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Foreword

KES International (KES) is a worldwide organisation that provides a professional
community and association for researchers, practitioners and other stakeholders
originally in the discipline of Knowledge Based and Intelligent Engineering Sys-
tems, and other synergetic areas. Through this, KES provides its members with
opportunities for publication and beneficial interaction.

The focus of KES was originally research and technology transfer in the area of
Intelligent Systems, i.e. computer-based software systems that operate in a manner
analogous to the human brain, in order to perform advanced tasks. However, KES
has extended its scope to encompass sustainability and renewable energy, and also
the knowledge transfer, innovation and enterprise agenda.

Involving several thousand researchers, managers and engineers drawn from uni-
versities and companies world-wide, KES is in an excellent position to facilitate
international research co-operation and generate synergy in the area of artificial in-
telligence applied to real-world ‘Smart’ systems and the underlying related theory.

The KES annual conference covers a broad spectrum of intelligent systems top-
ics and attracts several hundred delegates from a range of countries round the
world. KES also organises symposia on specific technical topics, for example, Agent
and Multi Agent Systems, Intelligent Decision Technologies, Intelligent Interactive
Multimedia Systems and Services, Sustainability in Energy and Buildings and In-
novation through Knowledge Transfer. KES is responsible for two peer-reviewed
journals, the International Journal of Knowledge based and Intelligent Engineering
Systems, and Intelligent Decision Technologies: an International Journal.

KES supports a number of book series in partnership with major scientific
publishers.

Published by Springer, ‘Smart Innovative Systems and Technologies’ is the KES
flagship book series. The aim of the series is to make available a platform for the
publication of books (in both hard copy and CRROM form) on all aspects of single
and multi-disciplinary research involving smart innovative systems and technolo-
gies, in order to make the latest results available in a readily-accessible form.



VI Foreword

The series covers systems that employ knowledge and intelligence in a broad
sense. Its focus is systems having embedded knowledge and intelligence, which
may be applied to the solution of world industrial, economic and environmental
problems and the knowledge-transfer methodologies employed to make this happen
effectively. The combination of intelligent systems tools and a broad range of appli-
cations introduces a need for a synergy of scientific and technological disciplines.

Examples of applicable areas to be covered by the series include intelligent deci-
sion support, smart robotics and mechatronics, knowledge engineering, intelligent
multi-media, intelligent product design, intelligent medical systems, smart indus-
trial products, smart alternative energy systems, and underpinning areas such as
smart systems theory and practice, knowledge transfer, innovation and enterprise.

The series includes conference proceedings, edited collections, monographs,
handbooks, reference books, and other relevant types of book in areas of science and
technology where smart systems and technologies can offer innovative solutions.

High quality is an essential feature for all book proposals accepted for the series.
It is expected that editors of all accepted volumes take responsibility for ensuring
that contributions are subjected to an appropriate level of reviewing process and
adhere to KES quality principles.

Professor Robert J. Howlett
Executive Chair, KES International

Visiting Professor, Enterprise: Bournemouth University
United Kingdom



Foreword

Paradigms for machine learning tend to emerge from nature studies. The penulti-
mate example of this is in the concomitant discovery of an approach to intelligent
data analysis in terms of elementary sets and a five-decade long study of nature by
Z. Pawlak1 that began in the 1950s. The rough set approach and the companion ap-
proaches provided by fuzzy set theory and the underlying contributions arising from
various information granulation frameworks have proved to be fundamentally im-
portant in the discovery of paradigms for artificial intelligence and machine learn-
ing. In particular, structures from general topology2 and proximity space theory3

appear to be very useful.
A few examples from this volume serve to illustrate the remarkably powerful

set of paradigms for machine learning in this volume. In terms of the yield from
a machine learning perspective, one might consider the discovery of information
granules that are a biproduct of structured thinking (Y. Yao and X. Deng), filtered
sets of patterns (R.H. Estevam, M.C. Nicoletti), certain and possible rule sets in-
duced from lower and upper approximations, respectively (J.W. Grzymała-Busse
and Z.S. Hippe), interpretability and representativeness of information granules
(A. Bargiela, W. Pedrycz), observational and higher level granules emerging from
agent-environment interaction (A. Skowron, P. Wasilewski), box plots exhibiting the

1 See, e.g., Z. Pawlak and A. Skowron, Rough sets and intelligent data analysis, Info. Sci.
147, 2002, 1-12, and J.F. Peters, How near are Zdzisław Pawlak’s paintings? Merotopic
distance between regions of interest, in A. Skowron, S. Suraj, Eds., Intelligent Systems
Reference Library volume dedicated to Prof. Zdzisław Pawlak, Springer, Berlin, 2012, to
appear.

2 See, e.g., L. Polkowski, Rough Sets. Mathematical Foundations, Springer-Verlag, Berlin,
2002, and L. Polkowski, Approximate reasoning by parts: An Introduction to Rough Mere-
ology, Springer, Heidelberg, 2011. See, also, T.Y. Lin, Topological and fuzzy rough sets, in
R. Słowiński, Ed., Handbook of Applications and Advances of Rough Set Theory, Kluwer,
Amsterdam, 1992, 287-304.

3 See, e.g., J.F. Peters, A. Skowron, J. Stepaniuk, Nearness of objects: Extensions of the
approximation space model, Fund. Inform. 79 (3-4), 2007, 497-512.
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performance of sets of classifiers and a scheme such as input raw data→pattern
detection→consequent action (B.J. Oommen, C. Bellinger), support vector
machines in classifying mass spectra (K.A. Cyran et al.), clusters created and ex-
cluded in evolving intelligent systems (A. Lemos, W. Caminhas, F. Gomide), dis-
covery of patterns from different sources of data such as imbalances and/or noisy
data (J. Stefanowski) or distributed data (H. Rybiński, D. Ryżko, P. Wiȩch), and
optimization of patterns discovery by using dynamic programming (A. Alkhalid, I.
Chikalov, S. Hussain, M. Moshkov).

Basically, if we are in the pursuit of various forms of machine learning, it can
be seen from the paradigms in this volume that we want to teach machines to rec-
ognize and classify patterns4. A beneficial side-effect of the proposed approaches
to machine learning in this volume is the design of thinking machines that help us
improve our circumstances (e.g., navigation and obstacle avoidance by smart ve-
hicles) and our environment (e.g., control of the number of active cooling devices
needed to achieve satisfactory comfort levels). In sum, taken as a whole, the pro-
posed paradigms for machine learning also have the potential to benefit our way of
life. The Editors of this impressive volume are to be congratulated on their assembly
of excellent chapters on machine learning.

December 2011 James F. Peters
Andrzej Skowron

4 This is a well-known machine learning paradigm. For details, see, e.g., the chapter by
B.J. Oommen and C. Cellinger in this volume.



Preface

This book presents i) fundamental topics and algorithms that form the core of
machine learning (ML) research, ii) emerging paradigms in intelligent system de-
sign. In the early days of machine learning, there was considerable interest in philo-
sophical, logical and conceptual issues123. Over time, research interest shifted to
computational and algorithmic aspects of ML driven mainly by practical applica-
tions. Since the first Machine Learning Workshop4 held in 1980 in Pittsburgh, PA,
several disciplines such as artificial intelligence, adaptive control systems, biology,
philosophy, psychological models and statistics, have contributed to the richness
and diversity of research in this field.

The very multidisciplinary nature of machine learning makes it a very fascinat-
ing and popular area for research. This book attempts to capture the diversity and
richness of the field of machine learning and intelligent systems. Several chapters
devoted to computational learning models such as granular computing, rough sets
and fuzzy sets should be of interest to students, practitioners and researchers. An ac-
count of applications of well-known learning methods in biometrics, computational
stylistics, multi-agent systems, spam classification including an extremely well-
written survey on Bayesian networks shed light on the strengths and weaknesses
of the methods. Practical studies yielding insight into challenging problems such
as learning from incomplete and imbalanced data, pattern recognition of stochastic
episodic events and on-line mining of non-stationary data streams are a key part of
this book.

1 Minsky, M. (1961). Steps toward artificial intelligence. Proc. IRE 49:8-30.
2 Sutherland, N. S. (1968). Outlines of a theory of visual pattern recognition in animals and

man. Proc. Royal Soc. B 171:297-317.
3 Nelson, R. J. (1976). On mechanical recognition. Phil. Sci. 43(1):24-52.
4 http://www.machinelearning.org/icml.html
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Chapter 1 
Emerging Paradigms in Machine Learning: An 
Introduction 

Sheela Ramanna, Lakhmi C. Jain, and Robert J. Howlett  

Abstract. This chapter provides a broad overview of machine learning (ML) pa-
radigms both emerging as well as well-established ones.  These paradigms in-
clude: Bayesian Learning, Decision Trees, Granular Computing, Fuzzy and Rough 
Sets, Inductive Logic Programming, Reinforcement Learning, Neural Networks 
and Support Vector Machines. In addition, challenges in ML such as imbalanced 
data, perceptual computing, and pattern recognition of data which is episodic as 
well as temporal are also highlighted.  

1.1  Introduction  

Learning is acquiring new or modifying existing knowledge, behaviors, skills, 
values, or preferences and may involve synthesizing different types of information 
[6]. Learning in animals and humans has been explored by zoologists and psy-
chologists alike. Many techniques in machine learning derive from the efforts of 
psychologists to make more precise their theories of animal and human learning 
through computational models [22]. Machine learning, a branch of artificial intel-
ligence, is concerned with the design and development of algorithms that allow 
computers to evolve behaviors based on empirical data, such as from sensor data 
or databases. Several disciplines such as artificial intelligence [20, 12, 33, 21], 
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adaptive control systems [18], evolutionary models based on biology [15],  
statistics [35, 14], psychological models [13] to name a few have contributed to 
machine learning. Some of these disciplines have been explored in-depth either as 
foundations or applications in this book. Specifically, these approaches can be 
broadly categorized as follows: 

Artificial Neural Networks: An Artificial Neural Network (ANN) or neural networks 
is a computational model inspired by the structure and functional aspects of biological 
neural networks [17, 33]. The greatest advantage of ANNs is their ability to be used as 
an arbitrary function approximation mechanism that learns from observed data and as 
a result have found wide use in such diverse areas as business, science and engineer-
ing. Chapter 17 discusses an application in stylistic text classification. 

Bayesian Networks: Bayesian reasoning provides the basis for learning algo-
rithms that directly manipulate probabilities, as well as a framework for analyzing 
the operation of other algorithms that do not explicitly manipulate probabilities 
[19]. A Bayesian network can thus be considered a mechanism for automatically 
applying Bayes’ theorem [3] to complex problems. Bayesian learning have been 
used extensively in solving problems in artificial intelligence in general and ma-
chine learning and intelligent systems in particular. Chapter 5 investigates Baye-
sian Networks as a formalism for different machine learning tasks. 

Decision Tree Learning: Decision Trees(DT) are one of the most popular classi-
fication algorithms currently in use in data mining and machine learning [19]. 
Machine learning methods largely benefit from optimization techniques in order to 
find an optimal model for future predictions and decisions. However, due to mas-
sive and large-scale data sets faced in real world problems, optimization becomes 
a challenging task. Chapter 2 introduces an algorithm for optimization of decision 
trees based on an extension of dynamic programming. Chapter 18 gives an appli-
cation of DT in image spam classification. 

Fuzzy Sets and On-Line Mining: To address the challenges of highly interpreta-
ble knowledge from streams of data, techniques where structure and functionality 
of a system evolves based on incoming non-stationary data streams is necessary. 
Evolving intelligent Systems (EIS) is seen as providing a synergy between fuzzy 
[40] or neuro-fuzzy techniques and online methods in machine learning [1]. Chap-
ter 6 provides some insights into EIS and Chapter 13 presents an application of a 
fuzzy expert system. 

Granular Computing: Granular computing entails constructing, processing and 
reasoning of systems at the level of information granules. Information granules 
can be treated as linked collections (clumps) of objects drawn together by the 
criteria of indiscernibility, similarity, or functionality [39]. Granular computing 
brings together existing formalisms of set theory (interval analysis), fuzzy sets, 
rough sets [27]. Since the coining of the phrase granular computing, many re-
searchers have contributed extensively to its growth. It is in fact, an emerging 
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paradigm for information processing and systems modelling with roots in [16]. 
Chapters 3, 10 and 12 are devoted to granular computing encompassing methods 
for information abstraction, role of interaction in perceptual processes and concept 
learning. 

Inductive Logic Programming: The field of Inductive Logic Programming (ILP) 
essentially combines machine learning with logical knowledge representation. 
What defines and unifies much of ILP is the relational form of the input, rather 
than the first-order logic form of the output. This has led to a broadening of the 
field to relational learning and is now seen as a key area within machine learning. 
Logic programs provide a good representation for the generalizations required to 
make predictions. They are also more expressive in the form of easily understand-
able sentences than alternative representations that are sometimes used today to 
cope with data such as network and graph-based representations [37]. Chapter 8 
discusses an approach to ML based in multi-agent system based on inductive logic 
programming. 

Perceptual Computing: One of the main challenges in developing intelligent 
systems is to discover methods for learning and reasoning from dynamically 
evolving complex sensory measurements. Perception Based Computing is another 
emerging research area whose roots are derived from experimental psychology 
and especially from psychophysics [38, 11]. Papers related to models of percep-
tual learning where process are independent from conscious forms of learning and 
involve structural and/or functional changes in the primary sensory cortices can be 
found in [10]. Chapter 10 presents an introduction to perception based computing 
and discusses the role of interactions in modeling of perceptual processes. 

Reinforcement Learning: A reinforcement learning system is a system that 
learns under the influence of reinforcement where reinforcement is feedback from 
the environment that assigns credit to the learning system’s action [20, 34]. In 
other words, an autonomous agent interacts with an external environment by se-
lecting actions and seeks the sequence of actions that maximizes its long-term 
performance. In particular, great strides have been made in approximating value 
functions, exploring efficiently, learning in the presence of multiple agents, coping 
with partial observability, inducing models, and reasoning hierarchically [36]. A 
discussion of reinforcement learning with rough sets can be found in [32, 31]. 

Rough Sets: Rough set theory, proposed by Pawlak [23] can be viewed as a well- 
established mathematical approach to vagueness. Rough set theory it is not an 
alternative to classical set theory but it is embedded in it. Rough set theory can be 
viewed as a specific implementation of Frege’s idea of vagueness, i.e., impreci-
sion is expressed by a boundary region of a set [24]. The rough set approach has 
led to its various generalizations [29, 30] and many interesting applications. 
Rough set theory is fundamentally important in research areas such as granular 
computing, decision analysis, intelligent systems, machine learning, pattern  
recognition, and knowledge discovery to name a few [25, 26]. Several chapters  
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(4, 9, 12 and 17) in this book are devoted to rough set research involving granular 
computing, machine learning and perception based computing. 

Support Vector Machines:  Support Vector Machines(SVMs) have been suc-
cessfully extended from basic classification tasks to handle regression, operator 
inversion, density estimation, novelty detection, and to include other desirable 
traits, such as invariance under symmetries and robustness in the presence of noise 
[5, 35, 7, 8]. In addition to their accuracy, a key characteristic of SVMs is their 
mathematical tractability and geometric interpretation. This has facilitated a rapid 
growth of interest in SVMs not only for pattern recognition problems, but also in 
image analysis [9]. Chapter 15 presents an application of SVM in face-recognition 
problems. 

Challenges in Machine Learning: One challenging topic in machine learning is 
learning from imbalanced data where one class is underrepresented in comparison 
to the remaining classes. Chapter 10 presents a study of this topic. Another impor-
tant challenge is pattern recognition of Stochastically Episodic (SE) events involv-
ing intervowen classes and data that is temporal in nature. Chapter 7 presents a 
study of this topic and Chapter 13 discusses discovery of patterns in time-stamped 
data. 

1.2  Chapters of the Book 

This book includes 18 chapters.  What follows is a brief description of each chapter. 

Chapter 2 introduces an algorithm for optimization of decision trees based on an 
extension of dynamic programming which allows for sequential optimization 
relative to different cost functions, and to the study of relationships between depth 
and number of misclassifications of decision trees. In particular, this chapter con-
siders α -decision trees where the parameter α controls the accuracy of tree. The 
use of the proposed technique is illustrated by experiments with some datasets 
from UCI ML Repository. 

Chapter 3 discusses an approach to information abstraction based on a form of 
min/max clustering where granules are represented as hyper boxes in multidimen-
sional feature space. This study focuses on two essential characteristics of infor-
mation abstraction: the interpret ability and the representativeness of information 
granules. In particular, an information density-based granulation algorithm  
that introduces an extra stage of optimised refinement of granular prototypes is 
discussed. Efficacy of this algorithm is illustrated by experiments on a synthetic 
data set. 

Chapter 4 discusses a rough-set methodology (MLEM2) for mining incomplete 
data i.e., data with missing attribute values, since many real-life data are incom-
plete. In particular, two versions (global and local) of the parallel Modified  
Learning from Examples Module, version 2 (MLEM2) system are presented. The 
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parallel method induces rules from the original data set with missing attribute 
values considered to be lost values, attribute-concept values, or "do not care"  
conditions. Results of experiments on both approaches are included. 

Chapter 5 empirically investigates Bayesian Networks (BN) as a sound formalism 
for different machine learning tasks, starting with pre-processing, followed by 
learning and finally contributing to post processing. This investigation includes 
main ideas of three important algorithms: the Naive Bayes, PC and K2 for learn-
ing BNs. In particular, the K2χ2  classifier that combines the K2 algorithm with 
the χ2  statistic test is discussed in-depth. The Efficacy of K2χ2 algorithm is 
illustrated by experiments on some datasets from UCI ML Repository. 

Chapter 6 provides an overview of methods, algorithms and applications of evolv-
ing intelligent (fuzzy) systems with a particular emphasis on on-line mining of 
non-stationary data streams. Two models are presented: a fuzzy rule based model 
that incorporates a recursive clustering method and a fuzzy linear regression tree 
model whose topology can be continuously updated using a statistical test. The 
two models are evaluated in the context of time series forecasting problems. 

Chapter 7 presents the state-of-the-art in relation to the pattern recognition of 
Stochastically Episodic (SE) events, a challenging subset of the One Class (OC) 
classification domain of problems, involving interwoven classes and data that is 
temporal in nature. 

Chapter 8 introduces a novel approach to machine learning in a multi-agent sys-
tem (MAS). Learning is performed both at a local level (by each agent) and at  
a global level (amongst agents) during reasoning. A distributed version of Induc-
tive Logic Programming is used, which allows agents to construct new transfor-
mation rules based on knowledge and examples. Algorithms that utilize the  
transformation rules have been presented 

Chapter 9 presents a survey of the foundations of rough non-deterministic infor-
mation analysis (RNIA) for handling both complete and incomplete information. 
Specifically, the RNIA framework is discussed in the context of machine learning 
in terms of handling inexact data, question-answering and rule generation. Discus-
sion of algorithms, tools as well as examples that aid in understanding the RNIA 
framework is given. 

Chapter 10 presents a general scheme of interaction and the role of interactions in 
the modeling of perception processes. Among them are models of objects involved 
in perception, known as granules and interactions between them determining  
interactive computations on granules, issues of representation of interactions as 
well as (adaptive) approximate reasoning rules about interactions and interactive 
computations are discussed. In particular, the use of information systems for  
representation of actions or plans is illustrated. 

Chapter 11 studies a challenging topic in machine learning, namely learning from 
imbalanced data where one class is under-represented in comparison with the 
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remaining classes. The focus of this chapter is on experimentally examining the 
factors that are most critical for the performance of such classifiers. In particular, 
focused re-sampling methods, which modify the class distribution taking into 
account local characteristics of examples, are investigated. The experiments  
included preparation of a new collection of artificial data sets. 

Chapter 12 examines a granular computing paradigm for concept learning. Two 
types of granulation, namely, partitions and coverings are discussed. Based on the 
rough set theory and other concept learning algorithms, two strategies for classifi-
cation are investigated. The notion of a relative attribute value reduct is formally 
expressed, which is complementary to the widely used notion of a relative 
attribute reduct. 

Chapter 13 presents an algorithm for finding calendar-based periodic pattern in a 
time-stamped data and introduces the concept of certainty factor in association 
with an overlapped interval. In particular, a hash based data structure for storing 
and managing full as well as partial periodic calendar-based patterns is used.  
Experimental results are provided on both real and synthetic databases. 

Chapter 14 presents a study of the Mamdani methodology assumptions in the 
context of fuzzy expert systems to support the approximation of patients’ survival 
length. In particular, a pattern of the s-functions is used to model constrains of 
fuzzy sets without their predetermined start points and endpoints. The objective of 
the chapter is the utilization of the Mamdani fuzzy control actions as a methodol-
ogy adapted for the purpose of making the survival prognoses. The effectiveness 
of the Mamdani methodology is supported by a surgeon’s experience. 

Chapter 15 presents case-studies representing the state-of-the-art in applications of 
SVM in biomedical and biometric applications. These case studies include pro-
teomic spectra analysis to find diagnostic markers. Selected cases of applications 
of SVM in face recognition problems are presented. 

Chapter 16 includes a study of multimedia workload models and explore their 
applicability to surveillance systems. The workload models are especially helpful 
in aiding designers to determine resource requirements in a surveillance system. In 
particular, a novel Markov chain based formal model of multimedia workload for 
surveillance systems is proposed. The model is validated with real surveillance 
data. 

Chapter 17 presents an application of Dominance-Based Rough Set Approach and 
Artificial Neural Networks to Computational Stylistics. Performance of both con-
structed classifiers for authorship attribution is given. Works by Edith Wharton 
and Jane Austen are used as samples for analysis. 

Chapter 18 presents an application of J48 and J48 with reduced error pruning 
decision trees to image spam classification. In particular, image features that are 
effective and transcending the evolution of image spam generation. Finally, a 
validation by feature analysis on thirteen months of image corpus is performed. 
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1.3  Concluding Remarks 

Machine learning paradigms are an important category of tools available to intel-
ligent systems engineering. They can beneficially be incorporated as components 
of complex multi-mode intelligent systems, or may be used alone as the sole intel-
ligent component in a system. Each paradigm has its own strengths and require-
ments, and is particularly suited to an individual class of problem. Each chapter of 
the book explores a different machine learning techniques, illustrating its use and 
applicability. 
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Chapter 2
Extensions of Dynamic Programming as a New
Tool for Decision Tree Optimization

Abdulaziz Alkhalid, Igor Chikalov, Shahid Hussain, and Mikhail Moshkov

Abstract. The chapter is devoted to the consideration of two types of decision trees
for a given decision table: α-decision trees (the parameter α controls the accu-
racy of tree) and decision trees (which allow arbitrary level of accuracy). We study
possibilities of sequential optimization of α-decision trees relative to different cost
functions such as depth, average depth, and number of nodes. For decision trees, we
analyze relationships between depth and number of misclassifications. We also dis-
cuss results of computer experiments with some datasets from UCI ML Repository.

2.1 Introduction

Decision trees are widely used as predictors [8], as a way of knowledge representa-
tion [3] and as algorithms for problem solving [10]. To have more understandable
decision trees we need to minimize the number of nodes in a tree. To have faster
decision trees we need to minimize the depth or average depth of a tree. In many
cases, we need to minimize the number of misclassifications for a tree under some
restrictions on time or space complexity of the tree. If we would like to minimize
the number of decision rules derived from the tree, we need to minimize the num-
ber of terminal nodes in the tree. Unfortunately, almost all problems connected with
decision trees optimization are NP-hard.

Our approach to optimization of decision trees is based on an extension of
dynamic programming which allows sequential optimization relative to different
criteria where we can use subtables of the initial decision table as subproblems. Un-
fortunately, in the general decision tables could have very large number of subtables
so the considered approach is applicable directly only to relatively small decision
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tables. However, the situation can be improved if we study approximate decision
trees instead of exact decision trees. We consider the number of unordered pairs of
rows with different decisions R(T ) as uncertainty of a decision table T .

We study so called α-decision trees, α ≥ 0, that do not solve the problem of
recognition of decision attached to a given row exactly but localize the given row
in a subtable with uncertainty at most α . In this case it is not necessary to work
with the whole set of subtables, but we finish the partitioning of a subtable if its
uncertainty is at most α . The parameter α controls the computational complexity
and makes the algorithm applicable for relatively large data sets.

We describe the whole set of α-decision trees for a given decision table by a di-
rected acyclic graph Δα(T ) with subtables as nodes. We can apply to this graph a
procedure of optimization relative to (for example) the number of nodes in a deci-
sion tree, and obtain a subgraph of the initial graph which represents all α-decision
trees with minimum number of nodes. We can apply to this subgraph a procedure of
optimization relative (for example) to the average depth, etc.

The second line of research considered in this chapter is the study of relationships
between depth and number of misclassifications for decision trees. In this case, we
need to avoid the consideration of restrictions on the accuracy of trees. So, instead of
α-decision trees, we will study arbitrary decision trees which can finish the partition
of a subtable in any time. For such trees, we can resolve problems of the following
type: for a given p we need to find the minimum number of misclassifications for a
decision tree among all decision trees which depth is at most p.

The chapter also contains results of computer experiments with some datasets
(decision tables) from UCI Machine Learning Repository [6].

We propose algorithms for decision tree optimization based on dynamic pro-
gramming. The idea is close to algorithms described in [7, 9], but authors devised it
independently and made several extensions: the algorithms are capable of founding
a set of optimal trees, perform sequential optimization by different criteria, and find
relationships between two criteria [1, 2, 4, 5, 11].

The rest of the chapter is organized as follows. In Section 2, basic notions are
discussed. In Section 3, representation of sets of decision trees and α-decision trees
by directed acyclic graphs is considered. Section 4 gives a way for sequential op-
timization of decision trees relative to different cost functions. Section 5 describes
a procedure of computing relationships between decision tree depth and number
of misclassifications. Section 6 concludes the paper followed by references and an
appendix describing “transformation of functions.”

2.2 Basic Notions

In the following, we consider notions of decision table, decision and α-decision tree
for table, and the notion of cost function for decision trees.
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2.2.1 Decision Tables and Trees

In this chapter, we consider only decision tables with discrete attributes. These tables
contain neither missing values nor equal rows. Consider a decision table T depicted
in Fig. 1.

f1 . . . fm d
b11 . . . b1m c1

. . . . . .
bN1 . . . bNm cN

Fig. 1 Decision table

Here f1, . . . , fm are names of columns (conditional attributes); c1, . . . ,cN are non-
negative integers which can be interpreted as decisions (values of the decision at-
tribute d); bi j are nonnegative integers which are interpreted as values of conditional
attributes (we assume that the rows (b11, . . . ,b1m), . . . ,(bN1, . . . ,bNm) are pairwise
different). We denote by E(T ) the set of attributes (columns of the table T ), each of
which contains different values. For fi ∈ E(T ) let E(T, fi) be the set of values from
the column fi.

Let fi1 , . . . , fit ∈ { f1, . . . , fm} and a1, . . . ,at be nonnegative integers. We denote
by T ( fi1 ,a1) . . . ( fit ,at) the subtable of the table T , which consists of such and
only such rows of T that at the intersection with columns fi1 , . . . , fit have num-
bers a1, . . . ,at respectively. Such nonempty tables (including the table T ) will be
called separable subtables of the table T . For a subtable Θ of the table T we will
denote by R(Θ) the number of unordered pairs of rows that are labeled with differ-
ent decisions. Later we will interpret the value R(Θ) as uncertainty of the table Θ .
A minimum decision value which is attached to the maximum number of rows in a
nonempty subtable Θ will be called the most common decision for Θ .

A decision tree Γ over the table T is a finite directed tree with root in which each
terminal node is labeled with a decision. Each nonterminal node is labeled with a
conditional attribute, and for each nonterminal node the outgoing edges are labeled
with pairwise different nonnegative integers. Let v be an arbitrary node of Γ . We
now define a subtable T (v) of the table T . If v is the root then T (v) = T . Let v be
a node of Γ that is not the root, nodes in the path from the root to v be labeled
with attributes fi1 , . . . , fit , and edges in this path be labeled with values a1, . . . ,at

respectively. Then T (v) = T ( fi1 ,a1), . . . ,( fit ,at).
Let Γ be a decision tree over T . We will say that Γ is a decision tree for T if any

node v of Γ satisfies the following conditions:

• If R(T (v)) = 0 then v is a terminal node labeled with the common decision for
T (v).

• Otherwise, either v is a terminal node labeled with the most common decision
for T (v), or v is labeled with an attribute fi ∈ E(T (v)) and, if E(T (v), fi) =
{a1, . . . ,at}, then t edges leave node v, and these edges are labeled with a1, . . . ,at

respectively.
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Let α be a nonnegative real number such that 0 ≤ α ≤ 1. We will say that Γ is
an α-decision tree for T if any node v of Γ satisfies the following conditions:

• If R(T (v))≤ α then v is a terminal node labeled with the most common decision
for T (v).

• Otherwise, v is labeled with an attribute fi ∈ E(T (v)) and, if E(T (v), fi) =
{a1, . . . ,at}, then t edges leave node v, and these edges are labeled with a1, . . . ,at

respectively.

Let Γ be a decision tree for T or an α-decision tree for T , and r be a row of T . One
can show that in Γ there is exactly one terminal node v such that r belongs to T (v).
We will say about the number attached to v as about the result of work of Γ on r.

2.2.2 Cost Functions

We will consider cost functions which are given in the following way: values of
the considered cost function ψ , which are nonnegative numbers, are defined by in-
duction on pairs (T,Γ ), where T is a decision table and Γ is a decision tree for T
or an α-decision tree for T . Let Γ be a decision tree represented in Fig. 2. Then
ψ(T,Γ ) = ψ0(T,b) where ψ0 is an operator which transforms a decision table T
and a nonnegative integer b into a nonnegative number. Let Γ be a decision tree
depicted in Fig. 3. Then

ψ(T,Γ ) = F(N(T ),ψ(T ( fi,a1),Γ1), . . . ,ψ(T ( fi,at),Γt)).
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Fig. 3 Aggregated decision tree

Here N(T ) is the number of rows in the table T , and F(n,ψ1,ψ2, . . .) is an op-
erator which transforms the considered tuple of nonnegative numbers into a non-
negative number. Note that the number of variables ψ1,ψ2, . . . is not bounded from
above.

The considered cost function will be called monotone if for any natural t and any
nonnegative numbers a,c1, . . . ,ct ,d1, . . . ,dt , from inequalities c1 ≤ d1, . . . ,ct ≤ dt

the inequality
F(a,c1, . . . ,ct)≤ F(a,d1, . . . ,dt)

follows.
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The considered cost function will be called strongly monotone if it is monotone
and for any natural t and any nonnegative numbers a,c1, . . . ,ct ,d1, . . . ,dt from in-
equalities a > 0, c1 ≤ d1, . . . ,ct ≤ dt and inequality ci < di, which is true for some
i ∈ {1, . . . , t}, the inequality F(a,c1, . . . ,ct)< F(a,d1, . . . ,dt) follows.

Now we take a closer view of some cost functions.
Number of nodes: ψ(T,Γ ) is the number of nodes in the decision tree Γ . For this

cost function ψ0(T,b) ≡ 1 and F(n,ψ1,ψ2, . . . ,ψt) = 1+∑t
i=1 ψi. This measure is

strongly monotone.
Number of terminal nodes: ψ(T,Γ ) is the number of terminal nodes in the deci-

sion tree Γ . For this cost function ψ0(T,b)≡ 1 and F(n,ψ1, ψ2, . . . ,ψt) = ∑t
i=1 ψi.

This measure is strongly monotone.
Depth: ψ(T,Γ ) is the maximal length of a path from the root to a termi-

nal node of Γ . For this cost function ψ0(T,b) ≡ 0 and F(n,ψ1,ψ2, . . . ,ψt) =
1+max{ψ1, . . . ,ψt}. This measure is monotone.

Total path length: for an arbitrary row δ̄ of the table T we denote by l(δ̄ ) the
length of path from the root to a terminal node v of Γ such that δ̄ belongs to T (v).
Then ψ(T,Γ ) = ∑δ̄ l(δ̄ ), where we take the sum on all rows δ̄ of the table T . For
this cost function ψ0(T,b)≡ 0 and F(n,ψ1,ψ2, . . . ,ψt) = n+∑t

i=1 ψi. This measure
is strongly monotone.

Note that the average depth of Γ is equal to the total path length divided by N(T ).
Number of misclassifications: ψ(T,Γ ) is the number of rows r in T for which the

result of the work of decision tree Γ on r does not equal to the decision attached to
the row r. For this cost function ψ0(T,b) is equal to the number of rows in T which
are labeled with decisions different from b, and F(n,ψ1,ψ2, . . . ,ψt) = ∑t

i=1 ψi. This
measure is strongly monotone.

Later in experiments we will fix some decision table T and in notation for cost
functions will omit this table. For a decision tree Γ , we denote its average depth by
hav(Γ ), the number of nodes by L(Γ ), the number of terminal nodes by Lt(Γ ), the
depth by h(Γ ), and the number of misclassifications by μ(Γ ).

2.3 Representation of Sets of α-Decision Trees and Decision
Trees

Let α be a nonnegative real number. Consider an algorithm for construction of a
graph Δα(T ), which can represent the set of all α-decision trees for the table T .
Nodes of this graph are some separable subtables of the table T . During each step
we process one node and mark it with symbol *. We start with the graph that consists
of one node T and finish when all nodes of the graph are processed.

Let the algorithm have already performed p steps. We now describe the step num-
ber (p+1). If all nodes are processed then the work of the algorithm is finished, and
the resulted graph is Δα(T ). Otherwise, choose a node (table) Θ that has not been
processed yet. Let b be the most common decision for Θ . If R(Θ) ≤ α , label the
considered node with b, mark it with symbol * and proceed to the step number
(p+ 2). Let R(Θ) > α . For each fi ∈ E(Θ) draw a bundle of edges from the node
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Θ (this bundle of edges will be called fi-bundle). Let E(Θ , fi) = {a1, . . . ,at}. Then
draw t edges from Θ and label these edges with the pairs ( fi,a1), . . . ,( fi,at) respec-
tively. These edges enter into the nodes Θ( fi,a1), . . . ,Θ( fi,at). If some of the nodes
Θ( fi,a1), . . . ,Θ( fi,at) do not present in the graph then add these nodes to the graph.
Mark the node Θ with symbol * and proceed to the step number (p+ 2).

Now for each node Θ of the graph Δα(T ) we describe the set of α-decision trees
corresponding to it. It is clear that Δα(T ) is a directed acyclic graph (DAG). A node
of such graph will be called terminal if there are no edges leaving this node. We will
move from terminal nodes, which are labeled with numbers, to the node T . Let Θ
be a node, which is labeled with a number b. Then the only trivial α-decision tree
depicted in Fig. 2 corresponds to the considered node.

Let Θ be a node (table), for which R(Θ) > α . There is a number of bundles
of edges starting in Θ . We consider an arbitrary bundle and describe the set of α-
decision trees corresponding to this bundle. Let the considered bundle be an fi-
bundle where fi ∈ E(Θ) and E(Θ , fi) = {a1, . . . ,at}. Let Γ1, . . . ,Γt be α-decision
trees from the sets corresponding to the nodes Θ( fi,a1), . . . ,Θ( fi,at). Then the α-
decision tree depicted in Fig. 3 belongs to the set of α-decision trees, which cor-
respond to this bundle. All such α-decision trees belong to the considered set, and
this set does not contain any other α-decision trees. Then the set of α-decision trees
corresponding to the node Θ coincides with the union of sets of α-decision trees
corresponding to bundles starting in Θ . We denote by Dα(Θ) the set of α-decision
trees corresponding to the node Θ in the graph Δα(T ).

The following proposition shows that the graph Δα(T ) can represent all α-
decision trees for the table T .

Proposition 1. Let T be a decision table and Θ a node in the graph Δα(T ). Then
the set Dα(Θ) coincides with the set of all α-decision trees for the table Θ .

Proof. We prove this proposition by induction on nodes in the graph Δα(T ). For
each terminal node Θ , only one α-decision tree exists depicted in Fig. 2, and the set
Dα(Θ) contains only this tree. Let Θ be a nonterminal node and the statement of
proposition hold for all its descendants.

Consider an arbitrary decision tree Γ ∈ Dα(Θ). Obviously, Γ contains more than
one node. Let the root of Γ be labeled with the attribute fi and the edges leaving root
be labeled with the numbers a1, . . . ,at . For j = 1, . . . , t, denote by Γj the decision tree
connected to the root with the edge labeled with the number a j. From definition of
the set Dα(Θ) it follows that fi is contained in the set E(Θ), E(Θ , fi) = {a1, . . . ,at}
and for j = 1, . . . , t, the decision tree Γj belongs to the set Dα(Θ( fi,a j)). According
to the inductive hypothesis, the tree Γj is an α-decision tree for the table Θ( fi,a j).
Then the tree Γ is an α-decision tree for the table Θ .

Now we consider an arbitrary α-decision tree Γ for the table Θ . According to the
definition, the root of Γ is labeled with an attribute fi from the set E(Θ), edges leav-
ing the root are labeled with numbers from the set E(Θ , fi) and the subtrees whose
roots are nodes, to which these edges enter, are α-decision trees for corresponding
descendants of the node Θ . Then, according to the definition of the set Dα(Θ) and
to inductive hypothesis, the tree Γ belongs to the set Dα(Θ). ��



2 Extensions of Dynamic Programming 17

We denote Δ(T ) = Δ0(T ). Now for each node of the graph Δ(T ) we describe the
set of decision trees corresponding to it. We will move from terminal nodes, which
are labeled with numbers, to the node T . Let Θ be a node, which is labeled with a
number b. Then the only trivial decision tree depicted in Fig. 2 corresponds to the
considered node.

Let Θ be a node (table), which is not terminal. There is a number of bundles of
edges starting in Θ . We consider an arbitrary bundle and describe the set of decision
trees corresponding to this bundle. Let the considered bundle be an fi-bundle where
fi ∈ E(Θ) and E(Θ , fi) = {a1, . . . ,at}. Let Γ1, . . . ,Γt be decision trees from sets
corresponding to the nodes Θ( fi,a1), . . . ,Θ( fi,at). Then the decision tree depicted
in Fig. 3 belongs to the set of decision trees, which correspond to this bundle. All
such decision trees belong to the considered set, and this set does not contain any
other decision trees. Then the set of decision trees corresponding to the node Θ
coincides with the union of sets of decision trees corresponding to bundles starting
in Θ and the set containing one decision tree depicted in Fig. 2, where b is the most
common decision for Θ . We denote by D(Θ) the set of decison trees corresponding
to the node Θ .

The following proposition shows that the graph Δ(T ) can represent all decision
trees for the table T .

Proposition 2. Let T be a decision table and Θ a node in the graph Δ(T ). Then
the set D(Θ) coincides with the set of all decision trees for the table Θ .

Proof. We prove the proposition by induction on nodes in the graph Δ(T ). For each
terminal node Θ , only one decision tree exists depicted in Fig. 2, and the set D(Θ)
contains only this tree. Let Θ be a nonterminal node and the statement of proposition
hold for all its descendants.

Consider an arbitrary decision tree Γ ∈ D(Θ). If Γ contains exactly one node
labeled with the most common decision for Θ , then Γ is a decision tree for Θ . Let
Γ contain more than one node, the root of Γ be labeled with an attribute fi and the
edges leaving root be labeled with the numbers a1, . . . ,at . For j = 1, . . . , t, denote
by Γj the decision tree connected to the root with the edge labeled with the number
a j. From definition of the set D(Θ) it follows that fi is contained in the set E(Θ),
E(Θ , fi) = {a1, . . . ,at} and for j = 1, . . . , t, the decision tree Γj belongs to the set
D(Θ( fi,a j)). According to the inductive hypothesis, the tree Γj is a decision tree for
the table Θ( fi,a j). Then the tree Γ is a decision tree for the table Θ .

Now we consider an arbitrary decision tree Γ for the table Θ . If Γ contains ex-
actly one node labeled with the most common decision for Θ , then Γ ∈ D(Θ). Oth-
erwise, the root of Γ is labeled with an attribute fi from the set E(Θ), edges leaving
the root are labeled with numbers from the set E(Θ , fi) and the subtrees whose roots
are nodes, to which these edges enter, are decision trees for corresponding descen-
dants of the node Θ . Then, according to definition of the set D(Θ) and to inductive
hypothesis, the tree Γ belongs to the set D(Θ). ��
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2.4 Optimization of α-Decision Trees

In this section, we introduce the notion of proper subgraph of the graph Δα(T )
and give the procedure of finding a set of optimal α-decision trees relative to some
functions.

2.4.1 Proper Subgraphs of Graph Δα(T )

Let us introduce the notion of proper subgraph of the graph Δα(T ). For each node
of the graph Δα(T ), which is not terminal, we can remove any but not all bundles
that leave the node. Denote the obtained subgraph by G. Such subgraphs will be
called proper subgraphs of the graph Δα(T ). It is clear that all terminal nodes of G
are terminal nodes of the graph Δα(T ). As it was described earlier, we can associate
a set of α-decision trees to each node Θ of G. It is clear that all these α-decision
trees belong to the set Dα(Θ). We denote this set of α-decision trees by Dα ,G(Θ).

2.4.2 Procedure of Optimization

Let G be a proper subgraph of the graph Δα(T ), and ψ be a cost function given by
operators ψ0 and F . Below we describe a procedure, which transforms the graph G
into a proper subgraph Gψ of G. We begin from terminal nodes and move to the node
T . We attach a number to each node, and possible remove some bundles of edges,
which start in the considered node. Let Θ be a terminal node labeled with a number
b. We attach the number ψ0(T,b) to the node Θ . Consider a node Θ , which is not
terminal, and a bundle of edges, which starts in this node. Let edges be labeled with
pairs ( fi,a1), . . . ,( fi,at), and edges enter to nodes Θ( fi,a1), . . . ,Θ( fi,at), to which
numbers ψ1, . . . ,ψt are attached already. Then we attach to the considered bundle
the number F(N(Θ),ψ1, . . . ,ψt).

Among numbers attached to bundles starting in Θ we choose the minimum num-
ber p and attach it to the node Θ . We remove all bundles starting in Θ to which
numbers are attached that are greater than p. When all nodes will be treated we ob-
tain a graph. Denote this graph by Gψ . As it was done previously, for any node Θ
of Gψ we denote by Dα ,Gψ (Θ) the set of α-decision trees associated with Θ .

Note that using the graph Gψ it is easy to find the number of decision trees in
the set Dα ,Gψ (Θ): |Dα ,Gψ (Θ)| = 1 if Θ is a terminal node. Consider a node Θ ,
which is not terminal, and a bundle of edges, which start in this node and enter the
nodes Θ1 =Θ( fi,a1), . . . ,Θt =Θ( fi,at). We correspond to this bundle the number
|Dα ,Gψ (Θ1)|× · · ·× |Dα ,Gψ (Θt)|. Then |Dα ,Gψ (Θ)| is equal to the sum of numbers
corresponding to bundles starting in Θ .

Let T be a decision table and ψ a monotone cost function. Let G be a proper
subgraph of Δα(T ) and Θ an arbitrary node in G. We will denote by Dopt

α ,ψ,G(Θ)

the subset of Dα ,G(Θ) containing all α-decision trees having minimum complexity
relative to ψ , i.e., Dopt

α ,ψ,G = {Γ̂ ∈ Dα ,G(Θ) : ψ(Θ ,Γ̂ ) = minΓ∈Dα,G(Θ ) ψ(Θ ,Γ )}.
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We present two theorems that describe important properties of the set Dα ,Gψ (Θ)
for the cases of monotone and strongly monotone cost function ψ .

Lemma 1. Let T be a decision table and ψ be a monotone cost function defined
by the pair of operators (ψ0,F). Let G be a proper subgraph of Δα(T ), Θ be an
arbitrary node in the graph G and p be a number assigned to the node Θ by op-
timization procedure. Then for each α-decision tree Γ from the set Dα ,Gψ (Θ), the
equality ψ(Θ ,Γ ) = p holds.

Proof. We prove the lemma by induction on nodes in the graph G. For each terminal
node Θ , only one α-decision tree Γ exists depicted in Fig. 2 and the statement of
lemma obviously holds for Θ . Let now Θ be a nonterminal node, and the statement
of lemma holds for all descendants of Θ . Consider an arbitrary α-decision tree Γ ∈
Dα ,Gψ (Θ). Let the root of Γ be labeled with the attribute fi and the edges leaving
root be labeled with the numbers a1, . . . ,at . For j = 1, . . . , t denote by Γj the decision
tree connected to the root with edge labeled with the number a j. Let for j = 1, . . . , t
the node Θ( fi,a j) be labeled with the number p j. According to the inductive hy-
pothesis, the equality ψ(Θ( fi,a j),Γj) = p j holds for j = 1, . . . , t. According to the
optimization procedure, p = F(N(Θ), p1, . . . , pt). From the definition of cost func-
tion it follows that ψ(Θ ,Γ ) = F(N(Θ),ψ(Θ( fi,a1),Γ1), . . . ,ψ(Θ( fi,at),Γt)). So
ψ(Θ ,Γ ) = p. Since Γ is an arbitrary tree from Dα ,Gψ (Θ), all the trees in Dα ,Gψ (Θ)
have the same cost p. ��

Theorem 1. Let T be a decision table and ψ a monotone cost function. Let G
be a proper subgraph of Δα(T ) and Θ an arbitrary node in the graph G. Then
Dα ,Gψ (Θ)⊆ Dopt

α ,ψ,G(Θ).

Proof. The proof is by induction on nodes of the graph G. Let Θ be a terminal node,
and b be the most common decision for Θ . Then the set Dα ,Gψ (Θ) contains only tree

depicted in Fig. 2 and this tree, obviously, belongs to Dopt
α ,ψ,G(Θ). So the statement

of theorem holds for the node Θ .
Let now Θ be a nonterminal node in G and the statement of theorem hold for

any descendant of Θ in the graph G. Let the number p be assigned to the node Θ
by optimization procedure. Lemma 1 implies that all α-decision trees in Dα ,Gψ (Θ)
have the same complexity p. Consider an arbitrary decision tree Γ from the set
Dopt

α ,ψ,G(Θ). From definition of the set Dopt
α ,ψ,G(Θ) we have ψ(Θ ,Γ )≤ p.

To prove the theorem we need to show that ψ(Θ ,Γ ) = p. Let the root of Γ
be assigned with the attribute fi. Since Γ is an α-decision tree for Θ , fi is con-
tained in the set E(Θ). Let E(Θ , fi) = {a1, . . . ,at}. Then t edges leave the root
labeled with numbers a1, . . . ,at . For j = 1, . . . , t, denote by Γj the subtree that
is connected to the root with the edge labeled with a j. One can show that Γj is
contained in the set Dα ,G(Θ( fi,a j)). Let p j be a number assigned to the node
Θ( fi,a j) during optimization. Since the theorem holds for the node Θ( fi,a j), we
have ψ(Θ( fi,a j),Γj) ≥ p j. From the description of optimization procedure it fol-
lows that F(N(Θ), p1, . . . , pt)≥ p. Since ψ is monotone cost function, we have
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ψ(Θ ,Γ ) = F(N(Θ),ψ(Θ( fi,a1),Γ1), . . . ,ψ(Θ( fi,at),Γt))

≥ F(N(Θ), p1, . . . , pt).

From the two last inequalities and the inequality ψ(Θ ,Γ ) ≤ p we have
ψ(Θ ,Γ ) = p. ��

Theorem 2. Let T be a decision table and ψ a strongly monotone cost function. Let
G be a proper subgraph of Δα(T ) and Θ be an arbitrary node in the graph G. Then
Dα ,Gψ (Θ) = Dopt

α ,ψ,G(Θ).

Proof. Since ψ is strongly monotone, ψ is monotone. By Theorem 1, Dα ,Gψ (Θ)⊆
Dopt

α ,ψ,G(Θ). Prove that for an arbitrary tree Γ ∈ Dopt
α ,ψ,G(Θ), the tree Γ belongs to

the set Dα ,Gψ (Θ). The induction on the nodes of G will be used. If Θ is a terminal
node then only one α-decision tree exists for Θ and thus the statement of theorem
holds. Let Θ be a nonterminal node and the statement of theorem hold for all de-
scendants of Θ . Let the root of the tree Γ is assigned by the attribute fi. Since Γ is an
α-decision tree for Θ , fi is contained in the set E(Θ). Let E(Θ , fi) = {a1, . . . ,at}.
Then t edges leaving the root are labeled with the numbers a1, . . . ,at . For j = 1, . . . , t,
denote by Γj the subtree that is connected to the root with the edge labeled with
a j. Since ψ is a strongly monotone cost function, the tree Γj belongs to the set
Dopt

α ,ψ,G(Θ( fi,a j)). Since the statement of theorem holds for the node Θ( fi,a j), the
tree Γj belongs to the set Dα ,Gψ (Θ( fi,a j)) for j = 1, . . . , t. Consider the bundle
of edges in the graph Δα(T ) that leave the node Θ and are labeled with the pairs
( fi,a1), . . . ,( fi,at). Since Γ ∈ Dopt

α ,ψ,G(Θ) these edges were not removed by the op-
timization procedure. Then according to the definition of the set Dα ,Gψ (Θ) the tree
Γ belongs to this set. ��

2.4.3 Possibilities of Sequential Optimization

Let the graph Δα(T ) be constructed for a decision table T . Let ψ1,ψ2 be strongly
monotone cost functions. Apply the procedure of optimization to the graph Δα(T )
and to the cost function ψ1. As a result we obtain a proper subgraph (Δα(T ))ψ1

of the graph Δα(T ). Denote this subgraph by G1. According to Proposition 1 and
Theorem 2, the set of α-decision trees corresponding to the node T of this graph
coincides with the set of all α-decision trees for the table T , which have minimum
cost relative to ψ1. Denote this set by D1.

Apply the procedure of optimization to the graph G1 and the cost function ψ2.
As a result we obtain the proper subgraph (G1)ψ2 of the graph Δα(T ). Denote this
subgraph by G2. The set of α-decision trees corresponding to the node T of this
graph coincides with the set of all α-decision trees from D1 which have minimum
cost relative to ψ2. It is possible to continue this process of consecutive optimization
relative to various criterions.

If ψ2 is a monotone cost function then according to Theorem 1 the set of α-
decision trees, corresponding to the node T of the graph G2, is a subset of the set of
all α-decision trees from D1 which have minimum complexity relative to ψ2.
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2.4.4 Experimental Results

We made experiments with two datasets from UCI ML Repository [6]: MUSHROOM

(8124 rows and 22 conditional attributes) and CARS (1728 rows and 6 conditional
attributes). The dataset MUSHROOM contains 2480 missed values. We replaced each
missing value with the most common value in the corresponding column. We chose
relatively small datasets since we need to begin our consideration from α = 0. In
fact, instead of α , we use the parameter σ , 0 ≤ σ < 1, such that α = σR(T ) where
R(T ) is the uncertainty of the considered dataset (decision table) T .

For each decision table (dataset), we made two groups of experiments. In the
first group, we consider five values of σ : 0, 0.001, 0.01, 0.1 and 0.2 and four cost
functions: average depth hav, number of nodes L, number of terminal nodes Lt , and
depth h. Each experiment contains five steps. During the step number 0 we perform
initial optimization relative to each cost function independently. During the steps
numbers 1, 2, 3 and 4 we perform sequential optimization relative to hav, L, Lt ,
and h respectively. Tables 1 and 2 show the results of experiments with datasets
MUSHROOM and CARS.

Table 1 Results of experiments on the decision table MUSHROOM with different values of σ
(α = σR(MUSHROOM)) and the order hav, L, Lt , h of cost functions

optimization type σ hav L Lt h
initial 0 1.52388 21 14 3
sequential 0 1.52388 27 22 4
initial 0.001 1.51108 16 11 2
sequential 0.001 1.51108 20 17 3
initial 0.01 1.33161 11 7 2
sequential 0.01 1.33161 17 14 2
initial 0.1 1 5 3 1
sequential 0.1 1 10 9 1
initial 0.2 1 5 3 1
sequential 0.2 1 5 4 1

Table 2 Results of experiments on the decision table CARS with different values of σ (α =
σR(CARS)) and the order hav, L, Lt , h of cost functions

optimization type σ hav L Lt h
initial 0 2.94734 396 290 6
sequential 0 2.94734 398 290 6
initial 0.001 2.19444 33 24 3
sequential 0.001 2.19444 35 25 4
initial 0.01 1.66667 12 9 2
sequential 0.01 1.66667 12 9 2
initial 0.1 1 5 4 1
sequential 0.1 1 5 4 1
initial 0.2 1 4 3 1
sequential 0.2 1 4 3 1
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These tables contain the following parameters:

• σ : the parameter which defines α as σR(T );
• hav: either the minimum average depth hσ

av(T ) of an α-decision tree for T (initial)
or the average depth of each decision tree obtained after the last step of sequential
optimization (sequential), where α = σR(T );

• L: either the minimum number of nodes Lσ (T ) of an α-decision tree for T (ini-
tial) or the number of nodes of each decision tree obtained after the last step of
sequential optimization (sequential), where α = σR(T );

• Lt : either the minimum number of terminal nodes Lσ
t (T ) of an α-decision tree

for T (initial) or the number of terminal nodes of each decision tree obtained
after the last step of sequential optimization (sequential), where α = σR(T );

• h: either the minimum depth hσ (T ) of an α-decision tree for T (initial) or the
depth of each decision tree obtained after the last step of sequential optimization
(sequential), where α = σR(T ).

Table 3 Characteristics of DAG Δα (T ), α = σR(T ), for the decision tables MUSHROOM and
CARS

σ MUSHROOM CARS

# nodes # edges # trees # nodes # edges # trees
0 149979 2145617 > 1038 7007 19886 > 1038

0.001 59802 619898 > 1038 1727 3420 5.26 ·1013

0.01 24648 161983 1.96 ·1016 473 688 4.99 ·1004

0.1 4148 16178 750874 118 129 78
0.2 1692 5302 12331 22 21 6

Let σ be real number such that 0 ≤ σ < 1, T be a decision table, α = σR(T ),
and Γ be an α-decision tree for T . We will say that Γ is totally optimal for T and
σ relative to the cost functions hav, h, L, and Lt if hav(Γ ) = hσ

av(T ), h(Γ ) = hσ (T ),
L(T ) = Lσ (T ), and Lt(Γ ) = Lσ

t (T ).
Table 1 shows that for any σ ∈ {0,0.001,0.01,0.1,0.2} there is no decision tree

which is totally optimal for MUSHROOM and σ relative to hav, h, L, and Lt .
Table 2 shows that for any σ ∈ {0.01,0.1,0.2} there exists a decision tree which

is totally optimal for CARS and σ relative to hav, h, L, and Lt . For σ = 0 and σ =
0.001, there are no such trees.

We found also values of the following parameters related to the directed acyclic
graph Δα(T ):

• # nodes: the number of nodes in the directed acyclic graph Δα(T );
• # edges: the number of edges in the directed acyclic graph Δα(T );
• # trees: the number of α-decision trees for the table T .
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Table 4 Results of sequential optimization on the decision table MUSHROOM with different
orders of the cost functions

order of cost functions h hav L Lt

h, hav, L, Lt 3 1.65387 30 24
h, hav, Lt , L 3 1.65387 30 24
h, L, hav, Lt 3 2.94978 25 17
h, L, Lt , hav 3 2.94978 25 17
h, Lt , hav, L 3 2.94978 25 17
h, Lt , L, hav 3 2.94978 25 17
hav, h, L, Lt 4 1.52388 27 22
hav, h, Lt , L 4 1.52388 27 22
hav, L, h, Lt 4 1.52388 27 22
hav, L, Lt , h 4 1.52388 27 22
hav, Lt , h, L 4 1.52388 27 22
hav, Lt , L, h 4 1.52388 27 22
L, h, hav, Lt 4 1.95815 21 15
L, h, Lt , hav 4 1.95815 21 15
L, hav, h, Lt 5 1.72772 21 15
L, hav, Lt , h 5 1.72772 21 15
L, Lt , hav, h 5 1.72772 21 15
L, Lt , h, hav 4 1.95815 21 15
Lt , h, hav, L 4 3.51059 24 14
Lt , h, L, hav 4 3.51059 24 14
Lt , hav, h, L 5 2.86854 23 14
Lt , hav, L, h 5 2.86854 23 14
Lt , L, hav, h 5 2.86854 23 14
Lt , L, h, hav 5 3.07632 23 14
initial optimization 3 1.52388 21 14

Table 3 shows the values of these parameters. It is possible to see that the values
of # nodes, # edges and # trees for Δα(T ) decrease with the growth of α = σR(T )
(really, with growth of σ ). It means that the parameter α can be used for managing
algorithm complexity.

Table 3 shows also that the structure of graph Δα(T ) is usually far from a tree:
the number of edges is essentially larger than the number of nodes.

In the second group of experiments, for each decision table and for σ = 0 we
consider all possible orders of cost functions h, hav, L and Lt . We found values of
these functions for decision trees obtained after the last step of sequential optimiza-
tion. Tables 4 and 5 show the results. The last row in each of these tables contains
values of h0(T ), h0

av(T ), L0(T ) and L0
t (T ). For the decision table CARS, the obtained

results depend only on the order of two functions: hav and L. For the decision table
MUSHROOM, the results depend on the order of all four cost functions.
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Table 5 Results of sequential optimization on the decision table CARS with different orders
of the cost functions

order of cost functions h hav L Lt

h, hav, L, Lt 6 2.94734 398 290
h, hav, Lt , L 6 2.94734 398 290
h, L, hav, Lt 6 2.9485 396 290
h, L, Lt , hav 6 2.9485 396 290
h, Lt , hav, L 6 2.94734 398 290
h, Lt , L, hav 6 2.9485 396 290
hav, h, L, Lt 6 2.94734 398 290
hav, h, Lt , L 6 2.94734 398 290
hav, L, h, Lt 6 2.94734 398 290
hav, L, Lt , h 6 2.94734 398 290
hav, Lt , h, L 6 2.94734 398 290
hav, Lt , L, h 6 2.94734 398 290
L, h, hav, Lt 6 2.9485 396 290
L, h, Lt , hav 6 2.9485 396 290
L, hav, h, Lt 6 2.9485 396 290
L, hav, Lt , h 6 2.9485 396 290
L, Lt , hav, h 6 2.9485 396 290
L, Lt , h, hav 6 2.9485 396 290
Lt , h, hav, L 6 2.94734 398 290
Lt , h, L, hav 6 2.9485 396 290
Lt , hav, h, L 6 2.94734 398 290
Lt , hav, L, h 6 2.94734 398 290
Lt , L, hav, h 6 2.9485 396 290
Lt , L, h, hav 6 2.9485 396 290
initial optimization 6 2.94734 396 290

2.5 Relationships between Depth and Number
of Misclassifications

In the following, we consider tools for the analysis of relationships between depth
and number of misclassifications for decision trees for a given decision table.

2.5.1 Computing the Relationships

Let T be a decision table with N rows and m columns labeled with attributes
f1, . . . , fm, and D(T ) be the set of all decision trees for T . For a decision tree
Γ ∈ D(T ), we denote by h(Γ ) the depth of Γ and by μ(Γ ) we denote the number of
misclassifications for Γ for the table T . It is clear that the minimum values of h and
μ on D(T ) are equal to zero, an upper bound on the value of h on D(T ) is m, and
an upper bound on the value of μ on D(T ) is N. We denote Bh = {0,1, . . . ,m} and
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Bμ = {0,1, . . . ,N}. We now define two functions GT : Bh → Bμ and FT : Bμ → Bh

as follows:
GT (n) = min{μ(Γ ) : Γ ∈ D(T ),h(Γ )≤ n}

for any n ∈ Bh, and

FT (n) = min{h(Γ ) : Γ ∈ D(T ),μ(Γ )≤ n}

for any n ∈ Bμ .
The function GT can be represented by the tuple (GT (0), . . . ,GT (m)) of its values.

The function FT can also be represented similarly.
We now describe an algorithm which allows us to construct the function GΘ for

any node (subtable) Θ from the graph Δ(T ).
We begin from the terminal nodes and move to the node T . We attach a function

GΘ to each node Θ of Δ(T ) = Δ0(T ).
Let Θ be a terminal node. It means that all rows of Θ are labeled with the same

decision b and the decision tree Γb as depicted in Fig. 2 belongs to D(Θ). It is clear
that h(Γb) = 0 and μ(Γb) = 0 for the table Θ . Therefore GΘ (n) = 0 for any n ∈ Bh.

Consider a nonterminal node Θ and a bundle of edges labeled with pairs
( fi,a1), . . . ,( fi,at) that starts from this node. Let these edges enter into nodes
Θ( fi,a1), . . . ,Θ( fi,at), respectively, to which functions

GΘ ( fi,a1), . . . ,GΘ ( fi,at)

are already attached.
We correspond to this bundle (the fi-bundle) the function G fi

Θ , which for any
n ∈ Bh \ {0} is defined as follows:

G fi
Θ (n) = min{μ(Γ ) : Γ ∈ D(Θ , fi),h(Γ )≤ n},

where D(Θ , fi) is the set of decision trees for Θ corresponding to the considered
bundle. The set D(Θ , fi) contains only such trees from D(Θ) in which the root is
labeled with fi. We can show that for any n ∈ Bh \ {0},

G fi
Θ (n) = GΘ ( fi,a1)(n− 1)+ · · ·+GΘ ( fi,at )(n− 1).

It is not difficult to prove that for any n ∈ Bh \ {0},

GΘ (n) = min{G fi
Θ (n) : fi ∈ E(Θ)}.

We know that there is only one decision tree with depth zero in D(Θ). This is the
tree Γb as depicted in Fig. 2, where b is the most common decision for Θ . For this
tree, we have h(Γb) = 0 and μ(Γb) for Θ is equal to the number of rows in Θ which
are labeled with decisions other than b. So,

GΘ (0) = N(Θ)−N(Θ ,b),
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where N(Θ) is the number of rows in Θ and N(Θ ,b) is the number of rows in Θ
which are labeled with the decision b.

Now we can use the following proposition to construct the function FT .

Proposition 3. For any n ∈ Bμ , FT (n) = min{p ∈ Bh : GT (p)≤ n}.

This statement follows immediately from Propososition 4 from the Appendix.
Note that to find the value FT (n) for n ∈ Bμ it is enough to make O(log|Bh|) =

O(logm) operations of comparison.

2.5.2 Experimental Results

We performed several experiments on datasets (decision tables) acquired from UCI
ML Repository [6]. Each dataset is represented as a table containing several in-
put columns and an output (decision) column. In tables containing green missing
values, we replaced each missing value with the most common value in the corre-
sponding column. In some tables there were rows that contain identical values in all
columns, possibly, except the decision column. In this case each group of identical
rows was replaced with a single row with common values in all input columns and
the most common value in the decision column. In the following, we present the
experimental results and show the plots depicting relationships between the number
of misclassifications and the depth of decision trees.

Figure 4 contains two plots for the decision table HOUSE-VOTES-84 (16 at-
tributes and 279 rows). The first plot shows the relationship between the number of
misclassifications and the depth (the minimum number of misclassifications among
decision trees whose depth is at most the given value) and the second one shows the
relationship between the depth and the number of misclassifications (the minimum
depth among decision trees for which the number of misclassifications is at most
the given value).
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Fig. 4 Relationships between the depth and the number of misclassifications for HOUSE-
VOTES-84
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Figure 5 contains two plots for the decision table BREAST-CANCER (9 attributes
and 266 rows). The first plot shows the relationship between the number of mis-
classifications and the depth and the second one shows the relationship between the
depth and the number of misclassifications.
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Fig. 5 Relationships between the depth and the number of misclassifications for BREAST-
CANCER

Figure 6 contains two plots for the decision table CARS (6 attributes and
1727 rows). The first plot shows the relationship between the number of misclas-
sifications and the depth and the second one shows the relationship between the
depth and the number of misclassifications.
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Fig. 6 Relationships between the depth and the number of misclassifications for CARS

2.6 Conclusions

The chapter is devoted to the consideration of an algorithm for sequential opti-
mization of approximate decision trees relative to different cost functions, and
to the study of relationships between depth and number of misclassifications of
decision trees. Possibilities of the use of proposed techniques are illustrated by
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experiments with some datasets from UCI ML Repository [6]. Further studies will
be connected with the extension of these tool to the decision tables containing
continuous attributes.
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Appendix. Transformation of Functions

Let f and g be two functions from a set A onto Cf and Cg respectively, where Cf

and Cg are finite sets of nonnegative integers. Let B f = {m f ,m f + 1, . . . ,Mf } and
Bg = {ng,ng + 1, . . . ,Ng} where m f = min{m : m ∈Cf } and ng = min{n : n ∈Cg}.
Furthermore, Mf and Ng are natural numbers such that m ≤ Mf and n ≤ Ng for any
m ∈Cf and n ∈Cg, respectively.

We define two functions F : Bg → B f and G : B f → Bg as following:

F (n) = min{ f (a) : a ∈ A,g(a)≤ n}, ∀n ∈ Bg,

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
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and
G (m) = min{g(a) : a ∈ A, f (a)≤ m}, ∀m ∈ B f .

It is clear that both F and G are nonincreasing functions.
The following proposition states that the functions F and G can be used inter-

changeably and we can evaluate F using G and vice versa, i.e., it is enough to know
only one function to evaluate the other.

Proposition 4. For any n ∈ Bg,

F (n) = min{m ∈ B f : G (m)≤ n},

and for any m ∈ B f ,

G (m) = min{n ∈ Bg : F (n)≤ m}.

Proof. Let for some n ∈ Bg,
F (n) = m0. (1)

Furthermore, we assume that

min{m ∈ B f : G (m)≤ n}= t.

From (1) it follows that

(i) there exists b ∈ A such that g(b)≤ n and f (b) = m0;
(ii) for any a ∈ A, if g(a)≤ n then f (a)≥ m0.

From (i) it follows that G (m0) ≤ n. This implies t ≤ m0. Let us assume that
t < m0. In this case, there exits m1 < m0 for which G (m1) ≤ n. Therefore, there
exists a∈A such that f (a)≤m1 and g(a)≤ n, but from (ii) it follows that f (a)≥m0,
which is impossible. So t = m0.

Similarly we can prove the second part of the statement. ��

Proposition 4 allows us to transform the function G given by a tuple

(G (m f ),G (m f + 1), . . . ,G (Mf ))

into the function F and vice versa. We know that G (m f ) ≥ G (m f + 1) ≥ ·· · ≥
G (Mf ). To find for a given n ∈ Bg the minimum m ∈ B f such that G (m) ≤ n we
can use binary search which requires O(log|B f |) comparisons. So to find the value
F (n) for n ∈ Bg it is enough to make O(log|B f |) operations of comparison.
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Chapter 3 
Optimised Information Abstraction in Granular 
Min/Max Clustering 

Andrzej Bargiela and Witold Pedrycz1 

Abstract. The Min/Max classification and clustering has a distinct advantage of 
generating easily interpretable information granules - represented as hyperboxes in 
the multi-dimensional feature space of the data.  However, while such an informa-
tion abstraction lends itself to easy interpretation it leaves open the question 
whether the granules represent well the original data.  

In this chapter we discuss an approach to optimised information abstraction, 
which retains the advantages of Min/Max clustering while providing a basis for 
building a more representative set of granules. In particular we extend the infor-
mation density based granulation by including an extra stage of optimised refine-
ment of granular prototypes. The initial granulation is accomplished by creating 
hyperboxes in the pattern space through the maximisation of the count of data 
items per unit volume of hyperboxes. The granulation is totally data driven in that 
it does not make any assumptions about the number or the maximum size of 
hyperboxes. Subsequent optimisation involves identification of granular proto-
types and their refinement so as to achieve full reconstruction of the original data 
from the prototypes and the corresponding partition matrix.  

3.1   Introductory Comments 

Progression from detailed, voluminous numerical information to a more concise 
representation of knowledge about systems relies to a large extent on an appropri-
ate granulation of information. While it is recognised that the granulation process 
degrades the accuracy of individual numerical readings the gain of achieving 
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greater generality of models built on such a granulated data is a compelling  
argument for hierarchical structuring of information. Consequently, we observe 
that information granules permeate most cognitive activities of humans and help 
organise knowledge for the purpose of decision-making, control, simulation-
modelling, prediction, etc.  The mathematical frameworks for the generation of  
information granules have been integrated under the heading of Granular Compu-
ting [1-5, 20, 25-28, 30-32] and include most prominently fuzzy sets [12-13, 19, 
25], rough sets [17, 30], probabilistic sets as well as crisp sets (interval analysis) 
[7, 8, 10, 15, 16]. We recognise however, that regardless of the mathematical 
framework, information granules are conceptual constructs that have to be me-
diated by the needs of a specific application. In order to reflect the requirements of 
the real world, i.e. to be anchored in the experimental evidence, information gra-
nules need to be easily interpretable in their specific contexts and should have  
inherent flexibility that allows them to be optimised in some sense [5].  

Interestingly, in spite of the large diversity of approaches to information granu-
lation, the majority of clustering techniques published in the literature produce 
crisp (not granular) prototypes with the corresponding numeric partition matrices. 
This is surprising because the very rationale of information granulation hinges on 
the semantical transformation of data from the precise, numeric domain to the 
graded, granular domain, so the natural expectation would be to have granular rep-
resentatives of the granular domain.  

Nevertheless, some of the previous research has taken a principled view of 
identifying information granules that represent the granulated data. The min-max 
clustering, originally proposed in [23] and subsequently developed in [9] adopt a 
constructive approach to “growing” granular representatives of data assuming a 
predefined specificity (size in the normalised feature space) of the information 
granules. In this study we expand on the above approach and adopt a framework 
of set theory and interval analysis for the granular pre-processing of data and uti-
lise the FCM algorithm to derive the granular representatives of the original data. 
The granular representatives are then optimised to ensure full representation of the 
granulated data originating from the pre-processing with the minimum expansion 
of the prototypes. 

Proceeding with a formal description, let us start with a collection of n-
dimensional numeric data (located in Rn), say X = {x1, x2, …, xN}. Since we are 
interested in a data-driven discovery of features rather than the frequency of oc-
currence of a specific feature we need to ensure that the features of interest are 
supported by an approximately equal number of input patterns. We also require 
that the absolute values of readings in individual dimensions in the n-dimensional 
pattern space do not bias the results. The latter is easily accomplished by normalis-
ing the data, i.e. performing a transformation N(X) = ϑ  so that ϑ = {ϕ1, ϕ2, …,ϕN} 
⊂  [0 1]n. The second requirement can be expressed formally as follows: given the 
set of patterns (input set) ϑ of cardinality N and a number of features of interest 
(clusters) c, we require that each cluster has a support of approximately equal 
number of patterns. This can be achieved by granulating the original input data, so 
that one takes full advantage of the detailed information without biasing the sub-
sequent clustering process. The support-balancing granulation process can be  
expressed formally as G(ϑ) = Γ, where Γ = {g1, g2, .., gM} and N>M.  
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The balanced input data set Γ contains both numerical elements (points in  
[0 1]n) and information granules (subsets of [0 1]n).  A schematic view of the  
formation of the balanced input set is portrayed in Figure 1. 

Fig. 1 An overview of the transformation of the numerical data X into support-balancing 
granules G G(N(X)  = G 

Having produced the balanced input data set Γ = {g1, g2, .., gM} we may pro-
ceed with the construction of c information granules G1, G2,…,Gc representing the 
significant features in the input data. Depending upon the formalism of granula-
tion used in clustering algorithm, we can arrive at Gis to be sets, fuzzy sets, rough 
sets, shadowed sets, etc. [28]. A schematic view of the formation of information 
granules is portrayed in Figure 2. 

 
Fig. 2 A general view of clustering of granular data Γ (the granules are represented by  
prototypes and the partition matrix) 

It is worth noting however that unlike in the standard case of clustering of nu-
merical data we are processing here the input set Γ (which contains a mix of  
numerical and granular entities) thus generating prototypes v1, v2, …,vc which are 
themselves information granules. In the case of fuzzy sets, the clusters are charac-
terized by the prototypes and membership functions (grades) forming the  
corresponding rows of the partition matrix.  

The quality of clusters can be assessed via numerous cluster validity indexes [6, 
22]. They could be helpful in some cases. They might also play a detrimental role 
by sending confusing, inconsistent messages as to the most “feasible” number of 
clusters. This is not surprising as each validity index originates from a certain heu-
ristics being deemed potentially useful in focusing on some selected aspect of the 
structure of clusters (say, we concentrate on forming clusters as disjoint as possi-
ble). Alternatively one can think of the quality of granulation – de-granulation 
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process in which the composition of the de-granulation and granulation mechan-
isms should return the result, which is as close to the original entity as possible. 

The granulation mechanism returns a representation of any input data (pattern) 
g expressed in terms of membership degrees, u1(g), u2(g),…, uc(g). We use a con-
cise notation G(g, v1, v2, …, vc, U) to underline the usage of the mechanism of 
granulation being applied to g. The de-granulation mechanism denoted by G-1 ap-
plies to the previously obtained result of granulation and returns a certain entity. 
Ideally, the obtained result should be the same as the original input g we have 
started with. In other words, we require that 

G-1(G(g, v1, v2, …, vc, U))=g                                 (1) 

It is well known (for instance, in case of quantization of continuous variables) that 
the above equality does not hold as we usually encounter G-1(G(g, v1, v2, …, vc, 
U)) ≈ g. Given this effect of approximate equality, we can treat a distance be-
tween the original g and its de-granulated version as a measure of quality of the 
granulation process (the quality of clusters returned by the clustering technique). 
In general, we may use the following index 

k=1

N

∑ ||G-1(G(gk, v1, v2, …, vc, U))-gk||
2                      (2) 

that can serve as a meaningful indicator of the overall performance of the granula-
tion mechanism. Here the symbol ||. || stands for a  certain distance measure. The 
lower the value of Q is, the better the quality of information granules being as-
sessed in terms of the granulation-de-granulation effect. From the perspective of 
the concept of information granulation, it is also not surprising that the value of 
the index is typically non-zero. One could anticipate that the granulation-de-
granulation may produce results that are information granules rather than single 
numeric entities. The expectations could be that such information granules pro-
duced as a result of this transformation include the original input. In other words, 
instead of (2), we could expect a satisfaction of the following inclusion  

gk ⊂  Gk 
                                                                            (3) 

envisioning that this relationship be (hopefully) satisfied for all (or at least most) 
data gk. (Gk represents a de-granulated gk). The conceptual and ensuing technical 
question is about the origin of granularity to be used in the formation of the clus-
ters and a way of building it in the representation of the results of clustering.     

In this study we will focus on information granules gk in the setting of set 
theory and interval analysis. The rationale behind the selection of this framework 
is twofold. First, interval representation of granularity leads to a clear interpreta-
tion of the results while benefiting from solid mathematical foundations of set 
theory. Second, the algorithmic layer of set (interval) calculus has been estab-
lished for a long time and has resulted in a vast number of algorithms [15, 16]. 
Notwithstanding, the findings reported here can be translated and applied to other 
frameworks of granular computing such as fuzzy sets (the transltion hinges on the 
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idea of representing fuzzy sets through their α-cuts [11, 19]; that is, splitting the 
problem into a family of interval-based granulation tasks). 

This chapter is organised as follows. In Section 2, we outline areas in which in-
formation granulation plays a crucial role. Section 3, provides a detailed two-level 
algorithm for information granulation. Summarization of information granules (in 
terms of identifying granular prototypes) is discussed in Section 4. The verifica-
tion of the adequacy of granular prototypes is addressed in Section 5.  

3.2   Granular Information in Systems Modeling 

There are a number of representative domains where information granules can 
emerge as a useful vehicle to represent a given problem and make problem solving 
more efficient [18]. The following three areas are among the most prominent ap-
plications of information granulation: 

Granulation of Time Series.  Time series are commonly encountered in numerous 
practical problems. There have been various approaches to the description of time 
series and their classification. They are carried out in the time domain and fre-
quency domain. Prior to any detailed processing, time series are compressed in or-
der to retain the most essential information and suppress details that are deemed 
redundant from the standpoint of further classification and processing. The es-
sence of granulation of time series is to "discover" dominant components of the 
series. We may perceive these components as playing a role of basic conceptual 
blocks easily understood by humans and capturing the semantics of the underlying 
phenomenon. For instance, information granules may be formed as segments of 
consecutive samples of the signal. Then each segment may be labeled according to 
the configuration of the samples, say rapidly increasing signal, steady signal, 
slowly decreasing signal, etc.  Alternatively, as we propose here, one may consid-
er granulating the time series value with its gradient (and/or higher order deriva-
tives) in individual time instances. Note that standard sampling techniques are 
very specific examples of granulation of time series (as we attempt to capture a 
segment of a signal falling under a given sampling window by a single numeric 
value) 

Granulation of Digital Images.  Digital images are two-dimensional relations. As 
far as understanding and processing of images is concerned, a crux there is to  
identify some  higher level entities rather than being buried in a minute analysis 
completed at the level of individual pixels. Such tangible and semantically sound 
entities are information granules. They may arise at the level of basic homogeneous 
regions (in terms of brightness, color and texture) one can identify in an image. 
These entities are inherently hierarchical: at a higher level we may think of individ-
ual objects in the image (that are composed of the granules arising at the lower lev-
el with more specific and less abstract information granules). At the technical end, 
the simplest and least abstract information granules are formed by defining n-by-m 
blocks of pixels. At the higher level, we are concerned with various clustering 
techniques that help us construct abstractions out of the low-end (more detailed)  
information granules such as the already mentioned blocks of pixels. 
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Granulation of Spatial Structures. An array of current modeling pursuits occurs in 
the realm of distributed systems such as networks (both physical and virtual).  
Obvious examples of these architectures are public utility networks, telecommuni-
cation networks, social networks, supply chain networks, etc. In spite of their evi-
dent diversity, the networks share several profound commonalties. In particular, a 
hierarchical type of modeling is omnipresent there. Instead of analyzing the entire 
network, we split it into subnetworks (modules) that are loosely connected and 
proceed with a detailed analysis at this level. Obviously, this task is more tangible 
and manageable from the computational and interpretation standpoint. Each sub-
network is an information granule that is afterwards treated as a conceptual and 
algorithmic entity. For instance, when looking into a flow of traffic in a complex 
network, we partition the network into modules (call them telecommunications 
granules) and study all incoming and outgoing traffic from this perspective. The 
concept of hierarchy and information granulation is inherently associated with GIS 
(Geographic Information Systems) systems where we anticipate various levels of 
detail and control the process of concentrating on specific aspects by establishing 
proper levels of information granularity. 

3.3   Information Density Based Granulation 

In this section we focus on the algorithmic layer of the transformation of the nu-
merical data set X into a balanced granular data set Γ, as illustrated in Figure 1. 
The normalisation stage, N(X) = ϑ, transforming input set X = {x1, x2, …, xN}  
Rn into ϑ = {ϕ1, ϕ2, …,ϕN}  [0 1]n is straightforward and can be expressed for 
individual input data as: 

ϑi = N xi – o                                                (3) 

where N∈ RDxD is a normalisation matrix  
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and o∈ RDx1 is an offset vector constructed as 
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with max- and min- operations performed over all data items i ∈{1, 2, …,N} in 
the D-dimensional pattern space. 

The support-balancing granulation G(ϑ) = Γ  arises as a compromise between 
two conflicting requirements: 

1. Each granule gi should embrace as many elements of ϑ as possible (to be 
a sound representation of the underlying data). This can be expressed 
formally as maximising the cardinality of the gi set. 

2. The granule should be highly specific (its size in every dimension in the 
multi-dimensional pattern space should be as small as possible). The size 
could be measured in each dimension as a simple interval but it is conve-
nient to represent this in a slightly more general way as function defined 
on such intervals (this is to avoid numerical problems with intervals of 
zero-length). 

The algorithm implementing such a granulation has been proposed in [2] and it is 
briefly outlined here. The granulation is implemented as a one-pass process: 

1. Initialise data structures representing cardinality and the width of indi-
vidual data items (1 and 0, respectively for the point-data) 

2. Calculate and store the values of “information density” (the ratio of the 
cardinality of the granule and the functional measurement of its size) of 
hypothetical granules formed by any two data items in the input data set. 
This forms an upper-diagonal matrix D of size NxN, where N is the  
cardinality of the input data set. 

3. Find the maximum entry in D. 
4. If the maximum corresponds to an off-diagonal element (i-th and j-th  

coord):  
• merge the two information items (identified by the i-th row and j-th  

column) into a single information granule, which has width defined by 
the maximum and minimum values of coordinates in each dimension 
from the two component granules; i.e.: 

o find the min of each of the coordinates of the i-th and j-th  
granule; 

o find the max of each of the coordinates of the i-th and j-th granule; 
o modify the i-th granule so that its size is defined by min- and 

max- values identified above; 
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• update the cardinality of the resulting granule to the sum of the cardinal-
ity counts of the component granules; 

• update the i-th row and column of D with the information pertinent to the 
newly formed information granule and remove the j-th row and column 
from D; i.e.: 

o copy rows 1 to j-1 from matrix D to matrix D1; 
o copy rows j+1 to size(D) from matrix D as rows j to size(D)-1 in 

martix D1; 
o copy columns 1 to j-1 from matrix D1 to matrix D2; 
o copy columns j+1 to size(D) from matrix D1 as columns j to 

size(D)-1 in martix D2; 
o overwrite matrix D with matrix D2; 

• return to 3) 
5. If the maximum corresponds to a diagonal element (i=j): 
• copy the granule to an output list and remove the corresponding row and 

column from matrix D; i.e.: 
o copy rows 1 to j-1 from matrix D to matrix D1; 
o copy rows j+1 to size(D) from matrix D as rows j to size(D)-1 in 

martix D1; 
o copy columns 1 to j-1 from matrix D1 to matrix D2; 
o copy columns j+1 to size(D) from matrix D1 as columns j to 

size(D)-1 in martix D2; 
o overwrite matrix D with matrix D2; 

6. If the size of matrix D is greater than 1, return to 3), otherwise terminate. 

Computational complexity of this granulation algorithm is O(N2) owing to the 
computations of matrix D in step 2). However, unlike the clustering techniques 
(such as FCM), the granulation process has an inherently local character and can 
be easily applied to a partitioned input data thus circumventing the high computa-
tional cost associated with large data sets. It is worth pointing out that the size of 
matrix D is being reduced by one row and column at each iteration thus the num-
ber of iterative steps equals N-1. Since the algorithm maintains linear computa-
tional complexity with respect of the input space dimension (not to be confused 
with the complexity with respect of the cardinality of the data set which is O(N2)), 
it is particularly suitable for processing multi-dimensional data. Also, it is worth 
pointing that the algorithm maintains a localized view of data. As the granulation 
proceeds, the identified granules do not exercise further influence on data points 
that remain after their removal. 

It is worth noting that unlike the standard Min-Max [9, 23] the above algorithm 
does not make any assumptions about the maximum size of granules. Granules are 
allowed to grow as long as their local data density keeps increasing. Furthermore, 
there are no assumptions about the separation of cluster centres. The formation of 
closely separated granules is largely avoided by the very nature of maximisation 
of information density, which tends to increase the size of granule if it means  
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adding sufficiently large number of data items (another granule) without undue  
increase of its volume. If, on the other hand, the increase in volume would imply 
the reduction of information density, the granule does not expand and remains 
well separated from the neighboring granules. Another distinguishing feature of 
our algorithm is that it allows processing both point-size and hyperbox data. This 
is an important characteristic that allows hierarchical granulation of data. It should 
be noted that hierarchical granulation enables overcoming the limitations of the 
‘local view’ of data while supporting the application of the algorithm to a parti-
tioned input data set. 

To illustrate the operation of the granulation algorithm we consider a synthetic 
data set shown in Figure 3. The data set comprises of 100 data items in a large 
cluster and 10 data items in a small cluster.  The granulation algorithm produces a 
more balanced granular data set comprising of 16 information granules; with 14 
granules representing the large cluster and 2 granules representing the small clus-
ter. Subsequent application of the algorithm to this granular data produces a fur-
ther reduction of the count of granules to 5, 3 and 2 at level-2, level-3, and level-4 
granulation respectively. In the same time the ratio of data items contained in  
the large and the small cluster is reduced from 100/10, 14/2, 4/1, 2/1, 1/1 (Figure 
4a-4d). 

 

Fig. 3 Synthetic data set with two data clusters with 100 and 10 data items 

It is worth noting that the number of granulation levels does not need to be de-
fined in advance. The hierarchical granulation is simply carried out until the num-
ber of granules identified at the subsequent granulation levels does not change. Of 
course, in any practical application the maximum size of granules is frequently 
pre-defined so that the granules map well onto some linguistic entities.  
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   (a)     (b) 
 

    
   (c)      (d) 

Fig. 4 (a) Information granules produced by the algorithm applied to the original data  
(16 granules); (b) Level-two information granules (5 granules); (c)  Level-three information 
granules (3 granules); and (d) Level-four information granules (2 granules). 

3.4   Granular Representatives of Data 

The recursive application of the granulation algorithm discussed in the previous 
section, condense the data quite significantly. What is of fundamental interest 
though is whether this ‘condensing’ preserves the essential characteristics of data. 
We assess here the ability to preserve the essential characteristics of data by iden-
tifying a limited number of representatives of both the original numeric data x and 
the constructed information granules g. This is accomplished by clustering and 
identifying prototypes (representatives) of the original data and the granules, cf [7, 
8]. In particular, we adopt a fuzzy clustering method - a well-known FCM algo-
rithm [6].  It is instructive to recall briefly the formal description of the FCM algo-
rithm so as to appreciate the nature of the optimisation problem represented in 
Figure 2. The granulation of g returns its representation through the collection of 
available information granules expressed in terms of their prototypes. More  
specifically, g is expressed in the form of the membership grades of g to the indi-
vidual granules Gi, which form a solution to the following optimisation problem 
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Min ui
m

i=1

c

∑ (g) || g − v i ||2  

subject to constraints   

ui (g) = 1
i=1

c

∑     ui (g) ∈ [0,1]                                     (4) 

where “m” stands for the fuzzification coefficient, m > 1. We note however that, 
unlike in the original FCM formulation, the data g is not exclusively numeric (i.e. 
g ∉ Rn) but involves information granules represented as hyperboxes in Rn. In oth-
er words g=[g-, g+] where g- are the min-value coordinates and g+ are the max-
value coordinates of a hyperbox g. Since both g-, g+ ∈ Rn by concatenating the 
min- and max-coordinates of the hyperbox we can represent it as g ∈ R2n. In this 
expanded space any numerical data x is represented as g=[x-, x+], where x=x-=x+. 
The distance || g − v i ||2  can be interpreted as the sum of distances between  
the minimum- and maximum-value coordinates of the respective hyperboxes, as 
illustrated in Figure 5. 

 
Fig. 5 Distance between hyperboxes. 

Consequently the FCM solution derived in the augmented data space (R2n) 
reads as follows 

ui (g) = 1

|| g − v i ||

|| g − v j ||

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2/(m −1)

j=1

c

∑
                                 

(5)
 

 
Applying the FCM algorithm to the original and to the granulated data we identify 
prototypes v (illustrated in Figure 6 and 7) and the partition matrices u(g). It is 
clear that the prototypes evaluated for the original data are biased towards the 
more numerous data in the large cluster. Although we have specified 2 and 3  
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 (a)         (b) 

Fig. 6 FCM prototypes found for the original numeric data; (a) two prototypes; (b) three 
prototypes; (the prototypes are numerical but for the sake of clarity are represented here 
as rectangles). Note that none of the prototypes is positioned within the small data 
cluster  

     
(a)     (b) 
 

      
 (c)     (d) 

Fig. 7 FCM prototypes found for the balanced, granulated data; (a) level-one; (b) level-two; 
(c) level-three; (d) level-four granulation; Note that for all granulation levels the small clus-
ter of data is represented by a granule. 
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prototypes as a target for the FCM calculations (which should be sufficient to  
characterize the two clusters), the small cluster of data appears to be overwhelmed 
by the sheer numbers of data points in the large cluster.  This is an unfortunate  
effect because the lack of representation of the small cluster by a local prototype is  
certain to lead to subsequent misclassifications of data. 

By contrast, the FCM prototypes derived for the granulated data (Figure 7)  
capture the presence of two data clusters at all levels of data granulation by asso-
ciating one prototype with each data cluster. However, the size of the granular 
prototypes varies depending on the level of granulation of the original data. This 
suggests that there is a need to develop a criterion for the selection of the appro-
priate level of granularity of the prototypes. The actual values of min- and  
max-coordinates for the various levels of data granulation are given in Table 1. 

Table 1 FCM Prototypes for different levels of data granulation 

Granulation Level Min/Max coordinates of prototypes 
v-

1               v
-
2           v

+
1               v

+
2 

Level 0; original numeric data (Fig. 6a) 0.1865    0.2203    0.1865    0.2203 
0.2708    0.1580    0.2708    0.1580 

Level 1; granulated data (Fig. 7a) 0.5127    0.1261    0.5309    0.1483 
0.1690    0.1634    0.2275    0.2166 

Level 2; granulated data (Fig. 7b) 0.1178    0.1235    0.2378    0.2421 
0.5046    0.1034    0.5392    0.1475 

Level 3; granulated data (Fig. 7c) 0.5054    0.1034    0.5408    0.1483 
0.1027    0.1045    0.2011    0.2047 

Level 4; granulated data (Fig. 7d) 0.5082    0.1034    0.5429    0.1476 
0.1016    0.1020    0.2988    0.2995 

One possible approach to the assessment of the quality of the FCM solution is 
to measure its ability to represent the majority of the original data, [21]. This can 
be accomplished by reconstructing original g using the prototypes v and the mem-
bership grades ui(g). It should be noted that although g represents the granulated 
data, it can also be considered as a representation of the original numeric data 
where each data point x ∈ Rn is seen as a granule g=[x,x] ∈ R2n. The data recon-
struction task can be formally expressed as evaluation of the vector ˆ g  through a 
solution to the minimization problem 

ui
m

i=1

c

∑ (g) || ˆ g − v i ||2                                           (6) 

Because of the use of the Euclidean distance, the calculations here are  
straightforward yielding the result  
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ˆ g =
ui

m (g)v i
i=1

c

∑

ui
m (g)

i=1

c

∑
                                                 (7) 

3.5   Granular Refinement of Prototypes 

Granular prototypes v obtained through the application of the FCM are dependent 
on the level of granulation of the original data (including the case where no data-
balancing granulation has been attempted). In order to free the prototypes from 
this dependency, we refine the structure of the prototypes by admitting a variation 
of their granularity 

Vij =[vij
min –∑rangej, vij

max+∑ rangej]                                  (8) 

i=1, 2,…, c, j=1, 2, …,n and Vij ∈  [0 1]n. Note that each prototype increases its 
granularity to the same extent with regard to all variables. Both min-coordinates 
vij

min and max-coordinates vij
max of the prototype are transformed so as to produce 

a symmetrical enlargement of vij by the imposed level of granularity ∑.  
The main limitation of this construction is that all variables are treated in the 

same way by assigning to all of them the same value of ∑. We attempt to offset 
some of this limitation by using a granule-specific multiplier range that promotes 
the preservation of topological similarity between the original and the modified 
prototypes. However, if the modified granule extends outside the unit hyperbox, 
we enforce the requirement that Vij ∈  [0 1]n thus, in effect we generate a non 
symmetrical expansion of the prototype vij. We denote the resulting prototype-
specific expansion factors as ˜ ε i .  

As the granularity is sought of as an important modeling resource to be pru-
dently allocated, its distribution needs more attention. We propose here that the 
sum of all ˜ ε i  is minimized. In other words we establish a performance criterion as 

Q = min ˜ ε ij
j =1

n

∑
i=1

c

∑                                                  (9) 

where   ̃ ε = [ ˜ ε 1, ˜ ε 2,K , ˜ ε c ],   ̃ ε i = [ ˜ ε i1, ˜ ε i2,K , ˜ ε in ] . We require that every original data 
item gk  is enclosed in the reconstructed data item represented by a hyperbox ˆ g k  
evaluated as in (7). We can express this formally as 

card{gk ∈ G −1(G(gk ,V1(˜ ε 1),V2 (˜ ε 2),...,Vc (˜ ε c),U)}  = N         (10) 

The constraint (10) represents the most stringent requirement on the reconstruction 
of data and may in some cases be replaced by a less stringent requirement, that a 
given proportion of data is correctly reconstructed. Evidently, the high values of 
˜ ε i  are more likely to satisfy (10) but the resulting prototypes would imply lack of 
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specificity and might not be acceptable in many applications. In other words, the 
performance index (9) captures the nature of consistent and parsimonious granular 
representation of data through clustering: we strive to achieve a situation where all 
patterns when being represented by the granular prototypes are positioned within 
the bounds resulting through the reconstruction process (7). By noting an indirect 
way in which the constraint (10) depends upon the vector of variables ˜ ε i  we resort 
to the use of a population–based optimisation method. One of the viable alterna-
tives is the Particle Swarm Optimisation (PSO), see [24].  

A particle swarm is a population of particles representing possible solutions lo-
cated in the multidimensional search space [14, 24, 29]. Each particle explores the 
search space and during this search it adheres to some quite intuitively appealing 
guidelines navigating the search process: (a) it tries to follow its previous direc-
tion, and (b) it looks back at the best performance recorded so far both at the level 
of the individual particle as well as the entire population.  

The algorithm exhibits some societal aspects of interaction. There is some  
collective search of the problem space along with some component of memory in-
corporated as an integral part of the search mechanism. The performance of each 
particle during its traversal of the search space is assessed by means of some per-
formance index (fitness function). A position of a swarm in some search space S 
of a given dimensionality “r”, is described by some vector z(t)S where ”t” denotes 
consecutive discrete time moments (generation index). The method can be briefly 
explained as follows. The next position of the particle is governed by the follow-
ing update expressions concerning the particle, z(t+1) and its speed, v(t+1) 

zi(t+1) = zi(t) + vi(t+1)    //update of position of the particle 
vi(t+1) = ξ vi(t) + f1i(pi- zi(t)) + f2i (ptotal,i-zi(t))  // update of speed of the particle  

(11) 

i=1, 2, …, r where p denotes the best position (characterized by the lowest per-
formance index) reported so far for this particle, ptotal is the best position overall 
developed so far across the entire population.  The two other parameters of the 
PSO that is f1i and f2i are random numbers drawn from the uniform probability dis-
tribution defined over the [0,2] interval that help build a proper combination of the 
components of the speed; different random numbers affect the individual coordi-
nates of the speed.  

The second expression governing the change in the velocity of the particle is 
particularly interesting as it captures the relationships between the particle and its 
history as well as the history of the overall population in terms of their perfor-
mance reported so far. The current speed v(t) is impacted by the inertial weight (ξ) 
smaller than 1 whose role is to articulate some factor of resistance to change the 
current speed (the values of the inertia weight are kept below 1). The fitness func-
tion is given by (9). The particle consists of the coordinates of ˜ ε i . Before it is used 
to evaluate the fitness function, the coordinates are normalized so that they satisfy 
the requirement expressed by (10). 

Application of PSO to the prototypes reported in Table 1 produced optimised 
prototypes at each level of data granulation. The results detailed in Table 2 and 
Figure 8 suggest that the Level-2 granulation produces the best results in terms of 
interpretability and representativeness of granular prototypes of data.  
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Table 2 Refined prototypes for different levels of data granulation with the corresponding 
value of the performance index. 

Granulation Level Coordinates of refined prototypes 
v-

1               v
-
2           v

+
1               v

+
2 

Q 

Level 0;  
numeric data (Fig. 8a) 

0             0             0.4902    0.5241 
0             0             0.5735    0.4632 

2.0509 
 

Level 1;  
granulated data (Fig. 8b) 

0.4157    0.0291    0.6279    0.2453 
0.0720    0.0664    0.3244    0.3136 

0.7760 
 

Level 2;  
granulated data (Fig. 8c) 

0.4456    0.0444    0.5982    0.2065 
0.0588    0.0645    0.2968    0.3011 

0.4720 
 

Level 3;  
granulated data (Fig. 8d) 

0.4064    0.0044    0.6398    0.2473 
0.0037    0.0055    0.3002    0.3038 

0.7538 
 

 

    
    (a)     (b) 

      
    (c)      (d) 

Fig. 8 FCM prototypes refined by a granular expansion; (a) Original numeric data; (b) Lev-
el-one; (c) Level-two; (d) Level-three granulated data. The prototypes satisfy the full recon-
struction requirement (10). 
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3.6   Conclusions 

Aggregation of detailed numerical information into information granules promotes 
a more global view of data and of the application domain from which the data is 
derived. However, the effectiveness of this information abstraction depends on the 
quality of the resulting information granules. This study focuses on two essential 
characteristics of information abstraction: the interpretability and the representa-
tiveness of information granules. By adopting the min/max granulation framework 
we generate highly interpretable hyperboxes in the pattern space while accepting 
the expense of having to use a greater number of hyperboxes to represent some of 
the more complex topologies of data clusters. The increasing levels of generaliza-
tion of data lead naturally to a hierarchical structure of the proposed granulation 
method. The proposed evaluation and subsequent refinement of granular proto-
types – representing the information granules at each level of abstraction – offers a 
means of maximizing the expressive power of information granules by ensuring 
that there is no loss of information in the granulation-degranulation process. 

The study opens a large spectrum of possibilities for the refinement of the bal-
ance between the interpretability and the representativeness of information gra-
nules. In particular, some applications might be tolerant of some loss of the ability 
to represent fully the original data if this meant the enhancement of the specificity 
(small size) of the prototypes. Conversely, other applications may depend critical-
ly on the ability of the prototypes to represent all input data. The small synthetic 
data set discussed here is intended to promote such considerations as opposed to 
providing a reference solution for a specific application. 
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Chapter 4
Mining Incomplete Data—A Rough
Set Approach

Jerzy W. Grzymala-Busse and Zdzislaw S. Hippe

Abstract. Real-life data sets are frequently affected by missing attribute val-
ues. Such missing attribute values may be interpreted as lost values, ”do-not
care” conditions, a special case of ”do-not care” conditions called restricted ”do-
not care” conditions, or as attribute-concept values. In general, incomplete data
are described by characteristic relations, a generalization of the indiscernibility
relation. A methodology of mining incomplete data is provided and illustrated
by examples. In particular, two versions of the MLEM2 system, global and lo-
cal, are presented. In the MLEM2 global version approximations are computed
first and then the rule induction algorithm is applied. In the local version of
MLEM2, rule sets are induced directly from rawdata sets, incomplete andwith
numerical attributes. Results of experiments on both approaches are included.

4.1 Introduction

Mining incomplete data, i.e., data with missing attribute values, is impor-
tant since many real-life data are incomplete. There are two basic methods
to handling missing attribute values: sequential and parallel [1]. Sequential
methods are based on preprocessing, before the process of knowledge acqui-
sition, while in parallel methods both handling missing attribute values and
knowledge acquisition are conducted in parallel.
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Sequential methods include techniques based on deleting cases with miss-
ing attribute values, replacing a missing attribute value by the most common
value of that attribute, assigning all possible values to the missing attribute
value, replacing a missing attribute value by the mean for numerical at-
tributes, assigning to a missing attribute value the corresponding value taken
from the closest fit case [2], or replacing a missing attribute value by a new
value, computed from a new data set, in which the original attribute is a
decision.

Parallel methods to handle missing attribute values include the MLEM2
(Modified Learning from Examples Module, version 2) rule induction algo-
rithm in which rules are induced form the original data set, with missing
attribute values considered to be lost values, attribute-concept values, or ”do
not care” conditions, see, e.g., [3]. MLEM2 is an option of the LERS (Learn-
ing from Examples based on Rough Sets) data mining system. The C4.5,
see [4], and CART, see [5], approaches to missing attribute values are other
examples of methods from the same group.

We will distinguish four types of missing attribute values. The first type
of missing attribute value will be called lost. A missing attribute value is lost
when for some case (example, object) the corresponding attribute value was
mistakenly erased or forgotten to enter into the data set. The original value
existed but for a variety of reasons now it is not accessible.

The next three types of missing attribute values, called ”do not care” con-
ditions, restricted ”do not care” conditions and attribute-concept values are
based on an assumption that these values were initially, when the data set was
created, irrelevant. For example, in a medical setup, patients were subjected
to preliminary tests. Patients whose preliminary test results were negative
were diagnosed as not affected by a disease. They were perfectly well diag-
nosed in spite of the fact that not all tests were conducted on them. Thus,
some test results are missing because these tests were redundant. In different
words, a missing attribute value of this type may be potentially replaced by
any value typical for that attribute. This type of a missing attribute value
will be called a ”do not care” condition. A special case of a ”do not care” con-
dition, called restricted ”do not care” condition, has another interpretation:
a restricted ”do not care” condition may be replaced by any value typical for
that attribute excluding lost values. Obviously, when the data set does not
have any lost values, both ”do not care” conditions, ordinary and restricted,
are interpreted in the same way. On the other hand, we may have different
expectations, for example, if a patient was diagnosed as not affected by a
disease, we may want to replace the missing test (attribute) value by any
typical value for that attribute but restricted to patients in the same class
(concept), i.e., for other patients not affected by the disease. Such missing
attribute value will be called attribute-concept value.

Incomplete decision tables in which all attribute values are lost, from the
viewpoint of rough set theory, were studied for the first time in [6], where
two algorithms for rule induction, modified to handle lost attribute values,
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were presented. This approach was studied later, e.g., in [7] and [8], where the
indiscernibility relation was generalized to describe such incomplete decision
tables.

