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Preface

No technological advance has had greater impact on our understanding of human
brain function or our approach to understanding the underlying mechanisms of
brain disease than the emergence of methods for the non-invasive imaging of the
human brain. Over a period of three short decades we have moved from an almost
complete dependence on animal models and post mortem analysis to an era in
which the structure, function, and molecular composition of the brain may be
reliably measured with increasing precision and resolution. This has led to a
revolutionary approach to modern neuroscience whereby neuroimaging studies
enable us to bridge from a cellular, molecular and systems level understanding
derived from animal model systems all the way to human cognition, emotion and
behavior. The chapters in this volume describe the major technical advances in
non-invasive neuroimaging along with important clinical and translational appli-
cations in a range of human developmental states and diseases. The first several
chapters focus on molecular imaging approaches using Positron Emission
Tomography (PET), the second set of chapters focuses on using Magnetic Reso-
nance Imaging (MRI) to reveal the structure, function, and molecular makeup of
the brain.

Historically, PET research has focused on the brain dopaminergic systems, not
least given the rich bounty of PET tracers targeting dopamine synthesis, plasma
membrane transporters, and receptor binding sites. The first chapter by Volkow—a
pioneering scientist in the use of PET to investigate dopamine transmission in
addiction—gives a compelling insight into the brain mechanisms of this chroni-
cally relapsing brain affliction and the strong parallels of this disorder with obesity.
This research has paved the way for neuroscientists interested in the causal
attributes of dopamine dysfunction in psychopathology, specifically by aiding the
development of translational models that capture key elements of clinical syn-
dromes, including the addiction cycle. This has been no better exploited than the
work of Gould and colleagues using a non-human primate model of stimulant
addiction. Their review on neural vulnerability markers underlying addiction is
thematic and timely to the concept of shared predispositions and clinical trajec-
tories of several, often inter-related disorders such as addiction and attention
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deficit hyperactivity disorder (ADHD), a point emphasized by Del Campo and
colleagues where they discuss the neuroimaging correlates of ADHD and pros-
pects for treatment.

While PET offers the ability to non-invasively assess alterations in receptor
function, it does routinely require restraint of the animal in order to keep it sta-
tionary during the period of data acquisition. In pre-clinical research this is usually
achieved by general anaesthesia and other supplementary devices to fix, for
example, the head in one position. This approach places a serious impediment to
correlating PET signals with behavior. A quantitative solution to this problem is
discussed by Aarons and co-authors, which utilises the gold standard tracer [18F]-
fluorodeoxyglucose. This is a must-read chapter for neuroscientists considering
using this approach for their own experiments.

Other chapters highlight the importance of PET in the domain of neurological
disorders, which by virtue of their progressive underlying molecular neuropa-
thology are well-matched to powerful longitudinal studies to facilitate diagnosis
and the development of new therapies. Huguchi and colleagues discuss this
important and growing area of research by drawing on evidence from animal
models of Alzheimer’s disease (AD) and the targeting of biomarkers underlying
the immune response to neurodegeneration.

Following this article Cumming and Borghammer provide a comprehensive
synthesis of molecular imaging studies in Parkinson’s disease (PD) that extend
beyond dopaminergic biomarkers in the basal ganglia. The chapter highlights the
extraordinary heterogeneity of PD in terms of motor and cognitive impairment as
well as underlying neurochemical pathology.

Finally in this section, Praschak-Rieder and Willeit discuss the astonishing
relationship between rhythmical seasonal variations (e.g. in light intensity) and
monoamine markers in the brain. The authors focus on the serotonergic systems,
and their own remarkable contribution to this field that have implications for
understanding the neurobiology of seasonal affective disorder.

The second section of the book, focusing largely on MRI based measures,
begins with an article by Hall, which reviews the exciting application of magnetic
resonance spectroscopy (MRS) to profile metabolic abnormalities in neurological
disorders such as AD and PD. A comprehensive review then follows by Maddock
and Buonocore on the major metabolites and neurotransmitters that can be mea-
sured in the human brain using MRS, along with a discussion of the insights and
controversies regarding the functional significance of these measures. It then
reviews the spectroscopic findings in a broad range of psychiatric diseases
including the anxiety disorders, major depression, bipolar disorder and schizo-
phrenia. This exhaustive distillation of a very large and complex literature is a
must read for experts and beginners alike pursuing spectroscopy in patients with
mental disorder.

Functional MRI has become a very widely applied methodology for under-
standing the relationship between discrete functional neural circuits, cognitive and
emotional processing and symptoms in psychiatric and neurological disease. One
area that has been a proving ground for this methodology has been the
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investigation of the neural basis of cognitive deficits in schizophrenia. Libby and
Ragland review this literature and chart the evolution in thinking about the
mechanisms underlying cognitive dysfunction in schizophrenia, which has paral-
leled our growing understanding of the cognitive and neural basis of higher
cognitive functions such as attention and memory in basic cognitive neuroscience.
They also emphasize the evolution of thinking from a lesion deficit model to a
systems level analysis of cognition related brain activity.

Two chapters address important issues in the use of MRI to understand the
ageing brain. Andreescu and Aizenstein review methodological issues related to
conducting fMRI studies of cognition in ageing subjects, as well as findings related
to functional changes of brain circuitry associated with late life mood disorders.
Next, Carmichael and Lockhart describe the use of diffusion tensor imaging (DTI)
to study white matter tracts in the human brain along with its application in
understanding the important and potentially partly reversible contribution of white
matter disease to cognitive ageing.

Salo and Fassbender review non-invasive neuroimaging studies of individuals
with methamphetamine addiction, a major public health problem in the Western
United States and many other areas of the world. These authors review MRI
studies of brain structure and function and chemistry as well as a body of PET
neurochemistry studies in this disorder. This work is discussed in the context of the
known neurotoxic effect of methamphetamine as well as documenting the
improvements in brain structure and function that are seen with abstinence from
the drug.

In the final chapter Minzenberg provides a comprehensive review of the con-
ceptual and methodological issues related to the use of pharmacological MRI in
studies investigating the mechanisms of action of psychopharmacological treat-
ments. This chapter also highlights the value of neuroimaging as a source of
biomarkers, which may enhance clinical diagnosis and provide surrogate measures
of treatment effects, an important advance for treatment development for brain
disorders, which has lagged behind that for many other medical conditions.

The broad range of topics covered as well as the methodological depth provided
throughout the volume will ensure that the reader is left with a strong appreciation
for the progress that has been made in the development and application of brain
imaging in behavioral neuroscience as well as the tremendous potential that exists
for further major advances in the coming years.

Sacramento, CA, USA
Cambridge, UK

Cameron S. Carter
Jeffrey W. Dalley
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Food and Drug Reward: Overlapping
Circuits in Human Obesity and Addiction

N. D. Volkow, G. J. Wang, J. S. Fowler, D. Tomasi and R. Baler

Abstract Both drug addiction and obesity can be defined as disorders in which the
saliency value of one type of reward (drugs and food, respectively) becomes
abnormally enhanced relative to, and at the expense of others. This model is con-
sistent with the fact that both drugs and food have powerful reinforcing effects—
partly mediated by dopamine increases in the limbic system—that, under certain
circumstances or in vulnerable individuals, could overwhelm the brain’s homeostatic
control mechanisms. Such parallels have generated significant interest in under-
standing the shared vulnerabilities and trajectories between addiction and obesity.
Now, brain imaging discoveries have started to uncover common features between
these two conditions and to delineate some of the overlapping brain circuits whose
dysfunctions may explain stereotypic and related behavioral deficits in human
subjects. These results suggest that both obese and drug-addicted individuals suffer
from impairments in dopaminergic pathways that regulate neuronal systems asso-
ciated not only with reward sensitivity and incentive motivation, but also with
conditioning (memory/learning), impulse control (behavioural inhibition), stress
reactivity, and interoceptive awareness. Here, we integrate findings predominantly
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derived from positron emission tomography that shed light on the role of dopamine
in drug addiction and in obesity, and propose an updated working model to help
identify treatment strategies that may benefit both of these conditions.

Keywords Dopamine � Addiction � Obesity � Reward � Inhibitory control �
Positron emission tomography
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1 Background

Dopamine (DA) is considered a key to the rewarding effects of natural and drug
rewards. However, its role in the loss of control and compulsive behaviours that
are associated with addiction and obesity are much less clear. PET studies have
played a crucial role in characterizing the role of the brain DA systems in addiction
(in addition to its role in drug reward) and in obesity. Indeed, drugs of abuse
(including alcohol) are consumed by humans or self-administered by laboratory
animals because they are inherently rewarding, an effect that is mediated through
their DA-enhancing properties in the mesolimbic system (Wise 2009). However,
in the case of addiction, imaging studies have revealed that the disorder affects not
only the DA reward circuit but also other DA pathways involved in the modulation
of conditioning/habits, motivation, and executive functions (inhibitory control,
salience attribution, and decision-making), and that DA deficits may also partic-
ipate in the enhanced stress reactivity and disruption of interoceptive awareness
associated with addiction. Preclinical and clinical studies have also revealed other
neurotransmitters (and neuropeptides) that play important roles in drug reward and
addiction (i.e., cannabinoids, opioids) and are intimately involved in the neuro-
plastic changes that follow repeated drug use (i.e., glutamate, opioids, GABA,
corticotropin-releasing factor). The glutamatergic system is particularly prominent
in this regard because it mediates the disruptions in both long-term potentiation
and long-term depression that have been observed in animal models of chronic
drug administration (Thomas et al. 2008). Reviews pertaining to these additional
systems can be found elsewhere (Kalivas 2009; Koob 1992).

2 N. D. Volkow et al.



Since drugs activate the same reward systems that underlie food reward, it is not
totally unexpected that, in general, brain imaging studies have supported the
notion that impairments in DA-modulated circuits be also implicated in patho-
logic, compulsive eating behaviours. Food cues, like drug cues, increase striatal
extracellular DA and drive the motivation to engage in the behaviours that are
necessary to procure and eat the food, providing evidence for the involvement of
DA not just in food reward but also in the non-hedonic motivational properties of
food (i.e., caloric requirements) and the decrease in inhibitory control seen in
compulsive overeating (Avena et al. 2008; Volkow et al. 2008a).

Here, we review findings from imaging studies that specifically focus on the
overlaps in the brain circuits that are disrupted in obesity and in drug addiction. It is
worth remembering, however, that the regulation of food intake behaviours is much
more complex than the regulation of drug intake. The latter is predominantly med-
iated by the rewarding effects of drugs whereas the former is modulated not just by its
rewarding effects (hedonic factors) but also by multiple peripheral and central
factors that sense nutrient requirements in the body necessary for survival (homeo-
static factors). Interestingly, there is growing evidence that homeostatic factors
(e.g., insulin, leptin, ghrelin) modulate food intake in part by increasing or decreasing
the sensitivity of brain reward circuits to food stimuli (Volkow et al. 2011a).

2 The Role of Dopamine in Acute Reward to Drugs and Food

Whether directly or indirectly, all addictive drugs display an ability to increase DA in
nucleus accumbens (NAc) via specific interactions with different molecular targets
(Nestler 2004) (Fig. 1). The mesolimbic DA pathway [DA cells in ventral tegmental
area (VTA) that project into the NAc] seems to be crucial for drug reward (Wise
2009). However, as described below, other DA pathways [mesostriatal (DA cells in
substantia nigra projecting into dorsal striatum) and mesocortical (DA cells in VTA
projecting into frontal cortex)] also contribute to drug reward and addiction (Wise
2009). Overall, it appears that the rewarding and conditioning effects of drugs are
predominantly driven by phasic DA cell firing, which leads to large and transient DA
increases. In contrast, the downstream changes in executive function that occur in
addiction are linked with changes in tonic DA cell firing and result in lower but more
stable DA levels (Grace 2000; Wanat et al. 2009). This, in turn, point to the D1
receptors (D1R), which are low affinity DA receptors that stimulate cyclic AMP
signaling, as being involved both in acute drug reward as well as in conditioning,
since these are associated with the high DA concentrations necessary to stimulate
D1R. In contrast, D2Rs, which inhibit cyclic AMP signaling, are stimulated by both
phasic and tonic DA. Note that, due to the lack of specific radiotracers for the PET
imaging of DA receptors of the D1, D3, D4, and D5 types, most studies on the effects
of drugs of abuse and addiction in the human brain have focused on D2Rs.

In humans, PET studies have shown that several drugs [stimulants (Drevets et al.
2001; Volkow et al. 1999b), nicotine (Brody et al. 2009), alcohol (Boileau et al. 2003),
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and marijuana (Bossong et al. 2009)] increase DA in dorsal and ventral striatum (where
the NAc is located). These studies take advantage of several radiotracers, such as
[11C]raclopride, that bind to D2R but only when these are not binding endogenous DA

Fig. 1 Drugs of abuse act on the reward and ancillary circuits through different mechanisms,
however, they all lead to similar dopaminergic effects in the VTA and NAc. Thus, stimulants
boost acumbal DA directly, while opiates do this by lowering the inhibitory tone of GABAergic
interneurons on DA signaling both either in the VTA or in then NAc. While the mechanisms of
other drugs of abuse is less clear, there is evidence suggesting that nicotine may activate VTA DA
directly through nicotinic acetylcholine receptor (nAChR) on those neurons and indirectly via
stimulation of its receptors on glutamatergic nerve terminals that innervate the DA cells. Alcohol
appears to inhibit GABAergic terminals in VTA, leading to DA neurons disinhibition in the VTA.
Cannabinoids act, among others, through the activation of CB1 receptors on glutamatergic and
GABAergic nerve terminals in the NAc, and on NAc neurons themselves. Phencyclidine (PCP)
may act by inhibiting postsynaptic NMDA glutamate receptors in the NAc. In addition, there is
some evidence suggesting that nicotine and alcohol may also interact with endogenous opioid and
cannabinoid pathways (not shown). PPT/LDT, peduncular pontine tegmentum/lateral dorsal
tegmentum. Reprinted with permission Nestler (2005)

Fig. 2 Effects of intravenous methylphenidate (MP) in raclopride binding and relationship
between striatal DA increases induced by MP in the striatum and the self-reports of ‘‘high’’.
Modified from Volkow et al. (1999b)

4 N. D. Volkow et al.



(unoccupied), which under baseline conditions corresponds to 85–90% of the striatal
D2R (Abi-Dargham et al. 1998). Thus, a comparison of [11C]raclopride binding after
placebo and after drug administration can help us estimate the decreases in D2R
availability induced by the drug (or other stimuli that can increase DA). These
decreases in [11C]raclopride binding are proportional to the DA increases (Breier et al.
1997). These studies have shown that drug-induced DA increases in striatum are
proportional to the intensity of the subjective experience of euphoria or ‘‘high’’ [see
review (Volkow et al. 2009a)] (Fig. 2).

PET studies have also revealed a clear, direct relationship between a drug’s
pharmacokinetic profile (i.e., the speed with which it enters and leaves the brain)
and its reinforcing effects. Specifically, the faster a drug reaches peak levels in the
brain the more intense the ‘‘high’’ (Volkow et al. 2009a). For example, for an
equivalent level of cocaine reaching the brain (assessed through PET), when
cocaine entered the brain rapidly (smoked or i.v. administration), it elicited a more
intense ‘‘high’’ than when it entered at a slower rate (snorted) (Volkow et al. 2000).
This is consistent with preclinical studies showing a similar correlation between a
drug’s pharmacokinetic profile and its reinforcing properties (Balster and Schuster
1973). It is reasonable to hypothesize that such abrupt and large DA increases as
triggered by drugs of abuse may mimic the fast and large DA increases that result
from phasic DA firing that have been associated, in the brain, with the processing
of information about reward and saliency (Schultz 2010). Such drug-induced DA
increases in the NAc may be necessary for addiction, but the fact that they occur
also in non-addicted individuals indicates that they are insufficient to explain the
impulsive and compulsive drug use characteristic of addiction.

There is now evidence that comparable dopaminergic responses are linked with
food reward and that these mechanisms are also likely to play a role in excessive food
consumption and obesity. It is well known that certain foods, particularly those rich
in sugars and fat, are potently rewarding (Lenoir et al. 2007). High-calorie foods can
promote over-eating (eating that is uncoupled from energetic needs) and trigger
learned associations between the stimulus and the reward (conditioning). In evolu-
tionary terms, this property of palatable foods used to be advantageous in environ-
ments where food sources were scarce and/or unreliable, because it ensured that food
was eaten when available, enabling energy to be stored in the body (as fat) for future
use. Unfortunately, in societies like ours, where food is plentiful and constantly
available, this adaptation has become a liability.

Several neurotransmitters, including DA, cannabinoids, opioids, and serotonin, as
well as hormones and neuropeptides involved in homeostatic regulation of food
intake, such as insulin, orexin, leptin, and ghrelin, have been implicated in the
rewarding effects of food (Atkinson 2008; Cason et al. 2010; Cota et al. 2006).
Of these, DA has been the most thoroughly investigated and is the best characterized.
Experiments in rodents have shown that, upon first exposure to a food reward, the
firing of DA neurons in the VTA increases with a resulting increase in DA release in
NAc (Norgren et al. 2006). Similarly, in healthy, normal-weight human subjects, the
ingestion of palatable food has been shown to release DA in the dorsal striatum in
proportion to the ratings of meal pleasantness (Small et al. 2003) (Fig. 3). However,
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and as seen in studies with drug abusers, food-induced increases in striatal DA alone
cannot explain the difference between normal food intake and excessive compulsive
food consumption since these also occur in healthy individuals who do not eat
excessively. Thus, as is the case for addiction, downstream adaptations are likely to
be involved in the loss of control over food intake.

3 Imaging DA in Response to Drugs and to Conditioned
Cues in Addiction

DA’s role in reinforcement is more complex than just coding for reward per se
(hedonic pleasure); for example, stimuli that induce fast and large DA increases also
trigger conditioned responses and elicit incentive motivation to procure them
(Owesson-White et al. 2009). This is important because, through the process of
conditioning, neutral stimuli that are linked to the reinforcer (whether a natural or a
drug reinforcer) acquire the ability by themselves to increase DA in striatum (including
NAc) in anticipation of the reward, thus engendering a strong motivation to seek the
drug (Owesson-White et al. 2009). However, uncoupling reward and conditioning
mechanisms in the process of drug addiction is more challenging than for food con-
sumption because drugs of abuse, through their pharmacological effects, directly
activate DA neurons (i.e., nicotine) or increase DA release (i.e., amphetamine).

Brain imaging studies that compared the DA increases induced by the stimulant
drug methylphenidate (MP) or amphetamine (AMPH) among cocaine addicted
subjects vs. controls showed a marked attenuation of MP or AMPH-induced DA
increases in striatum (50% lower in detoxified abusers and 80% in active abusers)
and lower self-reports of the drug’s rewarding effects relative to non-drug-abusing
controls (Martinez et al. 2007; Volkow et al. 1997) (Fig. 4). This was surprising
since MP and AMPH are pharmacologically similar to cocaine and metham-
phetamine, respectively, and drug abusers cannot distinguish between them when

Fig. 3 Dopamine release
induced by feeding. Coronal
section from the T-map of
statistically significant
reductions in
[11C]raclopride’s binding
potential (BP) following
feeding. The colour bar
represents the t statistic
values. (Reprinted with
permission Small et al. 2003)
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they are administered intravenously. Since the marked reductions in the drug-
induced DA increases were observed whether the cocaine abusers had been
detoxified or not, this indicates that the state of withdrawal is not a confounding
factor (Volkow et al. 2011b). These and related results (Volkow et al. 2009a) are
consistent with the hypothesis that the hedonic response becomes deficient in drug-
addicted individuals, and further strengthen the notion that the acute pharmaco-
logical DA-enhancing effects of the drug in NAc cannot explain by themselves the
increased motivation to consume them.

The response of VTA DA neurons to rewarding stimuli changes with repeated
exposure. While DA cells fire upon the first exposure to a novel reward, repeated
exposure to DA causes the neurons to stop firing upon reward consumption and fire
instead when they are exposed to stimuli that are predictive of the reward (Schultz
et al. 1997). This is likely to underlie DA’s role in learning and conditioning. Indeed,
drug-induced phasic DA signaling can eventually trigger neuroadaptations in
ancillary circuits that are related to habit formation and behavioural conditioning.
These changes are predominantly induced by D1R signaling and synaptic changes in
glutamate-modulated NMDA and AMPA receptors (Luscher and Malenka 2011;
Zweifel et al. 2009). Recruitment of these circuits is significant in disease progression

Fig. 4 DA changes induced by i.v. MP in controls and in active cocaine-addicted subjects.
a Average nondisplaceable biding potential (BPND) images of [11C]raclopride in active cocaine-
addicted subjects (n = 19) and in controls (n = 24) tested after placebo and after i.v. MP. b D2R
availability (BPND) in caudate, putamen, and ventral striatum after placebo (blue) and after MP
(red) in controls and in cocaine-addicted subjects. MP reduced D2R in controls but not in cocaine-
addicted subjects. Note that cocaine abusers show both decreases in baseline striatal D2R
availability (placebo measure) and decreases in DA release when given i.v. MP (measured as
decreases in D2R availability from baseline). Although one could question the extent to which the
low striatal D2R availability in cocaine-addicted subject limits the ability to detect further decreases
from MP, the fact that cocaine-addicted subjects show reductions in D2R availability when exposed
to cocaine cues indicates that the attenuated effects of MP on [11C]raclopride binding reflect
decreased DA release. Reprinted with permission (Volkow et al. 1997; Wang et al. 2010)
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because the ensuing conditioned responses help explain the intense desire for the
drug (craving) and the compulsive use that occurs when addicted subjects are
exposed to drug-associated cues. This hypothesis is consistent with independent
observations (Volkow et al. 2006b; Wong et al. 2006) that show the power of
cocaine-associated cue exposure to raise DA levels in the dorsal striatum and trigger
a concomitant increase in the subjective experience of craving in detoxified cocaine
abusers (Fig. 5). Since the dorsal striatum plays a role in habit learning (Belin et al.
2009; Yin et al. 2004), the association is likely to reflect the strengthening of habits as
chronicity of addiction progresses. This suggests that a basic disruption in addiction
might relate to the DA-triggered conditioned responses that result in habits leading to
intense craving and compulsive drug consumption. Interestingly, in actively using
cocaine-addicted subjects, the DA increases triggered by conditioned cues appear to
be even larger than those produced by the stimulant drug itself as assessed in two
separate group of subjects (Volkow et al. 2011b, 2006b), suggesting that conditioned
responses may drive the DA signaling that maintains the motivation to take the drug
even when its pharmacological effects appear to be reduced. Thus, although drugs
may initially induce feelings of immediate reward through DA release in the ventral
striatum, with repeated use, and as habit develops, there appears to be a shift from the
drug to the conditioned stimulus. According to studies in laboratory animals,
glutamatergic projections from prefrontal cortex and from amygdala into VTA/SN

Fig. 5 DA changes induced by conditioned cues in active cocaine-addicted subjects. a Average
nondisplaceable binding potential (BPND) images of [11C]raclopride in cocaine-addicted
subjects (n = 17) tested while viewing a neutral video (nature scenes) and while viewing a
cocaine-cues video (subjects administering cocaine). b D2R availability (BPND) in caudate,
putamen, and ventral striatum for the neutral video (blue) and the cocaine-cues video (red). The
cocaine cues decreased D2R in caudate and putamen. c Correlations between changes in D2R
(reflecting DA increases) and self-reports of cocaine craving induced by the cocaine-cues video.
Modified from ref. (Volkow et al. 2006b)
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and NAc mediate these conditioned responses (Kalivas 2009). In this manner, the
mere prediction of a reward may eventually become the reward that motivates the
behaviour necessary for drug (or food) consumption.

Interestingly, this type of functional ‘‘switch’’ has also been reported for natural
reinforcers, which are likely to induce an equivalent and gradual shift in DA
increases, from ventral to more dorsal regions of the striatum during the transition
from a novel stimulus that is inherently rewarding to that of the associated cues
that predict it. This transition is conveyed through DA signaling, which appears to
code for a ‘‘reward prediction error’’ (Schultz 2010). The extensive glutamatergic
afferents to DA neurons from regions involved in the processing of sensory (insula
or primary gustatory cortex), homeostatic (hypothalamus), reward (NAc), emo-
tional (amygdala and hippocampus), and multimodal (orbitofrontal cortex for
salience attribution) information, modulate their activity in response to rewards
and to conditioned cues (Geisler and Wise 2008). More specifically, projections
from the amygdala and the orbitofrontal cortex (OFC) to DA neurons and to NAc
are involved in conditioned responses to food (Petrovich 2010). Indeed, imaging
studies showed that when non-obese male subjects were asked to inhibit their
craving for food -while being exposed to food cues-, they exhibited decreased
metabolic activity in amygdala and OFC (as well as in hippocampus), insula and
striatum, and that the decreases in OFC were associated with reductions in food
craving (Wang et al. 2009). A similar inhibition of the metabolic activity in the
OFC (and also in NAc) has been observed in cocaine abusers when they were
asked to inhibit their drug craving upon exposure to cocaine-cues (Volkow et al.
2009b).

Still, the emergence of such powerfully cue-conditioned cravings, which for
food also occur in healthy individuals who do not overeat, would not be as
devastating were they not coupled with growing deficits in the brain’s ability to
inhibit maladaptive behaviours.

4 The Impact of Dysfunction in Inhibitory Control

The capacity to inhibit prepotent responses is bound to contribute to an individ-
ual’s ability to avoid engaging in inappropriate behaviours, such as taking drugs or
eating past the point of satiety, and thus increasing his/her vulnerability to
addiction (or obesity) (Volkow and Fowler 2000; Volkow et al. 2008a).

PET studies have uncovered significant reductions in D2R availability in the
striatum of addicted subjects that persist for months after protracted detoxification
[reviewed in (Volkow et al. 2009a)]. Similarly, preclinical studies in rodent
and non-human primates have shown that repeated drug exposures are associated
with reductions in striatal D2R levels (Nader et al. 2006; Thanos et al. 2007;
Volkow et al. 2001). In the striatum, D2Rs mediate signaling in the striatal
indirect pathway that modulates prefrontal regions; and its downregulation has
been shown to enhance sensitization to the effects of drugs in animal models
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(Ferguson et al. 2011). In humans addicted to drugs, the reduction in striatal D2R
is associated with decreased activity of prefrontal regions as evidenced by
decreases in baseline glucose metabolism (a marker of brain function) in OFC,
anterior cingulate gyrus (ACC), and dorsolateral prefrontal cortex (DLPFC)
(Volkow et al. 2001, 1993, 2007) (Fig. 6). Inasmuch as OFC, ACC, and DLPFC
are involved with salience attribution, inhibitory control/emotion regulation, and
decision-making, respectively, it has been postulated that their improper regulation
by D2R-mediated DA signaling in addicted subjects could underlie the enhanced
motivational value of drugs in their behaviour and the loss of control over drug
intake (Volkow and Fowler 2000). In addition, because impairments in OFC and
ACC are associated with compulsive behaviours and impulsivity (Fineberg et al.
2009), DA’s impaired modulation of these regions is likely to contribute to the
compulsive and impulsive drug intake seen in addiction (Goldstein and Volkow
2002). Indeed, in methamphetamine abusers, low striatal D2R was associated with
impulsivity (Lee et al. 2009), and it also predicted compulsive cocaine adminis-
tration in rodents (Everitt et al. 2008). A reverse scenario, in which an initial
vulnerability for drug use preexists in prefrontal regions, and whereby repeated
drug use triggers further decreases in striatal D2R, is also possible. Indeed, a study
done in subjects who, despite having a high risk for alcoholism (positive family
history of alcoholism) were not alcoholics, revealed a higher than normal striatal
D2R availability that was associated with normal metabolism in OFC, ACC, and
DLPFC (Volkow et al. 2006a). This suggests that, in these subjects at risk for

Fig. 6 Correlations between striatal D2R availability and metabolism in prefrontal brain regions.
a Axial brain images for a control and for a cocaine-addicted subject for baseline images of D2R
availability in striatum (obtained with [11C]raclopride) and of brain glucose metabolism in OFC
(obtained with [18FDG). b Correlations between striatal D2R and metabolism in OFC in cocaine-
addicted and methamphetamine-addicted subjects. Reprinted from Volkow et al. (2009a)
Copyright (2009), with permission from Elsevier
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alcoholism, the normal prefrontal function was linked to enhanced striatal D2R
signaling, which in turn may have protected them from alcohol abuse.

Predictably, evidence of dysregulation in control circuits has also been found
among obese individuals. Both preclinical and clinical studies have provided
evidence of decreased striatal D2R signaling, which, as mentioned above, is linked
with reward (NAc) but also with the establishment of habits and routines (dorsal
striatum) in obesity (Geiger et al. 2009; Wang et al. 2001). Importantly, decreased
striatal D2R availability has been linked to compulsive food intake in obese
rodents (Johnson and Kenny 2010) and with decreased metabolic activity in OFC
and ACC in obese humans (Volkow et al. 2008b) (Fig. 7a–c). Given that dys-
function in OFC and ACC results in compulsivity [see review (Fineberg et al.
2009)], this might be part of the mechanism by which low striatal D2R signaling
facilitates hyperphagia (Davis et al. 2009). In addition, since decreased D2R-
related signaling is also likely to reduce the sensitivity to other natural rewards,

Fig. 7 Hyperphagia could result from a drive to compensate for a weakened reward circuit
(processed through dopamine regulated corticostriatal circuits) combined with a heightened
sensitivity to palatability (hedonic properties of food processed in part through the somatosensory
cortex). a Averaged images for DA D2 receptor (D2R) availability in controls (n = 10) and in
morbidly obese subjects (n = 10). b Results from (Statistical Parametric Mapping) SPM
identifying the areas in the brain where D2R was associated with glucose metabolism, these
included the medial OFC, ACC, and the dorsolateral PFC (region not shown). c Regression slope
between striatal D2R and metabolic activity in ACC in obese subjects. d Three-dimensionally
rendered SPM images showing the areas with higher metabolism in obese than in lean subjects
(P \ 0.003, uncorrected). e Colour coded SPM results displayed in a coronal plane with a
superimposed diagram of the somatosensory homunculus. The results (z value) are presented
using the rainbow scale where red [ yellow [ green. When compared with lean subjects, obese
subjects had higher baseline metabolism in the somatosensory areas where the mouth, lips, and
tongue are represented and which are involved with processing food palatability. Modified, with
permission, from Volkow et al. (2008a) (a–c) and Wang et al. (2002) (d, e)
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this deficit in obese individuals might also contribute to compensatory overeating
(Geiger et al. 2008).

This hypothesis is consistent with preclinical evidence showing that decreased
DA activity in VTA results in a dramatic increase in the consumption of high-fat
foods (Stoeckel et al. 2008). Similarly, compared with normal-weight individuals,
obese individuals who were presented with pictures of high-calorie food (stimuli to
which they are conditioned) showed increased neural activation in regions that are
part of reward and motivation circuits (NAc, dorsal striatum, OFC, ACC, amygdala,
hippocampus, and insula) (Killgore and Yurgelun-Todd 2005). By contrast, in
normal-weight controls, the activation of the ACC and OFC (regions involved in
salience attribution that project into the NAc) during presentation of high-calorie
food was found to be negatively correlated with their body mass index (BMI) (Stice
et al. 2008b). This suggests a dynamic interaction between the amount of food eaten
(reflected in part in the BMI) and the reactivity of reward regions to high-calorie
food (reflected in the activation of OFC and ACC) in normal-weight individuals,
which is lost in obesity.

Surprisingly, obese individuals exhibited less activation of reward circuits from
actual food consumption (referred to as consummatory food reward) than lean
individuals, whereas they showed greater activation of somatosensory cortical
regions that process palatability when they anticipated consumption (Stice et al.
2008b). The latter observation corresponded to regions where a previous study had
revealed enhanced activity in obese subject tested at baseline (non stimulation)
(Wang et al. 2002) (Fig. 7d, e). An enhanced activity of regions that process
palatability could make obese subjects favour food over other natural reinforcers,
whereas decreased activation of dopaminergic targets by the actual food con-
sumption might lead to overconsumption as a means to compensate for weak
D2R-mediated signaling (Stice et al. 2008a). This reduced response of the reward
circuitry to food consumption in obese subjects is reminiscent of the reduced DA
increases triggered by drug consumption in addicted individuals when compared to
non-addicted subjects.

The prefrontal cortex (PFC) plays a crucial role in executive function, including
inhibitory control (Miller and Cohen 2001). These processes are modulated by D1R
and D2R (presumably also D4R) and thus, the decreased activity in PFC, both in
addiction and in obesity, is likely to contribute to poor control and high compul-
sivity. The lower-than-normal availability of D2R in the striatum of obese indi-
viduals, which has been associated with reduced activity in PFC and ACC (Volkow
et al. 2008b) is therefore likely to contribute to their deficient control over food
intake. Indeed, the negative correlation between BMI and striatal D2R reported in
obese (Wang et al. 2001) and in overweight (Haltia et al. 2007a) individuals supports
this. A better understanding of the mechanisms that lead to impaired PFC function in
obesity (or addiction) could facilitate the development of strategies to ameliorate, or
perhaps even reverse, specific impairments in crucial cognitive domains. For
example, delay discounting, which is the tendency to devalue a reward as a function
of the temporal delay of its delivery, is one of the most extensively investigated
cognitive operations in relation to disorders associated with impulsivity and
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compulsivity. Delay discounting has been most exhaustively investigated in drug
abusers who exhibit an exaggerated preference for small-but-immediate over large-
but-delayed rewards (Bickel et al. 2007). However, the few studies performed with
obese individuals have also uncovered evidence of a preference for high, immediate
rewards, despite an increased chance of suffering higher future losses (Brogan et al.
2010; Weller et al. 2008). And more recently, another study found a positive cor-
relation between BMI and hyperbolic discounting, whereby future negative payoffs
are discounted less than future positive payoffs (Ikeda et al. 2010). Interestingly,
delay discounting seems to depend on the function of ventral striatum (Gregorios-
Pippas et al. 2009) and of the PFC, including lateral OFC (Bjork et al. 2009), and is
sensitive to DA manipulations (Pine et al. 2010). Specifically, enhancing DA
signaling (with L DOPA treatment) increased impulsivity and temporal discounting.

5 Involvement of Motivation Circuits

Dopaminergic signaling also modulates motivation. Behavioural traits such as
vigor, persistence, and investing a continued effort towards achieving a goal, are
all subject to modulation by DA acting through several target regions, including
NAc, ACC, OFC, DLPFC, amygdala, dorsal striatum, and ventral pallidum
(Salamone et al. 2007). Dysregulated DA signaling is associated with enhanced
motivation to procure drugs, a hallmark of addiction, which is why drug-addicted
individuals often engage in extreme behaviours to obtain drugs, even when they
entail known severe and adverse consequences (Volkow and Li 2005). Because
drug taking becomes the main motivational drive in drug addiction (Volkow et al.
2003), addicted subjects are aroused and motivated by the process of obtaining the
drug but tend to become withdrawn and apathetic when exposed to non-drug-
related activities. This shift has been studied by comparing the brain activation
patterns occurring with exposure to conditioned cues with those occurring in the
absence of such cues. In contrast to the decreases in prefrontal activity reported in
detoxified cocaine abusers when not stimulated with drug or drug cues [see review
(Volkow et al. 2009a)], these prefrontal regions become activated when cocaine
abusers are exposed to craving-inducing stimuli (either drugs or cues) (Grant et al.
1996; Volkow et al. 1999a; Wang et al. 1999). This result is reminiscent of the
observation that cocaine abusers, studied shortly after an episode of cocaine
binging, showed an increase in metabolic activity in OFC and ACC (also dorsal
striatum) that was associated with craving (Volkow et al. 1991).

Moreover, when the responses to i.v. MP are compared between cocaine-
addicted and non-addicted individuals, the former responded with increased
metabolism in ventral ACC and medial OFC (an effect associated with craving),
while the latter showed the opposite response, namely decreased metabolism in
these regions (Volkow et al. 2005). This suggests that the activation of these pre-
frontal regions with drug exposure may be specific to addiction and associated with
the enhanced desire for the drug. In addition, a study that prompted cocaine-addicted
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subjects to purposefully inhibit craving when exposed to drug cues showed that
those subjects who were successful at inhibiting craving displayed decreased
metabolism in medial OFC (which processes motivational value of a reinforcer)
and NAc (which predicts reward) (Volkow et al. 2009b). These findings further
corroborate the involvement of OFC, ACC, and striatum in the enhanced motivation
to procure the drug seen in addiction.

Predictably, the OFC has also been implicated in attributing salience value to
food (Grabenhorst et al. 2008; Rolls and McCabe 2007), helping to assess its
expected pleasantness and palatability as a function of its context. PET studies
with FDG to measure brain glucose metabolism in normal weight individuals
reported that exposure to food-cues increased metabolic activity in OFC, which
was an effect associated with the perception of hunger and the desire for food
(Wang et al. 2004). The enhanced OFC activation by the food stimulation is likely
to reflect downstream dopaminergic effects and participate in DA’s involvement
in the drive for food consumption. The OFC plays a role in learning stimulus-
reinforcement associations and conditioning (Cox et al. 2005; Gallagher et al.
1999), supports conditioned-cue elicited feeding (Weingarten 1983), and probably
contributes to overeating irrespective of hunger signals (Ogden and Wardle 1990).
Indeed, dysfunction of the OFC has been linked to overeating (Machado and
Bachevalier 2007).

In spite of some inconsistencies among studies, brain imaging data also support
the notion that structural and functional changes in brain regions implicated in
executive function (including inhibitory control) may be associated with high BMI
in otherwise healthy individuals. For example, an MRI study done in elderly
women, using voxel-based morphometry, found a negative correlation between
BMI and gray matter volumes (including frontal regions), which, in the OFC, was
associated with impaired executive function (Walther et al. 2010). Using PET to
measure brain glucose metabolism in healthy controls, we reported a negative
correlation between BMI and metabolic activity in DLPFC, OFC, and ACC. In this
study, the metabolic activity in prefrontal regions predicted the subjects’ perfor-
mance in tests of executive function (Volkow et al. 2009c). Similarly, a nuclear
magnetic resonance (NMR) spectroscopic study in healthy middle age and elderly
controls showed that BMI was negatively associated with the levels of N-acetyl-
aspartate (a marker of neuronal integrity) in frontal cortex and ACC (Gazdzinski
et al. 2008; Volkow et al. 2009c).

Brain imaging studies comparing obese and lean individuals have also reported
lower gray matter density in frontal regions (frontal operculum and middle frontal
gyrus) and in post-central gyrus and putamen (Pannacciulli et al. 2006). Another
study, found no differences in gray matter volumes between obese and lean subjects,
however, it did record a positive correlation between white matter volume in basal
brain structures and waist to hip ratios, a trend that was partially reversed by dieting
(Haltia et al. 2007b). Interestingly, cortical areas, like the DPFC and OFC that are
involved in inhibitory control, have also been found to become activated in successful
dieters in response to meal consumption (DelParigi et al. 2007), suggesting a potential
target for behavioural retraining in the treatment of obesity (and also in addiction).
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6 Involvement of Interoceptive Circuitry

Neuroimaging studies have revealed that the middle insula plays a critical role in
cravings for food, cocaine, and cigarettes (Bonson et al. 2002; Pelchat et al. 2004;
Wang et al. 2007). The importance of the insula has been highlighted by a study
that reported that smokers with damage to this region (but not control smokers who
had suffered extra-insular lesions) were able to stop smoking easily and without
experiencing either cravings or relapse (Naqvi et al. 2007). The insula, particularly
its more anterior regions, is reciprocally connected to several limbic regions
(e.g., ventromedial prefrontal cortex, amygdala, and ventral striatum) and appears
to have an interoceptive function, integrating the autonomic and visceral infor-
mation with emotion and motivation, thus providing conscious awareness of these
urges (Naqvi and Bechara 2009). Indeed, brain lesion studies suggest that the
ventromedial PFC and insula are necessary components of the distributed circuits
that support emotional decision-making (Clark et al. 2008). Consistent with this
hypothesis, imaging studies consistently show differential activation of the insula
during craving (Brody et al. 2009; Goudriaan et al. 2010; Naqvi and Bechara 2009;
Wang et al. 1999). Accordingly, the reactivity of this brain region has been sug-
gested to serve as a biomarker to help predict relapse (Janes et al. 2010).

The insula is also a primary gustatory area, which participates in many aspects
of eating behaviours, such as taste. In addition, the rostral insula (connected to
primary taste cortex) provides information to the OFC that influences its multi-
modal representation of the pleasantness or reward value of incoming food (Rolls
2008). Because of the involvement of the insula in the interoceptive sense of the
body, in emotional awareness (Craig 2003) and in motivation and emotion (Rolls
2008), a contribution of insular impairment in obesity could be expected. Indeed,
gastric distention results in activation of the posterior insula, which is likely to
reflect its role in the awareness of body states (in this case of fullness) (Wang et al.
2008). Moreover, in lean, but not in obese subjects, gastric distention resulted in
activation of the amygdala and deactivation of the anterior insula (Tomasi et al.
2009). The lack of amygdala response in obese subjects could reflect a blunted
interoceptive awareness of bodily states linked with satiety (full stomach). Even
though the modulation of insular activity by DA has been poorly investigated, it is
recognised that DA is involved in the responses to tasting of palatable foods that
are mediated through the insula (Hajnal and Norgren 2005). Human imaging
studies have shown that tasting palatable foods activated the insula and midbrain
areas (DelParigi et al. 2005; Frank et al. 2008). However, the DA signaling may
also be necessary for sensing the calorie content of food. For example, when
normal weight women tasted a sweetener with calories (sucrose), both the insula
and dopaminergic midbrain areas became activated, whereas tasting a calorie-free
sweetener (sucralose) only activated the insula (Frank et al. 2008). Obese subjects
exhibit greater insular activation than normal controls when tasting a liquid meal
that consists of sugar and fat (DelParigi et al. 2005). In contrast, subjects who have
recovered from anorexia nervosa show less activation in the insula when tasting
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sucrose and no association of feelings of pleasantness with insular activation as
observed in the normal controls (Wagner et al. 2008). When combined, these
results make it likely that dysregulation of the insula in response to taste stimuli
might be involved in the impaired control of various appetitive behaviours.

7 The Circuitry of Aversion

As mentioned before, training (conditioning) on a cue that predicts reward leads to
dopaminergic cells firing in response to the prediction of reward, and not to the
reward itself. On the other hand, and consistent with this logic, it has been
observed that dopaminergic cells will fire less than normal if the expected reward
fails to materialise (Schultz et al. 1997). Cumulative evidence (Christoph et al.
1986; Lisoprawski et al. 1980; Matsumoto and Hikosaka 2007; Nishikawa et al.
1986) points to the habenula as one of the regions that controls the decreases in
firing of dopaminergic cells in VTA that may follow the failure to receive an
expected reward (Kimura et al. 2007). Thus, an enhanced sensitivity of the
habenula, as a result of chronic drug exposures, could underlie a greater reactivity
to drug cues. Indeed, activation of the habenula, in cocaine-addicted subjects, has
been associated with behavioural relapse to drug taking upon cue exposure (Brown
et al. 2011; Zhang et al. 2005). In the case of nicotine, the a5 nicotinic receptors in
the habenula appear to modulate the aversive responses to large doses of nicotine
(Fowler et al. 2011); and the a5 and a2 receptors in the habenula are implicated in
nicotine withdrawal (Salas et al. 2009). Because of the habenula’s opposite
response to that of DA neurons to reward (deactivation) and its activation upon
exposure to aversive stimuli, we refer here to the habenula signaling as one
conveying an ‘‘antireward’’ input.

The habenula appears to play a similar role with regards to food reward.
A highly palatable food diet can induce obesity in rats, with the weight increases
correlating with increases in l-opioid peptide binding in the basolateral and
basomedial amygdala. Interestingly, the medial habenula showed significantly
higher l-opioid peptide binding (by approximately 40%) after exposure to the
palatable food in the rats that gained weight (those that consumed more food) but
not in those that did not (Smith et al. 2002). This suggests that the habenula may
be involved in overeating under conditions of availability of palatable food.
Moreover, neurons in the rostromedial tegmental nucleus, which receive a major
input from the lateral habenula, project to VTA DA neurons and are activated after
food deprivation (Jhou et al. 2009). These findings are consistent with a role for the
habenula in mediating responses to aversive stimuli or states such as those that
occur during dieting or drug withdrawal.

The involvement of the habenula as an antireward hub within emotional net-
works is consistent with prior theoretical models of addiction that postulated
sensitized anti-reward responses (mediated through enhanced sensitivity of the
amygdala and increased signaling though the corticotropin releasing factor) as
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driving drug intake in addiction (Koob and Le Moal 2008). Similar antireward
responses may also contribute to excessive food consumption in obesity.

8 Pathological Drug and Food Reward: An Updated
Working Model

The ability to resist the urge to use a drug or eat past the point of satiety requires
the proper functioning of neuronal circuits involved in top-down control
to oppose the conditioned responses that predict reward from ingesting the
food/drug and the desire to ingest the food/drug. Here, we highlighted six of these
circuits: reward/saliency, conditioning/habits, inhibitory control/executive func-
tion, motivation/drive, interoception, and aversion avoidance/stress reactivity
(Fig. 8). Based on the imaging data presented here, we postulate that it is the

Fig. 8 Model proposing a network of interacting circuits, disruptions which contribute to the
complex set of stereotypic behaviours underlying drug addiction and chronic overeating: reward
(nucleus accumbens, VTA, and ventral pallidum), conditioning/memory (amygdala, medial OFC
for attribution of saliency, hippocampus, and dorsal striatum for habits), executive control
(DLPFC, ACC, inferior frontal cortex, and lateral OFC), motivation/drive (medial OFC for
attribution of saliency, ventral ACC, VTA, SN, dorsal striatum, and motor cortex). Nac, nucleus
accumbens, interoception (Insula and ACC), and aversion/avoidance (Habenula). a When these
circuits are balanced, this results in proper inhibitory control and decision making. b During
addiction, when the enhanced expectation value of the drug in the reward, motivation, and
memory circuits overcomes the control circuit, favouring a positive-feedback loop initiated by the
consumption of the drug and perpetuated by the enhanced activation of the motivation/drive and
memory circuits. These circuits also interact with circuits involved in mood regulation, including
stress reactivity (which involves the amygdala, hypothalamus, habenula) and interoception
(which involves the insula and ACC and contributes to awareness of craving). Several
neurotransmitters are implicated in these neuroadaptations, including glutamate, GABA,
norepinephrine, corticotropin-releasing factor, and opioid receptors. CRF, corticotropin-releasing
factor; NE, norepinephrine. Modified with permission from Volkow et al. (2011b)
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discrepancy between the expectation for the drug/food effects (conditioned
responses) and the blunted neurophysiological effects that maintains the taking of
drugs or the overconsumption of foods in an attempt to attain the expected reward.
Also, whether tested during early or protracted periods of abstinence/dieting,
addicted/obese subjects show lower D2R in striatum (including NAc), which are
associated with decreases in baseline activity in frontal brain regions implicated in
salience attribution (orbitofrontal cortex) and inhibitory control (ACC and DLPFC),
whose disruption results in compulsivity and impulsivity. Finally, evidence has also
been emerging on the role of interoceptive and aversive circuitry in the systemic
imbalances that result in the compulsive consumption of either drugs or food.

As a consequence of the sequential disruption in these circuits, individuals may
experience 1) an enhanced motivational value of the drug/food (secondary to learned
associations through conditioning and habits) at the expense of other reinforcers
(secondary to decreased sensitivity of the reward circuit), 2) an impaired ability to
inhibit the intentional (goal-directed) actions triggered by the strong desire to take
the drug/food (secondary to impaired executive function) that result in compulsive
drug/food taking, and 3) enhanced stress reactivity and aversive avoidance that
results in impulsive drug taking to escape the aversive state.

This model suggests a multipronged therapeutic approach to addiction designed
to decrease the reinforcing properties of drug/food, reestablish/enhance the
rewarding properties of natural reinforcers, inhibit conditioned learned associa-
tions, enhance motivation for non-drug/food-related activities, decrease stress
reactivity, improve mood, and strengthen general-purpose inhibitory control.
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Nonhuman Primate Models of Addiction
and PET Imaging: Dopamine System
Dysregulation

Robert W. Gould, Linda J. Porrino and Michael A. Nader

Abstract This chapter highlights the use of nonhuman primate models of cocaine
addiction and the use of positron emission tomography (PET) imaging to study the
role of individual differences in vulnerability and how environmental and phar-
macological variables can impact cocaine abuse. The chapter will describe studies
related to the dopamine (DA) neurotransmitter system, and focus primarily on the
D2-like DA receptor, the DA transporter and the use of fluorodeoxyglucose to
better understand the neuropharmacology of cocaine abuse. The use of nonhuman
primates allows for within-subject, longitudinal studies that have provided insight
into the human condition and serve as an ideal model of translational research. The
combination of nonhuman primate behavior, pharmacology and state-of-the-art
brain imaging using PET will provide the foundation for future studies aimed at
developing behavioral and pharmacological treatments for drug addiction in
humans.
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1 Introduction

Drug dependence remains a consistent societal problem resulting in deleterious
consequences on an individual’s health, work, and family that resonates throughout
communities worldwide and bears with it an overwhelming financial burden (WHO
2004). In the United States alone, over 20 million people over the age of 12 met the
DSM-IV criteria for drug abuse or dependence in 2008 (translating into nearly 1 in
every 15 people; SAMHSA 2009) including 1.6 million cocaine users (SAMHSA
2010). Within the European Union, 56% of all countries reporting on cocaine
trends documented increases (WHO 2004). Although numerous advances have
been made to improve our understanding of addiction including effectively dem-
onstrating addiction is a brain disease, treatment for numerous addictions,
including psychostimulant abuse have remained elusive. Development of suc-
cessful treatment relies on a strong understanding of the neurobiological etiology of
addiction. The goal of the current review is to describe the influence of environ-
mental, physiological, and pharmacological factors contributing to changes in the
dopamine (DA) neurotransmitter system across various correlates of the addiction
cycle including vulnerability, maintenance, abstinence, and relapse to cocaine
addiction, as assessed via positron emission tomography (PET) imaging in non-
human primate (NHP) models.

1.1 Positron Emission Tomography and Dopamine
Neurotransmission

PET is an imaging technique used to visualize and quantify the interaction of a
radiolabelled molecule of known structure within an organism in a noninvasive
manner. The present focus will be the utility of PET neuroimaging to characterize
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the DA neurotransmitter system and its malleability following physiological,
environmental, or pharmacological manipulations in NHPs. Briefly, the DA sys-
tem is comprised of four neuronal pathways originating from midbrain nuclei with
projections to various brain structures (see Beaulieu and Gainetdinov 2011 for
review). The nigrostriatal pathway innervates the dorsal striatum (caudate-
putamen) and is involved in motor control. The mesolimbic pathway projects to
the ventral striatum (nucleus accumbens) and other limbic structures including the
amygdala, hippocampus, and cingulate gyrus and mediates actions related to
reward, reinforcement, emotion, and motivation. The mesocortical pathway
innervates frontal cortical regions and is implicated in learning and memory.
Lastly, the tuberoinfundibular pathway projects to the hypothalamus and influ-
ences anterior pituitary gland function. Dysregulation of the mesencephalic DA
system through neurodegeneration or pharmacological insult can contribute to a
number of disease states in addition to Parkinson’s Disease, including depression,
attention-deficit/hyperactivity disorder (ADHD), schizophrenia, and addiction (for
reviews see Vallone et al. 2000; Beaulieu and Gainetdinov 2011).

There are two superfamilies of DA receptors, the D1-like and D2-like G-protein
coupled-receptors, originally distinguished by their ability to stimulate and inhibit
adenylyl cyclase activity, respectively. D1-like receptors are primarily located
postsynaptically whereas D2-like receptors are located pre- and post-synaptically
functioning as autoreceptors as well as post-synaptic effectors. There are currently
no D1-like PET studies in NHP models of cocaine abuse. The D2-like superfamily
consists of D2, D3, and D4 receptor subtypes, which have been investigated in PET
studies with [18F]N-methylspiperone (NMSP), [11C]raclopride and [18F]fluorocl-
ebopride (FCP), among other tracers. Much of our research utilizes [18F]FCP,
which binds with high affinity at D2-like receptors (Mach et al. 1996) to allow
examination DA-rich region such as the basal ganglia (Fig. 1a). As it relates to
cocaine addiction, the D3 receptor subtype has received recent attention because its
expression is limited to limbic regions. However, D3 receptor-selective radioli-
gands have only recently become available for PET studies and will not be
described in this review. Also located on presynaptic DA nerve terminals are DA
transporters (DAT) that function to transport synaptic DA intracellularly, where it
can be repackaged in vesicles through the action of the vesicular monoamine
transporters (VMAT) or degraded by catechol-O-methyltransferase (COMT; for
reviews see Vallone et al. 2000; Beaulieu and Gainetdinov 2011), although the
main pathway for intracellular DA catabolism is mediated by monoamine oxidase
(MAO; Kopin 1985). In this review, we will describe studies using [18F](+)-N-
(4-fluorobenzyl)-2b-propanoyl-3b-(4-chlorophenyl)tropane (FCT) and [18F]-[8-(2-
fluoroethyl)-2b-carbomethoyx-3b-(4-chlorophenyl)nortropane] (FECNT) to label
the DAT. PET studies examining VMAT and COMT will not be reviewed.

Another utility for PET imaging is the in vivo investigation of the consequences
of dopaminergic activity in the central nervous system using tracers that can mea-
sure blood flow or energy use, as a means of measuring neural activity. [15O]H2O for
example, is a marker of blood flow and can be used to characterize the acute effects
of a pharmacological stimulus. Another tracer is [18F]-fluorodeoxyglucose (FDG)
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which is an analog of glucose, the sole energy substrate in the brain under normal
conditions. Increased rates of uptake of FDG reflect increases in local energy use
and, in turn, functional activity. These methods are intended for the evaluation of
manipulations that occur over relatively short time frames (e.g., drug administration
or brief behavioral task) with changes in rates of glucose utilization calculated by
comparison to scans obtained during baseline conditions. For example, Fig. 1b
highlights FDG uptake in cortical and subcortical regions in a rhesus monkey.
FDG was administered prior to the start of a baseline motor task. Following 40 min
of behavior during which each response resulted in pellet delivery, the monkey was
sedated and FDG uptake was examined via PET. In addition, FDG methods can be
used to assess differences in basal brain glucose metabolism associated with disease
states or phenotypes. Altered basal rates of glucose utilization generally have longer
time courses (hours, days, and weeks), and reflect intrinsic and ongoing changes in
brain activity representing the cumulative effects of experience with the internal and
external milieu (e.g., Borghammer et al. 2010). For a more comprehensive list of
PET radiotracers targeting the DA and serotonin systems and their contributions to
the field of addiction studies in NHPs see Howell and Murnane (2011).

Cocaine is a psychomotor stimulant that binds with near equal affinity to the
DAT, serotonin and norepinephrine transporter (SERT and NET, respectively) but

Fig. 1 PET imaging in NHPs. FCP binding to D2-like receptors in the basal ganglia of an
anesthetized monkey (a), FDG uptake occuring over 40 min of responding maintained by 190-g
pellet delivery measuring cerebral glucose utilization in cortical and subcortical regions (b), and
corresponding MR. c Each scan occurred in a single rhesus monkey; a caudate nucleus;
b putamen; c thalamus; d anterior cingulate cortex; e insular cortex; f temporal cortex; g occipital
cortex; top horizontal; bottom coronal slices
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its reinforcing effects are thought to be mediated mainly through DAT blockade,
and subsequent elevations of extracellular DA, as first evidenced by in vivo
microdialysis studies in rodents (Di Chiara and Imperato 1988). Radiolabelled
cocaine ([11C]-cocaine) was tested in baboons in the late 1980s, showing sub-
stantially higher binding in DAT-rich striatal regions, thus providing a noninvasive
method for visualizing the binding site for cocaine within the CNS (Fowler et al.
1989). Further, [11C]-cocaine receptor availability in striatum decreased following
pretreatment with unlabeled cocaine and other DAT inhibitors, but not adminis-
tration of NET or SERT inhibitors providing evidence of predominately DAT-
specific binding (Fowler et al. 1989). Other displacement studies have involved
administering compounds known to elevate DA during a PET study with a tracer
that competes with DA. In one example using FCP (Mach et al. 1997), several
psychomotor stimulants (including cocaine) displaced the tracer in the basal
ganglia (caudate nucleus and putamen) in an orderly fashion similar to DA ele-
vations seen in microdialysis studies. In addition, Kimmel et al. (2008) noted an
inverse relationship between reinforcing effects of cocaine analogs, quantified as
the peak number of injections during self-administration (SA), and the time to
peak uptake of the same [11C]-labeled cocaine analogs. Together, these studies
demonstrated the binding site of cocaine within the CNS, biodistribution and
pharmacokinetic differences between psychostimulants, and correlations of PET
with behavioral measures to provide data relevant to understanding abuse liability
and pharmacotherapeutic development for potential DAT inhibitors (see Murnane
and Howell 2011).

1.2 Nonhuman Primates as Research Subjects

The development of new imaging modalities has made in vivo small animal
imaging using rodents an exciting line of research. For this review, however,
we will focus only on PET imaging research utilizing NHPs. As it relates to
translational research, NHPs are more phylogenetically related to humans and,
along with baboons, Old World macaques (rhesus, Macaca mulatta, and cyno-
molgus, M. fascicularis) are the closest relatives of humans approved for bio-
medical research in the United States. Macaques have close homology to humans
in terms of developmental and aging processes, neurotransmitter distribution, and
complex social and cognitive behavioral repertoires (see Weerts et al. 2007 for
review). For example, humans and NHPs share greater than 95% overall gene
homology and greater than 98% homology in monoaminergic transporters
(Hacia et al. 1998; Miller et al. 2001). Further, documented differences in DA
neuron innervation (Berger et al. 1991; Joel and Weiner 2000) and affinity of DA
for receptors between monkey and rodent (Weed et al. 1998) may be indicative of
other differences in drug biodistribution, pharmacokinetic or pharmacodynamic
interactions within the DA system (e.g., Lyons et al. 1996; Roberts et al. 1999; Lile
et al. 2003). Using animal models with neurotransmitter distribution and receptor
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localization resembling that in humans is critical when using PET imaging to
generalize preclinical results to the human condition (Nader and Czoty 2008).
An additional advantage of NHP research is the ability for longitudinal study
designs within a laboratory setting. Baseline behavioral, neurochemical, and
hormonal measures can be correlated with changes following an experimental
manipulation (e.g., chronic drug administration) while controlling for such factors
as stress and nutrition over many years. As it relates to drug addiction, the longer
the history of drug exposure, the stronger the face validity of the animal model.

NHPs have an extensive and complex behavioral repertoire. Macaques form a
linear social hierarchy that can be quantified by measuring the number of agonistic
interactions between monkeys (e.g., Kaplan et al. 1982). Typically, the most
dominant monkey aggresses toward all other animals and has access to the largest
allotment of resources whereas the most subordinate monkey does not aggress,
submits and avoids more dominant monkeys, spends more time alone, and has less
access to resources. We describe this continuum as one in which the living
conditions of dominant monkeys can be considered an enriched environment
while subordinate monkeys are exposed to an environment of chronic social
stress. This continuum allows an examination of how social and environmental
variables (i.e., acute or chronic stress and enrichment) affect neuroendocrine func-
tion (Czoty et al. 2009a; Riddick et al. 2009) or neurobiology influencing vulnera-
bility to self-administer drugs (Morgan et al. 2002; Czoty et al. 2004; Nader and
Czoty 2005). These studies provide direct translational applicability toward under-
standing how social stressors may influence the propensity to initiate drug use,
relapse during abstinence, or conversely, positively influence sustained abstinence.

Another advantage presented by NHP models is their capacity for learning
complex cognitive tasks similar to those administered to humans. Human cocaine
abusers show signs of cognitive impairments on tasks measuring strategic plan-
ning, such as the ability to withhold or modify a behavioral response, working
memory and measures of impulsivity (Fillmore and Rush 2002; Bolla et al. 2004;
Hester and Garavan 2004; Goldstein et al. 2007, 2010); similar impairments have
been shown in monkeys following cocaine SA (Liu et al. 2008, 2009; Porter et al.
2011). Cognitive impairments have been hypothesized to perpetuate a cycle of
compulsive drug use and increase the prevalence of relapse (Goldstein and
Volkow 2002; Koob and Volkow 2011). Therefore, understanding when (duration
or dose) and how (neurobiological alterations) cocaine affects executive function is
integral in developing effective treatment strategies. Longitudinal studies exam-
ining cognitive performance in monkeys allows for the assessment of environ-
mental (e.g., stressors) or pharmacological agents that can be assessed using PET
(e.g., Porrino et al. 2005; Hampson et al. 2009, 2011).

Often overlooked until recently, sex differences are emerging as an important
variable in preclinical (e.g., Lynch 2006; Terner and de Wit 2006) and clinical
settings (Zilberman et al. 2003; O’Brien and Anthony 2005; Greenfield et al.
2010). Similar to humans, female macaques have a *28 day estrous cycle marked
by similar fluctuations in hormone levels, notably those of estrogen and proges-
terone (e.g., Dukelow et al. 1979). Influence of hormones on various drug-related
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behaviors (e.g., reinforcing or discriminative stimulus effects) and effects of drugs
on hormonal regulation are empirical questions beginning to be delineated (see
Mello and Mendelson 2009; Evans and Foltin 2010 for reviews). For example, the
relationship between menstrual cycle phase and D2-like receptor availability has
been examined in women, with three different results. Using [18F]NMSP, Wong
et al. (1988) observed a trend toward lower striatal uptake during the follicular
versus luteal phase, indicating either lower D2-like receptor densities or higher
striatal DA concentrations during the follicular phase. In a second study from this
group, [11C]raclopride binding potential was lower in the putamen (but not caudate
nucleus or ventral striatum) in women during the luteal versus follicular phase
(Munro et al. 2006). In contrast, Nordström et al. (1998) observed no menstrual-
cycle dependent variation in [11C]raclopride availability in the putamen of five
women. Of course, there are many factors that could influence D2-like measures,
so it is not surprising that in different populations of women, the interaction
between menstrual cycle phase and D2-like receptor availability is complicated.
In experimentally na€ıve female macaques, though, the relationship was quite
straightforward and orderly (Czoty et al. 2009b). In that study using a within-
subjects design in which seven female cynomolgus monkeys were scanned in the
follicular and luteal phases of the menstrual cycle, D2-like receptor availability
using [18F]FCP was significantly lower during the follicular phase compared to the
luteal phase. As will be described in greater detail, D2-like receptor availability is
intimately related to vulnerability to self-administer drugs of abuse.

1.3 Animal Models

There are several advantages to using animal models, including the ability to
perform experiments that are ethically or practically impossible in humans.
For example, as it relates to addiction, the use of animal models allows for imaging
the brain of individuals prior to any drug exposure, so as to permit the assessment
of trait variables (i.e., whether that brain measure represents a pre-existing char-
acteristic that is predictive of an outcome) and state variables (i.e., whether the
independent variable was associated with a change in brain function; see Nader
and Czoty 2005 for further discussion). Before discussing animal models of
cocaine addiction and brain imaging studies, it is worthwhile to first describe the
types of animal models (see also Katz and Higgins 2003).

At its simplest level, there are two methods for animals to receive drugs of
abuse: non-contingent, i.e., administered by the experimenter, or contingent, i.e.,
self-administered by the animal. The choice of methods depends on the research
question. If the researcher simply wants to know where in the brain a drug is binding,
then non-contingent administration will suffice. This has been used with great
success as part of ligand-development studies. However, if the researcher wants to
understand the role of environment, the organism’s phenotype and environment x
organism interactions mediating drug abuse, then contingent drug SA studies are
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necessary. Differences in response to contingent vs. non-contingent cocaine include
the pattern and magnitude of DA efflux measured via microdialysis (Bradberry 2000;
Lecca et al. 2007), HPA axis responsivity (Galici et al. 2000), and lethality (Dworkin
et al. 1995), supporting the notion that addiction is more complex than just neuro-
biological changes resulting from drug-receptor interactions. In humans, drug abuse
is a chronic condition, such that long-term SA studies in NHPs provide a homologous
model. Equally important, SA paradigms allow animals to self-administer at rates
and intakes that provide an index of individual differences, in contrast to fixed
experimenter-administered regimens that may affect neurobiology differently.

The distinction between contingent and non-contingent drug administration can
also be considered in terms of models of ‘‘formal equivalence’’ (Carlton 1983).
As described by Katz and Higgins (2003), these are models developed to simulate
a specific symptom of the human disease. In short, these types of models have
established ‘‘face validity’’—the endpoint in animals resembles some aspect of the
human condition. Chronic drug administration impacts on receptors in the brain,
resulting in (perhaps) long-term changes in brain function that can be modeled in
animals and imaged using the same instruments as those used for humans. In terms
of face validity, as will be described below, chronic drug administration is cer-
tainly more relevant to human addiction than, for example, acute drug treatments,
but SA has higher face validity than non-contingent drug administration.

2 Models of Cocaine Addiction and DA Receptor Function

Drug SA models have been used for decades to examine the reinforcing effects of
compounds (e.g., Woolverton and Nader 1990; Mello and Negus 1996), including
examination of potential pharmacotherapies. Animal drug SA resembles human
drug use (Griffiths et al. 1980) and produces parallel neurobiological effects
(e.g., Beveridge et al. 2008; Everitt et al. 2008). For example, in monkeys, chronic
cocaine SA induced long-lasting changes in the mesolimbic DAergic system
(Moore et al. 1998; Letchworth et al. 2001; Nader et al. 2002, 2006; Porrino et al.
2007) and altered cerebral blood flow, metabolism, and function (Lyons et al.
1996; Beveridge et al. 2006) in a manner similar to what has been observed in
human cocaine users (Strickland et al. 1993; Volkow et al. 1993).

2.1 Models of Vulnerability

As mentioned above, perhaps the best use of animals, including NHPs, in models
of addiction involves assessing phenotypic traits that render an individual more or
less vulnerable to addiction. Currently, among the best examples of the use of
imaging to study trait variables have involved vulnerability to drug abuse in
relation to the DA D2-like receptor. In humans, Volkow et al. (1999) reported an
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inverse relationship between D2-like receptor availability and subjective effects of
intravenous methylphenidate (MP). In that study, 23 non-drug abusing males were
scanned with [11C]raclopride in a drug-free condition, and at another time were
administered MP and asked to rate its subjective effects. Volkow et al. (1999)
found that men with lower D2-like binding potentials found MP ‘‘pleasant’’, while
men with higher D2-like binding potentials found the same dose to be ‘‘noxious’’.
This suggests that individuals with low D2-like receptor availability would be
more vulnerable to stimulant abuse than individuals with high D2-like measures.
This same inverse relationship was observed in male rhesus monkeys (Nader et al.
2006). In that study, 12 experimentally na€ıve monkeys were scanned with
[18F]FCP and then trained to respond on a lever maintained by banana-flavored
food pellets. When responding was stable, the reinforcer was changed from
banana-flavored pellets to 0.2 mg/kg intravenous cocaine. Over the first 10 weeks
of exposure, cocaine-maintained responding was higher in monkeys with lower
D2-like receptor measures compared to monkeys with higher baseline D2-like
receptor availability. Taken together, these two findings support the hypothesis
that low D2-like receptor availability makes individuals more vulnerable for
stimulant abuse. The use of NHP models in the latter study controlled for many
variables that exist in humans, such as past drug use, stress, etc. However, the use
of NHPs can also be used to determine if these D2-like receptor measures are
malleable to environmental and pharmacological variables.

If D2-like receptor availability influences vulnerability, can these levels be
modified (increased or decreased) before exposure to cocaine and thereby alter
vulnerability? The answer appears to be ‘‘yes’’. In one study, baseline PET scans
were conducted in individually housed male cynomolgus monkeys prior to random
placement in social groups of four monkeys/pen (Morgan et al. 2002). As men-
tioned above, macaques form linear hierarchies, with the most dominant monkeys
(#1) winning all fights, being groomed more, having access to the entire pen, etc.,
while the most subordinate monkeys (#4) being the target of most aggression, they
are groomed least and are frequently used as a model of socially derived stress.
Morgan et al. (2002) reported no relationship between initial D2-like receptor
measures and eventual social rank, indicating that D2-like receptor availability is
not a trait marker for social rank. However, D2-like receptor availability changed
significantly after stable social hierarchies were formed and the change occurred in
the dominant monkeys. On average, D2-like receptor availability increased by
20% after monkeys became dominant. This increase in D2-like receptor avail-
ability subsequently protected the monkeys from the initial reinforcing effects of
cocaine (Morgan et al. 2002). In fact, not only did subordinate monkeys, who had
the lower D2-like receptor measures, self-administer cocaine at higher rates
compared to dominant animals, the dominant monkeys, with their elevated D2-like
receptors, didn’t find cocaine reinforcing. These two monkey studies highlight an
important role for D2-like receptors in vulnerability to cocaine abuse and suggest
viable targets for pharmacotherapy development.

An important consideration that will require much future research involves the
use of female subjects. The human and monkey research described above involved
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males. We have recently replicated the findings above using initially individually
housed female cynomolgus monkeys who were then randomly assigned to social
groups of four monkeys/pen. We found similar results with D2-like receptor
availability as seen in males—D2-like receptors at baseline were not trait markers
for eventual social rank, but these measures increased significantly in females who
became dominant. However, the relationship between D2-like receptor availability
and vulnerability to cocaine reinforcement was opposite. Dominant females, with
higher D2-like receptor measures, acquired cocaine reinforcement at lower doses
compared to subordinate females who had low D2-like receptor availability (Nader
et al. under review). These findings suggest that treatment strategies that target the
D2-like receptor should be opposite in males and females. For example, drugs that
increase D2-like receptor availability would be hypothesized to be effective in
males, but would likely fail in females. Clearly, more research involving females is
required to validate this conjecture.

2.2 Models of Maintenance

Drug addiction is characterized as a chronic, relapsing condition. Thus, it is
imperative for our animal models to incorporate long-term chronic drug admin-
istration. The use of NHPs is particularly advantageous in this regard, because
monkeys can be used in intravenous drug SA studies for many years, and can self-
administer extremely high doses of drug that better model the human condition
compared to rodent models. In male monkeys, we found that long-term cocaine SA
produced robust decreases in D2-like receptor availability as assessed with
[18F]FCP and PET (Nader et al. 2006). The mechanism(s) for this reduction in
D2-like receptor availability may be (1) receptor down-regulation, (2) elevations
in extracellular DA concentrations or (3) both. Without additional studies, it is
impossible to determine which mechanism mediates the effects we are observing.
There have been, however, several studies by multiple groups that can provide
important information related to the mechanisms involved in the reductions in
D2-like availability. Our group has conducted terminal in vitro receptor autora-
diography studies confirming that level of protein (i.e., D2-like receptor density) is
significantly lower in monkeys with a cocaine SA history compared to control
monkeys (Moore et al. 1998; Nader et al. 2002). Concerning the second possible
mechanism, acute cocaine elevates extracellular DA (Czoty et al. 2000), and acute
methamphetamine reduced the apparent affinity of [11C]-raclopride (Doudet and
Holden 2003) consistent with increased interstitial DA levels, but it is unlikely that
chronic cocaine SA produces long-lasting elevations since Bradberry (2000)
reported within-session tolerance to cocaine-induced elevations in DA. Another
method used in conjunction with PET imaging is the co-administration of a ‘‘cold’’
compound that can reduce extracellular DA concentrations, thereby increasing the
likelihood that the assessment of receptor availability will occur under conditions
of low competition with DA. Using baboons, Dewey et al. (1992) conducted
two studies in the same animal on the same day to investigate GABA-mediated
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inhibition of DA release. The first PET study of the day was a baseline measure of
D2-like receptor availability using [11C]raclopride. The second PET study was
preceded by administration of either the benzodiazepine lorazepam or the indirect-
acting GABA agonist gamma-vinyl-GABA (GVG); both compounds should
decrease extracellular DA concentrations. Consistent with their hypothesis,
administration of lorazepam and GVG increased D2-like receptor availability by
nearly 50 and 30%, respectively. The PET studies showing reductions in D2-like
availability following cocaine SA included the use of lorazepam in order to
decrease DA concentrations (Nader et al. 2006).

Up to this point, we could summarize our findings as follows: in males, low
D2-like receptor availability appears to increase vulnerability to cocaine abuse
and that continued cocaine use results in further decreases in D2-like receptor
availability, perhaps developing a spiral cycle toward addiction (Koob and Le Moal
2000). Another question that can be explored with PET involves ‘‘drug seeking’’ vs.
‘‘drug taking’’. Volkow et al. (1993) noted that there was no relationship between
D2-like receptor function and her subjects’ typical cocaine dose, but there was a
significant correlation between D2-like binding potential and duration of cocaine
use. To better explore this relationship, we conducted a study in 12 experimentally
na€ıve male rhesus monkeys in which baseline D2-like receptor availability and DAT
availability was determined in all monkeys prior to cocaine access (Czoty et al.
2007). Monkeys were then trained to self-administer cocaine under a very lean
schedule of reinforcement—a fixed-interval 30 min schedule of 0.03 mg/kg cocaine.
The cocaine dose was low and the contingency was such that the first response after
30 min resulted in a cocaine injection; sessions ended after 2 injections. Thus,
monkeys were ‘‘drug seeking’’ every day, but were not self-administering very high
doses. Monkeys self-administered cocaine under these conditions for approximately
9 weeks and were then rescanned. The mean cocaine intake over that time was
approximately 5 mg/kg. There were no effects of cocaine SA on D2-like or DAT
availability in the caudate nucleus and putamen—two regions that have been shown
to be sensitive to environmental and pharmacological manipulations (e.g., Morgan
et al. 2002; Czoty et al. 2005; Nader et al. 2006). Such findings suggest that during
acquisition, the pharmacological effect of cocaine, and not drug seeking per se, is the
critical determinant of decreases in D2-like receptor availability.

Howell and colleagues have extended the use of PET to examine relationships
between receptor occupancy and the ability of drugs to decrease cocaine SA
(e.g., Lindsey et al. 2004; Howell et al. 2007). In one study (Lindsey et al. 2004),
several drugs that bind to the DAT were substituted for cocaine in rhesus monkeys
trained to SA drugs under a second-order schedule of reinforcement. These same
drugs were also tested for their ability to decrease cocaine SA. In a final experi-
ment, DAT occupancy was measured by administering behaviorally active doses
during a PET study with the DAT ligand [18F]FECNT. These investigators found
that selective DAT inhibitors required high DAT occupancy (between 50% and
90%) to reduce cocaine SA and to function as reinforcers; such information will be
critical for the development of long-acting compounds that reduce cocaine abuse
and that have low abuse liability.
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2.3 Models of Abstinence and Relapse

The previous sections have documented a relationship between D2-like receptor
availability and vulnerability and changes during chronic cocaine exposure.
Of critical relevance is whether these changes in D2-like receptor availability persist
during abstinence. Volkow et al. (1993), using [18F]NMSP, reported significantly
lower D2-like binding potentials in abstinent cocaine abusers compared to control
subjects. These investigators were only able to examine abstinence periods up to
4 months; all subjects had relapsed by then. Although it would be several years later
before a potential inverse relationship between D2-like receptor availability and
vulnerability would be identified, the authors speculated that it was possible the
lower D2-like receptor measures during abstinence were due to a predisposition of
individuals with low D2-like receptor availability to use cocaine, rather than a
consequence of chronic cocaine exposure. The studies described in the previous two
sections indicate that low D2-like receptor availability increases vulnerability to
use drugs and that chronic cocaine use further decreases D2-like receptor function
(in males). The use of NHPs has allowed for long-term study of SA and permits the
study of abstinence beyond the 4 months reported in human cocaine abusers.

Nader et al. (2006) examined recovery of D2-like receptor availability in male
rhesus monkeys that had been self-administering cocaine. In one study, short
access to cocaine reduced D2-like receptor availability, but recovery occurred in
all monkeys within 1–3 weeks. Five animals were studied in abstinence after
1 year of cocaine SA; D2-like receptor availability was reduced by *20% in all
monkeys. For three monkeys, there was complete recovery of [18F]FCP signal
within 3 months of abstinence. However, in two monkeys, there was no recovery
of D2-like receptor availability after 1 year of abstinence. There were no differ-
ences in the amount of cocaine self-administered over the 1 year or in the rate of
cocaine SA between monkeys that showed D2-like receptor recovery and those
that did not. However, there were subtle behavioral differences that may have
predicted a lack of recovery (see Nader et al. 2006). The main point is that the
combination of behavioral pharmacology and PET imaging provided novel and
important information that may guide future research into environmental and/or
pharmacological modifications of D2-like receptor availability.

3 Functional Sequelae of Cocaine Administration

3.1 Blood Flow and Metabolic Responses to Cocaine-Related
Stimuli

Physiological and functional changes can be measured via PET in response to
environmental (e.g., conditioned stimuli) or pharmacological (e.g., cocaine)
challenges that may contribute to repeated drug use, cognitive decline and relapse.
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Howell et al. (2001) trained drug-na€ıve rhesus monkeys to lie still in a head and
body restraint system to allow examination of cerebral blood flow (CBF) in the
awake, unstressed condition. An acute non-contingent cocaine injection increased
cerebral blood flow primarily in the dorsolateral prefrontal cortex (PFC), in a dose-
dependent manner, measured with [15O]H2O-PET (Howell et al. 2002). Further,
pretreatment with the SERT inhibitor alaproclate blocked the cocaine-induced
elevation in CBF (Howell et al. 2002).

Using a within-subject design and FDG-PET, Henry et al. (2010) examined the
effects of a single non-contingent cocaine dose compared to saline, on glucose
metabolism prior to and following a history of cocaine SA in rhesus monkeys. In this
study, cocaine-induced elevations in glucose metabolism were restricted to the PFC
in cocaine-na€ıve monkeys. Following 60 sessions of limited access (1 h) cocaine SA,
the same non-contingent cocaine injection increased glucose metabolism in the PFC
and also striatum (primarily dorsal striatum). Following an additional 60 sessions of
extended access (4 h) cocaine SA, cocaine increased glucose metabolism throughout
the PFC and striatum. This pattern of activation was diminished following 1 month
of cocaine abstinence, compared to the response in the cocaine-na€ıve state. This
study showed a progressive expansion of cocaine’s effects from cortical to meso-
limbic regions with extended access to cocaine in a pattern similar to studies using the
[14C]-deoxyglucose autoradiographic technique (2DG method; see Porrino et al.
2007 for review). However, FDG-PET revealed progressive increases in glucose
metabolism following non-contingent cocaine exposure, whereas results from 2DG
studies showed progressive decreases in these dopaminergic-rich brain regions. The
differences in directional effects may be due to differences in reinforcement schedule,
dose, or timing of drug administration and data collection between studies.

While the previous studies examined non-contingent administration of cocaine,
similar activation patterns were shown when rhesus monkeys were allowed to self-
administer cocaine during PET image acquisition (Howell et al. 2010). In addition
to the PFC and striatum the anterior cingulate cortex (ACC) was metabolically
more active following cocaine SA, a region widely shown to be hypoactive during
executive function tasks in recent cocaine users (e.g., Bolla et al. 2004; Hester and
Garavan 2004; Kubler et al. 2005; Tomasi et al. 2007a, b). Further, when saline
was substituted for cocaine during a subsequent PET scan such that only the
conditioned stimuli (e.g., lights) were present, activation of the dorsomedial PFC
was still present. Brain activation patterns in these NHP studies utilizing awake
PET imaging during cocaine SA or extinction conditions are similar to those
induced by acute cocaine injections (Breiter et al. 1997) or cocaine-related visual
cues (e.g., Wilcox et al. 2011) in humans measured with functional MRI. Such
functional responses to drug-related cues are in part attributed to increased DA
release determined via displacement of [11C]-raclopride and PET imaging in
humans (Volkow et al. 2006). These studies present a neurobiological mechanism
underlying drug stimuli-induced craving that may contribute to compulsive drug
use and relapse in humans. PET studies in NHPs may be utilized to assess novel,
putative pharmacotherapies to block the CNS response to cocaine-related stimuli
during abstinence to aid in relapse prevention.
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FDG-PET can also be used to examine the effects of various environmental
influences on drug-related behavior. For example, preliminary FDG-PET data from
our laboratory have shown that glucose metabolism is differentially altered following
a stressful encounter with an unknown monkey based on social rank. Dominant
monkeys showed increased glucose metabolism in mesocorticolimbic regions and
chose fewer cocaine injections and more food pellets in a food-drug choice procedure
following this encounter, whereas their subordinate counterparts showed reduced
metabolism in mesolimbic regions and an increased preference for cocaine. This
model can be used to assess neurobiological differences influencing subsequent
behavior based on different environmental histories.

3.2 Models of Cognitive Decline

One of the hallmark consequences of cocaine addiction is a disruption of cognitive
behavior. In human cocaine users, fMRI studies complement PET studies and have
provided new opportunities to examine specific brain function underlying cogni-
tive tasks. Recent fMRI studies have shown differences associated with impaired
executive function compared to control groups across cognitive domains such as
behavioral inhibition, cognitive flexibility, updating or working memory, and
measures of impulsivity (Fillmore and Rush 2002; Bolla et al. 2004; Hester and
Garavan 2004; Goldstein et al. 2007, 2010; Woicik et al. 2011). Despite strong
evidence supporting cocaine-induced cognitive impairments, studies cannot dis-
count cognitive predispositions such as heightened impulsivity or risk-taking
behavior that may lead to drug use.

Recent studies have used FDG-PET to identify the substrates underlying cog-
nitive behavior. For example, Porrino et al. (2005) used a delay match-to-sample
(DMS) task as a measure of working memory in NHPs. In this task monkeys
are shown a ‘sample’ image followed by a delay of varying length (1–30 s). The
monkeys are then shown an array of 2–8 images from which they must ‘match’
the one from the sample phase of the task for a juice reward. The task ranges in
difficulty with short intervals and a small number of images during the match
phase (low cognitive load) to long intervals with a high number of images (high
cognitive load). Performance was associated with increases in glucose utilization
in the hippocampal region, dorsal striatum, and the dorsolateral prefrontal cortex.
When cocaine was substituted for juice as the reward, there was a dose-dependent
decline in performance particularly in high-load trials that was associated with
increased activation in the dorsolateral PFC. The basis for the increased activation
was a disruption in the firing patterns of dorsolateral PFC neurons recorded in the
same animals under the same conditions (Hampson et al. 2011).

