systems. In: International Requirements Engineering, pp. 223–228. IEEE Press
(2008)

16. Perednikas, E.: Requirements Reuse Based on Forecast of User Needs. In: Proceedings of
the 20th EURO Mini Conference on Continuous Optimization and Knowledge-Based
Technologies, Neringa, Lithuania, pp. 450–455 (2008)

17. Maiden, N.: Analogy as a Paradigm for Specification Reuse. Software Engineering Jour-
nal 6, 3–15 (1991)

18. Hull, E., Jackson, K., Dick, J.: Requirements Engineering. Springer, Heidelberg (2004)
19. Giunchiglia, F., Shvaiko, P.: Semantic Matching. The Knowledge Engineering Review 18,

265–280 (2003)

Trace Queries for Safety Requirements

in High Assurance Systems

Jane Cleland-Huang1, Mats Heimdahl2, Jane Huffman Hayes3,
Robyn Lutz4, and Patrick Maeder5

1 DePaul University, Chicago, IL 60422, USA
jhuang@cs.depaul.edu

2 University of Minneapolis, Minneapolis, MN, USA
heimd002@umn.edu

3 Kentucky State University, Lexington, KY, USA
hayes@cs.uky.edu

4 Iowa State University, Ames, IA, USA, and Jet Propulsion Laboratory/Caltech
rlutz@iastate.edu

5 Johannes Kepler University, Linz, Austria
patrick.maeder@jku.at

Abstract. [Context and motivation] Safety critical software systems
pervade almost every facet of our lives. We rely on them for safe air and
automative travel, healthcare diagnosis and treatment, power generation
and distribution, factory robotics, and advanced assistance systems for
special-needs consumers. [Question/Problem] Delivering demonstra-
bly safe systems is difficult, so certification and regulatory agencies rou-
tinely require full life-cycle traceability to assist in evaluating them. In
practice, however, the traceability links provided by software producers
are often incomplete, inaccurate, and ineffective for demonstrating soft-
ware safety. Also, there has been insufficient integration of formal method
artifacts into such traceability. [Principal ideas/results] To address
these weaknesses we propose a family of reusable traceability queries
that serve as a blueprint for traceability in safety critical systems. In
particular we present queries that consider formal artifacts, designed to
help demonstrate that: 1) identified hazards are addressed in the safety-
related requirements, and 2) the safety-related requirements are realized
in the implemented system. We model these traceability queries using
the Visual Trace Modeling Language, which has been shown to be more
intuitive than the defacto SQL standard. [Contribution] Practitioners
building safety critical systems can use these trace queries to make their
traceability efforts more complete, accurate and effective. This, in turn,
can assist in building safer software systems and in demonstrating their
adequate handling of hazards.

Keywords: safety critical software, fault trees, traceability, visual trace
queries, formal methods.

B. Regnell and D. Damian (Eds.): REFSQ 2012, LNCS 7195, pp. 179–193, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

180 J. Cleland-Huang et al.

1 Introduction

Requirements traceability, defined as the “ability to follow the life of a require-
ment in both a backward and forward direction” [6] is a critical element of any
rigorous software development process. For example, the U.S. Food and Drug
Administration (FDA) states that traceability analysis must be used to verify
that the software design implements the specified software requirements, that
all aspects of the design are traceable to software requirements, and that all
code is linked to established specifications and test procedures [5]. Similarly,
the Federal Aviation Administration (FAA) has established DO-178B [4] as the
accepted means of certifying all new aviation software, and this standard spec-
ifies that at each stage of development “software developers must be able to
demonstrate traceability of designs against requirements.” Software Process Im-
provement standards that are being adopted by many organizations, such as
CMMI, require similar traceability practices.

Traceability is broadly recognized as an important factor in building high-
assurance software systems. Much of this software is safety critical, meaning
that there could be devastating harm if the software fails to operate correctly.
Safety-critical software systems permeate our society and are entrusted with the
lives of everyday people on a daily basis. For example, a commuter on a train
depends on the switching software, an airline passenger depends on the air traffic
control software, and a patient in a hospital depends on the e-pharmacy software.

However, there is almost universal failure across both industry and govern-
ment projects to implement successful traceability, even in safety-critical systems
that require it. This has been found to be due in large part to the difficulty of con-
structing useful traceability queries using existing tools [18]. Traceability links
may be generated at a high level, may be too generic, may be incomplete, may
be inaccurate [21], and/or may not be deemed appropriate as evidence of soft-
ware safety. Changes to artifacts, and hence to their traceability, often require
an inordinate amount of traceability effort on the part of analysts attempting to
obtain certification of even a small change to an already certified system.

The failure of traceability is of special concern in safety-critical systems where
the tracking of hazards to their resolutions is mandated by certification author-
ities. In such systems, the traceability from hazards to software safety require-
ments to implemented and verified design solutions forms an essential piece of
the evidence chain used to show that the resulting system is safe [1, 11, 17].
The full potential of traceability as a value-enhancing activity has not yet been
realized in safety-critical systems.

To address these shortcomings, we consider the work of two stakeholder types
as a safety-critical system is built, certified or modified: developer and software
safety engineer. The developer prepares traditional development artifacts such as
system requirements, software requirements, design (perhaps as UML diagrams),
code, and test cases. Traceability matrices are generated for these artifacts (such
as from system to software requirements, from code to test cases, etc.). The
software safety engineer focuses on how software can contribute to a systems
safety or can compromise it by putting the system into an unsafe state, and

Trace Queries for Safety Requirements in High Assurance Systems 181

is interested in tracing the relationship between fault tree analysis results and
software requirements and verification artifacts. These safety-related items also
require associated traceability support.

To focus on the traceability needs of these stakeholders, this paper extends our
prior work. It identifies and describes a set of twelve safety-related traceability
goals that address essential traceability questions needed to demonstrate that
a software intensive system meets its safety requirements. These queries cover
basic life-cycle activities such as tracing from requirements to test cases, as
well as more complex activities such as integrating hazard analysis and formal
models and their results into the traceability environment. The trace queries are
presented using the Visual Trace Modeling Language (VTML), which has been
demonstrated in our prior work to be more intuitive for users to understand
than the defacto standard of SQL [18]. The traceability queries are designed to
deliver value-enhanced traceability in support of the producers of safety-critical
software systems.

In other areas of software engineering and requirements engineering, reusable
solutions, often in the form of patterns, are used to increase productivity and im-
prove quality by capturing and applying domain knowledge to repeated problems.
Traceability is no exception. Certain questions must be answered about a software
system in order to achieve certification, such as “have all hazards been addressed
in the requirements?”The software traceability techniques presented here help an-
swer these questions. Like design patterns, the traceability queries are constructed
to be reusable both as the system evolves and, more generally, across different sys-
tems. If modeled in advance, the traceability queries provide strategic guidance to
software developers as they plan their traceability infrastructure and associated
process. Reusing proven and familiar traceability queries can ease the effort of the
initial certification process and provide the necessary infrastructure for support-
ing change, as well as helping to demonstrate safety following that change.

The remainder of paper is laid out as follows. Section 2 discusses the challenges
of delivering effective traceability in a safety critical project, and introduces the
concept of the Traceability Information Model (TIM). Section 3 introduces a
pacemaker example, which is used to illustrate our approach. Section 4 briefly
describes the VTML. Section 5 introduces and models the safety-related trace-
ability queries, and illustrates their usefulness for the pacemaker example. Sec-
tion 6 describes related work, and finally, section 7 summarizes our contribution
and discusses future work.

2 Traceability in a Safety Critical Environment

Traceability decisions in a project should be documented in and driven by a
traceability information model (TIM) or traceability meta-model, as depicted
in Figure 1 [2, 19]. A TIM is often represented as a UML class diagram and is
composed of two basic types of entities: traceable artifact types represented as
classes, and the permitted trace types between the artifact types represented as
associations. Traceable artifact types serve as the abstractions supporting the
traceability perspective of a project.

182 J. Cleland-Huang et al.

Preliminary
Hazard

id

Fault Tree

id
topLevelHazard

System
Requirement

id

So ware Requirement

descrip on
id

type

Formal State-
Based Model

id
name

Code Class

id
name

UML Class

id
name

Test Case

id
name
status

Test Log

comments
date
id

status

Counter Example

descrip on
id

CTL Formula

formula
id

Minimum Cut Set

faultSet
id

Assump on

id
predicate
status

Regulatory Code

id
relevant

records
viola ons

extracted
from

must
hold

describes
environment

derived
from

derived
from

describes event
transi ons

prevents

constrains
unwanted
events

tests

violates

formalizes

sa sfies

implements

implements
record
results

complies to

Traceable artifact type

Permitted trace type

Key property

Legend

Fig. 1. A Traceability Information Model for a Safety Critical System

Figure 1 depicts the core traceable components of a safety critical system. The
typical software development artifacts are seen along the left side of the diagram:
system requirements are allocated to software requirements which are allocated
to design elements documented as UML classes which are implemented by code.
Test cases are used to test the software requirements with results being logged.
Meanwhile, the safety critical nature of the software system requires additional
artifacts which must also be traced, shown mainly on the right hand side of
the diagram. The Preliminary Hazard artifact documents hazards that could
lead to system failure. Such hazards are examined in more detail in a fault tree
which looks at events that could lead to the hazards. The possible states and
transitions for a system are documented in a formal state-based model. Certain
assumptions about the environment are also captured. Formal analysis of the
system may detect counter examples that show that a state can be entered which
violates safety properties, formalized in this TIM using Computation Tree Logic
(CTL). System Requirements are specified to prevent hazards from occuring by
preventing the unwanted events documented in the Minimum Cut Sets. The
Software Requirements may also have to comply with Regulatory Codes. Note
that because this paper does not address the safety case, we have chosen not

Trace Queries for Safety Requirements in High Assurance Systems 183

to include it in this TIM. Similarly, since we focus on product requirements, we
have not shown process requirements in this TIM.

Each traceable artifact type may also possess one or more properties, which
are used later in the process to specify traceability queries. For example, the
“Software Requirement” artifact type includes ‘id’, ‘description,’ and ‘type.’
Property values can be included in trace query results, while properties or mul-
tiplicities can be used to define constraints that filter out unwanted artifacts.
Filters can also be created based on trace types associated with each of the
traceability paths.

Investing the effort to define a TIM is worthwhile because the TIM makes
it simpler to generate and execute traceability queries. Furthermore, the TIM
can be mapped to physical artifacts, and therefore a TIM and its associated
trace queries can be reused across different products simply by re-establishing
mappings in the new project [18]. In this paper, we present a basic TIM and
define a set of reusable trace queries that are specific to the safety-critical domain.

3 Illustrative Example

We introduce a simplified pacemaker to illustrate the traceability infrastructure
and to contextualize the proposed trace queries. A pacemaker [3] is an embedded
medical device that monitors the heartbeat (HB) and regulates the heart when
it is not beating at a normal rate. A pacemaker is safety critical because certain
failures can harm the patient’s health or contribute to loss of life [3, 13].

3.1 Fault Tree

One of the initial tasks in building a safety-critical software system is a prelimi-
nary hazard analysis (PHA) [12] to identify a set of potential high-level hazards,
representing undesirable states of the system. System-level hazard analysis is
used to help decide which hazards can be avoided (e.g., by changing the opera-
tional environment) and which hazards must be handled by the system. The PHA
informs both the system safety requirements and the derived software safety re-
quirements that constrain the design of the system. Each of the hazards in the
PHA is typically explored by constructing an associated fault tree (FT) [23,24].
A fault tree refines an initial hazard into a series of lower level intermediate or
basic events, which, if they occur, would contribute toward the occurrence of
the hazard. The FT uses boolean logic to depict the causal events leading to the
root node. Figure 2 shows an excerpt from a fault tree constructed to investigate
the ways in which the pacemaker could fail to provide treatment to the patient
when needed [15].

As depicted, the hazard under analysis is Failure to pace when patient needs
it. Two identified intermediate faults are Failure to identify heartbeat correctly
and Failure to generate a required pulse. The first of these has three contributing
faults, namely sensing, calculation, and reporting failures, any one of which can

184 J. Cleland-Huang et al.

Failure to pace
when patient

needs it

Failure to identify
Heartbeat
Correctly

Failure to
generate a

required pulse

Sensing
failure

Reporting
failure

Executing
in inhibited

mode

Failure to
generate a
pulse when

no HB

Executing
in triggered

mode

Failure to
generate a

pulse following
every

heartbeat

Controller
fails to

switch from
triggered to

inhibited
mode

Event recorder
fails to switch
from inhibited

to triggered
mode

Inhibited
mode failure

Trigger
mode failure

Failure to
switch modes

correctly

Calculation
failure

Uses
Triggered

mode

Misadjusts
sensor

interval to
patient’s

activity level

Fig. 2. A Fault Tree

cause the pacemaker to fail to pace correctly. The second intermediate fault
has sub-faults related to inhibited mode failures, trigger mode failures, and
transitioning from one mode to another. For purposes of this example, we are
particularly interested in the inhibited mode failure which can occur when the
pacemaker is in inhibited mode and there is a failure to generate a pulse when
no heartbeat is detected. We are also interested in the calculation failure that
occurs when triggered mode is used and the pacemaker fails to adjust the sensor
interval to the patient’s activity level.

A cut set in a fault tree is defined as a set of basic events (leaf nodes) whose
simultaneous occurrence would cause the top event in the fault tree to occur [12].
A cut set is said to be minimum if it cannot be reduced without losing its status
as a cut set. An example of a minimum cut set for the pacemaker is “failing
to generate a pulse when no heartbeat is detected” while “in inhibited mode.”
If both of these leaf nodes occur at the same time, the pacemaker will fail to
pace when needed, a hazard to the patient. Almost every fault-tree modeling
tool has the capability to return the set of minimum cut sets that can be used
to identify common cause failures across multiple fault trees, i.e., events that
occur in the minimum cut sets of multiple fault trees. In addition, some tools
can return common cause events.

Trace Queries for Safety Requirements in High Assurance Systems 185

Table 1. A Subset of Requirements for the PaceMaker System

REQ101 Inhibited Mode: While in inhibited mode, if no heart beat is detected by the
pacemaker’s sensor during a programmable sensing interval, the pacemaker
shall generate a pulse.

REQ102 Triggered Mode: While in triggered mode, the pacemaker shall regulate the
heartbeat by generating a pulse following every heartbeat.

REQ103 Track Heartbeat Rate: While in inhibited mode, the EventRecorder shall
track the heartbeat rate.

REQ104 Transition to Triggered Mode: While in inhibited mode, if the heartbeat
rate exceeds a threshold, the EventRecorder shall command a switch to trig-
gered mode.

REQ105 Transition to Inhibited Mode: While in Triggered mode, if the number of
heartbeats exceeds 24 in a 6000 msec recording interval, the Controller shall
command a switch to Inhibited mode.

REQ106 Activity Sensor: The pacemaker shall monitor the activity level of the pa-
tient.

REQ107 Activity Response: The pacemaker shall adjust the duration of the sensing
interval to match the patient’s current activity level.

3.2 Safety-Related Software Requirements

The basic functionality of the pacemaker involves two different operation modes:
inhibited and triggered [14]. In inhibited mode, the pacemaker generates a pulse
only if the heart fails to generate its own pulse, while in triggered mode, the
pacemaker generates a pulse following each heartbeat. Some pacemakers, such
as the one illustrated here, also have the ability to monitor the activity level of
a patient in order to adjust the sensing interval accordingly. These requirements
are more formally depicted in Table 1. Note that these requirements may be
found as a subset of the System or Safety Requirements from the TIM shown in
Figure 1.

3.3 Safety Analysis

Once failure causes are well understood and the software requirements to ad-
dress these (called software safety requirements) are specified and validated,
developers construct the design to satisfy the requirements and produce code
to implement the design. Certain properties must be satisfied by the pacemaker
design and implementation in order to assure patient safety. Moreover, these
properties must be shown to be satisfied in order for the company producing the
pacemaker to gain approval to market and sell their devices. An example of such
a safety-related property is requirement REQ101 related to pulse generation. An
examination of the fault tree in Figure 2 shows that this property is the inverse
of the minimum cut set containing the two leaf nodes “Fails to generate a pulse”
and “Is in inhibited mode.”

Many of the safety engineer’s tasks thus involve assurance that traceability
exists between the safety requirements and the intermediate and final products.
Some of the assurances the safety engineer is responsible for providing involve
relatively straightforward queries such as “Are all initially identified hazards cov-
ered by a fault tree?” Other assurances involve more complicated traceability

186 J. Cleland-Huang et al.

queries such as “Do all minimum cut sets have an associated mitigating require-
ment?” or “Are all common cause failures in the set of fault trees addressed by
one or more design mechanisms?” In previous work we presented a set of eleven
standard trace query patterns needed for the assurance of requirements for an
e-health software system that did not have explicit safety requirements [18]. In
this paper we extend those queries to include trace queries needed to handle the
assurance of software safety requirements.

For each trace query, we describe how the query is represented using our Vi-
sual Trace Modeling Language (VTML), and discuss the results returned by
an example of the traceability query for the pacemaker. Each of these queries
addresses a common question that must be repeatedly posed by either a safety
engineer or a developer in the safety-critical domain, for which current tech-
niques generally require significant manual effort to answer. Representation of
the queries in VTML enables the associated queries to be used and reused across
the artifacts in the TIM. If a query returns bad news, the safety engineer can
place this item on a watch list. New queries then can be periodically run behind
the scenes. If new fault trees are identified or existing fault trees are updated
in response to evolution in requirements, design, or operational experience [17],
the safety engineer can perform a delta trace to determine if added or modified
hazards are adequately covered.

4 Visual Trace Modeling Language (VTML)

We illustrate the trace queries in this paper using VTML. VTML assumes the
presence of an underlying TIM and then represents queries as a set of filters
applied to a structural subset of that model. A VTML query is composed of a
connected subset of the artifacts and trace types defined in the TIM as well as
a set of associated filter conditions. These filters are used to eliminate unwanted
artifacts or to define the data to be returned by the trace query.

Figure 3 depicts the basic elements of a VTML query. The initial query scope
specifies the subset of artifacts for which the trace is to be executed, where scope
could be as small as a single artifact, or as broad as the entire set of artifacts of
that type. VTML depicts this scope visually using the start symbol. The three
compartments of the class notation are used respectively to depict the name of
the class, properties used in filter conditions or to specify return results, and
functions used to compose and extract aggregate data from the class. Return
values are annotated with a bar chart symbol, while properties used to filter
results are annotated with a filter symbol and also depict a valid filter expression.
As shown in this example, filters can be applied at both the class and the trace
matrix level. The example in Figure 3 can be read as follows assuming source
artifacts are use cases and target artifacts are test cases : “For the selected use
cases, return the description of all use cases which trace to more than two failed
test cases. Aggregate the results according to some function f, and display the
description and the aggregated value.” A more complete description of VTML
including its metamodel and an extensive set of queries is provided in our prior
work [18].

Trace Queries for Safety Requirements in High Assurance Systems 187

Source Artifact

description

COUNT(id)

Target Artifact

result = ‘failed’2..*

Queried traceable
artifact types

Property
filter

Relation count
filter

Return value
of the query

Relation
attribute filter

Context: input-set
type, selectable by user

Aggregation
function

type = ‘trace’

Queried relation
type

Fig. 3. Features of a visual traceability query

5 Safety-Related Trace Queries

Traceability provides support for specific software engineering goals, as depicted
in Table 2. These goals are derived from a number of sources including Leve-
son’s set of basic software system safety tasks [12], our own experiences working
with safety-critical systems [7,16], an analysis of several documents prepared as
submissions for approval of medical devices, and a study of related literature,
handbooks, and guides [9].

For each of these traceability goals, there are several different supportive trace-
ability queries that can be used by the safety analyst. For example, if we are
interested in Traceability Goals #2 (safety-related requirements covered by de-
sign) and #6 (safety-related requirements have been tested), we might focus on
tracing requirements to code. Queries of interest might include (a) “return a list
of all requirements and the associated classes in which they are implemented”,
and (b) “count the number of requirements without implemented classes.” These
queries reveal something about the coverage of requirements in the implemen-
tation. Similarly, (c) “return a list of all requirements without associated imple-
mented classes” or (d) “count the number of requirements without implemented
classes” both reveal information about lack of coverage. We could also execute
transitive trace queries such as (e) “return a list of all requirements with classes
that have failed test cases in the past week,” or we could incorporate customized
functions into the trace queries as (f) “return a list of requirements with classes
that exhibit cyclomatic complexity values in the top 5 percentile.”

As it is not feasible for us to illustrate each type of query for each of the
twelve proposed trace queries, we illustrate our approach with trace queries for
three of the goals that are particularly relevant to the safety-domain, and which
are quite different from queries found in non-safety critical domains. All of these
queries assume the underlying presence of the TIM depicted in Figure 1.

5.1 Requirement Coverage of all Common Cause Failures

In support of traceability goal # 1, it is important to show that all minimum cut
sets derived from the modeled fault trees are covered by requirements. Showing

188 J. Cleland-Huang et al.

Table 2. Safety-Related Traceability Goals

1. Demonstrate that all common cause failures in the set of fault trees are covered by re-
quirements.

2. Demonstrate that all safety-related requirements are satisfied in the design.
3. Determine which regulatory codes are covered by requirements.
4. Demonstrate that all safety-related design elements are fully realized in the code.
5. Identify parts of the code which represent standard safety mechanisms including architec-

tural or design mechanisms such as safety interlocks, heartbeat or fault-data redundancy,
to prevent a specific hazard from occurring.

6. Demonstrate coverage of safety-related requirements by test cases.
7. Demonstrate that safety-related test cases have passed.
8. Demonstrate that properties specifying safety-related requirements to be model checked

have been model checked.
9. Demonstrate that all counter-examples produced by the formal model checker for any of

the safety-related requirements have been reviewed by a safety engineer.
10. Determine the potential impact of changing a requirement on its associated downstream,

safety-related TIM artifacts.
11. Determine which requirements might be impacted by failure of a safety-related test case.
12. Determine which formal models might be impacted by a change to an environmental as-

sumption.

that each minimum cut set is associated with one or more mitigating require-
ments can provide a safety engineer with the information he or she needs to
assess whether the hazard is fully mitigated. We present an example of one sup-
porting trace query in Figure 4. This query returns a list of minimum cut sets
and their associated requirements for one or more fault trees. As the VTML
assumes a default cardinality of 1..*, the query only returns the minimum cut
sets which have related system and software requirements. A similar query in
which a cardinality filter of 0 is placed on the link between Minimum Cut Set
and System Requirement would list only the minimum cut sets without system
level requirements coverage.

Fault Tree
Minimum
Cut Set

System
Requirement

faultSet

Software
Requirement

id
description

topLevelHazard

Fig. 4. Trace Query: Retrieve requirements providing coverage for minimum cut sets
derived from one or more fault trees

Applying the trace in Figure 4 to the pacemaker example produces a trace ma-
trix that includes the entries depicted in Table 3. These traces not only demon-
strate that the minimum cut sets are associated with software requirements,
but provide the safety engineer with information needed to assess how well they
mitigate the common cause failures.

5.2 Integrating Formal Method Results

There is an increasing trend in safety-critical software development toward more
formally verifying the correctness of the design through model checking [14].

Trace Queries for Safety Requirements in High Assurance Systems 189

Table 3. A Subset of Results Returned by the Minimum Cut Set Coverage Query

Fault Tree Minimum Cut Set System Requirement Software Requirement
Failure to pace
when patient
needs it

(i)executing in inhibited
mode,(ii)failure to gen-
erate a pulse when no
HB

Monitor battery power
to ensure pulse can be
given.

Log failure event internally
for diagnosis; Send wire-
less phone warning to health
provider upon recurrence.

Failure to pace
when patient
needs it

(i)uses triggered model,
(ii)adjusts sensor inter-
val to patient’s activity
level

Activity sensors are
monitored at all times
for correct function.

If the respiration sensor (in-
dicating activity level) fails,
the pacemaker shall use In-
hibited mode

However in current practice, the model checking results are often disconnected
from other software artifacts and are therefore often not used in the traceability
scheme. In this section we propose a trace queriy for integrating model checking
results into the TIM in support of Trace Goal #8. The query depicted in Figure 5
utilizes the formal model components of the TIM. First, it identifies any counter
examples produced by the model checker. If any are identified, it returns a list
of the associated CTL formulas and related requirements.

Model Checker
Counter Example CTL Formula

formula

Software
Requirement

id
description

description

Fig. 5. List all CTL formulas and related requirements for any counter examples
produced by the model checker

To illustrate this query, consider the pacemaker requirement REQ101 which
states that “While in inhibited mode, if no heart beat is detected by the pace-
maker’s sensor during a programmable sensing interval, the pacemaker shall
generate a pulse.” An associated CTL could be defined as follows [14]:

AG((sensed = 0 ∧ timerSenseT imeUp= 1 ∧ inhibitedMode = 1))

=⇒ EF (pulseGen = 1 ∧ inhibitedMode = 1))

This and similar CTL properties are checked by the model, and results are stored
in a model checking repository. Assuming no counterexamples are produced, the
query in Figure 5 returns an empty list, adding some degree of confidence that
given the as-modeled behavior of the system, this requirement is always satisfied.

Figure 6 depicts two additional kinds of supporting trace queries for counting
artifacts and for identifying missing elements. The first shows how a trace query
can be used to return a simple count of counter examples produced by the most
recent model checking run, while the second one returns a list of mitigating
requirements without associated CTL formulas. Both of these trace queries and
their results can be used by a safety engineer to help manage safety requirements
throughout the software development effort.

190 J. Cleland-Huang et al.

Model Checker
Counter Example

COUNT(id)

(a) Query 3a: Return a count of counter examples produced by the most recent model
checking run

Software
Requirement CTL Formula

id

description

type=”mitigating”

0

(b) Query 3b: Return a list of mitigating requirements without associated CTL formulas

Fig. 6. Supporting Traces for Integrating Results from the Model Checker

5.3 Assumptions

In our final example we present a trace query that supports Goal #12. Each
formal model typically has a set of assumptions associated with it. These as-
sumptions are often in the form of predicates such as “A patient’s heartbeat is
always (can be assumed to be) in the range x to y.” or “the sensor that checks
the patient’s respiration rate never (can be assumed to never) fails.” Sometimes
during use of the system, or due to changes in the environment, these assump-
tions are found to be, or become, incorrect. The properties verified on that
model were based on those assumptions, so we can no longer be confident in
safety arguments based on the model. In the trace query depicted in Figure 7,
we therefore retrieve a list of all CTL properties and associated requirements
that are impacted by a change in one or more assumptions.

Assumption CTL Formula

formula

Formal State-
Based Model

name

Software
Requirement

id
description

predicate
status=”modified”

Fig. 7. Trace Query:List all requirements impacted by a change in an environmental
assumption and the formal models that must be re-checked

5.4 Prototype

One of the major benefits of VTML is that trace queries are defined over the
TIM, and do not reference project-specific data structures. However, the queries
must be transformed into a query format that can be applied to the physical
data sources. All of the trace queries described in this paper are fully executable

Trace Queries for Safety Requirements in High Assurance Systems 191

in our prototype tool. Our prototype transforms the features of a visual trace-
ability query step by step into an executable SQL query. It first uses an XSLT
script that translates queries into XMI format, and then transforms them into
executable SQL statements [18]. Defining and writing trace queries using VTML
applied over a standard TIM, makes the queries fully portable across projects. It
means that an organization adopting our appproach could create both a reusable
TIM and a reusable set of safety-related trace queries which address all of the
traceability goals defined in Table 2. This portability is achieved by mapping the
conceptual elements of the TIM, including the artifact types and their properties,
to physical fields in the underlying database.

6 Related Work

Most discussion of traceability in the development of safety-critical systems is
in the form of standards and guidebooks that mandate the tracking of hazards
and their mitigations through the software life cycle but do not describe query
techniques to help achieve this. However, safety cases [11], dependability cases [1],
and assurance cases all use traceability to construct structured arguments to
justify goals by tracing and managing the links from evidence to those goals.
Recommended practice is to maintain the case while constructing the system
so that every step of development preserves the established chain of evidence.
Although there is a large body of work in the more general area of traceability,
to the best of our knowledge, there is little or no research that investigates
techniques for using traceability to support a broad spectrum of safety-related
queries in the way described in this paper. Extending the work described here
to support assemblage and maintenance of safety case evidence is a natural and
planned extension.

Peraldi-Frati and Albinet proposed a model for traceability in safety-critical
systems [20]. Their work focused on requirements, design, and test cases, and
showed how to establish satisfies relationships from design to requirements, and
verifies relationships between test cases and requirements. Their proposed in-
frastructure incorporates formal models that demonstrate the satisfaction of a
specific requirement. Katta and Stalhane define a conceptual model of traceabil-
ity for safety systems [10]. Their approach creates a traceability graph (similar
to a TIM) depicting a wide variety of artifacts and their associated traceability
links. For example, they include hazards, system level requirements, software
requirements, architectural components, and common cause failures. However,
neither of these approaches incorporates results from fault tree analysis nor in-
tegrates formal methods into the traceability infrastructure. Furthermore, in
general, any publications we found on tracing safety-critical requirements focus
upon describing the actual artifacts to be traced, and fail to highlight the tracing
benefits achieved through a useful and effective set of traceability queries.

Hill and Tilley propose a traceability approach for supporting the assurance
and recertification of safety-critical legacy systems [8]. However, they primar-
ily describe traces between requirements, process improvement standards, and a

192 J. Cleland-Huang et al.

risk taxonomy and do not discuss any specific types of software artifacts beyond
requirements. Finally, other researchers such as Sanchez et al. have explored the
role of traceability in safety-critical, model-driven environments [22]. Their ap-
proach is designed to demonstrate that hazards translate into requirements, and
that architectural decisions designed to satisfy those requirements are success-
fully transformed into the final code.

7 Conclusions

The traceability goals and queries described in this paper support a number of
critical safety engineering tasks. First, they can be used during the development
process to ensure that safety is being built into the system, and second, they can
be used to generate traceability matrices needed by certification and approval
bodies such as the FDA. Combining the various types of coverage queries pro-
duces relatively sophisticated and clearly useful trace matrices. It also identifies
problem areas such as safety-related requirements without passed test cases, or
safety-related requirements potentially impacted by changed values of environ-
mental variables which provide significant support towards building a demon-
strably safe software system.

The primary contribution of this paper is the presentation of a query-driven
approach to tracing requirements in safety-critical software systems. At the start
of a project, safety engineers and developers can strategically plan the TIM, map
it to specific database tables or other data structures, and carefully define the
safety-related trace queries that are to be accessible throughout the project.
This kind of approach enables engineers to build traceability into the software
development life-cycle, so that traceability links can be used not only for docu-
mentation purposes during the certification process, but for actually improving
developers’ understanding of safety-related issues throughout the software de-
velopment life-cycle.

Acknowledgments. This work was supported by NSF grants CCF-0916275
with funds from the American Recovery and Reinvestment Act of 2009, CCF-
1143830, CCF-1143734, CCF-0810924 and CCF-0811140. This research is also
funded in part by the Austrian Science Fund (FWF): M1268-N23.

References

1. Jackson, D., Thomas, M., Millet, L.I.: Software for Dependable Systems: Sufficient
Evidence? National Research Council (2007)

2. Dömges, R., Pohl, K.: Adapting Tracability Environments to Project-Specific
Needs. Communications of the ACM 41(12), 54–62 (1998) ISSN 0001-0782

3. Ellenbogen, K.A., Wood, M.A.: Cardiac Pacing and ICDs. Blackwell Publishing
(2005)

4. Federal Aviation Authority (FAA). DO-178B: Software Considerations in Airborne
Systems and Equipment Certification, faa’s advisory circular ac20-115b edition

Trace Queries for Safety Requirements in High Assurance Systems 193

5. Food and Drug Administration. Guidance for the Content of Premarket Submis-
sions for Software Contained in Medical Devices (2005)

6. Gotel, O., Finkelstein, C.: An analysis of the requirements traceability problem. In:
Proceedings of the First International Conference on Requirements Engineering,
pp. 94–101 (April 1994)

7. Heimdahl, M.P.E.: Safety and software intensive systems: Challenges old and new.
In: FOSE, pp. 137–152 (2007)

8. Hill, J., Tilley, S.: Creating safety requirements traceability for assuring and re-
certifying legacy safety-critical systems. In: 18th IEEE International Requirements
Engineering Conference (RE), September 27-October 1, pp. 297–302 (2010)

9. Joint Software System Safety Committee. Software System Safety Handbook Tech-
nical and Manegerial Team Approach, edition (1999)

10. Katta, V., Stalhane, T.: A conceptual model of traceability for safety systems. In:
CSDM - Poster Presentation (2010)

11. Kelly, T.P., McDermid, J.A.: A Systematic Approach to Safety Case Maintenance.
In: Felici, M., Kanoun, K., Pasquini, A. (eds.) SAFECOMP 1999. LNCS, vol. 1698,
pp. 13–26. Springer, Heidelberg (1999)

12. Leveson, N.G.: Safeware, System Safety and Computers. Addison Wesley (1995)
13. Littlewood, B., Strigini, L.: Validation of ultrahigh dependability for software-based

systems. Commun. ACM 36(11), 69–80 (1993)
14. Liu, J., Basu, S., Lutz, R.: Generating variation point obligations for composi-

tional model checking of software product lines. Journal of Automated Software
Engineering 18(1), 39–76 (2011)

15. Liu, J., Dehlinger, J., Sun, H., Lutz, R.R.: State-based modeling to support the
evolution and maintenance of safety-critical software product lines. In: ECBS, pp.
596–608 (2007)

16. Lutz, R.R.: Software engineering for safety: a roadmap. In: ICSE - Future of SE
Track, pp. 213–226 (2000)

17. Lutz, R.R., Mikulski, I.C.: Requirements discovery during the testing of safety-
critical software. In: ICSE, pp. 578–585 (2003)

18. Mäder, P., Cleland-Huang, J.: A Visual Traceability Modeling Language. In: Petriu,
D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394,
pp. 226–240. Springer, Heidelberg (2010)

19. Mäder, P., Gotel, O., Philippow, I.: Getting Back to Basics: Promoting the Use
of a Traceability Information Model in Practice. In: 5th Workshop on Traceability
in Emerging Forms of Software Engineering (TEFSE 2009). In Conjunction with
ICSE 2009, Vancouver, Canada (May 2009)

20. Peraldi-Frati, M.-A., Albinet, A.: Requirement traceability in safety critical sys-
tems. In: Proceedings of the 1st Workshop on Critical Automotive Applications:
Robustness & Safety, CARS 2010, pp. 11–14. ACM, New York (2010)

21. Ramesh, B., Jarke, M.: Toward reference models for requirements traceability.
IEEE Trans. Softw. Eng. 27, 58–93 (2001)

22. Sánchez, P., Alonso, D., Rosique, F., Álvarez, B., Pastor, J.A.: Introducing safety
requirements traceability support in model-driven development of robotic applica-
tions. IEEE Trans. Computers 60(8), 1059–1071 (2011)

23. Storey, N.R.: Safety Critical Computer Systems. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston (1996)

24. Sullivan, K.J., Dugan, J.B., Coppit, D.: The galileo fault tree analysis tool. In:
FTCS, pp. 232–235 (1999)

Which Traceability Visualization Is Suitable

in This Context? A Comparative Study

Yang Li and Walid Maalej

Technische Universität München
Munich, Germany

{liya,maalejw}@cs.tum.edu

Abstract. Traceability supports users in describing and tracking the
relationships between software artifacts. Techniques such as traceabil-
ity matrices and graphs visualize these relationships and help users to
access and understand them. Researchers agree that different visualiza-
tion techniques add valuable information in different contexts. However,
there is an ambiguity which visualization is suitable for which context. To
clarify this we conducted a comparative study of common visualization
techniques, including an experiment and interviews with 24 participants.

We found that traceability matrices and graphs are most preferred in
management tasks, while hyperlinks are preferred in implementation and
testing tasks. Traceability lists seem to be the least attractive technique
for most participants. Graphs are preferred to navigate linked artifacts,
while matrices are appropriate for overview. Hyperlinks are regarded to
fit for fine-grained information. Participants stressed the importance of
visualizing semantics of artifacts and links. Our finding also indicates
that users are not always able to choose the most suitable visualization.

Keywords: Traceability, Visualization, Context, Empirical Experiment.

1 Introduction

Over the last years, research has shown how traceability supports various soft-
ware engineering tasks such as design, implementation, testing, and manage-
ment tasks [1,6]. Traceability links provide valuable information such as related
artifacts and the nature of the relationship. These links enable following the
evolution of an artifact, in particular of a requirement from its origin to its
deployment [10].

As the number of links and the complexity of their usage increased, researchers
suggested various techniques for traceability visualization. The objective is to
help users to understand the “cloud of links” and efficiently access underlying
information [7, 12]. However, visualization might introduce new overhead, be
too trivial, or too complex for the task at hand. For example, checking the
implementation status of a release based on hyperlinks between requirements and
code might be a repetitive tedious task. Therefore, how to visualize traceability
links strongly depends on the usage context.

B. Regnell and D. Damian (Eds.): REFSQ 2012, LNCS 7195, pp. 194–210, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Which Traceability Visualization Is Suitable in This Context? 195

Various authors have discussed the problem of traceability visualization.
Marcus et al. [24] found that a traceability management tool should contain
different views – each may best fit specific tasks. Similarly, Winkler [32] deduced
from a survey that future traceability visualization should focus more on users
and tasks. Gotel et al. [10] analyzed requirements traceability problems and
found that added value of traceability depends on the user, the task, and the
project characteristics. There is a common agreement that appropriate trace-
ability visualization should consider “the trade-off between the effort needed to
capture complex information and the value of this information for the develop-
ment situation” [21, 27]. This paper is a part of a larger research that examines
this trade-off for recommending the suitable visualization in a particular context.

The paper reports on a comparative study, which includes a literature review,
an experiment, and interviews with 24 participants. The paper’s contribution is
threefold. First, it summarizes the literature on traceability visualization in a
meta-model, which describes the relationship between traceability information,
visualization techniques, and task contexts. Second, it provides empirical evi-
dence on the suitability of four common visualization techniques (matrix, graph,
list, and hyperlink) for particular contexts. Third, it gives tool vendors and re-
searchers insights into how to integrate and fine-tune visualization techniques in
requirements engineering processes and tools.

Section 2 reviews the literature introducing the studied concepts. Section 3
presents the design of our study including the research questions and meth-
ods. Section 4 and 5 report on the quantitative and qualitative results of the
study, respectively. We discuss our findings in section 6. Section 7 discusses the
limitations of the study, while Section 8 concludes the paper.

2 Foundation

Traceability visualization involves three main concepts: the traceability infor-
mation (what to visualize), the visualization technique (how to visualize), and
the task context (when to visualize). Traceability information is the set of in-
trinsic properties of links and the related artifacts to be traced. Visualization
techniques depict the traceability information e.g. in graphs, lists, or images. A
task context describes a particular situation where a user interacts with certain
artifacts and traceability information to achieve a goal. Fig. 2 illustrates these
concepts and their associations:

– Visualization helps understanding traceability information. This association
is also called understandability [9].

– Traceability information is valuable for accomplishing a task in a particular
context. This association is also called information value [8].

– A visualization technique is suitable for a particular task context. We call
this suitability.

The trade-off between the information value and the understandability of the
visualization represents the visualization suitability from a different perspective.

196 Y. Li and W. Maalej

Traceability
Information

Visualization Task
Context

Link

Artifact

ListHyperlink

MatrixGraph

suitability

understandability information value

traces

Fig. 1. Traceability Visualization Meta-Model

2.1 Traceability Information: What to Visualize

A traceability link connects a source artifact with a target artifact, which are
created and updated during the software life cycle. Traceability information to
be visualized includes information about the artifacts and links. Concerning the
artifacts authors suggested visualizing the type, metadata, granularity, as well
as other artifacts attributes:

Artifact types such as requirements, class diagrams, and source code are
created by various stakeholders in different tasks to describe different aspects of
a system or a project [27]. Traceability links might trace artifacts from the same
types or from different types.

Artifact metadata provides information about the artifact state and its
evolution. Artifact metadata can include the creation time, the update time, and
the version of an artifact [24]. Metadata might include additional information
such as the main author or the collaborators.

Granularity represents the level of information details included in the arti-
fact and pointed by the link. Coarse-grained information can result in the loss
of useful detail, while fine-grained representations can create trivial knowledge
whose benefits do not warrant its creation cost [27].

Artifact attributes describe certain semantic properties of an artifact, such
as the status of an action item or the priority of a requirement [33]. These
attributes typically depend on the artifact type.

In addition to the artifacts linked, the link itself presents other information,
which needs to be visualized:

Link type describes how the artifacts are related to each other and implies
how the relationship should be used in different contexts [30]. Ramesh et al. [27]
classified traceability links into four basic types: satisfaction, dependency, ratio-
nale, and evolution. In their classification, high-level artifact such as goals or
constraints can be satisfied by lower-level artifacts. Dependencies exist between
lower-level artifacts. A lower-level artifact evolves to another artifact through
some actions, whose rationale is captured in the higher-level artifact.

Link metadata contains the link creation time, the update time [24], or the
link version providing information on the link state and evolution. The author
of the link and other related information can also be included in the metadata.

Which Traceability Visualization Is Suitable in This Context? 197

Link strength measures how much an artifact affects others, or how impor-
tant is a link to a project or a task. The strength of a link highlights the most
useful information to a user. However, Ramesh et al. found that users are often
unable to precisely identify the strength of a link [27].

Confidence denotes the degree of belief on the correctness of the results
returned by an automated or semi-automated link recovery scheme [2, 3]. It
provides a reference to users when presenting the recovered links.

2.2 Visualization Technique: How to Visualize

We focus on four visualization techniques1: matrices, graphs, lists, and hyperlinks
as illustrated in Fig. 2. These are widely referenced in the literature and used in
many tools. Other techniques are introduced in [3, 24, 25, 28].

(A) (B)

(C) (D)

Fig. 2. Common Visualizations: Matrix (A), Graph (B), List (C), and Hyperlink (D)

Matrix or a requirements traceability matrix (RTM) maps requirements to
other artifacts through a two dimensional representation. Typically, the columns

1 In the following the term visualization means visualization technique.

198 Y. Li and W. Maalej

represent requirements while the rows represent other artifacts. A matrix element
ai,j being marked (e.g. black) means that the requirement of column j and the
artifact of row i are linked. Example implementations include DocTrace and
VisMatrix. DocTrace automatically creates RTMs, which show the traceability
and coverage of requirements throughout the set of documents [29]. VisMatrix
focuses on link recovery [7]. It creates a representation of RTMs showing not
only where candidate links exist, but also the strength of those links.

Graphs allow visualization of multidimensional relationships between re-
quirements and other artifacts by representing artifacts as nodes and relation-
ships between them as edges. Two nodes are connected if a traceability link exists
between the corresponding artifacts. Traceline and ChainGraphs implement this
visualization technique. Traceline is a DOORS extension, which provides graph-
based visualizations for requirements traceability [14]. ChainGraph visualizes
shared metadata between requirements in a graph [12].

Lists represent each traceability link (along with the information of source,
target artifacts, and other attributes) in one entry. It is often used in a link
recovery process. When candidate links are rendered, they are generally dis-
played as a sequential list, ranked in order of similarity to the query. The most
likely links appear at the top of the list. The tools Poirot [18], RETRO [11],
and ADAMS [4, 5] represent dynamically generated candidate links as a list. A
confidence score that indicates the likelihood of the link is displayed. Users can
choose to accept or reject candidate links.

Hyperlinks enable users while browsing an artifact to easily “jump” to an-
other linked artifact (possibly in a different tool). Hyperlinks connect related con-
cepts, keywords, or phrases in a natural way. Kaindl et al. proposed RETH [16],
a tool that uses hypertext to provide links among requirements and the rep-
resentation of artifacts in a domain model. This representation allows users to
make relationships explicit. Maletic et al. [22] proposed a hypertext model which
supports complex linking structures and versioning of individual links for link
recovery. In DOORS, out- and incoming links of an artifact are visualized as
bidirectional hyperlinks.

2.3 Task Context: When to Visualize

A particular task at hand decides when and why to represent traceability in-
formation [10] and influences how and what to represent. A task is usually an
assigned piece of work to be finished within a certain time [17]. To complete
a task, a set of information and events is involved, which can be observed or
interpreted [19, 20]. We call this set a task context. It consists of artifacts used
during the task (e.g. the requirements read or the code edited) as well as the
interaction of the user with the tools and the artifacts (e.g. read, edit, navigate).

Table 1 depicts the contexts of common tasks, how users interact with artifacts
in these task contexts and which traceability links are involved.