On the other hand, incomplete decision tables in which all missing at-
tribute values are ”do not care” conditions, from the view point of rough set
theory, were studied for the first time in [9], where a method for rule induc-
tion was introduced in which each missing attribute value was replaced by all
values from the domain of the attribute. Originally, such values were replaced
by all values from the entire domain of the attribute, later, by attribute val-
ues restricted to the same concept to which a case with a missing attribute
value belongs. Such incomplete decision tables, with all missing attribute
values being ”do not care” conditions, were extensively studied in [10], [11],
including extending the idea of the indiscernibility relation to describe such
incomplete decision tables.

The attribute-concept approach to missing attribute values was introduced
in [12], while the restricted ”do not care” conditions were introduced in [13].

We will study all four interpretations of missing attribute values: lost
values, ”do not care” conditions , restricted ”do not care” conditions and
attribute-concept values. In particular, a methodology of computing charac-
teristic sets, a generalization of elementary sets, will be presented. A char-
acteristic relation, a generalization of the indiscernibility relation, may be
determined from characteristic sets. Then we will discuss three types of ap-
proximations: singleton, subset and concept. All these approximations are
reduced to standard approximations of rough set theory if the data set is
complete, i.e., if all attribute values are specified.

We may use such approximations first and then induce rules using the
MLEM2 rule induction algorithm. This approach is called global. On the
other hand, two algorithms to compute local lower and upper coverings, using
so-called local approach, will be presented as well. These two algorithms may
be applied directly to raw data, with missing attribute values and some (or
all) numerical attributes. The output of these algorithms are certain and
possible rules. Results of experiments comparing local and global approaches
show that both approaches are worth trying: sometimes lower error rate is
accomplished using the local approach, sometimes using the global approach.

4.2 Blocks of Attribute-Value Pairs

For the rest of the paper we will assume that all decision values are specified,
i.e., they are not missing. In addition, we will assume that lost values will
be denoted by ”?”, ”do not care” conditions by ”*”, restricted ”do not care”
conditions by ”+”, and attribute-concept values by ”–”. Additionally, we will
assume that for each case at least one attribute value is specified.

We assume that the input data sets are presented in the form of a decision
table. An example of a decision table is shown in Table 1.
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Table 1 An incomplete decision table

Attributes Decision

Case Temperature Headache Cough Flu

1 normal yes yes yes

2 * no * no

3 normal − no yes

4 ? yes yes no

5 high yes + yes

6 − no yes no

7 high ? yes yes

8 high yes ? no

Rows of the decision table represent cases, while columns are labeled by
variables. The set of all cases will be denoted by U . In Table 1, U = {1, 2,
3, 4, 5, 6, 7, 8}. Independent variables are called attributes and a dependent
variable is called a decision and is denoted by d. The set of all attributes will
be denoted by A. In Table 1, A = {Temperature, Headache, Cough}.

An important tool to analyze decision tables is a block of an attribute-
value pair. Let (a, v) be an attribute-value pair. For complete decision tables,
i.e., decision tables in which every attribute value is known, a block of (a, v),
denoted by [(a, v)], is the set of all cases x for which a(x) = v. For incomplete
decision tables the definition of a block of an attribute-value pair is modified.

– If for an attribute a there exists a case x such that a(x) =?, i.e., the
corresponding value is lost, then the case x should not be included in any
blocks[(a, v)] for all values v of attribute a,

– If for an attribute a there exists a case x such that the corresponding value
is a ”do not care” condition or a restricted ”do not care” condition, i.e.,
a(x) = ∗ or a(x) = +, then the case x should be included in blocks [(a, v)]
for all specified values v of attribute a,

– If for an attribute a there exists a case x such that the corresponding value
is an attribute-concept value, i.e., a(x) = −, then the corresponding case
x should be included in blocks [(a, v)] for all specified values v ∈ V (x, a)
of attribute a, where

V (x , a) = {a(y) | a(y) is specified , y ∈ U, d(y) = d(x)}.

Note that these modifications of the definition of the block of attribute-value
pair are consistent with the interpretation of missing attribute values: lost,
”do not care” conditions, restricted ”do not care” conditions, and attribute-
concept values. The attribute-concept value is the most universal, since if
V (x, a) = ∅, the definition of the attribute-concept value is reduced to the



4 Mining Incomplete Data—A Rough Set Approach 53

lost value, and if V (x, a) is the set of all values of an attribute a, the attribute-
concept value becomes a ”do not care” condition.

For Table 1, V (3, Headache) = {yes} and V (6, T emperature) = {high},
so the blocks of attribute-value pairs are:

[(Temperature, normal)] = {1, 2, 3},
[(Temperature, high)] = {2, 5, 6, 7, 8},
[(Headache, yes)] = {1, 3, 4, 5, 8},
[(Headache, no)] = {2, 6},
[(Cough, yes)] = {1, 2, 4, 5, 6, 7},
[(Cough, no)] = {2, 3, 5},

For a case x ∈ U , the characteristic set KB(x) is defined as the intersection
of the sets K(x, a), for all a ∈ B, where the set K(x, a) is defined in the
following way:

– If a(x) is specified, then K(x, a) is the block [(a, a(x)] of attribute a and
its value a(x),

– If a(x) =? or a(x) = ∗ then the set K(x, a) = U ,
– If a(x) = +, then K(x, a) is equal to the union of all blocks of (a, v), for

all specified values v of attribute a,
– If a(x) = −, then the corresponding case x should be included in blocks

[(a, v)] for all known values v ∈ V (x, a) of attribute a, where

V (x , a) = {a(y) | a(y) is known, y ∈ U, d(y) = d(x)}.

If V (x, a) is empty, K(x, a) = U.

Note that for both lost values and ”do not care” conditions the corresponding
set K(x, a) is equal to U because the corresponding attribute a does not
restrict the set KB(x): if a(x) =?, only the existing values need to be checked;
if a(x) = ∗, the value of the attribute a is irrelevant.

For Table 1 and B = A,

KA(1) = {1, 2, 3} ∩ {1, 3, 4, 5, 8} ∩ {1, 2, 4, 5, 6, 7}= {1},
KA(2) = U ∩ {2, 6} ∩ U = {2, 6},
KA(3) = {1, 2, 3} ∩ {1, 3, 4, 5, 8} ∩ {2, 3, 5} = {3},
KA(4) = U ∩ {1, 3, 4, 5, 8}∩ {1, 2, 4, 5, 6, 7} = {1, 4, 5},
KA(5) = {2, 5, 6, 7, 8}∩ {1, 3, 4, 5, 8} ∩ ({1, 2, 4, 5, 6, 7}∪ {2, 3, 5}) = {5},
KA(6) = {2, 5, 6, 7, 8}∩ {2, 6} ∩ {1, 2, 4, 5, 6, 7} = {2, 6},
KA(7) = {2, 5, 6, 7, 8}∩ U ∩ {1, 2, 4, 5, 6, 7} = {2, 5, 6, 7},
KA(8) = {2, 5, 6, 7, 8}∩ {1, 3, 4, 5, 8} ∩ U = {5, 8}.

Characteristic set KB(x) may be interpreted as the set of cases that are
indistinguishable from x using all attributes from B and using a given inter-
pretation of missing attribute values. The characteristic relation R(B) is a
relation on U defined for x, y ∈ U as follows

(x , y) ∈ R(B) if and only if y ∈ KB(x ).
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The characteristic relation R(B) is reflexive but—in general—does not need
to be symmetric or transitive. Additionally, the characteristic relation R(B)
is known if we know characteristic sets KB(x) for all x ∈ U . In our example,
R(A) = {(1, 1), (2, 2), (2, 6), (3, 3), (4, 1), (4, 4), (4, 5), (5, 5), (6, 2), (6, 6),
(7, 2), (7, 5), (7, 6) (7, 7), (8, 5), (8, 8)}.

For a complete decision table, the characteristic relation R(B) is reduced
to the indiscernibility relation [14]. Recently characteristic relations were in-
vestigated in a number of papers, see, e.g., [15, 16, 17, 18].

Definability for completely specified decision tables should be modified to
fit into incomplete decision tables. For incomplete decision tables, a union of
some intersections of attribute-value pair blocks, where such attributes are
members of B and are distinct, will be called B-locally definable sets. A union
of characteristic sets KB(x), where x ∈ X ⊆ U will be called a B-globally
definable set. Any set X that is B -globally definable is B -locally definable,
the converse is not true.

For example, the set {2} is A-locally definable since {2} = [(Temperature,
normal)] ∩ [(Headache, no)]. However, the set {2} is not A-globally definable.
On the other hand, the set {4} = is not even locally definable since in all
blocks of attribute-value pairs containing the case 4 contain also the case 1
as well.

Obviously, if a set is not B-locally definable then it cannot be expressed by
rule sets using attributes from B. This is why it is so important to distinguish
between B-locally definable sets and those that are not B-locally definable.

4.3 Approximations

For completely specified decision tables lower and upper approximations are
defined based on the indiscernibility relation [14, 19]. Let X be any subset
of the set U of all cases. The set X is called a concept and is usually defined
as the set of all cases defined by a specific value of the decision. In general,
X is not a B-definable set. However, set X may be approximated by two B-
definable sets, the first one is called a B-lower approximation of X , denoted
by BX and defined as follows

{x ∈ U | [x]B ⊆ X},

where [x]B denotes an equivalence class of x with respect to the indiscerni-
bility relation R associated with B. The second set is called a B-upper ap-
proximation of X , denoted by BX and defined as follows

{x ∈ U | [x]B ∩X �= ∅}.

The above shown way of computing lower and upper approximations, by
constructing these approximations from singletons x, will be called the first
method. The B-lower approximation of X is the greatest B-definable set,



4 Mining Incomplete Data—A Rough Set Approach 55

contained in X . The B-upper approximation of X is the smallest B-definable
set containing X .

As it was observed in [14], for complete decision tables we may use a second
method to define the B-lower approximation of X , by the following formula

∪{[x]B | x ∈ U, [x]B ⊆ X},

and the B-upper approximation of x may be defined, using the second
method, by

∪{[x]B | x ∈ U, [x]B ∩X �= ∅}.

Obviously, for complete decision tables both methods result in the same re-
spective sets, i.e., corresponding lower approximations are identical, and so
are upper approximations.

For incomplete decision tables lower and upper approximations may be
defined in a few different ways. In this paper, we suggest three different
definitions of lower and upper approximations for incomplete decision tables,
following [20, 21, 22]. Again, let X be a concept, let B be a subset of the
set A of all attributes, and let R(B) be the characteristic relation of the
incomplete decision table with characteristic sets KB(x), where x ∈ U . Our
first definition uses a similar idea as in the previous articles on incomplete
decision tables [7, 8, 10, 11], i.e., lower and upper approximations are sets of
singletons from the universe U satisfying some properties. Thus, lower and
upper approximations are defined by analogy with the above first method,
by constructing both sets from singletons. We will call these approximations
singleton. A singleton B-lower approximation of X is defined as follows:

BX = {x ∈ U | KB(x) ⊆ X}.

A singleton B-upper approximation of X is

BX = {x ∈ U | KB(x) ∩X �= ∅}.

In our example of the decision table presented in Table 1 let us say that
B = A. Then the singleton A-lower and A-upper approximations of the two
concepts: {1, 3, 5, 7} and {2, 4, 6, 8} are:

A{1, 3, 5, 7} = {1, 3, 5},

A{2, 4, 6, 8} = {2, 6},

A{1, 3, 5, 7} = {1, 3, 4, 5, 7, 8},

A{2, 4, 6, 8} = {2, 4, 6, 7, 8}.

We may easily observe that the set {1, 3, 4, 5, 7, 8} = A{1, 3, 5, 7} is not
A-locally definable since in all blocks of attribute-value pairs cases 6 and 7
are inseparable. Similarly, A{2, 4, 6, 8} is also not locally definable. Thus, as
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it was observed in, e.g., [20, 21, 22], singleton approximations should not be
used, theoretically, for data mining and, in particular, for rule induction.

For the decision table from Table 1 both singleton lower approximations
are globally definable. The following table shows that singleton lower approx-
imations may be not definable as well.

Table 2 An incomplete decision table

Attributes Decision

Case Temperature Headache Flu

1 normal no no

2 normal * no

3 ? no yes

4 normal yes yes

5 high yes yes

For Table 2

[(Temperature, normal)] = {1, 2, 4},
[(Temperature, high)] = {5},
[(Headache, yes)] = {2, 4, 5},
[(Headache, no)] = {1, 2, 3},
KA(1) = {1, 2, 4} ∩ {1, 2, 3} = {1, 2},
KA(2) = {1, 2, 4} ∩ U = {1, 2, 4},
KA(3) = U ∩ {1, 2, 3} = {1, 2, 3},
KA(4) = {1, 2, 4} ∩ {2, 4, 5} = {2, 4},
KA(5) = {5} ∩ {2, 4, 5} = {5}.

The singleton lower approximation for the concept [(Flu, no)] is A{1, 2} =
{1},while the set {1}1 is not even locally definable since in all attribute-value
blocks containing the case 1 there exists the case 2.

The second method of defining lower and upper approximations for com-
plete decision tables uses another idea: lower and upper approximations are
unions of elementary sets, subsets of U . Therefore, we may define lower and
upper approximations for incomplete decision tables by analogy with the sec-
ond method, using characteristic sets instead of elementary sets. There are
two ways to do this. Using the first way, a subset B-lower approximation of
X is defined as follows:

BX = ∪{KB(x) | x ∈ U,KB(x) ⊆ X}.

A subset B-upper approximation of X is

BX = ∪{KB(x) | x ∈ U,KB(x) ∩X �= ∅}.
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Since any characteristic relation R(B) is reflexive, for any concept X , sin-
gleton B-lower and B-upper approximations of X are subsets of the subset
B-lower and B-upper approximations of X , respectively [22]. For the same
decision table, presented in Table 1, the subset A-lower and A-upper approx-
imations are

A{1, 3, 5, 7} = {1, 3, 5},

A{2, 4, 6, 8} = {2, 6},

A{1, 3, 5, 7} = U,

A{2, 4, 6, 8} = {1, 2, 4, 5, 6, 7, 8}.

The second possibility is to modify the subset definition of lower and upper
approximation by replacing the universe U from the subset definition by a
concept X . A concept B-lower approximation of the concept X is defined as
follows:

BX = ∪{KB(x) | x ∈ X,KB(x) ⊆ X}.

Obviously, the subset B-lower approximation of X is the same set as the
concept B-lower approximation of X . A concept B-upper approximation of
the concept X is defined as follows:

BX = ∪{KB(x) | x ∈ X,KB(x) ∩X �= ∅} =

= ∪{KB(x) | x ∈ X}.

The concept upper approximations were defined in [23] and [24] as well.
The concept B-upper approximation of X is a subset of the subset B-upper
approximation of X [22]. For the decision table presented in Table 1, the
concept A-upper approximations are

A{1, 3, 5, 7} = {1, 2, 3, 5, 6, 7},

A{2, 4, 6, 8} = {1, 2, 4, 5, 6, 8}.

Note that for complete decision tables, all three definitions of lower approx-
imations, singleton, subset and concept, coalesce to the same definition. In
addition, for complete decision tables, all three definitions of upper approx-
imations coalesce to the same definition. This is not true for incomplete de-
cision tables, as our example shows.

4.4 Two Algorithms

Let X be any subset of the set U of all cases. Let B ⊆ A. In general, X is not
a B-definable set, locally or globally. For a set T of attribute-value pairs, the
intersection of blocks for all t from T will be denoted by [T ]. For the rest of
the paper we will assume that any set T consists of attribute-value pairs with
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all different attributes. A set T of attribute-value pairs, where all attributes
belong to the set B, will be called a B-complex of X if and only if

∅ �= [T ] = ∩{[t] | t ∈ T } ⊆ X.

The B-local lower approximation of the concept X is defined as follows

∪{[T ] | T is a B−complex of X , [T ] ⊆ X }.

The B-local upper approximation of the concept X is defined as the minimal
set containing X and defined in the following way

∪{[T ] | ∃ a family T of B−complexes T of X with ∀ T ∈ T , [T ] ∩ X �= ∅}.

Obviously, the B-local lower approximation ofX is unique and it is the largest
B-locally definable set contained in X . Any B-local upper approximation of
X is B-locally definable, it contains X , and is, by definition, the smallest.
Note that a concept may have more than one local upper approximation [25].

Let T be a family of sets T of attribute-value pairs. A set T will be called
a local lower covering of X if and only if the following three conditions are
satisfied:

(1)
⋃

T∈T [T ] ⊆ X ,

(2) every T ∈ T is minimal, i.e., no proper subset T ′ of T exists with [T ′] ⊆ X ,

(3) T is minimal, i.e., for every T ∈ T ,
⋃

S∈T −{T}[S] �=
⋃

S∈T [S].

The procedure for determining a single local lower covering, based on the
MLEM2 algorithm, is presented below. Notation used for numerical attributes
is explained in Section 4.8.

Procedure for determining a single local lower covering
input: a set X (a subset of U),
output: a single local lower covering T of the set X ,
begin

G := X ;
T := ∅;
J := ∅;
while G �= ∅

begin
T := ∅;
Ts := ∅;
Tn := ∅;
T (G) := {t | [t] ∩G �= ∅};
while (T = ∅ or [T ] �⊆ X) and T (G) �= ∅

begin
select a pair t = (at, vt) ∈ T (G) such that
|[t] ∩G| is maximum; if a tie occurs, select
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a pair t ∈ T (G) with the smallest cardinality
of [t]; if another tie occurs, select first pair;
T := T ∪ {t};
G := [t] ∩G;
T (G) := {t | [t] ∩G �= ∅};
if at is symbolic {let Vat be the domain of at}

then
Ts := Ts ∪ {(at, v) | v ∈ Vat}

else {at is numerical, let t = (at, u..v)}
Tn := Tn ∪ {(at, x..y) | disjoint x..y
and u..v} ∪ {(at, x..y) | x..y ⊇ u..v};

T (G) := T (G)− (Ts ∪ Tn);
end {while};

if [T ] ⊆ X
then

begin
for each numerical attribute at with
(at, u..v) ∈ T do

while (T contains at least two
different pairs (at, u..v) and (at, x..y)
with the same numerical attribute at)

replace these two pairs with
a new pair (at, common part of
u..v and x..y);

for each t in T do
if [T − {t}] ⊆ X then T := T − {t};

T := T ∪ {T };
end {then}

else J := J ∪ {T };
G := X − ∪S∈T ∪J [S];

end {while};
for each T ∈ T do

if
⋃

S∈T −{T}[S] =
⋃

S∈T [S] then T := T − {T };
end {procedure}.

Note that for a local lower covering T of X , the set
⋃

S∈T [S] is a subset
of X and it is locally definable, however it does not need to be the A- local
lower approximation of X (excluding complete decision tables).

A set T will be called a local upper covering ofX if and only if the following
three conditions are satisfied:

(1) X ⊆
⋃

T∈T [T ],

(2) every T is minimal, i.e., no proper subset T ′ of T exists with [T ′] ⊆⋃
T∈T [T ],
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(3) T is minimal, i.e., for every T ∈ T , X �⊆
⋃

S∈T −{T}[S].

The modified procedure for determining a single local upper covering is pre-
sented below.

Procedure for determining a single local upper covering
input: a set X (a subset of U),
output: a single local upper covering T of the set X ,
begin

G := X ;
D := X ;
T := ∅;
while G �= ∅

begin
T := ∅;
Ts := ∅;
Tn := ∅;
T (G) := {t | [t] ∩G �= ∅};
while (T = ∅ or [T ] �⊆ D) and T (G) �= ∅

begin
select a pair t = (at, vt) ∈ T (G) such that
|[t] ∩G| is maximum; if a tie occurs, select
a pair t ∈ T (G) with the smallest cardinality
of [t]; if another tie occurs, select first pair;
T := T ∪ {t};
G := [t] ∩G;
T (G) := {t | [t] ∩G �= ∅};
if at is symbolic {let Vat be the domain of at}

then
Ts := Ts ∪ {(at, v) | v ∈ Vat}

else {at is numerical, let t = (at, u..v)}
Tn := Tn ∪ {(at, x..y) | disjoint x..y
and u..v} ∪ {(at, x..y) | x..y ⊇ u..v};

T (G) := T (G)− (Ts ∪ Tn);
end {while};
D := D ∪ [T ];
T := T ∪ {T };
G := D − ∪S∈T [S];

end {while};
for each T ∈ T do

for each numerical attribute at with (at, u..v) ∈ T do
while (T contains at least two different
pairs (at, u..v) and (at, x..y) with
the same numerical attribute at)

replace these two pairs with a new pair
(at, common part of (u..v) and (x..y));
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for each t ∈ T do
if [T − {t}] ⊆ D then T := T − {t};

for each T ∈ T do
if
⋃

S∈T −{T}[S] ⊇ X then T := T − {T };
end {procedure}.

For a local upper covering T of X , the set
⋃

S∈T [S] is a superset of X
and it is locally definable, however it does not need to be the A-local upper
approximation of X (excluding complete decision tables).

Comments to Table 3

1. {1, 3, 4, 5, 8} �⊆ {1, 3, 5}, search for the next t,

2. {1, 3, 4, 5, 8} ∩ {1, 2, 3} = {1, 3} ⊆ {1, 3, 5}, so {(Headache, yes),
(Temperature, normal)} is the first element T of T ,

Comments to Table 4

3. {2, 3, 5} �⊆ {1, 3, 5}, search for the next t,

4. {2, 3, 5} ∩ {2, 5, 6, 7, 8} = {2, 5} �⊆ {1, 3, 5}, search for the next t,

5. {2, 3, 5} ∩ {2, 5, 6, 7, 8} ∩ {1, 3, 4, 5, 8} = {5} ⊆ {1, 3, 5}, so {(Cough,
no), (Temperature, high), (Headache, yes)} is the second element T of T .

Table 3 Computing a local lower covering for the concept lower approximation of
[(Flu, yes)], Table 1, I

(a, v) = t [(a, v)] {1, 3, 5} {1, 3, 5}

(Temperature,normal) {1, 2, 3} {1, 3} {1, 3} •
(Temperature,high) {2, 5, 6, 7, 8} {5} {5}
(Headache, yes) {1, 3, 4, 5, 8} {1, 3, 5} • −
(Headache, no) {2, 6} − −
(Cough, yes) {1, 2, 4, 5, 6, 7} {1, 5} {1, 5}
(Cough, no) {2, 3, 5} {3, 5} {3, 5}

Comments 1 2
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Table 4 Computing a local lower covering for the concept lower approximation
of [(Flu, yes)], Table 1, II

(a, v) = t {5} {5} {5}

(Temperature,normal) − − −
(Temperature,high) {5} {5} • −
(Headache, yes) {5} {5} {5} •
(Headache, no) − − −
(Cough, yes) {5} − −
(Cough, no) {5} • − −

Comments 3 4 5

4.5 Global MLEM2

Both MLEM2 modules, global and local, are parts of the data system LERS
[26, 27]. LERS uses rough set theory introduced by Z. Pawlak in 1982 [14, 19].

Rules induced from the lower approximation of the concept certainly de-
scribe the concept, hence such rules are called certain [28]. On the other
hand, rules induced from the upper approximation of the concept describe
the concept possibly, so these rules are called possible [28].

The procedure for determining a single local lower covering may be used for
rule induction using lower and upper approximations defined in Section 4.4.
The corresponding MLEM2 algorithm is called global since the most suit-
able type of approximations, concept, is globally definable. Both certain and
possible rule sets may be induced this way. If the input set X is a lower
approximation of some concept, the rule set induced this way is certain, if
the input set X is an upper approximation of the concept, the corresponding
rule set is possible.

We will illustrate this idea with inducing the certain rule set from Table
1 using the concept lower approximation. The input set X is {1, 3, 5}, the
concept lower approximation of the concept [(Flu, yes)], computed in Sec-
tion 4.4. The process of tracing the procedure for determining a single local
covering is presented in Tables 3 and 4. In these tables consecutive goalsG are
listed in the upper rows. The first such goal G is the set {1, 3, 5}. The most
relevant attribute value pair t, such that |[t] ∩G| is maximum, is (Headache,
yes), see comment 1. The corresponding entry {1, 3, 5} from this column is
marked by a bullet. As mentioned in comment 1, we need to look for the
next attribute-value pair. There are three candidates for which |[t] ∩ G| is
maximum: (Temperature, normal), (Cough, yes) and (Cough, no). For two
of them, (Temperature, normal) and (Cough, no) the second criterion of se-
lecting t, the smallest cardinality of [t], there is still a tie. Therefore, the use
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the third criterion and we select the first pair, (the top pair): (Temperature,
normal). The corresponding entry, the set {1, 3}, the intersection of {1, 2,
3} and {1, 3, 5}, is bulleted in the rightmost column of Table 3.

For Table 1, certain rules induced by global MLEM2, using concept ap-
proximations, are:

2, 2, 2
(Headache, yes) & (Temperature, normal) -> (Flu, yes)
2, 2, 2
(Cough, no) & (Headache, yes) -> (Flu, yes)
1, 2, 2
(Headache, no) -> (Flu, no)

Possible rules, induced in the same way, are:

2, 2, 4
(Cough, yes) & (Temperature, high) -> (Flu, yes)
1, 2, 3
(Temperature, normal) -> (Flu, yes)
1, 2, 2
(Headache, no) -> (Flu, no)
2, 1, 3
(Headache, yes) & (Cough, yes) -> (Flu, no)
2, 1, 2
(Temperature, high) & (Headache, yes) -> (Flu, no)

The above rules are in the LERS format (every rule is equipped with three
numbers, the total number of attribute-value pairs on the left-hand side of
the rule, the total number of cases correctly classified by the rule during
training, and the total number of training cases matching the left-hand side
of the rule), see, e.g., [3].

4.6 Local MLEM2

If we want to induce certain and possible local rule sets, we should use the
procedures for determining single local lower and upper coverings, respec-
tively. The input data sets are the concepts.

Let us compute certain local rules for the concept [(Flu, yes)] = {1, 3,
5, 7}. The execution of the procedure for determining a single local lower
covering is traced in Tables 5 and 6. Again, the consecutive goals G are
listed in the top rows of Tables 5 and 6. As follows from comments 1–7, the
corresponding local lower covering is T = {{(Headache, yes), (Temperature,
normal)}, {(Temperature, high), (Cough, yes), (Headache, yes)}}. We may
compute a local lower covering for the concept [(Flu, no)] in a similar way.

Tracing of the execution of the procedure for determining a single upper
covering can be presented in Tables 5 and 6 as well, the only difference is
in the comment 7, this time the set T = {Temperature, high), (Cough, yes)}
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does not go the set J (which does not exist in this procedure) but to the
set T . Thus, at the end, T = {{(Headache, yes), (Temperature, normal)},
{(Temperature, high), (Cough, yes), (Headache, yes)}, {(Temperature, high),
(Cough, yes)}} and the set D = {1, 2, 3, 5, 6, 7}. In our example, the set D
is equal to the concept lower approximation of [(Flu, yes)] (in general, these
two sets are different).

The first for loop (for each T ∈ T ) is designed to simplify each T (reduce
the number of the corresponding rule conditions). The first T is {(Headache,
yes), (Temperature, normal)}. Obviously, the first attribute-value pair is re-
dundant, since

[(Temperature, normal)] = {1, 2, 3} ⊆ {1, 2, 3, 5, 6, 7}= D.

In the second T = {(Temperature, high), (Cough, yes), (Headache, yes)} the
third attribute-value pair is redundant since

[(Temperature, high), (Cough, yes)] = {2, 5, 6, 7} ⊆ {1, 2, 3, 5, 6, 7} = D.

The third T = {(Temperature, high), (Cough, yes) cannot be simplified.
The second for loop (for each T ∈ T ) is designed to eliminate redundant

T s. The second T = {(Temperature, high), (Cough, yes)} is redundant since

[(Temperature, normal)] ∪ [(Temperature, high), (Cough, yes)] =

= {1, 2, 3} ∪ {2, 5, 6, 7} = {1, 2, 3, 5, 6, 7} ⊇ X = {1, 3, 5, 7}.

The corresponding set of certain rules is:

2, 2, 2
(Headache, yes) & (Temperature, normal) -> (Flu, yes)
1, 2, 2
(Headache, no) -> (Flu, no)

Possible rule set, induced in the same way, is:

1, 2, 3
(Temperature, normal) -> (Flu, yes)
2, 2, 4
(Temperature, high) & (Cough, yes) -> (Flu, yes)
1, 2, 2
(Headache, no) -> (Flu, no)
2, 1, 2
(Headache, yes) & (Temperature, high) -> (Flu, no)
2, 1, 3
(Headache, yes) & (Cough, yes) -> (Flu, no)

Comments to Table 5

1. {1, 3, 4, 5, 8} �⊆ {1, 3, 5, 7}, search for the next t,
2. {1, 3, 4, 5, 8} ∩ {1, 2, 3} = {1, 3} ⊆ {1, 3, 5, 7}, so {(Headache, yes),
(Temperature, normal)} is the first element T of T ,
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Table 5 Computing a single local lower covering for the concept [(Flu, yes)],
Table 1, I

(a, v) = t [(a, v)] {1, 3, 5, 7} {1, 3, 5}

(Temperature,normal) {1, 2, 3} {1, 3} {1, 3} •
(Temperature,high) {2, 5, 6, 7, 8} {5, 7} {5}
(Headache, yes) {1, 3, 4, 5, 8} {1, 3, 5} • −
(Headache, no) {2, 6} − −
(Cough, yes) {1, 2, 4, 5, 6, 7} {1, 5, 7} {1, 5}
(Cough, no) {2, 3, 5} {3, 5} {3, 5}

Comments 1 2

Comments to Table 6

3. {2, 5, 6, 7, 8} �⊆ {1, 3, 5, 7}, search for the next t,

4. {2, 5, 6, 7, 8} ∩ {1, 2, 4, 5, 6, 7} = {2, 5, 6, 7} �⊆ {1, 3, 5, 7}, search
for the next t,

5. {2, 5, 6, 7, 8} ∩ {1, 2, 4, 5, 6, 7} ∩ {1, 3, 4, 5, 8} = {5} ⊆ {1, ,3, 5,
7}, so {(Temperature, high), (Cough, yes), (Headache, yes)} is the second
element T of T ,

6. {2, 5, 6, 7, 8} �⊆ {1, 3, 5, 7}, search for the next t,

7. {2, 5, 6, 7, 8} ∩ {1, 2, 4, 5, 6, 7} = {2, 5, 6, 7} �⊆ {1, 3, 5, 7}, no more
T s, so {7} goes to J .

Table 6 Computing a single local lower covering for the concept [(Flu, yes)],
Table 1, II

(a, v) = t {5, 7} {5, 7} {5, 7} {7} {7}

(Temperature,normal) − − − − −
(Temperature,high) {5, 7} • − − {7} • −
(Headache, yes) {5} {5} {5} • − −
(Headache,no) − − − − −
(Cough, yes) {5, 7} {5, 7} • − {7} {7} •
(Cough, no) {5} {5} − − −

Comments 3 4 5 6 7
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4.7 Incomplete Data Sets with Numerical Attributes

The attribute Temperature from Table 7 is numerical. For a numerical at-
tribute, the first step is to sort numerical attribute values. For Temperature
the list of sorted values is 98.4, 98.8, 101.4 and 102.0. The next step is to se-
lect cutpoints. In MLEM2, the potential cutpoints are averages of consecutive
values of the sorted list of all attribute values. In our example, such potential
cutpoints are 98.6, 100.1, and 101.7. Thus, the potential intervals are, e.g.,
98.4..100.1 and 100.1..102.0. In the current, local MLEM2 algorithm, there
are two options of selecting potential cutpoints: all cutpoints and selected
cutpoints.

If we use the option all cutpoints, for every potential cutpoint the MLEM2
algorithm creates two primary intervals, the first containing all numerical val-
ues smaller than the cutpoint and the second containing all numerical values
greater than the cutpoint. Thus, for Table 7, the list of all primary intervals is
98.4..98.6, 98.6..102.0, 98.4..100.1, 100.1..102.0, 98.4..101.7, 101.7..102.0. The
first interval, 98.4..98.6 contains just one value: 98.4, the second interval,
98.4..102.0 contains values 98.8, 101.4, and 102.0. In different words, the first
interval is represented by the set {98.4}, and the second interval is represented
by the set {98.8, 101.4, 102.0}. The all cutpoints option is the only option
of the MLEM2 global version and one of two options of the MLEM2 local
version. The other option of the MLEM2 local version is selected cutpoints.

In the all cutpoints option of MLEM2, the decision is not taken into ac-
count, while in the selected cutpoints option of MLEM2 the algorithm chooses
only some selected cutpoints on the basis of the corresponding decision val-
ues. In general, if for all occurrences of the two consecutive values of the
sorted list of values of a numerical attribute the decision value is the same,
the corresponding cutpoint is ignored in creating primary intervals. In Table
7, there are unique values of 98.4 and 98.8, for both the decision value is the
same (yes), so the potential cutpoint 98.6 is ignored. On the other hand, the
decision values for 101.4 is yes, while the decision value for 102.0 is no, so we
cannot ignore the cutpoint 101.7. Thus, the only selected cutpoint is 101.7,
and the primary intervals are 98.4..101.7 and 101.7..102.0. We are following
here the principle the cutpoint will always occur on the boundary between two
classes [29], though this principle is valid only for cutpoints selected using
entropy minimization.

In the MLEM2 algorithms, both versions, global and local, some opera-
tions are performed on intervals. The MLEM2 algorithm may select intervals
associated with the same attribute as conditions of a rule. Such intervals
are eventually merged. For example, let us say that MLEM2 selected two
intervals of the same attribute Temperature, the first one is 98.4..101.7 and
the second is 98.6..102.0. These two intervals will be merged into 98.6..101.7.
The first interval is represented by the set {98.4, 98.8, 101.4}, the second
interval is represented by {98.8, 101.4, 102.0}, the merged interval is repre-
sented by the intersection of sets represented by both intervals, i.e., by the set
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Table 7 An incomplete decision table

Attributes Decision

Case Temperature Headache Cough Flu

1 98.4 yes yes yes

2 * no * no

3 98.8 − no yes

4 ? yes yes no

5 101.4 yes + yes

6 − no yes no

7 101.4 ? yes yes

8 102.0 yes ? no

{98.8, 101.4}. The interval 98.6..101.7 will be called a common part of
98.4..101.7 and 98.6..102.0.

Two intervals with the common part equal to the empty set are called
disjoint. For example, intervals 98.4..101.7 and 101.7..102.0 are disjoint since
the first interval is represented by {98.4, 98.8, 101.4} and the second interval
is represented by {102.0}.

We say that an interval includes another interval if it is represented by a
set that is a superset of the other interval. For example, 98.6..102.0 includes
100.1..102.0 since the first interval is represented by the set {98.8, 101.4,
102.0} and the second interval is represented by the set {101.4, 102.0}. We
will denote it by 98.6..102.0 ⊇ 100.1..102.0.

For computing characteristic sets numerical attributes are treated as sym-
bolic. Additionally, V (6, T emperature) = {102.0} Thus, for Table 7 the
blocks of attribute-value pairs are:

[(Temperature, 98.4)] = {1, 2},
[(Temperature, 98.8)] = {2, 3},
[(Temperature, 101.4)] = {2, 5, 7},
[(Temperature, 102.0)] = {2, 6, 8},

Blocks of attribute-value pairs for the attributes Headache and Cough were
computed previously. The characteristic sets for Table 7 are:

KA(1) = {1, 2} ∩ {1, 3, 4, 5, 8} ∩ {1, 2, 4, 5, 6, 7} = {1}
KA(2) = U ∩ {2, 6} ∩ U = {2, 6},
KA(3) = {2, 3} ∩ {1, 3, 4, 5, 8} ∩ {2, 3, 5} = {3},
KA(4) = U ∩ {1, 3, 4, 5, 8}∩ {1, 2, 4, 5, 6, 7} = {1, 4, 5},
KA(5) = {2, 5, 7} ∩ {1, 3, 4, 5, 8} ∩ ({1, 2, 4, 5, 6, 7}∪ {2, 3, 5}) = {5},
KA(6) = {2, 6, 8} ∩ {2, 6} ∩ {1, 2, 4, 5, 6, 7}= {2, 6},
KA(7) = {2, 5, 7} ∩ U ∩ {1, 2, 4, 5, 6, 7} = {2, 5, 7}.
KA(8) = {2, 6, 8} ∩ {1, 3, 4, 5, 8} ∪ U = {8}.
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The characteristic relation R is {(1, 1), (2, 2), (2, 6), (3,3), (4, 1), (4, 4),
(4, 5), (5, 5), (6, 2), (6, 6), (7, 2), (7, 5), (7, 7), (8, 8)}.

The singleton approximations are:

A{1, 3, 5, 7} = {1, 3, 5},

A{2, 4, 6, 8} = {2, 6, 8},

A{1, 3, 5, 7} = {1, 3, 4, 5, 7},

A{2, 4, 6, 8} = {2, 4, 6, 7, 8}.

The subset approximations are

A{1, 3, 5, 7} = {1, 3, 5},

A{2, 4, 6, 8} = {2, 6, 8},

A{1, 3, 5, 7} = {1, 2, 3, 4, 5, 7},

A{2, 4, 6, 8} = {1, 2, 4, 5, 6, 7, 8}.

In addition, the concept approximations are

A{1, 3, 5, 7} = {1, 3, 5},

A{2, 4, 6, 8} = {2, 6, 8},

A{1, 3, 5, 7} = {1, 2, 3, 5, 7},

A{2, 4, 6, 8} = {1, 2, 4, 5, 6, 8}.
Tables 8 and 9 present tracing the procedure for determining a single local

lower covering for the concept [(Flu, yes)] from Table 7. Since we are apply-
ing the procedure for determining a single local covering directly to the con-
cept, we are using the local MLEM2. Here T = {{(Temperature, 98.4..101.7),
(Headache, yes)}}. Similarly, we may induce a local lower covering for the
second concept and upper local coverings for both concepts. The induced
local rule sets are:
certain rule set

2, 3, 3
(Temperature, 98.4..101.7) & (Headache, yes) -> (Flu, yes)
1, 2, 4
(Temperature, 101.7..102) -> (Flu, no)

possible rule set

1, 4, 5
(Temperature, 98.4..101.7) -> (Flu, yes)
1, 1, 2
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(Temperature, 98.4..98.6) -> (Flu, no)
1, 3, 3
(Temperature, 101.7..102.0) -> (Flu, no)
2, 1, 3
(Headache, yes) & (Cough, yes) -> (Flu, no)

Table 8 Computing a single local lower covering for the concept [(Flu, yes)],
numerical data, Table 7, I

(a, v) = t [(a, v)] {1, 3, 5, 7} {1, 3, 5, 7}

(Temperature,98.4..98.6) {1, 2} {1} {1}
(Temperature,98.6..102) {2, 3, 5, 6, 7, 8} {3, 5, 7} {3, 5, 7}
(Temperature,98.4..100.1) {1, 2, 3} {1, 3} {1, 3}
(Temperature,100.1..102) {2, 5, 6, 7, 8} {5, 7} {5, 7}
(Temperature,98.4..101.7) {1, 2, 3, 5, 7} {1, 3, 5, 7 } • −
(Temperature,101.7..102) {2, 6, 8} − −
(Headache, yes) {1, 3, 4, 5, 8} {1, 3, 5} {1, 3, 5} •
(Headache,no) {2, 6} − −
(Cough, yes) {1, 2, 4, 5, 6, 7} {1, 5, 7} {1, 5, 7}
(Cough, no) {2, 3, 5} {3, 5} {3, 5}

Comments 1 2

Table 9 Computing a single local lower covering for the concept [(Flu, yes)],
numerical data, Table 7, II

(a, v) = t {7} { 7} {7}

(Temperature,98.4..98.6) − − −
(Temperature,98.6..102) {7} − −
(Temperature,98.4..100.1) − − −
(Temperature,100.1..102) {7} • − −
(Temperature,98.4..101.7) {7} {7} • −
(Temperature,101.7..102) − − −
(Headache, yes) − − −
(Headache, no) − − −
(Cough, yes) {7} {7} {7} •
(Cough, no) − − −

Comments 3 4 5
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Comments to Table 8

1. {1, 2, 3, 5, 7} �⊆ {1, 3, 5, 7}, search for the next t,

2. {1, 2, 3, 5, 7} ∩ {1, 3, 4, 5, 8} = {1, 3, 5} ⊆ {1, 3, 5, 7}, {(Temperature,
98.4..101.7), (Headache, yes)} is the first element T of T ,

Comments to Table 9
3. {2, 5, 6, 7, 8} �⊆ {1, 3, 5, 7}, search for the next t,

4. {2, 5, 6, 7, 8} ∩ {1, 2, 3, 5, 7} = {2, 5, 7} �⊆ {1, 3, 5, 7}, search for the
next t,

5. {2, 5, 6, 7, 8} ∩ {1, 2, 3, 5, 7} ∩ {1, 2, 4, 5, 6, 7} = {2, 5, 7} �⊆ {1, 3,
5, 7}, so {7} goes to J .

4.8 Experiments

We used five data sets for our experiments, see Table 10. All of these data sets,
except bankruptcy, are well-known data accessible at the University of Cal-
ifornia at Irvine Data Depository, http://archive.ics.uci.edu/ml/. The data
set bankruptcy was collected by E. Altman and M. Heine at the New York
University, School of Business, in 1968. In all five data sets, some attribute
values, about 30%, were randomly removed, or more exactly, the original at-
tribute values were replaced by symbols of missing attribute values. Three
data sets: hepatitis, image segmentation and wine were discretized using a
discretization method based on agglomerative cluster analysis, [30].

Results of experiments are presented in Tables 11 and 12. Results of our
experiments show that both versions of MLEM2, global and local, are incom-
parable. For two data sets (breast cancer and lymphography) global MLEM2
induces rule sets with smaller error rate, for two data sets (image segmenta-
tion and wine) local MLEM2 is better, for hepatitis comparing the perfor-
mance ends up with a tie. For any specific data set it is a good idea to try
both approaches and select the better.

Table 10 Data sets used for experiments

Data set Number of Type of

cases attributes concepts attributes

Breast cancer 277 9 2 symbolic

Hepatitis 155 19 2 discretized

Image segmentation 210 19 7 discretized

Lymphography 148 18 4 symbolic

Wine 178 13 3 discretized
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Table 11 Error rates global MLEM2

Data set Certain Possible

rule sets rule sets

Type of missing attribute values

? * ? *

Breast cancer 29.96% 27.80% 28.52% 29.60%

Hepatitis 18.06% 21.94% 18.06% 21.94%

Image segmentation 42.86% 83.33% 46.67% 43.81%

Lymphography 24.32% 33.11% 20.95% 22.97%

Wine 16.85% 52.25% 17.42% 22.47%

Table 12 Error rates local MLEM2

Data set Certain Possible

rule sets rule sets

Type of missing attribute values

? * ? *

Breast cancer 28.52% 30.69% 29.96% 29.24%

Hepatitis 18.71% 20.00% 18.06% 18.71%

Image segmentation 47.62% 57.62% 47.14% 40.00%

Lymphography 23.65% 29.73% 21.62% 25.68%

Wine 15.17% 23.03% 15.17% 13.48%

4.9 Conclusions

A rough set approach to missing attribute values provide the means for dif-
ferent interpretations of incompleteness, depending on real-life situations. It
is possible to interpret a missing attribute value as lost values, ”do not care”
conditions, restricted ”do not care” conditions, and attribute-concept values.
In most other approaches to missing attribute values such differentiation be-
tween interpretations is unavailable.

Additionally, we may use two different approaches for rule induction: global,
in which we compute approximations first, and local, where everything, start-
ing from handling missing attribute values, numerical attributes, and approx-
imations is done during the same process of rule induction. Both approaches,
global and local, are worth consideration. In practice, for a specific data set,
we should select the appropriate approach experimentally.

A choice between using certain and possible rules seems to be not
important.
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Experimental comparison of probabilistic and rough-set approaches to
mining data with missing attribute values [31] shows that there is no sig-
nificant difference in performance, for any specific data set the best method
to handle missing attribute values should be again selected individually.
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Chapter 5 
Roles Played by Bayesian Networks in Machine 
Learning: An Empirical Investigation 

Estevam R. Hruschka Jr. and Maria do Carmo Nicoletti* 

Abstract. Bayesian networks (BN) and Bayesian classifiers (BC) are traditional 
probabilistic techniques that have been successfully used by various machine 
learning methods to help solving a variety of problems in many different domains. 
BNs (and BCs) can be considered a probabilistic graphical language suitable for 
inducing models from data aiming at knowledge representation and reasoning 
about data domains. The main goal of this chapter is the empirical investigation of 
a few roles played by BCs in machine learning related processes namely (i) data 
pre-processing (feature selection and imputation), (ii) learning and (iii) post-
processing (rule generation). By doing so the chapter contributes with organizing, 
specifying and discussing the many different ways Bayes-based concepts can 
successfully be employed in automatic learning. 

5.1   Introduction 

Since the beginning of the past decade Bayesian networks (BNs) (also known as belief 
networks or directed probabilistic graphical models) have been attracting a great deal 
of attention and have been successfully applied to solve a variety of problems in many 
different domains, most of them related to modeling and decision under uncertainty. 
They have been used in domains such as medicine (Díez et al. 1997) (Husmeier et al. 
2005), molecular biology (Friedman 2004) (Sachs et al. 2005), genomics (Sebastiani 
et al. 2003) (Friedman et al. 2000) (Jansen et al. 2003), agricultural (Bressan et al. 
2009) and many others. An overview of the main applications involving BNs can be 
seen in (Lauritzen 2003) and more recently in (Pourret et al. 2008). 
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BNs can be considered a probabilistic graphical language for knowledge 
representation and reasoning. A BN (Pearl 1988) has a DAG (directed acyclic 
graph) structure. Each node in the graph corresponds to a discrete random variable 
in the domain. Edges represent conditional dependencies; an edge Y → X 
describes a parent-child relation, where Y is the parent and X is the child. Nodes 
that are not connected represent variables that are conditionally independent of 
each other. Each node of the BN structure is associated with a conditional 
probability table (CPTable) specifying the probability of each possible state of the 
node, given each possible combination of states of its parents. 

A Bayesian classifier (BC) is a particular type of BN that aims at correctly 
predicting the value of a discrete class variable, given a vector of feature values. 
As pointed out in (Heckerman et al. 2000), BNs and BCs are usually employed in 
data mining tasks mainly because they (i) may deal with incomplete datasets 
straightforwardly; (ii) can learn causal relationships; (iii) may combine prior 
knowledge with patterns learnt from data and (iv) can help to avoid overfitting. 
Since Bayesian classifiers are a particular type of Bayesian networks, most of the 
related concepts and results are valid for both. 

The main goal of this chapter is to empirically investigate possible roles played by 
Bayesian classifiers in three main subprocesses of machine learning processes 
namely: (1) data pre-processing (imputation and feature selection), (2) learning and 
(3) post-processing (rule generation and pruning). Although the natural order to 
approach machine learning (ML) subprocesses is the sequential order as stated above, 
in this chapter the learning of BNs and BCs will be discussed first since algorithms 
used for learning can be used for pre-processing as well as post-processing the data. 

Besides the Introduction, the chapter is organized in six more sections. Section 2 
introduces several of the underlying concepts involved in BNs and BCs, focusing on 
those that are relevant to some of the roles played by Bayesian models discussed in 
the chapter. Section 3 approaches BNs and BCs as knowledge representations and 
briefly presents the main ideas of three important algorithms: the Naïve Bayes 
(Duda and Hart 1973), PC (Spirtes et al. 1993) and K2 (Cooper and Herskovits 
1992), used for learning BNs and BCs. Sections 4 and 5 address the use of Bayesian 
Classifiers for modifying the original training data available, aiming at improving its 
quality. The help provided by BN-based methods will specifically be investigated 
when the original training data patterns (a) are described by features that might be 
irrelevant (or superfluous) for the purpose of the learning task at hand (Section 4) 
and/or (b) have missing feature values, a recurrent and commonly problem found in 
collected data (Section 5). Section 6 describes in detail how BNs can be post-
processed in order to create a set of rules (Hruschka Jr. et al. 2008). In Section 7 the 
main conclusions of the work described in the chapter are summarized. 

5.2   Relevant Concepts Related to Bayesian Networks  
and Bayesian Classifiers  

The issues discussed in this chapter are dependent on several concepts used in 
Bayes theory which, in turn, are heavily dependent on the probability theory. A 
brief review of the main relevant concepts is presented next. Most of the concepts 
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are defined using the notation borrowed from (Friedman et al. 1997) and many 
can be revisited in Moore´s tutorials (Moore 2011). Consider: 

• Lowercase letters denote specific values taken by those variables (e.g. x, y, z)  
• Boldface capital letters denote sets of variables (e.g X, Y, Z) 
• Boldface lowercase letters (e.g. x, y, z) denote assignments of values to the 

variables in sets X, Y, Z respectively. (Val(X) is used in the obvious way) 
• A finite set of discrete random variables ψ = {X1, X2, …, Xn} 
• Each variable Xi may take on values from a finite set, denoted by Val(Xi), 

i=1,…,n.  
• Capital letters will be used for variable names (e.g. X, Y, Z) 

Definition 1. The probability that variable X takes the value x will be denoted P(X 
= x) (or P(x) when there is no risk of ambiguity). The joint probability distribution 
(JPD) over n random variables X1, X2, …, Xn encodes the probability of a 
particular assignment to all the variables i.e. P(X1 = x1, X2 = x2, …, Xn = xn) or 
simply P(x1, x2, …, xn) ♦. 

Definition 2. The conditional probability that a random variable X takes on the 
value x given some other random variable Y takes on the value y is written P(x|y) 
and is defined by eq. (1) provided that P(y) > 0 ♦. 
 

          P(x|y) = 
P(y)

y)P(x,  (1) 

Eq. (1) can be generalized for a set of random variables X1, X2, …, Xn and Y1, Y2, 
…, Ym as eq. (2), provided that P(y1,y2,…,ym) > 0. 

P(x1, x2,…, xn|y1, y2, …, ym) = 
)y ..., ,y ,P(y

)y,...,y ,y,x..., ,x,P(x

m21

m2121 n  (2) 

Using the notation described at the beginning of this section, eq. (2) can be 
rewritten as eq. (3). 

            P(x|y) = 
)P(

)P( ,

y
yx             (3) 

Two sets of random variables being conditionally independent of a third set is a 
fundamental concept for establishing a few others concepts as well as a few 
procedures in a learning environment based on Bayesianism. The concept is 
formalized in Definition 3.  

Definition 3. Let P be a joint probability distribution over the variables in ψ and 
let X, Y, Z be subsets of U. X and Y are said to be conditionally independent 
given Z noted as I(X,Y|Z) if for all x ∈ Val(X), y ∈ Val(Y), z ∈ Val(Z), P(x|z,y) 
= P(x|z) whenever P(y,z) > 0. ♦ 
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Bayesian networks (BN) belong to the family of probabilistic graphical models 
(GMs); more specifically, they are represented by a directed acyclic graph (DAG). 
As mentioned in (Murphy 1998), BNs enable an effective representation and 
computation of the JPD over a set of random variables. In a DAG the set of 
parents of a node X is represented by π(X). By having the structure of an acyclic 
graph, it can be guaranteed that there is no node in the BN that can be its own 
ancestor or its own descendent. Such a condition, as mentioned in (Ben-Gal 2007), 
is of vital importance to the factorization of the joint probability of a collection of 
variables (nodes).  

The specification of its DAG structure is considered the “qualitative” aspect of 
a BN. As it will be seen later in the chapter (Section 3.2), the concept of skeleton 
of a DAG (Definition 4) can be used during its construction. The specification of 
its “quantitative” aspect is done by specifying the conditional probability 
distribution at each node i.e., specifying the probability of each possible state of 
the node, given each possible combination of states of its parents. As pointed out 
in (Ben-Gal 2007), for discrete random variables, the conditional probability 
distribution is often represented by a table listing the local probability that the 
corresponding child node takes on each of its feasible values, for each 
combination of values of its parents. The joint distribution of a collection of 
variables can be determined uniquely by these local conditional probability tables 
(CPTables). Definition 5 gives a formal definition of BN based on the one 
proposed in (Friedman et al. 1997). 

Definition 4. Let G be a DAG (directed acyclic graph). The skeleton of G is the 
undirected graph obtained from G by replacing its arcs with undirected edges ♦. 

Definition 5. Consider the finite set of discrete random variables ψ = {X1, X2, …, 
Xn} where each variable Xi may take on values from a finite set. A Bayesian 
network for ψ is a pair B = <G,Θ>. G is a directed acyclic graph (DAG) whose 
vertices correspond to the random variables X1, X2, …, Xn and whose arcs 
represent direct dependencies between the variables. A conditional dependency 
(which can be seen as a causal relationship) between two variables Xi and Xk 
defines an arc. The arc Xk → Xi describes a parent-child relation, where Xk is the 
parent and Xi is the child. Nodes that are not connected represent variables that are 
conditionally independent of each other. The graph G encodes independence 
assumptions: each variable Xi is independent of its nondescendants given its 
parents in G.  

The second component of the pair i.e. Θ, represents the set of parameters that 
quantifies the network. It contains a parameter θxi|πxi = PB(xi|πxi

) for each possible 

value xi of Xi, and πxi of πXi, where πXi denotes the set of parents of Xi in G. A 
Bayesian network B defines a unique joint probability distribution over ψ given 
by eq. (4). 
 

PB(X1,X2,…,Xn) = ∏
=

n

1i
iXiB )π|X(P  = ∏

=

n

1i
iXiX π|θ  

 
♦ (4) 
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If a variable Xi has no parents its local probability distribution is referred to as 
unconditional, otherwise it is conditional. Also, if the variable represented by a node 
is observed, the node is said to be an evidence node otherwise it is said to be a hidden 
node.  

A Bayesian classifier (BC) is a particular kind of BN that aims at correctly 
predicting the value of a discrete class variable, given the value of a vector of feature 
variables.  

As proved in (Pearl 1988) the only nodes that have influence on the conditional 
probability distribution of a given node X (given the state of all the remaining 
nodes) are the nodes that belong to the Markov Blanket of X, an important 
concept formalized in Definition 6. 

Definition 6. In a Bayesian network structure let λX represent the set of children of 
node X and πX represent the set of parents of node X. The subset of nodes 
containing λX, πX and any other parents of λX is called Markov Blanket (MB)  
of X. ♦ 

Fig. 1 shows a pictorial representation of the Markov Blanket of a variable X in a 
given Bayesian network.  

 

Fig. 1 MB(X) = { Z | Z ∈ π(X) or Z ∈ λ(X) or Z ∈ other_parents(λ(X))} 

MB(X) contains all the nodes that shield X from the rest of the BN, i.e., the 
MB(X) is the only knowledge needed to predict the value of X. The concept of 
moral graph presented in Definition 7 is employed in the junction tree algorithm 
(Pearl 1988) which is used in belief propagation on graphical models. 

Definition 7. Let G=<N1,A> be a DAG. Its counterpart moralized graph, 
G1=<N2,E> is a graph such that N1=N2 and E = {e | e = undirected(a), for all a ∈ 
A} ∪ {e_new | e_new = (n1,n2), n1≠n2, | ∃ <n1,nk> ∈ A ∧ ∃ <n2,nk> ∈ A} ♦. 

The corresponding moral graph of the DAG shown in Fig. 1 is shown in Fig. 2, 
where the three new added arcs are shown in thicker lines. A BN represents the 
conditional independence of a node and its predecessors, given its parents; the 
conditional independence test can be used for directing the construction of BNs. 
The concept of direction-dependent separation (d-separation), formally introduced 
in Definition 9 can be used to identify d-separated nodes in a BN. 
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Fig. 2 Moral graph from the DAG shown in Fig. 1 

Let G=<N,A> be a BN and let X ⊆ N, Y ⊆  N and E ⊆ N be three subsets of 
nodes. It can be proved that if every undirected path from a node in X to a node in 
Y is d-separated by E, then X and Y are conditionally independent given E. The 
proof that d-separated nodes are conditionally independent is elaborated and can 
be found in (Pearl 1988).  

Definition 8. Let G=<N,A> be a BN. An undirected path in G is a path that does 
not take into account the directions of the arcs ♦. 

Definition 9. (Russell and Norvig 1995) A set of nodes E d-separates two sets of 
nodes X and Y if every undirected path from a node in X to a node in Y is blocked 
given E. A path is blocked given a set of nodes E if there is a node Z on the path 
for which one of three conditions holds: 

(1) Z is in E and Z has one arrow on the path leading in and one arrow out (chain). 
(2) Z is in E and Z has both path arrows leading out. 
(3) Neither Z nor any descendant of Z is in E, and both path arrows lead in to Z♦. 

Fig. 3 based on (Russell and Norvig 1995) shows a pictorial representation of 
situations (1), (2) and (3) of Definition 9. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 3 Pictorial representation of the three situations a path from a node in X to a node in Y can 
be blocked, given the evidence E. If every path from X to Y is blocked, E d-separates X and Y 

Z 

Z 

Z 

X 
E Y 

(1) 

(2) 

(3) 
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5.3   Learning Bayesian Networks and Bayesian Classifiers  
from Data 

This section discusses the learning of Bayesian networks and Bayesian classifiers 
from data. Originally BNs were manually constructed by taking into account the 
variables involved in the problem and the causal dependencies among them. In the 
last years, however, with the advances of machine learning (ML) and ML 
techniques, several algorithms for inducing BNs from data have been proposed. 
Since in many practical situations all it is available is data, inductive learning 
algorithms play an important role in constructing BNs. As discussed in 
(Chickering 1996), learning Bayesian networks is NP-complete. BN learning can 
be divided into qualitative learning, focused on learning the DAG and quantitative 
learning, focused on the learning of conditional probabilities. Learning the BN 
structure is considered to be a more difficult problem than learning the BN 
parameters, unless the naïve Bayes method is employed, as discussed in 
Subsection 3.1. 

As suggested in (Ben-Gal 2007), the BN learning problem can be stated 
informally as follows: given training data and prior information (e.g, expert 
knowledge, casual relationships), estimate the graph topology (network topology) 
and the parameters of the JPD in the BN (CPTables). One possible approach to the 
problem of inducing a BN from a training set is to use a scoring function to direct 
the search for an optimal BN in the space of possible BNs. Usual scoring 
functions are Bayesian scoring functions such as the one used in the K2 algorithm 
(Cooper and Herskovits 1992) presented in the Subsection 3.3 and others 
presented in (Heckerman et al. 1995). The function based on the minimal 
description length (MDL) principle (Lam and Bacchus 1993) (Suzuki 1993) is 
also commonly used. 

Besides methods based on search-and-score, another approach, which conforms 
to constraint based learning, is based on conducting independence tests on the 
training data and construct the BN based on their results. Its main representative is 
the PC algorithm (Spirtes et al. 1993), discussed in Subsection 3.2. 

5.3.1   The Naïve Bayes Classifier 

In spite of its naivety, simplicity (its general DAG is always as displayed in Fig. 4) 
and relying on strong assumptions, the so called naïve Bayes classifier (NBC) is 
considered one of the most effective classifiers (see (Friedman et al. 1997 pg. 131) 
(Kohavi et al. 1997 pg. 79)). Langley and co-workers in (Langley et al. 1992) 
have shown that the NBC is competitive with one of the most successful ML 
system, the decision-tree inducer C4.5 (Quinlan 1993). The NBC assumes that: 

• All other variables are conditionally independent of each other given the 
class variable. 

• All other variables are directly dependent on the classification variable. 
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Fig. 4 The general DAG of a naïve Bayes network (classifier) where Xi’s are features and C 
represents a class 

Several NBC-based proposals attempt to achieve better performance than NBC 
by rewriting the assumptions. This is the case, for instance, of TAN (Tree 
Augmented Naïve Bayes) (Friedman and Goldszmidt 1996), SNB (Selective 
Naïve Bayes) (Langley and Sage 1994), BAN (Bayesian Network Augmented 
Naïve Bayes) (Cheng and Greiner 1999) and GBN (General Bayesian Network) 
(Cheng and Greiner 2001). 

Since its DAG is always the same (dependent only on the number of features), 
the learning of a NBC consists purely in inferring, based on a given training data, 
the CPTables associated to each feature node, given the class label. In the 
classification phase, the Bayes rule is applied to compute the probability of a class 
label Ci given a pattern X = <X1, X2, …, Xn>, as show eq. (5), (6) and (7). 
 

P(Ci|X) = (P(X|Ci) × P(Ci))/P(X) Bayes rule      (5) 

= P(X1, X2, …, Xn|Ci) × P(Ci)  
P(X) can be removed since it is the 

same for all class values. 
     (6) 

= ∏
=

×
n

1k
iik )P(C)C|P(X  Taking into account the conditional 

independence assumption. 
     (7) 

 

The probability given by eq. (7) is calculated for each class and the class with the 
largest posterior probability is assigned to the given pattern.  

5.3.2   The PC Algorithm 

The PC algorithm (Spirtes et al. 1993) starts the learning process from a complete, 
undirected graph (i.e., for every pair of nodes X and Y, X ≠ Y, ∃ edge(X,Y) ) and 
recursively deletes edges based on conditional independence tests, trying to 
identify the skeleton of the BN. The resulting structure can then be partially 
directed and further extended to represent the underlying DAG (Kalisch and 
Bühlmann 2007). 

… 
Xn X1 X2 X3 

C 
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PC aims at a BN that represents the independence relationship among variables 
in a dataset and uses the conditional independence criteria I(Xi,Xj|E) where E is a 
subset of variables, Xi and Xj are variables (a particular case of Definition 3, 
where the two first sets are singletons). If I(Xi,Xj|E) is true, variable Xi is 
conditionally independent of Xj given E (which is verified using the d-separation 
criterion – see Definition 9). To verify whether Xi and Xj are conditionally 
independent given E, the cross entropy CE(Xi,Xj|E) is computed, where the 
probabilities are their maximum likelihood estimators extracted from the data (i.e. 
relative frequencies). Other measures can also be used (Spirtes et al. 1993). The 
main steps of the PC algorithm are summarized in Fig. 5. 

Fig. 5 A high level description of the PC algorithm 

Taking as input a list with all the independencies (I(Xi,Xj|E)) and adjacencies of 
each node (ADJXi), PC first finds the graph skeleton (undirected graph) that best 
represents the d-separations expressed by I(Xi,Xj|E) and then starts establishing 
the orientation of the edges.  

As stated in (Spirtes and Meek 1995) “if the population, from which the sample 
input was drawn perfectly fits a DAG G, all of whose variables have been 
measured, and the population distribution P contains no conditional independence 
except those entailed by the factorization of P according to C, then in the large 
sample limit the PC algorithm produces the true pattern”. 

The variable preorder assumption can be used in the PC edge orientation step 
(step 3 of procedure described in Fig. 5) very successfully. To do that an ordered 
list (containing all the variable, class included) establishes that only variables that 
precede a given variable Xi may be parents of Xi. The use of a predefined order 
among variables can replace the search for the edge orientation. 

The impact of variable orderings (VOs) on inducing efficient BCs was 
investigated in (Santos et al. 2007) using a genetic algorithm (GA) articulated to 
the PC algorithm, in a system named VOGA-PC. The role of the GA in the system 
was to search for a ‘good’ ordering among the variables – each individual 
(chromosome) in the GA population was a possible ordering. The class variable 
was not part of the chromosome; by default the class was always the first variable 
in any VO. 

Each chromosome (i.e., each VO) was used in conjunction with the BC 
skeleton to induce a complete BC (skeleton + edge directions + CPTable). The BC 
was then input to a fitness function which, implementing a 10-fold cross 
validation process using training and testing sets, returned the average 
performance (Eval) of the BC. Based on performance results, the best 
chromosomes were then selected (tournament selection) and, using crossover and 

1. For each pair of variables, test for their conditional independence. 
2. Based on the conditional independence results construct the skeleton (S) of  

the graph. 
3. Identify the orientation of the edges in S. 
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mutation operators, the next generation was built and the process repeated. Elitism 
of 1 was adopted i.e., in each generation the best ordering was kept and passed on 
to the next. The system VOGA-PC returns the best variable ordering (Best_VO) 
and the corresponding PC-induced BC. A more detailed description, results and 
analysis can be found in the previous cited reference. 

5.3.3   The K2 Algorithm 

The K2 algorithm (Cooper and Herskovits 1992) heuristically searches for the 
most probable BN structure given a dataset D containing n patterns and is based 
on four assumptions: 

(1) Variables are discrete and all are observed (i.e., there are no hidden 
variables) 

(2) Patterns occur independently, given a belief network model 
(3) There are no patterns that have variables with missing values 
(4) The density function f(BP|BS) is uniform i.e., indifferent regarding the 

prior probabilities to place on a network structure BS. 

Considering the above assumptions, the algorithm looks for a Bayesian structure 
that best represents the patterns in D. The output of the K2 algorithm is a list of 
the parents of each node. 

The variable preorder assumption is an important aspect of the algorithm. It is 
represented by an ordered list (containing all the variables, including the class) 
and asserts that variables can only be parents of variables that follow them in the 
list. The first variable in the list has no parents and that is why the head of the list 
is the class variable. 

The network construction process uses a greedy method to search for the best 
structure. It begins as if every node has no parent. Then, beginning with the 
second variable of the ordered list, its possible parent candidates are evaluated and 
those that maximize the whole probability structure are added to the network. This 
process is repeated for each variable until the list finishes. It is done by 
maximizing the results of eq. (8). 

∏∏ ∏
= = =

−+
−=

n

1i

iq

1j

ir

1k
ijk

iij

i !N
)!1rN(

)!1r(
cD),P(BS  (8) 

where each discrete variable Xi (i = 1, …, n) has ri possible value assignments 
{vi1, vi2, ..., viri}. D is a dataset with m patterns, where each pattern contains a 
value assignment for each Xi (i = 1, … ,n). Let BS be a network structure 
containing just the variables Xi (i = 1, …, n). Each variable Xi (i = 1, …, n) in BS 
has a set of parents represented by the list πi. Let wij represents the j-th unique 
instantiation of πi relative to D and suppose there are qi such unique instantiations 
of πi. Let Nijk be the number of patterns in D in which Xi has value vik and πi is 
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instantiated as wij. Let Nij = ∑
=

ir

1k
ijkN . Since by the fourth assumption previously 

stated the prior probabilities of all valid network structures are equal, P(BS) is a 
constant (c). Therefore, to maximize P(BS,D) requires finding the set of parents for 
each node that maximizes the second inner product of eq. (8). 

With the best structure already defined, the network conditional probabilities 
must be determined. This is done using a Bayesian estimation of the (predefined) 
network structure probability. The Bayesian estimation is adopted in other 
learning Bayesian methods as in (Spiegelhalter and Lauritzen 1990), but there are 
other ways to compute this probability as shown in (Cooper and Herskovits 1992). 

5.4   Bayesian Classifiers in Feature Subset Selection 

This section initially defines and contextualizes the feature subset selection (FSS) 
problem, discussing its main characteristics and impacts on machine learning 
processes. It also identifies a few research works related to using Bayesian 
formalism for solving FSS related problems. Next it approaches the solution to the 
problem via a particular BN-based method, describes its main contributions and 
then presents a few experiments and discusses their results. 

5.4.1   Considerations about the Feature Subset Selection (FSS) 
Problem 

In many real-world problems the size of a training set can be very large in both 
dimensions: vertically (number of training patterns) and horizontally (number of 
features that describe the patterns). Large numbers in both dimensions represent 
problems to machine learning algorithms. Vertically large datasets are generally 
dealt with via a technique called sampling and the horizontally large datasets are 
dealt with via feature subset selection methods. 

The FSS problem i.e., the selection of features that play an important role in 
characterizing a concept has been receiving growing attention particularly in areas 
such as Machine Learning and Data Mining. Research in feature selection methods 
has intensified in application areas where datasets are usually described by tens or 
hundreds of thousands of features (Guyon and Elisseeff 2003). In real-world 
problems, relevant features are often unknown and generally many features are 
used to describe the training patterns in an attempt to better represent the domain. 
Many of these features are either partially or completely irrelevant/redundant to the 
concept description. Theoretically, having more features should result in more 
discriminating power. However, practical experience with machine learning 
algorithms has shown that this is not always the case. 

If the available data is suitable for machine learning, then the task of inducing 
the concept representation can be made easier and less time consuming by 
removing features that are irrelevant or redundant with respect to the concept to be 
learnt. In a typical situation shared by many supervised machine learning methods, 
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given a training set which generally is described as a set of training patterns, each 
of them represented as a vector of feature-value pairs and an associated class, a 
feature selection method tries to identify features that are irrelevant or redundant 
for describing the concept (to be learnt) embedded in the training set. 

By identifying and removing irrelevant and redundant features, these methods 
contribute to reducing the dimensionality of the space where concepts are represented. 
Machine learning and data mining techniques benefit from this since a reduction in 
dimensionality generally promotes the accuracy and comprehensibility of the induced 
concepts (Nicoletti 2007). It is common to approach the FSS problem as a heuristic 
search in a space defined by all possible subsets of a feature set. According to this 
model, Blum and Langley (1997) characterize any FSS method in terms of its stance 
on four basic issues that determine the nature of the heuristic search process: 

1) STARTING POINT  − selecting a point in the feature subset space from 
which to begin the search can affect the direction of the search.  

1.1) All features − the search begins at the state represented by all features and 
successively removes them. 
1.2) No features − the search begins at the state represented by no features and 
successively adds features. 
1.3) Random − the search begins at a state represented by a set of randomly 
selected features. 

2) SEARCH ORGANIZATION − characterizes the way the search is organized. 
There are two basic approaches and a few variants. 

2.1) Exhaustive search − it is the simplest one, which exhaustively visits all 
possible states. This it not a viable alternative for most problems, since the size 
of the search space is 2N, for a problem defined by N features. 

2.2) Heuristic search − it is a more feasible way to conduct the search for real 
situations. Generally, at each space state, all the local possible moves are 
considered, one is selected and then a new iteration is performed. 

3) EVALUATION STRATEGY − the way feature subsets are evaluated is the 
single biggest differentiating factor among feature selection algorithms for 
machine learning.  

3.1) Filter − based on the general characteristics of the training set to select 
some features and exclude others. John, Kohavi, and Pfleger (John et al. 1994) 
call these filter methods, because they filter out irrelevant features before the 
induction process occurs. 

3.2) Wrapper − wrapper strategies for feature selection use an inductive 
learning algorithm to estimate the merit of feature subsets. 

3.3) Embedded − the FSS is an inherent part of the ML algorithm itself and is 
implemented by the learning method evaluation criteria for selecting the most 
relevant features (e.g. information gain criteria used by ID3 (Quinlan 1986)). 

The filter approach is characterized as an independent approach − an algorithm 
performs the reduction (hopefully) of the number of features according to a quality 
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metric associated to features, generally based on statistical values. Filter methods 
conduct the process of FSS as a pre-processing step of the original training set, 
based on intrinsic data characteristics (such as high information contents). They are 
usually based on statistic techniques and are very fast. This contributes to promoting 
the scalability of these methods. Fig. 6 shows a general diagram of filters. 

 
 
 
 
 
 

Fig. 6 General scheme of a filter method for FSS 

The wrapper approach works articulated to a ML method and combines a 
search method with a machine learning algorithm − the search is driven by the 
performance of the induced classifier. Fig. 7 shows a general diagram of wrappers. 

 

Fig. 7 General scheme of a wrapper method for FSS 

4) STOPPING CRITERION  − the search for the feature subset can stop 
according to some pre-established criteria. 

4.1) Number of feature has reached a pre-determined fixed value. 

4.2) A feature selector might stop adding or removing features when none of 
the alternatives improves upon the merit of a current feature subset. 

Set of patterns, each 
described by M ≤ N 

features 

FILTER 
ALGORITHM 

Set of patterns,  
each described by N 

features  
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4.3) The algorithm might continue to revise the feature subset as long as the 
merit does not degrade. A further option could be to continue generating 
feature subsets until reaching the opposite end of the search space and 
then select the best. 

In short, the process of finding a feature subset which allows the induction of good 
classifiers can be approached as a search problem in the space defined by the 
power set of the initial number of features. As a search problem, it can be 
implemented using the many available techniques, such as hill-climbing, beam 
search/best-first, random bit climber, Las Vegas and genetic algorithms. Reunanen 
in (Reunanen 2003) observes that there can be a few benefits from feature 
selection for learning:  

• It is cheaper to measure only a subset of variables;  
• Prediction accuracy might be improved through exclusion of 

irrelevant variables;  
• The predictor to be built is usually simpler and potentially faster when 

less input variables are used;  
• Knowing which variables are relevant can give insight into the nature 

of the prediction problem at hand.  

There have been a few proposals to applying BN-based methods to the FSS 
problem, such as the hybrid method described in (Inza et al. 2001) and the work in 
(Inza et al. 2000). Antal and colleagues in (Antal et al. 2008) discuss applications 
of the Bayesian approach to new challenges in relevance analysis, which can be 
seen as a continuation of their work described in (Antal et al. 2006), where the 
generalizations of the FSS problem in a Bayesian framework based on the 
structural properties of BNs is formulated.  

Fu and Desmarais in (Fu and Desmarais 2010) provide a review on related 
works on FSS based on the induction of the MB; Zeng and co-workers (Zeng et al. 
2009) also used the concept of MB for filtering features and use the reduced 
feature set for learning. Brown and Tsamardinos in (Brown and Tsamardinos 
2008) describe a new filter algorithm called Feature Space Markov Blanket 
(FSMB) which combines ideas borrowed from both, kernel and Markov Blanket 
based feature selection. 

Authors in (Koller and Sahami 1996) have shown that the Markov Blanket 
criterion only removes features that are really unnecessary. They propose a 
heuristic approach for dealing with this problem but acknowledge that their 
algorithm performance can be improved by using more refined techniques, such as 
BNs, to choose candidate MBs. They also observe that finding an exact or an 
approximate MB can be a hard task. The proposal described in Subsection 4.2 is 
similar to the one described in (Cheng et al. 1997). Their main difference is that 
the work in (Cheng et al. 1997) uses a Conditional Independence Learning method 
and the method described in Subsection 4.2 uses a heuristic search based learning 
algorithm.  
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5.4.2   Feature Subset Selection by Bayesian Networks – The K2χ2 
Method 

This section condenses part of the work described in (Hruschka Jr. et al. 2004), 
(Santos et al. 2007), (Hruschka Jr. and Ebecken 2002) where a BN-based feature 
selection method specifically designed for classification problems is proposed and 
evaluated. The method can be characterized as filter and basically (1) creates a 
Bayesian network from a training set and then (2) uses the Markov Blanket of the 
class variable as the set of relevant features for the corresponding classification 
problem. Fig. 8 shows the general flowchart of the method. 

In order to create the Bayesian network (or classifier) from data, the variant 
K2χ2 that combines the K2 algorithm (see Section 3) with the χ2 statistic test was 
used. The χ2 was employed aiming at optimizing the variable ordering to be used 
by the K2 algorithm, since this statistics test can be used to assess the 
independence of two variables (Liu and Motoda 1998). The χ2 was used to 
measure the degree of dependence between the class variable and each of the 
variables describing the training set. The variables were then listed in descending 
order of their χ2 result and the information was passed on to K2. As can be seen in 
(Hruschka Jr. and Ebecken 2007), the only difference between K2 and K2χ2 is the 
use, by the later, of the information given by the variable ordering to induce  
the BC. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 Flowchart of the BN K2χ2 inducer for feature selection (given by the Markov 
Blanket of the variable class) 

Experiments were conducted using three knowledge domains from the UCI-
Irvine Repository (Frank and Asuncion 2010), whose characteristics are presented 
in Table 1.  

Tr: Original 
Training Set 

MB ← M_blanket(BN,Class)  

BN ←  K2χ2(Tr)  

New_BN ← extract(BN,MB)  
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Table 1 Domain characteristics. The three domains have 2 classes. ONP/NP: original 
number of patterns/number of patterns, NP/C: number of patterns per class 

Domain ONP/NP NP/C 

Wisconsin Breast Cancer (WBC) 699/683 
444/1 (benign) 

239/2 (malignant) 
 

Mushroom 8124/5644 
1728/1 (edible) 

3916/2 (inedible) 
 

Congressional Voting Records (CVR) 435/232 
124/1 (democrat) 

108/2 (republican) 

In the Wisconsin Breast Cancer (WBC) dataset the two classes are known to be 
linearly inseparable. The total number of features is 10 (including the class). The 
total number of patterns in the original WBC is 699; however 16 of them have 
missing feature values and were removed from the training data. The total number 
of patterns in the original Mushroom dataset is 8,124, each described by 22 
features. However, 2,480 patterns whose eleventh feature was missing were 
removed and the remaining 5644 patterns were used in the experiments. The 
original Congressional Voting Records (CVR) dataset is described by 16 Boolean 
features and has 435 patterns, divided into 267 democrat and 168 republican. 
However, 203 patterns have missing values and were removed; the remaining 232 
(124 democrat, 108 republican) were used in the experiments. 

Aiming at identifying the influence of the variable ordering on the induced 
BCs, the correct classification rates (CCR) by both, K2 and K2χ2 in the three 
knowledge domains, are shown in Table 2. In the table accuracy numbers refer to 
the average of a five-fold cross-validation process and μ and σ stand for average 
and standard deviation respectively. Simulations have shown that the ACCR 
(average correct classification rates) obtained using the training data with the 
original sequence of features and with the sequence given by the feature ordering 
were very close, leading to consistent results. 

Table 2 ACCR of K2 versus K2χ2. μ: average, σ: standard deviation 

Dataset Class 
K2  

(original variable ordering) 
K2χ2 

μ σ μ σ

WBC 
1 96.84 1.66 96.61 1.58 
2 95.82 1.45 97.08 2.37 

Total 96.48 1.40 96.78 1.32 

Mushroom 
1 95.09 2.49 77.22 1.30 
2 5.92 3.23 87.93 1.90 

Total 61.03 0.72 81.22 0.63 

CVR 
1 63.33 28.49 96.0 5.65 
2 13.81 8.39 86.08 5.60 

Total 40.17 15.65 91.40 3.62 
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In Table 3 the selected set of features (i.e., the MB of the corresponding class 
feature), for each domain, is presented. 

Table 3 |OF|: number of original features (class excluded), SF: selected feature set (class 
excluded)/|SF| 

Domain |OF| SF/|SF| 
WBC 9 {x2, x3, x4, x6, x7, x8}/6 

Mushroom 22 {x3, x5, x9}/3 
CVR 16 {x3, x4, x5, x12}/4 

To verify the consistency of the generated networks and to provide evidence 
that the selected features are relevant to the model, classification tasks were 
performed (a) using the original features and (b) using the selected features. 
Results are summarized in Table 4. In all learning tasks a five-fold cross-
validation process was applied.  

Results from the just described FSS approach were compared against results 
given by classifiers induced by three different algorithms, using the original 
training set (all features present). The classifiers were (1) a Bayesian classifier 
induced by the Naïve Bayes method; (2) a decision tree induced by the C4.5 
algorithm (Quinlan 1993) in its version available at the WEKA System, identified 
as J48 (Witten and Frank 2000); (3) a set of rules obtained by J48 PART (Witten 
and Frank 2000), a method that extracts rules from pruned partial decision trees 
(also built using the C4.5 algorithm). 

Table 4 BC results (%) per domain 

 
Class 

Original Features  Selected  
Features 

μ σ  μ σ
WBC 

1 96.61 1.58  96.61 1.58 
2 97.08 2.37  95.40 2.70 

Total 96.78 1.32  96.19 1.19 
Mushroom 

1 77.22 0.70  94.61 1.03 
2 87.93 0.59  96.25 1.90 

Total 81.22 0.41  95.11 0.63 
CVR 

1 96.00 5.65  96.00 5.65 
2 86.08 5.60  85.08 6.25 

Total 91.40 3.62  90.95 3.48 
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As mentioned before, there are three main classes of algorithms for learning 
Bayesian networks. One refers to algorithms based on heuristic search, the second 
to algorithms based on the use the conditional independence concept and the third 
to algorithms that combine both previous strategies.  

When using algorithms based on heuristic search, one important issue is the 
initial order by which features are presented to the algorithms. Algorithms use this 
information to determine the direction of arcs – a variable is a possible parent only 
of those that follow it in the ordering (Hruschka Jr. and Ebecken 2002). 
Conditional independence methods try to find the direction of arcs without the 
information given by the variable ordering. It has been reported, however, that 
algorithms have an improved performance when the ordering is provided (Spirtes 
et al. 1993).  

Results achieved by each of the three other classifiers in the three domains are 
presented in tables 5, 6 and 7 respectively. In the three tables O and S stand for 
‘Original’ (all features in the original dataset) and ‘Selected’ (selected features 
given by the MB) respectively.  

The Naïve Bayes method uses all features and allows them to make 
contributions to the decision that are equally important and independent of one 
another, given the class. This leads to a simple scheme that works well in practice 
(Witten and Frank 2000). One can observe that the proposed method selects very 
predictive features, which in Mushroom and Congress provide even better ACCRs 
than those achieved in the dataset formed by all features. Table 5 shows the results 
obtained in complete datasets and in datasets described by the selected set of 
features with the Naïve Bayes. 

Table 5 Naïve Bayes – Average Classification Rates (%).  

O: original features, S: selected features (MB) 

Dataset Total Class 1 Class 2 
WBC O 96.49 95.70 97.90 
WBC S 95.90 95.70 96.20 
Mushroom O 97.36 99.60 93.80 
Mushroom S 99.22 100.00 98.00 
CVR O 91.40 88.70 94.40 
CVR S 93.10 91.10 95.40 

The J48 algorithm is the WEKA´s implementation of the popular C4.5 
(Quinlan 1993). In fact, J48 is a C4.5 improved version, called revision 8 (Witten 
and Frank 2000). Table 6 shows the simulation results using J48. The table also 
shows the set of features present in the best induced classifier obtained in the five-
fold cross validation process. It can be noticed that all features selected by the 
Bayesian approach were employed both in the Mushroom and WBC domains; in 
the CVR domain, however, the feature selection process was not so important, 
since only one feature is necessary to classify all examples. Besides, in the 
simulations the selection method was consistent in the context of J48, and 
consequently with the information gain criterion. 
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Table 6 J48 – Average Correct Classification Rates (%). 

O: original features, S: selected features (MB) 

Dataset 
Features in the best classifier 

induced 
Total Class 1 Class 2 

WBC O  {x1,x2,x3,x4,x5,x6,x7} 95.17 96.40 92.90 
WBC S  {x2,x3,x4,x6,x7,x8} 95.61 95.00 96.70 
Mushroom O  {x5,x18,x17,x8,x4,x20} 100.00 100.00 100.00 
Mushroom S  {x3,x5,x9} 99.86 99.80 100.00 
CVR O {x4} 95.26 95.20 95.40 
CVR S {x4} 96.98 95.20 99.10 

The J48 PART extracts rules from pruned partial decision trees built using 
C4.5; it combines the divide-and-conquer strategy for decision trees learning with 
the separate-and-conquer for rule learning (Witten and Frank 2000). To make a 
single rule, a pruned decision tree is built based on the current set of patterns and 
then the path to the leaf with the largest coverage is made into a rule and the tree is 
discarded. Table 7 shows the obtained results with J48 PART. Again, all the 
selected features were employed both in Mushroom and in WBC datasets, whereas 
in CVR only one of the selected features was enough to classify all examples. The 
results are consistent with those in Table 6, indicating that the proposed method is 
a good option as a FSS method, allowing the extraction of simple rules with very 
good ACCRs. 

Table 7 J48 PART – Average Correct Classification Rates (%). 

O: original features, S: selected features (MB) 

Dataset 
Features in the best classifier 

induced 
Total Class 1 Class 2 

WBC O  {x1,x2,x3,x4,x5,x6,x7,x8} 96.05 97.50 93.30 
WBC S  {x2,x3,x4,x6,x7,x8} 95.31 95.90 94.10 
Mushroom O  {x5,x8,x11,x17,x18,x20,x21} 100.00 100.00 100.00 
Mushroom S {x3,x5,x9} 99.86 99.80 100.00 
CVR O  {x2,x3,x4,x9,x11} 94.40 95.20 93.50 
CVR S (4) {x4} 96.98 95.20 99.10 

The main simulation results are condensed in Table 8, where the total ACCR 
values as well as the number of features employed per domain per classifier are 
presented. In general, the ACCRs obtained using as training data the datasets 
described by the original features were very close to those obtained using datasets 
described by the selected features. It is noticeable the significant improvements in 
relation to the number of employed features. In the WBC, 66.67% of the original 
features were enough to obtain high classification rates. A similar effect was 
observed in the Mushroom, where only 13.64% of the original number of features 
was selected. It is noticeable that the Bayesian network accuracy improved 
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significantly. Finally, in the CVR, by using a specific 25% of the original number 
of features the classification rate still was high. Another important aspect is that 
the ACCR values obtained by the classifiers (using original or selected subset of 
features) are comparable to the best ones found in the literature. Duch and 
colleagues in (Duch et al. 2000), for instance, describe classification results 
obtained by 15 methods. Their results, in the Mushroom dataset, vary from 91% to 
100%, while in the WBC they vary from 92.7% to 99%. The CVR dataset 
information file reports accuracies that vary from 90% to 95% (Schllimmer 1987). 

Table 8 Main simulation results: Average Correct Classification Rates (%). 

O: original set of features, S: selected set of features  

Classifier 
WBC Mushroom CVR 

O (9) S (6) O (22) S (3) O (16) S (4) 
BN 96.78 96.19 81.22 95.11 91.40 90.95 

Naïve Bayes 96.49 95.90 97.36 99.22 91.40 93.10 
J48 95.17 95.61 100.00 99.86 95.26 96.98 

J48 PART 96.05 95.31 100.00 99.86 94.40 96.98 

5.5   Bayesian Classifiers in Imputation Processes 

This section initially defines and contextualizes imputation processes, discussing 
its main characteristics, uses and impacts on machine learning processes. Next it 
describes the proposal of a BN-based imputation process and its main 
contributions. 

5.5.1   Considerations about Imputation Processes 

The absence of information is common in real-world databases and it can occur 
due to a number of reasons, such as malfunctioning measurement equipment, 
changes in experimental design during data collection, collation of several similar 
but not identical datasets, refusal of some respondents to answer certain questions 
in surveys, etc. Such missing data are usually problematic. Therefore, several 
approaches have been proposed to deal with them as can be seen in (Rubin 1976), 
(Rubin 1987), (Little and Rubin 1987), (Pyle 1999) and (Schafer 2000). A simple 
approach to deal with missing values ignores patterns and/or features containing 
missing values; the loss of data however can be considerable and reduced datasets 
may lead to biased statistical analyses. Alternatively, some approaches for data 
analysis (e.g. (Breiman et al. 1983), (Quinlan 1993)) can be tolerant to missing 
values. Finally, a significant number of machine learning methods work only with 
complete datasets. For these methods, approaches aimed at filling in missing 
values are particularly relevant. 

The task of filling in missing data is often referred to as missing values 
substitution or imputation and it can be performed in a number of ways such as by 
the widely used naïve mean/mode method. The substitution of missing values by 
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the mean/mode can eventually lead to reasonable results. This procedure, 
however, assumes that all missing values represent the same value, possibly 
leading to considerable distortions. The mean/mode method underestimates the 
population variance and does not take into account the relationships between 
features, which are usually relevant to the process of missing values replacement. 
Moreover, machine learning methods usually explore relationships between 
features and, thus, it is critical to preserve them, as far as possible, when replacing 
missing values (Pyle 1999). In this sense, imputation is aimed at carefully 
substituting missing values, trying to avoid the insertion of bias in the dataset. If 
imputation is performed in a suitable way, higher quality data might becomes 
available and results from machine learning tasks can be improved. 

Techniques to deal with missing values have already been studied for many 
years (e.g. see (Anderson 1946), (Preece 1971), (Dempster et al. 1977), (Rubin 
1977), (Rubin 1987), (Schafer 2000)). Although most of these techniques have 
been applied to survey data analysis, they can also be useful for machine learning 
applications. Therefore, before focusing on the specific imputation method 
described in (Hruschka Jr. et al. 2007), a brief survey on imputation methods is 
presented next. 

5.5.2   Commonly Used Imputation Methods 

The expectation-maximisation (EM) algorithm (Dempster et al. 1977), (Redner 
and Walker 1984), (Wu 1983), (Ghahramami and Jordan 1995), (Jordan and Xu 
1996), (Bilmes 1997) has been widely used for imputation. EM assumes that 
missing data (Y) are governed by a distribution f(Y|X,θ), where X (data without 
missing values) and the parameters θ (mean and variance) are fixed. The EM 
algorithm is based on the likelihood function, and it fills in the missing data based 
on an initial estimate of θ. Then, it re-estimates θ based on the complete and filled 
data, iterating until the estimates converge.  

Depending on the complexity of the density function that describes the dataset, 
the convergence may be slow (Little and Rubin 1987). In addition, the 
computations performed by EM are dependent on the assumption of a particular 
density function and its parameters. 

Multiple imputation (MI) (Rubin 1977) has been widely used for multivariate 
analysis, and it consists in using more than one value to fill in the gaps in the 
sample (e.g. the mean of probable values). MI can provide good results, but the 
involved computational cost is considerably higher when compared to single 
imputations (Rubin 1987). 

Data augmentation (DA) (Tanner and Wong 1987) can be informally described 
as the process in which observed data Y (whose distribution depends on the 
parameters θ) is augmented by the quantity Z (using a Monte Carlo sampling 
strategy). Based on the MI idea, multiple values for Z can be generated using the 
p(Z|Y) distribution and then obtaining p(θ|Y) as the average of p(θ|Y,Z) over the 
imputed Zs. In theory, this method provides a way to improve the inference in 
small samples, a situation where EM has pitfalls. 
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Considering decision trees, some practical results about ignoring patterns with 
missing values can be found in Quinlan (1986) and White (1987). Another 
approach involves replacing missing values with the most frequent value 
(Kononenko et al. 1984). In the probability method (Quinlan 1989), (Lobo and 
Noneao 2000), a decision tree is constructed to substitute missing values of each 
feature, using the information contained in the other features. The dynamic path 
generation (Quinlan 1986) and the lazy decision tree approach (Friedman et al. 
1996) do not generate the whole tree, but only the most promising path instead. 

Several imputation methods based on nearest neighbours can be found in the 
literature. They basically select patterns with feature values similar to the pattern 
of interest to impute missing values. For instance, see (Troyanskaya et al. 2001), 
(Batista and Monard 2003) and (Hruschka et al. 2003). 

According to Schaffer and Graham (2002), maximum likelihood methods (e.g. 
EM and Bayesian algorithms) represent the state of the art for imputation. 
Considering high-dimensional datasets, BNs are usually more efficient than 
methods based on the EM algorithm (Zio et al. 2004). Zio and co-workers 
describe the use of BNs for imputing missing values, arguing that two relevant 
advantages of using BNs as imputation models are the possibility of preserving 
statistical relationships between variables, and dealing with high-dimensional 
datasets.  

5.5.3   Imputation by Bayesian Networks and the K2Iχ2 Method 

There have been a few attempts towards imputation processes articulated to 
Bayesian networks, such as the proposal described in (Kong et al. 1994). Zio and 
colleagues in (Zio et al. 2004) discuss the use of BNs for imputation aiming at 
dealing with the problem of the consistency of imputed values: preservation of 
statistical relationships between variables (statistical consistency) and preservation 
of logical constraints in data (logical consistency).  

In order to tackle the missing value problem in classification tasks, the K2Iχ2 
method was proposed to impute (substitute) missing values based on Bayesian 
networks as described in (Hruschka Jr. et al. 2007). 

K2Iχ2 relies on the construction of a BN to infer the most suitable values to fill 
in the gaps produced by missing values. K2χ2 learning algorithm (as described in 
Section 4.2) is applied to construct a BN to be used as a prediction model to 
substitute the missing values. Instead of generating one BN for each feature with 
missing values, as described in (Hruschka Jr. and Ebecken 2002), K2Iχ2 builds a 
single BN to infer the best values to substitute the missing ones in all features. The 
unrestricted BN is therefore used considering all variables as potential predictors. 

The imputation process performed by K2Iχ2 can be summarised by the 
following steps: (i) generate a single clean (i.e., without missing values) training 
dataset C; (ii) build an unrestricted BN' using C and (iii) use BN' to infer the best 
values to replace the missing ones. 

In (Hruschka Jr. et al. 2007) K2Iχ2 is evaluated in the context of both 
prediction and classification tasks, and its performance is compared with those 
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obtained by classical imputation methods (EM, Data Augmentation, Decision 
Trees, and Mean/Mode). The simulations were performed on four UCI (Frank and 
Asuncion 2010) datasets (Congressional Voting Records, Mushroom, Wisconsin 
Breast Cancer and Adult), which are benchmarks for data mining methods. 
Missing values were simulated by the elimination of some known values. Thus, it 
was possible to compare original values with imputed ones, evaluating the 
prediction capability of the imputation methods. In addition, a methodology to 
estimate the bias inserted by imputation methods in classification tasks is 
proposed. Four classifiers (One Rule, Naïve Bayes, J48 and J48 PART) were used 
to evaluate the five imputation methods in classification scenarios. Computing 
times consumed to perform imputations were also reported for each imputation 
method. Simulation results in terms of prediction, classification and computing 
times allow to perform several analyses, leading to interesting conclusions. K2Iχ2 
has shown to be competitive against classical imputation methods and achieved 
good results when variable relationships as well as the imputation bias were taken 
into account. More discussions on imputation bias and BN imputation methods 
can be found in (Hruschka et al. 2009).  

5.6   Post-processing a Bayesian Classifier into a Set of Rules 

This section describes in detail how BNs can be post-processed in order to create a 
set of rules. The main motivation for post-processing a BC into a set of rules is for 
the sake of understandability. Many automatic learning tasks are used in real data 
domains which, generally, are described by a large number of features; in such 
domains the induced classifiers tend to be large and complex and usually, hard to 
be completely understood by humans.  

It is a fact that knowledge represented by BCs is not as comprehensible as 
knowledge represented by some other forms such that of classification rules. This 
can be a drawback in areas where the understandability of the representation plays 
a major role. Reasoning with rules is comprehensible, provides explanations, and 
may be validated by human inspection. It can also increase the user’s confidence 
in the system and eventually can help to discover important relationships among 
variables. 

The BayesRule method described in this section, originally proposed in 
(Hruschka Jr. et al. 2008), translates a learnt BC into a set of classification rules, a 
much more suitable knowledge representation for promoting understandability. 
The experiments show that the reduced set of rules extracted from a BC can be 
reasonably condensed and still maintain the original BC classification accuracy. 

Subsection 6.1 addresses the description of the BayesRule algorithm. The 
experimental results, described in Section 6.2, show that it is possible to extract a 
reduced number of simple rules from a BC and, thus, circumvent the 
dimensionality problem without the use of complex procedures of optimization 
and pruning. 
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5.6.1   Translating a Bayesian Classifier into a Reduced Set  
of Rules – The BayesRule Algorithm 

As discussed in Section 2 and proved in (Pearl 1988), the only nodes that have 
influence on the conditional probability distribution of a given node X (given the 
state of all the remaining nodes of a BC) are the nodes that belong to the Markov 
Blanket of X. Thus, after learning a BC from data, the Markov Blanket of the class 
node identifies, among all nodes that define the BC those that influence on the 
class node. In the BayesRule method the MB concept is used to reduce both the 
number as well as the complexity (in relation to the number of variable tests in the 
antecedent) of classification rules. When generating the set of propositional 
classification rules, the only variables taken into account are those in the MB of 
the class variable. 

As standard propositional if-then classification rule is the simplest and the most 
comprehensible way to represent classification knowledge it has been adopted by 
BayesRule. The BayesRule method is based on the intuition that the best 
explanation for a piece of evidence is the most probable state of the world, given 
the evidence. This approach is called maximum a posteriori (MAP) approach (see 
(Henrion and Druzdzel 1990) and (Pearl 1988) for details).  

MAP is a standard approach to parameter estimation and inference in statistics. 
When concerning classification tasks, many algorithms consider some candidate 
classes (or hypothesis) {C1, C2, …, Cj} and try to identify the one that best fits a 
given background (BK) knowledge. The choice of the best class is often based on 
the most probable class CJ (J = 1, …, j) given the BK. Any such maximally 
probable class is called Maximum a Posteriori (MAP) class (CMAP). As proved in 
(Mitchell 1997), a BC, as well as any other classifier based on the Bayes Theorem, 
can be used to calculate the posterior probability of each candidate hypothesis as 
follows: 

)C(P)C|BK(Pmax)C(P)C|BK(PthatsuchCC JJ}j,...,1{JkJkJkJMAP ∈==  (9) 

In the particular situation where all classes CJ are equally probable a priori (i.e. 
P(Cm) = P(Cn), ∀ m, n ∈ {1, 2, …, j}, m≠n), the term P(CJ) can be removed from 
eq. (9) and CMAP is renamed as Maximum Likelihood (ML) class (CML).  

When using the MAP approach to extract rules from a BC, one rule is created 
for each possible value of the involved variables, a computationally expensive 
procedure. This happens mainly because it is very common the presence of 
hundreds or thousands of variables in probabilistic models (Druzdzel 1996). In 
most cases, however, many variables may only be relevant for some types of 
reasoning; very rarely all of them will be relevant in the reasoning process 
associated to one single query, for instance. Therefore, it is essential to focus only 
on the relevant part of the model (i.e. the class variable and the variables that 
belong to its Markov Blanket) when translating it into a set of rules. In this sense, 
the proposed BayesRule method uses the Markov Blanket concept to select the 
variables that will be in the antecedent of rules. Thus both, the number and the 
complexity of rules are minimized along with the rule extraction process. The 
variable selection strategy, however, does not guarantee a minimal rule set.  
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The extracted rule set can still undergo a pruning step which will remove from the 
rule set the rules containing superfluous conditions. 

In accordance with the MAP approach, a BC evidence propagation algorithm 
must be used to propagate the variable values aiming at inferring the class value. 
Let A be a set of variables that are instantiated and B a set of their corresponding 
values. An evidence propagation algorithm determines P(Vi,Ji 

|A,B) for all values 
Vi,Ji of all variables in the network except those in A. For singly-connected (only 
one edge is allowed between two nodes) BNs there are simple and efficient 
evidence propagation algorithms; when the BN structure is a multiply-connected 
graph, however, the evidence propagation process is, in the worst case, NP-hard 
(Cooper 1990).  

It is agreed that the most popular exact BN inference algorithm is Lauritzen and 
Spiegelhalter’s clique-tree propagation algorithm (Lauritzen and Spiegelhalter 
1988). Their algorithm is based on Pearl’s polytree propagation algorithm (Pearl 
1988). However, considering that Pearl’s algorithm can only be used when the BN 
structure is a polytree, the clique-tree propagation algorithm first transforms a 
multiply-connected network into a clique tree by clustering the triangulated moral 
graph of the underlying undirected graph, then performs message propagation 
over the clique tree using the classic polytree algorithm. 

Pearl’s polytree algorithm exploits the fact that a polytree is a singly-connected 
structure and consequently, there is only one path between two nodes; this special 
characteristic allows only one choice for transmitting the evidence in the BN, i.e., 
there is no risk of redundant propagation. The polytree propagation algorithm may 
be summarized as follows: each node (variable) exchanges messages with its 
parents and its children. Messages sent from parents to children are called π-
messages and messages sent from children to parents are called λ-messages. In a 
BN, for each new evidence impacting on a node X, this node must update its own 
CPTable and propagate the new values to all its parents nodes π(X) and to all its 
children nodes λ(X). Once a node U (parent of node X) receives the new 
probability values from X, it must update its own CPTable and propagate the 
updated values to all its parents nodes π(U) and to all (except X) its children nodes 
λ(U). Once a node Y (child of node X) receives the new probability values from X, 
the same updating process must be repeated. In this sense, Y must update its own 
CPTable, and propagate its new probability values to all (except X) its parents 
nodes π(Y) and to all its children nodes λ(Y). According to the updating procedure, 
the new evidence impacted on X will be propagated to all nodes in the BN without 
redundancy.  

As previously described, when a node receives new evidence, or a message 
from its parents or children, it must update its own CPTable. This is done simply 
by multiplying its probability estimation matrix (CPTable) by the probability 
estimation vector received from its parents (or children). 

The BayeRule implements the evidence propagation algorithm proposed by 
Lauritzen and Spiegelhalter because it is an efficient algorithm even when applied 
to BNs consisting of very large number of variables. Fig. 9 presents a simplified 
version of the pseudocode of the BayesRule method; the procedure expects as 
input a Bayesian Classifier with N nodes and assumes by default that the class 
variable is X1.  
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Fig. 9 Pseudocode of the BayesRule algorithm 

The BayesRule procedure for extracting classification rules from BCs is quite 
simple. As mentioned before, the BC structure provides a simple and efficient 
mechanism (Markov Blanket) to reduce the number and the complexity of the rule 
set. The procedure described in Fig. 9 creates probabilistic rules as:   

If < condition > then < class > with certainty F 

where condition is the antecedent part of the rule, class the consequent and F is a 
percentage value. 