NHPs can be trained to perform tasks probing specific cognitive domains
known to be impaired in human cocaine users. Following establishment of a
stable cognitive baseline, cocaine SA can be initiated. The effects of acute and
chronic drug exposure, or abstinence from cocaine on cognitive performance can
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be systematically examined, controlling for both intake and duration. Cocaine SA
in monkeys brought about impairments in stimulus discrimination and reversal
learning, response inhibition, measures of impulsivity, and working memory (Liu
et al. 2008, 2009; Porter et al. 2011). In another paradigm of similar design, sleep
deprivation impaired percent accuracy on a DMS task and was accompanied by
reductions in glucose metabolism in working memory-related cortical areas (Porrino
et al. 2005). Administration of the ampakine, CX717 or orexin-A attenuated the
deleterious effects of sleep deprivation on both percent accuracy and glucose
metabolism (Porrino et al. 2005; Deadwyler et al. 2007; Hampson et al. 2009).
Putative cognitive enhancers aimed to attenuate cocaine-induced hypoactive brain
function are also being tested in monkeys and humans. For example, recent cocaine
users showed deficits in an attention task and showed lower activation within the ACC
compared to controls (Goldstein et al. 2010). Following administration of methyl-
phenidate, ACC activity and percent accuracy improved, demonstrating the attenu-
ation of functional alterations underlying cognitive deficits via a pharmacological
treatment. The generalizability of methylphenidate to enhance cocaine-associated
neural and cognitive deficits has yet to be examined across other cognitive domains.

4 Summary

This review has attempted to briefly highlight the use of NHP models of cocaine
addiction and in vivo brain imaging using PET to better understand the neuro-
pharmacology of drug addiction. While we describe key PET studies using DAT
tracers and FDG, the focus on DA D2-like receptors has allowed for an assessment
of a potential trait marker, which was also influenced by environmental, social and
pharmacological variables. D2-like receptor availability influenced vulnerability to
cocaine abuse in a manner that was orderly and quite malleable to environmental
or pharmacological manipulations. Certainly future studies must examine how
other neurotransmitter and neurohormone systems change in concert with brain
DA systems in these NHP models.
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Abstract Studies on hereditary neurological disorders such as familial Alzheimer’s
disease (AD) have revealed abnormalities of pathogenic proteins causative
of neurodegeneration, while molecular initiators of sporadic neuropsychiatric
conditions remain unidentified. Such disorders are characterized by collections of
molecular abnormalities that may be critically involved in synaptic dysfunctions
and other deteriorations in neurons. Diverse classes of radiochemicals designed for
positron emission tomographic (PET) imaging facilitate delineation of mechanistic
links among key molecules in these processes by tracking their spatiotemporal
correlations. This assay technique is of particular utility when applied to rodent
and nonhuman primate models given their suitability for invasive genetic and
pharmacological interventions. In addition, the detection of neurochemical and
neuropathological changes by PET can be examined in laboratory animals when
combined with invasive antemortem and postmortem investigations such as in
vivo microdialysis, electrophysiological and histopathological techniques. This
review primarily covers the use of small animal models of brain disorders using
PET to elucidate etiological molecular cascades to facilitate in turn the search for
diagnostic and therapeutic agents applicable to AD and related disorders in
humans.
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1 Introduction

Researchers have taken advantage of positron emission tomographic (PET)
imaging technologies in both nonclinical and clinical in vivo studies primarily
because they offer an excellent alignment of results between laboratory animals
and humans. This approach also opens an avenue to bidirectional translational
research between bench and clinic through a feedback loop of pathological and
pharmacological information. The limited availability of biopsy specimens and
essential need for assessing penetration of drugs across the blood–brain barrier
lend rationale to the application of PET to central nervous system assays in
humans, while animal studies benefit from the capability of PET to measure
neuronal activities and neurotransmissions and to monitor longitudinally brain
pathologies in the same individuals, thereby enhancing statistical power.

In relation to small laboratory animal research, the latest progress in PET
imaging instruments offer the precise mapping of radiotracer distribution in rodent
brains with an in-plane spatial resolution approximating 1.5 mm (Fig. 1a–d)
(Tai et al. 2005). This technology is of particular benefit to the use of genetically
engineered mice and rats for proving specific interactions between radioligands
and target molecules by overexpressing and/or knocking down such binding
components, and for pursuing pathophysiological events downstream from the
genetic modification. It is also noteworthy that the throughput of PET scans may
be somewhat improved by utilizing mice, as dynamic PET data of four mice can be
acquired in a single session (Fig. 1e). Furthermore, estimation of rate constants for
transfer of a radiotracer between plasma and brain tissue and association with, and
dissociation from, specific and nonspecific binding sites has been successful in
PET imaging of mouse brains on the basis of compartment models requiring a
metabolite-corrected arterial input function (Seki et al. 2008). Effects of neuro-
active drugs possibly influenced by anesthetics are also assessable by small-animal
PET devices with the use of conscious rats (Tokunaga et al. 2009) and mice
(Mizuma et al. 2010). Congenic and inbred rodents with minimal or no genetic
variations tend to produce less interindividual variability in levels of endogenous
components and consequently kinetic parameter values for exogenous tracers than
do primates, including humans. These technical merits notwithstanding, however,
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rodent PET imaging may not be a full replacement for non-human primate assays
prior to clinical applications, in consideration of interspecies heterogeneities of
immunity, life span, higher brain functions and several other biological factors.
Quantitative determination of radioprobe kinetics could be hampered in small
rodents due to ‘mass effects’, which are primarily attributable to the occupancy of
target and off-target binding elements by unlabeled tracer compounds (Hume et al.
1998; Kung and Kung 2005), and are inevitable unless scans with a very small
mass dose are enabled by a profound enhancement of either specific radioactivity
or an increased sensitivity of PET detectors.

Pharmacokinetic characterization of potential diagnostic and therapeutic com-
pounds with PET is generally performed by injecting radiolabeled variants of these
chemicals or measuring competition between test chemicals and established
radioprobes. This assay can be conducted in normal animals if target molecules are
expressed in a physiological condition. More specifically for neurodegenerative
conditions, probes producing positive signals by capturing pathological aggregates
of misfolded proteins/peptides and inflammatory glia can be characterized by the

Fig. 1 Horizontal (a, c) and coronal (b, d) images of wild-type mouse brains acquired by
Hamamatsu SHR7700 (a, b) and Siemens microPET Focus 220 (c, d) scanners with in-plane
spatial resolutions of 2.6 and 1.3 mm, respectively, full-width at half-maximum at the center of
the field of view. Images were generated by averaging dynamic PET data at 0–90 min after
intravenous injection of a radioligand for the D2 dopamine receptor, [11C]raclopride, and are
superimposed on an MRI template. Despite concentrated radioactivity in the Harderian glands
(asterisks), intense in vivo radiolabeling of the striatum (arrows) is detectable with a Focus 220
system. e Simultaneous scanning of four mice with a Focus 220 scanner. Images were constructed
as an average of dynamic data collected at 0–30 min after intravenous injection of [11C]PIB.
Radiotracer uptake in the brain is indicated by arrowheads
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use of model animals with or without genetic modifications. In the interim, these
models are also applicable to evaluations of the capability of radiochemicals for
negative signs of pathologic injuries such as loss of neurons, neuroreceptors,
neurotransmitter transporters and energy metabolism. This approach can be
contrasted with models of psychiatric illnesses, of which positive and negative
biological signs in the brain remain largely elusive or are relatively subtle.
However, PET research on animals together with candidate genetic and other
etiological culprits of mental disorders may reveal neurochemical consequences of
these abnormalities, and such alterations of neurotransmission components are
potentially relevant as endophenotypes of psychiatric diseases (Gottesman and
Gould 2003; Martinez et al. 2001).

2 Visualization of Fibrillar Protein Assemblies

A wide variety of neurodegenerative disorders can be neuropathologically char-
acterized by either extracellular or intracellular deposition of proteinaceous fibrils
(Forman et al. 2004). Senile plaques and neurofibrillary tangles, composed of
amyloid b peptide (Ab) and tau protein, respectively, are histopathological hall-
marks in Alzheimer’s disease (AD), while neuronal and glial tau inclusions feature
in a subset of non-AD neurodegenerative diseases collectively referred to as
tauopathies (Higuchi et al. 2002a). Genetic mutations of a precursor of Ab,
amyloid precursor protein (APP), and catalytic subunits of an enzyme responsible
for Ab production, presenilin-1 (PS1) and presenilin-2, are causative of familial
AD (Chartier-Harlin et al. 1991; Rogaev et al. 1995; Sherrington et al. 1995), and
tau gene mutations have been discovered in family members of hereditary non-AD
tauopathy termed frontotemporal dementia with parkinsonism linked to chromo-
some 17 (FTDP-17) (Hutton et al. 1998; Poorkaj et al. 1998; Spillantini et al.
1998), indicating pivotal roles of Ab, tau and other fibrillogenic molecules in the
neurodegenerative pathway. The demonstration in autopsied brains that accumu-
lation of senile plaques and neurofibrillary tangles is initiated decades before the
symptomatic onset of AD (Price and Morris 1999) supports the significance of
these fibrillar lesions as primary targets of early diagnostic and disease-modifying
therapeutic approaches. However, it is yet to be clarified whether amounts of total
aggregates or certain assembly forms are intimately associated with neurotoxicity.

A notable property of these pathological fibrils is that constituent proteins are
homologously oligomerized and polymerized through formation of a b-pleated
sheet as a secondary structure (Berriman et al. 2003). Radiolabeled small molecules
binding to b-sheets are accordingly applied to the visualization of such aggregates
in living brains (Cai et al. 2007). Although the vast majority of b-sheet ligands
exhibit high in vitro affinity for diverse self-assemblies of synthetic Ab peptides and
recombinant tau proteins, only a restricted subgroup of these compounds is capable
of interacting with tau depositions in the brain (Okamura et al. 2005; Maruyama
et al. 2009; Fodero-Tavoletti et al. 2011). In addition, selectivity of b-sheet ligands
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for subspecies of Ab and tau is frequently indicated by comparative studies in
diseased patients and animal models. High-contrast imaging of senile plaques in
AD patients by PET with 11C-labeled Pittsburgh Compound-B ([11C]PIB) was first
reported by Klunk et al. 2004. However, other more recent [11C]PIB-PET studies
have failed to detect Ab deposits with a high contrast in APP transgenic mice
(Toyama et al. 2005), which overexpress APP and developed amyloid (Tg2576;
Hsiao et al. 1996), as well as mice doubly transgenic for mutant APP and PS-1
(Klunk et al. 2005), which show accelerated Ab fibrillogenesis (Holcomb et al.
1996). By contrast, we have found detectable plaque lesions in several different
mouse models using [11C]PIB-PET, including Ab deposition in an aged APP
transgenic line (Sturchler-Pierrat et al. 1997; Maeda et al. 2007a; Fig. 2). Indeed,
a longitudinal PET assay of the same APP23 mice illustrated intensification of
plaque signals with aging (Maeda et al. 2007a). By contrast, in vivo binding of
[11C]PIB to aggregated Ab in Tg2576 and APP/PS1 double transgenic mice was
only marginally detectable in animals of 24 months of age (Fig. 2).

Fig. 2 Preferential binding of [11C]PIB to AbN3pE aggregates characteristic of AD pathologies.
Scale bars indicate binding potential for amyloid deposits in an AD patient and transgenic (Tg)
mice modeling plaque formation, including APP23 (23 months old), Tg2576 (23 months old)
and double PS-1/APP (8 months old) transgenics. The human PET image is superimposed on an
individual MR image, and mouse PET images on an MRI template. Frozen sections of human
and mouse brains used for in vitro autoradiography with [11C]PIB were subsequently used for
immunohistochemical mapping of AbN3pE and N-terminally intact Ab, AbN1D
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Binding potential based on specific binding compared to nondisplaceable
uptake for [11C]PIB was quantified with dynamic PET scan data, and was
approximately 0.2 and 0.6 in the neocortex at 18 and 26 months of age, respec-
tively, being linearly proportional to age during this period. These values much
exceeded those in Tg2576 (*0.3 at 26 months) and APP/PS1 double transgenic
(\0.1 at 9 months) mice, but were far below levels in the neocortex of AD
patients, which reportedly approximated 1.3–1.5 in the frontal cortex (Price et al.
2005; Lopresti et al. 2005). Moreover, binding of [11C]PIB to the cerebral cortices
was shown to reach a plateau at a prodromal stage of AD often referred to as mild
cognitive impairment (MCI) (Engler et al. 2006), unlike the continuous elevation
of [11C]PIB signals throughout the lifetime of APP23 mice (Maeda et al. 2007a).
The distinct characteristics of amyloid ligand binding among different species and
transgenic strains were overtly discrepant with the biochemical results demon-
strating that amounts of total Ab and two major C-terminal variants of Ab ending
at Val40 (Ab40) and Ala42 (Ab42) in insoluble protein fractions extracted from
brains of all examined APP transgenic lines were equally abundant and were
greater than those in AD patients (Kawarabayashi et al. 2001; Klunk et al. 2005;
Maeda et al. 2007a).

We subsequently sought to identify the main component(s) of binding sites for
[11C]PIB, as accumulation of such elements has been hypothesized to be unique to
the continuum from pathological aging to AD in humans (Findeis 2007; Gunn
et al. 2010). Combined autoradiographic and immunohistochemical analyses were
performed to assess the association of N-terminal and C-terminal heterogeneities
of Ab with [11C]PIB binding sites. The levels and distribution of an Ab subtype
lacking two N-terminal amino acid residues and beginning with pyroglutamate
(pGlu3), AbN3pE, were found to correlate with those of [11C]PIB signals (Fig. 2)
(Maeda et al. 2007a). As expected from biochemical assays of brain homogenates,
Ab40 and Ab42 were not consistently co-localized with binding sites for [11C]PIB
in humans and APP transgenics. The preferential binding of [11C]PIB to AbN3pE
was further supported by an in vitro binding assay with synthetic Ab peptides
(Maeda et al. 2007a). Thus, we postulated that this N-terminal variant of Ab was a
primary element of binding components for [11C]PIB.

The significance of AbN3pE as a major component of AD plaques was
documented by histopathological studies (Saido et al. 1995), followed by reports
by different groups demonstrating fibrillogenic and neurotoxic propensities of this
Ab subtype (He and Barrow 1999; Russo et al. 2002; Schilling et al. 2006), and
biochemical assays of AD and transgenic mouse brains (Kawarabayashi et al.
2001). Incorporation of the PS1 mutation into Tg2576 mice induced no signal
intensification in [11C]PIB-PET despite an enhanced accumulation of total Ab and
Ab42, which might amplify disproportionate deposition of N-terminally unpro-
cessed Ab to AbN3pE. Such PIB-negative Ab plaques are also characteristic of
Tg2576 and APP23 mice at 9–15 months, and correspond to the transition from
normal to pathological aging of human brains. Similarly, linear increases of
[11C]PIB-PET signals with aging in these mouse models at 15 months or older
resembles the progression of pathological aging toward MCI. This notion may be

50 M. Higuchi et al.



justified by the fact that no marked neuronal loss is observable in most APP
transgenic lines during their lifetime (Van Dam et al. 2005). Accumulation of
AbN3pE and emergence of [11C]PIB signals predate overt cognitive impairment in
humans (Mintun et al. 2006; Rowe et al. 2010), which contrasts to the antecedence
of abnormal electrophysiological and behavioral phenotypes to the formation of
AbN3pE- and [11C]PIB-positive plaques in APP transgenics (Huang et al. 2006).
In these contexts, APP transgenic models may not be of utility in elucidating roles
played by Ab subtypes deleterious to neuronal functionality and viability in aged
human brains.

PET studies in different animal species and transgenic strains have also pro-
vided insights into the development of animal models with Ab pathologies. Ab is
primarily degraded by endopeptidases such as neprilysin (Iwata et al. 2000), while
a small subset of Ab undergoes N-terminal truncation and modification resulting in
production of AbN3pE (Cynis et al. 2008). This N-terminal processing step is a
minor pathway of Ab metabolism requiring decades for an accumulation of
AbN3pE to a [11C]PIB-positive level, but may be accelerated in the event of
downregulated neprilysin activity (Miners et al. 2008). To test this notion, Saido
and coworkers have recently established APP23 mice deficient in neprilysin, and
their preliminary results indicate a selective increase in AbN3pE in these animals
relative to APP23 mice. Consistent with this biochemical finding, our pilot
[11C]PIB-PET assays have illustrated augmented radioligand binding to the neo-
cortex and hippocampus of the double mutant mice, supporting the views that
[11C]PIB preferentially binds to AbN3pE aggregates, and that manipulation of Ab
metabolism could lead to advances in the in vivo modeling of AD through the use
of genetically engineered animals.

A number of researchers have developed PET ligands to visualize fibrillar tau
lesions in vivo (Okamura et al. 2005; Maruyama et al. 2009; Fodero-Tavoletti et al.
2011). However, rather disappointedly, only a limited class of b-sheet ligands
exhibit high-affinity for tau inclusions. An 18F-labeled amyloid probe, 2-(1-{6-[(2-
[18F]fluoroethyl)-(methyl)amino]-2-naphthyl}ethylidene)malononitrile ([18F]FD
DNP), was developed to bind to both plaques and tangles in AD brains (Small et al.
2006), although it remains inconclusive whether [18F]FDDNP provides a sufficiently
sensitive detection of AD pathologies at an early stage (Thompson et al. 2009).
In addition, compounds reported to possess high selectivity for tau lesions versus Ab
deposits (Okamura et al. 2005; Maruyama et al. 2009; Fodero-Tavoletti et al. 2011)
have not been used in humans. Since the concurrence of Ab and tau depositions in AD
brains hampers separate in vivo assessments of selective binding of radioprobes into
Ab and tau pathologies, animals developing tau inclusions may serve to establish the
reactivity of candidate chemicals with their specific targets. Multiple lines of mice
transgenic for human tau with FTDP-17 mutations were found to harbor tau aggre-
gates typically stained with fluorescent chemicals such as thioflavin-S and 1-fluoro-
2,5-bis(3-carboxy-4-hydroxystyryl)benzene (FSB) (Fig. 3) (Lewis et al. 2000;
Higuchi et al. 2002b; Santacruz et al. 2005; Yoshiyama et al. 2007). However, the
majority of b-sheet ligands capable of capturing AD neurofibrillary tangles do not
bind to these transgenic tau lesions, suggesting a structural distinction between tau
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assemblies generated in AD and mouse brains (Fig. 3) (Okamura et al. 2005;
Maruyama et al. 2009). This discrepancy might be attributed to the composition of
tau isoforms incorporated in fibrillar aggregates, as most transgenic mouse strains
overexpress a single tau isoform with three or four microtubule-binding repeat
domains, unlike the assembly of all six tau isoforms into fibrils in AD (Higuchi et al.
2002a). Consistent with this notion, many tangle-binding compounds do not show
affinity for intraneuronal and intraglial tau inclusions in the majority of non-AD
tauopathies, including progressive supranuclear palsy, Pick’s disease and cortico-
basal degeneration (Fig. 3). Moreover, there is a marked overlap of compounds
reactive with tau deposits in transgenic mouse models and non-AD neurodegener-
ative diseases (Maruyama et al. 2009). Hence, utilization of mice modeling tauop-
athies may facilitate the pharmacodynamic and pharmacokinetic evaluation of
candidate imaging agents targeting a wide spectrum of tau pathologies and conse-
quently enabling differentiation among diverse tauopathies including AD. Indeed,
several tau transgenic mouse lines have been employed for evaluating putative tau-
binding radioligands by PET (Maruyama et al. 2009; Fodero-Tavoletti et al. 2011).
However, clinical PET studies are needed to establish in vivo homologies of tau

Fig. 3 Fluorescence staining of frontal cortex slices from patients with AD and Pick’s disease
(PiD) and brain stem slices from a PS19 tau transgenic mouse. Separate samples were reacted
with FSB and a new tau ligand designated as Probe A, and were doubly labeled with a tau-
selective compound, BF-170, and monoclonal antibody against phosphorylated tau, AT8. Tau
inclusions in all tested samples are illuminated with FSB and Probe A, while BF-170 only
recognized tau lesions in AD
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lesions in AD, non-AD tauopathies and transgenic mouse models. It should also be
noted that analogs of tau probes could act as anti-aggregation drugs by blocking
b-sheet formation (Taniguchi et al. 2005), a possibility that requires further rigorous
evaluation in rodent models of tau pathology.

3 Imaging Biomarkers for Immune Responses
to Neuropathologies

Immune signaling in the CNS is regulated by signaling between neurons and glia
(Amor et al. 2010; Kettenmann et al. 2011). Indeed, activation of microglia and
astrocytes is commonly observed in diverse neuropathological conditions
(Eikelenboom et al. 2006; Block et al. 2007). The main role of glial cells appears
to involve the removal of toxic proteinaceous deposits (Sawada 2009), and appear
largely dependent on glial subpopulations and types, and the severity and stages of
disorders (Maeda et al. 2007b; Serrano-Pozo et al. 2011). Activated microglia are
known to express 18-kDa translocator protein (TSPO, also known as peripheral
benzodiazepine receptor) at a high level, and different classes of low-molecular-
weight chemicals have been applied to PET imaging of TSPO in living animal
models and humans (Banati et al. 2000; Cagnin et al. 2001; Ouchi et al. 2005;
Maeda et al. 2007a, b; Rojas et al. 2007). In addition, TSPO is upregulated in
astrocytes responding to experimental neuronal injuries, such as ischemia and
ethanol-induced tissue damages in rats (Chen et al. 2004; Maeda et al. 2007a, b;
Rojas et al. 2007). Our recent work indicated that TSPO upregulation occurred in a
profound manner in neurotoxic microglia contacting neurons and protective
astrocytes with an enhanced production of glial cell line-derived neurotrophic
factor (Ji et al. 2008). In line with this finding, tau transgenic PS19 mice devel-
oping significant neuronal loss display TSPO positivity in microglia (Yoshiyama
et al. 2007; Ji et al. 2008). By contrast, APP23 mice, which exhibit an upregulation
of astrocytic TSPO, do not develop abundant plaques and neuronal loss (Fig. 4)
(Ji et al. 2008; Maeda et al. 2011). The basis for this finding likely reflects the fact
that TSPO-PET signals in PS19 mice are more intense than those in APP23 mice
(Fig. 4), and become detectable before the onset of neuronal loss (Yoshiyama et al.
2007; Maeda et al. 2011). Pronounced loss of neurons and high-level expression of
TSPO in microglia have also been observed in a transgenic mouse line, which
overexpresses the mutant human APP gene, resulting in the accumulation of
oligomeric Ab in neurons (Tomiyama et al. 2010). However, increased TSPO
follows neuronal death in these mice, unlike the earlier onset of TSPO-positive
microgliosis prior to the occurrence of neuronal loss in PS19 mice (Maeda et al.
2011). Moreover, suppression of TSPO-positive neuroinflammation in PS19 mice
by oral administration of an immunosuppressant has been reported to attenuate the
deposition of insoluble, hyperphosphorylated tau proteins and loss of neurons
(Yoshiyama et al. 2007). These PET and neuropathological data imply that tau
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pathology is a strong inducer of dysfunctional microgliosis associated with TSPO
upregulation.

In light of the above findings, it is conceivable that TSPO signals are intimately
correlated with tau lesions in patients with neurodegenerative disorders. This view
is supported by immunohistochemical localization of TSPO to microglia in the
vicinity of tau aggregates in AD and non-AD tauopathy brains (Maeda et al. 2011).
TSPO was also documented to increase in AD patients (Fig. 4) (Cagnin et al.
2001; Yasuno et al. 2008) and asymptomatic carriers of tau gene with an FTDP-17
mutation (Miyoshi et al. 2010) as assessed by PET with TSPO radioligands,
[11C]PK-11195 and [11C]DAA1106. However, the elevation of binding potential
for TSPO in AD was only 20–30% of the baseline level, and was detected in
extensive brain regions, distinct from the spatial distribution of tau and Ab
depositions. Binding potential for TSPO in the hippocampus of aged PS19 mice
was approximately 3-fold relative to normal mice imaged with an analog of
DAA1106, [18F]fluoroethyl-DAA1106, and 5–6-fold with a relatively new ligand,
[11C]Ac5216 (Maeda et al. 2011). This discrepancy of tau-induced changes of
TSPO between humans and mouse models may be accounted for by the high signal
in control scans. Such ‘normal’ binding of the TSPO radioprobe is also abundant in

Fig. 4 Cellular localization of TSPO in neuroinflammatory conditions with or without overt
neuronal loss. (Top panels) Double immunofluorescence staining of cortical or hippocampal
sections demonstrating overlap of TSPO signals with astrocytic marker, glial fibrillary acid
protein (GFAP), in an APP23 mouse and with microglial marker, OX42, in PS19 mouse and AD
patient. (Middle panels) In vivo T1-weighted coronal magnetic resonance images containing the
hippocampus (outlined by dotted lines). Marked hippocampal atrophy is observed in PS19 mouse
and AD patient. (Bottom panels) Coronal PET images of TSPO superimposed on individual MR
images displayed in the middle panels. Images were generated by averaging dynamic scan data at
0–60 min after injection of [18F]fluoroethyl-DAA1106 in mice and at 0–90 min after injection of
[11C]DAA1106 in humans. PS19 mouse exhibits a notable increase in TSPO signals, exceeding
the changes in APP23 mouse. TSPO is also upregulated in extensive regions of the AD brain
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monkeys relative to rodents, and is displaceable by co-administration of nonra-
dioactive ligands (Maeda et al. 2004; Zhang et al. 2007). Accordingly, there is a
possibility that additional cell types express TSPO in normal primate brains, and
insights into TSPO induction gained from mouse models of neuroinflammation
should be carefully interpreted in light of these findings.

In addition to TSPO, a number of other inflammatory biomarkers are also
applicable to visualization and analysis by PET, including cyclooxygenases
(de Vries et al. 2008; Shukuri et al. 2011) and type 2 cannabinoid receptors
(Fujinaga et al. 2010). However, there is a paucity of information about immu-
nohistochemical positivity for these molecules in diseased states relevant to AD.
Thus, future research should be directed toward the investigation of neuroin-
flammatory processes using PET ligands for non-TSPO biomarkers.

4 Neurochemical Profiling and Neuronal Viability

Dysfunctional neurotransmission is the likely consequence of neurotoxic protein
aggregation in neurodegenerative disorders and undoubtedly contributes to the
symptomatic manifestation of such disorders. PET investigations of neurotrans-
mitter systems in living brains support the evaluation of symptomatic treatments,
which currently are the only pharmacotherapeutic approaches available to clini-
cians (Mangialasche et al. 2010; Gárdián and Vécsei 2010). Optimal doses of
drugs acting on neuroreceptors and neurotransmitter transporters have been esti-
mated previously by quantifying the occupancy of these targets in vivo relative to
their concentration in plasma (Saijo et al. 2009). Plasma concentration of a drug
yielding 50% of target occupancy in the brain (EC50) is a representative index for
its potency. The utility of this approach is reflected by the high resemblance of
EC50 values in humans and rodents reported recently for several radioligands
(Saijo et al. 2009). However, it is noteworthy that high-affinity PET radioligands
may occupy a considerable percentage of their specific binding sites, impeding
accurate quantification of the occupancy by therapeutic agents (Hume et al. 1998;
Klunk et al. 2005). To offset this problem it is necessary to reduce the mass of
injected radiochemical by increasing the specific radioactivity coupled with the
use of highly sensitive PET cameras.

Although in its infancy previous PET research in animals provides a platform for
investigating neurotransmitter function in animal models of neurodegenerative
disorders. Such work has gained momentum from in vitro autoradiographic imaging
of brain slices, as exemplified by our studies in mice heterozygously deficient in
calcium-calmodulin-dependent protein kinase IIa (Yamasaki et al. 2008). Such
mice display aggressive behaviors and exaggerated infradian rhythms together with
altered levels of dopamine, serotonin and glutamate receptors in the hippocampus
and other brain regions (Yamasaki et al. 2008). Changes in the synaptic concen-
tration of neurotransmitters are detectable if occupancy of binding sites by
endogenous ligands can be displaced by PET radioligands with appropriate affinity
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(Fig. 5a) (Laruelle 2000). This ‘endogenous blocking’ effect can be validated by
measuring extracellular levels of neurotransmitters with in vivo microdialysis under
experimental conditions similar to those used for PET scanning. We have shown
following administration of the psychostimulants amphetamine and methamphet-
amine in rats and monkeys that there is an approximately 10-fold increase
in extracellular dopamine concentration in the striatum (Fig. 5b), which is
accompanied by a near 20% decrease in the binding potential of the D2 receptor
agonist radioligand, (R)-2-[11C]methoxyl-N–n-propylnorapomorphine ([11C]MNPA)
(Fig. 5c, d) (Seneca et al. 2008; Tokunaga et al. 2009). Notably, the decline is less
prominent with the use of dopamine receptor antagonists such as [11C]raclopride
since endogenous dopamine is less effective at competing at dopamine receptor

Fig. 5 PET detection of neurotransmitter release and signaling between different neurotrans-
mitter systems. a Availability of neuroreceptors at baseline (left) and following stimulation of
neurotransmitter release (right). These endogenous ligands compete with exogenous radiotracers
for agonistic binding sites. b Extracellular dopamine concentrations measured in microdialysis
samples obtained through a probe inserted into rat striata. The 10-fold increase in dopamine
induced by the intravenous injection of methamphetamine (MAP) is profoundly attenuated by
pretreatment with an antagonist for the type 5 metabotropic glutamate receptor, MPEP. c Coronal
PET images of D2 DA receptors in a conscious rat under experimental conditions identical to the
microdialysis assays. The binding of the D2 receptor agonist radioligand, [11C]MNPA, is
noticeably suppressed by endogenous competitors following MAP injection, an effect reversible
by administration of MPEP prior to the MAP treatment. PET images are superimposed on an MRI
template. d Horizontal [11C]MNPA-PET data showing binding potential for D2 DA receptors
in a conscious monkey at baseline and following administration of MAP. PET images are
superimposed on individual MR images
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antagonist binding sites (Seneca et al. 2008). Physiological stimuli may lead to less
manifest changes in synaptic dopamine levels, and resultant alterations of PET
ligand binding might be below test–retest variabilities of the assay setting. Despite
this limitation, relatively small increases in neurotransmitter release are likely to
trigger a notable reduction in radiotracer binding potentials by promoting internal-
ization of neuroreceptors, rendering binding components less accessible by the
exogenous ligands (Laruelle 2000).

Combined PET, microdialysis and electrophysiological studies in experimental
animals also enables an assessment of ‘crosstalk’ between different neurotrans-
mitter systems. Consistent with this view, the aforementioned decline of radioli-
gand binding to D2 receptors induced by methamphetamine in monkeys and rats
was found to be reversed by the co-administration of the type 5 metabotropic
glutamate receptor (mGluR5) antagonist, 6-methyl-2-(phenylethynyl)pyridine
(MPEP) (Tokunaga et al. 2009), suggesting a modulatory role of glutamate and
mGluR5 in the regulation of dopamine neurotransmission. To circumvent the
effects of a general anesthetic agent on such processes, we have recently developed
a PET protocol to investigate neurotransmitter function in awake primates and
rodents (Tokunaga et al. 2009). This approach has now been advanced using a
skull-mounted PET system to monitor behavior in awake, freely moving animals
(Schulz et al. 2011). Such developments will undoubtedly have a major bearing on
the coupling of PET with animal behavioral models of neurodegenerative and
neuroinflammatory diseases.

In addition to imaging of neurotransmitter release, neuroreceptor and neuro-
transmitter transporters, PET can be used to investigate regional brain glucose
metabolism using with the tracer [18F]fluorodeoxyglucose (FDG). Uptake of
FDG in the brain and its regionality are profoundly affected by the use of general
anesthetic agents (Toyama et al. 2004), Nevertheless, current methodologies
allow PET assays of monkeys, rats and mice without anesthesia (Obayashi et al.
2001; Tokunaga et al. 2009; Mizuma et al. 2010). However, it is yet to be
clarified whether neuronal activity in a resting state with minimal stimuli can be
robustly evaluated in animal models by FDG-PET. Our preliminary work has
indicated that glucose metabolism remains unchanged in the hippocampus of
PS19 tau transgenic mice until atrophy of this region becomes observable by
volumetric MRI scans (Hattori et al. 2009). Thus, FDG uptake at baseline may
reflect neuronal viability and the number of surviving neurons and there may be
considerable compensation in this capacity. Similarly, diminution of glucose
metabolism is less pronounced than the increases in neuroinflammatory TSPO
signals in a rat model of traumatic brain injury (Yu et al. 2010). A parsimonious
explanation for the lack of sensitivity of FDG-PET in such models is that
attendant increases in glucose utilization by activated astrocytes may override
more subtle reductions in metabolism caused by neuronal loss (Magistretti and
Pallerin 1996; 1999).
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5 Conclusion

The entire pathological cascade in neurological disorders can be monitored in
living animal models by visualizing the accumulation of putative culprit proteins
and peptides, dysregulation of neurotransmission, and intermediate molecular
events linking proteinopathy, synaptopathy and neuronal death. PET offers the
significant advantage of performing multiple scans in the same subject to reveal
the time course of pathogenesis as well as the onset of disease-related behavioral
and cognitive phenotypes. The close face and construct validity of animal models
of AD provides an additional impetus for comparative interspecies PET research.
The investigation of neuroreceptors by PET to infer changes about neurotrans-
mitter release is a promising avenue of research to discover anciliary biomarkers
and therapeutic targets relevant to AD and other neurodegenerative disorders.
However, work is needed to establish whether PET-visible markers related to
neurotransmission are robust endophenotypes in this context. The parallel appli-
cation of invasive (e.g. in vivo microdialysis) and non-invasive (e.g. PET) neu-
rochemical imaging techniques in awake, freely moving animals is expected to
reveal new insights into the neurochemical basis of synaptic pathophysiology and
its pharmacotherapeutic modification. Application of this experimental paradigm
to genetically engineered animal models should eventually lead to the identifica-
tion of pathological mechanisms upstream of psychiatric disease symptoms.
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Neural and Behavioral Endophenotypes
in ADHD

Natalia del Campo, Ulrich Müller and Barbara J. Sahakian

Abstract In recent years, descriptive symptom-based approaches of attention
deficit hyperactivity disorder (ADHD) have been increasingly replaced by more
sophisticated endophenotype-based strategies, better suited to investigate its
pathophysiological basis, which is inherently heterogeneous. Measurements
derived from neuroimaging techniques such as positron emission tomography
(PET) and magnetic resonance imaging (MRI) constitute endophenotypes of
growing interest, capable of providing unprecedented windows on neurochemical
and neuroanatomical components of psychiatric conditions. This chapter reviews
the current state of knowledge regarding putative neural and behavioral endo-
phenotypes of ADHD, across the lifespan. To this end, recent evidence drawn from
molecular and structural neuroimaging studies are discussed in the light of widely
accepted neuropsychological and pharmacological models of ADHD.
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1 Introduction

Attention deficit/hyperactivity disorder (ADHD) is an early onset neurobehavioral
disorder characterized by symptoms of inattention, impulsivity and/or hyperac-
tivity (Biederman 2005). The presence of at least six symptoms in either domain
can result in different phenomenological subtypes, namely predominantly inat-
tentive type, predominantly hyperactive/impulsive type and combined type. With
about 3–10% of children affected worldwide, ADHD is the most prevalent
pediatric disorder (Burd et al. 2003; Faraone et al. 2003; Ford et al. 2003; Solanto
2001). Follow-up studies have shown that some symptoms persist into adulthood
in 30–60% of affected children (Faraone and Biederman 2005), leading to the
recent reconceptualization of the disorder as a lifespan condition (Barkley 1998).
In adulthood, ADHD can be highly debilitating, being often associated with
substance abuse, depression, unemployment and criminal offenses when left
untreated (Biederman et al. 2006; Faraone and Biederman 2005; Kessler et al.
2006; McGough et al. 2005; Molina et al. 2009; Murphy and Barkley 1996).

Without necessary or sufficient symptoms, behavioral heterogeneity is a
defining characteristic of ADHD. This heterogeneity might result either from
genetic heterogeneity in pathogenetic mechanisms, or from differences across
patients in severity of symptoms along an underlying continuum. In recent years,
descriptive symptom-based approaches in ADHD have been increasingly replaced
by more sophisticated models based on endophenotypes, better suited to encap-
sulate this heterogeneity and investigate its hypothesized pathophysiological basis
(Castellanos and Tannock 2002; Doyle et al. 2005). The term ‘‘endophenotype’’ as
it is commonly used in psychiatry refers to a phenotype that (a) is more proximal
to the etiology of a disorder than its clinical symptoms and (b) shares one or more
of the same susceptibility genes with the condition it subtends (Almasy and
Blangero 2001; Gottesman and Gould 2003). One of the key features of biologi-
cally based endophenotypes is that their genetic basis is less complex than that of
the disorder itself, due to their relative proximity to gene actions. As a result, they
confer greater statistical power to identify genetically driven neurobiological
mechanisms underlying the clinical manifestation of psychiatric conditions.
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Neuroimaging measurements constitute endophenotypes of great interest,
capable of providing unprecedented windows on the neurobiology of psychiatric
conditions. Different neuroimaging techniques enable different types of research
questions to be investigated in vivo: For example, magnetic resonance imaging
(MRI) provides information about morphological aspects of the brain, such as
brain tissue density or connectivity, while positron emission tomography (PET)
and single photon emission computed tomography (SPECT) allow the direct
assessment of neurotransmitter systems in vivo, through the application of
radioactively labeled tracers that bind to or are metabolized by specific neuro-
chemical markers. Objective neuropsychological measurements constitute a fur-
ther type of endophenotypes, with the added advantage that they are cheaper and
easier to implement relative to neuroimaging paradigms.

The interest in identifying and characterizing ADHD endophenotypes of
behavioral, anatomical and neurochemical nature is two-fold. Firstly, this
approach may prove fruitful in promoting our understanding of the precise
neurobiological mechanisms underlying the disorder and its treatment, thus
opening the possibility of developing optimized behavioral and pharmacological
treatment solutions for affected patients. Secondly, compared to clinical symp-
toms, endophenotypes are better suited to be used as quantitative trait loci in future
ADHD linkage and association studies, given their relative proximity to the
underlying biology in the chain of events leading from gene to behavior. The latter
point is particularly stimulating because decades of effort to map the genetic
underpinnings of ADHD (conceived as the collection of traits falling under its
broad diagnostic umbrella) has yielded disappointing results. Yet, like most major
psychiatric syndromes, ADHD is known to be highly heritable (see below).

This chapter reviews the present state of knowledge regarding putative neural
and behavioral endophenotypes of ADHD. To this end, we integrate data from the
following research areas: neuropsychology, psychopharmacology and molecular
and structural neuroimaging in ADHD. Given that co-segregation with the asso-
ciated illness is an inherent characteristic of endophenotype, we open the chapter
with a brief overview of the literature on the genetics of ADHD.

2 Genetics

Based on family studies indicating heritability estimates of ADHD between 0.6
and 0.9 (Biederman et al. 1990; Durston 2008), genetic factors are thought to play
an important role in the etiology of ADHD. Exploratory genome-wide studies have
to date failed to discover one single gene contributing substantially to the mani-
festation of the disorder (Franke et al. 2009, 2011), implying that multiple genes
are involved, each contributing only a small portion of the variance of ADHD
symptoms (Kuntsi et al. 2006b).

Over the past 15 years, there has been a considerable effort to examine specific
genes based on their function and perceived etiological relevance, resulting in a
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large and often conflicting literature (Gizer et al. 2009). The two most frequently
studied and replicated candidate genes for ADHD are the dopamine (DA) receptor
type 4 (DRD4) (Brookes et al. 2006; LaHoste et al. 1996; Swanson et al. 1998) and
the DA transporter gene (DAT1) (Brookes et al. 2006; Cook et al. 1995; Gill et al.
1997). Both of these candidate genes appear to represent individually only a weak
risk factor whose effects are thought to unfold across development in the presence
of complex interactions with other genes and adverse environmental factors
(Plomp et al. 2009). Other genes for which significant associations with ADHD
have been described include the noradrenergic (NA) transporter gene SLC6A2
(Kim et al. 2006) and the alpha 2 adrenergic receptor gene ADRA2A (Gizer et al.
2009), both of which are involved in the adrenergic pathway. Additionally, the
ADRA2A, catechol-O-methyltransferase, DA receptor type 5 and NA transporter
protein 1 genes have been significantly associated with stimulant medication
response (Froehlich et al. 2010).

3 Cognitive Markers of ADHD

In their seminal comprehensive reviews, Nigg (2005) and Willcutt (2005) com-
pared the relative magnitude of ADHD case-control differences reported in the
literature on a variety of cognitive domains (reviewed in Swanson et al. 2011a).
The authors concluded that: (a) only few ADHD children showed pervasive def-
icits across neuropsychological tests, (b) an underlying executive dysfunction was
not a necessary or sufficient condition in the manifestation of ADHD. These
findings contributed to the shift from the traditional core deficit view to multiple
deficit theories, representing a turning point in the literature of cognitive deficits of
ADHD (Swanson et al. 2011a). In recent years, computerized batteries of neuro-
psychological tests have been used to fully characterize the cognitive profile of
ADHD, such as the Cambridge Neuropsychological Test Automated Battery
(CANTAB) (Chamberlain et al. 2010) and the Maudsley Attention and Response
Suppression (MARS) (Rubia et al. 2007). A meta-analysis of case-control differ-
ences observed on prefrontal CANTAB tasks in children and adults with ADHD
revealed medium-large deficits in performance in response inhibition, working
memory and executive planning, and a small decrement in attentional set-shifting
(Chamberlain et al. 2010), though deficits have also been observed in tests of
temporal and parietal lobe function, such as pattern recognition and delayed
matching to sample (Swanson et al. 2011a).

A distinct set of cognitive deficits often described in ADHD involves the
abnormal processing of reward (e.g. delay aversion) and salience (Luman et al.
2005; Sonuga-Barke 2003). The simultaneous existence of deficits in top-down
cognitive control processes and motivational processes (e.g. Gupta et al. 2011)
supports the aforementioned multiple pathway models of ADHD pathophysiology
(Nigg 2005; Sonuga-Barke 2003). Underlying alterations of distributed fronto-
striato-cerebellar circuits, one of the best replicated findings in ADHD constitute a
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likely neural substrate for the deficits observed in prefrontal-dependent top-down
control processes, including executive functions and attention (Barkley 1997;
Bush et al. 2005; Kuntsi et al. 2006a; Paloyelis et al. 2007; Pennington and
Ozonoff 1996). On the other hand, a disruption of meso-cortico-limbic networks is
thought to underlie motivational abnormalities in ADHD (Castellanos et al. 2006;
Sonuga-Barke 2003).

4 Pharmacological Treatment

The psychostimulants methylphenidate (MPH) and amphetamine (AMPH) con-
stitute the two main therapies of choice for the treatment of ADHD (Wilens 2008).
Both drugs increase extra-synaptic DA and NA levels, albeit via different mech-
anisms: While both inhibit the reuptake of DA and NA, AMPH additionally
increases the release of these neurotransmitters into extraneuronal space and
inhibits the catabolic activity of monoamine oxidase (Kuczenski and Segal 1975).

Evidence from neuroimaging research suggests that the abuse potential
of psychostimulants is mediated by subcortical DA effects (Volkow 2006).
Atomoxetine, a selective noradrenaline reuptake inhibitor with limited effects on
subcortical DA mechanisms, was recently approved by the FDA for the treatment
of ADHD (Faraone et al. 2005). In animals, systematic administration of this drug
was found to increase both cortical NA and DA levels several-fold (Bymaster et al.
2002). Due to its limited abuse potential, atomoxetine may thus offer clinical
advantages, particularly for those patients who do not respond to stimulant treat-
ment, estimated to constitute 30% of all ADHD pediatric patients (Madras et al.
2002). Modafinil, though not currently FDA-approved for the treatment of ADHD,
also appears to exert therapeutic effects (Greenhill et al. 2006). The neurobio-
logical mechanisms through which this drug exerts pro-cognitive effects remain to
date poorly understood; however, aspects of its behavioral and cognitive effects
appear to be contingent on the integrity of NA transmission (Minzenberg and
Carter 2008). To summarize, medications used in the treatment of ADHD
(including methylphenidate, dextroamphetamine and atomoxetine) act to increase
brain catecholamine levels.

5 Cognitive Effects of Psychostimulants: Implications
for our Understanding of ADHD

A growing body of evidence drawn from controlled studies supports the effec-
tiveness of stimulant medications in the treatments of ADHD in children,
adolescents (Faraone and Buitelaar 2010) and adults (Castells et al. 2011a, b).
But what do we know about their cognitive effects?
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There is some evidence that single therapeutic doses of MPH ameliorate
functions in children and adults diagnosed with ADHD often reported to be sub-
optimal in this condition (Clark et al. 2007; Mehta et al. 2004; Spencer et al. 2007;
Turner et al. 2005). Therapeutic effects are thought to be mediated through neu-
romodulatory influences over fronto-striato-cerebellar circuits, although the exact
underlying neurochemical mechanisms are not well understood (Del Campo et al.
2011). Analogous cognitive findings have been documented in healthy subjects,
following both MPH (Elliott et al. 1997; Koelega 1993; Mehta et al. 2000; Strauss
et al. 1984) and AMPH administration (Mattay et al. 1996, 2000; Rapoport et al.
1978, 1980), suggesting that stimulant effects are not pathognomic for ADHD.
These findings imply that the ‘‘calming’’ effects of stimulants on hyperactive
children, initially considered as paradoxical, are not likely to be mediated by an
underlying neurochemical deficit; instead, they might be best understood through
their normal actions. A further implication is that ADHD differs from health only
quantitatively on normally distributed dimensions of attention, impulsivity and
hyperactivity, with the criterion of six symptoms representing an arbitrary cut-off
point at the top end of a normal distribution, rather than a true categorical
boundary between ADHD vs. non-ADHD conditions.

It is noteworthy, however, that a non-neglectable number of controlled studies
investigating pro-cognitive effects of stimulants have also yielded negative or null
results (e.g. Rhodes et al. 2006). Recent reviews of cognitive stimulant effects in
children with ADHD (Pietrzak et al. 2006) and healthy volunteers (mostly adults)
(Faraone and Glatt 2010; Smith and Farah 2011) conclude that the pattern of
stimulant-induced enhancement is far from clear. Overall, it appears that stimu-
lants do not improve cognition across the board but rather selectively: In both
ADHD patients and healthy volunteers, the neurocognitive processes affected most
prominently by stimulants are in the domains of impulse control, working memory
and attention (Chamberlain et al. 2010; DeVito et al. 2009; Finke et al. 2010;
Naylor et al. 1985; Rhodes et al. 2006; Turner et al. 2003), and less so in executive
function (Advokat 2010; Rhodes et al. 2006; Swanson et al. 2011b). Importantly,
stimulants appear to interact with these domains in a baseline performance-
dependent manner (Clatworthy et al. 2009; DeVito et al. 2009; Naylor et al. 1985;
Robbins and Sahakian 1979; Rogers et al. 1999; Sahakian and Robbins 1977;
Turner et al. 2003).

The contingency of stimulant effects to baseline performance has been inter-
preted in accordance with a hypothesized inverted u-shaped function, whereby
optimal catecholamine levels determine optimal performance, and catecholamine
levels along the curve at either side of the optimum are associated with impaired
performance (Arnsten and Goldman-Rakic 1998; Mattay et al. 2003; Williams and
Goldman-Rakic 1995). This model accounts for the more consistent drug effects
found in patients with ADHD, who have relatively low baseline performance
and putatively impaired catecholamine transmission. For example, improvements
in attention following stimulant treatment of ADHD are substantially greater
than those caused by non-medical use of stimulants by healthy individuals
(Swanson et al. 2011b). Moreover, among a group of adults referred for an ADHD
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assessment, those individuals whose elevated ADHD symptom severity leads to a
clinical diagnosis of adult ADHD manifested a more pervasive benefit of MPH
across computerized cognitive tasks (Turner et al. 2005). Also among healthy
volunteers, stimulant-induced cognitive enhancement appears to be largest in those
individuals with the highest scores on ADHD-like behaviors and traits (Smith and
Farah 2011). This difference in baseline catecholamine levels may also underlie
the differential response to stimulant medications observed between controls and
patients with ADHD using functional MRI (Vaidya et al. 2005).

The inverted u-shaped function relating catecholamine levels to performance
was originally formulated with respect to the chemical neuromodulation of the
prefrontal cortex (Arnsten and Goldman-Rakic 1998) but it is likely to also apply
to other structures within the same circuitry, including the striatum (Clatworthy
et al. 2009; Robbins 2010). Studies in animals (Chudasama et al. 2005; Chudas-
ama and Robbins 2004; Collins et al. 1998; Roberts et al. 1994) and humans
(Clatworthy et al. 2009; Cools et al. 2001; Swainson et al. 2000) provide evidence
for the existence of multiple inverted u-shaped functions associated with distinct
cognitive processes. Indeed, stimulant medications appear to have different effects
not only depending on baseline performance, but also on the context of admin-
istration and the type of cognitive domain probed. For example, in a recent
functional MRI study in healthy controls, MPH exerted differential effects at
prefrontal cortical and striatal sites to affect distinct cognitive components within a
single task of reversal learning (Dodds et al. 2008).

6 Molecular Neuroimaging Studies in ADHD

6.1 Status of DA Markers in ADHD

Insofar as PET and SPECT allow quantification of DA receptor availability
(indicative of DA receptor levels) with great specificity, both molecular neuro-
imaging techniques represent an attractive approach to investigate, in vivo, the role
of dopaminergic abnormalities in the pathophysiology of ADHD. A number of DA
markers have been compared between ADHD patients and healthy controls,
including D2/D3 receptors, DA synthesis and DA transporters (DAT). Table 1
summarizes these findings; studies revealing decreased, increased or unchanged
DA marker status in patients are highlighted in orange, blue and yellow, respec-
tively (note that only studies including a control group are illustrated). Overall,
results regarding DA parameter status in ADHD have been highly inconsistent,
regarding both the direction of the observed abnormality and its magnitude. The
first marker studies focused on DAT, given its role in mediating stimulant actions.
At the time, a wealth of evidence appeared to indicate that ADHD patients had
increased DAT density (Krause 2008; Larisch et al. 2006; Spencer et al. 2005), a
finding that reached wide acceptance for almost a decade (Madras et al. 2006).
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However, more recent well-powered designs in adult medication-naïve ADHD
patients have consistently shown that ADHD is associated with decreased DAT as
well as D2/D3 receptor availability in selected sub-cortical regions of the left
hemisphere, including nucleus accumbens, caudate and midbrain (Volkow et al.
2007a, b; 2009).

Studies investigating D2/D3 receptor status have to date been restricted to
the striatum due to the use of [11C]raclopride, a low affinity tracer which can only
be reliably quantified in brain regions with high receptor density. From the five
published D2/D3 receptor PET imaging studies, those reporting unchanged or
increased receptor availability in ADHD patients used a control group that was not
age-matched to the patients (Ilgin et al. 2001; Jucaite et al. 2005).

The prefrontal cortex, a brain region in which inadequate catecholamine
transmission is thought to play a key role in the pathophysiology of ADHD, has
been investigated using [18F]fluorodopa ([18F]DOPA), an index of DA synthesis
capacity. The same laboratory documented opposite findings in adults (Ernst et al.
1998) and children with ADHD (Ernst et al. 1999). More recently, two reports in
adolescent and adult ADHD suggest that ADHD is associated with decreased
DOPA metabolism in sub-cortical regions (Forssberg et al. 2006; Ludolph et al.
2008). Given the low dopaminergic neural density in the prefrontal cortex, it has
been argued that well-powered designs are needed to resolve the question of
whether DA neurotransmission in the prefrontal cortex is affected in ADHD (Ernst
et al. 1998).

6.2 Synaptic DA Transmission in ADHD

The binding competition between D2/D3 radioligands and endogenous DA pro-
vides an imaging paradigm to measure DA transmission following an acute drug
challenge (Laruelle 2000), illustrated in Figs. 1 and 2. Over the last two decades,
several groups have shown that the administration of psychostimulants such as
AMPH or MPH are associated with an acute reduction in non-displaceable binding
potential (BPND) of the PET radiotracers [11C]raclopride (Volkow et al. 1994)
(Breier et al. 1997), [11C]FLB 457 (Montgomery et al. 2007), and also
[18F]fallypride (Cropley et al. 2008). Evidence from microdialysis studies in non-
human primates suggests that the magnitude of this reduction is indeed related to
the AMPH-induced increase in extracellular DA measures (Laruelle et al. 1997).

Of the five published studies documenting the magnitude of stimulant-induced
increases in endogenous DA in ADHD patients (summarized in Table 2), only one
included an age-matched control group (Volkow et al. 2007b). Using [11C]raclo-
pride PET, Volkow et al. found that ADHD patients showed smaller increases in
DA levels in the caudate following i.v. MPH treatment (0.5 mg/kg). Moreover, a
voxelwise analysis revealed that the volumes of the regions where MPH signifi-
cantly reduced tracer binding were significantly smaller in ADHD patients com-
pared to controls in bilateral caudate, hippocampus and left amygdala. However,
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these findings are difficult to reconcile with prior evidence in adolescent ADHD
patients indicating that MPH-induced increases in DA concentrations in the right
striatum are associated with greater symptom severity (Rosa-Neto et al. 2005).

Initial PET evidence in healthy volunteers using tracers suitable to examine
regions with low D2/D3 receptor density such as [11C]FLB 457 and [18F]fallypride
suggests that stimulants increase DA levels also extra-striatally (including amyg-
dala, temporal and orbito-frontal cortices) (Cropley et al. 2008; Montgomery et al.
2007; Riccardi et al. 2006a, b; Slifstein et al. 2010). The regional specificity and
magnitude of DA changes remains to be replicated. Intriguingly, one study using
AMPH yielded negative results (Aalto et al. 2009). Whether the magnitude of
regional increases differs between patients and controls remains to be investigated.

6.3 Potential Confounding Factors Underlying Inconsistencies
Across PET/SPECT Findings in ADHD

There are a number of factors that potentially underlie the disparities found
across PET/SPECT studies assessing the status of DA markers in ADHD patients
compared to controls (summarized in Table 3). Age, previous medication with

Fig. 1 Schematic illustration of a dopaminergic synapse visualized using [18F]fallypride-PET
or [11C]raclopride PET before and after methylphenidate (MPH) administration. Dopamine (DA)
is synthesized in the pre-synaptic terminal from the essential amino acid tyrosine and
L-3,4 –dihydroxyphenylalanine (L-DOPA). DA is released into the synaptic cleft, where it binds
to D2/D3 receptors found both pre- and post-synaptically. The radioactively labeled ligand binds
to D2/D3 receptors, allowing estimation of receptor availability. MPH blocks dopamine
transporters (DAT), impeding the reuptake of DA into the pre-synaptic terminal thereby
increasing extra-cellular DA levels. The competition between endogenous DA and the
radioligand for the binding to D2/D3 receptors leads to a reduction in radioactive signal

76 N. del Campo et al.



stimulants and psychiatric comorbidity seem to be the most critical factors and
are highly recommended to be controlled for in future research assessing the
DA system in ADHD in vivo (Del Campo et al. 2011). How the imaging data are
processed and the anatomical landmarks used to define regions of interest also
appear to be crucial when comparing data across studies. This appears to be
particularly relevant in receptor imaging studies assessing the striatum, which has
been shown to have a heterogenous distribution of dopamine receptors across its
functional subregions (Martinez et al. 2003; Mawlawi et al. 2001).

7 Neuroanatomical Correlates of ADHD

The idea that fronto-striato-cerebellar circuits are altered in ADHD has been lar-
gely supported by morphological neuroimaging studies: Volumetric reductions in
the interconnected frontal lobe (particularly the dorsolateral prefrontal cortex,
DLPC and anterior cingulate cortex, ACC), basal ganglia and cerebellum are often
reported by MRI studies (Nakao et al. 2011; Seidman et al. 2005). Abnormalities
in these circuits are thought to sub-serve the deficits often observed in ADHD
patients in prefrontal-dependent cognitive functions (see 3.Cognitive markers of
ADHD). The cerebellum has recently attracted attention in ADHD research owing
to its relevance in a wide range of other functions also reported to be abnormal in
ADHD patients, such as motor timing and time estimation (Ackermann et al. 1999;
Jueptner et al. 1995; Maquet et al. 1996; Rubia and Smith 2004; Smith et al. 2003).

Fig. 2 [18F]fallypride BPND maps of a healthy control following placebo (top raw) and
following oral MPH (bottom raw). BPND maps are superimposed on a high resolution magnetic
resonance image. MPH increases endogenous DA, leading to a reduction in [18F]fallypride BPND
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Accumulating evidence suggests that some patients also show alterations in
meso-cortico-limbic circuits (Brieber et al. 2007; Carmona et al. 2005; Del Campo
et al. under submission; Sowell et al. 2003; van‘t Ent et al. 2007; Wang et al.
2007). These abnormalities are thought to underlie difficulties in reward and
emotional processes which often dominate the clinical profile of ADHD patients,
particularly at adulthood (Hesslinger et al. 2003; Richards et al. 2006). Supporting
evidence comes also from the aforementioned PET studies documenting cate-
cholaminergic abnormalities in reward pathways (Volkow et al. 2007b; 2010).
According to a recent meta-analysis, alterations in limbic regions are more pro-
nounced in non-treated populations (Frodl and Skokauskas 2011).

7.1 Continuity of Morphological Abnormalities Across
the Lifespan

The manifestation of ADHD throughout the lifespan evolves such that there is
symptomatic improvement in 30–40% of children from late adolescence onwards
(Mannuzza et al. 1991). Moreover, in those patients who continue to have a
diagnosis at adulthood there is an age-dependent decline of hyperactivity symp-
toms, while the inattention symptoms often persist (Biederman et al. 2000). These
observations raise the question of whether and how the neural signatures of ADHD
evolve across the lifespan. While the molecular neuroimaging literature cannot
address this question due to the lack of data in childhood ADHD (given regulations
preventing exposure to radiation in children), MRI studies have been carried out in
patients across all age ranges.

A few longitudinal studies have addressed whether there is neurobiological
continuity between children and adolescents with ADHD, and whether the
improvement of cognitive impairment and clinical outcome can be associated with

Table 3 Confounding factors potentially underlying the heterogeneity found across DA/PET
studies in ADHD

Study population
• Age group
• Reduced sample size (insufficient power)
• Matched controls
• Comorbidity
• Medication history
• History of nicotine exposure (smoking)
• Genetic factors (e.g. DAT polymorphisms)
Methodology
• Imaging technique (PET vs. SPECT)
• Radiotracer
• Co-registration with structural MRI
• Brain regions examined/anatomical landmarks used
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a normalization of the neuroanatomical correlates (Casey et al. 2007; Castellanos
et al. 2002; Mackie et al. 2007; Shaw et al. 2006; Sowell et al. 2003).

The first study of this nature, carried out on 152 children and adolescents with
ADHD and 139 controls scanned four times over a period of 10 years, found that
all volumetric abnormalities in ADHD (decreased total cerebral and cerebellar
volumes, as well as decreased overall WM) remained unchanged over time,
except for the caudate nucleus volume, which normalized through adolescence
(Castellanos et al. 2002). Normalization of this subcortical structure was inter-
preted in the light of the decreasing motor hyperactivity with age. Moreover,
developmental trajectories of cerebellar and cerebral volumes were observed to be
parallel in both groups, and longitudinal growth curves appeared to be unrelated to
prior stimulant treatment.

This finding was largely supported by Shaw et al. (2006, 2007), who found
cortical growth trajectories, which are typically characterized by cortical increase
at childhood followed by adolescent decrease, to be parallel in children affected by
the disorder and healthy controls. However, ADHD children attained peak
thickness with a marked delay throughout most of the brain, most prominently in
the prefrontal cortex (Shaw et al. 2007). Specific regional differences in the cor-
tical maturation were associated with clinical outcome; while children with better
clinical outcome presented normalization in portions of the right parietal cortex
over time, a fixed non-progressive deficit of the medial prefrontal and cingulate
regions was documented in children with a worse outcome (Shaw et al. 2006).
The recent application of refined segmentation techniques has made it possible to
identify different growth trajectories in sub-regions of the cerebellum (Mackie
et al. 2007). Whereas a fixed, non-progressive volume decrease was reported in the
superior cerebellar vermis of ADHD children, abnormalities in the cerebral
hemispheres developed differently in children with better versus worse clinical
outcome. Thus, the dissipation of ADHD symptoms throughout development may
be associated with a normalization of certain neuroanatomical correlates of the
disorder.

These findings contribute to a growing body of evidence suggesting that a delay
in brain maturation (rather than a deviation from typical neurodevelopmental
processes) is implicated in the pathophysiology of ADHD (Nakao et al. 2011;
Shaw et al. 2006, 2007). Furthermore, it appears that ADHD patients may pro-
gressively catch up with their developmental delay with advancing age (Nakao
et al. 2011), although more longitudinal studies are needed to confirm both
observations.

What brain tissue signatures have been reported in adult ADHD patients? Initial
studies by Seidman et al. (2006) and Makris et al. (2007) observed reduced cortical
gray matter volume in the DLPFC and ACC, and a trend for overall increased
white matter volumes in adult patients compared to controls (Seidman et al. 2006).
Abnormalities in subcortical structures were not found with the exception of the
nucleus accumbens, which was marginally larger in patients. The inferior parietal
lobule, DLPFC and ACC, which are cortical regions thought to subserve a distinct
network involved in attention, were thinner in patients, most prominently in the
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right hemisphere (Makris et al. 2007). In a subsequent publication, the same
authors reported a gray matter volume reduction in the left ACC in the treatment-
naïve group and a reduction in the right ACC in the treated group, relative to
controls (Makris et al. 2010).

Recently, other groups have also measured brain tissue volume in adult ADHD
patients relative to controls (e.g. Ahrendts et al. 2011; Almeida Montes et al. 2010;
Amico et al. 2011; Del Campo et al. submitted; Depue et al. 2010; Perlov et al.
2008) with few disease-related abnormalities surviving conservative statistical
thresholds and whole brain analyzes. Thus, the jury is still out as to where in the
brain adult ADHD patients have altered brain tissue volume, and how these
abnormalities are associated with the clinical profile.

An important question that needs to be addressed when considering the continuity
of neuroanatomical alterations into adulthood in ADHD is whether pharmacological
treatment has an impact on structural changes across the life cycle. Two recent meta-
analyzes exploring gray matter volume in ADHD agree that treatment may to be
associated with the normalization of structural abnormalities (Frodl and Skokauskas
2011; Nakao et al. 2011). However, this conclusion was drawn from cross-sectional
data and thus will need to be confirmed by longitudinal study designs.

7.2 Evidence for Abnormal Structural Connectivity in ADHD

Diffusion tensor imaging (DTI) is an MRI technique based on the property of water
molecules to diffuse along fiber tracts which enables exploration of microstructural
integrity of white matter (Assaf and Pasternak 2008). Because it is still an emerging
technique, only few ADHD case-control studies of this nature exist (for a review see
Konrad and Eickhoff 2010; Liston et al. 2011). The age and medication history of
participants across studies, as well as the approaches used to analyze the DTI data
were highly variable (whole brain voxel-wise comparisons, manually selected
regions of interest or regions of interest specified by automated tractography algo-
rithms and tract-based spatial statistical techniques), making the integration of
results somehow difficult. Nevertheless, reduced white matter integrity in the
superior longitudinal fasciculus and the anterior corona radiata, which carry fronto-
striatal projections, are among the most consistently replicated findings. Indeed, out
of the eight DTI studies that examined connectivity in fronto-striatal projections,
seven report reduced connectivity in patients compared to controls (Liston et al.
2011). Connectivity between limbic regions has been comparatively less explored.

8 Conclusions

A large body of evidence from neuropsychological and neuroimaging case-control
studies points chiefly toward an underlying dysfunction of distributed fronto-
striato-cerebellar circuits in ADHD, although more recent studies suggest that
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limbic circuits may also be implicated. Through neuromodulation of these circuits,
catecholamines are thought to play a critical role in prefrontal-dependent cognitive
functions, as well as motivational and emotional processes often reported to be
altered in ADHD patients, representing the key target for pharmacotherapy in
ADHD.

The psychostimulants methylphenidate and amphetamine, but also atomoxetine
increase DA levels in prefrontal circuits and are clearly effective in improving
clinical symptoms of ADHD across the lifespan. Those findings do, however, not
correspond to equally clear findings from neurocognitive and neuroimaging studies
of the DA system investigating single stimulant doses. Reports in both ADHD
patients and healthy individuals suggest that the cognitive effects of psychostimu-
lants are complex, being driven by two aspects: (a) baseline performance (mediated
in turn by baseline catecholamine levels) and (b) the cognitive domain assessed.
PET and SPECT studies in ADHD have to date focused on the DA system with
ligands for the DA transporter, DA receptors and DA synthesis. The best-powered
PET study, one of the most ambitious molecular neuroimaging studies ever per-
formed in a psychiatric population, found reduced DAT and D2/3 availability in
never medicated patients with ADHD (Volkow et al. 2009). However, there was
considerable overlap between patients and controls, so that dopaminergic PET
imaging does not have the potential for a diagnostic assessment.

As reviewed in this chapter, the search for neural markers of ADHD has no doubt
yielded important findings. Advancement in the field will be reliant on the devel-
opment of improved neuroimaging techniques (e.g. allowing a finer level of spatial
resolution) and analytic methods, but also on the implementation of longitudinal
study designs addressing isolated symptom dimensions and their underlying
mechanisms. The latter will be key to further our understanding of the pathophys-
iology of ADHD, which is inherently heterogeneous, and elucidate how its behav-
ioral and neural signatures evolve across the lifespan. One fruitful approach to
characterize neural markers of the disorder may be to enrich the neuroimaging data
analyzes with information obtained from the same patients on well-validated cog-
nitive tests. A further promising approach will be the development and application of
radioligands aimed at hitherto unexplored neurochemical targets hypothesized to be
affected in ADHD. One example is the in vivo investigation of the noradrenergic
system with radioligands such as [11C]methylreboxetine, which has been success-
fully deployed in initial human studies but is yet to be used in ADHD patients.
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Experimental Protocols for Behavioral
Imaging: Seeing Animal Models of Drug
Abuse in a New Light

Alexandra R. Aarons, Amanda Talan and Wynne K. Schiffer

Abstract Behavioral neuroimaging is a rapidly evolving discipline that represents
a marriage between the fields of behavioral neuroscience and preclinical molecular
imaging. This union highlights the changing role of imaging in translational
research. Techniques developed for humans are now widely applied in the study of
animal models of brain disorders such as drug addiction. Small animal or pre-
clinical imaging allows us to interrogate core features of addiction from both
behavioral and biological endpoints. Snapshots of brain activity allow us to better
understand changes in brain function and behavior associated with initial drug
exposure, the emergence of drug escalation, and repeated bouts of drug withdrawal
and relapse. Here we review the development and validation of new behavioral
imaging paradigms and several clinically relevant radiotracers used to capture
dynamic molecular events in behaving animals. We will discuss ways in which
behavioral imaging protocols can be optimized to increase throughput and quan-
titative methods. Finally, we discuss our experience with the practical aspects of
behavioral neuroimaging, so investigators can utilize effective animal models to
better understand the addicted brain and behavior.
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1 Behavioral Neuroimaging in Animal Models of Addiction

Animal behavioral models have been instrumental in elucidating key biochemical
and physiological mechanisms underlying the progression from drug use to drug
abuse and addiction. Drug self-administration and conditioned place preference
(CPP) constitute the major preclinical behavioral tools used to screen new thera-
pies before clinical testing. Although these behavioral models are useful in pre-
dicting addictive liability and effective drug treatments, the power of these models
to determine clinical efficacy is a matter of dispute. Preclinical neuroimaging,
coupled with real-time assessment of addictive behavior, offers a powerful model
for testing addictive liability and pharmacotherapy development.

The overall objective of preclinical behavioral neuroimaging is distinctly dif-
ferent from existing neuroimaging paradigms. This dual paradigm takes advantage
of the higher resolution and noninvasive imaging technology that combines mea-
sures of brain function with behavior, two relevant endpoints that are more infor-
mative and accurate together, rather than alone. This allows for exciting research
that investigates whole brain systems in the context of drug abuse within a robust
and reproducible experimental setting that reflects real-time behavioral states.

In essence, behavioral neuroimaging helps investigators compare animal
behavior to human behavior. If a drug attenuates behavior in an animal paradigm
but fails to do so for humans, researchers must question whether they are measuring
the same phenomena across different species. The identification of independent,
biological markers—patterns of brain function—of the addictive state that are
homologous in both animals and humans would serve to validate behavioral models.
The promise of common biological measures rests on preclinical imaging, and by
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coupling behavioral models with imaging; the validity of animal models increases
substantially.

Preclinical behavioral imaging modalities allow us to examine the neuroana-
tomical and neurochemical impairments produced by a specific substance, and
examine neurochemically-specific treatment regimens that can minimize the
addictive liability of drugs. Behavioral functional imaging in small animals pro-
vides a comprehensive view of the progression from drug use to drug abuse that
comprises both behavioral and biological measures with strong clinical relevance.
For example, limitations of drug reinstatement models for screening therapeutic
medications are suggested by the generally poor agreement of findings with clinical
studies in humans (Katz and Higgins 2003; Shaham et al. 2003). Ideally, the
addition of imaging will lead to more effective therapies that enter into Phase I and
Phase II clinical trials (McArthur 2011). The net result could be the development of
more effective pharmacotherapy treatments, which would greatly enhance the ther-
apeutic availability for individuals seeking addiction treatment. In sum, preclinical
imaging offers a translational tool to study drug abuse, with continual improvement
in the predictability of animal models (Borsook et al. 2006; McArthur 2011).

Our aim is to strengthen the understanding of methodological issues in behav-
ioral imaging studies, specifically in the context of translational models of drug
abuse. In this review, we will briefly cover different imaging methods with an
emphasis on functional positron emission tomograph (PET) techniques, as PET
offers the unique opportunity to image brain function in animals that are free to
move in any experimental environment, outside of the scanner itself. We will
discuss optimal study designs for preclinical behavioral imaging. We will
emphasize the strengths and weaknesses of various approaches, and highlight some
of the issues associated with neuroimaging across species and modalities. Finally,
we will critically evaluate the potential of behavioral imaging as a translational tool
to align preclinical models with clinical manifestations of drug abuse.

2 Behavioral Imaging Modalities: Strengths and Weaknesses

There are several types of neuroimaging approaches common to both clinical and
preclinical fields. Our focus will be the strengths and weaknesses of behavioral
imaging with PET, and we will also discuss functional magnetic resonance
imaging (fMRI). Both behavior imaging modalities can provide insight on drug
use and abuse, disease progression and successful treatment development.

For fMRI, there are significant challenges in imaging functional activity in
animals that are not necessarily applicable to PET methods. In the main, fMRI
studies require that animal subjects be inside the magnet during image acquisition,
which means that they must be anesthetized, immobilized, restrained, or trained—
this limits behavioral output to all but the simplest behaviors. The use of anes-
thetics is a significant confound to functional imaging studies not only because of
obvious limitations on behavior, but also because of alterations in brain function
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associated with anesthetic agents (see below). Further, the need to adopt special
stimulation systems within the magnet, the intense noise levels produced by the
magnet and the general lack of ability to observe the animal because it is placed
deep within the magnet core, all limit the repertoire of behavioral imaging studies
that can be performed with functional MRI in rodents (Borsook and Becerra 2011).
However, devices for conscious animal imaging have been reported (Schulz
and Vaska 2011), although most require surgical implantation into the skull of
animal subjects, which can introduce additional confounds on brain function
(Khubchandani et al. 2003; Schiffer et al. 2006; Frumberg et al. 2007). Restraint
molds and training are also options for fMRI studies where image acquisition must
occur at the time of behavioral measurements (Becerra et al. 2011), however again,
this precludes measurements of all but the simplest behaviors.

For the study of drug abuse and addiction, the most appropriate behavioral
models require that animals be able to respond to stimuli. Functional PET studies,
as described below, can be performed outside the tomograph with minimal or no
effects on animal behavior, given an appropriate radiotracer. Important informa-
tion has been gained from imaging studies in which behavioral measures were
obtained separately from image acquisition (reviewed in Dalley et al. 2009). No
matter the paradigm, parallel behavioral measures have highlighted individual
responses in correlations of change in behavior with change in brain function
(Dalley et al. 2007; Schiffer et al. 2009), allowing another important dimension of
cross-species consistency in the study of drug abuse.

3 ‘‘Snapshot’’ Imaging Protocols

The strategy we discuss here is unique in that it focuses on simultaneous measure-
ments of brain activity and behavior from the same imaging session, however as
always, there are trade-offs that must be considered in the experimental design. As
previously mentioned, a major benefit to the field of neuroscience is the ability to
measure changes in metabolic activity with behavioral responses. With small animal
PET, animal subjects receive radiotracer administration prior to image acquisition,
and successively are able to freely behave in an experimental environment during
their uptake period. Thus, the images captured represent brain metabolism or neu-
rochemical changes that occur while the animal is freely behaving. These behaviors
can be trained or drug induced. Many functional PET studies in humans are designed
in this same way, where scans are conducted after the completion of a behavioral task
and the radiotracer is akin to a photograph taken at the moment of the behavioral
experience. Some qualities of optimal radiotracers are given in Table 1.

Simultaneous PET imaging and behavior measures are acquired using radio-
tracers, such as 2-[18F]fluoro-2-deoxy-D-glucose (18F-FDG or FDG), which are
captured and trapped in tissue for an extended period of time post radiotracer
administration, or with the use of receptor-specific radiotracers whose kinetics are
predictable and well-established (Patel et al. 2008). This dual imaging and
behavioral paradigm provides a solid covariate for image analysis.
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Table 1 Ideal radiotracer qualities for behavioral imaging in freely moving animalsa

• Chemical stability
• Non-toxic
• High lipophilicity and efficient extraction into the brain (high lipid solubility with ready

passage of the tracer across the blood brain barrier, BBB)
• High extraction by the brain, with a distribution that is proportional to blood flow
• Specificity—a prolonged retention in brain tissue with a fixed distribution that is independent

of regional blood flow variations
• Inability of radiolabeled metabolites to cross the BBB and/or rapid clearance of these

metabolites from blood, unless radiolabeled metabolites in the brain can be accounted for
by ratio quantitation methods

• A trapping mechanism where the mechanism itself is not altered by the disease pathology
• Radioactive half-life long enough to permit radiotracer injection during the occurrence of the

behavior and subsequent anesthesia and image acquisition
• Radioactive half life that is short enough to allow decay within a few hours to days to

minimize radiation exposure to the animal and to laboratory staff, and also to permit
rescanning of the animal subject as its own control

• A photon energy compatible with currently used instrumentation
a Adapted from (Holschneider and Maarek 2004)

Fig. 1 Example apparatus for sampling arterial blood from freely moving animals for fully
quantitative metabolic function studies. Modified BAS Raturn system (Bioanalytical Systems, Inc.
[BASi] West Lafayette, IN) offer a counter-balanced arm and tethering system that allow the animal
to move freely until an optical sensor is activatated, which counter-rotates the cage. This gives the
animal the illusion of running when actually the cage is moving instead, while catheter lines are
stabilized through the counterbalanced arm. The use of specialized microdialysis tubing minimizes
dead volume to 1.2 lL/10cm, reducing the physiological burden of large volume blood samples

The compromise for performing behavioral imaging studies using these snap-
shot PET protocols, where radiotracer uptake occurs outside of the tomograph, is
temporal resolution. Therefore, the concurrent behavioral measure must be long
lasting (Schiffer et al. 2007). An example protocol is shown in Fig.1, where the
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uptake and ‘‘trapping’’ of FDG occurs over a period of 25–45 min. Despite the
relatively poor temporal resolution, the animals can move freely during radiotracer
uptake in any experimental environment. Thus, animal behavior measurements
can be directly related to brain activity during this period. This is fundamental to
our definition of ‘‘snapshot’’ behavioral neuroimaging, in which measures of
brain metabolism reflect the neural networks involved during the simultaneous
measurement of a behavioral response.

The strengths of functional MRI and PET continue to advance the behavioral
imaging field. fMRI has high temporal resolution, relative ease of application and
lacks radiation exposure. In addition, fMRI provides a time course of blood
oxygenation during functional imaging experiments, facilitating the use of net-
work models such as principal or independent component analyzes (PCA or ICA,
respectively). While the spatial resolution of structural MRI is orders of magnitude
higher than for PET, the spatial resolution of functional MRI is roughly the same
as the spatial resolution of the newest generation of small animal PET scanners.
For example, a functional MRI dataset with an initial in-plane resolution of
0.8 9 0.8 mm smoothed with a standard filter of 1.5 voxels results in a final
resolution of 1.2 9 1.2 mm (Steward et al. 2005), which is just over the quoted
resolution of most small animal PET scanners (Magota et al. 2011).

An additional advantage of small animal PET for longitudinal behavioral
imaging studies is the ability to obtain quantitative functional information from
one scan to the next, such that PET outcome measures can be absolute over time.
However, the variability that has plagued clinical FDG PET measurements since
the initial scans were performed (Phelps et al. 1979b; Camargo et al. 1992; Alavi
et al. 1994; Alkire et al. 1999) is also seen in animals; some animal subjects have
higher brain metabolism than their genetically identical peers, just as some humans
have higher metabolic rates than their siblings or age-matched cohorts (Bressan
et al. 2004; Marsteller et al. 2006). This significant issue will be discussed below
with respect to global normalization and image quantitation.

Despite the differences between PET and MRI, the literature surrounding
functional MRI in rodents has been a valuable resource in the development of
preclinical PET imaging protocols and procedures. It benefits any behavioral
imaging study in rodents to consult both bodies of literature. For example, the
important selection of a baseline task and the use of the ‘‘resting state’’ as a
surrogate marker of disease is a compelling new direction for both modalities
(see below). The success of behavioral imaging in animal models and the potential
of these techniques to enable more predictive clinical treatments relies on several
experimental parameters, such as the route of radiotracer administration, the
imaging/anesthetic protocol, and the selection of a baseline state or condition.
Next we will briefly describe the principle behind behavioral imaging with FDG
PET and also with [11C]-raclopride PET, another radiotracer widely employed in
clinical studies of drug abuse that has recently been applied to awake imaging
studies of cue-induced craving. Following, we will suggest practical experimental
guidelines for behavioral imaging that can be generally applied.

98 A. R. Aarons et al.



4 Behavioral Imaging of Metabolic Function with FDG

FDG is a derivative of 2-deoxyglucose that has an attached fluorine-18 isotope.
2-Deoxyglucose (DG) has been found to measure brain glucose metabolism
(Sokoloff et al. 1977) and FDG a glucose analog, has similar utility. DG and FDG
compete with glucose for transport sites into the brain (Phelps et al. 1979b), and
when FDG is phosphorylated by hexokinase, it is transported across the membrane
and becomes ‘‘trapped’’ intracellularly. It is important to realize that with this
method, unlike functional imaging with MRI, the scanning, and the uptake period
do not occur at the same time. During the uptake period, the scanning has not yet
begun; the animal or the human subjects are not usually in the PET scanner, but
outside performing a task. After the uptake period, the subject is placed into the
tomograph for a short scan and the resulting images show the accumulated pattern
of metabolic demand during the prior uptake period.

The principles underlying functional imaging with FDG PET were derived from
those developed for autoradiography by Sokoloff et al. (1977). In humans, uptake
of FDG and metabolic trapping in brain tissue as FDG-6-phosphate is 80–90%
complete at 32 min (Phelps et al. 1979a). The eventual PET images represent the
accumulated regional FDG uptake that occurred during the corresponding uptake
period. Glucose metabolic rates are calculated using the deoxyglucose kinetic
models of Sokoloff that were originally developed for animals, modified for humans,
and now applied to animals again with small animal PET (Toyama et al. 2004b;
Schiffer et al. 2006; Ravasi et al. 2011). Full quantitation of FDG requires repeated
blood sampling, which can be done in freely moving animals using an in vivo
microdialysis set up, as shown in Fig. 2 (Schiffer et al. 2006). However, not only does
the required arterial blood sampling affect animal behavior (personal observations;
animals increase locomotion and become visibly anxious), which is likely related to

Fig. 2 Time course of intraperitoneal versus intravenous FDG uptake in the brain of the anesthetized
rat. The time activity of [18F] in plasma from the same animals is given in Schiffer et al. 2007
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Fig. 3 Behavioral imaging protocol for FDG studies of brain function simultaneously with
behavioral measurements of conditioned place preference (CPP). Animals receive an intraperi-
toneal (IP) injection of FDG and ten minutes later, are placed in a neutral chamber. This is based on
the time course of IP FDG to reach the blood stream (Schiffer et al. 2007), which peaks 14 min after
IP injection. After 10 min, animals are given free access to all chambers of the apparatus for 35 min,
after which they are anesthetized and scanned for 10 min. Adapted from Carrion et al. 2009

sampling-induced activation of compensatory mechanisms such as arterial barore-
ceptors, it may also result in changes in blood flow or blood pressure and other
physiological measurements (Kalisch et al. 2001). In addition, while microdialysis
systems such as the Raturn (Bioanalytical Systems Inc., Indiana, USA) are histori-
cally referred to as ‘‘freely moving’’ systems (Schiffer et al. 2000), the range of
available behavioral measurements is limited by the tether and the bowl (see Fig. 2).

In an extension of the experiment conducted by Sokoloff et al. (1977), it was
found that the concentration of 18F increases in human tissue for 90 min before
plateauing (Phelps et al. 1979b). Based on previous studies and our own work with
18F-FDG in rodents, it is optimal to allow at least 45 min for uptake prior to
anesthesia (Kornblum et al. 2000; Schiffer et al. 2007; Wong et al. 2011). Figure 3
shows the time course of FDG in the brain with intravenous (IV) versus intra-
peritoneal (IP) injections. It is evident from Fig. 3 that once FDG reaches tissues
and is taken up and trapped, it is fairly impenetrable for 90 min. After the 90 min
period, dephosphorylation of FDG (k4 in models of the rate of glucose metabolism)
by hexokinase produces a slow decline in the time activity of FDG in these tissues.
Importantly, this time period is much shorter in mice, and can be as early as
80 min (Mirrione et al. 2006, 2007; Wong et al. 2011).

Prior to image acquisition, researchers can obtain blood samples via venous
sampling (i.e. tail vein). These samples provide the precise amount of 18F in the
bloodstream and also can be used, together with blood glucose levels, to acquire
percent injected dose (Marsteller et al. 2006). We have previously shown that a
single blood measure of FDG and glucose concentrations can be used to calculate a
standard uptake value (SUV) that correlates to full quantitation of the rate of
glucose metabolism (Schiffer et al. 2007), although this is not necessarily more
reliable than using the calculated injected dose from an IP injection (Marsteller
et al. 2006). Other studies have used anesthetized animals to acquire a population
blood curve and demonstrated a robust and reproducible signal. However, these
animals were anesthetized and not freely behaving during uptake, which must be
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accounted for (Meyer et al. 2006). Similarly, image-derived input functions are
also promising solutions to quantitate local metabolic rate of glucose metabolism
(LMRGlu) (Huang et al. 2004; Schiffer et al. 2007), however, these animals must
also be anesthetized during FDG uptake, which again, precludes simultaneous
behavioral measurements.

When determining brain activations associated with a behavioral challenge, it is
assumed that the changes in FDG uptake reflect an increased metabolic demand
associated with changes in neuronal firing. Thus, regional changes in brain FDG
uptake are only indirect reflections of changes in brain function associated with
cognitive or behavioral tasks. Further, unless full kinetic modeling is used to cal-
culate the LMRGlu in anesthetized animals, FDG uptake itself becomes the outcome
measure. Thus, FDG uptake is a proxy for LMRGlu which, in turn, is a proxy for
neuronal firing or inhibition. In all of this, it is critical that the fundamental principles
of the FDG model are not violated by the imaging protocol or experimental design.
For example, alterations in blood brain barrier permeability or changes in glucose
levels during the critical period of FDG uptake can confound measurements of brain
function, especially when FDG uptake is used as a proxy for LMRGlu.