Which Traceability Visualization Is Suitable in This Context? 199

Table 1. Task Contexts Examples

Task Traceability Usage Linked Artifacts

Management Monitor progress of implementation
and testing [32]
Plan open issues [6,26]

Work items,
requirements, test cases,
and source code

Design Identify components and objects
which satisfies a requirement [15]
Propagate changes during redesign [6]

Models and requirements

Implementation Comprehend a program in order to fix
a bug or implement a new feature [1]

Source code,
requirements, and models

Testing Check if requirements have been
implemented correctly [15]

Test cases and
requirements

3 Research Design

We first introduce the research questions that drive our research, and then
present the method followed and the setup used to collect the research data.

3.1 Research Questions

The main goal of our research is to answer two main research questions:

RQ1. Which visualization is suitable in a particular task context?

We study the suitability from four perspectives. First, the perceived suitability,
is the user’s assessment of the direct relationship between a particular visual-
ization and a particular context. Second, the information comprehension ratio
describes the trade-off between the understandability of traceability visualiza-
tion and its underlying information value for a context. To measure this we
define: f = informationV alue

difficulty . The higher f is, the easier is it to capture valuable
information for the task through the visualization. Therefore, a larger informa-
tion comprehension ratio also means a better suitability of that visualization.
Third, we assume that a suitable visualization helps accomplishing a task in less
time. Thus we examine the time needed for a task using different visualizations.
Finally, we study the preferences of users, i.e. which visualization a user would
use for a particular task context.

RQ2. What traceability information should be visualized?

In a particular task context, certain traceability information (e.g. particular
attributes of the related artifacts) can be crucial. This information needs to be
represented. Further, we study how to visualize various types of information so
that users are able to easily access and understand it.

200 Y. Li and W. Maalej

3.2 Research Method

We study the usage of the introduced traceability visualization techniques for the
management, design, implementation, and testing tasks. The study consists of
three phases as shown in Fig. 3: a preparation phase, an experiment phase, and
an interview phase. In the preparation phase we introduce the concept of trace-
ability, the purpose of the experiment, the dummy project, and how to use the
four traceability visualization techniques. We randomly divide the participants
into two groups: a control group and an experimental group. In the experimental
group a participant is required to finish each task using an assigned traceabil-
ity visualization. The mapping of the tasks and the visualization is randomly
generated. In the control group participants are required to finish each task by
using their favorite traceability visualization (the one a participant thinks it is
suitable).

Pa
rt

ic
ip

an
t

Ex
pe

rim
en

te
r

Introduce
tasks

Observe
time and

interaction

Ask open
questions

Assign
visualization

Give
feedback

Ask closed
questions

Choose
visualization

Perform
4 tasks

experimental
group

control
group

Preparation Phase Experiment Phase Interview Phase

Fig. 3. Experiment Process

In the experiment phase each participant is required to finish four tasks that
represent different contexts. A participant starts with the management task.
The implementation task, design task, and testing task are then ordered ran-
domly. The management task is ordered first since participants who gain project
knowledge from other tasks can perform this task without using traceability vi-
sualization. The other tasks are independent from each other and are related to
three different parts of the project. After each task is completed, the participants
are presented with the following statements

1. This visualization is easy to understand.
2. The underlying information is valuable for this task.
3. This visualization is suitable in this context.

Participants rate their agreement with these statements by selecting one option
on the following Likert scales: ① strongly disagree, ② disagree, ③ undecided, ④
agree, and ⑤ strongly agree. During this phase we also measure the time needed
to accomplish each task. After completion of tasks, we ask each participant the
following open questions in the interview phase:

Which Traceability Visualization Is Suitable in This Context? 201

1. Would you use any of these visualizations during your real work? Why?
2. Do you think that a particular visualization is more suitable for a particular

context?
3. Do you have any other comments or suggestions?

Overall, the whole process lasted approximately one hour for each participant.

3.3 Research Setup

We recruited 24 participants for the experiment. Eight were industry engineers
with more than two years of professional experience. Eight were researchers who
work on software engineering research topics. Eight were master level students
with basic software engineering knowledge and programming skills. 16 partici-
pants were randomly assigned to the experimental group and eight participants
to the control group.

For the experiment, we used the java open source project “Sudoku”. The
project includes 11 requirements, 17 class diagrams of each class and each pack-
age, 11 source code files in 3 packages, 11 test cases for UI testing, and 15 open
work items managed in the JIRA issue tracking system. In total, 34 traceability
links exist between requirements and class diagrams, requirements and source
code, requirements and work items, and requirements and test cases.

In the management task a participant reviews the current project status,
and then prioritizes and plans all open issues. In the implementation task a
participant fixes a bug in Sudoku. In the design task a participant redesigns a
package by refactoring a large class. Finally, in the testing task a participant
tests whether a given requirement is implemented correctly.

To reduce the tool and usability biases, we implemented four Eclipse views
in the same look-and-feel as illustrated in Fig. 2. The matrix view displays the
traceability matrix of the “Sudoku” project. The columns represent require-
ments; the rows represent work items, test cases, code, and models. The graph
view is zoomable and shows the relationships between all artifact types. Each
line in the list view contains information of the source artifact and the target
artifact of a traceability link. Finally, the hyperlink view displays hyperlinks in
the requirements document. Related artifacts are hyperlinked with a short text
description and get opened, if the hyperlink is clicked. Additional features such
as showing link strength and link types were available in the different views in
the same way. All views present the same traceability information.

4 Quantitative Results

We summarize the quantitative results in Fig. 4. Part A shows the assessments
of all participants for the understandability, information value, and perceived
suitability. The column “Count agree & str. agree” denotes the number of par-
ticipants who agreed or strongly agreed with the given statement, and the pro-
portion to the total number of ratings for the visualization in the respective

202 Y. Li and W. Maalej

A. Agreement Ratings Summary (24 participants)

Matrix 6 (75%)
Graph 5 (83.3%)
List 3 (75%)
Hyperlink 3 (60%)

Matrix 5 (100%)
Graph 3 (100%)
List 1 (33.3%)
Hyperlink 12 (100%)

Matrix 7 (87.5%)
Graph 5 (83.3%)
List 6 (85.7%)
Hyperlink 3 (100%)

Matrix 4 (80%)
Graph 7 (87.5%)
List 3 (75%)
Hyperlink 7 (100%)

Matrix 6 (75%)
Graph 3 (50%)
List 0 (0%)
Hyperlink 1 (20%)

Matrix 4 (80%)
Graph 3 (100%)
List 3 (100%)
Hyperlink 12 (100%)

Matrix 5 (62.5%)
Graph 4 (66.7%)
List 4 (57.1%)
Hyperlink 1 (33.3%)

Matrix 5 (100%)
Graph 7 (87.5%)
List 2 (50%)
Hyperlink 6 (85.7%)

Matrix 6 (75%)
Graph 4 (66.7%)
List 2 (50%)
Hyperlink 1 (20%)

Matrix 5 (100%)
Graph 3 (100%)
List 1 (33.3%)
Hyperlink 11 (91.7%)

Matrix 4 (50%)
Graph 5 (83.3%)
List 5 (71.4%)
Hyperlink 0 (0%)

Matrix 4 (80%)
Graph 6 (75%)
List 2 (50%)
Hyperlink 7 (100%)

Str. disagree Disagree Undecided Agree Str. agree Count agree
& str. agree

M
an

ag
em

en
t

Im
pl

.

1. This visualization is easy to understand.

D
es

ig
n

Te
st

in
g

Matrix Graph List Hyperlink
Control.4 (80%) 1 (100%) 0 (0%) 1 (100%)
Exp. 2 (66.7%) 4 (80%) 3 (75%) 2 (50%)

Matrix Graph List Hyperlink
Control.0 (0%) 2 (100%) 0 (0%) 6 (100%)
Exp. 5 (100%) 1 (100%) 1 (33.3%) 6 (100%)

Matrix Graph List Hyperlink
Control.3 (100%) 1 (50%) 2 (66.7%) 0 (0%)
Exp. 4 (80%) 4 (100%) 4 (100%) 3 (100%)

Matrix Graph List Hyperlink
Control.2 (100%) 2 (100%) 0 (0%) 4 (100%)
Exp. 2 (66.7%) 5 (83.3%) 3 (75%) 3 (100%)

2. The underlying information is valuable for this task.

Matrix Graph List Hyperlink
Control.4 (80%) 1 (100%) 0 (0%) 1 (100%)
Exp. 2 (66.7%) 2 (40%) 0 (0%) 0 (0%)

Matrix Graph List Hyperlink
Control.0 (0%) 2 (100%) 0 (0%) 6 (100%)
Exp. 4 (80%) 1 (100%) 3 (100%) 6 (100%)

Matrix Graph List Hyperlink
Control.3 (100%) 2 (100%) 2 (66.7%) 0 (0%)
Exp. 2 (40%) 2 (50%) 2 (50%) 1 (33.3%)

Matrix Graph List Hyperlink
Control.2 (100%) 2 (100%) 0 (0%) 4 (100%)
Exp. 3 (100%) 5 (83.3%) 2 (50%) 2 (66.7%)

3. This visualization is suitable in this context.

M
an

ag
em

en
t

Im
pl

.
D

es
ig

n
Te

st
in

g

Matrix Graph List Hyperlink
Control.4 (80%) 1 (100%) 0 (0%) 1 (100%)
Exp. 2 (66.7%) 3 (60%) 2 (50%) 0 (0%)

Matrix Graph List Hyperlink
Control.0 (0%) 2 (100%) 0 (0%) 5 (83.3%)
Exp. 5 (100%) 1 (100%) 1 (33.3%) 6 (100%)

Matrix Graph List Hyperlink
Control.3 (100%) 2 (100%) 3 (100%) 0 (0%)
Exp. 1 (25%) 3 (75%) 2 (50%) 0 (0%)

Matrix Graph List Hyperlink
Control.2 (100%) 2 (100%) 0 (0%) 4 (100%)
Exp. 2 (66.7%) 4 (66.7%) 2 (50%) 3 (100%)

M
an

ag
em

en
t

Im
pl

.
D

es
ig

n
Te

st
in

g

B. Count agree & strongly agree:
 control group v.s. experimental group

Fig. 4. Agreement Ratings and Comparison of Control Group v.s. Experimental Group
(str. disagree = strongly disagree; str. agree = strongly agree; impl. = implementation;
exp. = experimental)

Which Traceability Visualization Is Suitable in This Context? 203

task. For instance, for the understandability assessment, 6 out of 8 participants
(i.e. 6/8 = 75%) chose agree or strongly agree for the matrix visualization in
the management task. Part B compares the ratings between the control group
(self-chosen visualizations) and the experimental group (assigned visualization)
for each task.

Overall, participants rated all visualization techniques as easy to understand
in the different contexts. Concerning means there were almost no significant dif-
ferences between the four visualizations (p > 0.05). In particular, participants
similarly rated the understandability of the matrix and graph visualizations in
the different contexts. Visualizations were rated as less understandable in the
management task. One reason is that none of the visualization can be immedi-
ately used without additional interpretation of the information in this context.
Another reason might be that participants get more used to the visualization in
the course of the experiment after performing the management task. In the test-
ing task, hyperlinks were significantly more understandable than lists (p < 0.02).

The results on the information value are more differentiated. The visualiza-
tions seem to satisfy more information need during the implementation and
testing tasks than during the management and design tasks (where more valu-
able and accessible information were needed). Graphs ranked best to visualize
valuable information in the design task, while matrix ranked best for the manage-
ment task. In this management context, matrix and graph visualization depicted
significantly more valuable information than the list visualization (p < 0.03).

Concerning the perceived suitability, the matrix and graph visualization ranked
significantly better than the hyperlink visualization for the management task
(p < 0.02). For the design task, the graph visualization was significantly more
suitable than the hyperlink visualization (p < 0.02). For the implementation and
testing tasks, the matrix, graph, and hyperlink were similarly ranked.

Comparing the ranks of understandability, information value, and perceived
suitability between the control group (self-chosen visualization) and the exper-
imental group (assigned visualization), we found that participants gave much
higher ranks for their self-chosen visualization. The exceptional case was in the
design task, in which two out of eight participants were undecided about the
chosen graph visualization’s understandability and disagreed with the list’s un-
derstandability. But they both agree that the chosen visualization represented
valuable information and is suitable for this task context.

Fig. 5 illustrates the information comprehension ratio f = informationV alue
difficulty

for the studied tasks. To measure difficulty in the same Likert scale, we as-
sume difficulty = 6 − understandability. If a participant finds e.g. the visu-
alization very easy to understand (understandability = 5), the difficulty =
6 − understandability = 1. f ∈ [1/5, 5], the higher f is, the easier is it to cap-
ture valuable information through the visualization. As shown in Fig. 5, the
management and design tasks require more valuable information to be easily
understood. For the management task, the matrix and graph can better help
the participants to retrieve valuable information with less effort. The matrix

204 Y. Li and W. Maalej

visualization has significantly higher information comprehension ratio than the
list visualization (p < 0.01). The hyperlink visualization has relatively high
information comprehension ratio except for the management task. The hyperlink
visualization has significantly greater results than the list visualization for both
implementation and testing tasks (p < 0.04). The matrix and graph visualization
have also significantly greater information comprehension ratio than the list
visualization for the testing task (p < 0.03).

0

1

2

3

4

5

Matrix Graph List Hyperlink Matrix Graph List Hyperlink Matrix Graph List Hyperlink Matrix Graph List Hyperlink

Management

In
fo

rm
at

io
n

C
om

pr
eh

en
si

on
R

at
io

Implementation Design Testing

Mean

0

200

400

600

800

1000

Matrix Graph List Hyperlink Matrix Graph List Hyperlink Matrix Graph List Hyperlink Matrix Graph List Hyperlink

Ti
m

e
N

ee
de

d
(s

ec
on

ds
)

Mean

Fig. 5. Information Comprehension Ratios and Times Needed to Accomplish Tasks

When analyzing the time needed (see Fig. 5), we only found two significant
results (p < 0.05). In the implementation tasks, participants who used hyperlinks
needed significantly longer time than those who used lists (p < 0.04). In the
testing task, participants who used graphs took significantly longer time than
those who used matrices (p < 0.05). We believe the reason behind this is that
the time needed of each task highly depends on the knowledge and skills of each
participant. On average participants needed more time for each task when the
visualization is assigned.

In Fig. 6, the result of the self-choices implies that for the management task,
participants clearly preferred the matrix visualization to others. For the imple-
mentation task, participants preferred the hyperlink visualization. For the design
task, matrix, graph and list were similarly selected. The list visualization was
the least attractive to all participants.

Matrix Graph List Hyperlink
Management 5 1 0 1
Implementation 0 2 0 6
Design 3 2 3 0
Testing 2 2 0 4

Fig. 6. Self-choices of Visualization

Which Traceability Visualization Is Suitable in This Context? 205

5 Qualitative Results

We summarize the qualitative results from the interviews and the observations.

5.1 Which Visualization Is Suitable in a Particular Task Context?

Matrices represent a structured overview of the relationships between artifacts.
Each requirement is explicitly associated with related artifacts through a ma-
trix element. 13 participants would use the matrix during their work, claiming
that “it represents a quick overview of all artifacts and links” and “is easy to
navigate”. A traceability matrix represents “valuable information in contexts
such as reporting or planning”. Our results suggest that matrices can be used in
particular tasks when an abstract structured view of a project is needed.

Graphs are “vivid and intuitive to represent and explore relationships”. 16
participants would use graphs during their work, claiming that graphs “give a
first impression on what and how all artifacts are linked”. Similar to matri-
ces, graphs also represent an overview of artifacts and links, but in a rather
“informal” and “explorative” way. Graphs are suitable for management and de-
sign tasks with relatively high information comprehension ratio, since “transitive
relationships are also obvious” to help locating influenced artifacts.

Lists are simple but can be tailored to meet specific information needs. The list
visualization is relatively plain compared to other techniques. Consequently, its
information comprehension ratio is generally lower. However, it has advantages
for focusing on a small amount of traceability links. One participant said “it is
just like a checklist, very clear to me”. Lists are suitable for performing bulk
operations on the listed links e.g. which tests need to be conducted for this
release. Three participants claimed “it is easy to manipulate lists in order to
find the desired information step by step”. A list can be easily filtered or sorted
to satisfy a user’s information need. For example in the design and testing task,
participants filtered the requirements-related class diagrams and test cases.

Hyperlinks fit for fine-grained information needs. They guide users to access
the related artifacts easily. Participants found that “the hyperlink visualization
provides more detailed information”. Therefore, the information comprehension
ratio is higher except for the management task, where overview information is
more desired. Hyperlinks are suitable for implementation tasks or for acceptance
testing, because customers can easily trigger the proper test cases while browsing
the requirements document. 15 participants liked hyperlinks, while three partic-
ipants were ”not at all” interested in the hyperlink visualization, because they
“have no time to read”. They “want to see things directly”.

5.2 What Information Should Be Visualized and How?

We found that artifacts of various types need to be easily distinguished. One par-
ticipant suggested “it would be nice, if different types of artifact are marked with
different colors to provide more visual evidence for identifying artifact types”.

206 Y. Li and W. Maalej

Certain metadata or artifact attributes can be crucial to the task accomplish-
ment. For instance, the priority and status of each work item influence how the
next release is planed. One participant mentioned, “I would like to see directly
in the traceability tool which linked bug is fixed and which is still open”.

In the experiment, participants could enable showing the type of each link.
They found this is helpful to their tasks. They suggested “a more specific link se-
mantics can be even more useful”. In the experiment we used the basic link types
introduced in Section 2.1. More specialized link types can be defined depending
on the project.

Users were also able to visualize link strengths by using a strength bar and
a color map. The former is an icon similar to the battery strength display in a
mobile phone. The latter uses different colors to denote the strength of a link
according to a defined color map. Participants agreed that the link strength help
them to find the most closely related links quickly. About half of them preferred
the strength bar and the other half the color map. Most participants stressed
the importance of transparently defining and showing how and why this strength
is established since this impacts their reasoning.

Concerning visualization features, two participants claimed “graphs should
automatically layout the linked artifacts on a circle around my chosen artifact”.
We found the acceptance of graphs strongly depend on the layout. Participants
desired to have suitable layouts that “properly” reflect the artifacts and rela-
tionships “in a desired level of abstraction”. For example, they should be able to
choose a hierarchical layout to represent linked artifacts in a top-down direction
depicting levels of abstraction. Users should also be able to apply radial layout
to place artifacts on concentric circles depending on their relationship distance
from a given artifact.

Hyperlinks should be combined with other visualizations. Hyperlinked in-
formation is organized in interlinked fragments and accessed non-linearly [23].
Therefore, we observed that users easily became disoriented while navigating
hyperlinked information. A combination of hyperlinks and other visualizations
can guide users to the hyperlinked information based on the understanding of
other visualizations.

During the interview, participants asked “what if the project size increases
and a lot of artifacts are involved?”. For real-world projects, traceability ma-
trices become very large and unreadable [32]. Graph-based visualizations often
do not scale well to large data sets because their presentation tends to result in
a complex structure that is hardly manageable or understandable [12]. Special
features such as fisheye or filtering can deal with scalability issues [12, 13].

Overall, we found that users should be able to interactively select and cus-
tomize their visualizations, as also suggested in [31]. For instance, a participant
suggested that related artifacts should get highlighted in a matrix if a user
chooses a requirement. In a traceability graph, users can reorganize artifacts
and their links to satisfy special needs. Interaction and customization are neces-
sary for searching or recovering links. Features such as filtering help reducing a
user’s cognitive effort and concentrate on a subset of link information.

Which Traceability Visualization Is Suitable in This Context? 207

6 Discussion

Not surprising to us, the quantitative and qualitative results suggest that matri-
ces and graphs are particularly suitable for management tasks, while hyperlinks
for both implementation and testing tasks. However, there are three surprising
findings, which we discuss in the following.

Visualization Suitability Is Ambiguous. Whether a visualization is suitable
for a particular task context does not seem to be a simple yes/no question. Even
if the results include clear trends (e.g. a traceability matrix is suitable in the
context of a management task), the data still involves high variations and many
“yes, but”. We think that the task type itself is not the only influencing factor for
selecting the suitable visualization. The concrete information need (what a user
needs to know in order to accomplish the task at hand), the experience of the
user with the visualization and with the artifacts involved, as well as the whole
interaction sequence using the visualization can considerably influence whether
a visualization is suitable for the current task. Therefore, our definition of task
context, exclusively focusing on the task type, is too simple for a precise answer
of the main research question of this paper. We argue that a context should
include both a short and a long-term interaction history. While the long-term
interaction history reveals the experience of the user with the visualization and
the artifacts at hand, the short-term history reveals the concrete information
need and the type of the task being performed [19, 20].

Lists Were under-estimated by Participants. Lists were the least selected
visualization by the control group (only 3 out of 32 selections) and low ranked
in the perceived suitability for all task contexts. We expected lists to be ranked
higher, as they clearly represent information and provide a guidance to perform
bulk operations (i.e. check lists). In addition, using lists does not require an arti-
fact switch to navigate to the target information, as it is the case for hyperlinks.
Indeed, participants who used hyperlinks took significantly longer time to finish
their implementation tasks than those who used lists. We have two hypotheti-
cal explanations for lists’ low attractiveness. First, our experiment settings and
the implementation of the list visualization might have negatively influenced the
participants’ assessments. Second, user might not always be able to assess what
is the best visualization to use at first glance. The second hypothesis is discussed
in the next paragraph.

Users Are Not Always Able to Choose the Most Suitable Visualiza-
tion. There is a difference between perceived suitability and “real” suitability.
We found that participants in the control group were not always able to choose
suitable visualizations for their tasks. For instance, one participant chose hy-
perlinks for the management task, which he then considered to be less suitable.
Other participants assessed the visualizations to be highly suitable. But they
ranked the understandability and the information value lower, or required more
time to finish the task than others who used different visualizations. We think
that in particular cases, context-aware visualizations could help users access the

208 Y. Li and W. Maalej

traceability information needed more efficiently [17] and possibly learn to use
a different visualization. Such tools can provide an entry point to access trace-
ability information. A concrete visualization is then shown based on the current
context. The tool can learn from (a) users’ interaction with the visualization and
artifacts during their work and (b) empirical studies on the visualization suit-
ability such as ours. For example, when a user performs a refactoring task, such
tool can recommend using list visualization, which might be less attractive at
first glance but can effectively present filtered information of impacted artifacts.

7 Limitations

During this study we made several simplifications, which might affect the internal
and external validity of the results. Concerning the internal validity, the order
of performing the tasks might influence a participant’s understanding about the
dummy project. To mitigate this threat we designed the tasks to be independent
from each other. Moreover, the usability of the tools used in such experiment
might influence participant choices. To mitigate this threat, we implemented all
visualizations in the same look-and-feel instead of using different existing tools.
We also explained the functionality of the tools in details during the preparation
phase. Finally, we carefully selected the dummy project to be realistic enough
but expose task that can be managed in the experiment setting. Soduku is an
open source game, with 65 artifacts from different types. This gives us confidence
that the studied variables are measured in realistic environments. However, the
dummy project still remains relatively small when compared to other industrial
projects. Our research questions were designed to be independent from scalability
issues. Some qualitative findings give insight on how to deal with these issues.

Concerning the external validity, our results are based on the observation
of 24 participants. Given the high effort required to conduct each experiments
(e.g. compared to surveys), a larger number was not possible in the frame of
this project. This might influence the statistical power of the results, but not
the overall results and observed trends. Similar results from other studies also
give confidence about validity of our results. Nevertheless, we plan to formulate
our findings as hypotheses and check them in other rather quantitative studies.
Finally, all participants had similar prior software engineering knowledge. None
of them knew the dummy project. While this is an ideal setting for a comparative
study to minimize external influencing factors, we are unable to generalize the
results to a random user. Indeed we think that the user itself is an important
part of the context to decide about the suitable visualization. We plan to conduct
future long-term studies where we continuously observe the users to deduce their
experience and preferences and quantify them as a part of the decision.

8 Conclusion

Which traceability visualization is suitable for which context? To answer this
question we proposed a meta-model, which specifies the traceability information

Which Traceability Visualization Is Suitable in This Context? 209

(what to visualize), the visualization technique (how to visualize), and the task
context (when to visualize). Suitability is a relationship between visualization
techniques and task contexts. It can also be seen as a composite relationship of
understandability and information value. Based on the meta-model, we designed
an empirical study to compare four common visualization techniques in different
task contexts, check whether users are able to select the most suitable visual-
ization for a particular context, and gather additional feedback on the why and
the how. The result indicates that the four visualization techniques are generally
easy to understand. Matrices give structured overviews and seem to suit best for
management tasks, while hyperlinks depict fine-grained relationships and suit
for implementation and testing tasks. The result also shows that users are not
always able to decide which visualization is suitable.

Acknowledgement. Wewould like to thank all the participants of our empirical
study. This work is partly supported by the GermanResearch Foundation (DFG).

References

1. Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.: Recovering trace-
ability links between code and documentation. IEEE Transactions on Software
Engineering (2002)

2. Cleland-Huang, J., Habrat, R.: Visual Support In Automated Tracing. In: Second
International Workshop on Requirements Engineering Visualization (2007)

3. Cleland-Huang, J., Settimi, R., Duan, C., Zou, X.: Utilizing Supporting Evi-
dence to Improve Dynamic Requirements Traceability. In: Proceedings of RE
2005 (2005)

4. De Lucia, A., Fasano, F., Oliveto, R., Tortora, G.: ADAMS Re-Trace: A Trace-
ability Recovery Tool. In: Ninth European Conference on Software Maintenance
and Reengineering (2005)

5. De Lucia, A., Fasano, F., Oliveto, R., Tortora, G.: Can information retrieval tech-
niques effectively support traceability link recovery? In: 14th IEEE International
Conference on Program Comprehension, ICPC 2006 (2006)

6. Dömges, R., Pohl, K.: Adapting traceability environments to project-specific
needs. Commun. ACM (1998)

7. Duan, C., Cleland-Huang, J.: Visualization and Analysis in Automated Trace
Retrieval. In: Proceedings of First International Workshop on Requirements En-
gineering Visualization (2006)

8. Fekete, J.-D., van Wijk, J.J., Stasko, J.T., North, C.: The Value of Information
Visualization. In: Kerren, A., Stasko, J.T., Fekete, J.-D., North, C. (eds.) Infor-
mation Visualization. LNCS, vol. 4950, pp. 1–18. Springer, Heidelberg (2008)

9. Gotel, O.C., Marchese, F.T., Morris, S.J.: On Requirements Visualization. In: Sec-
ond International Workshop on Requirements Engineering Visualization (2007)

10. Gotel, O.C.Z., Finkelstein, A.C.W.: An analysis of the requirements traceability
problem, pp. 94–101 (1994)

11. Hayes, J., Dekhtyar, A., Sundaram, S.: Advancing candidate link generation for
requirements tracing: the study of methods. IEEE Transactions on Software En-
gineering 32 (2006)

210 Y. Li and W. Maalej

12. Heim, P., Lohmann, S., Lauenroth, K., Ziegler, J.: Graph-based Visualization of
Requirements Relationships. In: Requirements Engineering Visualization (2008)

13. Herman, I., Melançon, G., Marshall, M.S.: Graph visualization and navigation in
information visualization: A survey (2000)

14. Integrate. Traceline for doors, http://www.integrate.biz/traceline/
15. Egyed, A., Grünbacher, P.: Supporting software understanding with automated

requirements traceability. International Journal of Software Engineering and
Knowledge Engineering (2005)

16. Kaindl, H.: The missing link in requirements engineering (1993)
17. Kersten, M., Murphy, G.C.: Using task context to improve programmer produc-

tivity. In: SIGSOFT 2006/FSE-14. ACM (2006)
18. Lin, J., Lin, C.C., Huang, J., Settimi, R., Amaya, J., Bedford, G., Berenbach, B.,

Khadra, O., Duan, C., Zou, X.: Poirot: A distributed tool supporting enterprise-
wide automated traceability. In: RE 2006 (2006)

19. Maalej, W.: Task-first or context-first? Tool integration revisited. In: Proceedings
of the 24th ACM/IEEE Int. Conference on Automated Software Engineering.
IEEE Computer Society (May 2009)

20. Maalej, W., Sahm, A.: Assisting engineers in switching artifacts by using task
semantic and interaction history. In: RSSE 2010 (2010)

21. Mader, P., Gotel, O., Philippow, I.: Getting back to basics: Promoting the use of
a traceability information model in practice. In: Traceability in Emerging Forms
of Software Engineering, TEFSE 2009 (2009)

22. Maletic, J.I., Munson, E.V., Marcus, A., Nguyen, T.N.: Using a hypertext model
for traceability link conformance analysis. In: Traceability in Emerging Forms of
Software Engineering (2003)

23. Marchionini, G.: Finding facts vs. browsing knowledge in hypertext systems. Com-
puter 21(1), 70–79 (1988)

24. Marcus, A., Xie, X., Poshyvanyk, D.: When and how to visualize traceability
links? In: Traceability in Emerging Forms of Software Engineering, TEFSE 2005
(2005)

25. Merten, T., Juppner, D., Delater, A.: Improved representation of traceability links
in requirements engineering knowledge using sunburst and netmap visualizations.
In: Proceedings of Fourth International Workshop on Managing Requirements
Knowledge, MARK (2011)

26. Ramesh, B., Edwards, M.: Issues in the development of a requirements traceabil-
ity model. In: Proceedings of IEEE International Symposium on Requirements
Engineering (1993)

27. Ramesh, B., Jarke, M.: Toward reference models for requirements traceability.
IEEE Transactions on Software Engineering (2001)

28. Ratanotayanon, S., Sim, S.E., Raycraft, D.J.: Cross-artifact traceability using
lightweight links. In: Traceability in Emerging Forms of Software Engineering,
TEFSE 2009 (2009)

29. Robinsons. Doctrace, http://www.robinsons.co.uk/doctrace.html
30. Spanoudakis, G., Zisman, A.: Software traceability: A roadmap. In: Handbook of

Software Engineering and Knowledge Engineering (2004)
31. Spence, R.: Information Visualization: Design for Interaction, 2nd edn. Prentice

Hall (2007)
32. Winkler, S.: On Usability in Requirements Trace Visualizations. In: Requirements

Engineering Visualization (2008)
33. Winkler, S., Pilgrim, J.: A survey of traceability in requirements engineering and

model-driven development. Softw. Syst. Model. 9 (2010)

http://www.integrate.biz/traceline/
http://www.robinsons.co.uk/doctrace.html

The Case for Dumb Requirements Engineering Tools

Daniel Berry1, Ricardo Gacitua2, Pete Sawyer2,4, and Sri Fatimah Tjong3

1 Cheriton School of Computer Science
University of Waterloo, Canada
dberry@uwaterloo.ca

2 School of Computing and Communications
Lancaster University, UK

r.gacitua@acm.org, p.sawyer@lancs.ac.uk
3 University of Nottingham Malaysia Campus, Malaysia

nien34@gmail.com
4 INRIA Paris — Rocquencourt

78153 Le Chesnay, France

Abstract. [Context and Motivation] This paper notes the advanced state of the
natural language (NL) processing art and considers four broad categories of tools
for processing NL requirements documents. These tools are used in a variety of
scenarios. The strength of a tool for a NL processing task is measured by its recall
and precision. [Question/Problem] In some scenarios, for some tasks, any tool
with less than 100% recall is not helpful and the user may be better off doing
the task entirely manually. [Principal Ideas/Results] The paper suggests that
perhaps a dumb tool doing an identifiable part of such a task may be better than
an intelligent tool trying but failing in unidentifiable ways to do the entire task.
[Contribution] Perhaps a new direction is needed in research for RE tools.

1 Introduction

Most requirements are still written in natural language (NL)[1]. Practitioners are un-
derstandably reluctant to adopt something more formal, and NL allows all the actors
on a project to communicate. NL requirements are therefore not going away anytime
soon. Consequently, there has been a steady interest in developing tools to help analysts
deal with NL and to mitigate the shortcomings of NL as a medium for precise, concise,
and unambiguous requirements description. Many of these tools draw on established re-
search in NL processing (NLP) and information retrieval (IR). For simplicity, we refer
to techniques originating from either field as NLP techniques.

Research in NLP has achieved excellent results, including the creation of the search
engine. As impressive as these results are, this article argues that RE has characteristics
that impose particular requirements on NLP-based tools applied to it. These require-
ments mean that particular care is needed when assessing how well any such tool works
and whether the tool is appropriate to the RE task to which it is being applied.

2 Categories of NL RE Tools

Most tools for processing NL requirements fall into one of four broad categories:

B. Regnell and D. Damian (Eds.): REFSQ 2012, LNCS 7195, pp. 211–217, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

212 D. Berry et al.

a. tools to find defects and deviations from good practice in NL requirements docu-
ments; examples include ARM [2] and QuARS [3], each of which detects a range
of bad practices such as the use of weak phrases, and tools focused on the detection
of ambiguous requirement statements such as SREE [4] and the nocuous ambiguity
finder of Chantree et al. [5],

b. tools to generate models from NL descriptions; examples include Scenario [6],
which generates sequence diagrams from use case descriptions, and Dowser, which
generates a class diagram from a NL Software Requirements Specification [7],

c. tools to infer trace links between NL descriptions of requirements or between re-
quirements and other artifacts of the development process; examples include Poirot
[8] and RETRO [9].

d. tools to identify the key abstractions from NL documents to, for example, help an
analyst gain understanding of an unfamiliar domain; examples include AbstFinder
[10] and RAI [11].

With the exception of some tools of category (a), in which part of the task may include
checking for formatting and syntactic conventions, each of the RE tasks supported by
the tools fundamentally and ultimately requires an understanding of the analysed docu-
ments’ contents. However, the automatic understanding of NL texts is still way beyond
current computational capabilities and only a very limited form of semantic-level pro-
cessing is currently possible [12]. As a consequence, most RE applications of NLP use
relatively mature techniques for identifying lexical or syntactic properties, and use these
to infer semantic properties.

For example, in a tracing tool, of category (c), lexical similarity between two utter-
ances in two artefacts leads to proposed links between the pairs of utterances and the
pairs of artefacts. If the lexical similarity was between terms with no domain relevance,
then the human user would reject the proposal. Regardless, lexical similarity will fail to
find all relevant links. Consequently, a human analyst always has to validate the results
of any application of the tool, and NL requirements engineering tools are nearly always
designed for interactive use.

In interactively using any tool, e.g., a tracing tool, that attempts to simulate under-
standing with lexical or syntactic properties, the user–analyst will have to be aware that
the output is likely to include false positives and will not include some true positives.
What action the analyst takes will depend on the cost of failing to have the correct out-
put, i.e., the links that allow determining the impact of a proposed change, balanced
against the cost of finding the true positives manually and eliminating false positives
manually. The first of these manual tasks is usually both harder and more critical for the
tool’s purpose.

3 Scenarios of Tool Use and Their Implications

Why does this balancing act matter? It is important to understand the limitations of
NLP-based tools for RE, because although good but imperfect performance is often
helpful to the analyst, in certain circumstances it is of no help to the analyst at all. It
may even make his or her job harder. Consider the two following scenarios.

Case for Dumb Requirements Engineering Tools 213

The first scenario is that an analyst is responsible for formulating the requirements
for a system without high-dependability (HD) requirements, i.e. it is not safety, security-
or mission-critical. Although undesirable, occasional failures can be tolerated. While a
complete analysis of all documents would be nice, it would be too costly to carry one
out. If an automated tool is available to do the analysis and it does a good enough job,
with “good enough” defined differently in each situation, then such a tool will be useful.
For example, tracing tools of category (c) are a response to the fact that although the
benefits of tracing are known, the manual documenting of traces is a tedious burden,
so it often does not get done. Thus, faced with a need to do change impact analysis
at some later date, an analyst will probably consider the post-hoc automatic inference
of some of the trace relationships to be much better than the manual alternative. This
judgement will be valid if the alternative is that all traces have to be found manually,
and the following conditions hold:

– a tool will find n% of the genuine trace relationships;
– n is sufficiently large that there is only a small risk that the missing 100 − n% of

genuine trace relationships contains any that would significantly affect the analyst’s
assessment of the impact of the proposed change,

– the cost of manually detecting and eliminating the false positive trace relationships
is less than that of manually finding the true positive trace relationships.

The number n is known as the tool’s recall, which is the proportion of all possible cor-
rect results that are returned. High recall means few false negatives. The number of false
positives is measured by precision, which is the proportion of the results returned by
the tool that are correct. High precision means few false positives. Recall and precision
are the metrics most commonly used to quantify the performance of NLP techniques.
For most NLP tools, it is hard to achieve each of high recall and high precision, and it
is even harder to achieve both high recall and high precision. A NLP tool for RE should
be tuned to favour recall over precision because errors of commission are generally eas-
ier to correct than errors of omission. Thus, for the tracing tool example, it is easier to
check every inferred trace relationship to filter out the spurious links than it is to find
the missing correct trace relationships to add the missing links.

Now contrast the first scenario with one in which the analyst is responsible for for-
mulating the requirements for a system with HD requirements. A complete analysis of
all documents is essential in order to find all the defects, abstractions, traces or model-
ing elements and relationships that are present or implicit in the documents. Normally,
a human analyst would be doing the entire analysis manually with the help of only
his or her thinking. The human analyst has the uniquely human ability to extract se-
mantics from text and to cope with complicating factors such as context, poor spelling,
poor grammar, and implicit information that are beyond the capabilities of NLP tech-
niques. Thus, with appropriate knowledge, training, and experience, the analyst has the
potential to achieve 100% recall and 100% precision.

In practice, of course, a human suffers fatigue, and his or her attention wavers, result-
ing in slips, lapses, and mistakes [13]. In short, humans are fallible [14]. Unfortunately,
the development of a HD system usually requires copious documentation, making fa-
tigue and distraction likely enough that tool support has an obvious attraction. Consider
how this situation relates to the four categories of tools:

214 D. Berry et al.

a. tools to find defects and deviations from good practice in NL requirements docu-
ments: No tool of this type is capable of detecting all possible requirements defects.
For example, detecting requirements that specify the wrong behaviour is beyond the
capabilities of any algorithm, let alone NLP technique. Consequently, even if a tool
successfully detects 100% of the types of defects it is designed to detect, it can still
guarantee to find only a subset of all the document’s defects. Thus, the human ana-
lyst will still need to read the complete requirements document to find the tougher
defects [4]. On the other hand, if the set of defects that the tool finds with 100%
recall is easily described, then the human can focus his or her search on defects
outside the tool’s 100%-recall domain [4].

b. tools to generate models from NL descriptions: Most modeling notations add a
degree of formality that is absent from NL. Thus, while there may be a correct
requirements model that represents the intent of a NL requirements specification,
such a model can almost never be automatically derived from what is actually writ-
ten. The imprecision and incompleteness in the NL description that conspire to
make this inability so, are sometimes usefully revealed as a side effect of the failed
model generation [7]. While such a tool cannot be relied upon to generate a useable
model, the tool is probably useful for exposing defects in the NL descriptions prior
to their being used as input to a human’s model generation.

In contrast to tools of categories (a) and (b) the quality of the output of tools of cate-
gories (c) and (d) have a direct effect on the quality of the system under development.

c. tools to infer trace links between NL descriptions of requirements or between re-
quirements and other artifacts of the development process: For a HD system, the
tasks that depend upon tracing are themselves critical. For example, it is critical to
find all of a security requirement’s dependencies to ensure that a proposed change
cannot introduce a security vulnerability. To avoid manual tracing, 100% recall
is required of a tracing tool. Unfortunately, the fundamental limitations of NLP
means that 100% recall is impossible, short of returning every possible link, which
leads to complete manual tracing. Thus, automatic tracers are not well suited to HD
systems.

d. tools to identify the key abstractions from NL documents: The set of abstractions
for a system are the bones of the system’s universe of discourse. For a HD system,
the set of abstractions needs to be complete to avoid overlooking anything that
is relevant. Again, the fundamental limitations of NLP means that 100% recall is
impossible, short of returning every possible abstraction, which leads to complete
manual finding [10]. Thus, automatic abstraction finders are not well suited to HD
systems.

In short, some categories of tools offer no advantage for HD systems, for which com-
pleteness as well as correctness of a tool’s output is essential. Worse, naive use of such
a tool may

a. worsen the analyst’s workload by forcing the analyst to spend time looking at the
output of the tool’s incomplete analysis in addition to doing the manual analysis
that he or she has to do anyway or

Case for Dumb Requirements Engineering Tools 215

b. introduce risks for the necessary manual analysis by lulling the analyst with unjus-
tified confidence in the tool’s output.

Thus, for any NLP-based RE tool, a thinking requirements analyst must carefully con-
sider how used the tool is in enhancing his or her ability to do the required analysis of a
NL document. If the tool cannot really save him or her work by doing 100% of analysis
and in any case, he or she has to manually analyse the whole document, it might be best
to forgo the tool and do what is necessary to do the whole analysis very well manually;
doing what is necessary might include getting a good night’s sleep the night before!

Nevertheless, humans make mistakes when doing any task no matter how simple,
and will certainly make mistakes in tasks such as tracing [14]. Thus, while a human
potentially has 100% recall, he or she, in fact, does not. Perhaps a tool, even with less
than 100% recall, should be used to help find mistakes that the human has made. The
risks of naive tool use mentioned in the previous paragraph suggest that the optimal
time to use a tool with less than 100% recall during the development of a HD system
is after the humans doing the task manually have done their best and are satisfied that
more effort will not improve their recall. Anything that the tool finds

a. that the humans did not find or
b. that prompts the humans to find something they did not find before

is a bonus achieved at relatively low cost. This recommendation is consistent with the
observation of Dekhtyar et al. [14] that when humans are asked to vet traces proposed
by an automatic tracer, a tool of category (c), they tended to decrease both the recall
and precision of the traces.

In the case in which a tool cannot do an analysis with 100% recall, but there is an
algorithmically identifiable part of the analysis that can be handled with 100% recall
by a tool, then it might be useful to let the tool do what it can, so that the analyst can
focus thinking on only the rest of the analysis, which of course is equally algorith-
mically identifiable. For example, SREE, Tjong’s ambiguity finding tool, of category
(a), finds only those potential ambiguities that are identifiable with 100% recall by de-
sign, by a lexical scannner. It leaves all other ambiguities to be found manually. For
example, SREE finds all potential instances of the “only” ambiguity by finding each
sentence with the word “only”. Ambiguities that require parsing of NL sentences, cor-
rect part-of-speech identification, seeing context, or understanding semantics are left to
the analyst to find manually. SREE has 100% recall for the ambiguities in its clearly
specified domain and less than 100% precision for these ambiguities since it finds, e.g.,
all instances of “only”, not just the ambiguous ones. The analyst can quickly eliminate
the false positives in SREE’s output and then focus on the amgiguities that are outside
SREE’s clearly specified domain [4].

4 Future Research Agenda

The analysis of the previous section suggests a research agenda to discover and build
new kinds of NL RE tools. For each RE task to which NLP tools are being applied,
e.g., abstraction identification, ambiguity identification, and tracing, try to find an
algorithmically identifiable partition of the task into

216 D. Berry et al.

a. a clerical part that can be done by a dumb tool with 100% recall and not too much
imprecision and

b. a thinking-required part that must be left to a human analyst to do manually.

With such a partition, the analyst can use the dumb tool to do the clerical part and then
can focus on doing the thinking-required part very well manually without the distraction
of having also to do the clerical part manually. Indeed, the fourth author’s experiences
in the trenches of RE is

a. that often the information obtained from what would be the clerical part is nearly
empty or is not very helpful and

b. that no matter what, she must carefully do what would be the thinking-required
part to expose highly contextual ambiguities, obscure tacit assumptions, and deeply
buried inconsistencies.

It would be nice to be able to do this careful thinking with fewer distractions.
Finding this partition for any task will require research to think of a different way to

decompose the task. It will require a thorough understanding of the task and of what
is algorithmically possible. It will likely require ingenuity in finding perhaps multiple,
orthogonal lexical proxies for the semantics of the task, whose combined capture of
false positives is significantly reduced from that of any one lexical proxy.

For any task, the partitioning will take into account

– the burden to the human analyst of the imprecision of the clerical part and
– the difficulty to the human analyst of the thinking-required part.

Obtaining this information will require research like that done by Dekhtyar et al. [14]
for tracing tools to determine what is really difficult for humans and how well hu-
mans perform parts of the task with and without automation. Addressing the issue of
how to separate the clerical and thinking-required parts of a task is of course one of
many research questions that challenge the developers of NLP-based tools for RE. The
challenge of ensuring industrial adoption of the tools remains. However, separating the
clerical and thinking-required parts is, we believe, a critical step in promoting industrial
adoption, since the separation will lead to a better understanding of what such tools can
realistically deliver to their users.