Let V1, V2,… , Vn, C be the sets of variable values for X1, X2,…, Xn and C, 
respectively. Also, let |Vi| = ji, i = 1,… , n and |C| = j. A probabilistic if-then rule 
can be characterized as: 

If X1 is V1,J1 and … and Xn is Vn,Jn  then C is CJ (F%) 

where Ji ∈ {1,… , ji}, i = 1, … , n and J∈ {1,… , j}. 
By using the BayesRule method, the number of variables involved in the 

antecedent of a rule is reduced since the method only considers the Markov 
Blanket of the class variable C. Considering a particular situation where the 
Markov Blanket of the class variable C is the set {X1,…, Xk}, the a posteriori 

procedure BayesRule; 
input     BC: Bayesian Classifier with N nodes 

       X
1
: Class variable 

output: RSR {Reduced Set of Rules} 

begin 

 1.  RSR ← ∅ {reduced set of rules is empty} 
 2.  CMB ← MB(X

1
) {Markov Blanket of X

1
 (class variable)} 

 3.  M ← |CMB| 
 4.  Rename the variables in CMB as X

2
, X

3
,…, X

M+1
 

 5.  for i ← 2 to M+1 do 
 6.  begin 
 7.   V

i
 ← set of possible values of variable X

i 

 8.   j
i
 ← |V

i
| 

 9.  end 
 10. RI ← 1   {rule index} 
 11. for k

2
 ← 1 to j

2
 do 

 12.  for k
3
 ← 1 to j

3
 do 

 13.   ………………… 
 14.    for k

M+1
 ← 1 to j

M+1
 do 

 15.     begin 
 16.      Rule_antecedent ← X

2
 = v

2
k2

 and X
3
 = v

3
k3

 and … and X
M+1
 = v

N
kM+1

 

 17.        • propagate Rule_antecedent throughout BC and determine  
              the class value Val_Class and certainty factor F 
 18.        • define rule R

RI
 as: if Rule_antecedent then X

1 
= 

Val_Class(F%) 
 19.      RSR ← RSR ∪ {R

RI
} 

 20.      RI ← RI + 1 
 21.     end 
 22. RSR ← remove_irrelevant_rules(RSR) 
end 
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probability of class C = Cj given the values of the variables in the Markov Blanket 
of class C for a particular instantiation of indexes Ji, i = 1, …, k is 

P(C = Cj |V1,J1, …, Vk,Jk) = maxJ∈{1,··· ,j}{P(C = CJ | V1,J1, ..., Vk,Jk)} 

where each P(C = CJ | V1,J1, ..., Vk,Jk) is calculated using eq.(4). 

The confidence degree associated to a rule can be defined using inferential 
results. In doing so, the probability given to the inferred class may be used as a 
confidence value and it is embedded in the inference algorithm. The rule coverage 
can be obtained from the numerical parameters (CPTables) already stored in the 
BC, and consequently no extra computation is needed for defining it. 

As an example of how the BayesRule procedure works, consider a BN with 5 
nodes and 5 arcs, as depicted in Fig. 10 (borrowed from (Cooper 1984)), referred 
to as Example_BN. Consider also that all nodes (variables) are binary 
(present/absent) and the class variable is CA. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10 Example_BN: an example for explaining how the rule extraction process conducted 
by BayesRule works 

As can easily be seen in Fig. 10, MB(CA) = {IC, BT}. Since the step 4 of 
BayesRule procedure renames variables, CA, IC and BT as X1, X2 and X3 
respectively. Considering that the two variables (X2 and X3) defining the 
antecedent part of the rules are binary, four rules will be created. The Lauritzen 
and Spigelhalter propagation algorithm (Lauritzen and Spigelhalter 1988) was 
used to determine the value of X1 for the possible combinations of X2 and X3. In 
the example the four extracted rules shown in Fig. 11 define the final RSR 
(reduced set of rules) created by BayesRule. 

 
 
 

CA 
p:20% 
a:80% 

BT 
p:8% 
a:92% 

IC 
p:32% 
a:68% 

CO 
p:32% 
a:68% 

SH 
p:20% 
a:80% 

p: 0.2 
a: 0.8 

        p        a 
p:   0.8     0.2 
a:   0.2     0.8 

        p        a 
p:   0.2     0.05 
a:   0.8     0.95 

IC                 p                      a 
BT           p        a             p         a 
p:           0.8     0.8          0.8      0.05 
a:           0.2     0.2          0.2      0.95 

        p        a 
p:   0.8     0.6 
a:   0.2     0.4 
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Fig. 11 Reduced Set of Rules (RSR) extracted by BayesRule from the BN shown in Fig. 10 

It is worth remembering that the number of rules has a significant impact on the 
system accuracy as well as on its understandability as a motivation for the 
introduction of the last step of the BayesRule procedure. While a high number of 
rules may improve classification accuracy, it may also disrupt understandability. It 
is also well known that rules with too many conditions in their antecedent parts are 
more difficult to understand than those with a lesser number of conditions. Taking 
into account both issues, the last step of BayesRule prunes the RSR particularly 
when the set has a large number of long rules. When having a small RSR, 
however, the pruning step may not be applied. As described in line 22 of the 
BayesRule algorithm, a pruning step may be applied to the final RSR. Considering 
the RSR extracted from Example_BN (Fig. 10) the pruning step would be skipped 
(as the RSR has only four short rules). Nevertheless, to illustrate the 
remove_irrelevant_rules(RSR) procedure consider applying it to the RSR shown 
in Fig. 11. A careful look at rules R3 and R4 reveals that when X2 = absent, X1 is 
always classified as absent (X3 value has no influence in the class definition in 
such a situation). Thus, the remove_irrelevant_rules(RSR) replaces rules R3 and 
R4 by a new rule defined as: “if  X2 = absent then X1 = absent (96%)”. As rules R3 
and R4 were removed, the new rule is named R3 and a more reduced set of rules is 
generated as depicted in Fig. 12.  

 

 

Fig. 12 Reduced Set of Rules (RSR) extracted by BayesRule using a naïve pruning strategy 
from the BN shown in Fig. 10 

In addition, two important issues should be taken into consideration in the 
pruning process. The first one is that the probability estimation (96%) of the new 
R3 rule was obtained running the Lauritzen and Spiegelhalter clique tree algorithm 
(considering X2 = absent as the only evidence to be propagated). The second issue 
is that this pruning strategy is very simple and more elaborated techniques should 
be investigated in further implementations. The experiments described in the next 
subsection show that in addition to produce a reduced set of rules, BayesRule can 
still maintain a good classification performance.  

R1: if  X2 = present and X3 = present then X1 = present (80%) 
R2: if  X2 = present and X3 = absent then X1 = absent (54%) 
R3: if  X2 = absent and X3 = present then X1 = absent (80%) 
R4: if  X2 = absent and X3 = absent then X1 = absent (95%) 

R1: if  X2 = present and X3 = present then X1 = present (80%) 
R2: if  X2 = present and X3 = absent then X1 = absent (54%) 
R3: if  X2 = absent then X1 = absent (96%) 
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5.6.2   Using BayesRule - Experiments and Results 

In order to empirically validate BayesRule, a few experiments were conducted. 
Considering that BayesRule expects as input a Bayesian Network and a class 
variable the experiments were based on well-known BNs. The two main 
advantages of working with a well-known BN are (1) as it is possible to know a 
priori the real dataset probability distribution and its characteristics, the results 
obtained in the experiments can be analyzed in a more consistent and reliable way; 
(2) it is possible to inspect the behavior of BayesRule in specific situations of 
interest. 

Five well-known BNs namely Alarm (Beinlich et al. 1989), Asia (Lauritzen 
and Spiegelhalter 1988), Credit (Druzdzel 1996), Engine Fuel System (Engine) 
(Druzdzel 1996), Win95pts (Horvitz et al. 1998) and two artificially created BNs, 
referred to as Synthetic 1 (Syn_1) and Synthetic 2 (Syn_2), were employed in the 
experiments. Table 9 summarizes the dataset characteristics. 

Table 9 Dataset description where AT: number of features plus class, IN: number of 
patterns and Cl: number of classes 

 Alarm Asia Credit Engine Win95pts Syn_1 Syn_ 2 
AT 38 8 12 9 76 32 32 
IN 104 104 104 104 104 104 104 
Cl See Table 10 2 2 2 See Table 10 2 2 

Table 10 Alarm and Win95pts variable class names and their respective domain sizes 

Alarm Win95pts 

Class name |Class| Class name |Class| 
Anaphylaxis 2 Repeatable Problem 2 

Intubation 3 Driver File Status 2 

KinkedTube 2   

Disconnect 2   

Hypovolemia 2   

InsuffAnesth 2   

LVFailure 2   

PulmEmboulus 2   

The Alarm BN, a network for monitoring patients in intensive care, is based on 
expert knowledge and was originally described in (Beinlich et al. 1989). It is 
defined by 37 variables and 46 arcs and represents 8 diagnostic variables, 16 
measurements, and 13 intermediate variables that connect diagnostic problems to 
findings. The diagnostic variables have no predecessors and are assumed to be 
mutually independent a priori. These variables represent the presence, absence or 
the severity of a particular disease. The measurement variables represent 
quantitative information available when a patient is being monitored. The 
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intermediate variables cannot be measured and, thus, are inferred using the 
available information. In the conducted experiments, the Alarm BN was used as a 
BC. The eight Alarm diagnostic variables Hypovolemia, LVFailure, Anaphylaxis, 
Insufficient Anesthesia, PulmEmboulus, Intubation, KikedTube and Disconnect 
were used for classification purposes (i.e., were considered one at a time, as the 
class variable). The experiments also had the purpose of exploring the BC ability 
to try different class variables using the same model (instead of building a 
customized model for each variable). Fig. 13 shows the structure of the Alarm BN. 
Due to the reduced dimensions of this figure, variable names have been replaced 
by numbers following the convention described in (Cooper and Herskovits 1992). 
The variables originally named Hypovolemia, LVFailure, Anaphylaxis, Insufficient 
Anesthesia, PulmEmboulus, Intubation, KikedTube and Disconnect are 
represented by numbers 17, 18, 19, 20, 21, 22, 23 and 24 respectively. 

 

Fig. 13 Bayesian Network structure representing the Alarm problem 

As briefly mentioned in Section 6.1, the MAP approach to extract classification 
rules from a BC takes into account the whole BC structure (variables and arcs). In 
the Alarm network this will produce over 236 rules, each one with an antecedent 
part containing 36 variable tests. The BayesRule method, however, by using the 
Markov Blanket of the class feature, minimizes the number of rules as well as  
the number of variable tests in the antecedent part of each rule. Table 10 shows the 
variables used as class variables in the experiments conducted using the Alarm 
domain. To extract classification rules for each Alarm class variable, the 
BayesRule procedure was run eight times (one for each class) using the same 
Alarm network as input. 

The Asia BN is a simple graphical model having 8 nodes and 8 arcs. It is 
commonly used in the literature to illustrate basic concepts of Bayesian networks 
in diagnosis and learning problems. It was first mentioned in (Lauritzen and 
Spiegelhalter 1988) and the name Asia came from the fact that, in this BN, there is 
a node (considered the class variable in the experiments) which models whether an 
individual has recently visited Asia, which is considered to be a risk factor in 
tuberculosis. Fig. 14 depicts the Asia network structure. 
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Fig. 14 Bayesian network structure representing the Asia domain 

As described in the GeNIe1 software (Druzdzel 1999), the Credit BN is a 
simple network for assessing credit worthiness of an individual. The node 
CreditWorthiness is of interest to the user and as such should be assigned as the 
class variable. All parentless nodes are described by uniform distributions; this is a 
weakness of the model, although it can be compensated by the fact that most of 
the time all the corresponding variables will be observed and the network will 
compute the probability distribution over credit worthiness correctly. Fig. 15 
shows the Credit BN structure. 

 

Fig. 15 Bayesian network structure representing the Credit domain 

Also in GeNIe software, the Engine Fuel System (Engine) BN describes a 
simple diagnostic domain of a vehicle fuel system. It has 9 nodes and was created 
to verify whether the “Fuel Filters and Bypass Valves” are defective or not. Fig. 
16 shows the BN structure. 

The Win95pts BN was created to be used as an expert system for printer 
troubleshooting in Windows 95. It was developed at the Microsoft Research 
Center and was part of the Lumiere Project (Horvitz et al. 1998) at Microsoft 
Research that was initiated in 1993 with the goal of developing methods and an 
architecture for reasoning about the goals and needs of software users as they 
                                                           
1 GeNIe modeling environment developed by the Decision Systems Lab. of the University 

of Pittsburgh (http://www.sis.pitt.edu/~dsl). 
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work with software. At the heart of the Lumiere are Bayesian models that capture 
the uncertain relationships between the goals and needs of a user and observations 
about a program state, sequences of actions over time, and words in a user's query 
(when such a query has been made). Fig. 17 depicts the Win95pts BN structure. 

 

Fig. 16 Bayesian network structure representing the Engine Fuel System domain 

 

Fig. 17 Bayesian network structure representing the Win95pts domain 

Table 10 shows the variables used as class variables in the experiments 
conducted using the Win95pts domain. Two variables (one at a time) were used as 
class variables, namely the “Repeatable Problem” and the “Driver File Status”.  

As with Alarm BN, the Win95pts BN was not used to classify a single variable. 
Using the Win95pts BN, however, only two variables (one at a time) were 
considered as class, namely the “Repeatable Problem” and the “Driver File Status” 
variables. 



5  Roles Played by BN in Machine Learning: An Empirical Investigation 107
 

Two artificial domains named Synthetic 1 (Syn_1) and Synthetic 2 (Syn_2) 
were simulated in order to verify the behavior of BayesRule. Such simulations 
were performed manually by building BNs to encode a joint probability 
distribution over a set of random variables and, thus, reproducing hypothetical 
circumstances. Two synthetic BNs also named Synthetic 1 (Syn_1) and Synthetic 
2 (Syn_2) were built and are depicted in Fig. 18. 

 

 

Synthetic 1 (Syn_1) Synthetic 2 (Syn_2)

Fig. 18 Bayesian networks representing Synthetic 1 and Synthetic 2 domains 

Syn_1 BN represents a domain with 32 variables where only one variable 
directly influences the class variable (the MB of the class variable has only one 
variable) and all variables have at most one parent. Therefore, the Syn_1 structure 
represents a polytree which is a suitable structure to verify the behavior of a 
classifier in problems where variables have simple interdependencies relationships 
(Pearl 1988). The BN was created to simulate a situation that favors BayesRule. 
Considering that the BN has 32 binary variables and only one is present in MB of 
the class, BayesRule should generate only two rules, each having a single variable 
test in its antecedent part. 

Syn_2 BN describes a domain having 32 variables with 14 variables directly 
influencing the class variable. In this BN, each variable has 3 parents at most and 
this fact allows the establishing of more complex interdependency relationships 
among variables than the polytree structures. Therefore, Syn_2 is a lesser 
restrictive model than Syn_1. This BN was created in an attempt to simulate a 
situation that does not favor BayesRule. Considering that the BN has 32 binary 
variables and that 14 of them are in the MB of the class, BayesRule should 
generate 214 rules having 14 variable tests in their antecedents. This illustrates a 
situation where the use of BayesRule is not recommended. In scenarios like that 
BayesRule should be used with a pruning mechanism (such as confidence and 
coverage). For measuring the accuracy of the set of generated rules from each BN, 
a testing set containing 10,000 patterns was created using the GeNIe software. 

For a more robust comparative analysis, besides presenting the classification 
results (ACCRs) obtained using BayesRule, this section also shows the 
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performance of the traditional decision tree based C4.5 algorithm (Quinlan 1993) 
(using the WEKA data mining environment (Witten and Frank 2000)) in the same 
domains; the obtained C4.5 trees were translated into sets of classification rules. It 
is important to remind that an unique BN can be used to extract classification rules 
having any of involved variables as consequent. Thus, when using BayesRule, a 
single BN was induced for each dataset. When extracting classification rules from 
decision trees, however, one particular decision tree will give rise to rules having 
one specific variable as consequent. Therefore, for the Alarm domain 8 different 
decision trees (one for each class variable) were induced and for the Win95pts 
domain, two different decision trees were induced. The performance results of 
BayesRule and C4.5 are presented in Table 11. 

Table 11 Results obtained using BayesRule and C4.5 without pruning. A: Alarm, 
W:Win95pts and ACCR: Average Correct Classification Rate 

Domain 
Number of rules 

Max. number of 
variable tests per rule 

ACCR(%) 

BayesRule C4.5 BayesRule C4.5 BayesRule C4.5 

A 

Hypovolemia (17) 18 151 3 24 98.36 98.96 
LVFailure (18) 36 101 4 16 99.02 99.42 

Anaphylaxis (19) 3 35 1 10 98.97 99.02 
Insufficient Anesthesia (20) 54 795 4 22 88.01 90.68 

PulmEmboulus (21) 18 61 3 14 99.54 99.67 
Intubation (22) 8223 180 8 15 98.61 99.13 

KinkedTube (23) 192 114 4 15 99.19 99.42 
Disconnect (24) 16 89 2 25 98.98 99.23 

Asia 2 1 1 1 98.98 98.98 
Credit 24 3016 4 11 72.51 66.90 

EngineFuelSystem 64 10 6 5 99.94 99.94 

W 
Repeatable Problem 4 96 2 14 98.22 98.42 
Driver File Status 2 47 1 28 98.23 98.23 

Syn_1 2 550 1 18 89.16 81.86 
Syn_2 16384 363 14 17 88.12 87.82 

The ACCR values in Table 11 were obtained in a 10-fold cross-validation 
strategy and all the datasets used by both BayesRule and C4.5 were the same. 
Analyzing the results shown in Table 11 it is possible to observe that the ACCR 
values produced using either BayesRule or C4.5 set of rules are very similar. The 
only significant difference occurred in the Credit domain where BayesRule 
produced a more accurate rule set.  

Focusing on the number of rules, however, it can be seen that results produced 
by BayesRule and C4.5 are not so similar. In ten out of fifteen classification 
experiments, BayesRule outperformed C4.5. For the class variable Intubation 
(22), BayesRule generated 8,223 rules having at most 8 variable tests each, while 
the decision tree based approach generated 180 rules having at most 15 variable 
tests each. The considerably high number of rules generated by BayesRule for the 
class variable 22 is not surprising. As the Markov Blanket of Intubation (22) has 
eight variables, the number of generated rules tends to be large. Thus, BayesRule 
may not be convenient when extracting classification rules for a variable having a 
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large MB. The same situation happened with the Synthetic 2 domain, which 
confirmed this expected behavior. Based on these facts the following rule of 
thumb is suggested: a variable X may be not suitable for undergoing a ‘translation 
into rules’ process (using BayesRule) if |MB(X)| ≥ 6. 

In an attempt to improve the results obtained with variable 22 (from Alarm) and 
with the Synthetic 2 domain, a simple pruning strategy was implemented, that of 
removing rules containing superfluous variable tests. The C4.5 algorithm also 
implements a pruning procedure. Results using the pruned rule sets obtained with 
both algorithms are shown in Table 12. With pruning, BayesRule and C4.5 results 
have improved, since the number of rules has dropped in most of the experiments.  

Table 12 Summary of the results obtained using BayesRule and C4.5 with pruning. A: 
Alarm, W:Win95pts and ACCR: Average Correct Classification Rate 

Domain 
Number of rules 

Max. number of 
variable tests per rule 

ACCR(%) 

BayesRule C4.5 BayesRule C4.5 BayesRule C4.5 

A 

Hypovolemia (17) 12 121 3 17 98.36 98.96 
LVFailure (18) 32 79 3 10 99.02 99.42 

Anaphylaxis (19) 1 29 0 7 98.97 99.02 
Insufficient Anesthesia 

(20) 
34 678 4 22 88.01 90.68 

PulmEmboulus (21) 9 45 3 8 99.54 99.67 
Intubation (22) 1905 164 8 14 98.61 99.13 

KinkedTube (23) 84 83 4 9 99.19 99.42 
Disconnect (24) 13 79 2 20 98.98 99.23 

Asia 2 1 1 1 98.98 98.98 
Credit 20 114 4 11 72.51 72.39 

EngineFuelSystem 34 10 6 5 99.94 99.94 

W 
Repeatable Problem 4 44 1 14 98.22 98.33 
Driver File Status 2 17 1 12 98.23 98.99 

Syn_1 2 2 14 1 89.16 89.16 
Syn_2 8056 363 14 17 88.12 87.92 

The results displayed in Table 12 show that BayesRule generated considerably 
smaller rule sets than the C4.5 in nine out of fifteen experiments. Even after 
pruning the resulting rule set for the Alarm, variable 22 remains with 1,905 rules, 
and for Syn_2, with 8,056 rules. In both cases the number of rules is still 
considerably high when compared to the number of rules produced by C4.5. There 
is no enough evidence to state that one method is better than the other. One may 
conclude, however, that BayesRule is a consistent way of extracting relevant 
classification rules from a BN; specifically in the conducted experiments, it 
generated smaller rule sets, when compared to those generated by the C4.5. The 
use of the MB concept was crucial for simplifying the rule set, while maintaining 
accuracy. Taking into account the MB of the class variable, the maximum number 
of generated rules was substantially reduced.  

It is important to mention that the number of variables in the Markov Blanket 
of the class variable is not the only criteria to identify the number of rules to be 
generated. This situation is illustrated in the Alarm domain with variable 20 and 
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variable 24 as classes. Notice that, although |MB(20)|=4 and |MB(24)| = 2, 
BayesRule produced a rule set with 12 and 16 rules respectively. This is a 
consequence of the number of possible values each of these variables can have. 
Variables that have a greater number of possible associated values generate a 
higher number of combinations and, consequently, a greater number of rules. 
Results show that there are two main factors influencing the number of rules 
generated by BayesRule. One is the Markov Blanket of the class variable and the 
other, the number of possible values each variable in the Markov Blanket of the 
class variable has. 

In spite of the motivating results, there are still some issues that should be 
further investigated. There is a possibility that a more elaborated pruning 
procedure, involving the concepts of confidence and coverage of rules, could 
improve the results. Another relevant aspect to be explored is related to the fact 
that the rules extracted from BCs may be in a causal context (Pearl 2000).  

5.7   Conclusion 

The main goal of this chapter was to show that BN is a sound formalism that has a 
broad use in many different machine leaning tasks, starting with pre-processing, 
followed by learning and finally contributing in post processing. Although the 
chapter describes a few methods related to the three main ML tasks, it is important 
to mention that (a) there are many approaches that have only been cited and (b) 
several other roles that Bayesian networks can play have not been addressed. In 
addition, all the discussed algorithms are based on BNs having only discrete 
variables. When continuous variables are employed BN variations such as 
Gaussian BNs (Neapolitan 2003) should be used. 

One of the advantages of using the BN approach in all the three ML tasks is to 
maintain the same inductive bias throughout the whole sequence of ML steps i.e., 
preparing the data, learning and pruning. Although in particular domains there is a 
chance of this not being a particularly convenient feature, we believe that, in 
general, by maintaining the same bias, the whole three-step process can be more 
efficient. 

Due to their similarities to BNs, other probabilistic graphical models such as 
Markov Networks (Pearl 1988) and Conditional Random Fields (Lafferty et al. 
2001) can also play the same roles discussed in this paper in spite of not being able 
to represent causal relationships among variables as BN does. 

Acknowledgments. This research was partially supported by Brazilian Research Agencies 
FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo-Brazil) and CNPq 
(Conselho Nacional de Desenvolvimento Científico e Tecnológico-Brazil). We wish to 
express our gratitude to Dr. Sheela Ramanna for her insightful comments and suggestions 
concerning our manuscript. 

 



5  Roles Played by BN in Machine Learning: An Empirical Investigation 111
 

References 

Abellán, J., Gómez-Olmedo, M., Moral, S.: Some variations on the PC algorithm. In: Proc. 
of The 3rd European Workshop on Probabilistic Graphical Models (PGM 2006), Prague, 
pp. 1–8 (2006) 

Anderson, R.L.: Missing plot techniques. Biometrics 2, 41–47 (1946) 
Antal, P., Hullám, G., Gézsi, A., Millinghoffer, A.: Learning complex Bayesian network 

features for classification. In: Proc. of The 3rd European Workshop on Probabilistic 
Graphical Models, pp. 9–16 (2006) 

Antal, P., Millinghoffer, A., Hullam, G., Szalai, C., Falus, A.: A Bayesian view of 
challenges in feature selection: multilevel analysis, feature aggregation, multiple targets, 
redundancy and interaction. In: Journal of Machine Learning Research: Workshop and 
Conference Proceedings, vol. 4, pp. 74–89 (2008) 

Batista, G.E.A.P., Monard, M.C.: An analysis of four missing data treatment methods for 
supervised learning. Applied Artificial Intelligence 17(5-6), 519–534 (2003) 

Beinlich, I., Suermondt, H.J., Chavez, R.M., Cooper, G.F.: The ALARM monitoring 
system: a case study with two probabilistic inference techniques for belief networks. In: 
Proc. of the 2nd European Conference on Artificial Intelligence in Medicine, London, 
UK, vol. 38, pp. 247–256 (1989) 

Ben-Gal, I.: Bayesian networks. In: Ruggeri, F., Faltin, F., Kenett, R. (eds.) Encyclopedia 
of Statistics in Quality & Reliability. Wiley & Sons (2007) 

Bilmes, J.: A gentle tutorial on the EM algorithm and its application to parameter 
estimation for Gaussian mixture and hidden Markov models. Technical Report, 
University of Berkeley, ICSI-TR-97-021 (1997) 

Blum, A.L., Langley, P.: Selection of relevant features and examples in machine learning. 
Artificial Intelligence, 245–271 (1997) 

Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: CART: Classification and 
Regression Trees. Chapman & Hall, Wadsworth (1983) 

Bressan, G.M., Oliveira, V.A., Hruschka Jr., E.R., Nicoletti, M.C.: Using Bayesian 
networks with rule extraction to infer the risk of weed infestation in a corn-crop. 
Engineering Applications of Artificial Intelligence 22, 579–592 (2009) 

Brown, L.E., Tsamardinos, I.: Markov blanket-based variable selection in feature space. 
Technical Report DSL TR-08-01, Department of Biomedical Informatics, Vanderbilt 
University (2008) 

Chajewska, U., Halpern, J.Y.: Defining explanation in probabilistic systems. In: Proc. of 
Conference of Uncertainty in Artificial Intelligence, Providence, RI, pp. 62–71 (1997) 

Cheng, J., Bell, D.A., Liu, W.: Learning belief networks from data: an information theory 
based approach. In: Proc. of The 6th ACM International Conference on Information and 
Knowledge Management, pp. 325–331 (1997) 

Cheng, J., Greiner, R.: Comparing Bayesian network classifiers. In: Proc. of The 15th 
Conference on Uncertainty in Artificial Intelligence, pp. 101–107 (1999) 

Cheng, J., Greiner, R.: Learning Bayesian Belief Network Classifiers: Algorithms and 
System. In: Stroulia, E., Matwin, S. (eds.) Canadian AI 2001. LNCS (LNAI), vol. 2056, 
pp. 141–151. Springer, Heidelberg (2001) 

Cheng, J., Greiner, R., Kelly, J., Bell, D., Liu, W.: Learning Bayesian networks from data: 
an information-theory based approach. Artificial Intelligence 137(1), 43–90 (2002) 



112 E.R. Hruschka Jr. and M. do Carmo Nicoletti
 

Chickering, D.M.: Learning Bayesian networks is NP-complete. In: Fisher, D., Lenz, A. 
(eds.) Learning from Data: Artificial Intelligence and Statistics V, pp. 121–130. Springer 
(1996) 

Chickering, D.M.: Optimal structure identification with greedy search. Journal of Machine 
Learning Research 3, 507–554 (2002) 

Cooper, G.F.: The computational complexity of probabilistic inference using Bayesian 
belief networks (research note). Artificial Intelligence 42(2-3), 393–405 (1990) 

Cooper, G., Herskovitz, E.: A Bayesian method for the induction of probabilistic networks 
from data. Machine Learning 9, 309–347 (1992) 

Cooper, G.F.: NESTOR: A computer-based medical diagnostic aid that integrates causal 
and probabilistic knowledge. PhD thesis, Medical Information Sciences, Stanford 
University, Stanford, CA (1984) 

Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via 
the EM algorithm. Journal of the Royal Statistical Society B 39, 1–39 (1977) 

Díez, F.J., Mira, J., Iturralde, E., Zubillaga, S.: Diaval, a Bayesian expert system for 
echocardiography. Artificial Intelligence in Medicine 10(1), 59–73 (1997) 

Duda, R.O., Hart, P.E.: Pattern classification and scene analysis. John Wiley & Sons (1973) 
Druzdzel, M.J.: Qualitative verbal explanations in Bayesian belief networks. Artificial 

Intelligence and Simulation of Behaviour Quarterly 94, 43–54 (1996) 
Druzdzel, M.J.: SMILE: Structural modeling, inference, and learning engine and GeNIe: A 

development environment for graphical decision-theoretic models. In: Proc. of the 16th 
National Conference on Artificial Intelligence, Orlando, FL, pp. 902–903 (1999) 

Duch, W., Adamczak, R., Grabczewski, K.: A new methodology of extraction, optimization 
and application of crisp and fuzzy logical rules. IEEE Transactions on Neural 
Networks 11(2), 1–31 (2000) 

Fast, A., Jensen, D.: Constraint relaxation for learning the structure of Bayesian networks. 
Technical Report 09-18, Computer Science Department, University of Massachusetts, 
Amherst (2009) 

Fayyad, U.M., Shapiro, G.P., Smyth, P.: From data mining to knowledge discovery: an 
overview. In: Fayyad, et al. (eds.) Advances in Knowledge Discovery and Data Mining, 
pp. 1–37. MIT Press (1996) 

Frank, A., Asuncion, A.: UCI Machine Learning Repository. School of Information and 
Computer Science. University of California, Irvine (2010), 
http://archive.ics.uci.edu/ml 

Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian network to analyze 
expression data. Journal of Computational Biology 7, 601–620 (2000) 

Friedman, N.: Inferring cellular networks using probabilistic graphical models. 
Science 303, 799–805 (2004) 

Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine 
Learning 29, 131–163 (1997) 

Friedman, N., Goldszmidt, M.: Building classifiers using Bayesian networks. In: Proc. of 
the AAAI 1996, vol. 2, pp. 1277–1284 (1996) 

Friedman, H.F., Kohavi, R., Yun, Y.: Lazy decision trees. In: Proc. of the 13th National 
Conference on Artificial Intelligence, pp. 717–724. AAAI Press/MIT Press, Cambridge, 
MA (1996) 

Fu, F.S., Demarais, M.C.: Markov blanket based feature selection: a review of past decade. 
In: Proc. of the World Congress on Engineering (WCE 2010), London, UK, pp. 321–
328 (2010) 



5  Roles Played by BN in Machine Learning: An Empirical Investigation 113
 

Ghahramami, Z., Jordan, M.: Learning from incomplete data. Technical Report AI Lab 
Memo no. 1509, CBCL paper no. 108. MIT AI Lab. (1995) 

Guo, H., Hsu, W.: A survey on algorithms for real-time Bayesian network inference. In: 
Proc. of The AAAI-02/KDD-02/UAI-02 Joint Workshop on Real-Time Decision 
Support and Diagnosis Systems, Edmonton, Alberta, Canada (2002) 

Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Journal of 
Machine Learning Research 3, 1157–1182 (2003) 

Heckerman, D.: Bayesian networks for data mining. Data Mining and Knowledge 
Discovery Journal 1(1), 79–119 (1997) 

Heckerman, D., Geiger, D.: Learning Bayesian networks: a uni. cation for discrete and 
Gaussian domains. In: Proc. 11th Conference on Uncertainty in Artificial Intelligence 
(UAI 1995), pp. 274–284 (1995) 

Heckerman, D., Chickering, D.M., Meek, C., Rounthwaite, R., Kadie, C.: Dependency 
networks for inference, collaborative filtering, and data visualization. Journal of 
Machine Learning Research 1(1), 49–75 (2000) 

Henrion, M., Druzdzel, M.J.: Qualitative propagation and scenario-based approaches to 
explanation of probabilistic reasoning. In: Proc. of 6th Conference on Uncertainty in 
Artificial Intelligence, Cambridge, MA, pp. 17–32 (1990) 

Horvitz, E., Breese, J., Heckerman, D., Hovel, D., Rommelse, K.: The Lumiere project: 
Bayesian user modeling for inferring the goals and needs of software users. In: Proc. of 
the 14th Conference on Uncertainty in Artificial Intelligence, Madison, WI, pp. 256–
265. Morgan Kaufmann, San Francisco (1998) 

Hruschka Jr., E.R., Nicoletti, M.C., Oliveira, V., Bressan, G.: BayesRule: a Markov-blanket 
based procedure for extracting a set of probabilistic rules from Bayesian classifiers. Int. 
Journal of Hybrid Intelligent Systems 76(2), 83–96 (2008) 

Hruschka, E.R., Garcia, A., Hruschka Jr., E.R., Ebecken, N.F.F.: On the influence of 
imputation in classification: practical issues. Journal of Experimental and Theoretical 
Artificial Intelligence 21, 43–58 (2009) 

Hruschka Jr., E.R., Hruschka, E.R., Ebecken, N.F.F.: Bayesian networks for imputation in 
classification problems. Journal of Intelligent Information Systems 29, 231–252 (2007) 

Hruschka Jr., E.R., Hruschka, E.R., Ebecken, N.F.F.: Feature Selection by Bayesian 
Networks. In: Tawfik, A.Y., Goodwin, S.D. (eds.) Canadian AI 2004. LNCS (LNAI), 
vol. 3060, pp. 370–379. Springer, Heidelberg (2004) 

Hruschka Jr., E.R., Ebecken, N.F.F.: Missing values prediction with K2. Intelligent Data 
Analysis Journal (IDA) 6(6), 557–566 (2002) 

Hruschka Jr., E.R., Ebecken, N.F.F.: Ordering attributes for missing values prediction and 
data classification. In: Data Mining III - Management Information Systems Series, 6th 
edn., WIT Press, Southampton (2002) 

Hruschka, E.R., Hruschka Jr., E.R., Ebecken, N.F.F.: Evaluating a Nearest-Neighbor 
Method to Substitute Continuous Missing Values. In: Gedeon, T(T.) D., Fung, L.C.C. 
(eds.) AI 2003. LNCS (LNAI), vol. 2903, pp. 723–734. Springer, Heidelberg (2003) 

Husmeier, D., Dybowski, R., Roberts, S. (eds.): Probabilistic modeling in bioinformatics 
and medical informatics. Springer, London (2005) 

Inza, I., Larrañaga, P., Etxeberia, R., Sierra, B.: Feature subset selection by Bayesian 
networks based optimization. Artificial Intelligence 123(1-2), 157–184 (2000) 

Inza, I., Larrañaga, P., Sierra, B.: Feature subset selection by Bayesian networks: a 
comparison with genetic and sequential algorithms. International Journal of 
Approximate Reasoning 27, 143–164 (2001) 



114 E.R. Hruschka Jr. and M. do Carmo Nicoletti
 

Jansen, R., et al.: A Bayesian network approach for predicting protein-protein interactions 
from genomic data. Science 302, 449–453 (2003) 

John, G., Kohavi, R., Pfleger, K.: Irrelevant features and the subset selection problem. In: 
Proc. of the 11th International Conference on Machine Learning, pp. 121–129 (1994) 

Jordan, M., Xu, L.: Convergence results for the EM approach to mixtures of experts 
architectures. Neural Networks 8, 1409–1431 (1996) 

Kalisch, M., Bühlmann, P.: Estimating high-dimensional directed acyclic graphs with the 
PC-algorithm. Journal of Machine Learning Research 8, 613–636 (2007) 

Kohavi, R., Becker, B., Sommerfield, D.: Improving simple Bayes. In: van Someren, M., 
Widmer, G. (eds.) Poster papers of the ECML 1997, pp. 78–87. Charles University, 
Prague (1997) 

Koller, D., Sahami, M.: Toward optimal feature selection. In: Proc. of the 13th International 
Conference on Machine Learning, pp. 284–292 (1996) 

Kong, A., Liu, J.S., Wong, W.H.: Sequential imputations and Bayesian missing data 
problems. Journal of the American Statistical Association 89(425), 278–288 (1994) 

Kononenko, I., Bratko, I., Roskar, E.: Experiments in automatic learning of medical 
diagnostic rules. Technical Report, Jozef Stefan Institute, Ljubjana (1984) 

Lacave, C., Díez, F.: A review of explanation methods for Bayesian networks. The 
Knowledge Engineering Review 17(2), 107–127 (2002) 

Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: probabilistic models for 
segmenting and labeling sequence data. In: Proc. 18th International Conference on 
Machine Learning, pp. 282–289. Morgan Kaufmann, San Francisco (2001) 

Lam, W., Bacchus, E.: Using causal information and local measures to learn Bayesian 
networks. In: Proceedings of 9th Conference on Uncertainty in Artificial Intelligence, 
Washington, DC, pp. 243–250 (1993) 

Langley, P., Iba, W., Thompson, K.: An analysis of Bayesian classifiers. In: Proc. of the 
AAAI 1992, pp. 223–228 (1992) 

Langley, P., Sage, S.: Induction of selective Bayesian classifiers. In: Proc. of the 10th 
Conference on Uncertainty in Artificial Intelligence, pp. 399–406. Morgan Kaufmann 
Publishers, Seattle (1994) 

Lauritzen, S.L.: Some modern applications of graphical models. In: Green, P.J., Hjort, N.L., 
Richardson, S. (eds.) Highly Structured Stochastic Systems. Oxford University Press 
(2003) 

Lauritzen, S., Spiegelhalter, D.: Local computations with probabilities on graphical 
structures and their application to expert systems. Journal of the Royal Statistical 
Society B 50, 157–224 (1988) 

Little, R., Rubin, D.B.: Statistical analysis with missing data. John Wiley & Sons, New 
York (1987) 

Liu, H., Motoda, H.: Feature selection for knowledge discovery and data mining. Kluwer 
Academic (1998) 

Lobo, O.O., Noneao, M.: Ordered estimation of missing values for propositional learning. 
Journal of the Japanese Society for Artificial Intelligence 15(1), 162–168 (2000) 

Madden, M.G.: Evaluation of the performance of the Markov blanket Bayesian classifier 
algorithm. Technical Report No. NUIG-IT-011002, NUI Galway, Ireland (2002) 

Mitchell, T.: Machine learning. The McGraw-Hill Companies, Inc. (1997) 
Moore, A.: Data Mining Tutorials (2011), 

http://www.autonlab.org/tutorials/ 
Murphy, K.: A brief introduction to graphical models and Bayesian networks (1998), 

http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html 



5  Roles Played by BN in Machine Learning: An Empirical Investigation 115
 

Neapolitan, R.E.: Learning Bayesian networks. Prentice Hall (2003) 
Nicoletti, M.C.: The feature subset selection problem in machine learning – Talk presented 

at The Seventh International Conference on Intelligent Systems Design and 
Applications, Rio de Janeiro, Brazil (2007) (unpublished) 

Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference. 
Morgan Kaufmann Publishers, San Mateo (1988) 

Pearl, J.: Causality: models, reasoning, and inference. Cambridge University Press (2000) 
Pourret, O., Nai, P., Marcot, B.: Bayesian networks: a practical guide to applications. 

Wiley, Chichester (2008) 
Preece, A.D.: Iterative procedures for missing values in Experiments. Technometrics 13, 

743–753 (1971) 
Pyle, D.: Data preparation for data mining. Academic Press, San Diego (1999) 
Quinlan, J.R.: C4.5 program for machine learning. Morgan Kaufmann, San Francisco 

(1993) 
Quinlan, J.R.: Induction of decision trees. Machine Learning 1(1), 81–106 (1986) 
Redner, R., Walker, H.: Mixture densities, maximum likelihood and the EM algorithm. 

SIAM Review 26(2), 195–239 (1984) 
Reunanen, J.: Overfitting in making comparisons between variable selection methods. 

Journal of Machine Learning Research 3, 1371–1382 (2003) 
Rubin, D.B.: Inference and missing data. Biometrika 63, 581–592 (1976) 
Rubin, D.B.: Formalizing subjective notion about the effects of nonrespondents in samples 

surveys. Journal of the American Statistical Association 72, 538–543 (1977) 
Rubin, D.B.: Multiple imputation for non-responses in surveys. John Wiley & Sons, New 

York (1987) 
Russel, S., Norvig, P.: Artificial intelligence: a modern approach. Prentice Hall Series in 

Artificial Intelligence (1995) 
Sachs, K., Perez, O., Pe’er, D., Lauffenburguer, D.A., Nolan, G.P.: Causal protein-signaling 

networks derived from multiparameter single-cell data. Science 308, 523–529 (2005) 
Santos, E.B., Hruschka Jr., E.R., Nicoletti, M.C.: Conditional independence based learning 

of Bayesian classifiers guided by a variable ordering genetic search. In: Proc. of CEC 
2007, vol. 1, pp. 1–10. IEEE Press, Los Alamitos (2007) 

Schllimmer, J.C.: Concept acquisition through representational adjustment. Doctoral 
Dissertation, Department of Information and Computer Science. University of 
California, Irvine (1987) 

Schafer, J.L.: Analysis of incomplete multivariate data. Chapman & Hall/CRC, Boca Raton 
(2000) 

Schafer, J.L., Graham, J.W.: Missing data: our view of the state of the art. Psychological 
Methods 7(2), 147–177 (2002) 

Sebastiani, P., Yu, Y.-H., Ramoni, M.F.: Bayesian machine learning and its potential 
applications to the genomic study of oral oncology. Advances in Dental Research 17, 
104–108 (2003) 

Spiegelhalter, D.J., Lauritzen, S.L.: Sequential updating of conditional probability on direct 
graphical structures. Networks 20, 576–606 (1990) 

Spirtes, P., Glymour, C., Scheines, R.: Causation, predication, and search. Springer, New 
York (1993) 

Spirtes, P., Meek, C.: Learning Bayesian networks with discrete variables from data. In: 
KDD 1995, pp. 294–299 (1995) 



116 E.R. Hruschka Jr. and M. do Carmo Nicoletti
 

Suzuki, J.: A construction of Bayesian networks from databases based on an MDL scheme. 
In: Proc. of 9th Conference on Uncertainty in Artificial Intelligence, Washington, DC, 
pp. 266–273 (1993) 

Tanner, M.A., Wong, W.H.: The calculation of posterior distributions by data augmentation 
(with discussion). Journal of the American Statistical Association 82, 528–550 (1987) 

Troyanskaya, O.G., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., 
Botstein, D., Altman, R.B.: Missing value estimation methods for DNA microarrays. 
Bioinformatics 17(6), 520–525 (2001) 

White, A.P.: Probabilistic induction by dynamic path generation in virtual trees. In: Bramer, 
M.A. (ed.) Research and Development in Expert Systems III, pp. 35–46. Cambridge 
University Press (1987) 

Witten, I.H., Frank, E.: Data mining – practical machine learning tools and techniques with 
Java implementations. Morgan Kaufmann Publishers, USA (2000) 

Wu, C.F.J.: On the convergence properties of the EM algorithm. The Annals of 
Statistics 11(1), 95–103 (1983) 

Zeng, Y., Luo, J., Lin, S.: Classification using Markov blanket for feature selection. In: 
Proc. of The International Conference on Granular Computing (GrC 2009), pp. 743–747 
(2009) 

Zio, M.D., Scanu, M., Coppola, L., Luzi, O., Ponti, A.: Bayesian networks for imputation. 
Journal of the Royal Statistical Society, Series A (Statistics in Society) 167(2), 309–322 
(2004) 



Chapter 6

Evolving Intelligent Systems: Methods,
Algorithms and Applications

Andre Lemos, Walmir Caminhas, and Fernando Gomide

Abstract. Evolving intelligent systems (EIS) are highly adaptive systems
able to update its own parameters and structure based on a date stream.
These systems have been developed to address problems of modeling, control,
prediction, classification and data processing in a nonstationary, dynamic
changing environment. Pioneers works in this area are dated from the around
the turn of the centuries and were focused in areas of neural networks, fuzzy
rule-based systems and neural-fuzzy hybrids. In this century the area has
been expanded to also address statistical models, hardware implementations
and so on. The aim of this chapter is to provide an introduction and a state of
the art view about this subject. The purpose is to present the paradigm and
the associated concepts, address the main learning approaches, and detail
recently developed models based on participatory learning and fuzzy trees.

6.1 Introduction

The continuous increase in availability of large amounts of data has moti-
vated considerable research to develop new online algorithms to process data
streams. Mining fast-moving, quickly changing data streams brings unique
problems and requires considerable effort. One of the most important is-
sues in online data mining concerns the intrinsic nonstationarity of the data
streams. For instance, in industry, machines suffer from stresses, aging, and
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faults; in economic systems, performance indicators and stock indices vary;
in communication systems, parameters and conditions of transmission media
are also subject to continuous changes. This increasing interest in adaptive
system modeling has motivated the development of highly adaptive and intel-
ligent systems, denominated evolving intelligent systems (EIS), whose models
are self-developed from a stream of data.

EIS are able to address problems of modeling, control, prediction, classi-
fication, data processing and feature selection in a non-stationary, dynamic
changing environment. Such systems embody online learning methods and
one-pass incremental algorithms that evolve or gradually change individual
models to guarantee life-long learning and self-organization of the system
structure.

Pioneers works in this area are dated from around the turn of the centuries
and were focused in the areas of neural networks [20, 57], fuzzy rule-based sys-
tems [5, 44, 38] (evolving fuzzy systems) and neural-fuzzy hybrids [31, 40]. In
the last 10 years, the area has been expanded to also address statistical mod-
els [24], granular computing [34], hardware implementations, etc. Figure 1
illustrates different types of evolving intelligent systems, focusing on evolving
fuzzy systems. Real world applications have already been reported in areas
such as intelligent sensors and actuators [7, 8, 45], autonomous unmanned
systems [61, 9], process monitoring & control [19, 56, 43, 35], biomedical
data processing, etc [29].

Evolving Intelligent Systems

Fuzzy Non-Fuzzy

Neural Networks
Statistical

Methods
Rule-Based NeuralTree

Linguistic Functional
Triangular Norms-Based

Neurons

Nonlinear 

Neurons

Fig. 1 Different types of EIS
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The term“evolving”was used to differ from adaptive systems. EIS are able
to adapt not only its parameters (something generally attributed to the term
“adaptive” ) but also its structure based on a data stream. Thus, the term
“evolving” was employed to define a higher level of adaptation, where the
topology of the model is not fixed [10].

One of the first models proposed is the evolving Takagi-Sugeno (eTS) [5].
This model is a functional fuzzy rule-based system, whose structure contin-
uously evolves based on clusters created/excluded by a recursive version of
the subtractive clustering algorithm. The consequent parameters are updated
with the recursive least squares algorithm and its variations. Several other
similar approaches can be found in literature [31, 5, 6, 44, 41] containing a
similar topology (rule-based systems) and differing on the clustering mecha-
nism used to evolve the rule-base. These models also propose improvements
in the model structure adaptation, like, for instance, proposing pruning algo-
rithms to avoid overfitting.

Recently an evolving rule-based model was developed from the idea of
Participatory Learning named evolving Participatory Learning (ePL) [41].
Participatory learning is a learning paradigm, which assumes that learning
and beliefs about the system to be modeled depend on what the learning
process has already learned. This learning mechanism is ideal for developing
of evolving systems because it balances learning and changing while still
respecting the accumulated knowledge.

The ePL model has been extended recently by a fuzzy rule-based sys-
tem with multivariable membership functions named evolving Multivariable
Gaussian (eMG) [38]. This model accounts for the possibility that input vari-
ables may interact, avoids the curse of dimensionality when handling clusters
formation, and introduces a sound and systematic approach for learning that
results in an algorithm with few parameters.

Fuzzy rule-based models are not the only candidate for EIS. Recently an
evolving tree structure modeling approach was introduced [37], denominated
evolving Fuzzy linear regression Tree (eFT). The approach concerns a fuzzy
linear regression tree whose topology can be continuously updated using a
statistical model selection test. A fuzzy linear regression tree is a fuzzy tree
with linear model in each leaf.

The aim of this chapter is to provide an introduction and the state of the
art view on intelligent evolving modeling, focusing on evolving fuzzy systems.
The purpose is to present the paradigm and the associated concepts, address
the main learning approaches, and detail recently developed models based on
participatory learning and fuzzy trees.

The chapter proceeds as follows. Section 6.2 reviews the idea of evolving
fuzzy systems, describing one of the pioneering works in this area, the eTS
model, and briefly describing other similar evolving models, presenting some
concepts and learning approaches developed for incremental model structure
adaptation. The next section details the eMG model [38], based on participa-
tory learning, describing the model structure and learning algorithm. Section
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6.4 describes a new recently proposed approach [37] for evolving intelligent
modeling, defined as an evolving fuzzy linear regression tree (eFT model).
Next, section 6.5 focuses on applications of the described models in time se-
ries forecasting modeling. Finally, the conclusions and further developments
are summarized in section 6.6.

6.2 Evolving Fuzzy Systems

The idea of flexible systems, capable of adapt not only its parameters but
also is structure automatically, date from the 90’s, when some works pro-
posed adaptive neural networks [20, 57, 33], with dynamic changing topolo-
gies. The first evolving fuzzy systems proposed on literature are dated from
the beginning of this century [11, 31]. These models were developed in order
to address a growing need for flexible, adaptive and interpretable models,
used for developing intelligent sensors, autonomous systems, etc. Evolving
fuzzy systems have advantages over other evolving black-box models, like
evolving neural networks, since they are linguistically interpretable. It is pos-
sible to extract information from the model topology, as information granules
(linguistic terms represented by fuzzy sets) [3].

There are several works in literature proposing evolving fuzzy models capa-
ble of addressing problems like system identification, time series forecasting,
pattern classification and so on. Many of these works [4, 11, 31, 5, 6, 44, 41]
propose functional fuzzy models, based on a set of Takagi-Sugeno rules [54].
The proposed models have an adaptive structure, that is, the number of
rules and the antecedents fuzzy sets are defined at each iteration (for each
new data sample processed) based on unsupervised recursive clustering algo-
rithms [47, 23]. Figure 2 details the mechanism used for updating the model
structure. The remaining parameters of these models, that is, the consequent
parameters are updated using recursive least squares or its variations [59, 42].

In order to illustrate such models, the evolving Takagi-Sugeno model (eTS)
is detailed. This model is one of th pioneers works proposing an evolving fuzzy
system. It was initially proposed in [11] and further improved in [5].

6.2.1 Evolving Takagi-Sugeno (eTS)

The eTS model is composed by a set of functional rules:

Ri : If x1 is Ai1 and · · · and xm is Aim then yi = ai0x1 + · · ·+ aimxm (1)

where Ri is the ith fuzzy rule, for i = 1, · · · ,gk, gk is th number of fuzzy rules at
iteration k, x j for j = 1, · · · ,m are the m input variables, Ai j are the antecedent
fuzzy sets, yi are the consequent linear model outputs and ai j are the linear
model parameters associated with the ith rule.
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Fig. 2 Rule base updating mechanism

The antecedent fuzzy sets are defined using Gaussian membership func-
tions:

μi j = exp

(
− 4

r2 ||x j − x∗i j||2
)

(2)

where r is a parameter (positive value) that defines membership functions
spread and the influence zone of the model present on the ith rule, ||.|| is the
Euclidean norm and x∗i is the focal point of the fuzzy set.

The firing degree of each rule is defined as the aggregation, using the
product t-norm [48], of the fuzzy sets membership values:

τi = μi1(x1)× μi2(x2)×·· ·× μim(xm); (3)

The model output is defined as the weighted average of the linear models
present on all rules:

y =
gk

∑
i=1

λiyi (4)

where λi = τi/∑gk

j=1 τ j is the normalized firing degree and yi is the linear model
output of the ith rule, respectively.

An unsupervised recursively clustering algorithm is used to adapt the
model rule-base at each iteration, that is, for each new data sample pre-
sented. The clustering is performed on the input-output space z = [xT y]T .
At each iteration, the existing clusters are projected on each input variable
space generating the antecedents fuzzy sets of the rules. Figure 3 illustrates
the cluster projection method used for defining the fuzzy sets for each input
variable.
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Fig. 3 Fuzzy sets generated by cluster projection

The clustering algorithm updates the cluster structure at each iteration.
For each new data sample, the algorithm may create a new cluster or simply
update the parameters of an existing cluster.

The eTS uses an incremental version of the subtractive clustering algorithm
[15]. This clustering algorithm considers each data sample as a potential
cluster center, and defines a measure of the potential of each data sample
[15].

The potential of a data sample zk is a measure of its distance to all other
data samples:

P(zk) =
1

k− 1

k−1

∑
i=1

exp
(
−r||zk − zi||2

)
(5)

where k = 2,3, · · · is the index of the data samples already processed.
The potential function is used to find data samples that can be defined as

centers of regions with high data density, as illustrated on Figure 4. In this
figure, A has a lower potential than B. Analysing (5) and Figure 4, one can
note that, the potential of a given data sample is proportional to the number
of data samples present on a given region of the clustering space.

In [5] a recursive equation is deduced, used to compute the potential of a
new data sample:

Pk(zk) =
k− 1

(k− 1)(ϑ k + 1)+σ k − 2νk (6)
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Fig. 4 Illustration of the data samples potential

where ϑ k = ∑m+1
j=1 (z

k
j)

2, σ k = ∑k−1
l=1 ∑m+1

j=1 (z
l
j)

2 and νk = ∑m+1
j=1 zk

jβ k
j , where β k

j =

∑k−1
l=1 zl

j .

The parameters ϑ k and νk are computed using zk, β k
j and σ k can be com-

puted recursively [5].
A recursive equation for updating the potential of the center of an existing

cluster is also proposed in [5]:

Pk(z∗l ) =
(k− 1)Pk−1(z∗l )

k− 2+Pk−1(z∗l )+Pk−1(z∗l )∑m+1
j=1 dk(k−1)

j

(7)

where z∗l is the center of the cluster l (1×m+ 1) and dk(k−1)
j = zk

j − zk−1
j .

For each new data sample, its potential is computed and the cluster centers
potentials are updated. If the potential of a new data sample is greater than
the potential of all existing cluster centers, the new data sample is defined
as a cluster center. If the data sample is close enough to a existent cluster,
the data sample replaces the cluster center. Otherwise, the data sample is
defined as the center of a new cluster.

If the new data sample potential is less than all cluster centers potentials,
the parameters of the consequent of the rule associated the closest cluster are
updated using the recursive least squares algorithm or the recursive weighted
least squares algorithm [59, 42].

The algorithm 1 summarizes the eTS learning procedure.
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Algorithm 1. eTS learning algorithm

1: Compute the new data sample potential P(zk)
2: for j = 1, · · · ,gk do
3: Compute the center c j potential
4: end for
5: if P(zk)> P(c j) ∀ j then
6: if zk is close enough to some cluster j then
7: zk replaces c j as the center of cluster j
8: else
9: A new cluster is created centered in zk

10: end if
11: else
12: Update the consequent parameters of the closest cluster
13: end if

6.2.2 Other Evolving Fuzzy Models

Several other models can be found on literature with topology and learning
algorithm similar with eTS. These models differ from eTS, mostly, by the
clustering algorithm used to update the rule-base at each iteration. Some
models also present new concepts used during the inference process and/or
during rule-base update, for instance, methods for ignoring or removing in-
active rules.

The DENFIS (Dynamic Evolving Neural-Fuzzy Systems) [31] is a model
similar with eTS, where the rule-base is defined using a recursive clustering
algorithm based on the Euclidean distance between new data samples and the
existing clusters, denominated ECM (Evolving Clustering Method). A new
cluster is created if the distance between a new data sample and all existing
cluster centers is greater than a given threshold, defined as an algorithm pa-
rameter. The clustering is performed only on the input space and the center
of each cluster is defined as the cluster sample mean vector (and not by a
particular data sample, as eTS does). This model uses triangular membership
functions, and because of that, a modified version of the Takagi-Sugeno infer-
ence process is used. For each new data sample, only the m rules associated
with the m closest clusters are used for estimating the corresponding output.

A simplified version of eTS was suggested in [6] to reduce the complexity
of potential calculations. The Simpl eTS replaces the notion of information
potential by the concept of scatter to provide a similar, but computation-
ally more effective algorithm. This model also uses Cauchy type membership
functions, instead of Gaussian ones. Moreover, Simpl eTS proposes a method-
ology for ignoring inactive rules at each iteration. The population of each rule
is computed recursively and expresses the number of data samples that are
represented by cluster. The population is updated as:

POP j = POP j + 1; j = argmin
j
||zk − z∗j ||2 (8)
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The population of each cluster is constantly monitored. For each iteration, if
the population of a given cluster represents less than 1% of all data samples
already processed, the rule is ignored by setting its fire degree to 0.

In [10] an extended version of eTS is proposed capable of updating the
radius of influence (r parameter of eTS) recursively based on the data samples.
This model also defines a new measure of the cluster quality, denominated
age. The cluster age is defined as the number of samples already processed
minus the average sum of the time indices of the data samples:

AGE j = k− 2A j

k+ 1
(9)

where A j = ∑POP j

i=1 idx j denotes the accumulated time of arrival and idx j is the
time instant when the ith data sample was processed.

This index assumes values in (0,k]. Values close to 0 indicates that recent
data is being processed by a young cluster and values close to k indicates that
no data is being processed by an old cluster. Old clusters can be replaced by
data samples that have high increment of the potential [10].

The FLEXFIS (Flexible Fuzzy Inference System), proposed in [44], uses a
recursive clustering algorithm based on an incremental version of the vector
quantization technique [21], denominated eVQ (Evolving Vector Quantiza-
tion). Similar with DENFIS, this model also uses a distance threshold for
creating new clusters. However, this threshold is defined considering the in-
put sample dimension, in order to avoid the curse of dimensionality. This
is because the higher the space dimension, the greater the distance between
two adjacent data points [22]. Thus, if the threshold does not accounts for
the dimension, then as the dimensionality increases more observations will
have the corresponding distances exceeding this threshold. Therefore more
clusters are created, the model becomes more complex and over-fitting may
occur.

The FLEXFIS distance threshold used for creating new cluster is:

ρ = fac

√
m+ 1√

2
(10)

where m is the input space dimension and fac is a parameter that must be
tunned for each problem. How to adjust fac automatically is still an open
question [44].

The FLEXFIS recognizes the problem of the curse of dimensionality and
proposes a solution. However, this solution depends of a parameter that must
be adjusted based on a priori information or cross-validation.

The SOFMLS (Self-Organizing Fuzzy Modified Least-Squares Network)
[53] employs an evolving nearest-neighborhood clustering algorithm. This
model is based on zero-order Takagi-Sugeno rules:

Ri : If x1 is Ai1 and · · · and xm is Aim then yi = vi (11)

where vi is a constant.
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Since SOFMLS uses zero-order rules, its topology can be represented as
a two layer feed-forward network. The first layer computes the rules firing
degrees and the output layer computes the model output. Figure 5 illustrates
the model topology. This model also proposes a methodology for removing
inactive rules based on the concept of rule density, similar with the concepts
proposed by Simpl eTS and xTS.

.

.

.

.

.

.

x1

x2

xm

τ1

τ2

τ
gk

v1

v2

v
gk

∑ ŷk

Fig. 5 SOFMS topology

The SAFIS (Sequential Adaptive Fuzzy Inference System) also uses zero-
order Takagi-Sugeno rules and can also be represented as a feed-forward net-
works. This model uses the concept of influence of a fuzzy rule in order to
adapt the rule-base, creating or excluding rules. The influence of a rule is
defined as the contribution of a given rule for the model output.

Several other evolving fuzzy models can be found in literature with a
feed-forward network topology [18, 40, 30]. These models have a multilayer
topology than can be interpreted as a set of functional fuzzy rules. Learn-
ing algorithms are proposed for updating the network weights (that can be
interpreted as antecedent and/or consequent parameters of functional fuzzy
rules) and to grow/prune neurons (that can be interpreted as parts of fuzzy
rules).

The recursive clustering algorithms used in most of the eFS found in liter-
ature can be summarized by a two-step procedure. First, a distance measure
is defined and an initial number of clusters (and respective cluster centers)
estimated from a priori knowledge about the problem; alternatively, a single
cluster with the center at the first data sample is created. Second, for each
new data sample, the distance between the existing clusters and the sam-
ple is computed and if the distance exceeds a threshold, then a new cluster
is created; otherwise, the parameters of the closest cluster are updated us-
ing recursive algorithms [31, 18, 40, 44, 53]. Despite their effectiveness, the
clustering algorithms constructed upon this two-step procedure have a major
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drawback in the sense that they lack robustness to noisy data. Whenever
noisy data or outliers exceed a threshold, the two-step algorithms create new
clusters instead of reject or smooth the data. This procedure may lead to
overfitting, since it may generate an excessive number of clusters, increasing
the model complexity.

A robust evolving TS system was developed in [41] using a recursive clus-
tering algorithm inspired by the idea of participatory learning [58]. Participa-
tory learning is a learning paradigm which assumes that learning and beliefs
about the system to be modeled depend on what the learning process has
already learned. An essential characteristic of this learning process is that a
new observation impact in causing learning or belief revision depends on its
compatibility with the current system belief. Therefore, clustering algorithms
based on this learning process tend to be robust to noisy data because sin-
gle outliers are likely to be incompatible with the current system belief and
consequently can be either discarded or have their effect smoothed.

6.3 Evolving Multivariable Gaussian

This section describes the evolving fuzzy model proposed in [38], denominated
eMG (evolving Multivariable Gaussian). The eMG uses an evolving Gaussian
clustering algorithm rooted in the concept of participatory learning [58] in
order to adapt the rule base for each input sample. At each iteration the
clustering approach is used to define the rule base, that is, at each iteration
a rule can be created, extracted or two rules can be merged.

The clustering procedure used by eMG considers the possibility that in-
put variables may interact with each other. Clusters are estimated using a
normalized distance measure (similar to the Mahalanobis distance) and trig-
ger ellipsoidal clusters whose axes are not necessarily parallel to the input
variables axes, as it would be the case if the Euclidean distance were used
[31, 44, 5]. The idea is to preserve information about interactions between in-
put variables. The fuzzy sets of the rules antecedents are multivariable Gaus-
sian membership functions characterized by a center vector, and a dispersion
matrix representing the dispersion of each variable and interactions between
variables. Similarly as in other evolving system modeling approaches [44, 5],
the parameters of the fuzzy rules consequents are updated using weighted
recursive least squares.

The eMG model uses membership functions of the form:

H(x) = exp

[
−1

2
(x− v)Σ−1(x− v)T

]
(12)

where x is an 1×m input vector, v is the 1×m center vector and Σ is a m×m
symmetric, positive definite matrix. The center vector v is the modal value
and represents the typical element of H(x). The matrix Σ denotes the disper-
sion and represents the spread of H(x) [48]. Both, v and Σ , are parameters



128 A. Lemos, W. Caminhas, and F. Gomide

of the membership function to be associated with cluster center and cluster
spread, respectively.

Most of evolving fuzzy systems perform clustering in the input or input-
output data space, and create rules using one-dimensional, single variable
fuzzy sets which are projections of the clusters on each input variable space.
During fuzzy inference, the fuzzy relation induced by the antecedent of each
fuzzy rule is computed using an aggregation operator (e.g. a t-norm) and the
input fuzzy sets. This approach is commonly used, but it may cause informa-
tion loss if input variables interact [32, 1]. For instance, system identification
and time series forecasting usually use lagged values of the input and/or
output as inputs, and these lagged values tend to be highly related.

To avoid information loss, the algorithm introduced herein uses multivari-
able, instead of single variable Gaussian membership functions to represent
each cluster developed by the recursive clustering algorithm. The parameters
of the membership functions are extracted directly from the corresponding
clusters. These multivariable membership functions use the information about
the dispersion matrix of each cluster (estimated by the clustering procedure)
and thus provide information about input variables interactions.

6.3.1 Gaussian Participatory Evolving Clustering

The evolving clustering algorithm described in this paper is based on the
concept of participatory learning [58]. Participatory learning assumes that
learning and beliefs about the system to be modeled depend on what the
model has already learned. In other words, the current knowledge about the
system is part of the learning process itself and influences the way in which
new observations are used in learning.

An essential characteristic of this learning process is that a new observation
impact in causing learning or belief revision depends on its compatibility
with the current system belief. Therefore, clustering algorithms based on
this learning process tend to be robust to noise and outliers because they are
likely to be incompatible with the current system belief and consequently can
be discarded or smoothed. The participatory learning clustering algorithm
provides an automatic mechanism to decide if a new observation lying far
outside current cluster structure denotes either a new cluster to be included
into the model, or if it is an outlier who should be discarded or smoothed.

The evolving clustering algorithm assumes that the knowledge about the
system to be modeled is the cluster structure, i.e, the number of clusters,
the corresponding cluster centers vk

i for i = 1, · · · ,ck, where ck is the number
of clusters at step k, and the shape of clusters encoded in Σ k. At each step,
the learning process may create a new cluster, modify the parameters of an
existing one, or merge two similar clusters.

The cluster structure is updated using a compatibility measure ρk
i ∈ [0,1]

and an arousal index, ak
i ∈ [0,1]. The compatibility measure computes how
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much an observation is compatible with the current cluster structure, while
the arousal index is the output of a arousal mechanism that acts as a critic
to remind when the current structure should be revised in front of new infor-
mation contained in data.

Thresholds are defined for the compatibility measure (Tρ) and the arousal
index (Ta). If at each step the compatibility measure of the current observation
is less than the threshold for all clusters, i.e, ρk

i < Tρ ∀ i = 1, · · · ,ck, and the
arousal index of the cluster with the greatest compatibility is greater than
the threshold, i.e, ak

i > Ta for i = argmaxi ρk
i , then a new cluster is created.

Otherwise the cluster center with the highest compatibility is adjusted as
follows:

vk+1
i = vk

i +Gk
i (x

k − vk
i ) (13)

where Gk
i is defined as:

Gk
i = β (ρk

i )
1−ak

i (14)

and β ∈ [0,1] is the basic learning rate.
According to [58], the compatibility ρk

i is a function that measures the
compatibility between the current belief of the model, represented by each
cluster center, and the current observation:

ρk
i = F(xk,vk

i ) (15)

The function F(xk,vk
i ) ∈ [0,1] is such that it should approach zero as obser-

vations become contradictory with the current belief, i.e, the cluster centers,
and approach one as the observations become in complete agreement with the
current belief. For example, if xk is equal to a cluster center, then F(xk,vk

i ) = 1.
If ak

i = 0, then Gk
i = β ρk

i and the PL procedure has no arousal. The learning
rate is modulated by the compatibility measure only. Observations with ρk

i =

0 provides no new information because vk+1
i = vk

i , while an observation with
ρk

i = 1 does bring new information. For example, if β = 1 and ρk
i = 1, then

vk+1
i = xk.
In the above, notice that the basic learning rate β is modulated by the

compatibility ρ . When there are no participatory considerations, β is often
made a small value to preclude great swings due to spurious values of inputs
which are far from the current cluster structure. Small values of β protect
against the influence of bad inputs, but may slow down the learning process.
The introduction of the participatory term ρ allows the use of higher values
of β . The learning rate of the participatory learning model is dynamic and
ρ acts in a way that it lowers the learning rate when large deviations occur.
However, when the compatibility is large, ρ is such that it speeds up learning.

The arousal index is the output of an arousal mechanism used to measure
the confidence about the current knowledge of the system. For example, while
a single low value of the compatibility measure causes aversion to learning,



130 A. Lemos, W. Caminhas, and F. Gomide

a sequence of low values of the compatibility measure should imply on a
revision of the current knowledge about the system.

The arousal mechanism is defined as a monitoring mechanism of the dy-
namics of the compatibility measure. This mechanism monitors the values
of the compatibility level and its output is interpreted as the complement
of the confidence about the current knowledge. A low value of ak

i implies in
a high confidence about the system belief, while a high value indicates the
necessity to revise the current belief. Analysis of expression (14) shows that,
as the arousal index increases, the compatibility measure has a reduced ef-
fect, indicating that if a sequence of observations presents low compatibility
values, then it is more likely that the current knowledge is incorrect and must
be revised. When this happens, the value of the compatibility measure is re-
duced and the current observation will provide more information about the
system when compared with the information provided without the arousal
mechanism. As explained later in this section, the extreme case is when the
arousal index exceeds a threshold and a new cluster is generated.

Fig. 6 illustrates the participatory learning procedure, including the basic
idea of using the current beliefs on the learning process and the arousal index
monitoring mechanism.

Learning
Process

Arousal
Mechanism

Beliefs

Observations

ρ a

Fig. 6 Participatory learning procedure

The compatibility measure ρk
i suggested in [38] uses the squared value

of the normalized distance between the new observation and cluster centers
(M-Distance):

M(xk,vk
i ) = (xk − vk

i )(Σ
k
i )

−1(xk − vk
i )

T (16)

To compute the M-Distance, the dispersion matrix of each cluster Σ k
i must

be estimated at each step. The recursive estimation of the dispersion matrix
proceeds as follows:

Σ k+1
i = (1−Gk

i )(Σ
k
i −Gk

i (x
k − vk

i )(x
k − vk

i )
T ) (17)
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The compatibility measure at each step k is given by:

ρk
i = exp

[
−1

2
M(xk,vk

i )

]
(18)

To find a threshold value for the compatibility measure, we assume that the
values M(xk,vk

i ) can be modeled by a Chi-Square distribution. Thus, given a
significance level α, the threshold can be computed as follows:

Tρ = exp

[
−1

2
χ2

m,α

]
(19)

where χ2
m,α is the α upper unilateral confidence interval of a Chi-Square

distribution with m degrees of freedom, where m is the number of inputs.
The compatibility measure is based on a normalized distance measure (16).

The corresponding threshold (19) must be adjusted considering the input
space dimension to avoid the curse of dimensionality. This is because, as the
input space dimension increases, the distance between two adjacent points
also increases [22]. If a fixed threshold value is used and it does not depend
of the input space dimension, then the number of threshold violations will
increase, which may lead to an excessive generation of clusters [44]. Looking
at expression (19), one can note that the compatibility measure threshold
includes information about the data space dimensionality because χ2

m,α is a
function of the number m of inputs. Therefore no manual adjust is needed
and the curse of dimensionality is automatically avoided. In other words, the
clustering method has an automatic mechanism to adjust the compatibility
measure threshold according to input space dimension. As the data dimen-
sion increases, the distance between two adjacent points also increases, and
the respective compatibility measure decreases. However, the compatibility
measure threshold also decreases avoiding excessive threshold violations.

The arousal mechanism adopted by the eMG model uses a sliding window
assembled by the last w observations. More specifically, we define the arousal
index as the probability of observing less then nv violations of the compat-
ibility threshold on a sequence of w observations. Low values of the arousal
index are associated with no or few violations of the compatibility threshold,
implying a high confidence about the system knowledge. High values of the
arousal index are associated with several threshold violations, meaning that
the current cluster structure must be revised.

To compute the arousal index for each observation, a related occurrence
value ok

i is found using the following expression

ok
i =

{
0, for M(xk,vk

i )< χ2
m,α

1, otherwise
(20)

Notice that the occurrence value ok
i = 1 indicates threshold violation.
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Occurrence value ok
i can also be viewed as the output of a statistical test to

evaluate if the values of M(xk,vk
i ) are the expected ones. The null hypothesis

of the corresponding test is that M(xk,vk
i ) can be modeled by a Chi-Square

distribution with m degrees of freedom. Under null hypothesis, the probability
of observing ok

i = 1 is α because α defines χ2
m,α and it is the probability of

observing a false positive, i.e., M(xk,vk
i )> χ2

m,α .

Since the nature of ok
i is binary and the probability of observing ok

i = 1
is known, the random variable associated with ok

i can be described by a
Bernoulli distribution with probability of success α.

Given a sequence assembled by the last w observations, the number of
threshold violations nvk

i is:

nvk
i =

{
∑w−1

j=0 ok− j
i , k > w

0, otherwise
(21)

Notice that nvk
i is computed during the first w steps. This means that the algo-

rithm has an initial latency of w steps. However this causes no problem because
usually w is much smaller than the number of steps in which learning occurs.
For instance, in real-time applications learning can happen continuously.

The discrete probability distribution of observing nv threshold violations
on a window of size w is P(NV k

i = nv), with NV k
i assuming the values

nv = 0,1, · · · ,w. Thus, because NV k
i is the sum of a sequence of i.i.d. ran-

dom variables drawn from a Bernoulli distribution with the same probability
of success α, P(NV k

i = nv) can be characterized by the Binomial distribution:

P(NV k
i = nv) =

⎧⎨
⎩
(

w
nv

)
αnv(1−α)w−nv, nv = 0, · · · ,w

0, otherwise
(22)

The binomial distribution gives the probability of observing nv threshold vi-
olations in a sequence of w observations. High probability values enforce the
assumption that observations fit the current cluster structure while low proba-
bility values suggests that the observations should be describedbyanewcluster.

The arousal index is defined as the value of the cumulative probability of
NV k

i , i.e.

ak
i = P(NV k

i < nv) (23)

The threshold value of the arousal index Ta is 1−α, where α is the same as the
one that defines the threshold for the compatibility measure. The minimum
number of compatibility threshold violations on a window of size w necessary
to exceed Ta can be computed numerically looking for the first value of nv for
which the discrete cumulative distribution is equal to or greater than 1−α.
More formally

nv∗ = argmin
nv

∣∣∣∣∣
nv

∑
k=1

(
w
nv

)
αk(1−α)w−k − (1−α)

∣∣∣∣∣ (24)
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The clustering algorithm proposed continually revises the current cluster
structure and eventually merges similar clusters. The compatibility between
the updated or created cluster and all remaining cluster centers is computed
at each step. If, for a given pair, the compatibility exceeds the threshold Tρ ,
then the two clusters are merged, i.e., if ρk

i (v
k
j,v

k
i )> Tρ or ρk

j (v
k
i ,v

k
j)> Tρ , then

clusters j and i are merged.
The compatibility between two clusters i and j is computed as follows:

ρk
i (v

k
j ,v

k
i ) = exp

[
−1

2
M(vk

j ,v
k
i )

]
(25)

where M(vk
j ,v

k
i ) is the M-distance between cluster centers i and j, that is:

M(vk
j ,v

k
i ) = (vk

j − vk
i )(Σ

k
i )

−1(vk
j − vk

i )
T (26)

To check if two clusters are similar, is necessary to compute ρk
i (v

k
j ,v

k
i ) and

ρk
j (v

k
i ,v

k
j) because usually Σ k

i �= Σ k
j .

Algorithm 2 summarizes the Gaussian participatory evolving clustering
procedure.

Algorithm 2. Gaussian participatory evolving clustering algorithm

1: Compute ρi and ai for all clusters
2: Select the cluster with the highest compatibility ( j)
3: if ρi < Tρ ∀i and a j > Ta then
4: Create a new cluster
5: else
6: Update the parameters of cluster j
7: end if
8: Select the updated/created cluster (idx)
9: for all Clusters (i) do

10: if Compatibility between ci and cidx is greater than Tρ then
11: Merge redundant clusters
12: end if
13: end for

Notice that the clustering algorithm has only three parameters:

• the learning rate β used to compute vk
i and Σ k

i ;
• the window size w used by the arousal mechanism;
• the confidence level α to compute thresholds Tρ and Ta.

The learning rate is usually set to a small value, i.e., typically α ∈
[10−1,10−5].

The window size w is a problem specific parameter because it defines how
many consecutive observations must be considered to compute the arousal
index. In other words, considering the current system knowledge, w defines
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the length of the anomaly pattern needed to classify data either as a new
cluster or as a noise or outlier.

The value of the significance level α depends on w. It must be set such
that the arousal threshold Ta corresponds to more than one compatibility
threshold violation, i.e., nv > 1 when ak

i > Ta. Suggested ranges for values of
α, given w, are:

α ≥

⎧⎨
⎩

0.01, if w ≥ 100
0.05, if 20 ≤ w < 100
0.1, if 10 ≤ w < 20

(27)

The clustering process can be started using either a single observation or
an initial data set. If initial data set is available, then an off-line clustering
algorithm can be used to estimate the initial number of clusters and their
respective parameters. The off-line algorithm should be capable to provide
both, cluster centers and respective dispersion matrices. If the clustering pro-
cess starts with a single observation, then an initial dispersion matrix Σinit

must be chosen, eventually using a priori information about the problem.
Whenever a new cluster is created during the clustering process, the new

cluster center is set as the current observation, and the new dispersion matrix
is the initial value Σinit .

If two clusters are merged, then the center of the resulting cluster is the av-
erage of the corresponding clusters centers and the dispersion matrix is Σinit .

6.3.2 Evolving Multivariable Gaussian Fuzzy Model

The eMGmodel uses the Gaussian participatory evolving clustering algorithm
described in order to define the rule base. The number of eMG rules is the same
as the number of clusters found by the clustering algorithmat each step.At each
iteration a new cluster can be created, an existing cluster removed, or existing
clusters updated. In other words, rules can be created, merged, or adapted at
each step of the algorithm. Rules antecedents are of the form:

xk is Hi (28)

where xk is a 1×m input vector and Hi is a fuzzy set with multivariable
Gaussian membership function (12) and parameters extracted from the cor-
responding cluster center and dispersion.

The model is formed by a set of functional fuzzy rules:

Ri : If xk is Hi then yk
i = γk

io +
m

∑
j=1

γk
i jx

k
i (29)

where Ri is the ith fuzzy rule, for i = 1, · · · ,ck, ck is the number of rules , and
γk

io and γk
i j are the parameters of the consequent at step k.

The model output is the weighted average of the outputs of the each rule,
that is:
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ŷk =
ck

∑
i=1

Ψi(x
k)yk

i (30)

with normalized membership functions:

Ψi(x
k) =

exp
[
(xk − vk

i )Σ
−1
i (xk − vk

i )
T
]

∑ck

i=1 exp
[
(xk − vk

i )(Σ k
i )

−1(xk − vk
i )

T
] (31)

where vk
i and Σ k

i are the center and dispersion matrix of the ith cluster mem-
bership function at step k.

The parameters of the consequent are updated using the weighted recursive
least squares [42, 12] algorithm, similarly as other TS evolving fuzzy mod-
els [5, 44]. Hence, the consequent parameters and matrix Qi of the update
formulas for rule i at each iteration k are:

γk+1
i = γk

i +Qk+1
i xkΨi(x

k)
[
yk

i − ((xk)T γk
i )
]

Qk+1
i = Qk

i −
Ψi(xk)Qk

i xk(xk)T Qk
i

1+(xk)T Qk
i xk

(32)

The eMG algorithm can be initialized either with an existing data set, or
with a single observation.

If the eMG starts with an existing data set, then an offline clustering
algorithm can be used to estimate the number and parameters of the initial
set of rules. Clustering can be done in the input space and a rule created
for each cluster. The antecedent parameters of each rule is extracted from
the clusters, and the consequent parameters estimated by the weighted least
squares algorithm.

If the eMG starts with a single observation, then one rule is created with
the antecedent membership function centered at the observation, and the re-
spective dispersion matrix set at the pre-defined initial value. The consequent
parameters are initialized as γ0 = [y0 0 · · · 0] and Qk = ωIm+1, where Im+1

is an m+ 1 identity matrix and ω is a large real value, for example, ω ∈
[102,104] [12].

As new data is input, the eMG algorithm may create, update or merge
clusters. Thus, the set of rules, the rule-base, must be updated as well. This
is done as follows.

If a new cluster is created, then a corresponding rule is also created with
antecedent parameters extracted from the cluster and consequent parameters
computed as the weighted average of the parameters of the existing clusters:

γk
new =

∑ck

i=1 γk
i ρk

i

∑ck

i=1 ρk
i

(33)

The matrix Q is set as Qk
new = ωIm+1.
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If an existing cluster is updated, then the antecedent parameters of the
corresponding rule are updated accordingly.

Finally, if two clusters i and j are merged, then the consequent parameters
of the resulting rule are computed as follows:

γk
new =

γk
i ρk

i + γk
j ρk

j

ρk
i +ρk

j

(34)

The matrix Q is set as Qk
new = ωIm+1.

Algorithm 3 summarizes the eMG learning procedure.

Algorithm 3. eMG learning algorithm

1: Compute model output
2: Update the cluster structure
3: if Cluster was created then
4: Create a new rule
5: end if
6: if Cluster was modified then
7: Update antecedent parameters of the respective rule using cluster parameters

8: Update consequent parameters of the respective rule using WRLS
9: end if

10: if Two cluster were merged then
11: Merge corresponding rules
12: end if

6.4 Evolving Fuzzy Linear Regression Trees

This section describes a recently proposed alternative approach for evolving
fuzzy modeling using fuzzy linear regression trees (eFT) built from a stream
of data in an incremental manner [37]. Linear regression trees [51] are gen-
eralizations of regression trees [14] in which zero-order models (mean value
of the output variable) in the tree leaves are replaced by linear models. The
internal nodes of these trees contains splitting tests to partition the input
space in non overlapping regions, and associate a linear model to each one
of them. A linear model tree is a binary decision tree with a linear model in
each leaf. Fuzzy linear regression trees replaces the binary splitting decisions
at each internal node by a pair of membership functions, similarly as in fuzzy
decision trees [60, 28], and partitions the input space in overlapping regions.
By fuzzyfing decisions at each internal node of the tree, the sharp partition
boundaries of the original tree will cease to exist and, for each input sample,
all branches of the tree will fire with some degree, resulting in a regression
model defined by a weighted sum of linear local models.
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Most of the evolving fuzzy modeling methods proposed in literature use
information about the spatial organization of the input or input-output sam-
ples (for example, by clustering) in order to adapt the model structure. The
eFT model partitions the input space selecting split points that improves the
goodness of fit of the resulting model. In other words, while most of the eFS
uses spatial information for input partition, the approach we propose uses
model quality improvement as the criterion for input space partition.

6.4.1 Fuzzy Linear Regression Trees

Linear regression trees are generalizations of regression trees where each leaf
is associated with a linear model of the input variables instead of a zero-order
model (i.e., the mean value of the output). These trees are recursive structures
capable to perform a piecewise linear regression, that is, each region of the
input space is associated with a linear model of the form yi = γ0 + γ1x1 + · · ·+
γmxm = ∑m

i=0 γixi, where x0 = 1 and m is the number of input variables.
Figure 7 gives an example of a linear regression tree.

x1 < 1

x2 < 2

y1 = 2x1 + x2 +3

y2 = 0.1x1 − x2

y3 = x1 +2.6x2 y4 = x1 − x2

x1 ≥ 1

x2 ≥ 2

x1 < 4 x1 ≥ 4

Fig. 7 Example of a linear regression tree

To estimate the output associated with a given input, one must start from
the root (top) node and apply splitting decision tests until a leaf is reached.
The output is computed using the input values and the linear model present
in the leaf. For example, for the tree illustrated in Figure 7, the output for
inputs x1 = 4 and x2 = 3 is −2.6.

Each leaf of the tree represents a region of the input space delimited by
the splitting points of the internal nodes in the path starting at root and
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ending in the leaf. Each region is modeled by the linear model associated
with the corresponding leaf. Figure 8 illustrates the partition of the input
space induced by the linear regression tree of Figure 7, where x1 ∈ [0,6] and
x2 ∈ [0,6].

0 1 2 3 4 5 6
0

1

2

3

4

5

6

x
1

x 2

y1

y2

y3 y4

Fig. 8 Input space partition of the linear regression tree of Figure 7

There are several algorithms to grow linear regression trees and classic
regression trees using batch [14, 51, 55, 17] or incremental learning approaches
[49, 26, 27].

Fuzzy linear regression trees replaces each splitting decision test of the
internal nodes by two membership functions describing the concepts of less
than and greater than. Introducing fuzzy sets in each internal node of the
tree, the sharp partition boundaries of the original tree will cease to exist
and, for each input sample, all branches of the tree will fire to some degree.
This results in an overlapping partition of the input space and a regression
model based on a weighted sum of local linear models.

The approach introduced in this paper uses sigmoidal membership func-
tions in each internal node of the tree (35). Sigmoidal membership functions
have two parameters, the center c and the spread σ . Depending of the sign
of the parameter σ , the sigmoid is inherently open to the right or to the left.
They are natural candidates to represent the concepts of less than or greater
than c. Figure 9 shows an example of membership functions describing the
concepts less than 5 and greater than 5 assuming σ = −0.5 (less than) and
σ = 0.5 (greater than).

μ(x) =
1

1+ exp− 1
σ (x− c)

(35)

Each leaf of the tree is associated with a region of the input space and a
corresponding linear model. However, the input space partition overlaps, i.e.,
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some regions of the input space are associated with more than one leaf. Figure
10 shows the resulting partition of the input space (x1 ∈ [0,6] and x2 ∈ [0,6])
when the splitting tests of the tree illustrated on Figure 7 are replaced by
pairs of sigmoidal membership functions with c being the original split points
and |σ |= 0.2 for all internal nodes.

To compute an output for a given input, one must start at the root node
and find the membership values for each pair of membership functions in the
internal nodes of all paths from the root to the leaves. Next, the membership
values are aggregated using an aggregation operator such as a t-norm. This
results in a membership value linked to the model of each tree leaf. Algorithm
4 details the recursive algorithm to evaluate the local linear models and to

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

x

μx<5 μx>5

Fig. 9 Membership functions for less than and greater than 5

Fig. 10 Partition of the input space by the fuzzy linear regression tree
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compute membership values of all leaves of the tree. The algorithm starts
with the tree root node and with w = 1. These values are used to compute
the output as the weighted average of all linear models outputs:

ŷ =
∑l

i=1 yiwi

∑l
i=1 wi

(36)

where l is the number of leaves, and wi is found using:

wi = μ1(x) t μ2(x) t · · · t μo(x) = T o
j=1μ j(x) (37)

where t is a t-norm [48], o is the number of internal nodes reached from
the root to the leaf i, and μ j is one of the sigmoidal membership functions
associated with internal node j.

Algorithm 4. Compute membership values and linear models outputs for
all tree leaves
1: if nodei is a not a leaf then
2: Aggregate the left membership function value with w using a t-norm
3: i = index of left subtree root node
4: Evaluate the left subtree
5: Aggregate the right membership function value with w using a t-norm
6: i = index of right subtree root node
7: Evaluate the right subtree
8: else
9: Store the membership value wi

10: Compute the linear model output yi

11: end if

It is interesting to notice that fuzzy functional rules can be easily extracted
from the tree structure. Each leaf represents a fuzzy rule whose antecedent
is a t-norm aggregation of all internal nodes in a path from the root to the
leaf, and the consequent is the linear model in the leaf. For instance, from
the example of Figure 7 we get the following fuzzy rules:

If x1 < 1 then y = 2x1 + x2 + 3
If x1 > 1 and x2 < 2 and x1 < 4 then y = x1 + 2.6x2

If x1 > 1 and x2 < 2 and x1 > 4 then y = x1 − x2

If x1 > 1 and x2 > 2 then y = 0.1x1 − x2

(38)

where “< c” and “> c” are fuzzy sets with sigmoidal membership functions
representing less than and greater than.

It is also possible to reduce the number of fuzzy sets of each rule assuming
that we can combine two or more fuzzy sets associated with the same input
variable into a single fuzzy set. For example, the fuzzy sets x1 > 1 and x1 > 4
can be replaced by x1 > 4, preserving the rule interpretability. Also, combina-
tion of the fuzzy sets x1 > 1 and x1 < 4 can be viewed as a fuzzy set describing
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the interval 1< x1 < 4 with membership function μ1<x1<4 = μx1<1 t μx1<4, For
instance, if we choose the product operator as the t-norm, then the analyt-
ical expression of this membership function, given c1 and c2 (with c1 < c2)
and σ is:

μc1<x<c2 =
1

1+exp− 1
σ (x−c1)+exp 1

σ (x−c2)+exp 1
σ (c1 −c2)

(39)

The rule reduction technique results in the following rule base:

If x1 < 1 then y = 2x1 + x2 + 3
If x1 > 4 and x2 < 2 then y = x1 − x2

If 1 < x1 < 4 and x2 < 2 then y = x1 + 2.6x2

If x1 > 1 and x2 > 2 then y = 0.1x1 − x2

(40)

Clearly, the rule base (6) is much simpler and interpretable than the original
(4). Figure 11 shows the membership functions extracted from the linear
regression tree of Figure 7.
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Fig. 11 Membership functions extracted from the fuzzy tree

6.4.2 Incremental Learning Algorithm

This section details the incremental learning algorithm for the fuzzy linear
regression tree described in the previous section. The algorithm starts with a
single leaf tree and its linear model, and evolves the tree replacing leaves by
subtrees using a statistical model selection test and input data. The algorithm
does not store any past value and all decisions are taken based on recursively
estimated statistics.

To grow the tree, we assume that each tree leaf has k candidate splits for
each of the m input variables, totaling k ×m possible splits. Any of these
can be used to replace an existing leaf. Every candidate split has a subtree
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composed by an internal node, with two sigmoidal membership functions (less
than and greater than) centered on the split point, followed by two leaves,
the left and the right one, containing linear models. Figure 12 illustrates a
generic candidate split.

xi < c xi > c

y = ∑m
i=0 aixi y = ∑m

i=0 aixi

Fig. 12 Generic candidate split

As discussed latter, each leaf represents a region of the input space. To
define candidate split points, the range of the leaf for each input variable is
computed and split points chosen to uniformly divide the range into k + 1
intervals. Although each leaf defines a fuzzy region of the input space, the
range is sharp and is found using the centers of the internal nodes membership
functions reached from the root to the leaf. For example, for the tree shown
in the previous section, the leaf associated with the linear model y= 0.1x1−x2

assume the following: x1 ∈ [1,max(x1)] and x2 ∈ [2,max(x2)], where max(xi) is
the maximum value observed for the variable i. The maximum and minimum
values for each input variable are updated whenever new observations exceeds
the observed limits.

For each new observation, the corresponding output is estimated using
(36) and the linear models of all leaves updated using the weighted recursive
least squares algorithm [59, 42]. The linear parameters and matrix Qi of the
update formulas for leaf i at each iteration k are:

γk+1
i = γk

i +Qk+1
i xkΨi(x

k)
[
yk

i − ((xk)T γk
i )
]

Qk+1
i = Qk

i −
Ψi(xk)Qk

i xk(xk)T Qk
i

1+(xk)T Qk
i xk

(41)

where Ψi(xk) for i = 1, · · · , are the normalized firing degrees associated with
each local linear model:

Ψi(x
k) =

wi

∑lk

j=1 wj

(42)

where lk is the number of tree leaves at iteration k.
Next, the membership function spreads (σ) of all internal nodes in the path

from the root to the leaf associated with the highest firing degree are revised.
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For each membership function in the path, the spread of the sigmoidal func-
tion is adjusted using the gradient descent algorithm. For example, consider a
fuzzy linear regression tree with a topology shown in Figure 7. Assume that,
for a given input, the leaf with the highest firing degree is y2. In this case,
the membership functions describing x1 ≥ 1 and x2 ≥ 2 will have their spreads
updated.

Membership functions spreads update aims, at each iteration, to minimize
an error measure involving the model output and the corresponding desired
output:

ek =
1
2

(
ŷk − yk

)2
(43)

The recursive equation to update the spreads of the membership functions
present on the internal nodes is:

σi = σi −β
∂ek

∂ ŷk

∂ ŷk

∂ μi

∂ μi

∂σi
(44)

where β is the basic learning rate. The partial derivatives are:

∂ek

∂ ŷk
= ŷk − yk (45)

∂ μi

∂σi
=

(
exp− 1

σi
(xk − ci)

)
(xk − ci)

1+ exp− 1
σi
(xk − ci)

2σ2
i

(46)

The partial derivative ∂ ŷk/∂ μi can be obtained from (36) and (37). To com-
pute this derivative, one must first find all paths from the root node to all
leaves that passes through the membership function μi and then compute the
partial derivative as:

∂ ŷk

∂ μi
=

∑npk

r=1
wr
μi

yr − ŷk ∑npk

r=1
wr
μi

∑lk

j=1 wj

(47)

where wr is the t-norm aggregation of the membership functions on a path
that passes through μi and npk is the number of paths satisfying this condition
at iteration k. Note that (47) is only valid for the product t-norm, thus this
is the t-norm adopted in all experiments presented in this paper.

The linear models of all candidate splits associated with the selected leaf
are also updated using (41). For each candidate split, the weights (42) for all
tree leaves are revised, including the ones present in the candidate split. Next,
the output of the resulting tree (with the selected leaf replaced by the candi-
date split) is computed. Finally the linear models in the leaves of the selected
candidate split are updated using (41). The algorithm to compute candidate
splits parameters and to update the tree is summarized in Algorithm 5.
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Algorithm 5. Algorithm to update the parameters of the tree

1: Compute the output and membership value of all leaves
2: Update the linear models of all leaves using WRLS
3: Select the leaf associated with the highest membership value
4: Update the spread of the internal nodes present on the path from the root node

to the selected leaf
5: for all inputs (m) do
6: for all candidate splits (k) do
7: Replace the selected leaf with the candidate split subtree
8: Compute the output for the resulting tree
9: Update the candidate split linear models using WRLS

10: end for
11: end for

Once the leaf is updated, tests are performed to evaluate if the subtree of
each candidate split can replace the corresponding leaf. The test is a good-
ness of fit test that considers the accuracy and the number of parameters
of the tree, with and without the subtree. The test compares the qual-
ity of two models, a simpler one (the original tree) and the more complex
one (the original tree with the subtree added), assuming that the simpler
model can be nested in the complex model, and that the complex is also
more accurate. The test tries to answer following the question: the gain
in the accuracy (measured by using points already observed) worths the
cost of adding more free parameters to the tree (which may lead to over
fitting)?

The original test for nested models [2] assumes that the parameters of the
two models are estimated using the same data set and computes the following
statistics:

F =
(RSS1 −RSS2)× (n− p2)

RSS2 × (p2 − p1)
(48)

where RSS1 and RSS2 is the sum of residual squares of the simpler and the
complex models respectively, p1 and p2 is the number of free parameters
of each model and n is the number of data samples used to estimate the
parameters of the models. The number of parameters of a tree is the number
of parameters of the linear models in the leaves:

p = (m+ 1)×number of leaves (49)

where m is the dimension of the input.
Assuming that the distribution of the residuals is normal, F (48) follows a

Fisher’s F distribution with (p2 − p1,n− p2) degrees of freedom.
However, this test cannot be used to evolve the tree because the number

of samples to estimate the tree parameters may not be equal to the number
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of samples used to estimate each candidate split parameters because a new
candidate split is created whenever a new leaf is inserted on the tree. Thus,
the number of samples needed to estimate the tree parameters would always
be greater or equal to the number of samples for the candidate splits. A
modification of the test mechanism to handle models trained with different
samples sizes, suggested in [49], compute the statistics as follows:

Finc =
(RSS1 −RSS2)× (n2 − p2)

RSS2× (n1 − n2 + p1)
(50)

where n1 and n2 are the number of samples used to estimate the tree and
candidate splits parameters, respectively.

Finc is distributed according to Fisher’s F distribution with (n2 −n1+ p2−
p1,n2− p2) degrees of freedom. Hence, the use of this statistics requires com-
putation of the p-values (probability in the tail of the distribution) for all
candidate splits of the last modified leaf. The candidate split associated with
the smallest p-value is selected. The subtree of the selected candidate split
replaces the corresponding leaf if its p-value is smaller than a confidence level
α. However, it is necessary to introduce a multiple-comparison statistical cor-
rection because the same hypothesis is tested k×m times using the same data
set [49]. Thus, the Bonferroni correction [46] must be applied by dividing the
desired significance level by the number of tests. Finally, the selected subtree
is added to the model if

p-value<
α

k×m
(51)

To use the model selection test just described, the sum of squared residu-
als and the number of samples of the tree and of all candidate splits must
be updated whenever the respective models are. Initially the estimate of the
tree output is computed using (36). Next, the leaf associated with the high-
est membership value is selected and, for all candidate splits, the output is
computed replacing the related leaf with the candidate split subtree. The
simplest way to perform this operation is to replace the leaf with the subtree
and recompute the output using (36). This operation can be optimized using
local models outputs already computed, the membership values for all leaves
of the original tree, and replacing the model output and membership value
of the selected leaf by the models outputs, and membership values of the
candidate split.

Algorithm 6 details the algorithm to evolve fuzzy regression trees.



146 A. Lemos, W. Caminhas, and F. Gomide

Algorithm 6. Learning algorithm to evolve fuzzy linear regression models

1: Compute the output and membership value of all leaves
2: Update the linear models
3: Select the leaf with the highest membership value
4: for all inputs (m) do
5: for all candidate splits (k) do
6: Estimate the output replacing the selected leaf with the candidate split
7: Compute the p-value of the model selection test for the candidate split
8: end for
9: end for

10: Select the candidate split associated with the minimum p-value
11: if p-value < α

k×m then
12: Replace the selected leaf by the candidate split
13: end if

The learning algorithm has 4 parameters:

• significance level adopted during model selection test, α;
• number of candidate splits for each variable, k.
• initial spread of the sigmoid membership functions, σinit .
• basic learning rate to update the spread of the membership functions, β .

The significance level is usually set to values such as 0.05 or 0.01.
The number of candidate splits must be chosen based on the trade-off

between modeling accuracy and computational cost. Low values of k may
decrease the performance of the tree because fewer candidate splits will be
created for each leaf. High values increases performance, but also increases
the number of linear models to be updated.

The initial spread of the membership functions is chosen from a priori
information about data scale. The appropriate adjustment of this parameter
speeds the convergence to the optimal spread value.

Finally, the basic learning rate is usually set to a small value, i.e., β ∈
[10−510−1].

The algorithm also needs initial information about the range of the vari-
ables to create initial candidate splits. This range can be found using an
initial data set. The algorithm updates the initial range whenever necessary.

6.5 Experiments

The performance of the models described in the previous sections were eval-
uated using time series forecasting problems. The results obtained were com-
pared with alternative evolving modeling approaches. The models used for
comparison were: eTS [5], xTS [10] and DENFIS [31].

The Matlab DENFIS implementation used is available from the
Knowledge Engineering and Discovery Research Institute (KEDRI)
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(http://www.aut.ac.nz /research/research-institutes/kedri/books). The Java
eTS and xTS implementation used was provided by the respective authors.

In all experiments, modeling performance was evaluated using the root
mean squared error (RMSE ) and/or the non-dimensional error (NDEI ). The
NDEI is non dimensional error index defined as the ratio of the root mean
squared error by the standard deviation of the target data. The error measures
are computed as follows:

RMSE =

(
1
n

n

∑
k=1

(yk − ŷk)

) 1
2

(52)

NDEI =
RMSE
std(yk)

(53)

where n is the size of the test data set, yk is the target output, and std() is
the standard deviation.

These error indices are good indices to measure the model accuracy. How-
ever, they do not reveal whether the results from one model is statistically
superior to any other model. Therefore, a statistical test was performed to
compare the models in terms of accuracy.

The MGN test [16] is a parametric test used to compare the accuracy of
two forecasting models. The statistic for this test is found as:

MGN =
ρ̂sd√
1−ρ̂2

sd
n−1

(54)

where ρ̂sd is the estimated correlation coefficient between s = r1 + r2, and
d = r1 − r2, with r1 and r2 the residuals of the two models adjusted. In this
case, the statistic is distributed as Student’s T distribution with n− 1 de-
grees of freedom. For this test, if the forecasts are equally accurate, then the
correlation between s and d will be zero.

6.5.1 Short Term Electricity Load Forecasting

In this section the eMG and eFT models were tested using the short term
electricity load forecasting problem. Forecasts of load demand are very im-
portant in the operation of electric energy systems because several decision
making process, such as system operation planning, security analysis and
market decisions are strongly influenced by the future values of the load. In
this context, a significant error in the load forecast may result in economic
losses, security constraints violations, and system operation drawbacks. Ac-
curate and reliable load forecasting models are essential for a suitable system
operation.
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The problem of load forecasting can be classified in long, medium and
short-term, depending on the situation. Long-term forecasting is important
for capacity expansion of the power system. Medium term is important to
organize the fuel supply, maintaining operations and interchange scheduling.
Short-term forecasting is generally used for daily programming and operation
of the power system, energy transfer and demand management [52].

Particularly, in the context of short-term hydrothermal scheduling, load
forecasting is important to elaborate the next day operation scheduling be-
cause errors in load forecasting can cause serious consequences, affecting the
efficiency and the safety of the system (cost increasing, insufficient electrical
energy supply to the existing demand).

The goal of short-term load forecasting is to accurately predict the 24
hourly loads of the next operation day, one-step-ahead. The effectiveness of
the proposed approach is illustrated using load data of a major electrical
utility located at the Southeast region of Brazil. In evaluating the forecast
model, a database consisting of hourly loads from August 1st, 2000 to August
31th, 2000 is used to develop he model and to produce load forecasts. The
measures are expressed in kilowatts per hour (kW/hour).

The models are one-step ahead forecasters whose purpose is to predict the
current load value using lagged load values in the series. The sample partial
autocorrelation function [13] for the first 36 observations of the series suggests
the use of the last 2 previous values of load values as inputs of the models,
that is, the forecast model is of the form:

ŷk = f (yk−1,yk−2) (55)

The experiment has been conducted as follows. The hourly load for first 28
days were input to the learning algorithms and the resulting models perfor-
mance evaluated using data of the last 3 days, keeping the models structure
and parameters fixed at the values found after evolving during the period of
28 days. The parameters of the eMG model were chosen as α = 0.05, w = 20,
Σinit = 10−2I2 e β = 0.01. The parameters of the eFT model were chosen as
σinit = 0.01, α = 0.05, k = 20 and β = 0.01. The data was normalized between
0 and 1 to preserve privacy.

In this experiment, the parameters of eMG, eFT and the alternative meth-
ods were selected to generate models with similar structures, that is, similar
number of fuzzy rules. The xTS model has only 1 parameter, that does not
influences the resulting number of rules. Therefore the parameters of all mod-
els were adjusted in order to generate models with similar number of rules as
xTS.

Figures 14 and 15 show the forecasting results for the eMG and eFT mod-
els, respectively.