FDG PET in rodent models of addiction provides an objective readout of CNS
function that can inform behavioral studies of CNS disorders. This behavioral
imaging paradigm introduces a novel framework for investigations concerning
brain function and the effects of drug abuse on that function. This is very much an
iterative process where functional measures of the physiology of drug use and
abuse can be defined by neural circuitry rather than by behavior alone.

5 Behavioral Imaging of Dopaminergic Function
with [11C]-Raclopride

Dopaminergic neurotransmission plays a prominent role in the rewarding effects of
abused drugs, such as cocaine. Binding of the radioligand, [11C]-labeled raclo-
pride, to dopamine D2 receptors is sensitive to the levels of endogenous dopamine
in the synapse, which can be released either by stimulants such as cocaine or, in
drug abusing patients, by the presentation of cocaine-associated cues (Volkow
et al. 2006, 2008; Wong et al. 2006). In fact, behavioral imaging studies in humans
have shown increased dopamine release associated with specific behavioral
stimuli, such as passive reward, conditioned reward, gambling, and many others
(reviewed in Egerton et al. 2009).

Several methodological and analytical approaches have been applied to [11C]-
raclopride studies of dopamine release following behavioral challenges in humans,
each of which have different practical and methodological advantages and dis-
advantages. Animal studies are limited to some degree by the need to anesthetize
animals for image acquisition, although our group has performed many experi-
ments to optimize the scanning protocol such that the anesthesia has little or no
effect on [11C]-raclopride binding parameters (Patel et al. 2008). The basic
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protocol is shown in Fig. 4. Following earlier studies with [3H]-raclopride
(Wadenberg et al. 2000, 2001), the well-established kinetic profile of [11C]-ra-
clopride and its prolonged sensitivity to changes in endogenous dopamine levels
make this radiotracer an optimal ligand for behavioral imaging studies. That said,
one of the most significant criticisms of [11C]-raclopride as a dopamine-sensitive
PET radiotracer is that the time course of the change in [11C]-raclopride binding is
considerably longer than the change in dopamine levels (for review, see Laruelle
et al. 1997). For example, it is well known that amphetamine-induced dopamine
release peaks and returns to baseline within 30 min, yet [11C]-raclopride is dis-
placed by this dopamine pulse for as long as 5 h after amphetamine administration
(Houston et al. 2004). While this may be a shortcoming of the radiotracer for
kinetic studies, for behavioral imaging studies in freely moving animals it provides
a relatively impenetrable signal change that persists through uptake, anesthesia and
scanning (Patel et al. 2008; Schiffer et al. 2009).

Importantly, with [11C]-raclopride and other receptor-mediated radiotracers, the
effects of specific activity (the amount of radioactivity per unit mass of unlabeled
compound) is important to consider, especially when the actual image acquisition
(scanning) occurs after at least one half-life of carbon-11 has passed. Contrary to
intuition, high resolution PET imaging of small animals cannot be performed with
tracer doses scaled down in the ratio of animal to human body mass. Indeed, it can
be shown that, to a first approximation, the same absolute amount of radioactivity
must be used in both subjects. The reason for this is that the size of the resolution
‘‘voxel’’ appropriate to the mouse or rat scales with the mass of the animal. If the
statistical precision of the activity measurement in that voxel is to be equivalent to
a human study, the same absolute amount of [11C]-raclopride must be delivered to
the small animal voxel. This requirement, in turn, implies that the same absolute
amount of unlabeled raclopride must be given to the animal as to the human,since
it is the raclopride that carries the radioactivity to that voxel (we will use raclo-
pride as an example but this applies to any radiotracer with a limited number of

Fig. 4 Behavioral imaging protocol for [11C]-raclopride studies in freely moving animals. Prior
to each imaging session, polyurethane tubing is connected to a catheter port in unrestrained
animals as they are allowed free movement in the home cage or test environment. [11C]-
raclopride is delivered as a 5–10 sec bolus and the line flushed immediately with heparinized
saline. During uptake, the lines can be loosely taped to the outside of the conditioning chamber
(for CPP) or routed through a swivel, as in Fig. 1. Leaving the lines in the animal permits remote
administration of anesthetic without perturbing or interacting with the animal during [11C]-
raclopride uptake. After 30 min, ketamine/xylazine is administered through the same intravenous
catheter line and animals are nonresponsive to tail pinch or eye blink in less than 10 seconds.
They are then positioned in the small animal PET gantry and scanned for 25 min, after which they
return to their home cage and are monitored until recovery from anesthesia
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binding sites in the brain). However, if a human dose of [11C]-raclopride is given
to an animal, the concentration of raclopride in the animal may be thousands of
times greater than in the human, since the animal is thousands of times less
massive. The possibility exists, therefore, that such large concentrations of unla-
beled raclopride could, in some cases, cause pharmacological effects in rodents
rather than act as tracer doses. We have previously established the mass dose of
unlabeled raclopride delivered with [11C]-raclopride at a range of specific activi-
ties that causes a pharmacological effect in the brain (Schiffer et al. 2005).
Simultaneous measurements of extracellular dopamine levels during small animal
[11C]-raclopride PET scans demonstrated that mass doses over *5 nmol/kg of
unlabeled raclopride begin to influence measures of binding potential, in agree-
ment with other reports (Hume et al. 1995; Kung and Kung 2005; Fischer et al.
2011). One way to minimize this problem is to synthesize rodent deliveries of
[11C]-raclopride with specific activities much higher than for human subjects. The
increased sensitivity of newer generation small animal tomographs permits lower
injected doses of radioactivity to obtain the same counting statistics and statistical
confidence in the image. Nevertheless, with awake animal [11C]-raclopride
imaging, image acquisition occurs after a period of uptake that is approximately
one half-life of carbon-11 (see Fig. 4), so the amount of radioactivity is at least
half of that injected. Furthermore, we have shown that with awake intravenous
injections of [11C]-raclopride, approximately fourfold less radiotracer reaches the
brain compared to [11C]-raclopride delivered to an anesthetized animal (for more
details, see Patel et al. 2008). This means that even more radioactivity must be
injected into the animal for an awake behavioral imaging study, and further
underscores the importance of high specific activity syntheses of [11C]-raclopride
for behavioral small animal PET. Regardless of the protocol, it is a good idea to
implement a routine procedure to plot the specific activity of each injection by the
measured binding potential from each scan, to ensure there are no systematic
biases in radiotracer binding introduced by the mass of unlabeled ligand. Signif-
icant correlations between the mass of raclopride administered and the measured
[11C]-raclopride binding potential would indicate that the specific activity of the
radiotracer preparation may be confounding the experimental results.

6 Technical Issues

6.1 Route of Radiotracer Administration

One major goal of preclinical behavioral imaging is to ensure that the process of
imaging does not influence the animals’ behavior, or is as minimally intrusive as
possible. For minimal disturbance of the behavioral measure, catheterized animals
are the ideal test subjects. The jugular or femoral catheter permits intravenous
administration through a protracted catheter line, whose length can be extended
out from an experimental test environment. This route of administration is
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preferable because the injection is less of a disturbance, compared to an IP
injection. However, jugular or femoral catheterization is experimentally more
complicated than an IP injection, and requires flushing with heparin several times
weekly to maintain the patency of the catheter.

IP injections do not require surgical catheterization, although they do involve
additional animal handling during the uptake period. The IP route of administra-
tion is also problematic due to delayed and often unpredictable absorption of the
radiotracer from the intraperitoneal cavity into the blood stream. This delayed
absorption can result in a poorly defined temporal resolution, in addition to vari-
able brain penetration from the IP injection. Dynamic FDG PET studies have
shown that IP injections of FDG take approximately 14 min to reach the brain
(Schiffer et al. 2006). Fortunately with FDG, once the radiotracer has been trapped,
it is relatively impenetrable, and IP injections after 45 min of uptake do not affect
the regional profile of metabolic activity (Schiffer et al. 2007; Gremese and Schulz
2011). Figure 3 shows that both IV and IP routes result in comparable brain uptake
at later time points.

The question of which route of administration is ‘‘best’’ depends on the specific
task. An IP injection of a radiotracer is optimal for experiments where behavioral
measurements are performed over a long period of time. The relatively slow
delivery of FDG would also be advantageous if the desired drug or task did not
produce immediate effects. On the other hand, IV administration would produce a
faster delivery of radiotracer or substance into the blood stream. Practically, this
means that the window of imaging the drug or task effect with an IV injection
should be much smaller than with an IP injection, although the temporal resolution
is still limited by the duration it takes for the radiotracer to be trapped once
delivered to tissues (see above). With intravenous FDG, plasma 18F concentra-
tions peak in the blood between 3 and 5 s after FDG, whereas with IP injections,
peak plasma 18F occurs 14 min after injection (Schiffer et al. 2007).

Some radiotracers, such as [11C]-raclopride, are metabolized in the periphery
and cannot be delivered by IP injection (personal observation). A recent study
using [18F]-fallypride also demonstrated limited utility of IP injections for awake
animal studies of dopamine dynamics (Yoder et al. 2011).

6.2 Effects of Anesthesia on Functional Imaging
with ‘‘Snapshot’’ Protocols

It should be noted that, for functional imaging with FDG and a burgeoning number
of radiotracers such as [11C]-raclopride, a single PET scan is taken immediately at
the end of a period of tracer uptake, at a time when the animals can be immobilized
by anesthesia with minimal, if any, effect on tracer distribution (Matsumura et al.
2003; Schiffer et al. 2007; Patel et al. 2008; Ravasi et al. 2011). This procedure
avoids the need to use anesthesia to immobilize the animal during the critical
period of tracer uptake by the brain while the animal is free to behave naturally.
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The use of catheterized animals or remote infusion pumps (Holschneider et al.
2002, 2003) allow the delivery of both radiotracer and anesthetic without any
interaction from the investigator. For this reason, an important avenue for func-
tional imaging in rodents will be to further remove any interaction with the
investigator, as both radiotracer and anesthetic can be delivered remotely (Schiffer
et al. 2009).

Inevitably, animals must be anesthetized for scanning. We rely on the impen-
etrable nature of specific radiotracers (here, FDG and [11C]-raclopride) to not be
affected by anesthesia at this late stage of scanning.

6.3 The Use of Anesthesia for Behavioral Imaging Studies
in Animals

Many behavioral imaging research reports appropriately address the issue of
anesthesia, as well as restraint stress or training, as part of their discussion. Indeed,
it is our experience that journal referees and conference attendees frequently draw
attention to the subject of anesthesia. However, there is very little synthesis of
understanding with respect to either the use of anesthesia in these animal models or
the differential effects of distinct anesthetics. Each laboratory is well able to justify
their choice of anesthetic regime, training schedule, or restraint device; some
because they appear to preserve normal neuronal function, others because they have
minimal effects on peripheral physiological functions. Discrepancies in results
between studies are commonly ascribed to differences in the anesthetic regime,
training schedule or restraint device, and while these explanations are plausible,
they are not illuminating. Data reported from studies using anesthetized, restrained,
or trained animal models have direct implications for the design, analysis and
interpretation of neuroimaging studies using awake humans. It is thus just as
important to consider the effects of these experimental modifications as it is species
differences. There are problems associated with movement artifacts and there is a
danger of supplanting the adverse effects of anesthesia with those of restraint stress.
Our ‘‘snapshot’’ protocol circumvents some of these limitations at the cost of
temporal resolution. The awake animal models described here, though modeled as
much after clinical FDG and [11C]-raclopride PET studies as possible, do not
provide a complete solution. It will be critical for more users to employ these types
of behavioral imaging studies to both validate and push the field forward.

6.4 Defining the Baseline State

A critical challenge in behavioral neuroimaging in animals is to identify the
control or baseline condition. This can greatly impact the interpretation of func-
tional imaging studies. In a standard functional imaging design, brain activity
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during two conditions is compared by subtraction––identifying the difference
between brain areas that change activation state (increase or decrease) in the
experimental condition, relative to a baseline condition. This requires great
attention to matching the challenge condition to an appropriate baseline condition.
Depending on the complexity of the behavioral model within a behavioral imaging
study design, this may represent a formidable challenge.

In longitudinal studies, animal subjects serve as their own control, rather than
comparing separate control and challenge groups. Longitudinal studies provide the
advantage of using the same animals in a serial scan design, which reduces animal
numbers. That said, subtle confounding factors such as repeated handling and
anesthesia can complicate the interpretation of behavioral imaging data. In some
cases, it is a necessary advantage to have animals that have been handled (or not
handled) in exactly the same manner. For example, in longitudinal designs where
the loss of a cage-mate leaves one animal singly housed, subtle effects on the
behavior of the animal can impact functional imaging studies or the acquisition of
a learned behavior (Langford et al. 2006, 2010).

Additional error may be introduced in longitudinal designs from repositioning
errors of the subject’s head within the scanner. While software for spatial pre-
processing may aid in minimizing repositioning errors, detailed reference test-
retest studies are needed to identify the variation between two studies on the same
animal subjects under the same baseline condition (Marsteller 2006).

The ability of anesthetics to change global baseline brain function has created
the opportunity to examine the relevance of global baseline (resting) brain activity
in terms of region-specific cerebral processing in humans and in animals (Shulman
et al. 2003; Vincent et al. 2007). Because FDG can be carried out in both awake
and anesthetized animals, many of the initial small animal PET studies focused on
the effects of anesthesia on brain metabolism by comparing awake and anesthe-
tized states (for example, see Matsumura et al. 2003; Shimoji et al. 2004; Toyama
et al. 2004a). A different way to use the anesthetized state is to juxtapose it to a
resting baseline state, to determine which brain regions might be activated at rest

Fig. 5 Voxel-based analysis of anesthesia-induced changes in FDG uptake. Voxel values,
percent change from awake, resting baseline and abbereviations for each region are given in
Table 2. SPM t-maps represent changes in brain FDG uptake from rats (n = 8) tested three times:
awake, resting state uptake versus anesthetized FDG uptake with first isoflurane (a and b)
followed one week later by ketamine/xylazine (c and d). All SPM t-maps were corrected for
multiple comparisons using False Discovery Rate (FDR) correction with a threshold of
p \ 0.001. Non-globally normalized SPM t-maps were not proportionally scaled (a and c) and
represent the significance of the change in FDG uptake expressed as percent injected dose per mL
brain tissue. For the globally normalized SPM t-maps (b and d), global differences were adjusted
by the SPM software in each animal by scaling the voxel intensities so that the mean intensity for
each brain is the same (proportional scaling). Analysis of the values in Table 2 show that
increases on globally normalized SPM t-maps (for example, in the hippocampal regions of b and
d) represent those regions that are less suppressed by anesthesia when non-globally normalized
values are compared (a and c)

b
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by those which are deactivated under anesthesia, and vice versa (Vincent et al.
2007). In this way, the ability of anesthetics to alter brain metabolism has been
exploited as a tool to examine the contributions of global baseline or resting brain
function to specific tasks controlled by discrete brain areas (Shulman et al. 2003;
Vincent et al. 2007). In this regard, we have compiled data from our previous study
comparing awake, freely moving uptake to the same animals under ketamine
anesthesia (Schiffer et al. 2007) with new data using the same protocol in which
animals were scanned in a freely moving state followed 1 week later by scanning
under ketamine anesthesia, and 1 week later under isoflurane anesthesia (Fig. 5).
Together, this data highlights several important points both about the resting state
in animals, as well as the potentially misleading presentation of globally nor-
malized data analyzed with voxel-based analyzes.

Furthermore, the baseline condition or basal brain function can possibly drive
experimental results where resting state scans are obtained from the same animals
over time. However, preclinical resting state scans are increasing in popularity
because of their coherence to clinical resting state scans. Clinical studies have
shown, for instance, that there is a distinct pattern of functional connections in the
resting state that distinguish both Alzheimer’s disease patients and Parkinson’s
patients from age-matched healthy controls (Huang et al. 2007; Horwitz and Rowe
2011). This study design is appealing to small animal functional imaging for
several reasons. First, no training is required and no task performance necessary
during image acquisition; all imaging is performed during the resting state.
Second, and related, is that no interpretation of behavioral results are necessary to
determine how relevant the animal model is to the clinical disease; the brain scans
provide an independent, biological measure of the similarities and differences
between the animal model and human resting state scans. For these reasons, resting
state studies hold promise for determining the clinical relevance of genetically
modified animal models of human disease where there is evidence of functional
connectivity alterations at rest (Ulug et al. 2011). However, global changes in
brain function can confound the interpretation of differences, especially in resting
state conditions. In Fig. 5, data from anesthetized animals compared to an awake,
resting state baseline state show that global normalization of pixel values can be
misleading. When globally normalized, positive t-scores do not represent increases
in activity per se, but actually reflect those areas in which the decreases in
brain FDG uptake were of less magnitude than the change in global mean.
Template-based ROI values for the same data in Fig. 5 are given in Table 2, where
it is evident in regions such as the hippocampus that increases in normalized
values (ROI/WB) actually represent less of a decrease in absolute FDG uptake
(%ID/cc).

In clinical studies of brain function, the argument has also been posed that the
baseline condition is rarely predictive of the activation condition (Morcom and
Fletcher 2007; Hyder and Rothman 2011). That is, basal brain function is not a
predictor of brain function in activated states. Evidence in support of this notion
has also recently been shown with electrophysiological studies in animals (Li et al.
2011). However, basal brain function is a significant confound to studies that have
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Table 2 Regional changes in FDG uptake with (a) isoflurane anesthesia, (b) ketamine anesthesia

Brain region %ID/cc ROI/WB

Awake Anesthetized %D Awake Anesthetized %D

Mean SD Mean SD Mean SD Mean SD

a. Isoflurane anesthesia
NAcc 0.52 0.07 0.44 0.09

-16*
1.17 0.03 1.24 0.05 7*

Amyg 0.42 0.06 0.35 0.06
-15

0.93 0.04 1.01 0.03 9***

CPu 0.58 0.08 0.47 0.09
-19*

1.28 0.03 1.33 0.05 4*

S1 0.61 0.08 0.38 0.07
-38***

1.35 0.03 1.07 0.03 -21***

M1 0.64 0.09 0.44 0.08
-31**

1.42 0.02 1.26 0.03 -11***

ACC 0.67 0.09 0.48 0.09
-28**

1.48 0.03 1.36 0.06 -8***

FC 0.60 0.09 0.46 0.09
-23*

1.34 0.02 1.32 0.05 -1

Ins 0.50 0.06 0.37 0.07
-25**

1.10 0.03 1.06 0.02 -4

HIPant 0.44 0.05 0.37 0.07
-15

0.98 0.02 1.07 0.03 9***

HIPpost 0.39 0.05 0.35 0.06
-10

0.86 0.03 0.99 0.03 15***

HY 0.40 0.05 0.36 0.07
-11

0.89 0.04 1.02 0.02 14***

Sup Coll 0.55 0.07 0.42 0.07
-25**

1.23 0.03 1.19 0.05 -3

CB 0.38 0.05 0.31 0.05
-18*

0.84 0.03 0.88 0.04 5

Inf Coll 0.60 0.09 0.43 0.07
-28**

1.35 0.05 1.23 0.08 -9**

TH 0.55 0.11 0.41 0.08
-25**

1.26 0.02 1.22 0.03 -3*

RSC 0.54 0.08 0.37 0.07
-31**

1.20 0.02 1.07 0.03 -11***

OC 0.53 0.07 0.41 0.08
-23**

1.17 0.02 1.16 0.03 -2

Sept 0.41 0.06 0.36 0.08
-12

0.91 0.05 1.01 0.07 11*

b. Ketamine anesthesia
NAcc 0.52 0.07 0.41 0.11

-21
1.17 0.03 1.26 0.04 9*

Amyg 0.42 0.06 0.32 0.09
-24**

0.93 0.04 0.97 0.03 4**

CPu 0.58 0.08 0.41 0.11
-28**

1.28 0.03 1.27 0.03 -1

(continued)
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no challenge or perturbation and that seek to rely on serial resting state scans to
distinguish pathological conditions. This is really only relevant to studies that use
the resting state as a condition that is ‘‘subtracted’’ from the baseline state (Hyder
and Rothman 2011). Nevertheless, it can significantly hamper efforts to mimic
clinical resting state studies in transgenic animals.

Table 2 (continued)

Brain region %ID/cc ROI/WB

Awake Anesthetized %D Awake Anesthetized %D

Mean SD Mean SD Mean SD Mean SD

S1 0.61 0.08 0.40 0.10
-34***

1.35 0.03 1.12 0.02 -17**

M1 0.64 0.09 0.42 0.10
-35***

1.42 0.02 1.29 0.03 -9***

ACC 0.67 0.09 0.49 0.09
-26**

1.48 0.03 1.50 0.05 1

FC 0.60 0.09 0.45 0.12
-25**

1.34 0.02 1.37 0.03 3***

Ins 0.50 0.06 0.34 0.09
-31***

1.10 0.03 1.05 0.03 -5**

HIPant 0.44 0.05 0.36 0.09
-19**

0.98 0.02 1.10 0.03 12***

HIPpost 0.39 0.05 0.31 0.08
-19**

0.86 0.03 0.96 0.03 11***

HY 0.40 0.05 0.30 0.08
-26**

0.89 0.04 0.91 0.03 2

Sup Coll 0.55 0.07 0.37 0.10
-34***

1.23 0.03 1.12 0.02 -8***

CB 0.38 0.05 0.26 0.06
-33**

0.84 0.03 0.79 0.03 -6***

Inf Coll 0.60 0.09 0.37 0.10
-39***

1.35 0.05 1.12 0.04 -17***

TH 0.55 0.11 0.39 0.12
-30***

1.26 0.02 1.20 0.02 -5***

RSC 0.54 0.08 0.45 0.13
-17

1.20 0.02 1.38 0.08 14***

OC 0.53 0.07 0.42 0.12
-20*

1.17 0.02 1.29 0.04 10***

Sept 0.41 0.06 0.31 0.09
-24***

0.91 0.05 0.86 0.02 -6*

NAcc Nucleus accumbens, Amyg Amygdala, CPu Caudate putamen, S1 Primary somatosensory
cortex, M1 Motor cortex, ACC Cingulate cortex, FC Frontal cortex, Ins Insula, HIPant Hippo-
campus (anterodorsal), HIPpost Hippocampus (posterior), HY Hypothalamus, Sup Coll Superior
colliculus, CB Cerebellum, Inf Coll Inferior colliculi, TH Thalamus, RSC Retrosplenial cortex,
OC Olfactory cortex, Sept Septum
***p \ 0.001, significant difference from awake baseline

** p \ 0.01, significant difference from awake baseline
* p \ 0.05, significant difference from awake baseline
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7 Convergence or Divergence of Behavioral and Imaging Data,
of Human and Animal Data

Despite research that describes a well-defined relationship between brain function
and behavior, there are circumstances in which divergence between behavioral and
brain functional measures occur. Even so, the absence of a concurrent behavioral
effect does not mean that regional changes in brain function are insignificant.
In fact, it may be that activation of neural circuits do not always manifest in a clear
behavioral response (Brodie 1996). This becomes especially complicated when
extrapolating animal brain/behavior relationships to human brain/behavior rela-
tionships. More generally, not enough might yet be known about the structure of
rodent cognition to say how behavioral measures should constrain interpretations
of brain activation, if they should at all.

The main point we wish to highlight is that there may be legitimate circum-
stances where behavioral and neural activation measures diverge. There is a
danger in rejecting significant patterns of brain activation just because they are not
mirrored behaviorally, especially in animals. In clinical studies there are many
reports in which an experimental perturbation changes response at the imaging, but
not the behavioral level (for review, see Wilkinson et al. 1998; Erlandsson et al.
2003). The reverse has also been shown, in which significant effects are found in
the behavioral, but not the imaging data (Grady et al. 2001).

8 Conclusions

Preclinical behavioral neuroimaging offers a platform for measuring concurrent
changes in animal brain function and behavior. Brain imaging, in particular, is one
technique that has cross-species consistency, as do various operant conditioning
procedures. Using PET and radiotracers such as [11C]-raclopride or FDG, pre-
clinical behavioral imaging studies can closely parallel functional imaging
experiments in humans. Small animal behavioral imaging, like all new disciplines,
must find converging support where and when it can. There are two main areas for
such support. The first can be derived from concordance with analogous functional
imaging experiments in humans, and the second through multiple ancillary mea-
sures that are only accessible to preclinical imaging. These include additional
measurements that may not be possible from human subjects, such as simultaneous
in vivo microdialysis, electrophysiology, or histological measures to corroborate
the imaging itself, in addition, to the behavioral responses.

Preclinical imaging of brain systems offers exciting opportunities to better
understand the neurobiology of drug abuse and addiction. Using a dual (behavior
and imaging) paradigm, we are better able to interrogate how well our animal
models parallel human conditions and diseases. The behavioral imaging tech-
niques (PET and fMRI) have emerged as fundamental tools for studying brain

Experimental Protocols for Behavioral Imaging in Animals 111



structure, network connectivity, and the responses to pharmacological challenges
in animal models (reviewed in Borsook et al. 2006; Lancelot and Zimmer 2010;
Cumming et al. 2011). Small animal PET and fMRI instrumentation have become
more sophisticated, yet easier to operate. This has enabled a greater number of
researchers the opportunity to conduct small animal investigations leading to more
advances in the preclinical imaging field.
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Molecular Imaging
and the Neuropathologies of Parkinson’s
Disease

Paul Cumming and Per Borghammer

Abstract The main motor symptoms of Parkinson’s disease (PD) are linked to
degeneration of the nigrostriatal dopamine (DA) fibers, especially those inner-
vating the putamen. This degeneration can be assessed in molecular imaging
studies with presynaptic tracers such as [18F]-fluoro-L-DOPA (FDOPA) and
ligands for DA transporter ligands. However, the pathologies of PD are by no
means limited to nigrostriatal loss. Results of post mortem and molecular imaging
studies reveal parallel degenerations of cortical noradrenaline (NA) and serotonin
(5-HT) innervations, which may contribute to affective and cognitive changes of
PD. Especially in advanced PD, cognitive impairment can come to resemble that
seen in Alzheimer’s dementia, as can the degeneration of acetylcholine innerva-
tions arising in the basal forebrain. The density of striatal DA D2 receptors
increases in early untreated PD, consistent with denervation upregulation, but there
is an accelerated rate of DA receptor loss as the disease advances. Animal studies
and post mortem investigations reveal changes in brain opioid peptide systems, but
these are poorly documented in imaging studies of PD. Relatively minor changes
in the binding sites for GABA are reported in cortex and striatum of PD patients.
There remains some controversy about the expression of the 18 kDa translocator
protein (TSPO) in activated microglia as an indicator of an active inflammatory
component of neurodegeneration in PD. A wide variety of autonomic disturbances
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contribute to the clinical syndrome of PD; the degeneration of myocardial sym-
pathetic innervation can be revealed in SPECT studies of PD patients with auto-
nomic failure. Considerable emphasis has been placed on investigations of
cerebral blood flow and energy metabolism in PD. Due to the high variance of
these physiological estimates, researchers have often employed normalization
procedures for the sensitive detection of perturbations in relatively small patient
groups. However, a widely used normalization to the global mean must be used
with caution, as it can result in spurious findings of relative hypermetabolic
changes in subcortical structures. A meta-analysis of the quantitative studies to
date shows that there is in fact widespread hypometabolism and cerebral blood
flow in the cerebral cortex, especially in frontal cortex and parietal association
areas. These changes can bias the use of global mean normalization, and probably
represent the pathophysiological basis of the cognitive impairment of PD.

Keywords Parkinson’s disease � PET � Dopamine � Serotonin � Noradrenaline �
Receptors � TSPO � Cerebral blood flow � CMRglc � SPECT
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1 Introduction

The loss of pigmentation in the substantia nigra was noted in post mortem brain of
patients dying following the epidemic of post-encephalitic parkinsonism (von
Economo 1931). Once the neurochemical anatomy of monoaminergic neurons had
been described in human brain (Carlsson et al. 1962), the motor symptoms of
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Parkinson’s disease (PD) could be linked to the degeneration of the mesencephalic
DA neurons, with consequent loss of DA innervation to the extended striatum. In
general, the cardinal motor symptoms of PD, i.e. rigidity and bradykinesia are
alleviated with DA substitution via the precursor levodopa, or with direct DA
receptor agonists. However, the therapeutic response to these pharmacological
treatments is ultimately marred by the emergence of motor complications as the
disease advances. Furthermore, patients with advanced PD frequently develop
dementia (Aarsland et al. 2005), depression, anxiety, and other symptoms which
are generally unresponsive to DA substitution therapy. While the greatest
emphasis has been placed on PET investigations of neurochemical pathology in
relation to motor symptoms, the cognitive and affective manifestations of PD
cannot be ignored. It seems imperative to understand PD not as a disease sensu
strictu of the nigrostriatal pathway, but as a widespread systemic disease affecting
multiple sites in the central nervous system and multiple organ and sensory sys-
tems. A comprehensive understanding of the protean neuropathology of PD may
be a prerequisite for designing effective neuroprotective strategies, and for
appreciating the spectrum of cognitive and affective changes that occur in PD, as
distinct from the motor symptoms.

2 Dopamine

PET imaging of nigrostriatal degeneration with the DOPA decarboxylase substrate
6-[18F]-fluoro-L-DOPA (FDOPA) was one of the first successes of molecular
imaging of PD (Nahmias et al. 1985). In many subsequent FDOPA PET studies, the
net influx to brain of FDOPA (Kin

app; ml g-1 min-1) is calculated based upon the
assumption that the [18F]fluorodopamine formed in striatum is irreversibly trapped
within synaptic vesicles, mainly within dopaminergic neurons. However, this
trapping is reversible due to the catabolism of [18F]fluorodopamine to acidic
metabolites; their diffusion from brain is especially evident in FDOPA recordings
lasting longer than one hour. As an alternative index of the status of DA innerva-
tions, the FDOPA steady-state binding capacity can be calculated (VD; ml g-1).
This distribution volume can be defined as the ratio of FDOPA utilization in brain
tissue divided by the elimination rate constant of [18F]fluorodopamine, which is best
calculated from dynamic FDOPA recordings lasting 2 hours or more, wherein the
progressive washout of [18F]fluorodopamine is clearly evident. This approach
resolves a paradox in the literature that FDOPA utilization is unchanged with
healthy aging (Kumakura et al. 2010b); as seen in Fig. 1a, the FDOPA Kin

app is
nearly identical in groups of healthy young and old subjects, whereas there is a
substantial loss in FDOPA VD with age. The steady-state approach also shows an
even greater impairment in FDOPA VD in putamen of early PD patients (Kumakura
et al. 2006), contralateral to the main symptoms, and also throughout the cerebral
cortex, as also presented in Fig. 1a. We attribute these changes to declining
vesicular binding capacity within the composite of monoamine innervations, i.e. DA
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Fig. 1 a Mean parametric maps in groups of healthy young (\40 years), healthy old ([50 years)
and Parkinson’s disease (PD) patients, showing the FDOPA net blood brain clearance (Kin

app;
upper row), and the steady-state distribution volume (VD) [reproduced with permission from
Kumakura and Cumming (2009)], b a representative DATSCAN image from a patient with early
asymmetric PD c the increased FDOPA trapping (VD) in the dorsal raphe nucleus of a group of
PD patients [reproduced with permission from Kumakura et al. (2010a)], d binding sites for [18F]-
fallypride in brain of healthy elderly subjects, and untreated PD patients, and e the use of DMFP-
PET for the discriminative diagnosis of PD and non-PD basal ganglia disease
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noradrenalin and serotonin. Impaired retention of [18F]fluorodopamine is also
evident in FDOPA PET studies of monkeys with MPTP-induced parkinsonism
(Cumming et al. 2001), consistent with the increased DA metabolite ratios measured
post mortem (Pifl and Hornykiewicz 2006). Dopamine content is typically reduced
by 95% in post mortem putamen from PD patients, in whom the disease has run its
full course. However, the relative concentration of DA metabolites such as homo-
vanillic acid is substantially increased in putamen from PD patients (Bokobza et al.
1984). Insofar as metabolite ratios indicate the exposure of cytosolic DA to deg-
radation by monoamine oxidase, the post mortem results support a PET-derived
model of PD in which DA storage capacity cannot accommodate the residual
capacity to synthesize DA, which is relatively preserved in parkinsonian striatum.

Since the advent of FDOPA PET, diverse agents have been developed for
imaging reuptake sites, vesicular transporters, and post-synaptic sites in the
nigrostriatal DA system. In a multi-tracer PET study of PD patients, the relative
decline in the striatal binding of [11C]-methylphenidate to DA transporters
exceeded the declines in the binding of [11C]-dihydrotetrabenazine to DA vesicles,
and of the trapping of FDOPA in nigrostriatal terminals (Lee et al. 2000). A
similar phenomenon is documented in a triple-tracer PET study of aged and
MPTP-lesioned monkeys (Doudet et al. 2006). These results likely reveal a
compensatory decrease in the capacity for clearance of interstitial DA, which
would enhance the temporal duration and spatial extension (also known as volume
transmission) of DA’s action in the healthy aged striatum, and to an even greater
extent in PD striatum. The behavioral consequences of this altered DA signaling
are poorly understood, but may manifest as declining reaction time in motor tasks.

The apparent down-regulation of DA transporters contributes to the sensitivity
of molecular imaging for the detection of degeneration of nigrostriatal fibers. The
tracer [123I]-ioflupane, commonly known as DATSCAN, had found wide use as a
SPECT agent for clinical diagnosis of PD. Figure 1b shows typical findings of
asymmetric loss of DA transporters in putamen, contralateral to the main motor
symptoms. However, DATSCAN does not reveal the relatively sparse extra-stri-
atal catecholamine innervations, which can be detected with [11C]-nomifensine.

In the primate, cortical DA innervations are concentrated in the motor and
premotor cortex and in supplementary motor areas (Berger et al. 1986; Gaspar
et al. 1991), unlike the case of rodent brain, in which the prefrontal and limbic
cortices have a relatively dense DA innervation. Immunocytochemical analysis of
the human motor cortex reveals that DA fibers containing only tyrosine hydrox-
ylase (and not dopamine b-hydroxylase) are twice as abundant as are NA fibers,
which contain both enzymes (Gaspar et al. 1991). Tyrosine hydroxylase fibers are
80% depleted in primary motor cortex and premotor cortex of PD patients,
especially in the superficial layers. Asymmetry in cortical binding of the cate-
cholamine transporter ligand [11C]-nomifensine correlated with clinical motor
symptoms (rigidity and tremor) especially in ventromedial prefrontal cortex of
early PD patients with asymmetric motor symptoms (Marie et al. 1995) In healthy
subjects, FDOPA uptake in caudate and putamen correlated with performance of
frontal cortical tasks such as the Stroop test (Vernaleken et al. 2007). However,
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PET studies with 6-[18F]fluoro-meta-tyrosine, an alternate tracer of catecholamine
synthesis, showed a complex relationship with cognition, whereby high tracer
uptake in the caudate of young subjects correlated with lower performance of a
frontal task (Braskie et al. 2008), in the manner of an inverted U relationship
between dopamine and cognitive performance, as has bee nreported for DA D1
receptors in frontal cortex (Takahashi et al. 2008). Nonetheless, high FMT uptake
in striatum predicted better performance in a working memory task (Cools et al.
2008). Pharmacological blockade of only 25% of striatal DA receptors (Mehta
et al. 2008) evoked cognitive deficits in healthy young subjects similar to those
seen in PD (Mehta et al. 1999). Consistent with cognitive deficits emerging before
motor symptoms in early PD, deficit in performance of a delayed alternation task
has been noted in MPTP-poisoned monkeys without frank motor symptoms,
despite increased DA metabolite ratios in post mortem striatum (Schneider 1990).
In early PD, cortical FDOPA uptake is reportedly increased in association with
impaired performance of the Stroop task, and of a test of sustained attention
(Bruck et al. 2005), perhaps reflecting an early adaptive change in cortical function
in response to a primary nigrostriatal degeneration. Given the relative preservation
of DA in the caudate nucleus of early PD patients, this structure has been par-
ticularly implicated in cognitive performance. Indeed, a principle component
analysis of cerebral blood flow revealed greater expression of cortical networks
associated with tactile discrimination of object shape in the sub-group of PD
patients with better preserved FDOPA uptake in the caudate nucleus (Weder et al.
2000). Furthermore, FDOPA uptake in caudate of PD patients correlated with
impaired performance of verbal memory tests, although atrophy in hippocampus
emerged as a more important factor determining cognitive changes (Jokinen et al.
2009). The (inherently rather low) FDOPA uptake in hippocampus of PD patients
correlated with performance of the Raven’s Colored Progressive Matrices
(Nagano-Saito et al. 2004). In advanced PD, the FDOPA uptake in caudate cor-
related with scores in tests of memory and verbal fluency (an executive function of
the frontal lobe), whereas the uptake in putamen uptake correlated with mental
flexibility or switching, perhaps arising from impaired motor function in the
execution of tasks such as the trail making task (van Beilen et al. 2008).

In healthy subjects, FDOPA uptake specifically in the ventral striatum corre-
lated with affective processing in the frontal cortex, as assessed by BOLD signal
changes evoked by presentation of emotionally laden visual stimuli (Siessmeier
et al. 2006). Loss of emotional reactivity is well established in PD. Nonetheless,
this phenomenon is scarcely investigated by molecular imaging. In one such study,
the binding of [11C]-methylphenidate to DA transporters in left putamen correlated
with emotionally evoked BOLD changes in the ventrolateral prefrontal cortex of
PD patients (Lotze et al. 2009). Depression is likewise frequently encountered in
PD. In one PET study, FDOPA uptake in striatum correlated specifically with the
cognitive items on an inventory of depression (Koerts et al. 2007). In patients with
PD, higher scores for anxiety and depression were associated with reduced DA
transporter availability in the left striatum, but only in those patients with less
severe PD (Weintraub et al. 2005). This finding of a link between DA loss
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specifically in the left striatum and depression, as well as impaired performance of
the Tower of London task, was replicated in a [123I]-FP-CIT SPECT of DA
transporters in PD patients (Rektorova et al. 2008). Reduced uptake of [11C]-
nomifensine in the right putamen correlated with impaired performance of object
alternation and conditional associative learning tasks in non-demented PD patients
(Marie et al. 1999). Loss of olfactory function is commonly an early presentation
of PD. In healthy aged subjects, loss of olfactory sense was most pronounced in
those with age-associated (i.e. non-clinical) nigrostriatal degeneration, as revealed
by [11C]-b-CFT (Wong et al. 2010).

The abundance of striatal DA D2 receptors declines by 5–10% per decade of
normal aging [e.g. (Antonini et al. 1993)]. Elevated binding of the DA D2/3

antagonist ligand [11C]-raclopride is reported in striatum of never-treated patients
with early PD (Antonini et al. 1994), consistent with a compensatory up-regulation
in response to denervation, as seen in rats with 6-hydroxydopamine lesions (Palner
et al. 2010). The elevated binding of the high affinity DA D2/3 ligand [18F]-
fallypride in putamen of a group of early PD patients is illustrated in Fig. 1d.
Despite this early upregulation, follow-up [11C]-raclopride PET studies show an
accelerated rate of loss of DA receptors in patients with more advanced PD
(Antonini et al. 1997), presumably occurring in parallel with the presynaptic
changes described above. However, the rate of this loss is even more pronounced
in patients with more aggressive parkinsonian syndromes such as progressive
supranuclear palsy. Consequently, molecular imaging with the DA D2/3 receptor
ligand [18F]-DMFP (Fig. 1e) can aid is the discriminative diagnosis of PD
(la Fougere et al. 2010b).

3 Medullary Catecholamine Neurons

The locus coeruleus (LC) is a compact group of NA neurons located on either
side of the fourth ventricle, containing approximately 15,000 neurons per side
in the human (Ohm et al. 1997). The LC gives rise to NA innervations of the
entire neuraxis, with some axons collateralizing to divergent targets such as the
cerebellum or cerebral cortex and spinal cord (Loughlin et al. 1982). The
number of pigmented neurons in the LC was reduced by 75% in PD patients
(Gai et al. 1991), and this reduction has been linked to a history of depression
(Frisina et al. 2009). On the other hand, the concentrations of NA and its
metabolites were decreased in LC of PD patients with dementia, but were
normal in non-demented PD patients, irrespective of their history of mood
disorders (Cash et al. 1987). It is generally thought that LC loss is a late
manifestation of PD, as supported by FDOPA-PET, which revealed reduced
uptake in the LC only in advanced PD (Moore et al. 2008). However, loss of
LC neurons in PD can eventually come to exceed that of DA neurons (Zarow
et al. 2003). In PD patients without concurrent diagnosis of Alzheimer’s
dementia, the extent of LC cell loss correlated with severity of dementia
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symptoms (Zweig et al. 1993). The extent of degeneration of LC neurons, most
especially in PD patients who had suffered from depression, is comparable to
that seen in Alzheimer’s dementia (Chan-Palay and Asan 1989). LC lesions
exacerbate the progression of the MPTP model of parkinsonism in marmoset
monkey, (Mavridis et al. 1991), and it has been proposed that LC degeneration
can predispose to the development of levodopa dyskinesia (Fornai et al. 2007).
This observation led to the suggestion that specifically adrenergic aspects of PD
should be the focus of new treatments, with a particular emphasis on dementia
symptoms and disease progression (Rommelfanger and Weinshenker 2007).

In a PET study with the non-specific catecholamine uptake site ligand [11C]-
RTI, binding was especially reduced in the limbic cortex and thalamus of PD
patients with notable depression symptoms (Remy et al. 2005). PET ligands
selective for the NA transporter have only recently become available. In one study,
age-related loss of the NA transporter was revealed in LC, hypothalamus, and
thalamus (Ding et al. 2010), whereas another PET ligand has revealed loss of NA
innervations in post mortem material from AD patients (Gulyas et al. 2010).
However, PET findings with this class of ligands have not yet been reported in PD
patients. In an early report, the densities of post-synaptic a1 and b1 adrenergic
receptors was increased, whereas a2 receptors were decreased in frontal cortex
from PD patients, which was attributed to LC degeneration and up-regulation of
post-synaptic binding sites (Cash et al. 1984). Binding of a2 receptors in porcine
cerebral cortex has been demonstrated with [11C]-yohimbine (Jakobsen et al.
2006), and [11C]-mirtazepine (Smith et al. 2006). The availability of binding sites
for the latter compound was reduced in medication-free depressed patients who
had earlier failed to benefit from antidepressant medication (Smith et al. 2009).
There have been as yet no studies of pre- or post-synaptic markers of adrenergic
innervations in PD patients.

Weakly melanized adrenaline neurons expressing the enzyme phenylethano-
lamine N-methyltransferase (PNMT) are located in the ventrolateral medulla
(A1), under the nucleus of the solitary tract (A2) and in the dorsomedial medulla
(A3) in human and rodent brain, but not in guinea pig (Cumming et al. 1986).
These neurons give rise to adrenergic innervations especially of the hypothala-
mus, and also to the noradrenergic locus coeruleus and intermediolateral cell
columns of the spinal cord. PNMT activity was reduced in hypothalamus of PD
patients (Nagatsu et al. 1977), and the abundance of PNMT-positive A1 neurons
was reduced by 50%, whereas that of the A3 was reduced by 79% relative to
control values, whereas the abundance of A2 neurons was unchanged (Gai et al.
1993). In contrast, an earlier immunohistochemical study with TH antisera had
reported a loss of lightly pigmented adrenaline neurons in the medial A2 (Saper
et al. 1991), whereas still others had failed to find any significant loss of A1 and
A2 adrenaline neurons in a group of three PD patients (Malessa et al. 1990).
However, the general concurrence of findings is that brain adrenaline is deficient
in PD, which could be predicted to contribute to aspects of autonomic
dysfunction.
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4 Autonomic Dysfunction

Autonomic dysfunction occurs in a very high percentage of PD patients, and was
indeed described by James Parkinson in 1817. The most common manifestations of
autonomic dysfunction in PD include male erectile dysfunction, incomplete bladder
emptying, constipation, and orthostatic hypotension (Campos-Sousa et al. 2003;
Singer et al. 1992). Orthostatic hypotension is most pronounced in patients with
long duration of PD (Orskov et al. 1987). Lewy bodies are present in the sympathetic
and parasympathetic nerves, and in the dorsal motor nucleus of the vagus nerve of
PD patients (Braak et al. 2003) and in the cardiac plexus of PD patients (Iwanaga
et al. 1999). The number of preganglionic sympathetic neurons in the intermedio-
lateral cell column at the thoracic level was reduced by 70% in patients with PD;
Lewy bodies were found in the remaining neurons of PD patients (Wakabayashi and
Takahashi 1997). The sympathetic system is generally characterized by a cholin-
ergic preganglionic component and by an adrenergic post-ganglionic component. In
rodent, the post-ganglionic innervation of the sweat glands is atypically cholinergic,
although noradrenergic markers are transiently expressed during development.
However, recent studies indicate that the primate post-ganglionic sudomotor
innervation co-express cholinergic and adrenergic markers (Weihe et al. 2005).
Although the pathophysiological basis of the hyperhydrosis in PD is poorly
understood, excessive sweating can constitute a significant psycho-social aspect of
the disease (Swinn et al. 2003). The symptoms are said to be worse off-levodopa,
and to correlate in severity more with other autonomic symptoms than with motor
symptoms of PD. On the other hand, it has been claimed that thalamotomy was
effective against tremor and also hyperhydrosis. Implying a causal relationship
between the two, rather than autonomic function per se (Selby 1968).

Abnormalities in parasympathetic function have been frequently reported in PD
(see (Koike and Takahashi 1997)). The baseline variation in heart rate at rest, and
the variation in response to deep breathing is reduced in PD relative to healthy
controls (Orskov et al. 1987), as is heart rate variability during sleep (Kallio et al.
2004), both of which findings suggest parasympathetic failure. The presence of
delayed QT interval in the electrocardiogram from PD patients (Deguchi et al.
2002) suggests a basis for the increased risk of PD patients for sudden cardiac
death. Sympathetic failure certainly manifests in the high incidence of orthostatic
hypotension in PD, which contributes to the propensity of patients to experience
falls. However, a pilot PET study with a novel nicotinic receptor ligand did not
reveal any alterations in myocardium of PD patients, suggesting that the para-
sympathetic system in heart is intact (Bucerius et al. 2006).

The catecholamine transporters in myocardial sympathetic fibers can be mea-
sured in molecular imaging studies with [123I]-meta-iodobenzylguanidine ([123I]-
MIBG), [18F]-fluorodopamine, or [11C]-hydroxyephedrine. The myocardial uptake
of [18F]-fluorodopamine was substantially reduced in PD patients with orthostatic
hypotension (Goldstein et al. 2002). Uptake of this tracer was also reduced in the
thyroid gland and in renal cortex of the PD patients, indicating a pervasive loss of
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sympathetic fibers. The sympathetic denervation of the legs can likewise be dis-
cerned with [123I]-MIGB scintigraphy of patients with PD and autonomic failure
(Koike and Takahashi 1997).

The specificity of myocardial denervation for PD has been a matter of
controversy; nearly a dozen imaging studies having failed to detect impaired [123I]-
MIBG binding in patients with multiple system atrophy or progressive supranu-
clear palsy (i.e. Yoshita 1998). Indeed, it was considered for a time that [123I]-
MIBG scintigraphy could provide discriminative diagnosis of PD from other
nigrostriatal degeneration syndromes. However, the uptake of MIBG in myocar-
dium proved to be more impaired among patients with Lewy body dementia than in
PD patients (Suzuki et al. 2006). Furthermore, loss of myocardial sympathetic
innervation was detected in [11C]- hydroxyephedrine PET studies of some patients
with multiple system atrophy or progressive supranuclear palsy (Raffel et al. 2006).
The occurrence of myocardial sympathectomy only in some affected individuals
indicates that these parkinsonian syndromes are highly heterogeneous with respect
to the involvement of the sympathetic nervous system. Raffel et al. (2006) also
investigated the movement disorder patients with [11C]-dihydrotetrabenazine PET
in order to measure the density of DA vesicles in striatum; the absence of any clear
correlation between striatal and myocardial denervations suggested the occurrence
of independent pathophysiological mechanisms in the two tissues.

Urodynamic symptoms such as incomplete voiding occur in a large proportion of
PD patients, and may increase in severity with disease progression (Araki et al.
2000). Brain imaging studies with DA transporter ligands show particularly exten-
sive loss of striatal binding sites in patients with bladder symptoms (Sakakibara et al.
2001; Winge et al. 2005). However, severity of motor symptoms likewise correlated
with the decline in striatal DA transporters. Therefore, it cannot be concluded that
urodynamic symptoms arise from the nigrostriatal degeneration per se, or due to
independent factors such as loss of autonomic function. On the other hand, treatment
with levodopa or direct DA agonists improved urodynamic symptoms (increased
bladder capacity) in most PD patients, although the highly variable individual
benefits suggested the presence of heterogeneous factors (Winge et al. 2004).

Constipation is another classical dysautonomic problem of PD; colonic transit
time is substantially increased in PD patients due to failure of peristalsis (Sak-
akibara et al. 2003). Dopamine-containing neurons were nearly absent in the
myenteric plexus of the majority of PD patients with chronic constipation (Sin-
garam et al. 1995). In contrast, the enteric vasoactive intestinal peptide neurons
were of normal abundance, although they frequently contained Lewy bodies.

5 Neuroendocrine Systems

The paraventricular and supraoptic nucleus of the hypothalamus contain oxytocin
and vasopressin neurons, which project to the posterior lobe of the pituitary gland.
Relative to age-matched control subjects, the number of oxytocin-containing
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neurons was reduced by 22% (in the absence of Lewy bodies) in the paraven-
tricular nucleus of PD patients. The abundance of vasopressin neurons were
nonsignificantly reduced in the same subjects (Purba et al. 1994).

Inhibition of growth hormone secretion by somatostatin is overcome by growth-
hormone releasing hormone. While this mechanism was intact in patients with PD,
the release of growth hormone normally evoked by a 5-HT1 agonist did not occur
in PD patients (Volpi et al. 1997b). Fenfluramine challenge evokes a twofold
increase in plasma ACTH in normal subjects, but not PD patients (Volpi et al.
1997a). However, the effect of corticotrophin releasing factor was identical in the
two groups, indicating a primary defect of the hypothalamic 5-HT innervation.
Fenfluramine-evoked prolactin response was also blunted in PD patients (Kostic
et al. 1996). While these neuroendocrine changes might plausibly be attributed to
degeneration of the 5-HT innervation (see below), hypothalamic 5-HT content was
not significantly reduced in PD patients (Shannak et al. 1994). Treatment with the
l-opioid antagonist naloxone increases secretion of ACTH/cortisol and luteinizing
hormone, by interfering with tonic inhibition of hypothalamic/pituitary function.
However, naloxone failed to evoke increases in ACTH/cortisol or LH secretion in
PD patients off levodopa; reinstatement of levodopa treatment normalized these
neuroendocrine responses (Volpi et al. 1994). The activity of DOPA decarboxylase
is reduced by 67% in hypothalamus of patients with PD (Lloyd and Hornykiewicz
1970), suggesting that loss of catecholamine tonus intrinsic to the hypothalamus
may mediate some of the neuroendocrine changes in PD.

6 Serotonin

Serotonin transmission, like that of DA, is regulated via specific plasma mem-
brane transporters. The binding of [3H]-citalopram to 5-HT transporters (SERT)
was reduced by 75% in caudate and putamen of PD patients, and by 50% in the
substantia nigra and neocortical regions (Chinaglia et al. 1993). In contrast, the
density of SERT in the raphe nuclei was normal in PD patients, although Lewy
bodies have been reported in 5-HT neurons in that condition (Ohama and Ikuta
1976). The extent of reduced 5-HT concentration in cerebrospinal fluid from PD
patients correlated inversely with Hoehn and Yahr stage and with severity of gait
freezing (Tohgi et al. 1993). This finding does not indicate causality in motor
symptoms, but could alternately indicate that 5-HT depletion is a surrogate
marker for severe DA depletion, i.e. due to a parallel decline in monoamine
systems. In another study, the occurrence of premorbid depression correlated with
the extent of loss of 5-HT neurons in the dorsal raphe of patients dying with PD
(Paulus and Jellinger 1991). The 5-HT metabolite 3-hydroxykynurenine was
reduced by 75% in cerebrospinal fluid of PD patients, but the 5-HT concentration
proved to have the higher negative correlation with motor symptoms (Tohgi et al.
1993). Serotonin levels, and also NA, were reduced by 50% in lumbar cord
(Scatton et al. 1986) and in limbic cortical regions of patients dying with PD
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(Scatton et al. 1983), which may have implications for the affective and pain
syndromes of PD.

There is some evidence that mesencephalic DA exerts a tonic inhibition of
5-HT neurons in the raphe. An early, preclinical stage of nigrostriatal degeneration
might thus entail facilitiation of 5-HT activity, at least prior to the onset of
degeneration of the 5-HT neurons in late PD. In an FDOPA-PET study of early PD
patients with asymmetric disease, we have observed elevated FDOPA trapping in
the vicinity of the dorsal raphe nucleus (Fig. 1c), and also the ventral striatum
(Kumakura et al. 2010a). This observation could predict elevated 5-HT synthesis,
or production of DA as a false neurotransmitter within the 5-HT neurons in early
PD treated with levodopa. In a [11C]-DASB study, the availability of 5-HT
transporters was reduced by some 30% in forebrain of PD patients without pro-
nounced depression (Guttman et al. 2007), whereas [11C]-DASB binding was
elevated in some cortical regions of PD patients with depression (Boileau et al.
2008). A [11C]-DASB study linked reduced 5-HT transporters to fatigue symptoms
in PD patients (Pavese et al. 2010). Others found relative preservation of 5-HT
transporters in specific brain regions such as amygdala and posterior cingulate
cortex of depressed PD patients (Politis et al. 2010).

Post-synaptic actions of 5-HT are mediated via a large number of receptor
subtypes. The concentration of 5-HT2 receptors was reduced in parietal cortex of
patients with PD and dementia, in whom the cortical concentration of choline
acetyltransferase (ChAT) was also reduced (Perry et al. 1984). In other post
mortem studies, the abundance of 5-HT2 receptors labeled with [3H]-ketanserin
was reduced by 50% in temporal cortex from patients who had died with PD,
whereas nearly normal levels were present in frontal cortex; declines in temporal
lobe 5-HT2 receptors did not correlate with severity of dementia in these PD
patients (Maloteaux et al. 1988a). Fine anatomical analysis of cortical [3H]-
ketanserin binding revealed declines in all cortical layers of patients with PD,
Lewy body dementia, and Alzheimer’s dementia (Cheng et al. 1991). Thus, loss of
5-HT receptors is well-documented in PD, but is equally present in other neuro-
degenerative disorders. Declines in post-synaptic 5-HT receptors in conjunction
with loss of cortical 5-HT innervation suggest that degeneration of 5-HT pathways
involves pre- and post-synaptic mechanisms, rather than a simple denervation,
which might be expected to result in up-regulation of some classes of 5-HT
receptors. The observed changes in 5-HT markers may be especially relevant to
cognitive changes associated with PD.

7 Acetylcholine

A cardinal neurochemical feature of Alzheimer’s disease is the loss of cortical
cholinergic innervation derived from the basal nucleus of Meynert in the basal
forebrain (Coyle et al. 1983). However, reduced enzymatic activity of the
cholinergic marker choline acetyltransferse (ChAT) in frontal cortex also correlated
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with the extent of cognitive impairment in PD patients, as did the DA D1 receptor
density in the caudate nucleus (Mattila et al. 2001). Loss of basal forebrain cho-
linergic neurons is especially prevalent in PD patients with dementia that is unre-
sponsive to levodopa therapy (Chan-Palay 1988), and reduced cortical ChAT was
noted above in association with loss of cortical 5-HT receptors in demented PD
patients (Perry et al. 1984). However, ChAT levels were unaffected in the substantia
nigra of PD patients (Javoy-Agid et al. 1981), nor was ChAT reduced in putamen of
patients dying with PD (Perry et al. 1991). In association with the cholinergic
neurons of the basal nucleus of Meynert, there are to be found fusiform neurons
expressing galanin peptide, which is inhibitory to cholinergic neurons. In patients
with AD and PD, the density of galanin-immunoreactive terminals on soma and
dendrites of the cholinergic neurons was increased (Chan-Palay 1988).

The relationship between cortical availability of nicotinic receptors and cog-
nition (Kadir et al. 2006) and treatment effects of galantamine (Ellis et al. 2009)
has been investigated in molecular imaging studies of Alzheimer’s disease. There
were slight (10%) reductions in nicotinic receptor binding in the striatum of PD
patients, but no cortical changes were reported in that PET study (Kas et al. 2009).

8 Peptide Neurotransmitter Systems

The striatum contains two populations of GABA-ergic medium spiny neurons. The
GABA-enkephalin neurons project mainly to the external pallidum, whereas the
GABA-substance P neurons project to the substantia nigra and pallidal internal
segment. The concentration of met-enkephalin was reduced by one half in the
caudate, putamen, and substantial nigra of PD patients (Fernandez et al. 1996), and
likewise in striatum of MPTP-lesioned monkeys (Perez-Otano et al. 1995), but was
increased in striatum of 6-OHDA-treated rats (Thal et al. 1983). The leu-enkephalin
concentration was substantially reduced in putamen and substantia nigra of PD
patients (Fernandez et al. 1996), but leu-enkephalin levels were normal in striatum
of MPTP-lesioned monkeys (Jenner et al. 1986). The concentration of substance P
was reduced by 50% in post mortem putamen samples from PD patients (Fernandez
et al. 1996); in animal studies of acquired parkinsonism, a similar reduction on
Substance P concentration was reversed by levodopa treatment (Engber et al. 1991).

Opioid receptors are found on pre- and post-synaptic elements as well as on
interneurons in the striatum. Opioid binding was investigated in PET studies
employing [11C]-diprenorphine in groups of patients with PD and other akinetic
rigid syndromes (Burn et al. 1995); the striatal binding ratio in the PD patients was
similar to that in control subjects, whereas the binding ratio was reduced in
putamen of striatonigral degeneration patients, and in caudate and putamen of
Steele–Richardson–Olszewski syndrome. However the same group subsequently
reported reduced [11C]-diprenorphine binding in striatum of PD patients with
dyskinesias, in whom the radioligand binding was also reduced in thalamus and
cingulate gyrus, but was increased in the prefrontal cortex (Piccini et al. 1997).
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Substance P is also expressed in several cell populations of the mesopontine
tegmentum, including the pedunculopontine tegmental nucleus and the 5-HT neu-
rons of the dorsal raphe. Very substantial loss of these groups of peptidergic neurons
is reported in PD (Gai et al. 1991). Studies in experimental animals suggest that
lesions of the pedunculopontine nucleus may result in the REM sleep behavior
disorder, a newly described clinical entity characterized by vivid dreaming and loss
of normal atonia, resulting in simple or complex movements during sleep, even to
the extent of ‘‘acting out’’ dreams. In a longitudinal study, 38% of cases with initial
diagnosis of REM sleep behavior disorder had proceeded to develop PD, a mean of
4 years later (Schenck et al. 1996). Striatonigral degeneration has been confirmed in
a [123I]-FP-CIT SPECT study of PD patients with a history of REM sleep behavior
disorder, as well as olfactory dysfunction (Stiasny-Kolster et al. 2005).

Within the parabrachial nucleus there is also a population of neuromelanin-
containing tyrosine hydroxylase-positive neurons; the abundance of which is
reduced in patients with PD (Goto and Hirano 1991). Since this structure is
involved in the regulation of autonomic function via input from the amygdale, this
cell loss may contribute to the autonomic dysfunction frequently occurring in PD,
as described above.

9 GABA

Despite the great abundance of GABA-ergic neurons in the striatum, only mod-
erate densities of GABA-A binding sites are to be found in the basal ganglia,
whereas the densest binding in brain occurs in the cerebellum and cerebral cortex.
The specific binding of [3H]-flunitrazepam was unchanged in cerebral cortex, but
increased in post mortem striatum from PD patients (Maloteaux et al. 1988b).
Despite this finding in vitro, the binding of the SPECT ligand [123I]I-iomazenil
was decreased throughout cerebral cortex of PD patients, in proportion to the
severity of their disease (Kawabata and Tachibana 1997). Indeed, binding of the
GABA-A ligand [11C]-flumazenil in cerebral cortex has been interpreted to be a
surrogate indicator of cortical thickness and neuronal density (la Fougere et al.
2010a), which may be reduced in PD. However, GABA-A binding is relatively
preserved in cortex of AD patients, despite the clear reductions in cerebral blood
flow (Ohyama et al. 1999). This suggests that the [123I]I-iomazenil results in PD
may indicate an actual loss of cortical neurons, rather than a decline in cortical
thickness due to atrophy of the neuropil.

10 Microglial Activation

The 18 kDa translocator protein (TSPO), formerly known as the peripheral
benzodiazepine receptor, is highly expressed in the outer mitochondrial mem-
brane, most especially in microglia, which are the resident macrophages of the
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brain. As such, TSPO binding can be taken as an indicator of inflammatory
reactions in the brain parenchyma. In a rat microPET study, the binding of the
prototypic TSPO ligand [11C]-PK11195 was persistently increased in striatum and
substantia nigra following infusion of the DA neurotoxin 6-OHDA (Cicchetti
et al. 2002). Indeed, a histological study with antibodies against another marker
of activated microglia revealed a continuing inflammatory process in parkinso-
nian monkey brain several years after intoxication with MPTP (McGeer et al.
2003). A longitudinal PET study of idiopathic PD patients likewise revealed a
widespread and persistent increase in [11C]-PK11195 binding, which did not,
however, correlate with impaired striatal FDOPA utilization or clinical severity
(Gerhard et al. 2006). The authors suggested that microglia activation had
occurred at an early stage of the disease process. Levels of [11C]-PK11195 uptake
in midbrain correlated inversely with the DA transporter marker [11C]-CFT
binding potentials in the putamen and correlated positively with motor symptoms
of PD patients (Ouchi et al. 2005). Protective effect of non-steroidal anti-
inflammatory drugs (NSAID) have been described in animal models of PD
(Aubin et al. 1998; Mohanakumar et al. 2000) and epidemiological studies have
reported decreased risk of developing PD with chronic intake of a non-steroidal
anti-inflammatory drug (Chen et al. 2005), suggesting that activated microglia
play a role in PD pathogenesis, at least as an initiator. Nonetheless, others failed
to detect any elevated [11C]-PK11195 binding in a small group of PD patients,
and also failed to detect an effect of treatment with a COX-2 inhibitor on the
cerebral binding (Bartels et al. 2010). However, the low sensitivity of [11C]-
PK11195 for detecting TSPO is well-known; there was only a trend toward
increased binding in the brain of pigs with well-documented MPTP lesions of the
nigrostriatal pathway (Cumming et al. 2006). There is currently a very active
search to identify an optimal TSPO tracer with binding properties superior to
those of [11C]-PK11195 (e.g. Van Camp et al. 2010).

11 Blood Flow and Glucose Metabolism

The investigation of cerebral blood flow (CBF) and rate of glucose consumption
(CMRglc) has had two major applications in the context of PD: to advance the
understanding of neuroenergetic features of the disorder, and to develop tools for
differential diagnostic purposes, treatment- and disease-monitoring. Before the era
of human PET was underway, a substantial body of knowledge had already been
collected using [14C]-2-deoxy-glucose (2DG) autoradiography (Sokoloff et al.
1977) in animal models of PD. The findings of more than 20 such studies of
parkinsonian animals were recently reviewed (Borghammer et al. 2009b; Obeso
et al. 2008). Evaluation of this evidence is complicated by differences in imaging
procedures, and the precise nature of the neurotoxic lesion obtained with agents
such as MPTP or 6-OHDA. Importantly, the interval of time between intoxication
and autoradiographic imaging ranges from a few days to many months.
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Nevertheless, the evidence shows some clear consistencies. In brief, the resting
state in the parkinsonian rodent and monkey seems to be characterized by
unchanged or decreased CMRglc in frontal and parietal cortex. The subthalamic
nucleus, in which the neurons display increased firing rate in the condition of DA
denervation of the striatum (Bergman et al. 1994; Obeso et al. 2008), is
unequivocally hypometabolic. In contrast, the external pallidum (GPe) exhibits
decreased firing rate but is nearly always hypermetabolic. This illustrates the
principle that glucose metabolism is more closely associated with the input to a
given region than with its output (Attwell and Laughlin 2001). The pedunculo-
pontine nucleus (PPN) is probably also hypermetabolic. A few studies reported
hypermetabolism in the internal pallidum, striatum, the ventral-lateral (VL), and
ventral-anterior (VA) thalamic nuclei, but many more studies reported no change
or even decreases in these structures. In summary, the brain of parkinsonian
animals is probably characterized by cortical hypometabolism and concurrent
hypermetabolism in only a few discrete and very small, basal ganglia structures
(PPN and GPe).

Many subsequent quantitative PET studies in human PD focused on replicating
findings from the animal literature. However, the final spatial resolution of nearly
all PET studies performed to date is little better than 10 mm, when taking all
factors into account, i.e. intrinsic scanner resolution, head movement, post-
reconstruction filtering, and less-than-perfect co-registration of emission images to
a standard coordinate system. In other words, given present technical limitations,
PET studies are unfit to replicate the animal findings of hypermetabolism in small
structural elements of the basal ganglia. In addition, human CBF and CMRglc
values display a great deal of biological variation. The relative standard deviation
of these parameters is usually 14–20% in groups of normal subjects (Leenders
et al. 1990; Moeller et al. 1996), and patients with neurodegenerative disorders
(Berding et al. 2001; Imon et al. 1999), but can be as high as 30% in PD (Huang
et al. 2007). This substantial variance hinders detection of low-magnitude signals
in typical PET studies consisting of 10–20 subjects per group. Taken together,
these observations probably explain why absolute subcortical hypermetabolism
has not been robustly confirmed in patients with PD, even though more than 30
quantitative CBF and CMRglc studies have been performed to date [see Borg-
hammer et al. 2010 for references].

On the other hand, nearly all of the 30 quantitative PET studies of metabolism
reported significant or non-significant global and regional decreases of CBF and
CMRglc in PD. Many of the studies reported significant absolute decreases of CBF
and CMRglc in frontal (Eberling et al. 1994; Takahashi et al. 1999) and parieto-
occipital cortical regions (Berding et al. 2001; Bohnen et al. 1999; Hu et al. 2000;
Takahashi et al. 1999). Figure 2 illustrates the results of a recent meta-analysis of
all available CBF and CMRglc studies, in which global mean values were spe-
cifically stated (Borghammer et al. 2010). The meta-analysis confirms the presence
of decreased CBF and CMRglc in the global mean values of PD patients, although
these defects are not always detected in individual studies due to their insufficient
sample sizes.
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12 Hypometabolism in Normalized PET Studies

Inclusion of sufficiently large sample sizes to compensate for the considerable
variation in CBF and CMRglc data is so costly that the use of data normalization
was quickly introduced in PET studies (Fox et al. 1988). The most commonly used
method is to simply divide the tracer uptake in each region or voxel by the global
mean (GM) value of the whole brain, or the mean value of all gray matter. This
kind of normalization process yields ratios with drastically decreased variation
(relative SD of 4–10%) (Antonini et al. 1998; Defebvre et al. 1999; Ghaemi et al.
2002). Thus, normalization favors the detection of group differences which are
focal and of small magnitude. However, valid use of this approach is predicated on
the assumption of absent between-group GM differences. As shown in Fig. 2, this
requirement is probably not met in PD patients, in whom the GM metabolism and
blood flow are most likely decreased.

Thus, PET scans in PD and other neurodegenerative disorders should instead be
normalized to other regions, which are known to be less affected than the GM. The
cerebellum (Dukart et al. 2010), the pons (Minoshima et al. 1995), the somato-
sensory cortex (Yakushev et al. 2009), and white matter (Borghammer et al. 2008)
have all been demonstrated to perform better than GM normalization in

Fig. 2 Forest plots of meta-
analyses of CBF (top) and
CMRglc (bottom) differences
between PD patients and
healthy controls. Horizontal
lines represent 95%
confidence intervals around
the standard mean difference
(SMD) of each study. The
size of the squares represents
the relative weight assigned
to that particular study in
calculation of the overall
SMD. The vertical lines
signify overall SMD with
95% CI (diamond). The SMD
is defined as the ratio
(between-group difference in
mean)/(pooled standard
deviation with correction for
small sample sizes).
Reprinted with permission
from Borghammer et al.
(2010)
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neurodegenerative disorders. Recently, a data-driven normalization strategy for
identification of useful normalization regions a posteriori was devised by Yakushev
and colleagues (Borghammer et al. 2009a; Yakushev et al. 2009). Figure 3 sum-
marizes the effect of different normalization strategies on the extent of the detected
pattern of perturbed metabolism in PD. In brief, normalization to the cerebellum,
the white matter, or Yakushev normalization yields evidence for widespread cor-
tical hypometabolism (Fig. 3a) and hypoperfusion (Fig. 3b), notably in the lateral
and medial prefrontal, and parieto-occipital regions, and also in the lateral temporal
lobe. Metabolism in the medial temporal lobe, sensory-motor cortex, basal ganglia,
brainstem and cerebellum is apparently unchanged in PD. For two reasons, it seems
likely that this pattern of relative cortical hypometabolism is a more accurate
description of true, absolute hypometabolism. First, the quantitative PET literature

Fig. 3 a, b The patterns of relative CBF and CMRglc decreases in PD are closely matched.
These patterns are only robustly detected when normalization to white matter (WM; green) or
data-driven Yakushev (YAK; red) normalization is applied. c, d Using global mean (GM; blue)
normalization only residual traces of the pattern are detected. This figure shows results of a
simulation study in which isolated cortical decreases of 11% (light blue) and 23% (purple) were
applied in a group of 20 subjects, and then compared to 20 unchanged control images. Here, WM
and particularly YAK normalization recovered much more of the true signal than did GM
normalization. e When GM normalization is employed (and only then), most CBF and CMRglc
PET studies of PD have detected a pattern of relative increases in the thalamic-capsula interna-
lentiform intersection, motor cortices, WM structures, pons, and central cerebellum. However,
similar patterns have been reported in healthy aging, Alzheimer’s disease, and other disorders.
Thus, the pattern arises as a general consequence of GM normalization, and the correct
interpretation of the finding is most likely that metabolism in these regions is unchanged or even
decreased, but to a lesser degree than is the global mean. [Adapted from Borghammer et al.
(2010, 2009b) with permission.]
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supports that cortical regions display absolute decreases of CBF and CMRglc.
Second, the pattern is in agreement with the animal literature, as discussed above.
Interestingly, this cortical pattern, which is already present in early-stage patients
(Borghammer et al. 2010) seems to coincide at least in part with the pattern of of
Lewy Body deposition at later disease stages (Braak et al. 2003). This observation
suggests that early perturbation of cerebral cortical metabolism could be causally
involved in the subsequent deposition of inclusion bodies.

13 Hypermetabolism in Normalized PET Studies

A number of PET and SPECT studies of PD have been performed, in which GM
normalization was used. However, since the GM metabolism and blood flow are
most likely decreased in PD, the use of GM normalization will necessarily lead to
the appearance of seemingly hypermetabolic foci in brain, relative to the unde-
tected decline in GM (Borghammer et al. 2009b). Thus, the GM studies have
without exception reported a pattern (Fig. 3e) of widespread relative hyperme-
tabolism in the thalamic-capsula-interna-lentiform intersection, primary motor
sensory cortex, white matter, pons, and central cerebellum (Eidelberg et al. 1994;
Hosey et al. 2005; Huang et al. 2007; Imon et al. 1999; Nagano-Saito et al. 2004).
As detailed above, this widespread pattern finds little overlap with the 2DG
autoradiographic results in parkinsonian animals, in which robust hypermetabo-
lism was seen only in a few discrete subcortical structures—structures too small to
have been detected in nearly all PET studies performed to date. In addition, a very
similar pattern of hypermetabolism has been reported in a range of other neuro-
logical conditions, but only when GM normalization is used (Borghammer et al.
2008). As illustrated in Fig. 3e, similar patterns were reported when aged subjects
were compared to young controls (Borghammer et al. 2009b; Kalpouzos et al.
2009; Moeller et al. 1996) and also in Alzheimer’s disease patients (Borghammer
et al. 2009b; Dukart et al. 2010; Habeck 2010). There is no theoretical basis for
expecting such subcortical hypermetabolism in healthy aging or Alzheimer’s
disease. The parsimonious explanation for the commonality of these patterns is
therefore that it represents regions of preserved metabolism, which were similarly
inflated by biased GM normalization. This interpretation was recently verified in a
large quantitative MRI study in PD patients (Melzer et al. 2011). Here, Melzer and
colleagues demonstrated that the apparently hypermetabolic regions demonstrated
in Fig. 3e are in reality the only metabolically conserved regions in PD, whereas
most of the cerebral cortex displays small or large absolute deficit in perfusion, as
demonstrated in Fig. 3a and b. Moreover, we recently compared FDG uptake in a
group of PD patients and healthy controls using a brain-dedicated high-resolution
PET scanner with sufficient spatial resolution to investigate very small subcortical
structures (Borghammer et al. 2011a). In this study, absolute hypermetabolism was
suggested only in the GPe, which is also in accordance with the 2DG autoradio-
graphic evidence in animal models of PD.
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It must be noted that, although GM normalization may yield patterns that are
not strictly physiologically meaningful, these patterns can nevertheless be very
disease-specific and of great diagnostic utility. For instance, disease-specific pat-
tern reliably separates PD patients from healthy controls (Ma et al. 2007) and from
patients with atypical movement disorders (Tang et al. 2010). Changes in the
pattern have also been successfully used to evaluate treatment effects of levodopa
and deep brain stimulation in PD patients (Asanuma et al. 2006).

14 Cerebral Oxygen Consumption

The resting cerebral metabolic rate of oxygen consumption (CMRO2) has been
investigated in only few PET studies of PD patients. This parameter is however of
some interest since decreased activity in complex I of the mitochondrial electron
transport chain (ETC) has been reported in post-mortem studies of PD patients
(Henchcliffe and Beal 2008; Keeney et al. 2006). Dysfunction of the ETC would
under most circumstances not only lead to reduced CMRO2, but also to reductions
of the CMRglc according to the stoichiometric relationship for CMRO2:CMRglc
of 6:1 for the complete oxidation of glucose. Specific defects in the ETC would
likely result in proportionally greater deficits in CMRO2 than CMRglc, i.e. a shift
to anaerobic respiration (Frackowiak et al. 1988). Four PET studies reported non-
significant global CMRO2 decreases and significant decreases in cortical regions in
early- to moderate-stage PD patients (Kitamura et al. 1988; Leenders et al. 1985;
Takahashi et al. 1999; Borghammer et al. 2011b). Thus, the results of these studies
could be consistent with a dysfunctional ETC in PD. However, a recent study
surprisingly detected significantly increased global CMRO2 and near-significant
increase in global CMRglc (p = 0.056) in 12 early-stage, drug na PD patients
(Powers et al. 2008). The authors speculated that an uncoupling of ATP production
from oxidative phosphorylation could potentially explain this unexpected finding.
However, one of the earlier CMRO2 in early-stage previously unmedicated PD
patients reported a non-significant decrease in the CMRO2 (Takahashi et al. 1999).
So, considering that the entire quantitative PET literature reports only significant
or non-significant decreases of metabolism and blood flow (Borghammer et al.
2010), the report of globally increased CMRO2 in drug na patients is an isolated
finding.

Deep brain stimulation (DBS) targeting the overactive subthalamic nucleus
can markedly relieve the rigidity and tremor of PD. However, the net cerebro-
metabolic effects of DBS have been a matter of some controversy. We have
predicted that effective DBS, by blocking or entraining the activity of subthalamic
neurons, should rectify a putative focal hypermetabolism. However, the treatment
proved to evoke no discernible change in the magnitude of CMRO2 in the target
structure, producing instead unexpected metabolic activations in distal cortical
regions linked to the perception of motion (Vafaee et al. 2004). In FDG-PET
studies of similar design, DBS evoked activation of the relative CMRglc in the
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target structure and in some limbic and associative projection territories of the
basal ganglia (Hilker et al. 2004), or had no effect in the target structure, while
evoking increases and decreases in distal cortical regions (Le Jeune et al. 2010).
These discrepant findings highlight the difficulties in interpreting PET measure-
ments of brain energy metabolism in the basal ganglia of PD patients on accor-
dance with heuristic models of the underlying cerebrometabolic disturbances.

15 Conclusions

The theme of this review is that nigrostriatal degeneration, while of key impor-
tance for the motor symptoms of PD, constitutes only part of PD pathology. A full
understanding of the clinical presentation should be informed by knowledge about
the spectrum of pathophysiological changes in the parkinsonian brain, and also in
diverse peripheral tissues. Thus, the presence of widespread cortical hypometab-
olism in frontal and parietal cortical regions early in the disease could underlie the
early onset of cognitive decline reported in PD. Newly diagnosed PD patients most
often display deficits in frontal lobe cognitive domains, such as executive func-
tions and psychomotor speed (Muslimovic et al. 2005; Rodriguez-Ferreiro et al.
2010). Other studies have reported deficits in visuoconstructive abilities (Levin
et al. 1991; Stella et al. 2007; Williams-Gray et al. 2007), which are widely
accepted to be reflective of parietal lobe dysfunction (Makuuchi et al. 2003).
Moreover, evidence is accumulating that working memory, which is also often
impaired in early PD (Koerts et al. 2009; Whittington et al. 2006), relies heavily
upon superior parietal cortex (Koenigs et al. 2009). As such, the pattern of cortical
hypometabolism displayed in Fig. 3a seems to overlap fairly well with cortical
regions responsible for the particular cognitive functions known to be compro-
mised in early PD. However, the causality of this link is presently uncertain; are
cognitive deficits in PD due to primary cortical hypometabolism, or are both
phenomena down-stream effects of progressive loss of monoaminergic cortical
innervations?
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Imaging of Seasonal Affective Disorder
and Seasonality Effects on Serotonin
and Dopamine Function
in the Human Brain

Nicole Praschak-Rieder and Matthaeus Willeit

Abstract According to current knowledge, disturbances in brain monoamine
transmission play a major role in many psychiatric disorders, and many of the
radioligands used for investigating these disorders bind to targets within the brain
monoamine systems. However, a phylogenetically ancient and prevailing function
of monoamines is to mediate the adaptation of organisms and cells to rhythmical
changes in light conditions, and to other environmental rhythms, such as changes
in temperature, or the availability of energy resources throughout the seasons. The
physiological systems mediating these changes are highly conserved throughout
species, including humans. Here we review the literature on seasonal changes in
binding of monoaminergic ligands in the human brain. Moreover, we argue for the
importance of considering possible effects of season when investigating brain
monoamines in healthy subjects and subjects with psychiatric disorders.
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1 Introduction

Organisms living in temperate and polar zones undergo profound seasonal changes
in their metabolism and behaviour. These oscillations are a necessary evolutionary
adaptation that allows for coping with dramatic changes in temperature, lighting
conditions, and food availability. Humans show a wide range of behaviors that
vary with seasons. This includes variations in eating behavior and sleep, mood,
and energy balance. The degree of seasonal changes in these parameters is termed
‘‘seasonality’’. Individuals with particularly high seasonality scores are highly
vulnerable for seasonal affective disorder (Hardin et al. 1991; Winkler et al. 2002).
Seasonal affective disorder (SAD), and in particular winter type SAD (the most
common form of the disorder) is a special form of recurrent major depression, with
regular depressive episodes during autumn and winter, alternating with euthymia
or hypomanic phases in spring and summer (Rosenthal et al. 1984). Frequently,
patients with SAD suffer from atypical depression, a condition characterized by an
increase in sleep, hyperphagia, and subsequent weight gain. This symptom profile,
together with the high proportion of female patients with SAD, has led to the
hypothesis that seasonality is an adaptive response regulating reproductive cycles
in populations that migrated to Northern or Southern temperate and polar zones
(Davis and Levitan 2005; Pjrek et al. 2007).

Seasonality per se is not necessarily associated with clinical symptoms; rather,
it is normally distributed in the general population (Kasper et al. 1989; Winkler
et al. 2002; Hardin et al. 1991). In contrast to many animal species who show more
dramatic changes in behaviour, such as hibernation or the exclusive restriction of
mating behaviour to a certain period of the year, humans living in temperate or
polar zones show much more subtle changes. Still, many events show a clear
seasonal distribution, and most of the time, we do not know the mechanisms
involved in the rhythmic expression of phenomena as diverse as suicide (see below
for further discussion), metabolic changes (Au-Yong et al. 2009), activity of
disorders such as multiple sclerosis (Meier et al. 2010), or the incidence of sudden
infant death syndrome (Douglas et al. 1996; Osmond and Murphy 1988).

Some physiological and pathological conditions show rhythmic patterns
oscillating at different discernable frequencies. A good example is sleep. Sleep
follows an obvious circadian rhythm, with another seasonal rhythm that is
superimposed in large parts of the population, showing a regular increase in
sleep duration during winter, and reductions in sleep duration in summer (Kasper
et al. 1989). At times, systems regulating circadian oscillations—some of the
components are well characterized—are also involved in mediating the effects
of changing seasons and varying light schedules (Balzer and Hardeland 1991;
Wehr et al. 2001; Gonzalez and Aston-Jones 2006, 2008). Indoleamines (trypto-
phan, serotonin, melatonin) and other monoamines (e.g., dopamine, norepineph-
rine) are of special importance in signaling change of seasons in plants, animals,
and humans (Azmitia 2001). Today, there is solid evidence that a dysregulation in
brain monoamine systems contributes to the pathogenesis of SAD (for review see
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Neumeister et al. 2001a; Lam and Levitan 2000; Sohn and Lam 2005). SAD is
regarded as an extreme reaction to seasonal changes. Seasonal changes in mood,
drive, and wellbeing also occur in the general population, although to a lesser
degree (Kasper et al. 1989). As a consequence, studies on monoamine systems in
psychiatric disorders may substantially profit from studies on biological rhythms,
and failing to take into account the effects of season may limit the progress
otherwise made possible by new brain imaging methods.

2 Brain Imaging of Seasonal Affective Disorder

There are only a limited number of studies specifically investigating SAD. Two
early studies measured cerebral metabolic rates using [11F]-deoxy-glucose
([11F]FDG) and PET in winter SAD (Cohen et al. 1992) and summer seasonal
affective disorder (Goyer et al. 1992), a rare condition where subjects suffer from
depressive episodes regularly reoccurring in summer. The Cohen et al. study found
globally reduced cerebral metabolic rates and relative reductions in frontal cortical
areas. The Goyer et al. study described reduced overall cerebral metabolic rates,
decreased rates in the left inferior parietal lobule but an increase in the orbito-
frontal cortex in patients with summer depression. Our group has conducted a
small study on regional cerebral blood flow (rCBF) using [99mTc]HMPAO and
single photon emission computed tomography (SPECT) in patients with SAD and
healthy subjects, suggesting increased left frontal rCBF in untreated patients with
SAD, and subsequent normalization in rCBF after successful light therapy
(Praschak-Rieder et al. 1998).