5 Conclusion

What is the nature of a tool that can do an analysis with 100% recall? It is one whose
task is 100% computable. If a tool that uses some advanced NLP technique to do a less
than perfect job on an analysis that requires semantic understanding is called artificially
intelligent, then a tool that is using algorithmic techniques to do a perfect job on an
analysis that requires only computable processing must be called really1 dumb. Thus,
ARM and QuARS, also of category (a), try to be intelligent, and SREE resigns itself to
being dumb. The argument of this paper can be summarised as that sometimes it might

1 “really” in opposition to “artificially” and not “really” as a synonym for “very”.

Case for Dumb Requirements Engineering Tools 217

be better (1) to apply a dumb tool to an algorithmically determinable subpart of an
analysis, thus freeing up the human analyst to focus his or her thinking on the equally
algorithmically determinable rest of the analysis than (2) to apply a so-called intelligent
tool to the whole analysis with less than 100% recall and with no way to know what
part of the analysis still needs to be done.

Acknowledgments. Berry’s work was supported by NSERC grant NSERC-
RGPIN227055-00 and by an NSERC–Scotia Bank Industrial Research Chair NSERC-
IRCPJ365473-05. Gacitua’s and Sawyer’s work was supported by EPSRC grant
EP/F069227/1.

References

1. Mich, L., Franch, M., Inverardi, P.N.: Market research for requirements analysis using lin-
guistic tools. Requirements Engineering Journal 9, 40–56 (2004)

2. Wilson, W.M., Rosenberg, L.H., Hyatt, L.E.: Automated analysis of requirement specifica-
tions. In: Proc. 19th Int. Conf. on Software Engineering (ICSE), pp. 161–171 (1997)

3. Bucchiarone, A., Gnesi, S., Pierini, P.: Quality analysis of NL requirements: An industrial
case study. In: Proc. 13th IEEE Int. Requirements Engineering Conf. (RE), pp. 390–394
(2005)

4. Tjong, S.F.: Avoiding Ambiguities in Requirements Specifications. PhD thesis, University of
Nottingham, Maylasia Campus (2008)

5. Chantree, F., Nuseibeh, B., de Roeck, A., Willis, A.: Identifying nocuous ambiguities in
natural language requirements. In: Proc. 14th IEEE Int. Requirements Engineering Conf.
(RE), pp. 56–65 (2006)

6. Kof, L.: Scenarios: Identifying missing objects and actions by means of computational lin-
guistics. In: Proc. 15th IEEE Int. Requirements Engineering Conf. (RE), pp. 121–130 (2007)

7. Popescu, D., Rugaber, S., Medvidovic, N., Berry, D.M.: Reducing ambiguities in require-
ments specifications via automatically created object-oriented models. In: Paech, B., Martell,
C. (eds.) Innovations for Requirement Analysis: From Stakeholders’ Needs to Formal De-
signs, pp. 103–124 (2008)

8. Cleland-Huang, J., Berenbach, B., Clark, S., Settimi, R., Romanova, E.: Best practices for
automated traceability. IEEE Computer 40, 27–35 (2007)

9. Hayes, J.H., Dekhtyar, A., Sundaram, S.K.: Advancing candidate link generation for require-
ments tracing: The study of methods. IEEE Transactions on Software Engineering 32, 4–19
(2006)

10. Goldin, L., Berry, D.M.: AbstFinder: A prototype abstraction finder for natural language
text for use in requirements elicitation. Automated Software Engineering 4, 375–412 (1997)

11. Gacitua, R., Sawyer, P., Gervasi, V.: On the effectiveness of abstraction identification in re-
quirements engineering. In: Proc. 18th IEEE Int. Requirements Engineering Conf. (RE), pp.
5–14 (2010)

12. Ryan, K.: The role of natural language in requirements engineering. In: Proc. IEEE Int.
Symp. on Requirements Engineering (RE), pp. 240–242 (1993)

13. Viller, S., Bowers, J., Rodden, T.: Human factors in requirements engineering: A survey of
human sciences literature relevant to the improvement of dependable systems development
processes. Interacting with Computers 11, 665–698 (1999)

14. Dekhtyar, A., Dekhtyar, O., Holden, J., Hayes, J., Cuddeback, D., Kong, W.K.: On human
analyst performance in assisted requirements tracing: Statistical analysis. In: Proc. 19th IEEE
Int. Requirements Engineering Conf. (RE), pp. 111–120 (2011)

Automatic Analysis

of Multimodal Requirements:
A Research Preview

Elia Bruni1, Alessio Ferrari2, Norbert Seyff3, and Gabriele Tolomei2

1 University of Trento, CIMeC, Trento, Italy
elia.bruni@unitn.it

2 ISTI-CNR, Pisa, Italy
{alessio.ferrari,gabriele.tolomei}@isti.cnr.it
3 University of Zurich, RERG, Zurich, Switzerland

seyff@ifi.uzh.ch

Abstract. [Context and motivation] Traditionally, requirements are
documented using natural language text. However, there exist several ap-
proaches that promote the use of rich media requirements descriptions.
Apart from text-based descriptions these multimodal requirements can
be enriched by images, audio, or even video. [Question/Problem] The
transcription and automated analysis of multimodal information is an
important open question, which has not been sufficiently addressed by
the Requirement Engineering (RE) community so far. Therefore, in this
research preview paper we sketch how we plan to tackle research chal-
lenges related to the field of multimodal requirements analysis. We are
in particular focusing on the automation of the analysis process. [Prin-
cipal idea/results] In our recent research we have started to gather
and manually analyze multimodal requirements. Furthermore, we have
worked on concepts which initially allow the analysis of multimodal in-
formation. The purpose of the planned research is to combine and extend
our recent work and to come up with an approach supporting the au-
tomatic analysis of multimodal requirements. [Contribution] In this
paper we give a preview on the planned work. We present our research
goal, discuss research challenges and depict an early conceptual solution.

Keywords: Requirements analysis, multimodal requirement descriptions,
similarity-based clustering, distributional semantics.

1 Introduction

Rich media requirements descriptions are used in several RE approaches to cap-
ture relevant information and to improve the needs gathering process [16,4,1,13].
These multimodal needs are often captured in early requirements elicitation
steps. In later stages the captured text, audio and video information is analyzed
and often transcribed into well-defined (text-based) requirements. Depending on
the actual process and the project at hand, this task might be time consuming
and costly.

B. Regnell and D. Damian (Eds.): REFSQ 2012, LNCS 7195, pp. 218–224, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Automatic Analysis of Multimodal Requirements: A Research Preview 219

Researchers have started to deal with the issue of multimodal information
representation [11]. There are several attempts in computer vision to combine
the visual and textual information in a common space. Taking inspiration from
methods originally used in text processing, algorithms for search and retrieval
have been built [18,5]. Enriching the images with text-based information allows
a better description of images, and consequently enforces the semantic manip-
ulation of the graphical data. Very recently, the Natural Language Processing
(NLP) community has turned its attention to multimodality. However, the task
is reversed: instead of using text to better describe the content of images, the
images are exploited to improve word meaning [2].

The aim of our planned research is to take advantage from these results and
to apply and extend these novel methods for requirements engineering. In par-
ticular, we aim to support the automatic analysis of multimodal requirements.
We envision that future requirements engineering approaches support the use
of various media types to describe requirements. This key information enables
analysts to understand needs. However, we foresee that it is not the analyst who
has to analyze these multimodal needs in the first place.

In Section 2 we discuss relevant work in the field. Section 3 presents our
research goal and discusses research challenges and ideas on a conceptual solu-
tion. Finally, in Section 4 we discuss the benefits and limitations of the planned
research and conclude the paper.

2 Background

Several research groups have been working on the automatic analysis of natural
language requirements [10,7], e.g., by leveraging statistical approaches borrowed
from the information retrieval and data mining domains. The majority of recent
research aims at classifying system requirements on the basis of their pairwise
similarity in order to ease their analysis [14]. Requirements are classified by
domain-related topic using iterative classification algorithms, e.g., to discrimi-
nate among different categories of non-functional requirements, as proposed by
Casamayor et al. [3]. The aim of this recent research is to partition a large
set of requirements into more manageable subsets. Furthermore, contributions
are concerned with the usage of typical information retrieval distance metrics
to establish the similarity among two requirements. For example, Haynes et al.
present an approach that exploits a clustering algorithm to identify common
high-level customer needs expressed in natural language [8].

The ISTI-CNR and the University of Trento have a thorough experience in the
discussed field. Their research on applying data mining technologies to the Web
and novel algorithms to cluster information is considered to be a cornerstone of
the planned research [12]. These technologies have been recently applied also to
natural language requirements [6]. Furthermore, Bruni et al. [2] have introduced
a distributional semantic model combining text- and image-based features, as
a first step to enrich traditional semantic models with perceptual information.
Their research has been driven by the endeavor of better satisfy psychological

220 E. Bruni et al.

models discussing how we humans acquire and use semantic knowledge. This
work highlights that we cannot only rely on linguistic context, but also on our
rich perceptual experience.

The University of Zurich has started to intensively use multimodal require-
ments descriptions to support end-users in documenting needs and feedback.
The iRequire approach enables end-users to document needs with the help of
pictures, audio and text descriptions [16,17]. An end-user first takes a picture
of a relevant environmental aspect (e.g., a picture of a bus stop). Furthermore,
the end-user documents a need using text or audio recording (e.g., “I would like
to have the time shown on my mobile when the next one is coming”). In a last
step the end-user enters a rational and gives a short task description (e.g., “I
am waiting for the 25er. I would like to know if there is enough time left to buy
a snack?”). An analyst so far analyzes the gathered end-user needs manually.
Early evaluations have shown that in most of the cases the gathered information
allows humans to understand needs and to transcribe them into well-defined
requirements [16]. However, this approach suffers from scalability issues if we
consider a large number of end-user needs.

3 Automatic Analysis of Multimodal Requirements

The goal of our research is to investigate the automatic analysis of multimodal
requirements. We plan to provide analysis methods and tools which support
analysts in handling a large number of multimodal requirements. In the context
of our research we define multimodal requirements as following: “Multimodal
requirements use different media types to represent information that needs to be
combined to fully describe a particular requirement or need”. In other words,
the information to fully understand a particular requirement is scattered and
can be found in different sources. In our research we are not just focusing on
cases where one requirement is described using only one media type. Our focus
lies on requirements represented by information spread over multiple modalities
instead. In the following, we identify three key research challenges (RC) and
discuss how we plan to address them.

RC-1: Semantic Representation of Multimodal Requirements. Currently, mul-
timodal requirements are manually identified and need to be understood by
domain experts [16]. Our aim is to turn this activity from manual into auto-
matic. A first cornerstone is identifying a common and integrated model for
representing such multimodal needs which can be either composed of text, im-
ages, speech, video, or a combination of those. Therefore, several feature spaces
might be chosen in order to capture different aspects of multimodal needs. In a
first step, we intend to focus our attention on the text- and image-based chan-
nels, that only very recently have been managed to cohabit into the same feature
space [2]. While tailoring the results of these novel studies to our context, we are
able to define two vector models, i.e., a text-based distributional vector and an
image-based distributional vector. Thereby, the idea is to represent each need

Automatic Analysis of Multimodal Requirements: A Research Preview 221

as a vector with two sequential components. The textual component is a vec-
tor of fixed length representing the textual content, according to the text-based
distributional model. The graphical component is another vector of fixed length
representing the graphical content, according to the image-based distributional
model. A particular advantage of this approach is that the text- and image-based
models are independently constructed from different sources. As a first output
of this research, we plan to be able to feed a model with text- and image-based
needs to allow further processing.

RC-2: Similarity-Based Clustering of Multimodal Requirements. Requirements
analysis includes the identification of needs that, though documented in differ-
ent forms by the end-users, express similar or even the same actual need. To
automate this, our strategy is based on the common-sense belief that there is a
tendency for things to look more similar the more related they are [15]. We plan
to explore several multimodal similarity functions that take care of multiple fea-
ture spaces (text- and image-based). Those functions will be used for discovering
groups of similar needs. The actual needs could be thus extracted by analyzing
the groups generated as the output of the algorithm. As the needs and resulting
groups are not known a priori, we suggest to adopt an unsupervised technique,
i.e., a clustering algorithm, to partition the needs into distinct groups. This can
be done by applying a specific multimodal similarity function and would result
in a group found to be related to a specific need. In addition, we foresee an
environment in which we have to deal with a massive number of needs, therefore
the clustering algorithm adopted to discover similar needs shall be designed to
provide high efficiency for both static and dynamic load. We foresee that needs
can be clustered off-line when we start collecting first needs. In this initial phase,
an algorithm that is efficient on static data is desirable. In particular, we expect
promising results from the Head-Tail Component (HTC) algorithm, which, in
a recent work of one of the authors, has been proven to be effective for discov-
ering groups of queries stored in Web Search Engine logs [12]. We expect to
provide stable clusters of similar needs. To cope with a continuous stream of in-
coming new needs, these needs will be dynamically associated with the relevant
cluster and new clusters will appear. This will allow us to automatically gener-
ate requirements topics (i.e., themes). Furthermore, we expect that clustering
also supports requirements prioritization as the number of similar needs might
indicate their importance.

RC-3: Improving Gathering and Analysis Processes. Within our research we plan
to tackle both the automatic analysis of multimodal requirements itself and its
consequences. We foresee that, by better understanding automatic requirements
analysis with the help of first prototype approaches, we will learn more about the
gathering process. For example, we might discover a general inclination towards
needs composed of text and images, instead of speech. Or we might detect a
correlation between the medium used for documentation and a particular group
of needs (e.g., some types of need might be more naturally expressed through
images, while others are easier to represent through text). All this information

222 E. Bruni et al.

can be exploited to gradually improve the effectiveness of the analysis. Further-
more, this information might support us in better aligning the gathering process
and analysis. We might be able to tailor the requirements gathering process and
come up with new strategies to cluster together particular groups of needs. More-
over, gathering and analyzing contextual information (e.g., date, time, place) in
addition to needs is another option for enhancement. Identifying correlations
between gathered information might allow further process improvements. For
example, if an end-user sends a need from a particular position where he already
sent needs before or within a certain timeframe: this might indicate that the new
need also belongs to the group of previously discussed ones. We plan a step-by-
step validation of these hypotheses. This research challenge also highlights the
we expect a process, which will gradually become mature in order to not only
provide high quantity, but also to provide high quality requirements.

Figure 1 illustrates the envisioned conceptual solution and highlights key re-
search issues discussed in the previous paragraphs: the gathering process
(RC-3), the data representation issue (RC-1), the choices of a multimodal sim-
ilarity function and similarity-based clustering algorithm (RC-2). Apart from
work on the conceptual solution we have started a literature review. Next steps
include the refinement of the conceptual solution (e.g., selection of adequate
algorithms). We then plan to tailor these algorithms and to provide a tool pro-
totype allowing the automatic analysis of needs. This prototype will be used to
automatically analyze end-user needs gathered with iRequire. The evaluation
results will support us in identifying issues regarding end-user needs gathering
and analysis.

Fig. 1. Analysis of multimodal requirements: an early conceptual solution

4 Discussion and Conclusions

An important question for us is: to what degree is automatic analysis of mul-
timodal requirements possible? The envisioned approach will be able to auto-
matically group incoming needs by identifying similarity. We foresee that this
will also allow establishing automated prioritization mechanisms. However, the
approach will not be able to identify missing information (requirements com-
pleteness). Furthermore, we do not see the possibility to automatically detect
conflicting requirements. At some point the human analyst will be needed to
continue the requirements analysis. Therefore, the presentation of the automatic
analysis results is a relevant issue for future work. So far we consider the dis-
cussion of research challenges and an early conceptual solution to be the first
contributions of our research.

Automatic Analysis of Multimodal Requirements: A Research Preview 223

Automatic analysis of requirements might not be the only option to deal with
a high number of multimodal requirements. We also consider crowd-sourcing as
an option to achieve this goal [9]. However, crowd-sourcing might not ensure an
independent analysis process.

Ideally, our solution will be able to analyze any kind of multimodal
requirements. However, it will be necessary to tailor the method to a particular
requirements gathering approach following a predefined structure for document-
ing multimodal requirements. We will focus on one particular gathering process
and plan to support the iRequire approach [16,17]. Approaches such as iRequire
can be used to gather a high number of needs requiring analysis. The discussed
automated analysis mechanisms might be used within particular projects where
end-users are asked to gather needs on a predefined subject (e.g., commuting). On
a larger scale we also envision to analyze any end-user needs that are sent to cer-
tain receivers. With the help of automated analysis we would be able to identify
needs, e.g., on novel systems, which end-user would require and which do not exist
so far.

Acknowledgements. This work was partially supported by the EU-FP7-215483
(S-Cube) project, and by the PAR-FAS-2007-2013 (TRACE-IT) project.

References

1. Brill, O., Schneider, K., Knauss, E.: Videos vs. Use Cases: Can Videos Capture
More Requirements under Time Pressure? In: Wieringa, R., Persson, A. (eds.)
REFSQ 2010. LNCS, vol. 6182, pp. 30–44. Springer, Heidelberg (2010)

2. Bruni, E., Tran, G.B., Baroni, M.: Distributional semantics from text and images.
In: Proc. of the EMNLP GEMS Workshop, Edinburgh (2011)

3. Casamayor, A., Godoy, D., Campo, M.: Identification of non-functional require-
ments in textual specifications: A semi-supervised learning approach. IST 52,
436–445 (2010)

4. Creighton, O., Ott, M., Bruegge, B.: Software cinema-video-based requirements
engineering. In: Proc. of RE 2006, pp. 106–115. IEEE CS, Washington, DC (2006)

5. Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: Ideas, influences, and
trends of the new age. ACM Comput. Surv. 40(2) (2008)

6. Ferrari, A., Tolomei, G., Gnesi, S.: A clustering-based approach for discovering
flaws in requirements specifications. In: Proc. of SAC 2012 (to appear, 2012)

7. Gervasi, V., Zowghi, D.: Reasoning about inconsistencies in natural language re-
quirements. ACM TSEM 14, 277–330 (2005)

8. Hayes, J.H., Antoniol, G., Guéhéneuc, Y.G.: Prereqir: Recovering pre-requirements
via cluster analysis. In: Proc. of WCRE 2008, pp. 165–174. IEEE CS, Washington,
DC (2008)

9. Huberman, B.A., Romero, D.M., Wu, F.: Crowdsourcing, attention and produc-
tivity. Journal of Information Science 35(6), 758–765 (2009)

10. Kof, L., Penzenstadler, B.: From Requirements to Models: Feedback Generation
as a Result of Formalization. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011.
LNCS, vol. 6741, pp. 93–107. Springer, Heidelberg (2011)

11. Louwerse, M.: Symbol interdependency in symbolic and embodied cognition. Topics
in Cognitive Science 3, 273–302 (2011)

224 E. Bruni et al.

12. Lucchese, C., Orlando, S., Perego, R., Silvestri, F., Tolomei, G.: Identifying task-
based sessions in search engine query logs. In: Proc. of WSDM 2011, pp. 277–286.
ACM, New York (2011)

13. Maiden, N., Seyff, N., Grunbacher, P., Otojare, O., Mitteregger, K.: Making mobile
requirements engineering tools usable and useful. In: Proc. of RE 2006, pp. 26–35.
IEEE CS, Washington, DC (2006)

14. Palmer, J., Liang, Y.: Indexing and clustering of software requirements specifica-
tions. IDT 18, 283–299 (1992)

15. Patwardhan, S., Pedersen, T.: Using WordNet-based Context Vectors to Estimate
the Semantic Relatedness of Concepts. In: Proc. of the EACL 2006 Workshop,
Trento, Italy, pp. 1–8 (April 2006)

16. Seyff, N., Graf, F., Maiden, N.: Using mobile re tools to give end-users their own
voice. In: Proc. of RE 2010, pp. 37–46. IEEE CS, Los Alamitos (2010)

17. Seyff, N., Ollmann, G., Bortenschlager, M.: irequire: Gathering end-user require-
ments for new apps. In: Proc. of RE 2011, pp. 347–348. IEEE CS, Los Alamitos
(2011)

18. Sivic, J., Zisserman, A.: Video Google: A text retrieval approach to object matching
in videos. In: Proc. of ICCV 2003, pp. 1470–1477. IEEE CS, Washington, DC (2003)

B. Regnell and D. Damian (Eds.): REFSQ 2012, LNCS 7195, pp. 225–231, 2012.
© Springer-Verlag Berlin Heidelberg 2012

10 Myths of Software Quality

Elke Hochmüller

Carinthia University of Applied Sciences, Klagenfurt, Austria
E.Hochmueller@cuas.at

Abstract. [Context and motivation] Quality is one of the most critical success
factors of software products. [Question / problem] Nevertheless, during soft-
ware development processes software quality is still not given the proper atten-
tion and relevance it deserves. [Principal ideas / results] This paper outlines
ten common myths about software quality prevailing in practice. [Contribu-
tion] The discussion of these myths unveils challenges which need further
attention in requirements engineering (RE) research and practice.

Keywords: non-functional requirements, software processes, RE challenges.

1 Introduction

More than forty years ago, the computing industry became aware of being right in the
middle of a software crisis. Deficiencies in software product quality (e.g. lack in reliable
software which efficiently works on real machines [8]) as well as in software process
quality were the most prominent symptoms. What has changed over the years since that
time? Structured analysis and design methods, structured programming languages and
new process models emerged. Paradigm changes occurred; now, object-orientation do-
minates the technology. Software development is being guided by standards and sup-
ported by tools. These and further achievements contributed to the fact that software
development is today broadly recognized as an engineering discipline.

Most of these advances in software engineering (SE) had their positive effects on
software process quality, but projects still run into troubles or even fail spectacularly
because of unacceptable software products due to insufficient product quality. Soft-
ware quality as a rather general, wide-ranging term can easily be underestimated or
even neglected regarding its importance in comparison to functionality requirements
which can be dealt with more easily. As a consequence, software quality is often re-
garded as a mere byproduct which can be accounted for only when resources (time,
money) remain. Often, it is noticed too late that product quality requirements would
have called for highest attention being paid for from the very beginning of the project.

Software product quality is surrounded by many myths. Some of them have been
known for many years and are still prevailing in practice. This paper lists ten myths
which the author collected during the last twenty years of her experience in RE re-
search and practice. Based on a discussion of these myths, open issues which are still
a challenge to RE research and practice are outlined.

226 E. Hochmüller

2 Myths by Category

The ten software quality myths presented here particularly concern product-related
quality requirements (also known as non-functional or extra-functional requirements
[3]). These myths can be broadly classified into three categories:

1. Myths about the relevance of software quality.
2. Myths about software quality as an inconvenience.
3. Myths about the notion of software quality.

In each of the following three sections, the myths of each category will be individual-
ly dissected. Some of the myths to be discussed in detail are closely related. For the
purpose of referring easily to and between particular myths throughout the three sec-
tions, the individual myths are stated in an absolute, numerical order. Nevertheless,
this order does not necessarily reflect any particular ranking of the myths.

2.1 Myths about the Relevance of Software Quality

The myths within this category have one thing in common: they all tend to underesti-
mate the importance of product quality requirements.

Myth #1: Quality Is No First Class Requirement. For sure, software product quality
without any functionality is nonsense because without any functional requirements no
product would exist at all. But, is this a sound base to state that quality requirements are
not as important as functional ones? Functionality without quality can be useless, too.
The fact that functional requirements are easier to handle (by applying use cases,
scenarios, …) does not relieve us from adequately considering quality requirements.

In cases when quality requirements regarding e.g. usability, security, or perfor-
mance are neglected or not properly treated from the very beginning of a development
process, they tend to turn up again rather late during acceptance test or even during
operation. But, in contrast to incorrect or missing functions which can be easily cor-
rected or added to systems which are structured in a modular way, quality cannot just
be added to an existing system a-posteriori [3].

As the degree of compliance with quality requirements usually will be crucial for
the success of a software product, quality requirements are very well first class
requirements and call for useful methods to be able to treat them properly.

Myth #2: Quality Is Not my Business. People partaking in a software development
process usually concentrate on their role-specific activities. Management deals with
planning, budgeting, organizing and controlling the development process. Custom-
ers/users express their immediate needs which primarily will include the most prominent
functionality required. Software developers focus on designing and implementing the
software product which delivers the required functionality.

The role of a quality engineer - as emerged during recent years - traces back to the
demand to assure process quality and to verify the correctness of intermediate prod-
ucts like analysis and design documents. However, the activities of persons fulfilling
this role in practice often are confined to post-code quality assurance only.

 10 Myths of Software Quality 227

Hence, it seems that the quality of the final software product is a topic which is left
to the requirements engineers to assure that this kind of requirements is properly tack-
led within the software development process. Nevertheless, quality requirements con-
cern everyone: customers/users who need them, requirements analysts who acquire
them, managers who need them for planning and budgeting, and developers who are
in charge for their compliance. This is valid for phase-oriented software processes.
See myth #4 for a discussion on product quality in agile processes.

Myth #3: Quality Is a Direct Result of a Good Process. Is it true that a high-quality
software development process is sufficient to guarantee high-quality products? Cer-
tainly, a well-defined software process is just one prerequisite for aiming at a software
product which can be delivered as scheduled, within estimated costs and in accor-
dance to the specified requirements. But, what can we expect regarding the (unstated
portion of) quality of a product developed during a "good" process using good SE
practices? In order to reflect this question we have to distinguish between two types
of product quality requirements, developer-driven and customer-driven ones.

Developer-driven quality requirements are those which should be of interest to the
software developers themselves during the development or maintenance processes.
Relevant quality criteria will be e.g. understandability, testability, and modifiability.

Customer-driven quality requirements are those which are of interest to custom-
ers/users only. Such requirements depend on the context and will arise from domain-
specific situations or user needs, e.g. security, performance, usability.

While developer-driven quality requirements tend to be considered in the first
place during a "good" development process, customer-driven quality requirements
need to be explicitly addressed. Only if properly identified and precisely stated (in
order to be verifiable), chances are high that these requirements will be fulfilled
satisfactorily during a well-defined software development process.

However, research and practice are still challenged not only to propose useful qual-
ity-related practices dealing with customer-driven quality requirements but also to
strive for their inherent integration into software development processes (cf. [3], [7]).

Myth #4: Quality Will Unfold Sooner or Later Anyway. This myth coincides with
agile processes which welcome late or even changing requirements. Allowing for
adding, changing, or deleting functionality in a straightforward and timely manner is
certainly beneficial to functional requirements which may emerge over time.

However, certain kinds of quality requirements (like security, interoperability, per-
formance, maintainability, availability, reliability, portability, usability) will substan-
tially influence decisions on the overall architecture of a system [1]. Therefore and in
light of the discussion on myth #1, they have to be identified (elicited, negotiated, and
prioritized) at a very early stage of the development process respectively during the
very first iterations in agile processes in order to avoid misdirected investments due to
wrong architectural decisions (cf. myths #5 and #6).

As these requirements tend not to be readily available in the users’ minds, they
have to be "invented" [9] and explicitly addressed using e.g. templates or checklists
[3]. Furthermore, the shift of responsibilities in agile projects from developers to-
wards the customers raises the issue of reasoning about the role of an agile
requirements engineer acting as a customer companion. [4]

228 E. Hochmüller

2.2 Myths about Software Quality as an Inconvenience

The following myths criticize software quality as an unnecessary evil. Here, software
quality is regarded as primary reason for project delays and cost overruns.

Myth #5: Quality Delays. One prevailing opinion in practice is that too much em-
phasis on quality will cause an unnecessary project delay. This myth concerns project-
related and process-related quality in a similar manner. The involvement of users
(in user-interface design, requirements validation and verification), the analysis of
architectural needs, and the utilization of sound software engineering methods and
techniques are just some examples for practices which will be thrown over-board in
projects when potential delays are on the horizon.

The core of the problem lies in the decision (often made implicitly) that deadline
compliance is regarded to be more important than quality. The challenge for RE prac-
tice is to identify and consider the most influencing and crucial requirements (i.e.
Orr's "great" requirements [9]) in time in order to avoid even bigger delays because of
unnecessary rework at later stages of development due to rushing through a process
and ignoring product-determining quality requirements (cf. myth #4).

Myth #6: Quality Costs. This myth is closely related to myth #5. Putting more effort
on quality will certainly increase costs. But, what if the extra effort in quality saved
resulted in a product unacceptable by the customers/users or in a product which will
not be easy to maintain? Savings in the short-term often mean losses in the long-run.

As already mentioned (cf. myths #1, #4, and #5), requirements influencing the pro-
ject's progress and determining early decisions on the architecture and the system's
external behaviour have to be taken into account in due time. This ensures to unveil
problems (e.g. open issues to be solved, conflicting requirements) early enough to
react accordingly in order to avoid misinvestments or even failed products (based on
architectural decisions due to neglected quality or incorrect implicit assumptions on
quality requirements), to be able to deliver a more realistic cost estimation, and to
even enable a proper risk analysis.

2.3 Myths about the Notion of Software Quality

This last group of myths deals with problems regarding the definition, notion, and
common understanding of product-related quality requirements as already recognized
in literature (cf. [2], [3], [10], [11]).

Myth #7: Quality Is Universally and Well Understood. When talking about quality,
people tend to think that there is a common understanding of quality. However, qua-
lity is a non-singular domain. Let us consider experts from different application
domains like banking, patient monitoring, power station control – each one would not
dare to think that (s)he can work with equal competence in another domain.

Quality has many different dimensions and facets. Similar to the many different ar-
eas of expertise existing in accordance with various application domains, nowadays
there are already dedicated experts competent in particular quality dimensions, like

 10 Myths of Software Quality 229

usability engineers, security experts, and so on. Therefore, the multifaceted structure
of quality requirements and their potential trade-offs have to be taken into account in
accordance with the context of every single project at hand.

Myth #8: Quality Is Sufficiently Defined by Standards. There are many inter-
national, national, and industrial standards available in software engineering, like
standards for high-quality processes (e.g. CMM(I), SPICE), standards for product
quality requirements (e.g. ISO 9126 [6]), standards for intermediate quality products
like software requirements specifications (cf. [5]), and standards for modelling tech-
niques and languages (e.g. UML). But, does this mean that quality is sufficiently
defined by standards? "Sufficiently defined" for what purpose exactly?

Each of these standards consists of a framework of notions and rules which have to
be obeyed when instantiating it in terms of a product (also a development process can
be regarded as a product instantiating a process standard). It is this instantiation which
usually causes the problem. Especially in case of product quality requirements, stan-
dards and other classification schemes can only serve as a rough and general guideline
for eliciting quality requirements which apply for the specific project at hand. The
actual kinds of quality requirements relevant for a project will depend on the context
and have to be derived from the domain and the customers'/users' needs.

Hence, a thorough investigation in how to close the gap between "objective" quali-
ty requirements (as stated by standards and classification schemes) and "subjective"
quality requirements (relevant for a software project at hand) is needed (cf. [10]).

Myth #9: Quality Is Easy to Implement. If stated in a complete and precise manner,
quality requirements are straightforward to accomplish. This might be true for rather
small projects without any quality-related trade-offs and contradictions. However,
quality requirements are not easy to elicit (cf. myth #10), conflicting requirements
have to be identified, negotiated, prioritized, and properly represented, too [10].
Moreover, design conflicts between functional and quality requirements may occur
[3]. In contrast to testing compliance of functional requirements, testing the degree of
quality accomplishment is still a challenge in practice and might often require the
system to be already available as a whole or even exceed the system boundary in
being a matter of interaction with the environment (e.g. usability testing).

Myth #10: Quality Is Fuzzy. In contrast to myth #9, this myth recognizes that qual-
ity is not easy to cope with. However, the main reason for the problem at hand is
attributed to customers and users who can not properly state their quality-related
needs or even do not know what they want.

Usually, clients and users know very well what they want, but they may not be able
to express their quality-related needs in a definite manner or may have implicit expec-
tations in form of tacit knowledge. Moreover, they might not be aware about the
importance of some quality requirements in the context of their needs, too.

Hence, quality is not fuzzy per se, we just have to get rid of vague quality require-
ments statements and aim at sufficiently "definite" quality requirements. RE research
came up with various proposals for dealing with quality requirements (cf. [2], [3], [7],
[11]). Nevertheless, it is still an issue of applying adequate elicitation practices to unveil
and nail down the project-determining quality requirements of a software product.

230 E. Hochmüller

3 The Myths at a Glance

The described myths may lead to common consequences like late projects, products
which are difficult to maintain, increased costs of development and maintenance, and
unsatisfied users because of inadequate product quality.

Table 1 gives a myth-wise summary of related symptoms and problems which are
likely consequences when a myth manifests. The table also refers to challenges the
RE community is faced with when fighting the respective myth. Multiple occurrences
of single entries are due to the fact that some myths are interrelated. Most challenges
address RE researchers as well as practitioners in a likewise manner; cases with a
higher research potential are indicated with (R).

Table 1. Symptoms/problems & RE challenges per myth (QR - quality requirements)

Quality Myths Symptoms/Problems RE Challenges

1
Quality is no first class
requirement.

- QR are dealt with too late, if at all
- maintenance problems

- useful methods dealing with QR (R)
- early QR elicitation

2
Quality is not my
business.

- activities focus on functional
requirements

- QR methods & management (R)
- integrating QR into dev. processes

3
Quality is a direct result
of a good process.

- esp. high degree of neglecting
customer-oriented quality

- QR analysis & verification (met-
rics)

- integrating QR into dev. processes

4
Quality will unfold
sooner or later anyway.

- wrong architectural decisions
- maintenance problems

- early identification of product-
determining QR

5 Quality delays.
- time pressure outweighs quality
- unnecessary rework afterwards

- early identification of product-
determining QR

6 Quality costs.
- poor cost estimation
- unsatisfied users

- early identification of product-
determining QR

7
Quality is universally
and well understood.

- oversimplification
- scalability problems & trade-offs

- analysis of domain-specific QR (R)

8
Quality is sufficiently
defined by standards.

- problems in instantiating standards
- transition from objective (standard)

to subjective (actual) QR

9
Quality is easy to
implement.

- presence of multifaceted QR
- trade-offs and contradictions
- scalability problems

- QR elicitation and negotiation
- conflict detection & resolution
- QR metrics and compliance tests

10 Quality is fuzzy.
- implicit expectations
- unclear/vague req. statements
- relevance of QR underestimated

- QR elicitation practices (R)
- refinement of QR statements
- QR metrics and compliance tests

4 Conclusion

Despite increased research in quality requirements, only methods dealing with func-
tional requirements were acknowledged and successfully adopted by industry so far.
Nevertheless, based on the above discussion, our community should strive to continu-
ally refute the myths mentioned above whenever their symptoms appear in practice.

Software product quality has to be accounted for properly. Therefore, quality-
related methods and tasks have to be explicitly integrated into software development
processes. It is not only a matter of requirements engineering research to continue
investigating in useful practices to deal with software quality requirements but rather
a challenge to bridge the gap between research and practice in order to apply,
experience and assess the results of related requirements engineering research.

 10 Myths of Software Quality 231

References

1. Albin, S.T.: The Art of Software Architecture: Design Methods and Techniques. Wiley,
Indianapolis (2003)

2. Glinz, M.: On Non-Functional Requirements. In: 15th IEEE International Requirements
Engineering Conference (RE 2007), Delhi, pp. 21–26. IEEE (2007)

3. Hochmüller, E.: Towards the Proper Integration of Extra-Functional Requirements.
The Australian Journal of Information Systems 6(2), 98–117 (1999)

4. Hochmüller, E.: The Requirements Engineer as a Liaison Officer in Agile Software Devel-
opment. In: 1st Agile Requirements Engineering Workshop, Lancaster. ACM (2011)

5. IEEE: IEEE Recommended Practice for Software Requirements Specifications. IEEE Std.
830-1993 (1993)

6. ISO/IEC: Software Engineering – Product Quality. Part 1: Quality Model. ISO/IEC 9126-1
(2001)

7. Jung, H.T., Lee, G.H.: A Systematic Software Development Process for Non-Functional
Requirements. In: International Conference on Information and Communication Technol-
ogy Convergence (ICTC 2010), Jeju Island, pp. 431–436 (2010)

8. Naur, P., Randell, B. (eds.): Software engineering. Report of a conference sponsored by
the NATO Science Committee, Garmisch (1968)

9. Orr, K.: Agile Requirements: Opportunity or Oxymoron? IEEE Software 21(3), 71–73
(2004)

10. Paech, B., Kerkow, D.: Non-Functional Requirements Engineering – Quality is Essential.
In: REFSQ 2004 - 10th Anniversary Booklet, Riga, pp. 27–40 (2004)

11. Ullah, S., Iqbal, M., Khan, A.M.: A Survey on Issues in Non-Functional Requirements
Elicitation. In: International Conference on Computer Networks and Information Technolo-
gy (ICCNIT), Abbottabad, pp. 333–340. IEEE (2011)

B. Regnell and D. Damian (Eds.): REFSQ 2012, LNCS 7195, pp. 232–238, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Empirical Analysis of the Impact
of Requirements Engineering on Software Quality

Łukasz Radliński

University of Szczecin, Institute of Information Technology in Management
ul. Mickiewicza 64, 71-101 Szczecin, Poland

lukasz@radlinski.edu.pl

Abstract. [Context & motivation] The process of requirements engineering
affects software quality. However, stronger empirical evaluation of this impact
is required. [Question/problem] This paper aims to answer the following
questions: (1) which factors related to requirements engineering affect software
quality, (2) what is the nature of these relationships, and (3) how are soft quality
features related to each other? [Principal ideas/results] To answer these
questions we performed a quantitative and visual analysis using the extended
ISBSG dataset. Obtained results cover a discussion on identified and
unconfirmed relationships. [Contribution] The main contribution is an
investigation of the relationships between factors of requirements engineering
and software quality. Provided results can be used in further research and to
guide industrial decision makers. The main limitation in generalizing the results
is related to the high number of missing values in the dataset.

Keywords: empirical analysis, process factors, requirements engineering,
software quality.

1 Introduction

Requirements engineering (RE) is a major area that influences software quality [6].
Significant effort has been spent on developing various techniques of RE [15]. A
variety of empirical analyses have been performed to provide evidence for RE
methods, techniques, activities and tools [3, 4, 5, 7]. However, discussions at various
forums on RE, including previous REFSQ conferences [1], indicate the need for yet
increased empirical support in RE.

Empirical analyses of software quality are typically focused on aspects such as
defectiveness or reliability [10, 14]. An earlier study [17] performed on the same
dataset identified a set of factors influencing the number of defects, defect rate and
achievement of zero defects. That study involved analysis of potential influences of
various project-level factors. The current paper extends the previous work and focuses
on soft (subjective) aspects software quality, usually more important for end-users,
which describe a degree of user satisfaction in various areas (listed later in Section 2).
Furthermore, it is focused on investigating detailed influences of RE factors. Thus, it

 Empirical Analysis of the Impact of Requirements Engineering on Software Quality 233

contributes to the area of empirical research at the intersection of RE and software
quality. This paper attempts to answer the following three research questions:

• RQ1: Which factors related to RE affect software quality?
• RQ2: What is the nature of these relationships?
• RQ3: How are soft quality features related to each other?

To answer these questions we performed an analysis using ISBSG dataset of software
projects. This dataset has been widely used by research community, mainly in studies
on development cost and effort [13]. In contrast with other publicly available datasets,
its extended version contains data on soft aspects of software quality, not just the
number of defects. Performed analysis involved usage of various quantitative and
visual techniques (explained briefly in Section 2).

This paper is organized as follows: Section 2 explains the research approach
followed in this study and the dataset used in analyses. Section 3 provides the details
on obtained results with their discussion. Section 4 considers the threats to validity of
the results. Section 5 draws the conclusions and discusses plans for future work.

2 Research Approach

The ISBSG dataset [8] contains data on 5024 software projects of various types. In
the extended edition of this dataset these projects are described by 205 variables. In
this study we used a subset of this dataset with the focus to investigate the impact of
factors related to RE on quality features.

We used seven features (indicators) of software quality as dependent variables:
meet stated objectives (MSO), meet business requirements (MBR), quality of
functionality (QF), quality of documentation (QD), ease of use (EU), speed of defining
solution (SDS), and speed of providing solution (SPS). All these variables are
expressed on a ranked scale from 1 to 4, except MBR – from 2 to 4. These values
reflect the degree of satisfying seven aspects of quality according to the stakeholders.

As in the previous study [17], the research procedure involved the following steps:

1. Data preparation – cleaning the data; pre-selection of variables potentially
influencing soft aspects of software quality; creation of dummy Boolean variables
from multiple-response variables; excluding projects with data quality not assessed
as ‘A’ or ‘B’, as suggested in [9]. Almost all independent variables are Boolean,
except training given and four project objectives that are ranked, and functional
size, summary work effort and proportions of effort that are numeric.

2. Basic data analysis – analysis of basic statistics, histograms and frequency tables.
Based on them, and following the guidelines in [2, 12], we decided to use
non-parametric techniques in the main analysis.

3. Detailed analysis of correlations and associations – using the following techniques:
• For all variables: Spearman’ rank correlation coefficient (ρ);
• For ranked variables: Kruskal-Wallis (H), phi coefficient (ϕ), contingency

coefficient (C), Cramer’s V, and uncertainty coefficient (u);
• For Boolean variables: Mann-Whitney (U), phi coefficient (ϕ), contingency

coefficient (C), and uncertainty coefficient (u);

234 Ł. Radliński

• Visual techniques: frequency plots, box-plots, scatter-plots, and categorized
histograms.

4. Interpretation of results – analysis of identified and unconfirmed relationships in
the context of effectiveness of RE practices.

3 Results

Tables 1 and 2 summarize the relationships between independent variables and seven
aspects of software quality (defined as dependent variables in Section 2). The
majority of independent variables are related to requirements engineering. However,
we also include more general variables describing a development process as a whole.
Thus, it is possible to compare the impact of requirements engineering factors on
software quality with the impact of general process factors.

Due to space constraints we are unable to provide detailed numeric values of
statistical tests. Hence, if the value of the test was significant at p<0.1 we put a
symbol of this test in corresponding cell. An underlined symbol denotes at least
medium level of strength of relationship (an equivalent of value >0.4 for Pearson
correlation coefficient). Full results of these analyses are available online [16].

The following factors appear to be in relationship with all quality features: Lower
CASE (with code gen), Metrics program, Training given. For these factors almost all
calculated statistics indicate a relationship with all quality features. However, an
analysis of pure values of statistics may be misleading. For example, the high impact
of Lower CASE (with code gen) has been calculated on highly unbalanced data – only
four projects involving usage of such tools and 80 without them.

MSO and MBR have the fewest influential factors identified. In addition, very few
of these factors strictly refer to specification documents and techniques. On the other
hand, SDS and SPS have the most influential to RE factors.

Surprisingly, factors such as Dev. tech.: Prototyping, Plan docs: Quality plan,
Spec. docs: Requirements spec., Spec. docs: Use case model, and Spec. docs: User
interface prototype were usually not confirmed to be related with quality features
such as MSO, MBR, QF and EU, i.e., features important for customers and end users.
Additionally, no statistically significant correlation was found for Functional size and
Summary work effort with any quality feature.

Table 1. Overview of relationships between independent and dependent variables (part)

Variable MSO MBR QF QD EU SDS SPS
CASE Tool Used ρUϕC ρUϕC ϕC ϕCu ϕC
Used Methodology ρUϕCu ρϕC ρU ρUϕC
Upper CASE Used U ρ
Lower CASE (with code gen) ρUϕCu ρUϕCu ρUϕCu ρUϕCu ρUϕCu ρUϕCu ρUϕCu
Project user involvement ρUϕCu ρ ρ ρ
Portability requirements ϕCu ϕC ϕCu
Metrics Program ρUu ρUϕCu ρUϕCu ρUϕCu ρUϕCu ϕCu ρu
User satisfaction survey ρUϕCu ρϕC ρUϕC ρUϕC ρUϕC
Training given ρHϕCV ρHϕCVu ρHϕCVu ρHϕCVu ρHϕCVu ϕCV ρH
Process improvement pgm ρUϕCu ρUϕCu

 Empirical Analysis of the Impact of Requirements Engineering on Software Quality 235

Table 2. Overview of relationships between independent and dependent variables (cont.)