Figure 16 sketches the final 5 clusters found by the eMG model after learn-
ing. Looking at this figure one can note that the resulting clusters have dis-
tinct orientations and most of them are not parallel to the input axes.
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Fig. 13 Normalized load data for the first 3 days of August 2000
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Fig. 14 Electricity load forecast for the eMG model
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Fig. 15 Electricity load forecast for the eFT model
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yk−1 < 0.81

yk−2 < 0.62 yk−1 > 0.87

y1 y2 y3 y4

Fig. 17 Fuzzy linear regression tree model for load forecast

The resulting eMG model is composed by the following rules:

If xk is A[0.1363 0.1731] then y1 = 0.0361+ 2.0103yk−1− 0.9894yk−2

If xk is A[0.9623 0.8260] then y2 = 0.4985+ 0.6757yk−1− 0.3350yk−2

If xk is A[0.4331 0.5260] then y3 = 0.0756+ 1.7899yk−1− 0.9618yk−2

If xk is A[0.7146 0.6916] then y4 =−0.1018+ 1.8821yk−1− 0.7274yk−2

If xk is A[0.3834 0.1942] then y5 = 0.1334+ 1.5142yk−1− 0.9020yk−2

(56)

where xk is the input vector, i.e., xk = [yk−1 yk−2]T ; and A[x y] is a multivariable

Gaussian membership function centered at [x y]T .
Figure 17 shows the resulting fuzzy linear regression tree (eFT model).

The following rules can be extracted from the tree topology:

If yk−1<0.8095 and yk−2<0.6190 then y1= 0.0574+ 1.6736yk−1− 0.8215yk−2

If yk−1<0.8095 and yk−2>0.6190 then y2=−0.0329+2.1482yk−1−1.0931yk−2

If 0.8095 < yk−1 < 0.8730 then y3 = 0.0608+ 1.7244yk−1− 0.8448yk−2

If yk−1 > 0.8730 then y4 =−0.1242+ 0.9342yk−1+ 0.1310yk−2

(57)
Table 1 shows how the eMG and eFT perform against evolving modeling

methods using RMSE and NDEI error measures. The parameters of the eTS
model were set to r = 0.5 and Ω = 750. The xTS has a Ω = 750. The DENFIS
has a distance threshold equals to 0.18.

Table 1 suggests that the eFT performs best among all the models.
Table 2 includes the pairwise comparisons between the forecasts of the

models using the MGN test (54). As this table suggests, the eFT and eMG
models presents statistically significant evidence of superior performance over
all alternative models, for a significance level of 0.05. The last row of this table
also suggests that eMG has a similar performance as eFT.
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Table 1 Performance of electricity load forecast methods

Model # of rules RMSE NDEI

DENFIS 5 0.0665 0.2568

xTS 4 0.0634 0.2447

eTS 5 0.0584 0.2254

eMG 5 0.0499 0.1929

eFT 4 0.0496 0.1916

Table 2 MGN Test Evaluation for Electricity Load Forecast

Models MGN p-value

eMG vs DENFIS 4.0965 0.0001
eMG vs eTS 3.1094 0.0013
eMG vs xTS 4.2864 0.0000
eFT vs DENFIS 3.8964 0.0001
eFT vs eTS 3.3938 0.0006
eFT vs xTS 2.1605 0.0171
eFT vs eMG 0.2705 0.3938

6.5.2 Tree Rings

In this section a high dimensional data set is used in order to evaluate the
robustness of the eMG and eFT models for high dimensional input vectors.
The tree rings time series contains yearly measures of tree rings width in
dimensionless units. The series used was measured in Argentina for the 441-
1974 period and corresponds to the arge030 data set of the Time Series Data
Library [25].

The models are one-step ahead forecasters whose purpose is to predict the
width for the next year (yk+1) using actual and lagged load values in the series.
Previous work [50] suggests the use of the last 10 previous values (yk, · · · ,yk−9,
excluding yk−4 and yk−6) as inputs of the model , totalling 8 inputs.

The experiment has been conducted as follows. The first 1013 data points
were input to the learning algorithms and the evolved models performance
evaluated using the last 511 data points, keeping the models structure and
parameters fixed. The parameters of the eMG were chosen as α = 0.05, w= 25,
Σinit = 5×10−1I3 and β = 0.05. The parameters of the eFT model were chosen
as α = 0.01, σinit = 0.04, γ = 25 and β = 0.01.

Both models are composed by only 2 fuzzy rules. Figure 20 illustrates the
resulting tree for the eFT model.
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Fig. 18 Tree rings forecast for the eMG model
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Fig. 19 Tree rings forecast for the eFT model
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yk−7 < 1.06

y1 y2

Fig. 20 Fuzzy linear regression tree model for tree rings forecast

Table 3 summarizes the performance of the eMG and eFT models against
evolving modeling methods using the NDEI. For this experiment, only the
NDEI error measure was used because the data set was not normalized and
some methods (eTS and xTS) used for comparison requires data normaliza-
tion. The parameters of the eTS model were set to r = 2 and Ω = 750. The
xTS has a Ω = 750. The DENFIS has a distance threshold equals to 0.23.

Table 3 Performance of the tree rings forecast methods

Model # of rules NDEI

DENFIS 3 0.8415

xTS 16 0.8093

eMG 2 0.7767

eTS 2 0.7731

eFT 2 0.7717

Table 3 suggests that the eMG approach performs best among all the
models. Table 4 shows the pairwise comparisons between the forecasts of
the models using the MGN test (54). From this table one can note that
the eFT and eMG models show statistically significant evidence of superior
performance over DENFIS and xTS and similar performance with eTS, for a
significance level of 0.05.

Table 4 MGN Test Evaluation for the tree rings forecast

Models MGN p-value

eMG vs DENFIS 1.7952 0.0366
eMG vs xTS 2.4959 0.0064
eMG vs eTS 0.2341 0.4075
eFT vs DENFIS 2.1625 0.0155
eFT vs xTS 2.0730 0.0193
eFT vs eTS 0.0846 0.4663
eFT vs eMG 0.0331 0.4868
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6.6 Conclusion

Nowadays, it is noticed a high interest in the development of highly adap-
tive and flexible data based models, based on online learning methods that
evolve or gradually changes the model parameters and structure to guaran-
tee life-long learning. Such models have been proposed to address problems
like system identification and pattern classification, on nonlinear and non
stationary environments.

This chapter presented a review and state of the art of these adaptive
modeling approaches. The chapter presented the main concepts, some learn-
ing approaches and recently developed evolving intelligent models based on
participatory learning and fuzzy trees.

Two evolving models were detailed in this chapter. The first model is a
fuzzy rule-based model that uses a recursive clustering procedure based on
participatory learning to evolve a dynamic structure. This model differs from
the ones proposed in literature because: it uses multivariable membership
functions for the fuzzy sets of the rules antecedents to prevent information
loss about input variables interactions; it is based on a recursive clustering
procedure robust to noisy data and outliers because it derives from the con-
cept of participatory learning; its rule creation mechanism is governed by
an automatic mechanism to adjust threshold value considering input space
dimension and, therefore, does not suffer from the curse of dimensionality.

The second model detailed in this paper, uses an alternative topology,
defined as a fuzzy linear regression tree and also an alternative criterion for
structure evolution. While most evolving methods proposed in literature uses
information about the input space spatial organization in order to evolve the
model structure, the eFT model updates the tree structure using recursive
statistical tests, growing the tree by replacing leaves by subtrees that improves
the goodness of fit of the resulting model.

These two models were evaluated using time series forecasting problems.
The experiments performed and their results suggest that these methods area
a promising alternative to build adaptive models.

Future work shall address the investigation of new topologies for develop
evolving models, in particular, the development of evolving fuzzy neural net-
works. Fuzzy neural networks are neural networks composed by logic fuzzy
neurons [48]. The main advantage of these networks is the transparency. It
is possible to extract knowledge (linguistic fuzzy rules) from the network
topology. It is also possible to define the network topology based on prior
information, also described as a set of fuzzy rules.

Recently a fuzzy neural network based on an uninorm fuzzy neurons has
been proposed [36]. This network is an universal function approximator, for
a given selection of parameters and operators [39]. In [36] an offline learning
algorithm is proposed for this network. Future work shall address the de-
velopment of an evolving learning algorithm capable of update the neurons
parameters and the network topology based on a data stream.
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Chapter 7
Emerging Trends in Machine
Learning: Classification
of Stochastically Episodic Events

B. John Oommen and Colin Bellinger

Abstract. In this chapter we report some Machine Learning (ML) and Pat-
tern Recognition (PR) techniques applicable for classifying Stochastically
Episodic (SE) events1. Researchers in the field of Pattern Recognition (PR)
have traditionally presumed the availability of a representative set of data
drawn from the classes of interest, say ω1 and ω2 in a 2-class problem. These
samples are typically utilized in the development of the system’s discrimi-
nant function. It is, however, widely recognized that there exists a particu-
larly challenging class of PR problems for which a representative set is not
available for the second class, which has motivated a great deal of research
into the so-called domain of One Class (OC ) classification. In this chapter,
we primarily report the novel results found in [2, 4, 6], where we extend the
frontiers of novelty detection by the introduction of a new field of problems
open for analysis. In particular, we note that this new realm deviates from
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the standard set of OC problems based on the presence of three characteris-
tics, which ultimately amplify the classification challenge. They involve the
temporal nature of the appearance of the data, the fact that the data from
the classes are “interwoven”, and that a labelling procedure is not merely
impractical - it is almost, by definition, impossible. As a first attempt to
tackle these problems, we present two specialized classification strategies de-
noted by Scenarios S1 and S2 respectively. In Scenarios S1, the data is such
that standard binary and one-class classifiers can be applied. Alternatively,
in Scenarios S2, the labelling challenge prevents the application of binary
classifiers, and instead dictates the novel application of one-class classifiers.
The validity of these scenarios has been demonstrated for the exemplary
domain involving the Comprehensive Nuclear Test-Ban-Treaty (CTBT), for
which our research endeavour has also developed a simulation model. As far
as we know, our research in this field is of a pioneering sort, and the results
presented here are novel.

Keywords: Pattern Recognition, Rare Events, Stochastic Events, Erroneous
Data.

7.1 Introduction

7.1.1 Problem Formulation

A common assumption within supervised learning is that the distributions of
the target classes can be learned, either parametrically or non-parametrically.
Moreover, it is assumed that a representative set of data from these classes is
available for the training of supervised learning algorithms; indeed, the latter
implies the former.

Beyond this commonly-reported method of classification, there exists a
special form of Pattern Recognition (PR), which is regularly denoted One
Class (OC ) classification [11, 13, 14, 16, 25, 26]. This “exceptional” category
of binary classification is noteworthy in lieu of the significant challenge that
it presents. Escalating the difficulty, is the fact that drawing a representative
set of data to compose the second class (ω2), which is fundamental to the
derivation of a binary discriminant function, is abnormally arduous, if not
altogether impossible. The difficulty of acquiring a sufficiently symbolic set
may arise because of:

1. The natural imbalance in the classification task;
2. The difficulty (due to cost, privacy, etc.) of acquiring samples from the ω2

class;
3. The task of obtaining representative samples of the ω2 class is overwhelm-

ing, as a result of the vastness of the distribution.
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PR tasks of this nature have previously been constituted as involving outlier
(or novelty) detection in lieu of the fact that the vast majority of the data
takes, what is assumed to be, a well-defined form that can be learned, and
that samples from the ω2 class will appear anomalously – outside the learned
distribution. Although such problems can be significantly more difficult than
those that involve two well-defined classes of data, the results reported in the
literature demonstrate that satisfactory results can often be obtained (see
[11, 13, 14, 16, 25, 26], for example).

7.1.2 SE Event Recognition

To expand the horizon of the field, we observe that there exists a further,
and yet more challenging subset of the OC classification domain of prob-
lems, which remains unexplored. We have denoted this class of problems as
Stochastically Episodic (SE) event recognition.

The problem of SE event recognition can be viewed in a manner that dis-
tinguishes it from the larger set of OC classification tasks. In particular, this
category of problem has a set of characteristics that collectively distinguish it
from its more general counterparts. The characteristics of this category can
be best summarized as follows:

• The data presents itself as a time sequence;
• The minority class is challenging to identify, thus, adding unwarranted

noise to the one-class training set;
• The state-of-nature is dominated by a single class;
• The minority class occurs both rarely and randomly within the data

sequence.

Typically in PR solutions to so-called OC problems, the accessible class, and
in particular, the data on which the OC classifier is trained, is considered to
be well-defined. Thus, it is presumed that this data will enable the classifier to
generalize an adequate function to discriminate between the two conceptual
classes. This, for example, was demonstrated in [25], where the training set
consisted exclusively of images of non-cancerous tissue. Similarly, in [13], a
representative set of the target computer user’s typing patterns, which are
both easily accessible and verifiable, were utilized in the training processes.

The classification of SE events2 is considerably more difficult because de-
riving a strong estimate of the target class’s distribution is unfeasible due to
the prospect of invalid instances (specifically members of the ω2 class erro-
neously labelled ω1) in the training set. In this work, we present solutions to
this problem based on tradition one-class classifiers.

2 Events of this nature are denoted stochastic because their appearances in the
time-series are the results of both deterministic and non-deterministic processes.
The non-deterministic triggering event could, for example, be the occurrence of
an earthquake, while the transmission of the resulting p- and s-waves, which are
recorded in the time-serise, are deterministic.
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SE event recognition is additionally challenging because the validity of
instances drawn from the target class are suspect, and the occurrences of the
minority class are temporally (i.e. with respect to the time-axis) interwoven
with the data from the majority class.

7.1.3 Characteristics of the Domain of Problems

To accentuate the difference between the problems that have been studied,
and the type of problems investigated in this research, we refer the reader
to Table 1. This table displays an assessment of six one-class classification
problems, which, while only a small subset, cumulatively illustrate the tradi-
tional scope of the problem set. In addition, we include the problem of CTBT
verification, which forms our exemplary SE event recogonition problem. The
first column indicates whether the problem has traditionally been viewed as
possessing an important temporal aspect. The three entries with an asterisk
require special consideration. In particular, we note that while, traditionally,
these domains have not been studied with a temporal orientation, they do in-
deed contain a temporal aspect. The subsequent column signals whether the
manual labelling of data drawn from the application domain is a significant
challenge. This is, for example, considered to be a very difficult task within
the field of computer intrusion detection, where attacks are well disguised in
order to subvert the system.

The following two columns quantify the presence of class imbalance. In
the first of these, we apply a standard assessment of class imbalance, one
which relies on the determination of the a priori class probabilities. Our
subsequent judgement departs slightly from the standard view, and considers
class imbalance that arises from the difficulty of acquiring measurements (due
to cost, privacy, etc.). The final column specifies if the minority class occurs
rarely, and randomly (in time and magnitude), and if it occurs within a time
sequence dominated by the majority class.

Table 1 A comparison of well-known One-Class (OC) classification problems. The
explanation about the entries is found in the text.

Dataset Temporal ID Imbalance Imbalance Interwoven
Challenge Type I Type II

Mammogram No Low Yes Medium No
Continuous typist recognition No Low Yes Medium No

Password hardening No Low Yes Medium No

Mechanical fault detection No* Low Yes Medium No

Intrusion detection No* High Yes High No

Oil spill No* High Yes Medium No*

CTBT verification Yes High Yes High Yes
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To summarize, in this section we have (briefly) both demonstrated the
novelty of this newly introduced sub-category of PR problems, and positioned
the CTBT verification task within it. We additionally note that the fault
detection, intrusion detection, and oil spill problems could be reformulated
to meet the requirements of our proposed category. This, indeed, suggests a
new angle from which these problems can be approached.

7.1.4 Overview of Our Solution

As previously indiated, SE event recognition composes a particular challeng-
ing problem due to the combined affect of the four characteristics that are in-
herent in such problems. Under these circumstances, we envision two possible
techniques for discriminating between the target class and the stochastically
episodic events of interest. If the incoming training data contains a suffi-
cient quantity of accurately identifiable stochastic events, a standard cluster-
ing/PR algorithm could be applied to label both the classes appropriately.
Subsequent to the labelling procedure, a standard binary classifier could be
trained and utilized to achieve the classification of novel instances. In this
body of work, we refer to this scenario as S1, and the subsequent scenario as
S2.

Alternatively, and more applicable in scenarios in which the SE events are
extremely rare, all of the training data can be assigned to the target class,
and an OC classifier can be applied. The details of, and justification for, this
approach are described in the subsequent sections. Our primary objective
in this chapter is to illustrate how standard supervised learning algorithms
can be applied to discriminate rare stochastic episodes, which apart being
unanticipated, are random in magnitude and position within the sequence of
background data.

Put in a nutshell, the novel contributions of the results presented in [4]
and [5] (which we re-iterate here), with respect to PR, are as follows:

• We introduce an important new category of PR, namely SE event recogni-
tion. In particular, we note that this new realm deviates from the standard
set of one-class problems based on the presence of four characteristics: (a)
the data presents itself as a time sequence; (b) the minority class is chal-
lenging to identify, thus, adding unwarranted noise to the OC training set;
(c) the state-of-nature is dominated by a single class; and, (d) the minority
class occurs both rarely and randomly within the data sequence.

• In addition, we present a first attempt at classifying SE events within
the examplary verification problem suggested by the Comprehensive Test-
Ban-Treaty (CTBT). Our initial approach is extremely accessible, as it is
based on “off the shelf” PR solutions.

• More specifically, where the ω2 is sufficiently large, we demonstrate how
clustering/PR algorithms can be applied to label training data for the
development of a sound binary classifier.
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• Finally, in scenarios where training instances cannot be acquired from the
second class (the so-called OC problem), and where the accessible class in
known to contain noise due to labeling issues, we illustrate how, through
novel means, standard OC classifiers can be applied as unsupervised
learners.

We conclude this section by mentioning that our results probably represent
the state-of-the-art when it concerns recognizing SE events.

7.2 Pattern Recognition: State of the Art

This section3 serves to present the state-of-the-art in PR. In that regard,
Duda, et al., in [10] describe pattern recognition as follows:

“The act of taking in raw data and taking an action based on the ‘category’
of the pattern.”

It is, indeed, natural that we should desire to ‘teach’ machines to recognize
sets of patterns that are easily recognizable to humans, such as handwritten
characters, speech and faces, as computers present the possibility of increased
efficiency and do not become tired of mundane tasks. Furthermore, the bene-
fits of training machines to classify complex patterns, typically left to doctors
and scientists with considerable specialization in the domain, are equally ap-
parent. Thus, researchers have continued to push the state-of-the-art in PR
systems since the advent of the modern computer.

7.2.1 Supervised Learning

Prior to application, the PR system must be trained to discriminate between
the objects of interest in its particular application domain. For multi-class
problems, such as discrimination between handwritten characters, the PR
system is said to learn a mapping that discriminates between the individual
inputs by directing them to their corresponding categories. Alternatively, in
the special scenario, which is of primary interest in this work, termed OC
learning, instances of a single target category are available for the training of
the PR system. As a result, the system takes a recognition-based approach,
and attempts to learn a function that maps novel instances of the target
category to the target class, and all others to the outlier class.

Broadly speaking, standard PR systems for supervised learning are trained
on datasets drawn from their prospective application domains, in which each

3 This brief section has been included in the interest of completeness. Although
these issues are considered commonplace for the general PR problem, they are
still fairly non-standard for OC problems - which advocates the necessity of the
section.
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feature vector has been accented with its corresponding class label. The objec-
tive of the training process is the derivation of a set of models that articulate
the individual characteristics of the classes. Thus, while the performance on
the training set is of little interest, rather, the focus shifts to the selection of a
model that will perform well on novel instances in the future. The derivation
of these models is algorithm-specific, however, there exists commonalities be-
tween all learners. Generally speaking, regardless of the learning strategy, the
accuracy of the derived model on novel instances will increase with the size
of the training set. In addition, all learners strive to optimize the balance
between specialization and generalization [18].

Under ideal circumstances, the training procedure for a binary learner
is able to rely on an ample supply of data that has been uniformly drawn
from both classes. As a result, increasingly accurate models of the classes
in question can be constructed, and therefore, an effective classifier of novel
instances is produced.

7.2.1.1 “Traditional” Pattern Recognition

Standard, or rather “traditional” PR problems/solutions typically assume
the existence of data that was drawn independently and identically from the
application domain, and that the data can be divided upon class lines into
representative sets. The availability of such data facilitates the training of
binary classifiers, which have been shown to be proficient at learning class
distributions, and thus at labelling novel instances.

In all brevity, we mention that the binary classifiers used in this study were
the Multi-layer Perceptron (MLP), the Support Vector Machine (SVM), the
Nearest Neighbour (NN), the Näıve Bayes (NB) and the Decision Tree (J48),
all of which are fairly well known, and so their descriptions are omitted here.
However, we mention that their implementations were from Weka4.

Alternatively, OC classifiers rely on instances drawn from a single class in
the derivation of a discriminant function. A broad set of OC classifiers exists
in the literature, each of which applies a slightly different strategy to the
construction of a binary discriminant function from a single class. However,
in simple terms, the process can be articulated as one in which the selected
classifier learns to recognize, in some general terms, novel instances that are
similar to those viewed during the training process. Thus, novel instances
that do not appear to fit into the learned distribution are designated to the
alternate class, ω2 .

The autoassociator (AA), for example, applies a neural network structure
to compress/decompress instances of the concept class exclusively. Thus, an
unsuccessful compression/decompressionresults in the instance being assigned
to the second class [14].

Hempstalk et al., in [13], converted the one-class classification problem
into binary tasks by estimating the distribution of the concept class and

4 Interested readers should refer to [10, 12, 18] for more details of these strategies.
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generating instances of the non-concept, accordingly. Finally, a standard
binary classifier is trained. This process has been denoted the Combined
Probability and Density Estimator (PDEN).

Alternatively, the one-class Nearest Neighbour (ocNN) algorithm [8] learns
a target rejection rate, τ , where τ is the distance between the two nearest
neighbours with the greatest separation in the training data. Subsequently,
all novel instances whose nearest neighbours are at greater distances than
τ are classified as outliers. We have additionally implemented a modified
version of the ocNN in Weka, and denoted it as the scaled ocNN (socNN).
Contrary to the ocNN, the socNN classifier is capable of learning a model
that accounts for the noise in the training set (we refer the reader to [5] for
more details on how this is achieved). Subsequent research also explored the
performance of the often extolled one-class SVM [23].

Our previous work, as highlighted here, demonstrated that for extreme
cases of SE event recognition, the application of static OC classifiers is supe-
rior to the static binary classifiers mentioned above. These results, however,
do not preclude those that may be produced through other learning strate-
gies, such as those discussed in the following subsections. Indeed, the failure
to incorporate the time dimension into the hypothesis space is a particu-
lar weakness of both the binary and OC solutions. This is particularly the
case as the temporal nature of the phenomena suggests that valuable infor-
mation may have been lost. Moreover, under certain conditions, sampling,
unsupervised and semi-supervised learning strategies have been shown to be
beneficial. Thus, they also warrant further consideration.

7.2.2 Alternative Learning Paradigms

Under less than ideal circumstances, however, none or very few labelled train-
ing instances are available. The former case, where no labelled instances are
available, is referred to as unsupervised learning. In the context of data cate-
gorization, unsupervised learning typically relies on clustering algorithms [28].
The latter scenario, which is commonly known as semi-supervised learning, is
characterizedby the availability of a small set of labelled training instances.The
objective, here, is to leverage the knowledge stored in the labelled instances to
incrementally categorize the larger unlabelled portion of the training set [7].

In terms of SE event recognition, if we assume the unknown target distri-
butions be static, which we maintain in this early work, then semi-supervised
learning offers a means by which we can extract more labelled SE events from
the training data. These additional SE events can subsequently be applied to
a learn an improved model.

Semi-supervised learning for data labelling has previously been applied in
[7]. Unfortunately, in scenario S2, due to the extreme class imbalance, even
a perfect a priori labelling phase is unlikely to produce a sufficient number
of SE event instances for binary learning. This is, quite literally, a result of
the fact that they do not exist in nature.
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7.2.3 Sampling

Sampling is often applied in multi-class classification problems as a means to
overcome under-representation in one or more of the classes [17]. As previ-
ously noted, significant imbalance in the training set can, very often, lead to
the development of a poor classification model. In addition, some evaluation
metrics are biased by class imbalance [15].

In order to deal with the issue of under-representation in the training data,
two sampling strategies have received considerable attention in the literature.
Oversampling increases the size of the minority portion of the training set by
sampling from that portion, with replacement. As a result, some instances
of the minority class will appear more than once in the regenerated training
set. The oversampling process is continued until a “sufficient” portion of the
training data is drawn from the minority class.

The primary limitation of this form of sampling is that there is a risk of
over-representing noisy and/or outlier instances in the generated training set.
As a result, the learned function may become overly fit to the minority class,
and thus be, possibly, biased in a manner that leads to poor classification.

Alternatively, under-sampling draws a subset of instances (without replace-
ment) from the majority class, to produce a more balanced training set. The
major problem with such an approach is that there is no guarantee that the
most informative instances will, in fact, be sampled. Thus, depending on the
degree to which the majority class must be under-sampled, there is a high
risk of discarding meaningful information.

Modifications to these strategies have attempted to address the above lim-
itations. However, there is no single solution. Moreover, with respect to SE
event recognition, the degree of class imbalance is so great that over-sampling
is very much unadvised. Similarly, the large amount of background data im-
plies that an excessive amount of under-sampling would be required at great
expense to the informativeness of the training set. This is a particular prob-
lem given the complexity of the background class.

7.2.4 Dynamic Classification

Sequential classification algorithms constitute a special form of classifiers,
which are particularly apt at leveraging systematic variations in data, such
as time series data. When applied to the appropriate problem, this advanced
learning process can often produce results that are superior to those obtained
by the static algorithms previously discussed.

In general terms, time series classification is conducted in one of two ways.
The simplest strategy is to convert the sequence into a form suitable for static
learning. This, in essence, ignores the sequential aspect and, thus, loses many
of the desirable features of dynamic classification.

Alternatively, thresholds on the distance between the learned class pattern
and those to be classified can be applied.
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In addition, algorithms based on artificial neural networks and hidden
Markov models can be trained to detect anomalous events and make predic-
tions into the future based on the data seen thus far [19, 20].

Due to the systematic variations in SE event data, times series classifica-
tion and anomaly detection offer considerable promise within this domain.
However, for the present, we leave this for future work.

7.3 Modelling the Problem

To this point, we have described a novel sub-category of PR, which is char-
acterized by the detection of a minute number of SE events interwoven in a
time-series. Indeed, a number of interesting PR problems fit this form, in-
cluding advanced earthquake, tsunami and machine failure warning systems,
to name but a few. In this section, we present a series of experiments based
on the verification of the CTBT. These experiments are designed to both il-
lustrate the domain of SE events, and to exhibit a first attempt at SE events
recognition.

7.3.1 Application Domain

The CTBT aims to prevent nuclear proliferation through the banning of all
nuclear detonations in the environment. As a result, a number of verifica-
tion strategies are currently under study, aimed at ensuring the integrity of
the CTBT. The primary verification technique being explored relies on the
quantity of radioxenon measured continuously at individual receptor sites,
distributed throughout the globe. Radionuclide monitoring, in general, has
been identified as the sole technique capable of unambiguously discriminating
low yield nuclear detonations from the background emissions. More specifi-
cally, verification of the treaty based on the four radioxenon isotopes, 131Xe,
133Xe, 133mXe and 135Xe, has been promoted due to the relatively low back-
ground levels, their ideal rates of decay, and their inert properties [22, 24].

In general, the measured radioxenon levels are expected to have resulted
from industrial activities, such as nuclear power generation and the produc-
tion of medical isotopes. However, they are also the byproducts of low yield
clandestine nuclear weapons tests, which are the subject of the CTBT.

7.3.2 Procuring Data: Aspects of Simulation

While it is generally beneficial to develop and study classifiers on “real” data,
this is, indeed, impossible within the CTBT verification problem due to the
absence of measured detonations, and the limited availability of background
instances. It has, however, been demonstrated that artificial data can be
utilized for PR system development, and to generate controlled experiments
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(generalized case-studies), in the absence of “real” measurements [1, 9]. In
this vein, as a means of acquiring experimental datasets for this research,
we utilized the simulation framework presented by Bellinger and Oommen
in [6]. Their simulation framework models SE events, such as earthquakes,
nuclear explosions, etc., as they propagate through the background noise, in
this case representing radioxenon emitted from the industry into the earth’s
atmosphere.

7.3.2.1 Simulation Scenario

In order to explore the PR of low yield clandestine nuclear tests, we devised a
simulation scenario to capture the effects of a diverse set of detonation possi-
bilities, within a realistic background scenario. In particular, and accordance
with the majority of the CTBT’s International Monitoring Station (IMS), the
IMS in the simulated environment was impacted by a single industrial emit-
ter. In this simulation scenario, the industrial emitter was positioned 3,000
km away from the IMS. Thus, when the atmospheric conditions transported
the emitted radioxenon directly from the source to the receptor, and when
the conditions were not conducive to the dispersion of the radioxenon, the
background concentration could reached significant levels. However, due to
the realistic atmospheric conditions that were built into the model, such as
the fluctuations in wind speed and direction, along with atmospheric stabil-
ity, the background levels were generally low. This fact is displayed by the
histogram in Figure 1. The figure specifically demonstrates that the majority
of the 131Xe concentrations measured at the IMS site during the simulation
were less than 0.5 Bq m−3.

0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.5

1.0

1.5

Fig. 1 This figure displays a histogram of the measured concentrations of 131Xe
at the IMS, resulting from the background source during the simulation.

It is, however, highly probable that a clandestine detonation will occur at
distances beyond the industrial source, thus, causing no, or only a minute,
change in the radioxenon concentrations measured at the IMS, depending on
the angular direction to the detonation site, and the prevailing meteorological
conditions. Therefore, the classification of this type of SE event is extremely
challenging.

With the above fact in mind, we considered the performance’s of the PR
systems as a function of distances. This is to specifically assess the probability
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of detecting detonations at various distances. In particular, 23 subcategories
of datasets were generated. In each case, the modelled environment contained
the same industrial source and IMS at the receptor site. As a result, for each
simulation the background readings can be assumed to follow the distribution
displayed in Figure 1. The 23 subsets formed a series of incremental detona-
tion ranges, which commenced with all detonations occurring between 500
km and 1000 km, as illustrated in Figure 2.

Iterations

1n

Industrial

Receptor

emitter

site

Random Explosion

Fig. 2 This figure demonstrates the iterative composition of the simulated domain.
In each iteration of the simulation, a fixed number of explosions are probabilistically
generated as uniform, random events in time, space and magnitude, and dispersed
according to the prevailing meteorology, which may or may not carry the pollutant
cloud past the receptor site

The detonation range was iteratively increased by 500 km for each succes-
sive set. This incremental approach enabled the examination of performance
as a function of distance, in addition to the more general considerations of
performance.

As a binary classification problem, the generated sets were composed of
two classes, in this case a background class and a detonation class. In addition
to the class label, each instance was composed of the concentrations of the
four isotopes measured by the IMS at the receptor site over the period of an
hour. The simulation system contains two phases, the first phase simulates
the effect of the background emission source on the receptor sites, thereby
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producing instances of the background class (labelled 0). Thus, an instance
measured over hour i, takes the following form:

xi,0 = 131Xei,0,
133Xei,0,

133mXei,0,
135Xei,0, 0. (1)

The second phase generates the data for the detonation class (labelled 1).
This is done by generating random (in time, space and magnitude) low yield
explosions, and measuring their impact on the receptor site. Subsequently,
the effect of the detonation is combined with that of the background source
over the appropriate period of time, and written to the dataset with the
detonation label. Therefore, a detonation instance measured over hour j,
takes the following form:

xj,1 = xj,0 + 131Xej,1,
133 Xej,1,

133m Xej,1,
135 Xej,1, 1. (2)

7.3.3 Generated Datasets

A total of 230 datasets were derived and applied to scenario S1 and S2,
according to the simulation procedure previously described. More specifically,
10 datasets were generated for each of the 23 detonation ranges, each of which
was subsequently divided into training and testing components.

Intuitively, the first scenario presents a slightly easier classification prob-
lem, because a set, albeit small, of SE events can be extracted from the
application domain and applied to train and/or test the PR systems. More
specifically, within this scenario, we assume that the ω2 class is both identi-
fiable and available in quantities that facilitate the training of binary classi-
fiers. However, in many ways, the classification problem still presents itself
as a so-called OC classification task, and thus warrants exploration on both
fronts. The datasets specifically contain a 90% background data (ω1) and
10% explosion data (ω2).

Alternatively, each set involved in the S2 scenario is divided with 99%
background data (ω1) and 1% explosion data (ω2). In order to simulate the
challenge of manually labelling the instances drawn from class ω2, and in
accordance with the disguised nature of the SE events, all of the ω2 training
instances were erroneously labelled ω1.

Alternatively, the test sets included appropriately labelled instances from
both classes, with proportions following the predefined states-of-nature. This
enabled us to assess each classifier’s ability to generalize the “real” back-
ground data from the noisy training set.

7.4 PR Solutions

In this section, we present a series of experiments designed to both illustrate
the demonstration domain, and to exhibit a first attempt at classifying this
sub-category of PR problems.
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7.4.1 Classification Scenarios

As mentioned in the introductory section, within this challenging domain of
classification problems, there exist two conceivable scenarios, which we have
denoted as S1 and S2. These scenarios explicitly influence the choice of the
classification scheme applied to the task of recognizing the SE events.

Intuitively, the first scenario presents a slightly easier classification prob-
lem, because a set, albeit small, of SE events can be extracted from the
application domain and applied to train and/or test the PR systems. More
specifically, within this scenario, we assume that the outlier class is both
identifiable and available in quantities that facilitate the training of binary
classifiers. However, in many ways, the classification problem still presents
itself as a so-called OC classification task, and thus warrants exploration on
both fronts.

Alternatively, the second scenario presents itself as a much more difficult
PR task, and in many ways more accurately reflects the PR problem sug-
gested by the detection of SE events, in general, and the verification of the
CTBT, in particular.

In accordance with the general domain characteristics, as they were orig-
inally defined, the data presents itself as a time-series of background mea-
surements that are interwoven with a minute number of SE events. However,
unlike the ideal scenario depicted in S1, here we attempt to assume a state-of-
nature that is more appropriate for the CTBT task. In particular, we assume
that there is a 1% a priori probability of a detonation, which, while still an
overestimate, is a more accurate depiction, while it still provides insight into
the behaviour of PR systems on the class of SE events.

Raising the difficulty further, is the recognition that, in practice, the clan-
destine nature of the SE events are such that manually identifying a distant
clandestine occurrence in the acquired time-series of readings is extremely
difficult, if not impossible. Thus, this prohibits the derivation of a labelled
training set, which dictates that practitioners are left to utilize a training
set composed largely of background instances, but with a minute number of
unidentifiable members of the SE event class.

In the absence of a labelled training set, we propose the application of stan-
dard OC learners as unsupervised classifiers. When applying OC classifiers
to an unlabelled training set, the practitioner must rely on the knowledge of
a domain expert to acquire estimates of the a priori class probabilities.

In particular, estimates of the state-of-nature are required to appropriately
specify the parameters of the OC classifiers, such as the rejection rate, or error
rate. This technique aims to prevent the inclusion of the SE event instances in
the generalized description of the background class. Our reliance on an error,
or rejection rate, presumes that the SE events will reside on the periphery of
the background class, and thus, by marginally tightening the generalization
of the background class, those instances of the SE event class will no longer
be included.
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7.4.2 Classification

Standard PR problems typically assume the existence of data that was drawn
independently and identically from the application domain, and that the data
can be divided upon class lines into representative sets. The availability of
such data facilitates the training of binary classifiers, which have been shown
to be proficient at learning class distributions, and thus at labelling novel
instances.

In all brevity, we mention that the binary classifiers used in this study were
the Multi-layer Perceptron (MLP), the Support Vector Machine (SVM), the
Nearest Neighbour (NN), the Näıve Bayes (NB) and the Decision Tree (J48),
all of which are fairly well known, and so their descriptions are omitted here.
However, we mention that their implementations were obtained from Weka.

Alternatively, OC classifiers rely on instances drawn from a single class in
the derivation of a discriminant function. A broad set of OC classifiers exists
in the literature, each of which applies a slightly different strategy to the
construction of a binary discriminant function from a single class. However,
in simple terms, the process can be articulated as one in which the selected
classifier learns to recognize, in some general terms, novel instances that are
similar to those viewed during the training process. Thus, novel instances
that do not appear to fit into the learned distribution are designated to the
ω2 class.

Although these classifiers were briefly outlined earlier, to summarize:

• The autoassociator (AA), for example, applies a neural network structure
to compress/decompress instances of the concept class exclusively. Thus,
an unsuccessful compression/decompression results in the instance being
assigned to the second class [14].

• Hempstalk et al., in [13], converted the OC classification problem into
binary tasks by estimating the distribution of the concept class and gener-
ating instances of the non-concept, accordingly. Finally, a standard binary
classifier is trained. This process has been denoted the Combined Proba-
bility and Density Estimator (PDEN).

• Alternatively, the one-class Nearest Neighbour (ocNN) algorithm [8] learns
a target rejection rate, τ , where τ is the distance between the two nearest
neighbours with the greatest separation in the training data. Subsequently,
all novel instances whose nearest neighbours are at greater distances than
τ are classified as outliers.

• We have additionally implemented a modified version of the ocNN inWeka,
and denoted it as the scaled ocNN (socNN). Contrary to the ocNN, the
socNN classifier is capable of learning a model that accounts for the noise
in the training set.

• Subsequent research also explored the performance of the often extolled
one-class SVM [23]. However, due to the poor results which were generally
equivalent to those yielded by the ocNN, it is not included in the present
discussion.
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7.4.3 Classifier Assessment Criteria

As discussed in the previous section, this research considers the performance
of the classifier within two distinct scenarios. Within each of the scenarios,
namely S1 and S2, we considered the performance of the classifier according
to a set of criteria. These criteria are discussed in greater detail.

In particular, we examined the general performance of the classifiers across
all of the simulated detonation ranges. Performance in this category is particu-
larly important, as, in practice, the detonation ranges are largely unpredictable.
The results of this assessment are presented in Sections 7.5.1 and 7.6.1. In addi-
tion,we explored the performance of the classifierwithin two shorter detonation
ranges, the result of which is presented in Sections 7.5.2 and 7.6.2.

The performance of the classifier, as a function of distance, was also exam-
ined. The results of this comparison are detailed in Sections 7.5.3 and 7.6.3.

Finally, in light of the inherent challenge of distinguishing these two very
similar classes according to the four radioxenon isotopes, we were motivated
to explore an expanded CTBT feature space. Based on the significant role
held by meteorology in affecting the pollutant levels at the receptor site, we
surmised that the inclusion of meteorological features would improve the per-
formance of the classifiers. The results of our experiments with an expanded
feature space are provided in Sections 7.5.4 and 7.6.4. Indeed, subsequent
research by Bellinger and Japkowicz, in [3], further demonstrated that the
inclusion of a simple wind direction feature can significantly increase the
prospect of classifying challenging detonation events, and suggests the pre-
dictive power of meteorological features in general. In doing so, they presented
classification results from four complex simulated scenarios.

7.5 Results: Scenario 1

In this section, we present the results that were obtained according to the four
assessment criteria that were motivated in the previous section, on the first
classification scenario, S1. We commence our exploration of PR performance
by examining the Area Under the ROC Curve (AUC) scores produced by
each classifier over the 23 detonation ranges.

7.5.1 General Performance

In this section,we present a general overviewof the performance levels of each of
the considered classifiers on the simulatedCTBT domain.More specifically, we
present an assessment of the five binary classifiers and the four one-class classi-
fiers, in terms of their AUC scores averaged over the 230 datasets that spanned
the 23 detonation ranges. In light of the fact that the SE events, which are to be
identified, will, in practice, occur at random and unpredictable distances, these
results are a particularly insightful overview of the general performance levels.
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Fig. 3 This figure displays the performance of the nine classifiers, in terms of their
AUC scores on the 230 generated CTBT datasets, in the form of a series of boxplots.

The results depicted in Figure 3 were compiled as a series of boxplots; one
for each classifier.

The solid lines that bisect the boxes represent the median AUC score
produced by the particular classifier. The box itself indicates the distribution
of the middle half of the AUC scores produced by the classifier. Thus, it
stretches from the 25th percentile (at the lower hinge) to the 75th percentile
(at the upper hinge). The boxes that are evenly divided indicate that the
classifier’s scores are evenly distributed throughout the central region. This
is, indeed, the case for AA and NB.

The fact that there is no box around the median indicator for the SVM,
suggests that nearly all of the AUC results were equivalent, and in this case,
approximately 0.5. The relatively large number of circles extending up from
the median, individually identify outliers. This suggests that, in general, the
SVM classifier performed poorly, but that it occasionally produced anoma-
lously strong results, which stretched slightly beyond 0.8.

Alternatively, the scenario where the median does not produce an even
bisection of the box indicates that the distribution of the inter-quartile range
is skewed. This is the case, for example, with PDEN, where the upper-quartile
is large, indicating that the points composing the upper-quartile are spread
over a larger distance.

The dashed lines, or whiskers, stretch to either the maximum and minimum
values, where outliers do not exist, or to 1.5 times the range of the inter-
quartile region in scenarios with outliers, such as in the case with the SVM
classification results.
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The SVM classifier is, surprisingly, by far the worst-performing classifier
on this data, and in spite of its bias, it is, on average, worse than the OC
classifiers, AA and socNN. This is reiterated in Table 2, which contrasts the
mean AUC scores of AA and socNN as 0.656 and 0.603, respectively, with
the mean value for the SVM classifier being 0.528. Moreover, all four OC
classifiers appear to be superior to the SVM when considered in terms of
their maximum AUC scores.

When assessing the classifiers according to the boxplot, the median value
provides a good indication of their performances, in general. However, most
interesting are the ranges of the inter- and outer-quartiles along with the
presence of the outliers, when combined with a high median value, as these
components provide a strong indication of how likely it is that the classifiers
will reproduce the median result.

In these terms, the binary classifier, the MLP, stands out as the superior
classifier, with J48, NN, and NB contending for the intermediate positions.
The results posted in Table 2 confirm that the MLP is the strongest of the
classifiers considered here. Furthermore, it indicates that the J48 and NB are
very similar, and that the NN is the fourth-ranking binary classifier according
to the mean and maximum scores. However, the NN is second when ranked
according to the minimum AUC scores.

Table 2 This table displays the general classification results, in terms of AUC.

Mean Max Min STDV

NB 0.772 0.939 0.504 0.074
MLP 0.869 0.976 0.674 0.067
NN 0.741 0.913 0.584 0.071
J48 0.774 0.98 0.500 0.148

SVM 0.528 0.813 0.500 0.065
ocNN 0.540 0.875 0.496 0.087
PDEN 0.487 0.943 0.182 0.156
socNN 0.603 0.842 0.405 0.094

AA 0.656 0.970 0.251 0.140

Notably, of the set of OC classifiers, the PDEN produced the most variable
range of the AUC scores. It is our suspicion that this variability resulted from
the PDEN’s generation of an artificial second class in its training process.
However, further exploration of this matter is required.

In general, the AA classifier is identified as the strongest OC classifier,
both with respect to its mean and median values. While the socNN classifier
achieved the second highest mean, it is more stable than the AA, and does
not produce any anomalous results. Indeed, the socNN has a lower standard
deviation, and furthermore, its boxplot spans a smaller range.
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7.5.2 Performance on Short- and Long-Range
Detonations

In Figure 4, we present the AUC results produced over two detonation ranges
of particular interest. The Boxplot on the left in this figure contains the
results for the datasets that included detonations ranging from 1,000 km and
5,500 km, while the Boxplot on the right has those with detonations between
5,500 km and 10,000 km. Together, these plots contrast the performance of
the individual classifiers in the various detonation ranges. This experimental
setup demonstrates one technique through which the performance of various
receptor network topologies can be examined. For example, if PR within the
second range is found to be a considerable challenge, the shorter range may,
perhaps, be considered an upper bound on the acceptable distance between
receptors.

There are two factors at play when hypothesizing about classifier perfor-
mance within these ranges. Intuitively, detonations closer to the receptor site
will be more visible at the receptor site, provided the meteorological condi-
tions are such that the emissions are advected in the direction of the receptor.
Conversely, detonations that occur farther afield are likely to have a smaller
influence on the pollutant levels at the receptor site, leading to a more chal-
lenging classification problem. On the surface, then, it appears that nearby
detonations should be easier to detect. Indeed, the very near detonations are
often easily identifiable. However, the scenario is made more complex by the
fact that during the simulation, the industrial source was positioned approx-
imately in the middle of the shorter range. Thus, there was, in a sense, a
great deal of competing background noise to distort the signal.
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Fig. 4 In this figure, Boxplot (i) displays the performance of the nine classifiers, in
terms of their AUC scores for detonations occurring between the distances of 1,000
km and 5,500 km, and Boxplot (ii) displays their performances for detonations
between the distances of 5,500 km and 10,000 km.
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Indeed, Figure 4 demonstrates that within this scenario it is possible for the
performance of the classifiers to improve when detonations occur at greater
distances. However, the fact that this only occurred for the binary classifiers,
highlights the importance of the second class in the learning process. It turns
out that the majority of the binary classifiers are able to, through the training
process, utilize the low concentration instances of the detonation class, which
resulted from explosions at great distances, to specialize their models to the
counter-intuitive point where many of the instances with low concentrations
were correctly identified as explosions.

Alternatively, the figure suggests that neither the one-class classifiers, nor
the SVM, were able learn a model with this characteristic. Moreover, the
SVM exclusively produces AUC scores of 0.5 within the second range, and
the ocNN’s performance was nearly equivalent. Finally, at greater distances,
the PDEN’s performance fell even further, with only a minute number of
instances exceeding an AUC of 0.5.

Within the shorter range, it is notable that the stronger OC classifiers,
namely the AA and socNN, are very comparable with most of the binary
classifiers. However, the distinction in favour of the binary learners is empha-
sized for the larger detonation range.

7.5.3 Performance as a Function of Distance

In this sub-section, we present the performance of the classifier as a function
of distance, where the performance is assessed both according to the AUC
and the False Positive Rate (FPR).

A false positive occurs when the classifier mislabels a novel instance as a
member of the positive class (in this case, a member of the background class),
when it is, in fact, a member of the negative class (specifically, a member of
the SE event class). Thus, the FPR is the total number of false positives over
the total number of negative instances. As a metric, the FPR provides insight
into whether the model is overly biased towards the positive class, which is
a significant risk when the problem is extremely imbalanced.

These results are particularly interesting, as they provide greater insight
into performance trends. Moreover, these suggest a performance scale for
successively sparser receptor networks, and enable the interested parties to
weigh the cost of receptor stations against the probability of detection.

The performance plots depicted both in Figure 5 and Figure 6 were pro-
duced by calculating the ensemble mean of each classifier’s performance at the
23 detonation ranges, and then through the extrapolation of a performance
function.

Within Figure 5, the MLP classifier is identifiably the superior classifier
when compared to the remaining four binary learners in terms of the AUC,
across the range of detonation distances. In addition, it is not subject to the
abrupt fluctuations that J48, and to a lesser extent, NB, incur.
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Fig. 5 In this figure, the plot on the left displays the performance of the five binary
classifiers, in terms of their AUC scores, as a function of distance. Similarly, the plot
on the right displays the performances of the four one-class classifiers as a function
of distance, according to their AUC scores.

All of the classifiers, with the SVM appearing as the sole exception, have
notable hulls in their performance curves that extend over varying distances
and to distinct depths. In each case, a slow descent begins immediately, and is
subsequently accompanied by a slow ascent. Alternatively, the SVM classifier
suffers from a similar initial decline. However, it fails to recover from the
degradation at greater distances.

In each case, the position of the performance hull roughly corresponds
to the radial distance between the industrial source of radioxenon and the
receptor site. Thus, this suggests that detonations occurring at approximately
the same radial distance as that of the primary background emitter are a
significant challenge for the detection systems.

The plot on the left in Figure 5 confirms our previous findings, which
identified the MLP as the top classifier in this domain, the SVM as the
worst, and the remaining three classifiers as contenders for the inner rankings.
Indeed, while there are notable differences in the AUC plots for the J48,
the NB, and the NN, the fact that their functions cross at numerous points,
prohibits the derivation of a general ranking over the entire range of distances.
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Fig. 6 In this figure, the plot on the left displays the performance of the five binary
classifiers, in terms of their FPR scores, as a function of distance. Similarly, the plot
on the right displays the performances of the four one-class classifiers as a function
of distance, according to their FPR scores.

The plot on the right in Figure 5 presents the performance of the one-class
learners as a function of distance. In general, the plot demonstrates that all
of the one-class classifiers follow a similar downward trend from their initial
peaks, which occurred between 0.8 and 0.9, towards, or beyond in the case
of the PDEN, an AUC of 0.5.

Moreover, the performance functions are broadly divisible into two cate-
gories. Both the ocNN and the PDEN descend relatively quickly, while the
AA and the socNN degrade in a slower, more linear fashion. Therefore, the
AA and the socNN are the more suitable of the four one-class learners, with
the AA appearing generally superior to the socNN.

The performance of the nine classifiers, measured in terms of the FPR
metric, are plotted as a function of distance in Figure 6. In this figure, the
plot on the left emphasizes the significant challenge incurred by the binary
learners when the detonations occur at a distance similar to the noise source.
Although we previously identified the MLP as the strongest binary classifier
on this domain, for a relatively broad range (roughly between 25,000 km and
65,000 km), the vast majority of instances, which are truly of the detonation
class, were assigned to the background class. The results are similar for J48.
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Interestingly, NB has the smallest area under its FPR curve. Thus, it least
often identified members of the SE event class as background noise. While
we do not consider the FPR results to be individually sufficient for model
selection, they do provide some very intriguing insight into the behaviour of
the classifiers.

The trends for the one-class classifiers in the plot on the left follow much
the same trends previously seen in Figure 5. In particular, the AA and the
socNN are superior to the PDEN and the ocNN. However, the distinction
between the AA and the socNN is less clear.

7.5.4 Expanded Feature-Space

Through our exploration of this most interesting of classification problems,
we recognized both the inherent challenge presented in the classification of SE
events that are interwoven in background noise, and the role of meteorology
in effecting the very noise levels that make the task so difficult. Our extensive
consideration of this application domain has led us to identify the particularly
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Fig. 7 This figure contrasts the performance of the binary classifiers, in terms of
the AUC as a function of distance, on the standard feature-space (see the plot on
the left), and when the feature-space is extended to include an assessment of the
wind direction (see the plot on the right).
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strong relationship between the wind direction and pollutant levels at the
receptor, which suggests a possibly informative feature.

By expanding the standard CTBT feature space to include wind direction,
we have produced a significant increase in the AUC. In particular, the top
classifiers (MLP, AA, socNN), now demonstrate the ability to detect det-
onations that, when considered solely on the basis of the four radioxenon
measurements, fit into the background distribution with a high probability.
This fact is, indeed, depicted for many of the binary and one-class classifiers
in Figure 7 and Figure 8.

In particular, while the depth to the hull in the performance of the MLP
decreases only slightly, the J48’s hull is entirely removed when the wind
direction feature is added. Thus, the J48 classification ceases to be affected
by the detonation distance when the new feature is included. In addition, its
mean AUC is significantly improved.
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Fig. 8 This figure contrasts the performance of the one-class classifiers, in terms
of the AUC as a function of distance, on the standard feature-space (see the plot
on the left), and when the feature-space in extended to include an assessment of
the wind direction (see the plot on the right).



7 Classification of Stochastically Episodic Events 185

AA J48 MLP NB NN ocNN PDEN socNN

0.
2

0.
4

0.
6

0.
8

1.
0

SVM

Fig. 9 This figure utilizes a series of boxplots to compare the performance of the
nine classifiers and the standard feature-space, and with the extended feature-space,
which is augmented by a wind direction indicator.

The NN and SVM classifiers also benefit from the inclusion of the wind
direction feature. However, the new feature has a slightly negative effect on
the NB. It has been noted in the literature, that many of the PR algorithms,
including the MLP, SVM and NB may benefit from normalization of the
features [10, 27]. Thus, it is conceivable that the performance of these classifier
may be improved to some degree. However, these results provide a good
baseline from which the individual classifiers can be compared.

By expanding the feature-space to include the wind direction, the OC
learner, socNN, improves significantly, and becomes, in general, the top
learner amongst its peers. The classifier, AA, also improves as a result of
the new feature. However, its AUC scores do not increase to the same extent
as the socNN.

Similar to the socNN, the PDEN’s initial performance is lower in the newly
expanded feature-space. However, the majority of its performance function is
elevated. Finally, the ocNN benefits the least from the new feature, although,
its initial performance is improved.
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Thus, in the worst case, the wind direction feature produces marginal
improvements in the performance of the four OC learners. However, it signif-
icantly improves both the AA and the socNN’s ability to perform in scenarios
where the detonations occur at distances equivalent to, and beyond the radial
distance to the background source.

In Figure 9, a series of boxplots are utilized to facilitate the comparison of
classifier performance in the two feature-spaces. Indeed, these results confirm
the trends that we have previously identified. Particularly noteworthy is the
depiction of J48’s performance; this plot emphasizes both the significant in-
crease in the J48’s median AUC score, and the impressive stabilization of its
classification results when the wind direction feature is added. The benefits
to the SVM are also well visualized in this figure.

It is, indeed, well demonstrated in Figure 7, Figure 8, and Figure 9 that
the additional information has assisted many of the classifiers to overcome
the significant challenges inherent in identifying SE events within the field of
background noise.

7.6 Results: Scenario 2

In this section, we present the results that were produced on the four assess-
ment criteria that were motivated, and utilized in the previous sections. In
this section, however, we explore the very intriguing classification scenario,
which we previously denoted S2. This exploration follows the same struc-
ture that was previously applied in the exploration of the first classification
scenario. Thus, we begin by examining the AUC scores produced by each
of the one-class classifiers over the 23 detonation ranges; we then proceed
to consider the performance over the two successive, smaller distances, the
performance as a function of distance, and finally the benefit of expanding
the feature-space to include an additional wind direction feature.

7.6.1 General Performance

In this section, we present a general overview of the performance of the set
of one-class classifiers on the simulated CTBT domain. More specifically, we
present an assessment of the four one-class classifiers, in terms of their AUC
scores on the 230 datasets that covered the 23 detonation ranges.

Once again, in light of the fact that the SE event will, in practice, occur at
random and unpredictable distances, these results are particularly insightful.

The results that are depicted in Figure 10 were compiled as a series of
boxplots; one for each classifier. In addition, Table 3 contains a compilation of
the mean, maximum, minimum and standard deviation of the each classifier’s
overall results.
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Fig. 10 This figure displays the performance of the four classifiers, in terms of
their AUC scores on the 230 generated CTBT datasets, in the form of a series of
boxplots.

Table 3 This table displays the general classification results, in terms of AUC.

Mean Max Min STDV

ocNN 0.505 1 0.496 0.042
PDEN 0.507 1 0.075 0.185
socNN 0.587 1 0.292 0.171

AA 0.621 1 0.024 0.225

Our assessments of both Figure 10 and Table 3 reveal that, similar to our
findings on the S1 scenario, the AA classifier is superior, in terms of its mean,
and median scores, to the other OC classifiers. Indeed, on this, which is a more
challenging task, its mean andmedian values are only slightly lower than in the
previous task. However, within this second scenario, it has the lowestminimum
AUC scores, which appear as outliers in the boxplot. In addition, it is extremely
unstable, with results ranging from perfect to near zero.

The socNN classifier ranks second after the AA according to its median
and mean, and was considerably more stable, while the ocNN and PDEN
classifiers produced values that were near or below 0.5.

7.6.2 Performance on Short- and Long-Range
Detonations

In Figure 11, we present the results produced over two detonation ranges of
particular interest. Specifically, the Boxplot on the left in the figure contains
the results for the datasets that include detonations between the distances of
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Fig. 11 In this figure, Boxplot on the left displays the performance of the four
classifiers, in terms of their AUC scores for detonations occurring between the
distances of 1,000 km and 5,500 km, and the Boxplot on the right displays their
performances for detonations between the distances of 5,500 km and 10,000 km.

1,000 km and 5,500 km, while the Boxplot on the right has those with deto-
nations between 5,500 km and 10,000 km. Together, these plots demonstrate,
contrary to the previous results, that there is little change in performance at
greater distances.

7.6.3 Performance as a Function of Distance

In this sub-section, we present classifier performance as a function of distance.
As in the previous section, performance is assessed both according to the AUC
and the FPR.

The AA and socNN are, once again, roughly identifiable as the best of the
four classifiers in Figure 12 and Figure 13. However, all of the classifiers, with
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Fig. 12 This figure displays the performance of the four one-class classifiers as a
function of distance, according to their AUC scores.
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Fig. 13 This figure displays the performance of the four one-class classifiers as a
function of distance, according to their FPR scores.
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Fig. 14 This figure contrasts the performance of the one-class classifiers, in terms
of the AUC as a function of distance, on the standard feature-space (see the plot
on the left), and when the feature-space is extended to include an assessment of
the wind direction (see the plot on the right).
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the exception of ocNN, which rapidly converges to 0.5, suffer from significant
and essentially random fluctuations. These fluctuations in performance sug-
gest that the classifiers’ results were as dependent on the nature of the SE
events in the 230 datasets, as on the distance at which the events originally
occurred.

7.6.4 Expanded Feature-Space

In this final section, we consider the benefits of extending the feature space to
include a wind direction indicator. In Figure 14, both the original plot of the
four classifiers’ performances as a function of distance, and their performances
on the extended feature-space are plotted. For an alternate view, the com-
parison is composed of a series of boxplots in Figure 15.

These figures illustrate that both the AA and the socNN significantly ben-
efit from the expanded feature-space. Indeed, the socNN benefits the most,
as it becomes superior to the AA for the vast majority of distances, and the
variability in its results are significantly dampened.
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Fig. 15 This figure utilizes a series of boxplots to compare the performance of the
four classifiers and the standard feature-space, and with the extended feature-space,
which is augmented by a wind direction indicator.
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7.7 Discussion

In this section, we consider the results previously reported for the OC
classifiers in comparison to those reported for the binary learners. In par-
ticular, Section 7.7.1 compares the two classification strategies within the
first scenario, namely S1. Alternatively, the OC classifiers are considered
in comparison to the set of standard binary classifiers on scenario S2 in
Section 7.7.2.

7.7.1 Results: S1

The relatively low mean and median AUC scores produced by the OC clas-
sifiers, combined with the considerable variability in their results on the
standard CTBT feature-space, particularly in comparison with the top bi-
nary learners, clearly illustrate the many challenges inherent in applying OC
learning to the derivation of a binary classifier. However, Hempstalk et al., in
[13], previously identified similar comparisons between binary and OC learn-
ers as “näıve” comparisons, when applied to scenarios that are accurately
identifiable as OC problems.

In particular, in so-called OC problems, such as the detection of SE events,
the second class is inherently ill-understood due to the fact that a character-
istic set cannot be drawn from it. Thus, training and testing a binary learner
as if one could draw a representative set from the second class, which is gen-
erally assumed when training a binary classifier, provides an upper bound on
the classifier’s future performance.

The key differences in the performance of the two forms of classifiers is well
illustrated in Figures 4 and 5. While the OC classifiers are very competitive on
the initial radial ranges, when the detonation occurs further afield, their AUC
scores drop considerably in comparison to all of the binary classifiers, with the
exception of the SVM. The initial success of the OC classifiers suggests that
they are very capable of associating anomalously high levels of radioxenon
with the SE event class.

However, the binary learners are not only well adapted to classifying
anomalously highly levels as members of the SE event class, through the
binary learning process they are also capable of drawing on the anomalously
low levels, which commonly result from detonations that occurred well be-
yond the radial distance to the background source, to specialize their decision
boundaries such that similar events are recognized as belonging to the SE
event class in the future.
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The results of expanding the standard CTBT feature-space to include an
indicator of the prevailing wind were, in general, very favourable, and lead to
improved AUC scores for most of the classifiers, with the NB being the sole
exception.

In its essence, the wind direction feature enabled the classifiers to learn the
direction of the background source. As a result, the classifiers were able to
identify detonations, which occurred at similar radial distances to the receptor
site as the background emissions, and thus, had signatures that were similar
to the background levels, but were transported from a different direction.
This result is identified very clearly in Figure 7, and suggests that the further
expansion of the feature-space might additionally improve performance.

7.7.2 Results: S2

A considerable portion of the previous analysis is applicable to this second,
more challenging, classification scenario. Most importantly, the benefits of
the extended feature-space were witnessed within S2 as well. However, due
to the nature of the problem, only the OC classifiers were applied to this first
attempt at performing PR within this new domain.

As a result of the formulation of the problem, we proposed the use of
standard OC classifiers as unsupervised learners, and relied on inner mech-
anisms of the individual classifiers to facilitate the derivation of a model
that segregated those instances of the training set that were accurately of
the background class from the näıvely/erroneously labelled instances of the
outlier class.

It is clear that the instability in performance that is depicted with respect
to distance, and which is significantly more apparent in S2 than S1, results
both from the erroneous instances in the training sets of S2, and the vari-
ability in classification challenges presented by the few members of the SE
event class in the test sets. Indeed, the generation of random SE events over a
domain as vast as the simulated CTBT domain, will inevitably produce both
very easy, and nearly impossible classification tasks. Thus, when randomly
including only a minute number of these events in the test sets, it is probable
that performance on the SE event class will fluctuate significantly. This is, of
course, why a large number of receptors are required in the global receptor
network.

However, while the ensemble mean performance fluctuates considerably
over the successive radial ranges, when considered in terms of the overall
means, or medians, the performance of the OC classifiers on the S2 task is
only slightly lower than on the S1 task. In addition, this is true if in Figures
5 and 12, we were to conduct our analysis according to a series of best-fit
lines.

Finally, as is depicted in Figure 14, in addition to elevating the performance
of the top classifiers, the inclusion of the wind direction in the feature-space
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significantly dampens the variability in their performance. Moreover, Saey, in
an extensive study of background radioxenon concentrations in Europe and
North America, found that a few outliers representing significant increases in
the background concentrations can be expected [21]. These outliers are at-
tributed to alternate background sources, and can be assumed to have arrived
at the receptor site via short-lived, and anomalous alterations in meteorol-
ogy. Based on the standard CTBT feature space, such events, undoubtedly,
suggest the detonation of a nuclear weapon. However, provided a sufficient
quantity of training data is available, it is conceivable that PR systems func-
tioning with the wind direction feature may appropriately identify outliers of
the background class.

7.8 Conclusions

This book chapter is a comprehensive overview of the work that is reported
on the recognition of Stochastically Episodic events (like clandestine nuclear
explosions), which was earlier reported as in [5] and [4]. In this research
endeavor, we extended the frontiers of novelty detection through the intro-
duction of a new field of problems open for analysis. In particular, we noted
that this new realm deviates from the standard set of one-class problems
based on the presence of three characteristics, which ultimately amplify the
classification challenge. They involve the temporal nature of the appearance
of the data, the fact that the data from the classes are “interwoven”, and that
a labelling procedure is not merely impractical - it is almost, by definition,
impossible.

To set the background, the paper first contained a brief overview of two-
class and one-class classification methods. Thereafter, as a first attempt to
tackle these problems, we presented two specialized classification strategies
as demonstrated within the exemplary scenario intended for the verification
of the CTBT. Here, we applied the simulation framework presented in [6],
to generate CTBT inspired datasets, and demonstrated these classification
strategies within the most challenging classification domain. More specifically,
we have shown that OC classifiers can be successfully applied to classify SE
events, which are unknown, although present, at the time of training.

Finally, we have added a weighting parameter to the OC nearest neighbour
algorithm, thereby significantly increasing its performance on our experimen-
tal domain. We have also demonstrated that the expansion of the CTBT
feature space significantly improves classifier performance on our simulated
data, thus, motivating further exploration of the expansion of the standard
CTBT feature space to include meteorological measurements [5], [4]. This
result was further verified in [3] based on a complex set of new simulation
scenarios.
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Chapter 8
Learning of Defaults by Agents
in a Distributed Multi-Agent System
Environment

Henryk Rybinski, Dominik Ryżko, and Przemysław Więch

Abstract. The paper introduces a novel approach to machine learning in a
multi-agents system. A distributed version of Inductive Logic Programming
is used, which allows agents to construct new rules based on knowledge and
examples, which are available to different memebrs of the system. The learn-
ing process is performed in two phases – first locally by each agent and then
on the global level while reasoning.

8.1 Introduction

In today’s world of many electronic devices equipped with sensors and com-
puting power, knowledge is no longer available in one place only. Such entities
must possess an efficient way of cooperating in order to reach solutions to
the problems presented to them. Multi-agent systems (in the sequel MAS)
bring tools for modeling such situations using the concept of an autonomous,
intelligent and proactive agent.

One of the most important issues concerning MAS is an ability of agents
to acquire knowledge in a distributed environment. In our previous work [18]
two kinds of knowledge where identified, namely environmental knowledge,
and domain knowledge. In particular, the environmental knowledge refers to
the agent’s communication experience, providing the agents with the answer
for "what can be found where". So, the environmental knowledge is used by
the agents to guide their search in a fragmented domain knowledge. In [18]
means for learning environmental knowledge were considered. In this paper
we focus on learning domain knowledge.

In [18], a formalism of the Distributed Default Logic (DDL) has been intro-
duced in order to address the problem of finding knowledge in a distributed
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multi-agent system. To answer queries from users and other parties, agents
perform distributed default reasoning. Agents should share their knowledge
not only when there is a task to be solved, but they must act proactively. This
may include different ways of knowledge indexing, or search for new sources
of information. These preparations allow agents to act efficiently when new
requests arrive.

We assume that each agent possesses a database of "observations", which
serve as training examples. The origin of such a database is not important.
Data can be obtained, for example, from sensor readings classified by an
expert. An important issue with the agents is how to acquire new knowledge
from the observations database. In particular, they can use observed examples
to generate new default rules. Building new defaults allows agents to improve
their performance and solve problems, which they could not handle before.

Some algorithms for default rule generation have been studied before in
[5], [19], [9], [3]. However, these papers deal with centralized algorithms. The
main novelty of our approach is that in the framework of MAS the agents
learn defaults in a distributed environment. Such a distributed environment
creates several problems for learning, which do not exist in the centralized
approach. For example, one agent can learn a rule from its local database,
but exceptions to this rule can be known only to another agent, or, in a worst
case, several agents can learn different exceptions to a particular rule. Hence,
the agents should be able to exchange and verify local knowledge among
themselves. It may refer not only to basic facts from the local databases,
but they can also exchange their rules, and based on them, generate other
rules [21].

To solve these problems, additional steps in the learning process are
needed, which will allow agents to construct a usable Distributed Default
Theory, which can further be used for efficient distributed reasoning process.
We show how agents exchange knowledge in the system and perform learning
to reach these goals.

8.2 Related Work

Different approaches to construction of defeasible rules, including default
rules, have been proposed. Benferhat et al. use big-stepped probabilities to
extract new rules from binary tables [3]. Compared to other methods (e.g.
[6]) it allows automatic detection of properties which can be discovered.

Another approach is taken in [8], where defeasible rules are discovered by
means of data mining algorithms. The authors study different metrics, which
can reduce the large number of candidate rules. In general, the problem of
finding desired (minimal) theories is computationally expensive, so heuristics
should be used in order to find good results in a short time ([10]).

Inductive Logic Programming (ILP) is a machine learning method, in
which background knowledge, examples and hypotheses are all reperesented
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by means of logic programming. This approach has been studied in detail
in several scientific papers (see e.g. [15] [4]). Especially works by Muggleton
and de Readt are now considered classical in this field ([13] [14]). In [6] an
application of Inductive Logic Programming to learning default theories is
proposed. In the approach, the definitions of positive (p) and negative (¬p)
predicates are learned simultanously.

Example 1. With a given set of positive examples
E+

flies = {3, 4, 5, 10, 11}

a set of negative examples
E−

flies = {1, 2, 6, 7, 8, 9}

and background knowledge
B = { penguin(1), penguin(2), bird(3), bird(4), bird(5),mammal(6),

mammal(7),mammal(8),mammal(9), bat(10), superpenguin(11),
penguin(X) → bird(X),
superpenguin(X) → penguin(X),
bat(X) → mammal(X)}

we can induce the following set of rules:

D =

{
bird(X) : flies(X),¬penguin(X)

flies(X)
,

penguin(X) : ¬flies(X),¬superpenguin(X)

¬flies(X)
,

superpenguin(X) : flies(X)

flies(X)
,

bat(X) : flies(X)

flies(X)
,

mammal(X) : ¬flies(X),¬bat(X)

¬flies(X)

}
.

This approach is sufficient for the case when we have all the knowledge in
one location. However, if some information is missing, a single agent can no
longer be able to learn the same concepts. For example, if an agent can see
only positive cases, it will learn that all birds can fly.

bird(X) → flies(X)

Even if it knows that penguin(X) → bird(X) but has no knowledge about
penguins, the induced rule will be the same. This might seem irrelevant if we
learn the negation of the predicate flies at the same time. However, such a
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rule indicates that all birds can fly, so it is enough to classify any new instance
to be a bird without checking the species to decide its flying abilities.

While dealing with learning in a multi-agent environment the important
question is what is the relation between learning processes of individual agents
and the knowledge of the whole multi-agent system. In [20], three types of
multi-agent learning can be distinguished:

– Multiplied Learning: each agent learns independently of the other agents.
While there may be interactions concerning the exchange of training data
or outputs, no interference in the learning process itself takes place.

– Divided Learning: the learning task is distributed amongst a team of
agents. The division takes place on a functional level, i.e., agents take
different roles in a team and learn them separately.

– Interactive Learning: agents interact during learning and cooperate in gen-
erating a hypothesis beyond the pure exchange of data. In [20] it is de-
scribed as a “cooperated, negotiated search for the solution of a learning
task”

In general, this paper falls into the category of Logical-Based Learning 1.

8.3 Motivation

The motivation of our work is to introduce ways for learning of complete
theories by a group of agents observing a limited part of the world, and
possessing only parts of the whole knowledge. There are two main approaches
to this problem. First, agents can exchange information about the rules they
have discovered, and incorporate all exception that are missing in their local
knowledge. This creates an initial overhead, but later the system is ready
for complete reasoning and query answering. In the second approach agents
perform learning on the fly, while answering queries. We will concentrate on
the latter case, since in a dynamic MAS environment, with agents entering
and leaving the system, we have to assume there will be no time to exchange
all the necessary knowledge before other tasks have to be performed.

Let us consider the following example to illustrate a scenario, where dif-
ferent sources possess complementary information. We show the need to ex-
change information among agents in order to reach a correct answer to a
query.

Example 2. Let us consider a multi-agent system consisting of three agents
with partial knowledge. In the sequel, we denote by E+

p and E−
p the sets

of positive and negative examples of predicate p, respectively. We denote by
BA the background knowledge of an agent A, and presume that the agents
A1, A2, A3 have the following knowledge bases:
1 Opposite to this approach is Reactive Learning, which does not use logic for

knowledge reperesentation [1]. The implication is that we cannot fully compre-
hend the MAS activities.
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A1 : E+
flies = {3, 4, 5}

E−
flies = {8, 9}

BA1 = {brid(3), bird(4), bird(5),
mammal(8),mammal(9)
penguin(X) → bird(X)
bat(X) → mammal(X)}

A2 : E+
flies = {}

E−
flies = {1, 2}

BA2 = {penguin(1), penguin(2)
superpenguin(X) → penguin(X)}

A3 : E+
flies = {10, 11}

E−
flies = {}

BA3 = {bat(10), superpenguin(11)}

Based on this knowledge, the following additional rules can be learned by the
agents locally with the use of inductive logic programming techniques:

A1 : {bird(X) → flies(X),mammal(X)→ ¬flies(X)}
A2 : {penguin(X)→ ¬flies(X)}
A3 : {superpenguin(X)→ flies(X), bat(X)→ flies(X)}

In such a setup, if another agent, say A4, asks the agents if tom the super-
penguin can fly, it will receive three answers:

1. The agent A3 has a direct example of superpenguin, so it will answer that
tom can fly.

2. A2 knows that tom is a kind of penguin and penguins do not fly, so it gives
a negative answer.

3. In DDL (as described in Section 8.4) agents exchange knowledge accord-
ing to the established communication language. Therefore, A1 learns from
A2, that penguin(tom) has been deduced, and further on, reasons that
bird(tom) is true.

Using this procedure, agent A4 will receive two positive answers that tom
can fly and one negative answer. In order to decide, which answer is correct,
A4 has to know the rationale for each answer. The most reasonable criteria
is generality/specificity of information. If an example directly matching the
query is available it should be used in the first place, rather than a more
general rule. If generality/specificity cannot be decided, some other measures
have to be applied. For the DDL formalism, the reliability of agents can
be used. In the example above the rationale provided by A3 is the most
specific, since it is an example, which directly matches the case to be solved.
Agent A3 can provide a concrete example of a superpenguin, which can fly.
The information provided by both A2 and A1 is more general. These agents
can only use rules, which state that penguins cannot fly and birds typically
can fly.
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Fig. 1 Query

It is not always possible to decide the level of generality/specificity of
answers from different agents. In the following example, it is impossible to
decide which rule should be treated as more specific.

Example 3. Let us consider a multi-agent system consisting of two agents
with positive and negative examples (E+

flies and E−
flies) of animals, which

can or cannot fly.

A1 : E+
flies = {}

E−
flies = {1, 2}

BA1 = {penguin(1), ostrich(2),
penguin(X) → bird(X)
ostrich(X) → bird(X)}

A2 : E+
flies = {3, 4}

E−
flies = {}

BA2 = {bird(3), bird(4)}

Based on the knowledge of these agents the following rules can be created:
A1 : {bird(X) → flies(X)}
A2 : {bird(X) → ¬flies(X)}

Since the two rules are on the same level of generality/specificity, a query
from another agent A3 asking whether some bird can fly will produce two
contradictory answers. Moreover, it can be stated that both of them are on
the same level of generality/specificity, as both answers refer to the predicate
bird.

This is a case when agent A3 can either accept that two default theory ex-
tensions will be generated or it should decide which of the answers should be
treated with higher priority. Since default rules specify typical situations, one
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of the measures, which could be used to assess the usefulness of such a rule,
is its global support (see Section 8.4 for definition). Thus, when the number
of flying birds exceeds the number of non-flying birds, the default rule that
typically, birds fly will be chosen.

Regardless of how A3 treats the answers, it can communicate back to A1

and A2 that they should revise their knowledge bases based on the infor-
mation from the other agents. This way, agent A2 could update its rule to
include exceptions as follows:

bird(X) : flies(X)∧ ¬penguin(X)∧ ¬ostrich(X)

flies(X)

In Example 3 the birds were divided into species, which have or do not have
the ability to fly. The next example shows a slightly different situation, as the
learned feature does not refer to a single taxonomy. It leads to a new situation,
where it is difficult to decide, which rule should have a higher priority.

Example 4. Let us consider a multi-agent system consisting of two agents
with positive and negative examples (E+

flies and E−
flies) of animals, which

can or cannot fly.

A1 : E+
flies = {1}

E−
flies = {}

BA1 = {stork(1), stork(X) → bird(X)}

A2 : E+
flies = {}

E−
flies = {2}

BA2 = {brokenwing(2)}

The following rules can be created based on the knowledge of these agents:

A1 : {stork(X) → flies(X)}
A2 : {brokenwing(X) → ¬flies(X)}

Let us consider a scenario, where agent A3 would like to ask whether a stork
with a broken wing flies (stork(sam), brokenwing(sam), flies(sam)?). The
aswers from agents A1 and A2 will have unrelated rule predecessors. This
makes it impossible to compare the generality/specificity of these answers.
Hence, the choice between the rules generated by A1 and A2 cannot be based
on the support measure. Indeed, although the rule from A1 has a smaller sup-
port than the rule from A2, we cannot discard the rule with smaller support.
One of the solutions would be to use the confidence function for the agents
[18]. Let us note however, that if the agents learn new facts



204 H. Rybinski, D. Ryżko, and P. Więch

A1 : E+
flies = {1, 3}

E−
flies = {}

BA1 = {stork(1), hawk(3),
stork(X) → bird(X), hawk(X) → bird(X)}

A2 : E+
flies = {}

E−
flies = {2}

BA2 = {brokenwing(2), bird(2)}

the induced rules will be

A1 : {bird(X) → flies(X)}
A2 : {brokenwing(X) ∧ bird(X) → ¬flies(X)}

and we can decide on the generality/specificity.

The examples above, show informally how the information exchange between
the agents can enrich the global knowledge of MAS. It shows also that one of
the essential factors is support of knowledge of particular agents, although in
some cases it may turn out to be insufficient. After introducing basic concepts
(in Section 4), we present our solution in Section 5.

8.4 Preliminaries

This section introduces the main formalisms used in the remainder of the
paper i.e. Default Logic (DL), Distributed Default Logic (DDL) and Inductive
Logic Programming (ILP).

8.4.1 Default Logic

Default logic is a non-monotinic logic introduced by Reiter [17]. It allows
to reason in the case of incomplete knowledge by making assumptions and
retracking the process in case of finding exceptions later on. A default theory
Δ is described as a pair (D,W ), where D represents a set of default rules
while W is a set first-order formulas.

Definition 1. A default is in the form:

r =
α : β

γ

where α, β and γ are well-formed formulae. α is the prerequisite, β is
the justification and γ is the consequent. We will denote by p(r) the
prerequisite of rule r, by j(r) its justification and by c(r) its consequent. ��
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Such a rule is interpreted as: If α is known, and β can be assumed (there is
no evidence against it), then we can conclude γ.

Definition 2. Let E be a set of closed formulae, and 〈D,W 〉 be a closed
default theory.

Let
E0 = W

Ei+1 = Ei ∪
{
γ | α : β

γ
∈ D,α ∈ Th(Ei) and β �∈ Th(E)

}

Th(E) is an extension of 〈D,W 〉 iff

Th(E) =
∞⋃
i=0

Th(Ei)

��
A given default theory can have no, one or many extensions. There are several
approaches to managining of multiple extensions [2], [16], [19], [12]. The Dis-
tributed Default Logic presented below is an example of a prioritized default
theory.

8.4.2 Distributed Default Logic

Distributed Default Logic is a formalism introduced in order to allow efficient
defeasible reasoning in a multi-agent system [18]. Agents store knowledge
in the form of Distributed Default Rules, which include also environental
knowledge in the form of links to other agents.

Definition 3. In a multi agent system MAS = {A1, ..., An} a distributed
default template is in the form:

α : βL1
1 , ..., βLk

k

γ

where Lk ⊆ MAS and α, β and γ have the same meaning as in standard
defaults. ��
The meaning of such a template is that agent can build a distributed default
rule out of it by selecting one single agent from each list. The process of
builing rule from a template is called materialization. Definitions 4 and 5
define the concepts in more formal way.

Definition 4. A distributed default rule is in the form:

α : βA1
1 , ..., βAk

k

γ

where Ai ∈ MAS and α, β and γ have the same meaning as in standard
default logic. ��
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Definition 5. We say that a distributed default rule r is a materialization of
template T iff for every component βLi

i in the template T we have Ai ∈ Li.

Let ΔMAS be a Distributed Default Theory divided into n partitions

ΔMAS = {Δ1 ..., Δn}

{Δi}i<=n will be called a partitioning of default theory Δ. By S(Δi) we will
denote the signature of the partition (the set of non-logical symbols). Each
of the partitions will contain a portion of global default theory

DMAS = {D1, ..., Dn}

WMAS = {W1, ...,Wn}

where Di is a set of defaults of i-th partition and Wi is a set of first-order
formulas of this partition.

For a given partitioning, a labeled and directed graph G = (V,E, L) can
be generated, which we will call the intersection graph. In this graph, each
node corresponds to the individual partition Δi, so V = 1..n. Two nodes i, j
are linked by the oriented edge leading from i to j iff

∃di ∈ Di, dj ∈ Dj , a ∈ S(ΔMAS) : a ∈ c(di) ∧ a ∈ p(dj)

or
∃dj ∈ Dj , a ∈ S(ΔMAS) : a ∈ Wi ∧ a ∈ p(dj)

The edges are labeled with the set of symbols that the associated partitions
Δi and Δj share (L(i, j) = S(Δi) ∩ S(Δj)). L(i, j) ⊆ L will be called com-
munication language between partitions Δi and Δj .

In Distributed Default Logic the reasoning proces is driven by the inter-
section graph defined above. References to other agents in templates together
with exchange of information about common predicate symbols allow agents
to perform distributed reasoning when necessary. A detailed description of
this process can be found in [18].

8.4.3 Inductive Logic Programming

The classical definition of ILP is the following. Given the background knowl-
edge B a set of positive examples and a set of negative examples E+ and
E−, we need to find a hypothesis H such that ∀e ∈ E+, B ∧ H |= p(e) and
∀e ∈ E−, B ∧ H � p(e). In order to simplify our considerations, we assume
that different agents observe disjoined sets of training examples.

In a typical centralized setup ILP uses the covering algorithm, which learns
rules using a generalization procedure, that performs a search through an
ordered space of all possible rules. After one rule is selected, all covered
positive examples are removed from the training set and the next rule is
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learned from the remaining examples. The whole process is stopped when no
more positive examples are left in the training set.

Algorithm 1: Covering

begin
Rules = ∅
while E+ �= ∅ do

R = learnrule(E+, E−, B)
Rules = Rules ∪ R
B = B ∪R
E+ = E+ − {ExamplesCoveredbyR}

return Rules
end

The main problem here is scalability of such approach. Selecting a rule
which covers most examples is very computationally expensive and has to be
performed in each step of the algorithm. Different approaches to the prob-
lem of efficient rule selection in ILP can be found in literature. Four major
approaches can be identified here [7]:

1. new algorithms
2. reducing the number of hypotheses
3. efficient testing of candidate hypotheses
4. parallelization

The last class can be further divided into:

– parallel exploration of independent hypotheses
– parallel exploration of search space
– parallel execution over paritioned data

It has been shown that, although the last case is only locally consistent and
limits possibilities of learning recursive rules, it gives good results for shared
memory architectures. An important property of the method based on data
partitioning mentioned above is that we explicitly divide the knowledge in
order to obtain better performance. In this paper we analyse a situation, in
which we are faced with a given knowledge partitioning on which we do not
have influence. Therefore, the main problem is how to link knowledge in order
to obtain results comparable to the centralized approach.

For the induced rules we will define support measures:

Definition 6. The local support for agent An of a rule induced with dis-
tributed ILP is the number of positive training examples covered by the rule,
known by the agent performing the ILP algorithm.

SupAn(rule) =
∣∣{e ∈ E+ : rule covers e}

∣∣ ��
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Definition 7. The global support of a rule induced with distributed ILP
is the number of positive training examples covered by the rule, known by
all the agents performing the ILP algorithm.

Sup(rule) =

n∑
i=1

SupAi(rule) ��

8.5 Learning DDL Theory by MAS

In a centralized approach to machine learning ILP is considered an eager
method [11]. However, in MAS the situation is more complex. Agents have
two options for choosing the moments of learning. The first option consists in
sharing new knowledge immediately, when it is generated from new training
examples registered, whereas the second one consists in integrating learning
with reasoning. We call them respectively eager and lazy.

Eager approach
If a new example causes changes in the previously induced rules, it possibly
has impact on other agents’ knowledge and should be reported. However, in a
typical MAS it would be inefficient to exchange information each time some-
thing new is known. Therefore, we can intergrate learning with reasoning, so
the whole process consists of two phases.
Lazy approach
Firstly, an agent asks other agents for some knowledge to perform a reasoning
process. Secondly, it decides which agents can benefit from the knowledge
posessed by others, and suggests corresponding exchange of knowledge to be
performed.

In any of the approaches described above, the exchange of knowledge will
lead to the transformation of the default theory. We define the following
transformations:

1. {a(X) → b(X), ∃Y ∈ E−
b : a(Y )} |∼ a(X) : b(X)

b(X)

2. if c(X) → a(X) belongs to domain knowledge B then

{a(X) → b(X), c(X) → ¬b(X)} |∼ a(X) : b(X) ∧ ¬c(X)

b(X)

3. {c1(X) → ¬b,
...,
cn(X) → ¬b,
e1(X) → b,
...,
em(X) → b,
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a(X) : b(X) ∧ ¬c1(X) ∧ ... ∧ ¬cn(X)

b(X)

}
|∼

a(X) : ¬b(X) ∧ ¬e1(X) ∧ ... ∧ em(X)

¬b(X)

For the transformations above, we presume that observed examples cannot
be invalidated in time. In the sequel we call the left side of the transofrmation
|∼ as premises, and the right side - conclusion.

The first transformation provides a mechanism for changing an implication
into a default rule in case of observed negative examples. An agent can change
the implication to a default rule, when it observes exceptions by itself or
is taught about them by other agents. The transformation can be applied
without knowing the details about the negative facts.

The second transformation describes the situation, when an exception to
a strict rule is detected. As a result, the rule is transformed into a default
rule with exception.

Within the set of premises of the third transformation we distinguish two
subsets of induced rules, namely the ones supporting the learned concept,
and the ones supporting its negation (i.e. {ci(X) → ¬b(X)}i and {ej(X) →
b(X)}j). The third transformation is used, when the following condition is
satisfied:

n∑
i=1

Sup(ci(X) → ¬b(X))−
m∑
j=1

Sup(ej(X) → b(X)) > ε

where ε > 0 is a threshold for applying the transformation.

Example 5. Once again, let us consider the scenario from Example 3. If agent
A1 did not know the species of the non-flying birds, agent A2 should still
reconsider its database, so that it allows exceptions. It can use the first of
the transformations described above to conclude that ‘typically birds fly’:

A2 :
{
bird(X) → flies(X), tom ∈ E−

flies, bird(tom)
}
|∼ bird(X) : flies(X)

flies(X)

Example 6. Let us refer back to Example 2. In order to improve the system
efficiency, after the answer to the query is decided, agent A4 should facilitate
the exchange of information leading to the exchange of knowledge. This is
a delayed learning step in the system. It is easy to detect that the example
provided by A3 is an exception to the knowledge possessed by A2. By analogy,
A2 holds examples which are exceptions to the knowledge of A1. After the
exceptions are exchanged, the system learns more precise rules:
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A1 : {bird(X) → flies(X), penguin(X)→ ¬flies(X)} |∼

bird(X) : flies(X),¬penguin(X)

flies(X)

A2 : {penguin(X) → ¬flies(X), superpenguin(X)→ flies(X)} |∼

penguin(X) : ¬flies(X),¬superpenguin(X)

¬flies(X)

The exchange of information between the agents is illustrated in Fig. 2.

Fig. 2 Knowledge Exchange

Example 7. As more and more exceptions are acquired by an agent, the sec-
ond transformation modifies the default rules locally by adding to it consec-
utive exceptions. At a given point it may happen that the agent’s knowledge
has to be revised, because the semantics of a rule can become out of date. If,
for instance, initially an agent observes only non-flying birds:

A1 : E+
flies = {}

E−
flies = {1, 2}

B = {penguin(1), ostrich(2),
penguin(X) → bird(X)
ostrich(X) → bird(X)}

it will induce a rule that birds typically do not fly.

bird(X) : ¬flies(X)

¬flies(X)

However, as more and more exceptions to that rule (flying species of birds) are
provided by other agents, it will finally become evident, that birds typically
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fly and that the examples initially observed should be exceptions, not the rule.
Here, the third transformation will be used, so that the agent can update its
database by the following rule:

bird(X) : flies(X)∧ ¬penguin(X)∧ ¬ostrich(X)

flies(X)

Now, we are ready to specify formally the algorithms for query answering,
knowledge exchange and learning. Algorithm 2 describes actions performed
by the agent seeking an answer to a query. It begins with comparing answers
received from various agents. If the answers are consistent they can be used
to generate the final answer to the query. In the opposite case, the agent
compares generality/specificity of the answers. The most specific knowledge,
preferably referring to the similar training example, should be used.

If there are contradictory answers of the same generality/specificity, sup-
port of the knowledge based on the number of training examples has to be
compared. Knowledge with the biggest support will be applied. In case of
rules, for which generality/specificity is undecided, the DDL confidence mea-
sure will be used in order to decide priority.

Algorithm 2: Query

begin
Answers ← askOtherAgents;
if Consistent(Answers) then

Result ← Distinct(Answers);

else
if Sources ← FindMostSpecificKnowledge(Query,Answers) then

if |Source| = 1 then
Source = Sources

else
Source = SelectMaxSupport(Sources)

else
Source = SelectMaxConfidence(Sources)

Result ← Answer(Source)
for Ai,Aj ∈ Answers : answer(i) = ¬answer(j) and rationale(i)
more general than rationale(j) do

pass exception from j to i;

end

Algorithm 3 compares answers and rationale given by various agents, and
decides which is the most general answer with respect to the given query. If
the predicates used by various agents belong to the same taxonomy, it can
easily be decided which is most general. The taxonomy can be reperesented in
the form of rules in agents’ background knowledge, or in the form of additional
ontology.
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Algorithm 3: FindMostSpecificKnowledge

begin
Candidates ← {i : �j : pred(i) → pred(j)};
Return i : priority(i) = maxpriority(Candidates);

end

8.6 Conclusions

In the paper we have concentrated on a novel approach to distributed and
incremental learning of default theories of autnomous agents within a multi-
agent system. The learned knowledge of the MAS is represented by the Dis-
tributed Default Logic formalism, which is used for expressing domain knowl-
edge. We have defined a set of transformation rules, which allow the agents to
reformulate the default rules, according the discovered elementary facts, and
induced implications, so that the local and global default theory of MAS bet-
ter describes the discovered knowledge. In the transformations the support
values of induced implications are taken into account.

We have presented algorithms, in which the transformation rules are used.
They enable the group of agents to enhance the global knowledge of the
MAS within the process of cooperation of the agents by means of exchanging
the locally acquired knowledge. In addition, the algorithms allow agents to
cooperate in reasoning in order to answer queries.

If during the reasoning process the agents observe inconsistencies in an-
swers and/or the global theory, the asking agent is obliged to tell agents
possessing relevant examples to pass them on to agents holding more gen-
eral knowldge. They in turn incorporate this new knowledge in the form of
exceptions to default rules.

It is worth noting that the transformation rules do not take into account a
possibility of invalidating of observed examples by newcomming facts. In the
future we plan adapting the formalism, so that it would take into account
this possibility as well.
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Chapter 9
Rough Non-deterministic Information
Analysis: Foundations and Its Perspective
in Machine Learning

Hiroshi Sakai, Hitomi Okuma, and Michinori Nakata

Abstract. This chapter focuses on a mathematical framework for handling infor-
mation incompleteness, which is deeply related to machine learning. Recently, the
handling of the information incompleteness in data sets is recognized to be very im-
portant research area for machine learning. We have already proposed a framework
Rough Non-deterministic In f ormation Analysis (RNIA). This is a rough sets based
framework for handling not only definite (or complete) information but also indef-
inite (or incomplete) information. This RNIA handles lots of aspects in tables with
the information incompleteness, i.e., rough sets based issues, data dependencies,
question-answering, rule generation, estimation of actual values, etc. Each aspect is
extended from tables with complete information to tables with incomplete informa-
tion according to the modal concepts. We survey this RNIA, and we describe the
perspective of RNIA with respect to machine learning.

9.1 Introduction

Rough set theory offers a mathematical approach to vagueness and uncertainty,
and the rough sets based concepts have been recognized to be very useful [19,
28, 34, 35, 36, 37, 38, 39, 41, 42, 68, 72, 76]. This theory usually handles tables
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with deterministic information, which we call Deterministic In f ormation Systems
(DISs). Many applications of this theory to classification analysis [3, 23, 63, 70],
data mining [11, 26], reduction [8, 18, 20, 64], rule generation [4, 12, 14, 69],
machine learning [6] and incomplete and non-deterministic information systems
[9, 15, 21, 22, 24, 25, 27, 29, 30, 31, 32, 33, 66, 67] have been investigated.

Non-deterministic In f ormation Systems (NISs) and Incomplete In f ormation
Systems (IISs) have been proposed for handling information incompleteness in DISs
[24, 25, 32, 33]. NISs have been recognized to be the most important framework for
handling information incompleteness in tables, and several theoretical works has
been reported [9, 15, 21, 22, 24, 25, 27, 29, 30, 31, 32, 33, 66, 67]. We follow
this robust framework, and we have been developing algorithms and software tools,
which can handle rough sets based concepts in NISs. We are simply calling this
work Rough Non-deterministic In f ormation Analysis (RNIA) [44,45,47-61].

In this chapter, we survey our previous work related to RNIA, and we also de-
scribe its perspective in machine learning. Throughout this chapter, we will employ
lots of examples for knowing this RNIA intuitively, and we show related papers for
knowing more details. We think that this chapter will take the role of linking each
example to the formal definitions and details of RNIA.

This chapter is organized as follows: Section 2 recalls the foundations of rough
sets in DISs. Section 3 and 4 introduce the frame work of RNIA, and survey several
extended aspects from DISs to NISs. Especially in Section 5, we describe an aspect
of rule generation in NISs. Section 6 proposes the next hot topics in RNIA as per-
spective, and we will consider the relation between rough sets and logic programs.
Section 7 concludes this chapter.

9.2 Foundations of Rough Sets in DISs

This section recalls the foundations of rough sets and the manipulation algorithms
for equivalence classes in DISs.

9.2.1 Some Definitions and Aspects in DISs

A Deterministic Information System (DIS) ψ is a quadruplet [36, 38]
ψ=(OB,AT,{VALA| A ∈ AT}, f ),

where OB is a finite set whose elements are called ob jects, AT is a finite set
whose elements are called attributes, VALA is a finite set whose elements are called
attribute values and f is such a mapping

f : OB×AT →∪A∈ATVALA.
We usually consider a table instead of this quadruplet ψ . A DIS ψTable1 in Table 1
is an exemplary deterministic information system. We employ it for showing each
aspect.
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Table 1 An exemplary DIS ψTable1 for the suitcase data sets. Here,
VALColor={red,blue,green}, VALSize={small,medium, large}, VALWeight={light,heavy},
VALPrice={high, low}.

Object Color Size Weight Price

x1 red small light low
x2 red medium light high
x3 blue medium light high
x4 red medium heavy low
x5 red large heavy high
x6 blue large heavy high

In each ψ and a subset AT R ⊆ AT , we employ a notation ATR={A1, · · · ,An}.
Each index i at Ai is the tentative ordinal number in a set AT R, and is not the ordinal
number in the original data set. For AT R and an object x, ( f (x,A1), · · · , f (x,An)) is
a tuple of x.

If f (x,Ai)= f (y,Ai) holds for every Ai ∈ ATR ⊆ AT , we see there is a relation
between x and y for ATR. This relation is an equivalence relation over OB [38].
Let eq(ATR) denote a set of the equivalence classes with respect to ATR, and let
[x]ATR ∈ eq(ATR) denote an equivalence class below:

{y ∈ OB| f (y,Ai)= f (x,Ai) for every Ai ∈ ATR}.
In rough sets, we effectively employ equivalence classes.

According to ψTable1, let us consider four cases (A), (B), (C) and (D) of ATR.
(A) For ATR={Size,Weight},

a tuple of x1 is (small, light), eq({Size,Weight})={{x1},{x2,x3},{x4},{x5,x6}},
[x1]{Size,Weight}={x1}, [x2]{Size,Weight}={x2,x3}.

(B) For AT R={Color,Size,Weight},
a tuple of x1 is (red,small, light),
eq({Color,Size,Weight})={{x1},{x2},{x3},{x4},{x5}, {x6}},
[xi]{Color,Size,Weight}={xi} (i=1,2, · · · ,6).

(C) For AT R={Weight},
a tuple of x1 is (light), eq({Weight})={{x1,x2,x3},{x4,x5,x6}},
[x1]{Weight}={x1,x2,x3}.

(D) For ATR={Price},
a tuple of x1 is (low), eq({Price})={{x1,x4},{x2,x3,x5,x6}},
[x1]{Price}={x1,x4}.

Now, let us sequentially consider five rough sets based aspects by using the above
four cases (A), (B), (C) and (D).

(Aspect 1) The Definability of a Set in a DIS ψ: If a set X ⊆OB is the union of some
equivalence classes in eq(ATR), we say X is de f inable (for ATR) in ψ . Otherwise,
we say X is rough (for ATR) in ψ .
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In case (B), any set X ⊆ OB is definable for ATR={Color,Size,Weight}, be-
cause X=∪x∈X [x]{Color,Size,Weight} holds. However, X={x1,x2} is not definable for
ATR={Size,Weight} in case (A). Both in cases neither (C) nor (D), X={x1,x2} is
not definable.

(Aspect 2) The Consistency of an Object: Let us consider two disjoint sets CON ⊆
AT which we call condition attributes and DEC ⊆ AT which we call decision
attributes. An object x ∈ OB is consistent if f (x,A)= f (y,A) holds for every A ∈
CON implies f (x,A)= f (y,A) holds for every A ∈ DEC.

Let CON be {Weight} and DEC be {Price}. In this case, [x1]{Weight}={x1,x2,x3}
holds, but f (x1,Price) �= f (x3,Price) holds. Thus, object x1 is not consistent. Simi-
larly, all 6 objects are not consistent.

Rough set theory makes use of equivalence classes for solving problems. Here,
let us show the most important proposition, which connects two equivalence classes
[x]CON and [x]DEC with the consistency of an object x.

Proposition 1. [38] For each DIS, (1) and (2) in the following are equivalent.
(1) An object x ∈ OB is consistent for CON and DEC.
(2) [x]CON ⊆ [x]DEC.

(Aspect 3) The Degree of Dependency: The degree o f dependency for CON and
DEC is a ratio

deg(CON,DEC)=|{x ∈ OB| x is consistent for CON and DEC }|/|OB|.
Clearly, deg(CON,DEC)=1.0 holds if and only if every object x ∈ OB is consistent.

For CON={Weight} and DEC={Price} in ψTable1, any object is not consistent.
Therefore,

deg({Weight},{Price})= 0/6 = 0.0.
For CON={Color,Size,Weight} and DEC={Price} in ψTable1, any object is consis-
tent. Therefore,

deg({Color,Size,Weight},{Price})= 6/6 = 1.0.

(Aspect 4) Reduction of Condition Attributes: Let us consider a consistent object
x for CON and DEC. An attribute A ∈ CON is dispensable in CON, if x is also
consistent for CON \ {A}.

Object x1 is consistent for CON={Color,Size,Weight} and DEC={Price}. How-
ever, x1 is also consistent for CON={Size}. Namely, both Color and Weight are
dispensable for x1. If we take CON={Size,Weight}, each object is consistent. Thus,
Color is dispensable for each object.

(Aspect 5) Rules and Criteria (Support, Accuracy and Coverage): For any object
x ∈ OB, let imp(x,CON,DEC) denote a formula called an implication:

∧A∈CON [A, f (x,A)]⇒ ∧A∈DEC[A, f (x,A)],
where a formula [A, f (x,A)] implies that f (x,A) is the value of the attribute A. This
is called a descriptor [19, 24, 36, 63]. In most of work on rule generation, a rule
is defined by an implication τx : imp(x,CON,DEC) satisfying some constraints.
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A constraint, such that deg(CON,DEC)=1.0 holds for CON and DEC, has been
proposed in [36, 37, 38].

In ψTable1, we know the following implication from object x1

[Size,small]∧ [Weight, light]⇒ [Price, low]
is a rule, because deg({Size,Weight},{Price})=1.0. Furthermore, we apply the re-
duction to this implication, and have the following minimal rule from object x1,

[Size,small]⇒ [Price, low].

Another familiar constraint is defined by three values in the following:
support(τx)= |[x]CON ∩ [x]DEC|/|OB|,
accuracy(τx)=|[x]CON ∩[x]DEC|/|[x]CON |,
coverage(τx)=|[x]CON ∩ [x]DEC|/|[x]DEC|.

Since [x]CON , [x]DEC and [x]CON ∩ [x]DEC are also equivalence classes for at-
tributes CON, DEC and CON ∪ DEC, the following holds.

support(τy)=support(τx), accuracy(τy)=accuracy(τx) and
coverage(τy)=coverage(τx) for each y ∈ [x]CON ∩ [x]DEC .

Therefore, we may handle τ instead of τx in each ψ . Here, we clarify two standard
rule generation tasks.

Specification of Rule Generation Tasks in a DIS
For threshold values α and β (0 < α,β ≤ 1), find each implication τ satisfy-
ing support(τ) ≥ α and accuracy(τ) ≥ β . We say this is a criterion based rule
generation in a DIS. Especially, if β =1.0, we say this is a consistency based rule
generation in a DIS.

The Apriori algorithm [1, 2] proposed to search for such criterion based rules
by Agrawal is now one of the most representative methods in data mining [5]. As
for the consistency based rule generation, a discernibility f unction method [63] by
Skowron is known well.

Fig. 1 A pair (support,accuracy) corresponding to the implication τ .
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9.2.2 Manipulation Algorithms for Equivalence Relations and
Data Dependency

For dealing with equivalence relations, we introduced a data structure. This is sim-
ple, but we can generate new equivalence relation from two equivalence relations.

In this structure, we identify the number i with an object xi, so each equivalence
class [i]ATR is a set of numbers, and each element is ordered in a class [i]ATR. Two
arrays head[i] and succ[i] (1 ≤ i ≤ |OB|), which are correctly head [xi] and succ[xi],
are defined as follows:

For j ∈ [i]AT R,
head[ j] is the first element of the equivalence class [i]ATR,
succ[ j] is the successor to j in [i]ATR.

For the last j ∈ [i]ATR,
head[ j] is the first element of the equivalence class [i]ATR,
succ[ j]=0.