Studies using SPECT and the nonspecific monoamine transporter ligand
[123I]b-CIT showed decreased [123I]b-CIT binding in the midbrain (Willeit et al.
2000) and striatum (Neumeister et al. 2001b) in SAD. Midbrain binding of
[123I]b-CIT is predominantly to serotonin transporters (SERT), while binding
in the striatum—where equilibrium binding is achieved substantially later than in
midbrain—is predominantly to dopamine transporters (DAT). In sum, these
studies show reduced [123I]b-CIT in a relatively small sample of depressed patients
with SAD. However, independent replication and studies using more specific
ligands are needed before firm conclusions can be drawn.

3 Seasonal Effects on the Brain Serotonin Systems

Serotonin neurotransmission has been implicated in several neuropsychiatric dis-
orders, and the serotonergic system is certainly among the best studied transmitter
systems with regard to seasonal changes and their behavioral and medical con-
sequences. Indeed, some of the key molecules of the serotonergic system are
accessible to molecular imaging studies: one of the most important molecules for
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regulation of serotonin transmission is the serotonin transporter (SERT or 5-HTT;
Ramamoorthy et al. 1993). By taking up serotonin into the presynaptic neuron
soon after its release, SERT controls spatial and temporal spread of the seroto-
nergic signal. Blocking SERT is one of the most important pharmacological
principles in antidepressant drug therapy, and the successful clinical use of
selective serotonin reuptake inhibitors (SSRIs) in the last decades suggests that
SERT blockade is sufficient for antidepressant actions of a drug.

Much less is known on the role of SERT in the pathogenesis of psychiatric
disorders. Indirect evidence is derived from studying genetic polymorphisms of
the SERT gene. A polymorphism in the promoter region of the SERT gene
(5-HTTLPR; Heils et al. 1996) has been shown to be functional in human cell
lines, with the long (L) variant being associated with substantially higher 5-HTT
expression than the short (S)-allele. 5-HTTLPR has been extensively studied for
possible associations with personality traits (Lesch et al. 1996), brain function
(Pezawas et al. 2005), suicide (Bondy et al. 2000, 2006; Anguelova et al. 2003),
affective disorders (Collier et al. 1996), and their relation to traumatic life events
(Caspi et al. 2003) and seasonality (Rosenthal et al. 1998; Willeit et al. 2003).
Recently, another functional single nucleotide variant within the 5-HTTLPR L
allele has been described, designated LA and LG (Kraft et al. 2005; Nakamura
et al. 2000) Only LA is associated with high levels of SERT mRNA transcription
and SERT expression in vitro, whereas LG is as low expressing as the S-allele
indicating that 5-HTTLPR is functionally triallelic (Hu et al. 2006). In contrast to
older studies using less refined imaging technologies (Willeit et al. 2001), three
newer studies using the selective SERT ligand [11C]DASB (Wilson et al. 2000),
and considering the triallelic nature of 5-HTTLPR, were able to show an associ-
ation of the 5-HTTLPR LongA/LongA (LA/LA) genotype and high SERT binding
in the living human brain (Praschak-Rieder et al. 2007; Reimold et al. 2007).
However, a recent [11C]DASB study gave negative results for both the bi- and
triallelic 5-HTTLPR polymorphism (Murthy et al. 2010). Thus, the effect of the
triallelic 5-HTTLPR on SERT density in the human brain seems to be rather limited,
in that three positive [11C]DASB PET studies describe only moderate elevations
(approximately 10–20%) in SERT binding for high-expressing genotypes, and the
studies disagree on the brain regions displaying higher binding. In contrast to cell
lines, several conditions other than genetic ones have been shown to influence or
associate with SERT binding in vivo. These include ethnicity (Praschak-Rieder
et al. 2007), personality (Kalbitzer et al. 2009), biography (Miller et al. 2009),
psychiatric diagnoses (Malison et al. 1998; Willeit et al. 2000, for review see Meyer
2007 and Stockmeier 2003), and season (Praschak-Rieder et al. 2008).

One of the first studies to investigate seasonal effects on brain SERT binding
evaluated a small sample of healthy females (n = 11) using the nonspecific
monoamine transporter ligand [123I]b-CIT and SPECT. Evidence was found for
higher binding in subjects scanned in spring and summer as compared to those
scanned in autumn (Neumeister et al. 2000). However, using the more specific
radioligand [11C]DASB and PET in a much larger group of healthy subjects
(n = 88), we were able to show that [11C]DASB binding potential (BPND) values
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show considerable seasonal variation (Praschak-Rieder et al. 2008), in that
[11C]DASB BPND values are high in autumn and winter, and decrease with
increasing duration of sunshine in spring for reaching a nadir in summer (Fig. 1).

In this study and another study on the influence of light on brain SERT binding
(Kalbitzer et al. 2010), [11C]DASB BPND values showed a negative correlation
with average daily duration of sunshine, with higher values occurring at times of
lesser sunlight. Peak differences in [11C]DASB BPND values between the months
with highest and lowest binding values in the Praschak-Rieder et al. were as high
as 40% (Fig. 2).

Higher SERT binding in autumn/winter as compared to spring/summer has
been found in several recent studies. For example, in a study involving 29 healthy
subjects that examined the effects of age on SERT binding using the radioligand
[11]C-(+)McN5652 and PET (Buchert et al. 2006), in a [123I]b-CIT SPECT study
involving 98 subjects (49 of them with major depression; (Ruhe et al. 2009)), and
in a recent [11C]DASB-PET study involving 54 healthy subjects who were also
genotyped for the 5-HTTLPR polymorphism (Kalbitzer et al. 2010). The latter
study found seasonal variation in [11C]DASB binding in carriers of the 5-HTTLPR
s-allele only, while no significant effects of season were found in 5-HTTLPR
l-allele homozygous subjects. A small SPECT study comparing binding of the
selective SERT ligand [123I]ADAM in 12 individuals assessed in winter and
summer (Koskela et al. 2008) did not detect significant seasonal changes.

Thus far, higher brain SERT binding in autumn and winter as compared to
spring and summer has been found in four studies using three different imaging
methods A direct consequence of this finding is that studies on group differences in

Fig. 1 Reciprocal peaks and troughs of brain serotonin transporter (SERT) binding in 88 healthy
subjects and duration of sunshine in Toronto, Ontario (shaded area; range: 2.4 h (minimum) to
9.2 h (maximum) a day. SERT binding potential (BP) values were measured using the selective
SERT radioligand [11C]DASB and Positron Emission Tomography. Circles represent bimonthly
moving averages of mean binding potential values derived from six predefined brain regions
(prefrontal cortex, anterior cingulate, caudate, putamen, thalamus, and midbrain). Numbers
on x-axis are calendar months
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Fig. 2 Results of a voxel-based analysis of parametric images representing binding of the
selective serotonin transporter (SERT) radioligand [11C]DASB. The image represents a map
of voxels with significant negative correlation between the local amount of daylight on the day of
the positron emission tomography (PET) scan and [11C]DASB nondisplaceable binding potential
(BPND) values in carriers of the 5-HTTLPR S-allele. Brain structures with the strongest
correlation are putamen and thalamus. Correlations between daylight and SERT binding in
L-homozygotes (blue) failed to reach level of significance (Kalbitzer et al. 2010)
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brain SERT binding, such as studies on the difference between depressed and
healthy subjects, or studies on the effects of genetic polymorphisms on brain SERT
binding, need to control for the effects of season. A good example is a study by
Praschak-Rieder et al. (2007) that investigated the effects of 5-HTTLPR on
[11C]DASB binding in the brain. The study found significantly higher binding in
subjects with high-expressing 5-HTTLPR variants. A post hoc analysis controlling
for the effects of season as a confounding variable (Praschak-Rieder et al. 2008)
found an enhanced effect of genotype as compared to the analysis that did not take
into account seasonal variance in SERT binding.

While it is now well supported by evidence that there exists a seasonal variation
in brain SERT ligand binding, much less is known on the behavioral consequences
or molecular mechanisms associated with this finding. Still, the finding of a sea-
sonal variation in SERT binding might help to explain seasonal variation in
physiological and behavioral parameters observed in clinical and non-clinical
populations. It is, for instance, a remarkable and highly replicated finding that
suicide numbers in temperate and polar zones show a peak in spring (Durkheim
1897; Chew and McCleary 1995; Partonen et al. 2004; Bjorksten et al. 2005;
Rocchi et al. 2007; Preti and Miotto 1998; Vyssoki et al. 2011). The peak is shifted
for 6 months in the southern hemisphere (also occurring in spring; Heerlein et al.
(2006)) and it seems to be absent in equatorial regions (Parker et al. 2001). Some
studies relate the suicide peak to the rapid increase of environmental light in
spring, with suicide numbers increasing parallel to the duration of daily sunshine
(Linkowski et al. 1992; Petridou et al. 2002; Papadopoulos et al. 2005; Lambert
et al. 2003; Vyssoki et al. 2011). Consistent with this perspective, suicide attempts
(Praschak-Rieder et al. 1997; Haffmans et al. 1998), although rare (Lam et al.
2000), are described as an early complication of bright light therapy in SAD.

The literature offers extensive evidence for a close relationship between brain
serotonin function, impulsivity, and violent suicide (see for example (Asberg et al.
1976, 1986; Coccaro et al. 1989; Mann and Malone 1997; Mann et al. 1996;
Malone et al. 1996; Walderhaug et al. 2007). Post-mortem studies have found
reduced SERT binding in several brain areas of suicide victims (Leake et al. 1991;
Joyce et al. 1993; Laruelle et al. 1993; Arango et al. 1995; Mann et al. 2000),
and the low-expressing allele of the serotonin transporter promoter polymorphism
5-HTTLPR (Heils et al. 1996) has repeatedly been associated with violent suicides
(Bellivier et al. 2000; Bondy et al. 2000; Courtet et al. 2001; Lin and Tsai 2004 see
Anguelova et al. 2003; Bondy et al. 2006 for review). Converging evidence from
brain imaging (Tiihonen et al. 1997; Lindstrom et al. 2004; Frankle et al. 2005;
Ryding et al. 2006; Sekine et al. 2006) and peripheral SERT binding studies (for
example Coccaro et al. 1989; Patkar et al. 2004; Callaway et al. 2005) suggests a
close relationship between reduced SERT binding and impulsivity. Our data show
a uniform reduction in SERT BP values from winter and early spring towards June.
This coincides remarkably with the timing of the suicide peak in late spring found
in epidemiological studies (Chew and McCleary 1995; Rocchi et al. 2007;
Partonen et al. 2004; Bjorksten et al. 2005; Preti and Miotto 1998; Vyssoki et al.
2011). Our findings could thus suggest that reductions in SERT binding in spring
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favor a state of heightened impulsivity in some subjects, who might then be more
prone to enact on suicidal thoughts than they would have been during other times
of the year.

However, the evidence for seasonal variation in brain SERT binding has some
caveats that should be addressed in future studies: the above-mentioned studies
(Praschak-Rieder et al. 2008; Ruhe et al. 2009; Kalbitzer et al. 2010; Buchert et al.
2006) rely on a comparison of subjects who underwent one single PET scan and
were then grouped according to season. None of these studies measured SERT
binding repeatedly in the same subjects at various times of the year. Since brain
SERT binding shows high interindividual variability, it is not possible at present to
quantify the true effect size of intraindividual seasonal variation in brain SERT
binding. Given that individuals differ greatly in their behavioral and psychological
response to seasonal changes in the environment, it is to be expected that seasonal
variation in brain SERT binding might vary from individual to individual as well.
The mechanism leading to seasonal changes in brain SERT binding is another
unresolved scientific question.

In our view, this problem involves three interrelated issues. First, what do the
outcome parameters of these studies (BPND or specific to nonspecific binding ratio)
really measure? Second, which one of the many seasonal changes in the envi-
ronment influences brain SERT binding? And third, what are the molecular
mechanisms that connect brain SERT binding with seasonal changes in the
environment?

The BPND values used in the [11C]DASB studies are calculated as Bmax/kd,
where Bmax is the maximal binding capacity of SERT molecules in the region of
interest and kd is the equilibrium dissociation constant between SERT and the
radioligand and thus a measure for the ‘affinity’ of SERT for its ligand. Only
saturation experiments with low versus high amounts of cold ligand can help
distinguish between seasonal changes in SERT affinity for [11C]DASB and sea-
sonal changes in the amount of extracellular SERT protein. Another possible
confound are changes in radioligand binding due to competition between the
radioligand and endogenous or ‘‘natural’’ ligands. Changes in binding of dopamine
D2/3 receptor radioligands have successfully been used to obtain estimates on
fluctuations in endogenous dopamine levels in the living human brain (see for
example Laruelle et al. 1995; Breier et al. 1997; Abi-Dargham et al. 2000; Willeit
et al. 2008a; see Laruelle 2000 for critical review of the method). In theory, it
would thus be possible that seasonal changes in [11C]DASB binding are secondary
to changes in extracellular serotonin levels. A study in non-human primates has
indeed found reductions in brain [11C]DASB binding after administration of a high
dose of the serotonin precursor 5-hydroxy-L-tryptophan. However, results from a
study in humans combining [11C]DASB PET and tryptophan depletion (Praschak-
Rieder et al. 2005), a research paradigm where serotonin levels are artificially
reduced by dietary measures, suggest that extracellular serotonin levels do not
significantly influence [11C]DASB binding in the living human brain. Ideally,
seasonal variations in SERT expression levels should thus be investigated in post-
mortem brain samples, where an earlier study found considerable seasonal changes
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in serotonin availability and metabolism (Carlsson et al. 1980). Some preliminary
evidence on possible implications of a seasonal variation in SERT binding is
derived from a study on platelet SERT function in depressed patients with SAD
and healthy control subjects (Willeit et al. 2008b). The study found significant
seasonal variation in platelet SERT function in patients and healthy control sub-
jects but no significant differences in SERT Bmax or kd values between autumn/
winter and spring/summer. However, in good accordance with brain imaging
studies, if a parameter analogous to the BPND (Bmax/kd) used for PET imaging is
calculated, the parameter is significantly greater in fall/winter than in spring/
summer (M. Willeit, unpublished observation). However, the increase in SERT
binding (Praschak-Rieder et al. 2008; Ruhe et al. 2009; Kalbitzer et al. 2010;
Buchert et al. 2006), SERT activity (Willeit et al. 2008b), and metabolic turnover
of serotonin (Lambert et al. 2002), has the potential to explain the emergence of
depressive symptoms during the dark season, especially in those individuals who
have other predisposing factors, such as an increase in brain monoamine-oxidase
activity (Meyer et al. 2006).

The second unresolved question is which of the many seasonally varying
environmental factors cause the changes observed in brain SERT binding.
Although it seems somewhat obvious at first sight that it is the different amount of
light that leads to changes in brain SERT binding, it is methodologically quite
difficult to disentangle the influence of factors such as the amount of light,
temperature, day-length, rate of change in day-length, and so on. The main reason
for this is that all those factors show high cross-correlation, since they all are
secondary to the main astronomical changes during the course of the year.
However, one study using the nonspecific SERT ligand [3H]imipramine has shown
higher SERT binding in the brain of rodents kept at long night–short day condi-
tions when compared to animals kept at short night–long day conditions (i.e.,
lighting conditions that resemble summer). To a certain degree, the Praschak-
Rieder et al. 2008 study also supports an important role of light, as duration of
sunshine correlated significantly more strongly with brain [11C]DASB binding
than with average temperature values (Praschak-Rieder et al. 2008).

The third aspect of this problem is to propose and prove a plausible causal
mechanism connecting changes in the environment with SERT binding in the
brain. A solution to this problem is contingent on the above described steps, and
requires animal testing with prospectively manipulated environmental conditions.
There exist several potential pathways, but a first step will be to clarify whether
changes in brain SERT binding are induced by a systemic factor (in this case most
likely humoral) or a factor affecting the brain only, thus possibly involving
neuronal signaling into the brain (for instance via the retino-hypothalamic tract).
The above-mentioned parallel changes in brain and platelet Bmax/kd values rather
point to a common, possibly humoral factor regulating SERT in the brain and
periphery at the same time.

A recent study (Spindelegger et al. 2011) also suggests that brain serotonin 1A

(5-HT1A) receptor binding of the selective radioligand [11C]WAY-100635 might
show light-dependent changes. In contrast to SERT binding, 5-HT1A receptor
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binding showed a positive correlation with the amount of sunlight, such that higher
binding occurred in individuals exposed to more light in the week before PET
scanning. However, this finding needs independent replication.

In summary, PET and SPECT imaging of serotonergic target structures has
yielded fascinating results, with many of the results still waiting for replication
studies. An increase in SERT binding in the dark season as compared to spring and
summer has been shown by four studies using three different imaging methods. This
finding is also a good example for the importance of this string of research for the
entire field, as it advances our understanding of regulatory processes in serotonin
neurotransmission that may be relevant in physiological and pathological processes.

4 Seasonal Effects on the Brain Dopamine Systems

Dopamine is a monoamine transmitter formed from the essential amino acid
tyrosine. It is of preeminent importance for physiological functions such as motor
control, motivated behavior, and implicit and explicit learning processes (Dalley
and Everitt 2009). Several components of dopamine signaling show clear circadian
oscillations, and some of them have been shown to be regulated by the photoperiod
via a mechanism depending on the integrity of the hypothalamic suprachiasmatic
nucleus (SCN), the main zeitgeber-structure in mammalians. This includes
dopamine transporter (DAT) binding and expression of dopamine hydroxylase, the
rate-limiting enzyme for dopamine synthesis, in the ventral-striatal nucleus
accumbens (Sleipness et al. 2007b). Consistently with these effects it has been
shown that primary cocaine reinforcement, which depends on the mesolimbic
dopamine system (Espana et al. 2010), also shows photoperiodic regulation
(Sorg et al. 2011; Sleipness et al. 2007a). Dopamine and dopamine metabolites
show a clear circadian rhythm in the rodent and avian retina (Doyle et al. 2002;
Lorenc-Duda et al. 2009), with dopaminergic retinal neurons being regulated by
non-visual photoreception via intrinsically photosensitive retinal ganglion cells
(ipRGCs; Zhang et al. 2008). In humans, polymorphisms in the dopamine D4

receptor gene interact with season of birth to influence psychological traits and
body mass index (Chotai et al. 2003; Eisenberg et al. 2007; Roussos et al. 2010;
Levitan et al. 2006, 2010). In summary, there is strong evidence that dopamine
neurotransmission is regulated in part by photoperiodic and light-dependent
rhythms.

However, there is only limited evidence on seasonal or light-dependent changes
in dopamine neurotransmission in humans. One SPECT study showed reduced
[123I]b-CIT binding in the DAT rich striatum in patients with SAD, suggesting that
besides serotonin (Willeit et al. 2000), changes in dopamine transmission may be
involved in the pathogenesis of SAD (Neumeister et al. 2001b). Two recent studies
have investigated light-dependent changes in dopamine D2/3 receptor binding (Tsai
et al. 2011) and seasonal changes in uptake of the radiolabeled dopamine precursor
[18F]DOPA (Eisenberg et al. 2010) in the striatum of healthy subjects.
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The Tsai et al. study, conducted in subtropical Taiwan, investigated a total of 68
healthy subjects and analyzed subjects in the lowest and highest quartile of
average sunshine duration in the 30 days prior to their SPECT scans, leaving 35
subjects for final analysis. Subjects scanned at times of more sunshine had higher
striatal [123I]iodobenzamide ([123I]IBZM) binding than subjects with lower mean
sunshine hours during the month prior to SPECT scans. The duration of sunshine
and day-length varies little during the year in Taiwan. Conducting the study at
higher degrees of latitude might thus have improved the power for detecting light-
dependent changes in D2/3 receptor binding. The result emphasizes the importance
of seasonal changes in dopamine transmission in humans. However, its interpre-
tation is somewhat difficult, since it is known that [123I]IBZM is sensitive towards
fluctuations in endogenous dopamine levels (Innis et al. 1992; Laruelle et al. 1995,
2000). Higher [123I]IBZM binding could thus indicate either higher dopamine
D2/3 receptor levels, or a decrease in extracellular dopamine levels. A way to
disentangle the two possible interpretations is to decrease competition of endog-
enous dopamine by catecholamine-depleting procedures.

The Eisenberg et al. study investigated the effects of season on striatal
[18F]DOPA uptake in a large sample(n = 86) of healthy subjects scanned during a
period of several years. Subjects scanned in fall and winter (n = 42) had signif-
icantly higher uptake of [18F]DOPA into the putamen than those scanned in spring
and summer, with the difference in the rate constant Ki being approximately 5%.
A voxel-wise analysis located the maximal difference in [18F]DOPA uptake in the
posterior putamen. The study did not relate [18F]DOPA uptake to sunlight or other
environmental parameters. The outcome parameter used in this study, and in most
other [18F]DOPA PET studies, the rate constant Ki, is generally interpreted as
reflecting presynaptic L-DOPA uptake and storage. The result would thus indicate
a greater amount of dopamine stored in presynaptic terminals during fall and
winter as compared to spring and summer. This would be in line with the finding
of lower striatal [123I]IBZM binding at times of lesser light (Tsai et al. 2011),
since competition at postsynaptic D2/3 receptors would be greater with levels of
synaptic dopamine being higher during fall and winter. However, further studies
are needed to support this hypothesis, particularly because—as shown in patients
with schizophrenia—higher dopamine synthesis rates can also be associated with
reduced steady-state storage of [18F]dopamine (Kumakura et al. 2007).

5 Summary

The change of seasons induces variations in several behaviors and psychological
domains in humans living in temperate and polar zones. On the one hand, these
variations are part of an adaptive response of the organism to the dramatic changes
in temperature, lighting conditions, and food availability between warm and cold
seasons. On the other hand, these variations may become maladaptive in some
individuals, leading to depressive episodes in seasonal affective disorder, or to an
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increase in impulsivity that might be associated with increased risk for suicide.
Brain monoamine systems have a key role in modulating all behavioral and
psychological domains that vary with the seasons. This, together with the fact that
many radioligands for human use target monoaminergic structures in the brain, has
led to an increasing number of neuroimaging studies investigating seasonal
changes in human brain monoamine systems.

Some intriguing findings, such as a seasonal variation in brain dopamine
D2/3 receptor binding (Tsai et al. 2011) and striatal [18F]DOPA uptake
(Eisenberg et al. 2010) or the finding of light-dependent changes in brain
5-HT1A receptor binding (Spindelegger et al. 2011) still need independent
replication. One finding, the seasonal variation in brain SERT binding, has been
shown in four studies using three different imaging technologies (Praschak-
Rieder et al. 2008; Kalbitzer et al. 2010; Ruhe et al. 2009; Buchert et al. 2006).
The strong correlation of SERT binding with the amount of environmental light
found in two of the studies (Praschak-Rieder et al. 2008; Kalbitzer et al. 2010)
further corroborates the importance of seasonal influences on brain serotonin
transmission.

Today, we still lack deeper knowledge on the mechanisms mediating the
adaptive—and sometimes maladaptive—changes in brain function following
seasonal changes in the environment. Future research on the molecular background
of seasonal changes in the human brain will need to establish suitable animal
models that allow for a discrete and prospective manipulation of the multitude of
environmental parameters that change during the course of a year. Only when
integrating knowledge on the effects of season derived from animal models with
results from human neuroimaging studies, will we be able to make significant
progress in our understanding of brain monoamine function.
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Abstract Magnetic resonance spectroscopy (MRS) is a non-invasive technique that
can be used to detect and quantify multiple metabolites. This chapter will review
some of the applications of MRS to the study of brain functions. Typically, 1H-MRS
can detect metabolites reflecting neuronal density and integrity, markers of energy
metabolism or inflammation, as well as neurotransmitters. The complexity of the
proton spectrum has however led to the development of other nuclei-based methods,
such as 31P- and 13C-MRS, which offer a broader chemical shift range and therefore
can provide more detailed information at the level of single metabolites. The ver-
satility of MRS allows for a wide range of clinical applications, of which neurode-
generation is an interesting target for spectroscopy-based studies. In particular, MRS
can identify patterns of altered brain chemistry in Alzheimer’s patients and can help
establish differential diagnosis in Alzheimer’s and Parkinson’s diseases. Using MRS
to follow less abundant neurotransmitters is currently out of reach and will most
likely depend on the development of methods such as hyperpolarization that can
increase the sensitivity of detection. In particular, dynamic nuclear polarization has
opened up a new and exciting area of medical research, with developments that could
greatly impact on the real-time monitoring of in vivo metabolic processes in the brain.
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MRI Magnetic resonance imaging
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1 Introduction

Neurodegenerative diseases cover a heterogeneous group of neurological disorders
presenting various clinical and pathological phenotypes. They are characterized by
a selective and progressive neuronal dysfunction, which is typically followed by
the degeneration of cells in specific functional and anatomical systems in the
central nervous system (Aarsland and Kurz 2010; Przedborski et al. 2003). The
prevalence of degenerative brain disorders is increasing worldwide, which is
closely correlated with the ageing population. The resulting health-related impact
on patients and caregivers along with the substantial financial cost to society
makes their management a challenge and a major burden.

There is currently no cure available for neurodegenerative diseases and the
main relief to patients resides in symptomatic treatments. Development of more
advanced treatment modalities that can slow the progression of the disease has
been defined as a priority in the scientific community. However, this goal comes
with great challenges. The requirement to assess parameters that can report the
progression of the disease over time on individual subjects renders the commonly
used biochemical and histological post mortem analysis insufficient, as they can
only provide cross-sectional information of mainly the end-stage disease. There-
fore there is a critical need to develop better diagnostic methods as well as better
ways to follow the patients up.

The establishment and refinement of various noninvasive imaging techniques
over the last decade provide a unique potential in longitudinal assessment of
patients as subjects can be submitted to examinations repeatedly. Consequently,
we now have the opportunity to explore dynamic changes in the brain over time as
the disease advances. Several imaging methods relying on positron emission
tomography (PET) tracers and magnetic resonance imaging (MRI) are currently
used in preclinical and clinical studies to assess disease-related changes in patients
suffering from neurodegenerative diseases. PET is a very sensitive imaging
technique based on the intravenous injection of radiolabeled ligands, their tissue
uptake and subsequent binding to specific molecular targets (e.g., neurotransmitter
receptors or transporters) (Kirik et al. 2005; Strome and Doudet 2007). PET can
provide information about the regional distribution and affinity of receptors in the
brain and enables the measurement of the local rates of chemical processes in vivo
(Hutchinson et al. 2002), making it possible to detect molecules in a noninvasive
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way with a very high sensitivity (10-9 to 10-12 M) in the living brain (Fumita and
Innis 2002). PET has been widely used to study several neurological disorders,
e.g. in applications characterizing the role of the dopaminergic system in
Parkinson’s disease (PD) and its involvement in motor control [for review see
(Brooks 2003)], or in differential diagnosis of uncommon forms of neurodegen-
erative diseases, such as typical PD and other Parkinsonian syndromes or dementia
(Herholz et al. 2007). It has also been applied to in vivo monitoring of disease
progression in PD (Morrish et al. 1996). Finally, one of the advantages of in vivo
imaging relates in the long-term evaluation of therapeutic efficacy in the living
brain. For instance, PET has been applied to visualize the viability and function of
striatal implants in PD [for review see (Brooks 2003; Olanow et al. 1996; Sawle
and Myers 1993)] and the metabolic effects of intrastriatal grafting in Huntington’s
disease patients (Gaura et al. 2004; Reuter et al. 2008).

Despite these strengths, the utility of PET imaging is limited by a relatively low
spatial resolution, the production of ionizing radiations and the extensive infra-
structure required to synthesize the tracers, which often have to be on site due to
short half-life of the radionucleotides used. Furthermore, PET cannot provide
anatomical information by itself and is often combined with computed tomography
in order to show both metabolic functions and accurate anatomical structures.
In addition, PET cannot measure the direct levels of multiple neurotransmitters or
metabolites separately. For example, using 18F-DOPA as a ligand, the radioactive
signal acquired does not distinguish between 18F-DOPA, 18F-DA and 18F-DOPAC.
The use of mathematically driven compartment models are required to estimate
18F-DOPA uptake into dopaminergic neurons, conversion to dopamine (DA) or
storage in vesicles.

Nuclear magnetic resonance (NMR), an ionizing radiation-free technique, can
be used to provide complementary information that is not accessible through PET.
Magnetic resonance imaging (MRI) and spectroscopy (MRS) techniques have
become an essential part of the common tools available to clinicians and
researchers in the assessment of normal and diseased brain. The magnetic reso-
nance phenomenon allows a large variety of applications, including analysis of
chemical composition, determination of molecular structure and dynamics. It has
many advantages because of its molecular specificity, spatial selectivity, high
sensitivity to molecular mobility and ability to give quantitative information at the
molecular level. The NMR signal is intrinsically weak, but increases in strength
with increasing gyromagnetic ratio of the nucleus being observed. Hydrogen
(present in fat and water in the body) is by far the most commonly investigated
nucleus, having high MR sensitivity. Other common nuclei to be studied are
phosphorus, carbon, sodium and fluorine.

MRI has been used to obtain excellent images of brain structures and to identify
structural alterations by using the signals from different nuclei within the brain.
MRS on the other hand has the potential to detect more subtle pathological
changes that cannot be seen with MRI, such as biochemical events that may
precede or parallel the anatomical and histological changes (Firbank et al. 2002).
Indeed, while MRI provides structural information about regions of interest in the
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tissue examined, MRS provides information about the chemical nature of the
tissue and can be used to determine levels of substances, which makes it a pow-
erful method for direct and noninvasive identification of major metabolites in the
brain. Furthermore, measurement of concentration and synthesis rates of specific
biochemical compounds can be obtained, with spatial localization, in defined areas
in the brain. This is referred to as localized MRS (Novotny et al. 2003; Rosen and
Lenkinski 2007). Typically, most proton MRS studies can achieve a spatial res-
olution of about 1 cm3 (Gruber et al. 2003).

This chapter will focus on MRS studies of the brain and on the chemical
information currently available to assess brain metabolism in humans and animals,
with a particular emphasis on the study of neurodegenerative diseases. In addition,
it will cover some of the emerging spectroscopic techniques that are being
developed to increase MRS sensitivity and the new research areas triggered by
these advances.

2 Theoretical Basis of Magnetic Resonance Spectroscopy

Magnetic resonance is a noninvasive technique that in most cases does not require
any special treatment or labeling of the subject. The equipment can be tuned to
pick up signals from different chemical nuclei within the body. When positioned in
an MR scanner, the magnetic moment of the nuclei in the body line up due to the
experienced magnetic field. Owing to this polarization, a small rotating net
magnetic moment builds up in the object when it is placed into the magnet.
Subsequent to a radio-frequency (RF) pulse exposing the object at the resonance
frequency of the nuclei under investigation, the net magnetic moment can be
measured and transformed into signal information in one, two or three dimensions.
Depending on the design of the experiment, biochemical information can be
obtained from every position in the subject (Callaghan 1991; de Graaf 2007;
Keeler 2005).

Experimentally, the subject is placed inside an RF coil in a highly homoge-
neous magnetic field of known strength. Nuclei with non-zero spin (such as 1H,
2H, 19F, 13C and 31P) have a nuclear magnetic momentum and will align to some
degree in the magnetic field. At thermal equilibrium, each magnetic momentum
aligns with the field (lower energy state) or against the field (higher energy state).
As the quantity of the magnetic momentum in the direction of the field is slightly
higher than those in the opposing direction, this results in a net nuclear magnet-
isation. To perturb the nuclear magnetisation from thermal equilibrium, the
nuclear spins are excited by an RF pulse. The precessing magnetisation after
perturbation induces a small voltage in the surrounding tuned coil by the process of
electromagnetic induction. It is this voltage that forms the NMR signal (Callaghan
1991; Keeler 2005).

The NMR sensitive nuclei can absorb energy at a frequency corresponding to
the difference between their energy levels. The difference between higher and
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lower energy states is influenced by the local environment of the nuclei, especially
by the neighboring electrons, providing local magnetic fields that differ for each
unique nuclear position within a molecule. Their nuclear magnetisation thereby
precesses with slightly different characteristic frequencies, Larmor frequencies,
x0 = cB(1-r), where c is the gyromagnetic ratio of the nucleus being observed,
B is the applied magnetic field and r is the shielding factor associated with the
chemical environment of the nuclei being observed. The difference between dif-
ferent shielding factors is called chemical shift. The unique resonance frequency
(chemical shift) of an active nucleus is dependent on its chemical environment,
which is what provides the chemical specificity of NMR (de Graaf 2007; Gadian
1995; Keeler 2005).

Since the NMR signal is the sum of all different characteristic frequencies that
the spins are precessing with, the Fourier transform of the signal yields a spectrum
in which the integral of each peak is proportional to the number of nuclei having a
specific chemical environment.

Generally, after excitation by RF pulses, the precessing nuclear magnetisation
returns to equilibrium. Often, this can be characterized by two relaxation times.
T1 is the longitudinal relaxation time, which describes the exponential recovery of
the equilibrium longitudinal magnetisation that is aligned with the applied mag-
netic field. T2 is the transverse relaxation time, which describes the exponential
decay of the precessing component of the net magnetisation, and hence, also the
decay of the signal. T1 and T2 strongly depend upon the local molecular envi-
ronment and are sensitive to molecular motion.

3 Magnetic Resonance Spectroscopy in the Brain

Spectroscopy methods can be divided into two categories: one based on hydrogen
(1H) and another based on all other nuclei with a non-zero spin (referred to as X
nuclei, typically 31P, 13C, 19F, 23Na or 15N). Yet, 1H, 31P and 13C account for
approximately 99% of all the studies conducted thus far (Choi et al. 2007). It is
beyond the scope of this chapter to give an exhaustive list of all compounds
detectable through MRS. Instead we will focus on some of the metabolites and
neurotransmitters that have proved useful in the study of brain metabolism in the
healthy brain as well as in diseased states.

3.1 1H-MRS

Due to the high natural abundance of protons, 1H-MRS has been the method of
choice in most studies of the central nervous system. 1H is also the most sensitive
nucleus, as defined by the greater signal to noise ratio (SNR) it produces compared
to other nuclei (Gadian 1995). At lower field strengths, such as 1.5 T or 3 T,
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the number of metabolites available through 1H-MRS is rather low and highly
depends on the acquisition mode. Briefly, two types of acquisitions are possible,
depending on the time interval between the excitation pulse and the detection,
known as echo time (TE). At long TE, proton MR spectrum of the human brain
exhibits quantifiable peaks from N-acetylaspartate (NAA), total creatine (tCr)
(creatine and phosphocreatine (PCr)), choline containing compounds and in
pathological conditions, lactate (Lac). At short TE, the spectrum is richer and
signals from further metabolites such as myo-inositol (mIns), glutamate/glutamine/
GABA (Glx), glucose (Glc), taurine (Tau) and lipids can be detected (Di Costanzo
et al. 2003; Schaeffter and Dahnke 2008), although its interpretation and quanti-
fication become more challenging due to overlapping resonance frequencies. The
relative levels of these compounds can reflect the cellular state of the tissue so that
the established metabolic profile (result of the simultaneous quantification of many
metabolites concentration) directly correlates to the health status of the tissue
(Schaeffter and Dahnke 2008).

Due to the general complexity of the spectra (containing the resonances of
numerous metabolites, as well as overlapping resonances), in most cases quanti-
fication of individual metabolites requires the use of a specific method for analysis.
These spectral fitting methods, either time domain or frequency domain methods
(Mierisova and Ala-Korpela 2001; Vanhamme et al. 2001), aim at calculating the
metabolite peak area in a noisy MRS signal. There are different ways to report the
results, referred to as absolute or relative quantifications (Brief et al. 2009; Kreis
et al. 1993). One common way is to normalize the values in reference to water or
creatine or to use the sum of all metabolites in situations where the amplitude of
the reference peak (creatine) changes.

With the development of high field NMR (such as at 7 T in humans and 9.4 T
or beyond in animals), RF coils, MR sequences, as well as automatic shim rou-
tines, it is now possible to have access to an even larger number of previously
unresolved brain metabolites (Gruetter et al. 1998; Pfeuffer et al. 1999; Tkac et al.
2001; Mlynarik et al. 2008a). Studies in rats at 9.4 T with short TE (2 ms)
provided a neurochemical profile of the brain consisting of 18 metabolites
(Pfeuffer et al. 1999; Mlynarik et al. 2008b). The same 18 metabolites can also be
identified and reliably quantified in much smaller structures such as the developing
mouse cortex at 14.1 T, showing regional alterations in concentration of various
metabolites at different postnatal days (Kulak et al. 2010). More remarkable is the
detection at 14.1 T of 21 metabolites in the mouse hypothalamus (Lei et al. 2010),
a structure challenging to study due to its small dimension and localization in
deeper parts of the brain.

The identification of metabolites in the rat brain measured at 9.4 T with short
TE and the measurement of their subsequent concentration (Pfeuffer et al. 1999)
compose a neurochemical profile of the brain consisting of important presumed
markers of energy metabolism (Cr and PCr, Glc, Lac, alanine (Ala)), neuro-
transmitters and metabolites [GABA, N-acetylaspartylglutamate, glutamate (Glu)
and glutamine (Gln)], antioxidants (glutathione and ascorbate), osmolytes (Tau,
mIns, scyllo-inositol), phosphoethanolamine, NAA, glycerophosphocholine (GPC)
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and phosphocholine (PC) (Mlynarik et al. 2008b). However, only some of these
compounds are frequently studied with MRS. The following metabolites are of
most relevance to neurodegeneration.

The signal on a typical proton spectrum that arises at 2.0 ppm is attributed to
NAA, which is a molecule present predominantly in neurons and synthesized in
the mitochondria. Brain NAA is widely accepted as a marker of neuronal density
and integrity (Baslow 2003; Urenjak et al. 1993). Therefore reduced NAA con-
centration can reasonably indicate neuronal loss in neurodegeneration. Because the
enzyme involved in NAA synthesis is present in high concentration in mito-
chondria, altered NAA levels also reflect mitochondrial dysfunction (Clark 1998).
The peak observed at 3.2 ppm is referred to as Cho and reflects in fact choline-
containing compounds with overlapping resonance frequencies. It primarily con-
sists of the sum of free choline, PC (a phosphatidylcholine precursor), GPC
(a byproduct of phosphatidylcholine breakdown) and betaine (Katz-Brull et al.
2005). They play an important role in cell membrane synthesis and lipid metab-
olism so that Cho is considered a marker of membrane density and integrity. Thus,
changes in choline-containing compounds can directly reflect altered cell mem-
brane synthesis and degradation (Galanaud et al. 2007). The tCr signal at 3.0 ppm
is assigned to the sum of two different overlapping resonances, Cr and PCr. Cr
levels are thought to be very stable (Cr and PCr are in chemical equilibrium),
homogeneously distributed throughout the brain and not subjected to change with
age so that in clinical setting, the tCr peak is used as a common internal reference,
with spectra interpreted as ratio in respect to Cr (such as Cho/Cr and NAA/Cr
ratios) (Kauppinen and Williams 1994; Martin 2007). However, it seems that this
should be taken with caution, as at least one study reported complete creatine
deficiency in the brain of a child suffering from an extrapyramidal movement
disorder and metabolic disturbances (Stockler et al. 1994). Further to the left on
the proton spectrum, mIns gives rise to a signal at 3.6 ppm. It is a sugar-alcohol
putative marker of neuroglia, found almost exclusively in astrocytes where it is
recognized as an important cerebral osmolyte (Lien et al. 1990). Its concentrations
can fluctuate up to tenfold. Increases in mIns levels have been reported following
cellular proliferation (tumors) or in case of inflammation (Galanaud et al. 2007;
Rosen and Lenkinski 2007; Ross and Bluml 2001). In the region 2.0-2.5 ppm, Glx
gives rise to a complex peak resulting from the signals of Gln, Glu and GABA,
three peaks inseparable at 1.5T. Glu is the most abundant excitatory amino
acid transmitter in the CNS (Fonnum 1984) and the role of glutamate-mediated
excitotoxicity in neurodegenerative disorders has been the center of many studies
(Masliah et al. 1996; Cowan and Raymond 2006; Gubellini et al. 2006). It is the
precursor of GABA, the major inhibitory neurotransmitter, which plays a crucial
role in cerebral physiology (Ben-Ari et al. 2007; Fonnum 1984). Finally, the signal
centered at 1.3 ppm is assigned to Lac, the end product of anaerobic glycolysis.
Lac is present in physiological conditions in extremely low amounts in the brain so
that it is not resolved under normal conditions. This makes its detection significant
and suggest a pathological condition (Prichard et al. 1991), typically hypoxia
(Edden et al. 2010) or brain ischemia (Vandersprenkel et al. 1988), situations
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where aerobic oxidation fails and anaerobic glycolysis takes over. A 1H-MR
spectrum recorded in a rat brain at a field strength of 9.4 T is displayed in Fig. 1
and shows the assignment of the major peaks discussed above. It should be noted
that macromolecular resonances are present in the background signal of the

a

d

b c

Fig. 1 Localized 1H-NMR spectroscopy of a rat brain in vivo at 9.4 T. Sagittal (a) coronal (b) and
axial (c) MRI sections indicating the location of the voxel of interest (VOI). Images were acquired
using a fast spin echo sequence. (d) 1H-MR spectrum obtained from the indicated VOI [voxel size
1.3 9 2.8 9 5 mm (= 18 ll)] using a STEAM sequence with TE = 2.5 ms, TR = 6 s and water
suppression. A 4-element array coil was used and the scans were acquired using 64 averages
(6 min blocks). All scans were eddy current corrected (ECC) using the jMRUI software package
(http://www.mrui.uab.es/mrui/). A total of eight blocks were performed resulting in a total scan time
of 50 min. A total of 32 ECC spectra were summed to give the spectrum shown and the signal was
filtered for display purposes using a Lorentzian/Gaussian filter (-3Hz/6Hz) using matNMR/Matlab
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spectrum and therefore underlie the assigned low molecular weight metabolites.
This is important to take into consideration in order to avoid the attribution of an
elevated signal coming from macromolecules to the metabolites.

As shown, 1H-MRS allows the simultaneous quantification of an increasing
number of metabolites in the brain, thus expanding metabolic neurochemical
profiling in vivo. However the difficulty in resolving the spectrum has led towards
the development of other nuclei-based MRS studies.

3.2 31P-MRS

31P-MRS is a heteronuclear MRS approach that has proved very useful in the
investigation of tissue energy metabolism, especially in skeletal muscle
(Kauppinen and Williams 1994; Radda 1986). It has become a valuable tool to
evaluate the integrity of the brain through the study of its metabolism and bioener-
getics (Chaumeil et al. 2009; Du et al. 2007; Shulman et al. 2004). Although
31P-MRS has a lower sensitivity and spatial resolution than 1H-MRS, it has the
advantage of providing a broader chemical-shift range (Schaeffter and Dahnke
2008).

31P-MRS is used to detect and quantify high-energy phosphate (HEP) metab-
olites (ATP, ADP, PCr) and free Phosphate (Pi), which reflect oxidative phos-
phorylation and mitochondrial function in vivo (Gadian 1995). Although ADP is
not directly visible in the 31P spectrum, its concentration is in fact calculated from
the ATP, tCr, and PCr concentrations (Zhu et al. 2009). In addition, the chemical
shift difference between the Pi and PCr peaks is used to calculate the value of
intracellular pH (Henchcliffe et al. 2008; Hyder 2009). The noninvasiveness of the
procedure makes it the method of choice to study the regulation of pH in vivo in the
brain (Kauppinen and Williams 1994). Furthermore, it has been shown that HEP
metabolites can be used to determine metabolic fluxes of ATP metabolism in the
human brain. ATP metabolism is regulated by the chemical exchange network PCr
$ ATP$ Pi, which is controlled by two enzymes. Creatine kinase (CK) catalyzes
PCr $ ATP and ATP synthase (ATPase) catalyzes Pi$ ATP. In a study using a
multiple single-site saturation method together with the solution of three Bloch
equations based on the three-spin chemical exchange model, the forward and
reverse rate constants for CK and ATPase reactions were calculated in the occipital
lobe in humans at 7 T. First, a progressive saturation of the ATP resonance using
frequency-selective RF pulses is applied and the forward CK and ATPase rate
constants and fluxes calculated. Secondly, a steady-state saturation of Pi is
achieved by applying frequency-selective RF pulse train over a long saturation
time allowing the calculation of the CK reverse rate constant and flux. Finally, the
same procedure (steady-state saturation) is applied to the PCr resonance peak to
determine the ATPase reverse rate constant and flux (Du et al. 2007).

Apart from the detection of HEP metabolites, important cations can be detected
by 31P-NMR. Among these, magnesium is important in regulating brain energy
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metabolism. Its concentration can be calculated from the chemical shift difference
between a and b ATP peaks. It has been found that magnesium levels are decreased
during subarachnoid hemorrhage. 31P-MRS was shown to be suitable to monitor
cortical intracellular magnesium to determine the reversibility of neurological
alterations and the response to pharmacological treatment (Yang et al. 2008).

In order to overcome the lower sensitivity of 31P-MRS, several methodological
adjustments can be implemented, such as the use of high magnetic fields
(Qiao et al. 2006) or polarization transfer methods (Du et al. 2007; Klomp et al.
2008; Wijnen et al. 2010). By increasing the magnetic field from 4 T to 7 T in
clinical scanners, the sensitivity and spectral resolution of in vivo 31P-MRS are
improved and a gain of 56% in SNR in the signal of PCr can be obtained in
the human brain (Qiao et al. 2006). Magnetization transfer from 1H to 31P uses
frequency selective refocusing pulses to enhance up to 2.4 times the very low
signal of phospholipids like PC, GPC, phosphorylelthanolamine and glycerol-
phosphoethanolamine compared to an optimized direct 31P-MRS method at 3 T
(Klomp et al. 2008). Technological improvements in the design of 31P head RF
coils can also increase the sensitivity of the 31P signal. One version of 31P opti-
mized head coil includes a quadrature birdcage resonator as a 1H transmit receive
coil and two free positioning surface coils operating as a 31P transmit receive
coil covering approximately half of the brain. In addition, this coil configuration
includes 1H blocking circuits to avoid electromagnetic couplings between the 1H
and 31P elements (Klomp et al. 2008).

As described, a combination of high magnetic field strength, optimized pulse
sequences and hardware development can be used to successfully overcome the lower
sensitivity of 31P-MRS. Following these technological developments, 31P-NMR
applications based on the assessment of intracellular pH, HEP metabolites and
magnesium levels in the brain have been reported in multiple clinical studies. In
particular, 31P-MRS has proved very useful in the study of neurodegenerative disor-
ders (Martin 2007), stroke (Schulz et al. 2009) and epilepsy (Hetherington et al. 2002).

3.3 13C-MRS

13C is an MRS visible isotope, albeit with a natural abundance of only 1.1% and a
low gyromagnetic ratio, making 13C-MRS much less sensitive than 1H-MRS and
31P-MRS. The relative sensitivity of proton/phosphorus/carbon is 100:6.7:0.018
(Choi et al. 2007; Klomp et al. 2006). However, it offers a higher spectral reso-
lution than 1H-MRS and a lack of background signal. Due to this low natural
abundance, most of the 13C-MRS studies refer to the use of enriched substrates; an
obvious advantage being that all labeled metabolites can be individually followed.
Indeed, upon its administration, the 13C label can incorporate into several positions
in different molecules through metabolism (Ugurbil et al. 2000), which is why
13C-MRS has long been used to detect the metabolism of 13C-labeled compounds
in vivo, with an emphasis on the use of 13C-labeled glucose.
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One of the first published studies describing the use of 13C-glucose to assess
glucose metabolism was performed in Escherichia Coli and demonstrated the
possibility to monitor the labeling of intracellular compounds in intact cells
(Ugurbil et al. 1978). Since then, it has been well established that glucose
oxidation is the main mechanism for cerebral energy production under normal
conditions and 13C-labeled glucose can be applied to investigate glucose utiliza-
tion in vivo in the brain. Following the infusion of [1-13C] enriched glucose, MRS
can detect the emergence of 13C signal in all metabolites of glucose metabolism in
the brain, from intermediates of the tricarboxylic-acid (TCA) cycle to the amino
acids Glu, aspartate and Gln. After the first pass through the TCA cycle, the first
detectable molecules are 13C-Glu and 13C-Gln labeled in the C4 position, and
afterwards [3-13C] and [2-13C] labeled Glu and Gln, before the later appearance of
Lac, GABA or NAA (Jenkins et al. 1999). This was demonstrated in 13C-MRS
studies in human and animal coupled to the administration of [1-13C]-glucose, that
indicated high labeling of [4-13C]-glutamate and [4-13C]-glutamine (Sibson et al.
1997; Sibson et al. 1998; Beckmann et al. 1991) It helped in establishing
the glutamate-glutamine cycle between neurons and glia as a major metabolic
pathway tightly coupled to glucose oxidation (de Graaf et al. 2003).

13C studies can also estimate the NAA synthesis rate in vivo in humans (1H-MRS
can only determine NAA levels), through the infusion of [1-13C]-glucose (Moreno
et al. 2001). In the latter study, it was also demonstrated that NAA synthesis is
directly coupled to brain glycogen metabolism, thus connecting the rate of synthesis
of NAA with energy metabolism in the brain. In addition, 13C-MRS is the only
noninvasive way of measuring brain glycogen through incorporation of 13C-labeled
glucose (Choi et al. 1999), its normal levels being too low to allow natural abun-
dance 13C-NMR measurement such as in the liver (Gruetter et al. 1994).

4 Current Clinical Applications of MRS to the Study
of Neurodegenerative Diseases

Since its introduction in the early 1980s in the clinics, MRS has been applied to
different fields of research. Along with other imaging modalities, it is a powerful
means of assessing the functionality and viability of organ transplants (e.g. kidney,
liver) and is also used to establish the metabolic profile of tumors [for review see
(Beckmann et al. 2000; Galanaud et al. 2007; Cox 1996)]. MRS can measure a
variety of metabolic changes in the brain and this has been applied to the study of
various disorders, such as brain tumors, neurodegenerative disorders, metabolic
encephalopathy, ischemia, hypoxia and white matter diseases (Kauppinen and
Williams 1994; Ross and Bluml 2001). Figure 2 illustrates metabolic changes
detected by 1H-MRS in the white matter of a patient suffering from seizures and
short time hypoxia as well as traumatic subdural and subarachnoid hemorrhage.

Alzheimer’s disease (AD) and PD are some of the most thoroughly studied neu-
rodegenerative diseases, perhaps because the biochemical mechanisms underlying
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their pathology are better characterized as compared with other neurodegenerative
conditions. This makes them interesting targets for spectroscopic investigations,
a number of which have been reported in humans. In particular and as described

a b

dc

Fig. 2 Example of 1H human in vivo MR spectra obtained from a patient suffering from seizures
and short time hypoxia as well as traumatic subdural and subarachnoid hemorrhage. a Axial
T2-weighted MRI displaying a subcortical lesion (hyperintense) in the medial parietal cortex and
bilateral hygromas/CSF interpositions in the subarachnoid and subdural spaces. b Pathologic
white matter (WM) spectrum with decreased NAA (N-acetyl aspartate; 1.9 ppm) and slightly
increased lactate and lipids (1.3 and 0.9 ppm). c Normal grey matter (GM) spectrum and d normal
spectrum from the basal ganglia (BG) in the same patient. Data were acquired in a 3 T human
whole body scanner (MAGNETOM Skyra, Siemens AG, Erlangen, Germany) using a SE
sequence with TE of 30 ms and TR of 1500 ms. Voxel size: 8 mm3 for WM and GM spectra and
12 mm3 for BG spectrum. Courtesy of I.M. Björkman-Burtscher, MD, PhD, Skåne University
Hospital, Lund University
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below, MRS is currently used to establish differential diagnosis of various pathologies,
to follow up disease progression and more recently there has been a growing interest to
apply this technology to monitoring the course of clinical treatments.

4.1 Alzheimer’s Disease

AD is clinically defined by a progressive decline of cognitive functions and is
considered the leading cause of dementia in the elderly. It is mainly characterized
by typical neuropathological lesions in the form of two main protein aggregates:
senile plaques and neurofibrillary tangles. The senile plaques are extracellular
neuritic amyloid deposits primarily consisting of fibrils of the amyloid b peptide
(Glenner and Wong 1984). The neurofibrillary tangles are intracellular aggregates
formed mainly by the cytoskeletal microtubule-associated protein tau (Kosik et al.
1986). This is associated with the loss of cholinergic neurons within the basal
forebrain (Francis et al. 1999). A noradrenergic deficiency is also described in AD
patients and is characterized by a loss of noradrenergic cells in the locus coeruleus
(Bondareff et al. 1981) as well as reduced levels of noradrenaline in corresponding
innervated areas (Arai et al. 1984, Hoogendijk et al. 1999).

As the definitive diagnosis of AD relies on postmortem neuropathological
analysis, the detection of metabolic abnormalities throughout the course of the
disease could prove useful in identifying underlying mechanisms as well as fol-
lowing disease progression. The use of proton MRS has provided a wealth of
evidence for altered metabolic profiles in different brain regions of AD patients, the
most frequent finding being a reduction of NAA levels or a decrease in the NAA/Cr
ratios, in both cortical and/or limbic (e.g. hippocampus) structures (Kantarci et al.
2004; Kantarci et al. 2008; Shinno et al. 2007; Ackl et al. 2005; Frederick et al.
2004; Chantal et al. 2004; Dixon et al. 2002). In a comprehensive review looking at
data from reports of proton MRS in dementia, the relative decrease in NAA levels
was reported to average 20% in the temporal lobe of AD patients, whereas the rest
of the brain averaged a 10% drop (Firbank et al. 2002). One of the early indications
that the reduction in NAA would indicate neuronal damage in AD came from
studies correlating postmortem NAA levels to AD neuropathology (tangles) at
necropsy (Mohanakrishnan et al. 1995). Similar conclusions were drawn from
more robust studies reporting a strong correlation between reduction of MRS NAA
levels and AD pathology confirmed at autopsy (higher Braak stage and neuritic
plaque score) (Kantarci et al. 2008). Apart from the reduction in NAA, a consistent
increase in mIns levels has been frequently reported as well (Ackl et al. 2005;
Chantal et al. 2004; Kantarci et al. 2004), and would suggest that mIns is a marker
of glial proliferation in AD. Some authors have shown reduced Cho levels in AD
patients (Kantarci et al. 2004; Chantal et al. 2004). However, unlike the NAA and
mIns findings, these results are not consistent as some researchers reported ele-
vated Cho/Cr ratios (MacKay et al. 1996) while others failed to report any alter-
ation in Cho measurements (Ackl et al. 2005; Schott et al. 2010), which makes the
relevance of following alterations of Cho levels in AD disputable.
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Based on these spectroscopic features (decrease in NAA and increase in
mIns), MRS can discriminate patients with clinical AD from normal elderly
subjects (Lin et al. 2005). However, alterations of NAA and mIns are not specific
to AD per se. For example, decreases in NAA/Cr levels are reported in other
types of dementia characterized by neuronal loss, such as frontotemporal lobar
degeneration or vascular dementia (Kantarci et al. 2004). Nevertheless, the
robustness of these measurements makes these two metabolites good candidates
to differentiate between dementias that are attributed to AD or to other condi-
tions. In particular, proton MRS has shown an interesting potential in predicting
the evolution from mild cognitive impairment (MCI) to AD. MCI patients
present memory deficits that are greater than in their normal aged counterparts
but that are not severe enough to impair their daily activities (Petersen et al.
1999). MCI is considered as a transitional state between normal aging and AD
(Morris et al. 2001). However, not all MCI patients will develop dementia. In
terms of brain metabolic abnormalities, the available reports are somewhat
conflicting. Some studies state that 1H-MRS can identify a reduction of NAA
levels (Chantal et al. 2004) and/or an increase in mIns (Kantarci et al. 2007) in
MCI subjects. Others report that the metabolic profile of MCI subjects cannot be
distinguished from normal control subjects (Garcia Santos et al. 2008), even
though a trend to intermediate values between controls and AD patients can be
found (Azevedo et al. 2008). Nevertheless, MRS may have some predictive value
in MCI individuals. It has been suggested that baseline NAA/Cr could predict the
conversion from MCI to AD, such as in the study from Modrego and colleagues
which looked at metabolite ratios in hippocampal, occipital and parietal volumes.
The occipital NAA/Cr was significantly lower in MCI converters compared to non-
converters over a 3-year follow-up (Modrego et al. 2005). Other longitudinal studies
investigating additional cortical areas have indicated similar findings [for review see
(Griffith et al. 2009)]. These studies suggest that 1H-MRS can have an impact on
monitoring early signs of AD and that the detection of metabolic alterations
as the first cognitive symptoms develop can help in the follow-up of elderly subjects
with MCI.

Before the postmortem neuropathological evaluation can confirm the AD
diagnosis, neuropsychological measures of cognitive functions are used to classify
patients as probable AD, based on clinical rating scales such as the Mini Mental
State Examination (MMSE) (Folstein et al. 1975). Once dementia is diagnosed,
other scales [such as the Dementia Rating Scale (DRS) or the Clinical Dementia
Rating (CDR)] can assess progression and severity of the symptoms (Hughes et al.
1982; Marson et al. 1997). Multiple studies have looked for a parallel between
metabolite concentrations and MMSE, DRS or CDR scores. Several of them have
reported a significant correlation between levels of NAA and/or mIns and the
severity of cognitive deficit in AD (Waldman and Rai 2003; Dixon et al. 2002;
Doraiswamy et al. 1998; Kantarci et al. 2007), although it should be mentioned
that not all of them reached that conclusion (Jessen et al. 2005). The fact that some
of these studies were based on longitudinal rather than cross-sectional assessments
adds power to the correlation.
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The optimal method to assess the efficacy of a therapeutic treatment would be
to look at a direct effect at a cellular level in order to determine neuronal
survival and/or function. However, this has so far not been possible to do in
patients and clinical evaluation remains the main outcome marker. Clinical
outcomes of a treatment will only look at purely symptomatic functional effects
and cannot distinguish disease-modifying drug effects. This has prompted the
development of surrogate markers to derive a correlate of clinical measures of
disease severity. As stated above, 1H-MRS offers a way to noninvasively mea-
sure markers of neuronal and glial metabolism that are of relevance in the
process of AD. Several longitudinal studies have looked at the opportunity to use
MRS in monitoring the treatment effect by looking at metabolic changes in AD
patients during therapeutic trials with cholinergic agents. Donepezil is an ace-
tylcholinesterase inhibitor (AChEI) shown to provide beneficial (though modest)
effects on cognition in AD patients. It is currently used for symptomatic relief
in mild to moderate cases along with other AChEI, such as galantamine and
rivastigmine (Aderinwale et al. 2010). In a 24-week randomized, double-blind,
placebo-controlled study, treatment with donepezil was associated with an
increase in NAA levels in two brain regions and an improvement in performance
in cognitive tasks, compared with placebo treated patients (Krishnan et al. 2003).
In addition to supporting these data, another study demonstrated that NAA/Cr in
the parietal lobe of patients at baseline predicted a positive treatment response: a
low ratio correlated to an improvement in cognition, while a high ratio indicated
no improvement in the patients (Jessen et al. 2006). Modest but favorable
changes in metabolite concentrations (mainly an increase in NAA in the frontal
cortex) were also shown to correlate with a modest clinical change following
rivastigmine treatment for 4 months. However, the authors speculated that these
changes might be transient (Modrego et al. 2006), which was in fact demon-
strated by Krishnan and colleagues (Krishnan et al. 2003).

As examined, spectroscopic measures may provide good markers of altered
brain chemistry in AD. In particular, markers of neuronal loss (NAA) and gliosis
(mIns) that are biologically relevant to the pathology of AD can be followed by
proton MRS. This method constitutes an interesting tool for the follow-up of
disease progression and for the recognition of early signs of the disease as well as
for the differential diagnosis of dementia.

4.2 Parkinson’s Disease

PD is a disorder of the extrapyramidal motor system clinically defined by resting
tremor, bradykinesia, akinesia, rigidity and postural imbalance. It is characterized
by the progressive degeneration of nigrostriatal dopaminergic neurons. This leads
to a severe dopamine depletion at the striatal level, responsible for most of the
motor disturbances (Hirsch et al. 1988; Fearnley and Lees 1991; Nyberg et al.
1983).
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Many studies using proton MRS have investigated brain metabolic profiles of
PD patients in an effort to detect pathogenic markers of the disease that could
broaden the understanding of the pathology as well as provide help in early
diagnosis. However, it appears that quantitative 1H-MRS studies in PD have
yielded variable results. Due to the dramatic loss of dopaminergic neurons char-
acteristic of the disease, a substantial loss of NAA (marker of neuronal density)
could be anticipated. However, the majority of studies looking at NAA/Cr or
NAA/Cho either reported a minor decrease in these ratios or failed to report any
significant difference between PD cases and controls [for review see (Clarke and
Lowry 2001; Firbank et al. 2002)]. In addition, an increase in NAA/Cr has also
been reported in the SN of PD patients (Choe et al. 1998). However, a study using
absolute quantification of metabolites showed only a decrease in the Cr level in the
SN of PD patients compared to healthy age-matched controls (O’Neill et al. 2002),
suggesting that the previously reported increase in NAA/Cr could be due to lower
Cr rather than higher NAA. Similarly, the reduction in NAA/Cho ratios reported in
some studies might in fact not reflect a reduction in NAA itself as an increase in
absolute Cho levels has been observed (Clarke and Lowry 2000; Ellis et al. 1997).
In this case, the biological significance of changes in Cho levels remains uncertain.
Apart from the more commonly studied metabolites (NAA, Cr, Cho), Lac levels
have also been measured by 1H-MRS and found to be elevated in PD patients,
suggesting a mitochondrial energy metabolism defect (Henchcliffe et al. 2008).
A combined quantitative 1H/31P-MRS study investigating brain energy metabo-
lism measured the concentration of Cr, Pi, ATP, ADP in the midbrain and putamen
of PD patients. The depletion of HEP found in the mesostriatal region was in
accordance with a mitochondrial dysfunction (Hattingen et al. 2009).

As it appears the results obtained in PD patients are somewhat variable, with
studies reporting small changes identified with MRS while others show significant
differences between PD and controls. In order to facilitate the interpretation of
such data, it is of great importance to determine the origin of such variation. The
disparity in the results is more likely to stem from methodological differences. The
choice of absolute quantification versus the more popular use of relative ratio to an
apparently stable endogenous metabolite like Cr (that has proven to vary in some
situations) could be an important contributing factor (Martin 2007). The size and
placement of the voxels could also account for some of the variation, especially
in the SN, a challenging area to target due to its small size and location in the
midbrain. The field strength could also play a major role in the variability of the
results. An increasing number of studies operate at high fields, i.e. 3 T and above.
Compared to 1.5 T, spectral resolution and SNR are expected to improve con-
siderably, providing a more accurate identification and quantification of the
metabolites (Di Costanzo et al. 2003). This is reflected by a study performed at 4 T
that demonstrated the possibility to detect and measure GABA in the SN,
a metabolite whose resonance usually overlaps with the Glu and Gln peaks. GABA
quantification though required the use of a special editing sequence. The same
study reported a unique profile in the SN of PD patients compared to the cortex,
with high GABA and low Glu levels (Oz et al. 2006).
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The relevance of 1H-MRS to the study of PD extends to the investigation of
dementia as well. Although PD is primarily defined as a motor syndrome, the
clinical expression of the disease is more heterogeneous. Many patients express
significant non-motor symptoms including depression, dementia, neuropsychiatric
disturbances, olfactory deficits and autonomic dysfunction (Bosboom et al. 2004;
Owen et al. 1992). Parkinson’s disease with dementia (PDD) is characterized by a
progressive dysexecutive syndrome and it is estimated that 30 to 40% of PD
patients develop dementia (Aarsland and Kurz 2010). Studies comparing brain
MRS profile obtained from PDD patients can indicate an altered brain metabolism
compared to non-demented PD patients and healthy age-matched individuals. For
example, a study reported occipital NAA values to be significantly reduced in
PDD patients compared to PD cases and controls. The NAA levels in this region
correlated with the cognitive status of the PDD patients. The authors concluded
that cortical NAA level may be used as a biological marker for the severity of
cognitive decline in PDD patients (Summerfield et al. 2002). Despite some
similarities and overlap in the neuropathological basis of PDD and AD, increased
evidence suggests that these two pathologies differ [for review see (Farlow and
Cummings 2008)] and information obtained through 1H-MRS tends to support this
view. In fact, proton MRS has been suggested to distinguish between AD and
PDD. Griffith and colleagues showed a significant reduction in NAA/Cr in the
posterior cingulate gyrus of both AD and PDD patients compared to controls
(Griffith et al. 2008). However, Glu/Cr was significantly lower in PDD patients
versus AD patients and could discriminate between the two conditions, suggesting
that these metabolic disturbances could reflect distinct neuropathologies.

Apart from the use of MRS metabolic quantification and profiling to assess
disease mechanisms and progression, some studies are further exploring the use of
MRS as a tool to evaluate therapeutic efficacy of pharmacological or surgical
interventions. Lucetti and colleagues investigated the power of 1H-MRS to assess
the influence of dopaminergic treatment that is capable of improving motor
functions on motor cortex metabolism. After 6 months of treatment, pergolide was
shown to increase previously abnormally low Cho/Cr to normal levels, in the
motor cortex of de novo PD patients (Lucetti et al. 2007). In another experiment,
the survival and cellular composition of dopaminergic fetal cells transplanted into
the striatum of PD patients were followed with 1H-MRS. Restoration of NAA
concentration at the graft level (NAA is normally absent from fetal neurons)
provided evidence of the neuronal survival and maturation of the transplant
(Ross et al. 1999).

Despite the extensive use of 1H-MRS in the investigation of metabolic
abnormalities in PD, results have been rather inconclusive when comparing PD
patients with controls. Proton MRS might however have an interesting value in
differential diagnosis, discriminating PDD from non-demented PD cases and
controls, as well as from AD. The refinement of the existing MR methods has
already allowed improvement in metabolite separation and quantification. Yet,
further developments might be required to allow the detection of metabolites that
would be more specific to a particular neurodegenerative disorder.
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5 Emerging MRS Methods Based on the Use
of Hyperpolarized Tracers: Potential Applications
to the Study of Brain Function

Today, MRS has become a powerful technique and one of the most informative
tools for direct and noninvasive identification of endogenous and exogenous
substances in the body. It is also capable of providing a map of multiple metab-
olites in various tissues, and giving information about complex metabolic
processes in the brain. Its potential applications have so far been hindered mainly
by its intrinsically low sensitivity, precluding in vivo quantification of less
abundant metabolites. Significant efforts have therefore been made to increase
MRS sensitivity by utilizing higher field strength, advanced RF coil designs and
sequence development, which helped to increase the list of neurochemicals
detected by this method. However, the low abundant true neurotransmitters [such
as DA or acetylcholine (ACh)] are far below detection by conventional 1H- and
13C-MRS methods performed at thermal equilibrium. In clinical examination of
the brain, the NMR detection limit in terms of concentration of protons is around
0.5-1.0 mM (Ross and Bluml 2001). The low sensitivity of NMR is due to the low
degree of polarization of the nuclear spins by experimentally achievable magnetic
fields at thermal equilibrium, amounting to just a few parts per million. In addition,
if the nucleus of interest is at low natural abundance (such as 13C), MR sensitivity
is then severely reduced (Mansson et al. 2006). This intrinsic low sensitivity has
motivated the development of new methods, which could enable the detection of
less abundant metabolites, including neurotransmitters.

Powerful novel techniques to enhance weak NMR signals from molecular
tracers have recently been developed and are referred to as hyperpolarization
methods. These techniques can considerably enhance the polarization of nuclear
spins, and thereby provide a dramatic increase in the sensitivity of subsequently
performed MRS investigations (Golman et al. 2003). One of the methods used to
create hyperpolarized (non-equilibrium) nuclear spin states in probe molecules is
the solid-state dynamic nuclear polarization (DNP). To use the DNP method for
liquid probes (e.g., aqueous solutions of molecular tracers), the probe is doped
with free radicals in a glass-forming solvent (e.g. glycerol), frozen to a very low
temperature (1 K) inside a magnetic field, and irradiated with microwaves to
transfer a high polarization of electron spins residing in low-concentrated free
radicals to the surrounding nuclear spins. After creating a ‘‘hyper-polarized’’
nuclear spin state in a frozen probe, the molecular sample is quickly dissolved in
water (Ardenkjaer-Larsen et al. 2003). The liquid probe can then be administrated
in the body and used as a tracer so that one can visualize its biodistribution and
metabolism in vivo.

This novel technology allows amplifying the baseline sensitivity of e.g.,
13C-MRS by a factor of up to 10,000 in vitro (Ardenkjaer-Larsen et al. 2003).
The so-called DNP polarizer can be used for both in vitro and in vivo MRS
and ultra-sensitive molecular imaging, including neurological applications
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(Ardenkjaer-Larsen et al. 2003; Ross et al. 2010). The major limitation of the
technique arises from the short lifetimes of hyperpolarized spin states in liquids,
determined by the relaxation times T1. This becomes especially critical when
considering in vivo applications. Since protons in solutions of biomolecules
have too short relaxation times to allow for transport and in vivo injection of
hyperpolarized compounds, most applications of the technique have focused on
13C-MRS. Nonprotonated carbons in 13C-enriched tracers have relatively longer
relaxation times (20–40 s), and thus the artificially prepared hyper-polarization
decays back to the thermal-equilibrium level over a time course of a few minutes.
Thus, the injection of the hyperpolarized probe and subsequent MR examination
has to be performed rapidly. Despite this time limitation, the huge gain in signal
intensity substitutes the need for signal accumulation, thus allowing complete data
collection within the time window needed for imaging applications (Golman et al.
2006a; Mansson et al. 2006; Golman et al. 2003).

Several important application areas of metabolic imaging by 13C DNP-MRS
have been demonstrated by Golman’s group, in particular for investigation of
cardiac metabolism (Golman et al. 2008), metabolism in muscle (Golman et al.
2006a) and tumor diagnosis (Golman et al. 2006b; Day et al. 2007). Most of these
studies involved 13C-pyruvate as a molecular probe, but the great potential of the
13C DNP-MRS method for metabolic imaging has also been demonstrated with
other molecules [e.g. (Gallagher et al. 2008)]. Although no successful clinical
applications have been developed yet, current applications of DNP at the pre-
clinical level are very encouraging and range from angiography (Svensson et al.
2003) to metabolic imaging of healthy and diseased tissue (Gabellieri et al. 2008;
Golman et al. 2006b; Golman et al. 2006a).

In addition to 13C, molecular probes containing other magnetic nuclei with long
relaxation times, such as 15N, can be assessed using DNP-MRS, which may allow
more time for metabolic conversion and accumulation of products. One of such
probes that has gained recent attention is the hyperpolarization of 15N labeled
choline. Apart from its role in cellular phospholipid synthesis and metabolism,
choline is also the precursor of the neurotransmitter ACh and therefore plays a
major role in cholinergic neurotransmission (Cooper et al. 2003). Besides,
alterations of the cholinergic neurotransmission are well-recognized features of
neurodegenerative diseases such as AD and PD (Nakano and Hirano 1984; Perry
et al. 1985; Whitehouse et al. 1982). Monitoring the physiological metabolism of
choline and ACh in the brain through in vivo spectroscopy might be of great
importance in the study of these diseases and may as well provide a diagnostic tool
to detect biomarkers relevant to these conditions. Since 15N relaxation time in
choline is relatively long (100-200 s), the use of hyperpolarized 15N-choline bears
an exciting potential in reaching such goals. Gabellieri and colleagues first
described a method to monitor the in vitro metabolic conversion of hyperpolarized
15N-choline into phosphocholine by choline kinase using 15N-NMR (Gabellieri
et al. 2008). In vivo measurements using this method may, however, be hampered
by insufficient 15N peak separation of choline metabolites (*0.2 ppm for phos-
phocholine vs choline) and by poor sensitivity of 15N-NMR. In an in vivo study the
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successful detection of hyperpolarized 15N-choline in a rat head after adminis-
tration through the rat femoral vein has been reported, but none of the choline
metabolites could in fact be detected (the choline signal was discernible above the
noise level for about 100 s) (Cudalbu et al. 2010). Bringing the sensitivity of MRS
detection of hyperpolarized 15N choline to a level more compatible with in vivo
measurements appears essential and is in the center of several studies. An alter-
native approach based on DNP-enhanced 1H-NMR was developed, in which
hyperpolarized 15N choline was detected in vitro by 1H-NMR after polarization
transfer from 15N to the distant methylene CH2O protons, using a reversed INEPT
pulse sequence (Sarkar et al. 2009). This method was shown to provide better
sensitivity and an increased spectral dispersion of choline metabolites (ACh and
phosphocholine) compared to direct 15N detection. A selective polarization
transfer strategy has been described to further increase sensitivity of this method
for 15N-choline (Pfeilsticker et al. 2010), whereby the polarization is transferred
from 15N exclusively to the methyl protons. In another study, the potential of the
polarization transfer approach to track metabolic processes was explored in an in
vitro experiment that applied the concept of spatially selective transfer to monitor
the kinetics of two enzymatic reactions catalyzed by purified enzymes (Harris et al.
2010). The first reaction targeted was the phosphorylation of 15N-choline into PC
by choline kinase, also described by Gabellieri and colleagues with direct
15N-NMR (Gabellieri et al. 2008). The second reaction, perhaps more interesting
due to its significance of neuronal activity, was the hydrolysis of 15N-ACh into
choline by acetylcholine esterase. One of the advantages of using 1H-NMR in that
case is the good spectral resolution of the methylene group (close to the reaction
hydroxyl group) between the two species. This offers the possibility to follow the
kinetics of the reaction, here in a time window of 4 min.

Moving away from 15N-choline, another hyperpolarized labeled choline
molecular probe emerged to monitor ACh synthesis (Allouche-Arnon et al. 2010).
The metabolic acetylation of a [1,1,2,2-D4,2-13C] choline chloride by a carnitine
acetyltransferase was followed in vitro by 13C-NMR and yielded interesting
results. At the hyperpolarized state, [1,1,2,2-D4,2-13C] ACh was already detectable
within 15 s. Kinetics parameters such as the reaction rate constant k were mea-
sured and the T1 relaxation time of the product was found to be sufficiently long
(34 s), which would be a clear advantage for in vivo application. Although
encouraging, the metabolic conversion monitored was catalyzed by a carnitine
acetyltransferase extracted from pigeon breast muscle, an enzyme primarily
dedicated to carnitine acetylation. For this reason, extrapolation of the conclusions
of this study to any application using choline acetyltransferase (the enzyme
catalyzing the synthesis of ACh in the brain) should be made with caution.

Since their introduction in preclinical and clinical examinations, MRS tech-
niques have developed greatly and today they represent an important part of the
tools used to investigate metabolic processes noninvasively. In particular, they can
provide information about brain functions through measurements of a wide range
of neurochemicals. Neurodegenerative diseases in which brain metabolic changes
are observed constitute interesting targets for MRS analysis. In pathologies such as
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AD or PD, MR spectroscopy can detect altered metabolite levels and has therefore
been applied to identify specific pathological markers, monitor longitudinal dis-
ease progression or perform differential diagnosis, with mixed outcome. Methods
capable of increasing MRS sensitivity in vitro are now receiving increased
attention for in vivo application. In particular, the strong signal enhancement
provided by hyperpolarization methods applied to the detection of heteronuclei in
MRS may have an interest in the measurement of less abundant metabolites, such
as brain neurotransmitters. Great methodological advances have already been
achieved in the development of DNP-enhanced MRS-based techniques that may
further facilitate the detection of important brain metabolic processes in vivo. The
future of these methods will depend on the possibility to transfer them to in vivo
studies in living biological systems.
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MR Spectroscopic Studies of the Brain
in Psychiatric Disorders

Richard J. Maddock and Michael H. Buonocore

Abstract The measurement of brain metabolites with magnetic resonance
spectroscopy (MRS) provides a unique perspective on the brain bases of neuro-
psychiatric disorders. As a context for interpreting MRS studies of neuropsychi-
atric disorders, we review the characteristic MRS signals, the metabolic dynamics,
and the neurobiological significance of the major brain metabolites that can be
measured using clinical MRS systems. These metabolites include N-acetylaspartate
(NAA), creatine, choline-containing compounds, myo-inositol, glutamate and
glutamine, lactate, and gamma-amino butyric acid (GABA). For the major adult
neuropsychiatric disorders (schizophrenia, bipolar disorder, major depression, and
the anxiety disorders), we highlight the most consistent MRS findings, with an
emphasis on those with potential clinical or translational significance. Reduced
NAA in specific brain regions in schizophrenia, bipolar disorder, post-traumatic
stress disorder, and obsessive–compulsive disorder corroborate findings of reduced
brain volumes in the same regions. Future MRS studies may help determine the
extent to which the neuronal dysfunction suggested by these findings is reversible
in these disorders. Elevated glutamate and glutamine (Glx) in patients with bipolar
disorder and reduced Glx in patients with unipolar major depression support
models of increased and decreased glutamatergic function, respectively, in those
conditions. Reduced phosphomonoesters and intracellular pH in bipolar disorder
and elevated dynamic lactate responses in panic disorder are consistent with
metabolic models of pathogenesis in those disorders. Preliminary findings of an
increased glutamine/glutamate ratio and decreased GABA in patients with
schizophrenia are consistent with a model of NMDA hypofunction in that disorder.
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As MRS methods continue to improve, future studies may further advance our
understanding of the natural history of psychiatric illnesses, improve our ability to
test translational models of pathogenesis, clarify therapeutic mechanisms of action,
and allow clinical monitoring of the effects of interventions on brain metabolic
markers.

Keywords Frontal � Limbic � Cortex � Neural � Glial � Metabolism

Abbreviations
1H-MRS Proton magnetic resonance spectroscopy
2D Two dimensional
31P-MRS Phosphorous magnetic resonance spectroscopy
ADP Adenosine diphosphate
AGAT Arginine-glycine aminotransferase
ASICs Acid sensing ion channels
ASPA Aspartoacylase
Asp-NAT Aspartate N-acetyltransferase
ATP Adenosine triphosphate
CK Creatine kinase
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GAA Guanidinoacetate
GABA Gamma aminobutyric acid
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MR Magnetic resonance
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1 Introduction

Approximately 60% of the human body is water. Most clinical applications
of magnetic resonance phenomena involve creating images based primarily on
the magnetic properties of the nuclei of hydrogen atoms in water molecules.
In contrast, magnetic resonance spectroscopy (MRS) provides information based
on the magnetic properties of atomic nuclei present in other molecules in addition
to water. Generally, this information is in the form of MR spectra, which display
a series of resonance signals. The strength of each signal is proportional to
the concentration of molecules containing nuclei that resonate at the indicated
frequency. Although MR spectra from the atomic nuclei of several different
elements in the body can be measured, most MRS studies using clinical MR
systems measure spectra from the nucleus of the hydrogen atom. In this review, the
MR spectra from hydrogen nuclei are referred to as 1H-MRS. MRS information
can also be displayed as low-resolution images [chemical shift imaging (CSI)
or magnetic resonance spectroscopic imaging (MRSI)], in which image contrast is
based on regional differences in the concentration of a specific molecule.

The substance of this review is divided into two sections. The first section
reviews the molecules most commonly studied with MRS in the human brain.
It describes the pattern of MRS resonance peaks arising from each such molecule,
the pathways for biosynthesis and degradation of each molecule, and reviews
current understandings of the neurobiological function and the significance of
abnormal concentrations of each molecule. This section is intended to provide the
metabolic and neurobiologic background for interpreting MRS observations about
each of the major metabolites studied with 1H-MRS in the human brain. In dis-
cussing each metabolite, special emphasis is given to metabolic and signaling
functions that may be relevant to translational models of psychiatric disorders. The
second section reviews and summarizes the scientific literature on brain MRS
studies of major psychiatric disorders, including schizophrenia, bipolar disorder,
unipolar major depression, and anxiety disorders. In order to provide a context for
interpreting these MRS findings, this section also provides an overview of the
literature on brain structure and function in each disorder and current concepts of
the pathophysiology of each condition. While the MRS literature in psychiatric
disorders has grown quite large, our review will attempt to identify the most
consistently replicated experimental observations and will give priority to findings
that address specific translational questions of theoretical or clinical importance.
In addition, a discussion of the physics of MRS and a technical description of MRS
methods commonly used in neuropsychiatric research today is provided as sup-
plementary material (link below). The supplementary material assumes a basic
familiarity with MR principles and concepts such as longitudinal and transverse
magnetization, nutation of magnetization by radiofrequency pulses, and precession
of transverse magnetization by the application of the main magnetic field and
fields due to the gradient pulses. For the reader equipped with this background,
this material offers an in-depth introduction to the unique physical principles
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underlying MRS experiments. Supplement: http://ucdirc.ucdavis.edu/CLR327bgt/
maddock-buonocore-CTBNsuppl.pdf.

2 Metabolites Observable in Normal Brain

For a brain metabolite to be reliably measured with MRS methods currently
available on clinical MRI systems, its concentration must be in the millimolar
range and it must be in a freely mobile form (not anchored to a membrane or
organelle). Molecules that are not free to rotate rapidly in solution generally do not
generate a resonance that can be detected with clinical MRI systems. The brain is a
densely cellular organ with a high rate of resting energy consumption. Its primary
functions require complex signaling mechanisms for communication both within
and between cells. Accordingly, many of the mobile molecules present in suffi-
ciently high concentration to be reliably observed with MRS are involved in
energy metabolism, signaling, and cell membrane metabolism. Figure 1 portrays
examples of 1H-MRS data acquired from 3 and 1.5 T scanners using several
different echo times (TEs). Each of the metabolites commonly studied with
1H-MRS in patients with neuropsychiatric disorders is discussed below in detail.

2.1 NAA

The molecular structure of N-acetylaspartate (NAA) is shown in Fig. 2. Other than
water, the most prominent peak in the 1H-MRS spectrum of brain tissue is the
singlet peak of NAA at about 2.01 ppm (Fig. 1). This large peak arises from the
three hydrogen nuclei in the methyl group within the acetyl moiety of NAA.
Hydrogen nuclei from the aspartate moiety of NAA give rise to several other much
smaller peaks, but only the multiplet with peaks at about 2.49 and 2.67 ppm is
generally visible in in vivo spectra (Govindaraju et al. 2000).

NAA is often considered to be a marker of the density of viable neuronal tissue
in the brain region under study (Meyerhoff et al. 1993). However, there is accu-
mulating evidence that NAA levels also reflect reversible changes in neuronal
health (Clark 1998; Gasparovic et al. 2001; Demougeot et al. 2004). For example,
reduced NAA levels are observed in the context of acute brain injury or illness, or
chronic methamphetamine abuse. However, a normalization of NAA levels can be
observed following a period of recovery, treatment, or extended abstinence from
drug abuse (De Stefano et al. 1995; Kalra et al. 1998; Narayanan et al. 2001; Salo
et al. 2010; Yoon et al. 2010b). Thus, reduced NAA is more accurately interpreted
as reflecting either permanent loss or reversible dysfunction of neuronal tissue
(Moffett et al. 2007).