Variable MSO MBR QF QD EU SDS SPS
Project objective: all functionality ρHϕCVu H ϕCVu ρu
Project objective: min. defects H H ρHu ρHu
Project objective: min. cost ϕCVu ρ ρHϕCVu ρ
Project objective: shortest time u H
Dev. tech.: Business area modeling ρUϕCu ρUϕCu ρUϕCu ρUϕCu ρUϕCu
Dev. tech.: Data modelling ρ ϕCu ρUϕC ϕC
Dev. tech.: Event modelling ρUϕCu ϕC ρU
Dev. tech.: Multifunct. teams ρϕC
Dev. tech.: OO analysis ϕCu ρϕC ρϕCu ϕCu ϕCu
Dev. tech.: OO design ρUϕC ϕCu ϕC ϕC ϕCu
Dev. tech.: OO ϕCu ϕC ϕCu ϕC
Dev. tech.: Process modelling ϕC ϕC ϕCu ρ
Dev. tech.: Prototyping ρ
Dev. tech.: Timeboxing ρ ρ ρ
Dev. tech.: Waterfall ρϕC ρU ρU
Plan docs: Budget ρϕCu ρϕCu ρUϕC ρϕC ϕCu ρϕC
Plan docs: Business case ρϕC ϕCu ϕC
Plan docs: Feasibility study ρUϕC ρ
Plan docs: Project schedule ϕCu ρUϕCu ρUϕC ϕC
Plan docs: Proposal/tender ϕCu ρϕCu ρUϕCu ρ
Plan docs: Quality plan ρUϕCu ρUϕCu
Plan docs: Resource plan ρU
Plan docs: Risk analysis ρUϕCu ρUϕCu
Plan docs: Software dev. plan ρUϕCu ϕC
Spec. docs: None ρϕC ρ
Spec. docs: Functional spec. ϕCu ϕCu ρϕCu ρUϕCu ρUϕCu
Spec. docs: Graph. look & feel ρUϕCu ρU
Spec. docs: Log. data ER model ρ ρu ρUϕCu ρU ρUϕCu ρUϕCu
Spec. docs: Requirements spec. ρUϕC ρUϕC
Spec. docs: System concept doc. ρUϕCu ϕC ρUϕCu ρUϕCu
Spec. docs: Use case model ρUϕC ρ
Spec. docs: User interface prototype ϕC ρ
Spec. docs: Ext. syst. interface spec. ρ
Spec. docs: User manual ρϕC ρU ρUϕCu ρU
Spec. docs: Data flow model ϕCu ρUϕCu ρUϕCu ρUϕCu
Spec. tech. Activity diagram ρϕCu ρϕCu ρ
Spec. tech. JAD ρϕCu ρ ρ ρUϕCu ρUϕCu ρϕCu
Spec. tech. Timeboxing ρ
Proportion of effort on plan ρ
Proportion of effort on spec. ρ
Activity planning ϕC ρUϕCu ρUϕC
Activity specification ϕC ρU

Analysis of these relationships also involved using various types of graphs. The
aim of this additional analysis was to investigate if the relationships identified using
statistical tests are meaningful, in particular from a causal perspective. As illustrated
in Fig. 1, developing a document of requirements specification increases the SDS,
developing a risk analysis during project planning increases SDS, user involvement in
a project increases MSO, and with increase of proportion of effort on specification the
quality of documentation is expected to be higher. These graphs visualize the strength
of such relationships and indicate the uncertainty of expected outcomes. For example,
while with the increase of proportion of effort on specification we should expect an

236 Ł. Radliński

increase of QD, there are projects with over 25% of effort spent on specification and
deliver poor documentation, and there are projects with just 2% of effort spent on
specification and deliver exceptional documentation. To our surprise, proportion of
effort on planning and specification was found to be in relationship only with QD;
relationships with all other quality features were not statistically significant.

Feature: Speed of defining solution (SDS)

N
o

of
 o

bs

Specify_Documents_Requirements_
Specification: Yes

1 2 3 4
0
5

10
15
20
25

Specify_Documents_
Requirements_Specification: No

1 2 3 4
 Median
 25%-75%
 Min-Max

Yes No
Plan docs: Risk analysis

1

2

3

4

S
D

S

Feature: Meet stated objectives (MSO)

N
o

of
 o

bs

Project_user_involvement: No

1 2 3
0
5

10
15
20
25

Project_user_involvement: Yes

1 2 3
 Median
 25%-75%
 Non-Outlier Range
 Raw Data

0.0 0.1 0.2 0.3 0.4 0.5
Proportion of effort on specification

1

2

3

4

Q
ua

lit
y

of
 d

oc
.

Fig. 1. Examples of visualized relationships between RE factors and software quality features

To answer RQ3, we investigated the relationships among quality features using
Spearman’s ρ and Kruskal-Wallis’ H. Table 3 provides the values of ρ, significant at
p<0.05. The analysis of H in large part confirms these results. According to these
results no quality feature appears to be contradictory to another one. The results do
not confirm any negative correlations even for factors typically perceived as being in
trade-off, for example between project quality and speed of delivery [11].

Table 3. Values of Spearman’s ρ between quality features

Feature MSO MBR QF QD EU SDS SPS
MSO – 0.45 0.58 0.19 0.29
MBR 0.45 – 0.44 0.31 0.39 0.21 0.23
QF 0.58 0.44 – 0.33 0.33 0.22 0.30
QD 0.19 0.31 0.33 – 0.23
EU 0.29 0.39 0.33 0.23 – 0.34
SDS 0.21 0.22 – 0.59
SPS 0.23 0.30 0.34 0.59 –

4 Threats to Validity

Results obtained in this study are subject to the following threats to validity:

• High number of missing data reduces the ability to generalize the results – most
analyses have been performed on about 50-70 cases (projects); the fewest cases
were available for Metrics program (13-19, depending on particular quality feature
investigated); rarely more than 100 cases were available.

 Empirical Analysis of the Impact of Requirements Engineering on Software Quality 237

• The need to use nonparametric statistical tests with fewer assumptions but which
are usually less explanatory/discriminative.

• Unbalanced data provide very few cases for some combinations of states and may
bias the values of statistical tests.

• The study covered a variety of RE factors, but there are other RE factors not
investigated here because the dataset does not contain them.

• Investigated quality features are subjective and no detailed information is available
on the process of gathering of them and their source.

• We used various values of p in different statistical tests – although a value ‘0.05’ is
the most frequent in the literature, in some less popular tests we also used a value
‘0.1’ since the aim was to identify a wide range factors that might be related to
software quality.

• Performed analyses involved using “classical” statistics and not other techniques,
which will be considered in future work.

5 Conclusions and Future Work

This study involved the analysis of RE factors that influence soft software quality
features. Obtained preliminary results lead to the following conclusions that answer
initially stated research questions:

• RQ1: There is a variety of RE factors, listed in Tables 1 and 2, which are in
statistically significant relationships with selected soft quality features.

• RQ2: The majority of RE factors positively influence soft quality features.
However, there are factors that decrease software quality features related to speed,
e.g., used methodology, project objective: min. costs, and usage of various
specification documents decrease SDS and SPS.

• RQ3: The majority of quality features are positively correlated with each other
(Table 3). No negative correlations between quality features have been identified.

Results obtained in this study may be valuable both for researchers and practitioners
in analysis of effectiveness of RE, building analytical and predictive models, and
guiding and supporting decision makers.

In future we plan to extend this analysis by using other techniques from statistics
and artificial intelligence, including cluster analysis, decision trees, rule induction
techniques, neural networks, rough sets, and Bayesian networks. We also plan to
investigate the relationships between RE factors and other factors like development
effort and productivity, and factors reflecting other phases of software development.

Acknowledgments. I am indebted to Professor Norman Fenton from Queen Mary,
University of London for funding the ISBSG dataset. This work has been supported
by research funds from the Ministry of Science and Higher Education in Poland as a
research grant no. N N111 291738 for years 2010-2012.

238 Ł. Radliński

References

1. Berry, D., Franch, X.: REFSQ 2010. LNCS, vol. 6182. Springer, Heidelberg (2010)
2. Cann, A.: Maths from Scratch for Biologists. Wiley (2003)
3. Cheng, B.H.C., Atlee, J.M.: Research Directions in Requirements Engineering. In: Future

of Software Engineering, pp. 285–303. IEEE Computer Society, Washington, DC (2007)
4. Damian, D., Chisan, J.: An Empirical Study of the Complex Relationships between

Requirements Engineering Processes and Other Processes that Lead to Payoffs in
Productivity, Quality, and Risk Management. IEEE Trans. Softw. Eng. 32, 433–453
(2006)

5. Ferrari, R., Madhavji, N.H.: Software architecting without requirements knowledge and
experience: What are the repercussions? J. Syst. Softw. 81, 1470–1490 (2008)

6. Finkelstein, A.: Requirements engineering: a review and research agenda. In: Proceedings
of the 1994 First Asia-Pacific Software Engineering Conference, pp. 10–19 (1994)

7. Hall, T., Beecham, S., Rainer, A.: Requirements problems in twelve software companies:
an empirical analysis. IEE Proc. – Softw. 149, 153–160 (2002)

8. ISBSG: Repository Data Release 11. International Software Benchmarking Standards
Group (2009), http://www.isbsg.org

9. ISBSG: ISBSG Comparative Estimating Tool V4.0 – User Guide. International Software
Benchmarking Standards Group (2005), http://www.isbsg.org

10. Jones, C.: Applied Software Measurement: Global Analysis of Productivity and Quality,
3rd edn. McGraw-Hill, New York (2008)

11. Kerzner, H.: Project management. Van Nostrand Reinhold, New York (1992)
12. Maxwell, K.D.: Applied Statistics for Software Managers. Prentice Hall PTR, Upper

Saddle River (2002)
13. Mendes, E., Lokan, C.: Replicating studies on cross- vs single-company effort models

using the ISBSG Database. Emp. Softw. Eng. 13, 3–37 (2008)
14. Musa, J.D.: Software Reliability Engineering: More Reliable Software Faster and Cheaper,

2nd edn. Authorhouse, Boston (2004)
15. Pohl, K.: Requirements Engineering - Fundamentals, Principles, and Techniques. Springer,

Heidelberg (2010)
16. Radliński, Ł.: Empirical Analysis of the Impact of Requirements Engineering on Software

Quality – Raw Results, http://lukrad.univ.szczecin.pl/refsq2012/
17. Radliński, Ł.: Factors of Software Quality – Analysis of Extended ISBSG Dataset. Found.

Comput. Dec. Stud. 36, 293–313 (2011)

B. Regnell and D. Damian (Eds.): REFSQ 2012, LNCS 7195, pp. 239–255, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Systematic Literature Review
on Service Description Methods

Abelneh Y. Teka, Nelly Condori-Fernandez, and Brahmananda Sapkota

University of Twente,
Enschede, The Netherlands

a.y.teka@student.utwente.nl,
{n.condorifernandez,b.sapkota}@utwente.nl

Abstract. [Context and Motivation] As a result of recent trends in enhancing
Service Oriented Requirement Engineering activities, a number of service
description methods have been proposed for describing services. The
availability of different service description methods can give developers a range
of options to choose from so that they can have an appropriate description
method that fits best their services. [Question/problem] But there is neither
holistic information on service description methods nor a clear understanding of
the strengths and weaknesses of each service description method. The aim of
this paper is to identify problems of service descriptions that have been
researched so far, and the techniques or methods available to tackle these
problems. [Principle ideas/results] Thus, to gather this relevant information
available in the literature, a systematic review was conducted. A total of 191
articles were examined, of which 24 articles focus on service description related
concepts. The results show that, despite the recent efforts in describing the
nonfunctional requirements of services through approaches like semantic
annotations and policy attachments, there is still a lot to do in enhancing the
description of quality aspects of services. Furthermore, this study reveals that a
negligible effort is given to the description of consumer oriented services.
[Contribution] This paper identifies and analyzes the current service
description methods that exist in the literature and explains the pros and cons
inherent to these methods.

Keywords: systematic review, service description, service specification,
functional, non-functional requirements.

1 Introduction

A successful Requirements Engineering (RE) process involves understanding the
needs of customers, and other stakeholders; understanding the contexts in which the
to-be-developed software will be used; modeling, analyzing, negotiating, and
documenting the stakeholders’ requirements; validating that the documented
requirements match the negotiated requirements; and managing requirements
evolution [1]. Service Oriented Requirements Engineering (SORE) shares with these
activities, but some of them are conducted in a different way. The most remarkable

240 A.Y. Teka, N. Condori-Fernandez, and B. Sapkota

difference is that service and workflow discovery has a very significant role in SORE
as part of the requirement elicitation and analysis activities [8],[39]. SORE focuses on
determining requirements of systems which are going to be developed in a service-
oriented manner [2].

Although RE is a key part in software development process; there is still a lack of
well-established and widely accepted RE methods even in the commonly used system
development approaches like Object Oriented approaches [3]. The same is true in the
newly Service Oriented Computing (SOC) paradigm, where one of the consequences,
associated with this lack of appropriate RE techniques, is the absence of accurate
service descriptions1, which will affect other SOC activities like service discovery and
service composition [5], [6].

This lack in accurate service description is manifested by the presence of gaps
between the specifications of requirements of a system and the service oriented
description of the system. The gap is due to the difference in focuses of the two
systems, i.e. Requirement engineering is primarily concerned with goals and
requirements while service descriptions are mainly about technical operations and
bindings [37].

Thus currently, researchers are enthusiastically producing new techniques in order
to cover this gap. And the development of new approaches for describing services is
not a problem by itself; in fact, it gives an opportunity for practitioners to have a
range of choices to use in specific situations. The real problem is the lack of holistic
information on available methods and techniques along with their respective strengths
and weakness. Though scarce studies that allow gaining this holistic view of existing
methods have been carried out [13], [10], a comprehensive analysis covering different
aspects of the available service description methods is still missing.

This paper aims to analyze the current service description methods that exist in the
literature, by identifying pros and cons of these methods. To do this, a Systematic
Literature Review (SLR) is performed based on the guidelines suggested by
Kitchenham et al. [11]. We decided to conduct a SLR instead of a Mapping Study
because our research goes beyond of identifying the quantity and type of research and
results available within a research area [40].

The remaining parts of this paper are organized as follow: Section 2 introduces the
main issue of our review, service description, from a SORE viewpoint. Section 3
focuses on the methodology used in conducting the research. Section 4 presents the
results of this review. Finally, section 5 concludes the paper.

2 Background: Service Description

Requirement engineering in SOC plays a vital role in identifying and specifying
service requirements that have been defined through service level agreements (SLAs)
[12]. SORE focuses on identification, specification and analysis of requirements. But
the specification of SLAs need different approaches in requirement engineering as
there are a number of activities in SORE that are not available in the traditional RE

1 A Service description comprises a service specification and, if available, some service

additional Information. A service specification is usually defined by the service developer
and may include both functional and non-functional information [39].

 A Systematic Literature Review on Service Description Methods 241

activities. Examples of such activities include the requirements elicitation from
service description and service discovery processes.

Utilization of a service based application involves a number of entities playing
different roles. Among these entities, service providers, service repositories and
service consumers are the key stakeholders that SORE is focusing on. Service
providers publish their service descriptions on Service repositories and service
consumers use these descriptions for discovering and binding to services in order to
utilize them [2]. This means, service consumers need information about services
available at repositories so that they can discover and ultimately utilize it. Thus, it is
important to have an expressive service description that enables service consumers to
decide which services are best suited for satisfying their requirements.

Currently services are described by service description languages like Web Service
Description Language (WSDL), but service orientation itself needs its own
requirement engineering activities, since a service described in terms of operations
and bindings may not be enough to specify the desired goals and domain assumptions
of stakeholders [41].

This does not mean available service description methods are all unable to specify
requirements as they are supposed to do so. In fact there are considerable number of
emerging approaches ([7], [16], [17], [27]) targeted at closing the gap between
technical service description techniques and the common RE specifications.

3 Review Methodology

The major steps taken to conduct this literature study are taken from the guidelines
proposed by Kitchenham et. al [11], which are discussed in the following subsections:

3.1 Defining the Research Questions

As we mentioned in the Section 1, this paper focuses on existing service description
methods, associated problems and possible approaches to tackle these problems. In
particular, we aim at answering the following research questions:

RQ1. What are the existing service description methods reported in literature?
RQ2. What are the problems faced during service description process as reported

 in the literature?
RQ3. What are the strengths and weaknesses of these service description methods?

3.2 Search and Selection Process

The principal source used while searching relevant papers was Scopus
(www.scopus.com). As Scopus provides access to well-known bibliographic-
databases like IEEE Explore, SpringerLinks, ACM digital library etc. at the same
place, it was fruitful using it as a search engine for the search process.

In the search process, the identification of our search string was carried out in an
iterative way. We started with a number of combinations of search terms like:
"Service Description" AND “Requirement specification”, “Service Specification”

242 A.Y. Teka, N. Condori-Fernandez, and B. Sapkota

AND “requirement specification”, “service oriented architecture” AND “requirement
engineering”. As thousands of articles were retrieved, we restricted these preliminary
search results by limiting the subject area to computer science and discarding papers
published earlier than 20022. Doing so helped us to discard irrelevant articles much
easily from other areas (e.g. economics). The list of search terms was adapted several
times and the search was re-run with the new terms. (See Table 1).

Table 1. Search hits from Scopus

Search Term Number
of first
hits

Restriction
to computer
science
subject area

Restriction to
publication
date year
2002 and
above

Restriction
to
conference
papers and
articles

“service oriented
architecture” AND
“requirement engineering”

572 432 408 366

"Service Description" AND
“Requirement
specification”,

38 29 29 28

“Service Specification”
AND “Requirement
specification”

3,518 1,514 1,187 1112

After an iterative refinement, the search string used was the following: ((“service
oriented architecture”) OR SOA) AND ((“service description” OR “service
specification”) AND (“requirement specification”)).

A total of 191 articles were retrieved from this search string. From these articles, a
further refinement was carried out. 11 studies were identified by reading their
abstract; 3 studies were identified by reading the introduction part; and 8 studies were
identified by reading whole article. At this phase the authors observe that the
approaches discussed in [29] and [31] are similar and merged to one approach making
the relevant service description methods count to be 21 articles.

While we were reviewing these 21 articles, 3 more ([10], [15], [31]) were
identified as relevant for our study. These articles were incorporated in the relevant
list, thereby ending up in 24 articles selected for the study presented in this paper.

3.3 Study Quality Assessment and Data Collection

For studying the quality assessment, a qualitative assessing was carried out within the
selection process. We consider an article as relevant for our review whether it reports
“enough” information to answer our main research questions. In addition, although
the 70% of the articles were refereed, the criteria by number of citation was not also
considered in order to do a filter of our 24 articles, since a good number of the articles
were published in the last year (2010).

2 It is starting time of Service Oriented Architecture.

 A Systematic Literature Review on Service Description Methods 243

Each of the 24 papers selected was analyzed, by identifying 1) the problem to be
solved by the service description method proposed, 2) the technique(s)/language used
to tackle the problem, 3) their strengths and weaknesses, and 4) the approach
employed to evaluate or validate the respective description method.

4 Review Results

4.1 RQ1: Service Description Methods

The literature study reveals that there has been a significant effort in improving
requirement engineering practices for SOA. For instance, as shown in Figure 1, from
the 24 service description methods, 19 of them are published in and after 2007.

Fig. 1. Frequency of newly emerged description methods by year

As the service description methods found are diverse and this broad variety makes it
difficult to classify them based on certain criteria, we consider to use three dimensions
with the purpose of facilitating the analysis of each one of the 24 service description
methods. Figure 2 shows these three dimensions: Representation (syntactic, semantic),
Content (Functional requirements, Non-functional requirements, additional information),
and Perspective (business, operational and technical). Table 4 (See Appendix) shows an
overview of these 24 methods according to these three dimensions.

Syntax Based vs. Semantic Based Methods. Syntax based service descriptions are
the most commonly employed description methods up to date. These methods hide
what is going on inside the service and expose the necessary input and output values
of the service interfaces. Syntax based service description employs techniques based
on languages like WSDL to expose the interface of the service and other service
description mechanisms like Web Service Level Agreement (WSLA).

The syntax based description methods that use WSDL as service description
language at least as their base in describing services are [16], [20], [24], [28].

244 A.Y. Teka, N. Condori-Fernandez, and B. Sapkota

Fig. 2. Dimensions used to analyze service description methods

Semantic based service descriptions are emerging approaches that describe service
based on various forms of meanings like ontology annotation and Context
information based methods [10].Semantic based descriptions can be an extension of
services described in WSDL [20], but can also be entirely dependent on ontology for
describing services [14].

The extension of WSDL approaches adds additional semantic description to
WSDL components by using annotations while the pure semantic approaches use
modifications of Web Ontology Language (OWL) for specifying the functionalities of
a service and the associated inputs and outputs. OWL is not the only language used in
semantic service descriptions. Its predecessor DARPA Agent Markup Language
(DAML) can be used for describing services as a process not as a one shoot activity
while retaining the semantic meanings [32].

Functional vs. Non Functional Requirements Description Methods. The functional
requirements of services can be described in terms of syntax based, behavior description
based and semantic description based approaches [10]. Though most service description
techniques are intended for describing the functional requirements of services [5], [16],
[28], [29], [35] ; there are a considerable number of approached that aim in giving
emphasis to the non-functional requirements too[18], [21].

The presence of the non-functional requirements like quality, cost, legal issues, etc.
will definitely add more options for customers to choose the right service for their
requirements. Some of these methods are helpful in describing even frequently
changing Quality of Services (QoSs) that helps service users in selecting services that
matches their requirements [21]. Contrary to this distinction between functional and
non-functional requirements descriptions, there are also more promising approaches
which consider both the functional and non-functional requirements [20], [30].

Business Process - Technology Mapping approaches. SOC is targeted for developing
enterprise applications based on autonomous services [16]. Previous trends in developing
such applications were technology oriented. Under such approach, services are usually
defined in terms of technical functionalities. These approaches describe services based on
the various operations defined at their interfaces to be invoked at different port types [4],
[16], [36].

 A Systematic Literature Review on Service Description Methods 245

The most important thing to consider here is that applications are usually
developed to achieve some kind of business goal. Such business goals are generally
realized/represented in terms of some business processes expressed in business
processes modeling languages like be BPEL or BPMN. In SOA approach, these
business processes are realized by service based applications which are represented in
terms of technical service development process so that the service based application
can assist in achieving the business goals. Business Process - Technology Mapping
approaches help in a better alignment of business processes to services based
applications. From the 24 service description methods found in the study [7], [16],
[17], [27] were targeted at a better alignment of business – technology mappings.

Using a unified service description language is one of the approaches discovered
for such enhanced alignment [7]. This approach proposes model-based description of
services from business operational and technical perspectives. Another candidate
approach discovered to handle such an issue is formulating business specifications to
include SOA application specification [17]. Such approaches are designed to improve
the poor role played by the current service description methods in business-software
mapping mechanisms.

Model Based Service Description Approaches. Requirements engineers in SOA
usually use model driven approaches to specify the requirements of the services.
Among the 24 service description methods found in the review, [7], [24], [25], [30],
[26] use various model based approaches to describe services. There are modeling
approaches like SMMA (Single Model Multiple Analysis) that can help even in
generating codes from the models alone [15]. PSML-S (Process Specification and
Modeling Language) is a typical language used for implementing SMMA approach.
An alternative language that can be used in specifying services is BPEL4WS which is
mainly used in defining the flow and coordination between service components [29].

There are also formal model based techniques for describing services though they
still need more time to mature enough to be applicable in service oriented applications
[15]. But efforts to improve the applicability of these formal methods are already
taking place. ForSel (Formal Service description language) is a typical example of
such efforts. ForSel describes services by describing the necessary functionalities in
terms of finite or infinite reactions [5]. Using calculus of communication systems
(CCS) to model behavior of services is also another approach discovered for
describing services [33].

Service Descriptions for Adaptable Services. In today’s competitive business
environment, business goals and requirements tend to change regularly.
Consequently, applications that support in realization of these requirements need to be
updated regularly. And for effective dynamic realizations of business processes,
dynamic composition of services is essential.

Moreover, for dynamic service composition, presence of dynamic service
description techniques is important. From the 21 service description methods found in
the review [9], [14], [23], [28] target at providing descriptions for such dynamic and
adaptable services.

An interesting approach dynamic service description approach found during the
study is the adaptation of situation awareness in service specification. In support of

246 A.Y. Teka, N. Condori-Fernandez, and B. Sapkota

this, a new extension of OWL-S, named as SAW-OWL-S, was developed to enable
services to realize their business context [9]. Related to these, a new approach named
Extended Web Service Agreement was proposed to enable renegotiations of SLAs
that can help in modifying QoSs while the service is being provided [28]. This
approach uses a new element named modifiable service level objective that can be
modified at run time.

Along with the growth in popularity of SOA, service based applications is being
used not only in large business process contexts but also in small scale businesses and
even in our day to day personal activities. Developing services for such processes is
usually cumbersome as the developer may not have even a concrete clue on the
customer requirements. Such kind of problems can be tackled by letting consumers to
specify and publish their requirements and then developers can design services based
on clients’ requirements [29].

We also found methods for describing services based on mathematical/formal
specifications. For instance, in order to describe services developed for reactive
systems, a method named Formal Service description is proposed in [5]. This
approach specifies services as a composition of precondition, triggering event and the
system reaction. Furthermore, an additional method named Formal specification of
data aspects of Web services [35] was proposed for ensuring that customers’
requirements are still satisfied during change of services implementations by service
providers.

4.2 RQ2: Problem Faced in Describing Services

The second step taken in reviewing the selected 24 papers was to find what type of
problem is the proposed methods are aiming to solve. We found that majority of the
papers focus on problems related to lack of describing semantic meaning and the
Quality of Service (QoS) properties of services.

We also observe that there is a wide gap in services realized from business process
perspective and from the software engineering perspective. There are also problems
associated with services described in terms of producer centric approaches. Table 2
shows the major problems discovered in the literature study.

Table 2. Problems addressed by the 24 service description methods

Problem References
Lack of Semantic in syntactic Descriptions and
failure in describing QoS.

[4], [9], [14], [18-26]

Gap between business oriented and IT oriented
Service Realizations.

[7], [16], [17], [27]

Lack of dynamic adaptability and situation
awareness

[9], [14], [23], [28]

Producer only centric approaches [29], [31]
Imprecise Requirements Specification [5]
Lack of Behavior Description [32], [33]

 A Systematic Literature Review on Service Description Methods 247

Lack of QoS Descriptions. It has been noted that even though message oriented
description techniques, like WSDL [14], are most popular ones; they have their own
limitations. WSDL describes services in terms of various operations defined at
interfaces. These descriptions are published on the publicly accessible service
registries. Users will discover such services by matching the inputs and outputs of
operations at these interfaces [4]. Such approaches in service descriptions employ
syntactic matching in service discovery. A typical problem associated with this is the
keywords used in service description may fail in describing all the relevant services as
keywords can have different synonyms [10]. It is possible to use wildcards during
service discovery to alleviate such situation but doing so is not the best solution as it
will result in many irrelevant service for the service consumer.

As nonfunctional requirements are also integral parts of services, QoS should also
need to be described just like the functional requirements [4]. Unfortunately, the
syntax based service description techniques like WSDL fail in realizing this crucial
part of a service description.

Gap between Business Service and IT Service. Services are designed to automate a
certain business process. So they can be realized from two perspectives: business
services and technical services. Business services are concerned with the end to end
delivery and an outcome of the process while most of the current service description
methods fail in describing the details of these processes as they specify services in
terms of a mere input and output operations [7]. This introduces difficulties in
aligning business-software realizations [17]. If such details are not realized in the
service implementations, there is no guarantee that the developed services will fully
realize the business requirements.

Lack of Adaptability and Situation Awareness. Consumers will start utilizing
services once they agreed with the providers and establish a Service Level Agreements
(SLAs). Sometimes, after starting to use the agreed services, the service users’
requirements may change, which may lead to the change in SLAs altogether. These
changes are in fact a highly probable situation to arise in today’s dynamic business
environment.

Additionally, changes can be requested not only by the service consumers but also
by the service providers. Unfortunately, the current service description methods are
not capable of handling changes in service level agreements once it is set in to
operation [28].

Service composition is also one of the vital activities in SOA as it can provide new
functionality by composing existing services. But unfortunately, services described
based on syntactic approach fails in composing services dynamically, i.e., service
composition needs human involvement [14]. In addition, there is also a considerable
lack of support in incorporating context and situation awareness of the service
environment during service description. Such lack in situation description will result
in less flexible service design [9].

Lack of Consumer Oriented Service Description. As SOC is used for more and
more applications, applications for personal uses are being developed based on
services. Even end-users with no technical background are creating their own web

248 A.Y. Teka, N. Condori-Fernandez, and B. Sapkota

applications [8]. Such users may not know the exact requirements of their
applications. In addition, service based applications for individuals face problems
associated with the broad variety of customer needs. Developing services that can
satisfy such varying needs is difficult, if not impossible, for service developers [29].

4.3 RQ3: Strengths and Weakness of Current Service Description Methods

Each group of service description approaches shown in Table 3 and Table 4 (See
Appendix) has their own strengths and weakness. In this section, we present the
strong and weak points of these methods. At this point, we would like to remind that
some methods are designed to tackle the limitation of another method. This can result
in a situation where one method’s limitation is some other method’s good feature.

Syntax Based Approaches. Syntactic service description methods are the most
frequently used service description methods to date [32]. These methods describe a
service by explaining the values that are entering and leaving the services without
specifying the details of the internal structure of the services. These methods separate
the interface of their services from the actual bindings necessary to access services
[16]. This will enhance the modularity of the services as they are no longer tied to one
implementation. Furthermore, as these methods expose the public interfaces only,
developers can use any implementation technique as long as it can provide the desired
operations at the interfaces [4].

The huge problem associated with describing services in terms of their syntactic
signature is the complete lack in describing QoS [14]. As nonfunctional requirements
are the integral parts of any service, the inability of syntax based description methods
to describe these crucial parts of services is a severe drawback that forces developers
to seek for other approaches for describing services [4].

The inability to describe QoS is not the only problem faced by developers using
syntactic description methods. As there is no semantic representation of services in
these approaches, they can also result in a low precision service discovery results
[21]. In addition, the lack in semantic meaning of inputs and outputs makes it
impossible for a complete automation of finding and invoking required services [14].

Semantic Based Approaches. Semantic description of services has a wide range of
advantages as they can provide meaning to service descriptions. A semantic rich
description can describe not only the functional requirements but also the
nonfunctional requirements of services too [20]. Such availability of semantic
meaning to services will enable users to select the right service for their business
process when they are faced with vague syntax based descriptions [23].

Though semantic based approaches are successful especially in mitigating major
weakness of syntax based service description methods, they also come with their own
limitation. Their first limitation is associated with the complexity of ontological
concepts and relation between them. It is usually cumbersome to use these complex
concepts by both service providers and consumers to avoid semantic heterogeneity
[10]. Context aware service development is also one of the emerging approaches in
service based applications industry. But let alone the syntax based approaches,
ontology based description techniques like OWL-S also lack appropriate mechanisms
in formal expression of context and situations [9].

 A Systematic Literature Review on Service Description Methods 249

Functional Requirement Based Description. The functional requirements descriptions
of services are crucial in ensuring users that the services they are going to utilize will
satisfy their demands. Web service repositories like UDDI usually store information
about the functionality of services [10]. As these functionalities are the primary concerns
of the majority service users, service description techniques based on these approaches
are preferred by users with their primary concern, which is the automation of the main
business process.

The limitations of theses functional requirement descriptions are mainly related
with their lack in describing the quality and dynamic aspects of the services [19],
[20]. These limitations are directly related to the limitations of syntax based
approaches as the functional requirement description methods use the syntax based
approaches in describing services.

Model Based Descriptions. Most of the SORE activities employ one or more types
of model –driven approaches. One of the benefits of using such models is that once
there is a well-established set of core models it will be relatively easier to analyze and
maintain custom built models based on these core service models. Furthermore, it is
possible to use these models for automatic code generation [8]. Modeling of services
in using formal methods like Calculus of Communicating Systems (CCS) will also
enable for description of the behavior of services that were not available in syntax
based approaches [33]. The prominent limitation of describing services by using
models is the complexity involved in the formal specification of services. To avoid
such problems, service providers should have adequate knowledge on modeling
languages like CCS and automata.

Finally, we also reviewed the efforts aimed in validating or evaluating the existing
service description methods. The observed result was not encouraging since 10 out of
24 description methods use simple examples only for showing their validity, and 8 out
of the remaining 14 papers do not specify any validation or evaluation approach at all.
This clearly indicates the need for more research to evaluate more rigorously in real-
life settings. The complete list of service description methods identified in this study
can be referred in Appendix (See Table 3).

4.4 Limitations of This Review

The main limitations of this review are bias in the selection of relevant articles and a
data extraction bias. Our search string was limited only to computer science subject
area due to “service” term is used by other disciplines (e.g. medicine, economics,
social sciences, engineering). Besides, it was also necessary to limit year of
publication to 2002 to increase the precision search. However, these both limitations
could be affecting our recall search.

Another limitation is related to the accuracy of data extraction; several articles
lacked sufficient information regarding the dimensions considered for describing
services. For example, some articles do not precisely state the type of content
described, whether it is functional or nonfunctional (e.g. [6]) description or they do
not precisely state the type of representation, whether it is semantic and syntactic (e.g.
[29]) description. There is, therefore, a possibility that the extraction process may
have resulted in some inaccuracy in the data.

250 A.Y. Teka, N. Condori-Fernandez, and B. Sapkota

Moreover, with respect to the synthesis of our findings, we recognize that it could have
been carried out in a more systematic way, if we had used some of the tools for
synthetizing qualitative studies (e.g. EPPI-reviewer 43). However at the moment of
conducting the present review we did not have a software license available to use the tool.

5 Conclusions and Future Work

Service descriptions are one of the major activities included in SORE as it is a crucial
prerequisite to service discovery process. This paper presents problems faced in
describing services, 24 service description methods discovered from literature study
and the strengths and weakness of these service description methods. The result of the
study was presented according to the major categories of service description methods
currently employed or proposed to be employed.
 Though WSDL is the most widely used service description language, it comes with
its own limitation: It fails in describing nonfunctional requirements of services which
are of course crucial parts of services [4]. Such and related problems along with the
possible solutions are discussed in Section 4.

The study shows that there is a considerable limitation in describing QoS –
nonfunctional requirements of services despite the presence of some efforts in describing
these quality attributes. A possible approach observed to handle this lack of support for
describing QoS in service description is to integrate syntactic based descriptions like
WSDL and ontology based descriptions like OWL-S. As WSDL descriptions are quite
extensible, adding OWL annotations can be fruitful in describing both the functional and
QoS aspects of services.

Considering the recent trends in developing service oriented applications targeted
mainly for personal use, the authors observe a negligible amount of effort in handling
requirement specifications of these user-centric applications. There is also a
significant difference in business process specification and how the current service
implementation technologies realize and describe these business processes.

On the other hand, from this SLR, we think that a list of possible combinations of
service description methods could have resulted to yield much better description
approach, thereby increasing the expressiveness of the specification document. In fact
we have observed such possibilities. For instance Syntax based service descriptions
work nicely only if specification documents are available to explain the details of the
capabilities of the service as well as the conditions necessary for using the service
[22]. But if such specification document is not available, verbose service description
methods ([19]) come in to play. Syntax based and semantic based service description
methods can be combined to provide rich service description approaches [20]. But
this and other possibilities of combining two or more description methods will be part
of our future work.

In addition, we will be also focused on investigating further approaches aimed at
enhancing the current efforts in describing QoS. As the quality attributes are crucial in
specifying service capabilities, more study on service descriptions focusing on QoS
will be quite relevant.

3 http://eppi.ioe.ac.uk/cms/

 A Systematic Literature Review on Service Description Methods 251

We also plan to integrate this study with existing service description and service
discovery mechanisms to create a holistic view of the basic activities in SORE.

Acknowledgments. This work was supported in part by the EU Marie Curie
Fellowship Grant 50911302 PIEF-2010. Authors would like also to thank the
anonymous reviewers, and colleagues Klaas Sikel and Zortnitza Bakalova for their
valuable comments for improvement.

References

1. Cheng, B., Atlee, J.M.: Research Directions in Requirements Engineering. Requirements
Engineering, 285–303 (2007)

2. Galster, M., Bucherer, E.: Towards Requirements Engineering in a Service-Oriented
Environment–Extending the SOA Interaction Triangle. In: Proceedings of the International
Conference on Computational Intelligence for Modelling Control & Automation, pp.
1099–1104 (2008)

3. Davis, A.M., Hickey, A.M.: A New Paradigmfor Planning and Evaluating Requirements
Engineering Research (2004)

4. Papazoglou, M.: Web Services: Principles and Technology, 1st edn. Prentice Hall (2007)
5. Hartmann, J., Rittmann, S., Wild, D., Scholz, P.: Formal incremental requirements

specification of service-oriented automotive software systems. In: Proceedings of the Second
IEEE International Symposium on Service-Oriented System Engineering, pp. 130–133 (2006)

6. Edmond, D., Hofstede, A.H.M., O’sullivan, J.: Service Description: A survey of the
general nature of services, University of Queensland, vol. 12, pp. 117–133

7. Cardoso, J., Barros, A., May, N., Kylau, U.: Towards a unified service description
language for the internet of services: Requirements and first developments. In: Proceedings
of the IEEE 7th International Conference on Services Computing, pp. 602–609 (2010)

8. Tsai, W.T., Jin, Z., Wang, P., Wu, B.: Requirement Engineering in Service-Oriented
System Engineering. In: Proceedings of the IEEE International Conference on e-Business
Engineering, pp. 661–668 (2007)

9. Yau, S.S., Liu, J.: Incorporating situation awareness in service specifications. In:
Proceedings of the Ninth IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing, pp. 287–294 (2006)

10. D’Mello, D.A., Ananthanarayana, V.S.: A review of dynamic web service description and
discovery techniques. In: Proceedings of the 1st International Conference on Integrated
Intelligent Computing, pp. 246–251 (2010)

11. Kitchenham, B.: Procedures for Performing Systematic Reviews, Technical Report,
TR/SE-0401, Keele University (2004)

12. Lichtenstein, S., Nguyen, L., Hunter, A.: Issues in IT service-oriented requirements
engineering, http://www.deakin.edu.au/dro/view/DU:30005308
(accessed: June 01, 2011)

13. Gu, Q., Lago, P.: Service Identification Methods: A Systematic Literature Review. In:
Di Nitto, E., Yahyapour, R. (eds.) ServiceWave 2010. LNCS, vol. 6481, pp. 37–50.
Springer, Heidelberg (2010)

14. Martin, D., Paolucci, M., McIlraith, S.A., Burstein, M., McDermott, D., McGuinness,
D.L., Parsia, B., Payne, T.R., Sabou, M., Solanki, M., Srinivasan, N., Sycara, K.: Bringing
Semantics to Web Services: The OWL-S Approach. In: Cardoso, J., Sheth, A.P. (eds.)
SWSWPC 2004. LNCS, vol. 3387, pp. 26–42. Springer, Heidelberg (2005)

252 A.Y. Teka, N. Condori-Fernandez, and B. Sapkota

15. Tsai, W.T., Chen, Y., Fan, C.: PESOI: Process Embedded Service-Oriented Architecture ∗
16. Rychlý, M., Weiss, P.: Modeling of service oriented architecture from business process to

service realisation. In: Proceedings of the 3rd International Conference on Evaluation of
Novel Approaches to Software Engineering, pp. 140–146 (2008)

17. Shishkov, B., Dietz, J.L.G., van Sinderen, M.: Closing the Business-Application GAP in
SOA challenges and solution directions. In: Proceeding of 2nd International Conference on
Software and Data Technologies, vol. SE, pp. 333–336 (2007)

18. Slimane, A.A.A., Pinheiro, M.K., Souveyet, C.: Goal reasoning for quality elicitation in
the ISOA approach. In: Proceedings of the 3rd International Conference on Research
Challenges in Information Science, pp. 39–48 (2009)

19. Stefanovic, M., Matijević, M., Erić, M., Simic, V.: Method of design and specification of
web services based on quality system documentation. Information Systems Frontiers 11(1),
75–86 (2009)

20. Qiu, Q., Xiong, Q.: An Ontology for Semantic Web Services. In: Perrott, R., Chapman,
B.M., Subhlok, J., de Mello, R.F., Yang, L.T. (eds.) HPCC 2007. LNCS, vol. 4782,
 pp. 776–784. Springer, Heidelberg (2007)

21. Kritikos, K., Plexousakis, D.: Requirements for QoS-based Web service description and
discovery. IEEE Transactions on Services Computing 2(4), 320–337 (2009)

22. Pfeffer, H., Linner, D., Jacob, C., Radusch, I., Steglich, S.: Towards light-weight semantic
descriptions for decentralized service-oriented systems. In: International Conference on
Semantic Computing, pp. 295–303 (2007)

23. Sirin, E., Hendler, J., Parsia, B.: Semi-automatic Composition of Web Services using
Semantic Descriptions. In: Web Services: Modeling, Architecture and Infrastructure
Workshop 2003, pp. 17–24 (2002)

24. Bocciarelli, P., D’Ambrogio, A.: A model-driven method for describing and predicting the
reliability of composite services. Software & Systems Modeling 10(2), 265–280 (2010)

25. Di Marco, A., Sabetta, A.: Model-based dynamic QoS-driven service composition. In:
ACM International Conference Proceeding Series (2010)

26. Fornasier, P., Webber, J., Gorton, I.: Soya: A Programming Model and Runtime
Environment for Component Composition Using SSDL. In: Schmidt, H.W., Crnković, I.,
Heineman, G.T., Stafford, J.A. (eds.) CBSE 2007. LNCS, vol. 4608, pp. 227–241.
Springer, Heidelberg (2007)

27. Rolland, C., Kirsch-Pinheiro, M., Souveyet, C.: An intentional approach to service
engineering. IEEE Transactions on Services Computing 3(4), 292–305 (2010)

28. Di Modica, G., Regalbuto, V., Tomarchio, O., Vita, L.: Enabling re-negotiations of SLA
by extending the WS-Agreement specification. In: Proceedings of the IEEE International
Conference on Services Computing, pp. 248–251 (2007)

29. Tsai, W.T., Bingnan, X., Paul, R., Qian, H., Yinong, C.: Global software enterprise: A new
software constructing architecture. In: CEC/EEE 2006 Joint Conferences (2006)

30. Narendra, N.C., Ponnalagu, K.: Variation-Oriented Requirements Analysis (VORA). In:
Proceedings of the IEEE Congress on Services, SERVICES 2007, pp. 159–166 (2007)

31. Tsai, W.T., Xiao, B., Paul, R.A., Chen, Y.: Consumer-centric service-oriented architecture:
A new approach. In: Proceedings of the Fourth IEEE Workshop on Software Technology
for Future Embedded and Ubiquitous Systems, and the Second International Workshop on
Collaborative Computing, Integration, and Assur, pp. 175–180 (2006)

32. Klein, M., König-Ries, B., Obreiter, P.: Stepwise Refinable Service Descriptions:
Adapting DAML-S to Staged Service Trading. In: Orlowska, M.E., Weerawarana, S.,
Papazoglou, M.P., Yang, J. (eds.) ICSOC 2003. LNCS, vol. 2910, pp. 178–193. Springer,
Heidelberg (2003)

 A Systematic Literature Review on Service Description Methods 253

33. Yun, B., Yan, J., Liu, M.: Behavior-Based Web Services Matchmaking. In: Proceedings of
the 2008 IFIP International Conference on Network and Parallel Computing, pp. 483–487
(2008)

34. Zelkowitz, M.V., Wallace, D.: Experimental validation in software engineering.
Information and Software Technology 39(11), 735–743 (1997)

35. Saleh, I., Kulczycki, G., Blake, M.B.: Formal specification and verification of data-centric
service composition. In: Proceedings of the IEEE 8th International Conference on Web
Services, pp. 131–138 (2010)

36. Bocciarelli, P., D’Ambrogio, A.: A model-driven method for describing and predicting the
reliability of composite services. Software and Systems Modeling 10(2), 265–280 (2011)

37. Verlaine, B., Dubois, Y., Jureta, I.J., Faulkner, S.: Towards automated alignment of Web
Services to requirements. In: 2010 First International Workshop on the Web and
Requirements Engineering (WeRE), pp. 5–12 (2010)

38. Hummer, W., Leitner, P., Dustdar, S.: SEPL-a domain-specific language and execution
environment for protocols of stateful Web services (2011)

39. Papazoglou, M.P., Pohl, K., Parkin, M., Metzger, A.: Service Research Challenges and
Solutions for the Future Internet - S-Cube - Towards Engineering, Managing and Adapting
Service-Based Systems. LNCS, vol. 6500. Springer, Heidelberg (2010)

40. Petersen, K., Feldt, R., Shahid, M., Mattsson, M.: Systematic Mapping Studies in Software
Engineering. In: 12th International Conference on Evaluation and Assessment in Software
Engineering (EASE), Department of Informatics, University of Bari, Italy (June 2008)

41. Verlaine, B., Jureta, I.J., Faulkner, S.: Towards conceptual foundations of requirements
engineering for services. In: 2011 Fifth International Conference on Research Challenges
in Information Science (RCIS), pp. 1–11 (2011)

254 A.Y. Teka, N. Condori-Fernandez, and B. Sapkota

Appendix

Table 3. An overview of existing service description methods

Ref. Method name Technique/Language
used

Validation/evaluative
approach

M1 [18] Intentional Service, for
Quality of Service

Text based, no
specific language
employed

Quality model

M2 [7] Modeling business and
technical services

USDL Testing

M3 [28] Extended WS
agreement

WSLA Not Specified

M4 [19] Specifications based on
quality system
documentation

Documentation based Questionnaire

 M5 [5] Formal service
description

ForSeL Calculus Case study on progress

M6 [16] Modeling of business
process to service
diagrams

WSDL like operation
specification

Example

M7 [17] SOA driven
specification

SOA-driven business-
software mapping

Not Specified

M8 [29] Consumer Oriented
SOA

Tools like PSML-S
and BPEL

Example

M9 [30] Variation Oriented
requirement analysis

VORA tractability
model

Example

M10 [27] Intentional approach for
service description

Intentional Service
Modeling

Example

M11 [38] Service protocol SEPL Testing
M12 [24] Model base approach

for describing QOS
Q-WSDL Example

M13 [33] Behavior based service
description

Formal description
based on CCS

Example

M14 [25] Model-based dynamic
QoS-driven service
composition

SMART Not specified

M15 [26] SOYA SSDL Not specified
M16 [20] Semantic annotation for

WSDL
Annotation of WSDL

components
Example

M17 [9] Situation aware service
based systems

SAW-OWL-S
(Extension of OWL-S)

Example

M18 [4] WS-Policy attachment WS Policy and WS
agreement

Example

M19 [35] Formal Specification of
data aspects of web
services

Formal representation
of contracts

Formal verification:
Symbolic reasoning

M20 [21] Ontology for QoS OWL – Q Not Specified
M21 [14] Semantic for Web

services
OWL-S Example

 A Systematic Literature Review on Service Description Methods 255

Table 3. (continued)

Ref. Method name Technique/Language
used

Validation/evaluative
approach

M22 [22] Semantics for Service
Descriptions

Distributed semantic
trees.