In ψTable1, eq({Price})={{x1,x4},{x2,x3,x5,x6}} holds, and we express it by
head[1]=1, head[2]=2, head[3]=2, head[4]=1, head[5]=2, head[6]=2,
succ[1]=4, succ[2]=3, succ[3]=5, succ[4]=0, succ[5]=6, succ[6]=0.

Since [i]ATR={head[i],succ[head[i]], · · · ,succ[· · · succ[head[i]] · · · ]} holds, [3]{Price}
= {2,3,5,6} is obtained by head[3]=2, succ[2]=3, succ[3]=5, succ[5]=6, succ[6]=0.

Algorithm 1 in the appendix generates head[i] and succ[i] (1 ≤ i ≤ |OB|). In
the worst case of Algorithm 1, it is necessary to compare two objects ((|OB| −
1)+(|OB|− 2)+· · ·+1) times. So, the worst computational complexity of Algorithm
1 is O(|OB|2).

Now, we consider to generating an equivalence relation
eq(A∪B)={M ⊆ OB|M = [i]A ∩ [i]B, [i]A ∈ eq(A) and [i]B ∈ eq(B)}

from two equivalence relations eq(A) and eq(B). Algorithm 2 in the appendix gen-
erates new equivalence relation eq(A∪B).

By Algorithm 1, we at first generate eq(Ai) (Ai ∈ AT ), then we apply Algorithm
2 to generating eq(ATR) (ATR={A1,A2, · · · ,Am}). In this way, we can handle each
equivalence relation for any ATR ⊆ AT . Algorithm 2 is more effective for merging
several kinds of attributes. Even though the order may be O(|OB|2) in the generation
of eq({A1,A2}), the order becomes to O(|OB|) in the last application of Algorithm
2. Because, every equivalence class [i]{A1,A2,··· ,Ak} converges to a set {i} by adding
attributes.

We can also apply [x]CON and [x]DEC to calculating the degree of dependency in a
DIS. Algorithm 3 in the appendix calculates the degree, and Algorithm 4 calculates
the subpart (∗ : inclusion) in Algorithm 3.

The details of the manipulation in this sub section are in [45, 48, 51].
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9.3 Foundations of Rough Non-deterministic Information
Analysis

This section surveys a framework of RNIA (Rough Non-deterministic In f ormation
Analysis), possible equivalence relations and data dependency in NISs.

9.3.1 Some Definitions and Aspects in NISs

A Non-deterministic In f ormation System (NIS) Φ is also a quadruplet [32, 37, 38]
Φ=(OB,AT,{VALA|A ∈ AT},g),
g : OB×AT → P(∪A∈ATVALA) (a power set of ∪A∈ATVALA).

Every set g(x,A) is interpreted as that there is an actual value in this set but this
value is not known [32, 37, 38]. Especially if the real value is not known at all,
g(x,A) is equal to VALA. This is called the null value interpretation [7] or missing
value [15, 22, 66]. We usually consider a table instead of this quadruplet Φ . Let us
consider an exemplary NIS ΦTable2 in Table 2.

Table 2 An exemplary NIS ΦTable2 for the suitcase data sets. Here,
VALColor={red,blue,green}, VALSize={small,medium, large}, VALWeight={light,heavy},
VALPrice={high, low}.

Object Color Size Weight Price

x1 {red,blue,green}{small} {light,heavy} {low}
x2 {red} {small,medium} {light,heavy} {high}
x3 {red,blue} {small,medium} {light} {high}
x4 {red} {medium} {heavy} {low,high}
x5 {red} {small,medium,large} {heavy} {high}
x6 {blue,green} {large} {heavy} {low,high}

In ΦTable2, g(x1,Color)=VALColor holds, and this means there is no information
about this attribute value, namely we identify ΦTable2 with Table 3.

Table 3 A table with non-deterministic information and null values. The ∗ symbol means a
null value, and we identify ∗ with a set of attribute value.

Object Color Size Weight Price

x1 ∗ small ∗ low
x2 red {small,medium} ∗ high
x3 {red,blue} {small,medium} light high
x4 red medium heavy ∗
x5 red ∗ heavy high
x6 {blue,green} large heavy ∗
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In the previous work, non-deterministic information seems to be identified with
a null value. However, each g(x3,Color), g(x6,Color), g(x2,Size) and g(x3,Size)
is different from neither a null value nor a missing value. We have clarified the
property of non-deterministic information, and we are proposing a new framework.

9.3.2 A Basic Chart and Two Modalities

Now, we introduce a derived DIS from a NIS, and show the basic chart in RNIA.
Since each VALA (A ∈ AT ) is finite, we can generate a DIS by replacing each non-
deterministic information g(x,A) with an element in g(x,A). We named such a DIS
a derived DIS from a NIS, and define the following.

DD(Φ)={ψ | ψ is a derived DIS from a NIS Φ}.

In ΦTable2, there are 2304 (=32 × 28) derived DISs, and ψTable1 ∈ DD(ΦTable2)
holds. Due to the interpretation of non-deterministic information, we see an actual
ψactual exists in this 2304 derived DISs. Like this, we always consider the basic
chart for a NIS Φ and a set of derived DISs DD(Φ).

Fig. 2 is another example of the basic chart. For a NIS ΦFig2, a set DD(ΦFig2)
consists of 24 derived DISs. According to the basic chart, it is possible to define two
modalities the certainty and the possibility for each aspect.

Fig. 2 An example of the basic chart for ΦFig2 and a set of derived DISs DD(ΦFig2).

(Certainty) If a formula α holds in every ψ ∈ DD(Φ), α also holds in ψactual . In
this case, we say α certainly holds in ψactual .
(Possibility) If a formula α holds in some ψ ∈ DD(Φ), there exists such a possibil-
ity that α holds in ψactual . In this case, we say α possibly holds in ψactual .

Even if there exists the information incompleteness in a Φ , we can have the fol-
lowing decision making.
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(1) If a formula α certainly holds, we think α holds under the uncertainty.
(2) If a formula α possibly holds, we think α may hold under the uncertainty.
(3) Otherwise, we think α does not hold under the uncertainty.

In RNIA, we follow the rough sets based aspects in DISs, and reconsider the cer-
tainty and the possibility of rough sets based aspects in NISs.

9.3.3 Computational Complexity in NISs

Here, we must pay attention to the computational complexity related to a NIS. For
a NIS Φ , the number of derived DISs increases in the exponential order. Therefore,
it will be hard to apply the explicit method such that we sequentially examine each
concept in ψ ∈ DD(Φ).

In each aspect, we do not employ this explicit method. Instead of this explicit
method, we propose methods depending upon equivalence classes in the derived
DISs. Especially in rule generation, we had an algorithm which does not depend
upon DD(Φ) at all.

9.3.4 Possible Equivalence Classes in NISs

For a NIS, we call an equivalence relation in a derived DIS a possible equivalence
relation (pe-relation) in a NIS. A pe-relation defines a set peq(ATR) of all possible
equivalence classes (pe-class) in a NIS. For example in Fig. 2, we obtain

peq({Color,Size})={{1,2,3}} in DIS4,
peq({Color,Size})={{1},{2},{3}} in DIS24.

Both classes {1,2,3} and {1} are pe-classes with object 1. It is necessary to char-
acterize each pe-class for handling rough sets based concepts in Section 2. We first
define two sets in f and sup for each descriptor, which is given in (Aspect 5).

Definition 1. For a NIS with a function g : OB×AT → P(∪A∈ATVALA) and a set of
descriptors [Ai,ζi] (Ai ∈ ATR ⊆ AT ), we define two sets in f and sup.
(1) For a descriptor [Ai,ζi], we define the following.

in f ([Ai,ζi])={x ∈ OB|g(x,Ai)={ζi}},
sup([Ai,ζi])={x ∈ OB|ζi ∈ g(x,Ai)}.

(2) For a compound descriptor [ATR,ζAT R](=[{A1, · · · ,An},(ζ1, · · · ,ζn)]),
in f ([AT R,ζATR])={x ∈ OB|g(x,Ai)={ζi} for each i},
sup([ATR,ζATR])={x ∈ OB|ζi ∈ g(x,Ai) for each i}.

We can directly obtain the next proposition from Definition 1.

Proposition 2. [45, 50] For descriptors [Ai,ζi] (Ai ∈AT R⊆AT), ATR={A1,· · · ,An}
⊆ AT and a tuple ζAT R=(ζ1, · · · ,ζn), we obtain the following.
(1) in f ([ATR,ζAT R])=∩i in f ([Ai,ζi]).
(2) sup([ATR,ζATR])=∩i sup([Ai,ζi]).
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According to Proposition 2, we can easily calculate two sets in f and sup for each
compound descriptor [ATR,ζAT R]. For example in Fig. 2,

in f ([Color,red])={1}, sup([Color,red])={1,2,3},
in f ([Size,m])={3}, sup([Size,m])={1,2,3},
in f ([{Color,Size},(red,m)])={1}∩{3}=/0,
sup([{Color,Size},(red,m)])={1,2,3}∩{1,2,3}={1,2,3}

are derived. These in f and sup in Definition 1 and Proposition 2 are key information
for RNIA. The set sup is semantically equal to a set defined by the similarity relation
SIM [21, 22]. In [21, 22], some theorems are presented based on the relation SIM,
and our theoretical results are closely related to those theorems. However, the set
sup causes new properties, which hold just in NISs.

Now, let us consider a relation between each pe-class and each compound de-
scriptor [AT R,ζATR](=[{A1, · · · ,An},(ζ1, · · · ,ζn)]).

Definition 2. For a NIS, a compound descriptor [ATR,ζATR] and a derived DIS ψ ,
let Pe[ATR,ζAT R],ψ denote a pe-class defined by [AT R,ζATR] and ψ .

In Fig. 2, Pe[Color,red],DIS1
={1,2,3}, Pe[Size,s],DIS1

={1,2} and Pe[Color,blue],DIS1
= /0

hold. If we see a DIS ψ is a NIS with only singleton sets,
Pe[ATR,ζAT R],ψ=in f ([AT R,ζATR])=sup([ATR,ζATR])

holds in ψ . However in every NIS, Pe[ATR,ζAT R],ψ depends upon a derived DIS ψ ,
and generally

in f ([AT R,ζATR])⊆ Pe[ATR,ζAT R],ψ ⊆ sup([ATR,ζATR])
holds. Proposition 3 connects a pe-class Pe[ATR,ζAT R],ψ with in f ([AT R,ζATR]) and
sup([ATR,ζATR]).

Proposition 3. [50, 57] The conditions (1) and (2) in the following are equivalent.
(1) X is a pe-class Pe[ATR,ζAT R],ψ .
(2) in f ([ATR,ζAT R])⊆ X ⊆ sup([ATR,ζATR]).
Due to (1) and (2), for a set M ⊆ sup([ATR,ζAT R])\ in f ([ATR,ζATR])),

X=Pe[ATR,ζAT R],ψ=in f ([AT R,ζATR])∪M.

9.3.5 Some Extended Aspects to NISs

Now, we sequentially consider rough sets based aspects in NISs.

9.3.5.1 The Definability of a Set in NISs

We can extend (Aspect 1) in Section 2 to an aspect of a NIS.

(Certainly definable) A set X is certainly de f inable, if X is definable in each
ψ ∈ DD(Φ).
(Possibly definable) A set X is possibly de f inable, if X is definable in some
ψ ∈ DD(Φ).
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Here, X=∪x∈X{x} and x ∈ [x]AT =Pe[AT,ζAT ],ψ hold. If each x and each ζAT,x (a
tuple of x) satisfies sup([AT,ζAT,x])⊆ X , any pe-class [x]AT is a subset of X , because
sup is the maximum pe-class. Therefore, we conclude ∪x∈X [x]AT ⊆ X . Since X ⊆
∪x∈X [x]AT clearly holds, we conclude X=∪x∈X [X ]AT for each pe-class. As for the
possibility, we employ in f ([AT,ζAT,x]) instead of sup([AT,ζAT,x]).

9.3.5.2 Pe-relations in NISs

Here, we refer to an algorithm to examine whether a set X is possibly definable or
not. We have already investigated it, and published it in [48, 50, 54]. This program
is implemented in a logic programming language Prolog. This tree search program
employs in f and sup information for attributes AT R, and solves the definability of
a set as a constraint satisfaction problem.

We can also apply the above algorithm to obtaining all pe-relations in a NIS.
Namely, OB is definable in any derived DIS and any AT R, so this algorithm finds a
solution, and we can obtain a peq(ATR) as a side effect of the solution. The details
are in [48, 50, 54]. The following is an execution of pe-relation generation from
ΦTable2 on a windows 7 PC (3.3GHz, 64bitCPU).

?-trans. /∗ Translation data to the internal expression ∗/
File Name for Read Open: suitcase.pl.

EXEC_TIME=0.0(sec)

yes

?-pe. /∗ Generation of all pe-relations in each attribute ∗/
Original File Name: suitcase.pl.

-- 1.pe----------

[1][[1,2,3,4,5],[6]] 2

[2][[1,2,4,5],[3,6]] 1

[3][[1,2,4,5],[3],[6]] 1

[4][[1,6],[2,3,4,5]] 2

[5][[1],[2,3,4,5],[6]] 2

: :

[9][[1,6],[2,4,5],[3]] 1

POSSIBLE CASES 12

-- 2.pe----------

[1] [[1,2,3],[4],[5,6]] 1

[2] [[1,2],[3,4],[5,6]] 1

: :

[12] [[1],[2,3,4,5],[6]] 1

POSSIBLE CASES 12

-- 3.pe----------

[1] [[1,2,3],[4,5,6]] 1

[2] [[1,3],[2,4,5,6]] 1

[3] [[1,2,4,5,6],[3]] 1
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[4] [[1,4,5,6],[2,3]] 1

POSSIBLE CASES 4

-- 4.pe----------

[1] [[1,4,6],[2,3,5]] 1

[2] [[1,4],[2,3,5,6]] 1

[3] [[1,6],[2,3,4,5]] 1

[4] [[1],[2,3,4,5,6]] 1

POSSIBLE CASES 4

EXEC_TIME=0.0(sec)

yes

9.3.5.3 The Consistency of an Object in NISs

We can extend (Aspect 2) in Section 2 to an aspect of a NIS. Let CON be a set of
condition attributes and DEC be a set of decision attributes.

(Certainly consistent) An object x is certainly consistent in a NIS, if x is consistent
for CON and DEC in each ψ ∈ DD(Φ).
(Possibly consistent) An object x is possibly consistent in a NIS, if x is consistent
for CON and DEC in some ψ ∈ DD(Φ).

The calculation of the consistency of an object x is shown in the next sub section
about data dependency in NISs.

9.3.5.4 Data Dependency in NISs

As for the data dependency, we can extend (Aspect 3) in Section 2 to the minimum
data dependency and the maximum data dependency in a NIS.

Definition 3. In a NIS, let us consider a set of condition attributes CON and a set of
decision attributes DEC. For any derived DIS ψ , let deg(CON,DEC,ψ) denote the
data dependency deg(CON,DEC) in ψ .
(1) Let Min_deg(CON,DEC) be Minψ{deg(CON,DEC,ψ)}, and we call it the
minimum degree of data dependency for CON and DEC.
(2) Let Max_deg(CON,DEC) be Maxψ{deg(CON,DEC,ψ)}, and we call it the
maximum degree of data dependency for CON and DEC.

For these Min_deg(CON,DEC) and Max_deg(CON,DEC), we may sequentially
examine deg(CON,DEC,ψ) by using Algorithm 3 and 4 in Section 2. However, the
number of derived DISs increases in the exponential order. Therefore, we employ
the following steps instead of examining deg(CON,DEC,ψ) sequentially.

(Step 1) We first generate all pe-relations {peq(CON)i} for CON by using the de-
finability of a set OB.
(Step 2) We then generate all pe-relations {peq(DEC) j} for DEC by using the de-
finability of a set OB.
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(Step 3) The combinations of ∪i, j(peq(CON)i, peq(DEC) j) corresponds to all de-
rived DISs for CON ∪DEC.
(Step 4) For each (peq(CON)i, peq(DEC) j), we calculate deg(CON,DEC,ψi, j),
and obtain the minimum and the maximum degrees.

Now, let us consider a case that CON={Color,Size,Weight} and DEC={Price} for
ΦTable2. In Section 3.5.2, we have already shown (Step 1) and (Step 2). In order to
proceed to (Step 3), we employ Algorithm 1 and 2 in Section 2.

$ merge2w

Merging 1.pe ...

Merging 2.pe ...

Merging 3.pe ...

EXEC_TIME=0.000(sec)

The above is an execution of generating a set of peq({Color,Size,Weight}). We
specify the names of files to merge in a data file, and a program mereg2w in C
simulates Algorithm 2. After this execution, we obtain a file 123.pe, and we know
that there are 576 derived DISs for CON={Color,Size,Weight} and 20 different pe-
relations. Namely, 576 cases are reduced to 20 cases.

In (Step 3), we have peq({Color,Size,Weight})i (1 ≤ i ≤ 20) and peq({Price}) j

(1≤ j ≤ 4). Therefore, we can calculate all 2304 degrees of dependencies by consid-
ering 80 combinations of peq({Color,Size,Weight})i and peq({Price}) j. We apply
Algorithm 3 and 4 to 80 combinations. The following is an execution of data depen-
dency in (Step 4).

$ depratio

File Name for Condition: 123.pe

File Name for Decision: 4.pe

--- Dependency Check ----------------

CRITERION 1(Num_of_Consistent_DISs/Num_of_All_DISs)

Number of Derived DISs: 2304

Number of Derived Consistent DISs: 1364

Degree of Consistent DISs: 0.592

CRITERION 2(Total_Min_and_Max_Degrees)

Minimum Degree of Dependency: 0.167

Maximum Degree of Dependency: 1.000

--- Consistency Ratio for Every Object ---

Consistent ratio of object 1: 0.802(= 1848 / 2304)

Consistent ratio of object 2: 0.792(= 1824 / 2304)

Consistent ratio of object 3: 0.917(= 2112 / 2304)

Consistent ratio of object 4: 0.750(= 1728 / 2304)

Consistent ratio of object 5: 0.778(= 1792 / 2304)

Consistent ratio of object 6: 1.000(= 2304 / 2304)

EXEC_TIME=0.000(sec)
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In the above execution, we know each object is consistent in 1364 derived DISs,
and we know Max_deg({Color,Size,Weight},{Price})=1.0 and Min_deg({Color,
Size,Weight},{Price})=0.167. Implementation of this procedure is discussed in
[46, 49, 51, 54].

9.3.5.5 The Minimum and the Maximum of Criterion Values in NISs

At (Aspect 5) in Section 2, we have shown criteria support(τx) and accuracy(τx) in
DISs. This τx(=∧A∈CON [A, f (x,A)]⇒∧A∈DEC[A, f (x,A)]) is an implication from an
object x. In a NIS Φ , we usually consider DD(Φ) and each ψ ∈ DD(Φ). Here, the
tuple of an object x in ψ1 and the tuple of an object x in ψ2 may be different. Namely,
τx in ψ1 may not exist in ψ2. For example in Fig. 2, τ1 : [Color,red]⇒ [Size,s] in
DIS1 does not exist in DIS4. If τx does not exist in ψ , we define support(τx)=0.0
and accuracy(τx)=0.0 in ψ . We also define

DD(τx)={ψ ∈ DD(Φ) | support(τx)> 0}.
Furthermore, if DD(τx)=DD(Φ), we say τx is de f inite. Otherwise, we say τx is
inde f inite. In Fig. 2, there is no definite τx, and each τx is indefinite.

Definition 4. For a NIS Φ , each ψ ∈ DD(Φ) and an implication τx, let support
(τx,ψ) and accuracy(τx,ψ) be the support and accuracy values in ψ . We give the
following definition.
(1) minsupp(τx)=Minψ∈DD(τx){support(τx,ψ)}.
(2) maxsupp(τx)=Maxψ∈DD(τx){support(τx,ψ)}.
(3) minacc(τx)=Minψ∈DD(τx){accuracy(τx,ψ)}.
(4) maxacc(τx)=Maxψ∈DD(τx){accuracy(τx,ψ)}.

In Definition 4, we may employ DD(Φ) instead of DD(τx). For a definite τx,
DD(Φ)=DD(τx) holds, so we may employ either DD(Φ) or DD(τx). However, if
τx is indefinite, we directly obtain minsupp(τx)=0.0 and minacc(τx)=0.0, because
there is a ψ where τx does not appear. Even though we may employ DD(Φ), how-
ever we think that DD(τx) is more appropriate than DD(Φ) in Definition 4. We
have obtained the formula to calculate each criterion value in Definition 4. This
calculation does not depend upon |DD(τx)|.

Proposition 4. [50, 57] It is possible to calculate the above four criterion values of
τx : [CON,ζ ]⇒ [DEC,η ].

Let us define OUTACC and INACC,
OUTACC=[sup([CON,ζ ])\ in f ([CON,ζ ])]\ in f ([DEC,η ]),
INACC=[sup([CON,ζ ])\ in f ([CON,ζ ])]∩ sup([DEC,η ]).

If τx is definite, the following holds.
(D1) minsupp(τx)=|in f ([CON,ζ ])∩ in f ([DEC,η ])|/|OB|,
(D2) minacc(τx)= |in f ([CON,ζ ])∩in f ([DEC,η])|

|in f ([CON,ζ ])|+|OUTACC| ,

(D3) maxsupp(τx)=|sup([CON,ζ ])∩ sup([DEC,η ])|/|OB|,
(D4) maxacc(τx)= |in f ([CON,ζ ])∩sup([DEC,η])|+|INACC|

|in f ([CON,ζ ])|+|INACC| .
If τx is indefinite, the following holds.

(I1) minsupp(τx)=(|in f ([CON,ζ ])∩ in f ([DEC,η ])|+ 1)/|OB|,



9 RNIA: Foundations and Its Perspective in Machine Learning 229

(I2) minacc(τx)= (|in f ([CON,ζ ])∩in f ([DEC,η])|)+1
|in f ([CON,ζ ])∪{x}|+|OUTACC\{x}| ,

(I3) maxsupp(τx)=|sup([CON,ζ ])∩ sup([DEC,η ])|/|OB|,
(I4) maxacc(τx)= |(in f ([CON,ζ ])∩sup([DEC,η]))\{x}|+|INACC\{x}|+1

|in f ([CON,ζ ])∪{x}|+|INACC\{x}| .

In Proposition 4, if τx is definite, DD(τx)=DD(Φ) and x ∈ in f ([CON,ζ ]) ∩ in f
([DEC,η ]). However, if τx is indefinite, DD(τx) � DD(Φ) holds. In this case, we
suppose the indefinite τx is selected as a candidate of τ . Namely, we think a set
of definite τy (y �= x) and τx. Since x �∈ in f ([CON,ζ ])∩ in f ([DEC,η ]), we need to
add +1 to both the numerator and the denominator of the formulas. In this way, we
obtain Proposition 4.

Clearly, each calculation does not depend upon the size of DD(τx). We have also
obtained the next proposition.

Proposition 5. [59, 62] let us consider a NIS Φ and any τx.
(1) There is a ψ ′ ∈ DD(τx) such that support(τx,ψ ′) and accuracy(τx,ψ ′) are both
minimums. Namely, both minsupp(τx) and minacc(τx) occur in this ψ ′. We employ
a notation ψmin for this ψ ′.
(2) There is a ψ ′′ ∈ DD(τx) such that support(τx,ψ ′′) and accuracy(τx,ψ ′′) are
both maximums. Namely, both maxsupp(τx) and maxacc(τx) occur in this ψ ′′. We
employ a notation ψmax for this ψ ′′.

In this section, we extended each rough set based concept in DISs to NISs. In NISs,
each concept is extended to the certain concept and the possible concept. According
to the previous research [15, 21, 22, 24, 25, 32, 33, 66, 67], we knew the necessity
of handling NISs, and the survey in this section will be a solution for handling NISs.

9.4 An Aspect of Question-Answering and Decision Making
in NISs

We specify the condition part [CON,ζ ], and we can directly obtain the decision
part [DEC,ηi] with criterion values by Proposition 4. Namely, we consider each
definite τ : [CON,ζ ] ⇒ [DEC,ηi] for a specified [CON,ζ ], and we try to decide
which [DEC,ηi] is appropriate by using criterion values. We employ criterion values
for confirming the validity of the decision making.

Let us consider the following actual execution of [Color,red] ⇒ decision for
ΦTable2.

?-qa([[color,red]]).

--- Direct Question/Answering Mode ----------

qa3(1,[[color,red]],[2,4,5],[1,2,3,4,5],[price,low],

[1],[1,4,6]) OUTACC=[3], INACC=[1]

[1] [color,red] ==> [price,low]

MINSUPP=0.0, MINACC=0.0, MAXSUPP=0.333, MAXACC=0.5
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qa3(2,[[color,red]],[2,4,5],[1,2,3,4,5],[price,high],

[2,3,5],[2,3,4,5,6]) OUTACC=[1], INACC=[3]

[2] [color,red] ==> [price,high]

MINSUPP=0.333, MINACC=0.5, MAXSUPP=0.667, MAXACC=1.0

EXEC_TIME=0.0(sec)

yes

Due to this execution, we know there are two implications,
τ1: [color,red] ==> [price,low],

τ2: [color,red] ==> [price,high].

Since the minimum values of [Price,high] is more than the maximum values of
[Price, low], we probably make a decision of [Price,high] under the condition of
[Color,red].

A derived DIS from a NIS in Table 4 causes maxsupp(τ1) and maxacc(τ1), and
at the same time this derived DIS also causes minsupp(τ2) and minacc(τ2). The
calculation by Proposition 4 implicitly specifies a set of derived DISs as a side effect.

As for the direct question-answering and decision making in NISs, the details are
in [60, 62].

Table 4 This derived DIS causes both maxsupp(τ1) and maxacc(τ1) the maximum, and
causes both minsupp(τ2) and minacc(τ2) the minimum.

Object Color Size Weight Price

x1 red any any low
x2 red any any high
x3 blue any any high
x4 red any any low
x5 red any any high
x6 blue any any low

9.5 Rule Generation in NISs

In Section 2, we have surveyed two types of rule generation in DISs. The one is the
criterion based rule generation and the other is the consistency based rule generation.
This section focuses on rule generation in NISs, and proposes an extended Apriori
algorithm named NIS-Apriori. A NIS-Apriori based rule generation is applicable
to several types of rule generation.

9.5.1 Rule Generation Tasks in a NIS

In Fig. 2, τ : [Color,red]⇒ [Size,m] may occur in all objects. We employed the nota-
tion τx for expressing τ defined in an object x. In a DIS, support(τy)=support(τx)
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and accuracy(τy)=accuracy(τx) hold for each y ∈ [x]. Therefore, it is enough to
consider τ . However, we need to remark the following in a NIS.

Remark 1. The same τ may occur from the different objects x and y, and there may
be a case that τx satisfies the condition of rules but τy does not satisfy this condition.
Therefore, we specify the object x in τx for each calculation, because DD(τx) de-
pends upon x. However, we do not specify the object x for obtained rules τ . Namely,
if τx for an object x satisfies the condition of rules, we see this τ is a rule.

In a NIS Φ , we have defined DD(Φ) and DD(τx) in Section 3. In Fig. 2, we have
|DD(τ1)| = 4, |DD(τ2)| = 12, |DD(τ3)| = 12. If DD(τx)=DD(Φ), we said this τx

is de f inite. Otherwise, we said τx is inde f inite. We give the next rule generation
tasks in a NIS.

Specification of the Rule Generation Tasks in a NIS
(The lower system) Find each implication τ such that support(τx) ≥ α and
accuracy(τx) ≥ β (for an object x) hold in each ψ ∈ DD(τx). We say this is a
criterion based certain rule generation in a NIS. Especially, if β =1.0, we say this
is a consistency based certain rule generation in a NIS.
(The upper system) Find each implication τ such that support(τx) ≥ α and
accuracy(τx) ≥ β (for an object x) hold in some ψ ∈ DD(τx). We say this is a
criterion based possible rule generation in a NIS. Especially, if β =1.0, we say this
is a consistency based possible rule generation in a NIS.

These two systems are natural extensions from rule generation tasks in a DIS,
and we need to see that these two systems depend upon DD(τx). The number of de-
rived DISs increases in the exponential order. However, we can solve this problem.
Namely, we apply Proposition 4 and 5, and we obtain a result illustrated by Fig. 3.

Fig. 3 A distribution of pairs (support,accuracy) for τx. There exists ψmin ∈ DD(τx) which
makes both support(τx) and accuracy(τx) the minimum. There exists ψmax ∈ DD(τx) which
makes both support(τx) and accuracy(τx) the maximum. We denote such quantities as
minsupp, minacc, maxsupp and maxacc, respectively.
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Therefore, we have the next equivalent specification.

Equivalent specification of the rule generation tasks in a NIS
(The lower system) Find each implication τ such that minsupp(τx) ≥ α and
minacc(τx)≥ β for an object x (see Fig. 3).
(The upper system) Find each implication τ such that maxsupp(τx) ≥ α and
maxacc(τx)≥ β for an object x (see Fig. 3).

For implementing this equivalent specification, we take the similar method as
Apriori algorithm. We identify an item [1, 2] with a descriptor [A,ζ ]. We always
assign in f ([AT R,ζATR]) and sup([ATR,ζATR]) to each descriptor [ATR,ζATR] by
Definition 1. Since each τx is a conjunction of descriptors, we sequentially gener-
ate τx. In the lower system, we check minsupp(τx) ≥ α and minacc(τx) ≥ β . In
the upper system, we check maxsupp(τx)≥ α and maxacc(τx)≥ β . We are calling
the above steps NIS-Apriori algorithm. Clearly, NIS-Apriori does not depend upon
|DD(τx)|. The details are in [56, 57, 65].

9.5.2 Stability Factor of Rules in the Upper System

The upper system defines the possibility of rules, however this definition seems too
weak. If τ1 satisfies the constraints in only one ψ ∈DD(τx

1), we see τ1 as a rule in the
upper system. On the other hand, If τ2 satisfies the constraints in most ψ ∈ DD(τx

2),
we also see τ2 as a rule. We need to add another criterion to the upper system. Due
to this reason, we have introduced the next stability f actor [59, 62]

SF(τ)=|{ψ ∈ DD(τ)| τ satisfies the constraints in ψ}|/|DD(τ)|
DD(τ)=∪x DD(τx),

into the upper system. We can discriminate τ2 from τ1 by SF(τ1) and SF(τ2).

9.5.3 Current State of a Rule Generator in Prolog

Fig.4 is the top page of the current rule generator. This is implemented in Prolog on
a windows 7 PC (3.3GHz, 64bitCPU).

We are not planning to handle the large size data sets, but we are planning to
handle data sets with large number of derived DISs. Since we can easily handle the
list notation in Prolog, therefore Prolog seems suitable for this implementation.

In the lower system, the current program handles each definite τx, and we have
not finished the program for each indefinite τx. In the upper system, the current
program handles both.

9.5.4 An Example of Execution by a Rule Generator

Now, let us consider an exemplary NIS in Table 5, which is automatically generated
by using a random number functionality.
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Fig. 4 A menu of a NIS-Apriori based rule generator

Table 5 A Table of a NIS ΦTable5

Object A B C D E F G H

1 {3} {1,3,4} {3} {2} {5} {5} {2,4} {3}
2 {2} {3,4} {1,3,4} {4} {1,2} {2,4,5} {2} {2}
3 {4,5} {5} {1,5} {5} {2} {5} {1,2,5} {1}
4 {1} {3} {4} {3} {1,2,3} {1} {2,5} {1,2}
5 {4} {1} {2,3,5} {5} {2,3,4} {1,5} {4} {1}
6 {4} {1} {5} {1} {4} {2,4,5} {2} {1,2,3}
7 {2} {4} {3} {4} {3} {2,4,5} {4} {1,2,3}
8 {4} {5} {4} {2,3,5} {5} {3} {1,2,3} {1,2,3}
9 {2} {3} {5} {3} {1,3,5} {4} {2} {3}
10 {4} {2} {1} {5} {2} {4,5} {3} {1}

The following is the actual data for ΦTable5. The prototype system in Prolog can
handle any data set in the following syntax.

object(10,8). /* #object=10, #attribute=8 */

support(0.2). /* a constraint: support is more than 0.2 */

accuracy(0.8). /* a constraint: accuracy is more than 0.8 */

decision(8). /* the decision attribute 8th */

attrib(1,a,5,[1,2,3,4,5]). /* an attribute 1, name, values */

attrib(1,b,5,[1,2,3,4,5]).

: : :

attrib(1,h,5,[1,2,3,4,5]).

total_cases(7346640384,nointerval). /* the number of DD(ΦTable5 )*/

data(1,[3,[1,3,4],3,2,5,5,[2,4],3]). /* data */

data(2,[2,[3,4],[1,3,4],4,[1,2],[2,4,5],2,2]).

: : :

data(10,[4,2,1,5,2,[4,5],3,1]).
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According to the values of support, this data set is at first translated to the inter-
nal data. The following is a part of it:

lower(1,2,[a,2],[2,7,9],[2,7,9]).

lower(1,4,[a,4],[5,6,8,10],[3,5,6,8,10]).

lower(2,1,[b,1],[5,6],[1,5,6]).

lower(2,3,[b,3],[4,9],[1,2,4,9]).

upper(2,4,[b,4],[7],[1,2,7]).

The fourth and fifth arguments mean the minimum pe-class and the maximum pe-
class for a descriptor. For each attribute, if attribute value of an object x is definite,
x is added to the fourth and fifth arguments of the descriptor. If attribute value is
indefinite, x is added to the fifth argument of the related descriptors.

The following is a process of step2 command in rule generation. In reality,
we sequentially employ step1, step2, · · · , step5 commands. step1 generates
rules whose condition part consist of a descriptor, and step2 does rules whose con-
dition part consist of a conjunction of two descriptors. step3, step4 and step5
are in the same manner. The computational complexity of these commands is almost
the same as Apriori algorithm. A rule τ1 : [d,5]&[e,2]⇒ [h,1] in the lower system
satisfies support(τ3

1 )≥ 0.2 and accuracy(τ3
1 )≥ 0.8 in each of 7346640384 derived

DISs. A rule τ2 : [ f ,5]&[g,2]⇒ [h,3] in the upper system is supported by only 4%
derived DISs, which is calculated by sf command. Namely, τ2 will not be a reli-
able implication. The complexity of sf command depends upon pairs of possible
equivalence classes (peCON ,peDEC) [59, 61], so this program may not be effective.

?-step2.
===== Lower System ========================================
[1] MINSUPP=0.2, MINACC=0.6666666667
[2] MINSUPP=0.1, MINACC=1.0
[3] MINSUPP=0.2, MINACC=1.0 [d,5]&[e,2]==>[h,1] [3,10]
The Rest Candidates: [[[1,4],[4,5],[8,1]]]
(Lower System Terminated)
===== Upper System ========================================
[1] MAXSUPP=0.0, MAXACC=0.0

: : :
[150] MAXSUPP=0.2, MAXACC=1.0 [f,5]&[g,2]==>[h,3] [1,6]
The Rest Candidates:[[[1,2],[6,4],[8,2]],[[2,3],[7,2],[8,2]],
[[3,3],[6,5],[8,1]],[[3,3],[6,5],[8,2]],[[3,5],[7,2],[8,1]],
[[4,3],[7,2],[8,1]],[[4,3],[7,2],[8,2]],[[6,4],[7,2],[8,2]]]
(Next Candidates are Remained)
EXEC_TIME=0.0 (sec)
yes

?-sf([[f,5],[g,2]],[h,3]).

[1] PE_CON:[], PE_DEC:[1,9], Intersection:[]

[2] PE_CON:[], PE_DEC:[1,9,6], Intersection:[]
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: : :

[128] PE_CON:[1,2,3,6], PE_DEC:[1,9,6,7,8], Intersection:[1,6]

Number of DISs in This Case:1

DENO=810, NUME=36

SF=0.04444444444=(36/810)

EXEC_TIME=1.0 (sec)

yes

9.5.5 An Application to Other Types of Rule Generation

A NIS-Apriori based rule generator can handle criterion based certain and possible
rules generation. This section considers how this rule generator is applied to some
other types of rule generation.

9.5.5.1 Case 1: Criterion Based Rule Generation in a DIS

We can easily express a data set of a DIS. We employed a list notation for expressing
non-deterministic information, for example,
data(10,[4,2,1,5,2,[4,5],3,1]).

The 6th attribute value [4,5] is non-deterministic, and other attribute values are de-
terministic (or definite).

In reality, if all attribute values are definite, the minimum and the maximum
equivalence classes for each descriptors are the same set. The lower system and the
upper system generate the same rules. Namely, NIS-Apriori can simulates criterion
based rule generation in a DIS.

9.5.5.2 Case 2: Consistency Based Rule Generation in a DIS

If we specify support(0.0), accuracy(1.0) and a DIS in the syntax of a NIS, we
obtain consistency based rules in a DIS. Namely, NIS-Apriori can take a role of the
discernibility function method, and can simulates consistency based rule generation
in a DIS.

9.5.5.3 Case 3: Rule Generation in a DIS with Missing Values

There are some important research on a DIS with missing values or Incomplete
In f ormation Systems. For example, LERS system [12, 13] by Grzymała-Busse and
a framework of reduction based rule generation [21, 22] by Kryszkiewicz are well
known. In both research, some interpretations are assumed for missing values, and
rule generation methods are investigated.

In a NIS-Apriori based rule generator is also applicable to DISs with missing
values. In most of tables with categorical data, each domain of attribute values is a
finite set. Since any missing value is an element of this finite domain, we replace
each missing value with this domain. Then, we can apply our rule generator to this
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adjusted NIS. In our framework, the interpretation of missing values seems clear,
but instead we needed to face with the exponential order problem about the number
of derived DISs. However, we have solved this exponential order problem by NIS-
Apriori algorithm. Thus, we can also apply our rule generator to DISs with missing
values.

9.5.5.4 Case 4: Consistency Based Rule Generation in a NIS

We at first survey consistency based rule generation by a discernibility function for
ΦTable5, then we show NIS-Apriori seems much more powerful than the discerni-
bility function method.

In a discernibility function method, we fix a pair of a decision attribute and an at-
tribute value ([DEC,valDEC]), and define a target set X ⊆U (U is a set of all objects).
Then, we try to obtain minimal set of descriptors (∧i[Ai,vali]) which discriminate
X from U −X . Finally, an implication ∧i[Ai,vali] ⇒ [DEC,valDEC] is a minimal
consistency based rules. The details are in [53, 55].

The following is an example of execution for ΦTable5. The decision part is speci-
fied by [h,1]. In this program, we are using the ordinal number instead of an attribute
name, namely [h,1] is expressed by [8,1] in this program. We know a target set is
{3,5,10} by init command, and the extended discernibility function depending
upon an object 3 is displayed by disfunc(3,M) command. Since 1 �∈ {3,5,10}
holds, it is necessary to discriminate 1 from {3,5,10}. If we employ either a de-
scriptor [2,5], [4,5] or [5,2], an object 1 is discriminated. In reality, there may be
lots of minimal solutions of the discernibility function, so we interactively obtain
solutions by solall(3) command. Here, we specified a descriptor [2,5] ([b,5]),
and we obtained two consistency based rules (rule 1) and (rule 2) with [2,5]. If we
select other descriptor, this program responds other rules.

?-init.

Rs File:data.rs.

DECLIST:<inf=[3,5,10]>

Certain Rules come from [3,5,10]

EXEC_TIME=0.0 (sec)

yes

?-disfunc(3,M).

M=[[1,[2,5],[4,5],[5,2]],[2,[2,5],[4,5]],[4,[2,5],[4,5],[6,5]],

[6,[2,5],[4,5],5,2]],[7,[2,5],[4,5],[5,2]],[8,[5,2],[6,5]],

[9,[2,5],[4,5],[5,2],[6,5]]]

yes

?-solall(3).

Input a number of Related Descriptors to Start Exhaustive Search:3.

Exhaustive Search for less than 8 Cases !!

[Loop:1]

Discernibility Function without Core Descriptors:

[[1,[2,5],[4,5],[5,2]],[2,[2,5],[4,5]],[4,[2,5],[4,5],[6,5]],
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[6,[2,5],[4,5],[5,2]],[7,[2,5],[4,5],[5,2]],[8,[5,2],[6,5]],

[9,[2,5],[4,5],[5,2],[6,5]]]

Currently Selected Descriptors:[]

Descriptors:[[2,5],[4,5],[5,2],[6,5]]

Select a Descriptor:[2,5].

Currently Selected Descriptors:[[2,5]]

Revised Discernibility Function:[[8,[5,2],[6,5]]]

Common Descriptors:[[5,2],[6,5]]

[2,5]&[5,2]==>[8,1] /* [b,5]&[e,2]==>[h,1] (rule 1) */

[17496/17496(=324/324,54/54),Definite,Globally Consistent]

[2,5]&[6,5]==>[8,1] /* [b,5]&[f,5]==>[h,1] (rule 2) */

[34992/34992(=648/648,54/54),Definite,Globally Consistent]

yes

We can easily obtain the same results by using a NIS-Apriori based rule genera-
tor. The following is an execution specified by support(0.0) and accuracy(1.0).

##### 1st Step ####################
===== Lower System ==========================================
[9] [a,3]==>[h,3] (0.1,1.0) [1]
[16] [b,2]==>[h,1] (0.1,1.0) [10]
The Rest Candidates:[[[1,2],[8,2]],[[1,2],[8,3]],[[1,4],[8,1]],

: : :
[[7,2],[8,3]],[[7,3],[8,1]],[[7,4],[8,1]]]
(Next Candidates are Remained)
===== Upper System ==========================================
[1] [a,1]==>[h,1] (0.1,1.0) [4]

: : :
[104] [g,5]==>[h,2] (0.1,1.0) [4]
The Rest Candidates:[[[1,2],[8,1]],[[1,2],[8,2]],[[1,2],[8,3]],

: : :
EXEC_TIME=0.0 (sec)
yes

##### 2nd Step ####################
===== Lower System ==========================================
[12] [a,2]&[c,5]==>[h,3] (0.1,1.0) [9]

: : :
[129] [b,5]&[e,2]==>[h,1] (0.1,1.0) [3]
[134] [b,5]&[f,5]==>[h,1] (0.1,1.0) [3]

: : :
[235] [d,5]&[e,2]==>[h,1] (0.2,1.0) [3,10]
[240] [d,5]&[f,5]==>[h,1] (0.1,1.0) [3]

: : :
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In this execution, we obtained (rule 1) as [129] and (rule 2) as [134]. Furthermore,
we obtained consistency based rules [235] and [240] related to an object 3. We have
previously realized a program depending upon a discernibility function, however we
now think NIS-Apriori based rule generator is much more useful.

We have also applied to some data sets, for example mammographic.csv (the
object size is 150, the attribute size is 6, the number of derived DISs is about 1046)
in UCI repository [10] and examined NIS-Apriori in Prolog works well.

9.6 Perspective of RNIA in Machine Learning

This section considers the next research related to RNIA, and shows the perspective
of RNIA with respect to machine learning.

9.6.1 Handling of Inexact Data

We are now advancing from NISs to Incomplete In f ormation Databases (IIDs)
[24, 25] by Lipski. In NISs, each attribute value is implicitly a discrete value, and
we could easily define DD(Φ). However, in an IID Γ , intervals are employed for
handling continuous values like in Table 6. As for intervals, theoretically there may
be uncountable number of subsets, therefore the definition of DD(Γ ) will not be
easy. In reality, Lipski coped with mathematical foundations of the question an-
swering systems in IIDs and proposed some software solutions. Therefore, DD(Γ )
was not defined in [24, 25].

Table 6 An exemplary example of Incomplete Information Database ΓTable6 [24].

OB Age Dept# Hireyear Sal

x1 [60,70] {1,· · · ,5} {70,· · · ,75} {10000}
x2 [52,56] {2} {72,· · · ,76} (0,20000]
x3 {30} {3} {70,71} (0,∞)
x4 (0,∞) {2,3} {70,· · · ,74} {22000}
x5 {32} {4} {75} (0,∞)

We are considering the concept of the resolution of data, and we are now coping
with the definition of DD(Γ ) and rule generation from Γ [61].

As for the numerical data, we have also proposed a method by using the numerical
pattern [52, 58]. If we handle numerical values, the number of attribute values may
be too large. In Table 7, we may need to consider 1001 descriptors for AVR, namely
[AVR,0.000], [AVR,0.001], · · · , [AV R,1.000].

Now, we consider information incompleteness for numerical values. Information
incompleteness is a relative concept. For example, let us consider number π . The
value 3.14 will be enough for students, but it will be too simple for researcher. This
example will also be related to granularity and granular computing [40, 71].
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Table 7 Players’ Batting Data in Baseball Games, AVG: Batting Average, SF&SH: Sacrifice
Flies and Hits, SB: Stolen Bases, OBP: On-Base Percentage, SLG: Slugging Percentage [58].

Player AVG SF&SH SB OBP SLG

p1 0.322 0 03 0.397 0.553
p2 0.312 1 07 0.391 0.430
p3 0.309 0 03 0.390 0.557
p4 0.300 0 01 0.307 0.556
p5 0.273 0 05 0.326 0.467

We introduced two symbols @ and #, which represent numeric from 0 to 9. A
numerical pattern is a sequence of @ and #, for example @@@, @@#, @##,
@@.@ and @#.#. Here, @ denotes a significant figure and # denotes a figure, which
we do not care. For example, AVG values of p3 and p4 are 0.309 and 0.300, respec-
tively. These two values are different according to a numerical pattern 0.@@@, but
these two values are the same according to a numerical pattern 0.@@#. By means of
introducing such numerical patterns, we can explicitly define the meaningful figures
in numerical values.

In Apriori algorithm, at first we give the value α for support, then we pick up
candidates of descriptors. Therefore, if we employ the numerical pattern, we do not
have to do the discretization of numerical values as the pre-processing.

We are now planning to handle other types of data like intervals [16, 17, 43,
74], and are now reforming the unified framework of rule generation with non-
deterministic information, intervals and the numerical patterns.

9.6.2 Learning a DIS from a NIS by Constraints

In the basic chart in Fig. 2, we considered DD(ΦFig.2) and defined the certainty
and the possibility. Namely, the issue was to characterize the worst case and the
best case. Now, we focus on another aspect. We add some constraints, like rules in
the lower system or data dependency to a NIS Φ , then some attribute values are
restricted by the constraints. As a result, we can reduce the information incomplete-
ness in NISs. The purpose becomes to obtain ψactual ∈ DD(Φ).

Let us consider ΦTable2 in Section 3.1 and Section 4. If we agree with the next
implication

τ1: [color,red] ==> [price,low]

and we see this is a constraint in ΦTable2, as a side effect we have a derived DIS
ψTable4 ∈ DD(ΦTable2). If we agree with the other implication

τ2: [color,red] ==> [price,high],

we have the next Table 8 as a restricted ΦTable2.
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Table 8 A restricted ΦTable2 by the constraint τ2.

Object Color Size Weight Price

x1 {blue,green} {small} {light,heavy} {low}
x2 {red} {small,medium} {light,heavy} {high}
x3 {red} {small,medium} {light} {high}
x4 {red} {medium} {heavy} {high}
x5 {red} {small,medium,large} {heavy} {high}
x6 {blue,green} {large} {heavy} {low}

Furthermore in Table 8, let us consider another constraint, i.e., the data depen-
dency from Size to Weight. In order to keep the data dependency, some attribute
values are automatically fixed. Since the tuples of x4 and x6 are definite, we need to
select attribute values which are consistent to x4 and x6. At first, we need to select

small ∈ g(x3,Size) and light ∈ g(x1,Weight).
Then, we need to select

{medium, large} ⊆ g(x5,Size) and
either a pair (small, light) or (medium,heavy)

from object x2. Like this, we obtain more restricted Table 9.

Table 9 A restricted ΦTable8 by the dependency from Size to Weight.

Object Color Size Weight Price

x1 {blue,green} {small} {light} {low}
x2 {red} {small} {light} {high}
x3 {red} {small} {light} {high}
x4 {red} {medium} {heavy} {high}
x5 {red} {medium,large} {heavy} {high}
x6 {blue,green} {large} {heavy} {low}

Such procedure is now just an idea, and we need to cope with this procedure
algorithmically. Probably, such procedure will be a learning of a NIS like backprop-
ergation in the neural net [73].

9.6.3 Table Data and Logical Data in Machine Learning

In this sub section, let us consider two frameworks, namely rule generation in a ta-
ble data and rule generation in a logical data. In this paper, we followed the rough
sets based framework, and developed rule generation in a table data. This will cor-
respond to machine learning in a table data.

However, there is another framework of machine learning, namely Inductive
Logic Programming (ILP) [75]. In ILP, hypothesis is generated from positive ex-
amples, negative examples and background knowledge.
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We are familiar with the framework of logic programming, and most programs
in this paper are implemented in Prolog. We have formerly followed logic program-
ming, and tried to define Prolog with rough sets based concepts [44, 47].

The biggest difference of two frameworks is in the existence of variables. Rough
set theory does not handle variables, and the table data consists of constant symbols.
However, there exist variables in ILP and logic programming. Since variables are
quantified universally in ILP, the rules in the ILP cover more general cases, and it
seems difficult to obtain such general rules. On the other hand, there is no variable
in rough sets, and rules do not contain variables. Each rule consists of descriptors
(or proposition). Such rules may be less general than rules in the ILP, but it seems
easier to obtain rules. The combination rough sets and ILP (Rough ILP) will be
another research area.

9.7 Concluding Remarks

This paper surveyed the foundations of Rough Non-deterministic In f ormation
Analysis (RNIA) including DISs and NISs. RNIA will be a good framework for
handling the information incompleteness. We focused on rough sets based aspects,
question-answering in NISs and rule generation in NISs.

In the next steps, we need to introduce inexact types of data into NISs, and we
need to think the algorithmic aspect of learning a DIS from a NIS. We also need to
consider the relation between rough sets based rule generation and rule generation
in a framework of logic.
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59. Sakai, H., Hayashi, K., Nakata, M., Ślęzak, D.: The Lower System, the Upper System
and Rules with Stability Factor in Non-Deterministic Information Systems. In: Sakai,
H., Chakraborty, M.K., Hassanien, A.E., Ślęzak, D., Zhu, W. (eds.) RSFDGrC 2009.
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Appendix

Algorithm 1
Input: A DIS with a function f and a set ATR ⊆ AT .
Output: Two arrays head[i] and succ[i] (1 ≤ i ≤ |OB|).
begin

for i:=1 to |OB| do begin head[i]:=i; succ[i]:=0 end;
for i:=1 to (|OB|-1) do

if head[i]=i then
begin pre:=i;

for j:=i+1 to |OB| do
if ( f (x j,a)= f (xi,a) for ∀a ∈ ATR) then
begin head[j]:=i; succ[pre]:=j; pre:=j end

end
end.

Algorithm 2
Input: Two arrays for attributes A and B respectively, i.e.,

headA[i], succA[i], headB[i] and succB[i] (1 ≤ i ≤ |OB|).
Output: Two arrays for A∪B, headA∪B[i] and succA∪B[i] (1 ≤ i ≤ |OB|).
begin

for i:=1 to |OB| do
begin headA∪B[i]:=i; succA∪B[i]:=0 end;

for i:=1 to |OB| do
if headA∪B[i]=i then

begin pre:=i; point:=succA[i];
while point �= 0 do

begin
if headB[point]=headB[i] then

begin succA∪B[pre]:=point;
headA∪B[point]:=i; pre:=point

end;
point:=succA[point]

end
end

end.

Algorithm 3
Input: Two arrays for CON and DEC, respectively.
Output: The degree of dependency from CON to DEC.
begin

count:=0;
for i:=1 to |OB| do

if headCON[i]=i then
if [i]CON ⊆[i]DEC (∗ : inclusion) then count:=count+|[i]CON|;

degree:=count/|OB|
end.
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Algorithm 4
Input: Any object xi and two arrays for CON and DEC, respectively.
Output: [i]CON ⊆ [i]DEC or not.
begin

mark:=0; point:=headCON[i];

while point �=0 do

if headDEC[point]=headDEC[i] then

point:=succCON[point] else begin mark:=1; point:=0 end;

if mark=0 then [i]CON ⊆[i]DEC else [i]CON �⊆[i]DEC

end.



Chapter 10
Introduction to Perception Based Computing

Andrzej Skowron and Piotr Wasilewski

Abstract. We present a general scheme of interaction and we discuss the role of
interactions in modeling of perception processes. We also discuss the role of in-
formation systems in interactive computing used to build perception modeling.
In particular, we illustrate use of information systems for representation of ac-
tions or plans, their (changing in time) pre and post conditions. These informa-
tion systems create a starting point for perception modeling, i.e., modeling of the
process of understanding of sensory measurements.

Keywords: interactive computing, interactive information systems, interactive
tables, rough sets, granular computing, wisdom technology.

10.1 Introduction

In this chapter, we consider, perception as the process of understanding of sensory
information. Perceiving units will be called agents. Agents are preforming compu-
tations on objects called (information) granules (see, e.g., [94, 95, 96, 4, 49, 64, 25,
70, 76]).

The need for perception based computing appears, for example, in problems of
analysis of complex processes that result from the interaction of many component
processes and from control over such processes. A component process control is
aimed at achieving the desired patterns of the system behaviors. This task is a chal-
lenge for areas such as multi-agent systems or autonomous systems [28, 79, 56].
Perceived properties of complex processes are often complex vague concepts, about
which only partial information is available. Also information about the satisfiabil-
ity of such concepts determines activating complex actions. It is worth noting that
actions can be initiated at different levels of the hierarchy of concepts from a given
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ontology and that a prediction of action activation at higher levels of the hierarchy
is usually conditioned by the perception of properties depending on the history
of computations in which information about actions conducted also on lower lev-
els of the hierarchy and their results is stored. Discovery of search strategies for
new essential properties at higher levels of hierarchy (e.g., used for activation of
compound actions on these higher levels) becomes a challenge and is crucial for
understanding of perception. The values of these attributes depend on the history of
computing (with registered information about the actions performed on the actual
and the lower levels and their results). These new features determine the percep-
tion of satisfiability degrees of complex concepts mentioned above conditioning
execution of actions on the considered level of hierarchy. The difficulties of anal-
ysis and synthesis of perceptual computations follow from the nature of interac-
tive computations, in which it becomes necessary to take into account interactions
between processes during performed steps of computing (called intrastep interac-
tions [21]) and not only interactions taking place after completing of computation
steps (called interstep interactions [21]). These difficulties follow also from par-
tial information about component processes, from possible interactions between
them, and also from requirements on avoidance of central control. Hence, compu-
tations on granules performed by agents should be interactive. This requirement is
fundamental for modeling of complex systems [17]. For example, in [37] this is
expressed by the following sentence:

[...] interaction is a critical issue in the understanding of complex systems of any sorts:
as such, it has emerged in several well-established scientific areas other than computer
science, like biology, physics, social and organizational sciences.

We discuss the role of information systems in modeling of perception processes.
Using a general scheme of interactions, we distinguish basic information on inter-
actions in time between agent and its environment which should be represented for
proper interaction modeling. Next, we define a special class of decision tables in
which such information can be represented. These decision tables create a starting
point for modeling of perception processes.

The chapter has the following organization. In Section 10.2, we discuss motiva-
tion for Perception Based Computing (PBC) and Section 10.3 overviews the basic
ideas and positions about perception. Section 10.4 presents interactive information
systems together with some concepts from hierarchical modeling in rough set the-
ory. Section 10.5 is devoted to elements of interactive computing and rough set anal-
ysis of interactive computing. Section 10.6 describes attributes representing actions
and shows examples illustrating how planning can be described and analyzed by
means of interactive information systems. Section 10.7, contains an introduction to
granule and interaction semantics which creates a step toward discussion on approx-
imate reasoning rules on interactions and interactive computations (e.g., specifying
beliefs of agents and their adaptive changes).
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10.2 Motivation for Perception Based Computing

Perception Based Computing (PBC) methods are needed for solving problems of
data mining (DM) and knowledge discovery in databases (KDD) with dynamically
evolving complex data (e.g., stream data sources, sensory data). Another challenge,
making PBC methods indispensable, is a growth of the size and complexity of data
sources (e.g., Web sources, neuro-imaging data, data from network interactions).
These challenges, in particular, discovery of complex concepts such as behavioral
patterns, hardly can be met by classical methods [55]. They can be met by KDD
systems which dialogue with experts or users during the discovery process [88] or
by adaptive learning systems changing themselves during the learning process as
the response to evolving data.

Another area where PBC methods are needed is the multi-agent systems field. Be-
havior steering and coordination of multi-agent coalitions acting and cooperating in
open, unpredictable environments call for interactive algorithms [18], i.e. algorithms
interacting with the environment during performing particular steps of computations
or changing themselves during the process of computation. Next challenge of this
type comes from human - robot interaction. The problem of human control over
autonomously coordinating swarms of robots is the central challenge in this field
which should be solved before human - robot teams can be taken out of laboratories
and put to practical use.

Coordination and control are essentially perception based thus PBC methods are
indispensable for designing and behavior description of cognitive systems and for
understanding interactions in layered granular networks [49] where granules can be
interpreted both as data patterns and agents (e.g., robots or mobile sensors). Gran-
ules in such networks which are additionally self-organizing can be also understood
as cores in pertinent multi-core computing engines in structurally and run-time re-
configurable hardware, what makes PBCs useful in computer engineering as well as
an essential part of cognitive informatics.

Presented approach is aimed at developing methods based on the generalized
information systems (a special kind of data tables) and the rough set approach for
representing partial information on interactions in layered granular networks [25,
75]. The idea of the representation of interactions using information systems has
some roots in such approaches as rough sets introduced by Zdzisław Pawlak [42],
the information flow by Jon Barwise [6] or Chu spaces [5, 11]. Information systems
are used to represent granules of different complexity and the interactions among
them [75]. Rough sets are used for vague concept approximation [46], for example,
in the approximation of ontologies given by experts.

Note that the fusion of information may lead to new information systems with
structural objects [75, 76, 70] or to nets of information systems linked by different
constraints. For example, a family of parameterized sensors may model a situation
in which the sensors are enabled by the judgment module for recording features
of video at different moments of time in probing the environment. This makes it
possible to collect the necessary features of the environment for an activating of the
relevant higher level action. Parameters may be related, e.g., to positions of moving
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camera. This is closely related to the approach to perception presented in [36] (page
1) (see also Figure 1):

... perceiving is a way of acting. Perception is not something that happens to us, or
in us. It is something we do. Think of blind person tap-tapping his or her way around
a cluttered space, perceiving the space by touch, not all at once, but through time,
by skillful probing and movement. This is, or at least ought to be, our paradigm of
what perceiving is. The world makes itself available to the perceiver through physical
movement and interaction.

features 
of 

histories 

higher 
level 

action 
… 

… 
time a1 … ac1 … 

x1 1 

x2 2 

… … 

history of sensory 
measurements and 
selected lower level 

actions over a period of 
time 

Fig. 1 Action in perception

The discussed above example on a family of parameterized sensors suggests that
the sensory attributes may be fused using some parameters such as time of enabling
or position of sensors. Certainly, for performing more compound actions it is neces-
sary to use a net of such parameterized sensors in which sensory attributes are linked
by relevant constraints [36], [65]. Hierarchical modeling may also lead to nets of in-
formation systems constructed over information systems corresponding to sensory
attributes. Nodes in these networks may be linked using different information such
as behavioral patterns or local theories induced from information systems in nodes
as well as their changes when information systems are updated. In the former case,
the reader may recognize some analogy to theory of information flow [6].

We proposed to build foundations for Perception based Computing (PBC) on
the basis of Interactive Granular Computing (IRGC), in particular on Interactive
Rough Granular Computing. A step toward this goal is presented in [75, 76]. PBC
can be considered in a more general framework of Wisdom Technology (Wistech)
[23, 25, 24] based on a metaequation

wisdom = knowledge + adaptive judgment + interactions. (1)

In the above metaequation there is mentioned a special kind of reasoning called as
adaptive judgment. There are many important issues belonging to adaptive judg-
ment such as searching for relevant approximation spaces including inducing new
features, feature selection rule induction, discovery of measures of inclusion and
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strategies strategies for conflict resolution, adaptation of measures based on the min-
imum description length, adaptive reasoning about changes, perception (action and
sensory) attributes selection, adaptation of quality measures during computations
performed by agents, adaptation of object structures, adaptation of strategies for
knowledge representation and interaction with knowledge bases, ontology acqui-
sition and approximation, adaptive strategies for beliefs changes (e.g., changes of
approximate reasoning rules on interactions), discovery of language for cooperation
or competition, and adaptive strategies for language evolution. In general, adaptive
judgment is a mixture of deductive and inductive reasoning methods for reasoning
about interactive granular computations and on controlling such computations by
adaptive strategies for. The mentioned mixture of deductive and inductive reason-
ing creates many challenges. This is closely related to opinion expressed by Leslie
Valiant http://people.seas.harvard.edu/∼valiant/
researchinterests.htm

A fundamental question for artificial intelligence is to characterize the computational
building blocks that are necessary for cognition. A specific challenge is to build on
the success of machine learning so as to cover broader issues in intelligence. This
requires, in particular a reconciliation between two contradictory characteristics –
the apparent logical nature of reasoning and the statistical nature of learning.

10.3 Perception [15, 3]

Perception is one of the main forms of interaction of an agent with the environment.
Moreover, this form is indispensable in the case of interactive systems. Without
perception every action made by agent in the environment would be blind, with-
out it agent would not be able to adapt its behavior to changing conditions of the
environment or to modify dynamically its course of actions as a response to re-
sults of agent’s actions in the environment. It is so because of that perceiving of
conducted actions results is an essential part of feedback mechanism and makes
adaptive change of a course of actions possible.

In contemporary psychology, perception is understood as a process of perceiv-
ing of external or internal environment of an organism leading to understanding of
sensations/sensory data. This process consists of two stages: receiving sensations
and perception itself. But what does it mean sensation and then understanding of
sensation?

Modern experimental psychology was originated in research on sensations within
approach called psychophysics as started by Ernst Heinrich Weber and Gustav
Theodor Fechner. In psychophysics, sensation was defined as realizing or becoming
aware by subject of properties of an object or an event that occurs when recep-
tors of some type are stimulated. Then most psychologists were concentrated on
the second stage, perception. In terms of sensations, perception is now understood
as process of organization and interpretation of sensations. Sensation organization
means grouping or dissecting them according to their similarity and discernibil-
ity, or to compare sensations and specifying relations between them. Sensation

http://people.seas.harvard.edu/~valiant/researchinterests.htm
http://people.seas.harvard.edu/~valiant/researchinterests.htm
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interpretation mean recognition of objects on the basis of sensations or attaching
a unique meaning to sensations patterns that can be understood in different ways.

To solve the problem of understanding of ambiguous sensation patterns Herman
von Helmholtz founded perception on the idea of unconscious inference and prob-
ability principle. Helmholtz claimed that perception results from incomplete data
by means of unconscious inferences: making assumptions and conclusions based
on previous experiences. Inferences according to him are made about the scene that
most likely caused the retinal image or event which itself is ambiguous. This ap-
proach was called constructivism since perception results are constructions explain-
ing ambiguous sensations. Constructivism highlighted the role of human mind in
perception process.

Contrary to that, next approach, structuralism proposed by Wilhelm Wundt was
founded on the philosophy of British empiricism: perception results from the asso-
ciation of basic sensory atoms in memory on the basis of their repeated, prior joint
occurrences. Thus, perception is totally based on learning.

The next approach, gestaltism, proposed and developed, among others, by Max
Wertheimer, Wolfgang Khler and Kurt Koffka rejected primacy of learning in
perception. Gestaltism was developed in close relation to Edmund Husserls phe-
nomenology stressing the primacy of whole in the perception process. Perceiving of
the whole, which cannot be reduced to its parts, results from combination of some
innate structures in human brain with objective properties of the perceived stimulus
(sensations). Results of this combination are emergent properties of the whole which
are not features of its components. Gestaltists proposed also other laws describing
perceptions including the law of Prgnanz, dealing with ambiguous sensations but
which, differently from von Helmholtz approach, is not based on the likelihood prin-
ciple: ambiguous sensations of several geometrically possible organizations will be
interpreted as the best, simplest and most stable shape.

The reaction to Gestalt was the new approach called the New Look. It empha-
sized the rationalizing role of the perceiving agent and influence of knowledge on
the perception. In series of experiments Jerome Bruner and Cecile Goodman shows
that identical sensual stimuli produce different perceptual results depending on sub-
jects social status. The New Look pointed out the predominance of cognitive and
emotional aspects of perception, subjects past experience (what was showed also
previously) but also their expectations and emotional reactions to the stimulus (what
was new idea).

While the previous approaches either underlined the role of an organism in per-
ception process (psychophysics, structuralism, gestaltism, New Look) or balanced
between an organism and its environment (constructivism), then the next approach,
ecological optics proposed by James Gibson [13, 14], was opposite. In Gibsons
opinion, perception is based on the relationship between the organism and the envi-
ronment, but in this setting the environment is the element that plays a main role. The
environment is characterized by affordances, the particular properties corresponding
to what the environment allows the perceiving agent to do. Thus affordances repre-
sent opportunities offered by the environment for interaction between sensorimotor
abilities of agent and the real granules existing in the world.
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The next approach which gained presently the widest acceptance in the field of per-
ception research was proposed by David Marr [30]. This approach is computational
in nature and perception is analyzed form information processing perspective. Marr,
started from Gibsons position, adopted Chomskys distinction between competence
and performance. Marr understood competence in the context of perception as defin-
ing what is computed and why. Performance defines algorithms that will be used to
execute of computation. On the basis of this distinction, Marr proposed that every
perception system, and more generally, every information processing systems can
be analyzed on three different levels. On the first, computational level, which pre-
cedes the second, competence defines tasks of the perception system. On the second,
algorithmic level, performance specifies procedures that will be executed to achieve
the tasks. And finally on the third level, underlying first two, it is specifying how
these procedures will be implement in an organism or a machine. In the case of hu-
man perception, the third level is neurophysiologic,here neurophysiologyof nervous
cells that are attained to perception should be known, to connect two higher levels to
the organic system which process sensory information perceiving the world.

The approach to perception considered in this chapter is wider than studied in the
visual perception domain, however it follows Marrs’s ideas [30]. Perception here is
treated as action-oriented perception [2, 36] and driven by actions. Goals of initiated
action help with selection of an appropriate perceptual interpretation among many
ones attached to given information provided by senses/sensors. For example, by
analogy to visual perception one can attempt to construct softbots acting in Web on
the basis of perception characterized by their sensory measurements together with
ability to perform reasoning leading from these measurements to conclusions about
satisfiability of complex vague concepts used as guards for actions. The guards can
be approximated on the basis of measurements performed by sensory attributes only
rather than defined exactly. Satisfiability degrees for guards are results of reasoning
called as the adaptive judgment. The approximations are induced using hierarchical
modeling. Note that, e.g., injecting domain knowledge into a relational database en-
gine [83] will also require approximate modeling of situation perception by domain
experts or system users.

10.4 Interactive Information Systems

In this paper, we describe and analyze interactive computing using rough sets. In
particular, in this section, we discuss some aspects of information systems in per-
ception processes by agents.

Rough set theory, created by Zdzisaw Pawlak [39, 40, 41], is an approach to
granular computing based on ability to discern between objects. Objects and gran-
ules are represented by means of information systems called also information tables.
An information system is a triple A = (U,At,{Va}a∈At), where U is a set of objects,
At is a set of attributes, and each Va is a value domain of an attribute a ∈ At, where
a : U −→ P(Va) (P(Va) is a the power set of Va). If a(x) �= /0 for all x ∈ U and
a ∈ At, then A is total. If card(a(x)) = 1 for every x ∈U and a ∈ At, then A is de-
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terministic, otherwise A is nondeterministic. Rough sets were originally introduced
for information systems with deterministic attributes, or more exactly for systems
where attributes are total functions into their value domains i.e., a : U −→ Va for
every a ∈ At (that are naturally identified with deterministic attributes). However, in
various applications of rough sets it turns out that it can be useful to admit non-total
information systems with nondeterministic attributes. Such systems can represent
incomplete information which appears often in data mining and machine learning
when searching for new patterns or constructing classifiers starting from sample sets
of objects. Such searching can result in creating new nondeterministic attributes with
values that are relational structures. Incompleteness of information in rough set the-
ory can be also reflected by partial descriptions relative to specific sets of attributes.
Let (U,At,{Va}a∈At) be an information system, partial information about a given
object x ∈ U is represented by the A-signature of x, In f A(x) = {(a,a(x)) : a ∈ A}
where A ⊆ At. Signatures can be treated as vectors of attribute values possessed by
objects from information systems, so they are descriptions of objects by means of
attributes from a given set of attributes. Signatures represent elementary granules of
information understood as sets of objects with the same descriptions.

Another assumption about original information systems was previously accepted,
namely that, as mappings, attributes are surjections, i.e. every attribute value is pos-
sessed by at least one object, what reflects a closed-world data base point of view.
This assumption was implicitly broken in information systems with real-valued at-
tributes and explicitly by introducing sensory and perception attributes [72, 75].
Attributes which are injections can be viewed as open for interactions in the sense
that it is admitted that a new value, not assigned previously to objects, can appear.
Thus attributes which are surjections or injections are also called closed or open
attributes, respectively [75].

In the case of perception attributes another partition of attributes is essential.
One can differentiate between atomic and constructible attributes. Atomic attributes
are basic in the sense that their values depend only on some external factors, with
respect to a given information system and are independent from the values of
other attributes of this system. Atomic attributes can be closed as well as open.
Constructible attributes are complex attributes which are inductively defined from
atomic attributes of a given information system: if b is a constructible attribute, then
for any some object x and already defined atomic attributes a1,a2, . . . ,ak:

b(x) = F(a1(x), a2(x), . . . , ak(x)), (2)

where F : Va1 ×Va2 × . . .×VaK −→ Vb and values form Vb are constructed on the
basis of values from Vi for i = 1, . . . ,k.

Sensory attributes represent sensor measurements. They are open atomic at-
tributes which values are results of measurements conducted by sensors thus they
depend only on the environment and are independent from values of other attributes.
In Figure 2, we illustrate the basic features of sensory attributes. Perception at-
tributes are sensory attributes or constructible attributes defined on the basis of
sensory ones. The latter are also called complex perception attributes. Complex
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Fig. 2 Sensory attribute. e denotes the environment, Ra,La - relational structure of sensory
attribute a and set of formulas assigned to a, respectively. We assume that the result of the
interaction of sensory attribute a with the environment results in selection of a formula from
a language La assigned to a. l is a label of the environment state currently perceived by a, v is
the index such that the formula αv ∈ La was selected in interaction of a with the environment.
In the shadowed area the results of past interaction are stored, the interaction of a with the
environment e is not changing e (the changes of e are caused by dynamics of the environment
only). In the agent state only a row with label l and v was added and represents the result of
sensory attribute a measurement.

perception attributes represent higher order result of perception, e.g. some identi-
fied patterns or created perceptual granules. For formal descriptions of sensory and
perception attributes the reader is referred to [75] (section 7).

Constructible attributes can take as their values relational structures defined over
its value domains. Hence, we consider a generalization of traditionally used infor-
mation systems [39, 40, 41] by considering together with value set Va a relational
structure over Va. Note that also objects in such information systems may have com-
plex structure. To explain this we present an illustrative example. Let B be a family
of atomic attributes. We define a value set

VB =
⋃

B′⊆B
∏
b∈B′

Vb (3)

This set consists of sequences of values, i.e. value vectors, which are subsequences
of sequences from ∏b∈B Vb. Now, a new attribute b0 is defined in the way that for
any object x, b0(x) = (Vb′ ,ri), where Vb′ ⊆ VB and ri ⊆ Vb′ ×Vb′ for i = 1, . . . , n.
Therefore attribute b0 is a function of the form b0 : U −→ {(Va,ri)}i∈I . Since not
every value vector from family VB has to be an information signature, then attributes
constructed in that way are open attributes.

Relational structures corresponding to attributes can be fused. Let {(Vai ,τai)}
be a family of tolerance spaces, i.e. relational structures where Vai is a value do-
main of an attribute ai and τai ⊆ Vai ×Vai is a tolerance relation (relation that is
reflexive and symmetric) for i = 1, . . . , k. Their fusion is a relational structure
over Va1 × . . .×Vak consisting of a relation τ ⊆ (Va1 × . . .×Vak)

2 such that for any
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(v1, . . . , vk),(v′1, . . . , v′k) ∈Va1 × . . .×Vak we assume (v1, . . . , vk)τ(v′1, . . . , v′k) if
and only if vi τai v′i for i = 1, . . . , k. Note that τ is also a tolerance relation. Intu-
itively, a vector (v1, . . . , vk) represents a set of objects possessing values v1, . . . , vk

for attributes a1, . . . , ak respectively. Thus some vectors from Va1 × . . .×Vak

(not necessarily all) represent granules consisting of objects (some vectors from
Va1 × . . .×Vak correspond to the empty set). Therefore a relation τ corresponds to
a relation between granules. Constructible attributes defined by means of relational
structures can be used to represent some structural properties of objects, for example
time windows in information systems where objects are time points. In hierarchical
modeling, object signatures at a given level of hierarchy can be used for constructing
structural objects on the next level of hierarchy.

For solving classification problems, decision information systems (called also
decision tables) were distinguished [41, 46]. They are information systems of the
form A = (U,C∪D,{Vala}a∈C∪D) where a family of attributes is divided into two
disjoint classes C,D ⊆ At, elements of which are called condition and decision at-
tributes respectively. These systems are used in analysis of decision rules [41, 46].
Action attributes are decision attributes in decisions information systems where
condition attributes contain also sensory attributes and, possibly, complex percep-
tion attributes. The basic features of action attributes are illustrated in Figure 3.
For more exact characterization of action attributes see section 9 below. Interactive

Iag,a ⊗ Ie

agent ag

action attribute a

l v
AM 

KB

ac

Gp

e

Gp

Gr

AJ

Fig. 3 Action attribute. On the basis of the current information about the current state of the
agent ag and the state of the environment e, the action attribute a is selecting an action ac
and predicts changes of the environment caused by ac which are represented by granule Gp.
l,v have meaning as in Figure 2. AJ denotes the adaptive judgment module with the action
submodule denoted by AM. The action attribute a is selecting an action ac to be performed
(using module AM, knowledge base KB contents, and the measurement results stored by
sensory attributes). Changes in e caused by ac in the form of granule Gp are predicted too.
The selected action ac determines the interaction Iag,a with the environment from the side of
the agent ag. Note that reaction of the environment may be unpredictable and the granule Gr

representing change of e as the result of Iag,a ⊗ Ie (on the component of the environment) may
be different from predicted described by granule Gp.
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information systems are decision systems where condition attributes contain sensory
attributes together with some complex perception attributes and decision attributes
contain action attributes. Instead of term interactive decision tables we will use term
interactive tables.

10.5 Interactive Computing

In this section, we briefly present an idea of interactive computing. In our view,
planning is an essential part of interactive computing. Interactive algorithms are
adaptive in the sense that they can change themselves during computation perform-
ing, the next state of the algorithm can be only foreseen with some probability,
since every step can be changed as a response to the environment influence during
performing of that step. However, they should be differentiated from probabilistic
algorithms: once a step of probabilistic algorithm is drawn then performing it cannot
be changed regardless of the environment influence. In this sense, probabilistic algo-
rithms are inflexible and not adaptive. Therefore, interactive algorithm need to react
even during performance of a previously specified step. This leave an open space for
planning: even a very simple interactive algorithm is more like an adaptive strategy
than a drawing steps algorithm which beside this is rigid.

In the process of interactive computation both an agent and an environment are
involved. A system performing interactive computing consists of an agent and the
agent’s environment, more exactly, a part of the environment that is perceived by
an agent. The global states of such system are defined as pairs (sag(t),se(t)), where
sag(t) and se(t) are states of a given agent ag and the environment e at time t, re-
spectively. Figure 4 illustrates how, in the case of interactive computations, the tran-
sition relation −→ between global states is performed, i.e., when (sag(t),se(t))−→
(sag(t +Δ),se(t +Δ)) holds, where Δ is a time necessary for performing the tran-
sition. A(t), E(t) denote the set of attributes available by agent ag at the moment of
time t and the set of attributes (sensors) influenced by environment e at time t, re-
spectively. In fA(t)(sag(t),se(t)) is the signature [75] of (sag(t),se(t)) relative to the
set of attributes A(t) and In fE(t)(sag(t),se(t)) is the signature of (sag(t),se(t)) rela-
tive to the set of attributes E(t), i.e. signature In fA(t)(sag(t),se(t)) describe a state
of agent ag at the moment of time t, while signature In fE(t)(sag(t),se(t)) describe a
part of environment e that is perceived by agent ag at time t. These signatures are
arguments of strategies Sel Intag,Sel Inte selecting interactions Iag and Ie of agent
ag with environment e and environment e with agent ag, respectively. Iag represents
the planned influence of agent ag on environment e (and on the agent ag itself), i.e.
an action of agent ag while Ie represents an influence of environment e on agent
ag (and on the environment) which results will be perceived by ag. This includes
also predicted results of agent action on environment e (and on the agent ag itself)
as well as a perception of change of e caused by the previous global state. Iag ⊗ Ie

denotes the result of the interaction product⊗ on Iag and Ie. Since set E(t) can be in-
sufficient for describing environment e therefore agent ag can have very incomplete
information about Ie as well as the result (Iag⊗ Ie)(sag(t+δ ),se(t +δ )) only, where
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δ denotes the delay necessary for computing the signatures and selection of inter-
actions (for reasoning simplicity we assume that these delays for ag and e are the
same). Thus, information about sag(t+Δ) and se(t+Δ) perceived by ag can be very
incomplete too. Usually, agent ag can only estimate of sag(t +Δ) and se(t +Δ) dur-
ing planning selection of interaction Iag. These predictions then can be compared
with the perception of global state (sag(t + Δ),se(t + Δ)) by means of attributes
A(t +Δ). Interaction Iag ⊗ Ie can change the content of both the agent state and the
environment state. The current set of attributes A(t) is a part of the agent state sag(t)
and can be changed, for example, by adding new attributes discovered using Iag. As
we mention at the beginning of this section, interactiveness of agent ag is formally
reflected by the fact that the description of strategy Sel Intag is stored in the current
state of agent sag(t). This strategy itself can be modified as the result of interaction,
and generally, sets of attributes as well as strategies for selecting interactions can be
adopted in time.

)(tsag

)( δ+tsag

)(tse

)(tAInf )(tEInf

agIntSel _ eIntSel_

)( Δ+tse)( Δ+tsag

eag II ⊗

δdelay δdelay

)( δ+tse

)(tsag

)( δ+tsag

)(tse

)(tAInf )(tEInf

agIntSel _ eIntSel_

)( Δ+tse)( Δ+tsag

eag II ⊗

δdelay δdelay

)( δ+tse

Fig. 4 Transition from global state (sag(t),se(t)) to global state (sag(t +Δ ),se(t +Δ )).

Interactive computing is not performed solely by agents in the sense that also
environments are essentially involved in the computation process. Therefore, more
exactly is to say that a given agent ag observes computation than that ag perform it,
and that an interactive computation is performed commonly by the agent and its en-
vironment, namely, this part of the environment which is perceived by the agent and
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affects the agent. However, agent ag affected by its environment does not passively
respond to the environment, but it applies strategy Sel Intag selecting interactions
with its environment. This has another consequence, namely that agent ag does not
observes the whole environment, only part of it determined by the activated sensors
of ag. Hence, in particular, values of not all attributes in a given row of information
systems describing ag are known. An agent posses only partial information about
the environment. It should be noted that another interaction also can take place,
namely internal interaction inside an agent between its components: an agent can
observe this interaction using its sensors, in this case internal sensors, like in ani-
mals signals of a somatosensory system. And, as in the case of the environment, an
agent usually posses only partial information about its internal states.

Interactive computations in our approach are sequences of signatures of global
states connected by transition relation. More formally, a computation observed by
an agent ag in interaction with its environment e is any sequence

sig1, . . . sign, . . . (4)

fulfilling the following conditions: for some t,Δ and for any i, sigi is the signature
of global state (sag(t + i),se(t + i)) relative to the attribute set A(t + i) available by
ag at a moment of time t + iΔ and

(sag(t + iΔ),se(t + iΔ))−→ (sag(t +(i+ 1)Δ),se(t +(i+ 1)Δ)).

Length of a computation Comp observed by ag is a number of elements of sequence
minus one, when Comp is a finite or is a cardinality of Comp, when it is infinite
sequence.

10.6 Action Attributes and Plans

Actions are responses of an agent to the influence of its environment. By actions an
agent affects its environment while the environment affects the agent and this influ-
ence is perceived by the agent through a perception process. Thus action is one of
the forms of interaction between an agent and its environment. Every action is aimed
at reaching some specified goal. This goal can be viewed as a part of a global state
of an agent and its environment (more exactly, the part of an environment perceived
by the agent). One of the main problems connected with a performance of an action
is making decision whether the goal was reached or not, or a dynamical version of
this decision: when the goal is reached. Thus every action planning should result
also in specification of tools for making such decisions. It is done by a specification
of an expected state of the environment and possibly the agent too. A specification
of time necessary for reaching the goal, i.e. finishing the action, namely time after
which a decision whether action was successful or not is needed too.

In our approach to interactions, strategies Sel Intag, Sel Inte are responsible
for planning. Strategy Sel Intag on the basis of signatures In fA(t)(sag(t),se(t))
and In fE(t)(sa(t),se(t)) selects interaction Iag, i.e. proposed action while strategy
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Sel Inte on the basis of In fA(t)(sag(t),se(t)) and In fE(t)(sag(t),se(t)) selects inter-
action Ie which represents a predicted environment influence on agent and on the
environment itself. Since both strategies operate on the same signatures, then for
the sake of simplicity we can represent their result by one strategy Sel Int i.e.

Sel Int(x,y) = (Sel Intag(x),Sel Inte(y)) (5)

where x and y range over signatures relative to the attribute sets A and E respectively,
thus, for example, x and y can be substituted with signatures In fA(t)(sag(t),se(t))
and In fE(t)(sag(t),se(t)) respectively. Strategy Sel Int returns selected action ac1

together with objective o1, i.e. the expected result of performing that action and the
estimated time Δ1 needed for that performance. Action ac1 is a part of Iag, Iag can
also influence internal states of agent ag, while objective o1 and time Δ1 are con-
tained in Ie. Both interactions Iag and I e can dynamically affect each other and the
result of such interfering interaction is given by product Iag ⊗ Ie. Thus the product
Iag ⊗ Ie returns global state (sag(t +Δ1),s e(t +Δ1)). It can happen that this global
state differs from the expected result of completing action ac1 after time Δ1. In such
case one can apply a quality criterion defined by a quality measure evaluated on
computations observed by the agent in order to decide whether a goal is reached or
not, or to evaluate action performance quality. To define and compute such quality
criterion is necessary for planning, i.e. for discovering a selecting interactions strat-
egy but it is very difficult problem. Similarly, the main task in reinforcement learn-
ing [81, 78] is to learn the approximation of function Q which real value Q(s,a)
describes the reward for executing action a in state s. For solving this task proba-
bilistic models are used. However, for compound real-life problems it may be hard
to build such models for such compound concept as Q(s,a) [87]. The relationships
of reinforcement learning and rough sets are discussed in [50, 51, 52, 53]. For rela-
tionships of reinforcement learning, rough sets, and hierarchical learning the reader
is referred, e.g., to [34, 8, 7, 35].

Let A = (U,C∪D,{Vala}a∈C∪D) be an interactive information system represent-
ing agent ag. This system is illustrated by Figure 5. Objects of the system corre-
spond to global states of the form (sag(t),se(t)) thus we assume that the rows in
this interactive table are labeled by state names indexed by time moments from
the specified time interval [g,h] in discrete time T (a set T is denumerable) and
U = {st : t ∈ T} where st is the name of global state (sag(t),se(t)), i.e. objects of the
system are names of global states at time moments from the interval [g,h]. Concern-
ing attributes, for every moment t ∈ U , A(t) ⊆ C ∪D, i.e. some of attributes from
attribute set A(t) represent information relevant to internal states of ag and some
to actions of ag, while E(t) ⊆ C, i.e. attributes from E(t) are entirely condition
attributes. Note that perception attributes of agent ag including sensory ones are
contained in E(t). It should be highlighted that objects in interactive information
systems are just names or labels of global states about which only partial infor-
mation is available to the agent. In interactive tables only information relative to
attributes from sets A and E available to the agent in particular moments of time
is stored. Atomic attributes correspond to sensors or internal, build-in-agent states
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and when values of these attributes have to be calculated they come from outside of
the information table, namely from sensors, or they are specified by agent internal
states. Values of constructible attributes, including actions and complex perception
attributes, are calculated on the basis of values of atomic attributes or other con-
structible attributes, namely on the basis of information stored inside an interactive
table. For the sake of notational simplicity, for an attribute a, instead of a(st) we can
write just a(t) but keeping in mind remarks made above.

t a1 . . . an ac o …
s1 1 1

s2 2 3

s3 3 1

sk k 1

…
…

condition attributes decision attributes

t a1 … an ac o …

s1 1 1

s3 3 1

sk k 1k…

k

…

…
… …

…

k

…

kk …

1

…
…

Fig. 5 An interactive information system representing a particular agent and creation of an
interactive information system representing a particular action.

In order to represent actions we introduce a new attribute, denoted by ac, which
values are actions denoted by natural numbers, we assume also that ac is an injection
of the form ac : U −→N, where N is the set of natural numbers. By this assumption
we mean that new actions can appear in the flow of time. We also admit notation if
ac(t) = n, then n uniquely identifies the action acn. ac(st) represents action selected
by the agent in time t. In order to represent action objectives we introduce a new
attribute denoted by o which values are ordered pairs of the form (vn,Δn), i.e. o(st)=
(vn,Δn), where n ∈ N and vn is a value vector from the set

VC =
⋃

B′⊆C
∏
b∈B′

Vb (6)

representing expected result of an action acn and Δn ∈ T is an estimated time needed
for performing action acn. Therefore o(st)= (vac(t),Δac(t)) for every t ∈U . It follows
that ac,o ∈ D, i.e. attributes ac and o are decision attributes. In addition, we assume
that interactive table A is consistent. It means that attributes ac and o take values in
such way that to every condition signature it is attached only one action, one values
vector and one moment of time.

In order to analyze actions we create new interactive information systems speci-
fied for every action separately. This system is illustrated by Fig. 3. Note that every
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value vector vn contains also information about attributes used for prediction of ac-
tion results, i.e. for every vn such that o(st) = (vn,Δn) there is B′ ⊆ C such that
vn = In fB′(st ) = {(a,a(st)) : a ∈ B′}. Let us denote such B′ by Bn,t . For the sake of
simplicity we assume that in two different moments of time for every action, val-
ues vectors with respect to the same family of attributes are predicted, i.e. for every
n ∈ N and i, j ∈ U , if i �= j, then Bn,i = Bn, j. Thus for every action attribute acn we
have family Bn of attributes such that all predicted values vectors are Bn-signatures.
Note that Bn ⊆C but we would like to add attributes from family Bn to the new infor-
mation system as decision attributes, thus we create a new family B′

n that is disjoint
with Bn has the same cardinality as Bn and consists of copies of attributes from fam-
ily Bn, i.e. for every a′ ∈ B′

n there is a Bn such that for every t ∈U , a′(t) = a(t). We
would like also to compare the condition attributes signatures taken at moments of
action selecting action with signatures with respect to the same attributes taken at
moments of finishing action execution after estimated time, e.g. to compare signa-
ture In fC(t) with signature In fC(t+n). For the sake of such comparison we will add
C-attributes as decision attributes and analogously, as in the case of Bn-attributes,
we create a new family C′

n containing copies of attributes from C possessing some
additional property that for every c′ ∈ C′

n there is c ∈ C such that c′(t) = c(t + n).
For action acn we define a new interactive information system:

An = (Un,C∪Dn,{Vala}a∈C∪Dn) (7)

where Un = {t ∈ U : ac(t) = n}, Dn = D∪B′
n ∪C′

n and attributes families C and D
are taken from interactive information system A . Figure 6 illustrates information
system An.

t C attributes D attributes ac Bn' attributes Cn' attributes

si i 1

sj j 1

sk k 1

…

……

…

… … … …

original condition & decision attributes new decision attributes

Fig. 6 An interactive information system representing a particular action.
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Note that from assumption about consistency of interactive table A it follows that
also interactive table (Un,C∪D∪B′

n,{Vala}a∈C∪D∪{ac}∪B′
n
) is consistent. However,

interactive table An does not have to be consistent. It depends on unpredictable
results of interaction. It can happen that the same information C-signature taken
in two different time moments is mapped to two different C′

n-signatures, i.e. it can
happen that there are i, j ∈ Un such that i �= j and In fC(i) = In fC( j) but In fC′

n(i) �=
In fC′

n( j).

10.7 Towards Granule Semantics

In many areas (e.g., biology, sociology, MAS, robotics, pattern recognition, machine
learning or data mining, simulations of complex phenomena, or semantic search en-
gines), the challenge is to discover (induce) compound granules from some elemen-
tary ones, representing imperfect knowledge about analyzed objects, and concepts,
or/and phenomena in such a way that the compound granules (e.g., clusters of highly
structural objects in data mining, new features obtained by feature construction in
machine learning or coalitions in MAS) satisfy the given, often vague, target speci-
fication to a satisfactory degree. This idea has been coined, e.g., in rough mereology
[57]. The hardness of this challenge is caused by the fact that the searching spaces
for relevant granules are so huge that efficient searching is often intractable by us-
ing the existing methods and the current technology. We propose to support the
searching process, e.g., by interactions with domain experts (see, e.g., [7], [80]).
This can be done by acquiring from them the relevant ontology and next by making
it ”understandable” to the system by using rough set methods for domain ontology
approximation in the language of the system. Target complex granules are induced
using interactive computations on granules (see [7], [75], [73]). Such computations
progress through interactions among granules from different levels of layered net-
works of granules and also by interactions with often unpredictable environments.
Interactions between granules are of different complexity, possibly taken from dif-
ferent levels of the hierarchy [75], [73]. Better understanding the nature of the inter-
actions is one of the main goals of the Perception Based Computing. In interactive
computations on granules, interactions can be partially controlled [75]. Developing
strategies for the discovery of controlling schemes of interactions among granules
relevant to the target goal of computations is also one of the main tasks for PBC.

From a mathematical point of view, granules can be represented (exactly or at
least to a degree) by sets often from quite high levels of the powerset hierarchy. The
power set hierarchy, called also simply set hierarchy, SX for any set X is defined by
transfinite induction1 as follows: S0

X = X , Sn+1
X = P(X ∪ Sn

X), where n is a natural
number, and finally:

SX =
⋃

n∈N
Sn

X ,

1 For simplicity, we consider only a special case.
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where N is the set of natural numbers. In other words

SX = Pω (X), (8)

where
Pω(X) = X ∪P(X)∪P2(X)∪P3(X)∪ . . .

and P2(X) =PP(X). For example, the von Neumann hierarchy being a construc-
tion of natural numbers on the basis of ordinals:

/0, { /0}, { /0,{ /0}}, { /0,{ /0},{ /0,{ /0}}}, . . .

consists of elements from every level of the set hierarchy. Let us note that in a
set hierarchy every level Sn

X consists also all sets from the preceding levels in the
hierarchy what particularly is illustrated by the von Neuman hierarchy. In the case
of information systems we can adjust a little the definition of set hierarchy. For an
information system A = (U,At,{Va}a∈At) we adjust only the basis of induction i.e.
the first set from the hierarchy: S0

A = U ∪⋃a∈At{Va}a∈At . Definitions of the sets
from the next levels of the hierarchy remain unchanged.

Granules can have an elementary structure (such as elementary neighborhoods
of objects see: [63], [84, 91]) or a complex structure (such as cognitive agents [90],
autonomous agents, teams of agents [82, 89], complex patterns or classifiers in data
mining, [80, 1]). Granules of higher order are represented on higher levels of layered
networks. For example, granules representing agents can have a complex structure
consisting of many components responsible for, e.g., perceiving the environment,
planning actions, or sending messages to other agents [75]. Coalitions of agents can
be represented as a special kind of granules in layered granular networks. Note that
autonomous agents can use complex vague concepts as guards of actions performed
during the interaction with the environment [75]. For the approximation of such
concepts the rough set approach can be used (see, e.g. [40, 41, 46, 91]). Interactions
among granules and approximations of granules are two basic concepts related to
interactive computations on granules which will be studied within the project. In
layered granular networks we represent the (hierarchical) structure of granules as
well as links between interacting granules. Granular layered networks will be built
over information systems representing granules and their properties.

We put minimal conditions on the nature of granules: granules are labeled by
names and have semantics constructed on the basis of set hierarchy specifying types
of particular granules. They can be partially specified. We assume that granules
consist of parts. Every part has a name, contains some value and posses a type of
contained value. We assume that in addition to values specified by a type of the part,
the part can also contain information that its value is unknown.

Let us consider some examples. More formal approach will be presented else-
where.

Granules can represent some events like in the case of unknown value for a given
attribute in some time moment. Consider a granule Ga for attribute a with unknown
a-value of type τ at time t = 27s. It has a name la and consists of three parts, first
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part with name a is of type τ and containing specification for the value itself saying
at the moment that value is unknown, and second with a name t, is of type seconds
and containing specification of numerical value of time 27 and third part with a
name active is of binary type and containing specification that at the moment its
value is unknown. Such granules represents events or situations and can be viewed
as observational granules and called also observables.

Granules can also represent results of interactions, for example granules inter-
actions. Let G1 and G2 be granules interacting in the context of granule G, i.e. G
contains information about factors which possibly can influence interaction G1 and
G2, information not contained in G1 and G2. A result of interaction G1 ⊗G G2:

G1 ⊗G G2

H

where ⊗G denotes interaction in the context of granule G and H is a granule repre-
senting typical result of interaction of G1 and G2 in the context of G.

Note that usually the agent ag has only a partial information about interacting
granules and the interaction context. Hence, ag can use only approximate reasoning
rules about interactions which can be discovered (induced) from experimental data
and domain knowledge.

Example 1 (Measuring of attribute value). Granules can represent also actions. In
the case of ascertaining unknown value of attribute a at time t discussed above,
a process of looking for that value can be activated. For example, if a is a sensory
attribute, then a given sensor can be activated in order to perform measurement lead-
ing to finding an attribute value for a after some time Δ 2. However, in this case we
should differentiate between a granule representing activation of the measurement
process (as a result of decision making process) and a granule representing the pro-
cess of measurement itself. Let Gact

a be a granule of the first type. It is constructed
on the basis of Ga and consists of three parts: first two are the same like in Ga and
the third one is of binary type with a name active where value 1 is representing
the fact that an appropriate attribute is looking for its value. Such granules repre-
senting results of decision making processes can be called decision granules being
particular examples of action granules.

Let Gcontrol be a granule representing a control module of agent ag. Starting of
measuring process can be viewed as a result of interaction between control module
and a decision made previously that particular measurement should be done. Then
interaction between decision granule Gact

a and control granule Gcontrol activates
measuring process:

Gact
a ⊗Gcontrol

Ha
,

2 It is worthy to note that some granules can be equipped in their own sensors perceiving
other granules.
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where Ha is a granule corresponding to physical sensor responsible for measuring
the value of attribute a, so this granule corresponds to the process of measurement.
Thus Ha is an example of action granules.

Let Ge be a granule representing the environment. Any measurement is a result of
interaction between measuring process and the environment, so it can be represented
as granule being a result of granule interaction:

Ha ⊗Ge

(g,(Ha,Ge))
,

where (g,(Ha,Ge)) is a granule representing the result of measurement consisting
of two parts. First part contains g - a value representing the result of sensor mea-
surement. The second part contains an information about origins of value g, namely
that it is a result of measurement process represented by granule Ha and leaving un-
changed environment granule Ge what means that the process of measurement was
entirely passive, what not always is the case, like in quantum mechanics.

Then interaction between (g,(Ha,Ge)) and Ga leads to fusion of g and Ga, i.e.
interaction between value g itself and Ga:

(g,(Ha,Ge))⊗Ga

g⊗Ga

while interaction between fusion of g and Ga and a granule clock gives a new
granule:

g⊗Ga ⊗clock

G′
a

where clock is a granule representing a clock of agent ag and G′
a has the same

structure like Ga but a part of G′
a (value attribute part of G′

a) contains value g instead
of information about unknown value, while numerical value contained in t part is t+
Δ where t is a value contained in t part of Ga and Δ is estimated time of measuring of
value of a including a time for making decision about conducting this measurement.

Example 2 (Performing action i). Let Gact
ac be a granule representing decision that

i-th action at time t should be activated. Gact
ac has analogical structure to Gact

a , how-
ever it consist of four parts. First part with name ac is of type ρ and contains a
specification of action i, second part with name time is of type moment and contains
a specification of starting time t of performing action i, third part is of binary type
with name active where value 1 is representing the fact that an appropriate action
should be performed, fourth part with name real with possibly containing a granule
representing (partially) the environment but at the moment contains specification
that its value is unknown. Such granules are examples of decision granules. Then
interaction between decision granule Gact

ac and control granule Gcontrol activates
the process of performing action:
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Gact
ac ⊗Gcontrol

Gi
,

where Gi is a granule representing the process of performing action i starting at
time t.

Interaction between the process of performing a given action and the environment
leads to change of the environment being a result of completed action, which anal-
ogously like in the case of measuring, is represented by complex granule consisting
of two parts:

Gi ⊗Ge

(G0,G′
e)
,

where G0 is a granule representing (most often partially) the state of the environment
after performing action i and G′

e is a granule representing the expected state of the
environment after performing action i.

Interaction between granules G0, Gact
ac and granule clock leads to a granule

representing result of performed action i:

G0 ⊗Gact
ac ⊗clock

Hi
,

where Hi is a granule representing the result of performing action i. Hi has the same
structure as decision granule Gact

ac but in the case of Hi part active has unknown
value while part real contains granule G0 and part time contains t +Δ , where Δ is a
time needed for performing action i specified according to interaction with granule
clock.

Let KB be a granule representing Knowledge Base of agent ag. Then granule
representing expected state of the environment after performing of action i results
from interactions between granule representing the process of performing action i
and granule KB:

Gi ⊗KB

G′
e

.

Granules can be described by attribute logic (see e.g. [46], [75]). Formulas of at-
tribute logic are created by means of standard logical connectives from atomic for-
mulas of the form a = v, where a is an attribute or a part of a granule, and v is a
value specified for a. For example granule Hi can be described by a formula:

α := ac = i ∧ time = t +Δ ∧ real = G0 ∧ active =?,

where ”?” stands for ”unknown value”. Turning it out granules can give semantics
for attribute logic. For example, an interpretation of the formula α , denoted by ||α||
is the family of all granules satisfying specification presented by α . Using attribute
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logic formulas we can also specify granules of higher order, being, e.g., coalitions
of granules For example, formula

β := active = 1 ∨ ac = i

specifies a coalition consisting of all decision granules and granules describing
somehow action i. One of the main goals of attribute logic is to express knowl-
edge contained in knowledge base of a given agent. Such knowledge is necessary
for action planning or for control of action performance. One of the main task in
action planning and action decision making is to determine expected results of per-
formed action, i.e., to predict how the environment or an agent will be changed as
the result of an action performing. Such predictions can be made by reasoning about
change. Attribute logic together with granule semantics is needed to construct such
reasonings.

10.8 Conclusions

In the chapter, we discussed the basic issues for perception modeling. Among them
are models of objects involved in perception, called as granules and interactions
between them determining interactive computations on granules, issues of repre-
sentation of interactions as well as (adaptive) approximate reasoning rules about
interactions and interactive computations. We restricted our considerations to rather
intuitive presentation of the main ideas. More formal approach will be presented in
on of our next paper. In particular, we presented several illustrative examples, of
granules interactions. In the paper, we considered low level information systems in
perception modeling. It was shown that these information systems in the form of
decision tables correspond to recordings by agent in time the perceived values of
sensory attributes, the action active at a given moment of time, predicted values of
sensory attributes after performing of action as well as the sensory measurements
corresponding to the finished action at a given moment of time. Deeper analysis
of perception based computing will require considering construction of hierarchi-
cal information systems. For example, the (semi)optimal selected action at a given
moment of time may be predicted on the basis of high level features of histories
recorded in discussed information systems. This directly refers to the main idea of
perception discussed in [35]. One of the main challenge of perception is related to
discovery of relevant features of such histories. This problem will be discussed in
our next paper.
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83. Ślȩzak, D., Toppin, G.: Injecting domain knowledge into a granular database engine – A
position paper. In: CIKM 2010 (2010)



10 Introduction to Perception Based Computing 275
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Chapter 11
Overlapping, Rare Examples and Class
Decomposition in Learning Classifiers
from Imbalanced Data

Jerzy Stefanowski

Abstract. This paper deals with inducing classifiers from imbalanced data, where
one class (a minority class) is under-represented in comparison to the remaining
classes (majority classes). The minority class is usually of primary interest and it is
required to recognize its members as accurately as possible. Class imbalance con-
stitutes a difficulty for most algorithms learning classifiers as they are biased toward
the majority classes. The first part of this study is devoted to discussing main proper-
ties of data that cause this difficulty. Following the review of earlier, related research
several types of artificial, imbalanced data sets affected by critical factors have been
generated. The decision trees and rule based classifiers have been generated from
these data sets. Results of first experiments show that too small number of exam-
ples from the minority class is not the main source of difficulties. These results
confirm the initial hypothesis saying the degradation of classification performance
is more related to the minority class decomposition into small sub-parts. Another
critical factor concerns presence of a relatively large number of borderline exam-
ples from the minority class in the overlapping region between classes, in particular
for non-linear decision boundaries. The novel observation is showing the impact
of rare examples from the minority class located inside the majority class. The ex-
periments make visible that stepwise increasing the number of borderline and rare
examples in the minority class has larger influence on the considered classifiers than
increasing the decomposition of this class. The second part of this paper is devoted
to studying an improvement of classifiers by pre-processing of such data with re-
sampling methods. Next experiments examine the influence of the identified critical
data factors on performance of 4 different pre-processing re-sampling methods: two
versions of random over-sampling, focused under-sampling NCR and the hybrid
method SPIDER. Results show that if data is sufficiently disturbed by borderline
and rare examples SPIDER and partly NCR work better than over-sampling.
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11.1 Introduction

Supervised learning of classifiers from examples is one of the main tasks in machine
learning and data mining. Many approaches based on different principles have been
introduced in last decades, for reviews, see e.g. [34, 41]. However, their usefulness
for obtaining high predictive accuracy in real life data depends on different factors,
including also difficulties of the learning problem and its data characteristics. Class
imbalance is one of the sources of these difficulties.