NAA is synthesized from aspartate and acetyl-coenzyme A in a reaction
catalyzed by aspartate N-acetyltransferase (Asp-NAT) (Moffett et al. 2007;
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Ariyannur et al. 2010). There is not yet a consensus about the subcellular locali-
zation of NAA synthesis or about the physiological functions of NAA. However,
there is general agreement that NAA is synthesized predominantly in neurons, and
that its substrates are found together primarily within mitochondria. Therefore, it is
likely that most NAA is synthesized in neuronal mitochondria, although there may
be some Asp-NAT and NAA synthesis in neuronal cytoplasm. Many investigations
have shown that NAA synthesis is coupled to the capacity of neuronal mito-
chondria for oxidative metabolism and ATP synthesis (Bates et al. 1996; Clark
1998; Moffett et al. 2007). Animal studies of experimental brain trauma show that
the acute decrease and later recovery of ATP and other indicators of mitochondrial
energy metabolism were temporally correlated with changes in NAA levels
(Gasparovic et al. 2001; Signoretti et al. 2010). This evidence supports the use
of brain 1H-MRS NAA levels as a marker for the integrity and functional capacity
of neuronal mitochondria.

Aspartoacylase (ASPA) is the enzyme that catalyzes the hydrolysis of NAA to
aspartate and acetate in human brain (Bitto et al. 2007). ASPA is found pre-
dominantly in oligodendrocytes, the glial cells that constitute the myelin sheaths
around axons. The important role of acetate in the synthesis of myelin and con-
verging evidence from a wide range of studies support the hypothesis that one

Fig. 1 Representative 1H-MRS spectra acquired from human brain using three different TEs are
shown. The spectrum in (a) was acquired at TE = 30 ms from the anterior cingulate cortex at 3
Tesla. The spectra in (b and c) were acquired at TE = 144 and 288 ms respectively from the
primary visual cortex at 1.5 Tesla. Selected metabolite peaks are indicated. Note that the ppm
value on the horizontal axis increases to the left, not the right. Spectral peaks that appear on the
right side of the graph arise from nuclei that are relatively more shielded from the main magnetic
field by nearby electrons. Spectral peaks on the left side of the graph arise from relatively less
shielded nuclei (discussed in Supplement Sect. 4.2)

b

Fig. 2 The molecular
structures of eight brain
metabolites commonly
studied with 1H-MRS are
shown
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important function of NAA is to transport acetate from neuronal mitochondria to
oligodendrocytes for use in myelin synthesis (Moffett et al. 2007). NAA may also
contribute to other aspects of oligodendrocyte lipid and energy metabolism.
Several other proposed neurobiological functions of NAA have been the subject of
experimental study, including participation in an alternate pathway of neuronal
mitochondrial respiration in which glutamine substitutes for glucose, providing a
reservoir for glutamate, functioning as an organic osmolyte for regulating cell
volume, and serving as an anion to ameliorate the ‘‘anion deficit’’ within neurons
(Clark et al. 2006; Moffett et al. 2007).

NAA is an immediate precursor for the biosynthesis of the neuronal dipeptide
N-actelyaspartylglutamate (NAAG). NAAG is the most highly concentrated pep-
tide in the human brain and may serve a cell-signaling function (Neale et al. 2000).
It generates a small peak in the brain 1H-MRS spectrum that is difficult to distin-
guish from the NAA peak (Edden et al. 2007). Measures of the percent contribution
of NAAG to the combined signal from NAA and NAAG range from about 9% in
gray matter to about 30% in white matter (Pouwels and Frahm 1997; Edden et al.
2007). NAAG is synthesized in neurons from NAA and glutamate. It is stored in
vesicles and released from neurons by a calcium-dependent mechanism, and it is
hydrolyzed to glutamate and NAA by the enzyme NAAG peptidase, which resides
on the extracellular surface of astrocytes (Baslow 2007; Chopra et al. 2009).
Considerable evidence suggests that NAAG interacts with group II metabotropic
glutamate receptors prior to hydrolysis. However, the nature and significance of this
interaction is not yet clear (Neale et al. 2000; Chopra et al. 2009).

In summary, the NAA singlet at 2.02 ppm is the most prominent peak in normal
brain 1H-MRS spectra. In most cases, this NAA signal represents ‘‘total NAA,’’ as
it includes the combined signals from both NAA and NAAG. The 1H-MRS signal
arising from the total pool of NAA ? NAAG can be interpreted as a marker for
the health, viability and/or number of neurons, and it may more specifically reflect
the functional capacity of neuronal mitochondria.

2.2 Creatine

Together, creatine and phosphocreatine give rise to a prominent singlet peak at
approximately 3.03 ppm (Fig. 1). This peak arises from the three hydrogen nuclei
in the methyl group of the creatine moiety (Fig. 2). Another smaller but distinct
peak is evident at approximately 3.91 ppm. This singlet peak arises from the
methylene hydrogen nuclei of the creatine moiety (Govindaraju et al. 2000).
In general, creatine and phosphocreatine cannot be reliably distinguished by
1H-MRS. In this review, the term ‘‘creatine’’ used in the context of 1H-MRS
measurements refers to the combined signal from creatine and phosphocreatine.

Creatine and phosphocreatine are present in both gray matter and white matter,
and in all of the major cell types of brain parenchyma, including neurons, astrocytes,
and oligodendrocytes. The pool of creatine in the body is maintained by a
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combination of dietary uptake and endogenous synthesis. Although it was previ-
ously thought that the brain’s supply of creatine was primarily maintained by uptake
from the blood, it now appears that local synthesis within the brain may contribute
substantially to its supply (Andres et al. 2008; Beard and Braissant 2010). Two
enzymes are required for the synthesis of creatine. Arginine–glycine aminotrans-
ferase (AGAT) generates ornithine and guanidinoacetate (GAA), the immediate
precursor of creatine. GAA is then methylated by guanidinoacetate methyltrans-
ferase (GAMT) to produce creatine. AGAT and GAMT are widely expressed
throughout the brain, but it appears that they are not often co-expressed in the same
cells. This suggests that the transporter for GAA and creatine is also required for the
final synthesis and distribution of creatine throughout the brain (Braissant et al.
2010). Some studies have found high levels of GAMT in glial cells and suggest that
the final step in creatine synthesis may occur mainly in glia. However, this and other
questions regarding the precise compartmentation of creatine synthesis and trans-
port remain unresolved (Andres et al. 2008; Beard and Braissant 2010).

Creatine has an essential role in CNS energy homeostasis. In the presence of
ATP, creatine can be phosphorylated by the enzyme creatine kinase (CK). This
reaction is reversible, so that ATP can be regenerated from phosphocreatine, in the
presence of ADP. The creatine/phosphocreatine system has two essential functions
in brain energetics. It provides a buffer, or storage mechanism, for high-energy
phosphate bonds generated in subcellular regions where ATP production is high,
and it provides a means for transport of high-energy phosphate bonds from sub-
cellular regions of net energy production to subcellular regions of net energy
consumption. Unlike ATP and ADP, phosphocreatine and creatine can diffuse
rapidly across subcellular regions (Andres et al. 2008). This relatively rapid rate
of diffusion makes the creatine/phosphocreatine system an efficient mechanism for
shuttling high-energy phosphate bonds between subcellular compartments.

In addition to its central role in energetics, creatine appears to have important
functions in other fundamental aspects of cellular metabolism in brain paren-
chyma. In combination with the CK isoform expressed in brain mitochondria,
creatine has an important antiapoptotic effect by stabilizing mitochondrial mem-
brane pores (Dolder et al. 2003). Creatine also helps suppress free radical (reactive
oxygen species) formation within mitochondria by facilitating the recycling
of ADP during periods of increased glucose utilization (Meyer et al. 2006).
Furthermore, creatine appears to be released from neurons by a depolarization-
induced, calcium-dependent mechanism (Almeida et al. 2006) suggesting that it
functions as a neuromodulator. In this regard, there have been reports that creatine
may act as a partial agonist at the GABA-A receptor (Koga et al. 2005; Almeida
et al. 2006) and may interact with the NMDA receptor (Royes et al. 2008).

The 1H-MRS signal attributable to creatine and phosphocreatine (total creatine)
is generally interpreted as a measure of the global health of brain parenchyma,
with reductions indicative of impairment of function or integrity. While a mea-
surement of the ratio of phosphocreatine to creatine would provide information
about the current status of energy metabolism and high-energy phosphate bonds in
the brain, this ratio generally cannot be reliably measured by 1H-MRS alone, but
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requires additional measurements with phosphorous MRS (31P-MRS). In studies
of patients with multiple sclerosis, increased creatine (as observed, for example, in
normal-appearing white matter) has been interpreted as an indication of the pro-
liferation of astrocytes (Caramanos et al. 2005). This interpretation is supported, in
part, by in vitro studies of cultured neuronal and glial cells suggesting that the
concentration of creatine in astrocytes is higher than in neurons (Urenjak et al.
1993; Bhakoo et al. 1996). However, a subsequent in vitro study did not confirm
this (Griffin et al. 2002) and uncertainty remains about the relative concentration of
creatine in different brain cell types.

In general, the concentration of total creatine is relatively similar throughout the
brain and tends to be stable over time in the absence of major pathology. For these
reasons, the 1H-MRS signal from creatine is commonly used as an ‘‘internal
standard’’ to normalize the signals from other metabolites measured within the
same voxel. There are several advantages of this approach. It partially corrects for
some of the variation in metabolite signal intensity that is due to the location of
the voxel, such as the proportion of cerebrospinal fluid (CSF) within the voxel
and the sensitivity of the coil to signal from a specific location within the brain.
The main disadvantage of this approach is that the creatine signal may increase or
decrease in association with a pathologic condition, as has been demonstrated for
ischemic stroke and brain trauma (Lei et al. 2009; Signoretti et al. 2010).

In summary, the combined signals from creatine and phosphocreatine give rise
to singlet peaks at 3.03 and 3.91 in 1H-MRS spectra. Creatine and phosphocreatine
are present in all types of brain cells. The total creatine signal is relatively similar
across brain regions and reflects the global health of the underlying tissue. Creatine
signal intensity is often used for within-voxel normalization of the signals arising
from other metabolites of interest.

2.3 Choline-Containing Compounds

Many molecular compounds in the brain contain a choline moiety. The nine
hydrogen nuclei associated with the trimethylammonium group within the choline
moiety of choline-containing compounds (Fig. 2) give rise to a prominent singlet
peak at about 3.21 ppm (Fig. 1) (Govindaraju et al. 2000). In brain, phosphoryl-
choline (PCho) and glycerophosphorylcholine (GPCho) are the primary sources of
this resonance peak. Choline-containing phospholipids in myelin and cell mem-
branes (primarily phosphotidylcholine) are present in brain parenchyma in higher
concentration than PCho and GPCho (Boulanger et al. 2000). However, these
compounds are not freely mobile and therefore cannot generate a measurable
magnetic resonance signal during a 1H-MRS acquisition. Thus, these choline-
containing phospholipids do not directly contribute to the choline resonance at
3.21 ppm. Free choline, acetylcholine, and cytidine diphosphate choline are
mobile choline-containing compounds present at much lower concentrations
than PCho and GPCho (Boulanger et al. 2000). They contribute directly, but to a
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minor degree, to the choline peak at about 3.21 ppm. Betaine is produced by the
oxidation of choline. Like choline, betaine contains nine hydrogen nuclei within a
trimethylammonium group. Betaine makes a minor contribution to the total
choline signal. Phosphorylethanolamine, another precursor of membrane phos-
pholipids, also contributes in a minor way to the choline signal at 3.21 ppm.

Although 1H-MRS does not directly measure the concentration of membrane
phospholipids, the observed choline peak is influenced by both the density of cell
membranes and the rate of cell membrane and myelin turnover. PCho is a pre-
cursor of the synthesis of membrane phospholipids. Both GPCho and, to a lesser
extent, PCho are generated during the breakdown of membrane phospholipids.
Thus, an increase in either the synthesis or the breakdown of membrane phos-
pholipids can be associated with an increase in the concentrations of PCho and/or
GPCho (Geddes et al. 1997; Boulanger et al. 2000). For this reason, increases in
the breakdown or turnover rate of membrane or myelin phospholipids are believed
to be associated with increases in the 1H-MRS choline signal. Furthermore, at a
constant rate of turnover of phospholipids, the concentrations of PCho and GPCho
vary in proportion to the density of cell membranes within the voxel (Yue et al.
2009). Thus, the 1H-MRS choline signal is often interpreted as a measure of
overall cell density and/or the rate of membrane turnover. Increased choline signal
can also result from the accumulation of myelin breakdown products, as occurs
during active demyelination.

2.4 Myo-Inositol

Inositol is a six-carbon ring sugar with an alcohol group attached to each carbon
(a six-fold alcohol of cyclohexane) (Fig. 2). Myo-inositol is the most abundant
stereoisomer of inositol in mammalian systems. In the brain, about 90% of the
inositol is myo-inositol, less than 10% is scyllo-inositol, and trace amounts of
other stereoisomers are also present (Govindaraju et al. 2000; Fisher et al. 2002).
The most prominent 1H-MRS signal from myo-inositol is a pair of multiplet peaks
arising at about 3.52 and 3.61 ppm (Fig. 1a). The myo-inositol peaks are generally
not observable in long TE 1H-MRS acquisitions (Fig. 1b, c). The scyllo-inositol
singlet peak is variably present at about 3.3 ppm. It can often be observed when
using a long TE (Fig. 1c).

The myo-inositol content of brain cells is governed by several physiological
mechanisms, including the recycling of inositol phosphate second messengers, de
novo synthesis of inositol from glucose, carrier-mediated energy-coupled transport
of inositol into cells against a concentration gradient, and efflux of inositol out of
cells during hypotonic stress as part of cell volume regulation (Fisher et al. 2002).
In healthy brain tissue under normal osmotic conditions, the former two mechanisms
predominate (Williams et al. 2002). Myo-inositol is synthesized from glucose-6-
phosphate in two steps. The final step is catalyzed by inositol monophosphatase. This
same enzyme is responsible for generating free myo-inositol during the recycling of
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inositol phosphate second messengers. Free inositol is required to regenerate phos-
photidylinositol, a key component of the second messenger system. Interestingly,
inositol monophosphatase is inhibited by lithium. Indeed lithium, valproate and
carbamazepine all alter inositol phosphate metabolism to cause a reduction in
intraneuronal free inositol levels (Williams et al. 2002).

In addition to its key role as a precursor for the regeneration of phosphot-
idylinositol in the inositol phosphate second messenger system, myo-inositol
has other important functions in the brain. Free myo-inositol serves as a
‘‘non-perturbing’’ osmolyte that is normally maintained at a manyfold higher
concentration within brain cells than in CSF ([25:1) or blood ([50:1). In response
to hypotonic stress (e.g. hyponatremia), myo-inositol can efflux from brain cells
(or enter brain cells in the case of hypertonic stress) to preserve cell volume
without altering the function of intracellular processes (Fisher et al. 2002).
Additionally, myo-inositol, similar to choline, is an intermediate in the metabolism
of membrane and myelin phospholipids.

Although the myo-inositol signal in brain 1H-MRS is often considered to be a
glial marker, its distribution across brain cell types is more complex than is sug-
gested by that characterization. Currently, the extent to which myo-inositol may be
preferentially concentrated within neuronal or glial cell types remains uncertain
(Fisher et al. 2002). One of the strongest assertions of an exclusively glial source
for the 1H-MRS myo-inositol signal comes from a 1H-MRS study of cultured
brain cells that showed a high concentration of myo-inositol in astrocytes and
negligible myo-inositol in neurons (Brand et al. 1993). The conclusions of this
study are widely cited in support of the characterization of myo-inositol as a glial
marker. Thus, it is worthwhile to examine their limitations. The cultured neurons
studied were in an embryonic stage of development, as evidenced by the obser-
vation they contained only trace amounts of NAA. In contrast, the cultured
astrocytes studied were in a more mature stage of development and exhibited a
spectral pattern more similar to in vivo brain 1H-MRS studies (more prominent Cr
and Choline peaks than observed in the embryonic neurons). Neither type of
cultured cell (neurons or astrocytes) were able to synthesize myo-inositol from
glucose (Brand et al. 1993), although this is known to occur in mature neurons
(Schmidt et al. 2005). Since the cultured cells could not synthesize it, myo-inositol
was added to the culture medium. Thus, the Brand et al. results reflect the relative
uptake of myo-inositol into mature astrocytes compared to its uptake into
embryonic neurons in a cell culture environment. Mature neurons and glia are both
known to express myo-inositol transport proteins. Two such transporters have been
described. One is present in both cell types and the other is observed only in
astrocytes. Under acidic conditions, the former is less active while the exclusively
astrocytic transporter is more active (Fisher et al. 2002). Acidic conditions (10%
CO2) in the culture media may have favored preferential uptake of myo-inositol by
the cultured astrocytes in the Brand et al. experiment. The comparison of relatively
immature neurons to relatively mature astrocytes, the absence of normal neuronal
myo-inositol synthesis, and cell culture conditions favoring selective myo-inositol
uptake by astrocytes limit the generalizability of their findings. In their systematic
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review, Fisher et al. (2002) summarized findings from seven prior experiments on
neuronal cells and five prior experiments on glial cells. There was no significant
difference in the estimated myo-inositol concentrations in glia compared to neu-
rons, but the median estimated concentration was 38% lower in the neuronal cells
than in the glial cells.

Although myo-inositol may not be a specific glial marker, clinical observations
often support an association between elevated 1H-MRS myo-inositol signal and
gliosis in neurodegenerative disorders (e.g. multiple sclerosis and Alzheimer’s
disease) (Bitsch et al. 1999; Yang et al. 2010). However, elevated inositol is found
in a range of pathological conditions not involving gliosis, including Down’s
syndrome, increased myelin breakdown, and hypertonic stress (Fisher et al. 2002).
It is important to note that high concentrations of myo-inositol are observed in
some types of cultured neurons, and that myo-inositol is actively taken up into
most types of mature brain cells, including neurons and glia (Fisher et al. 2002).
Furthermore, neurons can both synthesize inositol from glucose and regenerate it
during the recycling of inositol phosphates (Schmidt et al. 2005), Thus, there is
little evidence to support the characterization of myo-inositol as a specific glial
marker, and increases or decreases in the brain inositol 1H-MRS signal must be
interpreted in the context of the specific condition under study.

2.5 Glutamate and Glutamine

The amino acid neurotransmitter glutamate is one of the most abundant mobile
metabolites present in the brain, being second only to NAA in concentration
(Govindaraju et al. 2000). However, it lacks methyl groups, and the J-coupled
signals from its methylene and methine groups (Fig. 2) produce broad complex
peaks. For these reasons, glutamate does not generate a prominent single peak in the
1H-MRS spectrum of the brain. A multiplet peak centered at about 2.34 ppm arises
from the methylene protons near the carboxy terminal of glutamate and is often the
most readily recognized glutamate peak in brain 1H-MRS spectra (Fig. 1).
A second methylene multiplet centered at about 2.08 ppm is typically obscured by
the large NAA peak at 2.01 ppm. A third complex glutamate peak arises from its
methine proton at about 3.74 ppm (Fig. 1) (Govindaraju et al. 2000).

These signals from glutamate are difficult to distinguish from the analogous
peaks arising from glutamine at about 2.44, 2.12, and 3.75 ppm. The concentration
of brain glutamine is estimated to be about 40% to 60% of the concentration of
glutamate (Govindaraju et al. 2000; Jensen et al. 2009), thus signal arising from
glutamine often confounds measures of glutamate. Hancu recently compared a
range of specialized 1H-MRS methods for measuring brain glutamate on a 3 T
scanner. A conventional short TE point resolved spectroscopic sequence (PRESS)
and the specialized Carr-Purcell PRESS sequence provided measurements with
the best repeatability. J-resolved PRESS was the most accurate for measuring
absolute values of glutamate, but at the cost of reduced repeatability (Hancu 2009)
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(see Sects. 4.3.1, and 4.5.3 of the Supplement for discussions of PRESS
and J-resolved MRS techniques). Unless optimized 1H-MRS methods are used
(e.g. a high-field scanner with a short echo time and long acquisition time, or a
specialized J-editing or J-resolved sequence), the measurements obtained are
generally considered to reflect the combined signal from glutamate and glutamine,
with minor contributions from glutathione and GABA. This combined signal
measurement is often abbreviated as ‘‘Glx.’’

In the resting awake state, up to 20% of brain glucose metabolism is directed
toward the de novo synthesis of glutamate, which occurs primarily in astrocytes
(Hertz 2006). Pyruvate carboxylase, which is located exclusively in glial cells
(probably within their mitochondria), has a key role in directing pyruvate toward
de novo glutamate synthesis. Thus astrocytes, unlike glutamatergic neurons, are
capable of net synthesis of glutamate without depletion of tricarboxylic acid
(TCA) cycle intermediates (Hertz 2004; Waagepetersen et al. 2007). The TCA
cycle intermediate, alpha ketoglutarate, is the immediate precursor of glutamate
via exchange reactions such as transamination (by aspartate aminotransferase) and
possibly by reductive amination (by glutamate dehydrogenase). Once synthesized
in astrocytes, some glutamate are used as a metabolic intermediate and some are
directed toward the synthesis of glutathione, a major intracellular antioxidant in
the brain that is present in much higher concentrations in glia than in neurons
(Janaky et al. 2007). However, most astrocytic glutamate is converted to glutamine
by the astrocyte-specific enzyme, glutamine synthase, and released for uptake into
glutamatergic neurons. These neurons then convert glutamine back to glutamate
(via phosphate-activated glutaminase) (Waagepetersen et al. 2007). In neurons,
glutamate has both metabolic and neurotransmitter functions. Glutamate can
reenter the TCA cycle for oxidative energy production or be used in the synthesis
of other amino acids, including GABA. Glutamate is the most abundant excitatory
neurotransmitter in the brain. For use in neurotransmission, it is first transported
into synaptic vesicles, where concentrations are about 10-fold higher than whole-
brain glutamate concentrations. Vesicular glutamate can then be exocytotically
released into the synaptic cleft during neurotransmission. The neurotransmitter
action of glutamate is quickly terminated by its rapid uptake from the synaptic zone
into astrocytes. Most of the glutamate taken up by astrocytes reenters the glutamate–
glutamine cycle to be returned to neurons and reused in neurotransmission
(Waagepetersen et al. 2007). However, some glutamate is directed toward other
metabolic fates and is lost from this cycle, necessitating the continuous de novo
synthesis of glutamate in astrocytes. Possible additional components of the cycling of
glutamate and glutamine between neurons and astrocytes are under investigation
(Maciejewski and Rothman 2008). Recent studies suggest that astrocytes also store
glutamate in vesicles for exocytotic release in the service of intercellular commu-
nication (Hertz 2006; Waagepetersen et al. 2007).

Current models of the compartmentation of brain glutamate metabolism suggest
a time-limited segregation into two cellular pools: a smaller astrocytic pool
(comprising about 20% of total glutamate), in which glutamate is rapidly con-
verted to glutamine, and a larger neuronal pool (about 80% of total glutamate),
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which has a slower turnover time (Waagepetersen et al. 2007). Glutamate is further
compartmentalized into cytosolic, mitochondrial, and vesicular subcellular com-
partments. It is important to note that only about 80% of glutamate in brain tissue
appears to be observable by 1H-MRS. It is possible that low MRS visibility of
glutamate in the vesicular compartment accounts for this finding (Kauppinen and
Williams 1991). A small amount of glutamate is present in the extracellular fluid
(ECF) of the brain. However, elevated ECF concentrations of glutamate can have
excitotoxic effects. Because of the rapid clearance of glutamate from the ECF,
primarily by astrocytes, ECF glutamate concentration in healthy brain is main-
tained three to four orders of magnitude less than whole-brain concentrations
(Waagepetersen et al. 2007). Some studies suggest that most glutamate observable
by MRS is in rapid exchange across compartments on a timescale of seconds to
minutes (Rothman et al. 2003; Hertz 2004). If this is so, then glutamate as mea-
sured over several minutes by MRS may represent a single, integrated pool of the
metabolite in ongoing exchange between neuronal and glial cytoplasm.

Glutamine’s primary role in the brain is as a non-neuroactive intermediate in
the recycling of amino acid neurotransmitters, most abundantly glutamate and
GABA. In addition, it has an important role in the regulation of brain ammonia
metabolism (Waagepetersen et al. 2007). However, the synthesis and catabolism of
brain glutamine are strictly yoked to glutamate metabolism. All brain glutamine
synthesis is via glutamate and takes place within astrocytes. Brain glutamine
participates in no metabolic pathways other than via its initial conversion back to
glutamate. Thus, the 1H-MRS measure of Glx represents a good approximation of
the total glutamate–glutamine pool available for the integrated metabolic and
neurotransmitter functions of glutamate in the brain (Rothman et al. 2003; Yuksel
and Ongur 2010).

Glutamate is one of several brain metabolites that exhibit acute changes in MRS
signal strength in response to sensory, cognitive, or pharmacological manipulations.
The general paradigm of measuring dynamic changes in brain metabolites in response
to behavioral or drug conditions is known as dynamic MRS or functional MRS.
An extensive animal literature demonstrates that changes in local cortical glutamate
and glutamine concentrations are activity dependent, meaning that they increase or
decrease according to the degree of local neural activity (Carder and Hendry 1994;
Arckens et al. 2000; Qu et al. 2003; Hertz 2004). Dynamic 1H-MRS studies in normal
human volunteers have similarly found local activity-dependent increases in cortical
glutamate. Mullins et al. (2005) observed a 9% increase in glutamate in the anterior
cingulate cortex during cold pressor pain. Gussaw et al. (2010) subsequently showed
an 18% increase in anterior insular cortex glutamate during thermal pain. Using a 7 T
system, Mangia et al. (2007) reported a small but statistically significant increase in
glutamate in the visual cortex while subjects viewed a flickering checkerboard
stimulus. Our laboratory has observed a similar significant 5% increase in visual
cortex Glx during visual stimulation (Maddock et al., unpublished data). We recently
found that vigorous aerobic exercise, which is known to cause a widespread brain
metabolic activation (Fukuyama et al. 1997; Delp et al. 2001), leads to an 18%
increase in Glx in the visual cortex (Maddock et al. 2011).
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1H-MRS measures of glutamate or Glx arise from both neuronal and glial
cells and primarily reflect cytoplasmic concentrations. Measures of glutamate
or Glx can provide information about both activity-dependent changes in the size
of the MRS-visible metabolite pool and about the enduring integrity of glutam-
inergic neurons and astrocytes that sustain this pool of glutamate and glutamine.
Brain MRS measures of glutamate, glutamine, and Glx may have particular value
in testing translational hypotheses about dysfunction of glutamatergic systems in
neuropsychiatric disorders.

2.6 GABA

Gamma aminobutyric acid (GABA) is the most abundant inhibitory neurotrans-
mitter in the brain. It is present in brain parenchyma at about 15% to 20% of
the concentration of glutamate (Govindaraju et al. 2000). GABA contains
three methylene groups (Fig. 2), each of which gives rise to a complex signal in
1H-MRS spectra. A GABA multiplet peak at about 3.01 ppm is normally obscured
by the creatine singlet at 3.03 ppm. A GABA triplet at about 2.28 ppm is partially
overlapped by the glutamate multiplet centered at about 2.34 ppm. A GABA
multiplet peak at 1.89 ppm is obscured by the large NAA singlet centered at
2.01 ppm. Because of their extensive overlap with larger signals from other
metabolites, none of the three GABA peaks can be reliably distinguished or
quantified with conventional brain 1H-MRS acquisitions at 1.5 or 3.0 T field
strengths. The GABA resonance at 2.28 may contribute in a small way to the total
Glx signal measured with conventional acquisitions. However, specialized pulse
sequences including J-resolved and J-difference editing sequences can render some
or all of the GABA peaks visible and isolate them from larger overlapping signals,
even when used on clinical MRI systems. Perhaps the most commonly used
sequence for measuring GABA is the MEGA-PRESS J-difference editing
sequence (Mescher et al. 1998). Figure 3 shows the broad GABA peak at about
3.01 ppm after the creatine resonance has been removed by the MEGA-PRESS
J-difference editing method.

GABA is synthesized from glutamate by the enzyme glutamic acid decarbox-
ylase (GAD), a reaction that occurs almost exclusively in GABAergic neurons.
After it is released during neurotransmission, GABA is taken up by both GAB-
Aergic neurons and by astrocytes. Current evidence suggests that neuronal reup-
take of GABA predominates and that it occurs primarily in the nerve terminal
region (Waagepetersen et al. 2007). After reuptake into neurons, GABA either
reenters synaptic vesicles for reuse in neurotransmission, or it is degraded by the
mitochondrial enzyme GABA transaminase (GABA-T) and enters the TCA cycle,
from which it can be recycled to glutamate and then GABA again. This latter cycle
is known as the GABA shunt. The fraction of GABA that is taken up by astrocytes
is also metabolized via the GABA shunt, but the resulting glutamate is converted
to glutamine and released into the ECF. The glutamine is taken up by either
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glutamatergic or GABAergic neurons, where it either enters energy metabolism or
serves as the substrate for neurotransmitter synthesis (Waagepetersen et al. 2007).
De novo synthesis of GABA depends on both the anaplerotic production of glu-
tamate by astrocytes, and the conversion of glutamate to GABA by GABAergic
neurons (Hertz 2004).

There appear to be at least two distinct pools of GABA in GABAergic neurons,
a large cytoplasmic pool and a smaller vesicular pool. Furthermore, two forms of
the GABA synthetic enzyme GAD are known, GAD67 and GAD65. GAD67 is
widely distributed throughout the cytoplasm and nerve terminals of GABAergic

Fig. 3 a shows peaks for GABA and Glx from 1H-MRS difference spectra acquired using the
MEGA-PRESS pulse sequence for GABA editing (TE = 68 ms) on a 3 Tesla system. The mean
difference spectra are shown for 13 schizophrenia patients and 13 healthy comparison subjects.
b illustrates the finding of significantly lower GABA signal in the patient group (p\.05 two-tailed),
but no group difference in the Glx signal
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neurons, and it contributes to the generation of both the cytoplasmic and the
vesicular pools of GABA. In contrast, GAD65 is localized to nerve terminals, and
it contributes only to the vesicular pool of GABA. Under basal conditions, most
GABA are synthesized by GAD67. However, the activity of GAD65 can be
upregulated on demand to increase GABA in the vesicular pool (Waagepetersen
et al. 2007; Dericioglu et al. 2008).

While it appears that vesicular glutamate may not be detectable by MRS
(Kauppinen and Williams 1991), whether or to what extent the vesicular pool of
GABA can be detected by MRS is not known. Thus, the 1H-MRS GABA signal
arises either mostly or almost entirely from the large cytoplasmic GABA pool in
GABAergic neurons under basal conditions. The functional significance of the
considerable cytoplasmic store of GABA is not known. It may have metabolic
functions or it may act as a reservoir from which to replenish vesicular stores of
GABA. However, some evidence suggests that cytoplasmic GABA serves as an
important source for ‘‘extrasynaptic’’ GABA release via the neuronal GABA
transporter (GAT) from cell membrane regions not associated with synaptic
structures or vesicles (Wu et al. 2007; Dericioglu et al. 2008). Extrasynaptic
GABA mediates a tonic inhibitory process and plays a key role in regulating
both tonic and phasic excitability in GABAergic circuits (Farrant and Nusser 2005;
Wu et al. 2007).

Neurophysiological, behavioral, and pharmacological studies indicate that
cortical GABA content as measured in human volunteers by 1H-MRS is predictive
of the functional status of GABA-mediated processes. It is generally agreed that
oscillations in the EEG gamma band (30–90 Hz) depend on the rhythmic activity
of local networks of GABAergic interneurons via their synchronizing effects on
the output of glutamatergic excitatory neurons (Mann and Mody 2010). Three
recent human studies of visual and motor cortices have reported a significant
positive correlation between GABA content as measured by 1H-MRS using a
MEGA-PRESS sequence and the frequency of evoked activity in the EEG gamma
band (Edden et al. 2009; Muthukumaraswamy et al. 2009; Gaetz et al. 2011). Two
psychophysical studies have shown that performance on visual tasks mediated by
the activity of GABAergic interneurons is significantly correlated with GABA
content in the primary visual cortex as measured by 1H-MRS using a MEGA-
PRESS sequence (Edden et al. 2009; Yoon et al. 2010a). In addition, several
studies have shown that anticonvulsant medications that appear to increase
GABAergic tone cause an increase in brain GABA as measured with 1H-MRS
(Weber et al. 1999; Petroff et al. 2001). It is worth noting that several studies have
found evidence that the 1H-MRS GABA signal varies over the course of the
menstrual cycle in women, with GABA signal reduced during the luteal phase
(Epperson et al. 2002; Harada et al. 2010). Overall, it appears that 1H-MRS
measures of GABA acquired with specialized pulse sequences can provide
information about a pool of cortical GABA with a predictive relationship to
GABA-mediated responses. It also appears that such measures reflect the func-
tional integrity and capacity of the underlying GABAergic neurons.
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2.7 Lactate

Lactate is a three-carbon product of the glycolytic metabolism of glucose
(Fig. 2). Its methyl hydrogens give rise to a doublet signal at about 1.32 ppm
(Fig. 1b, c). A smaller complex peak from its methine hydrogen arises at about
4.10 ppm but cannot be detected in brain with conventional 1H-MRS methods.
Lactate detected at 1.32 ppm in a clinical 1H-MRS acquisition is widely
assumed to indicate brain pathology. Indeed, the concentration of lactate in
normal brain is rarely greater than 1 mM. The appearance of an obvious lactate
signal when no special attempt has been made to optimize its detection strongly
suggests that ischemia, tumor, trauma, infection, mitochondrial disease, or other
pathological process is present.

Although a high concentration of lactate is a sign of pathology, lactate is a
normal and essential component of brain energy metabolism. When measures of
brain lactate are of interest in studies of neuropsychiatric disorders, slight
modifications to conventional procedures are recommended for its detection with
clinical MRI systems. The lactate peak at 1.32 ppm overlaps and is often
obscured by the methylene resonances of lipids centered at about 1.30 ppm.
Several adjustments to conventional procedures can reduce or eliminate this
potentially obscuring lipid signal. Since the relaxation time for the lipid meth-
ylene protons is much shorter than for the methyl protons of lactate, much of the
lactate signal will be retained while most of the lipid signal will be lost by using
a long TE acquisition (such as 144 or 288 ms). Although the inversion of the
lactate doublet (due to J-coupling, see Supplement Sect. 4.2.2) at TE = 144 ms
can be an aid to the visual identification of the lactate signal, elimination of lipid
is more complete and lactate quantification appears to be more reliable when spectra
are acquired with TE = 288 ms (Fig. 1b, c) (Roelants-Van Rijn et al. 2001;
Maddock and Buonocore 2008). Tissues of the scalp and skull contain high con-
centrations of lipid. Lipid signal from these and other tissues outside of the voxel of
interest can contaminate 1H-MRS data. Use of specialized lipid suppression pulses
and attention to optimizing the gradient order can minimize lipid signal originating
from outside of the prescribed voxel (Maddock et al. 2006). Because the concen-
tration of lactate in the brain is normally near the low end of the sensitivity range of
clinical MRI systems, increasing the signal-to-noise ratio will improve detection of
the lactate signal. Thus, 1H-MRS studies of brain lactate often use large voxel sizes
and long acquisition times. The use of surface or phased array coils can also improve
signal-to-noise ratio from voxels close to the coil (Maddock and Buonocore 2008).
Specialized pulse sequences, such as the J-difference editing approach described in
Supplement Sect. 4.5.1, can provide even more sensitive and specific measures of
brain lactate (Star-Lack et al. 1998).

Although once considered a ‘‘dead end’’ metabolite produced only under
anaerobic conditions (e.g. hypoxia), lactate is now recognized as being an essential
intermediate in the energy metabolism of organs with high-energy requirements,
including muscle, heart, and brain (Brooks 2002; Gladden 2004). In all brain cells,
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the first sequence of steps in the generation of ATP from glucose occurs in
cytoplasm and proceeds without a requirement for oxygen (glycolysis). The end
products of glycolysis are lactate and pyruvate, which are in equilibrium with
respect to the reaction catalyzed by lactate dehydrogenase. This equilibrium
strongly favors the production of lactate under basal conditions. However,
pyruvate is the primary substrate for the oxidative generation of ATP in mito-
chondria via the TCA cycle and oxidative phosphorylation. The aerobic
consumption of pyruvate as part of the mitochondrial TCA cycle promotes the
conversion of lactate to pyruvate.

One of the most energy-intensive components of neurotransmission is the
clearance of glutamate from the synaptic cleft by astrocytes and the subsequent
conversion of glutamate to glutamine for release back into the ECF. This process
occurs, in part, in the thread-like filopodia of astrocytes that surround synapses.
The filopodia of astrocytes are too narrow to accommodate mitochondria, but
they are highly enriched in glycogen granules (a storage form of glucose). Thus,
a significant fraction of the ATP required for the astrocytic recycling of gluta-
mate during neural activation is derived from the glycolytic conversion of glu-
cose (and glycogen during strong activation) to lactate (Brown 2004; Pellerin
et al. 2007). During neural activation, lactate levels increase and lactate is
released into the ECF for uptake into intracellular compartments containing
mitochondria, where it can be converted to pyruvate for subsequent metabolism
and ATP generation (Hu and Wilson 1997). Although specific details regarding
the production and consumption of lactate during neural activity remain to be
clarified, it is clear that lactate levels increase during and after neural activation,
and that lactate constitutes an important energy source for neuronal oxidative
metabolism. It is also clear that astrocytes are the major cell type in the brain for
storage of carbohydrate energy as glycogen and that the abundance of lactate
transporters in astrocytic and neuronal cell membranes makes lactate a likely
vehicle by which carbohydrate energy can be shuttled from cell to cell during
times of high-energy demand. 1H-MRS studies in humans using appropriate
methods have consistently observed increases in cortical lactate during neural
activation (e.g. visual stimulation by a pattern reversal checkerboard) (Prichard
et al. 1991; Sappey-Marinier et al. 1992; Maddock et al. 2006; Maddock and
Buonocore 2008).

A 1H-MRS finding of substantially elevated brain lactate in the absence of an
activation condition is most likely a sign of major pathology. However, small
increases in basal lactate may reflect subclinical inflammation, impairment of
oxidative metabolism, or increased neural activity. Converging evidence suggests
that brain lactate levels increase acutely (over a period of several minutes) in
proportion to the degree of glutamatergic activity (Hu and Wilson 1997; Pellerin
et al. 2007). Thus, dynamic 1H-MRS studies of the brain lactate response to an
experimental activation paradigm can provide insight into the functional state of
basic neural and metabolic processes.
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2.8 31Phosphorous-MRS

With suitable equipment, clinical scanners can be modified to collect brain MRS data
from metabolites containing the 31Phosphorous nucleus (31P-MRS) including
phosphocreatine, ATP, phosphomonoesters (mainly phosphorylethanolamine and
phosphorylcholine) that are precursors for membrane phospholipid synthesis,
phosphodiesters that are breakdown products of membrane phospholipids, and
inorganic phosphate. When available, these measurements can provide insight into
the status of high-energy phosphates and membrane turnover. The resonance fre-
quency of inorganic phosphate is sensitive to the pH of its microenvironment. Thus,
accurate measures of the resonance frequency of inorganic phosphate can be used to
estimate the pH of the intracellular compartment in brain tissue (Petroff et al. 1985).

3 MRS Findings in Major Psychiatric Disorders

Since the early 1990s, the non-invasive measurement of brain metabolite con-
centrations with MRS has provided a unique avenue for extending our under-
standing of the pathogenesis of neuropsychiatric disorders. There is now a large
literature describing the findings of brain MRS studies in the major psychiatric
disorders. In this section, we provide an overview of this literature and summarize
the most consistent findings in patients with schizophrenia, bipolar disorder, major
depression, and anxiety disorders, with an emphasis on findings with potential
translational significance.

3.1 Schizophrenia

Schizophrenia is a mental disorder characterized by disordered thinking, percep-
tual disturbances, and impairment of affect, cognition, and cognitive control. The
disorder typically begins in late adolescence or early adulthood and is most often
chronic. Of all psychiatric disorders, schizophrenia has been the most extensively
studied with MRS methods. Anatomical brain imaging studies and postmortem
neuropathological studies of brain tissue provide clear evidence for structural and
neuropathological abnormalities in patients with schizophrenia. Recent progress in
identifying the neuropathological abnormalities associated with schizophrenia
suggests that brain MRS may be a particularly valuable tool for in vivo studies of
pathophysiology and treatment effects in this disorder.

The most consistent findings from structural brain imaging studies in schizo-
phrenia include an overall reduction in brain volume, enlarged cerebral ventricles,
and regional gray and white matter volume reductions, primarily in medial temporal
structures, but also in the lateral temporal lobes, thalamus, and parts of the frontal
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lobes (Wright et al. 2000; Ellison-Wright et al. 2008; Jaaro-Peled et al. 2010).
Reliable evidence also shows that the reduction in hippocampal volume occurs early
in the illness and is also observed in the relatives of patients with schizophrenia,
implicating a genetic vulnerability to this phenotypic feature (Jaaro-Peled
et al. 2010; Meyer-Lindenberg 2010). Although statistically significant in large
samples of patients, these volume reductions are small, and there is extensive
overlap between patient and control groups. Several consistent neuropathological
findings may account for some of these macroscopic structural observations in
schizophrenia. The pyramidal neurons of the frontal cortex, which are the main
source of excitatory neurotransmission between cortical regions, are reduced in size
and packed more densely without any change in the total number of such neurons
(Selemon and Goldman-Rakic 1999). There is similar evidence for reduced size of
the pyramidal neurons in the hippocampus. These findings suggest a reduction in
neuronal tissue in schizophrenic patients, which would be expected to be associated
with a reduced concentration of NAA. Consistent neuropathological abnormalities
have also been observed in the GABAergic interneurons of the cerebral cortex in
schizophrenia. These observations are discussed in Sect. 3.1.2.

3.1.1 NAA

Steen et al. (2005) conducted an extensive review and meta-analysis of published
1H-MRS data on brain NAA content that spanned over 1,250 patients with
schizophrenia and over 1,200 control subjects. They found consistent evidence that
NAA is reduced in many brain regions in schizophrenia patients compared to
control subjects. In general, the extent of reduction of NAA appeared to be similar
in gray matter and white matter. However, they found evidence that the degree of
schizophrenia-related NAA reductions varied across brain regions. Specifically,
NAA levels did not appear to be reduced in the basal ganglia, occipital cortex, or
posterior cingulate cortex. In contrast, NAA levels were consistently and sub-
stantially reduced ([5% reduction compared to control subjects) in temporal gray
and white matter, hippocampus, frontal gray and white matter, and cerebellum,
with the largest reductions ([10%) in temporal white matter and the hippocampus.
Smaller, but consistent, reductions were also seen in the anterior cingulate cortex
and thalamus. The authors reported no compelling evidence to suggest that NAA is
significantly elevated in any brain region in schizophrenia. Although most patients
in the studies they reviewed had chronic schizophrenia, over 200 of the patients
had been studied while in their first episode of the illness. There was no robust
evidence for a difference between first episode and chronic patients. However, in a
comparison of 74 first episode and 171 chronic schizophrenia patients in whom
frontal cortex NAA levels were measured, the authors noted a trend toward lower
NAA in the first-episode patients.

The 1H-MRS studies of NAA compliment the findings of structural imaging and
neuropathological studies and offer further evidence of reduced neuronal tissue in
schizophrenia, especially in the temporal lobes, frontal lobes, hippocampus, and
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cerebellum. The reduction in NAA is present from the onset of clinically overt illness
and there is little evidence to suggest that it is attributable to treatment with anti-
psychotic medications (Steen et al. 2005).

MRS studies showing that reductions in NAA levels are reversible in some
disorders (Sect. 2.1) and neuropathological findings of reduced size but not
number of pyramidal neurons in schizophrenia leaves open the possibility that
reduced NAA in specific brain regions in schizophrenia may represent a neuro-
trophic change rather than an irreversible loss of viable neurons. If correct, it is
conceivable that NAA levels could increase toward normal with effective treat-
ments for schizophrenia. However, longitudinal studies of treatment effects on
NAA levels in schizophrenia have yielded mixed results. A few small longitudinal
studies of treatment with antipsychotic medications have found increased NAA in
selected brain regions, but the studies with larger samples and longer treatment
intervals have generally found no effect (Bertolino et al. 2001; Pae et al. 2004;
Bustillo et al. 2008, 2010). Only a few small studies have looked at the effect of
non-pharmacological treatments on brain NAA in schizophrenia. Premkumar et al.
(2010) examined the effects of adding cognitive-behavioral therapy to ongoing
treatment with antipsychotic medication in outpatients with schizophrenia.
Following 8 months of add-on psychotherapy, they observed a decrease in positive
symptoms and an 8% increase in anterior cingulate cortex NAA (the only region
they studied). Also in a small sample, Pajonk et al. (2010) observed a 35% increase
in hippocampal NAA in schizophrenia patients following three months of aerobic
exercise training. No change was seen in a control group of patients who did not
participate in exercise training. No randomized, controlled studies have compared
the effects of different treatments on brain NAA in schizophrenia, although nat-
uralistic cross-sectional studies suggest NAA levels may be higher in patients
taking atypical compared to typical antipsychotic medications (Fannon et al. 2003;
Braus et al. 2002; Bustillo et al. 2001). Further studies will be necessary to
determine whether NAA levels can be reliably increased by treatment in schizo-
phrenia, and whether such increases are associated with clinically meaningful
improvement.

3.1.2 GABA

In a development that has stimulated much theoretical and translational work,
postmortem studies on brain tissue have consistently demonstrated a reduction
in the GABAergic potential of specific interneurons in many cortical regions,
including the frontal cortex and hippocampus in patients with schizophrenia.
In particular, the concentration of cortical GABA and the activity of the 67 kDa
form of glutamic acid decarboxylase (GAD67, the enzyme responsible for most
GABA synthesis in the brain) are reduced in postmortem cortical tissue from
patients with schizophrenia (Lisman et al. 2008). Low GABA activity is most
consistently observed in the fast-spiking, parvalbumin-positive interneurons.
These interneurons are functionally coupled to excitatory pyramidal neurons and
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regulate their activity (Lisman et al. 2008). The coordinated activity of these two
types of neurons gives rise to EEG activity in the gamma band (30–80 Hz), which
appears to be essential for communication and processing of information across
cortical regions. Thus, gamma band activity is critically dependent on GABAergic
inhibition mediated by the fast-spiking interneurons that are deficient in schizo-
phrenia. Accordingly, gamma band activity is consistently found to be abnormal in
patients with schizophrenia (Uhlhaas and Singer 2010).

Several 1H-MRS studies have examined the relationship between cortical
GABA and measures of brain function believed to depend on the fast-spiking
GABAergic interneurons that are deficient in schizophrenic patients. Muthukum-
araswamy et al. (2009) used the MEGA-PRESS method to measure GABA con-
centration in the visual cortex in normal subjects. They demonstrated a significant
positive correlation between resting GABA concentration and the frequency of
stimulus-induced visual gamma band EEG oscillations. A second study used the
same 1H-MRS method to measure GABA concentration in the visual cortex in
normal volunteers who also underwent psychophysical testing on a visual orien-
tation discrimination task. GABAergic inhibition appears to play a key role in
visual orientation discrimination. The investigators reported significant positive
correlations between oblique orientation discrimination and both visual cortex
GABA and the frequency of visual stimulus-induced gamma oscillations in the
visual cortex. GABA concentration was also correlated with gamma frequency
(Edden et al. 2009). In a psychophysical study of patients with schizophrenia,
Yoon et al. (2009) demonstrated a deficiency in visual orientation processing using
an orientation-specific surround suppression task. In a subsequent study, Yoon
et al. (2010a) measured visual cortex GABA with 1H-MRS using the MEGA-
PRESS method and demonstrated significantly lower GABA levels in the
schizophrenic patients compared to healthy comparison subjects (Fig. 3). They
also found a significant positive correlation between orientation-specific surround
suppression and visual cortex GABA levels. These studies suggest that 1H-MRS
can be used to measure a pool of cortical GABA that has a direct, functional
relationship with GABA-mediated behavioral and physiological responses, at least
in the visual cortex, and that these measurements can be used in patient popula-
tions to test translational models of schizophrenia. It must be noted that other
recent 1H-MRS studies have not observed significantly reduced cortical GABA
levels in patients with schizophrenia (Goto et al. 2009; Ongur et al. 2010; Tayoshi
et al. 2011). A variety of different MRS acquisition and post-processing proce-
dures were used in these studies, which may account for the differing results.
However, only the Yoon et al. study measured GABA in the primary visual cortex
and included a parallel behavioral measure to validate the GABA measurements
(Yoon et al. 2010a). Although 1H-MRS measures of cortical GABA in schizo-
phrenia appear to have great potential, it is clear that further work is needed to
provide more definitive answers to critical translational research questions, such as
(1) Does 1H-MRS reliably demonstrate a cortical GABA deficiency in patients
with schizophrenia in vivo as has been observed in postmortem brain tissue? (2) If
so, do in vivo cortical GABA deficits vary by brain region? (3) Do cortical GABA
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deficits predict clinical symptoms or information processing deficits? (4) Do
treatment-related changes in cortical GABA predict treatment response in
schizophrenia? (5) Can 1H-MRS measures of cortical GABA be used to test
GABA-related predictions of the NMDA hypofunction model of schizophrenia?
Future studies will clarify the value of 1H-MRS measures of brain GABA in
translational studies of schizophrenia.

3.1.3 Glutamate and Glutamine

1H-MRS studies have reported decreased, increased, or no difference in observable
brain glutamate or Glx levels in schizophrenia patients compared to healthy
comparison subjects (Abbott and Bustillo 2006; Stone 2009; Yoon et al. 2010a).
At present, there is no consistent 1H-MRS evidence implicating a specific pattern of
abnormal brain glutamate or Glx in schizophrenia. However, models of the neuro-
pathology of schizophrenia suggest that an underlying disturbance of glutamatergic
function may be present. Basic studies in animals and 1H-MRS studies in normal
volunteers have demonstrated activity-dependent increases in MRS-visible cortical
glutamate (Carder and Hendry 1994; Arckens et al. 2000; Qu et al. 2003; Hertz 2004;
Mullins et al. 2005; Mangia et al. 2007; Gussew et al. 2010). That is, regional cortical
glutamate (or Glx) is observed to increase during neuronal activation. In the NMDA
receptor hypofunction model of schizophrenia, NMDA receptor hypofunction leads
to both a reduced output from GABAergic interneurons and a downstream hyperg-
lutamatergic state (Lisman et al. 2008). The associated increase in flux through the
glutamate/glutamine cycle might be expected to lead to a measurable increase in the
levels of these amino acids in the brain. On the other hand, glutamate levels, like
NAA levels, may vary with the functional integrity of neurons, most of which are
glutamatergic. Neuronal integrity appears to be compromised in many cortical
regions in schizophrenia. Impaired functional integrity of glutamatergic neurons
could reduce Glx levels in schizophrenia patients. Thus, a combination offactors may
predispose to both increased and decreased brain Glx levels in schizophrenia
patients. Such counterbalancing effects would make it difficult to detect Glx
abnormalities with conventional 1H-MRS approaches.

Glutamate release during neurotransmission leads to astrocytic uptake and
conversion of glutamate to glutamine by the enzyme glutamine synthase. NMDA
receptor hypofunction appears to increase the activity of glutamine synthase, and
thus to increase glutamine levels (Rodrigo and Felipo 2007). Pharmacological
blockade of NMDA receptors in animals leads to an increase in cortical glutamine
(Kosenko et al. 2003; Rodrigo and Felipo 2007) and in the glutamine/glutamate
ratio (Brenner et al. 2005; Iltis et al. 2009). High-field 1H-MRS studies suggest
that NMDA receptor blockade has similar effects in the anterior cingulate cortex
of human volunteers (Rowland et al. 2005). There have been mixed results from
1H-MRS studies of glutamine measured in patients with schizophrenia. The
1H-MRS signals from glutamate and glutamine partially overlap, and it is difficult
to reliably quantify brain glutamine as distinct from glutamate. However, it may be
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achievable with higher field scanners, short echo times, and long acquisition times.
In this regard, one study using a high-field scanner observed elevated glutamine in
the anterior cingulate cortex in treatment naïve patients with schizophrenia
(Theberge et al. 2002). However, a second study by the same group found lower
glutamine levels in the anterior cingulate cortex in chronic schizophrenia patients
(Theberge et al. 2003). Two recent studies (Bustillo et al. 2010; Shirayama et al.
2010) specifically measured the glutamine/glutamate ratio with high-field scanners
and both found an elevated glutamine/glutamate ratio in the medial prefrontal
cortex or anterior cingulate cortex of the patients with schizophrenia. Both studies
also reported a significantly reduced NAA/Cr ratio. In addition, a study of CSF in
first episode, drug-naïve patients with schizophrenia also found an increase in the
glutamine/glutamate ratio in CSF in the patient group (Hashimoto et al. 2005). The
glutamine/glutamate ratio may provide a more useful reflection of the functional
status of the glutamine/glutamate cycle in astrocytes and neurons in the context of
compromised neuronal integrity in patients with schizophrenia. Similarly, repeated
measures, dynamic 1H-MRS studies of activity-dependent increases in glutamate
or Glx during an activation paradigm may also offer a useful means of testing
hypotheses about NMDA receptor hypofunction and hyperglutamatergic states in
the context of compromised neural integrity in patients with schizophrenia.

3.1.4 Other Metabolites

Early 31P-MRS studies suggested that phosphomonoesters were low and phos-
phodiesters were high in the frontal lobes of patients with schizophrenia, a pattern
consistent with increased membrane breakdown in this brain region (Fukuzako
2001). However, more recent studies have not found this to be a consistent finding
(Yacubian et al. 2002; Jensen et al. 2006; Smesny et al. 2007). No consistent
patterns of abnormalities in brain creatine, choline, or myo-inositol have been
observed in schizophrenia (Deicken et al. 2000; Kim et al. 2005; Steen et al. 2005).

3.2 Bipolar Disorder

Bipolar disorder is characterized by episodes of manic and depressed moods inter-
spersed with periods of relatively normal mood. There is strong evidence for a
genetic vulnerability to this disorder, which typically follows a relapsing and
remitting course in the absence of treatment with lithium or other mood stabilizing
medication. High-resolution brain imaging studies demonstrate both global
and regional structural abnormalities in bipolar disorder. A recent meta-analysis
found evidence for a small but reliable reduction in whole-brain volume (effect
size = -0.15) and in volume of the frontal cortex (effect size = -0.42) in bipolar
patients (Arnone et al. 2009). The patient group also showed an increase in the size of
the lateral ventricles (effect size = +0.27), although lateral ventricle size was
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significantly smaller than in patients with schizophrenia across studies directly
comparing the two diagnostic groups (Arnone et al. 2009). The bilateral volume of
the globus pallidus was found to be significantly larger in bipolar patients across 5
studies, and this effect was associated with the use of mood stabilizer medications
(Arnone et al. 2009). A meta-analysis of voxel-based morphometry studies of gray
matter observed reduced volume of anterior cingulate and fronto-insular cortex in
bipolar disorder (Bora et al. 2010), along with increased basal ganglia volume
associated with duration of illness. Mood stabilizers in general, and lithium in par-
ticular, have been shown to have neurotrophic effects and to promote neuroplasticity
(Manji et al. 2000; Quiroz et al. 2010). The use of lithium by bipolar patients has
consistently been associated with increased volume of the anterior cingulate cortex
and the hippocampus (Emsell and McDonald 2009). These brain morphometry
differences and the neurotrophic effects of mood stabilizing medications should be
kept in mind when interpreting the 1H-MRS findings in bipolar disorder.

3.2.1 NAA

There have been many 1H-MRS studies of bipolar patients and, in general, this
literature supports the conclusion that NAA levels are reduced in some brain
regions. However, variations in MRS acquisition methods, brain regions investi-
gated, metabolite quantification and normalization strategies, sample characteris-
tics, and medication status make it difficult to interpret conflicting findings.
Medication status is a particularly important source of variance in studies of NAA,
since considerable evidence suggests that lithium and other mood stabilizers may
increase brain levels of NAA. We found five published 1H-MRS studies reporting
on NAA levels in adult bipolar patients free of recent medication use and matched
control subjects. Four of the five studies demonstrated significantly reduced NAA
levels in their patient groups. These studies included a total of 53 patients and 65
healthy comparison subjects and observed reduced NAA levels in regions
including the hippocampus (2 studies), the dorsolateral prefrontal cortex, and the
occipital cortex (Winsberg et al. 2000; Bertolino et al. 2003; Atmaca et al. 2007;
Bhagwagar et al. 2007). One study, including 29 patients and 26 healthy com-
parison subjects, observed no significant difference in NAA levels in composite
gray matter and white matter regions obtained from an axial 1H-MRSI slab
acquired at the level of the corpus callosum (Dager et al. 2004). Many studies of
bipolar patients taking mood stabilizers also show a decrement in NAA levels in
frontal and hippocampal regions (Yildiz-Yesiloglu and Ankerst 2006a). In general,
these findings are consistent with the meta-analytic evidence for a reduction in
global brain and frontal lobe volume in this condition.

The neurotrophic effects of mood stabilizers may include increasing levels of
NAA in brain regions where NAA and gray matter volume are reduced in bipolar
disorder (Manji et al. 2000). Many cross-sectional studies comparing unmedicated
bipolar patients to patients taking lithium have found that NAA levels are higher
in the lithium-treated patients (Yildiz-Yesiloglu and Ankerst 2006a). However,
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longitudinal studies of the same individuals before and during lithium treatment
can provide a more conclusive test of the effects of lithium on regional brain NAA
content. One study of 12 adult bipolar patients and 9 healthy volunteers found that
4 weeks of treatment with lithium led to an increase in NAA levels in all regions
studied (frontal, temporal, parietal, and occipital lobes) (Moore et al. 2000).
However, this effect was not observed in studies of children or adolescents with
bipolar disorder (Patel et al. 2008; Dickstein et al. 2009) or in a group of healthy
volunteers (Brambilla et al. 2004). There is less consistent evidence for increased
NAA with other mood stabilizers (Yildiz-Yesiloglu and Ankerst 2006a).

3.2.2 Glutamate and Glutamine

Elevated gray matter Glx has been consistently observed across a range of brain
regions and clinical conditions in patients with bipolar disorder. Yuksel and Ongur
recently reviewed the published literature on Glx in bipolar adults through 2009
(Yuksel and Ongur 2010). They found nine 1H-MRS studies that measured Glx in
various brain regions, medication conditions, and mood states (depressed, manic,
and euthymic) in bipolar patients. Six of the nine studies observed significantly
elevated Glx (in cingulate, prefrontal, insular, parietal, occipital, and hippocampal
gray matter) in the bipolar patients (Michael et al. 2003b; Dager et al. 2004;
Bhagwagar et al. 2007; Frye et al. 2007; Ongur et al. 2008; Senaratne et al. 2009).
A seventh study examined Glx in the left dorsolateral PFC in both rapid cycling
and non-rapid cycling bipolar II patients. They found elevated Glx in the rapid
cycling but not in the non-rapid cycling patients. However, they did not report on
the results across all of the bipolar patients (Michael et al. 2009). An eighth study
examined only the left amygdala, and found no difference in Glx in the bipolar
patients (Michael et al. 2003a). The ninth study found reduced Glx in the right
lentiform nucleus in the bipolar patients (Port et al. 2008). Four other studies
reported results for glutamate, but not for the combined Glx signal. Two of these
reported elevated glutamate in bipolar patients (Colla et al. 2009; Lan et al. 2009).
One additional study examined Glx in older adolescents and young adults (mean
age = 22) and found elevated Glx in the bipolar patients (Cecil et al. 2002).
Considering the variation in technical and quantitative methods used, brain regions
examined, and clinical mood state of the patients, these studies provide compelling
evidence for a consistent pattern of elevated brain Glx in adult patients with
bipolar disorder. Fewer studies have examined Glx in pediatric bipolar patients,
and the results are inconsistent (Yildiz-Yesiloglu and Ankerst 2006a; Capizzano
et al. 2007). 1H-MRS studies of brain GABA in bipolar patients have produced
inconsistent results.

There have been only a few studies examining the effects of medication
treatments for bipolar disorder on 1H-MRS measures of Glx. Longitudinal studies
in bipolar patients (Friedman et al. 2004), normal volunteers (Shibuya-Tayoshi
et al. 2008), and rats (O’Donnell et al. 2003) found evidence for a reduction in
brain Glx following lithium treatment. A longitudinal study of lamotrigine
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observed no effect on Glx levels in bipolar patients (Frye et al. 2007). A cross-
sectional study found no differences in Glx levels attributable to treatment with
lithium, anticonvulsants, or benzodiazepines (Ongur et al. 2008). In six cross-
sectional 1H-MRS studies, at least 75% of the bipolar patients studied were
medication free. Three of these studies observed significantly elevated Glx levels
in the bipolar patients compared to the healthy comparison subjects (Michael et al.
2003b; Dager et al. 2004; Bhagwagar et al. 2007). It remains to be determined
whether mood stabilizers reduce brain Glx in bipolar patients. However, it appears
unlikely that the reliable elevation of brain Glx seen in bipolar disorder is an
artifact of medication treatment.

The singular importance of glutamate in neurotransmission, the evidence
that some mood stabilizers act, in part, by reducing glutamatergic activity, and
the contrasting finding that brain Glx is consistently reduced during episodes of
unipolar depression (reviewed below) all support the hypothesis that elevated
brain Glx has pathophysiological significance in bipolar disorder. Glutamate and
glutamine have important functions in both metabolism and neurotransmission.
However, some evidence suggests that 1H-MRS measures a single, integrated
pool of cytoplasmic Glx in neurons and glia participating in both metabolic and
cell-signaling processes (Hertz 2004). This consideration further supports the
possibility that elevated Glx in bipolar disorder may reflect a pathophysiologically
significant abnormality. Eastwood and Harrison recently found that bipolar
patients have elevated levels of vesicular glutamate transporter 1 (VGluT1) mRNA
in the anterior cingulate cortex compared to healthy comparison subjects and
schizophrenia patients (Eastwood and Harrison 2010). Their finding reinforces the
idea that elevated Glx in bipolar patients reflects an increase in glutamatergic
neurotransmission, at least in the anterior cingulate cortex. Assessing the utility of
1H-MRS measures of Glx or glutamate in interrogating pathophysiological models
of bipolar disorder or in aiding the diagnostic discrimination between bipolar
disorder and other mood disorders will be important objectives of future studies
(Yuksel and Ongur 2010).

3.2.3 Choline

There have been consistent demonstrations of elevated choline signal in the basal
ganglia of patients with bipolar disorder (Kato et al. 1996; Hamakawa et al. 1998;
Dager et al. 2004; Yildiz-Yesiloglu and Ankerst 2006a). Although most evidence
suggests that lithium does not change the brain 1H-MRS choline signal (Stork and
Renshaw 2005), it is possible that other medications in common use could have
such an effect. Thus, studies in unmedicated patients are of particular value. In the
only study that reported choline data from the basal ganglia in unmedicated bipolar
patients, Dager et al. (2004) found significantly increased choline in the patient
group. The 1H-MRS evidence of an increase in mobile choline-containing com-
pounds in the basal ganglia of bipolar patients is consistent with the results of the
meta-analysis by Bora et al. (2010) showing that a longer duration of illness is
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associated with a larger gray matter volume in the basal ganglia of bipolar patients.
Altered metabolism or increased cell density in this region could lead to an
increase in the choline signal. Further studies will be necessary to clarify the
significance of basal ganglia changes in bipolar disorder. In other brain regions,
there is no consistent evidence for an alteration in choline levels in bipolar disorder
(Stork and Renshaw 2005; Yildiz-Yesiloglu and Ankerst 2006a).

3.2.4 Myo-Inositol

Lithium can acutely reduce myo-inositol levels by inhibiting the enzyme inositol
monophosphatase, which regenerates myo-inositol from inositol monophosphates
as part of the phosphoinositol second messenger cycle (Hallcher and Sherman
1980). Recognition of this effect of lithium suggested two related hypotheses:
(1) that bipolar disorder may be characterized by elevated levels of myo-
inositol; and (2) that depletion of myo-inositol may be an important component
of the therapeutic effect of lithium and other mood stabilizers (Berridge 1989).
If lithium and other mood stabilizers decrease myo-inositol levels, then the
hypothesized elevation of myo-inositol levels may be obscured in studies of
medicated patients. However, 1H-MRS studies of sustained lithium administra-
tion have not found that it decreases brain myo-inositol (Brambilla et al. 2004;
Patel et al. 2006; Silverstone and McGrath 2009) and myo-inositol levels are not
consistently lower in untreated than treated bipolar patients (Yildiz-Yesiloglu and
Ankerst 2006a; Silverstone and McGrath 2009). This suggests that sustained
treatment may not be a significant confound in studies of myo-inositol levels.
Generally, neither unmedicated nor medicated bipolar patients show consistent
abnormalities of brain myo-inositol levels (Yildiz-Yesiloglu and Ankerst 2006a;
Silverstone and McGrath 2009).

3.2.5 Other Metabolites

Two publications have systematically reviewed brain 31P-MRS studies in bipolar
patients. From these meta-analyses, the most consistent finding is a decrease in
phosphomonoesters (PMEs) in euthymic bipolar patients, which has been observed
in four of six studies of the frontal lobe and in one temporal lobe study (Yildiz
et al. 2001; Stork and Renshaw 2005). This effect appears to be mood state
specific, as frontal lobe PMEs are frequently observed to be higher in currently
depressed or manic patients than in currently euthymic bipolar patients. The
apparent, state-specific alterations of brain PMEs may reflect an underlying
abnormality affecting membrane metabolism in bipolar disorder. 31P-MRS can
also be used to measure intracellular pH in the brain. This derives from the effect
of pH on the chemical shift of inorganic phosphate, which has a primarily intra-
cellular localization. Five out of five studies (albeit from the same group) have
observed lower intracellular pH in euthymic bipolar patients. Most of these studies
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examined whole-brain pH, but one study also found lower pH in the basal ganglia
region (Stork and Renshaw 2005). There is preliminary evidence that low intra-
cellular pH may be specific to the euthymic state, as pH has been observed to be
higher in currently depressed or manic patients than in currently euthymic patients.
Both the PME and pH abnormalities may be evidence of mitochondrial
dysfunction in bipolar disorder (Stork and Renshaw 2005). The relative normali-
zation of PMEs and pH during periods of active mood disturbance could reflect
dysregulatory processes triggered by homeostatic mechanisms attempting to
compensate for the mitochondrial deficiency. The 1H-MRS finding that brain
lactate is elevated in bipolar patients is also consistent with a mitochondrial
deficiency and compensation model (Dager et al. 2004).

3.3 Unipolar Major Depression

Unipolar major depressive disorder is characterized by episodes of sustained
depressed mood, loss of motivation, and the associated somatic, emotional, and
cognitive symptoms of depression. There is clear evidence for a genetic vul-
nerability to this condition, and most patients have recurrent episodes of illness.
Brain morphometric studies have found no reliable evidence for a global
reduction in brain volume in major depression (Konarski et al. 2008). However,
there is consistent evidence for a volume reduction in prefrontal regions,
especially the orbital frontal cortex, the anterior cingulate cortex, and its
rostroventral terminus, the subgenual cingulate cortex, in patients with major
depression (Hajek et al. 2008; Konarski et al. 2008; Savitz and Drevets 2009).
Volume reduction in the hippocampus also appears to be a consistent pattern in
major depression, although this finding may be most marked in older or
chronically depressed patients (Konarski et al. 2008; Savitz and Drevets 2009).
There is some evidence for volume loss as well as consistently reduced met-
abolic activity in the dorsolateral prefrontal cortex and for volume loss in the
basal ganglia in major depression (Konarski et al. 2008; Savitz and Drevets
2009). Neuropathological studies in postmortem brain tissue from patients with
major depression report generally consistent evidence for reduced glial cell
number and/or density in frontal and limbic regions, including orbital, anterior
cingulate, subgenual and dorsolateral prefrontal cortices, and the amygdala
(Hercher et al. 2009; Yuksel and Ongur 2010). Molecular neurobiology studies
have found evidence consistent with reduced neuroplasticity in frontal and
limbic regions in major depression (Krishnan and Nestler 2008). Together, the
findings from structural neuroimaging, neuropathological, and molecular studies
suggest that frontal and limbic regions, including the hippocampus and basal
ganglia, may be specifically implicated in the pathophysiology of major
depression and that impairments in glial functions and neuroplasticity may be
involved.
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3.3.1 NAA

Reviews and meta-analyses of the 1H-MRS literature on major depression
through 2006 found no consistent evidence that NAA was either increased or
decreased in adult or pediatric patients with major depression (Yildiz-Yesiloglu
and Ankerst 2006b; Capizzano et al. 2007; Kondo et al. 2011). Most of the
studies reviewed examined the frontal lobes and most included only medication-
free patients. Few studies have examined the medial temporal region, but pre-
liminary evidence suggests it may be characterized by reduced NAA levels in
major depression (MacMaster et al. 2008; Reynolds and Reynolds 2011). There
is little evidence that antidepressant medications alter NAA in frontal regions
(Capizzano et al. 2007). The observations of volume loss in prefrontal regions
without a corresponding loss of NAA signal are consistent with the hypothesis
that the pathophysiology of major depression involves an impairment of pre-
frontal glial integrity.

3.3.2 Glutamate and Glutamine

The most frequently replicated brain 1H-MRS finding in major depression is
reduced glutamate and Glx in prefrontal and limbic regions when patients are
currently in a depressive episode. In their 2010 comprehensive review, Yuksel and
Ongur (2010) identified 9 studies that measured Glx levels in prefrontal or limbic
regions in currently depressed adult patients with major depression. Although there
was substantial variation in the 1H-MRS methods used and the specific brain
regions examined, 6 of the 9 studies reported significantly reduced Glx in pre-
frontal regions, the hippocampus and the amygdala. A similar consistent reduction
in prefrontal Glx was recently described by Kondo and colleagues in their review
of 1H-MRS studies of major depression in children and adolescents (Kondo et al.
2011). A recent study found that diabetic patients with major depression also
showed a significant reduction in basal ganglia Glx compared to non-depressed
diabetic control patients and compared to healthy volunteers (Ajilore et al. 2007).
Another recent study reported a specific decrease in glutamine in the anterior
cingulate cortex of highly anhedonic patients with major depression, but this
finding was based on only five patients (Walter et al. 2009).

The reduction in Glx in prefrontal and limbic regions appears to be a state-
specific characteristic of major depression. Two studies reviewed by Yuksel and
Ongur and an additional more recent study scanned euthymic patients subsequent
to the remission of their major depressive episode. Two reported normal Glx levels
in prefrontal regions, while one observed elevated Glx in the occipital cortex
(Taylor et al. 2009; Yuksel and Ongur 2010). Two additional studies showed a
normalization of prefrontal Glx levels following successful treatment with elec-
troconvulsive therapy (Yuksel and Ongur 2010). A more recent study examined 22
depressed patients with varying degrees of response to antidepressant medication
and found that Glx levels in the pregenual cingulate cortex, but not in the anterior
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insula, demonstrated a significant negative correlation with Hamilton depression
rating scores (Horn et al. 2010).

Converging observations support the hypothesis that reduced prefrontal and
limbic Glx has pathophysiological importance during active episodes of major
depression. Glx levels appear to normalize during clinical remission, and the
apparently state-dependent reduction of prefrontal and limbic Glx in unipolar
depression contrasts sharply with the state-independent elevation of Glx seen in
bipolar disorder. Furthermore, blockade of the NMDA receptor by ketamine leads
to a hyperglutamatergic state, and also leads to rapid improvement of symptoms in
patients with major depression (Zarate et al. 2006). The apparent anatomical
specificity of reduced Glx for frontal and limbic regions in major depression is
concordant with the selective volume loss seen in these brain regions with
structural MRI studies (Hajek et al. 2008; Konarski et al. 2008; Savitz and Drevets
2009). MRS-visible Glx largely reflects the sum of glutamate and glutamine in
neuronal and astrocytic cytoplasm. Brain glutamine participates in no metabolic
reactions other than those involving its initial conversion to glutamate, primarily
within glutamatergic neurons (Albrecht et al. 2007). Thus, the reduced prefrontal
and limbic Glx seen during major depressive episodes suggest a pathological
process occurring within glutamatergic neurons or their associated glia. Normal
levels of prefrontal NAA combined with MRI evidence for prefrontal volume loss
suggest an impairment of glial integrity in major depression. Postmortem studies
of brain tissue from patients who suffered from major depression have found
consistent evidence for reduced number and/or density of glia in prefrontal and
limbic regions. Two of the major functions of astrocytes are the de novo synthesis
of glutamate from glucose (via the anaplerotic reaction catalyzed by pyruvate
carboxylase) to replenish the glutamate–glutamine pool and the uptake and con-
version of neurotransmitter glutamate to glutamine (via glutamine synthase) for
recycling glutamate back to neurons (Hertz 2004). A deficit in these astrocyte-
specific processes would be expected to compromise glutamatergic activity and
lead to a reduction in the pool of glutamate and glutamine. Recent gene expression
studies in postmortem brain tissue have found consistent evidence for a decrease in
the expression of the astrocyte-specific enzyme glutamine synthase in patients with
major depression (Choudary et al. 2005; Klempan et al. 2009; Sequeira et al.
2009). Similarly, expression of the glial excitatory amino acid transporters,
EAAT1 and EAAT2, which are responsible for most glial glutamate uptake, has
been found to be reduced in patients with major depression (Choudary et al. 2005;
Miguel-Hidalgo et al. 2010) and in an animal model of depression (Zink et al.
2010). A reduced capacity of the astrocytic components of the glutamate–glutamine
cycle could either cause, or be a trophic consequence of, reduced glutamatergic
activity. In either case, the consistent 1H-MRS finding of low prefrontal and limbic
Glx along with postmortem evidence for a loss of prefrontal glial integrity and
deficits in the molecular mechanisms required for glutamate recycling support the
hypothesis that glial dysfunction and dysregulation of glutamatergic function are
important factors in the pathophysiology of major depression (Hercher et al. 2009;
Valentine and Sanacora 2009; Yuksel and Ongur 2010). Continued MRS studies
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of prefrontal and limbic glutamatergic function are likely to further advance
understanding of the role of this system in the mechanisms of pathogenesis and
treatment response in major depression.

3.3.3 GABA

Although the published 1H-MRS literature on GABA in major depression is not
extensive, it suggests that cortical GABA is reduced during episodes of depression
and normalized following successful somatic treatment. Two studies have exam-
ined occipital cortex GABA levels in drug-free depressed patients, and both
observed decreased GABA levels (Sanacora et al. 1999; Sanacora et al. 2004).
A subsequent study examined dorsal and ventral regions of the prefrontal cortex in
drug-free depressed patients, and found decreased GABA only in the dorsal pre-
frontal voxel (Hasler et al. 2007). A recent study of occipital and anterior cingulate
cortical GABA in treatment-resistant MDD, non-treatment resistant MDD, and
control subjects found reduced GABA only in the treatment-resistant patients
(Price et al. 2009). One study examined GABA levels only in frontal white matter
in drug-free elderly depressed patients (ages 61–91), but found no difference
between the patient and control groups (Binesh et al. 2004). Four studies have
examined the effect of treatment on cortical GABA in patients with major
depression. Two studies found that SSRI’s increased occipital GABA (Sanacora
et al. 2002; Bhagwagar et al. 2004) and one found that electroconvulsive therapy
increased occipital GABA (Sanacora et al. 2003). In contrast, depressed patients
showed a trend toward decreased occipital GABA following effective treatment
with cognitive-behavioral therapy (Sanacora et al. 2006). In unmedicated, remitted
patients, one study noted a normal level of GABA in the prefrontal cortex (Hasler
et al. 2005) and one study found significantly reduced GABA in the occipital
cortex (Bhagwagar et al. 2007) compared to healthy controls. In general, the
evidence suggests that cortical GABA is reduced during episodes of major
depression and that effective somatic treatment of depression is associated with a
normalization of cortical GABA. This pattern of 1H-MRS findings is congruent
with evidence from postmortem studies showing reduced size and density of
calbindin-positive, GABAergic interneurons (Rajkowska et al. 2007) and reduced
levels of GAD67 (Karolewicz et al. 2010) in prefrontal cortex, as well as
reduced density of calbindin-positive, GABAergic interneurons in occipital cortex
(Maciag et al. 2010) from patients with major depression. Given the evidence for
glial dysfunction in major depression, it is important to note that GABA recycling
and metabolism rely on the functional integrity of astrocytes, although to a lesser
extent than glutamate recycling, This promising literature suggests that dysfunc-
tion of GABAergic systems may have an important role in the pathophysiology of
major depression. If this work is substantiated and extended by further research,
it may provide a translational rationale for studies of treatments targeting
GABAergic systems.
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3.3.4 Other Metabolites

Although not quite as consistent a finding as in bipolar disorder, a number of
studies have observed elevated choline-containing compounds in the basal ganglia
of patients with major depression (Yildiz-Yesiloglu and Ankerst 2006b). In light of
the basal ganglia volume loss observed in major depression, choline elevation
suggests increased membrane metabolism is occurring in this region. It is unclear
to what extent this effect is influenced by medication use. Of three 31P-MRS
studies of patients with major depression, two have found evidence for reduced
ATP levels in the basal ganglia of unmedicated patients (Moore et al. 1997) and in
the frontal lobes of medicated patients (Volz et al. 1998). A third study found no
evidence for a group difference in ATP levels in medicated depressed patients and
control subjects (Iosifescu et al. 2008). If consistent, low ATP levels would sug-
gest a brain bioenergetic deficit is present in untreated major depression. There is
no consistent evidence for alterations in brain creatine or myo-inositol in major
depression (Yildiz-Yesiloglu and Ankerst 2006b).

3.4 Anxiety Disorders

The anxiety disorders that have been investigated by MRS experiments include
panic disorder, posttraumatic stress disorder (PTSD), obsessive–compulsive dis-
order (OCD), social phobia, and generalized anxiety disorder. Of these, OCD,
PTSD, and panic disorder have been the most extensively studied, and some
consistent findings with translational implications have emerged from MRS
studies of these disorders. However, none of the anxiety disorders have been
studied as extensively with MRS as schizophrenia, bipolar disorder, or major
depression. Brain MRI morphometry studies of patients with anxiety disorders
have often grouped together patients with different anxiety disorders. Across
anxiety disorders, the most consistent morphometric finding has been reduced gray
matter volume in the anterior cingulate cortex and dorsomedial prefrontal cortex
(Radua et al. 2010; van Tol et al. 2010).

3.4.1 Panic Disorder

Panic disorder is a condition characterized by the repeated occurrence of panic
attacks, at least some of which are spontaneous (unprovoked). Panic disorder is
often accompanied by agoraphobia—the fear and avoidance of situations that
would be difficult to escape from or in which it would be difficult to get help in
case of sudden incapacitation. There is strong evidence that the vulnerability to
panic disorder is partly genetic, with heritability estimated to be about 48%
(Hettema et al. 2001). In addition to the gray matter reduction in medial prefrontal
regions seen across anxiety disorders, replicated brain morphometric findings in
panic disorder include reduced volume of lateral and medial temporal lobe regions
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(Ferrari et al. 2008) and increased gray matter volume of the midbrain and pons
(Protopopescu et al. 2006; Uchida et al. 2008). We could find no published studies
of postmortem brain tissue from patients with panic disorder. Neurobiological
models of panic disorder often propose a role for increased reactivity of amygdala,
hypothalamic, midbrain, or brainstem regions in the generation of panic attacks
and a role for reduced function of orbital and medial prefrontal regions in the
relative inability to regulate the anxiety originating in lower regions (Coplan and
Lydiard 1998; Gorman et al. 2000). Patients with panic disorder are unusually
sensitive to the panic-inducing effects of agents that increase brain acidity or
respiratory drive, including CO2 inhalation and intravenous sodium lactate infu-
sion (Esquivel et al. 2010). Several models have specifically posited an important
role for increased reactivity of acid-sensitive chemoreceptor systems in subcortical
and brainstem nuclei in the generation of panic attacks (Klein 1993; Coplan and
Lydiard 1998; Maddock 2001; Ziemann et al. 2009; Esquivel et al. 2010).

The most consistently replicated MRS finding in studies of patients with panic
disorder has been an elevated brain lactate response to metabolic challenges. Prior
to the first MRS studies in panic disorder patients, several investigators had
demonstrated exaggerated systemic lactate responses to metabolic challenges in
panic disorder (Maddock 2001). Dager and colleagues were the first to use
1H-MRS to examine brain lactate responses in panic disorder. In a series of studies
examining the brain lactate response during an intravenous lactate infusion, the
panic patients were consistently observed to have significantly greater increases in
brain lactate in spite of receiving the same dose of intravenous sodium lactate. This
effect was observed in both symptomatic, unmedicated patients (Dager et al. 1997,
1999), and asymptomatic medicated patients (Dager et al. 1997; Layton et al.
2001). While several of these studies examined a single voxel placed in the insular
cortex, one study used the PEPSI sequence (discussed in Supplement Sect. 4.3.3)
to obtain a 2D multivoxel axial slab of spectral data and concluded that the
exaggerated increase in lactate in the panic patients was generalized across all
brain regions studied (Dager et al. 1999). Hyperventilation is a metabolic chal-
lenge that leads to increases in brain lactate in normal volunteers. Panic patients
demonstrate a significantly greater brain lactate response to hyperventilation than
healthy comparison subjects, despite similar degrees of hypocapnia in the two
groups (Dager et al. 1995). It was initially suggested that these findings of elevated
brain lactate may have resulted from ischemic cerebral hypoxia due to excessive
vasoconstriction triggered by the metabolic disturbance and anxiety induced by the
lactate infusion and hyperventilation procedures. However, more recent studies
have demonstrated significantly increased brain lactate responses in the visual
cortex during visual stimulation in patients with panic disorder, a paradigm in
which hyperemia, rather than ischemic vasoconstriction, is known to occur.
Maddock and colleagues demonstrated significantly greater increases in visual
cortex lactate during a 10 min period of viewing a flashing checkerboard pattern in
a group of symptomatic, unmedicated panic patients compared to matched control
subjects (Maddock et al. 2009). The visual stimulation procedure did not provoke
more anxiety in the patient group than the control group. A second study showed

234 R. J. Maddock and M. H. Buonocore



that remitted panic patients (medicated and unmedicated) demonstrated the same
significantly exaggerated visual cortex lactate response to visual stimulation
(Maddock and Buonocore 2010). Figure 4 summarizes the visual cortex lactate
responses in 22 symptomatic panic patients, 16 remitted panic patients, and 25
matched control subjects. Increased visual cortex lactate accumulation during
visual stimulation in panic patients suggests that this metabolic abnormality is
evident even during ordinary neural activity. The observation that exaggerated
brain lactate responses are seen in both symptomatic and remitted panic patients
suggests that it is an enduring or ‘‘trait’’ feature of the disorder and is consistent
with metabolic models of the vulnerability to panic disorder.