Not Specified

M23 [23] Semi-automatic
semantic descriptions
for web services

DAML Prototype Evaluation

M24 [32] Refining service
Descriptions

DAML-S
(DAML for services)

Not Specified

Table 4. Service description Methods

 Content Representation Perspective
Method Fu NonF Other Verb Synt Sema Buss Oper Tech
M1 X X X
M2 X X X X X X
M3 X
M4 X X X X
M5 X X X
M6 X X X
M7 X X
M8 X X X
M9 X X

M10 X X
M11 X
M12 X
M13 X
M14 X
M15 X X X
M16 X X X
M17 X X
M18 X
M19 X
M20 X X X
M21 X X
M22 X X
M23 X X X
M24 X X

Legend:
Fu: Functional Requirements
NonF: Non Functional Requirements
Other: Additional information
Verb: Verbose
Synt: Syntactic

Sema: Semantic
Buss: Bussiness
Oper: Operational
Tech: Technical

A Pattern-Based Method
for Identifying and Analyzing Laws�

Kristian Beckers1, Stephan Faßbender1,
Jan-Christoph Küster2, and Holger Schmidt1

1 paluno - The Ruhr Institute for Software Technology – University of Duisburg-Essen
firstname.lastname@paluno.uni-due.de
2 Australian National University, Canberra, Australia
Jan-Christoph.Kuester@anu.edu.au

Abstract. Nowadays many legislators decided to enact different laws, which all
enforce legal and natural persons to deal more carefully with IT systems. Hence,
there is a need for techniques to identify and analyze laws which are relevant for
an IT system. But identifying relevant compliance regulations for an IT system
and aligning it to be compliant is a challenging task. This paper presents a novel
method for identifying and analyzing laws. The method makes use of different
kinds of law analysis patterns that allow legal experts and software and system
developers to understand and elicit relevant laws for the given development prob-
lem. Our approach also helps to detect dependent laws. We illustrate our method
using an online-banking cloud scenario.

Keywords: law, compliance, requirements engineering.

1 Introduction

Identifying relevant compliance regulations for a software system and aligning it to be
compliant is a challenging task.The construction of software systems that meet com-
pliance regulations, such as laws, is considered to be difficult, because it is a cross-
disciplinary task in laws and software and systems engineering [1]. Otto and Antón [2]
conclude in their survey about research on laws in requirements engineering that there
is a need for techniques to identify and analyze laws, and to derive requirements from
laws.

We present a pattern-based method for identifying and analyzing laws. We introduce
law analysis patterns that allow legal experts and software developers to understand
and elicit laws that are relevant for a given development problem.

In this paper, we consider compliance in the field of cloud computing systems (or
short clouds) as an example domain, because using clouds to store and manage critical
data and to support sensitive IT processes harbors several problems with respect to
compliance. We illustrate our approach using the example of a bank offering an online-
banking service for their customers. Customer data such as account number, balance,

� This research was partially supported by the EU project Network of Excellence on Engineering
Secure Future Internet Software Services and Systems (NESSoS, ICT-2009.1.4 Trustworthy
ICT, Grant No. 256980).

B. Regnell and D. Damian (Eds.): REFSQ 2012, LNCS 7195, pp. 256–262, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Identifying and Analyzing Laws 257

and transaction history are stored in the cloud, and transactions like credit transfer are
processed in the cloud. The bank authorizes the software department to design and
build the cloud-specific software according to the interface and platform specification
of the cloud provider.For simplicity’s sake, we focus in our running example on relevant
compliance regulations for privacy. In 1995, the European Union (EU) adopted the
Directive 95/46/EC on the processing of personal data that represents the minimum
privacy standards that have to be included in every national law. Germany implements
the European Privacy Directive in the Federal Data Protection Act (BDSG).

The rest of the paper is organized as follows: We present patterns to deal with laws
in requirements engineering in Sect. 2. Then, in Sect. 3, we discuss related work. In
Sect. 4, we give a summary and directions for future research.

2 Pattern-Based Law Analysis

Commonly, laws are not adequately considered during requirements engineering. There-
fore, they are not covered in the subsequent system development phases. One funda-
mental reason for this is that the involved engineers are typically not cross-disciplinary
experts in law and software and systems engineering. Hence, we present in this section a
pattern-based approach to systematically consider laws in the requirements engineering
process. For our method we chose the German law as the binding law.

2.1 Structure of Laws, Sections and Dictates of Justice

The German law is a statute law in the tradition of the Roman jurisdiction. Statute
laws are specified by the legislator and written down in legal documents. Hence, every
judgment of a court is based exclusively on the analysis of the legal documents relevant
for the judged case [3, p. 41]. We analyzed, how judges and lawyers are supposed
to analyze a law, based upon legal literature research. These insights lead to a basic
structure of laws which we used to create law patterns.

First of all a law is a textual document. This law document is structured into sections.
Each section defines a legal aspect of the law and contains several statements. These
statements are dictates of justice, so-called legal rules [4, p. 240]. There are different
types of dictates of justice. Complete and self-containing dictates of justice are one
type. This type is the fundamental building block of every law [4, p. 241]. We derived
the following structure of complete and self-containing dictates of justice. A * next to
an element of the structure means the element is optional.

Addressee(s) describe(s) actions that an addressee has to follow or avoid
Facts of the case

Activity(ies) describe(s) actions that an addressee has to follow or avoid to be
compliant.

Target subject(s)* describes impersonal subjects that are objectives of the activ-
ity(ies).Subjects can be material, such as a product, or immaterial, such as in-
formation.

Target person(s)* are directly influenced by the activity(ies) of an addressee, or
have a relation to the target subject(s).

258 K. Beckers et al.

Legal consequence defines the consequence for an addressee, e.g. the punishment
when violating the section.

A dictate of justice is divided into the facts of the case, the setting which is regu-
lated, and the legal consequence, the resulting implications of the setting [5, p. 7].
Furthermore, a dictate of justice has also an addressee(s). The reason is that every
complete dictate of justice is an imperative, or can be transformed into an imperative
[4, p. 243-44], and an imperative has to be directed towards an addressee(s) [3, p. 3-4].

The facts of the case need to be further refined to be useful for a pattern. The legal
method called subsumption contains a further refinement of the facts of the case [4, p.
260-64]. This refinement results in the basic elements activities, target subjects, and
target persons [5, p. 23-31]. Lawyers use the subsumption to analyze if a dictate of jus-
tice is applicable to a specific case. The case is described in terms and notions. Lawyers
map these to the notions and terms describing the basic elements [3, p. 52-53]. If not all
terms and notions of the case can be mapped to basic elements, the dictate of justice is
not relevant for the case.

A mapping between all terms and notions of the case and the basic elements is not
sufficient to prove the relevance of a dictate of justice for a case. The reason is that the
facts of the case of the dictate of justice can contain an element that has no mapping to
a term or notion of the specific case. The subsumption solely considers a mapping from
the term or notion of the specific case to the dictate of justice. The other direction is
not considered. Moreover, such an element has the potential to prove that the law is not
relevant for the specific case. The subsumption provides this gap intentionally, because
the mapping of specific cases to laws is based upon human interpretation.

Besides the complete, self-containing dictates there are [4, p. 247-251] definition
dictates that describe and refine terms and other basic elements, restricting dictates,
which add exceptions to a complete dictate, directing dictates, which reference one or
more other dictates, and fiction dictates, which equate different facts of the case.

These dictates cannot be analyzed in isolation. All of them have relations to other
dictates (or even laws). The types of relation between these dictates are refinement,
addition, and constraint. This implies that all of resulting dictates and laws, and the
relations between them, have to be considered when analyzing laws. A regulation is the
set of rules applicable to a specific case [4, p. 254].

Thus, relations between laws, sections and dictates of justice are of fundamental
importance. They are arranged in a hierarchy, which is not always free of conflicts [4,
p. 255]. A special part of these relations is the terminology used within a jurisdiction.
This terminology is organized as hierarchical tree where the terms and notions of the
more general dictates of justices are refined by subsequent dictates of justice.

2.2 A Process for Identifying Relevant Laws

Our general process for identifying relevant laws consists of five steps. For this process
law experts and software engineers have to work together for the necessary knowledge
transfer. Step one can be done alone by legal experts and for step two only software
engineers are needed. But in step three and four both groups are needed to bridge the
gap between legal and technical world. The last step can be accomplished alone by legal
experts.

Identifying and Analyzing Laws 259

Step 1: Law Pattern. Based on the previously discussed structure of laws, we define
a law pattern shown on the upper left-hand side of Fig. 1. The pattern consists of three
parts: the dark grey part represents the Law Structure, the light gray part depicts the
Classification to consider the specialization of the elements contained in the Law Struc-
ture in related laws or sections, and the white part considers the Context. We organize
the mentioned hierarchies by Person Classifier, Activity Classifier, and Subject Classifier
using hierarchies. Figure 2 shows example instances for all three hierarchies according
to BDSG. The Context part of the law pattern contains the Legislator(s) defining the
jurisdiction, and the Domain(s) clarifying for which domain the law was established.

As it is necessary to know in which context and relation a law is used, we introduce
Regulation(s), which are Related To the section at hand. Regulation(s), Legislator(s), and
Domain(s) can be ordered in hierarchies, similar to classifiers. For instance, Germany is
part of the EU and consists of several states.

We now describe the instantiation process for our law pattern using Section 4b BDSG
as an example. We explained the importance of this particular law in Sect. 1. Section 4b
BDSG regulates the abroad transfer of data. The resulting instance is shown on the
right-hand side of Fig. 1. Our process starts based on the first sections of the law to
be analyzed. These sections are self-contained, i.e. they define all necessary elements
of our Law Structure. Additionally, the Legislator(s) and Domain(s) can be instantiated
according to the considered law (e.g. Germany and General Public in the Context part).
Given a section of a law not yet captured by our law pattern, we identify and document
the related laws and sections referred to by the given section (e.g. BDSG Sec. 1 in the
Context part). Then, we search for the Law Structure directly defined in this section.
In Section 4b BDSG, we find Abroad Transfer, and we use it to instantiate Activity(ies).
Addressee(s), Target Subject(s), and Target Person(s) are not defined in Section 4b

Legislator(s)
Domain(s)

Target Person(s)Addressee(s)
Influence

Law

Target Subject(s)

Section

Law Structure

Subject Classifier

Person Classifier

Regulation(s)

Avoid / Activity(ies) Influence
Accomplish

Law / Section

Law / Section Law / Section

Entitled To

Related To

Activity Classifier
Mentioned Or Defined InMentioned Or Defined In

Mentioned Or Defined In

ClassificationContext

Germany

Influence
Accomplish

Avoid /

Influence

Entitled To

BDSG

Abroad
Transfer Personal Data

Data

Individual

Natural

Sec. 4b

BDSG Sec. 1

Authority

General Public

PersonMentioned In

BDSG Sec. 3

Transfer

Law Structure
Private Bodies

Related To

Defined In

BDSG Sec. 1

ClassificationContext

Legislator(s)

Process(es)
Related

Domain(s)

Core Structure

Influence
Accomplish

Avoid /
Activity

Influence

Classified As

Requirement Activity

Asset(s)

Active Stakeholder(s) Passive Stakeholder(s)

Subject Classifier

Person Classifier

Law / Section
Defined Or Mentioned In

Activity Classifier

Entitled To

Classified As

Classified As

Defined Or Mentioned In

Defined Or Mentioned In
Classified As

Law / Section

Law / Section

Related To

Requirement(s)

ClassificationContext

Legislator
Germany

Legislator
EU

Legal Entity
Mentioned In
BDSG Sec. 2

Individual
Mentioned In
BDSG Sec. 2

Core Structure

Accomplish
Avoid /

Classified As

Classified As Classified As Classified As

Classified As

Related To

Data Storing
Offering

Personal Data
Defined in

Abroad Transfer
BDSG Sec. 3

Storage
Defined in

BDSG Sec. 3 BDSG Sec. 4b
Defined in

’Cloud API’

’Store Distributed’

Legislator
US

Hulda

Domain
Finance

ClassificationContext

’Scalable Data Storing’

Influence Entitled To
Customer Data

Bank Customer

Distributed
Store

Fig. 1. Law Pattern (upper left) and Instance (upper right), Law Identification Pattern (lower left)
and Instance (lower right)

260 K. Beckers et al.

Data

Personal Data
Introduced In
BDSG Sec. 3

Private Body
BDSG Sec. 1Introduced In

Natural Person
Introduced In BDSG Sec. 2

Individual
Introduced In BDSG Sec. 2

Legal Entity
Introduced In BDSG Sec. 2

Automated Processing

Transfer
Introduced In
BDSG Sec. 3

Storage
Defined in

BDSG Sec.3

Introduced In
Abroad Transfer

BDSG Sec. 4b

Fig. 2. Examples for Person (left), Subject (middle), and Activity (right) Hierarchies

BDSG. Therefore, related sections defining these terms have to be discovered. In our
example, we find Private Bodies for the Addressee(s), Personal Data for the Target
Subject(s), and Individual for the Target Person(s) in Section 1 BDSG (according to
BDSG Sec. 1 in the Context part). We arrange these specializations in the appropriate
parts of the hierarchies in Fig. 2. The classifier is instantiated with the parent node of
the corresponding hierarchy, which is for instance Transfer for Abroad Transfer.

Step 2: Law Identification Pattern. Identifying relevant laws based on functional re-
quirements is difficult, because functional requirements are usually too imprecise, they
contain important information only implicitly and use a different wording than in laws.
To bridge between gap of the wording and to facilitate the discussion between require-
ments engineers and legal experts, we define a law identification pattern to support
identifying relevant laws

Figure 1 shows on the lower left-hand side our law identification pattern. The struc-
ture is similar to the law pattern on the upper left side of Fig. 1 to allow a matching of
instances of both patterns. In contrast to the legal vocabulary used in the Law Structure
of our law pattern, the wording for the elements in the dark gray colored Core Structure
of our law identification pattern is based on terms known from requirements engineer-
ing. For example, the element Asset(s) in our law identification pattern represents the
element Target Subject(s) in our law pattern.

Our law identification pattern takes into account that requirements are often inter-
dependent (Requirement(s) in the Context part). Given a law relevant to a requirement,
the same law might be relevant to the dependent requirements, too. Furthermore, the
pattern helps to document similar dependencies for a given Activity using the Related
Process(es) in the Context part.

As our example on the lower right-hand side of Fig. 1 shows, we select Hulda as the
cloud provider, then we choose the functional requirement Scalable Data Storing. One
of the activities associated with this requirement is the activity Store Distributed , which
refers to the asset Customer Data of the Bank Customer. Moreover, we instantiate the
elements Legislator(s) and Domain(s). In our example on the lower right side of Fig. 1,
we include the legislators Germany, US, EU, and the domain Finance. In addition, we
discover the related requirement Cloud API and the process Offering Data Storing, and
document them in the instance of our law identification pattern.

Step 3: Establishing the Relation between Laws and Requirements. To instantiate the
Classification part, legal expertise is necessary. According to the Core Structure of the
instance of our law identification pattern and the hierarchies built when instantiating our
law pattern, legal experts classify the elements of the Core Structure. For example, the
activity Store Distributed is classified as Abroad Transfer based on a discussion between
the legal experts and software engineers.

Identifying and Analyzing Laws 261

Step 4: Deriving Relevant Laws. The identification of relevant laws is based on
matching the classification part of the law identification pattern instance (light gray
part) with the law structure and classification part of the law pattern instance (light and
dark gray parts), and thereby considering the previously documented hierarchies. If all
elements match, the law is identified as relevant. For example, we find direct matches in
the law pattern instance depicted on right side of Fig. 1 for the elements Abroad Trans-
fer, Personal Data, and Individual contained in the law identification pattern instance
shown on the lower right side of Fig. 1. Hulda is classified as Legal Entity and the only
element that does not directly match with Private Bodies in the law structure of Sec-
tion 4b BDSG. In this case, the hierarchy in Fig. 2 helps to identify that Legal Entity is
a specialization of Private Bodies, and thus, we identify Section 4b BDSG as relevant.

Finally, we check for all laws identified to be relevant if Legislator(s) and Domain(s)
are mutually exclusive. In our example, the legislator Germany contained in Context of
the law pattern instance depicted on lower right side of Fig. 1 can be found in Context
of the law identification pattern instance shown on the lower right side of Fig. 1. The
domain General Public in the law pattern instance can be considered as a generalization
of the domain Finance in the law identification pattern instance. The resulting set of
laws relevant for the given development problem serves as an input for the next step.

Step 5: This last step covers the identification and specification of requirements based
on laws identified to be relevant by our approach, e.g. using existing approaches such
as the one from Breaux et al. [6].

3 Related Work

Breaux et al. [6] present a framework that covers analyzing the structure of laws using a
natural language pattern. This pattern helps to translate laws into a more structured The
approach has some drawbacks of formal logic analysis of laws we will discuss later.

Siena et al. [7] describe the differences between legal concepts and requirements.
The resulting process to align legal concepts to requirements and the given concepts are
quite high level and cannot directly be applied to a scenario. In contrast to our approach
they do not identify relevant laws and do not intertwine compliance regulations with
already elicited requirements.

Álvarez et al. [8] describe reusable legal requirements in natural language. We be-
lieve that the work by Álvarez et al. complements our work, i.e., applying our law
identification method can precede using their security requirements templates.

4 Conclusions

We presented a pattern-based method for identifying and analyzing laws, which can be
embedded in common system and software development processes. The novelty about
our approach is that we analyzed common methods lawyers use to identify and analyze
laws. We captured this knowledge in patterns. We derived this pattern-based approach
from the subsumption method, while other approaches use formal logic to formalize and
analyze laws. Logic-based approaches seem to be more precise. However, legislators
formulate laws imprecise by design [4,3,5, p. 298-99, p. 36-39, p. 32-33]. Hence, we

262 K. Beckers et al.

decided to capture the modus operandi from lawyers in a pattern-based method. Biagioli
et al. investigated Italian law and derived also a structure of dictates of justice, which is
very similar to the structure presented in this work. [1, p. 247]. Thus, it is likely that the
pattern is also applicable to further laws in the tradition of the Roman jurisdiction. The
case law system, in the US or Great Britain, is another important legal system. We plan
to adapt our method for the case law system, via case patterns that extend law patterns.
We also aim to work on tool support for our approach, e.g. to store, load, and search
for laws once they have been fitted to our law patterns. The tool support will be used
for validation of our method. We are planning to use our approach on the entire BDSG,
which has 48 sections.About 40 of them have to be modeled, as some sections were
invalidated or definition sections. We estimate that around 6 pattern are required per
section on average, making 240 instances in total. On the other hand we will make use
of a small real life example with about 50 requirements. So about 50 law identification
pattern will be instantiated and matched.

Acknowledgements. We thank Maritta Heisel and Christoph Sorge for their extensive
and valuable feedback on our work.

References

1. Biagioli, C., Mariani, P., Tiscornia, D.: Esplex: A rule and conceptual model for representing
statutes. In: Proceedings of the 1st International Conference on Artificial Intelligence and Law,
ICAIL 1987, pp. 240–251. ACM (1987)

2. Otto, P.N., Antón, A.I.: Addressing legal requirements in requirements engineering. In: Pro-
ceedings of the International Conference on Requirements Engineering (RE), pp. 5–14. IEEE
Computer Society (2007)

3. Schwacke, P.: Juristische Methodik mit Technik der Fallbearbeitung, 4th edn. Kohlhammer
Deutscher, Gemeindeverlag (2003)

4. Larenz, K.: Methodenlehre der Rechtswissenschaft, 5th edn. Springer, Heidelberg (1983)
5. Beaucamp, G., Treder, L.: Methoden und Techniken der Rechtsanwendung, 2nd edn.

C.F.Müller (2011)
6. Breaux, T.D., Antón, A.I.: Analyzing regulatory rules for privacy and security requirements.

IEEE Transactions on Software Engineering 34(1), 5–20 (2008)
7. Siena, A., Perini, A., Susi, A.: From laws to requirements. In: Proceedings of the Interna-

tional Workshop on Requirements Engineering and Law (RELAW), pp. 6–10. IEEE Computer
Society (2008)

8. Álvarez, J.A.T., Olmos, A., Piattini, M.: Legal requirements reuse: A critical success factor
for requirements quality and personal data protection. In: Proceedings of the International
Conference on Requirements Engineering (RE), pp. 95–103. IEEE Computer Society (2002)

Towards a Requirements Modeling Language
for Self-Adaptive Systems

Nauman A. Qureshi1, Ivan J. Jureta2, and Anna Perini1

1 Fondazione Bruno Kessler - CIT, Software Engineering Research Group
Via Sommarive, 18, 38050 Trento, Italy

{qureshi,perini}@fbk.eu
2 FNRS & Louvain School of Management,

University of Namur, Belgium
ivan.jureta@fundp.ac.be

Abstract. [Context and motivation] Self-adaptive systems (SAS) monitor and
adapt to changing end-user requirements, operating context conditions, and re-
source availability. Specifying requirements for such dynamic systems is not
trivial. Most of the research on self-adaptive systems (SAS) focuses on finding
solutions to the requirements that SAS is built for. However, elicitation and rep-
resentation of requirements for SAS has received less attention at early stages of
requirements engineering (RE). [Question/problem] How to represent require-
ments for SAS in a way which can be read by non-engineering stakeholders?
[Principal ideas/results] A requirements modeling language with a diagram-
matic syntax to be used to elicit and represent requirements for SAS and perform
analysis based on our recently proposed core ontology to perform RE for SAS.
[Contribution] A modeling language, called Adaptive RML, for the represen-
tation of early requirements for Self-adaptive systems (SAS). The language has
graphical primitives in line with classical goal modeling languages and is for-
malized via a mapping to Techne. Early validation is performed by modeling the
same case study in an established goal modeling language and in Adaptive RML.
The results suggest that context and resource concepts, as well as relegation and
influence relations should be part of graphical modeling languages used to make
early requirements models for SAS and to perform analysis over them.

Keywords: Requirements Engineering, Requirements Modeling, Self-Adaptive
Systems.

1 Introduction

A self-adaptive system (SAS) can change its behavior in response to anticipated and
unanticipated variations in its operating context, its users’ requirements, and the avail-
ability of its resources. Requirements engineering (RE) for SAS is receiving increasing
attention in research and has been recognized as one of the key areas where progress is
needed in order to enable the engineering of SAS [1].

Initial work on high-variability design in [2] models variability in user’s goals and
alternatives for goal achievement, which is reflected in the design and coding of Belief-
Desire-Intention (BDI) agents. This work provided a basis to extend Tropos for adaptive

B. Regnell and D. Damian (Eds.): REFSQ 2012, LNCS 7195, pp. 263–279, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

264 N.A. Qureshi, I.J. Jureta, and A. Perini

systems [3], where design abstraction like goal-conditions and environment modeling
are added to Tropos goal models and correspondingly a mapping is provided to Jadex
BDI architecture. This approach is confined to the design of adaptive BDI agents and
requires fine grained knowledge about the domain to specify the alternative solutions
and goal achievement conditions enabling the agent to switch its behavior in a given
environment.

In [4], Whittle et al. proposed a language to represent uncertainty in requirements via
fuzzy operators and using Fuzzy Branching Temporal logic as the underlying frame-
work. In the context of KAOS [5], mitigation strategies are proposed to accommodate
uncertainty and failures with obstacle analysis [6]. We proposed to engineer adaptive
requirements using goal models and ontologies to make explicit the domain assump-
tions and requirements for feedback loop functions (i.e. monitoring, evaluation criteria,
and adaptation alternative) [7]. Similar ideas were adopted by Baresi et al. [8] to ex-
tend KAOS goal models. The concept of adaptive goals has been introduced to specify
adaptation strategies, while qualitative goals are relaxed by being replaced with fuzzy
goals, the satisfaction of the former being binary, while the latter are associated to a
continuous fuzzy membership function, the value of which is interpreted as the level of
satisfaction of the fuzzy goal.

Ongoing research has also recognized the need to ensure that SAS have a runtime
representation of their own requirements, i.e., that requirements should become artifact
used, processed, and changed at runtime [7–10]. Considerable part of current research
into the RE for SAS focuses on the specification of requirements for SAS, while there
is comparatively less interest in what information should be part of early requirements
models for SAS. In particular, how should early requirements models reflect (i) that
there is uncertainty in the behavior and properties of the operating context and of the
SAS, (ii) that the context of the SAS can vary and that this should influence the behavior
of the SAS, and (iii) that resources of the SAS may vary, and that the SAS should adapt
to those variables.

In our view, this requirements problem in case of SAS should be treated as a dy-
namic RE problem, where changes in requirements, contexts and resources lead to a
new requirements problem – finding new candidate solutions to the changed require-
ments [11]. To fulfill this aim, we build on the core ontology for RE [12] and introduce
two new concepts i.e. context and resource as well as two new relations, relegation and
influence, formalized using Techne expressions [13] that are helpful in the early phases
of RE to formulate the requirements problem for a SAS.

Based on this, we introduce here a new modeling language for early requirements for
SAS, called Adaptive RML, to model the dynamic RE problem and perform analysis
by finding candidate solutions. The aim of this paper is to introduce Adaptive RML,
its concepts, relations, modeling guidelines and analysis features needed for early RE
for SAS. This is a first attempt to provide a concrete RML for early RE that provides
the necessary concepts and relations to model requirements for SAS and enables the
analyst to perform analysis about the candidate solutions as function of contexts, where
not only the conditions or resource demand changes but also the requirements problem
changes. We motivate the need for Adaptive RML to model requirements for SAS using
an example from a travel domain. As a preliminary validation, we model the example

Towards a Requirements Modeling Language for Self-Adaptive Systems 265

iCompUser ScheduleTr
avel

Travel
Booked

Low
Cost

Quick

Book Flight BookFlight
ThroughiComp

HurtH
ur

t

Help

Help

Travel
Booked

D

D

Enter Flight
Date Range

D

D

Get Flight
Options

Select Flight
Option

Travel Itinerary
Booked

Flight
Booked

Payment
Made

Confirmation
Message Sent

Pay by Credit
Card

Pay by Bank
Transfer

Less
Costly

HelpHelp

Quick

Hurt

Help

Help

Select
Message
Format

Message Transfer
Method Selected

Send Via
SMS

Message
Composed

Send Via
Email

Send Via
PostMail

Send Via
Fax

Hurt
Help

Break

Help

Travel
Itinerary

Mobile
Phone

Travel
Dates

DD

Select
Html

Select
Text

Easy to
Produce

Make

Help

Make

Select
Message

Type

Place Call

Some+

Convenience
He

lp

Fig. 1. Requirements Modeling using iStar Concepts and Relations only

first with i* [14], identify the information needed for early RE of SAS and that cannot
be modeled in i*, then introduce Adaptive RML. In fact, we adopt i* at this stage of the
work due to its wide adoption in requirements modeling and to make Adaptive RML
accessible to researchers using i*.

The rest of the paper is organized as follows. Section 2 introduces the example mod-
eled with i*, and compares it with the same example in Adaptive RML. Section 3
presents Adaptive RML. Section 4 discusses Adaptive RML in light of related work.
Section 5 summarizes conclusions and directions for future work.

2 Modeling the Requirements of iComp

In this section, we focus on a simple scenario for a travel booking application. We
model it with the i* requirements modeling language and identify key elements that are
missing in this language for modeling requirements for SAS. We describe an excerpt
of a scenario from a travel companion case study introduced in our prior work [7], in
which self-adaptive properties of the system are illustrated.

Scenario: The iComp application is a self-adaptive system that aids business travelers
while on the move. It supports them in booking their travels, making payment and re-
ceiving timely updated information about their booking confirmation (e.g., confirmed,
canceled, in progress). The booking confirmation messages must be sent to the user
(customer) via Email or SMS instantly (in less than an hour or maximum less than 1
day) on their device (i.e. laptop or mobile) and depending on their context (e.g. home).
Payment must be ensured before iComp sends the message (i.e. composing the message)
by selecting a suitable message format (e.g., size, scaling, format) to adapt to the device
from which they will be read. Finally, in case there are some problems (i.e. user is not
accessible) and the message cannot be delivered to the user then iComp must send the
message to an alternative recipient (e.g., the customer’s secretary).

266 N.A. Qureshi, I.J. Jureta, and A. Perini

2.1 Requirements Modeling with i*

Fig. 1 shows i* strategic dependency and rationales models for the travel booking sce-
nario. In the main scenario, the user and the system are represented by circles, whereby
the content of the dashed ovals (strategic rationales) represents their goals, tasks, and
resources. We can see in this model that what leads the user to chose the iComp for
travel booking results from the analysis of the root task of Schedule Travel, which
is decomposed into the goal of Travel Booked and the softgoals of Low Cost and
Quick. These softgoals are negatively influenced (shown with contribution links) by the
subtask of BookFlight. The task Book Flight through iComp, however, partially
satisfices the Low Cost and Quick softgoals. This task in turn depends on the iComp
Actor, since the associated goal Travel Itinerary Booked has been assigned to
the system.

The strategic rationale model of iComp reveals a decomposition of goal Travel
Itinerary Booked into three main goals Flight Booked, Payment Made -
and Confirmation Message Sent. For example, we can now reason about
Confirmation Message Sent, which is decomposed into two goals i.e. goals:
Message Transfer Method Selected and Message Composed. Along their sub-
sequent means of accomplishing tasks, and assess their contributions towards softgoals
Quick and Easy to produce, which helps in ranking a particular solution. For ex-
ample, tasks: Send via SMS and Send via Email with means to use resources:
Travel Itinerary and Mobile Phone contributes fully and partially to the soft-
goal Quick, which in turn satisfices softgoal Convenience. The aim of this analysis
is to identify one particular solution that satisfies the high level goals and optimally
satisfies the softgoals.

Modeling iComp in i* lead us to identify some limitations of the language when
used for SAS. i* does not provide concepts for the modeling of alternative solutions
to the requirements problem, which are feasible in different contexts. For instance,
in context (e.g. Home) the candidate solution should be Send Message via Email and
in another context, e.g. Market, Send message via SMS should be more appropriate in
case no 3G or no smartphone is available for the user, and so on. That is we were not
able to model the fact that the context of the user may change as well as resources
availability, and ultimately to capture monitoring conditions and evaluation criteria that
should characterize the dynamically adaptive behavior of the system. Moreover, in i*,
it is not possible to model quality constraints, such as send the message within one
hour after the payment, and domain assumptions that need to be made explicit during
the analysis as they contribute to the definition of the requirement problem, such as
standard Credit Card Options must be Displayed.

Efforts has been made to capture requirements for SAS by extending i*/Tropos
[3, 15]. The main idea behind these extensions is to annotate goal models. For instance,
in [3] goal achievements conditions and environment modeling (using UML class dia-
grams) is used to annotate the i*/Tropos goal model, and transform them for use with
an implementation architecture (e.g. BDI). Similarly in [15] location abstraction is used
to formalize context and annotating the variation point (e.g. AND/OR decomposition)
within a goal model. This approach provides a systematic design-time approach to build
context models based on locations concepts (e.g. using UML class diagrams). Common

Towards a Requirements Modeling Language for Self-Adaptive Systems 267

to both approaches is the use of UML notation to formalize the concept of environment
and context hierarchies. Both approaches are focused on finding a single best solution
in case of adaptation. Moreover, both of the approaches are limited to show how the
system can move across contexts (with changing domain assumptions, resource avail-
ability) by altering the requirements problem with respect to the variety of candidate
solutions.

2.2 Requirements Modeling with Adaptive RML

Differently from the previously mentioned extensions of goal-oriented modeling lan-
guages for SAS, we rest on Techne [13], an abstract modeling language for early re-
quirements, which adopts the core ontology for RE [12]. This core ontology extends the
goal-oriented perspective allowing to model optional requirements, preferences, and to
treat non-functional requirements in terms of approximations and quality constraints.
The basic elements of Techne models are requirements, modeled as natural language
propositions that are labeled as domain assumptions, goals, quality constraints, or tasks.
A requirement can be mandatory or optional. Links between model elements are used
to represent how the satisfaction of an element may impact the satisfaction of the other,
through inference and conflict. Preferences are used to compare requirements in terms
of desirability. Performing the analysis of a requirements problem specified in Techne,
results in finding candidate solutions in terms of tasks and quality constraints that to-
gether satisfy all mandatory goals and cover, as much as possible, optional ones.

The proposed modeling language for SAS, called Adaptive RML, builds on Techne
by adding two new concepts, namely, context and resource, and two relations, i.e. rel-
egation and influence. Adaptive RML has its own visual notation. In the rest of this
section we illustrate an Adaptive RML model of iComp with the aim to provide a
preliminary qualitative evidence about its support in overcoming the limits mentioned
above in modeling requirements for SAS. A detailed account of Adaptive RML will be
given in the following sections.

Fig.2, shows a requirements model for iComp in Adaptive RML (in form of a Techne
r-net). Its root level goal Travel Itinerary Booked is modeled as a mandatory
node (modeled as M node, a unary relationship). It is decomposed via an a binary in-
ference relation (modeled as black I node with a arrow) into the other mandatory goals:
Flight Booked, Payment Made and Confirmation Message Sent, to represent
the fact that it will be satisfied through the joint satisfaction of these three goals.

Let’s focus on the goal: Confirmation Message Sent (i.e. the shaded
part of the model), which is decomposed into two goals: Message Transfer

Method Selected and Message Composed via inference relation. We can add
here information that were missing in i* model, i.e. the domain assumption
Booking Confirmation is sent after the payment is assured (modeled
as rounded rectangle) and the quality constraint Message sent in < 1 hour

after the payment (modeled as diamond shape) connecting them through the same
inference node.

An influence relation is added among the two decomposed goals: Message

Transfer Method Selected and Message Composed (modeled as dotted green
line with arrowhead) to account for the prevailing context conditions and resource

268 N.A. Qureshi, I.J. Jureta, and A. Perini

Travel Itinerary
Booked

Flight Booked
Payment Made

Confirmation
Message Sent

Message Transfer
Method Selected

Message
Composed

Booking confirmation is
sent after the payment is
authrorized

All Flight Options
must be available to
All Users

M M M

M

M

I

I

Standard Credit
Card Option Must
be Displayed

I
I

II I

I

Updates
Instantly <

5 mins

User
Checks
Email

Every Customer
Has Bank
Account

I

Convenience

Quick

I

User has
Mobile and

Laptop

Secure
Payment

Data
Encryption
Standard

(DES)

I Updates in
1 Business

Day

I

Updates
Instantly in

realtime

I

I

Mobile
Phone

I

pref

pref

C

Show Cheap
Flight Option

First
I

Payment
daytime < 3

Laptop
I

Battery
Time < 3 hrs

I

Battery
Time > 24 hrs pref

pref

C Cx: getLocation() =
@Market[]

1

C Cx: getLocation() =
@Home[]2

I I

pref

M

I

pref

pref

@ Market is a
Location{ }

@ Home is a
Location{ }

Rel

I

Size &
Scaling is

Easy

O
I

I

I

All Secretaries
have landline

Phone

Travel
Itinerary

Message sent in
< 1 hour after
the Payment

Itinerary is not valid
before an after the

date of travel

Date of
Travel is not

Today

I

I
Easy to
Produce

Confirmation
Message

I

I

I
Contact

List

Travel
Dates

I S-Inf

I

C Cx: getLocation() =
Null[]3

Place
Call

O
Send via

SMS
Send via

Email
Send via
PostMail

Send via
Fax

Select
Message

Type

Select
Message
Format

Get Flight
Options

Select
Flight Option

Pay by
Credit Card

Pay by Bank
Transfer

Fax
Machine

I

C Cx: getLocation() =
@Office[]4

@ Office is a
Location{ }

Html Text

Conflict pref

O MSoft goalGoal
Quality

constraint
Domain

assumption

Rel

Resource

C Context[]1W-InfS-Inf @ Ontology
Concept{ }Association

Link

Is-Optional Is-Mandatory

inference
relationI

Legend Task/
Service

Fig. 2. Modeling using Adaptive RML Concepts and Relations

availability that influences the achievement of goal: Message Composed. For exam-
ple, if the context conditions support to choose Email as a candidate transfer method,
the ways to satisfy goal:Message Composed is by selection a correct format that is
either text or html.

The analysis of the Message Transfer Method Selected proceeds by link-
ing via inference nodes task-rooted subgraphs, which defines candidate solutions. Be-
sides tasks e.g. Send via SMS (modeled as hollow motion arrow), each candidate
solution includes domain assumptions e.g. User has mobile and laptop, context
e.g. Market, Home (labeled as C with its number, associated to @ symbol1), and re-
sources e.g. Mobile Phone (modeled as a rectangle). Preferences (dotted line with
doubled empty arrow heads) are used to compare requirements in candidate solutions,
and thereby compare candidate solutions; e.g., Send via SMS is preferred over Send
via Email. Requirements can be in conflict (e.g. Send via Email is in conflict with
Send via PostMail. Conflict is shown as a dotted line with C in the middle with red
color). Here, conflict exist due to the difference in the quality constraints e.g. email
updates in < 5 mins, whereas post mail updates in 1 business day.
Notice that it was not possible to model these information with i*.

Optional solutions, in case of problems (e.g. user is not accessible, as men-
tioned in the scenario) can be identified via a relegation relation (drawn as dot-
ted light red line with arrowhead between two possible candidate solutions). For
instance, Place Call relegates Send via SMS. This allows to take into account
the situation in which a user’s context changed resulting in being not accessible

1 @ labels a concept defined in domain ontology e.g. travel.

Towards a Requirements Modeling Language for Self-Adaptive Systems 269

(e.g. C3 [Cx:getLocation()= Null]), and to describe as preferred the solution
to make the user able to access the resources Confirmation Message and Ticket

Itinerary, via contacting her secretary. The Place Call task is inferred via a do-
main assumption (e.g. All secretaries has landline phone) and a resource
(e.g. contact list) and the context (e.g. C3 [Cx:getLocation()= Null]).

Summary. Gain in expressiveness of Adaptive RML with respect to i* models are
summarized below:

– we can model information about context, resources and domain assumptions that
need to be monitored by the SAS in order to enable adaptation;

– softgoals evaluation in i* is subjective and provides no clear evidence to rank a
solution. In Adaptive RML, candidate solutions can be ranked and evaluated via
quality constraints over measurements that may be collected by the SAS;

– candidate solutions can be associated with contexts and requires resource.

3 Definition of Adaptive RML

3.1 Concepts and Relations

We define the concepts and relationships in order to formulate the requirements prob-
lem for SAS. Addition of these concepts and relations leads us to an ontology for
requirements in SAS and the formulation of the runtime requirements adaptation prob-
lem as a dynamic problem of changing (e.g. switching, re-configuring, optimizing) the
SAS from one requirements problem to another requirements problem, whereby the
changing is due to change in requirements, context conditions, and/or resource avail-
ability [11]. We add two new concepts, Context and Resource as well as relations
Relegation and Influence that enhance the tool set for the proposed Adaptive RML to
model and analyze requirements for SAS.

Context: This concept allows modeling information that the stakeholders assume to
hold when they communicate particular requirements. We say that every requirement
depends on one or more contexts to express the fact that the requirement would not be
retracted by the stakeholders in every one of these contexts. This information needs to
be made explicit in the early requirements model for SAS. For instance, in our example
we modeled “context” as information about location (e.g. Office or Market), which are
defined as concepts in a specific domain ontology (e.g. travel), and we linked them to
tasks via an inference relation. In Fig.2, context is shown as e.g. “C1 [Cx:getLocation()=
@Market]” where “@Market” is an instance of a concept term (i.e. Location) defined
in a domain ontology. Combining requirements and context reveals interesting cases,
where we can see requirements maybe in conflict.

Resource: The concept of resource has been well supported in RE methods such as
in goal-oriented approaches [2, 5, 14]. In our case, we define it as an entity that is
referred to by the requirements, e.g., physical/tangible entities such as mobile phone,
ticket itinerary; e.g., intangible entities, such as user assets (social relations or contacts).
In order to introduce resources in the definition of the requirements adaptation problem
for SAS, we need to elicit a resource availability function that tells us which resources

270 N.A. Qureshi, I.J. Jureta, and A. Perini

Visual Notation Concepts & Relations

Goal

Definition: A Goal represents a desired state of affairs, the achievement of which can be measured and is definitively
concluded. Example: “Meeting to be Scheduled”

Definition: A Soft goal represents a desired state of affairs, the achievement of which can only be estimated, not
definitively concluded. Example: “Convenience”, “Easy”

Task/
service

Definition: A Task corresponds to an activity, an action whose achievement leads to the definitive conclusion of its
means. Example: “Download music”, “Show song listed as most viewed”

Definition: A Quality constraint is desired value of non-binary measurable properties of the system-to-be that constrains
a goal or a soft goal. Example: “Music download speed must not be less than 128kbps/sec”

Definition: A Domain assumption is a condition within which the system-to-be will be performing tasks in order to
achieve the goals, quality constraints, and satisfy as best as feasible the soft goals. Example: “Subscribers can download
the music from the online database”

inference
relationI

Definition: An <Inference> relation stands between a requirement that is the immediate consequence of another set of
requirements, the former is called the conclusion, the latter the premises. Alternatively, inference relation can be used to
connect the refined requirement to the requirements that refine it. Example: “Generate revenue from the audio player” has
<inference> relation with two requirements: “Music is available to subscribers”, “Display ads in the player”.

Definition: A <Conflict> relation stands between all members (two or more) of a minimally inconsistent set of
requirements. Example: “Req1: Music is available to subscribers” is in <Conflict> with “Req2: Music is available to users”

Definition: A <Preference> is a binary relation that exists between two requirements and it defines the stakeholder
evaluations of requirements that determine the desirability of a requirement. Example: “The bitrate of music delivered via
the online audio player should be at least 256kb/s” is <Preferred> over “the bitrate of music delivered via the online audio
player should be at least 128kb/s”

Definition: An <is-Optional> relation is unary that states the evaluation of stakeholder of requirement, which may be
desirable. Functional requirements, which are “nice to have”. Example: “Color printing of a meeting schedule” <is-
Optional>.

Definition: An <is-Mandatory> relation is unary that states the evaluation of stakeholder of requirement, which must be
satisfied. Functional requirements. Example: “Each Participant must have meeting schedule available” <is-Mandatory>.

Definition: An <Association> link is used to define a link between two elements. Example: “High level Context (e.g.
Outdoor)” is <associated> to “an ontology concept (e.g. place)”.