A data set is considered to be imbalanced if one of target classes contains much
smaller number of examples than the other classes. The under-represented class is
called the minority class, while the remaining classes are referred to as majority
classes.

Many real life problems are characterized by a highly imbalanced distribution
of examples in classes. Typical examples are rare medical diagnosis [26], recog-
nition oil spills in satellite images [36], detecting specific astronomical objects in
sky surveys [45] or technical diagnostics of equipment failures. Moreover, in fraud
detection, either in card transactions [17] or in telephone calls [5] the number of
legitimate transactions is much higher than the number of fraudulent ones. Similar
situations occur either in direct marketing where the response rate class is usually
very small in most marketing campaigns [39] or information filtering where some
important categories contain few messages only [38]. Other practical problems are
also discussed in [11, 18, 19, 62].

If imbalance in the class distribution is extensive, i.e. some classes are strongly
under-represented, then the typical learning methods do not work properly. An even
class distribution is often assumed (also non explicitly) and the classifiers are “some-
how biased” to focus searching on the more frequent classes while “missing” exam-
ples from the minority class. As a result constructed classifiers are also biased to-
ward recognition of the majority classes and they usually have difficulties (or even
are unable) to classify correctly new objects from the minority class. In [38] au-
thors described an information retrieval system, where the minority class (being of
a primary importance) contained only 0.2% of all examples. Although the classi-
fiers achieved the overall accuracy close to 100%, they were useless because they
failed to deliver requested documents from this class. Similar degradation of clas-
sifier’s performance for the minority class was also reported for other imbalanced
problems, see e.g. [9, 26, 29, 35, 43, 62].

Learning from imbalanced data is considered by some researchers as one of the
most challenging topics in machine learning and data mining [65]. It has received
growing research interest in the last decade and several specialized methods have
already been proposed, see [11, 12, 18, 62] for a review. These methods are usually
categorized in two groups:

• The first group includes classifier-independent methods that rely on transforming
the original data to change the distribution of classes, e.g., by re-sampling.

• The other group involves modifications of either a learning phase of the algo-
rithm, classification strategies, construction of specialized ensembles or adapta-
tion of cost sensitive learning.
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This paper concerns the first group as these methods are more universal and they
can be used in a pre-processing stage before applying many learning algorithms.
While the other group includes many quite specialized methods based on different
principles. For instance, many authors changed search strategies, evaluation criteria
or parameters in the internal optimization of the algorithm, see e.g [23, 27, 31, 61,
62, 63]. A survey of special changes in ensembles is given in [21], while adaptations
to cost sensitive learning are reviewed in [18].

Before focusing our interest on some of pre-processing methods, we want to ask
a more general question about the nature of class imbalance problem and to study
the key properties of data distribution which make learning classifiers so difficult.
A small number of examples in the minority class is not the only source of dif-
ficulties for classifiers. Recent works also suggest that there are other factors that
contribute to difficulties. The most well known studies with artificial data are the
works of Japkowicz [29, 30], who showed that simple class imbalance ratio was
not the main difficulty. The degradation of performance was also related to other
factors, mainly to decomposition of the minority class into many sub-clusters with
very few examples. The rare sub-concepts correspond to, so called, small disjuncts,
which lead to classification errors more often than examples from larger parts of the
class [20]. Other researchers also explored the effect of overlapping between im-
balanced classes – more recent experiments on artificial data with different degrees
of overlapping also showed that overlapping was more important than the overall
imbalance ratio [24, 47].

However, the authors of the above mentioned papers considered these factors in-
dependently each other. It could be worth to investigate them occurring together in
the data also in presence of other factors. In earlier studies Stefanowski and his co-
operators have noticed that many imbalanced data (e.g. coming from UCI repository
[2] and used in many papers on new approaches to class imbalance) contain also mi-
nority class examples located inside the majority class [40, 42]. They could treated
as outliers (in particular, if they are single examples surrounded by many examples
from majority classes) or rare cases (if they are not single ones). They should not
be considered as noise as they are too rare and too precious for the minority class.
According to the best knowledge this kind of rare examples has not been examined
in studies with imbalanced data. Furthermore, it could be interesting to consider
the role of changing decision boundary between classes from linear to non-linear
shapes. Let us remind that rather simpler shapes were previously studied [24, 29].

To sum up, studying the role of these factors in class imbalance is still an open
research problem. Therefore, the main aim of this study is to experimentally ex-
amine which of these factors are more critical for the performance of the classifier.
Carrying out such experiments requires preparing a new collection of artificial data
sets which are affected by the above mentioned factors. Proposing such data sets is
another sub-aim of this paper.

Then, assuming that performance of classifiers could be deteriorated by these
data factors one could examine competence of pre-processing methods to deal with
particular factors.
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In this paper we are particularly interested in focused (also called informed) re-
sampling methods, which modify the class distribution taking into account local
characteristics of examples. Representative such methods are SMOTE for selective
over-sampling of the minority class [9], one side sampling [35] and NCR for remov-
ing examples from the majority classes [37] or hybrid SPIDER method [54].

Therefore, an experimental comparison of chosen focused re-sampling methods
and simpler random replication of the minority class methods applied to previously
generated data sets and establishing competence of these methods for dealing with
particular data factors are the next aims of this paper.

The following paper contains many new experimental results (in particular in
studying the role of data factors). However, its also summarizes some results coming
from co-operation with other colleagues, in particular concerning SPIDER methods
and already published in [42, 55].

The paper is organized as follows. Section 2 describes main evaluation measures
used for imbalanced data. The review of related research with data factors in im-
balanced data is given in Section 3. Then, the generation of artificial data sets is
presented in Section 4. The next section contains results of experiments study of
the influence of data critical factors on the tree, rule based and k-NN classifiers.
In Section 6 the most related focused pre-processing methods, including SPIDER,
are briefly presented. Their comparative experimental evaluation is summarized in
Section 7. The paper concludes with a discussion in Section 8.

11.2 Evaluation Measures for Learning Classifiers from
Imbalanced Data

Imbalanced data constitutes a problem not only when inducing a classifier, but also
when evaluating its performance. The overall classification accuracy is not the only
and the best criterion characterizing performance of a classifier in case of class
imbalance [62].

As the overall classification accuracy is biased towards the majority classes, in
most of the studies on imbalanced data, measures defined for two-class classification
are considered, where typically the class label of the minority class is called positive
and the class label of the majority class is negative [18]. Even if data contains more
majority classes the classifier performance on these classes could be aggregated
into one negative class. Therefore, the performance of the classifiers is presented in
a confusion matrix as in Table 1.

Table 1 Confusion matrix for performance evaluation

Predicted Positive Predicted Negative

True Positive TP FN
True Negative FP TN
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From the confusion matrix, apart from other more elaborated measures (see e.g.
reviews as [18]), one can construct simple metrics concerning recognition of the
positive (minority) and negative (majority) classes:

TruePositiveRate= T P/(TP+FN)

TrueNegativeRate= T N/(TN +FP)

FalsePositiveRate= FP/(T N +FP)

Precision = TP/(T P+FP)

True Positive Rate is called Sensitivity (also Recall) while True Negative Rate is
referred to Specificity. As the improvement of recognizing the minority class is as-
sociated with changes of recognizing other majority classes, aggregated measures
are considered to characterize the performance of the classifiers. First of all, several
authors use the ROC (Receiver Operating Characteristics) curve analysis [16]. A
ROC curve is a graphical plot of a true positive rate (sensitivity) as a function of a
false positive rate (1 − specificity) along different threshold values characterizing
overall performance of a studied classifier. The quality of the classifier performance
is reflected by the area under a ROC curve (so called AUC measure) [11, 62]. AUC
varies between 0 and 1. Its larger values indicate better classifier performance. Al-
though AUC is a very popular tool, some researchers have showed that it has some
limitations as in the case of highly skewed data sets it could lead to an overoptimistic
estimation of the algorithm’s performance. Thus, other proposals include Precision
Recall Curves [15] or other special cost curves (see their review in [18]).

One can also use simpler measures to characterize classifiers, in particular if they
have a purely deterministic prediction (see discussions on applicability of ROC anal-
ysis in [61]). Kubat and Matwin [35] proposed to use the geometric mean of sensi-
tivity an specificity defined as a:

G-Mean =
√

Sensitivity ·Speci f icity,

This measure relates to a single point on the ROC curve and it key idea is to max-
imise the recognition of each of minority and majority classes while keeping these
accuracies balanced. An important, useful property of the G-Mean is that it is inde-
pendent of the distribution of examples between classes [24]. An alternative crite-
rion aggregating precision and recall is F measure; for discussion of its properties
see e.g. [18].

11.3 Earlier Studies with Data Factors in Class Imbalance

In this section we discuss earlier, related works on studying data properties which
influence learning classifiers from imbalanced data sets.

First, one can notice that the majority of researchers proposing new approaches
to handle class imbalance validated them in experiments conducted mainly on
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real-life data sets (usually imbalanced data coming from the UCI Machine Learning
Repository [2]). Moreover, other comparative studies of various basic classifiers or
pre-processing methods are carried out in a similar way on such data sets, see e.g.
such comprehensive comparative studies [3, 59]. However, working with artificial
data sets, where it is possible to change their characteristics in the controlled way, is
more valuable if someone attempts to study more precisely the impact of a chosen
factor characterizing distributions of examples.

Several experimental studies have already showed that the performance of stan-
dard classifiers decreased in imbalanced data. However, some researchers hypoth-
esized, that the class imbalance ratio (i.e. too low cardinality of the minority class
referred to the total number of examples or to the majority class) is not necessarily
the only, or main, problem causing this performance decrease and dealing only with
it may be insufficient for improving classification results. In other words, besides
this imbalanced ratio, data could be accompanied with other factors, which in turn
cause the degradation of classification performance.

Japkowicz and her co-operators focused on within-class imbalance, i.e. target
concepts (classes) were decomposed into sub-concepts [30]. To check the influence
of increasing the level of decomposition she and her co-authors carried our many ex-
periments with artificially generated data. Let us describe their construction just to
have a reference point for our further solutions. Three parameters were controlled:
the size of the training set, the imbalance ratio, and so called degree of concept
complexity (understood as decomposition of the class into a number of subclasses).
Two classes the minority vs. the majority class were considered only and each of
data sets was generated in one-dimension interval. This input interval was divided
into a number of subintervals of the same size (up to five), each associated with a
different class label. The examples were uniformly distributed within subintervals.
The degree of complexity corresponds to the number of alternating subintervals.
For these assumption 27 data sets were generated with various combinations of the
above mentioned three parameters. Following similar assumptions they also gener-
ated additional data sets in five-dimensional space, where an alternance of classes
was modelled by separate clusters.

Then, C4.5 tree and multi layered perceptron (MLP) with back propagation algo-
rithms were run over these data sets. Their results showed that imbalance ratio did
not cause the degradation of classifiers’ performance so much as increasing degree
of complexity. The worst classification results were obtained for the highest decom-
position of classes (e.g. into 5 parts) in particular existing with too small number of
examples. Their main result is that ”the true nature of the class imbalance problem
(...) is only if the size of the small class is very small with respect to the concept
complexity; i.e. it contains very small subclusters”. On the other hand, this also
means that in much larger data where subclusters could be represented by a reason-
able number of examples, the imbalance ratio alone will not decrease so much the
classification performance [30].

According to Japkowicz, if the such within-class imbalanced sub-concepts con-
tain quite a small number of minority class examples it is associated with the prob-
lem of small disjuncts while building classifiers – which was originally introduced
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by Holte in standard (balanced) learning of symbolic classifiers [20]. Briefly speak-
ing, a classifier learns a concept by generating disjunct forms (e.g. rules of tree) to
describe it. Small disjuncts are these parts of the learned classifier which cover a too
small number of examples [20, 62]. It has been observed in the empirical studies
that small disjuncts contribute to the classification error more than larger disjuncts.
In case of fragmented concepts (in particular in the minority class) the presence of
small disjunct arises [18].

As a practical consequence special approaches to handle the problem of small
disjuncts of imbalanced concepts were proposed in [29, 30]. They are based on
specialized over-sampling of minority class, i.e. a required number of examples
are randomly replicated until balancing majority and minority class in the certain
degree. By appropriate increasing the amount of the smaller class the classifiers
learned from such modified data are less sensitive to original rare concepts. An
example of using cluster analysis to identify the sub-concept and their random over-
sampling is described in Section 11.6. The impact of small disjuncts was also further
studied by other researchers, see e.g. [28, 46]. In particular, additional experiments
with applying other classifiers on the artificial data constructed in the above mention
way showed that decision trees were the most sensitive to the small disjuncts, then
the next was MLP and support vector machines were the less sensitive1.

Recently some researchers have also focused on different factors characterizing
data distributions. Prati et al studied the role of overlapping between minority and
majority classes [47]. They generated artificial data sets where the minority and the
majority class were represented by two clusters in five dimensional space (examples
where generated around centroids following Gaussian distribution). Two parameters
were changed: the imbalance ratio, and the distance between centroids – so classes
could be moved from clear separation to high overlapping. Using C4.5 classifier and
AUC criterion they showed that increasing the overlapping ratio was more responsi-
ble for decreasing AUC results than decreasing cardinality of the minority class (for
some data AUC decreased from 0.99 to 0.5). Another observation, consistent with
intuition, was that for clearly separate and distant clusters the classification mea-
sures did not decrease even with high under-representation of the minority class.

Then, influence of increasing overlapping was more precisely examined in [24].
Garcia et al. generated two-dimensional data sets with two classes separated by a
line orthogonal to one of the axis. Depending on the amount of overlapping exam-
ples of the majority class were uniformly generated inside the minority class part in
a stepwise way moving from the decision boundary until covering completely mi-
nority class. Garcia et al. assumed a fixed size of data and changed the overlapping
amount for a given imbalance ratio and vice versa. Results of experiments with 6
different classifiers showed that increasing overlapping more degraded their perfor-
mance (with respect to TPR and TPN) than changing the imbalance ratio. Moreover,
in the other experiments they fixed the amount of overlapping and changed the dis-
tribution of the minority examples by increasing their number in the overlapping
area. In this way they achieved balance between classes in this boundary, and then

1 These results are also summarized in the report [8]
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the minority class dominated the majority one. Again the results of experiments
confirmed that increasing such a local imbalance ratio and the size of the overlap-
ping area were more influential than changing the overall imbalance ratio. However,
these factors influenced in a different way performance of particular classifier. For
instance k nearest neighbor classifiers (K-NN) was the most sensitive to changes in
the local imbalance region. Naive Bayesian, MLP and J4.8 were better working in
the dense overlapping region. These conclusions have been later verified in addi-
tional experiments (more focusing on performance of K-NN and other evaluation
measures), see [25].

Prati et al. have recently come back to studying the overlapping in class imbal-
ance [4]. Comparing to their previous work [47] where they identified that perfor-
mance degradation was not solely caused by class imbalances, but it was strongly
related to the degree of class overlapping, in the new work, they decided to investi-
gate the usefulness of five different re-sampling methods on the same difficult arti-
ficial data sets. The chosen methods were: popular random-over sampling, random
under-sampling, Nearest Cleaning Rule (NCR) [37], SMOTE and SMOTE + ENN
[9]. We will briefly describe them in further section 6. Now we can say that the main
conclusion was that appropriate balancing training data usually led to a performance
improvement of C4.5 classifiers for highly imbalanced data sets with highly over-
lapped classes. However, the improvements depends on the particular method and
the overlapping degree. For the highest degree of overlapping it was not clear which
method was the best (NCR worked there quite well). Results for other overlapping
showed that over-sampling methods in general, and Smote-based methods in partic-
ular, were more effective than under-sampling. Moreover, the Smote-based methods
were able to achieve the best performance even for the most skewed distributions.
Then, the data cleaning step used in the Smote + ENN seemed to be especially
suitable in situations having a higher degree of overlapping. The quite good perfor-
mance of SMOTE over-sampling integrated with data cleaning (as edited nearest
rule ENN or Tomek Links [58]) was also confirmed in other experiments on many
UCI real data sets [3].

Prati et al. have also noticed in their conclusions that ”it is also worthwhile to
consider the generation of artificial data sets where the distribution of examples of
the minority class is separated into several small clusters” [4].

Finally, quite a few researchers noticed that the other factor which could influence
degradation of classifiers performance on imbalanced data could be noisy examples
[1, 60]. Traditionally noise in supervised learning is understood as an (random) error
in labeling examples (i.e. an example is assigned to wrong class) or erroneous values
of attributes describing some examples [7]. These researchers wrote that existing
methods for handling imbalanced data sets were studied under an assumption saying
that the input data are noise-free or noise in the data sets is not significant. They
claimed that real-world data are rarely perfect and can often suffer from corruptions
that may impact decision of models created from these data. An investigation of both
class and attribute noise in case of typical machine learning (i.e. balanced data) was
conducted by many researchers which conclusion that the presence of noise can be
harmful to a classifier, in particular when it is applied to previously unseen or testing
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examples. In case of imbalanced data authors of [1, 60] proposed to identify noisy
examples and remove them from the input data. However, their experiments were
either conducted over UCI typical data sets or specific software data [60]. Moreover,
they used special classification filters with identify so called mislabeled examples
[7] by sophisticated ensembles. In these approaches the meaning of a mislabeled
example has a broader sense as besides random errors it also includes outliers and
other nontypical class representatives [22]. In this paper, a different view on such
examples is presented.

11.4 Generation of New Artificial Data Sets

First, we will discuss assumptions for preparing new data sets in our experimental
study.

Let us summarize that authors of related works indicated the role of following
factors characterizing data distribution:

• decomposition of classes into sub-concepts,
• too low number of examples in sub-concepts (small disjuncts),
• high overlapping between classes.

One can notice that these authors studied the impact of single factors without con-
sidering other ones in the same experimental setup. Here, we want to consider all of
them occurring together.

Besides the above mentioned factors we decide to consider two additional factors:

• different, more difficult shapes of the decision boundaries between classes
• and additional type of examples belonging to the minority class.

Explaining the second factor let us try to categorize types of minority class mem-
bers. The examples located more deeply inside this class (even its sub-concepts)
could be treated as safe ones. Such examples could be easier for correct recognition
as they are surrounded by examples from the same class. Then, some other exam-
ples could be called borderline examples, if they are located inside the overlapping
region. They are more unsafe or difficult to be learned as they occur closer to the de-
cision boundary between classes with mixed distribution of majority class neighbors
and possible noise could more influence changing the classification decision.

Moreover, it would be worthy to distinguish yet another type of so called rare
examples. These examples are located in the majority class region and being distant
enough to the decision boundary to be distinguished from borderline examples. In
some of earlier experiments Stefanowski and his co-operators analysed local neigh-
borhoods of minority class examples (see e.g. [40]). This analysis of local neigh-
borhood was done with k-NN classifiers. An example was treated as safe, if its was
correctly re-classified by its closest k neighbors. If the ratio neighbors from op-
posite classes was similar which could lead to mis-classification of the example it
was treated as a borderline example. Then, if all its neighbours belong to opposite
classes it was identified as an outlier. Moreover we noticed that some minority ex-
amples locally created pairs or sometimes triples also more distant from borderline
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examples. Analysing in this way several UCI data sets we noticed that they could
be difficult with respect to recognizing the minority class as they contained much
less safe examples than others. Moreover, the number of outliers or rare pairs/triples
was sometimes relatively high. For instance, in cleveland data the minority class
contained 35 examples with 22 outliers or rare examples and 13 borderline ones.
Similar situation ocured for a few data while some other data sets, e.g. haberman or
ecoli, contained more bordeline examples than outlier ones (e.g. haberman has 51
and 20 respectively with 10 safe examples only). As the number of outliers or rare
examples is quite high comparing to the size of the minority class we claim that they
could be precious and cannot be just skipped while building classifiers. In our point
of view they are not treated as simple noise but rather less typical rare cases of the
scattered minority class. We will further call them rare examples2.

To sum up, the following factors are chosen to be present in new artificial data
sets considered in our experiments:

• decomposition of the minority class into sub-parts (subclusters, etc.),
• size of the overlapping region between classes (majority class examples are gen-

erated into the minority class inside the ”borderline zone” of the given width and
it is parametrized by the relative number of examples from the minority class that
are located in this region),

• presence of rare examples (also parametrized by the relative number of examples
from the minority class),

• linear vs. non-linear shape of decision boundaries,
• imbalance ratio (denoted as i : j, where i represents the minority class and j the

majority one),
• total number of learning examples.

Similarly to other researchers we chose binary classification problems (the minority
vs. the majority class) with examples randomly (either uniformly or not) distributed
in the two-dimensional space (both attributes were real-valued). Following the liter-
ature on experiments with the factors influencing the performance of classifiers, we
decided to prepare several artificial data sets in order to control these factors. We
considered three different shapes of the minority class: subclus, clover and paw.

In subclus, examples from the minority class are located inside rectangles all sur-
rounded uniformly by the majority class. The examples of the minority class are also
uniformly distributed within its sub-region. This shape is a kind of two-dimensional
generalization of data from related works on data decomposition and small dis-
juncts [29]. Fig. 1 shows such a shape with 3 subclusters; two zoom windows focus
a reader attention on the exemplary borders.

Then, the next shape, called a clover, represents a more difficult, non-linear set-
ting, where the minority class resembles a flower with elliptic petals. We decided to
analyse two types of such clover shapes. In the first type the examples of majority
class were also distributed inside the elliptic shapes fitted within the minority class

2 In this sense it could be close to rare cases as discussed in the second section of G.Weiss
study [62]. Although it is still class imbalance problem not a case of very rare data as
sometimes considered in the context of one-class-learning
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Fig. 1 Subclass data set – a minority class is decomposed into 3 parts (subclusters)

Fig. 2 Clover data set with 3 elements and sub-clusters of majority classes

”petals”. Figure 2 shows just such a clover with 3 petals. Then, we created another
clover versions where examples from the majority class were uniformly distributed
in all the free parts – see at Fig. 5 for clover with 5 petals (as this shape will be
mainly used in further experiments – see Section 11.7 – examples are represented
by points marked with different symbols).

Finally, in paw the minority class is decomposed into 3 elliptic sub-regions of
varying cardinalities, where two subregions are located close to each other, and the
remaining smaller sub-region is separated – two representatives of such shapes are
showed in Fig. 3 and Fig. 4. In case of 02a example the majority class are generated
closer to the minority class regions and they are distributed more uniformly, while
02b is more similar to clovers where the majority class is arranged in elliptical
shapes. However, in both cases the majority class was also generated within some
elliptical shapes. We also constructed another versions of paw where examples from
the majority class are uniformly distributed in the allowed area - see an illustrative
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Fig. 3 Paw data set - version 02a

Fig. 4 Another paw data set - version 02b

example in Fig 6. We constructed such paw figure as it should better represents real-
life data than the clover. Moreover, both clover and paw should be more difficult to
learn than simple circles (or spheres) that were considered in some related works.

We generated a large collection of data sets with different numbers of examples
(ranging from 200 to 1200) and imbalance ratios (from 1:3 to 1:9). Additionally,
following Japkowicz’s research on data complexity and splitting data shapes into
interleaved sub-parts [29], we considered a series of the subclus and clover shapes
with the number of sub-regions ranging from 1 to 5, and from 2 to 5 respectively.

Technically, this generator was implemented by Krzysztof Kaluzny in Java as a
program compatible with WEKA platform; for more details see [32].
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Fig. 5 Clover data set Fig. 6 Paw data set

11.5 Experimental Analysis of Influence of Critical Factors on
Classifiers

In experiments three different classifiers were applied to the generated data sets
(as presented in the previous section). K–nearest neighbod (K-NN), tree- and
rule–based classifiers were chosen following the related experiments. K-NN was
parametrized with k = 3 (we also tested 1 neighbour). While looking for these near-
est neighbours, the distance is calculated with HVDM distance [64], i.e. aggregation
of the Euclidean distance metric for numerical features and the Value Distance Met-
ric [14] for the qualitative attributes. Decision trees were induced by Quinlan algo-
rithm [44] - version J4.8 available in WEKA. Then, rules were generated by Ripper
algorithm [13] (also JRip implementation from WEKA). Trees and rule were run
without pruning to get more precise descriptions of the minority class. Evaluation
measures were estimated by stratified 10 fold-cross validation. We focus mainly
on the sensitivity (TPR) to study recognition of the minority class and AUC as a
secondary criterion.

Due to the space limit, we are not able to present the complete results of all
experiments but focus on the most interesting ones. For more details the reader is
referred to the report describing much more experimental results [53].

In first experiments we studied the impact of the imbalance ratio combined with
the size of data (i.e. total number of examples varied from 1200 to 200). Other crit-
ical factors were not considered, i.e. there was no overlapping or noisy examples.
Let us only comment that our results were consistent with the observations reported
in [30]. For the number of examples greater than 400 examples there was no sig-
nificant influence of decreasing the imbalance ratio. Small decreases of sensitivity
and partly AUC measures was observed only for very small cardinality of the data
(smaller than 200) and a very high imbalanced ratio (1:11). It concerned all studied
classifiers.

We also noticed that non-linear shapes of decision boundaries (as visible in clover
or 02a, 02b data) were more difficult to recognize than linear rectangles subclass –
see also Table 3.
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Table 2 Influence of decomposing the minority class into sub-concepts on the sensitivity
measure for K-NN classifier: Subclass data set. Two imbalance ratios and five different car-
dinalities of data sets are reported in columns.

Number of 1:5 1:9
subclusters 600 400 200 600 400 200

2 0.82 0.8 0.78 0.78 0.76 0.45
3 0.78 0.72 0.70 0.66 0.74 0.25
4 0.75 0.70 0.68 0.64 0.50 0.15
5 0.73 0.68 0.42 0.58 0.45 0.11
6 0.64 0.62 0.36 0.42 0.32 0.10

Table 3 Influence of non-linear decision boundaries on AUC measure. Size of data – 1200
examples and 3 different imbalance ratios.

Type of Trees Rules KNN
data 1:1 1:3 1:5 1:1 1:3 1:5 1:1 1:3 1:5

02a 0.95 0.85 0.68 0.94 0.91 0.89 0.94 0.92 0.9
02b 0.95 0.92 0.89 0.95 0.92 0.85 0.95 0.93 0.9

subclass3 0.98 0.97 0.96 0.96 0.94 0.92 0.97 0.96 0.94
subclass5 0.98 0.96 0.94 0.96 0.92 0.90 0.96 0.96 0.94
clover3 0.94 0.93 0.92 0.94 0.92 0.90 0.96 0.94 0.92
clover5 0.93 0.92 0.89 0.91 0.88 0.84 0.94 0.92 0.90

In the next phase of experiments we studied more precisely the impact of in-
creasing the decomposition of the minority class into sub–parts. Generally speaking,
the obtained results were also consistent with earlier related research, in particular
works of Japkowicz – increasing the number of sub-regions of the minority class
combined with decreasing the size of a data set degraded the performance of a clas-
sifier [28, 29, 30]. For illustration see Table 2, where for two imbalance ratios (1:5
and 1:9) and stepwise decrease of examples (from 600 to 200) we divide the rect-
angle of the minority class into appropriate subclusters (of the same size). One can
notice that for smaller number of examples increasing the number of subclusters
degraded the values of sensitivity much larger than changing the imbalance ratio.
If the number of subclusters is higher than 4 and the number of examples is no
greater than 400 examples, they could be seen as small sub-regions (e.g. for 1:5 the
total number of 66 minority examples are divided into rare areas having less than
15 examples comparing to 333 majority examples – which could refer to the idea
of small disjuncts [30]). Decreasing the total number of examples to 200 makes the
problem definitely more difficult. The tree and rule classifiers also decreased their
performance for these subclass shapes.
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Table 4 Influence of decomposing the minority class on the sensitivity of tree classifier:
Clover data set. Data size – 600 and 400 examples

Number of 600 400
elements 1:3 1:5 1:7 1:9 1:3 1:5 1:7 1:9

2 0.92 0.92 0.83 0.80 0.94 0.85 0.82 0.80
3 0.90 0.85 0.80 0.78 0.84 0.78 0.72 0.70
4 0.85 0.80 0.78 0.74 0.82 0.75 0.68 0.60
5 0.75 0.35 0.24 0.06 0.14 0.10 0 0
6 0.22 0.10 0 0 0.06 0 0 0

Table 5 Influence of overlapping on the sensitivity of the tree classifier learned from sub-
class data. Overlapping is expressed by % of borderline examples in the minority class. Total
number of examples – 800.

Number of 1:5 1:9
subclusters 0% 10% 20% 0% 10% 20%

3 0.96 0.91 0.85 0.94 0.9 0.75
4 0.96 0.89 0.78 0.94 0.87 0.74
5 0.96 0.87 0.76 0.90 0.81 0.66
6 0.94 0.84 0.74 0.88 0.68 0.38

The degradation of performance was larger if the decision boundary became non-
linear even for larger data set. Table 3 illustrates results for all classifiers applied to
data sets characterized by different imbalanced ratio and smaller or higher decom-
position. As the number of examples is rather highest (1200 examples), for nearly
balanced data we did not notice the decrease. Non-linear and more complicated
shapes (e.g. 02a, or increasing a number of parts in clover5) made the problem
more difficult, in particular for tree or rule- classifiers, when data became more im-
balanced (ratio 1:5). K-NN classifier is rather more local approach than global clas-
sifiers (trees or rules) and it works better with more complicated, non-linear classes.
Values of AUC decrease in a more visible way if the number of examples is smaller
than 600 ones.

Knowing that non-linear shapes were more difficult, we studied more precisely
the impact of decomposition the minority class in presence of smaller number of
examples. As it is more visible for the sensitivity measure we show a representative
results for tree classifier, see Table 4. One can notice that stepwise increasing the
number of sub-regions (from 2 to 6) in clover shape degrades much more the sensi-
tivity measure than stepwise increasing the class imbalance ratio (from 1:3 to 1:9).
Rule and K-NN classifiers showed similar behaviour - although in case of K-NN the
degradation was not so radical.
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Table 6 Influence of overlapping and rare examples of the minority class on the sensitivity
of tree classifier: Subclass data set.

Number of 800 600 400
subclusters 0% 10% 20% 30% 0% 10% 20% 30% 0% 10% 20% 30%

3 0.96 0.84 0.70 0.56 0.94 0.85 0.70 0.55 0.9 0.82 0.7 0.42
4 0.94 0.84 0.68 0.4 0.92 0.82 0.58 0.3 0.89 0.7 0.4 0.34
5 0.9 0.82 0.56 0.36 0.9 0.78 0.52 0.32 0.87 0.68 0.24 0.18
6 0.88 0.64 0.40 0.34 0.85 0.6 0.36 0.3 0.5 0.22 0.14 0.08

Table 7 Influence of rare and borderline examples: 02a data set.

Classifier Sensitivity AUC
0% 10% 20% 30% 0% 10% 20% 30%

Tree 0.45 0.38 0.17 0.04 0.82 0.8 0.64 0.5
Rules 0.82 0.70 0.65 0.58 0.92 0.85 0.82 0.78
KNN 0.84 0.72 0.70 0.62 0.95 0.92 0.9 0.87

The next phase of experiments concerned the influence of overlapping in the
boundary between classes and the presence of rare minority examples located in-
side the majority class area. Starting from the overlapping factor, we established the
width of the overlapping inside the area of the minority class and parametrized it by
percentage of examples from the minority class which were located in this overlap-
ping boundary. The majority examples are uniformly generated inside this boundary
with their number was equal to the number of the minority class located there.

Table 5 shows influence of such overlapping on the tree classifier. Although com-
paring number of sub-regions to amount of overlapping may be not justified we can
”roughly” say that stepwise increasing of overlapping could decrease more the sen-
sitivity than stepwise increasing decomposition. For instance, let us analyse the first
column (%) - the sensitivity changes from 0.96 to 0.94. While for any of the number
of subclusters the sensitivity decreases in range of nearly 0.2 (see, e.g. 4 subclusters,
the sensitivity decreases from 0.96 to 0.78). The similar tendency can be observed
for rule and K-NN classifiers, also for smaller data sets and non-linear shapes (how-
ever, decreases of the sensitivity are even higher).

The next factor was the presence of rare examples from the minority class. We
studied their impact together with overlapping of classes in these data sets. More
precisely, if the parameter is set to x% it means that half of these examples are
generated inside the overlapping and the rest are generated as rare examples. For
instance, value 20% means that it is previous case of 10% overlapping extended
by 10% minority examples treated as rare one. The appropriate new experiment
referring to previous Table 5 is now presented in the next Table 6.
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Table 8 Influence of rare and borderline examples: clover4 data set.

Classifier Sensitivity AUC
0% 10% 20% 30% 0% 10% 20% 30%

Tree 0.5 0.25 0.10 0.08 0.72 0.62 0.55 0.52
Rules 0.68 0.44 0.38 0.35 0.8 0.72 0.68 0.62
KNN 0.90 0.88 0.72 0.62 0.95 0.92 0.82 0.78

Although it could be questionable to compare directly the step of changing rare
level with the step of increasing the class decomposition, we can say that stepwise
increasing the level of rare and borderline examples decreases much more the eval-
uation measures than dividing a class into smaller parts (e.g. for 600 examples and
no rare moving from 3 to 6 subclusters decreased the sensitivity around 0.1, while
adding up to 30% noise or borderline examples introduced a change of the sensitiv-
ity over 0.5). Moreover, as it could be expected, adding rare made the problem more
difficult (compare results from Table 5 to Table 6).

The similar results were obtained for other shapes and classifiers, see summaries
presented in Tables 7 and 8.

Finally we checked all these parameters in case of the other versions of non-linear
shapers (as illustrated in Fig. 6 and Fig. 5) where the examples from the majority
class are surrounding more closely the minority class. These versions were more
difficult to learn and values of evaluation measures were smaller than in the above
presented tables.

To sum up, results of the experiments shows that besides decomposition of the
minority class, the next important critical factors are:

• overlapping between classes (expressed by the number of borderline examples)
• rare examples from the minority class (in particular if they occur together with

similar number of borderline examples).

We can also hypothesize that these factors could cause higher degradation of clas-
sification performance than decomposition itself - this is a new result comparing
to previous related works. Moreover, presence of all these factors together in the
data set causes larger classification deterioration than too low imbalance ratio – in
particular for non-linear decision boundaries.

11.6 Improving Classifiers by Focused Re-sampling Methods

In the previous section we experimentally showed critical factors for degrading the
performance of the selected tree, rule and K-NN classifiers. Pre-procesing methods
that change distribution of examples in classes are one of the main types of spe-
cialize methods for improving classifiers in case of class imbalance [11, 18]. These
methods, sometimes also called re-sampling techniques, are classifier-independent
and consist in transforming an original data distribution to change the balance
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between classes. Some them can also handle other properties of data distributions
[3, 18].

Therefore, the next research problem of the following paper is to check the sen-
sitivity of different re-sampling methods to overlapping, rare examples and class
decomposition factors in the considered artificial data sets. We have chosen 4 meth-
ods some related to the proposal of the SPIDER method, introduced by Stefanowski
and Wilk [54, 55]. More precisely they are simple random over-sampling, cluster
based over-sampling and nearest cleaning rule NCR and SPIDER.

In the following review we briefly describe only these methods and SMOTE,
which is also related to our proposal of SPIDER; for more extensive reviews see,
e.g., [3, 11, 18, 62].

First of all, the simplest re-sampling techniques are random over-sampling which
replicates examples from the minority class and random under-sampling which ran-
domly eliminates examples from the majority classes until a required degree of bal-
ance between classes is reached (Many researchers attempted to obtain the same
cardinality of the minority class as the majority one). However, several authors
showed the random under-sampling or over-sampling were not sufficiently good
at improving recognition of imbalanced classes. Random under-sampling may po-
tentially remove some important examples and simple over-sampling may also lead
to overfitting [9, 35]. Furthermore it is not easy to find an optimal ratio for balancing
classes. Several authors have already shown that used ”even” distribution (i.e. ob-
taining the same cardinality in classes) is not optimal when dealing with such rare
classes. For instance, the reader can consult the comprehensive study with many
data sets and classifiers showing that depending on combination of data and classi-
fiers the ratios of modified majority vs. minority class cardinalities like 3:1 and 2:1
quite often outperformed the most popular ratio 1:1 [33]

Therefore, researchers proposed more elaborated methods that attempt at taking
into account data characteristics and factors influencing nature of class imbalance.

Following critical observations on the role of small disjuncts Japkowicz proposed
an advanced oversampling method (cluster oversampling) that takes into account
not only between-class imbalance but also within-class imbalance, where classes
are additionally decomposed into smaller sub-clusters [30]. First, random oversam-
pling is applied to individual clusters of the majority classes so that all the sub-
clusters are of the same size. Then, minority class clusters are processed in the
same way until class distribution becomes balanced. This approach was successfully
verified in experiments with decomposed classes [30, 43].

11.6.1 Informed Undersampling

Kubat and Matwin in their paper on one-side selection claim that characteristics of
mutual positions of learning examples is a source of difficulty for learning classifiers
from imbalanced data [35]; see also their more application study [36]. They focus
attention on noisy majority class examples located inside the minority class and
borderline examples. According to their approach, such examples are removed from
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the majority classes, while the minority class is kept unchanged (these examples can
be identified with so called Tomek links [58]). As result of such “focused” under-
sampling ambiguous regions around the minority class are “cleaned”. Moreover,
some examples from “safer” regions of the minority class can be also discarded as
they could be correctly classified by other learning examples.

Then, the Nearest Cleaning Rule (NCR) method was introduced in [37]. This
method is based on the Edited Nearest Neighbor Rule (ENNR) and it removes these
examples from the majority classes that are misclassified by its k nearest neighbors.
Experimental results confirmed that both methods improved the sensitivity of the
minority class comparing to simpler over- or under-sampling methods [35, 37].

11.6.2 Informed Oversampling Methods

A most well-known representative of informed over-sampling is SMOTE (Synthetic
Minority Over-sampling Technique) introduced by Chawla et al. [9], which consid-
ers each example from the minority class and generates new synthetic examples
along the lines between this example and some of its randomly selected k nearest
neighbours (also belonging to the minority class). Experiments reported in [9] with
C4.5 trees, Ripper rules and Naive Bayes classifiers showed that SMOTE improved
recognition of the minority class. Moreover, its combination with under-sampling of
the majority class was able to achieve better results than other under-sampling meth-
ods as ENNR alone – see, e.g., [3]. There are also other proposals of hybridization
of the basic SMOTE with additional ”filtering” step, see e.g. the use of some rough
sets inspired solutions [48] or more sophisticated ensemble noise filtering [49].

Although SMOTE and NCR showed to be promising in experimental evaluation,
they also demonstrated several shortcomings that became motivations for introduc-
ing SPIDER – we will further discuss them in the next section. We should note
that recently some researchers have also tried to propose various generalizations
of SMOTE following similar critical observations – see discussion in [18]. Two
most interesting generalizations of SMOTE are Borderline SMOTE that takes into
account the different nature of examples from the minority class, and Safe-Level
SMOTE, where also the distribution of the majority class is considered while gen-
erating synthetic examples from the minority class. Both methods are described
in [18, 40]. Yet another proposal is based on controlling distributions in local neigh-
borhoods of the seed example and its nearest neighbors from both minority and
majority classes [40].

11.6.3 SPIDER Method

The critical analysis of undesirable properties of well-known focused re-sampling
methods, especially NCR and SMOTE, became a starting point for developing
by Stefanowski and Wilk the SPIDER method [54]. NCR and in particular one-
side-selection are too strongly biased toward cleaning overlapping regions between
classes and interior areas of the majority class. However, both methods may remove
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too many examples from the majority classes. Such greedy “cleaning” definitely
leads to the increased sensitivity for the minority class but too extensive changes in
the majority classes may deteriorate the ability of an induced classifier to recognize
examples from these classes.

One of the main shortcoming of SMOTE is the overgeneralization problem.
SMOTE blindly generalizes regions of the minority class without checking posi-
tions of the nearest examples from the majority classes. This strategy is particularly
problematic in the case of skewed class distribution where the minority class is very
sparse in comparison to the majority classes. In such a situation SMOTE may in-
crease overlapping between classes by locating synthetic examples from the minor-
ity class among existing examples from the majority classes. Moreover, the number
of synthetic examples generated by SMOTE has to be globally parametrized, thus
reducing the flexibility of the approach. Results of experimental studies with sim-
ulated data sets [24] imply that an efficient method should be rather focused on
local distributions of difficult examples than being controlled by a global parameter.
Let us also notice that according to experimental results reported in the literature
an appropriate value of this parameter strongly influences SMOTE’s performance
and its proper tuning requires a computationally costly procedure (iterative testing
of various possible values). Finally, random introduction of synthetic examples by
SMOTE may be difficult to justify in some domains where it is important to pre-
serve a link between original data and a constructed classifier in order to explain
suggested decisions.

The SPIDER method relies on the local characteristics of examples (i.e., charac-
teristics of their local neighborhood) and distinguishing between different types of
examples. Two types of examples are distinguished – safe and not-safe. Safe exam-
ples should be correctly classified by a constructed classifier, while not-safe ones
are likely to be misclassified and require special processing. In SPIDER the type
of an example is discovered by applying the nearest neighbor rule (NNR) with the
heterogeneous value distance metric (HVDM) [64] – i.e., the distance is calculated
with the Euclidean distance metric for numerical features and with the value dis-
tance metric [14] for qualitative features. According to NNR an example is safe if it
is correctly classified by its k nearest neighbors, otherwise it is not-safe.

More precise categorization of an example is based on the analysis of its neigh-
bors from the other classes (i.e., different than the class of a considered example).
If an example is not-safe and its nearest examples belong to other classes, then this
example is identified as certain-not-safe and we interpret it as a rare case (or an
outlier) located deeply inside the other classes. Such example should be treated in
a different way than a not-safe example with some neighbours from the same class
– this one is rather located in / or closer to an overlapping region between classes.
Unlike related methods that distinguish the type of examples in the minority class
only, SPIDER identifies the nature of examples in all classes. SPIDER assumes two
decision classes – the minority class cmin and the majority class cma j – if an original
data set contains several majority classes they are collapsed together.

The method consists of two main phases – identification and pre-processing.
In the first phase the type of examples is identified according to the ”local”
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characteristics of their neighbors and ’flagged’ accordingly. Firstly, examples from
the majority class cma j are processed. In particular, depending on the relabel option
the method either removes or relabels certain-not-safe / noisy examples3 from cma j

(i.e., changes their classification to cmin). Then, in the second phase, it identifies
the characteristic of examples from cmin considering changes introduced in the first
phase. Not-safe examples from this class require special processing – i.e they are
amplified (by replicating them with different degree) according to the ampl option.

All options of SPIDER involve modification of the minority and majority classes,
however, the degree and scope of changes varies between options. Weak amplifica-
tion is the simplest and less greedy modification of the minority class. It focuses on
not-safe examples from cmin and slightly over-samples them by adding as many of
their copies as there are safe examples from cma j in their neighborhoods. The second
option – relabel – also changes these certain noisy examples from cma j which could
be interpreted as noisy outliers located more deeply inside the minority class. For
the last option – strong – the degree of amplification of not-safe examples cmin could
be higher depending on analysis of an extended neighborhood. Much more thorough
description of the method is provided in [54, 55], including precise pseudocode of
the algorithm.

11.7 Experiments with Focused Re-sampling Methods

In the next experiments we will study the impact of overlapping, rare examples and
partly class decomposition on the performance of selected pre-processing methods
for handling class imbalance, including our proposal of SPIDER. Here, we summa-
rize some of the main results of the more comprehensive study on this topic recently
carried out by Napierala, Stefanowski and Wilk [42].

According to the results of Stefanowski’s earlier experiments (presented in Sec-
tion 11.5) a group of data sets with 800 examples, the imbalance ratio of 1:7, and 5
sub-regions for the subclus and clover shapes is selected for experiments. We chose
their more difficult versions where the majority class is uniformly distributed around
the minority class shapes – see the Figures 5 and 6. Let us remind that all these data
sets presented a significant challenge for a stand-alone classifier. Similar behaviour
was observed for data sets with 600 examples, but due to space limit we did not de-
scribe these data sets in the paper. Due to specific aims of study [42], two symbolic
rule and tree classifiers were applied. Trees were induced by C4.5 algorithm, while
rules were induced by MODLEM algorithm (introduced by Stefanowski in [50]; see
also for its description in [51, 52].

Firstly, the impact of disturbing the borders of sub-regions in the minority class
was evaluated. It was simulated by increasing the ratio of borderline examples from
the minority class subregions. This ratio (further called the disturbance ratio) was

3 In case of the majority class we can consider possible noise example if a not-safe example
is located deeply inside the region of the minority class (all its k-nearest neighbors belong
to the opposite class) and it could be wrongly re-classified by its neighbors
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changed from 0 to 70%. The width of the borderline overlapping areas was compa-
rable to the width of the sub-regions (sub-parts in data shapes).

The constructed classifiers were combined with the following focused pre-
processing methods:

• standard random oversampling (abbreviated as RO),
• Japkowicz’s cluster oversampling (CO),
• nearest cleaning rule NCR,
• and SPIDER (SPID).

Cluster oversampling was limited to the minority class, and SPIDER method was
used with the strong amplification as such combination performed best in our earlier
studies [54, 55]. For baseline results (Base), both classifiers were ran without any
pre-processing.

Table 9 G-mean for artificial data sets with varying degree of the disturbance ratio in the
overlapping region.

Data set
Rules Trees

Base RO CO NCR SPID Base RO CO NCR SPID

subclus-0 0.9373 0.9376 0.9481 0.9252 0.9294 0.9738 0.9715 0.9715 0.9613 0.9716
subclus-30 0.7327 0.7241 0.7242 0.7016 0.7152 0.6524 0.7933 0.7847 0.7845 0.8144
subclus-50 0.5598 0.5648 0.6020 0.6664 0.6204 0.3518 0.7198 0.7113 0.7534 0.7747
subclus-70 0.4076 0.4424 0.4691 0.5957 0.5784 0.0000 0.7083 0.7374 0.6720 0.7838
clover-0 0.7392 0.7416 0.7607 0.7780 0.7908 0.6381 0.8697 0.8872 0.6367 0.6750
clover-30 0.6361 0.6366 0.6512 0.7221 0.6765 0.2566 0.7875 0.7652 0.6758 0.7686
clover-50 0.5066 0.5540 0.5491 0.6956 0.6013 0.1102 0.7453 0.7570 0.6184 0.7772
clover-70 0.4178 0.4658 0.4898 0.6583 0.5668 0.0211 0.7140 0.7027 0.6244 0.7665
paw-0 0.9041 0.9126 0.9182 0.9184 0.8918 0.6744 0.9318 0.9326 0.6599 0.7330
paw-30 0.7634 0.7762 0.7701 0.7852 0.7780 0.3286 0.8374 0.8334 0.8527 0.8337
paw-50 0.6587 0.6863 0.6865 0.7517 0.7120 0.3162 0.8013 0.7858 0.8200 0.8075
paw-70 0.5084 0.5818 0.5691 0.7182 0.6506 0.0152 0.7618 0.7472 0.7824 0.8204

We do not report all results from [42] but summarize the most representative
ones. However, let us remark that with respect to recognition of the minority class
alone, expressed by the sensitivity measure, results clearly showed that all meth-
ods of pre-processing improved the sensitivity of both classifiers in comparison to
Base classifiers (in particular for more difficult decision boundaries and larger dis-
turbance). Generally speaking, simpler over-sampling RO and CO performed com-
parably on all data sets, and on non-disturbed data sets they often over-performed
focused methods NCR and SPIDER. On more difficult sets (disturbance = 50–70%)
both methods NCR and SPIDER were significantly better than oversampling meth-
ods. Then, we took into account balance between sensitivity and specificity, so rec-
ognizing examples also from the other majority class. Results of the geometric mean
(G-mean) are presented in Table 9.

These experiments also showed that the degradation in performance of a classifier
is strongly affected by the number of borderline examples. If the overlapping area
is large enough (in comparison to the area of the minority sub-clusters), and at least
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30% of examples from the minority class are located in this area, then focused re-
sampling methods (NCR, SPIDER) strongly outperform random and cluster over-
sampling with respect to sensitivity and G-mean. Moreover, the performance gain
increases with the number of borderline examples. On the contrary, if the number of
borderline examples is small, then oversampling methods sufficiently improve the
recognition of the minority class and they are comparable to focused method with
respect to G-mean.

Table 10 Sensitivity for artificial data sets with different types of testing examples

Data set
Rules Trees

Base RO CO NCR SPID Base RO CO NCR SPID

subcl-safe 0.58 0.58 0.62 0.78 0.64 0.32 0.84 0.86 0.98 1.00
subcl-B 0.84 0.84 0.84 0.86 0.84 0.00 0.82 0.84 0.36 0.92
subcl-C 0.12 0.1 0 0.16 0.24 0.26 0. 00 0.54 0.00 0.00 0.52
subcl-BC 0.48 0.47 0.50 0.55 0.55 0.00 0.68 0.42 0.18 0.72
clover-safe 0.30 0.38 0.44 0.70 0.60 0.02 0.96 0.92 0.04 0.98
clover-B 0.84 0.82 0.82 0.84 0.86 0.04 0.94 0.92 0.04 0.94
clover-C 0.14 0.08 0.14 0.24 0.36 0.00 0.30 0.02 0.00 0.40
clover-BC 0.49 0.45 0.48 0.54 0.61 0.02 0.62 0.47 0.02 0.67
paw-safe 0.84 0.92 0.84 0.84 0.80 0.42 0.90 0.96 0.74 1.00
paw-B 0.88 0.88 0.86 0.88 0.90 0.14 0.90 0.90 0.40 0.92
paw-C 0.16 0.14 0.12 0.26 0.16 0.04 0.20 0.00 0.00 0.34
paw-BC 0.52 0.51 0.49 0.57 0.53 0.09 0.55 0.45 0.00 0.63

In [42] we carried out additional experiments where we studied the impact of
rare examples from the minority class, located outside the borderline area, on the
performance of a classifier. To achieve this, we introduced new rare examples (sin-
gle and pairs) and denoted them with C. Similarly to the first series of experiments
we used data sets of three shapes (subclus, clover and paw), 800 examples and the
imbalance ratio of 1:7. We also employed rule- and tree-based classifiers combined
with the same pre-processing methods. However, we changed the 10-fold cross val-
idation to the train-test verification in order to ensure that learning and testing sets
had similar distributions of the C examples. In each training set 30% of the minority
class examples were safe examples located inside sub-regions, 50% were located in
the borderline/overlapping area (we denote them with B), and the remaining 20%
constituted the C rare examples.

For each training set we prepared 4 testing sets containing the following types
of examples from the minority class: only safe examples, only B examples, only C
examples, and B and C examples combined together (BC). Results are presented in
Table 10. They clearly show that for the “difficult” rarity (C or BC) SPIDER and in
most cases NCR were superior to RO, CO and Base. SPIDER was also comparable
to RO and CO in case of safe and (sometimes) B examples.
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To sum up these experiments reveal the superiority of SPIDER and in most cases
NCR in handling rare examples located inside the majority class (also accompanied
with borderline ones). Such result has been in a way expected, as both methods were
introduced to handle such situations. The experiments also demonstrated that even
random oversampling is comparable to SPIDER and better than NCR in classifying
safe examples from the minority class.

Besides the above mentioned experiments with artificial data, the focused re-
sampling methods, including SPIDER, were also compared on some real data sets
coming from UCI Machine Learning Repository [2]. As this kind of experiments is
not within the main aim of this paper, and its page size is limited, we do not show
these precise results but attempt at summarizing the general conclusions from two
earlier papers ([54] - early results with rule based classifiers, and more extended
comparison [55] including additional methods and classifiers). In these experiments
SPIDER applied together with C4.5 and MODLEM algorithms was compared to
competitive methods (NCR and SMOTE) and basic classifiers used without any pre-
processing. The results of experiments showed that although NCR often led to the
highest increase of sensitivity, at the same time it significantly deteriorated speci-
ficity and overall accuracy. SPIDER was the second best with respect to improving
the sensitivity of the minority class (improvement was more visible for rule than
trees), and slightly better than SMOTE or comparable to it. Moreover, it did not
deteriorate the recognition of the majority classes as much as NCR. In case of SPI-
DER and possible pre-processing options, weak resulted in the best specificity and
overall accuracy (often at the cost of sensitivity), strong resulted in a good balance
between specificity and sensitivity – evaluated by G-mean – and relabel improved
sensitivity in the similar range as strong, however at the cost of specificity.

Recently we showed another way of balancing recognition of the minority and
majority classes (expressed by optimizing G-mean) which include using SPIDER
inside the generalized framework of the adaptive ensembles called IIvotes [6].

Considering results of the experiments with UCI imbalanced data, we could also
refer to the analysis of the ”nature” of these data sets taking into account local
neighbourhood characteristic for the focused re-sampling methods. In [40] we used
k−NN analysis of each minority class example and considered is as certain unsafe
(outlier) or borderline (unsafe-possible) as defined in SPIDER. Results (for k = 3 or
partly 5) showed that all studied data sets are rather difficult with respect to classi-
fier ability for recognizing the minority class. First of all, we noticed that for some
data sets the number of outlier examples is quite high comparing to the size of the
minority class. Other data sets contained also many borderline examples without
too many safe regions of the minority class. Referring to the earlier comparison of
oversampling methods we noticed that for such data sets SPIDER and NCR led to
improvements of the sensitivity. On the other hand, for a two data sets (as e.g. new
thyroid) with more safer examples, base classifiers without preprocessing or simpler
oversampling worked sufficiently good. Let us remind that such a data as new thy-
roid is more imbalanced than other data sets. In our opinion this very simple analysis
confirm our earlier observations on the role of critical factors from experiments with
controlled artificial data sets.
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11.8 Final Remarks

The problem of learning classifiers from imbalanced data has been considered. It
is one of the most challenging topics in machine learning and data mining [65].
Moreover, it is still ”open” from a theoretical point of view and it is very important
in many application domains. On the other hand, one can notice by studying related
literature that it has received growing research interest in the last decade and several
specialized methods have already been proposed. Although some of them have been
validated in experiments, it is still a need to ask more general research questions
about the class imbalance, data characteristics and competence of some popular
methods. This paper is an attempt to partly answer to these questions.

Firstly, the nature of this problem and sources of difficulties for achieving good
recognition of the minority class are discussed. As it has been already noticed by
other researchers, the small number of examples in the minority class is not the
main source of difficulty [24, 28, 29, 47]. The degradation of classification per-
formance is rather related to other critical factors as decomposition of the classes
into smaller sub-parts including too few examples (so called small disjuncts [30]),
overlapping between classes (existence of too many borderline examples in the mi-
nority class), presence of rare or noisy examples located farther from the decision
boundary (deeper inside the distribution of the opposite class).

Following this literature review, in the first part of this paper we decided to carry
out an experimental study on the impact of the critical factors on re-sampling meth-
ods dealing with imbalanced data. Unlike the related works we decided to consider
them occurring together in the data. Moreover, we pay more attention to presence
of borderline and rare examples. We also considered more complicated shapes of
classes than in earlier works. This is why we introduced new types of artificial data
sets for experimental evaluation. Generated artificial data include simpler rectangle
shapes of the minority class (subclass following inspirations from earlier works)
and more complicated non-linear boundaries as clover, paw and similar 02 shapes.

In the first phase of experiments we studied impact of critical factors in these arti-
ficial data sets on performance of the most popular rule-, tree- and K-NN classifiers.
First of all, some results confirmed earlier results obtained for simpler artificial data
on the importance of the minority class decomposition into smaller sub-concepts
[30]. We also showed that for more nonlinear decision boundaries increasing decom-
position of the class into small sub-parts decreased sensitivity or AUC measures. It
was also observed that K-NN could classify the non-linear shapes better than trees
- it could be explained by its local performance comparing to a more global way
of constructing trees (see also more extensive discussion of specific properties of
K-NN in [46]). On the other hand, both tree and rule classifiers worked better for
rectangle shapes of the minority class. Moreover, rule classifier Ripper was slightly
better than C4.5 tree. Its behaviour could be caused by a specific way of construct-
ing a decision list in the final classifier, i.e. the algorithm induced rules only for the
minority class (with a controlled pruning level) and they are ordered in a kind of an
exception list [13]. If the new / testing example does not match any of these rules it
is classified by a default rule to the majority class. As we ran Ripper without strong
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pruning, it could be better suited to class imbalance in non-linear, complicated, de-
cision boundaries (clover, paw, 02) than more global tree classifiers.

Then, experimental results clearly showed that the combination of class decom-
position with overlapping makes learning very difficult (in particular for sensitivity
measure and tree classifiers). Focussing attention on the rare examples from the mi-
nority class is an original contribution of this study – as according to the best knowl-
edge they have not been studied yet in experimental studies. It was clearly visible
that the presence of rare example significantly degraded performance of all clas-
sifiers. We could also say that stepwise increasing numbers of borderline and rare
examples in the minority class decreased all evaluation measures more that increas-
ing decomposition of this class into new sub-parts. This is also a new observation
comparing to previous related research.

To sum up this part of experiments, we hope that our results expand the body of
knowledge on the critical role of borderline and rare examples with respect to earlier
results based on simpler artificial data sets and other factors [24, 28, 29, 47].

The next part of this paper concerns problems of handling these difficulties by
the following re-sampling methods: random over-sampling, cluster over-sampling,
informed under-sampling by NCR and SPIDER. Our experiments showed that the
degradation in classification performance was strongly affected by the number of
borderline examples. If the overlapping area was large enough (in comparison to the
area of the minority sub-clusters), and at least 30% of examples from the minority
class were located in this area (i.e., they are borderline examples), then focused re-
sampling methods (as SPIDER and partly NCR) strongly outperformed random and
cluster oversampling with respect to sensitivity and G-mean measures. Moreover, it
seams that the performance gain increased with the number of borderline examples.
The other experiments revealed the superiority of SPIDER and in some cases NCR
in handling rare examples located inside the majority class (also accompanied with
borderline ones).

We hope that the above mentioned comparative studies with artificial simulated
data also extended by experiments on UCI data sets could give more insight into
conditions of the usefulness of particular re-sampling methods to improve classifiers
learned from imbalanced data.
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6. Błaszczyński, J., Deckert, M., Stefanowski, J., Wilk, S.: Integrating Selective Pre-
processing of Imbalanced Data with Ivotes Ensemble. In: Szczuka, M., Kryszkiewicz,
M., Ramanna, S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS, vol. 6086, pp. 148–
157. Springer, Heidelberg (2010)

7. Brodley, C.E., Friedl, M.A.: Identifying Mislabeled Training Data. Journal of Artificial
Intelligence Research 11, 131–167 (1999)

8. Casagrande, N.: The class imbalance problem: A systematic study. Research Report IFT
6390. Montreal University

9. Chawla, N., Bowyer, K., Hall, L., Kegelmeyer, W.: SMOTE: Synthetic Minority Over-
sampling Technique. J. of Artifical Intelligence Research 16, 341–378 (2002)

10. Chawla, N.V., Lazarevic, A., Hall, L.O., Bowyer, K.W.: SMOTEBoost: Improving Pre-
diction of the Minority Class in Boosting. In: Lavrač, N., Gamberger, D., Todorovski,
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Chapter 12
A Granular Computing Paradigm for Concept
Learning

Yiyu Yao and Xiaofei Deng

Abstract. The problem of concept formation and learning is examined from the
viewpoint of granular computing. Correspondences are drawn between granules and
concepts, between granulations and classifications, and between relations over gran-
ules and relations over concepts. Two learning strategies are investigated. A global
attribute-oriented strategy searches for a good partition of a universe of objects and
a local attribute-value-oriented strategy searches for a good covering. The proposed
granular computing paradigm for concept learning offers twofold benefits. Results
from concept formulation and learning enrich granular computing and a granular
computing viewpoint sheds new light on concept formulation and learning.

12.1 Introduction

Concepts are basic units of human thought and have been considered in different dis-
ciplines, including philosophy, cognitive science, inductive learning, cluster analysis
and machine learning. Many views of concepts and categories have been proposed
and studied, such as the classical view, the prototype view, the exemplar view, the
frame view, and the theory view [8, 15, 21]. Each view captures a particular per-
spective and emphasizes a specific aspect, with different intended applications. A
comprehensive understanding of concepts is based on an integration of those differ-
ent views. While some views are suitable for human concept formation and learning,
other views are appropriate for machine-oriented approaches. The classical view of
concepts is perhaps one of the most used ones in machine-oriented concept learn-
ing [32].

In the classical view, a concept is understood as a pair of intension and extension.
The intension of a concept consists of all properties or attributes (more generally,
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some formulas of a language) that are valid for all those objects to which the con-
cept applies. The extension of a concept is the set of objects or entities which are
instances of the concept. A concept is thus described jointly by its intension and ex-
tension. The simple classical view of concepts can be easily related to the notion of
granules in an emerging field of study known as granular computing. Specifically,
the extension of a concept may be considered as a granule and the intension of the
concept as the description of the granule. Consequently, concept learning may be
reconsidered in the paradigm of granular computing.

There are two crucial tasks in concept learning. One is to find a good descrip-
tion of a concept based on its extension; the other is to derive relations between
concepts based on their corresponding extensions. We typically employ a rule to de-
scribe a relationship between two concepts, in which the intensions of concepts are
used. To make a concept learning algorithm effective and its results meaningful, we
must consider several issues. One issue is the selection of a set of meaningful ba-
sic concepts, from which target concepts can be expressed and interpreted. Another
issue is to design strategies for learning. Different strategies may lead to different
descriptions of the target concepts.

Based on results from the rough set theory [17], a granular computing paradigm
of concept learning is introduced and examined in this chapter. Two learning strate-
gies will be studied in an information table, in which a finite set of objects is de-
scribed by using a finite set of attributes. An attribute-oriented strategy constructs a
partition of the universe by using a subset of attributes. The basic granules are equiv-
alence classes of the partition. Concept learning is formulated as a divide and con-
quer method in search of a good subset of attributes. The results are a decision tree,
which can be translated into a family of disjoint rules. An attribute-value-oriented
strategy constructs a covering of the universe. The basic granules are subsets of ob-
jects defined by a family of attribute-value pairs. Concept learning is formulated as a
chip and conquer method in search of a good family of sets of attribute-value pairs.
The results are a family of decision trees, from which a set of overlapping rules can
be derived.

The rest of this chapter is organized as follows. Section 12.2 presents an overview
of a triarchic theory of granular computing. Section 12.3 discusses connections be-
tween granular computing and concept learning. Section 12.4 proposes a model of
concept learning based on granular computing, involving an investigation of two
classes of strategies for concept learning.

12.2 A Triarchic Theory of Granular Computing

The notions of categorization, abstraction, formulation and approximation at multi-
ple levels of granularity play a crucial role in human perception, cognition, under-
standing and problem solving [12, 24, 28, 31]. One would also expect that they play
an equal important role in intelligent systems. For a system to be called intelligent,
it must have similar built-in mechanisms that support human intelligence. Granu-
lar computing, as an emerging field of study, aims at a systematic investigation of
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granule based theories and methodologies for supporting human problem solving
on one hand and machine problem solving on the other [27, 33].

The triarchic theory of granular computing [25, 26, 27, 29, 30] provides a con-
ceptual model by adopting useful structures called granular structures and weaving
together three powerful ideas: structured thinking, structured problem solving, and
structured information processing. It emphasizes on the exploitation of useful struc-
tures that properly reflect multiple levels of granularity or a granularity pyramid. A
single hierarchical granular structure called a hierarchy provides a multilevel under-
standing and representation of a problem or a system. But it typically captures one
particular aspect and therefore offers one view. By constructing a family of hierar-
chies, it is possible to obtain multiple different views. Granular structures are a family
of complementary hierarchies working together for a complete and comprehensive
multiview understanding and representation. The use of granular structures, charac-
terized by multilevel and multiview, establishes a solid basis on which sit structured
thinking, structured problem solving and structured information processing.

Philosophy:

Methodology: Computation:

structured thinking

structured problem solving structured information processing

Granular

Structures

Fig. 1 The Granular Computing Triangle

The main ideas of the triarchic theory of granular computing are summarized by
the granular computing triangle of Fig. 1. The center of the triangle is granular struc-
tures, the three angles represent three perspectives of granular computing centered
around granular structures.

12.2.1 Multilevel, Multiview Granular Structures

A key to the success of granular computing is the use of properly constructed gran-
ular structures. In the triarchic theory, a hierarchy is used to achieve one particular
multilevel view and a family of hierarchies is used to achieve multiview. Granu-
lar structures are a family of hierarchies. Fig. 2 illustrates a multilevel hierarchical
granular structure. Its main ingredients are explained as follows.
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12.2.1.1 Granules and Granularity

Granules are a primitive notion of granular computing. They are the basic vocabu-
laries of granular computing. Granules are the basic elements in forming granular
structures. Using the terminology of systems theory, a granule represents a part of a
whole. Granular computing studies the whole through an integration of its parts in
terms of their interrelations and their connections to the whole. In Fig. 2, granules
are small circle or dots on a plane and each represents a part of the whole given by
the entire plane. The physical interpretations and construction of granules are left to
particular applications.

The granularity of a granule may be interpreted as an intrinsic or inherent prop-
erty of the granule. Intuitively, granularity may be interpreted as the degree of ab-
straction, generalization, complexity or details. A granule with higher degree of
granularity is more abstract. It is reasonable to assumed that granularity can be at
least partially ordered, so it is possible to form a granularity pyramid. The concept
of granularity is essential for constructing and interpreting granules.

12.2.1.2 Granulations and Levels

Each granule provides a local description of a specific part of a problem or a system.
By collecting a family of granules of similar nature or similar granularity, we obtain
a complete description of a problem or a system. Such a family of granules is called
a granulation of the problem at a particular level. Granules in the family are called
focal elements of discussion at the level. In Fig. 2, each level is represented by a
plane. While granules at the same level are of similar nature, granules at different
levels may be very different. Consequently, we may use different vocabularies and
languages for descriptions at different levels.

The processing methods at different levels may also be different. Institutively,
each level of granulation may be considered to be a particular viewpoint of the
problem. Thus, a hierarchy provides a family of multiple levels of viewpoints. The
concept of levels is a very versatile and universal notion that appears in a wide range
of disciplines [1, 5, 7, 11, 31]. An interpretation of a granulation hierarchy in terms
of levels makes a granular structure to be flexible and useful [31]. The properties
of a particular level, namely, a granulation, is determined collectively by a family of
granules through their connections and interactions.

12.2.1.3 Partial Orderings of Granules and Levels

Granules can be ordered based on their relationship or granularity. This leads to a
refinement-coarsening relationship between granules. Under this relationship, one
can identify dual-roles of a granule. A granule may be considered to be a part that
is to be coarsened with other granules into the whole of a coarser or more abstract
granule. It may be considered to be a whole that is to be refined into a family of finer
or more specific granules. In Fig. 2, the ordering of granules are given by dotted lines
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. . .

Fig. 2 Multilevel Hierarchical Granular Structure

between granules in two adjacent levels. It is reasonable to assume that the ordering
relation is transitive. In Fig. 2, we omit the connections between no-adjacent levels,
as they can be obtained by transitivity.

The ordering of granules leads naturally to the ordering of levels, the result is a
multilevel granulation hierarchy as shown in Fig. 2. Although multilevel structures
may be rather restrictive to reflect accurately about the reality, it does lead to simpli-
fication of computational issues and practical and reasonable approximate solutions
to many real world problems.

12.2.1.4 Three Properties of Granules

A granule has at least three properties: internal properties, external properties, and
contextual properties. The individual elements of a granule and their interactions
determine internal properties of the granule; the external properties characterize the
granule as an inseparable whole; a granule is only meaningful in a certain con-
text. The individual elements of a granule are parts of the granule and are them-
selves granules. Actually, when forming a granule, we have to ignore the subtle
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differences between its elements, as well as the connections between each other.
In other words, a group of elements are put into the same granule by consider-
ing their similar properties and connections and ignoring the subtle differences. We
may focus on different issues and form granules with different granularity based on
different situations in problem solving.

12.2.1.5 Relations and Operations on Granules

In a hierarchy, we consider three types of relations on granules. The in-level rela-
tions are relationships between granules within the same level. They show the inter-
relationships and interactions between granules at a particular level. In Fig. 2, they
are depicted by solid lines connecting granules on the same plane. In fact, they can
be used to study the internal properties of granules in the next upper level. Down-
ward refinement relations show how a coarser granule can be refined into a family
of finer granules in the next lower level. They are related to downward operations on
granules, such as refinement operation, decomposition operation, or zoom-in oper-
ation on granules. Upward coarsening relations show how a family of finer granules
is coarsened into a coarser granule in the next upper level. They are related to up-
ward operations on granules, such as coarsening operation, composition operation
or zoom-out operation on granules. In Fig. 2, the last two classes of relations are
represented by dotted lines between granules in two adjacent levels.

In a hierarchy, we assume that operations on granules are only defined for gran-
ules in two immediately adjacent levels. By repeated applications of operations, it
is possible to connect granules in all levels. This assumption, although restrictive,
makes computation with a granulation hierarchy tractable.

12.2.2 Philosophy: Structured Thinking

Granular computing promotes structured approaches based on multilevel hierarchi-
cal granular structures. From existing studies, it may be observed that the philosophy
of granular computing is not entirely new but draws extensively from reductionist
thinking, levelism [3, 6, 11] and systems thinking [23].

Reductionist thinking focuses on breaking a complex problems into relatively
simpler parts and inferring properties of the whole by a summary of properties of
its parts. It offers an effective technique of analytic thinking. In a top-down fashion,
a complex system or problem can be decomposed into many parts and these parts
can be further divided if needed. When the top-down decomposition is applied to
granular computing, a multilevel hierarchical granular structure may be derived. In
a bottom-up manner, one may explain entities (i.e., granules) in an upper level based
on entities in a lower level.

Levelism makes use of levels of abstraction and takes a hierarchical view that
a complex problem may be divided and stratified into levels. The notion of levels
may be interpreted in many different ways, including, for example, objective levels
of reality, epistemological levels of understanding and explanation, methodological
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levels of study [3, 6, 11]. To a large extent, levelism is more relevant to granular
computing, where the notion of levels of granularity plays a crucial role. Granu-
lar structures are stratified levels and levelist thinking leads to level-wise granular
processing.

Systems thinking stresses on systemic properties of a whole system that are
emerged from the composition, organization and interaction of its parts and cannot
be reduced to the properties of its parts. It offers a technique of synthetic thinking
for obtaining a holistic view of a system. Moreover, systems thinking also considers
different system levels and has the ability to shift attention between system levels.
In the context of granular computing, ideas from systems thinking can be used to
study emergent properties at different levels of granularity.

Structured thinking of granular computing emphasizes the importance of useful
multilevel structures that are common in reductionist thinking, levelist thinking and
systems thinking. It takes advantage of those existing philosophical views, in order
to develop its own philosophical standpoint.

12.2.3 Methodology: Structured Problem Solving

Methodology of granular computing is structured problem solving guided by struc-
tured thinking, involving the construction and utilization of multilevel, multiview
granular structures. Granular computing relies on a set of practical heuristics and
systematic approaches that make effective use of multiple levels of granularity.
Like the classical 3R (reading, writing, and arithmetic), granular computing may
be viewed as the fourth R, representing a set of problem solve skills that can be used
by everyone.

The working principles of structured problem solving have been studied in many
disciplines. In some sense, granular computing attempts to extract these principles
and make them discipline independent and, hence, more accessible. As examples,
we examine a few of such principles.

The first two principles concern mainly multilevel and multiview understanding
and a plea for the use of granular structures. They can be stated as follows:

• the principle of multilevel view;
• the principle of multiview understanding.

While the multilevel principle emphasizes on multiple levels, i.e., viewpoints within
a particular view, the multiview principle states the needs for a holistic understand-
ing from many different angles. By the complementing nature of a family of hierar-
chies, the limitation of a particular hierarchy may be avoided, and a best hierarchy
may be chosen.

The advantages of methodology of granular computing are derived from explor-
ing granular structures. The next three principles deal with the exploration of gran-
ular structures. They are stated as:
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• the principle of focused efforts;
• the principle of view switching;
• the principle of granularity conversion.

The principle of focused efforts is a kind of divide and conquer strategy and can
be applied to both a family of hierarchies and a single hierarchy. With respect to
a family of hierarchies, it requires that one concentrates on a particular hierarchy
relatively independent of other hierarchies; with respect to a single hierarchy, it
requires that one pays attention to a particular level without too much interference
from other levels.

The principle of view switching demands a comparative study of the same prob-
lem under different views. It is necessary to switch to a different view when needed.
The principle of granularity conversion guides top-down and bottom-up conversion
with respect to a particular hierarchy. Through refinements and coarsening, one is
able to work on different levels of granularity.

12.2.4 Computation: Structured Information Processing

Granular computing is a paradigm of structured information processing. It can be
described by an information processing pyramid [2]. Granulations at multiple lev-
els of differing granularity and their conversion are a base of granular information
processing.

Representation and process are two basic tasks of computing with granular struc-
tures. A representation usually associates with a formal system that explicitly de-
scribes entities. Representations in granular computing must reflect multilevel and
multiview structures. A process can be interpreted as actions that carry out informa-
tion processing tasks. Downward refinement operations, upward coarsening opera-
tions and the zoom-in, zoom-out operations are examples of process.

With a multilevel granular structure, we have at least three modes of structured
information processing. Starting with the top level, one can progressively compute
in a top-down manner towards lower levels through refinement operations. An ap-
proximate solution obtained at a higher level is refined into a more accurate solution
at a lower level. The process can be terminated whenever a required approximate
solution is obtained. In contrast, one may start with the bottom levels and move in
a bottom-up manner towards upper levels through coarsening operations. The pro-
cesses can be terminate when the required level of abstraction is obtained. A third
mode is a middle-out approach that starts with a particular level and moves up or
down the hierarchy. In general, granular information processing may be an interac-
tive process involving a mixture of the three modes. Moreover, a granular structure
is not given prior to the processing, but is constructed during the processing.
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12.3 Granular Computing and Concept Learning

By drawing correspondences between granules and concepts, categorization and
granulations, granule construction and concept formation, we demonstrate that gran-
ule computing is relevant to concept learning.

12.3.1 Granules and Concepts

A concept is a mental representation or a mental symbol of human thought [13, 14].
There are many views of concept and concept learning, such as the classical view,
prototype view, exemplar view and explanation-based view. Each view explains
concepts and concept learning in an unique way, with its advantages and disad-
vantages. In this chapter, we adopt the classical view of concepts by establishing a
correspondence between concepts and granules [32].

The classical view treats a concept as a basic unit of thought that consists of two
parts, namely, the intension and extension. The intension is a subset of attributes or
properties, which are valid for instances (objects) of the concept; the extension is the
set of instances of the concept. That is, the intension provides an abstract description
of common features shared by a set of instances, while extension employs the set of
instances to interpret the concept. All objects or concrete examples in the extension
have the same set of common properties described by the intension.

The meaning triangle proposed by Ogden and Richards [16] illustrates the clas-
sical view of a concept with an added node to represent natural language coding
of a concept. As depicted in Fig. 3, the meaning triangle makes a distinction be-
tween Word, Concept and Referent in concept formation. The Concept, also called
the intension, thought, or idea, represents an abstract entity usually associated with
human thinking. The Word, also called symbol or name, is the concrete linguistic
entity embodied in speech or written text. The Referent, also called the extension or
object, represents a physical object in the external world. An arrow from Word to
Concept shows that concepts are coded by a language. Another arrow from Concept
to Referent describes that the extensional objects are mapped into intensional con-
cepts through perception. The dashed line from Word to Referent depicts an indirect
mapping through coding and perception [20, 22].

In the context of concept formation and learning, one may view a granule in terms
of the meaning triangle of a concept. As showed in Fig. 4, a granule can be jointly
characterized by three elements: Name of a granule, Description of a granule and
Instances in a granule. The Description of a granule is a representation of a granule,
which is a logic formula in this study, the Instances in a granule are the family of
objects forming the granule, and the Name of a granule is a label assigned to the
granule so that the granule can be conveniently referred to.

We may employ a logical language to study description of granules and a set-
theoretic language to study instances of granules. According to the connection be-
tween concepts and granules, we have a formal definition of a granule in the context
of concept learning.
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Concept

Word Referent

Fig. 3 The meaning triangle of a concept

Name of a granule

Description of a granule

Instances in a granule

Fig. 4 The meaning triangle of a granule

Definition 1. A granule is defined as a triplet:

(g, i(g),e(g)),

where g is the name assigned to the granule, i(g) is a representation of a granule,
and e(g) is a set of objects that are instances of the granule.

In many cases, i(g) and g are the same. Suppose L is a logic language, U is a set
of objects, and W is a set of words or labels. Then, i(g) is a formula of language L,
e(g) is a subset of U , and g is an element from W .

12.3.2 Granulation and Classification

A granulation of a universe is a family of granules, with each granule being a subset
of the universe. Two types of granulations, called partitions and coverings, can be
formed. For simplicity, we only consider a finite nonempty universe.
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Definition 2. A family of nonempty subsets of a finite universe U , π =
{b1,b2, . . . ,bk}, is called a partition of U . If it satisfies the following properties:

(P1) bi ∩b j = /0, f or i �= j,1 ≤ i, j ≤ k, (1)

(P2)
⋃

π =
k⋃

i=1

bi =U, (2)

each subset b ∈ π is called a block of π .

Definition 3. Suppose Π is the family of all partitions on a finite universe U , a
partial order (i.e., a reflexive, antisymmetric and transitive relation) can be defined
on Π as follows, for π1,π2 ∈ Π ,

π1 � π2 ⇐⇒∀b ∈ π1∃b′ ∈ π2(b ⊆ b′).

The partial ordering provides a refinement-coarsening relation over partitions. When
π1 � π2, π1 is called a refinement of π2 and π2 a coarsening of π1. The relation can
be used to build multilevel granulations of a universe, which is a granular structure.

A partition of universe is often called a classification of the universe, where each
block represents the extension of a concept. With respect to a partition, granules are
pair-wise disjoint. As a generalization, one may consider a covering of a universe.

Definition 4. A family of nonempty subsets of a finite universe U , θ =
{c1,c2, . . . ,cm}, is called a covering of U if it satisfies the condition,

(C1)
⋃

θ =
m⋃

i=1

ci =U. (3)

It is called a non-redundant covering if it satisfies the condition:

(C2)
⋃
(θ −{c}) �=U, ∀c ∈ θ . (4)

That is, each of the subsets in θ is necessary.
Similar to partial ordering on partitions, one can introduce a relation on the family

of all coverings.

Definition 5. Suppose Θ is the family of all coverings on a finite universe U . One
can define a refinement-coarsening relation on Θ as,

θ1 � θ2 ⇐⇒∀c ∈ θ1∃c′ ∈ θ2(c ⊆ c′). (5)

The ordering relation � is reflexive and transitive, but not necessarily antisymmet-
ric. When the relation is restricted to the family of all non-redundant coverings, it is
also antisymmetric.
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12.3.3 Concept Learning as Searching

An interesting result in cognitive science claims that a concept can be represented by
a family of rules that distinguish objects and determine the categorization to which
they might belong [8]. This immediately leads to rule-based concept learning. In
concept formation and learning, once a concept is formed, it can be used to define
new concepts. That is, a crucial task of concept formation and learning is to define
new concepts by using existing known concepts.

12.3.3.1 Learning a Single Concept

Consider first the task of learning a single concept. Suppose K is a family of subsets
of a finite universe U , representing extensions of a family of known concepts. Let
e(g) ∈ K be the extension of a known concept, and C = e(c) ⊆ U the extension of
a target concept named c that is to be learned. When e(g)⊆C, we can formulate a
rule,

i(g)→ i(c),

That is, if an object is described by i(g) then it is an instance of concept c. In this
way, we partially define an unknown concept c by a known concept g. In general,
one can form a family of rules i(gi)→ i(c), i = 1,2, . . . , p, to represent c by several
known concepts based on the condition e(g1)∪ e(g2)∪·· ·∪ e(gp)⊆C.

When defining an unknown concept, one may expect that number of rules are as
small as possible and each rule is as general as possible.

Definition 6. Suppose C is the extension of an unknown concept and e(g1),e(g2) ∈
K are extensions of two known concepts, c is the name of the unknown concept.
If e(g1) ⊆ C,e(g2) ⊆ C and e(g1) ⊆ e(g2), we say that e(g2) is more general than
e(g1) and e(g1) is more specific than e(g2) in specifying C.

Based on the set-inclusion relation on extensions of concepts, one can design al-
gorithms to search for the best description of unknown concepts by some known
concepts.

12.3.3.2 Learning a Classification

For a classification problem, we have a target classification and a family of known
concepts, the task is to represent the target classification through known concepts.
A solution to a classification problem can be modeled as a search in the space of
partitions or coverings whose elements are known concepts.

Definition 7. Let πD = {D1,D2, . . . ,Dt} denotes a target classification. A partition
π is called a partition solution to the classification problem if

π � πD.

Similarly, a covering θ is called a covering solution if

θ � πD.
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If π � πD is a solution, then each b ∈ π is included in a class D j ∈ πD, namely,
b ⊆ D j. Thus, we can form a classification rule,

i(b)→ i(D j),

A family of classification rules can be formulated based on all blocks in π .
In practical situations, an arbitrary solution may not be satisfactory. One needs to

impose certain conditions. For example, one may require that blocks in π are as large
as possible, in other words, their corresponding concepts are as general as possible.
This requirement can be precisely stated based on the refinement-coarsening relation
� on Π .

Definition 8. Suppose π � πD and π ′ � πD are two solutions to the classification
πD. If π � π ′, we say that π ′ is a more general solution than π .

Definition 9. A solution π � πD is called a maximal general solution if there do not
exists another solution π ′ � πD such that π ′ �= π and π � π ′.

A maximal general solution may not be unique and there may exist many maximal
general solutions. Based on the notations introduced so far, the problem of learning
classification rules may be modeled as a search for a partition such that π � πD.
In particular, one may search for a maximal general solution. The refinement-
coarsening relation � provides a search direction. One way is to start from a more
specific solution, i.e., a finer partition, to move towards a more general solution, i.e.,
a coarser partition. Alternatively, one may start from a coarser partition that is not a
solution and then refine it until a solution is obtained.

The same framework can be easily applied to search for a covering solution. In
this case, one needs to consider additional properties on a covering. For example, a
covering must be non-redundant so that no redundant rules would be produced. A
covering must contain subsets that have least overlap so that a set of less overlapping
classification rules would be generated.

12.4 A Model for Learning a Classification

Based on the discussions of the previous sections, we present a model for learn-
ing a classification. The model explicitly considers the following issues raised in
Section 12.3:

• Define a logic language for representing intensions of concepts;
• Construct a family of known concepts;
• Construct a space of partitions for the purpose of searching for a partition solution

to a classification;
• Construct a space of coverings for the purpose of searching for a covering solu-

tion to a classification.

These issues are investigated by drawing results from rough set theory. A partition-
based learning strategy, also called an attribute-oriented strategy, is obtained from
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algorithms such as ID3 [18], C4.5 [19] and reduct construction in rough set the-
ory [17]. A covering-based strategy, also called an attribute-value-oriented strategy,
is obtained from the class of sequential covering algorithms such as the PRISM
algorithm [4] and LERS algorithms [9].

12.4.1 A Decision Logic Language in an Information Table

For precisely defining intension and extension of a concept, rough set theory uses
an information table, in which a set of objects is described by a set of attributes.

Definition 10. An information table is a system S = (U,At,{Va | a ∈ At},{Ia | a ∈
At}), where U is a finite nonempty universe of objects, At is a finite nonempty set
of attributes, Va is the domain of attribute a ∈ At, and Ia : U →Va is an information
function that maps an object x ∈U to a value v ∈Va.

We consider a logic language in an information table defined by using attribute-
value pairs and logic conjunctive operator ∧.

Definition 11. A decision logic language (DL) is recursively defined as:

1. Atomic formulas: for any a ∈ At,v ∈Va, (a = v) is an atomic formula.
2. Composite formulas: if φ and ψ are formulas, φ ∧ψ is a formula.

The logic language defined in this study is only a sublanguage of a decision logic
language used in rough set theory [17]. In particular, we are only interested in con-
cepts that are conjunctively defined by a set of atomic formulas.

The semantics of formulas in DL is defined through a meaning assignment that
associates each formula with a subset of objects in U , based on the satisfiability of
a formula by an object [17, 34].

Definition 12. An object x ∈ U satisfies an atomic formula a = v, written
x |= (a = v), if Ia(x) = v; it satisfies a formula φ ∧ψ if it satisfies both φ and ψ ,
namely, x |= φ ∧ψ if and only if x |= φ and x |= ψ .

Definition 13. Suppose DL is the set of all formulas of the language DL. The mean-
ing of a formula φ ∈ DL is a subset of objects defined by:

m(φ) = {x ∈U | x |= φ}. (6)

It is possible that two distinct formulas may produce the same meaning set in an
information table. This suggests that a concept may have more than one description.
The meaning assignment satisfies the following two properties:

(m1) m(a = v) = {x ∈U | Ia(x) = v},
(m2) m(φ ∧ψ) = m(φ)∩m(ψ).

We can compute the meaning of a composite formula from its atomic formulas.
By the construction of formulas in DL, one can more conveniently represent a
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formula by a set of attribute-value pairs as follows. Let A(φ) denote the set of
all attribute-value pairs corresponding to atomic formulas in φ . It follows that
A(a = v) = {(a,v)} and A(φ ∧ψ) = A(φ)∪A(ψ). In the following discussion, we
will use φ and A(φ) interchangeably.

With the introduced logic language, we have a precise representation of a concept
or a granule. The intension of a concept is given by a logic formula of DL and the
extension is the meaning of the formula.

12.4.2 Conjunctively Definable Concepts

The language DL enables us to precisely define a concept by a logic formula. How-
ever, due to the expressive power and the limitation of the set of attributes, we may
not find a formula for an arbitrary subset of objects. This implies that the language
DL only allows us to define a sub-family of the power set 2U of U .

Definition 14. Suppose that a subset of objects C ⊆U represents the extension of a
concept. We say that C is a conjunctively definable set or concept under DL if and
only if there exists a formula φ ∈ DL such that

C = m(φ). (7)

Otherwise, it is conjunctively undefinable. The set of all conjunctively definable
concepts is given by:

K = {m(φ) | φ ∈ DL} ⊆ 2U . (8)

The family of conjunctively definable concepts consists of the building blocks,
namely, known concepts, from which new unknown concepts may be learned. That
is, we use known concepts to express other concepts.

12.4.3 Attribute-Oriented Search Strategies in a Space of
Partitions Defined by Subsets of Attributes

A crucial step in learning a classification is to construct a space of partitions based on
the family of conjunctively definable sets K. Theoretically speaking, one can obtain
such a space by collecting all partitions whose blocks are definable concepts from
K. However, constructing and searching the space of all such partitions is practically
difficult. Instead, one may use a subspace by considering partitions with additional
properties [36]. Rough set theory uses a space of partitions defined by subsets of
attributes.

In an information table, each subset of attributes defines an equivalence relation
on U .

Definition 15. Suppose P ⊆ At is a subset of attributes, an equivalence relation de-
fined by P is given by: for x,y ∈U ,

xEPy ⇐⇒∀a ∈ P(Ia(x) = Ia(y)). (9)
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That is, x and y are equivalent if they have the same values on all attributes in P. The
induced partition is given by U/EP = {[x]EP

| x ∈U}, where [x]EP = {y ∈U | xEPy}
is the equivalence class containing x.

It can be verified that [x]EP is defined by a logic formula
∧

a∈P a = Ia(x), that is,
m(
∧

a∈P a = Ia(x)) = [x]EP . Thus, U/EP ⊆ K is a partition whose blocks are con-
junctively definable sets. More importantly, the set-inclusion relation on subsets of
attributes leads to a refinement-coarsening relation on their induced partitions. For
two subsets of attributes, P1,P2 ⊆ At with P1 ⊆ P2, the following implication holds:

P1 ⊆ P2 =⇒U/EP2 �U/EP1 . (10)

Consequently, searching in the space ΠAt = {U/EP | P ⊆ At} may be viewed as
searching in the space 2At .

In rough set theory, searching for a partition solution to a classification is formu-
lated as finding an attribute reduct.

Definition 16. Suppose S = (U,At =C∪D,{Va},{Ia}) is a consistent classification
or a decision table, where C is the set of condition attributes, D is the set of classifi-
cation or decision attribute and πC � πD. A subset R ⊆C, is called a relative reduct
of C with respect to D, if R satisfies two conditions:

1. U/ER �U/ED;
2. ∀a ∈ R,¬(U/E(R−{a}) �U/ED).

Condition (1) suggests that πR is a solution to the classification πD. That is, attributes
in R are jointly sufficient. Suppose P ⊆C is a subset of attributes with πP � πD. An
attribute in P is said to be redundant if πP−{a} � πD. Condition (2) of Definition 16
states that R does not contain any redundant attributes. That is, attributes in R are
individually necessary. The two conditions together imply that πR is a maximal gen-
eral solution to πD in ΠC.

There are three searching strategies for finding a reduct, namely, deletion strat-
egy, addition-deletion strategy and addition strategy [35]. A deletion strategy starts
from the entire set of conditional attributes and sequentially deletes redundant at-
tributes. An addition-deletion strategy starts with the empty set and sequentially
adds attributes until a subset of attributes satisfying condition (1) of Definition 16.
is obtained; it then delete redundant attributes. An addition strategy only adds at-
tributes that will form a reduct.

Fig. 5 gives an algorithm that implements a deletion strategy for constructing a
reduct. The algorithm starts from the most specific partition solution πC. At each
iteration of the while loop, an attribute may be deleted to generate a more general
solution. When every attribute is checked, the algorithm produces a reduct that pro-
vides a maximal general solution. Many authors have introduced and studied fitness
functions, including dependency measures, mutual information, conditional entropy
and others.
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Algorithm 1: Construction of a Relative Reduct by Deletion

Input: A classification table S = (U,At =C∪D,{Va},{Ia});
A fitness functin δ ;

Output: A relative reduct R
1 begin
2 R =C;
3 unchecked =C;
4 while unchecked �= /0 do
5 Compute the fitness of all the attributes in unchecked using the fitness function

δ ;
6 Select an attribute a ∈ unchecked with minimum fitness;
7 unchecked = unchecked −{a};
8 if πR−{a} � πD then R = R−{a};

9 end
10 end

Fig. 5 Attribute-oriented Relative Reduct Construction

12.4.4 Attribute-Value-Oriented Search Strategies in a Space
of Coverings Defined by Families of Sets of Attribute-Value
Pairs

The partition based model can be modified to formulate a covering based model. Re-
call that each definable concept in K is defined by a conjunction of a family of atomic
formula and it can be eventually expressed by the corresponding set of attribute-value
pairs. Thus, a covering θ ⊆ K of the universe U can be viewed as a family of sets of
attribute-value pairs. This leads to attribute-value-oriented search strategy in a space
of coverings.

The set of all definable set K is a covering of U . The problem of finding a covering
solution can be formulated in terms of a reduct of K relative to πD.

Definition 17. A covering θR ⊆ K is called a relative reduct of K with respect to πD

if θR satisfies the following conditions:

1. θR � πD;
2. For any c ∈ θR,∀c′ ∈ K(c ⊂ c′ =⇒¬(((θR −{c})∪{c′})� πD));
3. For any c ∈ θR,¬(

⋃
(θR −{c}) =U ∧ ((θR −{c})� πD)).

Condition (1) states that the covering must be a solution to πD. The covering (θR −
{c})∪{c′} is produced by replacing c in θR with one of its proper supersets in K.
Condition (2) states that such a replacement will not produce a new solution. This
implies that each set in θR must be maximal. Condition (3) states that each set in θR

is necessary; the deletion of any of them will produce a family of sets that is either
not a covering or not a covering solution to πD.
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Algorithm 2: Construction of a Relative Attribute-Value Reduct

Input: A decision table S = (U,At =C∪D,{Va},{Ia});
a fitness function γ ;

Output: A relative attribute-value reduct θR

1 begin
2 θK = {c ∈ K | ∃D j ∈ πD(c ⊆ D j)};
3 θ ∗

K = {c ∈ θK | ¬(∃c′ ∈ θK(c ⊂ c′))};
4 θR = θ ∗

K ;
5 unchecked = θR;
6 while unchecked �= /0 do
7 Compute the fitness of all the sets in unchecked using the fitness function γ ;
8 Select a set c ∈ unchecked with minimum fitness ;
9 uncheked = unchecked −{c};

10 if ∪(θR −{c}) =U ∧ (θR −{c}) � πD then θR = θR −{c};
11 end
12 end

Fig. 6 Attribute-value-oriented Relative Reduct Construction

By the definition of a relative attribute-value reduct, we can select a family of sets
from K based on conditions (1)-(3) of Definition 17. In order to ensure condition (1),
each set in a covering must be a subset of a class in πD. Thus, we construct a covering
solution to πD as follows:

θK = {c ∈ K | ∃D j ∈ πD(c ⊆ D j)}

According the requirement that each set in a covering must be a maximal set by
condition (2), we simplify θK by removing the sets in θK that are subsets of other
sets in θK :

θ ∗
K = {c ∈ θK | ¬(∃c′ ∈ θK(c ⊂ c′))}.

That is, θ ∗
K is a covering such that no set in θ ∗

K is a subset of another set in θ ∗
K .

Finally, we can delete sequentially redundant set in θ ∗
K .

Fig. 6 is an algorithm for constructing a covering. It should be pointed out that the
proposed algorithm is a straightforward implementation based on the definition of
relative reduct. One may consider more efficient implementations based on existing
sequential covering algorithm such as PRISM [4] and LERS [9, 10].

12.5 Conclusion

This chapter examines a granular computing paradigm for concept learning. To a
large degree, it reformulates and reinterprets some existing results in the proposed
paradigm with two purposes. One is to provide a concrete model of granular com-
puting and the other to provide a different view for concept learning.
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The triarchic theory of granular computing is briefly summarized. The connec-
tions between granules in granular computing and concepts in concept learning are
established. We argue that a concept may be expressed by a granule based on the
classical view of concepts. For classification, the notion of a granulation, i.e., a fam-
ily of granules, is introduced. Two types of granulation, namely, partitions and cov-
erings, are investigated. The two types of granulation lead to two classes of strate-
gies for solving a classification problem. A model for learning a classification is
proposed. Based on the rough set theory and other concept learning algorithms,
two strategies are introduced, namely, an attribute-oriented strategy for searching a
space of partitions and an attribute-value oriented strategy for search space of cov-
erings. More importantly, the notion of a relative attribute-value reduct is formally
expressed, which is complementary to the widely used notion of a relative attribute
reduct.
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Chapter 13 
Identifying Calendar-Based Periodic Patterns 

Jhimli Adhikari and P.R. Rao* 

Abstract. A large class of problems deals with temporal data. Identifying 
temporal patterns in these datasets is a natural as well as an important task. In the 
recent time, researchers have reported an algorithm for finding calendar-based 
periodic pattern in a time-stamped data and introduced the concept of certainty 
factor in association with an overlapped interval. In this paper, we have extended 
the concept of certainty factor by incorporating support information for effective 
analysis of overlapped intervals. We have proposed a number of improvements in 
the algorithm for identifying calendar-based periodic patterns. In this direction we 
have proposed a hash based data structure for storing and managing patterns. 
Based on our modified algorithm, we identify full as well as partial periodic 
calendar-based patterns. We provide a detailed data analysis incorporating various 
parameters of the algorithm and make a comparative analysis with the existing 
algorithm, and show the effectiveness of our algorithm. Experimental results are 
provided on both real and synthetic databases.  

Keywords: Calendar-based pattern, Certainty factor, Overlapped interval, 
Periodic pattern, Temporal pattern, Time-stamped database. 

13.1   Introduction 

A large amount of data being collected every day has a temporal connotation. For 
example, databases those originate from transactions in a supermarket, logs in a 
network, transactions in a bank, and events related to manufacturing industry are 
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all inherently related to time. Data mining techniques could also be applied to 
these databases to discover various temporal patterns to understand the behavior 
of customers, markets, or monitored processes in different points of time. 
Temporal data mining is concerned with the analyses of data to find out patterns 
and regularities from a set of temporal data. In this context sequential association 
rule [5], periodical association rule [17], calendar association rule [18], calendar-
based periodic pattern [20], and up-to-date pattern [12] are some interesting 
temporal patterns reported in the recent time.  

For effective management of business activities, we often wish to discover 
knowledge from time-stamped data. There are several important aspects of mining 
time-stamped data including trend analysis, similarity search, forecasting and 
mining of sequential and periodic patterns. In a database from a retail store, the 
sales of ice cream in summer and the sales of blanket in winter should be higher 
than those of the other seasons. Such seasonal behaviour of specific items can only 
be discovered when a proper window size is chosen for the data mining process 
[22]. A supermarket manager may discover that turkey and pumpkin pie are 
frequently sold together in November in every year. Discovering such patterns 
may reveal interesting information that can be used for understanding the 
behaviour of customers, markets or monitored processes in different time periods. 
However, these types of seasonal patterns cannot be discovered by traditional non-
temporal data mining approaches that treat all the data as one large segment with 
no attention paid to utilizing the time information of the transactions. If one looks 
into the entire dataset rather than the transactions that occur in November, it is 
likely that one will not be able to discover the pattern of turkey and pumpkin pie 
since the overall support for them will be evidently low. In general, a time-
stamped database might exhibit some periodic behaviours. Length of a period 
might vary from one context to another context. For example, in case of sales of 
ice cream, the basic time interval could be of three months, since in many regions 
March, April and May together is considered as summer. Also, in case of sales of 
blanket, the basic time interval could be considered from November to February in 
every year. In addition, in many business applications, one might be interested in 
quarterly patterns over the years, where length of the period is equal to three 
months. A large amount of data is collected every day in the form of event time 
sequences. These sequences are valuable sources to analyze not only the 
frequencies of certain events, but also the patterns with which these events occur. 
For example, from data consisting of web clicks one may discover that a large 
number of web browsers who visit www.washingtonpost.com in morning hours 
also visit www.cnn.com. Using such information one can group users as daily 
morning users, daily evening users, weekly users, etc. This information might be 
useful for communicating to the users. Temporal patterns in a stock market, such 
as whether certain months, days of the week, time periods or holidays provide 
better returns than other time periods have received particularly a large amount of 
attention. Due to the presence of various types of applications in many fields, 
periodic pattern mining is an interesting area of study. 

Mahanta et al. [20] used set superimposition [8] to find the membership value 
of each fuzzy interval. The concept of set superimposition is defined as follows. If 
set A is superimposed over set B or set B is superimposed over set A then set  
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superimposition operation can be expressed as A (S) B = (A – B) (+) (A ∩ B)
(2) (+) 

(B – A), where (S) denotes the set superimposition operation. Here, the elements of 

(A ∩ B)
(2) are the elements of (A ∩ B) represented twice and (+) represents union 

of disjoint sets. Authors have also designed an algorithm for mining calendar-
based periodic patterns. While applying this concept authors have assumed equi-
fuzzy intervals, and accordingly the concept of certainty factor has been proposed 
for each sub-interval. Certainty factor of an interval over different time periods 
expresses the likelihood of reporting the pattern in that particular interval. If two 
intervals overlap then the certainty factor is more for the overlapped region than 
the non-overlapped region. When two intervals are superimposed, authors have 
assumed 1/2 equi-fuzzy membership value for each interval. After 
superimposition, the fuzzy membership value for the overlapped region becomes 
1. The fuzzy membership value for non-overlapped region remains 1/2. But these 
two intervals may have different supports for the pattern. The support [3] of a 
pattern represents a fraction of transactions containing the pattern. A pattern is 
frequent if its support is greater than equal to a user-defined threshold, minsupp. 
The certainty factor and support of a pattern in an interval are two different 
concepts. For an effective analysis of overlapped regions, these two concepts need 
to be introduced along with an overlapped region. Thus, in this paper we propose 
an extended analysis of superimposed intervals. The main weak point of the 
aforementioned paper is that the concept of set superimposition is not necessary in 
the proposed algorithm. Therefore, we have proposed a modified algorithm for 
identifying full as well as partial calendar-based periodic patterns. We have also 
improved our algorithm by introducing a hash based data structure for storing 
relevant information associated with intervals. In addition, we have suggested 
some other improvements in the proposed algorithm. Before concluding this 
section, we give an example of a time-stamped database that will be used for 
providing illustrative examples on various concepts. 