As discussed in Sect. 2.5, glutamatergic neurotransmission triggers the glyco-
lytic production of lactate from glucose and glycogen, most likely by astrocytes.
The lactate is subsequently taken up by neurons for oxidative metabolism.
A family of monocarboxylate transporters (MCTs) mediates the co-transport of
lactate and hydrogen ions (H+) across glial and neuronal cell membranes. MCT-1
and MCT-4 are expressed in astrocytes, while MCT-2 is the primary form
expressed in neurons (Pierre and Pellerin 2005; Bergersen 2007; Hashimoto et al.
2008). MCT-2 has a higher affinity for lactate (Km * 0.7 mM) than MCT-1
(Km * 4-6 mM) or MCT-4 (Km * 32 mM) (reviewed in (Erlichman et al.
2008). When astrocytic production of lactate is stimulated, the relative affinities of
these cell-specific subtypes of MCTs favors the rapid movement of lactate and H+
out of astrocytes into the ECF and then more slowly into neurons (Bergersen 2007;
Erlichman et al. 2008; Hashimoto et al. 2008). Thus, lactate and H+ accumulate
temporarily in the ECF of the synaptic zone, with the magnitude and duration of
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Fig. 4 An 8 Hz pattern
reversal checkerboard
stimulus was used to
stimulate visual cortex
lactate production in 22
symptomatic, untreated panic
disorder patients, 16 remitted
panic disorder patients, and
25 healthy comparison
subjects. Percent change in
lactate/creatine ratio averaged
across 10 min of visual
stimulation and 12 min of
post-stimulation eyes-closed
rest was calculated relative to
a pre-stimulation eyes-closed
resting baseline. Lactate
accumulation was
significantly greater in both
patient groups compared to
control subjects
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the pH change determined by the amount of lactate transported and the buffering
characteristics of the ECF. Acid-sensing ion channels (ASICs) respond to ECF pH
changes associated with neural activity and are widely distributed in brainstem and
hypothalamic regions and in the amygdala (Coryell et al. 2007). ASICs have been
demonstrated to mediate fear responses in mice, including the fear response to
CO2 inhalation (Ziemann et al. 2009). Similarly, acid-sensing chemoreceptor
systems in the brainstem have been shown to increase their activity in response to
increased lactate accumulation (Erlichman et al. 2008). If increased accumulation
of lactate during neural activation in panic disorder patients occurs in brain regions
mediating fear and arousal responses and is accompanied by a temporary acidi-
fication of brain ECF, then the resulting stimulation of acid-sensing chemoreceptor
systems might have an important role in triggering ‘‘spontaneous’’ panic attacks,
as posited in some models (Klein 1993; Esquivel et al. 2010). In this regard, it is
of interest that a recent 31P-MRS study examined the pH-related resonance shift of
inorganic phosphate during hyperventilation and found suggestive evidence for
altered acid–base regulation in the direction of increased brain acidity in patients
with panic disorder (Friedman et al. 2006). 1H-MRS and 31P-MRS are likely to
have an important role in future studies testing models of metabolic and acid/base
mechanisms in the pathophysiology of panic disorder.

Brain GABA levels have been studied in two samples of unmedicated patients
with panic disorder using validated GABA-editing 1H-MRS methods. In the first
study, Goddard and colleagues demonstrated significantly lower GABA concen-
trations in the occipital cortex in panic patients (Goddard et al. 2001). In the second
study, Hasler and colleagues found no difference in GABA levels in dorsal prefrontal
or ventrolateral prefrontal regions (Hasler et al. 2009). In an extension of their
original study and using the same patients, Goddard and colleagues reported that
occipital cortex GABA in panic patients did not change following an acute oral dose
of clonazepam, while GABA levels decreased significantly in the control group
(Goddard et al. 2004). Some pharmacodynamic and PET studies have implicated
reduced sensitivity of the GABA-A linked benzodiazepine receptor system in
patients with panic disorder (Hasler et al. 2008). However, this abnormality may not
involve a reduced concentration of cytoplasmic GABA, as measured by 1H-MRS.
Future studies will be needed to establish whether and in which brain regions reduced
GABA is a consistent finding in patients with panic disorder.

3.4.2 Post-Traumatic Stress Disorder

Post-traumatic stress disorder (PTSD) is a condition that develops in some individuals
following exposure to a traumatic event that threatens a person’s life or personal
integrity. It is characterized by specific symptom patterns, including intrusive
re-experiencing of the event, emotional blunting or avoidance, and generalized
hyperarousal. In addition to the bilateral reduction in gray matter volume in medial
prefrontal regions observed in common with other anxiety disorders, patients with
PTSD also consistently demonstrate reduced volume of the hippocampus compared
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to both trauma exposed controls without PTSD and healthy controls (Karl et al. 2006).
Based on existing evidence, it appears that antidepressant medication ameliorates the
reduction in hippocampal volume in PTSD patients compared to trauma exposed
control subjects (Karl et al. 2006). Consistent volume reduction is also seen in the left
amygdala in adults and in the corpus callosum in children with PTSD (Karl et al.
2006). Very few postmortem brain studies have been conducted in patients with
PTSD, and none have examined hippocampal or amygdala tissue. However, studies
showing dysregulation of the hippocampal–hypothalamic–pituitary–adrenal axis and
impairments in declarative memory, along with brain volumetric studies, support the
basic hypothesis that impairment in hippocampal function has a key role in the
pathophysiology of PTSD (Bremner 2006). Functional imaging and lesion studies
also support central roles for the amygdala and medial prefrontal cortex in PTSD
(Etkin and Wager 2007; Koenigs et al. 2008; Liberzon and Sripada 2008).

In agreement with the results of other neurobiological studies, the most consistent
1H-MRS finding in patients with PTSD has been a reduction in NAA levels in the
hippocampus. This effect has been reported as significant in nine of the 10 published
1H-MRS studies that have investigated the hippocampus in patients with PTSD
(Schuff et al. 2008; Trzesniak et al. 2008). A recent 1H-MRS study in a mouse model
of PTSD found that low NAA in the left dorsal hippocampus prior to electrical
footshock trauma predicted the development of persistent PTSD-like symptoms
(Siegmund et al. 2009). It is not yet clear whether antidepressant treatment influences
hippocampal NAA in PTSD patients. A consistent finding of reduced NAA in the
anterior cingulate cortex has also been observed in PTSD patients. This effect has
been reported as significant in 4 of the 5 published PTSD studies that have investi-
gated the anterior cingulate cortex (Schuff et al. 2008; Trzesniak et al. 2008).
An episode of single, prolonged stress in a rat model of PTSD was recently shown to
cause a reduction of glutamate and glutamine in medial prefrontal cortex (Knox et al.
2010). Overall, the 1H-MRS studies of patients with PTSD provide strong support for
models of pathogenesis in which dysfunction of the hippocampus and anterior cin-
gulate cortex play central roles. Notable gaps in the current literature include the
absence of postmortem tissue studies of the hippocampus, amygdala, or medial
prefrontal cortex in PTSD and no 1H-MRS studies of Glx or GABA in any brain
regions in PTSD. Because of the unambiguous role of trauma in the pathogenesis of
PTSD, it is a psychiatric disorder for which the use of animal models may be par-
ticularly fruitful. MRS studies in animals may have an increasingly valuable role in
advancing our understanding of PTSD.

3.4.3 Obsessive Compulsive Disorder

Obsessive compulsive disorder (OCD) is a condition characterized by the persis-
tent recurrence of obsessions (intrusive, unwanted thoughts, or images), compul-
sions (ritualized, repetitive behaviors), or both. The vulnerability to OCD is
strongly genetic (Pauls 2010). In addition to bilateral gray matter volume reduction
in the medial prefrontal and anterior cingulate cortices, as seen in other anxiety
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disorders, patients with OCD also show decreased volume of the orbital frontal
cortex and increased volume of the thalami and basal ganglia (lenticular and
caudate nuclei) bilaterally (Rotge et al. 2009; Radua et al. 2010). Many of these
morphometric findings appear to be independent of the use of antidepressant
medications (Radua and Mataix-Cols 2009). Neuroimaging and neurosurgical
studies support a general model of involvement of prefrontal cortex–basal ganglia–
thalamic–prefrontal cortex circuits in the pathogenesis of OCD (Huey et al. 2008).

Although over 20 1H-MRS studies of pediatric and adult patients with OCD
have been published, only a few findings have been consistently replicated. Four
studies have demonstrated reduced NAA in the anterior cingulate cortex in adult
patients with OCD (Yucel et al. 2007; Trzesniak et al. 2008). One of these studies
showed that anterior cingulate NAA normalized after 12 weeks of treatment with
citalopram (Jang et al. 2006). However, a recent study reported that NAA levels
are increased in this region in OCD (Fan et al. 2010). A relatively large series
(N = 27) of pediatric OCD patients demonstrated increased choline-containing
compounds in the medial thalamus (Smith et al. 2003). A small group of adult
SSRI non-responders with OCD showed increased thalamic choline compared to
responders (Mohamed et al. 2007). Consistent 1H-MRS abnormalities have not
been reported in the basal ganglia in OCD (Trzesniak et al. 2008). Further study
will be needed to establish whether abnormalities in MRS-measurable brain
metabolites are consistently observed in specific brain regions in OCD patients.

3.5 Summary

This review of the brain MRS literature highlights a number of frequently replicated
findings in patients with psychiatric disorders. Some of these consistent findings are
convergent with other neurobiological observations. For example, NAA is reduced
in many but not all brain regions in patients with schizophrenia, in frontal and
hippocampal regions in patients with bipolar disorder, in the hippocampus in patients
with PTSD, and in the anterior cingulate cortex in patients with OCD. In each
disorder, the reduction in NAA is congruent with evidence for reduced brain volume
in similar regions. While irreversible neuronal damage is an important cause of
reduced NAA, consistent evidence indicates that reversible reductions in neuronal
function can also lead to reduced NAA. Serial 1H-MRS measures of NAA may have
value in discerning whether or not specific interventions have remediating effects on
an underlying, reversible neuronal dysfunction in psychiatric disorders. Preliminary
evidence suggests that this may be the case for the effect of cognitive-behavioral
treatment on the anterior cingulate cortex (Premkumar et al. 2010) and exercise on
the hippocampus (Pajonk et al. 2010) in schizophrenia, lithium treatment on many
brain regions in bipolar disorder (Moore et al. 2000), and SSRI treatment on anterior
cingulate cortex in OCD (Jang et al. 2006). However, larger controlled longitudinal
studies will be needed to confirm these preliminary findings.
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Some of the MRS findings reviewed here provide support for specific models
of pathogenesis. Elevated Glx in patients with bipolar disorder and reduced Glx in
patients with unipolar major depression accord with models of increased and
decreased glutamatergic function, respectively, in those conditions. Reduced
phosphomonoesters and intracellular pH in euthymic bipolar patients and elevated
dynamic lactate responses in panic disorder patients are consistent with metabolic
models of pathogenesis in those conditions. Preliminary findings of an increased
glutamine/glutamate ratio and decreased GABA in patients with schizophrenia are
consistent with a model of NMDA hypofunction in that disorder. Additional
studies are needed to fill in important gaps in this literature. As the sensitivity
and specificity of methods continue to improve, MRS studies can be expected to
play an important role in the testing of translational models of the pathogenesis
of psychiatric disorders.

4 Conclusions

MRS provides a unique, non-invasive method for assessing the metabolic state of the
living human brain. Steady growth of the technical capabilities of MRS systems is
increasing the range of metabolites that can be measured and the sensitivity and
reliability of these measurements. A growing understanding of the pathophysio-
logical significance of abnormalities of the observable metabolite signals, especially
with regard to those arising from amino acid neurotransmitter pools, is increasing the
value of MRS experiments in neuropsychiatric research. The information gained
from MRS studies can be used in conjunction with other non-invasive clinical
imaging methods, neuropathological studies, and animal studies to achieve more
complete understandings of the natural history of psychiatric illnesses and to test
translational models of their pathogenesis. In addition, MRS has the potential to
increase understanding of the therapeutic mechanisms of action of effective treat-
ments and to allow clinical monitoring of the neurobiological effects of interventions
on brain metabolic markers of psychiatric illnesses.
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fMRI as a Measure of Cognition Related
Brain Circuitry in Schizophrenia

Laura A. Libby and J. Daniel Ragland

Abstract Functional magnetic resonance imaging (fMRI) has played a prominent role
in the quest to identify the brain systems responsible for cognitive dysfunction in
schizophrenia. This chapter describes the evolution of these research efforts, which have
alternated between efforts to localize specific cognitive impairments to work trying to
understand broader network dysfunction. After a concise summary of localization
efforts, the remainder of the chapter describes how different groups of scientists
have developed and tested broader network theories. This includes a description of
both task-activation and resting state studies, and involves a wide array of analytic
techniques. The chapter closes with an understanding of how current default-mode
and task-positive network theories grew out of these earlier resting-state and task-
activation approaches, and provides some recommendations about future directions.

Keywords Functional neuroimaging � Human brain mapping � Brain physiology �
Psychosis � Cognitive neuroscience
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1 Introduction

From the beginning of functional imaging research on cognition in schizophrenia,
scientists have oscillated between functional localization approaches designed to
map the pathophysiology of schizophrenia to discrete brain regions and cognitive
functions, and functional integration approaches attempting to demonstrate how a
broader breakdown in communication between multiple brain regions may explain
disordered cognition in schizophrenia. Fortunately, these two worlds often col-
lide—providing us with a more nuanced understanding of how information pro-
cessing goes awry in the brains of individuals diagnosed with schizophrenia. The
goal of this chapter is to describe how studies examining group differences in
broader network activity (e.g., functional connectivity) grew out of initial studies
designed to functionally segregate distinct areas of task-related activation. In so
doing, we will briefly touch upon what has been learned from focal activation
studies, including references to recent quantitative meta-analyses. However, these
focal activation studies have been extensively reviewed (Ragland et al. 2007;
Brown and Thompson 2010; Gur and Gur 2010), and the primary focus of this
chapter will be on functional integration approaches—beginning with functional
connectivity analyses using regions of interest (ROI) during active task conditions,
moving to multivariate approaches aimed at examining resting default mode
network (DMN) and activated task positive network (TPN) states, and ending with
a discussion of more recent approaches employing multi-modal functional and
anatomical imaging techniques.

2 Functional Localization

Functional imaging of individuals with schizophrenia has traced an interesting
circle, from resting state, to ‘‘activation’’ studies employing task paradigms, and
back again to resting studies. The first functional imaging study to localize
pathology in schizophrenia was performed by Ingvar and Franzen (1974) who used
133Xenon blood flow (rCBF) during resting state to demonstrate that, compared to
healthy participants, individuals with schizophrenia had relatively lower flows in
the frontal cortex (i.e., ‘‘hypofrontality’’), and higher flows in occipito-temporal
regions. However, this resting hypofrontality was not always replicated (Gur et al.
1987a, b), leading to a refinement of the model, stressing that, ‘‘hypofrontality
appears to be dependent on the behavioral state of the patients during the brain
imaging experiment’’ (Weinberger et al. 1991, p. 276). This refinement empha-
sized the importance of using the subtraction technique to contrast activity during
a task state with activity during a baseline condition designed to constrain what
subjects were thinking about, and isolate brain regions responsible for the specific
function that the task was designed to measure. The power of this approach had
previously been demonstrated by Peterson et al., in a word fluency study (Posner
et al. 1988), and was widely embraced by the schizophrenia research community.
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Since this transition from initial resting state studies, activation paradigms have
measured the impact of schizophrenia on regional brain function during a wide
array of cognitive, sensory, and emotional processing tasks, leading to over 800
references in a recent PubMed search. These studies initially struggled with group
performance differences that confounded interpretation of physiological differ-
ences. This difficulty was largely overcome with the development of event-related
designs (Zarahn et al. 1997), which allowed one to follow recommendations
(Carter et al. 2008) to restrict analysis to correct only trials. The difficulty of
reviewing such a vast literature was somewhat simplified with the development of
a quantitative meta-analytic technique termed Activation Likelihood Estimation
(Turkeltaub et al. 2002; Laird et al. 2005). ALE measures the probability that
spatially smoothed activation foci from individual studies occur across multiple
studies, and tests the null hypothesis that the location of these activated foci is
equal at every voxel, against an alternative hypothesis that activated foci are
spatially distributed. To date, we are aware of six studies that have used ALE to
perform meta-analyses of functional imaging studies of schizophrenia.

The first three ALE analyses examined working and episodic memory studies,
respectively. In the first analysis, Glahn et al. (2005) examined working memory
studies employing the N-Back task, and found predicted reductions in dorsolateral
prefrontal cortex (DLPFC) activity in patients during task performance. However,
patient reductions were not restricted to the DLPFC, extending to more rostral and
ventrolateral/insular portions of the prefrontal cortex (PFC). Moreover, there was
evidence of patient ‘‘overactivation’’ in the frontal pole, dorsomedial prefrontal
cortex, and anterior cingulate gyrus, leading the authors to conclude that working
memory dysfunction in schizophrenia cannot be classified as a simple DLPFC def-
icit, but should be considered in the context of the larger network of activity engaged
by the task. Subsequent analyses of episodic memory encoding and retrieval studies
also showed areas of both under- and over-activation in patients across multiple brain
regions (see Fig. 1). Reduced activation in patients was observed in multiple areas of
the PFC including dorsolateral and ventrolateral prefrontal cortex (VLPFC) (Achim
and Lepage 2005; Ragland et al. 2009), and in non-prefrontal regions including the
medial temporal lobe (Achim and Lepage 2005), thalamus (Ragland et al. 2009) and
posterior cingulate gyrus (Achim and Lepage 2005; Ragland et al. 2009). Both
analyses found that patients abnormally increased parahippocampal activation
during episodic retrieval, and the study by Ragland et al. (2009) found that group
differences in VLPFC activity were not present in studies that provided subjects with
encoding instructions—thereby reducing strategic memory demands.

The three remaining ALE studies also found a distributed pattern of group
differences. In an examination of a variety of executive function tasks Minzenberg
et al. (2009) and Li et al. (2010) found patient reductions in the DLPFC, posterior
cingulate gyrus, rostral and dorsal anterior cingulate gyrus and thalamus, and
patient increases in pre-supplementary motor area and inferior parietal cortex.
A study of facial emotion processing (Li et al. 2010) found patient over-activation
in the insula, and patient underactivation in the amygdala, parahippocampal gyrus,
fusiform gyrus, superior frontal gyrus, and lentiform nucleus. Finally, analysis of
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three studies of time perception (Ortuño et al. 2011), found that patients had
reduced activation in middle and superior frontal gyrus, precentral gyrus, lentiform
nucleus, thalamus, precuneus, and anterior cingulate, and did not show any areas
of atypically increased activation.

As can be appreciated from this review of ALE studies, functional imaging
research of schizophrenia using task paradigms and univariate statistical approaches
has failed to reveal a ‘‘smoking gun’’ in which dysfunction of a single brain region
can fully explain group differences in task performance. This should probably not
come as a surprise as the behaviors most commonly impacted by and studied in
schizophrenia (e.g., attention, memory, executive control) are multi-factorial—
requiring integration of multiple brain regions. Moreover, even if a functional deficit
is secondary to impairment of a single brain region, such a focal lesion would likely
produce downstream effects on other brain areas, making it difficult to isolate group
differences to a single location. There have been two primary responses to the
challenges of functional localization. One has been to try to improve localization
procedures by translating cognitive neuroscience paradigms designed to identify
specific neural mechanisms into clinical studies that can more precisely map brain-
behavior relationships. This approach holds great promise and is being developed
for clinical trials research to discover new cognitive-enhancing agents, and is being
facilitated by the NIH sponsored CNTRICS initiative begun in 2007 (Carter and
Barch 2007). The second approach, and the focus of the remainder of this chapter,
has been to employ multivariate statistical approaches designed to characterize the
impact of schizophrenia on broader network activity.

Fig. 1 Illustration of group differences in fMRI activation during memory encoding in healthy
participants and patients with schizophrenia based upon an activation likelihood estimation
(ALE) meta-analysis of seven previously published studies. Areas of greater activation in healthy
participants versus patients are indicated in red, and areas of greater activation in patients versus
healthy participants are indicated in green. Image is adapted from original figure published in
Ragland et al. (2009)
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3 Early Network Theories

One year after Ingvar and Franzen (1974) posited their ‘‘hypofrontality’’ hypoth-
esis, they speculated that their results could be explained by disrupted transmission
in a mediothalamic-frontocortical projection system (Franzén and Ingvar 1975)
rather than disruption in a single brain region. The notion of disrupted integration
of brain activity in schizophrenia was not formally tested until almost 10 years
later when Clark et al. (1984) calculated Pearson correlations in positron emission
tomography (PET) glucose metabolism between specified ROIs during electrical
stimulation (mild shock) versus resting baseline conditions. In a descriptive
comparison of patient and control groups, they found that the strong frontal
coupling observed in healthy volunteers appeared reduced in the patient sample.
Patients also appeared to show reduced anterior–posterior coupling in the left
hemisphere and reduced bilateral coupling within anterior brain regions. Group
differences in PET regional metabolic correlations were more rigorously tested
several years later by Volkow et al. (1988) who employed resting and smooth
pursuit eye movement conditions, and tested whether the overall pattern of
regional correlations differed between patients and controls using the Kullback
procedure. This analysis revealed that patients had a global decrease in the number
of significant correlations, which was descriptively characterized as reduced
anterior–posterior and cortico-thalamic correlations.

These initial correlational results, combined with clinical speculations that
hallucinations and delusions might result from abnormal integration between
different brain regions, led Friston and Frith (1995) to propose that schizophrenia
may best be characterized as a disconnection syndrome. In this word production
study, investigators adapted methodology developed in electrophysiological
research to create a measure of functional connectivity defined as, ‘‘the temporal
correlation between spatially remote neurophysiological events.’’ (Friston and
Frith 1995). By using a stepwise regression-like procedure to identify patterns of
functional connectivity between all of the voxels in the brain (i.e., eigenimages)
the investigators found that the majority of the covariance in the time-series was
captured by a negative interaction between prefrontal and superior temporal
cortex in healthy controls during the word production task. In contrast, patients
showed a positive correlation in fronto-temporal connectivity, leading the authors
to conclude that schizophrenia is characterized by a reversal in typical prefrontal
and temporal lobe integration. In a subsequent paper, Andreasen et al. (1996)
reviewed a number of their previous PET activation studies to argue that this
disconnection syndrome is not limited to the frontal and temporal lobe, and
extends to a broader failure of integration between prefrontal–thalamic–cerebellar
circuitry (termed ‘‘cognitive dysmetria’’). The disconnection syndrome and
cognitive dysmetria hypotheses provided a theoretical foundation for subsequent
functional connectivity studies.
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4 Task-Related Functional Connectivity

Prior to 2006 when researchers began to investigate resting-state networks,
functional connectivity studies of schizophrenia examined group differences in
network activity while participants performed various task activation paradigms.
Several of these studies used working memory tasks, including the first study by
Meyer-Lindenberg et al. (2001) who had healthy participants and patients with
schizophrenia perform an N-Back working memory task and a sensorimotor
baseline during PET rCBF imaging. As in the previous Friston and Frith (1995)
study eigenimages were generated to characterize the variance–covariance matrix
of the time-series. These eigenimages were created for a prespecified set of pre-
frontal, temporal, and parietal ROIs based on task activation results. The pattern
that captured the most variance was negative relationships among the temporal
cortex, hippocampus, and cerebellum in patients, and a positive relationship
between the DLPFC and cingulate gyrus in healthy controls. This group dissoci-
ation in functional connectivity remained regardless of task condition, leading the
authors to conclude that disruption of fronto-temporal interactions appears to be a
trait marker of schizophrenia.

In the late 1990s the field transitioned from PET rCBF to blood oxygen level-
dependent (BOLD) fMRI imaging procedures, which provided investigators with
better temporal resolution, allowing implementation of new methods to examine
functional connectivity. These subsequent fMRI studies examined functional
connectivity with a variety of task paradigms. As a test of the disconnection
syndrome hypothesis Lawrie et al. (2002) examined correlations between DLPFC
and superior temporal gyrus (STG) ROIs in patients and controls while subjects
performed a sentence completion task during fMRI. In support of the hypothesis of
fronto-temporal disconnection, they found that left fronto-temporal correlations
were reduced in schizophrenia, and showed greater reductions for patients with
more severe hallucinations. The next study used a somewhat different analytical
approach termed psychophysiological interaction analysis (PPI), which examined
how correlations between BOLD signal activity in a ‘‘seed’’ region in the right
anterior cingulate gyrus (ACC) and activity in the rest of the brain were modulated
by task demands (Boksman et al. 2005). This was done for fMRI data collected
while participants were performing a word generation task, and revealed that the
right ACC showed localized interaction with the left temporal lobe associated with
increased verbal fluency in healthy volunteers, that was absent in patients. Using a
similar approach with fMRI data obtained during a continuous performance
attention task, Honey et al. (2005) found evidence of both increased and decreased
ACC connectivity in patients with schizophrenia during a degraded stimulus
version of an attentional continuous performance task. When functional connec-
tivity was examined in relation to degraded versus non-degraded stimulus con-
ditions, patient decreases were seen in ACC connectivity to the cerebellum and,
patient increases were seen in ACC connectivity to the prefrontal cortex. These
disruptions in connectivity with cerebellar and motor areas were viewed in support
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of the cognitive dysmetria hypothesis. Finally, this timeseries correlational
approach was also used to examine connectivity between STG and parahippo-
campal gyrus seed regions in the temporal cortex with voxels in the rest of the
brain during a word encoding task that manipulated levels-of-processing (Wolf
et al. 2007). This analysis of fMRI data revealed that, for deep versus shallow
encoding conditions, patients had reduced temporal lobe connectivity to the
DLPFC, but increased connectivity to the VLPFC, suggesting that the ventrolateral
portion of the PFC may play a compensatory role for patients during episodic
encoding.

One of the limitations of previously described functional connectivity analyses
is that they do not provide information about the directionality of functional
interactions. Therefore, an additional study of the N-Back paradigm (Schlösser
et al. 2003) used structural equation modeling to assess ‘‘effective connectivity’’ in
patients and controls. Effective connectivity is defined as, ‘‘the influence one
neural system exerts over another’’ (Friston et al. 1994), and is examined by
constructing anatomical models (i.e., path models) of the directional connections
between pre-specified ROIs. Goodness-of-fit statistics are used to select the path
models with the smallest residual error. Based upon previous anatomical and
functional studies, Schlösser et al. (2003) proposed a unidirectional pathway from
parietal cortex to the DLPFC and VLPFC, reciprocal pathways between DLPFC
and VLPFC, and a cortico-cerebellar feedback loop involving bi-directional
connections among prefrontal cortex, thalamus, and cerebellum. Between-group
comparisons of these models revealed that patients receiving typical antipsychotics
had reduced prefrontal-cerebellar and cerebellar-thalamic connectivity, and
enhanced thalamo-cortical path coefficients. There was also evidence of enhanced
interhemispheric connectivity in a group of patients receiving second-generation
antipsychotic medications, suggesting that investigators should consider medica-
tion effects when performing these studies.

In sum, these functional connectivity studies employing activation tasks and
ROI or seed-based correlational approaches have fairly consistently demonstrated
that connectivity of the prefrontal cortex and the anterior cingulate gyrus with the
temporal cortex appears to be reduced in patients with schizophrenia, consistent
with the dissconection syndrome hypothesis. However, these results are not
invariant—sometimes showing increased connectivity in patients, and sometimes
differing depending upon clinical state, medication status, and the regions that are
selected as seeds or as ROIs. As these studies progressed, concerns were also
raised about the use of task activation paradigms to examine functional connec-
tivity. When interpreting functional connectivity results, investigators were
interested in drawing conclusions about anatomical connections (i.e., areas that fire
together, wire together), and one concern about use of activation tasks was that
they could create task-related correlations in the time-series that may obscure trait-
like differences in anatomical connectivity (Biswal et al. 1995; Lowe et al. 1998;
Raichle and Gusnard 2005). A related concern was that group differences in
how subjects perform these activation tasks could contribute to group differences
in functional connectivity apart from true differences in brain physiology.
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These concerns contributed to a directional shift back toward resting-state studies,
which eliminate performance demands, and might, ostensibly, provide better trait-
like measures of brain physiology.

5 Default Mode Network and Task-Positive Network

Resting-state functional connectivity analysis capitalizes on the finding that the
brain appears to be intrinsically organized into functionally correlated networks
that are independent of task (Fox et al. 2005; Fransson 2005; Buckner et al. 2008).
Early observations in PET imaging found a consistent set of brain areas that
showed higher metabolism during resting versus task conditions, particularly in
posterior parietal and medial frontal areas (Gusnard and Raichle 2001; Raichle
et al. 2001). Around the same time, fMRI studies revealed that BOLD signal in a
similar set of brain regions fluctuated spontaneously and coherently at low
frequencies (\0.1 Hz) when subjects were resting in the scanner, or simply ‘‘doing
nothing’’ (Biswal et al. 1995; Greicius et al. 2003; Fransson 2005). This network
comprises medial prefrontal, posterior parietal, and medial temporal regions—all
brain areas that have been implicated as dysfunctional in schizophrenia. Moreover,
signal fluctuations in this network are anti-correlated with BOLD signal in regions
typically engaged by tasks, such as the lateral prefrontal cortex, suggesting
a physiological tradeoff between the engagement of ‘‘task-negative’’ and
‘‘task-positive’’ brain states (Fox et al. 2005). This ‘‘task-negative’’ network is
thought to represent a baseline brain state from which metabolic resources are
diverted during cognitive demand, and has been termed the ‘‘default-mode’’
network (DMN; (Greicius et al. 2003)). The DMN has also been conceptualized as
supporting internally directed thought, whereas task-positive networks are thought
to support externally oriented cognitive processes (Buckner et al. 2008). Given
previously discussed communication breakdowns between brain regions needed
for cognitive tasks in schizophrenia, investigators hypothesized that group dif-
ferences in functional connectivity during activation tasks could be co-occurring
with, or driven by abnormal functional connectivity in the DMN. This has led
to several fundamental questions about the nature of intrinsic brain networks in
schizophrenia.

One question of primary interest has been whether functional connectivity
differences between patients with schizophrenia and controls are detectable at rest.
Liang et al. (2006) were the first to address this question, using an automated
anatomical parcellation procedure to divide the brain into nine regions, and then
comparing pairwise regional correlations in resting BOLD fluctuations between
patients and controls. They found that resting-state correlations were reduced in
patients across brain regions, with the most prominent differences noted in the
insula, temporal lobe, striatum, and prefrontal cortex. Additionally, correlations
between the cerebellum and all other regions were increased in patients during
rest. The results from Liang et al. (2006) established that functional connectivity is
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abnormal in patients during rest, and that abnormalities occur across the entire
brain, and are not limited to a few regions.

Rather than parcellating the whole brain into anatomical regions, Bluhm et al.
(2007) focused their analysis of resting-state functional connectivity in schizo-
phrenia on candidate regions of the DMN. To accomplish this, they began with a
seed in the posterior parietal cortex (PPC), a region consistently identified as part
of the DMN, and identified correlated voxels across the brain. Then, for each voxel
in this network, they compared the degree of connectivity with the PCC between
the healthy and patient groups. Functional connectivity between PCC and medial
prefrontal cortex, parietal cortex, and cerebellum was reduced in patients. These
combined studies suggested widespread functional disintegration within the DMN
in schizophrenia patients even at rest. However, it remained unclear whether DMN
connectivity was also abnormal in patients during active cognitive tasks, and
whether DMN abnormalities were related to dysfunction in brain areas recruited
by these tasks.

Thus, a second question was whether group network differences observed
during rest were also apparent during task. To address this question, investigators
employed a technique called independent component analysis (ICA), which is a
data-driven approach to pinpointing temporally consistent, spatially independent
brain networks in fMRI data, that occur regardless of task conditions (Calhoun
et al. 2009). ICA can be applied equally in resting-state and task-related fMRI, and
is particularly useful for identifying the task-negative DMN even during cogni-
tively demanding tasks. The first study to detect DMN abnormalities in schizo-
phrenia patients during task conditions (Garrity et al. 2007) used ICA on fMRI
data acquired while subjects performed an auditory oddball detection paradigm.
Researchers identified the independent component that most overlapped with
DMN brain regions, and then compared the temporal and spatial characteristics of
this component between patients and controls. Across both groups, the DMN
component showed the greatest activation decrease during presentation of the
auditory target stimuli, consistent with the notion that the DMN engagement
decreases with greater cognitive demand. Patients had reduced activation com-
pared to controls in the posterior cingulate and precuneus, but increased activation
in a different part of the posterior cingulate, the anterior cingulate, and in the
superior medial frontal gyrus. It is important to note that these group differences
represented differences in regional BOLD signal intensity in those regions, rather
than differences in functional connectivity, and reflected topographical differences
in the DMN between patients and controls. Similarly, in the temporal domain,
patients had relatively less power in low-frequency DMN oscillations, but rela-
tively greater power in higher frequency DMN oscillations, suggesting that DMN
abnormalities in patients extended beyond regional differences in network local-
ization. A subsequent study from the same group (Calhoun et al. 2008) established
that spatial and temporal DMN differences in patients found during the oddball
task were also atypical during rest, suggesting that DMN findings during rest
generalize to tasks, and vice versa. However, the spatial layout of both the DMN
component and a component consistent with the task-positive network (TPN) were
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slightly different between activated and resting scans, suggesting that DMN
networks were somewhat modulated by task, and that this modulation was not
consistent across diagnostic groups.

Several studies have attempted to unravel the relationship between the DMN
and the TPN in patients with schizophrenia, with conflicting results. Comparing
resting-state networks associated with signal in PCC and DLPFC seed regions,
Zhou et al. (2007) found that anti-correlations between the DMN and TPN were
greater in patients than in controls. Contrary to earlier findings of reduced con-
nectivity, the study revealed greater within-network functional connectivity in
patients. However, this analysis examined only anti-correlated brain regions, and
may have missed other important between-group differences. A resting-state study
by the Calhoun group (Jafri et al. 2008) compared correlations between seven key
independent components and found that, in patients, the DMN independent
component was more temporally similar to three of the other non-DMN compo-
nents including the lateral frontal cortex. This finding suggested that schizophrenia
patients might not adequately suppress the DMN when task-related regions come
online. Whitefield-Gabrieli et al. (2009) tested this hypothesis by examining
interactions between DMN and TPN activity across periods of rest and periods of
performance on a working memory task in patients and controls. They found that
DMN activity decreased during task, that better task-related DMN suppression was
related to better working memory performance in patients, and that this task-
related DMN suppression was greater in controls than in patients (see Fig. 2).
Additionally, in patients, areas of the DMN were relatively more functionally
connected during task, and less anti-correlated with TPN regions during both rest
and task conditions. Based on these results, investigators posited a DMN hyper-
connectivity/hyperactivity hypothesis, proposing that, in patients, a state of DMN
over-synchronization results in failure to divert physiological resources away from
the DMN during cognitively demanding tasks.

Fig. 2 Task-related suppression of default network regions is lower in patients. a Greater
activation during rest than task (2-back working memory paradigm) in DMN regions for controls
(CON) and patients (SZ). b Task-related suppression of MPFC (a DMN region) during 2-back
and 0-back conditions. Error bars are 95% confidence intervals. Image is adapted from original
Figure published in Whitfield-Gabrieli et al. (2009)
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Whitfield-Gabrieli et al. (2009) also speculated that this hyper-DMN state, in
which regions putatively responsible for internally directed thinking are con-
stantly more engaged, may be related to thought disturbance in schizophrenia.
They showed that reduced task-related DMN suppression was related to higher
scores on a psychopathology index in both the schizophrenia patient group and
in healthy individuals. In the Bluhm et al. (2007) study, greater functional
connectivity within the DMN during rest was positively associated with positive
and negative symptoms in patients. Because of its relationship to both cognitive
and clinical variables, it is possible that abnormally high engagement of the
DMN is a state-level feature of schizophrenia that can explain both psychopa-
thology and cognitive deficits. However, in these previous studies, patients
were receiving antipsychotic medications, which may have contributed to group
differences in DMN activity. Olanzapine, an atypical antipsychotic, has been
shown to ameliorate clinical symptoms and potentially improve working memory
performance. In a double-blind, counterbalanced study examining the effects
olanzapine treatment, Sambataro et al. (2010) compared DMN functional
connectivity during a working memory task when patients were on and off
medication. Olanzapine dose was associated with increased functional connec-
tivity in medial frontal areas of the DMN, but did not affect posterior regions.
Although this study revealed that antipsychotic medication can mediate DMN
connectivity, and may contribute to variability in functional connectivity dif-
ferences across schizophrenia studies, DMN connectivity remained aberrant in
the un-medicated patient group, suggesting that network-level differences in
schizophrenia patients reflect underlying neuropathology regardless of medica-
tion effects.

While network connectivity analysis adds another level of complexity to our
understanding of brain disruption in schizophrenia, questions remain about exactly
what biological mechanisms drive the coherence of these functional networks.
We now know that coherent signal fluctuations in intrinsic brain networks, par-
ticularly the DMN, are highly robust over time and across subjects in healthy
populations (Biswal et al. 2010; Van Dijk et al. 2010), suggesting trait-like
properties. Moreover, combinations of resting-state fMRI and either anatomical
tracer studies in animals (Vincent et al. 2007) or white matter tractography in
healthy humans (Greicius et al. 2009) show that intrinsic functional connectivity
maps well—but not perfectly—with anatomical connections in the brain. That is,
areas that are connected directly or indirectly by white matter tracts show corre-
lated BOLD signal fluctuation during resting-state fMRI. If this functional–
anatomical relationship holds in patients, one possible explanation for
differences in intrinsic functional connectivity in schizophrenia is that the
framework of anatomical connectivity that underlies a functional network is
similarly atypical. Zhou et al. (2008) examined both functional and structural
connectivity of the anterior hippocampus, a region important for episodic
memory often implicated in schizophrenia, and found that both were reduced in
patients, suggesting a relationship between functional disintegration and degra-
ded white matter tracts. However, this functional–anatomical relationship may
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be less tightly coupled in patients than in controls. Skudlarski et al. (2010)
directly compared diffusion tensor-based tractography and resting-state func-
tional connectivity, and found that, while certain brain regions showed either
increased or decreased intrinsic functional connectivity in patients versus con-
trols, anatomical connectivity was generally degraded regardless of brain region
in the patient sample. Furthermore, while functional networks reflected ana-
tomical connectivity moderately well in controls, functional connectivity
between any two brain regions was less predictive of the anatomical connections
of those regions in patients. A key assumption of functional connectivity anal-
ysis is that network coherence is an indirect measure of anatomical connections.
These most recent results challenge whether this assumption can be applied to
schizophrenia populations.

6 Conclusions

Has the addition of functional connectivity analysis improved our understanding of
pathophysiology in patients with schizophrenia? This research has clearly estab-
lished that task-related and intrinsic functional connectivity are dysfunctional in
patients, but studies do not agree on the exact nature of these disruptions. Task-
based and default-mode networks are inversely related in healthy subjects, and this
relation appears disrupted by schizophrenia. Patients generally fail to disengage
DMN during task conditions, but it is not clear whether this impairment is driven
by failure of task-related regions such as the lateral prefrontal cortex to deactivate
DMN activity, or by hyperconnectivity within the DMN that makes it more
resistant to task-related inhibition (Whitfield-Gabrieli et al. 2009). An added
challenge of resting-state versus task activation studies is that resting-state studies
do not employ experimental manipulations to test specific hypotheses, thereby
reducing the interpretative leverage of the resting-state approach. Regardless of the
answer to this question, this current state of affairs suggests caution in interpreting
group differences in activation studies that use resting baselines as reference
conditions, since these differences can be driven either by the task or by the
reference condition. This work has clearly demonstrated that we can no longer
think of schizophrenia as an impairment of a single brain region, and that we need
to continue to work toward an understanding of group differences at a network
level. This progress will likely depend upon the convergence of multiple
approaches, including use of carefully controlled cognitive neuroscience tasks to
more precisely map brain and behavior interactions, and use of multi-modal
imaging techniques (structural and functional) to provide a convergent under-
standing of the DMN in schizophrenia.
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MRI Studies in Late-Life Mood Disorders

Carmen Andreescu and Howard Aizenstein

Abstract There are well-established patterns of structural brain changes associ-
ated with aging. The change in brain volume with age and with the diseases of
aging presents a particular challenge for MRI studies in the elderly. Structural MRI
is important for studies in normal aging, late-life depression, dementia, Alzheimer
disease and other cognitive disorders to examine how age-associated changes in
neuroanatomy are associated with specific age-related changes in brain function.
Functional MRI has been a major advance for the fields of cognitive and affective
neuroscience by allowing investigators to test theories of the underlying neural
pathways controlling cognitive and emotional processes. In this chapter, we will
review the contribution of MRI studies to late-life mood and anxiety disorders:
major depression, bipolar disorder and anxiety disorders in late-life.
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Over the last decade there has been a rapid increase in the availability of MR
imaging. It is likely that the increase in accessibility, as well as the decrease in
scanning costs, will continue to increase the use of MRI. Neuroimaging may offer
not only insights into the neurobiology of late-life mental disorders, but may also
contribute to the effort of personalizing existing treatments and discover new,
more efficacious ones. In this chapter, we will review the contribution of MRI
studies to late-life mood and anxiety disorders: major depression, bipolar disorder,
and anxiety disorders in late-life.

1 Methodologic Challenges of MRI in Late-Life

1.1 The Influence of Brain Morphometric Changes on fMRI

There are well-established patterns of structural brain changes associated with
aging. With increasing age, the brain decreases in overall volume, the cortical gyri
become smaller, and the sulci and ventricles become larger. These changes in
brain volume vary across individuals and occur even in individuals who are
otherwise apparently healthy. The changes have been described in a number of
studies (e.g., Raz et al. 1997; Resnick et al. 2000) and seem to vary across the
brain with most prominent decrease in volume reported in the frontal cortex.

The change in brain volume with age and with the diseases of aging presents a
particular challenge for functional MRI studies in these populations: how should
these structural changes be accounted for when comparing the functional signal?
In a standard fMRI analysis plan the functional images from all the subjects in a
study are lined-up with each other (alignment, cross-registration, warping, nor-
malization). If the brains have significantly different shapes and sizes then the
brain alignment may bias the results by contributing more CSF (due to the larger
sulci and ventricles) of the more atrophic brains as compared to more gray matter
from the less atrophic brains. The standard alignment algorithms vary in their
ability to account for the variability in brain structure (Wu et al. 2006). Some
investigators have addressed this problem by using a larger smoothing kernel in
studies of aging subjects (e.g., 10 mm instead of standard 6 mm or 8 mm full-
width half-maximum Gaussian). This approach recognizes that the alignment may
be worse in the elderly population, and corrects for it by making the images
blurrier. This allows the statistical voxel-wise comparison to find group differences
even if there is some discrepancy in the spatial co-localization. An alternative
approach that other investigators have used involves avoiding the registration
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problems altogether, by focusing on a region-of-interest (ROI)-based analysis
(Aizenstein et al. 2011), using ROIs defined in the acquired fMRI space, rather
than relying on normalizing the images.

1.2 The BOLD Hemodynamic Response in Healthy Aging

Functional MRI depends on an intact BOLD hemodynamic response function
(HRF), i.e., the cascade of neurophysiologic events that leads from neural acti-
vation to a change in the measured T2* MR signal. Aging is associated with
cerebrovascular changes, so one would expect that it might also alter the BOLD
signal. This is of critical importance in interpreting whether the signal identified in
an fMRI study of aging reflects changes in neural activity (as is often presumed) or
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Fig. 1 Time series for a visual and b motor ROIs. Blue line represents mean young percent signal
change from baseline; red line is elderly percent signal change. Error bars represent ±1 SEM
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whether the changes are due to the age-related changes in the coupling of the
neural activity to the fMRI signal (i.e., the BOLD HRF). To examine the BOLD
HRF in aging we compared healthy college-age subjects and healthy elderly
control subjects while they performed a simple visual and motor task (e.g., tapping
with their index finger in response to the word TAP in the center of the screen).
The resulting fMRI time series (see Fig. 1) show a similar peak for both the young
and the elderly subjects in both the visual and motor regions. This suggests that by
focusing the analysis on the peak of the HRF the difference in signal observed on
fMRI will likely reflect differences in neural activation.

2 MRI Methods for Studying Late-Life Mood Disorders

2.1 Structural Imaging

Structural MRI methods can be used to identify and quantify patterns of changes in
volumetric neuroimaging studies. The various structural MRI sequences enable the
identification of structural alterations such as (a) volume in gray matter, white
matter, and cerebrospinal fluid from high resolution T1-weighted images (Raz
et al. 2005, 1998; Rosano et al. 2005) (b) white matter hyperintensities (WMH)
from FLAIR images (Gunning-Dixon and Raz 2000; Soderlund et al. 2003) (c)
white matter integrity from diffusion weighted imaging (Pfefferbaum et al. 2005;
Salat et al. 2005) (d) myelination from magnetization transfer imaging (van Es
et al. 2006). Advanced neuroimaging sequences like diffusion spectrum imaging
(DSI) and Q-ball imagings are currently being used for studying the white matter
tracts (Schmahmann et al. 2007; Fig. 2).

Structural MRI is useful for studying the patterns of neuroanatomical changes
in geriatric research. Structural MRI is important for studies in normal aging, late-
life depression, dementia, Alzheimer disease, and other cognitive disorders to
examine how age-associated changes in neuroanatomy are associated with specific
age-related changes in brain function, such as the changes that may be in cogni-
tion. Structural MRI allows for identification of both macrostructural and micro-
structural neuropathologic changes, including atrophy, cerebrovascular changes,
demyelination, and changes in membrane integrity.

2.2 BOLD Functional MRI

In the early 1990s a number of investigators showed that not only could MR be
used to visualize neuroanatomy and structural pathology but, by tuning the MR
contrast appropriately, MR could be used to visualize the dynamic changes in
blood oxygenation across the brain; this was the beginning of functional MRI
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(Schmahmann et al. 2007). Over the subsequent years, a number of studies have
shown that this Blood Oxygenation Level Dependent (BOLD) signal could be used
to map brain activity on a variety of cognitive and affective tasks.

Functional MRI has been a major advance for the fields of cognitive and
affective neuroscience by allowing investigators to test theories of the underlying
neural pathways controlling cognitive and emotional processes. This approach is
often referred to as ‘human brain mapping.’ In addition to studying ‘normal’
human brain function, fMRI can also be used to characterize the functional acti-
vation patterns in patient groups. This area of clinical fMRI research has recently
led to a number of new insights into the nature of psychopathology and treat-
ment—including the description of a dorsal versus ventral processing imbalance in
depression (Phillips et al. 2003), overlap in response patterns with placebo and
with medication (Mayberg et al. 2005), and paradoxical nonlinear activation
patterns in mild cognitive impairment (Wierenga and Bondi 2007), suggesting a
compensatory stage prior to the onset of dementia.

Functional MRI has utilized either resting state paradigms or activation para-
digms involving various emotional or cognitive tasks.

2.2.1 Resting State

Over the last decade fMRI has been adapted to examine the connectivity of the
Default-Mode Network, an organized functional network of several brain regions
active during resting state and inhibited during the performance of active
tasks (Raichle et al. 2001). Analysis of resting state activity may enhance the
understanding of the biological underpinning of mental illnesses pathophysiology.
A primary component of the resting-state network, is the default-mode network,
a functionally connected network, which includes as core nodes the posterior
cingulate cortex and the medial frontal cortex. Activity of the default-mode
network, is believed to reflect self-referential thought, that is suppressed with
goal-directed task activity. Activity in the default-mode network is affected in
Alzheimer’s disease, Major Depressive Disorder (Greicius et al. 2007; Sheline
et al. 2009) and anxiety disorders (Zhao et al. 2007; Fig. 3).

Fig. 2 T1, T2, FLAIR, DTI, and T2* images from 3T scanner
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2.2.2 fMRI Studies of Affective Processing in Late-Life Mood
Disorders

Several computer-administered paradigms for measuring affect processing are
amenable to functional MRI. These include having subjects respond to emotional
faces (e.g., Ekman faces, (Ekman and Friesen 1971), images (e.g., the International
Affective Picture System, (Lang and Bradley 1997) words, and stories. Studies
with these paradigms have identified an affect processing circuit, which includes
bilateral medial ventral structures including the amygdala, the ventral striatum, the
orbitofrontal cortex, and the pre-and sub-genual anterior cingulate cortex. These
ventral regions seem to show increased activation corresponding to the peak of the
‘emotional’ experience, whether it has positive or negative valence. There has also

Fig. 3 Functional connectivity reflects structural connectivity in the DMN. a Task-free,
functional connectivity in the DMN is shown in a group of six subjects. The PCC/RSC and MPFC
clusters are best appreciated on the sagittal view. Prominent bilateral MTL clusters are seen on
the coronal image (left side of image corresponds to left side of brain). b DTI fiber tractography in
a single subject demonstrates the cingulum bundle (blue tracts) connecting the PCC/RSC to the
MPFC. The yellow tracts connect the bilateral MTL to the PCC/RSC. Note that generally
the tracts from the MPFC enter the more rostral aspect of the PCC/RSC ROI corresponding to the
PCC proper, whereas the tracts from MTL enter the more caudal aspect of the PCC/RSC ROI
corresponding to the RSC proper. Left and right columns show slightly different views of the
same tracts to highlight the distinct entry points into the PCC/RSC. There were no tracts
connecting the MPFC to the MTL. (from Greicius et al. 2008). For permissions, please
e-mail:journals.permissions@oxfordjournals.org
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been a strong association of these regions with activity in dorsal (described as less
affective and more cognitive) structures including the dorsal anterior cingulate
cortex and the dorsolateral prefrontal cortex.

Several investigators have integrated these findings into models of affective
processing (Mayberg 1997; Phillips et al. 2003; Siegle et al. 2002). The key feature
of these models is that the dorsal information processing circuit is more specific for
the cognitive elements and regulates the affective activation and processing that
occurs in the ventral structures. Thus, for instance, in the fMRI study by Ochsner
(2002) the amygdala is activated by negatively valenced emotional stimuli. With
cognitive reappraisal of the negative stimuli, the dorsal prefrontal cortex becomes
active and the amygdala shows decreased activation, apparently secondary to
modulation by the dorsal PFC-mediated reappraisal.

Models of dorsal and ventral cognitive and affective processing have been
specifically applied as a framework for studying mid-life depression (Mayberg
1997; Phillips et al. 2003). Both of these models describe mid-life depression as
resulting from impaired cognitive and affective processing in these circuits. These
models have not yet been applied to LLD. However, the notion of disconnection
between the dorsal and ventral circuits would seem to apply even more in late-life
as compared to mid-life depression, since in LLD there is more evidence of
microstructural changes in the PFC white matter tracts that connect these regions
(Alexopoulos et al. 2002; Taylor et al. 2004). Future studies are needed to test this
hypothesis.

2.2.3 fMRI Studies of Cognitive Processing in Late-Life Mood
Disorders

Several functional neuroimaging studies of late-life mood disorders have been
conducted during cognitive activation (e.g., de Asis et al. 2001). Bilateral deficits
in dACC and hippocampus were observed during word generation task. These
cognitive probes are used for studying the basis of cognitive changes in late-life
mood disorders, and for engaging key structures implicated in these disorders (e.g.,
ACC, dlPFC, hippocampus). Functional imaging performed during controlled
cognitive tasks standardizes behavior and therefore decreases variability in brain
response.

2.3 Perfusion Functional MRI

A significant limitation of BOLD fMRI is concern that the BOLD hemodynamic
response is inherently relative. That is the raw BOLD signal does not provide a
reliable estimate of regional blood flow in a region. Rather it is contrast of the
BOLD signal on alternating experimental versus control tasks that provide
the meaningful signal. In contrast to this limitation, PET imaging with an O-15
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radioligand is capable of providing quantitative blood flow measures. In MR
imaging, a technique analogous to O-15 PET is also available, and is referred to as
Arterial Spin Label (ASL) imaging, or perfusion imaging (Detre et al. 1992;
Aguirre et al. 2005). In perfusion MR imaging the MR excitation signal is inverted
to provide a ‘tagged’ signal, which is alternated with an ‘untagged’ image.
Comparing the tagged and untagged provides a quantitative measure the perfusion
of the region. Full-brain voxel-wise perfusion images provide a quantitative image
of the perfusion across the brain. Investigators have recently used perfusion
imaging to demonstrate similar findings as with PET blood flow studies, e.g.,
decreased parietal-temporal resting perfusion with Alzheimer’s disease (Alsop
et al. 2010). In addition to providing quantitative resting perfusion, ASL has also
recently been used for investigating the blood flow changes associated with tasks
(Fernández-Seara et al. 2007). Perfusion fMRI, however, is limited due to slow
acquisition time, reduced coverage, and lower SNR compared to BOLD fMRI. The
two primary methods for perfusion imaging are referred to as Continuous Arterial
Spin Labeling (CASL) and Pulsed Arterial Spin Labeling (PASL). CASL is
believed to provide better signal quality, but generally requires special hardware
for providing the continuous tagging pulse.

3 MRI Changes in Specific Late-Life Mental Disorders

Throughout its history, DSM architects have struggled with the seemingly fun-
damental, but complex question of how to define a mental disorder. Current
proposals indicate that a spectrum model of mental illness will be embraced in
DSM-5, prompting renewed concern and debate about pathologizing normal
behavior (Pierre 2010).

Recently the NIMH launched the Research Domain Criteria (RDoC) project to
create a framework for research on pathophysiology, especially for genomics and
neuroscience. The RDoC project is intended to be the next step in the process of
ensuring valid and reliable diagnosis (Insel et al. 2010). Thus, the project intends
to classify mental disorders based on dimensions of observable behavior and
neurobiological measures, dimensions such as fear and its extinction, response to
stress, impulsive behavior, executive function, and working memory. Increasing
evidence suggests that abnormality in one dimension frequently occurs in multiple
diagnoses of mental disorders. Cutting across traditional diagnostic categories,
RDoC will encompass multiple levels of analysis, from genes to neural circuits to
behaviors and will be developed for the research community to help break out of
diagnostic formulations that may have more reliability than validity.

We will present in this chapter MRI changes in DSM-IVTR disorders, while
keeping in mind that an increasing body of the literature focuses on emotion
regulation in late-life, executive function and working memory.
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3.1 Late-Life Major Depression (LLD)

Depression in the elderly causes significant distress, disability, and loss of life. The
importance of considering late-life depression separately from mid-life depression
follows from an extensive literature that has identified biological, psychological,
and social factors specific for late-life depression. Loss of function and loss of
social support are common psychosocial factors in the presentation of depression
in the elderly. However, biological factors are also prevalent in LLD. Two key
features that distinguish the brain in elderly versus young subjects are cerebro-
vascular disease and neurodegeneration, and both are known risk factors for
depression [reviewed in Lavretsky and Small (2004)]. However, as these processes
(cerebrovascular disease and neurodegeneration) exist on a continuum, it is likely
that even subsyndromal disease (e.g., cerebrovascular disease without overt
strokes and pre-morbid Alzheimer’s disease) could also contribute to the depres-
sive syndrome in elderly.

3.1.1 Structural Neuroimaging in Late-Life Depression

The neuroimaging findings in LLD overlap with other diseases of aging, including
Alzheimer’s disease and cerebrovascular disease. Central and cortical atrophy
have been widely reported on both CT [reviewed by Morris and Rapoport (1990)]
and MRI (Ballmaier et al. 2004a; Pantel et al. 1997; Rabins et al. 1991). LLD is
also associated with reduced frontal lobe volume in general (Kumar et al. 2000),
and in particular, the orbitofrontal cortex (Ballmaier et al. 2004b; Lai et al. 2000;
Lee et al. 2003) as well as the gyrus rectus and anterior cingulate (Ballmaier et al.
2004b). There also are basal ganglia lesions (Rabins et al. 1991; Steffens et al.
1998; Tupler et al. 2002), especially in the caudate (Krishnan et al. 1992),
and the putamen (Steffens et al. 1998; Tupler et al. 2002), that may be worse
among late-onset patients. Finally, there is an association between chronic,
treatment-resistant depression in groups of mixed ages and right, frontostriatal
atrophy (Shah et al. 2002) and reduced volume of the left temporal cortex
including the hippocampus (Shah et al. 2002). Recently volumetric studies have
identified differences between early versus late-onset LLD (Ballmaier et al. 2004a,
b; Andreescu et al. 2011), with the late onset showing less frontal and more
temporal and parietal atrophy.

The hippocampus and amygdala appear to be especially sensitive to the effects
of major depression. In a study in which the subjects ranged in age from 23 to
86 years of age, both the hippocampus bilaterally and the amygdala core nuclei
bilaterally showed reduced volume in depressed subjects relative to controls
(Sheline et al. 1999). Reduced hippocampal volume is particularly, but not
exclusively, related to later age-of-onset (Steffens et al. 2002), and hippocampal
volume was inversely related to conversion to dementia (Steffens et al. 2002).
Moreover, the lifetime duration of depression (measured either as years since first
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episode or total number of days spent depressed) is very closely associated with
hippocampal volume (Bell-McGinty et al. 2002; Sheline et al. 1999).

In addition to studies of regional volume there have also been a number of
reports of differences in the MR signal within the white matter of individuals
with LLD. Several studies using semi-quantitative ratings (Butters et al. 2004;
Greenwald et al. 1998) and semi-automated measures (Taylor et al. 2003) have
found increased presence of white matter hyperintensities in periventricular and
subcortical regions. Salloway et al. (1996) found the periventricular and subcor-
tical hyperintensities to be most severe in those LLD subjects with late-onset
depression. More recently, diffusion tensor imaging has been used to more spe-
cifically study the white matter tracts, with results showing decreased fractional
anisotropy (a measure of diffusion orientation which is used as a marker of white
matter integrity) in prefrontal white matter (Alexopoulos et al. 2002; Taylor et al.
2004). While some studies have found that the disturbances in the white matter are
associated with poor treatment response (Alexopoulos et al. 2002, 2008) others
have not found this to be the case (Salloway et al. 2002).

3.1.2 Functional Imaging in Late-Life Depression

To date, most of the functional neuroimaging studies reported on LLD have
focused on the resting state and have identified changes in baseline (i.e., resting)
cerebral activity between patients and controls (reviewed in Table 1). One of the
earliest studies (Sackeim et al. 1990) demonstrated global decreased CBF using
the xenon inhalation technique. A decrease in global brain metabolism in LLD was
also found with PET (Kumar et al. 2000). Baxter et al. (1989) and Bench et al.
(1993) using PET have found the decreased blood flow and metabolism in
depression, in samples with age ranges extending from mid-life through late-life,
to be most prominent in the frontal cortex. Other specific areas with reported
decreases in LLD versus controls in PET studies include the medial temporal lobe
(Grön et al. 2002) and the caudal ACC (de Asis et al. 2001).

In a recent study exploring resting-state connectivity in the default-mode
network in late-life depression, we reported that, compared with non-depressed
elderly, depressed subjects pretreatment had decreased connectivity in the sub-
genual anterior cingulate cortex and increased connectivity in the dorsomedial
prefrontal cortex and the orbitofrontal cortex. The abnormal connectivity was
significantly correlated with the white matter hyperintensity burden. Remitted
elderly depressed subjects had improved functional connectivity compared to
pretreatment, although alterations persisted in the anterior cingulate and the pre-
frontal cortex when remitted elderly depressed subjects were compared with
non-depressed elderly. These results provide evidence for altered default-mode
network connectivity in late-life depression and emphasizes the role of vascular
changes in late-life depression etiopathogenesis (Wu et al. 2011).

Several functional neuroimaging studies of LLD have been conducted during
cognitive activation (e.g., de Asis et al. 2001; Grön et al. 2002). The cognitive
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activation functional imaging studies conducted in LLD have replicated the general
patterns of regional activity found during resting studies. In a study using a word
generation task, de Asis et al. (2001) found reduced CBF bilaterally in the dorsal
anterior cingulate and the hippocampus (as measured compared to controls), and on
a verbal declarative memory task, Grön (2002) found decreased left VLPFC and
hippocampal activation compared to elderly controls. Recently, on a cognitive
control task comparing LLD to elderly controls (Aizenstein et al. 2005); and see
Sect. 3 of this chapter) we found decreased BOLD activation in the DLPFC and

Table 1 Review of functional neuroimaging findings in late-life depression

Reference Imaging modality Subjects Primary finding

Sackeim et al.
(1990)

SPECT (rCBF using 133Xe
inhalation)

30 LLD;
30 EC

Reduced global rCBF

Kumar et al.
(1993)

PET (Glucose-15) 8 LLD; 8
EC

Reduced global cerebral
metabolism

Lesser et al.
(1994)

SPECT (rCBF using 133Xe
& Technetium-99 m-
HMPAO)

39 LLD;
20 EC

Reduced global rCBF

Smith et al.
(1999)

PET (Glucose-15) 6 LLD; 6
EC

Increased activity in right ACC
pre-treatment, which decreased
with treatment

de Asis et al.
(2001)

[150]H20 PET (paced word
generation)

6 LLD; 5
EC

Decreased activation b/l in dorsal
ACC & Hippocampus

Gron et al. (2002) Block-design FMRI
(declarative memory)

12 LLD;
12 EC

Increased vlpfc, decreased
hippocampus

Aizenstein et al.
(2005)

Event-related BOLD fMRI
(sequence learning)

11 LLD;
12 EC

Decreased b/l PFC and increased R
striatum

Aizenstein et al.
(2006)

Event-related BOLD fMRI
(cognitive control task)

14 LLD;
15 EC

Decreased PFC and decreased
ACC

Brassen et al.
(2008)

Block-design fMRI
(emotion reactivity) pre-
and post-treatment

13 LLD;
12 EC

Decreased response to negative
stimuli in the vmPFC,
correlated with symptoms
severity and attenuated by
symptom improvement

Smith et al.
(2009)

PET study 16 LLD;
13 EC

Increased cortical glucose
metabolism in brain regions
with cerebral atrophy
(compensatory response)

Andreescu et al.
(2009a)

Event-related BOLD fMRI
(cognitive control task)

8 LLD Sustained activation in the dorsal
ACC in subjects with LLD and
increased anxiety

Kenny et al.
(2010)

Resting-state fMRI 16 LLD;
17 EC

Increased connectivity in the
frontal, limbic, parietal, and
temporal areas.

Note SPECT single photon emission computerized tomography, PET positron emission tomog-
raphy, BOLD blood oxygen level dependent, PFC prefrontal cortex, ACC anterior cingulate
cortex
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ACC, and in a sequence learning task comparing LLD to elderly controls we found
the depressed elderly to have decreased prefrontal activation and increased striatal
activation. The increased striatal activation occurred during the trials that violated
the predictive sequential pattern, and thus are consistent with reports in mid-life
depression of increased negative reward activity in depression.

3.2 Late-Life Bipolar Disorder (LLBD)

Although the prevalence rates of Bipolar Disorder are relatively low among
community-dwelling elderly (up to 0.1%), there is significantly higher prevalence
(and higher morbidity) in institutional settings, such as personal care homes and
nursing homes where prevalence rates may be as high as 10%. Bipolar disorder the
elderly is probably heterogenous and its etiopathogenesis is complex.

Bipolar disorder may be divided into two distinct subtypes, the late-onset
bipolar (LOB) and the early onset bipolar (EOB) groups. LOB patients tend to
have a milder illness in terms of manic severity but they have higher medical and
neurological burden. They also have lower familial burden of bipolar illness as
compared to EOB patients. There is an increased risk of dementia and stroke in
patients with late-life bipolar disorder (Vasudev and Thomas 2010).

Structural and functional neuroimaging data in LLBD is quite scarce. The few
studies exploring the neurobiology of late-life bipolar disorder have reported that
relative to elderly controls and EOB, late-onset bipolar subjects have increased

Fig. 4 Elderly non-anxious subjects engage the PFC in suppressing worry (a). Elderly GAD
subjects (b) are not effective in engaging the PFC and maintained an increased activation the
posterior areas (temporo-occipital) (b)
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hyperintense lesions on T2 images around the putamen, as well as in the deep
white matter in frontal and parietal regions (Altshuler et al. 1995; Beyer et al.
2004). The authors concluded that their results provide empirical support to the
link between vascular risk factors and late-onset BD. It is plausible that, as in the
case of MDD, the T2 hyperintensities, which reflect ischemia, area long-term
consequence rather than a cause of bipolar illness. One possibility is that people
with BD have an excess of atherosclerotic risk factors that lead to microvascular
pathology at an even earlier age than MDD. However, using a strict selection of
elderly cases with BD and careful case–control matching for clinical and demo-
graphic variables, no volumetric differences were found between LLBD subjects in
the hippocampus, amygdala, entorhinal, and anterior cingulate cortex, nor a higher
degree of WMH, when compared with healthy individuals (Delaloye et al. 2009).

3.3 Late-Life Anxiety disorders

With an estimated community prevalence of 7.3%, late-life generalized anxiety
disorder (GAD) is the most common anxiety disorder among the elderly
(Wetherell et al. 2001; Wittchen and Hoyer 2001). Late-life GAD is associated
with decreased quality of life (de BEURS et al. 1999; Wetherell et al. 2001),
cognitive impairment (Mantella et al. 2007; Caudle et al. 2007), increased health

Fig. 5 Amygdala (red)- sACC (blue) functional connectivity during worry induction and worry
suppression in elderly controls (up) and elderly GAD subjects (down)
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care utilization (de BEURS et al. 1999), and poorer recovery after disabling
medical events (de BEURS et al. 1999; Astrom 1996). Recent fMRI studies
have reported that, when attempting to regulate their emotional responses,
elderly anxious subjects failed to activate prefrontal regions involved in the
down-regulation of negative emotions. These results, showing that elderly anxious
subjects are not effectively engaging the PFC in suppressing worry, may be
clinically relevant for developing personalized therapeutic strategies for the
treatment of late-life GAD (Andreescu et al. 2011).

Moreover, time-series analysis of non-anxious subjects showed that amygdala
and sACC activate in reverse synchronicity during phases of worry modulation
(see Fig. 4). In contrast, elderly GAD subjects displayed same direction activation
of the sACC and the amygdala during worry induction. Moreover, time-series
cross-correlation analysis showed a decrease correlation between the amygdala
and sACC in elderly GAD (Fig. 5).

These results suggest a possible age-related inability of the regulatory regions
such as sACC to modulate the worry process in late-life GAD (Andreescu et al.
2009b).

4 Future Directions

MRI has revolutionized clinical neuroscience research and has led to a more
sophisticated understanding of the neural substrates of mental disorders (Kumar
and Ajilore 2008). There has been tremendous increase in the use of MRI
(functional and structural) in studying the brain. These neuroimaging studies have
provided deep insight of how the brain works in terms of brain development,
function, aging, and other diseases. The use of neuroimaging is important for
studying the aging brain as it provides a platform for non-invasive studies of
structure and function to increase our understanding of the cognitive aging
(Reuter-Lorenz and Lustig 2005) and other age-related changes in the brain.

Applying MRI approaches to the identification of predictors of treatment
response may allow us early in the course of therapeutic interventions to identify
sub-groups of subjects with difficultly in treating mood disorders. In the future,
such subjects may be selected, based on their MRI profile, for more aggressive
interventions. Markers of white matter pathology may identify elderly patients for
whom the risk of antidepressant treatment may not be balanced by a high prob-
abability of treatment response (Kumar and Ajilore 2008; Alexopoulos et al.
2008). In a more personalized medicine era, advances in neuroimaging and
genomics could provide a personalized database that may help tailor and guide
treatment choices (Kumar and Ajilore 2008)

A potential new treatment is real-time fMRI (de Charms 2008), that has been
recently introduced as a method to directly control activation of localized brain
regions to affect neurophysiological mechanisms that mediate behavior and cog-
nition (de Charms 2007). Positive results have been reported in modulating pain
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perception (de Charms et al. 2005), and more recently in the down-modulation of
the sACC (real-time fMRI neurofeedback) (Paul Hamilton et al. HBM 2011).
Incorporating real-time fMRI in the future offers the promise of clinical translation
in which neuroimaging may also be used for clinical interventional purposes.
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The Role of Diffusion Tensor Imaging
in the Study of Cognitive Aging

Owen Carmichael and Samuel Lockhart

Abstract This chapter gives an overview of the role that diffusion tensor MRI
(DTI) can play in the study of cognitive decline that is associated with advancing
age. A brief overview of biological injury processes that impinge on the aging
brain is provided, and their overall effect on the integrity of neural architecture is
described. Cognitive decline associated with aging, and white matter connectivity
degradation as a biological substrate for that decline, is then described. We then
briefly describe the technology of DTI as a means for in vivo, non-invasive
interrogation of white matter connectivity, and relate it to FLAIR, a more tradi-
tional MRI method for assessing white matter injury. We then survey the existing
findings on relationships between aging-associated neuropathological processes
and DTI measurements on one hand; and relationships between DTI measurements
and late-life cognitive function on the other. We conclude with a summary of
current research directions in relation to DTI studies of cognitive aging.

Keywords Diffusion tensor MRI � Cognitive aging � Brain aging � White matter
injury � Connectivity
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1 Scientific Context of DTI in Aging

1.1 Brain Changes Associated With Aging

The aging brain is beset by a variety of deleterious biological processes that
develop insidiously over the course of many years, interact with each other, and
eventually trigger the neuronal dysfunction and death that underlie late-life
cognitive decline (Fig. 1). Beginning in roughly the sixth decade of life, an array of
cardiovascular risks promoted by environmental and genetic factors trigger sub-
clinical primary vascular injury through multiple, complex etiological pathways: for
example, chronic glucose dysregulation is associated with chronic low-grade
inflammation (Miranda et al. 2005); and hypertension and atherosclerotic plaque
cause vascular remodeling, i.e. changes to blood vessel structural characteristics that
determine the fluid mechanical properties of blood flow (Kiechl and Willeit 1999).
The vascular injury processes interact; for example inflammation exacerbates dys-
function of the endothelium by dramatically modulating leukocyte trafficking
(Fisher 2008). At approximately the same time, Alzheimer’s Disease (AD) risk
factors promote the production and aggregation of beta amyloid in extracellular
spaces and within blood vessels (Cummings 2004) (i.e., cerebral amyloid angiopa-
thy, CAA). Amyloid exacerbates inflammatory processes, and CAA exacerbates
vascular remodeling; vascular remodeling may conversely hinder the clearance of
amyloid plaque through vascular spaces (Preston et al. 2003).

Amyloid deposition, inflammation, vascular remodeling, and endothelial
dysfunction trigger a complex cascade of secondary injury processes including
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apoptosis, hypoxia, oxidative stress, excitotoxicity, and tau phosphorylation. Other
factors have the potential to influence these primary injury processes: nutritional
factors such as B vitamins can modulate inflammatory processes independent of
cardiovascular risks for example (Selhub et al. 2000), and sex hormone levels may
modulate injury processes through a number of pathways (Janowsky 2006). The
secondary processes cause neuronal injury including demyelination, neurotrans-
mitter dysregulation, and disruption of cell homeostasis. These effects and
subsequent neuronal death give rise to the profound loss of cognitive abilities that
typify late-life cognitive decline. Importantly, there is a growing sense that the
course of late-life brain change is commonly influenced by an admixture of
multiple, concurrent, injury processes, rather than a single, isolated pathological
process such as AD that is either present or absent (Jagust et al. 2008; Schneider
and Bennett 2010; DeCarli 2006).

1.2 Cognitive Changes Associated With Aging

Broad variability across the population in risk factors for aging-related brain injury
processes has given rise to broad variability in the time course of late-life brain
changes. This heterogeneity in brain change trajectories is presumed to drive the
great variability in late-life cognitive trajectories that is one of the hallmark
observations of cognitive aging research (Fig. 2). There are robust inter-individual
differences in cognitive functioning throughout adulthood and this heterogeneity is
amplified by differences in trajectories of cognitive change that emerge as people
age. Longitudinal studies of older individuals reveal widely differing rates of
cognitive decline, as well as many cases of stable function and even modest
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Hyperlipidemia
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Fig. 1 A partial, simplified view of the complex array of interconnected biological processes
that promote white matter injury and subsequent cognitive decline in the aging brain. Because
diffusion tensor MRI provides non-invasive measurements of white matter injury, its role in
cognitive aging research is to help elucidate the links between biological factors (including
vascular, degenerative, nutritional, genetic, and other factors), white matter injury, and cognitive
function
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improvement (Albert et al. 1995; Colsher and Wallace 1991; Christensen et al.
1999; Rubin et al. 1998; Schaie 1988; Wilson et al. 2002; Zelinski et al. 1993;
Mungas et al. 2010). Variability in longitudinal trajectories translates into the
increased variability of function over time that is one of the basic observations of
cross-sectional studies of cognitive aging (Christensen et al. 1999). In the context
of this broad heterogeneity, the prediction of late-life cognitive decline has
emerged as one of the central goals of cognitive aging research.

1.3 Late-Life Cognitive Decline as a Disconnection Syndrome

A convergent body of cognitive neuroscience research supports the notion that a
substantial portion of late-life cognitive decline observed in the aforementioned
studies is accounted for by disconnection of distributed networks of brain regions
that function in concert to give rise to higher-order cognitive abilities (Buckner
2004; O’Sullivan et al. 2001; Seeley et al. 2007). Coordinated activity of dis-
tributed sets of brain regions is required for successful memory function, language,
attention, and other aspects of higher-order thought. Mapping out the circuitry and

Fig. 2 Population variability in aging-related brain injury processes likely leads to the broad
variability in cognitive decline observed in many studies of elderly individuals. Trajectories of
psychometrically matched measures of executive function (left) and episodic memory (right) are
plotted for 60 randomly selected individuals from a longitudinal study of aging (Mungas et al.
2010), including 20 individuals clinically diagnosed at baseline with mild cognitive impairment,
20 clinically diagnosed at baseline with dementia, and 20 who were cognitively normal at
baseline. On average, the more clinically impaired individuals exhibited lower cognitive function
at baseline and greater longitudinal declines; however, there is substantial variability in
trajectories and substantial overlap between clinical diagnostic groups. The role of DTI in
cognitive aging research is to provide in vivo, non-invasive measurements of white matter injury,
from which some of this cognitive heterogeneity is hypothesized to arise. [See Mungas et al.
(2010) for more information]
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function of these networks, and the ways their architecture relates to domain-
specific cognitive function, has been a key goal of cognitive neuroscience research
since neuroimaging technologies became widely available.

Visual attention provides a typical example of how crucial distributed brain
networks are for successful cognitive functioning, even for tasks that seem rela-
tively rudimentary. It relies on a set of executive control processes critical to
successful visual search of the environment, including interaction between top-
down, goal-oriented search, and bottom-up, reflexive orienting (Madden 2007).
Electrophysiological and neuroimaging research suggests that even such simple
behavior relies upon multiple distributed brain regions that interact selectively,
synchronously, and successfully as part of a network (Corbetta et al. 2008;
Corbetta and Shulman 2002). Specifically, ventral frontal-parietal regions facilitate
bottom-up attention, while dorsal frontal-parietal regions contribute to top-down
attention (Kastner and Ungerleider 2000; Woldorff et al. 2004; Bisley 2011).
Neural activity in frontal and parietal regions is thought to modulate perceptual
system activity to enable selective sensory processing for the target (Bar 2003;
Hopfinger et al. 2000). Thus, multiple brain regions in distributed networks must
be recruited in concert to perform a relatively simple function—attending to visual
stimuli—that none could complete in isolation.

Cognitive processes are resolved by neural systems that are both localized and
distributed (Mesulam 1990). Indeed, both connectivity and modularity of networks
is critical to brain function and cognition (Mesulam 1998; Bullmore and Sporns
2009). Focal, modular brain regions are thought to perform dedicated, specialized
processing of particular aspects of cognitive function. Reciprocal connectivity
allows for information flow among modules to create larger, distributed cognitive
networks. It has been argued that network anatomy and connectivity define the
limits of the cognitive tasks that can be performed, and allow humans the flexi-
bility necessary to perform them (Mesulam 1998).

Network modularity and connectivity have been mapped out through non-
human primate anatomical and electrophysiological studies, as well as human
neuroimaging research (Corbetta and Shulman 2002). In humans, networked
activity is important for cognitive functions as diverse as visual attention, working
memory (Rissman et al. 2004), episodic memory (Eichenbaum et al. 2007),
semantic memory (Hagoort et al. 2008), and cognitive control (O’Reilly et al.
2010). In particular, nodes in prefrontal cortex are thought to be essentially
involved in multiple cognitive networks (Mesulam 1998; Miller and Cohen 2001).

The question of how activity is coordinated among diverse brain regions in a
connected network is an active area of neuroscience research. Synchronization of
neural activity is thought to be required for successful cognitive functioning (Fries
et al. 2008). However, in most brain regions, the mechanisms of coordination and
integration of information from multiple disparate network modules are unex-
plained, and discovering these mechanisms is an ongoing challenge.

Because cognitive networks utilize white matter to connect distributed cortical
nodes, aging-related changes in network behavior are hypothesized to follow from
changes in the integrity of white matter connections, in addition to likely structural
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and functional changes to neuronal cell bodies, dendrites, and synapses (Greenwood
2000; Tisserand and Jolles 2003). This ‘‘disconnection hypothesis’’ states that injury
to myelin and the axon proper diminish the efficient axonal conduction of electrical
signals, thus reducing information processing efficiency in distributed networks,
thus leading to diminished cognitive abilities with age (O’Sullivan et al. 2001).

It is within the context of the disconnection hypothesis that DTI serves to
provide its most valuable contributions to the study of cognitive aging—as
described below, DTI has the potential to assay the integrity of axonal connections
between nodes in distributed cognitive networks, and thereby assess relations
between network connectivity and age-related cognitive decline.

2 DTI Measurement

2.1 Background

DTI is an MRI method for using magnetic field gradients to measure the directional
distribution of water diffusion at each location in the brain. Many reviews have
described the technology underlying DTI data acquisition in detail [for example,
Bammer et al. (2009), Chanraud et al. (2010), Mukherjee et al. (2008a, b), Beaulieu
(2002)]. The simplest way to conceptualize DTI may be as an acquisition of several
component images, each of which quantify the degree to which water molecules in
the brain appear to be diffusing along a particular direction of travel. Because each
such component image only provides diffusion information along a particular
direction of travel, several component images, corresponding to several lines of
travel, are acquired in rapid sequence and aligned to each other to build a fully 3D
representation of the spatial distribution of water diffusion at every location in the
brain. If, for a particular location in the white matter, local water diffusion appears
to be anisotropic, that is, if water strongly prefers to diffuse along certain well-
defined spatial directions and not others, we indirectly infer the presence of highly
organized axonal structures: the water is likely to be diffusing within axons along
their directions of travel, or within or between myelin sheaths. If, conversely, water
is free to diffuse in any and all spatial directions where an axon tract is expected to
occur, we can indirectly infer that axonal injury, demyelination, gliosis, or edema
may be making this free diffusion possible.

2.2 Preprocessing

Preprocessing must be applied to insure that all of the DTI component images
avoid common MRI acquisition artifacts and are in spatial correspondence with
each other. Geometric distortions are introduced into each component image as
part of the MRI measurement process; these can be corrected at acquisition time
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by dynamically modifying parameters of the acquisition sequence, or they can be
corrected post-hoc by linearly or nonlinearly aligning the component images to
each other or to a group average.

2.3 Diffusion Representations

Once the component images are brought into alignment with each other, each
location in the brain is represented by the amount of water diffusion along each of
the directions of travel. The key post-processing step in DTI is the extrapolation of
this information into a mathematical object that quantifies the amount of water
diffusion locally along any and all directions of travel. Traditionally, this spatial
distribution of water diffusion has been summarized in terms of a three-by-three
matrix that in essence describes three principal, orthogonal directions along which
water diffuses, and the amount of diffusion along those directions (Fig. 3, bottom
left). Water diffusion along any other direction is interpolated from the three
preferred ones. Estimating the three directions and diffusion magnitudes requires
only six component images, representing diffusion along orthogonal directions,
together with an additional T2-weighted image, and thus this representation has
been prominent since the earliest days of DTI. However, the ability of the three
orthogonal directions to represent complex spatial distributions of water diffusion
is limited; depending on whether water appears to diffuse locally along one, two,
or three prominent orthogonal directions, the spatial distribution of water diffusion
is required to be represented as pencil-like, pancake-like, or sphere-like, respec-
tively. Now that greater numbers of component images per scan are routinely
acquired, the ability to mathematically represent more complex spatial distribu-
tions of water diffusion is available. The canonical example is a white matter fiber
crossing, at which water diffuses preferentially along two (possibly orthogonal)
directions, but water diffusion along all other directions is relatively weak; in a
three-orthogonal-direction representation, a pancake-shaped distribution will result
in which all directions in between the two preferred ones will appear to have
strong water diffusion as well. However, while a number of higher-order diffusion
representations have been developed, no single one of them has risen to domi-
nance, and methodologies for manipulating complex diffusion representations are
still a highly active area of computational research [see, for example, Frank
(2002), Liu et al. (2004), Tournier et al. (2004)].

2.4 DTI Summary Measures of Local White Matter Integrity

Because mathematical representations of DTI data are more complex than those
provided for more traditional MRI data, researchers have sought to summarize it
into univariate summary measures that capture characteristics of the water
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diffusion directional distribution. Because the three-orthogonal-direction repre-
sentation still predominates in neuroscientific studies, the univariate summaries are
predominantly calculated from the relative diffusion magnitudes along each of the
directions. Fractional anisotropy (FA), for example, calculates the ratio of the
magnitude of water diffusion along the most preferred direction to the sum of
magnitudes along all three directions, effectively summarizing how preferred the
single most preferred diffusion direction is over the others (Fig. 3, top left). This is
commonly used as a proxy measure of local white matter microstructural integrity,
with clear limitations. Because it is a ratio, FA does not quantify the sheer amount

Fig. 3 Univariate summary measures and visual depictions of the diffusion tensor for a typical
elderly individual. Top Images showing fractional anisotropy (FA, left) and mean diffusivity
(MD, right) for a single slice. For both measures, lesser values are rendered in darker colors.
Bottom Expanded view of the slice section shown as a yellow box in the upper left view.
Ellipsoids are used to depict the orientations of the three principal orthogonal directions of water
diffusion at each location (left). An arrow points in the orientation of the first principal diffusion
direction at each location (right)
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of water diffusion in an absolute sense; in addition, locations with two or more
well-defined directions of strong water diffusion will appear to have low FA. Mean
diffusivity (MD), conversely, provides a measure of the total bulk of water
diffusion by taking the average of the magnitudes of water diffusion along the three
orthogonal directions, and thus does not directly provide a sense of whether that
diffusion tends to occur preferentially along one or another direction (Fig. 3, top
right). Several minor variants of FA and MD have been presented in the literature,
each of which incorporate quantification of the sheer volume of water diffusion
and/or the degree to which that diffusion preferentially follows one or another
spatial direction. Each of the univariate summaries is limited in its ability to
quantify the structural integrity of the underlying white matter, and their inability
to disambiguate differing states of white matter organization has largely driven the
development of more expressive diffusion representations. From a cognitive aging
perspective, the key impact of DTI summary measure limitations has been the
inability to establish thresholds on them that differentiate normal, healthy white
matter from lesioned tissue. That is, depending on the intrinsic organization of the
white matter locally, FA may tend to be relatively low for no other reason than that
there are multiple preferred diffusion directions. In other locations where only a
single strong diffusion direction is expected, low FA may be a marker of white
matter disruption.