Definition: A <Relegation> relation is n-array relation that stands between one or more requirements, to relax or to
suspend conditions imposed over them. A mandatory requirement can have a <relegation> relation with an optional
requirement. Example: “download the music” has <Relegation> relation with the “stream the song online”.

Definition: An <Influence> relation is said to exist between a set of requirements, where satisfaction of one requirement
warrants the satisfaction of the other. This determines the satisfaction of the requirements set. There are two types, weak-
influence (where partial satisfaction is possible) and strong-influence (when there is no way to satisfy the requirement).
Example: “subscribe and pay” have <Strong-Influence> over the “download the music”. “subscribe and make payment”
have <weak-Influence> over the “listen music online”

Definition: A Resource is an entity either tangible or intangible referred to by one or more instances of the information
communicated during elicitation by the stakeholder. Example: Tangible Resource: “Physical e.g. Mobile phone” Intangible
Resource: “Data e.g. Agenda”

Definition: A <Requires> relation is a binary relation that exists between a task and a resource. Example: “Task:
Download song” <requires> “Resource: internet connection”

C Context[]1

Definition: A Context is defined as a set of information (condition) that is presupposed (or believed to be true) by the
stakeholders to hold when they communicate a particular requirements. Example: “System states (e.g. searching a
song)”, “User states (e.g. Listening to music)”, “User Location (e.g. at home)”, “Device Status (e.g. Battery is low)”

@ Ontology
Concept{ }

Definition: An Ontology Concept defines an entity and its characteristics or essential features in a particular domain of
discourse. Example: “Frame rate in Music Ontology”

Fig. 3. Visual guide for concepts and relations in Adaptive RML

Towards a Requirements Modeling Language for Self-Adaptive Systems 271

are available and used in some way, in order to ensure that the relevant domain as-
sumptions and context propositions hold, and that the tasks can be executed. Here again
we may exploit ontology definitions of user-assets and asset modifiers that represents
tasks effects on their resources, as proposed in [16]. In the modeled example shown in
Fig.2, we introduced “Mobile Phone” and “Laptop” as resources available in different
contexts.

Relegation Relation: The purpose of the Relegation relation (Rel for short) is twofold.
First, it facilitates engineer at design-time to analyze requirements (including goals,
quality constraints, preferences) and relegate their associated conditions (e.g. pre/post,
achievement, trigger conditions) by anticipating runtime change scenarios. Secondly, it
enables SAS at runtime to analyze requirements problem in case of changes that can oc-
cur dynamically e.g. change in user’s context, violation of domain assumption, resource
usage or change in user’s need or preference, either through sensing the operational en-
vironment or explicitly given by the end-user.

A Rel is applied to manage unanticipated events, by flexibly relegating some of the
requirements, with the aim to avoid failure in achieving the critical ones. In this case by
applying Rel, either the solution that operationalizes a goal needs to be replaced, or an
instance of the same goal with revised conditions is linked using Rel with the original
goal e.g. in Fig.2, candidate solution “Send via SMS” is relegated by “Place Call”,
when context conditions changes. In this example, the instance of the original goal is
not compromised rather relegation is considered by replacing the preferred solution
with an optional solution.

Influence Relation: An influence relation (Inf) is introduced to analyze the impact of
changes in model elements that define different, mutual dependent requirements. This
means, if change in the operational environment or in end-user requirements happens
at runtime it might cause a change in another requirement. This chain of dependency
needs to be identified, since along them we may identify changes consequences such
as violation of a goal or a invalid solutions. For example, in Fig.2, if no candidate
solution is possible to achieve the goal “Message Transfer Method Selected” due to
invalid context and domain conditions, then this goal will fail, which causes a violation
in satisfying the corresponding goal i.e. “Message Composed”. Similar dependencies
can be collected and subsequent consequences are determined by analyzing the impact
of changed solution.

3.2 Adaptive RML Visual Notations

The Adaptive RML language provides a graphical notation, which is in line with clas-
sical goal modeling languages and is formalized via a mapping to Techne. A detailed
guide on visual elements is presented in the Table shown in Fig. 3: each row contains
a graphical symbol and a short description of it’s intended meaning. For the elements
that map the Techne core ontology, the corresponding semantics is given in [13], while
the formal semantic of the additional concepts is defined in [11].

Worth to be mentioned is that recent research evaluated weaknesses of widely used
goal-oriented modeling notations with respect to principles for cognitively effective
visual notations [17]. The proposed visual notation considers two among the principles

272 N.A. Qureshi, I.J. Jureta, and A. Perini

discussed in [17]. The first is visual expressiveness: notation must comprise of color,
shape and brightness instead of shape only. Second is Semiotic clarity, which postulates
that each graphical symbol must have a 1:1 correspondence with its semantic definition.
Our proposed notation takes as much as possible these principles into account, but fur-
ther effort is needed to fit with the proposed recommendation for improving usability
and communicative effectiveness of visual notations in RE modeling.

3.3 Modeling in Adaptive RML

Modeling requirements in Adaptive RML enables the analyst to construct the require-
ments model by recording and structuring relevant information obtained through elic-
itation. As a result, the runtime requirements adaptation problem is formulated for the
SAS-to-be. New pieces of information are gathered during modeling time to refine the
problem iteratively. At analysis time, all candidate solutions to that problem are sought
along with their differences to each other and are compared with respect to varying
context situations and resource availability.

The modeling process develops by performing iterations of the following activities.

1- Modeling Mandatory and Optional Goals:
We start modeling goals, optative statements that defines the desired properties of

the SAS-to-be, via inference relation (i.e. symbol (I)). We use (I) node to depict refine-
ments (e.g. AND/OR decomposition, or means-end relation). Each (I) node connects
the model element to be refined to simpler or more concrete elements that refine it. In
this way it is concluded that if the requirements defined by the concrete elements are
satisfied then the more abstract one will be achieved. Further, we add softgoals vague
properties of SAS-to-be, which are approximated in terms of quality constraints that
determines the criteria to measure them. Goals can be either mandatory or optional (i.e.
(M)) or (O) respectively), we model this by adding these unary relation over goals.

2- Modeling Domain Assumptions:
While modeling goals we discover domain assumptions that are statements in the

domain which are assumed to be always true. We add them via (I) node and add (if any)
to each goals. Subsequently, during refinement, quality constraints can be inferred. We
add criteria to measure the goal satisfaction via (I) node. During this, new pieces of
information are discovered such as conflicts and preferences among the goals.

3- Modeling Conflicts and Preference Relations:
Conflicts and preferences are identified during refinement. We discover conflicts be-

tween inconsistent / contradictory requirements or tasks node between conflicting set of
requirements / tasks. Further, we identify preferences taking into account stakeholder’s
evaluations about different requirements. We add preference relation between require-
ments where satisfying one is strictly more desirable than satisfying the other.

4- Modeling Mandatory or Optional Tasks:
Likewise, we model tasks as further refinement of goals. Task modeling can be seen

as an analysis activity, where we add tasks via (I) node to operationalize goal. This
means, if the tasks will be successfully completed, the goal will be achieved.

Towards a Requirements Modeling Language for Self-Adaptive Systems 273

5- Modeling Context and Resources:
Once the requirements model is constructed, we further anticipate the various situa-

tions in which requirements or tasks can be either achieved or not. We add context node
to each requirement/task. Context refers to any information, which is presupposed by
the stakeholder and we make it explicit, e.g. a location etc.. A domain ontology com-
pliments this context information by precisely defining the terms (instances of context).
We link context with an ontology annotation (shown as @) via an association link.

While discovering tasks and context that can satisfy requirements, we may also iden-
tify resources that the tasks need to use. We add resource node via (I) node with each
task. Note that resource concept is also available in other RML, however, we distinguish
it as not only tangible e.g. mobile phone, Fax machine, but also intangible e.g. assets
such as money, time, agenda. In our model, each resource may have domain assump-
tions or quality constraint attached to it via (I) node.

6- Modeling Influence and Relegation Relations:
Finally, identify during refinement requirements/tasks may have influence on the

achievement of each other. Influence relation is added between a set of requirements/
task, where the achievement of the former becomes critical due to the achievement of
others (strong influence i.e. s-inf). If achievement of the latter is not critical, it will
be modeled as weak (w-inf). However, it becomes interesting in case of tasks, where
execution of one tasks may have influence of other tasks.

Finally, we look for conflicting context conditions, resource availabilities, quality
criteria which may helps to determine requirements/tasks whose achievement can be
delayed or relaxed. We add relegation relation between requirements/task that are less
critical to the requirements/task more critical/preferred to in corporate uncertainty about
changes in context or resource availability.

3.4 Towards Detailed Specification Analysis

Analysis in Adaptive RML suggests which candidate solutions are relevant in the pre-
vailing context conditions and resource availability. A requirements model defines the
requirements problem for a SAS-to-be, along with candidate solutions. This model is
used by the analyst to discover adaptive requirements by looking at differences between
candidates solutions that are modeled.

Adaptive requirements are requirements that not only hold the definition of func-
tional or non-functional requirements but encompass the notion of variability, by hav-
ing monitoring specification, evaluation criteria and adaptation alternatives. To discover
them detailed analysis is performed on the available information represented in the early
requirements model. We analyze the candidate solutions that remain valid in a partic-
ular situation. We look at the context nodes and domain assumptions, we anticipate
changes as we move to a different context and this leads to different resource availability
requirements. Alternative solutions can be inferred during this process.

Adaptive requirements help specifying alternative ways to adapt to context and re-
source changes via a pattern, details of which are out of the scope of this paper. Consider,
while monitoring runtime changes, SAS moves across different contexts by altering the
requirements problem that leads to change in candidate solutions. At runtime, several
solutions get activated based on context and based on resource availability. Mechanisms

274 N.A. Qureshi, I.J. Jureta, and A. Perini

for adaptation are triggered, therefore, reasoning over the adaptive requirement leads
SAS moves (i.e. enact adaptation) to the candidate solution which is appropriate to the
new current context.

For example, an adaptive requirement can be defined as AR1: Message must be
composed by selecting an appropriate format. From this we determine that appropri-
ate format i.e. HTML or Text, needs to be selected as modeled in Fig.2. But to select
the candidate solution, we need to monitor the user’s context (e.g. Office, Home) and
resources (e.g. Mobile phone or Laptop) and domain assumptions with quality pref-
erences. Along monitoring specification, we need also to specify evaluation criteria
to check the difference between two tasks. Based on this criteria, among the possible
candidate solutions that are adaptation actions e.g. tasks and domain assumptions in a
context, a possible candidate solution will be selected. For instance, while monitoring
the user context, resource, any change can lead to change the selected format, i.e. either
html or text format.

So far, we argued on the need of a requirements modeling language (RML) for SAS
that enable the analyst to capture and analyze requirements for SAS by incorporating
the above core properties of SAS at early stages of RE. Below we present how the SAS
at runtime tries to resolve a runtime requirements adaptation problem, by finding and
comparing a candidate solution in response to changing context, resource variability
using its own requirements model and detailed specification i.e. adaptive requirements.

3.5 Detailed Specification at Runtime

We recognize that in case of SAS, not all information can be collected, defined during
requirements- or at design-time, but that this will depend at runtime when the system
exploits its solutions implemented using different technologies (e.g. exploiting available
services or agents). For example, any variation in the context and resource availability
can be monitored or recorded by gathering the data through sensors, then matching
patterns of data provides implications on the satisfaction of the goals. However, regard-
less of the technologies used, the SAS still needs to be designed to ensure the general
conditions and relations that the requirements problem states: e.g., that the SAS needs
an internal representation of information pertaining to contexts, domain assumptions,
tasks, goals, and so on.

To give an intuition about how the adaptive requirements specification can support
runtime adaptation, in Fig.4, an adaptation sequence is shown along the time dimen-
sion, where the SAS operates as per the candidate solution (S1) selected to satisfy the
particular context and resource variation. At this time (t1) the SAS, while monitoring,
evaluates the user’s current situation and attempts to satisfy a given set of goals (e.g.
Confirmation Message Sent, Message Transfer Format Selected) and quality constraints
via its candidate solution. A candidate solution is composed of tasks, domain assump-
tions that hold valid for a context and available resources to achieve such tasks. E.g.,
candidate solution S1: Context: (@Market), Resource: (Mobile Phone), Task: (Send via
SMS), Domain Assumption: (All Users have Mobile Phone & Laptop) was selected,
but due to traveling, the context is not recognized anymore. Therefore the SAS has to
reason about this change at time (t2) by looking at the difference in candidate solu-
tions with respect to context conditions, resource availabilities and user preferences.

Towards a Requirements Modeling Language for Self-Adaptive Systems 275

S1

t1

¬S1 S4 S4

t2

t3

Before Adaptation After AdaptationDuring Adaptation

¬S1 ^ S4 S3 S2 S1: Context: (C1),
Resource: (Mobile Phone),

Task: (Send via SMS),
Domain Assumption:

(All Users have Mobile Phone & Laptop)

S4: Context: (C3),
Resource: (Contact List),

Task: (Place Call),
Domain Assumption:

(All Secretaries have landline Phone)

Time

S4 -- Rel --> S1

¬C1 ^ ¬C2

¬

Fig. 4. Runtime Adaptation Sequence of SAS

SAS performs the reasoning based on the differences among the alternative candidate
solutions, which states a comparison and ranking of the solutions based on criteria e.g.
(S1) Send via SMS is not valid, (S2) Send via Email is not feasible as user’s context is
not recognized. Thus the change in requirements problem, changes the candidate solu-
tion in different contexts and with different resources. The adaptive requirements play
critical role here, as they operationalize the mechanisms for adaptation i.e. monitor and
evaluating the difference between candidate solutions and provides criteria to compare
and rank them. To reason on adaptive requirements, automated reasoning techniques
(e.g. AI Planning) can be employed. Discussion on such techniques is out of the scope
of this paper.

Finally SAS selects a candidate solution e.g. “Place Call” by evaluating the rele-
gation relation, specified earlier in the adaptive RML model and detailed in adaptive
requirements e.g. S4 � S3 � S2. The new candidate solution S4: Context: (Null), Re-
source: (Contact List), Task: (Place Call), Domain Assumption: (All Secretaries have
landline Phone).

4 Discussion and Related Work

Advantages and open aspects of the proposed language are discussed with respect to
state-of-art work and along well recognized issues in requirements modeling for SAS,
which includes uncertainty about environment conditions and resource availability, con-
text awareness and monitoring, requirements reflection and runtime reasoning. Adap-
tive RML provides visual notations to the concepts defined in the revised core ontology
of RE for SAS. On the correctness of the concepts used to model requirements, we refer
to the definitions in [11].

Systems that operate in an open environment, need to be able to manage uncertainty
about environment conditions and resource availability. So for instance our system has
to be designed in a way that it can communicate through SMS if the cell phone is on and
connection is available, and if not, choose a different way to communicate. An attempt
to address this problem at requirements time has been proposed within the RELAX

276 N.A. Qureshi, I.J. Jureta, and A. Perini

framework [4], through the use of a language that provides three types of operators to
handle uncertainty: temporal (e.g. eventually, until, as early as), ordinal (e.g. as close, as
many), and modal (i.e. shall, may / or). The RELAX language semantics is formalized
in Fuzzy Branching Temporal Logic. In [6], a set of analysis methods are then provided
to support goal modeling refinement towards detailed design, which exploit mitigation
strategies based on obstacle analysis, and lead eventually to relax constraining condi-
tions (i.e. our quality conditions). Analogously, the approaches proposed in [3] and [8]
propose interesting methods to deal with uncertainty at detailed design.

In Adaptive RML, we provide, the Relegate relation, which is more general than
the RELAX operators [4], since we do not commit to fuzzy logic: we only ask for a
way to represent alternatives and to compare them. In this sense, RELAX can be seen
as a particular way to implement the Relegate relation, and obtains a straightforward
interpretation in the language we used here. There are other ways to handle uncertainty
and relaxation of requirements, and our aim in this paper was to remain independent of
particular approaches.

Concerning the knowledge about the resources, which are needed to achieve specific
behavior while the SAS is operating, this notion of resource has been implicit in the
requirements modeling languages like KAOS and i*/Tropos. In case of requirements
for SAS, we believe that it is necessary to model resources in a more explicit way,
not only to express their variability, but also to include dynamic lifecycles that might
describe their availability.

Along the dimension of context, in RE, context has been defined asAn abstraction
of location, an event, environment or as a set of conditions that may change overtime
in [15, 18, 19]. Another common and well accepted definition of context to date is
by Dey in [20], i.e., Context is any information that can be used to characterize the
situation of an entity.

Specifically, in RE for SAS, it has been argued that alternative behaviors must be
supplied to the system, which can be switched to meet the changes in the environment
by monitoring the context [18]. To capture the contextual variability, explicit knowledge
about the domain is required. In [15], variation points are used to annotate the goal
models, for representing pre-defined contexts and alternative behaviors to be exploited
while reasoning over them. To use this approach, a requirements driven reconfiguration
architecture is proposed in [21], which leverages the concept of context and monitor-
diagnosis-compensate loop. Moreover, our Adaptive requirements, follow similar ideas,
but go beyond the above mentioned approaches by making explicit domain assumptions
and requirements for feedback loops [7]. However, the notion of context is trickier and
brings newer requirements to be analyzed while specifying requirements for SAS. In
Adaptive RML, we provided an explicit graphical notation, where context properties
can be modeled exploiting specific domain ontology, which defines the domain concepts
and their instances.

On the basis of recent works, we recognized issues in requirements modeling for
SAS that provide premise to the proposal of Adaptive RML. For instance requirements
monitoring [22–24], where the running systems must be monitored during its execu-
tion as per its own requirements model. Any runtime deviation or violation leads to
needs for the system to reconcile its behavior to its requirements. In case of SAS this is

Towards a Requirements Modeling Language for Self-Adaptive Systems 277

critical, as it operates in an open environment where changes can occur dynamically in
the operating context, availability of resources and end-user needs can change over time.
In Adaptive RML, we propose modeling concepts so as to model early requirements for
SAS, which then guides the detailed specification, which will eventually include mon-
itoring specification. However, implementation of monitoring and linking early models
with runtime events is nontrivial.

Requirements reflection is another issue, where ideas from computational reflec-
tion has been borrowed to provide SAS the capability to be aware of its own require-
ments [10]. Similarly, online goal refinement [25] is of prime importance considering
the underline architecture of the intended SAS. To support runtime reasoning of re-
quirement by SAS itself, in [9, 26, 27], we proposed a Continuous Adaptive RE (Care)
framework and architecture for continuous online refinement of requirements by the
system itself. This work describes different types of runtime adaptation, which are re-
alized by exploiting incremental reasoning over adaptive requirements represented as
runtime artifact. The main aim of this framework is to provide continuous refinement
of requirements and provide solutions (i.e. leveraging available services) by the system
at runtime involving the end-user.

Adaptive RML models and their support in deriving detailed specification in terms of
adaptive requirements, represents a relevant contribution towards realizing continuous
adaptive requirements engineering.

5 Conclusion and Future Work

This paper introduced Adaptive RML, a visual language for the modeling of early re-
quirements for SAS. In contrast to previous proposals [3, 6–8] that rest on well estab-
lished goal-oriented modeling languages (i.e. i*, Tropos, Kaos), Adaptive RML builds
on the abstract requirements modeling language Techne [13], which provides a richer
set of concepts, along the CORE ontology for RE defined in [12], and supports re-
quirements analysis leading to sets of candidate solutions for the stated requirements
problem. A few additional concepts and relationships are used in Adaptive RML (i.e.
context, resource, relegation and influence) to model and represent the runtime require-
ments adaptation problem and perform analysis.

The motivations for Adaptive RML were first introduced by contrasting requirements
modeling of an example of SAS, made with i* and with Adaptive RML, providing also
an early qualitative validation of its advantages. A detailed account of Adaptive RML
was then given in terms of concepts, visual notation, modeling and analysis guide-
lines. Finally, novel features of Adaptive RML were discussed along the research chal-
lenges, which have been recently identified in RE for SAS [1, 10] and open points were
highlighted.

As future work on Adaptive RML, we will focus on investigating easier-to-use visual
syntax, tool support for modeling and automated reasoning methods for the analyst to
find candidate solutions in the model. To further consolidate the approach, a systematic
process to guide the detailed specification in terms of adaptive requirements should also
be provided. A survey is also planned to acquire feedback on the effectiveness of the
proposed visual modeling notions and their adequacy for early requirements modeling
of SAS involving subjects.

278 N.A. Qureshi, I.J. Jureta, and A. Perini

References

1. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J., Becker, B.,
Bencomo, N., Brun, Y., Cukic, B., Di Marzo Serugendo, G., Dustdar, S., Finkelstein, A.,
Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle, H.M., Kramer, J., Litoiu, M., Malek,
S., Mirandola, R., Müller, H.A., Park, S., Shaw, M., Tichy, M., Tivoli, M., Weyns, D.,
Whittle, J.: Software Engineering for Self-Adaptive Systems: A Research Roadmap. In:
Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Self-Adaptive Sys-
tems. LNCS, vol. 5525, pp. 1–26. Springer, Heidelberg (2009)

2. Penserini, L., Perini, A., Susi, A., Mylopoulos, J.: High variability design for software agents:
Extending Tropos. TAAS 2(4) (2007)

3. Morandini, M., Penserini, L., Perini, A.: Towards goal-oriented development of self-adaptive
systems. In: ICSE Workshop on Software Engineering for Adaptive and Self-Managing Sys-
tems (SEAMS 2008), pp. 9–16 (2008)

4. Whittle, J., Sawyer, P., Bencomo, N., Cheng, B.H.C., Bruel, J.-M.: RELAX: Incorporating
Uncertainty into the Specification of Self-Adaptive Systems. In: 17th IEEE Int. Require-
ments Eng. Conf., Atlanta, pp. 79–88 (2009)

5. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisition. Sci.
Comput. Program. 20(1-2), 3–50 (1993)

6. Cheng, B.H.C., Sawyer, P., Bencomo, N., Whittle, J.: A Goal-Based Modeling Approach to
Develop Requirements of an Adaptive System with Environmental Uncertainty. In: Schürr,
A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 468–483. Springer, Heidelberg
(2009)

7. Qureshi, N.A., Perini, A.: Engineering adaptive requirements. In: ICSE Workshop on Soft-
ware Engineering for Adaptive and Self-Managing Systems (SEAMS 2009), pp. 126–131
(2009)

8. Baresi, L., Pasquale, L., Spoletini, P.: Fuzzy goals for requirements-driven adaptation. In:
18th IEEE Int. Requirements Eng. Conf., pp. 125–134 (2010)

9. Qureshi, N.A., Perini, A.: Requirements engineering for adaptive service based applications.
In: 18th IEEE Int. Requirements Eng. Conf., pp. 108–111 (2010)

10. Sawyer, P., Bencomo, N., Whittle, J., Letier, E., Finkelstein, A.: Requirements-aware systems
a research agenda for re for self-adaptive systems. In: 18th IEEE Int. Requirements Eng.
Conf., pp. 95–103 (2010)

11. Qureshi, N.A., Jureta, I., Perini, A.: Requirements Engineering for Self-Adaptive Systems:
Core Ontology and Problem Statement. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011.
LNCS, vol. 6741, pp. 33–47. Springer, Heidelberg (2011)

12. Jureta, I.J., Mylopoulos, J., Faulkner, S.: Revisiting the core ontology and problem in re-
quirements engineering. In: 16th IEEE Int. Requirements Eng. Conf., pp. 71–80 (2008)

13. Jureta, I.J., Borgida, A., Ernst, N.A., Mylopoulos, J.: Techne: Towards a new generation of
requirements modeling languages with goals, preferences, and inconsistency handling. In:
18th IEEE Int. Requirements Eng. Conf., pp. 115–124 (2010)

14. Yu, E.: Towards modeling and reasoning support for early requirements engineering. In:
Proc. 3rd IEEE Int. Symp. on Requirements Eng., pp. 226–235 (1997)

15. Ali, R., Dalpiaz, F., Giorgini, P.: A Goal Modeling Framework for Self-contextualizable
Software. In: Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Soffer, P., Ukor,
R. (eds.) BPMDS 2009 and EMMSAD 2009. LNBIP, vol. 29, pp. 326–338. Springer,
Heidelberg (2009)

16. Marchetto, A., Nguyen, C.D., Di Francescomarino, C., Qureshi, N.A., Perini, A., Tonella,
P.: A design methodology for real services. In: Proceedings of the 2nd International Work-
shop on Principles of Engineering Service-Oriented Systems, PESOS 2010, pp. 15–21. ACM
(2010)

Towards a Requirements Modeling Language for Self-Adaptive Systems 279

17. Moody, D.L., Heymans, P., Matulevicius, R.: Improving the effectiveness of visual repre-
sentations in requirements engineering: An evaluation of i* visual syntax. In: 17th IEEE Int.
Requirements Eng. Conf., pp. 171–180 (2009)

18. Salifu, M., Yu, Y., Nuseibeh, B.: Specifying monitoring and switching problems in context.
In: 15th IEEE Int. Requirements Eng. Conf., pp. 211–220 (2007)

19. Finkelstein, A., Savigni, A.: A framework for requirements engineering for context-aware
services. In: Proc. of 1st International Workshop From Software Requirements to Architec-
tures (STRAW 2001), pp. 200–201 (2001)

20. Dey, A.K.: Understanding and using context. Personal Ubiquitous Comput. 5(1), 4–7 (2001)
21. Dalpiaz, F., Giorgini, P., Mylopoulos, J.: An Architecture for Requirements-Driven Self-

reconfiguration. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009. LNCS,
vol. 5565, pp. 246–260. Springer, Heidelberg (2009)

22. Fickas, S., Feather, M.S.: Requirements monitoring in dynamic environments. In: RE 1995:
Proceedings of the Second IEEE Intl. Symp. on Reqs. Eng., p. 140. IEEE CS (1995)

23. Feather, M.S., Fickas, S., Lamsweerde, A.V., Ponsard, C.: Reconciling system requirements
and runtime behavior. In: IWSSD 1998: Proceedings of the 9th International Workshop on
Software Specification and Design, p. 50. IEEE CS (1998)

24. Robinson, W.: A Roadmap for Comprehensive Requirements Monitoring. Computer 43(5),
64–72 (2009)

25. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: Future of Soft-
ware Engineering, FOSE 2007, pp. 259–268 (May 2007)

26. Qureshi, N.A., Perini, A., Ernst, N.A., Mylopoulos, J.: Towards a continuous requirements
engineering framework for self-adaptive systems. In: RE 2010 Workshops, First International
Workshop on Requirements@Run.Time (RE@RunTime), pp. 9–16 (2010)

27. Qureshi, N.A., Perini, A.: Continuous adaptive requirements engineering: An architecture
for self-adaptive service-based applications. In: First IEEE International Workshop on Re-
quirements@Run.Time (RE@RunTime), pp. 17–24 (2010)

Requirements Monitoring
for Adaptive Service-Based Applications

Marc Oriol1, Nauman A. Qureshi2, Xavier Franch1, Anna Perini2, and Jordi Marco1

1 Universitat Politècnica de Catalunya, Barcelona, Spain
{moriol,jmarco}@lsi.upc.edu, franch@essi.upc.edu

2 Fondazione Bruno Kessler - CIT, Trento, Italy
{qureshi,perini}@fbk.eu

Abstract. [Context and motivation] Adaptive Service Based Applications
(SBAs) need to cope with continuously changing environments. Monitoring be-
comes a key requirement for engineering Adaptive SBAs. [Question/problem]
Ongoing research on Requirements Engineering (RE) for Adaptive SBAs strives
to answer challenging questions such as how to monitor changes affecting user’s
requirements? and how the monitored information helps in adapting to the can-
didate solutions? [Principal ideas/results] Existing approaches and techniques
to specify requirements monitoring for Adaptive SBAs are either formal or spe-
cialized to a particular domain. A convenient and easy approach to specify re-
quirements monitoring for Adaptive SBAs is still missing. In this paper, we focus
on this issue. [Contribution] We describe a systematic approach for deriving re-
quirements monitoring specifications for the running Adaptive SBA. We use a
running example from a travel domain case study to elaborate our approach.

Keywords: Requirements Monitoring, Self-Adaptive Systems, Services-Based
Application.

1 Introduction

Service-Based Applications (SBA, hereafter) reply on third party services while oper-
ating in an open environment (such as the Internet) [1]. In such a dynamic environ-
ment, SBAs must adapt in response to changing end-user’s needs and preferences (e.g.
book travel using different services), changes in context (e.g. wifi service is available
in downtown, but is not available in a mall nearby) or variation in the availability of re-
sources to exploit such solutions (e.g. mobile battery went down) or the availability of
the service (e.g. travel service is not available due to server maintenance). Research on
self-adaptive systems has started to gain considerable attention from the research com-
munity [2]. However, research on Requirements Engineering (RE) for Adaptive SBAs
has received less attention.

Existing works in the field of service-oriented computing aims at architectural as-
pects when focusing on service monitoring and discovery [3]. In the context of RE,
requirements monitoring has been tackled as a way to observe the deviations in the run-
ning system by instrumenting the code [4,5,6]. However, these approaches anticipate
changes that might occur at runtime, which makes them limited in the case of adaptive

B. Regnell and D. Damian (Eds.): REFSQ 2012, LNCS 7195, pp. 280–287, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Requirements Monitoring for Adaptive Service-Based Applications 281

SBAs. Recently it has been pointed out that to cope with unanticipated changes that
can occur dynamically at runtime, self-adaptive systems need to be aware of their own
requirements and end-user’s needs at runtime [7]. Taking this vision to adaptive SBAs,
in several cases, the decision on how to adapt in response to changes and what to mon-
itor can be postponed to runtime as well with respect to the real environment involving
the end-user. In the context of Self Adaptive Systems, there are many instances where
adaptation decisions cannot be determined at design time. For instance, if a flight is
delayed (unanticipated event) the Self Adaptive System may choose to rebook a similar
flight, cancel the flight and hotel booking or explicitly involving the end-user asking for
what to look for (e.g. travel by train, rent a car, etc). Such decision cannot be pre-fixed,
as dynamic changes may occur at run-time.

In this work, we consider changes that pertain to end-user requirements, operational
contexts and variability in resource’s availability posing challenging questions to the
field of RE. In particular, we aim to address the following research questions: (1) how
to systematically obtain and configure monitors from end-user’s requirements? (2) how
to configure an adaptive SBA to adapt at runtime in response to changes in operating
context, availability of resources and by involving the end-user if needed?

To address these questions, we envision a novel approach to systematically derive
monitoring specifications from the user’s requirements for a running adaptive SBA. We
adopt an operational pattern based on Event-Condition-Action to configure adaptive
SBAs to monitor changes and adapt at runtime.

The paper is organized as follows. Section 2 describes the related work and high-
lights the challenges. Section 3 briefly recalls the baseline of our proposed work [8,9]
and describes our envisioned approach on requirements monitoring for adaptive SBAs.
Section 4 summarizes the next steps.

2 Related Work and Baseline

Relevant works on requirements monitoring are briefly recalled here below. In [4,5] a
formal language (Formal Language for Expressing Assumptions - FLEA) is proposed
to express the assumptions about the environment that has to be monitored as prerequi-
site in order to apply remedial actions if the related requirements are violated. Similarly,
in [10] a monitoring framework, named ReqMon, is proposed for monitoring web ser-
vice requirements expressed using a goal-oriented language (KAOS). KAOS model of
requirements is used to analyze obstacles for specifying monitors. Another framework
to monitor and diagnose failures of software requirements has been proposed in [11].
The framework logs the execution of the system, and a diagnostic component identifies
if there has been any violation of the requirements by means of propositional formula
in CNF and using SAT solvers. In [12] an approach to deal with self-adaptation of
BPEL compositions by means of adaptive goals, which are responsible for the evo-
lution/adaptation of the goal model, is presented. Using the KAOS goal model they
transform the obstacles and additional conditions into the languages of two monitoring
systems: ALBERT, Dynamo which are used to evaluate properties of a BPEL process.

A comparison between these works and our envisioned approached is shown in
table 1.

282 M. Oriol et al.

Table 1. Comparison with the related work

These works on requirements monitoring tend to consider only changes that can
be anticipated at design-time. This limits their applicability in case of adaptive SBAs.
Many decisions need to be postponed to runtime while engineering adaptive SBAs. In
context of RE for adaptive SBA, requirements monitoring demands a flexible approach
to derive and configure application monitoring with respect to the changes in the re-
quirements or in the environment. An easy and convenient approach to support the
analysts at design-time to derive and configure application monitoring with respect to
the requirements and later provide the support to the running adaptive SBA at runtime
to automate it monitoring and adaptation with respect to the changes. To address this
target, we envision a convenient and systematic approach that enables the analyst to
express monitoring specification from requirements (without obfuscating the require-
ments specification using a complex formal language), and provide supporting features
to re-configure at runtime.

The baseline of our envisioned approach is our ongoing works on the Continu-
ous Adaptive Requirements Engineering (CARE) [8] Framework and the SALmon
Framework for Monitoring SLA [9].

The CARE framework attempts at bridging the gap between design-time and run-
time RE. At design-time requirements model is constructed using the concepts (i.e.
goals, tasks, context, resources etc.) defined in the revised core ontology of RE for
self-adaptive systems in [13]. The resulting instances of the requirements specification
(i.e. candidate solutions to the requirements problem) are stored in the requirements
database. At run-time, the CARE is instantiated by a running adaptive SBA, performing
RE by itself. It exploits the requirements specification instances for runtime refinement
of requirements by involving the end-users, if needed, to satisfy their needs exploiting
the available services.

SALMon is a framework focused on monitoring the quality of service (QoS) of web
services, evaluate them accordingly to stated conditions, and notify violations to the
interested parties. For this project, SALMon has been extended with new measurement
capabilities, such as monitoring the change of status of a service, which goes beyond
QoS. SALMon is able to combine both passive monitoring and testing approaches ac-
cordingly to the preferences of the user. The framework has been implemented as a

Requirements Monitoring for Adaptive Service-Based Applications 283

SBA itself, providing hence easy integration with other frameworks. It provides the fol-
lowing two services: the Monitor, responsible to retrieve the data of the target services;
and the Analyzer, responsible for the evaluation of conditions.

3 Requirements Monitoring Framework

In this section, we elaborate our overall envisioned approach to derive monitors from
the requirements, as well as the rules that guides the system adaptation in response
to changes detected from the monitoring data. We exploit a Event-Condition-Action
pattern to operationalize the requirements as a monitoring specification which is used
to configure the running adaptive SBA with respect to the requirements.

3.1 Scenario

We elaborate our approach exploiting a scenario from a Travel Companion exemplar
case study (adopted from [8]). Travel Companion is an adaptive SBA, responsible for
managing users’ travel booking by maintaining users’ goals. In this scenario, the user
must be notified about changes about her flight itinerary i.e. flight booking status (e.g.
flight status changes to delayed or canceled). The notification message about her flight
booking status must be sent on her device (e.g. mobile phone) instantly (e.g. with in less
than 5 mins) exploiting the available services (e.g. the Internet wifi, flight booking ser-
vice, SMS service etc.), keeping in view her preference (e.g. send email on a corporate
mail account while in office) and context (e.g. location: outdoor, indoor).

3.2 The Framework at Design-Time

We describe our envisioned approach that supports the analyst at design-time to conve-
niently specify requirements and derive monitoring specification that is used to config-
ure the components of the running adaptive SBA as shown in Fig. 1. We use the above
scenario to help to clarify the elements of our approach.

Requirements
Model

Operationalization of requirements
in Event-Condition-Action Pattern

Configuration of Monitors,
Analyzer and Decision Maker

1. 2. 3.

Fig. 1. Design-time process for deriving and configuring Monitor, Analyzer and Decision Maker

1. Requirements Model: The requirements model is defined by exploiting the concepts
and relations defined in the revised core ontology of requirements for self-adaptive
systems in [13]. Concepts includes: goals, softgoals, tasks, resources, domain assump-
tions (i.e. conditions considered to be true for the correct behavior of the system), qual-
ity constraints (i.e. requirements that expresses conditions over the expected quality
of service), context (i.e. information that defines the system state, user’s presupposed

284 M. Oriol et al.

information about a requirement etc.) and relations includes: preferences (i.e. defin-
ing priorities over mandatory or optional requirements), conflicts (i.e. inconsistent set
of requirements), inference (i.e. a generalized relation over decomposition such as
AND/OR in goal models). The resulting model describes the requirements specifica-
tion, which not only the mandatory requirements but also encompass monitoring spec-
ification, evaluation criteria and alternative candidate solutions for the intended Travel
companion SBA.

2. Operationalization: To operationalize the given requirements, there exist several al-
ternatives, such as using the Object Constraint Language (OCL) [14], Event-Condition-
Action (ECA) [15] or Temporal Logics [5] [16], beyond others. We adopt a convenient
Event-Condition-Action (ECA) pattern that helps expressing the adaptive requirements
specification. Although, ECA pattern for expressing requirements is not the most com-
pact and only form. We chose this pattern to provide a straight forward operationalization
of adaptive requirement, thereby capturing the feedback loop functions (i.e. monitoring
specification, evaluation criteria and adaptation/trigger actions, making them explicit
using ECA rules). The operationalization of these requirements is as follows:

Specifying Events: The analyst can include either goals or tasks to monitor. The frame-
work navigates through the given defined element in the requirements model until it
reaches the leaf tasks that implement the functionality and generate the events to ob-
serve. For instance, from a high-level goal ‘changes over the flight itinerary being mon-
itored’, the framework reaches the task ‘invoke flight status’ and monitor the events of
this task. The current framework supports the generation of monitors for web services.
In order to automate the generation of monitors, the analyst annotates these tasks with
the required information (i.e. endpoint, WSDL and SOAP action). The invocation of
these tasks are the events to monitor. The concrete properties to monitor on each event
are obtained from the Quality Constraints defined in the requirements model that applies
over the task. The requirements model includes also a set of preferences i.e. Preference
Requirements (PRs). PRs specify preferences regarding how the monitoring should be
performed (i.e. actively invoking the service every time-interval or passively observing
the interaction between the system and the end-user). This information is used to auto-
matically generate a Monitoring Specification, an XML file that describes what is to be
monitored, and is used in order to generate the monitors accordingly.

Specifying Conditions: The list of elements in the condition specify the rules of the
system to analyze. These rules are checked on runtime to detect if the behavior of the
system fulfills the expected functionality with the desired performance. The given ele-
ments involved in the Condition section are the Quality Constraints (QCs) that specify
the conditions to check, and the runtime data obtained as Resources (i.e. the results
of the monitored events). This information is used to automatically generate of the
Condition Specification, which specifies the conditions to be checked at runtime.

Specifying Actions: This part consist on the execution of an action over the defined
elements in the model. There are several kind of actions that can be performed in or-
der to correct or mitigate the malfunction of the system. Currently we have focused
on two kind of actions to perform over the requirements model. Namely, SELECT and
INVOKE. Operationalizing the SELECT(task): the element included as a parameter in

Requirements Monitoring for Adaptive Service-Based Applications 285

the SELECT function is a composite task that can be met by several alternatives. This
action defines the preferred alternative to execute at runtime. For instance, in the given
scenario, there is a task ’NotifyUser’ composed of several alternatives (e.g. Notify-
ByEmail, NotifyBySMS,etc). When a condition over these tasks is not met, the action
SELECT(NotifyUser) is triggered, which updates the selection of the most convenient
device to notify the user. INVOKE(task): the element included in the INVOKE function
is a task that is executed by the system as a result of the failure of the condition. For
instance, if the flight has been delayed, INVOKE(NotifyUser) notifies the user to his
most convenient device that the flight has been delayed. The set of defined actions are
used to generate the actions specification.

3. Configuration: From each generated specification using the ECA rules, the compo-
nents of the running adaptive SBA i.e. Monitor, Analyzer and the Decision Maker are
configured. Here we exploit monitor of SALMon framework, which is configured from
the Monitoring Specification, providing hence at runtime the monitored information of
the target services to the Analyzer. The Analyzer, which is configured from the Condi-
tion Specification, checks if the rules are fulfilled or not and notifies any violation to the
Decision Maker (i.e. part of the adaptive SBA itself, which instantiate CARE frame-
work). The Decision Maker is configured by means of the Action Specification, which
triggers the defined actions.

3.3 The Framework at Run-Time

In this section, we describe our runtime architecture that combines both CARE’s run-
time process (instantiated by Travel Companion) and SALMon that provides runtime
monitoring information to Travel Companion.

Monitoring the Events: The resulting Monitor Specification is used as the input to
configure the monitor of SALMon accordingly. The monitor can be configure in either
passive or active way (i.e. by passively observing the invocation over the defined ser-
vices or by invoking systematically the target services in different time intervals). Once
the service is invoked, the monitor retrieves the desired information, which can be the
value of a quality metric or the result of the invocation.

Analyzing the Conditions: The Analyzer is configured to check the conditions stated
in the Condition Specification. During execution, the analyzer is subscribed to the new
values that the monitor retrieve. That is, for each new monitored value, the analyzer
checks the fulfillment of the conditions. Currently the conditions are stated as a tuple
of < property, operand, value >. If the conditions are not met, the Analyzer notifies
the violation to the Decision Maker.

Triggering the Actions: The Decision Maker retrieves the failure of a condition, and
triggers the defined actions. The Decision Maker is composed of several decisions mod-
ules, each one responsible for a concrete kind of action to perform. As stated previ-
ously, we have defined two kind of actions, namely SELECT(task) and INVOKE(task).
The SELECT action is achieved by means of updating the model with the preferred
concrete task that will realize the composed task. The trigger action is achieved by
means of invoking the specified task. To this aim, the given task is implemented as a

286 M. Oriol et al.

service, and the invocation is performed as a SOAP-based message invocation. In the
given scenario, the status of the flight is monitored actively by the monitor through a
web service interface. For each invocation, the analyzer checks if the status of the flight
is ’OK’. In case the status is ’Delayed’ or ’Canceled’ the Analyzer triggers the Decision
Maker, which performs the action INVOKE(NotifyUser).

4 Conclusions and Future Work

In this paper, we have proposed a systematic tool-supported approach for deriving moni-
toring specifications from the users requirements for a running Adaptive SBA. Our pro-
posal provides a tool set that allows linking requirements models with more concrete
operational artifacts, i.e. adaptive requirements expressed as ECA rules, and deriving
monitoring specifications from requirements model elements. Such specifications are
used to implement and configure our monitoring framework, which is flexible enough
to accommodate changes (e.g. changes in monitoring specification), and to configure
an adaptive SBA to adapt in response to observed runtime changes. We adopted Event-
Condition-Action pattern in order to operationalize the requirements specification. ECA
rules are then used to specify and configure automatically the different components of the
adaptive SBA presented in the framework at design-time. At runtime, the monitors pro-
vides observed data to analyze the execution of the adaptive SBA. Realizing this frame-
work will help bridging the gap between the design-time and run-time, which exists
in the current approaches. To implement monitors and analyzer we exploited SALMon
(for monitoring the events and evaluation the conditions) and for decision maker, we ex-
ploited Companion SBA, which instantiate CARE (for triggering the defined actions).

Currently we have implemented the generation of monitors from the requirements
model. As an ongoing work, we plan to validate the overall process by realizing and
evaluating our envisioned framework. We aim to conduct empirical studies which demon-
strate the suitability of our envisioned approach. By one hand, we will conduct tests to
assess the performance of the implemented framework, by the other, we plan to perform
an evaluation of the usability by means ofstudents using the framework.

Acknowledgments. This work has been supported by the research project ADICT,
TIN2007-64753, MCyT, Spain. Marc Oriol has a FPI grant bound to the project
TIN2007-64753.