Example 1. Consider the following database D of transactions. Each record 
contains items purchased as well as the date of the transaction.                              • 

Table 1 A sample time-stamped database  

time-stamp items time-stamp items time-stamp items 
29/03/1990 a, b, c 07/04/1992 a, c, e, g, 

h 
17/04/1993 a, c, f 

06/04/1990 a, c, e 12/04/1992 c, e 06/04/1994 a, b, c,d 
21/04/1990 a, d 14/04/1992 c, e, f 10/04/1994 g, h 
25/04/1990 a, c, d 19/04/1992 f, g 13/04/1994 a, g 
06/03/1991 a, c 04/03/1993 a, c 18/04/1994 g, h, i 
12/03/1991 a, c, e 09/03/1993 a, c, g 20/04/1994 a, c, e, f  
19/04/1991 f, g 01/04/1993 c, h, i   
03/03/1992 a, c, d 07/04/1993 c, d   
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We have omitted the time of a transaction, since our data analysis is not associated 
with the time component of a transaction. We will refer to this database from time 
to time for the purpose of illustrating various concepts. 

Rest of the paper is organized as follows. We discuss related work in Section 2. 
In Section 3, we have discussed calendar-based periodic patterns and proposed an 
extended certainty factor of an interval. We have designed an algorithm for 
identifying calendar-based periodic patterns in Section 4. Experimental results are 
provided in Section 5. We conclude the paper in Section 6. 

13.2   Related Work 

A calendar time expression is composed of calendar units in a specific calendar 
and represents different time features, such as an absolute time interval and a 
periodic time over a specific time period. A calendar-based periodic pattern is 
associated with time hierarchy for calendar years. In this paper we have dealt with 
calendar dates over the years. 

Verma et al. [23] have proposed an algorithm H-Mine, where a header table H 
is created separately for each interval. Each frequent item entry has three fields 
viz., item-id, support count and a hyper-link. In order to deal with the patterns in 
time-stamped databases we have proposed a hash-based data structure where at 
the first index level we store distinct years that appear in the transactions. Then we 
keep an array of pointers corresponding to every year in the index table. The k-th 
pointer of this array points to tables containing interesting itemsets of size k. 

Lee et al. [15] have proposed two data mining systems for discovering fuzzy 
temporal association rules and fuzzy periodic association rules. The mined 
patterns are expressed in fuzzy temporal and periodic association rules that satisfy 
the temporal requirements specified by the user. In the proposed algorithm the 
mined patterns are dependent on user inputs such as maximum gap between two 
intervals and minimum length of an interval. 

Li et al. [18] proposed two classes of temporal association rules, temporal 
association rules with respect to precise match and temporal association rules with 
respect to fuzzy match, to represent regular association rules along with their 
temporal patterns. Our work differs from it, since we identify frequent itemsets 
along with the associated intervals. Then we use match ratio to determine whether 
a pattern is full periodic or partial periodic. Subsequently, Zimbrao et al. [25] 
reported a similar work. Authors incorporate multiple granularities of time 
intervals from which both cyclic and user-defined calendar patterns can be 
achieved. Ale and Rossi [6] proposed an algorithm to discover temporal 
association rules. In this algorithm, support of an item is calculated only during its 
lifespan. In the proposed work we compute and store supports of itemsets when 
they satisfy the requirements of the user. 

Lee et al. [16] have proposed a technique for mining partial multiple periodic 
patterns without redundant rules. Without mining every period, authors checked 
the necessary period and used this information to do further mining. Instead of 
considering the whole database, the information needed for mining partial periodic 
patterns is transformed into a bit vector that can be stored in a main memory. This 
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approach needs to scan the database at the most two times. Our approach extracts 
both partial and full periodic patterns together by scanning the database repeatedly 
to find the higher-level patterns as done using apriori algorithm [4]. 

In the context of support definition, Kempe et al. [13] have proposed a new 
support definition that counts the number of pattern instances, handles multiple 
instances of a pattern within one interval sequence and allows time constraints on 
a pattern instance.  

Lee et al. [14] have proposed a new temporal data mining technique that can 
extract temporal interval relation rules from temporal interval data by using 
Allen’s theory [7]. Authors designed a preprocessing algorithm for generalization 
of temporal interval data. Also, authors have proposed an algorithm for 
discovering a temporal interval relation. Although there are thirteen different types 
of relations between two intervals, in our work we have focused on only 
overlapped intervals to find locally frequent itemsets of larger size and detect 
periodicity of patterns. 

Ozden et al. [21] proposed a method of finding patterns having periodic nature 
where the period has to be specified by the user. Han et al. [11] proposed several 
algorithms for mining partial periodic patterns by exploring some interesting 
properties such as the apriori property and the max-subpattern hit set property by 
shared mining of multiple periods.  

13.3   Calendar-Based Periodic Patterns 

In Section 1, we have presented some important applications of calendar-based 
periodic patterns. A calendar-based periodic pattern is dependent on the schema of 
a calendar. There are various ways one could define the schema of a calendar. We 
assume that the schema of calendar-based pattern is based on day, month and year. 
This schema is also useful to determine weekly-based pattern, since first seven 
days of any month correspond to the first week, days 8 to14 of any month 
correspond to the second week, and so on. Thus, one can have several types of 
calendar-based periodic patterns viz., daily, weekly, monthly and yearly. Based on 
a schema, some examples of calendar patterns are given as follows: every day of 
January, 1999; every 16-th day of January in each year; second week of every 
month. Again, each of these periodic patterns could be of two types viz., partially 
periodic pattern and full periodic pattern. A problem related to periodicity could 
be of finding patterns occurring at regular time intervals. Thus it emphasizes on 
two aspects viz., pattern and interval. 

A calendar pattern refers to a market cycle that repeats periodically on a 
consistent basis. Seasonality could be a major force in a marketplace. While 
calendar patterns are based on a framework of multiple time granularities viz., 
day, month and year, but the periodic patterns are defined in term of a single 
granularity. Here patterns are dependent on the lifespan of an item in a database. 
Lifespan of an item (x) is a pair (x, [t1, t2]), where t1 and t2 denote the time that the 
item x appears in the database for the first time and last time, respectively. The 
problem of periodic pattern mining can be categorized into two types. One is full 
periodic pattern mining, where every point in time granularity [9] contributes to a 
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cyclic behavior of the pattern. The other and more general one is called partial 
periodic pattern mining, which specifies the behavior of the pattern at some but 
not all points of time granularity [9] in the database. Partial periodicity is a looser 
form of periodicity than full periodicity, and it also occurs more commonly in a 
real world database. A pattern is associated with a real number m (0 < m < 1), 
called match ratio [18] that reveals that a pattern holds with respect to fuzzy match 
satisfying at least 100m% of the time intervals. Match ratio is an important 
measure which determines whether a calendar-based pattern could be full periodic 
or partial periodic. When the match ratio is equal to 1 then it is a full periodic 
pattern. In case of partial periodic pattern the match ratio lies between 0 and 1. 
While finding yearly periodic patterns, Mahanta et al. [20] have proposed match 
ratio in somewhat a different way. Authors have proposed match ratio as the 
number of intervals is divided by the number of years in the lifespan of the pattern 
for the purpose of mining yearly pattern. It might be difficult to work with this 
definition, since a mining algorithm returns itemsets and their intervals. A mining 
algorithm might not be concerned with reporting the first and last appearances of 
an itemset. Therefore, we will follow the definition proposed by Li et al [18]. 

We have discussed the concept of certainty factor in Section 1. Also we have 
noticed that the analysis of overlapped region using certainty factor might not be 
sufficient. Therefore, we propose an extension to it. 

13.3.1   Extending Certainty Factor 

The concept of certainty factor is based on the concept of set superimposition. If 
we are interested in yearly patterns, during the analysis of superimposed intervals 
the year component is ignored. We explain here the concept of set superimposition 
using the following example.  

Example 2. Consider the database of Example 1. Itemset {a, c} is present in 3 out 
of 4 transactions in the intervals [29/03/1990 - 25/04/1990]. Also, {a, c} is present 
in 2 out of 3 transactions in the intervals and [06/03/1991 - 19/04/1991]. 
Therefore, {a, c} is frequent in these intervals at minimum support level 0.66. 
These two intervals are being superimposed where each of these intervals has 
fuzzy set membership value 1/2. The overlapped area of these two intervals is 
[29/03 - 19/04]. Based on the concept of set superimposition, an itemset reported 
in a non-overlapped region has the fuzzy set membership value 1/2. But, an 
itemset reported in the overlapped interval [29/03 - 19/04] has fuzzy set 
membership value 1/2 + 1/2 = 1.                                                                              • 

For the purpose of mining periodic patterns, Mahanta et al. [20] have proposed 
certainty factor. It is based on a set of overlapped intervals corresponding to a 
pattern occurring on a periodic basis. For example, one might be interested in 
identifying yearly periodic patterns in a database. Authors have considered all the 
intervals having equi-fuzzy membership value. For example, if n intervals are 
superimposed then every interval has 1/n equi-fuzzy membership value and in  
an overlapped area the membership value will be added. The certainty of the 
pattern in the overlapped interval is more than the certainty in the other intervals. 



13  Identifying Calendar-Based Periodic Patterns 335
 

Let [t1, t’1] and [t2, t’2] be two overlapped intervals where a pattern X gets reported 
with certainty value 1/2. When the two intervals are superimposed the certainty 
factors of X associated with the various subintervals are given as follows: 

[t1, t’1]
1/2 (S) [t2, t’2]

1/2  = [t1, t2)
1/2 [t2, t’1]

1 (t’1, t’2]
1/2             …(1) 

The notion of certainty factor seems to be an important contribution made by the 
authors. It represents the certainty of reporting a pattern in an interval by 
considering a sequence of periods. For example, we might be interested in 
knowing the certainty of pattern {a, c} in the month of April with respect to the 
database in Example 1. It is an important statistical evidence of a pattern in an 
interval over a sequence of years (periods). For example, one could say that the 
evidence of the pattern {a, c} is certain in the month of April when the years viz., 
1990, 1991, 1992 and 1993 are considered. But the concept of certainty factor 
does not convey the information regarding the frequency of a pattern in an 
overlapped region. In addition, it gives equal importance to all the intervals by 
considering them as equi-fuzzy intervals. From the perspective of the evidence of 
a pattern, such assumption might be realistic. But from the perspective of the 
depth of evidence, such concept might not be sufficient. Thus, we propose an 
extension to the concept of certainty factor. In the proposed extension, we 
incorporate the information regarding support of a pattern in an interval. There are 
many ways one could keep the information regarding support. In Example 1, there 
are four overlapping intervals corresponding to the pattern {a, c}. There exists a 
region where all the intervals are overlapped, while some regions may not be 
overlapped at all. Apart from the certainty factor of a region, one could also keep 
the support information of the pattern in that interval. In general, a region could be 
overlapped by all intervals. Let there be n supports of a pattern corresponding to n 
intervals. Then the question comes to our mind, how to keep the support 
information of the pattern for n intervals. The answer to this question might not be 
agreeable to all. One might be interested in keeping the average support of the 
pattern along with the certainty factor for that interval. Some of us might be 
interested in keeping information regarding the minimum and maximum of n 
supports. In an extreme case, one might be interested in keeping all the n supports 
of the pattern corresponding to n intervals. Let us consider that we are interested 
in yearly pattern. Let the lifespan of a pattern be forty years. Then one has to keep 
a maximum of forty supports corresponding to an overlapped region. It might not 
be realistic to maintain all the forty supports. Let s-info(X, [t1, t2]) be the support 
information of the pattern X for the interval [t1, t2]. 

Let a pattern X be frequent in time intervals [ti, t’i], i =1, 2, …, n. Each of these 

intervals is taken from a different period of time such that φtt ii
n
i ≠= ],[ '

1∩ . In 

Example 1, patterns {a}, {c} and {a, c} get reported in the month of April in 
every year. By generalizing (1), the certainty factor of X in overlapped regions 
could be obtained as follows: 

[t1, t’1]
1/n (S) [t2, t’2]

1/n (S) … (S) [tn, t’n]
1/n = [t(1), t(2))1/n [t(2), t(3))2/n  [t(3), t(4))3/n …  

[t(r)
, t

(r+1))r/n …× [t(n), t’(1)]1 (t’(1)
, t

’(2)]n-1/n …( t’(n-2)
, t

’(n-1)]2/n (t’(n-1)
, t

’(n)]1/n     …(2) 
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where 
n
i

it 1
)( }{ =  is the sequence obtained from n

iit 1}{ = by sorting in ascending 

order and 
n
i

it 1
)(' }{ =  is obtained from n

iit 1
'}{ = by sorting in ascending order. We 

propose an extended certainty factor of X in the above overlapped intervals as 
follows: 

When X is reported in [t(n), t’(1)] then the certainty value is 1 with support 
information s-info(X, [t(n), t’(1)]). But, the certainty value of X for the outside of 
[t(1), t’(n)] is 0 with support information 0. When X is reported in [t(r-1), t(r)), then the 
certainty value is (r - 1) / n with support information s-info(X, [t(r-1), t(r))), for r = 2, 
3, … , n. Otherwise, the certainty value of X for (t’(r-1), t’(r)] is (n – r + 1) / n with 
support information s-info(X, (t’(r-1), t’(r)]), for r = 3, 4, … , n.  

Suppose we are interested in identifying yearly periodic patters. So each time 
interval is taken from a year. From the perspective of n years, the pattern X gets 
reported in every year in the interval [t(n), t’(1)]. So, the certainty of X is 1 (highest) 
in this interval. But, X is not frequent pattern outside of [t(1), t’(n)]. Therefore, from 
the perspective of all the years the certainty of X is 0 (lowest) outside of the 
interval. The certainty factor also provides the information regarding how many 
intervals are overlapped on a sub-interval. For example, if the certainty factor of a 
sub-interval is 2/5, for given five intervals, then two intervals are overlapped on 
the sub-interval. On the other hand, s-info provides the information regarding 
degree of frequency of X in an interval. To illustrate the above concept we 
consider the following example.  

Example 3. The purpose of this example is to explain the proposed concept of 
extended certainty factor stated above. Let the years 1980, 1981, 1982 and 1983 
be of our interest. We would like to check whether the pattern X is yearly periodic. 
Assume that the mining algorithm has reported X as frequent in the time intervals 
[t1, t’1], [t2, t’2], [t3, t’3] and [t4, t’4] for the years 1980, 1981, 1982 and 1983, 
respectively. Also, let the supports of X in [t1, t’1], [t2, t’2], [t3, t’3] and [t4, t’4] be 
0.2, 0.15, 0.16 and 0.12, respectively. Based on the proposed extended concept, 
we wish to analyze the time interval [t1, t’4] by overlapping these intervals 
corresponding to the four years. The overlapped intervals are depicted in Figure 1.  

 

Fig. 1 Overlapped intervals for finding yearly pattern X 

While computing support information we use here the range measure for a set 
of values. One could use another support information depending on the 
requirement. An analysis of the overlapped intervals corresponding to X is 
presented in Table 2. Certainty of a sub-interval is based on the number of 
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intervals overlapped on it. For example, [t1, t2) has certainty 1/4, since there is 
only one interval out of four intervals.  

Table 2 An analysis of the overlapped intervals for finding yearly pattern X 

interval certainty 
factor 

s-info interval certainty 
factor 

s-info 

[t1, t2) 1/4 0.2 - 0.2 (t’1, t’2] 3/4 0.12 - 0.15 

[t2, t3) 1/2 0.15 - 0.2 (t’2, t’3] 1/2 0.12 - 0.16 

[t3, t4) 3/4 0.15 - 0.2 (t’3, t’4] 1/4 0.12 - 0.12 

[t4, t’1] 1 0.12 - 0.2    

Here s-info corresponding to interval [t3, t4) represents the fact that the 
maximum and minimum supports of overlapped intervals are 0.2 and 0.15 
respectively.                                                                                                              • 

Certainty factor and support information are not the same. They represent two 
different aspects of a pattern in an interval. Certainty factor is normally associated 
with multiple time intervals. It expresses the likelihood of reporting a pattern in a 
sub-interval of the multiple overlapped intervals. But the concept of support is 
associated with a single time-interval. It is defined as the fraction of the 
transactions containing the pattern in a time-interval. Thus, for an effective 
analysis of a superimposed interval both the certainty factor and support 
information are needed in association with an interval. 

13.3.2   Extending Certainty Factor with Respect to Other 
Intervals 

In Figure 1 we have shown four intervals overlapped corresponding to four 
different years. But in reality the scenario could be different. For four intervals, 
there may exist different combinations of overlapped intervals. But, whatever may 
be the case, the certainty factor of a sub-interval depends on the number of 
intervals overlapped in that sub-interval and s-info depends on the supports of the 
pattern in the intervals that are being overlapped on a sub-interval. Let us consider 
a sub-interval [t, t’], where m out of n intervals are overlapped on [t, t’]. Based on 
certainty factor [20], we propose an extended certainty factor as follows:  

When X is reported in [t, t’], then the certainty value is m/n with support 
information s-info(X, [t, t’]), where s-info(X, [t, t’]) is based on supports of X in the 
m intervals overlapped on [t, t’]. We illustrate this issue with the help of Example 
4. Before that, we present a few definitions related to overlapped intervals. Let 
maxgap be the user-defined maximum gap (time units) between current time-
stamp of a pattern and the time-stamp of the pattern when it was last seen. If the 
gap between current time-stamp of a pattern and the time-stamp of the pattern 
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when it was last seen is greater than maxgap then a new interval is formed for the  
pattern with the current time-stamp as the start of the interval. Also, the previous 
interval of the pattern was ended when it was last seen. Let mininterval be the 
minimum period length of a time interval. Each interval should be of sufficient 
length, otherwise a pattern appearing once in a transaction also becomes frequent 
in an interval. If two intervals are overlapped and the length of the overlapped 
region exceeds mininterval then the overlapped region could be interesting. 

Example 4. We refer to the database of Example 1. Let the value of maxgap be 40 
days. Then pattern {a, c} gets reported in the following intervals: [29/03/1990 - 
25/04/1990], [06/03/1991 - 12/03/1991], [03/03/1992 - 07/04/1992], [04/03/1993 - 
17/04/1993], and [06/04/1994 - 20/04/1994]. Let the value of mininterval be 10 
days. The interval [06/03/1991 - 12/03/1991] does not satisfy the criterion of 
mininterval. Also let the value of minsupp be 0.5. Then {a, c} is not locally 
frequent in the interval [06/04/1994 - 20/04/1994]. We shall analyse the pattern 
{a, c} in the following intervals: [29/03/1990 - 25/04/1990], [03/03/1992 - 
07/04/1992], and [04/03/1993 - 17/04/1993]. After superimposition, we require  
to analyse the interval [03/03 - 25/04]. We present superimposed intervals in 
Figure 2.  

 

Fig. 2 Overlapped intervals for finding yearly pattern {a, c} 

We present an analysis of the time interval [03/03 - 25/04] based on the concept 
of extended certainty factor. Extended certainty factor of a pattern in an interval 
provides information of both the certainty factor and s-info for a pattern. In Table 
3 we present an analysis of intervals for finding yearly pattern {a, c}.                   • 

Table 3 An analysis of the time interval [03/03 - 25/04] for finding yearly pattern {a, c} 

interval certainty  s-info interval certainty s-info 
[03/03 - 04/03) 1/5 1.0 - 1.0 (07/04 - 17/04] 2/5 0.6 - 0.75 
[04/03 - 29/03) 2/5 0.6 - 0.75 (17/04 - 25/04] 1/5 0.75 - 0.75 
[29/03 - 07/04] 3/5 0.6 - 1.0    

In the above we have presented an analysis of the time interval [03/03 - 25/04]. 
The subintervals [03/03 - 04/03) and (17/04 - 25/04] are also shown, but they do 
not satisfy mininterval criterion. In the experimental results we have not presented 
such subintervals. 
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13.4   Mining Calendar-Based Periodic Patterns 

Itemsets in transactions could be considered as a basic type of pattern in a 
database. Many interesting patterns such as association rules [3], negative 
association rules [24], Boolean expressions induced by itemset [1] and conditional 
patterns [2] are based on itemset patterns. Some itemsets are frequent in certain 
time intervals but may not be frequent throughout the lifespan of the itemsets. In 
other words, some itemsets may appear in the transactions for a certain time 
period and then disappear for a long period and then reappear. In view of making a 
data analysis involving various itemsets, it might be required to extract the 
itemsets together with the associated time-slots. 

13.4.1   Improving Mining Calendar-Based Periodic Patterns  

The goal of this paper is to study the existing algorithm, and to propose an 
effective algorithm by improving the limitations of the existing algorithm for 
mining calendar-based periodic patterns. As noted earlier that the concept of 
certainty factor of an interval does not provide good analysis of overlapped 
intervals. Therefore, the concept of extended certainty factor has been proposed. 
In view of designing an effective algorithm, we also need to understand the 
existing algorithm. Mahanta et al. [19] have proposed an algorithm for finding all 
the locally frequent itemsets of size one. While studying the algorithm we have 
found that some variables contradict their definitions. Authors defined two 
variables ptcount and ctcount as follows. The variable ptcount is used to count the 
number of transactions in an interval in which the current item belongs. On the 
other hand, the variable ctcount is used to count the number of transactions in that 
interval. Therefore, the assignment ptcount[k] = ctcount[k] in the algorithm, seems 
to be not appropriate. Also, the variable icount is defined as the number of items 
present in the whole dataset. Therefore, the initialization, icount = 1, placed just 
before starting a new interval seems to be inappropriate. Moreover, the validity of 
the experimental results is low, since it is based on only one dataset. In view of 
improving the algorithm further we propose a number of modifications mentioned 
as follows: (i) The proposed algorithm makes corrections on the existing 
algorithm using the points noted above. (ii) It makes effective data analysis by 
incorporating extended certainty factor. (iii) We propose a hash-based data 
structure to improve the space efficiency of our algorithm. (iv) Also, we have 
improved the average time complexity of the algorithm. (v) We make a 
comparative analysis with the existing algorithm. (vi) In addition, we have 
improved the validity of the experimental results by conducting experiments on 
more datasets. 

13.4.2   Data Structure  

We discuss here the data structure used in the proposed algorithms for mining 
itemsets along with the time intervals in which they are frequent. We describe the 
data structure using Example 5 given below. 
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Example 5. Consider the database D of Example 1. Transactions consisting of 
items a, b, c, d, e, f, g, h, and i occurred in the years from 1990 to 1994. We 
propose Algorithm 1 to mine locally frequent itemsets of size one along with their 
intervals. The algorithm produces output as shown at level 1 of Figure 3. We 
assume here maxgap, mininterval and minsupp as 40 days, 5 days and 0.5, 
respectively. We are interested in identifying yearly periodic patterns. At the level 
0 we have shown all the years that appeared in the transaction. The pointer 
corresponding to the year 1990 keeps all the locally frequent itemsets of size one, 
their supports and intervals. All the five years are stored in an index table at level 
0. After level 0, we keep an array of pointers for every year. The first pointer 
corresponding to year 1990 points to a table containing interesting itemsets of size 
one, their intervals and local supports. The second pointer corresponding to year 
1990, points to a table containing interesting itemsets of size two, their intervals 
and local supports, and so on. Here itemsets of size three corresponding to a year 
do not get reported. Different itemsets, their intervals, and supports are shown in 
Figure 3.  

 

Fig. 3 Data structure used in the proposed algorithms 
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13.4.3   A Modified Algorithm   

As mentioned in Section 4.1, we have proposed a number of improvements to the 
algorithm proposed by Mahanta et al. [19] for finding locally frequent itemsets of 
size one. We calculate the support of each item in an interval and store it 
whenever the item is frequent in that interval. Intervals that satisfy the user-
defined constraints mininterval and minsupp are retained. The modification made 
seems to be significant from the overall viewpoint of apriori algorithm. We have 
used a hash-based data structure to improve efficiency of storing and accessing 
locally frequent itemsets of size one. We explain all the variables and their 
functions in the following paragraph. 

Let item be an array of items in D. Also let the total number of items be n. We 
use index level_0 to keep track of different years. It is a two-dimensional array 
containing 2 columns. First column of level_0 contains the different years in 
increasing order. A two-dimensional array itemset_addr is used to store the 
addresses of tables containing itemsets. itemset_addr[row][j] contains the address 
of the table containing locally frequent itemsets of size j for the year row. The 
second column of level_0 stores addresses of arrays pointing to these tables. 
Tables at level_p store the frequent itemsets of size p, p = 1, 2, 3, … . Variables 
row and row_p are used to index arrays itemset_addr and level_p respectively, p = 
0, 1, 2, … . We consider a transaction as a record containing transaction date 
(date) and items purchased. Function year( ) is used to extract year from a given 
date. firstseen[k] and lastseen[k] specify the date when the k-th item is seen for the 
first time and last time in an interval, respectively. Each item in the database is 
associated with the arrays itemIntervalFreq and nTransInterval. Cells 
itemIntervalFreq[k] and nTransInterval[k] are used to keep the number of 
transactions containing item k and total number of transactions in a time interval, 
respectively. Variable nItemsTrans is used to keep track of the number of items in 
the current transaction. The goal of the Algorithm 1 is to find all the locally 
frequent itemsets of size one, their intervals and supports. The algorithm is 
presented as follows. 

Algorithm 1. Mine locally frequent items and their intervals 
procedure MiningFrequentItems (D, maxgap, mininterval, minsupp)  
Inputs: D, maxgap, mininterval, minsupp 
D: database to be mined 
minsupp: as defined in Section 1 
maxgap, mininterval: as defined in Section 3.2 
Outputs:   
Locally frequent items, their intervals and supports as mentioned in Figure 3 
01:  let nItemsTrans = 0; row = 1; row_0 =1; row_1 = 1;  
02:  for k = 1 to n do 
03:     lastseen[k] = 0; itemIntervalFreq[k] = 0; nTransInterval[k] = 0;  
04:  end for  
05:  read a transaction t ∈ D; 
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06:  level_0[row_0][1] = year(t.date); 
07:  level_0[row_0][2] = itemset_addr[row][1]; 
08:  while not end of transaction in D do 
09:     transLength = |t|; 
10:     if (level_0[row_0][1] ≠ year(t.date)) then  
11:        for k = 1 to n do         
12:           if (|lastseen[k] − firstseen[k]| ≥ mininterval) and  
                (itemIntervalFreq[k] / nTransInterval[k] ≥ minsupp) then 
13:           store the k-th item, its firstseen, lastseen and local support at level_1[row_1];  
14:           increase row_1 by 1; 
15:           end if {12} 
16:     end for {11} 
17:     row_1 = 1; 
18:    increase row_0 by 1; increase row by 1; 
19:    level_0[row_0][1] = year(t.date); level_0[row_0][2] = itemset_addr[row][1]; 
20:    for k = 1 to n do 
21:        lastseen[k] = 0; itemIntervalFreq[k] = 0; nTransInterval[k] = 0;  
22:        end for 
23:     end if {10}  
24:     for k = 1 to n do 
25:        if (item[k] ∈ t) then 
26:           increase nItemsTrans by 1;  
27:           if (lastseen[k] = 0) then   
28:              initialize both lastseen[k] and  firstseen[k] by t.date;  
                   initialize both itemIntervalFreq[k] and nTransInterval[k] by 1; 
29:           else if ( | t.date − lastseen[k] | ≤ maxgap ) then 
30:                   lastseen[k] = t.date; 
31:                   increase itemIntervalFreq[k] by 1; increase nTransInterval[k] by 1; 
32:                   end if  
33:           else if ( | lastseen[k] − firstseen[k] | ≥ mininterval) and  
         (itemIntervalFreq[k] / nTransInterval[k] ≥ minsupp) then 
34:    store the k-th item, its firstseen, lastseen and local support at level_1[row_1];       
35:                increase row_1 by 1; 
36:                initialize both lastseen[k] and  firstseen[k] by t.date; 
37:                initialize both itemIntervalFreq[k] and nTransInterval[k] by 0; 
38:                end if {33} 
39:            end if {27} 
40:        else increase nTransInterval[k] by 1; 
41:        end if {25} 
42:       if (nItemsTrans = transLength) then exit from for-loop; end if 
43:     end for {24} 
44:     read a transaction t ∈ D; 
45:  end while {08} 
46:  for k = 1 to n do 
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47:     if (|lastseen[k] − firstseen[k]| ≥ mininterval) and  
          (itemIntervalFreq[k] / nTransInterval[k] ≥ minsupp) then 
48:    store the k-th item, its firstseen, lastseen and local support at level_1[row_1]; 
49:     increase row_1 by 1; 
50:     end if {47} 
51:  end for {46} 
52:  sort arrays level_1 on non-increasing order on primary key item and  
       secondary key start date; 
end procedure 

At line 5 we read the first transaction of database. Afterwards the first row of 
the index level_0 is initialized with the first year obtained from the transaction. 
The pointer field of the first row of level_0 is initialized by the address of the first 
row of the table itemset_addr. Lines 8-45 are repeated until all the transactions are 
read. At line 10 we check whether the current transaction belongs to a different 
year. If it happens so then we close the last interval of different items using lines 
11-16. We retain those intervals that satisfy criteria of mininterval and minsupp. 
Lines 17-22 assign the necessary initializations for a different year. Lines 25-41 
are repeated for each item in the current transaction. Line 27 checks whether the 
item is first time seen in the transaction and the necessary assignment is done in 
line 28. Lines 29-32 determine whether the current transaction-date is coming 
under the current interval by comparing the difference between t.date and lastseen 
with maxgap. Lines 33-38 construct an interval and compute the local support. 
Line 42 avoids the unnecessary repetition by comparing the transaction length. 
Line numbers 46-51 close all the last intervals for last year. Line 52 sorts  
arrays level_1 on non-increasing order on primary key item and secondary key 
start date.  

The time complexity of the algorithm has been reduced significantly by 
computing the length of current transaction (at line number 9) and putting a check 
at line number 25. Consider a database containing 10,000 items. Let the current 
transaction be of length 20 and these items are within the first 100 items. Then the 
for-loop at line number 24 need not have to continue for the remaining 9,900 
items, but the worst-case complexity of the algorithm remains the same as before. 

We shall now present below an algorithm that makes use of locally frequent 
itemsets obtained by Algorithm 1 and apriori property [4]. We use array level_1 to 
generate the candidate sets at the second level. Then array level_2 is used to 
generate candidate sets at the third level, and so on. We apply pruning using 
conditions at line number 6 to eliminate some itemsets at the next level. This 
pruning step ensures that the size of the itemsets at the current level is one more 
than the size of an itemset at the previous level. Also we apply pruning using user-
defined thresholds such as maxgap, mininterval and minsupp.  
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Algorithm 2. Mine locally frequent itemsets at higher level and the associated 
intervals 
procedure MiningHigherLevelItemsets (D, S)  
Inputs: D, S 
D: database to be mined 
S: partially constructed data structure containing locally frequent itemsets of size 
one 
Outputs: locally frequent itemsets at higher levels, the associated intervals and 
supports as mentioned in Figure 3 
01: let L1 = set of elements at level_1of S; let k = 2; 
02: while Lk-1 ≠ φ do  
03:    Ck = φ; 
04:    for each itemset l1∈ Lk-1do 
05:       for each itemset l2 ∈ Lk-1do 
06:          if ((l1[1] = l2[1]) ∧ … ∧ (l1[k-2] = l2[k-2]) ∧ (l1[k-1] < l2[k-1])) then 
07:             c = l1⋈ l2; Ck = Ck ∪ c; 
08:          end if {06} 
09:       end for {05} 
10:   end for {04} 
11:   for each element c ∈ Ck do 
12:    construct intervals for c as mentioned in Algorithm 1; 
13:     if the intervals corresponding to c satisfy maxgap, mininterval and minsupp then  
14:       add c and the intervals to level_k of S; 
15:       end if {13} 
16:    end for {11} 
17:    increase k by 1; 
18:    let Lk = set of elements at level_k of S; 
19: end while {02} 
end procedure 

Using Algorithms 1 and 2, one could construct the data structure S presented in 
Figure 3 completely. One can use S to determine whether an itemset pattern is 
fully / partially periodic.  

13.5   Experimental Studies 

We have carried out several experiments for mining calendar-based periodic 
patterns on different databases. All the experiments have been implemented on a 
2.4 GHz, core i3 processor with 4 GB of memory, running Windows 7 HB, using 
Visual C++ (version 6.0) software. We present experimental results using retail 
[10], BMS-WebView-1 [10], and T10I4D100K [10] databases. Since the records in 
these databases contain only items purchased in transactions, we have attached 
time-stamps randomly as calendar date for the transactions. The characteristics of 
the databases are given in Table 4. 
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Table 4 Database characteristics 

D NT ALT AFI NI Size in Megabytes 
retail  88,162 11.31 60.54 16,470 3.97 

BMS-WebView-1 1,49,639 2.00 44.57 6,714 1.97 
T10I4D100K 1,00,000 11.10 1276.12 870 3.83 

Each of the databases retail, BMS-WebView-1 and T10I4D100K has been 
divided into 30 sub-databases, called yearly databases, for the purpose of 
conducting experiments. The characteristics of these databases are given in Table 
5. Let D, NT, ALT, AFI, and NI be the given database, the number of transactions, 
average length of a transaction, average frequency of an item, and the number of 
items, respectively. In Table 5 we have shown how the transactions have been 
time-stamped. The yearly databases obtained from retail, BMS-WebView-1 and 
T10I4D100K are named as Ri, Bi and Ti respectively, i = 1, …, 30. For simplicity, 
we have kept the number of transactions in each of the yearly databases fixed, 
except for the last database. We assume that the first and the last transactions 
occur on 01/01/1961 and 31/12/1990 respectively, and also assume that each year 
contains 365 days. In our experimental studies we report yearly periodic patterns 
and the associated periodicities. We also compute certainty factor and match ratio 
of a pattern with respect to overlapped intervals. 

Table 5 Characteristics of yearly databases  

D NT starting date,  ending date 
average number of 

transactions per day 
R1 2920 01/01/1961, 31/12/1961 8 
… … … … 
R29 2920 01/01/1989, 31/12/1989 8 
R30 3482 01/01/1990, 31/12/1990 9.54 
B1 5110 01/01/1961, 31/12/1961 14 
… … … … 
B29 5110 01/01/1989, 31/12/1989 14 
B30 1449 01/01/1990, 31/12/1990 3.97 
T1 3285 01/01/1961, 31/12/1961 9 
… … … … 
T29 3285 01/01/1989, 31/12/1989 9 
T30 4735 01/01/1990, 31/12/1990 12.97 

In addition to partial periodic patterns, we mine full periodic patterns in the 
above databases. Itemset patterns of size one and two of retail is shown in Tables 
6 and 7 respectively. In retail the itemsets {39} and {48} occur in all the thirty 
years and they are periodic throughout the year. Therefore, these itemsets are full 
periodic in the interval [1/1-31/12]. Itemset {41} is partially periodic, since the 
match ratio is less than 1. Initially it becomes frequent for thirteen years and then 
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it does not get reported, and again it becomes frequent for the last six years. The 
subintervals that do not satisfy the mininterval criterion are not shown. We have 
noticed some peculiarity in the mined patterns. For example, many patterns such 
as {0} and {1} are frequent throughout a year. Although, it is peculiar but it 
remains also an artificial phenomenon, since the time-stamps are enforced by us. 
There are many itemsets such as {16217} are frequent in many years with non-
overlapping intervals. In Table 6, we present itemsets of size one that are also part 
of interesting itemsets of size two as shown in Table 7. While computing the 
certainty factor of an itemset we have used lifespan of the itemset. For example, 
itemset {0} gets reported from two years and it becomes frequent in both the 
years. Therefore its certainty factor is 2/2 = 1. 

Table 6 Selected yearly periodic itemsets of size one (for retail) 

retail (minsupp = 0.25, mininterval = 8, maxgap = 10) 

itemset intervals certainty  s-info match ratio 

{0} [1/1-31/12] 2/2 0.35-0.66 1.0 
{1} [3/1-31/12] 2/3 0.57-0.66 0.67 

{39} [1/1-31/12] 30/30 0.52-0.63 1.0 
{41} [1/1-22/12] 13/30 0.26-0.32 0.43 
{41} [2/12-30/12] 6/30 0.27-0.32 0.20 
{48} [1/1-31/12] 30/30 0.43-0.53 1.0 

{16217} [1/1- 30/5] 1/1 0.87-0.87 1.0 
{16217} [7/9- 31/12] 1/1 0.97-0.97 1.0 

Table 7 Yearly periodic itemsets of size two (for retail) 

retail (minsupp = 0.25, mininterval = 8, maxgap = 10) 

itemset intervals certainty  s-info match ratio 

{0, 1} [15/10-31/12] 1/1 0.46 1.0 
{39, 41} [1/1-30/12] 1/1 0.25 1.0 
{39, 48} [1/1-30/12] 30/30 0.28-0.38 1.0 

{39, 16217} [1/1- 30/5] 1/1 0.34 1.0 
{48, 16217} [7/9- 31/12] 1/1 0.27 1.0 

Interesting itemset patterns of size one and two in BMS-WebView-1 are shown 
in Tables 8 and 9 respectively. Here full periodic patterns are not reported since all 
the itemsets in BMS-WebView-1 have match ratio less than 1. Therefore, these 
patterns are partial periodic. Itemset {12355} becomes frequent in three years but 
it has lifespan for seven years. In this database the items are sparse. Therefore, one 
requires choosing a smaller minsupp. From Table 9 one could observe that itemset 
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{33449, 33469} shows periodicity by appearing two times in six years and the 
remaining interesting itemsets are reported for a year only.  

Table 8 Yearly periodic itemsets of size one (for BMS-WebView-1) 

BMS-WebView-1(minsupp=0.06, mininterval = 7, maxgap = 10) 

itemset intervals 
certaint

y 
s-info match ratio 

{10311} [29/1-6/10] 2/6 0.063 - 0.86 0.33 
{12355} [21/12-28/12] 3/7 0.060 - 0.061 0.43 
{12559} [22/4-11/5] 1/2 0.064 - 0.066 0.5 
{33449} [3/1-26/12] 5/7 0.063 - 0.08 0.71 
{33469} [3/1-31/3] 5/7 0.067 - 0.08 0.71 

Table 9 Yearly periodic itemsets of size two (for BMS-WebView-1) 

BMS-WebView-1(minsupp=0.06, mininterval = 7, maxgap = 10) 

itemset intervals 
certaint

y 
s-info match ratio 

{10311, 12559} [30/4-9/4] 1/1 0.06-0.06 1.0 
{10311, 33449} [3/3-11/4] 1/1 0.065 1.0 
{33449, 33469} [15/2-25/3] 2/6 0.061-0.064 0.33 

In Table 10 we present yearly periodic itemsets of size one for T10I4D100K 
database. In this database patterns with full periodicity are not available, since the 
intervals corresponding to an item are not overlapped. We have presented 
examples of such items in the following table. From interval column, one could 
observe that the itemsets are frequent for the short intervals, but do not appear at 
the same time for all the years. For example, itemset {966} appears in three 
intervals in 1961, but it does not show any periodicity since the intervals are not 
overlapped. It is interesting to note that the itemset {966} appears at the 
beginning, both in first and second months, of the year, then at the middle of the 
year i.e., for the third and fourth months, and finally at the end of the year 
(eleventh and twelfth month). This is also true for itemset {998}. Interesting 
itemset patterns of size two are not reported from this database.  

An itemset that satisfies minsupp, mininterval criteria are reported. Also, a 
locally frequent itemset in two intervals for a particular year is also reported from 
the intervals, provided the intervals satisfy maxgap criterion. The number of 
interesting intervals could increase by lowering the thresholds. In the following 
paragraphs we have presented a study on this aspects.  
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Table 10 Selected yearly periodic itemsets of size one (for T10I4D100K) 

T10I4D100K (minsupp=0.13, mininterval = 7, maxgap = 10) 

itemset interval 
s- 

info 
itemset interval 

s- 
info 

{966} [28/1/1961 - 19/2/1961] 0.16 {998}   [13/11/1964 - 22/11/1964] 0.17 
{966} [16/3/1961 - 23/3/1961] 0.17 {998}   [15/12/1964 - 27/12/1964] 0.16 
{966} [14/12/1961 - 25/12/1961] 0.16 {998} [2/9/1965 - 13/9/1965] 0.14 
{966} [22/3/1964 - 13/4/1964] 0.15 {998} [27/11/1966 - 8/12/1966] 0.14 
{966} [1/11/1975 - 8/11/1975] 0.16 {998}   [27/11/1973 - 11/12/1973] 0.13 

{966} [12/4/1981 - 19/4/1981] 0.17 {998}   [14/12/1983 - 23/12/1983] 0.17 
{966} [2/12/1988 - 12/12/1988 0.15 {998}   [15/12/1984 - 23/12/1984] 0.16 

13.5.1   Selection of Mininterval and Maxgap 

The selection of mininterval and maxgap might be crucial since the process of 
data mining would depend on factors like seasonality, type of application and the 
data source. Some items are used for a particular season; while others are 
purchased throughout the year. When the items are purchased throughout the year, 
the choices of mininterval and maxgap do not have much significance in mining 
yearly patterns. This observation seems to be valid for the items in retail and 
BMS-WebView-1. But the items in T10I4D100K are frequent in smaller intervals 
and therefore, mininterval and maxgap might have an impact on data mining. On 
the other hand, the requirement of an organization might determine an important 
parameter for mining calendar-based patterns. The distribution of items in 
databases also matters in selecting the right values of mininterval and maxgap. For 
a sparse database maxgap could be longer, and it could be even longer than 
mininterval provided minsupp remains small.  

13.5.1.1   Mininterval  

In the following experiments we would like to analyse the effect of mininterval for 
given maxgap and minsupp. We observe in Figures 4, 5 and 6, the number of 
intervals decreases as mininterval increases. An itemset might be frequent in many 
intervals. The number of itemsets frequent in an interval decreases as the length of 
mininterval increases. Although the above observation is true in general, but the 
type of the graphs might differ from one data source to another. In retail many 
itemsets are locally frequent for longer period of time. In Figure 4 we observe that 
there exists nearly 110 intervals for mininterval of 29 days. Whereas in BMS-
WebView-1 and T10I4D100K, the itemsets are frequent for shorter duration. As a 
result, the number of intervals reduces significantly when mininterval remains 
small. Thus the choice of mininterval is an important issue. 
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Fig. 4 Retail (minsupp = 0.25, maxgap = 7) 
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Fig. 5 BMS-WebView-1 (minsupp = 0.06, maxgap = 7) 
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Fig. 6 T10I4D100K (minsupp = 0.13, maxgap = 7) 
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13.5.1.2   Maxgap 

In view of analyzing maxgap parameter, we present graphs of the number of 
intervals versus maxgap at given minsupp and mininterval in Figures 7, 8, and 9. 
The graphs show that the number of intervals decreases as maxgap increases. In 
retail the number of intervals decreases rapidly when maxgap varies from 5 to 10. 
Afterwards the change is not so significant. In BMS-WebView-1 the decrement 
takes place almost at a uniform rate. Unlike retail and BMS-WebView-1, the 
number of intervals decreases faster at the smaller values of maxgap in 
T10I4D100K dataset.  
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Fig. 7 Retail (minsupp = 0.25, mininterval = 10) 
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Fig. 8 BMS-WebView-1(minsupp = 0.06, mininterval = 7) 
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Fig. 9 T10I4D100K (minsupp = 0.13, mininterval = 7) 

13.5.2   Selection of Minsupp 

The number of intervals and minimum support are inversely related to given 
maxgap and mininterval. We observe this phenomenon in Figures 10, 11 and 12. 
When the value of maxgap is smaller the number of intervals reported is quite 
large. Initially the number of intervals reported significantly with small decrement 
of minsupp. Later the decrement of number of intervals is not so significant. 
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Fig. 10 Retail (mininterval = 10, maxgap = 12) 
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Fig. 11 BMS-WebView-1(mininterval = 7, maxgap = 10) 
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Fig. 12 T10I4D100K (mininterval = 7, maxgap = 9) 

13.5.3   Performance Analysis 

In this section, we present the performance of our algorithm and compare it with 
existing algorithm for mining calendar-based periodic patterns. To measure the 
performance, two experiments have been conducted. In the first experiment, we 
have measured the scalability of the two algorithms with respect to different 
database sizes. In the second experiment, we have measured the scalability of the 
two algorithms with respect to different support thresholds. In Figures 13, 14 and 
15, we have shown the relationship between the database size and execution time 
for mining periodic patterns. We observed that the number of patterns increases as 
the number of transactions increases. Thus, the execution time increases with the 
increase of database size. Initially both the algorithms take almost equal amount of 
time. In Figures 13 and 14 we observe that execution time for mining 88162 
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transactions of retail and 1,49,639 transactions of BMS-WebView-1 take nearly 
equal amount of time. The reason is that the average length of transactions in 
retail is more than that of BMS-WebView-1. Therefore, the execution time is not 
only dependent on the size of the database, but also depends on the factors such as 
ALT and NI. The experimental results in Figures 13, 14 and 15 show that our 
algorithm performs better than the existing algorithm. 
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Fig. 13 Execution time vs. size of database at minsupp = 0.25, mininterval = 8, maxgap = 
10 (retail) 
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Fig. 14 Execution time vs. size of database at minsupp = 0.1, mininterval = 7, maxgap = 10 
(BMS-WebView-1) 
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Fig. 15 Execution time vs. size of database at minsupp = 0.13, mininterval = 7, maxgap = 
10 (T10I4D100K) 

In Figures 16, 17, and 18, we have presented another comparison by 
considering minsupp threshold. When the minimum support increases the number 
of frequent itemsets decreases and so the execution time also decreases. The 
experimental results have shown that the execution time of both the algorithms 
decrease slowly when the support threshold increases, and our algorithm takes less 
time than the existing algorithm.  
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Fig. 16 Execution time vs. minsupp (mininterval = 8, maxgap = 10) for retail 
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Fig. 17 Execution time vs. minsuopp (mininterval = 7, maxgap = 10) for BMS-WebView-1 
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Fig. 18 Execution time vs. minsupp (mininterval = 7, maxgap = 10) for T10I4D100K 

13.6   Conclusions 

In this paper we have proposed modifications to the existing algorithm for mining 
locally frequent itemsets along with the set of intervals and associated supports. 
We have also extended the concept of certainty factor for a detailed analysis of 
overlapped intervals. We have proposed a number of improvements on the 
existing algorithm for finding calendar-based periodic patterns. For managing 
locally frequent itemsets effectively we have introduced a hash based data 
structure. We have presented an extensive data analysis by involving constraints 
such as mininterval, minsupp and maxgap. In addition we have compared our 
algorithm with the existing algorithm. Experimental results show that our 
algorithm executes faster than the existing algorithm. Experimental results also 
report that whether a periodic pattern is full or partial. The proposed algorithm can 
also be used to extract yearly, monthly, weekly and daily calendar-based patterns.  
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Chapter 14 
The Mamdani Expert-System with Parametric 
Families of Fuzzy Constraints in Evaluation  
of Cancer Patient Survival Length 

Elisabeth Rakus-Andersson* 

Abstract. Strict analytic formulas are the tools usually derived for determining the 
formal relationships between a sample of independent variables and a variable which 
they affect. If we cannot formalize the function tying the independent and dependent 
variables then we will utilize some expert-system control actions. We often adopt 
their fuzzy variants developed by Mamdani, Sugeno and Takagi. Fuzzy expert-
system algorithms are furnished with softer mechanisms, when comparing them to 
crisp versions. An efficient action of these softer mechanisms depends on the proper 
fuzzification of variables. At the stage of fuzzifying the variable levels we will prove 
some parametric expressions, which rearrange one function to several forms needed 
by the expert-system algorithm. The general parametric equation of membership 
functions allows creating arbitrary lists without any intuitive assumptions.  

The fuzzy expert-system algorithms are particularly adaptable to support medi-
cal tasks to solve. These tasks often cope with uncertain premises and conclusions. 
From the medical point of view it would be desirable to prognosticate the survival 
length for patients suffering from gastric cancer. We thus formulate the objective 
of the current chapter as the utilization of the Mamdani fuzzy control actions as a 
methodology adapted for the purpose of making the survival prognoses. 

Keywords: Parametric s-functions, Mamdani expert-system, estimation of  
survival length. 

14.1   Introduction 

In this chapter we will study the Mamdani methodology assumptions to support 
the approximation of the survival length. In the Mamdani model we wish to treat 

                                                           
Elisabeth Rakus-Andersson 
Blekinge Institute of Technology, 37179 Karlskrona, Sweden 
e-mail: Elisabeth.Andersson@bth.se 



360 E. Rakus-Andersson
 

the survival length as a dependent variable, which is affected by some biological 
parameters. Strict analytic formulas are the tools usually derived for determining 
the formal relationships between a sample of independent variables and a variable 
which they affect.  

If we cannot mathematically formulate some connections between the set of 
independent variables and the dependent variable then we will test the Mamdani 
procedure action.  

Fuzzy set theory allows us to describe complex systems by using our knowl-
edge and experience in transparent English-like rules. It does not need complex 
mathematical equations and system modelling that governs the relation between 
inputs and outputs.  

Expert-knowledge designs together with assumptions of fuzzy set theory have 
given rise to the creation of fuzzy control procedures and its technical applica-
tions, see e.g., [1–2, 10–11, 14–16, 21–22, 24–25].  

Experience-based rules constitute the crucial part of fuzzy control models, 
which have found many adherents to apply them in order to support solutions of 
complex systems not characterized by formally stated structures. The most popu-
lar types of fuzzy control systems are recognized as the Mamdani control [11], the 
Sugeno control [21–22] and Takagi-Sugeno control [15, 25]. 

Fuzzy methodology of Mamdani has also been tested in medicine [3, 7, 8].  
Generally, the actions of the fuzzy expert systems consist of three basic parts: 

fuzzification process of input and output variables, processing procedures and de-
fuzzification of the final fuzzy output set. In the processing part of the expert con-
trolsystems we link the linguistic terms of input variables to the linguistic output 
state. Levels of independent variables, expressed as fuzzy sets, usually constitute the 
inputs in the model. Anyway, the choice of the output level pattern is a more sophis-
ticated case. We place a fuzzified level of the output variable in the logical rules 
assisting the Mamdani methodology. In Sugeno and Sugeno-Takagi control systems 
the output levels are derived as functions. To find formulas of these functions we 
should use real data that come from some samplings showing relationships between 
collections of independent variables and a dependent variable. In logical IF-THEN 
rules of Mamdani system we mainly engage, instead, some experience in order to 
bind the levels of the rule antecedent to the rule consequence. As we are not given 
by dense data samples, which report gastric cancer patients, we have decided to 
adapt the Mamdani control as a methodology to evaluate the survival length for the 
patients. The surgeon’s expertise will support the creation of the logical rules. By 
making the communication with the physician much easier we have divided the 
input and output variables into levels of intensity, expressed verbally. 

The verbal descriptions of levels should be comprehensive in mathematical 
terms. We thus assign to the levels fuzzy sets characterized by families of mem-
bership functions. To implement the functions we decide a number of them in the 
partition of a reference set. The length of the reference set is the second data value 
used in an algorithm generating fuzzy constrains [17–19]. The design of functions 
is affected by two parameters, which results in the initiation of arbitrary numbers 
of uniform and symmetric membership function patterns. This technique of solv-
ing the first step of the Mamdani methodology (fuzzification of variables) is easily 
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adaptable to the problem of prognosticating the survival length for patients who 
suffer from gastric cancer [19–20, 26–27]. 

The evaluation of survival length was already accomplished by statistical 
methods. In the first trials of survival approximation a survival curve from cen-
sored data was introduced [9]. The model was used in cancer patient examinations 
to estimate the length of living [13]. The Cox regression [4] of life length predic-
tion was developed in such studies as logistic Cox regression [23]. The statistics-
based models predicting the survival were compared by Everitt and Rabe-Hesketh 
[6] who found such model disadvantages as the lack of normal distribution or 
missing values among survival times.  

In our study we test the Mamdani procedure to obtain a crisp value being the 
prediction of survival length. We make the length dependent on two clinical 
markers “age” and “CRP-value” due to the physicians’ advice. The selection of 
CRP and age, as representative markers of post-surgical survival in cancer dis-
eases, has been suggested due to the latest investigations revealing associations of 
these indices with the progression of disease in many cancer types [5, 12]. 

14.2   Making Fuzzification of Input and Output Variable  
Entries by Parametric s-Functions 

The Mamdani model [11] is applied in research to the judgement of some relation-
ships between a collection of independent variables and the dependent of them 
variable when we cannot formalize the functional connection among them.  

The typical Mamdani system normally consists of three parts. The first part  
refers to the fuzzification process of input and output variables. These are first 
linguistically differentiated in levels. The levels are listed as names, which  
are demonstrated by fuzzy sets with assigned to them appropriate membership 
functions.  

A fuzzy set, say, A in the universe X is a collection of elements assisted by the 
membership degrees that are computed by means of the membership function 

]1,0[: →XAμ . Therefore A is denoted as })),(,{( XxxxA A ∈= μ . A is called 

normal if at least one element in the set A is assigned to the membership degree 
equal to 1. The support of A is a non-fuzzy set that consists of elements accompa-
nying by membership degrees greater than 0. 

The second part contains processing procedures. We rely on own experience 
when we prepare rules to link the linguistic terms of input variables to the output 
variable state. The rules employed in the model are constructed as IF-THEN 
statements. On the basis of the rules, verbally formulated and actual for individual 
tested values of independent variables, we estimate their mathematical conse-
quences expressed as a collection of fuzzy sets. The creation of a sampling of all 
consequence sets results in one final consequence fuzzy set and terminates the 
action of the second step of the Mamdani methodology.  

The last step of the Mamdani system is to defuzzify the final fuzzy output set be-
ing the result of the second stage. We adopt the centre of gravity (COG) method to 
convert the fuzzy set into a crisp value corresponding to the initial crisp input data.  



362 E. Rakus-Andersson
 

We are expected to prove the Mamdani fuzzy system in order to evaluate the 
survival length in patients with diagnosis “gastric cancer”. We have selected this 
system as the most effective one. The effectiveness of the Mamdani procedure is 
supported here by the surgeon’s experience, which constitutes the most essential 
factor in the verbal communication to state the contents of IF-THEN rules. Other-
wise, in the Sugeno model some output functions are desired. As our samplings of 
the patients’ experimental data are rather poor, then we will not to take a risk to 
obtain improper formulas of output functions. 

The period of survival is affected by two biological parameters X = “age” and Y 
= “CRP-value”, which are selected as the most essential markers of making the 
prognosis. We cannot formally derive a function, which relates the independent 
variables X = “age” and Y = “CRP-value” to the dependent variable Z = “survival 
length”; therefore we will adapt the Mamdani system that supports estimation of 
dependent values in spite of the lack of a formula concerning ( )yxfz ,= , x∈X, 

y∈Y, z∈Z. 
All variables will be differentiated into levels, which are expressed by lists of 

terms. The terms from the lists are represented by fuzzy sets, restricted by the 
parametric s-functions lying over the variable domains [ ]maxmin , xx , [ ]maxmin , yy  

and [ ]maxmin , zz  respectively.  

In conformity with the physician’s suggestions we introduce five levels of X  
and Y  as  

 
X = “age” = { 1X  = “very young”, 2X  = “young”, 3X  = “middle-aged”,  

4X  = “old”, 5X  = “very old”},  

 
Y = “CRP-value” = { 1Y  = “very low”, 2Y  = “low”, 3Y  = “medium”,  

4Y  = “high”, 5Y  = “very high”} 

 
and we suggest seven levels of Z in the form of a collection 

 
Z = “survival length” = { 1Z  = “very short”, 2Z  = “short”, 3Z  = “rather 

short”, 4Z  = “medium”, 5Z  = “rather long”, Z6 = “long”, Z7 = “very long”}. 

 
To accomplish a formal mathematical design of level restrictions let us study 

the special own technique of their implementations [18–20]. 
In general, we suggest that the linguistic list of terms is converted to a sampling 

of fuzzy sets L1,…,Lm, where m is an odd positive integer greater or equal to 5. 
Each term is represented by the corresponding fuzzy set, whose constraint is sup-
posed to be created as the common formula depending on the lth value, where l = 
1,…,m. We assume that supports of restrictions )(w

lLμ , l = 1,…,m, will cover 

parts of the reference set L = [min(L1),max(Lm)], w ∈ L. We introduce E = L  as 

the length of L. 
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We divide all expressions Ll in three groups, namely, a family of “leftmost” sets 
L1,…,

2
1−mL , the set 

2
1+mL  “in the middle” and a collection of “rightmost” sets 

 

2
3+mL ,…,Lm. To design the membership functions of Ll the s-class function 
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will be adopted. The point (α, 0) starts the graph of the s-function, whereas the 
point (γ, 1) terminates this graph. The parameter β is found as the arithmetic mean 
of α and γ. In w = β the s-function reaches the value of 0.5. 

When designing parameters of each class function we want to consider the pos-
sibility to obtain the equal lengths of these parts of Ll’s supports, which assist 
membership values greater than or equal to 0.5. The parts are regarded as the im-
portant representatives of fuzzy sets as they possess the largest index of the rela-
tionship to the set. We thus determine the breadth of each Ll to be m

E  on the mem-

bership level equal to 0.5.  
Let us first design the parameters of the membership function “in the middle”. 
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For the “leftmost” family L1,...,
2

1−mL  we make suggestions that the top segments 

of functions lying on the membership level 1 will have the same lengths. More-
over, the last “left” function 
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should have the intersection point with “in the 

middle” function on the membership level 0.5.  

Each upper segment of Lt, t = 1,..., 2
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The membership function of 
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1−mL  is thus expanded as 
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All constraints characteristic of the “leftmost” family of fuzzy sets will be given 
after inserting parameter tt m ⋅= −1

2)(δ , t = 1,…, 2
1−m , in (4) to form it as [17] 
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Parameter δ(t) takes the value of 1 for t = 2
1−m , which means that δ( 2

1−m ) in (5) 

has no influence on the shape of the last left function. However, the introduction 
of δ(t) in (5) induces the narrowing effects in the supports of the other left func-
tion shapes. To preserve the same lengths of upper segments corresponding to 
membership 1 and middle segments attached to membership 0.5 we adjust  
δ(t), assisting the left function Lt, to be equal to 

2
1

1
−m  multiplied by the function 

number t. 
In order to start the implementation of the “rightmost” family functions let us 

note that the first right function )(
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μ ’s inverted 

shape.  
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The function of 
2

3+mL  is symmetrically inverted to the function of 
2

1−mL  over  

interval [min(L1), max(Lm)].  
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To generate the “rightmost” family of sets 
2

3+mL ,...,Lm we need to create a new pa-

rameter )1(1)( 1
2 −−= − tt mε , t = 1,..., 2

1−m , which will be inserted in (6). The con-

struction of ε(t), when comparing to the creation of δ(t), is authorized by the fact that t 
= 1 should be followed by ε(1) = 1, whereas t = 2

1−m  is helped by ε( 2
1−m ) = 1

2
−m . 

Formula (7) constitutes a common base for deriving membership functions 
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The functions of fuzzy sets L1,...,Lm intend to maintain the same distances on 
the membership level 0.5. This property allows assigning to L1,...,Lm the relevant 
parts of their supports possessing the same length. The relevant parts of fuzzy sets 
consist of the sets’ elements that reveal the membership degree values greater than 
or equal to 0.5. When forming the supports of the same length, in turn, we warrant 
the partition of [min(L1),max(Lm)] in equal subintervals standing for Ll levels, l = 
1,..,m. Apart from that, the “leftmost” and “rightmost” functions also keep the 
same distances on the membership level 1. This feature provides us with a harmo-
nious arrangement of function shapes. 

All steps of the discussed algorithm, which initiates three sets of membership func-
tions corresponding to a list of terms, can be sampled in the block scheme. We need 
to follow the steps of the scheme together with formulas (3), (5) and (7) to write the 
excerpt of a computer program. We emphasize that the only data, used in the algo-
rithm, are the length of the reference set and the number of functions. We do not need 
to specify the sets’ borders in the process of the program initialization, as most of 
programmers do, since the borders are computed automatically by formulas (3), (5) 
and (7). The steps of the algorithm flow chart are sampled in Fig. 1. 

YES

YES

NO

NO

 

Fig. 1 The flow chart of the L1,…,Lm implementation 

The procedure discussed above has given rise to the introduction of member-
ship functions typical of levels of X, Y and Z which, in turn, represent “age”, 
“CRP” and “survival”. 

For five levels of X = [0, 100], L = X, w = x, m = 5, E = 100, the leftmost family 
is revealed by 
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for t = 1, 2 due to (5). 
The rightmost family of X-levels, composed in conformity with (7) is stated as 
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for t = 1, 2. 
The “in the middle” X-level “middle-aged” has, in accord with (3), the con-

straint 
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All levels of X are sketched in Fig. 2. 
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Fig. 2 The fuzzy sets X1–X5 
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By setting Y = [0, 60], for L = Y, w = y, E = 60 and m = 5, we generate the left-
most Y-constraints 
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for t = 1,2.  
For the same t-values the functions of Y’s rightmost family are shaped by 
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whereas Y-level “medium” is established as 
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Fuzzy sets, corresponding to Y-levels are plotted in Fig. 3. 
Finally, we utilize (3), (5) and (7) respectively to release membership functions 

of seven Z-levels. If Z = [0, 6] then, for L = Z, w = z, E = 6 and m = 7, we will 
build the left restrictions 
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where t = 1, 2, 3. 
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Fig. 3 The fuzzy sets Y1-Y5 

The constrains of right Z-levels are results of 
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when setting t = 1, 2, 3. 
The medium Z-level Z4 possesses the membership function 
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The graphs of all Z-levels are collected in Fig. 4. 
We emphasize the importance of the parametric design of functions. Instead of 

implementing seventeen formulas of the similar pattern, we have sampled all func-
tions in three generic groups (left, right and in the middle). Any time we can in-
volve the desired function in necessary computations by setting its t-number in the  
 



370 E. Rakus-Andersson
 

proper formula concerning X, Y or Z. Moreover, the mathematical scenario of 
membership functions is established in the formal and elegant designs, which can 
be segments of a computer program for the reason of their nature letting the  
creation of loops. 
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Fig. 4 The fuzzy sets Z1-Z7 

14.3   The Rule Based Processing Part of Surviving Length 
Model 

After the fuzzification procedure we are able to create the rule bases that link the 
states of the two input variables to the state of the output variable. We thus design 
a table, in which the entries are filled with terms of “survival length”. To express 
the states of the survival length as logically as possible, we have also studied the 
behaviour of variables on the basis of biological data samplings. The cells of the 
table are characterized by subintervals of domains of X and Y.  

We first estimate the survival length median in the samplings of the data corre-
sponding to considered cells. The median value was set as z in the membership 
functions of all fuzzy sets listed in the Z-space. We select this fuzzy set Zk, k = 
1,…,7, as a representative of the cell, in which the membership degree of the me-
dian was largest. The technique of combining the human experience with data 
sets, obtained for discrete samples to make conclusions referring to continuous 
samples, is a modern branch of so-called “integration systems”. 

The estimations of survival length are sampled in Table 1. 
Some entries in the table are empty, since the essential data was lacking for 

younger people. It rarely happens to find young patients with diagnosis “gastric 
cancer”; therefore we could not make any reliable conclusions concerning sur-
vival in this age group. For old individuals the period of 6 years of surviving has 
been established as an upper border.  
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Table 1 Estimation of “survival length” as a rule base 

Xi/Yj very low low medium high very high 
very young      
young      
middle-aged long     
old rather long rather short short short very short 
very old rather short short very short very short very short 

Suppose that we would like to make the survival prognosis for ( )yx, , x∈X, 

y∈Y – with other words we want to evaluate ( )yxfz ,=  when assuming that the f-

formula is not developed.  
Furthermore, x  often belongs to more than one fuzzy sets iX , i = 1,...,5, with 

different membership degrees equaling ( )x
iXμ . Element y  associated to x can be 

a member of some fuzzy sets jY , j = 1,...,5, in which it takes membership degrees 

( )y
jYμ . 

By means of IF-THEN statements grounded on the basis of Table 1, we can de-
termine the contents of rules by attaching the pair of input variable levels to a 
level of the output variable according to 

Rule ( ) ::, ryxR  If x  is riX :  and y  is rjY : , then z  is rkZ : , (17) 

where r is the rule number. The expressions riX : , rjY :  and rkZ :  denote the fuzzy 

sets Xi, Yj and Zk assisting rule number r. ( ) ryxR :,  is determined for actual x and y. 

To evaluate the influence of the input variables on the output consequences we 
need an estimate ( ) ryx :,α  computed by performing the minimum operation  

( ) ( ) ( )( )yx rYrXryx ji :::, ,min μμα =  (18) 

for each riX :  and rjY :  concerning the choice of (x,y). 

We use ( ) ryx :,α  and the minimum operator to determine consequences of all 

rules R(x, y):r for the output. Fuzzy sets 
conseq

ryxR :),( , stated in the output space Z, 

will have the membership functions  

( ) ( ) ( ) ( )( )zz rZryx
conseq

R kryx ::, ,min
:,

μαμ = . (19) 

In the last step of the processing part we aggregate the consequence sets 
conseq

ryxR :),(  in one common set ),( yxconseq  allocated in Z over a continuous  
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interval [z0, zn]. To derive the membership function of ),( yxconseq  we prove the 

action of the maximum operator in the form of  

( ) ( ) ( )( )zz conseq
R

r
conseq ryxyx :,),(

max μμ = . (20) 

14.4   Defuzzification of the Output Variable 

In order to assign a crisp value z to the selected pair (x, y) we defuzzify the conse-
quence fuzzy set in Z. We will thus indicate the expected value of the survival 
length for a gastric cancer patient whose age x and CRP-value y have been  
examined. 

As a defuzzification rule we select the centre of gravity method (COG). This 
model of computing is clearly interpretable. We expand COG as 
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with the inner borders z1,...,zn–1 being either z-coordinates of intersection points 

between adjacent branches of the ),( yxconseq  membership function or characteris-

tic support values of fuzzy sets included in ),( yxconseq . 

14.5   The Survival Length Prognosis for a Selected Patient 

Suppose that we examine a 79-year-old patient, whose CRP-value is 25. His diag-
nosis is determined by a physician as “gastric cancer”. We wish to estimate theo-
retically the expected value of his survival length by proving the algorithm 
sketched in previous sections. The information is confidential and used only by 
the physician. 

Let 79=x  and 25=y . Age 79 belongs to fuzzy set 5X = “very old”. We want 
to find the membership degree of 79 in “very old”, which belongs to the rightmost 
family of X; therefore we put t = 2 in (9) to induce 
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Age 79 is also a member of X4 = “old” with the membership degree 
1)79(

4
=Xμ , due to (9) when t = 1.  

Value y = 25 is located in Y2 =”low” with 281.0)25(
2

=Yμ  and in Y3 = “me-

dium” with 347.0)25(
3

=Yμ . To evaluate the values of membership degrees in 

respective fuzzy sets in Y we have been referred to formula (11) to reach Y2 and to 
formula (13) to get Y3. 

In accordance with (17) and available information from Table 1 we establish 
the rules, which connect the states of the input variables to the output variable 
levels. We list the rules in the following order: 

( ) :1:25,79R  IF x = 79 is X4 = “old” and y = 25 is Y2 = “low”, THEN z =  “sur-

vival length” will be Z3 = “rather short”, 

( ) :2:25,79R  IF x = 79 is X4 = “old” and y = 25 is Y3 = “medium”, THEN z = 

“survival length” will be Z2 = “short”, 

( ) :3:25,79R  IF x = 79 is X5 = “very old” and y = 25 is Y2 = “low”, THEN z = 

“survival length” will be Z2 = “short”, 

( ) :4:25,79R  IF x = 79 is X5 = “very old” and y = 25 is Y3 = “medium”, THEN z = 

“survival length” will be Z1 = “very short”. 

To evaluate the influences of the input variables on the output consequences due 
to (18), we estimate ( ) r:25,79α , r = 1,...,4 as quantities  

( ) ( ) ( )( ) ( ) ,281.0281.0,1min25,79min 1:1:1:25,79 24
=== YX μμα  

( ) ( ) ( )( ) ( ) ,347.0347.0,1min25,79min 2:2:2:25,79 34
=== YX μμα  

( ) 245.03:25,79 =α , ( ) 245.04:25,79 =α . 

In conformity with formula (19) we obtain the fuzzy subsets of the conse-
quences. Set R(79,25):1

conseq has a membership function  

( ) ( ) ( ) ( )( ) ( )( )zzz shortratherZ
conseq

R ""1:1:25,79 ,281.0min,min
31:25,79

μμαμ ==  given by 

Fig. 5. 
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Fig.5 The fuzzy subset of consequence constructed due to R(79,25):1 



374 E. Rakus-Andersson
 

The next set R(79,25):2
conseq is characterized by a constraint 

( ) ( ) ( ) ( )( ) ( )( )zzz shortZ
conseq

R """2:"2:25,79 ,347.0min,min
22:25,79

μμαμ ==
 

drawn in 

Fig. 6. 
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Fig. 6 The fuzzy subset of consequence constructed due to R(79,25):2 

The third set R(79,25):3
conseq possesses a function  

( ) ( ) ( ) ( )( ) ( )( )zzz shortZ
conseq

R ""3:3:25,79"" ,245.0min,min
23:25,79

μμαμ ==  

whose graph is revealed in Fig. 7. 
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Fig. 7 The fuzzy subset of consequence constructed for R(79,25):3 
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The last set R(79,25):4
conseq is restricted by a function 

( ) ( ) ( ) ( )( ) ( )( )zzz shortveryZ
conseq

R ""4:4:25,79 ,245.0min,min
14:25,79

μμαμ ==  plotted in 

Fig. 8. 
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Fig. 8 The fuzzy subset of consequence constructed in accord to R(79,25):4 

When applying formula (20) we concatenate all ( ) ( )zconseq
R ryx :,

μ , r = 1,2,3,4, in 

order to determine a common consequence of rules (17) fitted for the pair (79, 25). 
The fuzzy subset of the universe Z will be thus yielded by its membership function 

( ) ( ) ( )( )zz conseq
R

r
conseq r:25,79)25,79( 41

max μμ
≤≤

= . 

The fuzzy set conseq(79,25) is aggregated in Fig. 9. 
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Fig. 9 The consequence set conseq(79,25) in Z 
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Formula (21) constitutes a basis of an estimation of the survival length ex-
pected when assuming “age” = 79 and “CRP-value” = 25. Over interval [z0, z4] = 
[0, 2.8928], which contains characteristic points z0 = 0, z1 = 1.7501, z2 = 1.7786, z3 
= 2.6519 and z4 = 2.8928, we compute the z-prognosis 
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For the patient who is 79 years old and has the CRP-value equal to 25, the theo-
retical estimated survival length is over one year. The result converges to the phy-
sician’s own judgment made on the basis of his medical reports. For each pair 
(x,y) we can arrange new computations due to the Mamdani algorithm based on 
the expert-system rules to estimate the patient’s period of surviving in the case of 
suffering from gastric cancer. 

14.6   Conclusions 

The fuzzy expert-systems are powerful methods, which mostly are applied to 
technologies checking complex processes by means of human experience. In this 
work we have proved that the expected values of patients’ survival lengths can be 
estimated even if the mathematical formalization involving independent and de-
pendent variables is unknown. 

When adapting the Mamdani procedure to medical dependency assumptions we 
have supported the evaluation of the survival length, made so far by statistical 
tests.  

Due to the results of performed computations we can conclude that the Mam-
dani algorithm demands a large number of operations in the processing phase. 
Nevertheless, we can always construct logical rules IF-THEN, which are based on 
variable levels and are assisted by fuzzy sets. Even if the data from point sets is 
lacking, it will be still possible to make a trial of designing membership functions 
for all levels of variables by relying on the human expertise.  

The results brought by the Mamdani procedure encounter results coming from 
statistical experiments. Moreover, the Mamdani fuzzy method does not demand 
particular assumptions like normal distributions of the dependent variables. 

In the future experiments we want to construct the computer program to cover 
the rectangle [xmin, xmax]× [ymin, ymax] with a surface, which allows to read off the 
desired value of z for an arbitrary pair (x, y). In that way we will solve the problem 
of the continuous evaluation of survival length as it has been recommended by our 
co-operating physicians. It will be desirable to introduce more independent  
variables to the model as well. 

For the purpose of the Mamdani procedure we have initially designed families 
of fuzzy sets that are affected by parameters. In many algorithms the boundary 
values of membership functions, representing a certain list, are introduced as the 
initial data. We have used the pattern of the s-functions to model constrains of 
fuzzy sets without their predetermined start points and endpoints. For a large 
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amount of functions a computer program is recommended to produce uniform and 
symmetric shapes of fuzzy restrictions. Due to the flow chart proposed, which 
constitutes the original model created by the author, we can easily convert the 
scheme to a sequence of program commands. We emphasize that the only data 
required by the model are restricted to the number of functions and the length of 
the reference set. 

We hope that all transformations performed on the membership functions have 
demonstrated the logical and elegant design, which should be regarded as an  
advantage of the presented model. 

In the end, we emphasize that the Mamdani methodology is supported by easily 
performed mathematical operations unlike, e.g., differential equations typical of 
other traditional expert-based systems.  

Acknowledgment. The author thanks the Blekinge Research Board for the grant funding 
the current research. The author is also grateful to Associate Professor in Medicine Henrik 
Forssell for medical consulting of this report. 

References  

1. Al-Odienat, A.I., Al-Lawama, A.A.: The Advantages of PID Fuzzy Controllers over 
the Conventional Types. American Journal of Applied Sciences 5(6), 653–658 (2008) 

2. Andrei, N.: Modern Control Theory: a Historical Perspective. Centre for Advanced 
Modelling and Optimization. Research Institute for Informatics, Romania (2005), 
http://www.ici.ro/camo/neculai/history.pdf 

3. Chen, C.-T., Lin, W.-L., Kuo, T.-S., Wang, C.-Y.: Blood Pressure Regulation by 
Means of a Neuro-fuzzy Control System. In: The 18th Annual International Confe-
rence of the IEEE Engineering in Medicine and Biology Society, Amsterdam, pp. 
1725–1726 (1996) 

4. Cox, D.: Regression Models and Life Tables. J. Roy. Stat. Soc. B 4, 187–220 (1972) 
5. Kim, D.-K., Oh, S.Y., Kwon, H.-C., Lee, S., Kwon, K.A., Kim, B.G., Kim, S.-G., 

Kim, S.-H., Jang, J.S., Kim, M.C., Kim, K.H., Han, J.-Y., Kim, H.-J.: Clinical Signi-
ficances of Preoperative Serum Interleukin-6 and C-reactive Protein Level in Operable 
Gastric Cancer. BMC Cancer 9, 155–156 (2009) 

6. Everitt, B., Rabe-Hesketh, S.: Analyzing Medical Data Using S-PLUS. Springer, New 
York (2001) 

7. Hernández, C., Carollo, A., Tobar, C.: Fuzzy Control of Postoperative Pain. In: Pro-
ceedings of the Annual International Conference of the IEEE, pp. 2301–2303 (1992) 

8. Isaka, S., Sebald, A.V.: An Adaptive Fuzzy Controller for Blood Pressure Regulation. 
In: The 11th Annual International Conference on IEEE Engineering in Medicine & Bi-
ology Society, pp. 1763–1764 (1989) 

9. Kaplan, E., Meier, P.: Nonparametric Estimation from Incomplete Observations. Jour-
nal American Statistical Association 53, 457–481 (1958) 

10. Ma, X.J., Sun, Z.Q., He, Y.Y.: Analysis and Design of Fuzzy Controller and Fuzzy 
Observer. IEEE Transactions on Fuzzy Systems 6(1), 41–51 (1998) 

11. Mamdani, E.H., Assilian, S.: An Experiment in Linguistic Synthesis with a Fuzzy Log-
ic Controller. Int. J. Man-Machine Studies 7, 1–13 (1973) 



378 E. Rakus-Andersson
 

12. de Mello, J., Struthers, L., Turner, R., Cooper, E.H., Giles, G.R.: Multivariate Analys-
es as Aids to Diagnosis and Assessment of Prognosis in Gastrointestinal Cancer. Br. J. 
Cancer 48, 341–348 (1983) 

13. Newland, R.C., Dent, O.F., Lyttle, M.N., Chapuis, P.H., Bokey, E.L.: Pathologic De-
terminants of Survival Associated with Colorectal Cancer with Lymph Node Metastas-
es. A Multivariate Analysis of 579 Patients. Cancer 73(8), 2076–2082 (1994) 

14. Nguyen, H.T., Prasad, N.R., Walker, C.L., Walker, E.A.: A First Course in Fuzzy and 
Neural Control. Chapman & Hall/CRC (2002) 

15. Passino, K.M., Yurkovich, S.: Fuzzy Control. Addison-Wesley Longman Inc. (1997) 
16. Preitl, S., Precup, R.E., Preitl, Z.: Development of Conventional and Fuzzy Controllers 

and Takagi-Sugeno Fuzzy Models Dedicated for Control of Low Order. Acta Poly-
technica Hungarica 2(1), 75–92 (2005) 

17. Rakus-Andersson, E.: Fuzzy and Rough Sets in Medical Diagnosis and Medication. 
Springer, Heidelberg (2007) 

18. Rakus-Andersson, E.: Adjusted s-parametric Functions in the Creation of Symmetric 
Constraints. In: Proceedings of the 10th International Conference on Intelligent Sys-
tems Design and Applications, ISDA 2010, Cairo, Egypt, pp. 451–456 (2010) 

19. Rakus-Andersson, E.: Approximate Reasoning in Cancer Surgery. In: Proceedings of 
the International Conference on Fuzzy Computation Theory and Applications, FCTA 
2011, Paris, France, pp. 466–469 (2011)  

20. Rakus-Andersson, E., Zettervall, H., Forssell, H.: Fuzzy Controllers in Evaluation of 
Sur-vival Length in Cancer Patients. In: Recent Advances in Fuzzy Sets, In: Intuitio-
nistic Fuzzy Sets, Generalized Nets and Related Topics. Volume II: Applications, 
Polish Academy of Sciences, System Research Institute, Warsaw, pp. 203-222 (2011)  

21. Sugeno, M.: An Introductory Survey of Fuzzy Control. Inf. Sci. 36, 59–83 (1985) 
22. Sugeno, M., Nishida, M.: Fuzzy Control of Model Car. Fuzzy Sets and Systems 16(2), 

103–113 (1985) 
23. Sargent, D.J.: Comparison of Artificial Networks with Other Statistical Approaches. 

Cancer 91, 1636–1942 (2001) 
24. Sutton, R., Towill, D.R.: An Introduction to the Use of Fuzzy Sets in the Implementa-

tion of Control Algorithms. IEEE Trans., UDC 510.54:62-519:629.12.014.5 (1985), 
paper no. 2208/ACS39  

25. Takagi, T., Sugeno, M.: Fuzzy Identification of Systems and Its Applications to Mod-
eling and Control. IEEE Transactions on Systems, Man and Cybernetics SMC-15(1), 
116–132 (1985) 

26. Zettervall, H., Rakus-Andersson, E., Forssell, H.: The Mamdani Controller in Predic-
tion of the Survival Length in Elderly Gastric Patients. In: Proceedings of Bioinformat-
ics 2011, Rome, pp. 283–286 (2011) 

27. Zettervall, H.: Fuzzy and Rough Theory in the Treatment of Elderly Gastric Cancer 
Patients. Licentiate Dissertation, Karlskrona, Sweden (2011) 



Chapter 15

Support Vector Machines in Biomedical
and Biometrical Applications
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Piotr Wid�lak, and Joanna Polańska

Abstract. In the chapter, a background review material concerning applica-
tions of the kernel methods in computational biology and biometry is illus-
trated by the case studies concerning the proteomic spectra analysis to find
diagnostic biomarkers and performing case-control discrimination as well as
the face recognition problem, which is situated among the most investigated
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biometric methods. These case studies, representing the state-of-the-art in
applications of the support vector machines (SVM) in biomedical and biomet-
rical applications, are the examples of a research work conducted by computer
scientists, bioinformaticians, and biostatisticians from the Faculty of Auto-
matic Control, Electronics and Computer Science at Silesian University of
Technology in a collaboration with clinicists from the Institute of Oncology
in Gliwice, Poland.

15.1 Introduction

Support Vector Machines (SVM) were presented for the first time in 1992 as a
technique for maximizing the margin that separates two classes [4]. There are
two main models for building the SVM classifier, namely linear and nonlinear
SVM. The first one assumes that there exists an optimal hyperplane in the
data set feature space which separates objects from two classes. The latter
uses a ,,kernel trick” to find optimal separating linear hyperplanes in higher
dimensions that are nonlinear in the original feature space.

It is worth to decipher the notion of a ,,support vector”. Let us assume that
the number of vectors in the training set is n. In the case of two dimensional
vectors belonging to two linearly separable classes only three vectors are
needed to determine the margin: two of them define the hyperplane (a line
for two-dimensional case), and the third one determines the margin width. If
some other points (different from the mentioned three) were removed from
the training set, the SVM classifier would give the same separating line.
Therefore in other words these three vectors support the margin and are
called ,,support vectors” (SVs).

In the original SVM algorithm there is no possibility to modify the number
of SVs - only the margin width, determined by the so-called ε-intensive loss
function is modifiable. However, amongst other SVM modifications it is worth
to mention the v-SVM where v is the fraction of SVs from the entire training
set [54]. Increasing v makes it possible to obtain a more complicated model
that separates the classes better and decreasing v generates a less accurate,
but more general model.

v-SVM and the original SVM are based on the assumption that the level
of noise is uniform in the whole domain. This limitation is removed by the
par − v-SVM model [16] where the margin with constant width is replaced
with the margin defined by two functions: separating hyperplane and the new
function g(x). The local width of the margin equals to 2|f(x)− g(x)|.

Based on the SVM, also a new branch of nonparametrical regression has
been developed, called Support Vector Regression (SVR). Here, the separat-
ing hyperplane was substituted by the regression hyperplane and the sep-
aration margin was replaced by the notion of a regression tube. SVR may
be described with the known sentence ,,through every three points on the
plane the line can be drawn, provided to it will be thick enough”. Then the
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regression function is the center of the ,,thick line” and the whole line is the
regression tube. SVR was also defined in the classical way (ε-SVR [11]), as
v-SVR [53] and par − v-SVR [16]. An interesting extension of SVR is pre-
sented in [9] where instead of a single regression function two bound functions
(upper and lower) are introduced.

As all the mentioned SV algorithms are based on solving quadratic pro-
gramming problem, there are lot of methods that substitute this step with
some heuristics. DirectSVM [51] is an iterative algorithm which builds the
support vector set incrementally. It combines the theorethical foundations
of SVM and formulation of neural networks, which allows to avoid solving
quadratic optimization problem. For this reason the time of computing is
much shorter and it requires less computational efforts than original SVM
method, affording similar results. Based on two simple heuristics this algo-
rithm finds the set of candidate support vectors to determine parameters of
the optimal hyperplane. The first heuristic assumes that if two elements be-
longing to the opposite classes are in the closest distance to each other, they
are selected as an initial candidate support vector. If it occurs that they are
not support vectors, the next couple is taken under consideration, etc. The
second heuristic assumes that an element from the training set that maxi-
mally violates the current position of the hyperplane is the support vector.
The algorithm finds this maximum violator in each iteration and then the
orientation of candidate Support Plane has to be turned to make it a Support
Vector.

The SimpleSVM algorithm [65] also starts off with the closest pair of points
from the opposite classes by adding them to the candidate Support Vector
set like DirectSVM [51]. If the inclusion of the new candidate SV to candidate
set is prevented by other points already belonging to this set the algorithm
uses a backtracking approach to cut them off from set. The iteration through
the all dataset is repeated until no violators can be found to guarantee that
Karush-Kuhn-Tucker conditions are satisfied. In order to insure data linear
separability it use quadratic penalty formulation.

Another method called Local Incremental Learning of SVM (LISVM) is
based on Radial Basis Function Kernel [49]. On-line learning requires actual-
ization of the classification process results always when new data are added
to the current dataset. LISVM, instead of learning all datasets again, assumes
that it can be carried out only on a neighborhood of the new data and the
training data can be updated by changing their weights, but only this sub-
set of support candidates should be re-learning that lies in neighborhood of
input. This subset is obtained based on the variation of the error estimate.
Neighborhood is defined as limited area on which support vectors have a
higher influence. The size of neighborhood has to be computed at each step,
to determine if they use criterion coming from [10].

Incremental and Decremental Support Vector Machine Learning is the next
online variant of SVM [7]. This algorithm gives the exact solutions of classifi-
cation problem based on incremental, reversible procedure. It can be ensured
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by keeping Kuhn-Tucker conditions satisfied on the current training dataset
while the new point is added. The decremental part of this method allows
to obtain exact leave-one-out generalization effectiveness, which require only
two passes through the data.

Through all the years Support Vector Machines have been successfully
applied to solve such problems like face detection [38], time series prediction
[6, 12, 60], text categorization [22], fuzzy systems learning [31], and many
more.

SVMs have found many remarkable applications in bioinformatics and bio-
metrics. Some prominent examples include protein classification [28], detec-
tion of the splice sites [50], or analysis of the gene expression profiles [29],
including gene selection for microarray data, where a special type of SVM
called the Potential SVM [19] has been successfully used for analysis of brain
tumor data set [58], Lymphoma data set [57], and breast cancer data set [63].

Recently, the successful application of SVMs to analysis of proteomic spec-
tra has been also achieved in our research group composed of computer scien-
tists, bioinformaticians, and biostatisticians from the Faculty of Automatic
Control, Electronics and Computer Science at Silesian University of Tech-
nology in a collaboration with clinicists from the Institute of Oncology in
Gliwice, Poland. The detailed case study concerning this application is a sub-
ject discussed in Sect. 15.2. Here, let us give some introductory comments
about the method used. An important issue in analyzing proteomic spectra
is to find appropriate diagnostic biomarkers, which can help in early cancer
detection. In order to find such biomarkers, it is necessary to extract and
convert the mass spectra peaks. Moreover, the individual peaks are usually
selected directly from the spectrum, but here they are modeled using Gaus-
sian Mixture Decomposition. Correctness of the selected set of features can
be verified using SVMs.

Such approach is presented in Sect. 15.2, which describes the experiments
with data collected from a cohort of healthy people (a control group) and
from patients suffering from the lung cancer. The proteomic spectra were
obtained with MALDI-TOF method. The peaks were modeled to be com-
posed of 100-900 (step=50) Gaussian components. Subsequently, two SVM’s
kernels (linear and Gaussian Radial Basis Function) and the different value
of the box constraints for the soft margin (bc parameter)were investigated to
find the most effective parameters. For the classification purposes 1–40 most
differentiating properties derived from the Gaussian components were chosen
based on t-Student test.

The validation was carried out using the method of multiple random cross-
validation. Section 15.2 describes the whole cycle of classification, which is
composed of: a) random selection of training sample, b) choice of the prop-
erties, c) learning the classifier, d) validation, e) error evaluation. Each cycle
was repeated 400 times, and then the mean error was determined with its
standard deviation. In the study three types of errors were determined, the
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total error, classification error in the control group, and the classification
error in the group with cancer.

The second case study, which is in detail presented in Sect. 15.3, concerns
face recognition. Face recognition is an approach which is one of the most
regularly investigated biometric methods. Moreover, this is a biometric ap-
proach in which SVMs have found many interesting applications. As further
explained in Sect. 15.3, automatic face recognition is a complex process that
in general can be divided into four main stages, face detection, face normal-
ization, feature extraction, and comparison of the feature vectors aimed at
determining similarity between input facial images.

In practice, at every stage the classifiers such as SVM or artificial neural
networks (ANN) can be applied to enhance the robustness of the process.
The three most beneficial applications of SVM include: (1) Face detection,
(2) Feature vectors comparison, and (3) Multi-method fusion. All these steps
are demonstrated in Sect. 15.3. In particular, face detection, which is a sophis-
ticated process composed of a quick preliminary selection of face candidates
based on ellipse detection, followed by verification, is a subject of Sect. 15.3.4.
In this approach, SVMs are used to determine whether a given image (actu-
ally a clipped region of the input image, normalized to fixed dimensions) is
a face. Moreover, SVMs are used to improve the detection precision and the
detected eye location is iteratively updated, to maximize the response.

Then, the feature vector comparison follows as illustrated in Sect. 15.3.5.
This process depends on a specific feature extraction method and in many
cases it is based on a distance metric defined in the feature space. How-
ever, the experimental results presented suggest that there is a potential for
improvement using SVM. The classifier’s task is to determine whether two
given feature vectors (actually a vector being the difference between them)
come from the same individual. This approach has been successfully applied
for comparing the feature vectors obtained using different feature extraction
methods, such as the Eigenfaces and elastic bunch graph matching.

Finally, the multi-method fusion is often beneficial when several different
feature extraction methods are used. The similarity results obtained using
individual feature extraction methods must be properly transformed into the
final similarity measure. Here, SVMs take a similarity vector as an input and
make the decision whether two input images were derived from the same
individual.

In all aforementioned cases the representativeness of the training data must
be of a particular concern. Large amounts of training data are often available,
but not all of them are beneficial to finding the effective decision rules. This
problem can be solved by randomly selecting the subsets of all available data
to find the optimal. However, the genetic algorithms can be used here, as
presented in Sect. 15.3.3 to optimize the training set, which occurred to be
definitely more robust than the random selection.
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15.2 Support Vector Machines Applied in the
Classification of Mass Spectra

Clinical proteomic is an important field of proteomics which is the study of
the proteome. All cells in an organizm have a common genome, but in the
various types of cells, the different fragment of the genome is expressed. The
proteome in contrast to the genome is dynamic and fluctuates depending
on a combination of numerous internal and external factors. Therefore the
changes in disease development can be monitored by proteome analysis. It
has a great potential to contribute to medicine in terms of biomarker and
therapeutic target discovery and also helps to detect diseases at their early
stages [45, 62].

The proteome is most frequently analyzed using mass spectrometry (MS)
of the blood. The mass spectrometer returns the result in a very simple
form of a spectrum which is represented by pairs of mass-to-charge ratios
(m/z value) and corresponding intensity values. Then, the various methods
of mathematical analysis are used to obtain considerable knowledge about
the sample [1, 40, 73].

This fragment of chapter shows one of the methods for analyzing mass
spectra. They are preprocessed, modeled as a Gaussian mixture and used in
support vector machine (SVM) in order to distinguish two groups of people:
those who suffer from lung cancer and a control (healthy) group. The data
were delivered by the Department of Experimental and Clinical Radiobiology,
Cancer Center and Institute of Oncology in Gliwice. Serum was isolated from
blood taken from 49 healthy people and 38 people with lung cancer. Next,
they were used in mass spectrometry. There were several obtained spectra for
every person, because the serum isolation and subsequent MS analysis were
repeated more than once for each individual [46].

15.2.1 MS Spectra Preprocessing

The process of gathering MS spectra involves many disturbances of biological
and technical nature. As a result, the raw spectrum signal is noisy and must
be preprocessed so as the spectra can be compared with each other. This
process is illustrated in Fig. 1 and it consists of the following steps: 1) inter-
polation to common m/z axis, 2) removing outliers using Dixon test based
on areas of the raw spectra, 3) averaging of technical repeats, 4) binning
of neighboring points to reduce data complexity, 5) removal of the spectral
area below baseline and 6) the total ion current (TIC) normalization which
is a commonly adapted practice in the field [18, 25, 40].

The first step of the preprocessing was to standardize m/z axis. In the
collected sample, the distance between each pair of successive m/z ratios was
not constant, also it might be different for various samples. These differences
were derived from that ion intensities, for each sample, was alone counted in
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Fixing a common axis for all the mass spectra

Dixon test and calculation of the average spectrum for each person

Binning of neighboring points

Baseline correction

Data normalization (TIC)

Fig. 1 Data preprocessing

the MS detector. Because all spectra in the subsequent steps were processed
together, a uniform scale was needed before the analysis was performed.

In order to eliminate accidental errors when isolating serum or during
the MS process, these two steps of processes were repeated 4 times for the
control group and 4–12 times for the group with cancer. In a set of repeated
measurements one or more of the obtained values may differ considerably
from the majority of the rest. In such a case it is important to eliminate
those deviant values and not to include them in any subsequent calculation
(e.g. the mean value or the standard deviation). For small repetitions, the
Dixon’s Q-test is used in order to detect outliers. This test is very simple with
two limitations: the sample size should be greater than 3 and the population
which is being sampled is assumed normal. Dixon’s test checks significant
differences between the extreme values (the smallest and the largest) and the
rest of the sample [24].

Here the sample consist of a sum of intensity peaks and the sample size
was a number of repetitions. Following this method, one repetition (spectrum)
from 5 healthy people was rejected (pval = 0.01). Then, the average spectrum
for each person was computed. In Fig. 2 an example of an average spectrum
is shown. In this example, there was a single outlier, which had the largest
value of the sum of intensity. As a result that outlier gave much bigger average
value of peak intensities.

The MS detector is very sensitive to small changes of quantity of ions
from an analizator. Therefore the detector returns many very detailed data.
Their large amount would delay the computational processes, and therefore
they were reduced by changing the discretization step. This was achieved by
binning of the neighboring points. This process also renders a simple noise
reduction and reduces the effects of minor observation errors. For analyzed
mass spectra, 8 neighboring points were replaced with a single one, being
their averaged intensity value.
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Fig. 2 Average spectrum before and after Dixon’s test

One of the artifacts affecting the spectra is a shift of the signal, termed
a spectrum baseline. It depends on the sample preparation, cocrystallization
protein or peptide molecules with molecules of the matrix. Small molecular
fragments from the process of degradation, desorption and collisions in the
acceleration phase also produce background fluctuations. The noise in the
spectrum consists of low frequency baseline. A general purpose of the baseline
correction algorithm is to estimate (to find low frequency noise from the
spectrum) and to remove the vast baseline artifact, in such a way that the
shape line and peaks in the spectrum are not distorted. Without the baseline
correction, the value of the baseline level could affect a considerable area of
peaks causing difficulties in choosing the most significant peaks. In Fig. 3
examples of spectra before and after removing the baseline are shown.

There are some algorithms which remove the baseline, e.g. convex hull,
moving average, spline, wavelet transform, monotone local minimum [33,56,
66]. However the quality of baseline detection is difficult to assess.

Search of the 10-th local percentiles was used here. The percentiles estimate
low frequency baseline, which is hidden among the high frequency noise and
real signal peaks. The percentiles were fixed within multiple shifted windows
of width 200 m/z and their values were assigned to the center of the window.
The baseline was estimated using Piecewise Cubic Hermite Interpolation and
it was removed afterwards.
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Fig. 3 The graph compares spectra before and after baseline correction
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Fig. 4 The spectrum with the regressed baseline

In Fig. 3 an example of a spectrum is shown before and after baseline
correction. The detailed assessment of the baseline is shown in Fig. 4. In (a)
the whole spectrum after Dixon’s test is presented along with the baseline
regression based on the estimated baseline points. A selected part of the
spectrum indicated in (a) is magnified in (b).

If many spectra are analyzed together, large differences in the intensities
of the peaks may be essential. Unfortunately, the intensities of the peaks are
very variable between experiments due to ionization efficiency or different
total concentration of the substance. In order to eliminate this effect, the
spectra are normalized. One of the method for normalizing the data is TIC
(total ion current) method. Each peak intensity is divided by a ratio of the
local intensity peaks sum to the mean intensity peaks sum for all spectra
[25, 36, 45].
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15.2.2 Preparing Spectra to Classification

In classification, the total number of measured data points is extremely large
(about 104 after points binning). It is not possible to use whole spectra for
classification, so feature selection is necessary. There are some existing meth-
ods for analyzing mass spectra after the preprocessing in order to select the
features [35,40,72]. Most of the published algorithms detect and extract sin-
gle peaks from the individual spectra. In this work, the average spectrum
was modeled as a sum of Gaussian bell-shaped curves [45, 47]. The fitting
is performed using Expectation-Maximization algorithm (EM) which maxi-
mizes the likelihood function [17,48]. In the work reported here, the Gaussian
mixture density decomposition was used for 100, 150, ..., 850, 900 mixture
components. In Fig. 5 a fragment of the average spectrum is shown along with
its represent peaks by using Gaussian mixture decomposition with 3 different
numbers of mixture components (K). The increasing number of components
makes the model better fitted to the peaks. If the parameter K is too large,
some components are unnecessary and noninformative – the model becomes
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Fig. 5 Examples of average spectra fragment and gaussian mixture decomposition
with 3 different numbers of mixture components (K)
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overparametrized. On the other hand, when this parameter is small, several
important peaks could be jointed together and the information is missing.
Therefore the bayesian information criterion (BIC) was used to assess how
the Gaussian mixture decomposition fits to the peaks [47, 48]. This criterion
introduces to a penalty for additional features. The log likelihood function
with the BIC criterion takes the form:


BIC = 
− 1

2
(3K − 1) ln

(
N∑

n=1

M∑
m−1

ym,n

)
, (1)

where 
 is the maximized value of the logarithm likelihood function for the
estimated model, K is the number of components, ym,n is the n-th peak
value for m-th person. The 
BIC value is increasing along with the number
of components up to about K = 300. For K > 300, 
BIC started to be
stabilized. Hence 300 mixture components were chosen for further analysis.

The Gaussian components were used to compute the feature vector (C)
of spectra for each person. These spectral components were characterized
by their intensities location on the m/z axis and standard deviation of a
corresponding Gaussian:

Cm(k) =
N∑
n

αkym,nf(xn;μk, σ
2
k), (2)

where αk is the weight of a k-th component, f(·) is a probability density
function of the xn (m/z) value with μ (mean) and σ2 parameters. In this
case, M = 87 (number of people) input vectors are used for classification,
each of them containing K = 300 (number of components) elements.

15.2.3 Classification

In this study, support vector machines (SVM) were used to classify the feature
vectors obtained after Gaussian mixture decomposition. SVM classified each
individual based on their feature vectors as being healthy or having lung
cancer markers. It was investigated how the choice of the kernel and the box
constraints for the soft margin influence the classification score obtained for
different numbers of features.

To determine a classifier’s quality it is necessary to determine a real
probability of assigning a person to incorrect group. This value is unknown,
therefore it has to be estimated experimentally using a validation set. This
probability is estimated based on the percentage of wrong assignments within
the whole testing sample. The total error (δ), as well as false negative rate
(δFN ) and false positive rate (δFP ) are obtained as
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δ =
FP + FN

TP + TN + FP + FN
δFP =

FP

TN + FP
δFN =

FN

TP + FN
(3)

where: TP is the number of sick people who were correctly diagnosed as sick,
FP is the number of healthy people who were incorrectly diagnosed as sick,
TN is the number of healthy people who were correctly diagnosed as healthy
and FN is the number of healthy people who were incorrectly diagnosed as
sick. Relationships among these terms are shown in Table 1.

Table 1 Accuracy of Diagnostic Test

CONDITION
Disease Non disease

TEST OUTCOME
Disease True positive (TP) False positive (FP)

Non disease False negative (FN) True negative (TN)

The classification process, which is shown below, was repeated 400 times
to estimate the average of 3 types of error rate (total error, false positive
rate, false negative rate) and their standard deviation. The first step of clas-
sification was to select randomly the training and validation sets. The size
of both sets was equal. Then, the features for the classification were selected
based on t-test performed for the training set [73]. This test investigates the
significance of the difference between the means of two groups [24]. For each
feature, statistical significance (pval) was computed and the features with
the smallest value of pval were selected. Using selected features, the classifier
was trained from the learning set and then it was tested on the validation
set. The schemat of the classification proces is shown in Fig. 6.

A potential problem with using t-statistics is that this test can be used if
the samples are normally distributed or if their number is sufficiently large.
Thus the features were checked by the Lilliefors test which is used to test the
null hypothesis that data come from a normally distributed population [32].
This test showed that 169 features in the control group and 185 features in the
group with cancer had normal distribution (pval = 0.01). An example of this
problem is shown in Fig. 7. When the data points introduce a curvature in the
plot, an assumption of normality is not justified. In such a case the features in
its original form could not be used in t-test. To correct the features, the Box-
Cox transformation was used. This transformation transforms non-normally
distributed data to a set of data that has approximately normal distribution
[5]. The Box-Cox transformation is a family of power transformations. After
it was applied, the number of features which did not have normal distribution
(pval = 0.01) was reduced to only 1 in the control group and 12 in the group
with cancer. An example of normal probability plot for feature with and
without Box-Cox transformation is shown in Fig. 8. After this transformation
the data points appear linear.
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Fig. 6 Classification process
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Fig. 7 The normal probability plot for the 22-th and 119-th features.

The Box-Cox transformation was used only to select the features using
t-test and later the original features were classified. The feature indices were
ordered by their ascending value of statistical significance and placed in a vec-
tor F = (f1, f2, ..., f300). A vector F ′ contained the features indices which
were used later in SVM. The number of features that are used in the classi-
fication cannot be greater than the size of the learning group. In this work,
the training group contained 44 elements, so the maximum c value was set
to 40. Here two methods were used to select features from the vector F .



392 K.A. Cyran et al.

0 0.002 0.004 0.006 0.008 0.01 0.012

0.01

0.02

0.05

0.10

0.25

0.50

0.75

0.90

0.95

0.98

0.99

Data

P
ro

ba
bi

lit
y

Feature: 129

−12 −11 −10 −9 −8 −7 −6 −5 −4 −3

0.01

0.02

0.05

0.10

0.25

0.50

0.75

0.90

0.95

0.98

0.99

BoxCox(Data)

P
ro

ba
bi

lit
y

Feature: 129 with Box-Cox transformation

Line joining the 1st and 3rd quartiles

Control (pval=0.0010 → 1)

Cancer (pval=0.0010 → 1)

Line joining the 1st

and 3rd quartiles

Control (pval=0.3667 → 0)

Cancer (pval=0.0112 → 0)

Fig. 8 The normal probability plot for the 129-th feature without and with Box-
Cox transformation.