Ultimately, to truly disentangle the integrity of white matter from its underlying
geometry, higher-order diffusion representations are needed. However, lacking
such data, a practical approach to this problem is to use a development sample of
healthy young individuals to calculate nominal values of diffusion summaries at
every white matter location in a standardized space; white matter integrity in novel
subjects is then indexed against these population norms (Lee et al. 2010) (Fig. 4).

2.5 DTI Summary Measures of Connectivity

Univariate DTI summary measures can be useful for characterizing local white
matter integrity, and because they are univariate, they can be relatively easy to
incorporate into traditional MRI analytic pathways. But DTI additionally provides
the capability to integrate multiple water diffusion measurements over a trajectory
into summary measures of interregional connectivity, which can then be used to
quantify the integrity of structural connections among distributed cognitive net-
works. Higher integrity of longer-range structural connections is indicated by
greater directionality of water diffusion along the trajectory; such trajectories may
possess greater myelination, greater axonal integrity, or denser concentration of
myelinated axons.

Deterministic tractography, the traditional method for using DTI to assess the
integrity of interregional connectivity, traces a set of curved trajectories, or fibers
that originate inside of one region of interest, and follow paths along the prefer-
ential water diffusion directions implied by the local diffusion representation
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(Fig. 3, bottom right). Each fiber path represents a plausible axon tract trajectory.
Connectivity between a pair of regions is usually determined by tracing all
such curved fibers that originate within any starting voxel in the first region, and
isolating only those that terminate in the second region. Complications are added
on top of this basic procedure: for example, various mathematical techniques are
used to make sure that the traced fiber paths are reasonably straight and smooth,
and post-processing steps cull those fibers that are so short and contorted that they
probably do not reflect a valid white matter tract. Additionally because traditional
DTI generally only provides robust water diffusion data within the white matter,
assessing connectivity between a pair of gray matter structures involves the
uncertain task of identifying proximal white matter voxels to use as fiber starting

Fig. 4 Indexing FA against normative values is a practical method for converting FA into a
white matter integrity measure that is independent of intrinsic local fiber organization. Top left
Slice of an FA map of a typical elderly individual. Top right Co-registered slice of the mean FA
map from a population of healthy young individuals, revealing spatial variability in FA values
that is due to the intrinsic local geometric organization of fibers. Bottom left FA within the white
matter pixels of the elderly individual is shown, suggesting a spatially varying pattern of white
matter integrity. Bottom right Dividing the elderly individual’s FA at each location by the
corresponding young mean FA reveals a different spatial map of white matter integrity, expressed
as percentages of expected young values
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points. In the end, the result is a set of fibers that purport to connect one region to
another; the degree of connectivity between the two can be quantified in terms of
the number of such fibers.

Probablistic tractography overcomes many of the practical limitations of
deterministic tractography at the cost of increased computational burden. The
governing principle of probabilistic tractography is to consider, for each starting
voxel, all possible fiber trajectories that originate there and terminate somewhere
else in the brain. Each such fiber trajectory is assigned a probability representing
the degree to which water diffusion directionality along the trajectory are con-
sistent with the hypothesis that a white matter tract follows that path. Interregional
connectivity is quantified by summing the probabilities of all such fiber trajectories
that originate in one region and end in another. In the abstract, this overcomes the
key limitation of deterministic tractography: the requirement that each starting
voxel pick exactly one fiber trajectory through the brain. Depending on the con-
figuration of white matter tracts and level of noise in the data, there may be points
in the trajectory where multiple directions of travel seems equally plausible, and
probabilistic tractography gracefully considers the likelihood of all such putative
paths. The practical problem with probabilistic tractography is that there are
infinitely many possible fiber trajectories emanating out of each starting voxel, and
thus summing fiber probabilities over all possible trajectories is intractable to
compute. Therefore, the art of probabilistic tractography involves exploring the
space of possible fiber trajectories in a time-efficient way. Even if this space is
explored efficiently, however, there is no way to make the jump from one tra-
jectory per starting voxel to multiple without heaping on additional computation.

Lacking high-quality DTI data that allows for robust deterministic tracking, and
lacking state-of-the-art computational tools for probabilistic tractography, one
common fallback position is to manually trace the paths of interregional white
matter tracts using standardized anatomical tracing protocols together with a
combination of DTI, anatomical, and functional images, possibly overlaid on top
of each other. The univariate summary measures of local white matter integrity
may then be summarized over the region to provide an overall summary of
interregional connectivity; or, a voxel-based analysis of the local integrity mea-
sures can be reduced to focus only on those white matter tract voxels. This
effectively converts tractography into a time-consuming manual process, although
it provides a clear means for imposing expert neuroanatomical knowledge about
tract trajectories onto the DTI analytic process.

2.6 Relation to FLAIR

The application of DTI to white matter characterization in aging has naturally
raised the question of whether the information it provides is redundant with or
complementary to that provided by several conventional MRI sequences that are
useful for white matter characterization (Haller et al. 2009; Wozniak and Lim
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2006). The most widespread of these is fluid attenuation inversion recovery
(FLAIR), in which the T2 signal from parenchyma is carefully measured while
that of cerebrospinal fluid (CSF) signal is suppressed. In white matter, the FLAIR
contrast is indirectly determined by the density of lipid protons within myelin,
which facilitate the relaxation of water protons bound to its macromolecular
matrix (Barkhof and Scheltens 2002). Areas of abnormally high signal in the white
matter on FLAIR are a common finding on scans of the elderly brain; such white
matter hyperintensities (WMH) are associated with cognitive impairment in these
individuals (DeCarli et al. 2005; Nordahl et al. 2006; Nordahl et al. 2005; Yoshita
et al. 2006). WMH reflect various pathogenic mechanisms, including cerebral
ischemia and degradation of myelin in adjacent fiber tracts (Kim et al. 2008),
although lacking additional data, we can only indirectly infer which of these
mechanisms contribute to specific WMHs based on WMH size and location
(DeCarli et al. 2005; Schmidt et al. 2003).

It appears that as white matter slowly and progressively degrades with
advancing age due to various pathological mechanisms, DTI provides fairly sen-
sitive detection of such changes, even when they are quite subtle. White matter on
FLAIR, meanwhile, might only become hyperintense when this degeneration
reaches a more advanced stage. There are two streams of evidence supporting this
notion. First, on co-registered FLAIR and DTI, regions of reduced white matter
integrity, as measured by DTI-based FA or MD, extend beyond the boundaries of
FLAIR-based WMH, and such abnormal DTI values gradually fall back to normal
values with distance from the WMH (Bronge 2002; Firbank et al. 2003; Maillard
et al. 2011) (Fig. 5). This suggests that aging-associated white matter damage may
involve foci of severely damaged tissue surrounded by more mild damage; FLAIR
is only able to identify the former, in the form of WMHs, while DTI can identify
both the core and the surround. Second, markers of aging-associated neuro-
pathological processes, including vascular disease and inflammation, may be more
strongly associated with DTI than they are with WMH burden; this reinforces the
view that DTI may provide a more ‘‘continuous’’ measure of white matter dys-
function while WMHs are only those sites where this dysfunction has passed a
threshold of high severity (Fornage et al. 2008; Nitkunan et al. 2008a; O’Sullivan
et al. 2004; van Dijk 2005; Wersching et al. 2010).

While DTI appears to have the potential to provide more sensitive measurement
of aging-associated white matter dysfunction than FLAIR, its value relative to
FLAIR for this purpose is currently not entirely clear for three key reasons. First,
the number of studies that have measured both FLAIR and DTI in the same
individuals, and directly evaluated what information about prevalent aging-related
white matter pathology is shared between the two or unique to one or the other, is
still very small. One study has suggested that by investigating relationships
between FLAIR signal intensity and DTI measures within WMHs, we can effec-
tively categorize WMHs according to the severity of WMH dysfunction, but the
clinical value of such deeper characterization of WMH severity is currently
unclear (Zhan et al. 2009). Second, while several serial FLAIR studies have used
multiple scans per individual to directly chart the longitudinal course of WMH
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changes in relation to risk factors and cognition, only three analogous serial DTI
studies have appeared that report associations between DTI-based measures and
ancillary variables of interest (Charlton et al. 2010; Teipel et al. 2010; Sullivan
et al. 2010). Third, while FLAIR is a longstanding MRI technology that is rela-
tively easy to acquire, DTI is a recent development, with attendant problems
related to data reliability and biases (see Sect. 5.1 below). Thus, it remains to be
seen whether FLAIR and DTI will continue to provide complementary information
about aging-associated white matter changes as time goes on.

3 Relation Between DTI and Cognitive Aging Risk Factors

3.1 Age

Aging-associated changes to the microstructural properties of white matter in the
absence of neurodegenerative pathology were well known from autopsy studies
prior to the widespread adoption of DTI (Aboitiz et al. 1996). However, the
consensus view at that time was that aging-associated white matter changes
detectable in vivo were confined to white matter lesions on T2-weighted MRI; the
bulk volume of white matter on conventional T1-weighted sequences, unlike that

Fig. 5 Left White matter hyperintensities (WMHs) from FLAIR MRI may represent only the
focal cores of severe white matter injury surrounded by penumbrae of more mildly injured tissue.
Fractional anisotropy (FA) from DTI may provide a more graded measure of white matter
integrity that captures mild injury to the WMH penumbra. Top right Example co-registered slices
of FLAIR and FA images of a typical elderly individual. Middle right The location of a FLAIR-
based WMH is shown overlaid as a pink/white blob. Compared to a typical young individual
(lower right), FA is reduced in a broad zone that extends far beyond the WMH boundary,
suggesting a more graded and spatially extended white matter injury process than is captured
through WMHs. For more information, see Maillard et al. (2011)
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of gray matter, did not show strong signals of decline with advancing age
[see, e.g., Raz et al. (2005), Raz et al. (1997, 2004)]. However, a set of early
studies finding associations between advancing age and regional DTI summary
measures established DTI as a useful technology for non invasively detecting such
age-related changes in vivo (Moseley 2002; Sullivan and Pfefferbaum 2006). The
most consistent findings from these early region-of-interest studies were that FA
decreased, and MD increased, with advancing age in cognitively intact elders;
and that age-associated white matter microstructural alterations followed an
anterior-to-posterior gradient, with prefrontal regions especially vulnerable to such
degradation. Specific white matter regions that showed the strongest associations
with advancing age included the anterior cingulate gyrus, middle frontal gyrus,
genu of the corpus callosum, and centrum semiovale. Later studies largely con-
firmed the association between DTI measures and advancing age, although the
notion that prefrontal white matter is especially vulnerable to aging effects has
received mixed support. Furthermore, there has been some variability in the life
course of white matter maturation and degradation across the lifespan as reported
by DTI studies; they generally agree that white matter integrity follows an inverted
U-shape curve over the lifespan, with developmental early-life increases in white
matter integrity giving way to aging-associated degradations later in life, but it is
not clear when declines in white matter integrity commence in earnest: estimates
have ranged from the third to sixth decades of life.

The noteworthy advance of these studies is that they provided a new indi-
cator of brain health that deteriorated with increasing age even among those
lacking any evidence of clinically relevant neurodegenerative pathology.
In addition because the measurements assayed the integrity of interregional
connectivity, they provided a plausible link between brain structure and subtle
cognitive declines observed in otherwise-intact individuals. However, in bio-
logical terms, the discovery of a connection between DTI and chronological
age provided more questions than answers: it suggested that a set of white-
matter-damaging biological processes may be acting on the brain over the
lifespan, and age can serve as a proxy measure for the combined effects of all
such processes, but the roles that specific biological processes—possibly related
to AD, CVD, and diverse additional factors—play in promoting such micro-
structural white matter change remained unclear. Indeed, one of the seminal
advances in aging research since the publication of the early DTI studies of
aging has been the discovery that a great number of cognitively intact, com-
munity-dwelling elderly individuals may in fact be in the process of developing
clinically silent neuropathology related to CVD and AD slowly and progres-
sively over the course of years, if not decades. Understanding the effects of
such pathologies on white matter microstructure could lead to prevention of
age-related FA reductions, and possibly to prevention of the cognitive decline
that is associated with advancing age.
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3.2 Cerebrovascular Dysfunction

Due to the very high prevalence of cardiovascular disease beginning in midlife,
cerebrovascular dysfunction represents a plausible biological substrate driving
decline in DTI-based white matter integrity measures in advancing age. DTI
measures are sensitive to gliosis, edema, and demyelination, each of which can be
associated with either chronic or acute ischemic vascular changes. It is clear that
DTI measures are modified in the vicinity of ischemic infarction (Chen et al.
2008). In addition, DTI summary measures suggest reduced white matter integrity
in clinical conditions including CADASIL (Holtmannspotter et al. 2005) and
ischemic vascular dementia (Assaf et al. 2002; Xu et al. 2010) that are charac-
terized by severe ischemic changes, often in the absence of overt concomitant
pathology (Jones et al. 1999). In addition, as noted above, DTI measures may be
strongly related to FLAIR-based measures of white matter hyperintensity, which
are in turn strongly linked to cerebrovascular dysfunction.

However, while DTI measures appear to indicate reduced white matter integrity
in overt cerebrovascular disorders, it is less clear whether DTI can indicate subtle
integrity reductions during the many years in which a constellation of vascular risk
factors may be promoting progressive, clinically silent cerebrovascular dysfunc-
tion, which in turn may be reducing white matter integrity in the absence of
clinically relevant behavioral changes. One study reported that, relative to matched
controls, FA is reduced among individuals with a history of hypertension, and that
FA is further reduced among those with small vessel disease (Nitkunan et al.
2008b). These reductions in FA correlated with a magnetic resonance spectroscopy
marker of axonal loss and dysfunction (N-acetylaspartate), and the strength of the
correlation increased in a stepwise fashion moving from control, to hypertensive,
to small vessel disease groups. A second study noted that individuals with long-
standing type 1 diabetes had significantly reduced FA relative to matched controls;
moreover, in the diabetic individuals, longer disease duration and poorer glucose
regulation was correlated with reduced FA (Kodl et al. 2008). A third study linked
adiposity to reduced white matter integrity on DTI (Cazettes et al. 2011); this and
another study found associations between decreased white matter integrity and
increases in markers of systemic inflammation that commonly accompanies
cerebrovascular dysfunction (Wersching et al. 2010). While these studies may
have implications for the hypothesis that at least part of the age-associated declines
in white matter integrity may be driven by the effects of hypertension, type two
diabetes, obesity, and other cardiovascular risk factors even in the absence of an
acute cerebrovascular event, a great deal more study is required to further sub-
stantiate this view. In particular, the relations between more direct biochemical or
imaging-based measures of vascular dysfunction and DTI measures have not been
explored to any great depth. Examples of blood markers of vascular injury that
would enable such a study include inflammatory cytokines and vascular adhesion
molecules; imaging markers of vascular injury, such as perfusion MRI measures of
cerebral blood flow, susceptibility weighted MRI measures of microhemorrhage,
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and MRI measures of atherosclerotic indices, would also be viable candidates for
exploring relationships with DTI.

3.3 Genetics (APOE)

Apolipoprotein E (APOE) genotype is the most strongly validated genetic risk
factor for clinical dementia of the Alzheimer type, and studies that assess
relationships between DTI measures and APOE genotype typically view the
relationships through this lens. From this point of view, cognitively normal elders
possessing the 3-4 or 4-4 genotype are at increased risk of developing clinical AD
in the future, and therefore may exhibit evidence of early AD pathology that is not
so severe as to manifest itself through behavioral changes. As such, cognitively
normal elderly carriers of the 3-4 or 4-4 genotype may represent a compelling in
vivo model for the earliest AD-associated brain changes, and detecting such brain
changes has important implications for the pathophysiology of AD pathology as
well as its early detection and prognosis (Reiman et al. 1998; Strittmatter and
Roses 1995; Reiman et al. 2009).

Taking a broader view, however, the APOE gene codes for an extracellular
cholesterol transport protein that is involved in a wide variety of cellular metabolic
pathways (Strittmatter and Bova Hill 2002; Laskowitz and Vitek 2007). Besides
the AD cascade, these pathways are implicated in the development of a variety of
vascular and neurological injury processes, each of which could contribute to
white matter damage evident on DTI. Indeed, possession of one or two e4 alleles
may promote inflammation and atherosclerosis (Kontush and Chapman 2006), and
may be a risk factor for poorer long-term outcomes in traumatic brain injury (Zhou
et al. 2008), hemmorhagic stroke (Martinez-Gonzalez and Sudlow 2006), and
possibly multiple sclerosis (Pinholt et al. 2006). With these findings in mind,
associations between APOE and DTI measures among cognitively healthy elders
should be viewed within the broader context of the role APOE plays in promoting
a wide variety of deleterious aging-related biological processes.

Several studies on this topic have reported that possession of at least one e4
allele late in life is independently associated with diminished white matter
integrity. The regional specificity of the findings have varied, with reported APOE
effects on the left hippocampal gyrus (Honea et al. 2009), across broad regions of
the white matter (Heise et al. 2010), on the medial temporal lobe and splenium of
the corpus callosum (Persson et al. 2006), and on the parahippocampal gyri
(Nierenberg et al. 2005). The possession of both APOE and a family history of
clinical AD was reported to be associated with diminished WM integrity in a range
of white matter tracts among cognitively normal women (Smith et al. 2010). In
addition, APOE may exacerbate the white matter damage that is associated with
development of clinical AD (Wang et al. 2010). Only one study to date has
examined the relative time course of APOE-related loss of white matter integrity
over the life span; APOE was associated with diminished integrity in both young
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adult (aged 20–35 years) and older (50–78) groups, and age did not significantly
modulate the relationship, suggesting that APOE effects on white matter may in
fact assert themselves in early adulthood and remain stable across the remainder of
the lifespan (Heise et al. 2010). The consistent pattern of these studies is a det-
rimental effect of APOE on white matter integrity, possibly due to many biological
mechanisms that APOE is linked to.

3.4 Amyloid

Under the amyloid hypothesis of AD, the production and aggregation of amyloid
beta is the primary biological event that triggers a variety of secondary injury
processes that, acting together, compromise the structure and function of the brain,
eventually leading to the profound loss of cognitive function characteristic of
clinical AD. Although this pathological cascade has been traditionally viewed as
preferentially damaging neuronal cell bodies, dendrites, and synapses, a growing
body of DTI studies have suggested that the presence of clinical AD and its
clinical precursor, mild cognitive impairment, is associated with diminished white
matter integrity as well (see Sect. 4.2). Whether these effects represent secondary
results of primary injury to the gray matter, as opposed to primary injury processes
acting directly on axons, myelin, and glia, is currently unclear. However, what is
clear is that an advanced stage of the AD pathological cascade, characterized by
clinically significant cognitive impairment, is associated with diminished white
matter integrity as measured by DTI.

The motivation for more specifically studying the relationship between brain
amyloid burden and DTI measures is provided by the alarming number of elderly
individuals who show no clinically significant cognitive deficit, yet already harbor
significant levels of brain amyloid (Aizenstein et al. 2008). These individuals may
represent the earliest detectable stage of the AD pathology process: they already
show subtle gross anatomical, functional, and neuropsychological deficits (Fagan
et al. 2009; Sperling et al. 2009; Pike et al. 2007), and many of them are likely to
develop clinical AD in the long term (Morris et al. 2009). However, among
cognitively intact elders, the impact of significant brain amyloid on white matter
connections is not entirely clear. Studies of white matter changes among clinical
AD patients have been limited in addressing this issue because at that later stage of
the AD pathology process, white matter deficits may reflect the accumulated
effects of amyloid, secondary AD-related injury processes, and possibly injury
related to very common concomitant pathology (Cummings 2004; Schneider et al.
2007). Elucidating this issue could clarify the relevance to patients of proposed
clinical diagnostic criteria defined by amyloid burden in the absence of significant
cognitive impairment (Blennow and Zetterberg 2010).

The scientific rationale for a specific relationship between amyloid and white
matter integrity arises primarily from evidence that amyloid beta exacerbates
cerebrovascular dysfunction, which in turn promotes white matter disruptions
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(Smith and Greenberg 2009; Whitehead et al. 2007). In addition, there is at least
one intriguing report that amyloid may more directly impact white matter integ-
rity, by inhibiting the myelin production functionality of mature oligodendrocytes
(Horiuchi et al. 2010). However, published data on direct relationships between
amyloid burden and DTI measures in asymptomatic elders has been extremely
limited. In vivo human data to date has been limited to demonstrations of reduced
white matter integrity among individuals clinically diagnosed with intracerebral
hemorrhage caused by amyloid deposition in blood vessels (Viswanathan
et al. 2008; Salat et al. 2006). Meanwhile, one DTI study of transgenic mice that
produce amyloid describes progressive degradation of white matter integrity over
the lifespan coinciding with the approximate time course of amyloid plaque
accumulation (Sun et al. 2005) [See, however, Harms et al. (2006)].

4 Relation Between DTI and Cognition in the Elderly

4.1 Across the Span of Cognitive Trajectory

Studies relating DTI measures to cognitive function have been driven by diverse
hypotheses about the effects of white matter disruption on cognitive aging. Many
have emphasized frontal-mediated cognitive domains, especially executive con-
trol, following suggestions that frontal white matter is preferentially vulnerable to
aging-related disruption (Malloy et al. 2007). Others have focused on the
hypothesis that impaired network connectivity leads to declines in processing
speed in addition to executive control (Madden et al. 2009a). Finally, the
importance of aging-associated white matter disconnection may be that it impairs
compensatory recruitment that is required to maintain task performance in the face
of gradual and progressive degradation of gray matter during normal cognitive
aging (Sullivan and Pfefferbaum 2006; Cabeza 2002). DTI remains one of the most
useful tools for testing such disconnection hypotheses in vivo.

The earliest reports of relations between DTI and cognition in cognitively intact
elders focused on univariate white matter integrity measures along the inter-
hemispheric tracts. The integrity of the splenium of the corpus callosum and
parietal pericallosal regions correlated with reaction time (RT) for alternating, but
not unimanual, finger tapping, (Sullivan et al. 2001), and MD in anterior white
matter tracts, which allow communication between frontal lobes, was correlated
with reduced executive control and attentional set-shifting independent of age
(O’Sullivan et al. 2001). Associations between white matter integrity and
performance on a visual target detection task may vary with age: in younger adults,
splenium FA best predicted reaction time, while in older adults, FA in the anterior
limb of the internal capsule was the best predictor (Madden et al. 2004).
Meanwhile, reduced working memory performance in older individuals may be
associated with reduced FA in frontal white matter and increased MD in frontal
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and posterior white matter, independent of age (Charlton et al. 2006). Together,
these results suggest that DTI may be assaying the integrity of connections within
distributed cognitive networks that are recruited for efficient information transfer
in frontal-mediated cognitive tasks.

More recent tractography-based results are largely consistent with a pattern of
age-related frontal white matter integrity declines predicting executive control
deficits. Poorer performance on the Stroop Test, generally considered a measure of
executive control, was associated with lower FA in premotor callosal fibers and
post-central callosal fibers (Sullivan et al. 2006), and FA in the genu and right
superior longitudinal fasciculus was reported to mediate the age-related variability
in performance on a task-switching paradigm (Madden et al. 2009b). These and
many other results imply that reductions in integrity of specific tracts are differ-
entially correlated with declines in varied components of executive control.

There are limited reports in normal older adults of relations between DTI
measures and episodic memory deficits. One fiber tracking study of older and
younger adults found that while FA in anterior white matter tracts including the
genu and uncinate fasciculus was associated with executive control in agreement
with the studies described above, while FA in posterior tracts including the
cingulum bundle, inferior longitudinal fasciculus, and splenium, was related to
memory performance (Davis et al. 2009).

4.2 Between Clinical Diagnostic Groups

Progressive neurodegenerative diseases that underlie clinical dementia syndromes
are increasingly being thought of from the point of view of cognitive network
disconnection (Seeley et al. 2009). Comparisons of DTI-based network connec-
tivity measures between healthy individuals and those diagnosed with clinical
dementia may illuminate the relations between network degeneration and the
spatial patterning of disease, providing guidance for network-based disease
monitoring and treatment (Palop et al. 2006).

Most DTI studies on clinical dementia syndromes to date have focused on AD
and MCI. Early investigations generally indicated increased MD and reduced FA
in MCI and AD, particularly in long white matter tracts innervating association
cortex (Moseley et al. 2002). In many of these studies, the degree of white matter
disruption was associated with the degree of memory dysfunction or scores on the
Mini Mental State Examination [MMSE, (Folstein et al. 1975)]. Most of these
reports describe white matter deterioration in posterior regions. For example, in
one report (Rose et al. 2000), poorer MMSE score among AD patients was cor-
related with decreased diffusion anisotropy in the splenium of the corpus callosum.
Among amnestic MCI patients and healthy age-matched controls, the same group
reported that reduced FA in posterior white matter regions was associated with
reduced cognitive performance, particularly in memory (Rose et al. 2006; Medina
and Gaviria 2008).
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One study reported that white matter alterations in temporal, frontal, and
parietal regions were more pronounced as diagnostic status declined from normal
cognition, to MCI, to clinical AD (Huang et al. 2007). Across all subjects, lower
temporal white matter FA and higher diffusivity correlated with poorer episodic
memory performance, lower frontal white matter FA correlated with poorer
executive control, and higher parietal white matter RD correlated with poorer
visuospatial function. These findings support the hypothesis that reduced con-
nectivity may underlie decline of cognitive networks in dementia. Additionally,
vascular-related changes to white matter integrity that are coexistent with MCI and
AD may contribute to dysfunction of neural networks, particular those connecting
prefrontal cortex to its targets. Such disconnection, combined with known
hippocampal injury, may contribute to cognitive declines observed in these con-
ditions (Mayda et al. 2009).

Few studies have examined the differential effects of degenerative processes,
such as AD, and vascular injury processes on brain structure, including white
matter connectivity. In one such study of cognitively normal, MCI, and AD par-
ticipants (Lee et al. 2009), clinical diagnosis was used as an indicator of neuro-
degenerative disease burden, and a vascular risk score indicated overall
cerebrovascular disease burden. These were independently associated with FA in
the corpus callosum as well as subcortical white matter, with spatially independent
patterns of microstructural damage across diagnostic groups. Neurodegeneration
primarily affected FA in more organized white matter tracts, while vascular factors
contributed to FA reductions in less organized white matter, which may partially
explain functional differences. Further evidence (Lee et al. 2010) confirmed that
vascular and degenerative processes make differential, region-specific contribu-
tions to white matter impairment as measured by DTI, across the spectrum of
cognitive ability, and further suggested that differential patterns of structural
injury, and thus functional decline, may be contingent on connectivity changes.

Relatively few studies have investigated relations between DTI and cognition in
patients with frontotemporal dementia (FTD). In one study comparing FTD and
AD with healthy aging, FTD patients demonstrated reduced FA in frontal and
temporal white matter tracts, while AD patients demonstrated reduced FA in
parietal, temporal and frontal tracts (Zhang et al. 2009). In direct comparison with
AD, FTD patients demonstrated greater reductions overall, particularly in frontal
FA; however, due to difficulty of matching subjects based on MMSE performance,
the FTD cohort may have been more demented. Such characteristic signatures of
white matter impairment may allow for improved differential diagnostic power.

Most studies of FTD subtypes which have distinctive cognitive sequelae, such
as the behavioral variant of FTD (bvFTD), semantic dementia (SD), and Pro-
gressive non-fluent aphasia (PNFA), have only explored associations between DTI
measures and diagnostic status and not specific cognitive tasks. In one recent
study, bvFTD patients exhibited decreased FA and increased diffusivity measures
in white matter connecting frontal with temporal and parietal lobes, while SD
patients showed similar diffusion in tracts such as inferior longitudinal fasciculus
and uncinate fasciculus, and PNFA patients showed these tract abnormalities in the
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superior longitudinal fasciculus (Whitwell et al. 2010). Clearly, further investi-
gations of DTI-cognition relations in FTD subtypes are needed.

5 Future Directions

5.1 Advances in DTI Methodology

Methods for acquiring high-resolution, anatomically accurate water diffusion MRI
data are developing rapidly, and there are several pressing challenges that need to
be addressed by methodologists to advance the utility of DTI as a tool to study the
cognitive aging process.

The most pressing methodological challenge may be the development of
acquisition and post-processing techniques that provide reliable white matter
integrity measurements across scan sessions and scanner operating equipment. The
few published reports on DTI reliability suggest that white matter integrity and
connectivity measurements do vary substantially simply by acquiring DTI data on
a different device, or on a different day (Pfefferbaum et al. 2003; Takao et al. 2011;
Vollmar et al. 2010). It is currently unclear whether the variability stems from
differences in scan prescription, measurement noise, brittleness of post-processing
pipelines, or some combination of each. Interscanner variability has made large-
scale, multi-site DTI studies difficult to justify, and has made reported DTI find-
ings difficult to replicate. Intraindividual variability in DTI measurements have
dampened enthusiasm for the use of DTI as a tool for measurement of longitudinal
change, which is critical both for clarifying the biological course of aging-
associated white matter changes and for assessment of DTI-based endpoints in
clinical trials. These issues represent the key barrier to fully delineating the utility
and limitations of DTI as it relates to the study of cognitive aging.

Fortunately, there are tentative signs pointing to the possibility of reliable, serial
DTI data collection across multiple scanners in the future. Considerable attention is
being paid to the development of compelling physical phantoms that emulate the
macroscopic configuration and water diffusion properties of white matter tracts [for
example, Klein et al. (2008)]. Such phantoms can play a pivotal role in evaluating
the validity of DTI measurement methods and for harmonizing DTI data across
scanners. In addition, the Alzheimer’s Disease Neuroimaging Initiative (ADNI),
whose unprecedented investment in cross-scanner standardization has dramatically
boosted the viability of large-scale, multi-site collection of quantitative T1-weighted
elderly brain MRI, has recently made a similar investment in DTI (Jack et al. 2010).
Finally, there is at least one report that sophisticated post-processing methods may
be able to play a major role in ameliorating differences in DTI data across scanners
and scan sessions, and the continued development of such methods is a major focus
of the computational neuroimaging community (Vollmar et al. 2010).

The mathematics of representing and manipulating DTI data is another major
methodological direction. How best to represent the complicated spatial statistics
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of water diffusion in a way that is relatively stable across scan sessions, compu-
tationally feasible, and accurate, is an ongoing research problem among
computational scientists. In addition, the complexity of fiber tract trajectories in
brain, together with limitations in MRI acquisition technology, make uncertainty
in the spatial statistics of water diffusion prominent, and several empirical and
analytic methods have been developed for quantifying how confident we should be
in our estimated white matter integrity and connectivity measures (Chang et al.
2007; Zhu et al. 2008; Behrens et al. 2003; Koltchinskii et al. 2007; Sakhanenko
2008) (Fig. 6). However, while this uncertainty information can help practitioners
make the critical distinction between tract trajectories that are fairly certain, and
those that may be artifactual, such uncertainty information is currently very rarely
leveraged in real analyses. The incorporation of this uncertainty information
throughout data analytic pathways is expected to boost the viability of DTI in
cognitive aging as time goes on.

5.2 Needs in Relation to DTI and Risk Factors

As a non-invasive, broadly tolerated technology, DTI seems to be uniquely placed
to allow us to observe how white matter connectivity evolves with advancing age.
Studies that combine serial DTI measurement with concurrent measurement of

Fig. 6 New mathematical methods for estimating uncertainty in DTI-based white matter
connectivity measurements could help to make DTI a more robust and reliable measurement
technology. Left A slice from an FA map of a typical elderly individual. Right In an expanded
view of the splenium of the corpus callosum, one white matter fiber tracing is shown as a thin
black curve. The blue envelope around that curve represents uncertainty in the fiber trajectory:
due to limited spatial resolution and noise in the acquired DTI data, the true fiber trajectory may
actually lie anywhere within the envelope. Such uncertainty information may allow users to
quantify the effects of DTI data quality on connectivity measurements, account for data quality in
downstream analyses, and identify corrupted scans for which uncertainty is especially high [see
Koltchinskii et al. (2007) for more information]
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neuropathological processes presumably represent the most viable path toward
understanding the relative time course of late-life white matter changes and how
that time course is modulated by a complex array of inter-connected biological
events. Yet, to our knowledge, there may be as few as three published studies
related to cognitive aging that involve multiple DTI scans per human subject
(Charlton et al. 2010; Teipel et al. 2010; Sullivan et al. 2010). As noted above
methodological issues related to DTI measurement reliability have made serial
DTI studies difficult, but their importance for decoding the biology of cognitive
aging is clear, and they will remain a future direction of study. In addition, studies
that isolate biomarkers of individual neuropathological processes, including AD,
CVD, inflammation, and others, and relate those to DTI measurements will be
important for our understanding of the differential contributions that each of these
processes make in determining the biological substrate on which age-related
cognitive decline plays itself out.

5.3 Needs in Relation to DTI and Cognitive Networks

Incorporating measures of functional connectivity using functional magnetic res-
onance imaging will allow researchers to further investigate the extent to which
loss of nodal and network function both depends on and causes changes in white
matter connectivity (Madden et al. 2010; Madden et al. 2007). In addition,
incorporation of additional modalities such as EEG, MEG, and intracranial
recording will allow enhanced understanding of the relationships between
brain structure and the spatial and temporal properties of cognitive networks
[e.g., Westlye et al. (2009)].

An obstacle may exist in the relatively primitive psychological ontology cur-
rently in use in a majority of cognitive neuroscience research laboratories, and the
manner in which we relate highly debatable cognitive processes to measured brain
structure and function (Bunzl et al. 2010). The problem in localizing functions to
discrete nodes is that processing may not be modular at all, in that there may not be
a one-to-one mapping between a brain region and a specific cognitive function.
Certainly, a better comprehension is required regarding localization as it relates to
our understanding of fundamental categories of cognition.

6 Conclusion

Diffusion tensor MRI provides a non-invasive, in vivo technology for measuring
the integrity of brain connectivity that is required for higher-order cognitive
function but declines with advancing age. Its white matter injury measurements
have the potential to provide an anatomical substrate that links a variety of aging-
related pathophysiological mechanisms to the cognitive decline that is common in
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the elderly. While the past decade of studies generally support the view that
reductions in DTI-based white matter integrity measures are associated with
advancing age and cognitive decline, a precise understanding of the biological
mechanisms that lead to white matter integrity reductions and subsequent cogni-
tive losses in the elderly is still being developed. As methods for DTI acquisition
and postprocessing continue to develop and enable large-scale, longitudinal
research studies, pressing questions about relations between risk and protective
factors, white matter integrity, and clinically relevant cognitive outcomes will be
addressed. These studies in turn will clarify the utility of DTI as a marker of aging-
associated cognitive decline for clinical diagnosis and clinical trials.
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Structural, Functional and Spectroscopic
MRI Studies of Methamphetamine
Addiction

Ruth Salo and Catherine Fassbender

Abstract This chapter reviews selected neuroimaging findings related to
long-term amphetamine and methamphetamine (MA) use. An overview of
structural and functional (fMRI) MR studies, Diffusion Tensor Imaging (DTI),
Magnetic Resonance Spectroscopy (MRS) and Positron Emission Tomography
(PET) studies conducted in long-term MA abusers is presented. The focus of this
chapter is to present the relevant studies as tools to understand brain changes
following drug abstinence and recovery from addiction. The behavioral relevance
of these neuroimaging studies is discussed as they relate to clinical symptoms and
treatment. Within each imaging section this chapter includes a discussion of the
relevant imaging studies as they relate to patterns of drug use (i.e., duration of MA
use, cumulative lifetime dose and time MA abstinent) as well as an overview of
studies that link the imaging findings to cognitive measures. In our conclusion
we discuss some of the future directions of neuroimaging as it relates to the
pathophysiology of addiction.
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Acronyms
5-HT Serotonin
AC Anterior commissure
ACC Anterior cingulate cortex
ADC Apparent diffusion coefficient
BDI Beck Depression Inventory
BOLD Blood-oxygen-level dependence
BPRS Brief Psychiatric Rating Scale
BSI Brief Symptom Inventory
C Coherence index
CC Corpus callosum
Cho Choline
Cr Creatine
CSF Cerebral spinal fluid
DAT Dopamine transporter
DD Delay discounting
DTI Diffusion tensor imaging
FA Fractional anisotropy
fMRI Functional magnetic resonance imaging
Glu Glutamate
GM Gray matter
GLX Glutamate ? Glutamine
HIV Human immunodeficiency virus
MA Methamphetamine
mI Myo-inositol
MRI Magnetic resonance imaging
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MRS Magnetic resonance spectroscopy
NAA N-acetyl aspartate
NAc Nucleus accumbens
NMR Nuclear magnetic resonance
OFC Orbital frontal cortex
PC Posterior commissure
PD Parkinson’s disease
PFC Prefrontal cortex
PCr Phosphocreatine
PET Positron emission tomography
PVC Primary visual cortex
ROI Region of interest
RT Reaction time
SCID Structured clinical interview for DSM-IV
SCL-90 Symptom checklist-90
SERT Serotonin transporter
VBM Voxel-based morphometry
VMAT Vesicular monoamine transporter
WCST Wisconsin card sort test
WM White matter
WURS Wender Utah Rating Scale

1 Introduction

Unlike most organs of the body, the brain has been less amenable to in vivo
investigation until recent times. Researchers now have the capability to examine
the fine structure and physiology of an intact brain in vivo with different imaging
modalities. These imaging techniques have greatly increased our understanding of
healthy brain function as well as that of neuropsychiatric disorders, including
addiction. In this chapter we will review selected neuroimaging findings related to
long-term amphetamine and methamphetamine (MA) use. We will present an
overview of structural and functional (fMRI) MR studies, Diffusion Tensor
Imaging (DTI), Magnetic Resonance Spectroscopy (MRS) and Positron Emission
Tomography (PET) studies that have been conducted in long-term MA abusers.
We will also discuss the relevant studies as tools to understand brain changes
following drug abstinence and recovery from addiction. Imaging techniques have
great potential to elucidate the interaction between neuronal changes, drug use
patterns and clinical symptomatology. Furthermore, correlations between brain
structure and function with measures of cognitive function have been observed,
suggesting that altered neuronal function within select regions may contribute
to impairments in behavioral regulation linked to addiction (Chung et al. 2007;
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Salo et al. 2007; Sung et al. 2007; Kim et al. 2009a). Group differences in brain
structure and function are by themselves important findings, but meaningful
associations with drug use patterns and behavior makes them even more clinically
relevant. To that end within each imaging section we have included a discussion
of the relevant imaging studies as they relate to clinical patterns of drug use
(i.e., duration of MA use, cumulative lifetime dose and time MA abstinent) as well as
an overview of studies that link the imaging findings to cognitive measures. We have
included the majority of imaging studies that were referenced on PubMed in this
chapter that focused primarily on MA and to a lesser degree amphetamine. We have
not included those studies that involved samples of polydrug abusers, prenatal MA
exposure or those that examined the comorbidity of HIV ? MA or the comorbidity
of MA use with other psychiatric disorders such as schizophrenia and bipolar. The
reason for this selective approach is that we felt that the inclusion of other disorders
could mask the underlying neural changes induced by MA alone and could weaken
the interpretation of the imaging results as it relates to MA. Finally, in our conclusion
we will discuss some of the future directions of MRI and PET as they relate to the
pathophysiology of substance use disorders and their treatment.

2 Magnetic Resonance Imaging Techniques

MRI has evolved considerably over the past nearly three decades. Currently with
higher field magnets and advanced pulse sequence designs one is able to obtain
high-resolution structural images of the brain with sub millimeter resolution. Such
improved instrumentation allows for contrast between tissue types allowing one to
separate/segment brain tissue into gray matter (GM), white matter (WM) and
cerebral spinal fluid (CSF). We are thus able to measure tissue volumes for the
various brain structures in normal and clinical populations.

Magnetic resonance imaging (MRI) is based upon the phenomenon of nuclear
magnetic resonance (NMR). NMR is the physical property by which nuclei of
certain elements—such as hydrogen—when placed in a strong magnetic field and
exposed to radiowaves of a particular frequency, resonate or emit energy of the
same frequency that can be detected as an NMR signal. This NMR signal can be
localized in space by applying magnetic field gradients in three directions;
subsequently, the localized signals can be converted into an image. The basic
MRI requires a strong primary magnetic field (B0) that is parallel with the long
axis of the tube-shaped device within which a subject lies. This large primary
magnet generates these magnetic fields that align the hydrogen molecules
(protons) within that field. The magnetic field gradient added to the main field
allows one to select a slice for imaging. The radiofrequency pulses applied
perpendicularly to the main field at the same time as the magnetic field gradient
perturb the aligned hydrogen molecules of the proscribed slice. These perturbed
hydrogen molecules then precess about the axis of the primary magnetic field
(B0) and come back to the initial alignment. The pattern of decay of the signal
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as the precessing protons come back into initial alignment gives information
about the concentration of the signal source, the hydrogen atoms in water being
imaged, but also reflects the chemical environment in which the signal source is
found. Two characteristic relaxation times, T1 and T2, characterize the chemical
environment (Figs. 1, 2).

Fig. 1 T1 weighted MR
image acquired in the
sagittal plane

Fig. 2 T2 weighted MR
image acquired in the
sagittal plane
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2.1 Structural MR Imaging Studies of Methamphetamine (MA)
Abuse

Evidence that MA induces neuronal damage comes for the most part from the
animal literature. Surprisingly relatively few structural brain studies have been
conducted in human MA abusers and some of those have been post-mortem
examinations whereas others have employed in vivo imaging. Exposure to high
doses of MA and related stimulants has been shown to cause long-term changes in
the dopaminergic (Ricaurte et al. 1980; Wagner et al. 1980a, b; Ricaurte et al.
1982, 1984) as well as in the serotonergic system (O’Hearn et al. 1988; Axt and
Molliver 1991; Zhou and Bledsoe 1996) in humans and non-human primates.
Damage has been seen in frontostriatal regions subserving selective attention such
as the striatum, frontal cortex and amygdala (Ricaurte et al. 1982; Villemagne
et al. 1998) as well as regions subserving memory such as hippocampus and
amygdala (Melega et al. 1996). Consistent with the animal work, an early post-
mortem study of the brains of MA abusers revealed reduced dopamine transporter
(DAT) levels in the nucleus accumbens (NAc), caudate and putamen (Wilson et al.
1996). This study will be discussed in greater detail later in the chapter. There is
less evidence of structural changes in posterior brain regions such as visual cortex
following MA exposure (Molliver et al. 1990).

Those structural imaging studies that have been published in human amphet-
amine/MA abusers have revealed patterns of damage consistent with the animal
work (Bartzokis et al. 2000; Thompson et al. 2004). One of the first structural MR
studies of amphetamine abusers was conducted on a low-field (1.5 T) machine and
compared regional brain volumes in nine amphetamine-dependent males, 10
cocaine-dependent males and 16 non-substance abusing male controls (Bartzokis
et al. 2000). Both stimulant abusing groups exhibited smaller temporal lobe vol-
umes compared to the controls, localized primarily to GM with no differences
observed in the frontal lobes. Although the two stimulant abusing groups did not
differ from each other on regional brain volumes, the cocaine abusers exhibited a
unique profile in that they exhibited an age-related decline whereas the amphet-
amine abusers did not. As shall be seen in subsequent structural MR studies of MA
abuse, WM hypertrophy was also observed in conjunction with GM decline, and
was more evident in the amphetamine abusers than in the cocaine abusing group.
A more recent high-resolution structural MRI study later reported evidence of
structural abnormalities in chronic MA abusers (Thompson et al. 2004). Cortical
maps obtained at 3 T revealed severe GM deficits in the cingulate, hippocampus
and paralimbic cortices. On average, MA abusers had 7.8% smaller hippocampal
volumes than control subjects and reductions of 11.3% within the cingulate and
paralimbic cortices. In conjunction with the GM reductions, WM hypertrophy was
also observed in the MA abusers. These results suggest that MA abuse may target
hippocampal regions as well as the cingulate-limbic cortex.

In addition to the structural abnormalities reviewed above in the temporal and
paralimbic cortices, one study examined the effects of MA on the corpus callosum

326 R. Salo and C. Fassbender



(CC) of 27 MA abusers compared to controls (Oh et al. 2005). In this study,
automated shape analysis techniques were employed to detect whether group
differences might exist within subregions of the CC. Although no group differ-
ences in overall CC volume were observed, differential patterns were observed in
the curvature and the width of distinct CC sub regions between the two groups.
In the boundary model-based shape analysis, decreased width was observed in the
posterior midbody and isthmus of the MA abusers, while increased curvature was
observed in the genu of the MA abusers. CC abnormalities will be discussed further
in the DTI section within this chapter. Although the studies reviewed above have
described a consistent pattern of GM reduction following long-term MA abuse, they
did not report volumetric changes within striatal regions. However, one study did
report evidence of increased striatal volume in a large group of 50 MA abusers who
had been drug abstinent more than two years (Chang et al. 2005). The authors
suggested that possible mechanisms for the striatal enlargement may include glial
activation and inflammatory changes associated with MA-induced injury which in
turn reflects a compensatory response to the neurotoxic effects of MA.

A pair of studies used voxel-based morphometry (VBM) to examine volume
differences in gray and WM segmented tissue in MA abusers (Schwartz et al.
2010; Kim et al. 2006). The first of the two published studies obtained imaging
data from 29 MA abusers and 20 non-substance abusing controls in order to detect
group differences as well as to investigate the relationship of drug sobriety on brain
volumes discussed below (Kim et al. 2006). GM density decreases were observed
in the mid-prefrontal gyrus with no differences observed in WM. The authors also
reported volume reductions in the left medial frontal gyrus, right mid-frontal gyrus
and right precentral gyrus of the MA abusers; however, when statistical corrections
for multiple comparisons were applied these region group differences were no
longer statistically significant. A subsequent study also used VBM to examine
structural changes in 61 MA-dependent individuals in the early stages of absti-
nence (Schwartz et al. 2010). In this study lower cortical GM density was observed
in the MA abusers within the bilateral insular regions and the left MFG?
The authors also observed a density increase within regions of the cerebellum.

2.1.1 Volumetric Findings and Drug Use Patterns

The ability to link changes in brain volume following MA abuse and patterns of
drug use (e.g., duration of MA use and length of MA sobriety) is an important
endeavor as it provides insight to which brain regions are more susceptible to the
neurotoxic effects of MA. At the same time, such approaches offer a valuable
opportunity to detect whether or not select brain regions may be resilient following
extended periods of MA sobriety. Although the body of structural imaging studies
in MA abusers is relatively small to date, some, but not all, have linked observed
changes to drug use patterns. One such study of 50 MA abusers reported that
those subjects with smaller striatal regions reported the greatest amount of lifetime
MA use (Chang et al. 2005). No results were reported in relation length
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of drug abstinence. In another study that employed VBM techniques relationships
with drug abstinence were examined and reported. In this study lower GM density
within the right midfrontal cortex was observed in the MA abusers with short-term
abstinence (\6 months) compared to the MA abusers who had remained drug
abstinent for longer periods of time ([6 months) (Kim et al. 2006). In fact those
MA abusers with long-term MA abstinence had GM volumes that approached
those of controls suggesting possibly some degree of normalization following
extended periods of drug sobriety.

The relationship between drug abstinence and structural abnormalities was also
examined in a recent VBM study (Schwartz et al. 2010). This study of 61 abstinent
MA abusers (age range 20–63) revealed that increased time of MA abstinence cor-
related significantly with increased GM density in the bilateral amygdala, striatum,
left fusiform gyrus and right cerebellar tonsil. In addition, a negative correlation was
observed between time MA abstinent and cortical density within the right midfrontal
gyrus. No correlations were reported for duration of use or cumulative dosage.

2.1.2 Volumetric Findings and Cognitive Function

Several of the studies reviewed above analyzed the relationship between brain volume
and behavioral measures. In one of the first studies to correlate changes in brain
volume with cognition, reductions in hippocampal volumes were found to correlate
with performance on a test of word-recall, such that those MA abusers with the lowest
test scores had the most pronounced reductions within the hippocampus (Thompson
et al. 2004). Findings of reductions in striatal volume have also been related to
measures of cognition. In a study of 50 MA abusers those with smaller striatal volume
were more impaired on tasks of both verbal fluency and speeded motor function
(Chang et al. 2005). These findings are consistent with neurological studies that have
implicated these same regions. Findings from the VBM study reviewed above also
revealed neural-behavioral correlations. In this study, those MA abusers who scored
the lowest on the Wisconsin Card Sort Test (WCST), a task that measures multiple
executive functions had the lowest GM density within the right mid frontal cortex
(Kim et al. 2006). This correlation was the strongest in those MA abusers with short-
term abstinence. As with many of the studies within this review, correlational findings
were observed only in the MA abusing group and not in the controls. This lack of
observed correlations in the controls may be due in part to small sample sizes.

A recent VBM study examined the relationship between impulsive behavior
and structural abnormalities (Schwartz et al. 2010). This study administered a
delay discounting (DD) task to 61 MA-dependent individuals in order to measure
the tendency of the MA abusers to select immediate over delayed rewards. Group
differences were observed between MA abusers and controls as manifested by
increased impulsivity in the MA abusers. In addition to the behavioral differences,
significant positive correlations were also observed between impulsivity and GM
density within bilateral putamen, left ventral striatum and the posterior cingulate
cortex. Negative correlations were also observed in frontal region. To the best of
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our knowledge these are the only published findings that have linked measures of
cognition to changes in brain volume within MA abusers.

2.1.3 Summary

In a recent review of the MRI literature in MA abuse, Berman et al. examined a
group of peer-reviewed MRI studies published between 1988 and August 2000
(Berman et al. 2008). In this comprehensive review the majority of studies
reported regional brain volume reductions in the MA abusers with a preferential
involvement of medial temporal lobe structures (i.e., hippocampus), and cingulate
cortices. In conjunction with GM deficits there was also a consistent pattern of
WM hypertrophy. Although the majority of studies reported volume reductions
(Schwartz et al. 2010; Thompson et al. 2004), there was moderate evidence for
enlargement within striatal regions (Chang et al. 2005). In summary, although
there are relatively few structural imaging studies in human MA abusers, those that
have been published suggest profound volumetric abnormalities in cingulate,
temporal, hippocampal and limbic regions. These findings of structural abnor-
malities were accompanied by correlations with measures of cognition including
verbal fluency, impulsivity, memory and tasks of executive function. Furthermore,
the findings of volumetric abnormalities in the MA abusers were also found to
correlate with drug use patterns (i.e., duration of drug use, time abstinent).

3 Magnetic Resonance Spectroscopy (MRS)

Magnetic resonance spectroscopy (MRS) is a valuable tool to examine the presence
of neuronal damage or deterioration in addiction. MRS is based on the same prin-
ciples of NMR and produces patterns of signals, or spectra, which allow visualization
of neurochemicals in vivo. The individual peaks in the spectrum represent infor-
mation about the chemical makeup of the tissue under examination, with time change
of these spectra following the changes in concentrations of biological compounds.
MRS allows for the visualization of diverse group of markers of cellular integrity and
function, including those of living neurons N-acetylaspartate (NAA), high-energy
metabolic products creatine (Cr), cell membrane synthesis or degradation choline
(Cho), glia myonositol (mI), glutamate ? Glutamine (GLX) as well as glutamate
(Glu).

Although structural MRI employs hydrogen protons almost exclusively, MRS
uses a number of elements including hydrogen (proton), phosphorus-31, fluorine-15,
lithium-7, sodium-23 and carbon-13. Compared with MRI, MRS requires that a
relatively large volume be sampled in order to obtain a sufficient signal. MRS has a
volume resolution of about 1 cubic centimeter from (H1) or proton spectroscopy of
metabolites, whereas 6 cubic centimeters or more are necessary for phosphorus
spectroscopy. Despite these limitations, MRS has made significant contributions to
the imaging of biological function, including the field of addiction.
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Two MRS techniques are available in proton spectroscopy; single-voxel proton
MRS in which a preselected region of interest (ROI) is sampled and MRSI proton
magnetic resonance spectroscopy imaging in which several brain regions can be
sampled simultaneously and multiple spectra obtained. Although single-voxel
techniques may yield greater signal to noise ratios, MRSI possesses the ability to
better define neurochemical differences between brain regions. MRS has made
significant contributions to the understanding of neurochemical function to date
and has great potential to contribute to the further understanding of neurochemical
differences associated with addiction (Figs. 3, 4).

3.1 MRS Imaging Studies of Methamphetamine (MA) Abuse

The use of MRS to study neurochemical changes resulting from long-term
MA abuse has yielded a number of important findings. Several early proton
MRS studies reported evidence of frontostriatal neuronal damage in MA abusers

Fig. 4 Representative MRS
spectra acquired at 1.5 T

Fig. 3 Oblique axial proton
density magnetic resonance
image showing the typical
location (white box) of the
voxel sampling within the
anterior cingulate cortex
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(Ernst et al. 2000; Taylor et al. 2000; Nordahl et al. 2002). One of the first MRS
studies conducted in MA abusers found evidence of abnormally low NAA in the
basal ganglia as well as in lateral frontal WM (Ernst et al. 2000). Ernst et al.
interpreted the pattern of low NAA accompanied by high amounts of mI and
Cho, as consistent with neuronal damage; compromised neurons with glial
proliferation. These findings are consistent with the published findings from the
animal literature, in which damage was also reported in frontostriatal regions
(Ricaurte et al. 1982; Villemagne et al. 1998). Nordahl et al. also found evidence
consistent with damage in medial frontal regions and reported reductions in
NAA/Cr in the primarily GM region of the rostral Anterior Cingulate Cortex
(ACC) of MA abusers compared to controls (Nordahl et al. 2002). No differ-
ences were observed in the medial Primary Visual Cortex (PVC). They inter-
preted the lack of PVC differences to reflect the fact that the PVC receives
relatively little DA innervation and thus is less vulnerable to damage following
MA abuse. Taylor et al. also reported reduced NAA/Cr within the ACC but not
in the caudate nucleus (Taylor et al. 2000). In a later study of 48 abstinent MA
abusers by the same group, no group differences were observed in neurome-
tabolites between the substance abusers and controls, but longer duration of
lifetime MA abuse was significantly correlated with both increases in frontal GM
Cho and elevated mI levels within the basal ganglia, both of which are markers
of damage (Taylor et al. 2007).

In another study that focused on striatal regions, Sekine et al. measured NAA,
Cr ? phosphocreatine (PCr), and Cho levels bilaterally in the basal ganglia of 13
abstinent MA abusers and 11 controls (Sekine et al. 2002). Significantly reduced
Cr ? PCr/Cho ratios were observed in the basal ganglia of the MA abusers but
NAA/Cho ratios in the same region did not significantly differ between groups.
These findings suggest that protracted use of MA may cause changes in some, but
not all, metabolite alterations in the basal ganglia.

Sung et al. examined alterations in neurochemicals within both WM and GM of
30 abstinent MA abusers. In this study, conducted on a 3 T magnet, increases in
mI and decreases in NAA were observed within frontal WM of the MA abusers
(Sung et al. 2007). Further analyses examined the relationship of these metabolite
values with patterns of drug use and cumulative drug dosage which will be
discussed in a later section.

One of the neural mechanisms by which MA is thought to exert damage on the
human brain is through neurotoxicity mediated by excess glutamate (Ohmori et al.
1996; Davidson et al. 2001; Quinton and Yamamoto 2006). Despite several studies
conducted in animals, direct evidence of the effects of Glu on the human brain is
limited. One reason for the lack of studies in this area may lie in the technical
challenges in obtaining reliable measures of Glu. At lower fields (1.5 T) the ability
to separate the combined glutamate signal (glutamate ? Glutamine or GLX) is
difficult. Thus the studies reviewed below include those that have measured GLX
at lower fields (Ernst and Chang 2008) and more recent studies conducted at 3 T in
which the ability to measure uncontaminated Glu is now possible (Hurd et al.
2004; Sailasuta et al. 2010a, b).
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Ernst et all examined GLX in a group of 25 abstinent MA abusers and observed
lower GLX levels in frontal GM but not in the basal ganglia compared to
non-substance abusing controls (Ernst and Chang 2008). In one of the first studies
to measure changes in Glu in 18 abstinent MA users, Sailasuta et al. (2010a, b).
reported both increases in Glu and NAA reductions in frontal WM. Although
globally Glu levels correlated with NAA levels, suggesting a possible role of Glu
in mediating MA neurotoxicity, such a correlation was not observed in the frontal
WM (Sailasuta et al. 2010a, b).

3.1.1 Summary

Collectively these MRS studies suggest that long-term MA use causes changes in
neurochemicals that are more pronounced in frontostriatal regions, with less
evidence in posterior brain regions. Most of the studies reviewed thus far have
focused on NAA, Cho and MI. With increasing field strengths and technological
advances scientists are now able to measure a broader range of metabolites
including Glu (Hurd et al. 2004) (Fig. 5).

3.2 MRS Findings and Drug Use Patterns

MRS has proven to be a powerful imaging tool to investigate the relationship
between neural changes following MA abuse and patterns of drug use (e.g., duration
of MA use and length of MA sobriety). One of the first MRS studies to examine the
effects of MA abstinence on neurochemicals reported that in a sample of 24 MA
abusing subjects, those MA abusers who had been abstinent for 12 months and
longer had lower Cho/NAA levels within the ACC compared to those MA abusers
who had been MA abstinent for six months and less (Nordahl et al. 2005). This study

Fig. 5 Correlation between NAA/Cr metabolite levels in the anterior cingulate cortex (a),
primary visual cortex (b) and mean stroop reaction time interference in 36 methamphetamine
abusers. (Reprinted from Salo et al. 2007)
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was followed up by an expanded dataset of 47 MA abusers in which increases
(i.e., normalization) in NAA/Cr were also observed within the same rostral ACC
regions (Salo et al. 2011a). The relative Cho and NAA normalization across periods
of abstinence suggests that, following cessation of MA abuse, adaptive changes
occur, that may contribute to some degree of normalization of neuronal structure and
function in the ACC. These NAA changes may underlie improvements in cognition
that have also been observed across periods of drug abstinence (Salo et al. 2009b).

Sung et al. also reported changes in neurometabolites related to patterns of MA
use (Sung et al. 2007). Sung et al. reported a marginal difference in frontal NAA
levels between those MA abusers with greater lifetime MA exposure (i.e., [100 g)
and those with lower lifetime MA exposure. NAA reductions in those MA abusers
with the longer lifetime MA exposure were greater in frontal WM than in GM.
Unlike the previous MRS studies reviewed above, Sekine et al. focused on a
bilateral sampling of the basal ganglia (i.e., primarily putamen) in a sample of 13
MA abusers in order to examine neurochemical differences in MA abusers (Sekine
et al. 2002). In this study there was a significant correlation between the Cr ? Pcr
values and the duration of MA use, driven mostly by the left basal ganglia. In a
later study of 48 abstinent MA abusers by the same group, no group differences
were observed in neurometabolites between the substance abusers and controls,
but longer duration of lifetime MA abuse was significantly correlated with both
increases in frontal GM Cho and elevated mI levels within the basal ganglia
(Taylor et al. 2007), both of which are markers of damage.

Changes in glutamatergic function have also been observed across periods of
drug abstinence (Ernst and Chang 2008; Sailasuta et al. 2010a, b). Ernst et al.
reported a varied time course of GLX levels in MA abusers across periods of
abstinence. In a sample of 12 MA abusers, those who had maintained drug
abstinence across periods of 12 months showed evidence of normalization in
the GLX signal followed by subsequent increases (Ernst and Chang 2008).
The authors suggested that these findings may reflect that the glutamate system is
down regulated early in abstinence and then normalizes over time. In one of the
first studies to measure changes in Glu in 18 abstinent MA users, Sailasuta et al.
also reported significant reductions in Glu levels within frontal WM across periods
of MA abstinence (Sailasuta et al. 2010b). No correlations were observed between
time MA abstinent and posterior gray matter.

3.2.1 Summary

Many of the MRS studies reviewed above have detected significant correlations
between MA dosage, years use and length of MA abstinences. The findings reveal
that those MA abusers who have used the powerful stimulant for a longer period of
time and at larger dosages exhibit the greatest neurometabolite abnormalities,
consistent with damage. Of even greater importance is the important finding that
some degree of neurochemical normalization may occur across extended periods
of MA abstinence and that not all the neurometabolite changes observed following
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long-term MA use are permanent. The increases in NAA observed across periods
of drug abstinence may reflect a partial restoration of mitochondrial function as
NAA is synthesized in the mitochondria (Moffett et al. 2007). If this is true then
this is of particular relevance as mitochondrial dysfunction is thought to be one of
the key mechanisms by which MA produces its neurotoxic effects on brain
function (Davidson et al. 2001; Quinton and Yamamoto 2006). The findings of
Cho normalization may represent an adaptive response to overt damage. a process
that may include reactive gliosis, increased membrane turnover and axonal
sprouting. At longer remission periods less membrane synthesis and turnover may
occur potentially explaining the normalized relative choline values (Nordahl et al.
2005). The findings of GLX and Glu normalization may represent yet another set
of adaptive changes by the human brain (Ernst and Chang 2008; Sailasuta et al.
2010b). Possible explanations for reductions in GLX/Glu following MA abuse
might be: (1) the loss of glutamatergic neurons; (2) decreased Glu synthesis or (3)
reduced Glu uptake within the glial cells (Yamamoto and Bankson 2005). While
yet another potential mechanism for reductions in GLX/Glu might be a result of
MA-induced oxidative stress (Tata and Yamamoto 2007). Thus normalization of
the GLX/Glu signal across extended periods of sobriety may reflect a reversal of
the neurotoxic processes described above. While collectively all of the findings
above paint an encouraging picture of positive brain recovery associated with drug
sobriety, the findings do suggest that protracted periods of drug sobriety
(i.e., [12 months) may be needed for neurochemical function to normalize.

3.3 MRS Findings and Cognitive Function

Although there are many MRS studies that have reported group differences in
MRS metabolites between MA abusers and non-substance abusing controls, only a
small subset of these studies have linked these MRS data to cognitive measures
(Salo et al. 2007). Of particular interest is the relationship between NAA and
measures of cognition. NAA is believed to be present almost exclusively in
neurons and their dendritic and axonal processes (Tsai and Coyle 1995).
As NAA is synthesized within the mitochondria and decreases in NAA correlate
with reductions in ATP, NAA can be regarded as a marker of neuronal viability
that is related to the energy metabolism of the neuron (Tsai and Coyle 1995;
Grachev et al. 2001; Ohrmann et al. 2004; Moffett et al. 2007). Salo et al.
examined the relationship between a measure of attentional control (i.e., Stroop
Task) and metabolites within the ACC and PVC. In this study of 34 abstinent MA
abusers, an inverse correlation was observed between ACC-NAA/Cr and perfor-
mance on the Stroop color-word selective attention task. Specifically, those MA
abusers with the worst performance on the attention task had the lowest NAA/Cr
levels within the ACC. No significant correlations were observed in the PVC. In a
follow-up study that employed a task of spatial attention, significant correlations
were observed between both ACC and PVC NAA/Cr levels in the MA abusers
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(Salo et al. 2011b). These findings are of particular interest as the two groups
(MA abusers and controls) did not differ in performance on the task of spatial
attention. The strong correlation between spatial attention and NAA/Cr levels
within the PVC in the MA-dependent individuals suggests that preserved neuronal
integrity within the PVC of stimulant abusers may modulate cognitive mechanisms
that process implicit spatial information. In summary, although there are only a
pair of MRS studies that have correlated metabolite values with cognitive
performance in MA abusers, the published findings are consistent with other MRS
studies of cognition that have published in healthy control subjects (Jung et al.
1999; Grachev et al. 2001).

3.4 MRS Findings and Clinical Symptoms

There are few MRS studies that have attempted to link changes in neurometab-
olites with the psychiatric symptoms associated with long-term MA abuse. Given
the impact of MA-induced psychiatric symptomatology on emergency rooms and
health care services, the identification of the neural correlates of MA-induced
psychosis and MA-related symptoms is of paramount importance. In the Sekine
et al. study discussed above, reductions in Cr ? PCr/Cho ratio observed in the
bilateral basal ganglia correlated significantly with both duration of MA use and
with the severity of residual psychiatric symptoms (Sekine et al. 2002). In this
study a comprehensive approach was used to evaluate psychiatric symptoms in the
MA abusers including: (1) self report; (2) family report; (3) medical record review;
and (4) administration of the Brief Psychiatric Rating Scale (BPRS). Specifically,
the authors found a negative correlation between Cr ? PCr/Cho ratios in the
basal ganglia and scores on the positive symptoms subscale of the BPRS which
measures delusions and hallucinations. In other words, those MA abusers who
exhibited the highest scores on the BPRS subscale were those individuals with the
lowest Cr ? PCr/Cho ratios in the basal ganglia. The authors interpreted this
correlation to reflect that residual psychiatric symptoms may be in part attributable
to the metabolite alterations in the basal ganglia.

4 Diffusion Tensor Imaging (DTI)

Diffusion tensor imaging (DTI) has emerged as a powerful non-invasive imaging
tool that gives a measure of the pattern of connectivity between neural structures
by examining the restricted flow patterns of water molecules in axonal pathways
and white matter substrates. When water molecules are flowing randomly in CSF
or cortical GM, the environment is said to be ‘isotropic’. In contrast, when the
environment is constrained by WM cell membranes (i.e., organelles and axonal
bundles) the diffusion is restricted such that flow is greater along the axon than
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perpendicular to it. This diffusion or flow pattern is called anisotropy. DTI tech-
niques are necessary to measure the directional flow of water molecules in
anisotropic environments by combining a number of diffusion weighed images
along with a baseline or reference image to characterize the flow of water mole-
cules in three-dimensional space. Different measures can be obtained from the DTI
images such as Fractional Anisotropy (FA) and Coherence indices (C). FA is
computed on a voxel to voxel basis and reflects the degree or fraction of the total
anisotropic tensor. FA values vary across regions and tissue types. Regions such as
the CC where fibers are organized in parallel have high FA values approaching 1,
whereas FA values in the ventricles CSF are closer to 0 reflecting a random or
isotropic diffusion pattern. C represents the coherence between voxels in the WM.
DTI techniques are extremely valuable when examining axonal integrity and
connectivity of brain structures and have important applications to the study of
MA abuse. Although volumetric measurements of WM macrostructure can be
obtained through traditional MR techniques, currently DTI is the only in vivo tool
capable of measuring WM microstructure within the human brain. To date only a
handful of DTI studies have been conducted in MA abusers and the results will be
reviewed below.

4.1 DTI Imaging Studies of Methamphetamine (MA) Abuse

Studies of MA exposure using animal models have suggested that chronic
exposure may destroy axonal arbors of dopamine neurons with sparing of the cell
bodies themselves (Ricaurte et al. 1980, 1982). Compared to the rich body of
published animal studies on WM damage following MA exposure, only a small
number of studies in humans have been published (Tobias et al. 2010; Thompson
et al. 2004; Oh et al. 2005; Bae et al. 2006; Alicata et al. 2009; Kim et al. 2009a;
Salo et al. 2009a). Although some studies have examined WM macrostructure
(Oh et al. 2005; Bae et al. 2006), others have studied WM microstucture using DTI
techniques (Tobias et al.; Chung et al. 2007; Kim et al. 2009a; Salo et al. 2009a).
DTI has emerged as a promising imaging technique to examine WM abnormalities
in both clinical (Lim et al. 2002; Lim and Helpern 2002; Pfefferbaum and
Sullivan 2005; Pfefferbaum et al. 2006) and non-clinical populations (Lim and
Helpern 2002; Sullivan and Pfefferbaum 2003; Madden et al. 2004; Pfefferbaum
et al. 2005; Barkovich et al. 2006). Information derived from the DTI measures
can then be correlated with cognitive measures in order to predict the relationship
between changes in WM microstructure and behavior (Pfefferbaum et al. 2000;
O’Sullivan et al. 2001; Sullivan et al. 2001; Kubicki et al. 2002; Madden et al.
2004; Kubicki et al. 2005; Schulte et al. 2005).

As long-term MA use can cause significant damage to WM, the emergence of
MA imaging studies that have used DTI has been of paramount importance to the
addiction literature. Findings of reduced FA may occur as a result of demyelina-
tion, as well as from axonal damage (Song et al. 2002). Morphological studies of
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animals who have been exposed to MA report findings of abnormally low
presynaptic DA & 5-HT axonal markers which are related to overt destruction of
DA and 5-HT axon terminals as well as the axon proper, typically sparing the
nerve cell bodies (Ricaurte et al. 1980, 1982). While the exact mechanism of MA
damage to axonal fibers is unknown, there is abundant evidence from animal
studies that MA exposure causes both acute disintegration and more chronic
fragmentation in the WM fibers of frontal, parietal and temporal cortices, as well
as in the hippocampus and cingulum bundle (Zhou and Bledsoe 1996).

One of the first studies to apply DTI to the study of MA abuse reported lower
FA within frontal regions of 32 MA abusers (Chung et al. 2007). These changes in
WM microstructure were observed bilaterally at the level of the AC-PC plane but
not in the posterior regions of the parietal and occipital cortices. Furthermore,
extended analyses of gender differences revealed that these WM group differences
were accounted for by the male MA abusers. A pair of recent DTI studies focused
on the examination of the CC in long-term MA abusers. One study examined WM
microstructure in 37 abstinent MA abusers and found differences in FA values
within the genu of the CC but not in the splenium (Salo et al. 2009a). Another
study also reported abnormal changes in the genu of the CC and further reported
that the tensor values observed suggest that altered myelination may be one
probable source of the abnormal FA values in the MA group (Kim et al. 2009a)
(Fig. 6).

A later DTI study of 30 abstinent MA abusers examined both WM diffusion as
well as fiber orientation within the CC, frontal WM, basal ganglia and the cere-
bellum (Alicata et al. 2009). In contrast to the other DTI studies reviewed above,
no differences in FA values were observed in the CC but reductions in FA values
were observed in the frontal WM of the MA abusers. In addition to the FA group
differences, increased diffusivity was also observed in the striatum of the MA
group (caudate and putamen). The authors suggest that this pattern of increased
diffusivity within the striatum may reflect a neuroinflammatory response consistent
with other imaging studies that have reported increased striatal volume following

Fig. 6 Group differences in fractional anisotropy (FA) between methamphetamine (MA) abusers
and controls (b). FA image (a). Salo et al. unpublished figures
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MA abuse (Chang et al. 2007). The most recent DTI study of MA abusers
examined WM changes in 23 MA abusers and 18 matched controls (Tobias et al.).
This study revealed modest (3–12%) FA reductions in several regions, including
right prefrontal WM above the AC–PC plane, bilateral midcaudal superior corona
radiata, the genu of the CC, and the right perforant path adjacent to the hippo-
campus. The hippocampal findings were of interest due to previously published
findings of structural abnormalities in the hippocampal region (Thompson et al.
2004). Furthermore, in many of these studies the degree of alteration to WM
microstructure appears to be related to the duration of MA use and clinical
symptoms which will be discussed in greater detail below.

4.2 DTI Findings and Drug Use Patterns

A subset of the DTI studies reviewed above correlated WM indices with drug use
patterns (Alicata et al. 2009; Salo et al. 2009a). Although the study by Alicata et al.
failed to detect a significant correlation between FA and drug use patterns, they did
observe a positive correlation between cumulative drug usage (daily and lifetime)
and ADC indices, a measure of diffusivity, within the putamen of MA abusers.
Specifically, those MA abusers with the highest ADC values reported using the
highest dosages of MA on both a daily basis and across lifetime. No correlations
were reported between periods of drug abstinence and WM. In the Salo et al.
study correlations were examined between DTI indices, years MA use and time
abstinent. No significant correlations were observed (Salo et al. 2009a).

4.3 DTI Findings and Cognitive Function

A number of DTI studies have extended the imaging findings to examine rela-
tionships with behavior and cognition. Such an approach is critical to better
understand how neural changes following long-term MA abuse can alter the way
addicted individuals make decisions and in turn how these neural changes may
promote the maladaptive behavior that sustains compulsive drug seeking behavior.
Several of the DTI studies reviewed above collected concurrent data from a range
of cognitive tasks and related the behavioral performance to the patterns of WM
microstructure observed in their study. The first study to examine the relationship
of FA values with cognitive performance administered the WCST, a task of frontal
executive function (Chung et al. 2007). In this study lower FA values within
frontal regions were found to correlate with worse performance on the WCST.
A subsequent study also observed a negative correlation between WCST total error
and FA in the genu region of the CC (Kim et al. 2009a) in a small group of
abstinent MA abusers. There were no significant correlations between WCST total
error and tensor measures, including FA in the splenium region of the CC.
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A later study administered a task of selective attention (Stroop Color Word
Task) and found that even after correcting for multiple comparisons, FA within
the genu correlated significantly with task performance in the MA abusers but
not in controls. Since both the WCST and the Stroop task are known to engage
the frontal cortex, this is strong evidence that the WM changes observed across
both studies on medial and lateral frontal WM have functional correlates with
behavior and cognition. A pair of recent DTI studies of cocaine abusers
reported similar findings in that they observed significant correlations between
FA in anterior WM and measures of impulsivity (Moeller et al. 2005;
Lim et al. 2008) and suggest that the findings are applicable to a broader
population of stimulant abusers. Furthermore, the observed correlations with
WM connectivity in the MA abusers suggest that neural connections that are
vital to top-down cognitive processes such as decision making are disrupted
following long-term MA use (Fig. 7).

One possible reason for this correlation with anterior structures is the
connectivity pattern of the genu itself. The fibers that cross through the genu
connect right and left regions of the dorsolateral prefrontal cortex (PFC), an
area with strong interconnections to the ACC (Pandya and Seltzer 1986).
Both the ACC and the dorsolateral PFC are thought to mediate top-down
cognitive control. Another possibility for the correlation with the genu may be
that axons within the genu are usually thinner in diameter and less myelinated
than those in the splenium and thus may be more susceptible to damage
following long-term drug abuse (LaMantia and Rakic 1990; Aboitiz et al.
1996). In contrast, the fibers that cross through the splenium connect regions
within visual association areas (Rockland and Pandya 1986), regions that are
certainly involved in the execution of any visual selection task, but may not be
recruited heavily by demanding tasks of behavioral control, such as the WCST
and the Stroop task.

Fig. 7 Correlational scatterplots between millisecond (ms) reaction time (RT) stroop interfer-
ence and fractional anisotropy (FA) 1,000 values in the (a) genu and (b) splenium of 37
methamphetamine (MA) abusers. (Reprinted from Salo et al. 2009a)
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4.4 DTI Findings and Clinical Symptoms

Although there have been several DTI studies that examined the relationship
between WM changes and cognition, few have correlated WM microstructural
changes with the clinical and psychiatric symptoms associated with long-term MA
abuse. The DTI study by Tobias et al. made an important contribution to the
addiction literature by examining the relationship between clinical symptoms and
WM microstructure (Tobias et al. 2010). Among the 23 MA abusers studied, the
left midcaudal superior corona radiata FA values correlated positively with mea-
sures of depression, as well as a subset of general psychiatric positive symptoms
(i.e., depression, paranoia). The results seem somewhat counterintuitive in that
increased FA values, which generally mean healthy WM, would correlate
with increased symptoms of clinical depression and psychotic symptomatology.
The authors suggest that subjects with intact WM (i.e., higher FA) may be more
aware of their illness and thus endorse symptoms to a greater degree.

4.4.1 Summary

Collectively the rather small body of DTI studies reviewed above points to a
consistent picture of WM damage within frontal regions of the brain with relative
sparing of posterior regions. Furthermore, in many of these studies the degree of
alteration to WM microstructure appears to be related to the changes in executive
cognitive function, duration of MA use and clinical symptoms.

5 Functional MRI

Although structural MRI has been a useful tool in pinpointing gross anatomical
changes associated with a variety of clinical disorders and typical development,
fMRI has allowed researchers to map differing cognitive constructs to specific
brain regions in awake, performing humans. fMRI is a relatively new technology,
which researchers began to use in the late 90 s to illuminate the neural correlates
underlying different psychological constructs of the brain. Its potential to move the
field of psychology and neuroscience forward soon became apparent. Not only
does fMRI have excellent spatial resolution but it provides researchers a window
into the brain as subjects actively perform cognitive tasks. As no harmful effects of
fMRI have thus far been revealed, it is an ideal technique for repeated use on the
same participant (e.g., in longitudinal studies or within-subject experimental
designs). The use of fMRI technology has revealed impairments in a wide range of
cognitive domains linked to addiction in general and specifically MA dependence.

Neuronal firing in the brain requires energy and the brain’s response to this
energy expenditure is to increase local blood flow to that anatomical region. The
ratio of oxyhemoglobin to deoxyhemoglobin changes in that region of the brain
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and fMRI utilizes the blood-oxygen-level dependence (BOLD) signal, the MRI
contrast of blood deoxyhemoglobin, as an indirect measure of neuronal firing in
the brain. Therefore the BOLD signal associated with certain cognitive activities
can be measured and localized with very good spatial resolution to certain brain
regions, as described above for structural MRI. In studies of brain activation,
changes in the oxygenation of the hemoglobin are associated with external stimuli
or cognitive challenge. It appears that hemoglobin changes between diamagnetic
and paramagnetic states are a result of a relative change in oxygen extraction
during sensory or cognitive challenge.

The hemodynamic response measured by fMRI is a relatively slow signal,
taking about 4–5 s to peak and about 15–20 s in total to rise and fall. This can vary
across brain regions and according to particular constructs under investigation.
One consideration, which sets fMRI aside from other techniques such as PET, is
the fact that there is no implicit baseline. This makes paradigm design a partic-
ularly important consideration for fMRI research. Early fMRI studies utilized a
block design whereby many events of interest were presented in succession to
create a large change in the BOLD signal, which was contrasted against a baseline
such as rest, or were measured above a baseline of similar task activity minus the
event of interest.

More recent techniques allow for event-related analyses, which allow changes
in BOLD signal associated with discrete events of interest to be isolated from
on-going task-related activity. However the relatively poor temporal resolution of
the hemodynamic response functions remains a limiting factor with regard to
separating psychological constructs, which are temporally proximal. At the current
time there have been relatively few fMRI studies on MA dependence from a small
number of laboratories. Some research groups have focused on cognitive control
processes, others on emotion regulation and other on the interplay between
systems responding to reward and those involved in control processes.

5.1 fMRI Studies of Methamphetamine (MA) Abuse

5.1.1 Decision Making and Cognitive Control

The earliest fMRI studies of MA dependence come from Paulus and colleagues
(Paulus et al. 2003, 2005). This group used fMRI techniques to investigate the
neural correlates of decision making in MA-dependent individuals. Understanding
decision making in addiction is crucial to understanding the mechanisms by which
individuals appear to make poor choices, which can lead to long-term substance
abuse and dependence. The same two-choice prediction task has been used
throughout these studies to investigate the neural correlates of decision making in
MA addiction (Paulus et al. 2002, 2003, 2005, 2008). This task assesses the
capacity to make decisions under situations of uncertain outcomes with only 50%
of the responses to be reinforced with a correct response outcome. The behavioral

Structural, Functional and Spectroscopic MRI Studies 341



data from these studies consistently report that MA users are more influenced by
more immediate or recent success or failure. In contrast, the controls may be more
inclined to tailor their response strategy to ongoing outcomes subsequent to
choices. The authors conclude that there is a strong stimulus–response association
in MA users that is consistent with a dominance of habit-based learning (Paulus
et al. 2003, 2005).

The imaging data from these studies showed that functional activity associated
with the prediction task was greater in controls in right inferior frontal gyrus (BA 44)
and left medial frontal gyrus (BA46) compared to the MA abusers (Paulus et al.
2002). In general, although controls tended to activate left MFG (BA 9/10), bilateral
medial frontal gyrus (BA 10) and right OFC (BA 11) to the prediction task over the
control condition, the MA users did not display any change in activity in BA 9/10.
In fact, subjects with MA dependence displayed a decrease in activity in bilateral
dorsolateral PFC and right orbitofrontal (OFC) in the active compared to control
condition. Thus, the MA users displayed a lack of task-specific activity for this
paradigm. Lastly, less activity in left insula (BA 13) and more activity in right
midfrontal gyrus (BA 9) predicted more instances of decisions that were directly
influenced by immediately preceding failures in MA users (Paulus et al. 2002).

In a follow-up to their 2002 study, Paulus and colleagues examined functional
activity during a similar paradigm in 14 male MA abusers compared with 14 controls
(Paulus et al. 2003). MA-dependent subjects were abstinent for an average of 25 days
(range 6–46 days). Controls displayed success-related patterns of neural activation
in OFC, dorsolateral PFC and parietal cortex. In contrast, independent of whether
or not they were successful, MA users displayed less task-related activity in OFC
(BA 10), dorsolateral PFC (BA 9), ACC (BA 32) and parietal cortex (BA 7).
MA-dependent subjects also displayed less task-related activity in bilateral parietal
cortex (BA 7/19), left post-central gyrus (BA 5) and left superior temporal gyrus
(BA 39). Both MA-dependent and control participants displayed more task-related
activation in the right insula (BA 13), right inferior frontal (BA 44, 45), right middle
frontal gyrus (BA 9) at low error rates and least activity when the outcome was most
unpredictable (i.e., 50% error rate). However, MA dependent subjects displayed
different patterns of neural activity to different error rates compared to controls in a
number of regions including in the left insula (BA 13), inferior frontal gyrus (BA 46),
middle frontal gyrus (BA 10), precuenus (BA 7) and inferior parietal lobe (BA 40).
The authors concluded that although controls activate regions more when they are
successful, MA users activate more when the situation is unpredictable.

In a more recent fMRI study, the same group investigated whether functional
activation during their two-choice prediction paradigm in users in early remission
(3 to 4 weeks abstinent) would predict relapse in 40 MA users (Paulus et al. 2005).
Participants underwent fMRI during early remission and were contacted approx-
imately 1 year later for a follow-up interview (median interval to follow-up
interview 370 days). Investigators established that 18 of the 40 participants had
relapsed and 22 had not. Imaging results revealed that those Individuals who had
not relapsed displayed more activity in the right hemisphere in the insula (BA 13),
inferior parietal lobe (BA 40) middle temporal gyrus (BA 22), middle occipital
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gyrus (BA 19), dorsolateral PFC (BA 6), posterior cingulate (BA 23), inferior
frontal gyrus (BA 45), in the left caudate/putamen as well as the cingulate gyrus
(BA 32) compared to those participants who had relapsed. Furthermore, activation
in the right insula, right posterior cingulate and right middle temporal gyrus best
differentiated between those individuals who had relapsed and those who had
not. Cross validation techniques were correctly able to predict 19 out of the 22
individuals who did not relapse and predicted 17 out of 18 who relapsed (94%
sensitivity; 86% specificity). Time to relapse was best predicted by activity in right
midfrontal gyrus, right midtemporal gyrus and right posterior cingulate. This study
is the first to date that has successfully used functional imaging data to predict risk
for relapse in MA abusers. This study is of paramount importance, as it suggests
that there may be cognitive and neural correlates which may identify individuals
at greater risk for relapse and may be applicable to a broad range of addicted
individuals.