References

1. Di Nitto, E., Ghezzi, C., Metzger, A., Papazoglou, M., Pohl, K.: A journey to highly dynamic,
self-adaptive service-based applications. Automated Soft. Eng. 15(3-4), 313–341 (2008)

2. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J., Becker, B.,
Bencomo, N., Brun, Y., Cukic, B., Di Marzo Serugendo, G., Dustdar, S., Finkelstein, A.,
Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle, H.M., Kramer, J., Litoiu, M., Malek,
S., Mirandola, R., Müller, H.A., Park, S., Shaw, M., Tichy, M., Tivoli, M., Weyns, D.,
Whittle, J.: Software Engineering for Self-Adaptive Systems: A Research Roadmap. In:
Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Self-Adaptive Sys-
tems. LNCS, vol. 5525, pp. 1–26. Springer, Heidelberg (2009)

Requirements Monitoring for Adaptive Service-Based Applications 287

3. Baresi, L., Ghezzi, C., Guinea, S.: Smart monitors for composed services. In: ICSOC
2004: Proceedings of the 2nd International Conference on Service Oriented Computing,
pp. 193–202. ACM, New York (2004)

4. Fickas, S., Feather, M.S.: Requirements monitoring in dynamic environments. In: RE 1995:
Proceedings of the Second IEEE Intl. Symp. on Req. Eng., p. 140. IEEE CS (1995)

5. Feather, M.S., Fickas, S., Lamsweerde, A.V., Ponsard, C.: Reconciling system requirements
and runtime behavior. In: IWSSD 1998: Proceedings of the 9th Intl. Workshop on Software
Specification and Design, p. 50. IEEE CS (1998)

6. Robinson, W.: Monitoring web service requirements. In: Proceedings of 11th IEEE Interna-
tional Requirements Engineering Conference, pp. 65–74 (September 2003)

7. Sawyer, P., Bencomo, N., Whittle, J., Letier, E., Finkelstein, A.: Requirements-aware systems
a research agenda for re for self-adaptive systems. In: 18th IEEE Intl. Requirements Eng.
Conf., Sydney, Australia, pp. 95–103 (2010)

8. Qureshi, N.A., Perini, A.: Requirements engineering for adaptive service based applications.
In: 18th IEEE Intl. Requirements Eng. Conf., Sydney, Australia, pp. 108–111 (2010)

9. Oriol, M., Franch, X., Marco, J., Ameller, D.: Monitoring adaptable soa-systems using
salmon. In: Workshop on Service Monitoring, Adaptation and Beyond (Mona+), pp. 19–28
(2008)

10. Robinson, W.N.: A requirements monitoring framework for enterprise systems. Require-
ments Engineering Journal 11(1), 17–41 (2006)

11. Wang, Y., McIlraith, S.A., Yu, Y., Mylopoulos, J.: Monitoring and diagnosing software re-
quirements. Autom. Softw. Eng. 16(1), 3–35 (2009)

12. Baresi, L., Pasquale, L.: Live goals for adaptive service compositions. In: ICSE Workshop
on Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2010 (2010)

13. Qureshi, N.A., Jureta, I., Perini, A.: Requirements Engineering for Self-Adaptive Systems:
Core Ontology and Problem Statement. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011.
LNCS, vol. 6741, pp. 33–47. Springer, Heidelberg (2011)

14. Souza, V.E.S., Lapouchnian, A., Robinson, W.N., Mylopoulos, J.: Awareness requirements
for adaptive systems, Technical Report DISI-10-049, DISI, Universit‘a di Trento, Italy (2010)

15. Knolmayer, G., Endl, R., Pfahrer, M.: Modeling processes and workflows by business rules.
In: Business Process Management, pp. 16–29 (2000)

16. Baresi, L., Pasquale, L., Spoletini, P.: Fuzzy goals for requirements-driven adaptation. In:
18th IEEE Intl. Requirements Eng. Conf., pp. 125–134 (2010)

B. Regnell and D. Damian (Eds.): REFSQ 2012, LNCS 7195, pp. 288–305, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Release Planning with Feature Trees: Industrial Case

Samuel Fricker1 and Susanne Schumacher2

1 Blekinge Institute of Technology, School of Computing
Campus Gräsvik, 371 79 Karlskrona, Sweden

samuel.fricker@bth.se
2 Zurich University of the Arts

Ausstellungsstrasse 60, 8005 Zurich, Switzerland
susanne.schumacher@zhdk.ch

Abstract. [Context and motivation] Requirements catalogues for software
release planning are often not complete and homogeneous. Current release
planning approaches, however, assume such commitment to detail – at least
implicitly. [Question/problem] We evaluate how to relax these expectations,
while at the same time reducing release planning effort and increasing decision-
making flexibility. [Principal ideas/results] Feature trees capture AND, OR, and
REQUIRES relationships between requirements. Such requirements structuring
can be used to hide incompleteness and to support abstraction. [Contribution]
The paper describes how to utilize feature trees for planning the releases of an
evolving software solution and evaluates the effects of the approach on effort,
decision-making, and trust with an industrial case.

Keywords: features, abstraction, release planning, roadmapping, case study.

1 Introduction

Software releases are planned by allocating requirements to development projects [1].
A strategic release plan aligns the development of an evolving software solution with
market and stakeholder needs, company objectives, and constraints such as time and
resources. Release planning is a central concern in iterative development, where
multiple iterations, rather than a single project, are defined [2].

Release planning involves the following steps [3]. Requirements are elicited and
specified. Criteria [4] are defined to evaluate and prioritize requirements [5]. Releases
are then scoped by allocating the prioritized requirements to development projects.
The resulting release plans are implemented, delivered, and analyzed with
post-release reflections [6].

Requirements that enter release planning are often of low quality [7]. Their
homogeneity [8], completeness, and understanding [9] are hard to ensure due to the
limited effort invested before a development project is funded. This situation
contradicts with the assumptions of release planning approaches that scope projects
simply by prioritizing and allocating available requirements. Consequently, the results
are not trusted and not used for guiding ensuing development steps [10].

 Release Planning with Feature Trees: Industrial Case 289

This paper describes in detail how to hide the requirements-related problems by
structuring the release planning inputs. The approach, whose initial ideas were
introduced in an earlier position paper [11], is based on variability modeling [12] that
allows abstracting from requirements with AND, OR, and REQUIRES relationships
[13]. Variability is here used to structure decision options [14] for product evolution.
This paper then introduces an industrial case [15] to understand how to use variability
modeling in a real-world context of continuous agile product management [16].
Evaluated were feasibility of the approach and its effects on effort, decision-making,
and trust were evaluated.

The paper is structured as follows. Section 2 describes background and motivation.
Section 3 introduces variability-based release planning. Section 4 describes, analyzes,
and interprets the industrial case. Section 5 discusses and concludes.

2 Background and Motivation

Release planning for software products is a key practice of software product management
[17]. Software releases are planned to answer a stream of requirements that approach the
product development organization [18]. The requirements are first homogenized [8] and
pass triage [19] before they enter release planning [3]. Release planning then involves
evaluation and selection of requirements to scope development projects [4]. The
requirements that are closest to implementation are those that are detailed most [16].

Current release planning approaches fit well into this context of continuous
requirements inflow. They require a complete catalogue of comparable requirements
that are evaluated, prioritized, and selected for implementation [20]. Known
prioritization approaches include manual techniques such as top ten, numerical
assignment, ranking, and 100$-test [5], and computer-based techniques such as
Integer Linear Programming [21, 22] and the Analytical Hierarchy Process [23].

Prioritization allows evaluating requirements in a controlled way and leads to
requirements ordering that suits development projects [10]. However, scalability is
limited; and the results are mistrusted and perceived inadequate to guide how to act
[10]. Post-release reflections help improving decision-making over time [6].

We investigated release planning in an organization that developed innovative
software as a service for managing media such as text, sound, pictures, and movies.
The solution provided first-of-its-kind features, was in an early stage of its evolution,
and had a small, but rapidly growing user base.

Responsible for the development was a product manager, a project manager, and a
team of up to five developers. They reported to a company-internal steering
committee with management of the development organization, of the product-owning
organization, and of departments that used the solution. A product reference team was
used to coordinated development with important stakeholder groups.

Surprisingly, there was no stream of requirements that the product organization
was confronted with. No homogenization and triage of incoming requirements was
necessary. Instead the requirements were based on ideas that originated from the
product manager who was an expert in the product’s application domain and on
feedback from pilot users. Ideas were made explicit during product planning and
specified in detail when communicating with the development team.

290 S. Fricker and S. Schumacher

The requirements catalogue was managed in a word processor document and used
as a basis for release planning. It contained 108 requirements. The requirements were
grouped into 12 sections and 19 subsections or themes. In average, a group contained
3.6 requirements and was allocated to 1.93 releases. The grouping, however, did not
show a relationship with requirements allocation to development releases.

The requirements were not prepared and analyzed in a form that was expected by
current release planning approaches. A key concern to the practitioners was development
efficiency. Effort was only put into requirements when the return of such an investment
was obvious.

Requirements that were not likely to be implemented in near future were not
specified. Some requirements were specified with descriptions of up to 245 words,
others only with a few words in a declarative manner, again others were completely
omitted because not relevant within a practical planning horizon. Many requirements
were discovered while development progressed.

Requirements were not evaluated. Isolating a requirement from its context would have
increased the risk of misunderstandings. For example, the requirement thumbnails of
variable sizes would have carried the following ambiguities: When would thumbnails be
shown? For what purpose? Which sizes? What (photos, videos, documents, etc.) would
be depicted by these thumbnails? The many potential interpretations of such a
requirement would have led to different interpretation of importance, dependencies,
implementation cost, and risk.

Requirements were not prioritized. The product organization avoided to compare
requirements. For example, questions like “is the requirement thumbnails of variable
sizes more important than the requirement storage of search results?” have not been
posed. Such comparison would have led to detailed evaluation results. However,
details irrelevant at the given product evolution stage would have been sub-optimized.

The organization wanted to transition from implementing the whole solution with a
single large project to incrementally evolving the solution with short development
iterations. They considered improvements in their release planning capabilities as a
key enabler and asked how release planning can be implemented by abstracting from
the detailed requirements and by focusing on the key product evolution decisions. The
desired approach had to support decision-making, maintain flexibility of how the
solution evolves, and keep effort to be invested at a low level.

3 Feature Trees for Release Planning

The lacking stream of requirements and the tendency of not specifying and evaluating
individual requirements motivated us to identify alternatives to current release
planning approaches. The alternative had to fit the described organization with the
innovative product and the strong leadership of the product manager. Release
planning should remain a low-effort activity, however with improved decision-
making support and flexibility.

Feature diagrams are a widespread approach to document and analyze variability of
software products [12]. They are used to specify how features vary for the products of
a product line (variability in space). Applied to release planning, variability models
can be used for defining the evolution of software (variability in time) [24]. How

 Release Planning with Feature Trees: Industrial Case 291

feature trees are utilized for release planning, has been proposed in this line of
research for the first time [1, 11].

We use AND, OR, and REQUIRE dependencies [13] to structure a solution’s
requirements as a feature tree. Figure 1 illustrates the feature tree of a solution, Online
Shop Sales. A feature is a named group of requirements that are implemented in the
same development increment (AND dependencies). E.g. the Sales feature in Figure 1
refers to six such requirements. To enable acceptable implementation of the feature,
the feature’s requirements are elicited [25] and refined until they comply with the
solution’s environment and design [26].

Sub-features extend a feature. They can only be implemented after their super-
feature has been implemented (REQUIRES dependency). E.g. Enhanced Cart
Display is such a sub-feature to the super-feature Sales. A chain of REQUIRES
dependencies that connects the root with a leaf is called a feature vector [27]. Such a
vector captures the foreseen levels of implementing a functional or non-functional
concern of the software solution. E.g. the OnlineShop Sales solution may support just
Sales or support both Sales and Enhanced Cart Display.

The implementation order of a feature’s sub-features is not constrained a-priori
(OR dependency). E.g. the root’s eight sub-features can be implemented in any order.

Fig. 1. Example of requirements structuring with a feature tree. The tree’s root is OnlineShop
Sales Platform in the middle of the diagram.

Figure 2 shows how we construct a feature tree, starting at the root. Initially,
requirements and constraints related to architecture and infrastructure of the solution are
allocated to the root. Then, feature vectors are built iteratively. For each feature, relevant
requirements are identified and allocated to that feature. Feature-extending sub-features
are identified and related to that feature. Requirements whose implementation can be
postponed are extracted from the feature into these extending sub-features [28]. The
requirements extraction process stops when no requirement can be extracted without
making the concerned feature useless.

OnlineShop Sales Solution

Feature

+ Requirement

Legend

requires

Browsing

Searching

+ R: List prioritized article l ists

+ R: List prioritized articles

+ R: List relevant sponsor links

+ R: Search article

User Management

Recommendations

Contextual Recommendations

Social Recommendations Partner Dialogue

Sales

+ Add Article to Cart

+ Buy Cart Contents

+ Display Cart Contents

+ Edit Cart Contents

+ Log in Customer

+ Save Item for Future Buying

Product Presentation

+ R. Display Correlated Sales

+ R: Dispay Product Tags

+ R: Display Article Information

+ R: Display Customer Feedback

+ R: Display Ensuing Sales

+ R: Display Ensuing Views

+ R: Display Product Description

+ R: Display Product Information

Content Presentation Cart Management Enhanced Cart Display

Order Management

OnlineShop Sales Plattform

+ R: Display Articles

+ R: Display recent relevant views

+ R: Inform about us

+ R: Tailor article display
Advertisement

292 S. Fricker and S. Schumacher

Fig. 2. Iterative feature tree construction process: repeat steps 1 to 3 for each feature until that
feature contains just the minimal set of requirements to be useful. Progress from root to leafs

Figure 3 shows how we use the feature tree to document implementation progress
and to visualize options for evolving the software solution. Initial development starts
with the root. Features are implemented by following the REQUIRES dependencies.
Implementation progress is documented by tagging features as being implemented,
for example with a color code. Candidates for implementation are the features
connected with already implemented or already planned features (connectivity rule).

Fig. 3. Progress tracking and visualization of options for software evolution

ts

ks

User Management

R d ti P t Di l

Sales

+ Add Article to Cart

+ Buy Cart Contents

+ Display Cart Contents

+ Edit Cart Contents

+ Log in Customer

+ Save Item for Future Buying

Product Presentation

+ R. Display Correlated Sales

+ R: Dispay Product Tags

+ R: Display Article Information

+ R: Display Customer Feedback

+ R: Display Ensuing Sales

+ R: Display Ensuing Views

+ R: Display Product Description

+ R: Display Product Information

Cart Management Enhanced Cart Display

Order Management

OnlineShop Sales Plattform

+ R: Display Articles

+ R: Display recent relevant views

+ R: Inform about us

+ R: Tailor article display
Adv ertisement

OnlineShop Sales Solution

Legend
Feature

+ Requirement

requires

1. Identify and allocate
all requirements related

to the feature

Root: requirements /
constraints related to archi-
tecture and infrastructure

3. Extract requirements
that can be postponed

After extraction:

Sales

+ Add Article to Cart

+ Buy Cart Contents

+ Display Cart Contents

+ Log in Customer

Cart Management

+ Edit Cart Contents

+ Save Item for Future Buying

2. Identify exten-
ding subfeatures

Browsing

Searching

+ R: List prioritized article lists

+ R: List prioritized articles

+ R: List relevant sponsor l inks

+ R: Search article

User Management

Recommendations

Contextual Recommendations

Social Recommendations Partner Dialogue

Sales

+ Add Article to Cart

+ Buy Cart Contents

+ Display Cart Contents

+ Log in Customer

Product Presentation

+ R. Display Correlated Sales

+ R: Dispay Product Tags

+ R: Display Article Information

+ R: Display Customer Feedback

+ R: Display Ensuing Sales

+ R: Display Ensuing Views

+ R: Display Product Description

+ R: Display Product Information

Content Presentation Cart Management

+ Edit Cart Contents

+ Save Item for Future Buying

Enhanced Cart Display

Order Management

OnlineShop Sales Plattform

+ R: Display Articles

+ R: Display recent relevant views

+ R: Inform about us

+ R: Tailor article display
Advertisement

OnlineShop Sales Solution

Legend
Feature

+ Requirement

Implemented Feature

Implementation Candidate

requires

 Release Planning with Feature Trees: Industrial Case 293

A feature tree simplifies the handling of a requirements specification in a release
planning context. Features abstract from detail by grouping AND-related
requirements. Allocating features instead of requirements to software releases reduces
the number of release planning decisions. A feature tree hides incompleteness by
handling non-specified features the same way as specified ones. Figure 1 shows ten
features that can be used for feature-level release planning, even-though they do not
contain requirements yet. Feature trees with information about development progress
can be used to focus requirements analysis. Implementation candidates need to be of
higher quality than other features.

A feature tree also captures requirements changes. Emerging requirements, e.g.
discovered during elicitation or development, are added based on the product
manager’s judgment to existing non-implemented features or as new leaf features to
the tree. Urgent changes are introduced as changes to active features according to a
release project’s change management process. Changes to already implemented
features are introduced as part of the solution’s maintenance process. The allocation
of changes to features increases transparency for root-cause analysis and subsequent
process and competence improvements.

4 Industrial Case Study

4.1 Study Definition, Planning, and Operation

Study Definition. Case study research was used to evaluate feature trees for release
planning and to compare the approach with the backlog-oriented practice of using a
flat list of requirements. The study aimed at understanding feasibility and impact of
the approach in a real-world practical context from the perspective of the product
manager responsible for release planning.

We asked the following research questions. RQ1: How are feature trees used for
planning software releases? RQ2: How do feature trees affect effort, decisions-making,
and trust? RQ1 focuses on the documentation of product features and the use of that
documentation. It provides a rich picture of variability-based release planning and the
context in which it is used. RQ2 describes the effects of the approach. It reports lessons-
learned from the practitioner that has performed variability-based release planning. The
answers help implementing the practice and deciding when to adopt the approach.

Case study research is adequate when how or why questions are asked and when
the focus is on a contemporary phenomenon within a real-life context [15]. Case
study research deals with many more variables of interest than data points. Hence,
obtained results cannot be generalized statistically. However, they provide insights for
building theories that are explored and evaluated with ensuing research.

Study Planning. The case study was performed in the organization described in
section 2. This organization is characterized with a software product that is novel, but
already has an initial user base. The product implemented the vision of a product
manager who is an expert in the application domain. Corresponding to the product’s
development stage, the organization was small with many responsibilities bundled on
a few professionals.

294 S. Fricker and S. Schumacher

The organization desired to enhance its project-centered development approach by
strengthening the product perspective. It decided to introduce short- and long-term
planning to increase the impact that it could generate with the limited resources it had
available. It decided to pilot feature-driven release planning and complemented it with
roadmapping to cover timing and resource aspects [29].

The first author of this paper introduced the basic methodology to the organization
and performed the case study research. The second author was the product manager
who tailored and implemented the approach together with stakeholders. Over a period
of a year, work results and experiences were reviewed repeatedly to collect lessons-
learned and to fine-tune the implementation.

Study Operation. The authors obtained data by collecting work results created by the
practitioners during release planning, by performing interviews with the project leader
and steering committee members, and by reflecting on the release planning
experiences. The use of multiple data sources enabled triangulation for reducing
validity threats of the study results.

The collected work results included a description of product stakeholders, the
feature tree, feature specifications, a detailed roadmap, and a project backlog. The
collected data represented the state of the organization after the feature tree-based
practice had been introduced and its use calibrated. Calibration balanced efficiency
and effectiveness with the organization’s needs. The data allows answering RQ1 with
a multi-faceted view of how feature tree-based release planning was implemented.

The interviews surfaced the product manager’s stance towards feature tree-based
release planning and experiences from applying the practice. The interviews were
performed on multiple occasions during and after implementing the approach. The
interviews helped interpreting the work results and allowed answering RQ2.

4.2 Threats to Validity

Every empirical study has limitations. Typical threats to validity were addressed in
this case study as follows.

Conclusion validity: is there a true relationship between the treatment and the
outcome? Triangulation over multiple empirical data sources, accompaniment of the
organization over a year, and review of the research results by the practitioners
reduced threats to conclusion validity. The use of multiple views for describing how
the approach was implemented provides transparency.

Internal validity: does the treatment and not something else cause the outcome?
Particular threats are that second author’s involvement in the release planning affects
researcher bias and that already the awareness of being observed affects the behavior
of practitioners [30]. The former threat was a conscious decision to increase the
accuracy and completeness of the description as practiced in action research [31].
Researcher bias was controlled by triangulating data sources. The latter threat was
reduced through the long-term collaboration and the repeated interviews about why
the practitioner believed that the described effects were achieved.

Construct validity: do the treatment and outcome measurements adequately
represent the theory? The study controlled proper feature tree use by analyzing how

 Release Planning with Feature Trees: Industrial Case 295

well the feature tree construction rules were adhered to and by letting the practitioner
reflect on the technique’s strengths and limitations. Effort, decision-making, and trust
were evaluated by comparing the subjective practitioner views with the results of
artifact analysis.

External validity: can the results of the study be generalized? The study was
performed in a real-world industrial context. Such contexts differ, however, for
example in terms of how innovative and how large the developed products are. It is
likely that the same results can be achieved in organizations that develop new product
features incrementally.

The obtained results should be further tested in follow up studies. Positive and
negative replications in other contexts can corroborate or refute the results.
Experiments that compare feature tree-based and backlog-oriented release planning
can test whether the results generalize statistically.

4.3 Use of Feature Trees for Release Planning

Feature trees were a central element for planning software releases. They acted as
pivotal point for integrating analyses of user groups and of design options, for
planning product development in the form of detailed roadmaps, for steering
development iterations with backlogs, and for capturing progress. This integration of
the core idea, the feature trees, with related practices, the user group analysis and
roadmapping, was not planned, but emerged naturally in the context of the company.
The features and their traces to these other views became a basis for coordinating
stakeholder involvement with product development.

User Groups. The organization desired to address the needs of important stakeholders
groups with the software solution. The product manager refined these groups by defining
personas [32] and by appointing representatives. The needs of these personas affected the
scope of the solution and the supported use scenarios [33]. The availability of the
personas’ representatives for pilot projects affected the timing of corresponding feature
development.

To support such analysis the product manager developed and maintained the
stakeholder tree shown in Figure 4. The tree implemented the VORD viewpoint
structuring concepts [34]. The needs of a given high-level group were valid for
refined groups, but not vice-versa. For example the need finding publishable media of
ZHdK was also valid for Publicity and of Lecturer. The need understand frequency
and sources of site visits of Publicity was not applicable ZHdK in general.

The product manager felt too much uncertainty to draw sharp boundaries between
user groups and their needs. As a consequence, the stakeholder tree was used to build a
vocabulary of stakeholders and to guide analysis, but not for formally defining
traceability to features. Concrete needs were elicited, and feature development re-planned
if necessary, during pilot projects performed with the stakeholder representatives. The
total support of a persona was documented with a bar chart.

296 S. Fricker and S. Schumacher

Fig. 4. Structure of the stakeholder tree. Geometric form: user groups. Photographs: user group
representatives. Arrows: refinement of a generic user group to a special group. No need to read
the feature names for understanding the case study.

Product Features. The feature tree provided an overview on the software solution by
abstracting from requirements to features and by showing the fullest possible scope of
the solution. It supported release planning by grouping requirements into cohesive
units of implementation. The dependencies between these groups affected their order
of implementation.

To support such analysis the product manager developed and maintained the
feature tree shown in Figure 5. The tree captured the AND, OR, and REQUIRE
requirements dependencies described in section 3. For example, the feature Indexing
could not be developed before Media Entry and not after Project-Oriented Indexing.
Not such dependency was defined between the features Indexing and Basic
Administration Interface. The tree structure was not completely adhered to, however:
some sub-features depended on more than one super-feature. The intention of these
features was to combine these super-features. For example Project-Oriented Filtering
and Browsing integrates Filtering and Browsing.

The feature tree captured the product manager’s understanding of how the product
should evolve. The initial tree was constructed by analyzing the originally available
requirements specification based on the product manager’s experience and gut feeling.
The tree then was continuously evolved based on inputs from analyzing inputs elicited in
stakeholder interviews and analysis of interfacing systems.

Legend

Media Archive of the Arts
Stakeholder Tree
April 1, 2011 / Number 2

Representative

Need Satisfaction

User Group

Specialization

 Release Planning with Feature Trees: Industrial Case 297

At the moment of analysis, the tree consisted of 91 features. It contained five
branches with 57 functional features, one branch with 7 usability-related features, and
one branch with 27 features that referred to supported media formats. The three types
of branches interacted with each other. For example, adding a media format such as
Text implied adjusting already implemented functional features. The necessary
changes were planned before the implementation of the concerned media feature.

The product manager used the feature tree for reviewing progress and planned
evolution with the steering committee, the reference team, and the pilot users. Color
codes captured development progress, cooperation with company-external groups,
and long-term scoping decisions. When planning the support of a pilot project, non-
implemented but needed features were identified and integrated into the product’s
development sequence. The pilot projects were chosen so that the solution’s key
features could be implemented and validated as part of the public version 1.0 release.

Fig. 5. Structure of the feature tree. Each geometric form represents a feature. Each arrows
points from a base feature to enhancing features. No need to read the feature names for
understanding the case study.

Feature Specification. The product manager used the features to align the developed
solution with stakeholder needs. A feature was specified with 0 to 39 requirements. The
progress of feature elaboration and development affected how far a feature was specified.

Legend

Next major release

Implemented

Not yet implemented

Outsourced

After next major release

Media Archive of the Arts
Feature Tree
April 1, 2011 / Number 7

298 S. Fricker and S. Schumacher

This practice allowed investing effort into those features that were implemented in
near future.

No formal process was used to group known requirements into features, hence to
define AND dependencies between the requirements. Instead, the product manager
used her experience and gut feeling. Candidate features were then refined by
removing requirements until they contained no optional requirements. The removed
requirements were allocated to already known or ad-hoc defined sub-features, hence
establishing REQUIRES dependencies. Alternatives, the OR dependencies, were
captured by defining multiple sub-features.

Further refinement was done by considering each feature acted as a bridge between
requirements and solution design [9]. The exploration of how a given feature would
be implemented helped the product manager to set the right requirements and the
development team to improve effort estimates. This dialogue also resolved situations
where the requirements were fragmentary or specified at the wrong abstraction level.

To support the dialogue between the product manager and the development team the
features were specified with the attributes shown in Table 1. The feature attributes were
filled incrementally as specification and development progressed. Each feature was
identified with its name. The product manager regularly discussed the features with the
project leader and architect, leading to a description of the chosen of implementation
alternative, early effort estimates, and initial requirements. The requirements were
completed and important design aspects specified just before the feature was
implemented. At the moment of feature implementation, the requirements were used to
form the project backlog. A comments attribute provided a discussion forum for
clarifications and coordinating implementation. Bugs and future requirements were
placeholders for documenting maintenance and future enhancement needs.

Table 1. Feature specification attributes

Attribute Description Example
Name Identifier Indexing
Description Feature’s key ideas: concept

describing the chosen
implementation alternative

Capture as much meta data as possible with
input assistance, resp. an editor. Formalized
metadata can be used for filtering and browsing.

Effort Estimated implementation effort 35 points
Requirements Project backlog 18 concluded requirements:

- Keyword field
- Standardized thesaurus
- Visualize geo data with google maps widget…

Attachments Specification of important
design aspects

(examples of GUI elements)

Comments Discussions related to
clarifications and open issues

We can close Indexing if we close the ticket […].

Bugs Problems with the implemented
solution

20 resolved, 2 pending bugs such as
- Auto complete does not work…

Future
Requirements

List of potential enhancements
of the feature

12 not implemented requirements:
- New media files for already existing meta

data Icons…

 Release Planning with Feature Trees: Industrial Case 299

Formal feature specification in the context of software product lines expects
specification of requirements, domain assumptions, and solution [26]. This
specification practice was calibrated to increase work efficiency and flexibility and
to support depending activities, while accepting dependency on the involved
practitioners for interpreting the documentation. Information used to steer and
track development was specified: the explicit list of requirements, enhanced with
effort estimates and lists of bugs and future requirements. Knowledge related to
understanding the features was kept implicit. Domain assumptions that would
relate the feature to its use scenarios and the users’ personas were not documented.
The solution that would describe how to implement the feature was only
fragmentarily documented. Lack of such information was compensated with the
discussion thread.

Roadmap. The product manager planned a hierarchy of development iterations. Full
version releases, for example version 1.0, had to address all key needs of selected
stakeholder groups, for example the ZHdK stakeholders. Such a version release was
split into feature releases that supported the needs of selected pilot projects. The
development project then had bi-weekly releases to provide transparency and
feedback to the product manager.

The feature trees lacked timing information. To define the feature’s development
timing the product manager decided to use a detailed, layered product roadmap [35]
with a time horizon of two years. Figure 6 shows an extract of the detailed first-year
plan. The second year was more fragmentary. The layer features defined when given
features would be implemented. A feature’s spacing corresponded to its development
duration that was computed based on estimated effort, available resources, and
availability of technologies. For example, Authorization was dependent on AAI and
required roughly one calendar month. The availability of a feature enabled use
scenarios that were needed by the pilot projects. For example, Authorization, Login
for Externals, Work Groups, and Download of Different Resolutions enabled the
Production scenario that was first evaluated in the Z+ and Studio Publications
pilots. The top-most layer referred to milestones such as external events and own
releases.

The roadmap provided the context for release planning. It allowed exploring
planning options together with stakeholders to agree on the implementation sequence.
Time-to-market of version 1.0 was expected to be minimized and piloting aligned
with development activities. The critical path was represented by the sequence of
double-edged key features. Availability of pilot projects was documented by defining
their start and end points. Surprises that affected the planning were discussed with the
steering committee. For example, development staff was increased to account for
development delays. The roadmap simplified release planning to allocating
imminent features, for example Filter and Extended Search to imminent development
iterations.

300 S. Fricker and S. Schumacher

Fig. 6. Product roadmap (extract). Red bar: moment when the snapshot was taken. No need to
read the detailed contents for understanding the case study.

Impact of Feature Trees

Effort. The feature tree, in comparison with a flat backlog of requirements, reduced
complexity of release planning. The abstraction from requirements to features reduced
the total number of elements to be considered by a factor 10.3. Table 2 evaluates the
situation at April 2011. Row 1 describes the effect of the AND grouping. Row 2
describes the effect of adding the REQUIRES dependencies. Row 3 shows the
complexity of prioritizing the implementation candidates, row 4 of the roadmap, and
row 5 of the feature release project where the focus shifted from features to
requirements.

Resour-
ces

Techno-
logies

Featu-
res

Use
Scena-

rios

Pilot
Pro-
jects

Events
and

Mile-
stones

 Release Planning with Feature Trees: Industrial Case 301

Table 2. Comparison of list-based and feature tree-based approach

*: The feature-tree based requirements catalogue was
intentionally incomplete. The estimate is extrapolated from
the statistics of fully specified features.

Flat Backlog:
Requirements

Feature Tree:
Features

1 Total number of elements 937* 91
2 Number of implementation candidates 453* 23
3 Number of comparisons, efficient algorithm: O(n log2n) 3997* 104
4 Number of elements in backlog of major release 206 20
5 Average number of elements in backlog of feature release 21 2

The product manager perceived planning of about twenty items fine-grained
enough and feasible. Still discussions often centered on an even smaller set of features
and did not need as much detail information about context as the tree provided.

Decision-Making. The feature tree and the roadmap were the key instruments used
for deciding what to implement and when to implement. The feature tree provided a
basis to discuss the scope of pilot projects with the stakeholders identified in the
stakeholder tree. Stakeholder needs that could not directly be addressed led to
discovering new potential features.

The roadmap was used for aligning the timing of feature implementation with the
pilot project. The product manager had to ensure that needed features were available
to the pilot users at the right moment in time and that no unnecessary feature was
implemented. The roadmap was useful to check these rules together with the
concerned stakeholders.

A number of criteria are known to evaluate product evolution options [4]. They
include management concerns like development cost-benefit, business concerns like
stakeholder priority and satisfaction, and system concerns like evolvability. Such
information that is typically part of a business case [36] was not specified explicitly.
Instead, the impact of these concerns was discussed in terms of product evolution
scenarios. The agreement on which scenario to pursue was documented in the form of
features in the feature tree and as timing information in the roadmap.

Traceability between features, use scenarios, and pilot projects was difficult to
maintain, however. This difficulty now motivated the product manager to evaluate
how specification of use scenarios, for example in terms of supported user groups and
supporting features, could be used to bundle traceability. This approach could reduce
the number of traces between stakeholders and features by a factor ten to hundred.

Development and use of the so far implemented solution led to massive learning
about the real user needs and about what an effective media management solution is.
Hence, even-though the product manager accepted a feature to be finished, new non-
implemented requirements were added to the feature. These requirements are planned
to be structured as features and enter development through enhancements of the
feature tree shown in Figure 5.

Trust. In comparison to a flat list of requirements, the feature tree allowed building a
mental model of the solution. The reduced number of features allowed building a
shared vocabulary with stakeholders, the color coding visualizing growth of the
solution, and AND-OR feature dependencies understanding design options. This

302 S. Fricker and S. Schumacher

focused discussions and communication with stakeholders on aspects that were
essential for planning. Decisions could be taken together with these stakeholders,
which led to trust in the plans and in the product organization.

Surprises and problems emerged despite the common decision making. For
example, the feature tree only captured usability-related quality requirements. The
pilot projects discovered that the solution’s performance was too low. The resolution
of that problem led to changes in technologies and architecture and required
significant amount of unplanned time. The product manager now started to specify
and plan quality with dedicated feature vectors [37].

5 Discussion and Conclusions

This paper has explained how feature trees [38] can be used to structure requirements
and simplify release planning, hence to support release planning [20], i.e. the planning
of variability over time [24]. AND relationships [13] can be exploited to group
requirements into features. Feature vectors [27] can be built by exploiting
REQUIRES dependencies. Features that have the same super-feature stand in an OR
relationship. The resulting tree can be used for planning the development of the
specified software and for controlling development progress.

The paper has shown a revelatory industrial case to evaluate feasibility and impact
of the approach. The practitioners integrated the feature tree into stakeholder and need
analysis, adapted the feature specification to communicate requirements and to
manage the development project, and integrated the features into a roadmap that
aligned the timing of pilot projects and development.

The approach reduced complexity of release planning that before would have been
made with flat requirements lists [16]. The feature tree, combined with a roadmap,
was a key instrument to plan development that allowed the product manager to make
decision together with stakeholders. The visualization of the requirements as a feature
tree allowed them building a mental model and a shared vocabulary. As a
consequence, the stakeholders developed trust in the decision-making and in the
product organization.

As any other approach, feature-tree based release planning had limitations,
however. Documentation was based on office tools and traceability often kept
implicit. Decisions, even though made together with the concerned stakeholders,
turned out to be wrong because of omissions and rarely perfect estimates. These two
issues made analysis of dependencies and coordination of stakeholders difficult.

The presented work has relations to other research beyond feature trees and release
planning. The described feature trees are a new kind of AND/OR trees that differs
from AND/OR goal trees [39]. The feature trees do not represent means-ends
relationship, but dependencies in the implementation order. The documentation of a
single feature, however, can be made with a goal tree. For example, the feature
specification attributes requirements and description corresponded to two abstraction
levels and were used to capture means-ends relationships [8]. Such feature-oriented
goal trees specification is narrow in scope and can be developed incrementally. It
hence has the potential to improve the scalability of goal modeling.

 Release Planning with Feature Trees: Industrial Case 303

The case shows how feature trees can integrate roadmapping [35] and software
specification. It has extended a the layered form of product roadmaps encountered in
small companies [40] with explicit traceability to product feature. Such traceability
allows understanding the impact of changes, for example changed effort estimates, to
the other aspects of release planning, such as stakeholder support, and piloting.

Future research should replicate the study in different contexts to better understand
when and how feature tree-based release planning should be used. Experimentation
that compares the feature tree-based approach with the use of flat requirements
backlogs provide statistical analysis of effort reduction and eliminate the potential
presence of the Hawthorne effect.

Future research should enhance the presented approach with an understanding of
how traceability, for example between features and stakeholders, can be structured to
enhance understanding of these traces and effort for handling traceability. Also tool
support can greatly simplify consistency management between the feature tree and
related views and ease what-if analyses for exploring software development planning
options.

References

1. Svahnberg, M., Gorschek, T., Feldt, R., Torkar, R., Bin Saleem, S., Usman Shafique, M.:
A Systematic Review on Strategic Release Planning Models. Information and Software
Technology 52, 237–248 (2009)

2. Cohn, M.: Agile Estimating and Planning. Prentice Hall (2006)
3. Amandeep, N.F.N.G., Ruhe, G., Stanford, M.: Intelligent Support for Software Release

Planning. In: Bomarius, F., Iida, H. (eds.) PROFES 2004. LNCS, vol. 3009, pp. 248–262.
Springer, Heidelberg (2004)

4. Wohlin, C., Aurum, A.: What is Important when Deciding to Include a Sotware
Requirement into a Project or Release. In: International Symposium on Empiricial
Software Engineering (2005)

5. Berander, P., Andrews, A.: Requirements Prioritization. In: Aurum, A., Wohlin, C. (eds.)
Engineering and Managing Software Requirements. Springer, Heidelberg (2005)

6. Karlsson, L., Regnell, B., Karlsson, J., Olsson, S.: Post-Release Analysis of Requirements
Selection Quality - An Industrial Case Study. In: 9th International Workshop on
Requirements Engineering: Foundation for Software Quality, RefsQ 2003 (2003)

7. Karlsson, L., Dahlstedt, Å., Regnell, B., Natt och Dag, J., Persson, A.: Requirements
Engineering Challenges in Market-Driven Software Development - An Interview Study
with Practitioners. Information and Software Technology 49, 588–604 (2007)

8. Gorschek, T., Wohlin, C.: Requirements Abstraction Model. Requirements
Engineering 11, 79–101 (2006)

9. Fricker, S., Gorschek, T., Byman, C., Schmidle, A.: Handshaking with Implementation
Proposals: Negotiating Requirements Understanding. IEEE Software 27, 72–80 (2010)

10. Lehtola, L., Kauppinen, M.: Suitability of Requirements Prioritization Methods for
Market-driven Software Product Development. Software Process Improvement and
Practice 11, 7–19 (2006)

11. Fricker, S., Schumacher, S.: Variability-Based Release Planning. In: Regnell, B., van de
Weerd, I., De Troyer, O. (eds.) ICSOB 2011. LNBIP, vol. 80, pp. 181–186. Springer,
Heidelberg (2011)

304 S. Fricker and S. Schumacher

12. Schobbens, P.-Y., Heymans, P., Trigaux, J.-C., Bontemps, Y.: Generic Semantics of
Feature Diagrams. Computer Networks 51(207), 456–479

13. Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B., Natt och Dag, J.: An Industrial
Survey of Requirements Interdependencies in Software Product Release Planning. In: 5th
IEEE International Symposium on Requirements Engineering (2001)

14. Haberfellner, R., Nagel, P., Becker, M., Büchel, A., von Massow, H.: Systems
Engineering: Methodik und Praxis. Verlag Industrielle Organisation (2002)

15. Yin, R.: Case Study Research: Design and Methods. SAGE Publications (2009)
16. Vlaanderen, K., Jansen, S., Brinkkemper, S., Jaspers, E.: The Agile Requirements

Refinery: Applying Scrum Principles to Software Product Management. Information and
Software Technology 53, 58–70 (2011)

17. Bekkers, W., van de Weed, I.: SPM Maturity Matrix. Utrecht University (2010)
18. Regnell, B., Beremark, P., Eklundh, O.: A Market-Driven Requirements Engineering

Process: Results from an Industrial Process Improvement Programme. Requirements
Engineering 3, 121–129 (1998)

19. Davis, A.: Just Enough Requirements Management. Dorset House Publishing (2005)
20. Carlshamre, P.: Release Planning in Market-Driven Software Product Development:

Provoking an Understanding. Requirements Engineering 7, 139–151 (2002)
21. Ruhe, G., Saliu, M.O.: The Art and Science of Software Release Planning. IEEE

Software 22, 47–53 (2005)
22. Li, C., van den Akker, M., Brinkkemper, S., Diepen, G.: An Integrated Approach for

Requirements Selection and Scheduling in Software Release Planning. Requirements
Engineering 15, 375–396 (2010)

23. Karlsson, J., Ryan, K.: A Cost-Value Approach for Prioritizing Requirements. IEEE
Software 14, 67–74 (1997)

24. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foundations,
Principles and Techniques. Springer, Heidelberg (2005)

25. Zowghi, D., Coulin, C.: Requirements Elicitation: A Survey of Techniques. In: Aurum, A.,
Wohlin, C. (eds.) Engineering and Managing Software Requirements. Springer,
Heidelberg (2005)

26. Classen, A., Heymans, P., Schobbens, P.-Y.: What’s in a Feature: A Requirements
Engineering Perspective. In: 11th International Conference on Fundamental Approaches to
Software Engineering, Budapest, Hungary (2008)

27. Nejmeh, B., Thomas, I.: Business-Driven Product Planning Using Feature Vectors and
Increments. IEEE Software 19, 34–42 (2002)

28. Stoiber, R., Glinz, M.: Feature Unweaving: Efficient Variability Extraction and
Specification for Emerging Software Product Lines. In: 4th International Workshop on
Software Product Management (IWSPM 2010), Sydney, Australia (2010)

29. Phaal, R., Farrukh, C., Probert, D.: Strategic Roadmapping: A Workshop-Based Approach
for Identifying and Exploring Strategic Issues and Opportunities. Engineering
Management Journal 19, 3–12 (2007)

30. Draper, S.: The Hawthorne, Pygmalion, Placebo and Other Effects of Expectation: Some
Notes, vol. 2011 (2010)

31. Davison, R., Martinsons, M., Kock, N.: Principles of Canonical Action Research.
Information Systems Journal 14, 65–86 (2004)

32. Pruitt, J., Grudin, J.: Personas: Practice and Theory. In: 2003 Conference on Designing for
User Experience (DUX 2003), New York, NY, USA (2003)

 Release Planning with Feature Trees: Industrial Case 305

33. Carroll, J. (ed.): Scenario-Based Design: Envisioning Work and Technology in System
Development: Envisioning Work and Technology in Systems Development. John Wiley &
Sons (1995)

34. Kotonya, G., Sommerville, I.: Requirements Engineering with Viewpoints. Software
Engineering Journal 11, 5–18 (1996)

35. Phaal, R., Farrukh, C., Probert, D.: Technology Roadmapping - A Planning Framework for
Evolution and Revolution. Technological Forecasting and Social Change 71, 5–26 (2003)

36. Schmidt, M.: The Business Case Guide. Solution Matrix (2002)
37. Regnell, B., Berntsson Svensson, R., Olsson, S.: Supporting Roadmapping of Quality

Requirements. IEEE Software 25, 42–47 (2008)
38. Schobbens, P.-Y., Heymans, P., Trigaux, J.-C., Bontemps, Y.: Generic Semantics of

Feature Diagrams. Computer Networks 51, 456–479 (2007)
39. van Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Guided Tour. In: 5th

IEEE International Symposium on Requirements Engineering (RE 2001), Toronto, Canada
(2001)

40. Vähäniitty, J., Lassenius, C., Rautiainen, K.: An Approach to Product Roadmapping in
Small Software Product Businesses. In: 7th International Conference on Software Quality
(ECSQ 2002), Helsinki, Finland (2002)

Goal-Oriented Requirements Engineering

and Enterprise Architecture:
Two Case Studies and Some Lessons Learned

Wilco Engelsman1,2 and Roel Wieringa2

1 BiZZdesign
w.engelsman@bizzdesign.nl

2 University of Twente
roelw@cs.utwente.nl

Abstract. An enterprise-architecture (EA) is a high-level representa-
tion of the enterprise, used for managing the relation between business
and IT. [Problem] Ideally, all elements of an enterprise architecture can
be traced to business goals ad vice versa, but in practice, this is not
the case. In this experience paper we explore the use of goal-oriented re-
quirements engineering (GORE) techniques to improve this bidirectional
traceability. [Principal ideas/results] We collected GORE techniques
from KAOS, i*, Tropos, BMM and TOGAF and integrated them in a
language called ARMOR. This was used by enterprise architects in case
study. It turned out that the language was too complex for the archi-
tects to understand as intended. Based on this we redefined ARMOR to
contain only a minimum number of goal-oriented concepts, and this was
tested in a second case study. This second case study suggests that the
minimal version is still useful for traceability management in practice.
[Contribution] We have identified a core set of concepts of goal-oriented
requirements engineering, that can be used in the practice of enterprise
architecture. Our analysis provides hypotheses into GORE that will be
tested in future case studies.

1 Introduction

In large companies the gap between business and IT is usually bridged by design-
ing and maintaining a so-called enterprise architecture (EA), which is a high-level
representation of the enterprise, used for managing the relation between business
and IT. A full-scale EA consists (i) an architecture of the business, in terms of
products, services and processes, (ii) an application architecture in terms of of
application components, functions and services, (iii) an infrastructure architec-
ture in terms of servers, mainframes, network, and (iv) the relationships between
these different architectures [19].

Enterprise architectures are typically modelled in larger organizations (say
starting from 500 employees) and are used to coordinate IT projects and to
manage the cost of IT. Increasingly, they are also used to increase flexibility of

B. Regnell and D. Damian (Eds.): REFSQ 2012, LNCS 7195, pp. 306–320, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Goal-Oriented Requirements Engineering and EA 307

the organization and to justify the contribution of IT to business goals. This
requires traceability of business goals to IT architecture (to quickly identify the
impact on IT of changes in business goals) and of IT architecture to business
goals (to justify the contribution of an IT component to a business goal). This
requires a goal-oriented addition to the current crop of EA modelling languages.
In this experience paper, we explore the addition of goal-oriented requirements
engineering (GORE) to enterprise architecture modelling in order to realize this
bidirectional traceability. An important constraint is that we want the resulting
language to be usable and useful for enterprise architects in practice. Usabil-
ity means at least tool support and understandability for the architects; util-
ity means that the resulting language and tool can indeed be used to realize
traceability in practical cases.