One last study from the Paulus group examined response inhibition and the use
of cues to prepare for an impending inhibitory event in 19 recently abstinent
MA-dependent individuals (25–50 days) compared to 19 controls (Leland et al.
2008). The authors used a GO/NOGO paradigm with four different stimulus
classes, one representing the NOGO event and three representing GO events. One
class of the GO stimuli acted as a fairly accurate (87%) predictor of a NOGO
stimulus while another class never preceded a NOGO. In the MA abusers the false
alarm rate was lower following a cue compared to an uncued NOGO, which was
not the case in controls. The authors suggested that the controls did not overtly
benefit from the cue because they were already performing well on the task
whereas the MA subjects may have an impaired inhibitory system. The imaging
data revealed that the MA group had greater cue-related activity in the ventral and
dorsal ACC compared to controls. Furthermore, more activity in the ventral ACC
was associated with fewer false alarms to following cues.

fMRI techniques have also been employed to examine behavioral regulation
and cognitive control processes linked to addiction and MA dependence. Salo et al.
utilized a modified Stroop color-word selective attention paradigm to examine how
MA abusers adjusted both their reaction time (RT) and accuracy to an experi-
mental event based on previous events or trials (Kerns et al. 2004; Salo et al.
2009c). In this single trial version of the Stroop task trial-to-trial adjustments were
measured by comparing RT to conflict trials (i.e., trials in which the word and font
color were incongruent) preceded by conflict trials and RT to conflict trials pre-
ceded by non-conflict trials (i.e., trials in which the word and font color matched).
While controls tended to speed their RT following a conflict trial (consistent with
the literature on conflict processing), the MA abusers did not (Kerns et al. 2004).
In fact, the MA abusers exhibited no trial-to-trial adjustment and performed as if
the previous trial event had not entered their awareness. In other words the MA
abusers did not utilize a previous exposure to an event to modify their behavior.
This difference in trial-to-trial RT adjustments was found in the absence of mean
error rates or general RT differences between groups. Of great importance are the
imaging results linked to the trial-to-trial behavioral adjustments. While controls
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displayed increased activity in right PFC following conflict trials (consistent with
engagement of top-down control) the MA abusers failed to engage the same region
(Salo et al. 2009c). These findings have since been replicated in a larger group of
MA abusers and controls (Fig. 8).

5.1.2 Emotion Regulation

A number of studies have examined social and emotional processes in
MA-dependent subjects. Kim et al. examined empathy processing in 19 abstinent
MA users compared to 19 controls (Kim et al. 2011). The authors used cartoons to
depict two categories of stories, empathy and physical causality. The empathy
condition required subjects to empathize with the character’s situation and imagine
their emotional state whereas the physical condition required subjects to imagine
physical events alone. MA users scored worse than controls on both the empathy
and physical conditions. The imaging results revealed that the MA users displayed
hypoactivity in OFC, temporal poles and hippocampus, with hyperactivity
observed in the dorsolateral PFC. This pattern of activity did not correlate with
task performance. The authors concluded that the dorsolateral PFC may have been
recruited in MA subjects more than controls due to both compromised OFC
functioning, as well as impairments in empathetic processing. Medial frontal
cortex, including OFC, has been implicated in processing emotional expressions,
and thus may be critical to the experience of empathy.

Payer et al. used fMRI and a facial affect-matching task to evaluate emotion
regulation in 12 MA-dependent subjects in very early stages of drug abstinence

Fig. 8 b Dorsolateral prefrontal cortex (DLPFC) region showing increased activity related to
trial to trial adjustments in control subjects relative to methamphetamine (MA) abusers. a Graph
of the average coefficients for the trial-to-trial adjustment statistical contrast in the two groups,
averaged within group for the voxels of the DLPFC activation shown. (Reprinted from Salo et al.
2009c)
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(5–16 days) (Payer et al. 2008). Subjects were required to match either emotional
facial expressions (active condition) or irregular shapes (control condition). Both
MA-dependent subjects and controls activated a similar network of regions to
emotional facial expressions including amygdala, ventrolateral and dorsolateral
PFC, precentral frontal cortex, parietal cortex and occipital regions. Although no
group differences were observed in task performance, the MA group displayed right-
hemisphere hypoactivity within ventrolateral PFC, temperoparietal junction, inferior
temporal gyrus, middle temporal and fusiform gyri as well as in the left cuneus.
In contrast, the dorsal ACC, which has been referred to as the cognitive region of the
ACC, was more active in the MA group. As noted above Leland et al. also observed
ACC hyperactivity in their GO/NOGO paradigm (Leland et al. 2008), although
Paulus et al. found hypoactivity in cingulate suggesting that patterns of activity in this
region may be task-dependent (Paulus et al. 2003). ROI analysis focusing on the
amygdala revealed that although there was a trend toward amygdala hypoactivity in
the MA abusers compared to the controls, it failed to reach significance.

Recently, Payer et al. conducted a second fMRI study using a paradigm examining
facial affect in 25 MA users compared to 23 controls (Payer et al. 2011). The authors
hypothesized that the MA abusers would be impaired in emotion regulation.
Although all participants displayed similar patterns of activation in regions including
bilateral amygdala and inferior frontal gyrus during face processing, group
differences were observed in bilateral ventral inferior frontal gyrus during visual
processing of facial affect. During affect labeling all subjects engaged dorsal inferior
frontal gyrus but the MA group displayed hypoactivity within the amygdala. The
authors carried out an analysis to investigate whether any potential differences in GM
volume were influencing the between-group differences in brain activity. Although
VBM analysis revealed lower GM volumes in the MA group, this did not appear to
significantly influence group differences in functional activity. The authors also
carried out ROI analyses focusing on the amygdala to further investigate any
potential group differences and failed to find any significant functional or structural
differences. And finally, Payer et al. tested functional connectivity between inferior
frontal gyrus and amygdala in both groups (Payer et al. 2011). As predicted there was
an increase in connectivity between these regions during affect labeling, particularly
in the right hemisphere; however, no between-group differences were observed. The
authors concluded that, contrary to their hypothesis, MA users were successful in
emotional regulation. They suggested that hypoactivity in ventral inferior frontal
gyrus may reflect limited emotional insight, which may ultimately lead to heightened
aggression in the MA abusing group.

5.1.3 Reward Processing

Other studies have investigated temporal discounting in individuals with MA
dependence. Temporal discounting refers to the tendency for distant rewards to be
less preferred over immediate rewards. Temporal discounting is usually investi-
gated with the delay discounting (DD) paradigm, which presents individuals with
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choices between immediate small rewards and delayed larger rewards. An indi-
vidual’s reward-related impulsivity can then be measured and compared to their
peers. It has been hypothesized that there are two separate neural systems that
regulate this type of decision making process; the cognitive system, including
dorsolateral PFC and parietal cortex, which is involved in cognitive control and
deliberative processes and the limbic system, that responds more to immediate
rewards and can be described as being the ‘‘impatient’’ system (McClure et al.
2004a, b). These two systems are an integral part of everyday decision making
processes and are thought to be dysfunctional in addicted individuals (Fig. 9).

Monterosso et al. examined brain activity during a DD paradigm in 12 non
treatment-seeking MA abusers and 17 control participants (Monterosso et al.
2007). Control subjects were predominantly smokers due to the high rate of
smokers in the MA group. The authors administered the Wender Utah Rating
Scale (WURS) to exclude those subjects suspected to have childhood Attention-
Deficit/Hyperactivity disorder. Behavioral data revealed that MA-dependent sub-
jects were more impulsive in their reward choice than controls. Areas of activity
during the DD task included ventrolateral and dorsolateral PFC, parietal lobe and
ACC. Although there were no regions that were significantly more active in the
MA compared to the control group, control subjects activated the left dorsolateral
PFC and right inferior parietal sulcus to a greater degree than MA-dependent
subjects during difficult decisions. Furthermore, although activity in the control
group was minimal in the aforementioned regions during easy decisions and

Fig. 9 a Brain areas that are preferentially activated by choices involving a reward available at a
0 min delay. b Brain areas that are activated by all intertemporal choices. (Reprinted from
McClure et al. 2007)
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increased substantially during difficult decisions, activity in the MA group did not
differ between easy and difficult decisions. Greater activity in the left ventrolateral
PFC in all participants was related to a decrease in impulsivity in choosing
between small immediate and large delayed rewards.

Hoffman et al. also compared activity during a DD task in 19 MA-dependent
subjects compared to 17 drug-free controls (Hoffman et al. 2008). As previous studies
in MA abusers have shown an increase in sensitivity to immediate rewards over larger
delayed rewards (Monterosso et al. 2007), Hoffman et al. hypothesized impairments
in the cognitive circuit and increased activity in the affective circuit thought to mediate
selection of small immediate versus large delayed rewards (Hoffman et al. 2008).
Contrasting difficult versus easy choices on the DD task resulted in 11 clusters of
activity including right insula, dorsal ACC, medial superior frontal gyrus, posterior
cingulate, ventrolateral and dorsolateral PFC and regions of parietal cortex. The data
revealed that MA users made more impulsive decisions than controls and displayed
hypoactivity in bilateral precuneus, right caudate, ACC and dorsolateral PFC com-
pared to controls. Neither Monterosso nor Hoffman located any significant activity in
OFC or ventral striatum during their delay discounting paradigms. This may have
been due to susceptibility artifacts, which make imaging of these regions difficult.
Monterosso and colleagues have suggested that the utilization of hypothetical rewards
were not sufficient to recruit limbic areas (Monterosso et al. 2007).

5.2 fMRI Findings and Drug Use Patterns

Relatively few fMRI studies have linked the imaging findings to patterns of drug use.
One important study used the patterns of brain activation observed in the MA abusers
to predict patterns of relapse (Paulus et al. 2005). In this seminal imaging study,
Paulus and colleagues found that higher levels of activity in left midfrontal gyrus and
less in left superior temporal gyrus (BA 38) predicted longer period of abstinence.
Longer duration of MA abuse correlated with more activity in OFC. Paulus et al. also
found that more activity in left middle frontal gyrus (BA 6) and less activity in left
superior temporal gyrus (BA 38) correlated with longer periods of sobriety in MA-
dependent subjects. Furthermore, subjects with a larger decrease on orbitofrontal
activity had a longer history of MA abuse (Paulus et al. 2002). In their 2003 study,
Paulus et al. found that duration of MA use predicted differences between groups in
left midfrontal gyrus (BA9), ACC (BA32) and left precuneus. Duration of sobriety
was associated with more activity in left medial frontal gyrus (8) (Paulus et al. 2003).

5.3 fMRI findings and Cognitive Function

As the strength of fMRI lies in part in its ability to measure cognitive processes
online during scan acquisition, it is somewhat redundant to discuss the cognitive
findings in any detail here as they have already been discussed above.
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5.3.1 fMRI Findings and Clinical Symptoms

Payer and colleagues examined the relationship between scores on the Symptom
Checklist 90 (SCL-90-R; Derogatis et al. 1973), the Brief Symptom Inventory
(BSI; Derogatis and Melisaratos 1983) both of which assess self-reports of psy-
chological symptoms experienced in the past 7 (SCL) or 30 (BSI) days (Payer
et al. 2008). The authors found that higher dorsal ACC activity related to higher
scores on the Hostility and Interpersonal Sensitivity subscales of both the SCL-90
and the BSI. The authors also found a non-significant trend (p = 0.09) towards
high self-reports of interpersonal sensitivity being associated with lower activity in
right ventrolateral PFC; however the authors pointed out that the combination of a
relatively small sample size in addition to a non-significant trend suggest that the
results should be interpreted with caution (Payer et al. 2008). In a later study this
group also found that a reduction in amygdala activity during affect labeling was
associated with increases in perpetrated aggression in controls and participants
with MA dependence (Payer et al. 2011). The authors suggest that these findings
may suggest impairment in socio-emotional regulation, perhaps related to socially
maladaptive behaviors exhibited.

5.3.2 Summary

In summary the body of fMRI studies conducted in MA abusers have painted a
picture of disrupted behavioral regulation and abnormal decision making processes
that are linked to differential recruitment of frontal brain regions (Paulus et al.
2002, 2003, 2005; Leland et al. 2008; Salo et al. 2009c). Furthermore additional
studies have identified changes in BOLD activity among MA abusers while
performing tasks that measure reward processing and delay of gratification
(Monterosso et al. 2007; Hoffman et al. 2008). Finally there has emerged a recent
fMRI literature that has examined the neural substrates of emotion regulation in
MA abusers (Payer et al. 2008, 2011). Thus the body of fMRI studies reviewed
here is very consistent with the MRS findings and suggests that MA targets the
dopaminergic rich frontostriatal regions to a greater degree compared to posterior
cortices.

6 Positron Emission Tomography

Positron Emission Tomography (PET) has evolved significantly over the past
quarter of a century. PET provides physiological information about the tissue
being sampled. via the detection of paired 511-KeV photons that are emitted by
radioactive decay. By detecting the simultaneous arrival of these photons at crystal
sensors, the electronics determine the line path (chord) on which the isotope
existed at the time that the radioactive decay occurred. The PET study requires (1)
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a PET camera with sensors that pick up (simultaneous) pairs of photons emanating
from tissue being sampled, (2) a compound labeled with a positron emitter, and (3)
a compartmental model characterizing relevant physiological processes that the
radiolabeled compound undergoes. Positron emitters release a positron when a
proton is converted to a neutron. This released positron then annihilates an electron
resulting in the emission of two gamma ray photons at a 180�eccentricity to
each other. Numerous elements have positron-emitting isotopes including several
commonly found in biological molecules—for example fluorine-18 [F-18],
carbon-11 [C-11], oxygen-15 [O-15], and nitrogen-13 [N-13]. The acquired
imaging data as well as the compartmental model are then utilized to obtain the
physiological rates of the biological processes being sampled. The application of
PET to the study of addictive disorders includes the imaging of neuroreceptors,
neurotransmitter kinetics, transporters, blood flow and measurement of regional
glucose metabolism

6.1 PET Imaging Studies of Methamphetamine (MA) Abuse

PET can be used to examine dopaminergic functioning including dopamine
receptor binding and dopamine transporter (DAT) functioning), serotonergic
functioning and glucose metabolism in individuals who abuse MA. Animal studies
suggest that MA produces profound damage to dopamine (Preston et al. 1985) and
serotonin cells (Ricaurte et al. 1980, 1994). Studies in mice have shown that given
acutely, MA increases dopamine levels in the synaptic cleft, mainly through the
inhibition of the DAT (Giros et al. 1996). However, it may be ill advised to over-
extend the results from animal studies to humans as MA-induced neuronal damage
has been shown to vary across species (Kita et al. 2003).

One of the earliest PET studies of human MA abusers was a postmortem study
of 11 control subjects and 12 individuals with a history of MA abuse. This study
revealed a reduction in DAT density following chronic MA abuse (Wilson et al.
1996). Following studies attempted to replicate the finding of a reduction in DAT
density in living human subjects with MA dependence. McCann and colleagues
found a reduction in DAT density in the caudate (23% less) and the putamen (25%
less) of MA abusers compared to control subjects (McCann et al. 1998). However
the participants with a history of MA abuse in this study were poly-drug users, also
having heavily used methcathinone in addition to MA. Following this study, a
number of others also found striatal reductions in DAT in MA abusers (Volkow
et al. 2001b, 2001d; Moszczynska et al. 2004; McCann et al. 2008). More wide-
spread decreases in DAT density and binding potential have been found in PFC,
caudate/putamen and nucleus accumbens (NAc) in other studies (Iyo et al. 1993;
Sekine et al. 2001)

Using a combined imaging approach that applied MRS, SPECT and PET Iyo
et al. examined metabolic and neurochemical changes in 11 MA abusers and nine
non-substance abusing controls (Iyo et al. 2004). No significant differences were
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observed between the MA abusers and controls in the density of striatal dopamine
D2 receptors, however the density of DAT in the NAc and caudate/putamen in the
MA group was significantly less compared with the controls. Furthermore, this
reduction was significantly correlated with the length of MA use and severity of
psychotic symptoms which will be discussed in greater detail below. Thus, find-
ings in DAT reduction in MA abusers are relatively consistent, despite differing
methodologies and subject characteristics across the different studies.

A significant body of research has reported severe dopamine depletion in the
brains of chronic MA abusers. One study of autopsied brains of twenty chronic
MA users detected severe dopamine reductions in the caudate of the MA abusers
with six of the subjects having 70% dopamine depletion in the caudate compared
to healthy controls (Moszczynska et al. 2004). The MA abusers also had signifi-
cant dopamine reduction in the putamen. The authors compared MA brains to
brains of Parkinson’s (PD) patients. PD patients tended to have a marked decrease
in dopamine in the putamen rather than the caudate (i.e., the opposite pattern
from the MA abusers). Furthermore dopamine depletion in the MA abusers was
comparable to PD reduction in the caudate but not in the putamen. The authors
suggested that this may explain the range of cognitive impairments observed in MA
abusers but with a lack of PD symptoms. PET can also assess the distribution of MA
throughout the body and brain. A very recent study measured the distribution of
MA within various organs of the human body, including the brain and concluded that
MA was distributed widely through most organs in the body; with the highest levels
of uptake occurring in the lungs, liver and brain with clearance being the slowest from
the brain, liver and stomach (over 75 min) (Volkow et al. 2010).

Striatal reductions in dopamine D2 receptors have also been found in MA
abusers (Sonsalla et al. 1986; Iyo et al. 1993; Volkow et al. 2001a). An early PET
study used the radiotracer 11C-N-methylspiperone to assess the role of dopamine
D2 receptors in the striatum of six male MA abusers and ten age- and sex-matched
control subjects. Although striatal D2 binding did not differ between groups, the
ratio of binding availability in the striatum was related to the psychotic symptoms
exhibited in the MA group. These findings will be discussed in greater detail
below. D2 receptor availability was also associated with metabolic rate in the OFC
(Volkow et al. 2001a), a region associated with impulse control (Sellitto et al.
2010; Damasio 1996). This correlation between D2 receptor availability and OFC
metabolism is of interest as it has been reported that short-term exposure to
stimulants can disrupt OFC functioning and negatively effect behaviors thought to
be subserved by this region (Olausson et al. 2007). The association between D2
receptor availability and OFC metabolic rate was interpreted as potentially con-
tributing to the compulsive nature of drug taking in addicted individuals (Volkow
et al. 2001a). However changes in dopamine D2 receptor density were not
observed in the striatum of MA abusers who were at least 2 months clean (Volkow
et al. 2001b).

The vesicular monoamine transporter (VMAT2) has been identified as a marker
of nigrostriatal dopamine neuron integrity in humans (in vivo (Frey et al. 1997;
Lee et al. 2000; Boileau et al. 2008) and postmortem (Wilson et al. 1996)) as well
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as in animals (Vander Borght et al. 1995; Strome et al. 2006; Sossi et al. 2007).
PET studies have utilized (+)[11C]dihydrotetrabenzanine (DTBZ), a VMAT2 PET
radioligand, as a marker of dopamine integrity. The use of VMAT2 as a marker of
dopamine integrity in PET studies has yielded conflicting results. Wilson et al.
found normal VMAT2 levels in the brains of their MA-abusing subjects in their
postmortem study despite a finding of reductions in DAT in this group (Wilson
et al. 1996). However, it should be noted that this post-mortem brain study
included a limited sample size and it is difficult to translate postmortem data to the
in vivo scenario. In contrast, a recent study discovered a small, 10% decrease in
VMAT2 binding in the striatum of MA abusers who were, on average, three years
abstinent (Johanson et al. 2006). An average of three years is a relatively long
period of abstinence thus it is possible that there was recovery of dopaminergic
function during this time period.

Members of Wilson’s group published an additional study measuring dopamine
integrity in subjects with MA dependence, this time in vivo (Boileau et al. 2008).
In this study, the authors used active MA users as they wished to investigate
whether greater decreases in VMAT2 binding would occur compared to the
Johanson et al. study mentioned above. The results from their study, however,
suggested that VMAT2 might not, in fact, be a reliable marker of dopamine
neuronal integrity in PET studies. Contrary to their hypothesis, Boileau et al. found
an increase in VMAT2 binding in the putamen and head of the caudate in com-
parison to controls (Boileau et al. 2008). This was particularly pronounced in
subjects who had presented with a positive drug screen on the day of the scan and
reported having used from 1.5 to 3 days previously. The effect of an increase in
VMAT2 in MA abusing participants decreased with time abstinent; in fact
VMAT2 binding failed to differ significantly from controls following a period of 7
to 21 days abstinent and subjects who were abstinent for over 30 days were only
slightly elevated (9% in the caudate and 4% in the putamen) in comparison to
controls. These authors also used an additional control group, which consisted of
PD patients. As expected, these PD patients displayed lower VMAT2 in these
brain regions when compared to control subjects. The authors suggested that
VMAT2 (at low radiotracer concentration as present in PET studies) might be
influenced by changes in vesicular dopamine levels (de la Fuente-Fernandez et al.
2009). They argued that administration of MA, which is a powerful dopaminergic
drug, would decrease vesicular dopamine and that this would be reflected by
increased VMAT2 binding. Thus failure to find a difference in striatal
(+)[11C]DTBZ binding between MA abusers and controls may not necessarily
indicate preservation of striatal dopamine innervations. In a follow-up to their
2008 study, Boileau and colleagues investigated whether acute MA administration
would cause increased VMAT2 binding in the striatum in healthy non-substance
using controls (Boileau et al. 2010). Boileau et al. scanned nine subjects pre, 2 h
post and in five subjects 24 h post administration of a low dose of MA. The
authors failed to find increased striatal VMAT2 binding which they suggested may
be due to the low dose administered to their non drug-using cohort. They sug-
gested that a low dose of MA may have stimulated a compensatory increase in
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dopamine synthesis which might have replenished vesicles. Thus, the PET
literature on MA abuse in humans using VMAT2 binding dopamine neuronal
integrity is, as yet, unresolved.

To the best of our knowledge, only two studies have utilized PET to study the
effect of long-term MA use on the serotonergic system in humans (Iyo et al. 1993;
Sekine et al. 2006). Iyo et al. scanned six male MA abusers, all who had previously
experienced MA-induced psychosis and ten male controls (Iyo et al. 1993). In
addition, as discussed above D2 receptor binding was also measured in the striatum
of the same subjects. The authors did not report group differences in receptor binding
in striatal and frontal cortices, however the ratio of binding availability in the striatum
was significantly decreased compared to that in the frontal cortex of the MA abusers.
The authors conclude that this reduction may represent an imbalance in the activity of
the D2 and serotonin receptors. Furthermore as all ten MA abusers reported a history
of MA-induced psychosis, this imbalance may be related to the susceptibility to MA
psychosis. A later study of long-term MA abuse on the serotonergic system compared
12 currently abstinent MA abusers (mean period of abstinence 1.6 years) to healthy
controls. The authors described their subjects as being recreational users with no
history of particularly heavy MA use. They used [11C]McN-5652, which has a
binding specificity to pre-synaptic serotonin transporter (SERT) to examine changes
in the serotonergic system of MA abusers. The authors found decreased SERT
density in all ten regions of interest studied, namely, midbrain, thalamus, caudate
nucleus, putamen, amygdala, ACC, dorsolateral PFC, OFC and cerebellar cortex.

A number of studies have measured glucose metabolism in MA abusers.
Volkow and colleagues used [18F] fluorodeoxyglucose to examine brain metab-
olism in fifteen MA abusers (2 weeks to almost 3 years abstinent) compared to 21
controls (Volkow et al. 2001c). They found a 14% increase in whole brain
metabolism in MA abusers, in particular in parietal cortex (20% increase).
Following normalization for whole brain metabolism, the MA abusers displayed
decreased metabolism in the thalamus, striatum (larger in the caudate [12%] than
the putamen [6%]) and the increase in parietal cortex remained significant. The
authors interpreted the increase in parietal metabolism to be related to inflam-
mation and gliosis brought about by MA-induced brain damage. The authors cite
animal studies that find gliosis in response to MA administration as support for
their theory (Sheng et al. 1994; Escubedo et al. 1998).

London and colleagues measured glucose metabolism using [18F] PET in 17
female MA-abusers who were in early abstinence (4–7 days) compared to 18
female controls (London et al. 2004). Reduced metabolism within the ACC and
insula was reported along with concomitant increases in the OFC, mid and pos-
terior cingulate, amygdala, ventral striatum and cerebellum (London et al. 2004,
2005) These are the same brain regions in which reduced DAT density has been
observed following long-term MA exposure (Volkow et al. 2001d; Sekine et al.
2003). Another study of glucose metabolism imaged male MA abusers in early
abstinence (i.e., 21 days) in a resting state PET study (Kim et al. 2009b). They also
found evidence of left inferior frontal hypometabolism in MA abusers compared to
controls, close to Brodmann area 9 in dorsolateral PFC.
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6.2 PET Findings and Drug Use Patterns

Measures of dopaminergic integrity (DAT binding and dopamine receptors), as
well as metabolism ascertained through PET imaging have been correlated with
patterns and severity of drug use (i.e., number of months using drug, months
abstinent and general quantities of drug consumed). Sekine and colleagues found
that DAT reductions in caudate/putamen and in NAc were associated with length
of MA use, but not with duration of abstinence (Sekine et al. 2001). Volkow et al.
also found a correlation between DAT density and years of MA use in the caudate
but not the putamen (trend significant; p = 0.08) but again no correlation with
abstinence duration nor with MA dosage. A pair of recent PET studies also failed
to find any correlation between DAT binding potential and duration of abstinence
(Johanson et al. 2006; McCann et al. 2008). In addition to PET studies of DAT
binding and dopamine receptor density, investigations were also carried to
determine whether a relationship between brain metabolism and drug patterns
existed. Iyo et al. found that NAc metabolism correlated negatively with period of
MA use but not with months abstinent (Iyo et al. 2004). Kim et al. found that
cerebral glucose metabolism in left inferior frontal WM correlated negatively with
total cumulative dose of MA (Kim et al. 2009b). In one study which examined
serotonergic functioning in MA abusers, Sekine and colleagues found that
decreased SERT density in the midbrain, thalamus, caudate, putamen and OFC
correlated with longer of MA use; however, there was no correlation with time
abstinent (from 6 months to 5 years) (Sekine et al. 2006).

Thus, in the studies reviewed thus far, there is some evidence for a decrease in
DAT binding potential with increased time abusing MA, but remaining MA
abstinent does not appear to have a major impact on DAT recovery. However there
is one important longitudinal PET study of MA abusers that contradicts this
conclusion (Volkow et al. 2001b). In this study the authors examined DAT
reduction in the striatum of 5 MA abusers who were tested following a short
abstinence period (less than six month abstinent) and then again following pro-
tracted abstinence (12–17 months). The authors found a substantial increase in
DAT following a protracted abstinence period of one year and longer (Fig. 10).

A follow-up PET study of these participants that measured glucose metabolism
revealed no differences in global metabolism between short versus long-term MA
abstinence. Furthermore regional analyses revealed no differences in absolute
metabolic measures within the striatum, thalamus, and occipital cortex. Relative
changes were also assessed by using the regional values normalized by the global
measures. The relative metabolic measures of the MA abusers were significantly
lower after both short- and long-term abstinence in the striatum. In contrast, after
extended periods of abstinence, relative thalamic activity did not differ from that of
the control subjects (Wang et al. 2004). The authors suggest that the sustained
reduction in metabolic activity in the striatum could underlie some of the long-
lasting deficits reported in abstinent MA abusers. In a direct comparison of the 25
MA abusers, thalamic metabolism was lower in the 12 short-term abstinent MA
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abusers compared to the 13 long-term abstinent MA abusers. Metabolism in the
striatum did not differ between the two groups as a function of abstinence.

6.3 PET Findings and Cognitive Function

Many studies have assessed psychiatric symptoms and cognitive functioning
(evaluated by a battery of cognitive tasks) in MA abusers in order to investigate
whether the symptom severity or cognitive ability relate to PET findings. Volkow
and colleagues administered a battery of motor and cognitive tasks to their partici-
pants who had abused MA (Volkow et al. 2001d). The motor tasks included the
Timed Gait Task and Grooved Pegboard Task, the attentional tasks included the
California Computerized Assessment Package, the Symbol Digit Modalities Test
and the Stroop Interference. The Rey Auditory Verbal Learning Test was also
administered to measure memory. The authors found that reductions of DAT in the
striatum were associated with impairments in motor functioning (indicated by
slowing on both motor tasks) and memory impairment, but not with any components
of the administered attention tasks. Volkow et al. also found that higher parietal
metabolism in MA abusers was associated with slowed motor performance on the
grooved pegboard task and suggested that hyper metabolism in this region may also
be linked to impairments in other cognitive functions, such as attention and visuo-
spatial skills (Volkow et al. 2001d). McCann et al. found a negative correlation
between DAT binding potential and memory assessed by the Wechsler Memory
Scale-III (Wechsler 1981). In contrast to the Volkow study, no correlations were
observed with motor impairment or measures of attention and executive control.

In a recent PET study that measured both DAT and VMAT2 within the striatum
cognitive function was evaluated using tests of motor function, memory, learning,

Fig. 10 Brain images of the
distribution volume of [11C]
d-threo methylphenidate
in a control and a
methamphetamine abuser
evaluated twice, during short
and protracted abstinence.
Notice the significant
increases in binding in
striatum in the
methamphetamine abuser
with protracted abstinence.
(Reprinted from Volkow
et al. 2001b)
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attention and executive function (Johanson et al. 2006). The findings revealed that
MA abusers exhibited performance deficits on only three of the 12 tasks. Failure to
find more substantial changes in neurocognitive function may be attributed to the
length of time that MA users were abstinent (ranging from 3 months to more than
10 years, mean 3 years).

6.4 PET Findings and Clinical Symptoms

Many studies have assessed psychiatric and clinical symptoms associated with long-
term MA use. Clinical symptoms can be measured through psychiatric rating scales
as well as questionnaires that measure drug related symptoms, such as craving.
Such approaches can shed light on whether the severity of symptoms relates to
changes in metabolic activity or dopamine transmission as measured by PET.
Sekine et al. used the BPRS (Overall and Gorham 1962) to assess psychiatric
symptoms in MA abusers who were at least 7 days abstinent. The authors discov-
ered a negative relationship between DAT binding in the caudate/putamen and in the
NAc with BPRS scores (Total and positive). There was no correlation between
BPRS scores and DAT binding potential in the PFC. Iyo et al. replicated this finding
in their PET study, determining that caudate/putamen and NAc (but not PFC) DAT
binding potential correlated negatively with the positive symptom subscore of the
BPRS while caudate/putamen binding only, correlated with the total BPRS score
(Iyo et al. 2004). In addition to the correlations reported above, the severity of
psychiatric symptoms often correlates with the duration of MA use (Sekine et al.
2001; Iyo et al. 2004). As may be expected, subjective craving also declines with
increased amount of time abstinent from the drug (Sekine et al. 2001).

PET was used to assess the role of dopamine D2 receptors in the striatum and
serotonin S2 receptors in the frontal cortex in the susceptibility to MA -induced
psychosis. Subjects were six male MA abusers who had previously experienced
MA psychosis and ten age- and sex-matched control subjects. The radiotracer used
was 11C-N-methylspiperone. Although binding availability in the two regions did
not differ between the two groups, the ratio of binding availability in the striatum
to that in the frontal cortex significantly decreased in the MA subjects compared to
the control subjects. These findings suggest that an imbalance in the activity of
these two receptors may be related to the susceptibility to MA-induced psychosis
(Iyo et al. 1993).

In a recent PET study self-reports of depression symptoms (as measured by the
Beck Depression Inventory—BDI) correlated positively with glucose metabolism
in the anterior cingulate and amygdala (London et al. 2004). The authors also
reported that more recent MA use (measured by grams per week) was associated
with greater levels of depression (measured by the BDI). Furthermore ratings of
anxiety (measured by the State-Trait Anxiety Inventory) correlated negatively with
activity in the anterior cingulate cortex, left insula, OFC and amygdala. The
authors cited a study by Gur et al. to explain the negative correlation between
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glucose metabolism in the insula and anxiety symptoms (Gur et al. 1987). In the
Gur et al. study, the authors found an inverted U shape relationship between
cortical blood flow and anxiety, such that cortical blood flow increased with
anxiety in subjects with low levels of anxiety but that it decreased in those subjects
with high anxiety (Gur et al. 1987). As the MA abusers in the London et al. study
had a higher degree of anxiety symptoms, the authors suggest that the results in
this study are consistent with being situated at the negative slope of the curvilinear
function (p. 80). Sekine et al. found that rates of aggression (measured by the
Aggression Questionnaire Scale) in MA abusers increased significantly with
decreasing levels of SERT levels in most regions of interest studies; thalamus,
caudate, putamen, anterior cingulate, OFC, temporal, cerebellar and dorsolateral
cortex (Sekine et al. 2006). Whole brain statistical analysis supported this finding
in OFC, ACC and temporal cortex.

7 Conclusion

There has been significant progress in our understanding of the human brain
structure and function with imaging techniques. These advances in neuroimaging
have greatly enhanced our knowledge of the neural correlates of addiction and
allow scientists to relate these neural changes to patterns of drug use, drug
abstinence and cognitive function. All of these approaches are critical to better
understand the powerful effects that long-term substance abuse has on the human
brain. Despite the powerful neurotoxic profile of MA (Davidson et al. 2001;
Quinton and Yamamoto 2006), it appears that in some cases neuronal function
does have the ability to recover following long-term MA use (Salo et al. 2011a;
Volkow et al. 2001b; Wang et al. 2004; Nordahl et al. 2005; Kim et al. 2006; Ernst
and Chang 2008; Salo et al. 2009b). This may be in part due to the fact that
although MA is particularly damaging to the axonal processes, it may be that the
cell body itself is relatively spared (Fowler et al. 2008). The findings that relate
extended periods of drug sobriety to improvements in brain function have also
been extended to measures of cognition (Simon et al. 2010; Salo et al. 2009b).
Linking neuroimaging findings to behavior and clinical patterns of drug use is
essential if there is to be a translational implementation of the science that occurs
in the laboratory to the important clinical work that transpires in substance abuse
centers. Improvements in MR have included not just enhanced resolution and
contrast, but also brought forth new imaging techniques (i.e., MRS and DTI) both
of which have clinical and research importance.

At the present time it is our position that imaging studies of an individual may
not be diagnostic but rather their value lies in the ability to identify patterns of
brain changes across groups with similar drug use characteristics. One of the
challenges in measuring neural changes associated with long-term drug use is that
one can never completely isolate the consequences of drug exposure on the brain
from those that may predate the drug use itself. It is widely accepted that there
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exists a genetic vulnerability to addiction and substance abuse. The combination of
genetic and environmental influences is thought to contribute to 40–60% of the
variability associated with the risk of addiction (Compton et al. 2005; Volkow
2005). However, even after the consideration of preexisting factors the majority of
studies reviewed in this chapter point to significant consequences of the drug itself.
The observed correlations between years use, dosage levels and recovery of neural
chemistry and function following periods of sobriety suggest that observed brain
changes are likely a synergistic effect between pre-existing factors and direct
consequences of MA exposure. This complex interaction between risk factors and
the direct effects of MA itself speaks to the need for more longitudinal imaging
studies in substance abuse to track brain changes across periods of drug sobriety.
Such studies will be of paramount importance to clinical treatment settings and
will inform and guide future studies of substance abuse and addiction.
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Pharmacological MRI Approaches
to Understanding Mechanisms
of Drug Action

Michael J. Minzenberg

Abstract Functional neuroimaging is a novel technique for the study of drug
action in the brain. The emerging role of this method is intimately tied to the
unique challenges to advancing drug development for neuropsychiatric disorders.
This chapter first presents a brief overview of the important treatment needs that
remain to be met, which serve as clinical targets for drug development. Important
factors that hinder progress in drug development, which arise from clinical, sci-
entific and economic issues, are acknowledged. This sets the stage for the unique
advantages of functional neuroimaging modalities such as functional MRI (fMRI)
as a biomarker and drug development tool, in both clinical and preclinical phases.
The physiological basis of the fMRI signal is briefly outlined, and aspects of neural
signaling related to this signal change, with emphasis on implications for phar-
macology studies. The utility of fMRI for evaluating the full anatomic extent of
central neurotransmitter systems in a dynamic manner is then described. This is a
critical advantage, and particularly important for studies of how systems such as
the monoamines modulate distributed neural networks during cognitive processes
in both health and illness, and how these actions are modified with pharmaco-
logical intervention. Central catecholamine systems are seen as paradigmatic
targets amenable to pharmacologic fMRI. fMRI is observed to occupy a unique
position in the armamentarium of methods available to the pharmacologist and the
drug development process, and poised to play an expanding role in basic and
clinical neuroscience.
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1 The Status and Challenges of Drug Development
in Neuropsychiatric Illness

Any discussion of new methodologies available to advance neuropharmacology
must first acknowledge the tremendous personal and public health impact of
neuropsychiatric illness, and the substantial challenges to furthering our knowl-
edge of how drugs work in the human brain. Psychiatric disorders are among the
most debilitating illnesses that humans face. Contemporary global epidemiological
surveys such as those conducted by the World Health Organization (Murray et al.
1994) have established a number of high-prevalence psychiatric conditions,
including schizophrenia, mood disorders and substance abuse, as among the
highest impact in medicine overall, reflected in measures of long-term disability.
Not surprisingly, these conditions are associated with inordinate suffering on the
part of the afflicted, their families and loved ones, and considerable economic cost
incurred as direct costs of care and enormous levels of lost productivity.

A number of important unmet treatment needs persist among the more serious
and chronic conditions encountered in psychiatry. These include symptom
domains such as negative symptoms and cognitive dysfunction in schizophrenia,
which confer the greatest impact on clinical outcome in this illness yet have no
established treatment; treatment-refractory states and relapsing–remitting courses
of illness, even for symptoms which serve as primary treatment targets, in mood,
anxiety, psychotic and substance-use disorders; ‘‘secondary’’ symptoms that arise
from these disorders and strongly modify outcome, such as impulsivity and
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suicide; the deleterious effects of persistent symptoms on health-related behaviors
and medical co-morbidity; and uncertain and variable effects of existing treatments
on subjective well-being and long-term functional outcome, even for many
patients who achieve full remission from primary target symptoms such as
psychosis. The single-minded emphasis on monotherapy for disorders that are
heterogeneous (at least as currently defined) may be one factor that tends to
preclude attention to neglected clinical targets (Hyman and Fenton 2003). On the
other hand, inappropriately narrow clinical indications are likely to be disapproved
by the FDA as ‘‘pseudospecific’’ (Laughren and Levin 2006), leading to the need
to ‘‘walk the tightrope’’ in adequately addressing these targets. More generally,
there is little evidence that the morbidity or mortality associated with psychiatric
illness has changed in the era of modern psychopharmacology (Insel and Scolnick
2006). Furthermore, the notion of either primary or secondary prevention remains
a neglected goal in psychiatry (Insel and Scolnick 2006). Therefore, genuine
advances in psychiatric treatment hold the promise to alleviate considerable suf-
fering and global health burdens.

Unfortunately, the remote and recent history of drug development in psychiatry
poses numerous challenges to achieving this aim. As is well known, the early
history of drug discovery in mental health is characterized largely by serendipity
(Ban 2006), with major successes initially arising from keen clinical observations
made during use of certain compounds for unrelated medical conditions (such as
surgical procedures, respiratory infections, hypertension and epilepsy). More
recently, the industry has virtually uniformly pursued the strategy of mining
existing targets (such as D2 receptors for antipsychotics, or monoamine trans-
porters for depression) with a proliferation of so-called ‘‘me-too’’ products. One
important consequence is that the newer agents available for major mental illness
generally lack enhanced efficacy for existing treatment targets, nor clinically
significant efficacy against new targets, but rather extend the range of adverse
physiological effects that patients are exposed to, including some (e.g. metabolic
syndrome) that appear likely to adversely affect long-term clinical outcomes such
as life expectancy. Unfortunately for patients, families and clinicians, there may be
a vicious cycle where the patients in most need of treatment advances (e.g.,
schizophrenia patients with prominent negative symptoms or cognitive dysfunc-
tion) are the least likely to benefit from new medications.

While some pharmaceuticals for central nervous system (CNS) indications have
been among the most successful throughout medicine in recent years, generating
staggering revenues for large pharmaceutical companies, with massive, expanding
markets for these drugs, there has been a recent withdrawal overall of the phar-
maceutical industry from CNS. The proximal causes appear to be the inordinate
and expanding cost of bringing new drugs to market, particularly costly for CNS
drugs, which show a relatively high failure rate compared to other classes of agents
(Kola and Landis 2004). This scenario is accounted for in part by the increasing
cost of obtaining regulatory approval. This trend away from CNS was set in
motion even prior to the recent economic downturn, and appears likely to worsen,
given the trend in costs (Breier 2005).
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Many reasons for this inordinate cost dovetail with the scientific challenges to
advancing drug development. There is now a considerable dialogue in the clinical/
scientific and industry literatures addressing the myriad challenges facing the
scientific, medical, regulatory and industry communities to advance the state of
drug development for neuropsychiatric disorders (Agid et al. 2007; Conn and Roth
2008). These challenges, in the aggregate, provide a context for the emerging role
of noninvasive functional neuroimaging in pharmacology, and are discussed in
turn.

The inevitable starting place for any discussion of these challenges is the
system for classifying illness in psychiatry. The current standard, instantiated in
the Diagnostic and Statistical Manual (DSM, now undergoing a revision to a
fifth full edition), has a long and complex history, originating in committees of
experts in clinical psychiatry. This system of diagnosis and classification remains
based on clinical phenomenology, that is, reportable or clinically observable
signs and symptoms, without reference to underlying theoretical models of
mental illness, nor empirical knowledge about etiology or pathophysiology
available from clinical or basic neuroscience. While more recent editions of the
DSM have relied increasingly on empirical field trials to evaluate the mea-
surement properties and performance of these criteria sets in discriminating
among discrete illness types, there remains no rooting of categories in distinct
etiologies or pathophysiological processes. In addition, it remains unclear
whether individual syndromes (including schizophrenia-spectrum disorders,
depression and personality disorders) are better represented as dimensional
conditions. As a result, heterogeneity within categories, and co-morbidity across
categories, are the rule for patients. The lack of correspondence between diag-
noses and distinct pathophysiologies is a particular obstacle for drug develop-
ment, as the resulting heterogeneity confounds efforts to establish molecular
targets and useful biomarkers of drug action (see below).

The underlying pathophysiology also remains obscure for virtually all major
mental illness. The biological events or fundamental cellular/molecular processes
that form the basis for illness is essentially unknown for schizophrenia, autism,
bipolar disorder, etc., despite a wealth of epidemiological clues about antecedents
and risk states for many disorders, and a range of consistent biological and cog-
nitive abnormalities observed in these disorders. This makes it hard to characterize
and capitalize on treatment targets, as the field is to some extent ‘‘shooting in the
dark.’’ Beyond the nosological constraints, both the polygenic nature of mental
illness, and the inherent complexity of the brain, may be root causes of this
obscurity. While this is increasingly recognized in psychiatric genetics and sys-
tems neuroscience, there is no visible way yet around the roadblock.

The unique challenge of modeling the complex clinical phenomenology of
psychiatric illness in animals remains an unresolved problem (Nestler and Hyman
2010). Many of the core features of mental illness, such as hallucinations,
delusions, depressed mood and guilt, cannot be induced or detected in animals,
including non-human primates. While cellular and molecular processes implicated
in psychiatric disorders (such as monoamine transport, signaling via D2 receptors,
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brain-derived neurotrophic factor, etc.) can be reliably and specifically manipu-
lated with diverse methods, animal models of clinical phenomenology tend to
express at best very partial (and typically very nonspecific) features of illness. For
instance, animals with targeted gene knockouts or brain lesions that lead to social
withdrawal are often suggested to variously model schizophrenia, autism and
depression, which are distinct clinical conditions with widely divergent patterns of
gene association, biological abnormalities, treatment response and clinical course.
In addition, many cognitive processes that are important to psychiatric illness (e.g.
language, abstract thought) are not found in any other species. Among treatment
considerations, the precise drug treatment regimen (e.g. dose, duration) in animals
that properly models treatment in clinical settings is typically uncertain. Further-
more, variation across species in both pharmacokinetics and pharmacodynamics
confers hard limits on the utility of animal models for predicting the efficacy of
drugs in humans. Not surprisingly then, there is poor predictive utility of animal
models for effective treatments for cognition, for instance (Hagan and Jones 2005).
Animal models remain an important pillar of both basic and clinical neuroscien-
tific knowledge, given the inaccessibility of brain tissue in patients, the range of
manipulations possible in animals, and the close correspondence of physiology
across mammalian species. Nonetheless, significant refinement in how these
models are developed and utilized will be necessary to improve their contribution
(Nestler and Hyman 2010).

Interestingly, even for those drugs with clinical efficacy established beyond
doubt, such as D2 antagonists for psychosis, or monoamine transport inhibitors for
depression, the critical mechanism of action remains unclear. The consequences
for neurotransmission of administering these drugs are well established; however,
clinical effects tend to exhibit a considerable temporal delay beyond the onset of
effects on neurotransmitter receptor activity. Delayed changes in neuronal sig-
naling rates or patterns, intracellular signaling cascades, gene transcription and
structural changes in synapses have each been addressed in recent work as likely
mediators of clinical efficacy. Nonetheless, how an individual’s brain can get from
any of these changes relief from auditory hallucinations or suicidal thoughts
remains essentially unknown. In addition, for many drugs (e.g. aripiprazole,
clozapine, lithium, valproic acid, mirtazepine) there is evidence for a multiplicity
of actions, each of which may be responsible for efficacy. This may be why
investigators remain divided on whether more, versus less, specificity in the profile
of drug action matters for clinical efficacy (Hopkins 2008; Roth et al. 2004).
Indeed, the history of failed versus successful agents for major mental illness
suggests that ‘‘magic shotguns’’ should be preferred to ‘‘magic bullets’’ (Roth et al.
2004). The trouble with this observation follows from the complexity of effects
associated with a single drug that has multiple actions on numerous highly
interacting neurotransmitter systems. This may necessitate both non-conventional
small-molecule screening approaches to identify promising agents, and significant
advances in direct testing in humans by a variety of experimental methods,
including functional neuroimaging.
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2 Functional Magnetic Resonance Imaging as a Biomarker

The question of which molecular process is most essential for clinical efficacy, and
therefore most worthy of investigation and development, is often framed as a
problem of ‘‘target validation.’’ This notion is intimately tied to the construct of
‘‘biomarkers’’ in drug development. The NIH Biomarker Definitions Working
Group has defined a biomarker as ‘‘A characteristic that is objectively measured
and evaluated as an indicator of normal biological processes, pathogenic processes
or pharmacological responses to a therapeutic intervention’’ (Lesko and Atkinson
2001). The FDA has proposed a similar definition of a ‘‘marker’’ or surrogate
endpoint for testing medical treatments (US Senate Bill 830), and the FDA Critical
Path Initiative (http://www.fda.gov/oc/initiatives/criticalpath/) has identified
Imaging as a critical technology to surmount the drug development roadblock.
A typical role for a biomarker is to properly ‘‘measure the delivery of drugs to their
intended targets, and to understand and predict pathophysiology, and how it is
altered by therapy, through monitoring variables known to have clinical rele-
vance’’ (Frank and Hargreaves 2003). The NIH Working Group defines three
levels of biomarkers: those that track the natural course of illness (type 0); those
that examine intervention effects, where the drug’s mechanism of action is known
but where a strict relationship to clinical outcome has not been established
(type 1); and those where changes in the biomarker are truly predictive of clinical
outcome (type 2). Wong and colleagues suggest that at present, most neuroimaging
measures can be considered to have the status of either type 0 or type 1 biomarker
(Wong et al. 2009). Useful biomarkers can uniquely enable proof-of-concept
studies for novel agents early in the drug discovery process, and thus reduce risk in
safety and efficacy determinations in the course of drug development. They can be
used to directly compare competing interventions, to evaluate pharmacokinetics, to
stratify clinical populations, to ascertain treatment considerations such as dose and
duration. They are also often sensitive predictors of adverse events associated with
a given agent, including the detection of central effects of agents with primarily
peripheral actions. As a surrogate for a clinical endpoint, they ideally provide
earlier (and less expensive) measures of clinical efficacy and side effects. Fur-
thermore, useful biomarkers may support the extension of a known compound into
new therapeutic areas as its effects in the human brain are elaborated, and
importantly, may also permit the ‘‘rescue’’ of drugs that have failed a primary CNS
indication (O’Connor and Roth 2005; Shorter 2002). Biomarkers are now ubiq-
uitous in drug development for indications throughout medicine, with variable
levels of success which depends in a large part on the degrees of validation of the
measure as a biomarker.

Given the foregoing review, it should be clear why the development of bio-
markers in psychiatry has lagged considerably behind that of the rest of medicine.
Nonetheless, CNS may be the vanguard in the use of imaging biomarkers in
medicine, with other specialties following this lead, and it is reasonable to assume
that each of the goals of a good biomarker outlined above will be attained with
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functional neuroimaging measures in the foreseeable future. Wong et al. (2009)
emphasize two critical phases in the course of drug development where nonin-
vasive neuroimaging has emerging potential. First, clinical experiments that are
conducted relatively early in development that aim to demonstrate ‘‘proof of
biology’’ by testing a novel hypothesis by associating target engagement with a
biological change that is proposed to lead to a therapeutic response. Second,
subsequent clinical studies that demonstrate ‘‘proof of concept’’, defined as proof
that this engagement of the target is linked to a clinically significant change in a
clinical endpoint, or in other words that this target engagement by the drug has a
true clinical impact that is likely to change how patients with the given condition
are treated. This is typically established in phase II clinical trials.

A number of other practical advantages are observed with pharmaco-fMRI in
drug development. The method does not involve exposure to ionizing radiation,
rendering it more useful for repeated imaging studies in individual subjects. The
capacity for easy, reliable repeat scanning is a significant advantage, as this is
necessary to permit full washout of drugs with a long elimination half-life (which is a
desirable feature of agents for clinical use), and to evaluate effects that may be
region- and time-sensitive, such as those underlying a latency to clinical efficacy, as
well as tolerance, sensitization and withdrawal effects (Stein 2001). Time-sensitive
effects may be important to identify limits to effective drug action. Repeat studies
also allow within-subject study designs, to confer greater statistical power for the
evaluation of dose–response relationships (and dose–response interactions with
brain region) and for the comparative efficacy of different agents, by varying doses
or agents within subjects across sessions (Honey and Bullmore 2004).

3 Functional Magnetic Resonance Imaging in Preclinical
Drug Development

The utility of fMRI is in fact observed even prior to clinical phases of drug
development. One distinct advantage of this methodology is that it can be used
noninvasively and in a repeated manner across diverse species, yet it is also
feasible to combine with more invasive measures of neural activity in animal
models. Rodents and primates alike are now readily investigated with fMRI,
including with MRI scanners with small bores to accommodate rodents and par-
ticularly high magnetic field strengths (e.g. 12 Tesla) that are not yet approved for
use in humans. The use of high field strength and combination with invasive
measures such as intracranial electrical recordings or microdialysis has afforded
insights into the relationship between BOLD signal change and cellular processes,
to inform the use of fMRI in clinical populations. fMRI in animal models provides
‘‘functional signatures’’ by identifying distributed neural circuits engaged by a
certain drug. It may be more sensitive to changes in a circuit underlying behavioral
or cognitive effects than the overt behaviors themselves that are measured in
traditional behavioral assays. Active circuits modulated by drugs may also remain
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undetermined by overt behaviors in behavioral assays, yet may nonetheless have
clinically relevant effects. It is less dependent on a limited set of receptor ligands,
which significantly restricts the range of pharmacological assessments available in
positron emission tomography (PET). fMRI may also have a particular advantage
for specific classes of agents. For instance, full receptor agonists, partial agonists
and inverse agonists are now entering the pharmacopoeia as novel agents for a
variety of neuropsychiatric conditions (with aripiprazole as a successful example).
Agents with these pharmacological actions, or potent agonists acting at low-den-
sity CNS receptors, are difficult to evaluate with other modalities such as PET.
fMRI is uniquely capable of evaluating the neural effects of agents such as these,
as it primarily indexes post-synaptic membrane polarization states, without relying
on competition between a given agent and a (radiolabelled) competitor for ligand
binding (see below). fMRI may in fact be the only existing method which can
provide proof of target (at the circuit level), and target engagement, for these
classes of agents (Borsook et al. 2006).

4 The Biophysical and Physiological Basis of Signal in fMRI

Because a fundamental concern of neuropharmacology is the effects of chemical
compounds on signaling processes in the brain, it is essential to consider the types
of signaling processes that can be measured by fMRI. As with all MR-based
imaging procedures used in humans, the fMRI signal from which neural activity is
inferred is derived from complex biophysical phenomena, and dependent on a
particular set of physiological features of neural and hemodynamic properties of
the brain and cerebrovasculature. While a full treatment of this is precluded by
length considerations, a proper basic understanding is necessary in order to con-
sider how fMRI measures brain activity, and the challenges of elucidating the
action of drugs which act on both the neurons and the vasculature of the brain.
Many excellent, detailed overviews of these phenomena are available elsewhere
(Logothetis and Wandell 2004; Norris 2006); these are briefly outlined here as an
introduction, along with some basic procedural aspects of MRI. First, a large,
doughnut-shaped magnet with a circular electric current (maintained at very low
temperatures to perpetuate the current) establishes a static magnetic field with
relatively high strength, on the order of 40,000 times that of the earth’s magnetic
field. Subjects are placed inside, with humans typically reclining awake and
relaxed in a supine position on a table inserted into the bore of the magnet; they
typically maintain both visual contact with a monitor to present visual stimuli
during cognitive tasks, and auditory contact with the investigator at the MRI
console (though other tasks and monitoring are feasible, such as auditory,
gustatory or somatosensory stimuli, physiological monitoring, eye tracking/
pupillometry, etc.). The magnetic field is experienced in the subjects’ soft tissues,
with the most important effect being the alignment of protons with the direction of
the static field. These protons are primarily available as hydrogen ions in water;
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at relatively low field strength this source is primarily intravascular, but as the field
strength increases, an increased proportion of protons from water are contained
within the parenchyma of the brain. A radiofrequency pulse is then triggered in a
repetitive manner during the course of image acquisition. This pulse alters the
angle of the protons’ spin in a manner that is controlled by the pulse sequence
(the ‘‘flip angle’’) set by the investigator. With the brief cessation of the pulse,
the original angle of the protons’ spin is assumed again. This is referred to as
‘‘relaxation’’, and during this process energy is released which is detected by the
scanner. A gradient coil distributes the field in a graded manner across space (i.e.,
the subject’s head); this creates signal variation in two spatial dimensions that
permits a two-dimensional image ‘‘slice’’ of the brain to be acquired, and these
slices are in turn acquired in a progressive, repetitive manner across the third
spatial dimension so that a three-dimensional image can be constructed. The signal
acquired is maximized with the proportion of protons that resonate, that is, spin in
phase with each other. Protons that spin out of phase tend to cancel each other’s
contribution to the signal recovered by the scanner. This ‘‘dephasing’’ is strongly

Fig. 1 BOLD functional
magnetic resonance imaging
(fMRI)
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affected by inhomogeneity in the local tissue environment; in the vasculature, this
is determined most critically by the oxidation state of hemoglobin contained in
erythrocytes that course through the tissue.

Here, the physiology of the cerebrovasculature comes into play. The vascula-
ture of the brain has complex autoregulatory processes to maintain blood flow and
oxygen delivery to the brain (Heeger and Ress 2002) (see Fig. 1).

Among these, as relative increases in local neural activity occur (e.g. in
response to a sensory stimulus or another information processing demand), there is
a transient increase in flow to the local area. While the increased neural activity
elicited in this manner may rely primarily on ‘‘aerobic’’ glycolysis, the vasculature
tends to deliver more oxygen than needed locally. Therefore, the oxygen extrac-
tion fraction tends to decrease with increased local neural activity, and the fraction
of oxygenated hemoglobin coursing through this vascular bed increases. As the
paramagnetism of hemoglobin decreases with increasing oxygen content, the local
field inhomogeneity is transiently decreased, permitting a relatively higher rate of
signal recovery by the scanner, due to relatively less dephasing of the signal
among the affected protons. Thus, the signal measured in fMRI is referred to as the
Blood Oxygen Level-Dependent contrast, or BOLD signal (Bandettini et al. 1992;
Kwong et al. 1992; Ogawa et al. 1992) [reviewed in (Logothetis and Wandell
2004)]. This signal is measured as a relative signal, as it does not strictly quantify
blood flow, oxygen content, or energetics in the neurons or local tissues (though
other emerging MR-based methods are now available to quantify flow, such as
arterial spin-labeling). Therefore, the degree of neural activity determined with
this method and attributed to the experimental condition(s) must be measured
relative to a ‘‘baseline’’ condition. This baseline can be either an implicit baseline,
typically determined as the residual (i.e. the error term) in a statistical model of
experimental effects, or alternatively, the signal associated with another explicit
(baseline) experimental condition.

A critical feature of this complex physiological process, with particular impli-
cations for the use of fMRI for pharmacology, is the link between neural activity
and hemodynamics. This functional link, between neurons/glia and the adjacent
vasculature, is referred to as neurovascular coupling. The precise cellular and
molecular mechanisms that form the basis of this coupling remain incompletely
elucidated (Raichle and Mintun 2006). However, a number of distinct yet interre-
lated biochemical processes and mediators have been implicated. These include
vasoactive ions, nitric oxide, glutamate, adenosine, lactate, prostaglandins and
other endogenous compounds, with a special role for astrocytes (Girouard and
Iadecola 2006). Most of the energy need of neurons, especially in primates, appears
budgeted for postsynaptic activity (Attwell and Iadecola 2002). However, other
investigators have found evidence for presynaptic activity as a major energy con-
sumer as well, and alternatively, there is evidence that neurotransmission may
directly drive changes in hemodynamic activity, not dependent per se on energy
utilization [see (Logothetis and Pfeuffer 2004) for review]. What is common to each
of these models of neurovascular coupling is an emphasis on signaling activity by
neurons as the basis for changes in local hemodynamics. Importantly, for the
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present discussion, a considerable range of pharmacological agents, including
numerous therapeutic CNS drugs, may have either direct or indirect effects on one
or more of these biochemical processes. There is evidence for cerebrovascular
regulation by a range of neurotransmitter systems, including glutamate [via NMDA
receptors: (Faraci and Breese 1993; Lovick et al. 1999)], dopamine (Krimer et al.
1998), norepinephrine (Palmer 1986), serotonin (Palmer 1986) and acetylcholine
(Sato et al. 2002). How the precise sites of action of these neurotransmitters in the
vasculature may affect neurovascular coupling, or other hemodynamic responses
that affect BOLD signal change, remain to be elucidated. This is an active area of
research, not merely because of the implications for interpreting BOLD signal
change in pharmaco-fMRI studies, but also because the neurochemical regulation
of the cerebrovasculature is important to numerous disorders of this system,
including migraine, stroke and Alzheimer’s disease (Girouard and Iadecola 2006).
In the meantime, particular experimental methods have been recommended to
support disambiguation of neural versus vascular sources of drug effects on the
BOLD signal. These include fMRI experimental design that includes proper
control conditions that are not expected to show neurally mediated drug effects;
direct measures of blood flow and vascular reactivity, other physiological mon-
itoring such as oxygen consumption, and complementary measures of neural
activity that are not dependent on blood flow, such as electroencephalography
(Iannetti and Wise 2007). It should be appreciated that the use of these measures
is not necessarily straightforward, as drug-induced changes in flow for instance
may arise from changes in local central neural activity rather than directly on the
local vasculature. Nonetheless, convergent evidence for a neural mechanism of
action of drugs evaluated by fMRI remains an important goal.

5 Features of Neural Signaling that are Measured by fMRI

5.1 Local Field Potentials Versus Action Potential Generation

Recent studies have begun to elucidate which of the diverse types of signaling
processes manifest by neurons may be measured in BOLD signal change. A very
influential study conducted by Logothetis and colleagues (Logothetis et al. 2001)
investigated electrical activity in awake monkeys concurrently with measurement
of BOLD contrast by fMRI. Microelectrode recordings were made in the V1 visual
cortex to derive measures of both local field potentials (LFP) and multi-unit
activity (MUA). The LFP is a measure of slow electrical signals and subthreshold
activity in neuronal membranes (not action potentials), reflecting primarily a
weighted average of synchronous dendritic and somatic components of synaptic
signals of a local neuronal population, with LFP amplitude a function of the extent
and geometry of the recorded dendrites. MUA, in contrast, is a measure of overt
spiking (action potential) activity in a recorded neuronal population, with cell size
a critical determinant of amplitude, and the MUA is variably heterogeneous as a
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result, especially across brain regions. Both the LFP and MUA are measured in a
local population of neurons adjacent to the recording electrode, though the LFP
probably is detected from a larger expanse of space than the MUA. Logothetis
evaluated how each of these measures compared in their relationship to BOLD
signal change in the monkeys, first in the absence of visual stimulation, to
determine how to model the relationship of each to the BOLD signal. Then, they
compared visually evoked BOLD responses with those predicted by the models
derived from LFP and MUA. The authors found that both the LFP and the MUA
predicted BOLD signal change very well in visual cortex, with a slight but sig-
nificant advantage for the LFP. The difference appeared due to the transient nature
of the MUA, which returned to baseline prior to stimulus offset, in contrast to both
the LFP and BOLD signal, which were sustained for up to 20 s. The authors
concluded that BOLD signal primarily reflects input and processing within a local
area rather than spiking output. In contrast, a different study addressing this
problem found that LFP and MUA were comparable in the strength of their
relationship with BOLD signal change, measured with intracranial recording in
awake humans (Mukamel et al. 2005). However, other studies may provide
definitive evidence in favor of the LFP account of BOLD signal change
(Mathiesen et al. 1998; Thomsen et al. 2004). Using a rat cerebellar preparation
that permits the uncoupling of LFP with MUA, these investigators employed
electrical stimulation of parallel fibers that leads to both a monosynaptic excitatory
postsynaptic potential, and a disynaptic inhibitory postsynaptic potential in the
Purkinje output neurons of the cerebellar cortex. With strong synaptic excitation
but minimal change in the net spiking activity of these neurons, they found that
blood flow and LFP nevertheless increased. This critically suggests that the
mechanism underlying BOLD contrast is more directly determined by the LFP
than spiking activity (though it is important to acknowledge that under most
conditions, LFP and MUA are themselves highly correlated). These and other
studies have also suggested that there may not be a simple linear relationship
between LFP and the BOLD signal, and that the association of BOLD with both
LFP and spiking activity may vary with the design of experiments, including
stronger associations among all measures seen with more transient stimulus pre-
sentations that are typical of rapid event-related designs in fMRI (see Heeger and
Ress 2002). More generally, with these studies BOLD signal change is presently
thought to primarily reflect the postsynaptic integrative processes that occur in a
local brain region, which are more diverse and arguably more informative of
neural integration than spiking activity (Logothetis and Wandell 2004).

5.2 Oscillatory Brain Activity

One of the more interesting features of this synaptic integration which relates to
BOLD signal change is the oscillations observed among populations of neurons.
A wide range of oscillatory phenomena is seen across a wide frequency band and
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throughout the brain of mammals (Buzsaki and Draguhn 2004). A number of
oscillatory frequency bands have been implicated in information processing, and
more generally, they may serve as signatures of dynamic functional assemblies of
neurons that are responsible for cognition. Oscillatory activity can be detected by
subjecting the LFP to filters to restrict the electrical potentials to certain oscillatory
ranges. It can also be detected in the EEG recorded non-invasively from the scalp,
when the electrical signal recorded is subjected to signal processing methods such
as wavelet deconvolution. While scalp-recorded oscillatory activity maintains a
lower frequency limit due to attenuation and filtering of the signal by tissues
intervening between brain and scalp, brain oscillations detected at the scalp
nonetheless correspond well to that measured intracranially, in their relationship
with other biological and cognitive processes. Like the LFP more generally, brain
oscillations are not strictly associated with spiking activity. Single neurons can
oscillate, typically as a function of a set of coordinated cell membrane ion con-
ductances; however, large-scale oscillations tend to emerge from complex
dynamics between multiple neuronal types. A critical element appears to be the
activity of inhibitory interneurons, which in the cortex use gamma amino-butyric
acid (GABA) as a neurotransmitter. Oscillation-based synchrony is the most
energy-efficient mechanism for temporal coordination (Buzsaki and Draguhn
2004). Oscillation may be an important mechanism of gain control in the nervous
system (Salinas and Sejnowski 2001), as well as supporting resonance (Hutcheon
and Yarom 2000), which can be seen as a form of tuning of neurons. Gain control
and resonance are two important features of neuronal activity that confer sensi-
tivity and specificity to neuronal signals and codes. One high-frequency oscillation
that appears particularly related to BOLD signal change is in the gamma range
(typically defined as 30–80 Hz, though higher gamma frequencies can be detected
in intracranial recordings). A number of research groups have now reported strong
and specific associations between BOLD signal change and gamma-range oscil-
lations in the LFP, with diverse experiments such as the comparison of intracranial
responses of neurosurgical patients to BOLD signal change in healthy adults in
response to the identical visual/auditory stimulus (Mukamel et al. 2005; Nir et al.
2007); combined fMRI/EEG recording in epileptic patients performing a semantic
decision task (Lachaux et al. 2007); and simple visual stimulation of V1 in
monkeys (Goense and Logothetis 2008). It thus appears that BOLD signal change
may reasonably index changes in power in the gamma range. This is fortuitous
given the diverse cognitive processes that are also associated with gamma oscil-
lations. These include perceptual integrative processes such as binding of sensory
representations into a coherent percept (Fries 2009); episodic memory (Herrmann
et al. 2004); working memory (Tallon-Baudry et al. 1998); and cognitive control
processes (Cho et al. 2006; Minzenberg et al. 2010). These cognitive processes are
generally highly dependent on prefrontal cortical function and ascending modu-
lation by catecholamines and other neurotransmitter systems. Gamma oscillations
(measured primarily by scalp EEG) are disrupted in a number of neuropsychiatric
conditions (Herrmann and Demiralp 2005; Uhlhaas and Singer 2006) which are
also characterized by cognitive deficits in these processes and their neural
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substrates, measured by functional and structural imaging and post-mortem
histopathology. This critically suggests that altered brain oscillations may repre-
sent a physiological signature of neural circuit dysfunction that is expressed in
impaired cognition and perhaps even clinical symptomatology. While brain
oscillations are fundamentally dependent on the complex temporal-spatial
dynamic interactions between GABAergic interneurons and glutamatergic prin-
cipal cells in regions such as neocortex and hippocampus, nonetheless there are a
number of other neurotransmitter systems that modulate the power and frequency
of these oscillations, and perhaps the neuronal membership in an active assembly
that participates in a given oscillation (Whittington et al. 2000). These observa-
tions suggest the potential for fMRI to characterize the sites and mechanisms of
action of pharmacological agents (including monoaminergic and peptidergic
agents, anesthetics, and other drugs) which affect brain oscillations, and the
relationship of these oscillatory effects with clinical efficacy.

5.3 Negative BOLD Response

In typical traditional fMRI studies, investigators process the acquired images and
derive the signal used to infer brain activity using a linear statistical model of
BOLD signal change. Statistical inference regarding the predicted experimental
effects is made by contrasting the targeted experimental manipulation against the
(implicit or explicit) baseline, with increased activity (typically beta values derived
from the regression model of BOLD signal change) above the baseline leading to
rejection of a null hypothesis. However, approximately 10 years ago, various
research teams began to appreciate certain experimental conditions associated with
changes from baseline in a negative direction, i.e. phenomena where local neural
activity appeared higher in the baseline, or ‘‘resting’’ state and subsequently
decreased during certain cognitive demands. Directed interrogation of brain
regions that exhibited this pattern of task-related deactivations from baseline
revealed a previously unidentified functional network in humans, centered on
midline cortical regions in the medial prefrontal and parietal cortices, and lateral
cortical areas including the inferior parietal lobule and lateral temporal lobe.
Remarkably, this same network has been consistently identified in functional
connectivity analyses of so-called ‘‘resting state’’ BOLD fluctuation, where sub-
jects are awake and alert during fMRI but unengaged in any externally directed
cognitive task. This network is now commonly referred to as the ‘‘default mode
network’’, which implies a significant level of activity in the absence of an overt or
externally directed task, and it is observed in both humans and non-human pri-
mates (Buckner et al. 2008; Raichle and Mintun 2006). More recently, there is
evidence that the default mode network is negatively correlated with the fronto-
parietal ‘‘task-positive’’ network, implying a reciprocal relationship that may be
controlled in accordance with the behavioral state or current goals of the organism
(Fox et al. 2005). In the context of the present discussion, one important impli-
cation of this discovery is that BOLD signals may be used to meaningfully
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evaluate neuronal inhibition with certain cognitive processes, especially those with
significant demands on attention or control processes.

An important consideration for fMRI studies of pharmacology is how the
‘‘negative BOLD response’’ (NBR) may inform the nature of neuronal membrane
polarization states or signaling activity in the brain, and how these may be sensitive
to pharmacological intervention. The metabolic budget associated with inhibitory
neuronal processes is incompletely known at present, and it has been argued that
quantification of the energy cost of inhibition cannot be meaningfully isolated from
that of excitation in the brain (Buzsaki et al. 2007). Nonetheless, recent fMRI studies
in animals have offered some intriguing hints that the NBR may be associated with
increased neuronal inhibition in a local brain region. These studies have found that
NBR is associated with decreased blood flow and blood volume and increased
deoxyhemoglobin locally, and decreases in both the LFP and MUA (Boorman et al.
2010); and that cortical hyperpolarization occurs with local decreases in oxygena-
tion, as would be expected with the NBR (Devor et al. 2007). fMRI studies in
humans are consistent with these observations (Shmuel et al. 2002; Wade and
Rowland 2010) and suggest that the NBR is not merely due to vascular steal or
altered neurovascular coupling (Lin et al. 2011). Furthermore, the NBR in humans
has been associated with cortical GABA concentration measured by magnetic res-
onance spectroscopy (Northoff et al. 2007). These various observations suggest that
fMRI has utility for detecting inhibitory neuronal processes, and therefore potential
for the evaluation of pharmacological effects that are manifest in neuronal hyper-
polarization or decreased neuronal activity. Neuronal inhibitory processes are not
only essential to brain oscillations (as indicated above), but form a fundamental
feature of the operation of neural networks in general, both at the local circuit level
and in long-range intracortical and cortical-subcortical network operations as well.
Indeed, the ‘‘small-world’’ nature of cerebral circuitry that is increasingly apparent
in the mammalian brain is critically dependent on these inhibitory processes, which
are probably mediated primarily by GABA (Buzsaki et al. 2004). Furthermore, the
actions of modulatory neurochemical systems (including those at virtually all
monoamine receptor subtypes) are predominantly inhibitory. These observations
suggest that for a neuroimaging method to comprehensively interrogate the effects
of drugs on signaling in the brain, a valid and sensitive measure of inhibitory
processes is essential. fMRI is promising in this regard, and cellular model-based
tests of neuronal inhibitory effects of pharmacological agents have recently
appeared (Minzenberg et al. 2008, 2011).

6 fMRI as a Tool to Evaluate the Functional Role of Central
Neurotransmitter Systems

fMRI has at least three key methodological features which confer important
advantages over other neuroimaging and non-imaging methods used in human
pharmacology. First, the spatial resolution with the currently standard fMRI
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methods for image acquisition and processing allows the discrimination of activity
in local brain regions at approximately millimeter spatial resolution. While this is
not yet a degree of spatial resolution that can discriminate cortical columns, or
subregions within small subcortical nuclei, for instance (at least not with standard
methods), it is increasingly adequate for the resolution of adjacent subcortical
regions in tightly packed subcortical regions such as the thalamus or midbrain
dopaminergic areas. Second, the temporal resolution of fMRI is critical to moni-
toring the time course of information processing as it unfolds in typical cognitive
task paradigms. Virtually all experimental tasks that are in use to evaluate cog-
nitive processes comprise few to many subcomponent processes. These include
investigations of perception, attention, various forms of memory, control pro-
cesses, incentive and reward processes, and motor output, not to mention more
complex phenomena such as social and emotion processes. While fMRI is con-
strained by the hemodynamic response from the millisecond sampling rate of
EEG, for instance, it still can be easily used to isolate neural activity associated
with discrete events (‘‘event-related’’ fMRI) or processing stages within single
trials. This stands in contrast to either PET or the older approach in fMRI, which
both rely on blocked sequences of trials to compare brain activity under different
experimental conditions. This older approach does not permit the isolation of the
varied subcomponent cognitive processes that might be demanded in a single trial:
for instance, a typical working memory task paradigm requires a subject to encode
a stimulus, maintain a representation of the stimulus or its associated information
across a delay, perceive the subsequent target stimulus and reactivate the stored
information and use it to make a decision and an associated overt motor response.
This entire sequence of information processing stages typically occurs over a span
of 3–20 s. Because it is entirely possible, and of great theoretical and practical
interest, that a given drug modulates the maintenance of information and not the
motor response that follows from the use of that information, event-related fMRI
represents a clear advance over other noninvasive methods in achieving specificity
in drug modulatory effects on cognition and its neural basis. The third major
advantage of fMRI is the lack of dependence on the development of brain-
penetrating, potent and selective ligands for neurotransmitter receptors of sufficient
density in the brain, to evaluate effects on signaling. Many important neuro-
transmitter systems are not yet amenable to interrogation with ligand-PET in
humans (e.g. noradrenergic system), yet these systems remain fully amenable to
the study of drug effects on signaling processes using brain-penetrating compounds
such as beta adrenergic receptor antagonists and norepinephrine transporter
inhibitors. In principle, any chemical agent that enters the brain and has psycho-
logical effects can be evaluated by fMRI, both in the presence or absence of
information-processing demands.

As a consequence of these particular methodological features, fMRI represents
an advance in the evaluation of drug action on neurotransmitter systems in
modulating distributed neural networks and the discrete cognitive processes that
they support. The capacity to interrogate small structures located deep in the brain
is a major advantage over EEG for instance, which only measures electrical
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activity arising from large cortical regions. In order to fully understand how
neurochemical systems operate, and how they are affected by drug interventions, it
is critical to have a method that can evaluate drug effects on activity at the cell
bodies of neurons that give rise to these systems. This is because of a single-
minded focus on terminal fields (e.g. in the cortex) of projections arising from
these subcortical areas, while representing the ‘‘business end’’ of the system as the
local influence on signal throughput, nonetheless cannot account for how a drug
may affect neurotransmission by modulating its major determinant, which is
activity arising from the cell body. In addition, these subcortical structures have
numerous reciprocal projections with their projection targets, and therefore drug
effects on cognition may result from changes in descending influence on subcor-
tical nuclei. For these reasons, it is important to interrogate the full anatomic extent
of these systems, that is, the activity from the origin of cells in subcortical regions
to their full terminal fields throughout the brain. A recent and exciting develop-
ment in functional neuroimaging therefore is the emerging capability of fMRI to
measure activity in subcortical regions such as the ventral tegmental area,
substantia nigra and locus coeruleus, which give rise to monoamine neurotrans-
mitter systems which are of great importance to both the etiology and treatment of
much neuropsychiatric illness.

6.1 fMRI Studies of Subcortical Catecholamine Systems

The neurochemical systems that arise from the human brain stem and use dopa-
mine (DA) or norepinephrine (NE) as a neurotransmitter subserve critical roles in a
number of cognitive and behavioral processes. For DA, these include incentive and
reward-based learning (Haber and Knutson 2010), behavioral and cognitive con-
trol (Montague et al. 2004), attention, integration of related affective information
such as pleasurable and aversive features of environmental stimuli to modulate
cognition and guide behavior, and integration of brain activity as a function of
general overt activity levels and the sleep–wake cycle. Cognitive and behavioral
processes subject to modulation by NE overlap with those of DA to a larger degree
than has been traditionally appreciated. Reward-based learning may be the only
one of these processes that has been largely unaddressed with respect to the central
NE system. NE additionally has long been recognized for its role in arousal,
elementary aspects of perception and autonomic functions. In general, these sys-
tems, arising from the ventral tegmental area (VTA) and the substantia nigra (SN)
of the ventral midbrain for DA, and the pontine locus coeruleus (LC) for NE, serve
as critical links between the environment and the organism, for the valuation
and use of information to guide information storage and goal-directed action
(Aston-Jones and Cohen 2005; Bouret and Sara 2005; Montague et al. 2004; Sara
2009) [see Figure from Sara (2009) below for projection patterns arising from
VTA and LC]. In keeping with this general role, the circuitry that these areas
participate in is extensive, involving a large share of the major functional areas in
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cortical and subcortical regions. For the VTA, this primarily includes limbic
regions (e.g. hippocampus, hypothalamus, amygdala, ventral striatum, basal
forebrain cholinergic nuclei), association neocortices, and other monoamine sys-
tems. For the SN, this includes dorsal striatum, thalamus, and more distant targets
in the motor cortices, other cortical areas and cerebellum. For the LC-NE system,
virtually the entire brain serves as a target, with the dorsal striatum as the only
region in the mammalian brain that contains a paucity of NE or adrenergic
receptors. These networks are organized as discrete functional loops which give
rise to much of what the brain can achieve in cognition and behavior. As might be
expected, these networks are also disrupted in a wide range of neuropsychiatric
illnesses, including Parkinson’s disease, schizophrenia, obesity and drug addiction,
psychopathy, dementias, mood and anxiety disorders, attention-deficit disorder and
many others. Accordingly, these catecholamine systems are important targets for
the action of existing and candidate drugs for the treatment of these disorders,
currently including l-DOPA, DA and NE transporter inhibitors, adrenergic
antagonists, and DA receptor agonists and antagonists.

It is therefore of great interest to interrogate the functional dynamics of cate-
cholamine systems during cognitive and behavioral processes, as model systems in
which to evaluate the potential of new and existing drugs to modulate these
processes and remediate the clinical syndromes arising from disturbances in these
processes.

Recent work from several research groups has shown that these subcortical
areas can be reliably evaluated during experimental cognitive tasks in humans, and
that the functional role of these areas in humans is consistent with those deter-
mined in animal models (Duzel et al. 2009). While the LC-NE system has been
relatively less well studied in humans, there is evidence that drug effects on this
system can be tested in a manner that is informed by physiological and cognitive
model-based predictions (Minzenberg et al. 2008). In addition, concurrent
pupillometry can be acquired in the MRI environment, both to aid in topographic
localization of the LC in BOLD images, as well as to provide a novel concurrent
behavioral measure of LC-NE system functioning that can be related to the fMRI
measure of LC activity during cognitive processes (Sterpenich et al. 2006). Among
the midbrain DA regions, there are a number of distinct and important species
differences between rodents and humans or non-human primates (Duzel et al.
2009). These species differences highlight the need for a valid and sensitive
method to study these systems directly in humans. In addition, in humans,
the functional and anatomic distinctions between the VTA and SN in particular
are also much less well drawn than is commonly appreciated. For example, the
midbrain region most representative of the rat VTA resides in the dorsal part of the
primate SN; these two nuclei are more continuous with each other in humans than
in the rat, leading some anatomists to distinguish dorsal/ventral tiers of the mid-
brain DA complex rather than VTA versus SN (and the retrorubral field); the
projection patterns of VTA versus SN are not easily distinguished in humans; and
the response properties of VTA and SN neurons show no significant differences
(reviewed in Duzel et al. 2009). Due to these observations, plus the limits on
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spatial discrimination between adjacent, small subcortical structures, many
investigators who study these regions in humans with functional neuroimaging
refer generally to the ‘‘dopaminergic midbrain.’’ In these studies, the VTA/SN
complex is typically localized in BOLD images by reference to structural scans
acquired as either magnetization transfer scans, proton density scans or T1-
weighted scans sensitive to neuromelanin, which in the brain stem is restricted to
catecholamine neurons.

It is important to consider the various possible underlying physiological sources
of BOLD signal change in the neurons found in this area [see (Duzel et al. 2009)
Fig. 2]. These could include LFPs arising from either glutamatergic or GABAergic
inputs to tonically active DA neurons, glutamatergic inputs to silent DA neurons,
or inhibition of GABAergic input to DA neurons. BOLD signal change could also
arise from burst firing of DA neurons, or local DA release from DA neurons in
either burst or tonic firing modes. While the relationship of LFPs in these DA-rich
areas to discharge of these neurons remains to be characterized in animals, the
most parsimonious account, based on single-unit studies in monkeys, suggests that
DA neuron discharge is primarily a function of direct excitatory glutamatergic
input from the neocortex or elsewhere in the midbrain. In addition, fMRI studies in
animals have supported a relationship between BOLD signal change and DA
neurotransmission. These studies find a strong association of DA release (induced

Fig. 2 Comparative anatomy: a Noradrenaline. b Dopamine
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with stimulants) and BOLD signal change in limbic terminal fields of midbrain DA
projections e.g. nucleus accumbens; (Chen et al. 1997), and that this relationship
persists with DA lesions and fetal DA neuron grafts (Chen et al. 1999). Stimulant-
induced changes in blood volume (which itself is highly-related to BOLD signal
change) show similar associations (reviewed in (Knutson and Gibbs 2007), and
these stimulant effects show predictable interactions with co-administered D2
antagonists (Chen et al. 2005; Schwarz et al. 2004). An elegant study of healthy
human subjects, using fMRI during a reward-based learning paradigm and ligand-
PET, found BOLD signal change in the VTA/SN to correlate with [11C] raclopride
displacement as a measure of increased DA release in the nucleus accumbens
(Schott et al. 2008). These various studies indicate that BOLD signal change
closely follows DA neurotransmission, at least in some brain areas that receive
strong input from the VTA/SN. Nonetheless, a number of physiological features of
these systems may have important implications for interpreting studies of cogni-
tion and pharmacology in humans, including the role of local inhibition in the
VTA/SN, the role of silent DA neurons, and the temporal relationship of BOLD
signal change to discharge of these neurons. Studies combining functional
neuroimaging with genetics or pharmacology in humans, or invasive measures in
animals, will further elucidate the underlying basis of BOLD signal change in
these brain areas to optimize the utility of neuroimaging in studies of human
pharmacology.

7 Summary

The emergence of noninvasive functional neuroimaging methods such as fMRI
for neuropharmacology is intimately tied to the status of drug development for
CNS disorders, and the importance of currently unmet treatment needs among
patients with these disorders. These imaging methods are seen to have a number
of unique advantages to meet these goals, as well as serving as a tool for basic
neuroscience. The physiological basis for signal change in fMRI is complex, and
the readout in BOLD signal change is a function of a number of signaling
processes in the brain, each of which are of interest for pharmacology. Widely
distributed neurotransmitter systems such as the monoamines are readily ame-
nable to study using fMRI, and the dynamics of these systems’ operations over
space and time can be interrogated in a uniquely advantageous manner. fMRI
and related methods therefore stand poised to occupy a unique position in the
armamentarium of experimental methods available to the basic and clinical
scientist, to achieve progress in our understanding of the pharmacology of the
brain and how we may attain greater success in relieving the massive burden of
neuropsychiatric illness.
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