2 Related Work

The Business Rules Group has published a model that relates the business goals
and EA, called the Business Motivation Model (BMM),1 which is now an OMG
standard. The Open Group TOGAF standard also assume a close link between
EA and business goals [19].

However, little research has been done to date to extend architecture mod-
elling with goal modelling. Clements & Bass [4] extend software architecture
modelling with GORE, but abolish all notational conventions of GORE tech-
niques and return to the basics of bulleted lists of possible goals and possible
stakeholders. Stirna et al. [16] describe a participative approach to enterprise
modelling that includes relating goals to enterprise models. Jureta & Faulkner [9]
sketch a goal-oriented language, that links goals and a number of other inten-
tional structures to actors, but not to enterprise architecture models. Horkhoff
& Yu [8] present a method to evaluate achievement of goals by enterprise mod-
els, all represented in i*. None of these methods presents a technique to relate
business goals to EA validated in practice with enterprise architects.

An important obstacle to applying GORE in practice is the complexity of the
notation. Matulevičius and Heymans [11] concluded that i* and KAOS contain
constructs not used in practice and contain different constructs representing the
same thing. After an ontological analysis they concluded that the i* goal and
soft goal are essentially the same concept, just as the means-end relation and the
contribution relation [12]. Moody et al. [13,14] identified many opportunities for
clarification and simplification of the i* notation. Carvallo et al [3] recommended
that practitioners should not and need not learn the entire syntax of i*. Our
paper is not about notations but about usability and utility of GORE concepts
in EA practice; the Archimate 1.0 language on top of which ARMOR is defined,
was already understood and used by the architects who participated in our case
studies.

1 http://www.businessrulesgroup.org/bmm.shtml

http://www.businessrulesgroup.org/bmm.shtml

308 W. Engelsman and R. Wieringa

Validation 1:
Architects use
the extended

method to
solve a real-

world problem

Validation 2:
Researcher

uses simplified
method to help
architects solve

a real-world
problem

Problem investigation:
Relation between EA and
business objectives not

known

Treatment design:
Extend EA method with

GORE techniques
(ARMOR)

Artifact validation:
Usable?
Useful?

Trade-offs?
Sensitivity?

Problem re-
investigation:

Which goals of architects
do we really need to

serve?

Treatment redesign:
Simply the extended

method (light ARMOR)

Redesign validation:
Usable?
Useful?

Trade-offs?
Sensitivity?

Fig. 1. Design research methodology of this paper

3 Research Methodology

We used a design research methodology in which we alternate over an engineer-
ing cycle, where we design an artifact, and a research cycle, where we investigate
the properties of this artifact and of the problems it is intended to solve [7,20]
Figure 1 shows that we executed the engineering cycle twice. In the first iteration,
we investigated the problem to be solved, designed a method called ARMOR to
treat the problem (section 4), supported by a tool for editing and traceabil-
ity analysis2 and validated the artifact (section 5). In the second, we stripped
ARMOR to its essentials, called Light ARMOR (section 6), and validated this
lightweight version and supporting tool (section 7).

ARMOR is an extension of an EAmodelling language called Archimate 1.0 [18]
with goal-oriented requirements engineering (GORE) techniques [5].We call this a
treatment rather than a solution because it would be simplistic to assume that any
real-world problem can be totally solved, just as it would be simplistic to assume
that any medical problem could be totally eliminated by a medicine.

ARMOR combined concepts from all well-known GORE languages, which is
why this research also provides insights into GORE concepts in general. To val-
idate ARMOR, the first author taught the method to enterprise architects of
a large government organization, who then used it to perform an EA design
project. This is a form of technical action research (TAR), in which an artifact
is validated by actually using it to solve a real-world problem. This TAR project
itself has the structure of an engineering cycle performed by the enterprise
architects (figure 2).

2 http://www.bizzdesign.nl/download/downloads-trial-software

http://www.bizzdesign.nl/download/downloads-trial-software

Goal-Oriented Requirements Engineering and EA 309

Problem investigation:

Business goals to be
achieved?

Goals of architecture to be
designed?

Treatment design:

Design EA and link to
business objectives using

Armor

Design validation:
EA justifiable?

Impact analysis possible?
Trade-offs & sensitivity?

Fig. 2. Structure of validations 1 and 2

These insights from case study 1 led to an improved problem understanding
and in a second engineering cycle we simplified ARMOR in the light of the
lessons learned. Light ARMOR was then used by the first author to design an
EA for another client, acting as consultant. This is validation 2 in figure 1. This
is a second TAR project, but this time with the researcher (Engelsman) as actor,
rather than the client itself, as in validation 1.

The lessons learned from validation 2 were used to answer the researchers’
validation questions about Light ARMOR. These answers were then generalized
to GORE concepts in general, when used in similar contexts (section 8).

4 Definition of ARMOR

Table 1 lists the major GORE concepts and shows how we have used them in
ARMOR. The following list summarizes the motivation for the construction of
ARMOR. More detail is provided elsewhere [5].

– Goals belong to stakeholders, and different stakeholders may have conflicting
goals. This is important in practice but is left undefined in most GORE
languages, although the i* concept of intentional actor has some similarity
with our stakeholder concept. We have adopted the stakeholder concept of
TOGAF [19].

– BMM, i*, and KAOS all define a goal as an end (or desire or intention) of a
stakeholder but differ in defining this goal as a property of the system or of
its environment. We define goal as some end a stakeholder desires to achieve
and leave open what it is a property of.

– We follow i* in distinguishing hard and soft goals but make the requirement
”clear satisfaction criteria” explicit by requiring measurability.

– Goal decomposition is in terms of conjunction of subgoals. It is called “refine-
ment” in KAOS. Tropos uses the concept of satisficing. i* and BMM have
rather vague definitions.

– The contribution relation is defined most clearly in Tropos and is taken to
mean influence, positive or negative.

– The means-end relation is used in i* to identify tasks to realize goals and
in KAOS to identify operations to realize goals. In ARMOR we define it as
relating a goal (the end) to some artifact (the means) that realizes the goal.
This artefact can be anything, such as a goal, requirement or an element
from the architecture.

310 W. Engelsman and R. Wieringa

Table 1. Overview of GORE and ARMOR constructs

GORE construct ARMOR construct

“Organizational actors are viewed as having
intentional properties such as goals, beliefs,
abilities, and commitments” i* [21].

A stakeholder is an individual,
team, or organization (or classes
thereof) with interests in, or con-
cerns relative to, the outcome of the
architecture ARMOR [5]. adopted
from TOGAF [19].

”Goals are desired system properties that
have been expressed by some stakeholder(s)”
KAOS [10]. ‘Goals are the intentions of a stake-
holder” i* [21].

A goal is some end that a stake-
holder wants to achieve [5].

“Hard Goals are the intentions of a stakeholder”
i* [21].

A hard goal is a goal with measur-
able indicators [5].

“Soft Goals are goals without clear satisfaction
criteria” i* [21].

A soft goal is a goal without mea-
surable indicators [5].

“An element that is linked to its component
nodes” i* [21]. “An end that includes an other
end” BMM [2]. ”The parent is satisficed if all of
the offspring are satisficed” Tropos [1]. “The con-
junction of all the subgoals must be a sufficient
condition entailing the goal” KAOS [10].

A goal can be decomposed into two
or more concrete sub-goals, such
that the goal is achieved if and only
if all its sub-goals are achieved.

“The contribution of a design on a qualitative
goal ...” KAOS [10]. “Link elements to a soft goal
to analyze its contribution” i* [21]. “Contribu-
tion analysis identifies goals that can contribute
positively or negatively in the fulfillment of the
goal to be analyzed...” Tropos [1].

A goal G1 contributes to another
goal G2 if satisfaction of G1 influ-
ences the satisfaction of G2 posi-
tively or negatively [5].

“These links indicate a relationship between an
end, and a means for attaining it i* [21]”. ”Re-
lationship linking a requirement to operations
KAOS [10]”.

A means-end relation relates a goal
(the end) to some artefact (the
means) that realizes the goal [5].

“Goals are conflicting if under some boundary
condition the goals cannot be achieved alto-
gether” KAOS [10]”.

A conflict relation exists between
two goals if under some boundary
conditions they cannot be achieved
together [5].

“Goal assigned to an agent of the software being
studied. KAOS [10]”. “A quantitative statement
of business need that must be met by a particular
architecture or work package” TOGAF [19] .

A requirement is some end that
must be realized by a single com-
ponent of the architecture [5].

“Concerns are the key interests that are crucially
important to the stakeholders in the system, and
determine the acceptability of the system” TO-
GAF [19].

A concern is some key interest that
is crucially important to certain
stakeholders in a system, and deter-
mines the acceptability of the sys-
tem [5].

“An Assessment is a judgment about some In-
fluencer that affects the organization’s ability to
employ its Means or achieve its Ends BMM [2]”.

An assessment is the outcome of the
analysis of some concern [5].

Goal-Oriented Requirements Engineering and EA 311

– Only KAOS defines the conflict relation. However we believe it to be so dif-
ferent from the contribution relation that we include it, adopting the KAOS
definition.

– KAOS is also the only GORE language that explicitly defines the require-
ment concept. It is defined as a concrete goal that has been assigned to a
single actor. TOGAF defines requirement as a business need allocated to an
architecture. The ARMOR definition combines these two definitions.

– The concepts of concern and assessment are not part of GORE but of the
EA literature. We therefore included these concepts, taking our clues from
BMM and TOGAF.

ARMOR has a notation that extends the EA language Archimate 1.0 [18], and
tool support in the form of an editor. The editor supports the creation of inte-
grated goal models and EA models. The tool also provides functionality to trace
requirements to EA and vice versa. The resulting language is called ArchiMate
2.0. ArchiMate 1.0 is an Open Group Standard3. ArchiMate 2.0 is currently un-
der review by The Open Group for acceptance to update ArchiMate 1.0. The
notation is described and motivated elsewhere [5,15] and does not concern us
here.

Stakeholder Concern Assessment Goal

Hard goal Soft goalRequirement

Contribution Means-end

Decom-
position

Conflict

Architecture
component

1

Fig. 3. ARMOR’s metamodel. The arrow represents specialization. Cardinalities are
not shown in the figure.

Figure 3 shows the core part of ARMOR’s metamodel. Cardinalities are not
shown so as not to clutter up the diagram, except the cardinality from require-
ment to architecture component, which is many-one. The diagram shows that
stakeholders have concerns, that they assess in a certain way, which leads to
goals, that are hard or soft; hard goals can be requirements, and each require-
ment is allocated to exactly one architecture component. Goals can be decom-
posed, can have contribution and means-end relations, and they can conflict.
The complete meta-model of ARMOR has been described elsewhere [5].

3 http://www3.opengroup.org/subjectareas/enterprise/archimate

http://www3.opengroup.org/subjectareas/enterprise/archimate

312 W. Engelsman and R. Wieringa

5 Case Study 1

To validate ARMOR we first wanted to test usability by enterprise architects.
The further question of utility can only be answered once we have a usable
language. However, we did want to know whether ARMOR misses potentially
useful constructs. We therefore identified the following research questions.

Q1. What constructs of ARMOR do enterprise architects use in practice?
Q2. Why (for which purpose) do they use these concepts and relations?
Q3. Is this the intended use of the constructs?
Q4. Which construct not in ARMOR are considered by architects useful additions

to ARMOR?

The only way to answer these questions is to have practicing enterprise architects
use ARMOR and observe how they do it. Since ARMOR will not be transferred
to a practical context unless we do the transfer, we needed to perform an action
case study, where we first transferred knowledge of ARMOR to a company and
then observed ARMOR use.

5.1 Case Description and Research Design

The case study took place at a large governmental organization in the Nether-
lands that we will call Organization 1. The organization is responsible for state
pensions and child support payments by the Dutch Government. The budget
available for these payments is around thirty billion euros, consisting entirely of
taxpayer money. The company employs around 3000 civil servants distributed
over several locations in the country. Relevant stakeholders include enterprise
architects and information analysts, who are looking for a technique that can
show the value of their designs to business stakeholders. Relevant stakeholders
also include information managers, who are looking for a technique that would
enable them to analyze the effect of changing organization goals on the EA.

Organization 1 contacted BiZZdesign if they could help with improving trace-
ability between the business objectives and the enterprise-architecture.
BiZZdesign offered to provide ARMOR with tool support, which the organi-
zation accepted.

The first author (Engelsman) provided a one-day training on ARMOR to six
enterprise architects of Organization 1. The architects of Organization 1 then
proceeded to create ARMOR models of business goals and their links to the
existing EA. They did this on their own, by investigating business documents of
Organization 1 and by conducting workshops. No help was provided. However,
the first author visited Organization 1 every two weeks to review the models
made by the architects and to provide advice. On those occasions the first author
also made notes of discussions among the architects.

To summarize, the treatment applied to the case consisted of (1) a one-day
training and (2) bi-weekly advice. Data collection took place by collecting docu-
ments produced by the architects and by making notes during discussions among

Goal-Oriented Requirements Engineering and EA 313

architects. There was no possibility to collect observations by other means, such
as questionnaires or interviews, as the enterprise architects were too busy for
that.

5.2 Observations and Explanations

We extracted the following observations from the data.

– The architects used the stakeholder concept as intended, to record the exis-
tence of some entity that has a stake in the development of the organization.
The (obvious) explanation is that the stakeholder concept is widely known
in businesses, and has a meaning well-captured by the TOGAF definition
that we adopted.

– The architects also used the goal concept as intended. This too is a concept
well-known in the practice and theory of business management. However,
they did not see why the distinction between soft goals and hard goals would
be relevant in their models. This is explained by their way of working: The
architects started out identifying relevant business goals and then proceeded,
later on in their work, to decompose these into key performance indicators
(KPIs). So initially, all goals are soft; eventually, all goals are decomposed
into hard goals. For example, the soft goal to maintain quality of service was
decomposed into the goals to maintain timeliness of service requests and
to maintain legality of service, which are hard goals because measurement
procedures were defined for them: the maximum amount of time for a service
request, and for every decision a reference to the law on which the decision
is based, must be documented. They did not see the point of making this
transition explicit by using a different symbol for soft and hard goals.

– The decomposition relation was used as intended: to refine a goal into more
concrete sub-goals, in such a way that achievement of the conjunction of the
sub-goals implies the achievement of the higher level goal. For example, the
goal to decrease cost was decomposed into the sub-goals to decrease cost of
internal services, to decrease cost of external services and to decrease cost
of IT.

– The contribution relation was used by the architects as intended, namely to
indicate that achievement of one goal influences the achievement of another
goal. For example, the goal to increase automatic service delivery contributed
positively to the goal of decreasing cost of external services.

– The means-end relation is constrained in the ARMOR tool to be an influence
relation from a system requirement to a goal. This was understood by the
architects and they used it in this way. But they did not understand why a
separate means-end relation was included to represent this, where a contri-
bution relation expresses in their view exactly the same thing: Influence.

– The conflict relation was not used by the architects in this case. The archi-
tects explained that in this case there simply were no conflicts between differ-
ent stakeholder goals. In addition, they did not see any difference between a
conflict and a negative contribution.

314 W. Engelsman and R. Wieringa

– In ARMOR, a requirement is a goal that must be achieved by a single com-
ponent of the architecture. This definition was not quite understood by the
architects, and they often formulated requirements that were not goals of a
single architecture component. An example of this is the “requirement” that
the use of marketing techniques must be improved. This is a business goal,
not a system requirement.

– The architects had difficulty understanding the difference between concerns
and goals. The intention of the concept is that it be used for areas of concern
for the stakeholder, such as sales, cost or profit. Instead, architects in our
case used it to denote stable goal-like statements, such as the goal to achieve
excellent service delivery, or to achieve a result-oriented working environ-
ment. Even after explaining the difference in one of our bi-weekly meetings,
they kept using it the same way. An explanation of this could be that the
concern concept is too general to be of use. What concerned the architects
in our case was goals; so they used it to express goal-related concerns.

– The architects found it difficult to understand the difference between con-
cern, goal and assessment. They sometimes used the assessment concept to
store the contextual reasons for having a goal. For example, the goal of cost-
reduction was annotated with an “assessment”, that is a contextual reason,
namely that the Dutch government faces the need for large budget cuts due
to the financial crisis and the aging population.

5.3 Answers to Research Questions

Q1. What constructs were used? All constructs except the conflict relation were
used by the architects in this case. The conflict relation was not used because
the architects stated that there were no conflicting goals in this case. There is
not much we can conclude from this: Surely there are some cases where there
are no conflicting goals, and we believe this is one of them; but there are other
cases where there are conflicting goals. At the very least we can conclude that
the idea of conflicting goals (goals that cannot always be all satisfied at the same
time) was understood by the architects.
Q2. Why (for which purpose) do they use these concepts and relations?
Q3. Is this the intended use of the constructs? The constructs of stakeholder,
goal, decomposition and contribution were used as intended. The concept of re-
quirement was not used as intended, but rather was used as if it were the same
concept as that of a goal. That is, requirements were not always allocated to one
architecture component.

The means-end relationship was used as intended, namely as relation from
requirement to goal, because the tool did not allow any other use. The architects
did not see a relevant difference with the contribution relation.

Finally, the concepts of concern and assessment were not understood by the
architects.
Q4. Which potentially useful constructs do architects miss in ARMOR? The
architects found it useful to express contextual reasons for a goal, and used the
assessment construct to do this.

Goal-Oriented Requirements Engineering and EA 315

5.4 Validity

Our observations may have been influenced by the fact that the first author
also designed the language; this may have impacted the training positively (ex-
ceptionally inspiring explanations) or negatively (too much knowledge taken for
granted). It may also have motivated the architects to have a socially desirable
opinion about ARMOR. However, the architects had to do a real-world project
with limited resources and as they are paying for this consultancy in money, and
spending time on using ARMOR, they have no reason to present their experi-
ences more favorably to the designer of ARMOR than they are.

Also, the observer (Engelsman) may have let his desire to design a usable
and useful language influence his observations. This may have impacted the ob-
servations where architects where observed to use the ARMOR constructs as
intended, but not the observations where the architects were observed to misun-
derstand the constructs of ARMOR. We regard at least those latter observations
as credible.

Finally, could we generalize from this case to other cases? Generalization
from case studies cannot use statistical inference but can use reasoning by anal-
ogy [6,17]. This means that we should explain our observations in terms of some
general characteristics of the case, and provide a plausible argument that in cases
with the same general characteristics, the same observations will be made.

Our observations all relate to understandability, and this relates to the cogni-
tive competencies of the enterprise architects in Organization 1. The architects
in Organization 1 had to be able to design and understand a distributed enter-
prise architecture for an organization of 3000 employees. Each of them had at
least 2 years of experience as enterprise architect, and the organization operated
its EA process at a maturity level comparable with level 2 of the US Depart-
ment of Comments Architecture Capability Maturity Model4. All of this may
explain why they used the constructs of stakeholder, goal, decomposition and
contribution as intended, and we expect that in other organizations, similar to
Organization 1 in the aspects just mentioned, architects will understand and
use these constructs as intended too. But we also expect that in many of those
organizations, the constructs of hard and soft goal, requirement (as defined in
ARMOR), concern and assessment will not be understood and be used in a way
not intended by the designers of ARMOR, that the means-end relation will be
considered superfluous and that negative contribution will not be distinguished
from conflicts. This generalization is a hypothesis that must be validated in repli-
cations of this case study. We do not claim that it will be found to be true for
all future case studies. However we do expect to encounter in the future cases
similar to this one. This was a sufficiently strong reason for us to redesign the
language.

4 http://ocio.os.doc.gov/ITPolicyandPrograms/Enterprise Architecture/

PROD01 004935

http://ocio.os.doc.gov/ITPolicyandPrograms/Enterprise_Architecture/PROD01_004935
http://ocio.os.doc.gov/ITPolicyandPrograms/Enterprise_Architecture/PROD01_004935

316 W. Engelsman and R. Wieringa

6 Redesign

Figure 4 shows the metamodel of a stripped down version of ARMOR that we
call Light ARMOR. We dropped the constructs of concern, assessment, hard and
soft goal and means-end from the language as these were not understood, or the
relevance not understood, by the architects. To facilitate recording contextual
reasons for a goal (the construct missed by the architects in Organization 1), the
Goal construct was extended with a text attribute in which this reason could be
recorded in free text.

The construct of Contribution was replaced by that of Influence so that we can
avoid the locution “negative contribution”, which we ourselves find as confusing
as the concept of negative income. A goal G1 influences another goal G2 if
satisfaction of G1 has an effect on the satisfaction of G2. So influence is a causal
relation.

We did keep the notion of Conflict as the inability to satisfy two goals simulta-
neously can be a case of causal prevention (“negative contribution”) but it may
also be a case of logical inconsistency, legal exclusion, ethical incompatibility,
or plain monetary conflict (satisfying the goals jointly exceeds the budget). The
concept of conflict is complex and awaits future exploration; but we find it too
important to drop from the language just because it has not been used in one
case.

Finally, requirements are a special case of goals, just as before, but we dropped
the idea that we require a separate modeling concept for it. A requirement is
just a goal assigned to a component of the architecture.

Stakeholder Goal Requirement

Influence

Decom-
position

Conflict

Architecture
component

Fig. 4. Meta-model of Light ARMOR

7 Case Study 2

In addition to learning about the understandability of Light ARMOR, we would
now like to learn about the utility of the language. Did our drastic reduc-
tion in the number of constructs impact the ability of enterprise architects to
use the language (and supporting tool) to trace business goals to architecture
components and vice versa?

Goal-Oriented Requirements Engineering and EA 317

The best way to find an answer to this question is to have enterprise architects
use Light ARMOR to model the goals of an enterprise architecture, and then
actually let them do the backward and forward tracing. This turned out not to
be possible on short notice, and so we chose another form of action research,
namely one in which the researchers themselves use their technique to solve a
customer problem. In case study 2, the first author used Light ARMOR to solve
an organizational problem following the engineering cycle of figure 2 and then
used this experience to answer some validation questions about the design of
Light ARMOR (figure 1). The research questions of case study 2 are, then:

– Q1 Is Light ARMOR understandable to architects?
– Q2 Can Light ARMOR be used to trace back and forth between business

goals and enterprise architecture components?

7.1 Case Description and Research Design

The case company, called Organization 2 henceforth, is at a drinking water
production facility in the Netherlands. The company is responsible for the pro-
duction and delivery of fresh drinking water to 1.2 million people and transports
73 billion liters of drinking water each year. It has about 500 employees divided
over three divisions, viz. Production, Sales and Environment.

Enterprise-architects and information analysts in Organization 2 are facing
rapid change and shrinking budgets and are looking for a technique that will
enable them to assess the impact of changing business goals (forward tracing)
and to determine the value of the architecture (backward tracing). We were given
the opportunity to use Light ARMOR to link business goals to their current
enterprise architecture model in a no-fee small consultancy project. This would
allow them to see if they would want to use this technique in the future, and
gave us the opportunity to perform a first test of Light ARMOR.

We planned and performed the following interactions with Organization 2.
The first author interviewed the architect responsible for the EA of Organi-
zation 1, and studied primary documents documenting the EA and business
goals. He designed a Light ARMOR model of the links with the two, and then
interviewed the enterprise architect a second time, asking her, without provid-
ing training in Light ARMOR, (1) to explain the Light ARMOR model and
(2) to assess whether she could use this model to solve her traceability problem.
This provided the enterprise architect with sufficient information to conclude her
problem solving cycle (figure 2) and provided the researcher with information
to find initial answers to his validation questions (validation 2 in figure 1). The
researcher kept a diary of his own modelling process and made a transcript of
the interview to be able to answer his own research questions.We emphasize that
in this case we interacted with only one enterprise architect of the organization.

7.2 Observations and Explanations

– The major observation recorded in the researcher’s diary is that it was
often difficult to identify the stakeholders responsible for the goals from the

318 W. Engelsman and R. Wieringa

primary documents or from the first interview with the enterprise architect.
There are several possible explanations of this, such as that there is so much
agreement about goals in Organization 2 that there is no need to record the
goal owner; or that there is so much disagreement among the stakeholders
that it is too dangerous to record a goal owner.

– The influence relation in this case is truly a causal relationship; including it
in a model is an empirical statement that must be true about the world. For
example, the goal to perform water filtering influences the goal to achieve
clean drinking water. A second example is that the goal to achieve lower
operating cost is influenced by the goal to achieve economics of scale with
collaborative buying. Like all empirical statements, these influence state-
ments could turn out to be falsified by events in the real world.

– The decomposition relation by contrast is not empirical, but definitional. It
was used to create a definition of a term that the stakeholders agreed on. It
only expresses an agreement between those stakeholders and not necessarily
between other stakeholders. For example, the goal to achieve excellent drink-
ing water quality was decomposed into the goals of sufficient pressure, safe
drinking water, odorless drinking water and visually clean drinking water.
This is a definition that turns a soft goal into a hard goal.

– The architect judged that Light ARMOR could be used to link business
goals to architecture components to realize forward traceability (assessing
impact of goal change) and backward traceability (justifying an architecture
component). She suggested that this would also be useful to link project
goals to business goals, providing a way to scope projects.

– In the opinion of the architect, the conflict relation would be useful in the
assessment of project risks. This would however also require a way to docu-
ment the resolution of these risks.For example record that one of the goals
was dropped or that an other way was found to resolve the conflict.

– To test understandability of Light ARMOR we asked the architect to explain
the model to us. The architect did not have prior training on GORE or Light
ARMOR, but she could readily identify what the models meant.

7.3 Answers to Research Questions

The last observation provides support for the claim that Light ARMOR is un-
derstandable for practicing enterprise architects, which answers Q1 for this case.

The positive opinion of the architect about forward and backward traceability
provides support for the claim of utility of Light ARMOR, answering Q2. In
addition to the use for (1) estimating impact of change and (2) justifying the
presence of an architecture component, the enterprise architect suggested using
the model for (3) setting project goals and (4) documenting project risks and
their mitigation. We will include these possible uses of Light ARMOR in our
future research.

Goal-Oriented Requirements Engineering and EA 319

7.4 Validity

The major threat to internal validity is that the architect answered our questions
in a socially desirable way. There is in this case nothing we can do to mitigate
these risks, but in this case too we note that Organization 2 is looking for a way
to exercise tighter control over its enterprise architecture in order to respond
to changes in goals and a decreasing budget, and, doing so, has little reason to
please the researchers. A negative response of the architect would have been really
informative (and disastrous for the designers of Light ARMOR); the positive
response that we actually received is less informative but is still encouraging.

The observations in this case make it plausible that if we were to repeat such
a project in a similar organization (similar size, maturity of EA, experience of
enterprise architect, dynamics of changing goals and shrinking budgets), we are
likely to get similar results (positive opinion of the architect). This is a hypothesis
to be tested in future case studies.

8 Lessons Learned and Further Work

In line with the evaluations reported in related work (section 2), we found that
GORE concepts such as means-end relations and the distinction between hard
and soft goals could not be used in our two case studies; and the concepts of
concern and assessment taken from BMM and TOGAF could not be used either
in our two cases. Also, the idea that a requirement exists as a separate modeling
concept puzzled the practitioners in case 1. They had difficulty distinguishing
between the two.

Stripping these elements away and including the results from case study 2,
we conclude that our case studies provide support to the claim that the GORE
concepts of stakeholder, goal, decomposition, influence and conflict are usable in
practice and potentially useful for the practitioner. The particular syntax of the
language that we used in our case studies did not play a role in these evaluations.

A third lesson we draw from these two case studies is that a stripped down
language adding only these elements to an EA language can be useful for main-
taining traceability between business goals and enterprise architecture. This is
a hypothesis to be tested and possibly further qualified in future case studies.

A fourth and final lesson is that the conflict relation can be confused with the
negative contribution relation, but still can be useful to keep because it allows
representing project risks and their mitigation. This final hypothesis will be a
topic of future case studies.

References

1. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An
agent-oriented software development methodology. Autonomous Agents and Multi-
Agent Systems 8(3), 203–236 (2004)

2. Business Motivation Model: Business motivation model version 1.0. Standard doc-
ument (2007), http://www.omg.org/spec/BMM/1.0/PDF (22.09. 2009)

http://www.omg.org/spec/BMM/1.0/PDF

320 W. Engelsman and R. Wieringa

3. Carvallo, J.P., Franch, X.: On the use of i* for architecting hybrid systems:
A method and an evaluation report. In: The Practice of Enterprise Modeling,
pp. 38–53 (2009)

4. Clements, P., Bass, L.: Using Business Goals to Inform a Software Architecture. In:
18th IEEE International Requirements Engineering Conference, pp. 69–78. IEEE
Computer Society Press (2010)

5. Engelsman, W., Quartel, D.A.C., Jonkers, H., van Sinderen, M.J.: Extending en-
terprise architecture modelling with business goals and requirements. Enterprise
Information Systems 5(1), 9–36 (2011)

6. Forrester, J.: If p, then what? thinking in cases. History of the Human Sciences 9(3)
(1996)

7. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information system
research. MIS Quarterly 28(1), 75–105 (2004)

8. Horkoff, J., Yu, E.: Evaluating Goal Achievement in Enterprise Modeling – An
Interactive Procedure and Experiences. In: Persson, A., Stirna, J. (eds.) PoEM
2009. LNBIP, vol. 39, pp. 145–160. Springer, Heidelberg (2009)

9. Jureta, I., Faulkner, S.: An Agent-Oriented Meta-model for Enterprise Modelling.
In: Akoka, J., Liddle, S.W., Song, I.-Y., Bertolotto, M., Comyn-Wattiau, I., van
den Heuvel, W.-J., Kolp, M., Trujillo, J., Kop, C., Mayr, H.C. (eds.) ER Workshops
2005. LNCS, vol. 3770, pp. 151–161. Springer, Heidelberg (2005)

10. Lamsweerde, A.: Kaos tutorial. Cediti, September 5 (2003)
11. Matulevičius, R., Heymans, P.: Comparing Goal Modelling Languages: An Experi-

ment. In: Sawyer, P., Heymans, P. (eds.) REFSQ 2007. LNCS, vol. 4542, pp. 18–32.
Springer, Heidelberg (2007)

12. Matulevičius, R., Heymans, P., Opdahl, A.: Comparing grl and kaos using the ueml
approach. In: Enterprise Interoperability II, pp. 77–88 (2007)

13. Moody, D.: The physics of notations: Improving the usability and communicabil-
ity of visual notations in requirements engineering. In: 2009 Fourth International
Workshop on Requirements Engineering Visualization (REV), pp. 56–57 (Septem-
ber 2009)

14. Moody, D., Heymans, P., Matulevicius, R.: Improving the Effectiveness of Visual
Representations in Requirements Engineering: An Evaluation of i* Visual Syn-
tax. In: 17th IEEE International Requirements Engineering Conference, RE 2009,
pp. 171–180. IEEE Computer Society Press (2009)

15. Quartel, D.A.C., Engelsman, W., Jonkers, H., van Sinderen, M.J.: A goal-oriented
requirements modelling language for enterprise architecture. In: Proceedings of the
Thirteenth IEEE International EDOC Enterprise Computing Conference, EDOC
2009, Auckland, New Zealand, pp. 3–13. IEEE Computer Society Press, Los
Alamitos (2009)

16. Stirna, J., Persson, A., Sandkuhl,K.: ParticipativeEnterpriseModeling: Experiences
and Recommendations. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007
and WES 2007. LNCS, vol. 4495, pp. 546–560. Springer, Heidelberg (2007)

17. Sunstein, C.R.: On analogical reasoning. Harvard Law Review 106, 741–790 (1993)
18. The Open Group: ArchiMate 1.0 Specification. Van Haren Publishing (2009)
19. The Open Group: TOGAF Version 9. Van Haren Publishing (2009)
20. Wieringa, R.J.: Design science as nested problem solving. In: Proceedings of the

4th International Conference on Design Science Research in Information Systems
and Technology, Philadelphia, pp. 1–12. ACM, New York (2009)

21. Yu, E.: Towards modelling and reasoning support for early-phase requirements
engineering. In: Proceedings of the Third IEEE International Symposium on Re-
quirements Engineering, pp. 226–235. IEEE Computer Society Press (2002)

Author Index

Adam, Sebastian 147
Anh, Nguyen Duc 77
Axmann, Joachim 94
Ayala, Claudia 77

Beckers, Kristian 256
Berenbach, Brian 30
Berry, Daniel 211
Biffl, Stefan 172
Bruni, Elia 218

Caire, Patrice 140
Chowdhury, Mohammad Jabed Morshed

132
Cleland-Huang, Jane 179
Condori-Fernandez, Nelly 239
Conradi, Reidar 77
Cruzes, Daniela S. 77

Daramola, Olawande 172

Engelsman, Wilco 306

Faßbender, Stephan 256
Ferrari, Alessio 218
Ferrari, Remo 30
Franch, Xavier 77, 280
Fricker, Samuel 288

Gacitua, Ricardo 211
Genon, Nicolas 140
Gülke, Tim 94

Heimdahl, Mats 179
Heinrich, Robert 16
Heymans, Patrick 101, 140
Hochmüller, Elke 225
Höst, Martin 77
Huffman Hayes, Jane 179

Jansen, Martin 94
Jung, Andreas 16
Jureta, Ivan J. 263

Karpati, Peter 132
Knauss, Eric 165
Koziolek, Anne 52
Küster, Jan-Christoph 256

Lauesen, Soren 1
Li, Juan 59
Li, Yang 194
Lutz, Robyn 179

Maalej, Walid 194
Madhavji, Nazim H. 30
Maeder, Patrick 179
Mahaux, Martin 101
Marco, Jordi 280
Martens, Nick 37
Matulevičius, Raimundas 132
Mavin, Alistair 101
Moody, Daniel 140
Moser, Thomas 172

Nekvi, Md. Rashed Iqbal 30

Opdahl, Andreas 117
Oriol, Marc 280

Paech, Barbara 16
Perini, Anna 263, 280
Poort, Eltjo R. 37

Qureshi, Nauman A. 263, 280

Radliński, �Lukasz 232
Raspotnig, Christian 117
Rumpe, Bernhard 94

Sapkota, Brahmananda 239
Sawyer, Pete 211
Schmidt, Holger 256
Schneider, Kurt 165
Schumacher, Susanne 288
Seyff, Norbert 218
Sindre, Guttorm 132, 172

Tadjiky, Siamak 16
Teka, Abelneh Y. 239

322 Author Index

Tjong, Sri Fatimah 211

Tolomei, Gabriele 218

Toussaint, Hubert 140

van de Weerd, Inge 37

van Vliet, Hans 37

Wang, Haitao 59
Wang, Junjie 59
Wang, Qing 59
Wieringa, Roel 306

Zhang, He 59
Zorn-Pauli, Gabriele 16

	Title
	Preface
	Conference Organization
	Table of Contents
	Session 1: Contractual Requirements
	Why the Electronic Land Registry Failed
	Background
	Project History
	Method
	What Caused the Overload?
	Usability and User Interface Requirements
	Architecture and SOA Integration
	Risk Analysis
	Discussion and Conclusion
	References

	Answering a Request for Proposal – Challenges and Proposed Solutions
	Introduction
	Related Work
	Being a Supplier in a Tender Process
	Roles
	Information Responsibilities
	Challenges

	The Workshop
	Proposed Solutions for the Challenges
	Risk Assessment Checklist
	Documentation of the Existing System
	Documentation of the RFP Knowledge

	Conclusion
	References

	Impediments to Requirements-Compliance
	Introduction and Overview of Related Work
	Study Overview
	Impediments to Requirements-Compliance
	Size and Nature of Regulatory Text
	Contractual Complexity
	‘Large-Scale’ System

	Conclusions, Implications and Future Work
	References

	Session 2: Quality Requirements
	How Architects See Non-Functional Requirements: Beware of Modifiability
	Introduction
	Conceptual Model

	Survey Description
	Constructs

	Analysis
	Non-Functional Requirements and Project Success
	Approaches and Project Success

	Discussion and Related Work
	Availability Most Business Critical
	Non-Functional Requirements and Project Success
	Approaches and Project Success
	Threats to Validity and Opportunities for Further Research

	Conclusions
	References

	Research Preview: Prioritizing Quality Requirements Based on Software Architecture Evaluation Feedback
	Introduction
	Related Work
	Quality Requirements in Software Architecture Evaluation
	Quality Requirements Prioritization in Research

	Prioritization by Architecture Feedback
	Conclusion
	References

	A Simulation Approach for Impact Analysis of Requirement Volatility Considering Dependency Change
	Introduction
	The DepRVSim Approach
	Requirements Dependency/Traceability Relationship
	Requirements Change Event Generator
	Requirements Change Event Routines

	Case Study
	Project Introduction
	Simulation Scenario and Impact Analysis
	Evaluation of DepRVSim

	Threats to Validity
	Related Work
	Conclusions and Future Work
	References

	Session 3: Collaboration, Complexity and Creativity
	Collaborative Resolution of Requirements Mismatches When Adopting Open Source Components
	Introduction
	Research Background
	Requirements-Components Matching Processes
	Requirements-Components Mismatches Resolution Process

	Research Approach
	Research Questions
	Data Collection and Analysis

	Results
	Projects Description
	RQ1: What Are the General Practices of Requirements Elicitation and OSS Component Selection in OSS Adoption Software Projects?
	RQ2: How Are the Functional Mismatches Between Requirements and OSS Components Collaboratively Managed in OSS Adoption Software Projects?
	RQ3: How Are Non-functional Requirements Fulfilled by Using OSS Components in OSS Adoption Software Projects?

	Discussion
	Threats to Validity
	Summary and Future Works
	References

	High-Level Requirements Management and Complexity Costs in Automotive Development Projects: A Problem Statement
	Today's Requirements Management in Automotive Practice
	Requirements and Costs
	Example
	Extending Traceability
	References

	Choose Your Creativity: Why and How Creativity in Requirements Engineering Means Different Things to Different People
	Introduction
	Method
	Related Work
	A Brief History of Creativity in the Social Sciences
	A Review of Creativity Definitions in RE Literature
	Why and How the Meaning of Creativity Changes
	Contextual Factors
	Dimensions

	Using the Framework
	Discussion
	Conclusion
	References

	Session 4: Requirements Analysis
	Supporting Failure Mode and Effect Analysis: A Case Study with Failure Sequence Diagrams
	Introduction
	Background
	Method
	Research Questions
	Choice of Research Method
	The ANSP Case
	Procedure for Conducting the Case Study
	Data Collection during the Sessions
	Data Collection through Interviews

	Using FSD for Supporting FMEA
	First Session
	Second Session
	Third Session

	Results
	Can FSD Support FMEA?
	How Should the Two Techniques Be Used Together?
	Can FSD Cover the Weakness of FMEA?
	Analysis of the Interview
	Threats to Validity and Reliability

	Discussion
	Sequence Diagrams and Failure Notation
	The System Assessed and Decomposition
	Tool Support

	Conclusion and Further Work
	References

	Aligning Mal-activity Diagrams and Security Risk Management for Security Requirements Definitions
	Introduction
	The ISSRM Domain Model
	Alignment of MAD to ISSRM
	Running Example
	MAD and the ISSRM Domain Model

	Lessons Learnt
	References

	Towards a More Semantically Transparent i* Visual Syntax
	Introduction
	Experiment Plan
	Experiment 1: Production of Drawings
	Experiment 2: Population Stereotype
	Experiment 3: Population Prototype
	Conclusion and Future Work
	References

	Session 5: Templates and Heuristics
	Providing Software Product Line Knowledge to Requirements Engineers – A Template for Elicitation Instructions
	Motivation
	Related Work
	Research Approach
	A Template for Elicitation Instructions
	Requirements on Elicitation Instructions
	Basic Structure
	Single Instructions and Hints
	Implemented Elicitation Strategy

	Evaluation
	Results
	Threats to Validity and Outlook on Controlled Experiment

	Conclusion and Future Work
	References

	Supporting Learning Organisations in Writing Better Requirements Documents Based on Heuristic Critiques
	Introduction
	Related Work
	Experience Based Tools and Learning
	Study: Encoding of New Experience
	Discussion and Outlook
	References

	Managing Implicit Requirements Using Semantic Case-Based Reasoning Research Preview
	Introduction and Motivation
	Related Work
	Semantic CBR for Implicit Requirements
	Model for Implicit Requirement Reuse
	E-Banking Application Example
	Approach Overview

	Discussion and Conclusion
	References

	Session 6: Requirements Traceability
	Trace Queries for Safety Requirements in High Assurance Systems
	Introduction
	Traceability in a Safety Critical Environment
	Illustrative Example
	Fault Tree
	Safety-Related Software Requirements
	Safety Analysis

	Visual Trace Modeling Language (VTML)
	Safety-Related Trace Queries
	Requirement Coverage of all Common Cause Failures
	Integrating Formal Method Results
	Assumptions
	Prototype

	Related Work
	Conclusions
	References

	Which Traceability Visualization Is Suitable in This Context? A Comparative Study
	Introduction
	Foundation
	Traceability Information: What to Visualize
	Visualization Technique: How to Visualize
	Task Context: When to Visualize

	Research Design
	Research Questions
	Research Method
	Research Setup

	Quantitative Results
	Qualitative Results
	Which Visualization Is Suitable in a Particular Task Context?
	What Information Should Be Visualized and How?

	Discussion
	Limitations
	Conclusion
	References

	Session 7: Tools and Quality
	The Case for Dumb Requirements Engineering Tools
	Introduction
	Categories of NL RE Tools
	Scenarios of Tool Use and Their Implications
	Future Research Agenda
	Conclusion
	References

	Automatic Analysis of Multimodal Requirements: A Research Preview
	Introduction
	Background
	Automatic Analysis of Multimodal Requirements
	Discussion and Conclusions
	References

	10 Myths of Software Quality
	Introduction
	Myths by Category
	Myths about the Relevance of Software Quality
	Myths about Software Quality as an Inconvenience
	Myths about the Notion of Software Quality

	The Myths at a Glance
	Untitled
	References

	Empirical Analysis of the Impact of Requirements Engineering on Software Quality
	Introduction
	Research Approach
	Results
	Threats to Validity
	Conclusions and Future Work
	References

	Session 8: Services and Clouds
	A Systematic Literature Review on Service Description Methods
	Introduction
	Background: Service Description
	Review Methodology
	Defining the Research Questions
	Search and Selection Process
	Study Quality Assessment and Data Collection

	Review Results
	RQ1: Service Description Methods
	RQ2: Problem Faced in Describing Services
	RQ3: Strengths and Weakness of Current Service Description Methods
	Limitations of This Review

	Conclusions and Future Work
	References

	A Pattern-Based Methodf or Identifying and Analyzing Laws
	Introduction
	Pattern-Based Law Analysis
	Structure of Laws, Sections and Dictates of Justice
	A Process for Identifying Relevant Laws

	Related Work
	Conclusions
	References

	Session 9: Self-adaptivity
	Towards a Requirements Modeling Language for Self-Adaptive Systems
	Introduction
	Modeling the Requirements of iComp
	Requirements Modeling with i*
	Requirements Modeling with Adaptive RML

	Definition of Adaptive RML
	Concepts and Relations
	Adaptive RML Visual Notations
	Modeling in Adaptive RML
	Towards Detailed Specification Analysis
	Detailed Specification at Runtime

	Discussion and Related Work
	Conclusion and Future Work
	References

	Requirements Monitoring for Adaptive Service-Based Applications
	Introduction
	Related Work and Baseline
	Requirements Monitoring Framework
	Scenario
	The Framework at Design-Time
	The Framework at Run-Time

	Conclusions and Future Work
	References

	Session 10: Industrial Case Studies
	Release Planning with Feature Trees: Industrial Case
	Introduction
	Background and Motivation
	Feature Trees for Release Planning
	Industrial Case Study
	Study Definition, Planning, and Operation
	Threats to Validity
	Use of Feature Trees for Release Planning

	Discussion and Conclusions
	References

	Goal-Oriented Requirements Engineering and Enterprise Architecture: Two Case Studies and Some Lessons Learned
	Introduction
	Related Work
	Research Methodology
	Definition of ARMOR
	Case Study 1
	Case Description and Research Design
	Observations and Explanations
	Answers to Research Questions
	Validity

	Redesign
	Case Study 2
	Case Description and Research Design
	Observations and Explanations
	Answers to Research Questions
	Validity

	Lessons Learned and Further Work
	References

	Author Index