1. The 1-st method selected c first, features from the vector, so the consec-
utive vector of selected features was F ′ = (f ′

1, f
′
2, ..., f

′
c), where f ′

j = fj .
The pval value for the features that are correlated with each other can be
very similar and the correlated features do not contribute anything to the
classification,

2. An alternative method was proposed in order to eliminate correlation be-
tween selected features. The correlation between neighboring features was
checked using Pearson product-moment correlation coefficient [37]. The
coefficient α, which determined if the features were closely connected, was
set to 0.01. So, as a first feature always f1 (f ′

1 = f1) was taken, and then
f2 was verified if is correlated with f ′

1. If not, it was accepted (f ′
2 = f2),

otherwise the next feature was checked until finding no relationship. After
second feature selection, the subsequent correlations were tested only with
the latest selected feature. To conclude, f ′

j+1 feature was checked whether
it was correlated with f ′

j. In this way, the best c features were chosen by
checking only adjacent correlations.

In Fig. 9, the total error with standard deviation is shown, where different
kernels and two methods of the feature selection are used. It can be seen in
the chart, that regardless of the classifier parameters, the best results are
obtained when the neighboring correlation is verified. The minimum total
error is smaller and achieved using fewer features than if the features are
selected in turn. Therefore it might be concluded that, when the feature
correlation is checked, then similar features are not used in SVM, so a smaller
number of features are needed to achieve minimum error.

In this study, not only was it checked how the number of features influences
the error, but also how the box constraints for the soft margin (bc parameter)
and the SVM kernel affect the classification score. Fig. 10 and Table 2 show
how these parameters influence correctness of the classification. It might be
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Fig. 9 The graph compares two methods of selecting features for SVM. The
Method 1 is without checking the correlation between features and Method 2 is
with checking the correlation.

noted that the parameter defining box constraints for the soft margin does
not affect the final result significantly. Hence, it is better to take to use
a large value of this parameter. In addition, the bigger this parameter is,
the less support vectors we used in classifier (Fig. 11). A large number of
support vectors may cause SVM be over-matched to the learning set. So
there were no differences observed in the classification score for different
values of the box constraints parameter, but they can affect the generalization
capabilities.

With the σ value increase in SVM with the radial kernel, the minimum
classification error decreases, but this minimum appears simultaneously at
a larger number of features used for classification. Thus, the higher sigma
(σ) is, the more features are needed to achieve the stability of the error.
It is asymptotically convergent to a total error value obtained for random
label assignment i.e. to 100% · 19/43 = 44.19%. The classification results for
the radial SVM are getting closer to the results of the linear SVM with the
increase of σ. The error in linear SVM does not increase when the number
of parameters is bigger. This is due to the fact that adding new features to
the classifier with a linear kernel does not contribute anything to the model,
because the separating hyperplane is parallel to the dimensions defined by
the irrelevant features.

Concluding from the results, the best number of features equals about
6–8. These values seem to be correct, if it is considered that the number of
features should not exceed an order of magnitude less than a learning group
size. In Table 3 the error values are shown for three different numbers of
features. They do not vary much, but here the linear SVM is the best, not
only in terms of the total error, but also for the false negative rate. This
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Fig. 10 Influence SVM parameter on quality of the classification
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Table 2 Classification error for SVM with different parameter

bc σ=1.0 σ=1.2 σ=1.4 σ=1.6 σ=1.8 σ=2.0 σ=2.6 σ=3.0 σ=3.6 linear

Number of features for minimal total error
1 6 6 7 4 9 11 18 16 20 40

100 8 6 7 10 12 11 21 25 29 37
500 6 8 10 10 11 18 17 29 26 40
1000 6 9 9 10 14 19 21 18 29 39
5000 5 7 8 11 15 14 20 24 27 40

Total error [%]
1 11.63 10.57 10.26 10.05 9.40 8.65 7.39 7.05 6.17 3.00

100 11.47 10.69 10.22 9.84 8.89 8.53 6.97 6.53 5.66 3.22
500 11.60 10.56 10.19 9.73 9.02 8.41 7.01 6.15 5.69 3.14
1000 11.06 10.66 9.96 9.49 8.99 8.71 7.13 6.59 5.64 3.19
5000 11.51 10.57 10.25 9.51 9.10 8.30 7.35 6.36 5.44 3.02

FNR [%]
1 11.64 10.50 9.82 9.26 9.41 9.14 7.93 7.22 6.61 2.21

100 10.06 9.21 8.33 8.49 7.54 7.71 6.44 5.70 5.69 2.16
500 10.38 9.42 8.56 8.50 7.80 7.17 6.50 6.20 5.55 2.11
1000 10.49 9.41 8.65 8.13 8.46 7.81 6.45 6.14 5.38 2.06
5000 9.42 9.15 8.71 7.81 7.64 7.57 6.76 5.66 5.16 1.95

FPR [%]
1 11.62 10.66 10.82 11.05 9.38 8.03 6.71 6.84 5.62 4.00

100 13.25 12.55 12.59 11.55 10.59 9.58 7.63 7.58 5.63 4.57
500 13.16 12.01 12.25 11.28 10.57 9.99 7.64 6.08 5.87 4.43
1000 11.79 12.25 11.62 11.22 9.67 9.84 8.00 7.16 5.97 4.61
5000 14.16 12.37 12.20 11.66 10.96 9.21 8.11 7.25 5.80 4.37
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Table 3 The 3 types of errors [%] for 6, 7, 8 numbers of features (c)

c σ=1.0 σ=1.2 σ=1.4 σ=1.6 σ=1.8 σ=2.0 σ=3.0 σ=3.6 linear

6
Tot. Error 11.94 11.33 10.86 11.55 10.36 11.85 11.37 11.92 9.71

FNR 10.47 10.09 8.89 10.00 7.75 9.69 8.76 9.11 7.31
FPR 13.79 12.89 13.36 13.51 13.66 14.59 14.67 15.47 12.74

7
Tot. Error 11.83 10.57 10.88 10.09 10.67 10.15 10.67 10.48 9.17

FNR 9.95 9.15 9.01 8.14 9.13 8.48 8.26 8.42 7.11
FPR 14.21 12.37 13.24 12.55 12.62 12.25 13.71 13.09 11.78

8
Tot. Error 12.05 10.98 10.25 10.22 10.30 10.01 10.03 10.66 8.80

FNR 10.12 9.05 8.71 8.75 9.02 7.92 7.94 8.34 6.74
FPR 14.49 13.42 12.20 12.08 11.91 12.66 12.67 13.58 11.39

is very important for the diagnostics, because it is essential to decrease the
probability that a person with cancer is diagnosed as healthy.

15.3 Support Vector Machines Applied to Human Face
Recognition

Face recognition [3, 14, 41, 42, 61, 68, 75] is one of the most investigated bio-
metric methods which identify individuals on the basis of the human body
features. Although face recognition systems have been extensively developed
for the last 20 years, existing solutions perform definitely worse than humans
do and below the expectations shared several years ago. This limited effec-
tiveness is mainly due to the high variability of the human face resulting
from expression variations and different lighting conditions [42]. Moreover,
it is worth noting that the human face is one of the most important objects
which we learn to analyze since the beginning of our lives. This is yet an-
other reason why the existing algorithms cannot compete with the accuracy
achieved by human observers. However, the main advantage of face recogni-
tion compared to alternative, often more reliable biometric methods, is a very
low level of required interaction between the system and the individual who is
being recognized. This allows face recognition systems to be used for various
applications, ranging from entertainment to access control and surveillance
tracking.

Computer vision still appears to be far from developing fully automatic face
recognition systems, but during the last decade the algorithms improved sig-
nificantly. This was confirmed by Face Recognition Vendor Tests (FRVT) [42]
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conducted by National Institute of Standards and Technology (NIST) in 2000,
2002 and 2006. Here, we present how face recognition algorithms can be im-
proved using support vector machines. More specifically, we show three most
beneficial applications that support the face recognition process at different
stages.

15.3.1 Face Recognition Process

Automatic face recognition is a complex process that in general can be di-
vided into four main steps illustrated in Fig. 12. These are: a) face detection,
b) face normalization, c) facial feature extraction, and d) comparison and
classification of the feature vectors.

Face detection [71, 74] determines whether any human faces are visible
in the input image, and specifies their location. Location of frontal faces is
usually defined by a pair of points representing the eye centers.

After that, every detected face is subject to normalization. This step in-
cludes geometric normalization (i.e. scaling, rotation and clipping) to a fixed
size so that the eyes are always in the same position. Furthermore, the nor-
malization may include more advanced operations aimed at reducing the im-
pact of lighting conditions, occlusions, and facial expression changes. Here,
we normalize the lighting variations by performing histogram equalization,
which is a commonly adopted practice in face recognition [75].

After normalization, the facial image is processed to extract its distinctive
features represented by a feature vector. There have been many methods
developed for this task which adapt different approaches. In general, they
can be divided into those that are holistic [2, 3, 61], using the entire face
and those that make use of local features [68]. Feature extraction method
should also define a similarity measure between the feature vectors in order
to determine how similar any two given faces are. Sometimes multiple feature
extraction methods are applied to boost the system performance. In such a
case multiple similarities produced by different methods must be converted
into a final similarity score.

The outlined core process makes it possible to complete four categories of
the identification task [14], namely:

Detection Normalization

Feature extraction
Feature vectors
comparison and
classification

Fig. 12 Face recognition process.
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1. Classification of a face image into one of a set of predefined classes (for
face identification a single class contains images of the same individual).

2. Solving the known-unknown problem (i.e. determining whether an image
belongs to one of the predefined classes or to none of them).

3. Verification (the image identity is claimed and the system determines if
this statement is true or false).

4. Full identification which is a composition of the known-unknown and clas-
sification problems.

Face recognition algorithms can also be applied for solving related tasks such
as gender classification [69], emotion or age estimation [67], etc. It is also
worth noting that face detection is often considered as a separate task itself.
At the current stage of development, detecting faces is much more reliable
than identifying individuals and it has already found first successful applica-
tions in the industry, e.g. in the digital cameras.

At every stage of the face recognition process classifiers such as support
vectors machines or artificial neural networks can be applied to improve the
performance. In this chapter three examples of most beneficial SVM’s appli-
cations are presented and discussed:

1. Verifier in face detection. Face detection is usually a sophisticated process
itself. We adapted technique composed of a quick preliminary selection
of face candidates based on ellipse detection, followed by the verification
step [26]. Here, SVM serves as a verifier which determines whether a given
image (actually a clipped region of the input image, normalized to fixed
dimensions) is a face. This is further explained in Sect. 15.3.4.

2. Feature vector comparison depends on a specific feature extraction method,
and in many cases is based on a distance metric defined in the feature
space. However, the experimental results have confirmed that there is a
potential for improvement using SVM. The classifier’s task is to deter-
mine whether two given feature vectors (actually a vector being the dif-
ference between them) have been derived from the same individual. This
approach, presented in Sect. 15.3.5, has been successfully applied for com-
paring the feature vectors obtained using the Eigenfaces [61] feature ex-
traction method.

3. Multi-method fusion is often beneficial when several different feature ex-
traction methods are used. The similarity results obtained using individual
feature extraction methods must be transformed into the final similarity
measure. Here, SVM takes a similarity vector as an input and makes the
decision whether two input images were derived from the same individual.
This application is described in Sect. 15.3.6.

15.3.2 Evaluation Protocol

Face recognition algorithms were evaluated on the basis of the classification
task specified earlier in this chapter, following protocol described in [15].
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The validation set was split into a gallery (G) which contains one image
per individual, and a probe set (Q) for which the classification is performed.
Classification score of a single sample q ∈ Q is concerned with a term of
rank (r). It is an integer ranging from 1 to the cardinality of the gallery. A
sample is recognized with n-th rank when there are n samples in the gallery
which similarity (S) to q is greater than or equal to the similarity between q
and a sample in the gallery gk, which class identifier id(gk) is identical to an
identifier of q:

r(q) =  {(gi, gk) ∈ G : S(gi, q) ≥ S(gk, q), id(gk) = id(q)} . (4)

Hence, if a sample is classified correctly, its classification rank r = 1. Clas-
sification effectiveness for a given set is a percentage of correctly classified
images. Moreover, face recognition performance is also presented in a form of
cumulative match curves (CMC) which show the classification score obtained
for subsequent ranks.

In cases when the feature extraction process was evaluated (Sects. 15.3.5
and 15.3.6), in order to prevent the propagation of face detection errors, we
used hand-labeled eye locations during the geometrical normalization.

Face detection score used in Sect. 15.3.4 was evaluated on the basis of
detection precision. In literature the detection score is often expressed as the
detection rate and false positive rate. The first one is a percentage of faces
that were correctly detected in the analyzed set of images, while the latter is
a percentage of non-faces within the detected faces. This is a proper metric as
long as the aim is to count the faces in images or give a rough approximation
of face location. However, for face analysis purposes not only does it matter
whether the face was found, but how precisely it was located. If the detection
precision error may be propagated further, the detector’s evaluation should
take the precision into account. In the presented approach it was achieved by
calculating a relative detection error (δd) for a single face as

δd =
Δl +Δr

2D
, (5)

where Δl and Δr are the distances in pixels between real and detected posi-
tions for the left and right eye, and D is the distance between real positions
of the eyes. For false negatives and false positives the relative error is set to
1, and an average relative error computed for the entire test set is considered
as a final detection score.

15.3.3 Selecting SVM Training Set

In all of the aforementioned SVM applications the training data are generated
in automatic or semi-automatic way. This means that huge amounts of train-
ing data are available, but their representativeness and correctness cannot be
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guaranteed. Not all of the data in the original training sets are beneficial to
finding the effective decision rules. The dependence between the training set
size and training time was extensively studied [8,23,55] and different methods
have been proposed to decrease the training time. However, it has been also
shown that the number of support vectors grows linearly with the training set
size [59]. This means that using entire training data sets may affect not only
the training time, but the classification time and effectiveness as well.

There exists a possibility that in case of huge training data sets, their
subsets are more representative than the whole set, especially if the data
were acquired in an automatic, uncontrolled way. It is worth noting that in
practice SVM training is identical to selecting a small subset of the whole
training set. These selected vectors are termed the support vectors and are
used for the classification. Hence, it may be concluded that only a small
part of the original training set is relevant for training. Reduced support
vector machines [30] benefit from this observation by selecting a subset of the
training set randomly. Here we outline how the training set can be optimized
using genetic algorithms. This delivers much better results than using the
entire training data set and is definitely more robust than selecting the subset
randomly.

15.3.3.1 Genetic Algorithms

Genetic algorithms [13] (GA) implement a heuristic approach which supports
the search for solutions close to the optimal using an evolutional strategy. At
first, a population of individuals characterized by their genotypes is generated
and it is later transformed using three genetic operators: selection, mutation
and crossover. A genotype contains a set of parameters to be optimized and
defines unambiguously a single solution.

The population P0 is initialized with a set of individuals {p(0)i }, whose
genotypes are generated randomly. This creates the first generation. After
that, every individual is assessed and its fitness η(p) is determined. A sub-
sequent generation is obtained by transforming the current population using
three operators:

1. Selection. This operation rejects the individuals with low fitness, and those
which remain are further processed using two subsequent operators.

2. Mutation is a random modification to the genotype of an individual and it
is aimed at sustaining the genotype variety. Otherwise there would be a risk
that the individuals within every generation become too similar to each
other. This would result in finding a local minimum of the optimization
problem.

3. Crossover operates on two individuals whose genotypes are randomly
merged into a new one. This creates a subsequent generation of individuals.

In general it is expected that the maximal fitness increases between subse-
quent generations. This process is iteratively repeated to obtain an optimal
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solution (i.e. a sufficiently well-fitted individual). A stop condition may vary
from case to case.

Genetic algorithms are particularly useful in those areas where standard
optimization techniques cannot be applied, but the effectiveness of a single
solution can be determined easily and clearly. The parameters like population
size, initialization method and stop condition, as well as the detailed opera-
tor’s rules must be defined according to specific conditions of the optimization
problem.

15.3.3.2 Training Set Optimization Using Genetic Algorithms

We found genetic algorithms particularly useful for optimizing the SVM train-
ing sets in problems related to face recognition. Here, cardinality of the train-
ing data sets is usually large, but quality of the data is low. Sometimes the
data cannot be labeled with high confidence which will be explained later
for the specific cases. Hence, the process of training subset selection occurs
crucial to the final effectiveness rendered by SVM.

We have utilized genetic approach as follows. A genotype of a single indi-
vidual defines the content of the training data. An individual is understood as
a subset of the entire training set. Number of vectors in each class is constant
for every individual, so the training set size is a fixed parameter.

Fitness of each individual is determined based on the classification effec-
tiveness measured for the validation set independent from the training set.
If the classifier is used to solve a specific task which can be unambiguously
evaluated, the evaluation score is treated as the fitness (e.g. face detection
score). The individuals with the highest fitness are selected to create the sub-
sequent generation. This process of creating an individual and determining
its fitness is illustrated in Fig. 13.

Mutation is performed by random changes to the training subsets of the in-
dividual. Some vectors in the genotype are randomly substituted with others
from the original training set. Mutation parameter ξ defines the percentage of
the vectors in every genotype which are modified. For all of the investigated
cases we used ξ = 10%.

Class C+

C′
+

Class C−
C′

−

Individual pi

k vectors

SVM training Validation Fitness η(pi)

Fig. 13 Process of selecting and evaluating an individual using genetic algorithm.
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In order to obtain a crossover of two individuals, the sets defined by their
genotypes are at first summed within each class and then k vectors are se-
lected in each class to form a new individual.

The described process is iteratively repeated as long as the maximal ef-
fectiveness is increasing in subsequent generations or until the effectiveness
reaches a desired level.

In the presented cases we used labeled training data sets and we did not
allow the vectors to change their labels (a vector v ∈ C+ cannot be selected to
C− during the optimization). However, it is worth noting that this procedure
can also be adapted for cases where the training data are unlabeled or label
changing may be allowed due to soft labeling.

Examples presented later in this chapter demonstrate that following this
approach, it is much easier to determine a proper subset of the training set.
Theoretically, the same subset can be found by randomized or brute-force
search, but in case of huge training sets it may be hardly feasible.

15.3.4 Face Detection

As it was stated earlier in this chapter, face detection is often considered
as a separate task which has found a broad range of applications, including
the surveillance tracking, human-computer interfaces and entertainment pur-
poses. In this context it is regarded as the first, but a very important step
of automatic face recognition [41,75]. Here not only is it important to give a
rough approximation of face location (which is usually sufficient for most of
the applications), but the faces must be located with high precision. This is
essential for proper image normalization. If the eyes are imprecisely located,
then after normalization, the faces may be tilted or misplaced, which usu-
ally makes further analysis ineffective. The presented experimental validation
demonstrates that the face detection precision has critical influence on the
face recognition score.

An extensive survey on the existing face detection methods is presented
in [74]. Among the most popular and robust algorithms, the majority of them
utilizes classifiers such as SVM or neural networks. They work by learning
face appearance from a representative training set to make it possible to
determine whether a given image region contains a face [39, 52, 61]. This is
often effective, but the whole image must be analyzed with a varying size of
the scanning window, which seriously affects the performance and limits real-
time applications. Such basic detectors have been optimized using cascades
of classifiers [64] which speed up the searching process significantly.

Here, we focus on a double-level approach [26], in which the face candidates
are first selected using ellipse detection and then verified by SVM classifier.
This makes it possible to detect faces quickly and precisely, which is essential
for face recognition applications. This approach is outlined in Fig. 14.
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Preliminary selection using ellipse detection SVM-based verification

Fig. 14 Double-level face detection process.

In the work presented here the preliminary selection is realized using an
ellipse detector. We benefit from the observation that human heads can be
usually represented by vertically-oriented ellipses. Furthermore, the eye sock-
ets also are characterized by horizontally-oriented elliptical shapes. We have
adapted an ellipse detector proposed by Maio and Maltoni [34] for face lo-
calization. In their approach ellipses are detected in a directional image with
generalized Hough transform to find approximate face location. After that,
we repeat ellipse detection inside the primarily detected ellipses to find can-
didates for eye sockets. The eye-socket candidates are paired using simple
heuristic rules to obtain face candidates which are normalized and are subject
to verification. More details of the ellipse detection procedure are explained
in our earlier work [26].

After the candidates have been detected, they are normalized and veri-
fied to reject all of the false cases and accept exclusively facial images. The
normalization includes histogram equalization and scaling to a fixed size of
16 × 19 pixels in such a way, that the eyes are in fixed positions afterwards.
Eye positions are determined as centers of the eye-socket ellipses. Subsequent
rows of a normalized image are stacked to form a 304-dimensional vector that
is further processed by SVM.

SVM is trained with two classes of vectors representing a) real faces and
b) false face candidates. Here, we used RBF kernel with σ = 0.7 on the basis
that it delivered the best results. After training, the classifier is capable of
determining whether a candidate is a face or not. Furthermore, in order to
increase the detection precision we modify the original eye locations with a
following iterative procedure. At every i-th step of the procedure the cur-
rent eye position E(i) is modified in eight directions by a step si. For every
modified eye position, a face image is normalized and verified. If the verifier’s

response for a position E
(i)
n (where n ∈ {1, 2, ..., 8} determines the direc-

tion) is greater than the response in the current position E(i), it is moved

to the new position (E(i+1) = E
(i)
n ). If the current position gives the maxi-

mal response, the step is decreased (si+1 = si/2), and the position remains
unchanged (E(i+1) = E(i)). The process, executed for every eye separately,
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is started with a step s0 = 4 and repeated until it equals 1. As a result, the
eye positions are moved to a local maximum of the verifier’s response. This
position is closer to the real location than a central point of the eye-socket
ellipse.

The speed of this double-level face detector is dependent on the minimal
size of heads which are expected to be detected and does not depend strongly
on the input image size. Assuming that the smallest size of the faces which are
supposed to be detected is such that their height is at least 20% of the largest
input image dimension, the detector can work at 20 frames per second. This
is definitely sufficient for real-time applications, and usually it is not expected
to detect smaller faces for recognition purposes (they would be too small to
be recognized correctly).

In Fig. 15 some examples of the images belonging to face and non-face
classes are presented. These candidates were extracted from a BioID face
database [21] which contains 1521 gray level images presenting frontal faces
on a complex background. Ellipse-detection-based preliminary selection ex-
tracted 3612 face candidates which were classified by an expert to form the
original training set. It may be observed from the figure that although in
majority of cases the labeling may be done with high confidence, some can-
didates present faces which are not centrally located. They were assigned to
the non-face class. Such examples may be very helpful to reject imprecisely
located faces during the iterative precision improvement procedure. However,
sometimes an expert may not be certain whether such an image would im-
prove or deteriorate the detection score. It is presented later in this section
than GA-based training set optimization is therefore very helpful here.

Experimental validation was conducted using 3657 frontal face images from
Feret database [43]. Some examples of them are presented in Fig. 16. Also,
face recognition performance was evaluated for different face detection scores
in order to demonstrate the effect of face detection error propagation.

(a) (b)

Fig. 15 False (a) and true (b) face candidates for SVM training.
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Fig. 16 Examples of images from Feret face database [43].
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In this example we have compared three alternative approaches to SVM
training:

1. SVM trained with all available images (entire training set used).
2. SVM trained with randomly chosen subsets of the entire training set. Every

subset was formed out of 200 facial images and 200 non-facial images which
examples are presented in Fig. 15.

3. Training set optimization using genetic algorithm as outlined earlier in
Sect. 15.3.3.

Comparison of the detection error obtained for these three cases are demon-
strated in Fig. 17. In the figure we present the smallest detection error ob-
tained at subsequent generations of the GA-based optimization procedure,
averaged over 10 different runs. Error bars indicate the standard deviation
between the score obtained at different runs.

Evaluation of a single individual involves SVM training and running face
detection for all of the images in the evaluation set. This is a time-consuming
operation, so in our experiments we limited the size of the population to 10
individuals. Despite this limitation the obtained results are much better than
using random selection of the training subset, and stable result is achieved
after 10-15 generations. Moreover, it may be observed from the standard
deviation that the final score was similar in all runs. For fair comparison we
have performed 200 different random selections which equals the number of
tests executed during a single GA run. The best result obtained with the
random selection is presented in the figure. Taking a subset of the original
training set is superior to using the entire data set for SVM training (the
obtained score is also marked in the figure).
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Fig. 17 Detection precision error in subsequent generations of training sample
optimization.
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Fig. 18 Dependence between detection precision error and face recognition score.

The differences between the errors obtained using the investigated meth-
ods may appear small, but they have large impact on face recognition per-
formance. The dependence between face detection precision error and face
recognition score is illustrated in Fig. 18. In this case the Eigenfaces [61] fea-
ture extraction method was used. The detection error equal to 0% means the
real eye positions pointed by an expert. It can be seen from the figure that
the difference in detection precision error between the GA-based optimiza-
tion and random selection equals over 5%, and it grows to as much as 10%
compared to SVM trained with the entire training set. This demonstrates
how important the training subset optimization is in case of face verification.

15.3.5 Feature Vectors Comparison

Second application of SVM to automatic face recognition is concerned with
comparing feature vectors obtained using the Eigenfaces method [61]. This
method was one of the first attempts to face recognition and is based on
principal component analysis (PCA). It has many drawbacks which limit its
effectiveness [27], but it has been widely investigated and is frequently used
for research purposes.

The method requires a training stage which is performed for M nor-
malized face images. Every image contains N pixels and is treated as an
N -dimensional vector. First, a covariance matrix C is computed:

C =
1

M

M∑
i=1

(xi − μ) (xi − μ)
T
, (6)
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where xi is an i-th normalized face image vector, and μ is an average face
vector. Subsequently, the covariance matrix is subjected to the eigen decom-
position C = ΦΛΦT where Λ = diag (λ1, . . . , λN ) is the matrix with the or-
dered eigenvalues along the diagonal and Φ = [υ1| . . . |υN ] is the matrix with
the correspondingly ordered eigenvectors as columns. A face space has far less
dimensions than the input space, and a relatively small number (n << N)
of the eigenvectors with the highest eigenvalues create an orthogonal basis
for the n-dimensional face space. Here, the dimensionality was reduced to
n = 150.

After training, features can be extracted from any normalized face image,
utilizing n eigenvectors with the highest eigenvalues. The feature extraction
is performed by projecting a normalized face image onto the face space:

ν = ΦT (x− μ), (7)

where ν is the feature vector and x is a normalized face image. Following the
conventional approach, the similarity between the feature vectors is computed
on the basis of their Euclidean or Mahalanobis distance in the feature space.
Alternative distance metrics can also be applied for this purpose, which has
been studied in [70].

Classifiers are often used to determine identity based on the feature vector
without computing similarity between them. In such a case every class of
this classifier represents a single individual [20]. This requires a multi-class
classifier be learned with feature vectors extracted from people whose images
are intended to be recognized. Although SVM is a two-class learning machine,
it can be used here to distinguish each class from all of the remaining samples.
Hence, forK individuals,K classifiers must be learned. Such a solution brings
good results, but two serious limitations must be considered: 1) many feature
vectors are required for every person whose face is to be enrolled to the system
database, and 2) adding a new person to the gallery requires retraining all
of the classifiers. This limits the system scalability and stands in contrast
with the conventional approach where a single image is sufficient to register
a new individual (the only action is to add the extracted feature vector to
the gallery).

Here, we adapted another approach [44] which reduces the aforementioned
K class problem to a two-class one. A pair of feature vectors ν1 and ν2

are subtracted from each other to obtain a difference vector (νΔ) which is
processed by SVM. Every i-th element of the difference vector is obtained as

νΔi = |ν1i − ν2i| . (8)

Two classes of such feature vector pairs can be distinguished, namely: a) intra-
class pairs CW = {(ν1,ν2) : id(ν1) = id(ν2)} and b) inter-class pairs CB =
{(ν1,ν2) : id(ν1) �= id(ν2)}. Hence, SVM determines whether a given pair of
feature vectors have been extracted from the same individual or from two
different persons. Following this approach, the classifier can be learned only
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once based on two sets of pairs created from a training set, and adding new
vectors does not require SVM be retrained. Also, a single image is sufficient
to register a new person to the gallery.

The main problem is concerned with training set representativeness and
number of available samples in each class. For a training set containing
M images of K individuals (Ki images for every i-th individual), there
are CB =

∑
i Ki(Ki − 1)/2 intra-class pairs and CW = M(M − 1)/2 −

CB inter-class pairs. This means that for a large number of classes there
will be much more intra-class pairs than inter-class ones (CB << CW ).
Hence, training set reduction is essential here, which can be supported using
GA-based optimization.

For training we used 761 face images for 275 individuals from the FRGC
Version 1 database [41]. From this set 286066 inter-class and 3114 intra-class
pairs were extracted. Every pair was transformed into a difference vector
(8) that can be processed by SVM. Two kernel functions have been used:
1) 3rd degree polynomial and 2) linear kernel. RBF kernel was not effective
for this application. This can be explained by a linear nature of the problem
(the longer the difference vector is, the bigger chance that it is an inter-class
difference).

In this case it was virtually impossible to train SVM with all of the avail-
able vectors due to large and unequal cardinality of the opposite classes in
the training set. Therefore, we trained SVM with 100 intra-class and 100
inter-class difference vectors selected from the entire training set. Similarly
to the face verification case, the training samples were selected in two ways:
randomly and using genetic algorithm. The number of single classification
tests was equal in both cases. For GA optimization the fitness was deter-
mined based on the first-rank classification score obtained for the validation
set. Population size was 10 and the presented results were averaged over 10
independent runs. Classification score achieved after subsequent generations
is presented in Fig. 19 for the polynomial kernel and in Fig. 20 for the linear
kernel. GA training set optimization delivered much better results than those
achieved using random selection.

The best scores obtained for the polynomial and linear kernels are com-
pared in Fig. 21 in a form of CMC curves. The achieved classification scores
are compared with the effectiveness obtained following the conventional meth-
ods in Table 4. It can be seen from the table that using SVM trained with
GA-optimized set, the face recognition score is higher than that obtained
using Euclidean or Mahalanobis distances. GA-based optimization made it
possible to find a representative training set which reduced the classifica-
tion error significantly. It can also be observed that although the best results
achieved using two alternative kernels are very close to each other, it is the
linear kernel which is less sensitive to the selected subset. While the gain of
using GA over random selection is almost 8% for the polynomial kernel, it is
just 2.6% for the linear one. GA helps to find a better subset, but the gain
is not that large here.
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Fig. 19 First-rank classification score in subsequent generations for SVM with
polynomial kernel.
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Fig. 20 First-rank classification score in subsequent generations for SVM with
linear kernel.

Table 4 First-rank classification score for various feature vector comparison
methods.

SVM-based comparison
Kernel type Random selection Genetic algorithm

Polynomial 76.3 % 84.0 %
Linear 82.0 % 84.6 %

Euclidean-distance-based comparison 77.1%
Mahalanobis-distance-based comparison 79.2%
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Fig. 21 Cumulative match curve for SVM trained using GA-optimized and
randomly-selected training set.

The overall conclusion is that the SVM-based feature vector comparison is
more effective than the conventional approach. Using linear SVM is equiva-
lent to assigning weights to the feature space dimensions, where the weights
are obtained as subsequent elements of the separating hyperplane normal
vector. Hence, SVM training may be used to obtain the weights, and the
similarity score between two feature vectors may be obtained as a weighted
average of their difference vector elements. This is beneficial for the perfor-
mance, as computing a weighted average is much faster than running the
SVM classification.

15.3.6 Multi-method Fusion

The last example of applying SVM to automatic face recognition, presented in
this chapter, is concerned with the multi-method fusion. This task is aimed at
generating a final similarity score S from n partial similarities si, delivered by
each feature extraction method. Here, we performed fusion of four different
feature extraction methods, i.e.: 1) the Eigenfaces with Euclidean metric,
2) the Eigenfaces with Mahalanobis metric, 3) the Fisherfaces method [3],
which is based on linear discriminant analysis, and 4) elastic bunch graph
matching (EBGM) [68]. Although using several different feature extraction
methods generates an additional time cost, it makes it possible to improve the
overall classification score. Basically, taking into account low dimensionality
of the input vectors, the problem’s nature appears to be linear – the lower
partial similarities are, the lower final similarity should be. Following this
assumption, an improvement can be theoretically achieved by computing a
weighted mean of partial similarities:
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Fig. 22 Cumulative match curves for single feature extraction methods and their
fusion using averaging and SVM-optimized weights.

S =
n∑

i=1

wisi,
n∑

i=1

wi = 1, (9)

where wi is a weight of an i-th feature extraction method. To render that
process effective, the most challenging task is to determine optimal weights.

Here, we used SVM for classifying n-th dimensional vectors s of partial
similarities (n = 4 for the presented case). In training we have adapted a
similar procedure to that presented in the previous section, i.e. we split all
available similarity vectors generated from a training set into two categories:
intra-class and inter-class similarity vectors. After training, SVM determines
whether a given vector of partial similarities is intra- or inter-class.

Contrary to the cases outlined earlier, only linear kernel occurred effective
for this application, and GA-based training set optimization did not render
any gain compared to random subset selection (we selected k = 200 vectors to
each class from the entire training set). This fact is in favor of the assumption
that this is a linear problem of low complexity, and SVM occurred very effec-
tive here to optimize the weights wi. The results of face classification score
are presented in Fig. 22 as CMC curves. We show the performance of four
basic methods, fusion obtained without weights optimization (for wi = 1),
and using the weights obtained after SVM training. It may be noticed that
first-rank scores of the statistical face recognition methods (i.e. the Fisher-
faces and both variants of the Eigenfaces) are very close to each other, and
EBGM performs definitely better. Averaging the similarity score improves
the overall result by 1.5% compared to the best single method (i.e. EBGM),
and using the optimized weights – by 5.3%. This example clearly explains
that the multi-method fusion may improve face recognition performance at a
cost of additional processing. This is yet another area where SVM has been
found very useful.



15 Support Vector Machines in Biomedical and Biometrical Applications 413

15.4 Conclusions

In this chapter two cases of support vector machines application were pre-
sented and deeply analyzed. Naturally, the range of potential areas, in which
SVM may be found helpful, is definitely larger than that demonstrated here.
However, our intention was to present the methodology of using and tuning
this valuable tool in artificial intelligence.

First, SVM was used for classifying feature vectors extracted from pro-
teomic mass spectra. It has been explored whether SVM can be trained
to make distinction between patients suffering from early lung cancer and
a healthy control group. Thus SVM with different kernels was used to clas-
sify the mass spectra after preprocessing. The features were selected for the
classification based on t-test. It been also shown that elimination of the cor-
related features improved the final classification score, as well as it reduced
the required number of features to SVM. When a small value of the radial
kernel (σ) was selected, the minimum total error was obtained for 6–8 fea-
tures. However when the sigma value increased, first the minimum error was
achieved for a very large number of features. Furthermore, for a sizeable val-
ues of sigma and for the linear SVM the value of the minimal error stabilized
without re-growth after its decrease.

There are many possible directions for future works in the presented field.
For example, the presented method can be further developed to find discrim-
inative features in MS spectra which would make it possible to differentiate
between various cancers. Also, it may be investigated whether different types
of cancers have common features that can be observed in MS spectra. In gen-
eral, this would contribute to increasing the importance of the proteomics in
the cancer diagnostics.

Furthermore, three selected cases of applying support vector machines to
face recognition were analyzed in details. On the basis of experimental results
it was demonstrated that face recognition performance can be significantly
improved. Naturally, these are just a few examples out of a wide spectrum of
SVM’s applications to this field. Finally, it is worth noting that the presented
methods are not limited to face recognition and can also be applied to familiar
problems in image and signal processing.

References

1. Aebersold, R., Mann, M.: Mass spectrometry-based proteomics. Nature (422)
(2003)

2. Bartlett, M., Movellan, J., Sejnowski, T.: Face recognition by independent com-
ponent analysis. IEEE Transactions on Neural Networks 13, 1450–1464 (2002)

3. Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs. Fisherfaces: recog-
nition using class specific linear projection. IEEE Transactions on Pattern
Analysis and Machine Intelligence 19, 711–720 (1997)



414 K.A. Cyran et al.

4. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal mar-
gin classifiers. In: Proceedings of the fifth annual workshop on Computational
learning theory, pp. 144 – 152. Pittsburgh (1992)

5. Box, G.E.P., Cox, D.R.: An analysis of transformations. JSTOR 62(2), 211–252
(1964)

6. Cao, L.J., Tay, F.E.H.: Support vector machine with adaptive parameters in
financial time series forecasting. IEEE Transactions on Neural Networks 14(6),
1506 – 1518 (2003)

7. Cauwenberghs, G., Poggio, T.: Incremental and decremental support vector
machine learning. In: Advances in neural information processing systems 13:
proceedings of the 2000 conference, p. 409. The MIT Press (2001)

8. Chapelle, O.: Training a support vector machine in the primal. Neural Com-
putation 19(5), 1155–1178 (2007)

9. Chen, X., Yang, J., Liang, J., Ye, Q.: Smooth twin support vector re-
gression. Neural Computing and Applications pp. 1–9 (2010). URL
http://dx.doi.org/10.1007/s00521-010-0454-9

10. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines
and other kernel-based learning methods. Cambridge university press (2000)

11. Drucker, H., Burges, C.J.C., Kaufman, L., Smola, A., Vapnik, V.: Support
vector regression machines. In: M.C. Mozer, M.I. Jordan, T. Petsche (eds.)
Advances in Neural Information Processing Systems 9, pp. 155 – 161. MIT
Press, Cambridge (1997)

12. Fernández, R.: Predicting time series with a local support vector regression ma-
chine. In: Proceedings of the ECCAI Advanced Course on Artificial Intelligence
(ACAI 99) (1999)

13. Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley Publishing Co. (1989)

14. Gong, S., McKenna, S., Psarrou, A.: Dynamic Vision From Images to Face
Recognition. Imperial College Press (1999)

15. Grother, P., Micheals, R., Phillips, P.J.: Face recognition vendor test 2002 per-
formance metrics. In: Proceedings of the Fourth International Conference on
Audio-Visual Based Person Authentication (2003)

16. Hao, P.Y.: New support vector algorithms with parametric insensitive/margin
model. Neural Networks 23, 60–73 (2010)

17. Hastie, T., Tibshrani, R., Friedman, J.: Clinical Proteomics: From Diagnosis
to Therapy. Springer-Verlag (2001)

18. Hilario, M., Kalousis, A., Pellegrini, C., Mller, M.: Processing and classification
of protein mass spectra. Bioinformatics 25(3), 409–449 (2006)

19. Hochreiter, S., Obermayer, K.: Gene selection for microarray data. In:
B. Scholkopf, K. Tsuda, J. Vert (eds.) Kernel Methods in Computational Biol-
ogy, pp. 319–355. MIT Press (2004)

20. Huang, J., Blanz, V., Heisele, B.: Face recognition using component-based svm
classification and morphable models. In: Proceedings of the First International
Workshop on Pattern Recognition with Support Vector Machines, SVM ’02,
pp. 334–341. Springer-Verlag (2002)

21. Jesorsky, O., Kirchberg, K.J., Frischholz, R.W.: Robust face detection using
the hausdorff distance. In: Audio and Video based Person Authentication -
AVBPA, pp. 90–95. Springer (2001)

22. Joachims, T.: Text categorization with support vector machines: Learning with
many relevant features. In: Machine Learning: ECML-98 (LNCS), vol. 1398,
pp. 137–142 (1998)

http://dx.doi.org/10.1007/s00521-010-0454-9


15 Support Vector Machines in Biomedical and Biometrical Applications 415

23. Joachims, T.: Training linear svms in linear time. In: T. Eliassi-Rad, L.H.
Ungar, M. Craven, D. Gunopulos (eds.) KDD, pp. 217–226. ACM (2006)

24. Kanji, G.K.: 100 statistical tests, 3 edn. SAGE Publications Ltd (2006)
25. Karpievitch, Y.V., Hill, E.G., Smolka, A.J., Morris, J.S., Coombes, K.R., Bag-

gerly, K.A., Almeida, J.S.: Prepms: Tof ms data graphical preprocessing tool.
Bioinformatics 23(2), 264–265 (2007)

26. Kawulok, M., Szymanek, J.: Algorithm for precise frontal face detection. Studia
Informatica 30, 341–354 (2009)

27. Kawulok, M., Wu, J., Hancock, E.R.: Supervised relevance maps for increasing
the distinctiveness of facial images. Pattern Recognition 44(4), 929–939 (2011)

28. Kin, T., Kato, T., Tsuda, K.: Protein classification via kernel matrix comple-
tion. In: B. Scholkopf, K. Tsuda, J. Vert (eds.) Kernel Methods in Computa-
tional Biology, pp. 261–274. MIT Press (2004)

29. Krishnapuram, B., Carin, L., Hartemink, A.: Gene expression analysis: Joint
feature selection and classifier design. In: B. Scholkopf, K. Tsuda, J. Vert (eds.)
Kernel Methods in Computational Biology, pp. 299–317. MIT Press (2004)

30. Lee, Y., Huang, S.: Reduced support vector machines: A statistical theory.
Neural Networks, IEEE Transactions on 18(1), 1–13 (2006)

31. Leski, J.: On support vector regression machines with linguistic interpretation
of the kernel matrix. Fuzzy Sets and Systems 157, 1092–1113 (2006)

32. Lilliefors, H.L.: On the kolmogorovsmirnov test for normality with mean and
variance unknown. JASA 62, 399–402 (1967)

33. Liu, Q., Krishnapuram, B., Pratapa, P., Liao, X., Hartemink, E., Carin, L.:
Identification of differentially expressed proteins using maldi-tof mass spectra.
In: Asilomar Conference: Biological Aspects of Signal Processing (2003)

34. Maio, D., Maltoni, D.: Real-time face location on gray-scale static images.
Pattern Recognition 33, 1525–1539 (2000)

35. Morris, J.S., Coombes, K.R., Koomen, J., Baggerly, K.A., Kobayashi, R.: Fea-
ture extraction and quantification for mass spectrometry in biomedical appli-
cations using the mean spectrum. Bioinformatics 21(9), 1764–1775 (2005)

36. Na, S., Paek, E.: Quality assessment of tandem mass spectra based on cumu-
lative intensity normalization. J Proteome Res. 5(12), 3241–3248 (2006)

37. Olofsson, P.: Probability, Statistics, and Stochastic Processes. John Wiley &
Sons (2005)

38. Osuna, E., Freund, R., Girosi, F.: Training support vector machines: an ap-
plication to face detection. Computer Vision and Pattern Recognition, IEEE
Computer Society Conference on pp. 130–136 (1997)

39. Osuna, E., Freund, R., Girosi, F.: Training Support Vector Machines: an appli-
cation to face detection. In: Proc. IEEE Conf. Computer Vision and Pattern
Recognition, pp. 130–136 (1997)

40. Petricoin, E.F., Ardekani, A.M., abd Peter J. Levine, B.A.H., Fusaro, V.A.,
Steinberg, S.M., Mills, G.B., Simone, C., Fishman, D.A., Kohn, E.C., Liotta,
L.A.: Use of proteomic patterns in serum to identify ovarian cancer. The Lancet
359, 527–577 (2002)

41. Phillips, P., Flynn, P., Scruggs, T., Bowyer, K., Chang, J., K.Hoffman, Marques,
J., Min, J., Worek, W.: Overview of the Face Recognition Grand Challenge. In:
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,
vol. 1, pp. 947–954 (2005)



416 K.A. Cyran et al.

42. Phillips, P., Grother, P., Micheals, R., Blackburn, D., Tabassi, E., Bone, J.:
Face Recognition Vendor Test 2002: Evaluation Report. NISTIR 6965 (2003)

43. Phillips, P., Wechsler, H., Huang, J., Rauss, P.: The FERET database and eval-
uation procedure for face recognition algorithms. Image and Vision Computing
J 16(5), 295–306 (1998)

44. Phillips, P.J.: Support vector machines applied to face recognition. In: Advances
in Neural Information Processing Systems 11, pp. 803–809. MIT Press (1999)

45. Pietrowska, M., Marczak, L., Polanska, J., Behrendt, K., Nowicka, E.,
Walaszczyk, A., Chmura, A., Deja, R., Stobiecki, M., Polanski, A., Tarnawski,
R., Widlak, P.: Mass spectrometry-based serum proteome pattern analysis in
molecular diagnostics of early stage breast cancer. J Transl Med. (2009). 7:60

46. Pietrowska, M., Marczak, L., Suwinski, R., Stobiecki, M., Polanska, J., Polanski,
A., Widlak, P., Gawkowska-Suwinska, M., Drosik, A., Walaszczyk, A.: Appli-
cation of mass spectrometry-based serum proteome pattern analysis in iden-
tification of lung cancer patients. J Thorac Oncol 5(5, Suppl 1), S60 (2010).
Abstract book, 2nd European Lung Cancer Conference, Geneva, Switzerland,
28 April-1 May 2010

47. Polanska, J., Widnak, P., Rzeszowska-Wolny, J., Kimmel, M., Polanski, A.:
Gaussian mixture decomposition of time-course dna microarray data. In: Math-
ematical Modeling of Biological Systems, Volume I, Modeling and Simulation
in Science, Engineering and Technology, pp. 351–359. Birkhuser Boston (2007)

48. Polanski, A., Kimmel, M.: Bioinformatics. Springer (2007)
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Chapter 16
Workload Modeling for Multimedia Surveillance
Systems

Mukesh Saini, Pradeep K. Atrey, and Mohan S. Kankanhalli�

Abstract. A multimedia surveillance system has to sustain high computational loads.
Such a system needs to intelligently learn the characteristics of the workload that it is
going to handle. The knowledge of the workload also provides a strong basis for de-
sign and optimization of the system components. To efficiently use this knowledge,
we need an analytical model of the workload. The traditional multimedia workload
models used in other domains are not appropriate for surveillance systems. In other
domains, the workload characteristics are mainly derived from the statistical proper-
ties of the data, whereas in the case of surveillance, the semantics play a dominant role
in determining the processing needs. In this chapter, we discuss popular workload
models from other domains and explore their applicability to surveillance systems.
We find that none of those models describe the workload accurately in surveillance
context. Following this observation, we propose a novel Markov chain based for-
mal model of multimedia workload for surveillance systems. Different states of the
Markov chain meticulously capture the variability of the workload. The model is val-
idated with real surveillance data. Subsequently, we describe performance analysis
of a real surveillance system based on the proposed model.

16.1 Introduction

Multimedia surveillance systems are required to keep up with high computational
load in order to analyze a large number of media streams. The analysis tasks, in
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particular the computer vision algorithms, put huge processing demands on the sys-
tem. This workload adversely affects the performance of the system. Therefore, a
study of the effects of the workload on the evaluation of surveillance systems is
paramount.

Performance evaluation has gained significant attention in the surveillance re-
search community recently. Consequently, various efforts have been made towards
investigating evaluation techniques to measure the performance of surveillance re-
lated algorithms [18]. For algorithmic evaluation these techniques may be sufficient;
however, these are not adequate for system level analysis [18]. Current surveillance
systems accomplish complex tasks with various levels of processing [7], and it is not
feasible to implement the systems just for sake of evaluation. Also, for a true under-
standing of system behavior, a large number of experiments need to be conducted.
This is hard to achieve in many cases, such as with wide area surveillance systems.
It would take a long time and significant amount of efforts to repeat a whole set
of experiments even with a slight change in system parameters. In summary, the
performance of a surveillance system needs to be evaluated using an appropriate
analytical model.

Analytical modeling helps in evaluating the system with respect to the workload
it must handle. Hence, to successfully design a surveillance system, we need to
know the characteristics of the workload. This forms the basis of design and opti-
mization of the system components. Furthermore, to efficiently use this knowledge
we need to have a formal model of the workload. Since the simulators are generally
based on analytical models, in this work we will focus on the workload character-
ization appropriate for analytical evaluation. Having a formal workload model for
multimedia surveillance systems offers the following advantages:

• The computer resources are shared by different system components and need
a scheduling policy. A workload model is required for evaluating the given
scheduling policy.

• Similarly, workload characteristics are also necessary for various energy saving
schemes and run-time system adaption.

• In a collaborative environment, when one processor reaches a processing bottle-
neck, it can distribute some of the work to neighboring processors. The successful
implementation of such interactions requires a good understanding of the nature
of the workload the processors are handling.

To the best of our knowledge, there have been only a few works on formal mod-
eling of surveillance workloads [21]. In this work the time between two events is
assumed to be exponentially distributed, and queuing network models are used for
performance analysis. There are three problems with this approach: 1) the appli-
cation of the model is limited to scenarios where only one event occurs at a time,
2) the processing time may vary drastically depending on the environment, but the
model does not capture this variability, and 3) the assumption of Poisson arrivals is
true only in certain scenarios, such as ATM kiosks. In places where more activities
occur the events are generally correlated.
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There has been much work on workload modeling in the areas of e-commerce
[15, 28], web servers [8, 2], embedded systems [22], operating systems [1], and
networks [29, 19]. In these works, the systems logs are collected and clustering
techniques are used to classify the workloads. The classification is generally based
on the information extracted from data logs. For instance, in web server traffic mod-
eling, the processing time of the queries is analyzed against the time to estimate
the distribution. The surveillance task analysis needs mainly depend on the seman-
tic content of the workload, which eventually depends on the scenario the sensors
are monitoring. For example, the processing time for a tracking system mainly de-
pends on the number of targets being tracked and is not an absolutely random phe-
nomenon. This high correlation between the semantics of operating scenarios and
the processing needs have not been explicitly considered in the modeling techniques
in other domains. This motivates us to investigate a workload characterization model
to augment the performance evaluation of multimedia surveillance systems.

16.1.1 Issues in Workload Characterization

Workload consists of a set of tasks. These tasks have a number of attributes, such as
processing demands, memory demands, coordination requirements, dependencies
on other tasks, etc. While modeling all the attributes is out of the scope of this
chapter, we have chosen following important characteristics [7, 14]:

• Task arrival rate The rate at which tasks arrive at the system. It is generally
measured as inter arrival times.

• Processing demand The amount of processing requested by each task. It is mea-
sured as the service time required for each task.

• Memory demand The task at hand needs to be stored in main memory for fast
execution. It may cause additional memory requirements on the system in terms
of data storage, etc. This is measured as the buffer memory requirement.

16.1.2 Contributions Summary

The main contributions in this chapter are as follows:

• We propose a Markov chain based workload model1 to evaluate a surveillance
system. The proposed model captures the variability of the workload in its differ-
ent states. The timing information of the workload is preserved in the transition
matrix, and the correlation with the operating environment is exploited to make it
tunable to different scenarios. The model can be applied in different surveillance
scenarios with minimal user inputs.

• To demonstrate the efficacy of the proposed model, we describe performance
evaluation of a real surveillance system. The model is validated by conducting
experiments with a real time surveillance system.

1 A preliminary version of the proposal model with initial results was published in [20]
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16.1.3 Chapter Organization

To begin with, surveillance system itself is not a clearly defined term. We give a
overview of a typical surveillance system in Section 16.2. Then we discuss popular
workload models from other domains and explore their applicability to the surveil-
lance domain in Section 16.3. It is found that none of those models accurately de-
scribes the workload in surveillance context. Following this observation, we propose
a novel formal model for surveillance workload modeling in Section 16.4. After-
wards, we demonstrate performance evaluation of a real surveillance system and
show how to choose the model parameters in Section 16.5. Experimental results are
provided in Section 16.6. We conclude the chapter in Section 16.7.

16.2 Surveillance System

In this section our main goal is to identify typical components of a surveillance
system and generate a system level view. A system level view describes what com-
ponents are in the system and how they communicate. A typical surveillance system
has the following components: sensors, networks, and computers (memory, proces-
sor, etc.).

Fig. 1 A block diagram of a typical surveillance system.

It is found that a typical surveillance system achieves its goals by performing the
following tasks [10, 6, 16]:

• Target detection: The surveillance system has to detect people, vehicles, and
many other kinds of objects. We group them together and label them as targets.
Target detection consists of two tasks: background subtraction followed by blob
detection.

• Target recognition and tracking: For each detected object, a recognition task is
performed to determine if it is a new object or one that was already in the sensor
coverage area.

• Information fusion and activity analysis: Finally, the tracking information from
multiple sensors is combined to perform multisensor tracking and activity analysis.

The block diagram of this hypothetical system is shown in Figure 1. Note that the
above description is for a typical surveillance system. Particular architectures can be
realized with slight modifications in the described system. For example, abandoned
baggage can be detected by analyzing the trajectory information of various targets.
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16.3 Previous Work

The earlier work on surveillance performance evaluation measured the workload in
terms of events with exponential inter-arrival times [21]. This assumption is true in
only specific scenarios where the task is defined in terms of events. Furthermore, in
real applications it is hard to determine the events as there can be multiple events
happening simultaneously when multiple objects are present. For a more general
and realistic solution, we have chosen to define a frame as a task unit. The frame
arrival rate and size is usually constant and depends mainly on sensor specifications.
The processing time for each frame varies over time, depending on the environmen-
tal conditions. For example, a surveillance system with the goal of tracking and
activity analysis has to track each target individually; hence, the processing time de-
pends on the number targets. As we could not find much work on surveillance work-
load modeling, this section outlines similar works in other domains to highlight our
contributions.

There has been many works on workload modeling with variable processing de-
mands in other fields. In synthetic workload generation, the actual workload traces
are collected to estimate the empirical probability distributions of workload param-
eters [4, 26]. Similarly, in works [3, 4, 5], the workload is divided into different
clusters, and representative samples are derived for each cluster. While these mod-
els perform reasonably well for generating synthetic workloads for simulation pur-
poses, they are not appropriate for mathematical analysis.

Alternatively, the stochastic workload models are often adopted to represent the
workload. The most common approach is to estimate the probability distribution
functions of parameters [9, 21]. The problem with this approach is that generally it is
very hard to estimate adequate distribution for multi-class data. Also, these models
completely omit the dynamic characteristics of the workload. Surveillance workload
consists of different types of frames with widely varying resource demands, not only
between types, but also within each type. As a consequence, the single class models
[21] are not suitable for surveillance workload.

Maxiaguine et al. [14] proposes wcet (Worst Case Execution Time) and bcet
(Best Case Execution Time) to characterize the workload for real time embedded
systems. The model is good to understand extreme behavior, still, it does not capture
the dynamic characteristics of the workload and is hard to use for analytical evalua-
tion. A Markov chain based model is proposed by Song et al. [25] which preserves
the dynamic behavior of the workload in different states. The work mainly focuses
on the parallel computers where the states are determined based on the number of
nodes requested by the task. Yet, the model does not accommodate the semantic
concepts like the target based dependence on processing time. In other approaches
[23, 12], each task is modeled as a Markov Chain for enterprise application servers.
Such models are good for removing the redundancy in data logs; however, they are
not appropriate for mathematical modeling of the system.
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Table 1 A comparison with previous works

Work Multi Time Tunable Data Logs Semantic Tractable Complexity
Class Information Required Considered

Sreenivasan & Kleinman[26] No No No High No No High
Feitelson [9] No No No Medium No Yes Medium
Calzarossa & Ferrari [4] Yes No No High No No High
Cadez et al. [3] Yes No No High No No High
Maxiaguine et al. [14] Yes No No High No No Medium
Song et al. [25] Yes Yes No No Medium No Yes
Sharifimehr & Sadaoul [23] Yes No No High No No High
Maksyagin [13] Yes No No Medium No No Medium
Saini et al. [21] No No No High No Yes Low
Proposed model Yes Yes Yes Low Yes Yes Low

In contrast to the works described above, the proposed model preserves the timing
characteristics of the workload in the states of a Markov chain, can be tuned to
work in different scenarios with minimal user input, requires minimal workload
trace to estimate parameters of Gaussian distribution, considers the semantics of the
environment in terms of targets, is easy to calculate, and is mathematically tractable
for performance analysis of the system. Table 1 summarizes the advantages of the
proposed model.

16.4 Proposed Model

Figure 2 shows a topological view of a real surveillance system installations. The
media streams are generated at sensors, transmitted to the processor over the net-
work, and processed to accomplish the surveillance goal. From a system designer’s
perspective, cameras, network, and processors form the system; and the environment
is the workload generator. However, modeling the workload at the environment level
is hard and not efficient from the point of view of performance analysis. In this work,
the cameras are considered part of the environment and they are the main entities
that generate the workload. Note that, in this work, we do not model the network
effect on inter-frame times. This is because in practice the cameras are generally
connected through dedicated cables or a high speed Ethernet where the transmis-
sion time is negligible compared to the inter-frame delay. For larger surveillance
systems, the workload exposed to the processor can be easily re-calculated once the
system architecture has been finalized [11]. The main motivation of not including
the network in workload modeling is to provide generality to the model.

In the proposed workload model, we use a Markov chain to represent the number
of targets (usually people) in the environment. We define a target flow graph that
can be easily constructed by observing the operating scenario. This graph is used to
measure the transition probabilities and subsequently the steady state probabilities
of the states. These states have been identified such that the workload shows similar
behavior in each class and it can be abstracted using stochastic methods. Finally we
formulate the characteristics of the workload in each class.
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Fig. 2 The cloud represents the network. The processing units and the users are distributed
over the network. Sensors are placed at the edge of the cloud to capture environmental infor-
mation in the form of data frames.

16.4.1 Target Flow Graph (TFG)

The surveillance systems are generally designed to observe not only human behavior
but also other type of objects such as abandoned baggage [24], vehicles [17], etc. In
this work we use the term target to refer to humans and other objects [27], unless
stated otherwise. Once the surveillance site has been fixed, we need to learn the
dynamics of the environment. Actual workload is derived based on this knowledge
and is represented as a target flow graph. The target flow graph T FG is constructed
as a set of tuples:

Table 2 List of important symbols used in the chapter

χ State transition matrix
pi j Transition probabilities
πi Steady state probabilities
l Number of samples
m Number of states
Fr Frame rate
ta inter-frame time
tc State change overhead time
tq
i Processing time in ith state

t p
i Processing demand in ith state

tq
i Waiting time in ith state

T p
i Average Processing demand in ith state

T w
i Average waiting time in ith state

Ti Average response time in ith state
T Average response time
B Buffer size in number of frames
mc Memory overhead due to state change
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TFG = {(tsk,gk) | k ∈ [1, l]} (1)

In Equation (1), gk is the number of targets at tsth
k time instant and l is the total

number of samples. In other words, we represent the flow of targets in a time se-
ries format i.e. number of targets in the coverage area at sampling instances. High
sampling rates and large observation times provide better model accuracy.

16.4.2 Markov Chain Construction

In a typical surveillance system, each target is individually tracked and the tracking
results with other contextual information are stored for further analysis. As dis-
cussed earlier, unlike other domains, in the case of surveillance, the processing time
and memory requirement for each frame mainly depend on the number of targets in
the monitoring area. We capture this dependence in a Markov chain. There are two
advantages of modeling workload as Markov chain:

1. Different states of a Markov chain can capture the variability of the workload.
This is in contrast to the earlier model of surveillance workload which assumes a
Poisson distribution and a single average event rate to characterize the workload
[21].

2. The performance analysis can be done for each state and average values can be
obtained by calculating the probabilistic sum of the performances for each state.

The number of states in a Markov chain is m+ 1 where m is given by the following
equation:

m = max{gk | (tsk,gk) ∈ T FG,k ∈ [1, l]} (2)

Specifically, m represents the maximum number of people simultaneously expected
in the monitoring area. Such information can be easily obtained from analysis of
the environment where the surveillance system is to be installed. To capture the
variability of the workload, we define different states of a Markov chain based on
the number of targets. The set of states S of this Markov chain can be constructed as
follows:

S = {s0,s1, ...sm | ∀(i, j) : i �= j∧ (i, j) ∈ [1,m],si = i,si �= s j} (3)

Figure 3 shows the states of the Markov chain for different frames of a PETS [18]
video sequence. The images corresponding to these states are shown in Figure 4.
There are two types of probabilities associated with a Markov chain: transition prob-
ability and steady state probability. The definitions of these probabilities in surveil-
lance context follows:

Definition 1: Transition probability is the probability of finding a particular number
of targets at the next time instant.

Definition 2: Steady state probability is the probability of finding a particular num-
ber of targets after the system has run for sufficient time.
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State
1

State
2

State
3

State
4

P1,1
P2,2

P3,3

P4,4

P1,2

P2,1

State 1: No target, State 2: One target,
State 3: Two targets, State 4: Three targets

Fig. 3 Different states of the Markov chain depending on the number of targets and transition
probabilities.

The transition probabilities are represented in the form of a matrix χ . The ele-
ments of the transition matrix can be constructed as follows:

χ = {pi j | pi j =
ni j

ni
,(i, j) ∈ [1,m]} (4)

where ni j and ni are defined as

ni =| {gk = i,(tsk,gk) ∈ T FG,k ∈ [1, l]} | (5)

ni j =| {gk = i∧gk+1 = j,(tsk,gk) ∈ T FG,k ∈ [1, l − 1]} (6)

These transition probabilities are of great use in system design. Once the system per-
formance and resource requirements are known, these probabilities can be used for
efficient resource management. However, the more important property of a Markov
chain is the steady state probability of the states. Let Π = (π0,π1, ...πm) be the
steady state probabilities of the states. The probabilities are calculated using one of
the following two ways:

(χ − I)Π = 0 (7)

Π = {πi | πi = p′i j, p′i j ∈ χ In f , i =C, j ∈ [1,m]} (8)

In the above formulation, I is identity matrix, In f is a large number (≈ 100), and
C is any number between 0 and m. In fact, all the rows of the matrix χ In f will have
similar values. The equation (7) gives the eigenvector of the transition probability
matrix for the eigenvalue of 1.
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Fig. 4 Frames in different states of the Markov chain: (a) State 3 (b) State 4 (c) State 5 (d)
State 8

In the following subsections we will model inter-arrival times, processing needs,
and memory needs for each state. Note that in the proposed model, a task consists
of a frame and the above described attributes are associated with each frame. For
example, the processing demand is the time a particular frame is processed in order
to extract the useful information.

16.4.3 Task Arrival

In the proposed model the tasks are generated by sensors in the form of frames. The
rate at which these frames are captured by the camera determines the task arrival
rate. Here we assume that the network used to transmit frames from sensors has a
deterministic delay. The effects of the network behavior on the inter-frame delay
can be studied separately and have been omitted from this chapter due to space
constraints. The task arrival rate is the same as the frame rate of the sensors which is
independent of the state of the Markov chain. Let Fr be the specified camera frame
rate, then, the inter arrival time ta is given by:

ta =
1
Fr

(9)

Since the sensors are generally connected to the processor either by dedicated analog
cables or Ethernet switches, it is reasonable to assume the inter-frame time to be
deterministic. To adapt the model to the scenarios where the frames need to travel
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through multiple routers before reaching the processor, the inter-frame time can be
modeled separately. The other aspects of the model will still successfully apply in
those scenarios.

16.4.4 Processing Demand

The time required to process a frame is called service time. More precisely, it is the
time interval between the instances the system begins and ends processing a frame.
The beginning time for a frame is the instant when the previous frame completes.
If there is a buffer that stores frames to be processed, the service time determines
the rate at which the frames are read from that buffer. There are two components of
processing demand, the frame processing time and the state change overhead. Here,
we first formulate the frame processing time and then investigate the effect of state
change on the timing performance.

As mentioned earlier, the system deals with each target separately. This includes
functionalities like detection, recognition, tracking, behavior analysis, etc. Therefore
the amount of processing required by each task (frame) mainly depends on the state
of the Markov chain. Though the processing times do not vary much within each
state, there are random phenomena which can cause variation in processing time
e.g. foreground size, the area of the targets (aka size of blob), etc. We capture this
variability by modeling the processing time in each state as a Gaussian random
variable. If we denote the processing time as tq

i , its probability density function for
the ith state can be calculated as:

f (tq
i ) =

1√
2πσi

2
e
− (tqi −μi)

2

2σi
2 (10)

where μi is the mean value and σi is the variance of the service times for ith state.
These values can be easily calculated for the given processor and camera speci-
fications. Theoretical modeling of these values is very difficult since many hidden
factors like memory type, cache speed, ambient temperature also affect these values;
these should be determined empirically.

To validate the assumption that the processing time in each class is indeed Gaus-
sian distributed, we conducted experiments and performed normality test on the ob-
served data. The hypothesis that the service times are Gaussian distributed is found
to be true after doing the test. The details of the test are provided in the experimental
results section.

Whenever the number of targets in the frame changes, the system needs to per-
form some additional tasks to handle the newly appeared or just vanished target. In
the system described in earlier sections, the additional work is thread creation and
deletion. This may result in processing overheads resulting in additional timing de-
lay. The state change probability Pc

i can be calculated by considering the transition
probabilities:

Pc
i =

n

∑
j=0, j �=i

pi, j (11)
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Here we add the probabilities based on our observation that state transitions are
exclusive i.e. one state cannot transit to multiple states. The effective service time
t p
i is the sum of the frame processing time and thread creation overhead:

t p
i = tq

i +Pc
i tc (12)

where, tc is average state change overhead. This value also depends of the system
architecture and should be calculated empirically.

16.4.5 Memory Demand

If we assume that no data compression has been performed, the memory needed to
store each frame is constant and completely depends on the resolution of the image.
While frames are waiting to be processed in the buffer, the memory demand is equal
to the frame size. However, there are some frames that can cause state change. Since
the state change ultimately depends on the number of targets in the camera view, we
incorporate the overhead due to state change in the task memory demand. When a
new frame is picked-up for processing, there can be following three cases:

1. It does not change the state of the system. In this case it does not contribute to
any additional memory requirement.

2. It changes to one of the higher states, here it causes generation of a new thread.
3. It changes the state of the system to a lower state, it reduces the memory require-

ment by one thread.

So the total memory requirement can be calculated as the sum of the memory re-
quired for a frame and the state change overhead. The transition probabilities can be
used to calculate the state change probabilities. The total memory Mi for a frame of
size Fs can be calculated as follows:

Mi = Fr +mc(
n

∑
j=i+1

pi, j −
i−1

∑
j=1

pi, j) (13)

When the frames are compressed at the sensor itself, the size of each frame should
be determined based on the compression scheme. Yet, since more targets in a frame
will result in larger foreground area, we expect that the frame memory to grow with
the state value.

Once the frame processing starts, additional memory may be required for two
purposes: thread management and storage of the target related information extracted
from the frames. Again, this additional overhead depends on the system architecture.

16.5 Performance Evaluation

To demonstrate the efficacy of the proposed workload model, we calculate the per-
formance of a real surveillance system and experimentally validate the results. The
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system consists of one camera connected to a processor by a dedicated line (Figure
5). The functionalities of the system are as described in Section 16.2.

For this system, we model the two most critical performance measures in surveil-
lance context: system response time and frame drop probability. For the sake of clar-
ity, let us first define these measures.

Definition 3: System response time is the time period from the instant the frame ar-
rives at the system to the time the system finishes extracting information from it and
produces the results.

Definition 4: Frame drop probability is the probability of a frame arriving at the
system and, finding the buffer full, being discarded.

Fig. 5 The block diagram of the system implementation for performance evaluation and
validation.

16.5.1 System Response Time

After the frame arrives at the system, it waits in the buffer for its turn to be processed.
The system, depending on the content of the frame, applies analysis algorithms to
extract useful information. Thus, there are two components of the response time ti:
a frame’s processing demand (t p

i ) and waiting time in the buffer (tw
i ).

ti = t p
i + tw

i (14)

Equation (14) shows that the total response time is sum of two random variables.
The following equation calculates the average values of both the random variables
to measure the over all response time of the system:

Ti = T p
i +T w

i (15)

The average processing demand, T p
i , can be calculated by taking the expectation

of t p
i :
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Fig. 6 The frames need to wait whenever tq
i > ta −Pc

i tc, which is shown by lined area. The
waiting time is tq

i − (ta −Pc
i tc).

T p
i = E(t p

i )

= E(tq
i +Pc

i tc)

= E(tq
i )+E(Pc

i tc)

= μ +Pc
i tc (16)

To calculate the average waiting time we need to identify the situations in which the
frames need to wait. As shown in Figure 6, whenever the processing time exceeds
a certain value, the frames need to wait. In other words, the frames need to wait
whenever:

tq
i > ta −Pc

i tc (17)

Where ta is inter-frame time which is given in Equation (9). This situation is illus-
trated in Figure 6 by the lined area. The exact waiting time would be tq

i −(ta−Pc
i tc).

The average waiting time can be determined by calculating the probabilistic integra-
tion of the waiting times in that area:

T w
i =

∫ ∞

ta−Pc
i tc

tq
i f (tq

i )dtq
i (18)

The overall average response time T can be calculated by performing probabilistic
sum over all states:

T =
m

∑
i=0

πiTi (19)

16.5.2 Frame Drop Probability

The frame drop probability is very closely related to the processing time and the size
of the buffer. Assume B is the buffer size in terms of the number of frames. So, the
buffer can accommodate the frames received over time B/Fr. Now, if the processing
time is such that the buffer gets full, the frames will be dropped. This is illustrated
by the lined area in Figure 7. The system will drop frames when:
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Fig. 7 The frames are dropped whenever tq
i > B

Fr
+ ta −Pc

i tc which is shown by lined area.

tq
i >

B
Fr

+ ta −Pc
i tc (20)

This probability can be calculated using the probability density function of the pro-
cessing time:

Pi =

∫ ∞

ta+ B
Fr
−Pc

i tc
f (tq

i )dtq
i (21)

Now, similar to the average response time, the overall frame drop probability can be
calculated as a probabilistic sum:

P =
m

∑
i=0

πiPi (22)

16.6 Experiments

For the evaluation of proposed model we have implemented a real surveillance sys-
tem as shown in Figure 5. The system automatically detects and tracks targets. In
this section we describe the hardware and software details of the implemented sys-
tem and experimental results.

16.6.1 Implementation

The system is first trained to learn the background; anything that appears in the fore-
ground is considered as the target. When there are multiple targets, the system tracks
each of them individually until they disappear from the camera view. Whenever tar-
gets appear in the camera view, a new object is created. When the target leaves the
camera view, the object is deleted and the tracking history is stored to disk. Table 3
lists the hardware and software details of the implemented system.
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Fig. 8 System Installation.

Table 3 The specifications of the system.

Operating System Microsoft Windows XP
Platform Visual C++ 2008
Additional Libraries OpenCV
Computer Genuine Intel(R) T2300 @ 2.33GHz,

0.99GB Ram
Image Resolution 320 × 240

Table 4 The experimental values of state change probabilities (Pc
i ), state wise mean (μi) and

variance(σi)

State(i) μi(milliseconds) σi(milliseconds) Pc
i

0 496 24 0.0186
1 518 30 0.0977
2 557 30 0.1097
3 662 38 0.1141
4 733 78 0.6087

The experiments are conducted in a corridor near the exit which is a common
surveillance setting (See Figure 8). As the first step of modeling, we record the
statistics and construct the TFG. The TFG is then used to calculate the transition and
steady state probabilities. The transition probability matrix and steady state proba-
bility vector are given below:⎛

⎜⎜⎜⎜⎝
0.9814 0.0150 0.0026 0.0005 0.0005
0.0214 0.9023 0.0595 0.0149 0.0019
0.0077 0.0702 0.8904 0.0285 0.0033
0.0091 0.0183 0.0639 0.8858 0.0228
0.0435 0.1739 0.1304 0.2609 0.3513

⎞
⎟⎟⎟⎟⎠ (23)
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(
0.4337 0.2474 0.2109 0.1021 0.0059

)
(24)

Similarly, other coefficients are calculated from the collected timing statistics. The
experimental values of these coefficients are given in Table 4. The transition over-
head time tc is found to be 3.16ms.

16.6.2 Hypothesis Testing: Normal Distributed Processing Time

We record the processing time statistics over a long period for a varying number of
targets. To understand the behavior of the processing time within each state, we plot
the histogram (Figure 9.a for state s1 and Figure 9.c and for state s2). To prove that
the above histogram depicts a Normal distribution, we construct a Normal Proba-
bility Plots of the processing time data in Figure 9.b and Figure 9.d.

It can be observed in the normal plots that the processing time distribution is
very close to Normal, except for a few cases that are likely due to the background
processes running on the computer. Furthermore, we observe similar behavior in all
the states. However, as anticipated, the processing time increases with state variable
as shown in Figure 10. The similar behavior allows us to have a simple model for
such a multi-class workload thanks to the multiple states for the Markov chain.

(a) Processing Time Histogram s1
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(b) Normal probability Plot for s1

(c) Processing Time Histogram s2
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(d)Normal probability Plot for s2

Fig. 9 Analysis of processing times.

16.6.3 Response Time

The response time is the sum of both the waiting time and the processing demand. In
this experiment we assume that the size of the buffer is infinite and frames are never
dropped. For each frame, we record both the waiting time and processing time. We
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Fig. 10 The average processing time increases with number of targets in the image.

Fig. 11 The model predicted system remains close to the actual response time as long as
μ ≤ ta.

observe that the waiting time increases with the frame rate while the processing time
remains the same. On the other hand, if we plot these timings with respect to number
of targets, we observe that the waiting time and processing time both increase with
number of targets.
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As we observe in Figure 11, there is close agreement between the model predic-
tion and actual measurements. For larger frame rates the model deviates because our
modeling is based on the assumption that the average processing time is less than
inter-frame time, which is also a necessary condition for stability.

16.6.4 Frame Drop Probability

The inter-frame time is very important for many surveillance tasks, in particular
for tracking. Hence, reduced inter-frame time is always desired. In this experiment
we show the effect of inter-frame time on frame drop probability. Again, it can be
seen in Figure 12 that the model results are quite close to the actual results in the
region where the average processing time is greater that the inter-frame time. Also,
we observed that the deterministic nature of the task arrival allows us to chose a
buffer size to minimize the frame drop probability. For the given system (average
processing time = 593ms) and for an inter-arrival time of 600ms, even a one frame
buffer brings the frame drop probability very close to zero (≈ 0.009).

Fig. 12 The frame drop probability plotted against inter-frame time.

16.6.5 Implications

So far the current research work focuses mainly on accuracies of the algorithms
with high quality images. However, the experiments reveal that understanding the
workload is necessary while developing algorithms for real time surveillance sys-
tems. For instance Figure 13 shows the degradation of the tracking accuracy with
increasing workload in terms of the number of targets. To cope with this situation,
the designers can make use of the proposed workload model. For different states,
they can have different search windows and filter coefficients.
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Fig. 13 The blob tracker made wrong associations while in higher states.

16.7 Conclusions and Future Work

Multimedia surveillance systems have to accomplish the tasks with high re-
source needs. Analytical modeling is very efficient way of studying the resource-
performance trade off. The most important part of analytical modeling is workload
characterization. We propose an workload model for surveillance system. The model
is validated with implementation of a real surveillance system.

Based on the proposed model and the experiments, we make several observations,
which are:

• The proposed workload model can help designers in determining resource re-
quirements in a surveillance system. Designers can determine number and types
of processors and the amount of memory required for a given surveillance sce-
nario. For example, if the surveillance setup is to monitor the entry of students
in a graduate lab, the processing and memory needs would be lesser in this case
compared to surveillance scenario of a train station. In a graduate lab, the number
of targets to process may be quite less than the crowded train station where there
will be too many targets to process.

• A complex distributed surveillance system usually consists of multiple process-
ing and memory units which process data obtained from multiple cameras. In
such a situation, knowledge of workload at different units may help in designing
a policy to distribute the workload so that overall waiting time can be reduced.

• Current evaluation of algorithms is usually independent of system resources avail-
ability. We observed that for the design of an algorithm for accomplishing a
surveillance task, it is important to consider the amount and characteristics of
the workload surveillance systems handle.
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In this work we neglect the network delay and the effect of data compression. In
future it would be interesting to study how the compression techniques will af-
fect the memory demands and arrival rate. Eventually we want to evaluate the per-
formance of more complex multimodal, multicamera, and multiprocessor system
systems using our workload model.
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Chapter 17
Rough Set and Artificial Neural Network
Approach to Computational Stylistics

Urszula Stańczyk

17.1 Introduction

Computational stylistics or stylometry is a study on writing styles. Through linguis-
tic analysis it yields observations on stylistic characteristics for authors, expressed
in terms of quantifiable measures. These measures can be exploited for characterisa-
tion of writers, finding some similarities and differentiating features amongst their
styles, for authorship attribution, and for recognition of documents based not on
their topic, which is so common, but style. Stylistic analysis belongs with text min-
ing, data mining, information retrieval, but also pattern recognition [4].

The fundamental stylometric notion is that of an authorial or writer invariant,
such a numerical feature of texts, which allows for unique description and recog-
nition of their authors. As the question, which elements of a text can be used as
a writer invariant, remains unsettled, the task of choosing some set can be regarded
as a selection of characteristic features for a classification problem [29].

Textual descriptors, which are the most universal, belong to either lexical or syn-
tactic group [8]. Lexical markers give such characteristics as frequency of usage for
single letters, words, or groups of words, average word length, average number of
words in sentences, etc. Syntactic descriptors reveal the structure of sentences and
paragraphs as indicated by the punctuation marks.

Theory of rough sets and artificial neural networks offer two distinctively dif-
ferent ways of dealing with problems of classification and recognition. The former
leads to construction of algorithms consisting of decision rules, while the latter con-
stitutes a connectionist approach, with distributed representation of knowledge and
processing. Although different, both techniques work efficiently in cases of classifi-
cation for data incomplete and uncertain [12, 26].
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Due to the fact that term frequencies, used in the research presented, are continu-
ous, it is convenient to use Dominance-Based Rough Set Approach [14] rather than
Classical Rough Set Approach, which deals only with abstract data [24]. A typical
procedure finds relative reducts, such subsets of attributes that preserve the quality
of approximation, and either minimal cover, or all rules on examples decision al-
gorithm. Though minimal with respect to the number of rules, the first algorithm is
not necessarily the best (that is resulting in the highest correct classification ratio),
while the other is often too long to be efficiently implemented.

To help with dimensionality reduction, there can be proposed several order-
ings of characteristic features, reflecting their frequencies of usage in construction
of relative reducts and decision rules, taking also into account the cardinalities
of reducts and supports of rules. For each ordering there is considered reduc-
tion of more or less important features. When conclusions from rough set-based
analysis are employed for selection of features for ANN, it results in a hybrid
classifier [34]. For the rule-based approach it returns some shortened versions of
decision algorithms, comprising only these rules that have no conditions on rejected
attributes [33].

Within the chapter in Section 17.2 there are presented the fundamental notions of
computational stylistics, its objectives, short history, and a brief overview of tech-
niques employed within the analysis. Section 17.3 describes the two approaches
exploited in the conducted research, artificial neural networks and rough set theory.
It is followed by an explanation of the experimental setup in Section 17.4, speci-
fying texts for processing and employed descriptors. Then the performance of both
constructed classifiers is given, after which follows an analysis of characteristic fea-
tures. Observations from the analysis are employed in the feature reduction task,
with the results commented and compared. The chapter concludes with some re-
marks upon possible future research.

17.2 Basics of Computational Stylistics

Whether we speak or write, the way in which we express ourselves is individual to
a high degree. This ability not only distinguishes humans from other species, but
different nationalities as well, and even individuals with the same social and edu-
cational background and lifetime experiences. In a spoken language a skilled lis-
tener notices nuances of various accents, cadences, niceties of pronunciation, pitch.
In handwritten notes anyone can observe different sizes and shapes of letters, or
slant, while experts analyse the varying pressure of a pen, spaces between letters
and words, sentences and paragraphs.

Most of these descriptive elements of a text disappear when it is prepared using
some word processor. Software adjusts placement of characters to fonts, applies
automatic line spacing, corrects spelling or linguistic errors, by commands such as
"copy and paste" facilitates incorporation of someone else’s piece of writing into our
own. Yet even then a writing style shows individuality in more or less frequent usage
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of words or their collocations, preference of some punctuation marks over others,
specific formating, organisation of the text into headings, paragraphs, footnotes.

These observations lead to the fundamental notion of computational stylistics
or stylometry that any writing style can be uniquely described and recognised by
not just qualitative measures, which can be considered as subjective, but quantita-
tive ones. Due to the ever growing corpora of available texts, such measures are
also required to back up the efficiency of the textual analysis, by exploiting the
computational power of contemporary computers [3].

17.2.1 Objectives of Textual Analysis

The primary objective of stylometry is to express a writing style by some quan-
tifiable features of a text. These features must be sufficiently distinct for any
author as to constitute so-called writer or author invariant, such numeric character-
istics that remain relatively unchanged for all works by this writer and distinctively
different in documents authored by others. In the context of electronic formats of
manuscripts, writer invariants are also called "cyber fingerprints", "cyberprints", or,
more commonly, "writerprints".

Descriptors used in stylometric analysis are usually divided into four categories:

• lexical - provide statistics such as a total number of characters (including all let-
ters of an alphabet, punctuation marks, and any other special characters), a total
number of words, an average number of words per sentence, an average number
of words per paragraph, an average number of sentences per paragraph, a distri-
bution of word length, frequencies of usage for individual letters, frequencies of
usage for words and groups of words, etc.,

• syntactic - reflect structures of sentences and paragraphs formed by the punctua-
tion marks,

• structural - describe the overall layout of a text, its organisation into all
constituent elements such as headings, signatures, paragraphs, also font types,
embedded hyperlinks or pictures,

• content-specific - refer to words and phrases of specific relevance to some
domain, or of higher importance in a certain context.

While it is widely acknowledged that writer invariants do exist, the task of finding
them remains problematic, even though it has been debated over years and decades.
This is chiefly due to the definition of an author invariant. As it is required to ex-
press individuality of a writing style, it cannot be universal, but rather relative and
subjective to the particular style under study.

Many measures used are strongly dependent on the length of the processed text
and so are difficult to apply reliably. Thus the choice of textual markers for the anal-
ysis is one of the crucial decisions that can greatly influence the outcome [31]. Some
unreliable descriptors that poorly reflect a style can lead to completely wrong con-
clusions. Even the good descriptors can result in mistakes, when they are calculated
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over a text that is too short to be representative. The wider the corpus of processed
texts, the more reliable conclusions from the analysis.

Within textual analysis there are typically distinguished three tasks:

• author characterisation - yields conclusions about a social and educational back-
ground, gender, age, focuses on such elements that betray individuality,

• author comparison - dedicated to establishing, if they exist, some shared proper-
ties and similarities for texts by different authors,

• author attribution - answers the question of authorship for unattributed or
disputed texts.

Out of these three aims, authorship attribution is considered as of the highest impor-
tance, yet without the other two it would be impossible to achieve it. Only when
characterised properly and compared against others, a style can be correctly at-
tributed to its author.

Stylometric analysis is most often used to detect cases of plagiarism, to establish
authorship for anonymously published or disputed texts, or in criminal investiga-
tions within forensic linguistics area, for example to confirm an identity of a terrorist
threat-maker.

17.2.2 Short Historical Overview

Contemporary computational stylistics is considered as a successor of historical tex-
tual analysis that exploited human abilities of detecting patterns and similarities,
making associations, and dedicated to proving or disproving the authenticity of le-
gal documents or literary works.

Probably the most famous example from this early era is proving the forgery of
the Donation of Constantine, giving the western part of the Roman Empire to Pope
Sylvester. In 1439 Lorenzo Valla compared Latin used in other documents that were
dated to the IVth Century, and whose originality was beyond question, with Latin
used in the Donation of Constantine and concluded it to be falsified [27].

These early attempts involved tedious and extremely time-consuming study of
manuscripts, comparing them against others, and could use only some striking fea-
tures of texts, which are not entirely reliable. Anyone can notice them and that means
not theoretic but real possibility of imitating someone else’s writing style.

The new course for stylometry was set in 1787 when Edmond Malone, an expert
on Shakespeare’s plays, argued the usage of quantitative over qualitative descrip-
tors, such as meter and rhyme. In 1851 Augustus de Morgan proposed the usage
of average word lengths, which was made famous by the study of T.C. Mendenhall
on word-length distributions printed in 1887. Then followed the research by Mor-
ton and Yule (1938 and 1965), who used sentence lengths as descriptive features in
authorship studies.

Apart from these theoretical considerations, the second part of the XXth Cen-
tury brought also the rapid development of computers and their ever increasing
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computational powers enabled a much wider spectrum of methodologies and a
variety of textual descriptors to be efficiently employed for text processing [10].

17.2.3 Methodologies Employed

Apart from the choice of descriptors to be used in the analysis, the decision about the
methodology to be employed is another crucial point in the stylometric processing
[9]. In fact, these two issues should not be considered separately. With the question
of finding a writer invariant remaining open, the popular approach is to study de-
scriptors in the context of a processing technique used, making them not only task-
dependent but also methodology-dependent. Such attitude changes the perspective
in which textual markers are perceived, which is all the more advantageous when
taking into account the inherent properties of establishing the importance of features
that most methodologies possess [29].

Modern stylometric analysis involves processing procedures that belong with
computer-aided statistic-oriented computations, or techniques from artificial intel-
ligence domain [2]. All these methodologies can be employed just by themselves
giving satisfactory results, yet it is also possible to apply some hybrid solutions.
These approaches, where the fusion of processing techniques is performed, can put
the studied characteristic features in a new light, and result in some advantageous
observations leading to improved performance.

17.2.3.1 Statistical Approaches

Statistic-oriented processing requires computations of probabilities and distribu-
tions of occurrences for letters, punctuation marks, and other special characters,
words, groups of words, patterns of sentences, and distribution of probabilities for
comparative analysis among works of known and unknown authorship [20, 28].

In the probabilistic model of natural language all constituent elements do not
appear at random, in fact all letters occur with some probability. They depend on
characters that precede and succeed them. Thus a text can be considered as a se-
quence of characters corresponding to a Markov chain of some order [17]. For the
simplest model only the immediate predecessor is considered, which leads to the
Markov chain of the 1st order. For all pairs of letters in an alphabet, and all special
characters, there are calculated matrices of frequencies, reflecting transitions of a
letter into all studied characters. These matrices are found for all texts by known au-
thors and compared with the one for an unattributed text. The true author is selected
as the one with the highest probability.

Jill M. Farrington has invented a method called QSUM or CUSUM, where there
is calculated the cumulative sum (hence the name of the method) for two features.
As the first of these features there is studied the sentence length. All deviations
from the average are plotted for the whole text of known authorship. For the second
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feature there is selected the usage of 2- or 3-letter words, using words that start with
a vowel, or a combination of both. Next, the same calculations are performed and
plotted for a text of unknown authorship, and if their graphs match, the writer is
identified [7].

Popular Linear Discriminant Analysis, Principal Component Analysis, or cluster
analysis are examples of multivariate methods that aim to find some relationships
amongst input data, which, upon some calculation, lead to dimensionality reduction
by looking for linear combinations of variables that best explain data, or partitioning
data into subsets described by some distance measure. When procedures applied
both to already attributed and these unattributed texts return the same results, the
identity of the author is revealed.

Most of statistic-based approaches involve high computational complexity com-
putations, which are especially cumbersome when dealing with large datasets or
when an exhaustive search is required.

17.2.3.2 Machine Learning Approaches

Machine learning algorithms are characterised by their relatively high efficiency
while processing large datasets. They are used in feature extraction process and
achieve high accuracy in classification tasks, which makes them particularly well
suited for stylometric analysis.

The processing with genetic algorithms starts with a definition of some set of
rules that express characteristics of studied texts. Next these rules are tested against
a set of known texts and each is given a fitness score leading to selection opera-
tion. Some rules with low scores are discarded and some rules with highest scores
kept. The remaining rules are slightly modified within mutation and some new rules
added. The whole process is repeated until reaching the point when the evolved rules
correctly attribute texts to their authors.

Applying artificial neural networks in stylometric processing begins with con-
structing a network with random weights associated with interconnections. Next
the network is tested against the training samples for already attributed texts and
weights adjusted as long as classification is incorrect. Once the network is trained it
can be used for authorship recognition for unknown texts [36].

Rough set approach constitutes an example of rule-based methodology used
in cases when input data is uncertain and incomplete. It perceives the Universe
by granules of knowledge that lead to lower and upper approximations of sets.
Within the processing, basing on the decision table there are constructed algo-
rithms consisting of induced decision rules. In their premise parts the rules spec-
ify conditions on the considered features, to be satisfied for a decision to be
applicable [24].

Both connectionist ANN classifier and rule-based approach of rough sets are
described in more detail in the following Section 17.3.
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17.3 Connnectionist and Rule-Based Classification

Connectionist and rule-based classifiers are commonly presented as two opposite
approaches to the problems of classification and recognition. The former detects
subtle relationships amongst input datasets and offers distributed processing and
representation of knowledge, while the latter observes dominant patterns that are
succinctly expressed by decision algorithms listing rules of “If. . . then. . .” type.
Even though so different, both methodologies are efficiently employed in data anal-
ysis [25, 1], on their own, or combined together which results in hybrid solutions.

17.3.1 Artificial Neural Networks

For decades nervous systems present in biological organisms have been the subject
of interest and study for mathematicians, trying to develop models which would
describe these systems and their complexities. Artificial neural networks, as known
today, have emerged as generalisations of these concepts [12]. The description of
the mathematical model of the artificial neuron due to McCuloch and Pitts appeared
in 1943, Hebb defined the unsupervised learning rule in 1949, while Rosenblatt’s
perceptron was implemented for the first time in 1958.

The applicability of ANN to computational tasks and their efficiency have been
questioned many times. Especially in their early days the book "Perceptrons", pub-
lished in 1969 by Minsky and Papert, caused dissipation of the initial enthusiasm
and interest. Only when the backpropagation learning algorithm for supervised
learning was documented in 1980s, ANN regained their status and proved to be
a satisfactory solution to many problems.

A network can be perceived as a computing system that consists of some number
of rather simple processing units - neurons, which are interconnected and work in
parallel. The network possesses the inherent ability to learn and adapt, to generalise,
allows for some fault tolerance, provides distributed knowledge representation.

A specification of ANN comprises definitions of a set of neurons giving their
number and organisation, neuron activation states expressed by activation functions
and offsets that specify when the neurons fire, interconnections between neurons
that through their weights indicate how the output signal of a neuron affects other
neurons, and the learning or training rule that shows the method of gathering infor-
mation by the network.

17.3.1.1 Network Topology

Depending on topology, artificial neural networks are divided into feed-forward,
with the data flow strictly from the input to output neurons organised into layers,
and recurrent that contain feedback loops. In pattern classification tasks the former
type is most popularly used.
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An example of a feed-forward network constitutes Multilayer Perceptron (MLP),
constructed from some number of layers and possessing unidirectional weighted
connections between neurons. The detailed structure, that is the specific number of
neurons and layers is to some extent task-dependent.

The number of input and output nodes of a network can be seen as its external
specification. For classification purposes there are as many input neurons as charac-
teristic features defined for the analysed objects, and typically the number of outputs
reflects the number of distinguished classes.

The number of hidden layers and neurons is crucial to classification ability and
accuracy. Without any hidden layers a network can only solve problems that are
linearly separable. A single hidden layer results in the network classifying sim-
plexes, while two hidden layers enable classification of any objects. When the
number of neurons in hidden layers is higher than necessary, the network learns
quickly but performs poorly for unknown data when generalisation is needed.
On the other hand, when there are too few neurons in hidden layers, the net-
work has trouble converging and may never learn the relationships amongst the
input data.

With such vague indicators it is a commonly used approach to build a network
with some initial number of cells and possibly layers, and then train and test the
network. Depending on the network performance these numbers are next either
decreased or increased.

17.3.1.2 Activation Function

Transfer or activation functions for neurons define when they fire, that is how they
react to data accumulated through all weighted inputs. Typically there is used:
linear or semi-linear function, a hard limiting threshold function, a sigmoid, or
a hyperbolic tangent. Functional properties, such as linearity, continuity, differ-
entiability, cause the functions to perform with varying efficiency in task-specific
solutions.

Sigmoid is the most popularly used activation function in the classification tasks.
It is non-linear, continuous, differentiable, and it is defined as:

y(n) =
1

1+ e−β n
(1)

n = W ·X =
J

∑
j=0

wjx j (2)

where W is the weight vector, X the input vector, and j = 0 is reserved for offset t,
by setting w0 =−t and x0 = 1.
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17.3.1.3 Learning Rule

To learn, which is the desired set of output states whenever a set of input data values
is presented to an artificial neural network, it needs to be able to adjust the weights
of interconnections and this is encompassed by the network learning or training rule.

There are employed supervised, unsupervised, or reinforcement learning rules.
In Multilayer Perceptron usually there are applied some variants of the supervised
backpropagation method. The term supervised means that there is a kind of exter-
nal teacher whose role is to provide information about the desired answers for all
training samples. The training data is given by means of pairs of the input values
and expected outputs. When the expected output values are compared against these
obtained by the network, the error function can be calculated as follows:

e(W) =
1
2

M

∑
m=1

I

∑
i=1

(dm
i − ym

i (W))2 (3)

It is a sum of errors for all M training facts on all output neurons, each defined by the
difference between the expected outcome dm

i and the one generated by the network
ym

i (W). Minimisation of this function leads to adjustment of connection weights in
such a way that results in the output values to be closest to expected, for each of the
learning facts and for the whole learning set.

The classical backpropagation algorithm modifies the vector of weights W as
indicated by the direction of the steepest descent of the gradient:

ΔW =−η∇e(W) (4)

η is the learning rate and its value is an important parameter in this algorithm. When
it is too high, it can cause oscillations around the local minima of the error function.
When it is too low, it results in slow convergence. This locality is considered to be
a drawback of the algorithm, but its universality is its advantage and a reason for
being so widely used.

17.3.2 Rough Set Theory

Rough set theory was developed by Zdzislaw Pawlak in the early 1980s, to deal with
the problem of imperfect knowledge, incomplete and uncertain [26]. This problem
has been studied by scientists for many years and to interpret and manipulate such
knowledge many ways have been proposed, probably the most popular of which is
fuzzy set theory due to Lotfi Zadeh.

In classical set theory elements are either included or not included in a set. In
rough set theory using the available information about objects in the Universe the
space is partitioned into granules of knowledge within which single objects cannot
be discerned. This leads to lower and upper approximations of sets and construction
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of a decision algorithm. Constituent decision rules in their premise parts list all
conditions on attributes that must be met for the decision to be applicable.

Classical Rough Set Approach (CRSA) with its indiscernibility relation works
only for abstract or discrete data, which allows only for nominal classification [11].
In cases when the input datasets show ordinal properties, there can be employed
Dominance-Based Rough Set Approach (DRSA) that substitutes the indiscernibili-
ty with dominance relation.

17.3.2.1 Dominance Relation and Set Approximations

In classification tasks the attributes q ∈ Q that describe objects of the Universe U
are divided into condition C and decision D ones. In decision making problems usu-
ally there are several condition attributes (called also criteria) and a single decision
attribute. The values of attributes for all objects are contained in a decision table.
When these values show monotonic properties the indiscernibility relation can be
insufficient for efficient decision making [15, 13].

The indiscernibility principle can only say that when two objects are indiscernible
with respect to the considered attributes, they should be classified to the same class.
Thus in CRSA the granules of knowledge are the equivalence classes of objects that
cannot be discerned.

On the other hand, the dominance or Pareto principle advocates that if, with
respect to the considered attributes, for two objects x and y, x is at least as good as
y, then x should be classified at least as good as y.

Let �q be a weak preference relation that represents a preference on the set of
objects, with respect to some criterion q. When for all q ∈ P, P ⊆C, x �q y, then x
dominates y with respect to P, which is denoted as xDPy.

In DRSA the granules of knowledge are: a set of objects dominating x (P-
dominating set), and a set of objects dominated by x (P-dominated set), defined
as follows:

D+
P (x) = {y ∈U : yDPx} (5)

D−
P (x) = {y ∈U : xDPy}

A single attribute D= {d} partitions the Universe into some finite number of classes
Cl= {Clt}, with t = 1, . . . ,n. The classes are ordered and the increasing indices
indicate increasing preference, due to which the sets to be approximated are upward
or downward unions of classes (dominance cones), defined respectively as:

Cl≥t =
⋃
s≥t

Cls (6)

Cl≤t =
⋃
s≤t

Cls
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P-lower approximation of Cl≥t , denoted as P(Cl≥t ), is the set of objects that belong
without any ambiguity to Cl≥t . P-upper approximation of Cl≥t , denoted as P(Cl≥t ),
is the set of objects that could belong to Cl≥t , which is defined as follows:

P(Cl≥t )= {x ∈U : D+
P (x)⊆Cl≥t } (7)

P(Cl≥t )= {x ∈U : D−
P (x)∩Cl≥t �= /0}

The boundary regions of Cl≥t and Cl≤t with respect to P, denoted as BnP(Cl≥t ) and
BnP(Cl≤t ) respectively, are defined by the differences between the upper and lower
approximations:

BnP(Cl≥t )=P(Cl≥t )−P(Cl≥t ) (8)

BnP(Cl≤t )=P(Cl≤t )−P(Cl≤t )

17.3.2.2 Relative Reducts

Data contained in the decision table can be expressed in more succinct way by
the inherent mechanism of the rough set theory such as the concept of a relative
reduct.

Quality of approximation of Cl by criteria P, P ⊆C, can be defined as:

γP(Cl) =

∣∣∣∣∣
(

U −
( ⋃

t∈{2,...,n}
BnP(Cl≥t )

))∣∣∣∣∣
|U | (9)

A relative reduct, REDCl , is such an irreducible subset P ⊆ C for which γP(Cl) =
γC(Cl), that is the quality of approximation remains the same even though only the
selected subset of condition attributes is considered. A decision table can have many
reducts. The intersection of reducts is called a relative core, CORECl .

Relative reducts betray the importance of individual attributes for the classifica-
tion process [22]. If some attribute does not belong to any reduct, it means that it
can be completely disregarded from considerations. When an attribute belongs to
the core, it can never be discarded. With the empty core and multitude of reducts the
choice of one for the processing is not a trivial task, and may require some domain
knowledge.

17.3.2.3 Construction of Decision Algorithms

Finding approximations of dominance cones is the starting point for induction of
rules to be included in a decision algorithm [15]. There are distinguished several
types of decision rules:

• certain D≥-rules - supported by objects belonging to Cl≥t without any ambiguity,
• possible D≥-rules - supported by objects belonging to Cl≥t with or without am-

biguity,
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• certain D≤-rules - supported by objects belonging to Cl≤t without any ambiguity,
• possible D≤-rules - supported by objects belonging to Cl≤t with or without am-

biguity,
• approximate D≥≤-rules - supported by objects belonging to Cls∪Cls+1∪ . . .∪Clt

without possibility of discerning classes.

A set of decision rules is called complete when, according to it, no object of the
decision table remains unclassified. A set of rules is minimal when it is complete
and irreducible, that is exclusion of any rule makes the set incomplete [35].

The minimal set of rules ensures covering the training samples, yet the testing
set can vary to such degree that for some samples there are no rules matching. It
is especially true for the multidimensional input space. To increase the probability
of higher classification accuracy, instead of providing a minimal cover when con-
structing decision algorithms, there are also tried approaches generating all rules
on examples. However, it means more time-consuming processing and often re-
sults in an unmanageably high number of decision rules found. In such case an
optimised classifier can be built, comprising a selection of rules, basing on their
support, length, or some assumed weights. A rule support states how many train-
ing samples match this rule and its higher value means that it is more likely for
the rule to match the testing examples. When the rules are long, it may indi-
cate overfitting the learning data that results in poor generalisation unto unknown
examples.

17.4 Experimental Setup

Stylometric analysis can be seen as a multistage and even repetitive process. The
first stage is the selection of texts for training and testing samples. The second
stage, the choice of textual descriptors, can be seen as connected or dependent
on the decision as to the processing technique to be employed that comes next.
Then follows the stage of calculating characteristics for all texts. Depending on
the methodology selected, some auxiliary processing (for example such as dis-
creatisation of values) can be required before the actual stylometric analysis is
performed. Next, the results from the analysis are tested, conclusions drawn, and
then, possibly, the whole procedure is executed once again. The repetitive per-
formance enables better adjustment of some parameters, such as including more
or discarding some of characteristic features, using modified versions of algo-
rithms, or employing hybrid solutions, incorporating findings from the former
analysis.

17.4.1 Input Datasets

Written works can be extremely dissimilar. They can significantly vary in length, ad-
dress numerous subjects, use various registers. Over a long time span, many changes



17 Rough Set and Artificial Neural Network Approach to Computational Stylistics 453

can be observed in any language. Forms change, spelling differs, some words be-
come anachronisms while new ones are created. Comparing some manuscripts that
in most aspects show no resemblance makes little sense. Without some measure
of similarity of the analysed documents, the unavoidable conclusion is the one
that is already known - that they differ, regardless of the processing technique
applied.

The most convenient field of application for computational stylistics is offered
by literature, as the corpus of texts available for analysis is wide enough to give
reliable descriptors. Still the works have different lengths, yet this issue is easily
dealt with by dividing the long texts into some smaller parts, of approximately the
same size.

It can be argued that all stylistic features can be influenced by a text genre
and it is undeniably true. Plays or poems are governed by the completely differ-
ent rules than narratives, crime and mystery stories read rather unlike memoirs.
While the comparison of writings in prose with these in verse would be in fact
difficult, or even impossible, when the considerations are limited to one type it is
possible to determine such textual markers that work as writer invariants, and en-
able author attribution, by referring to the most commonly used elements of lan-
guage. As they are used to some degree subconsciously, and accordingly to the
individual writing habits, the patterns formed are likely to appear no matter what
an author writes about and thus they can be exploited to recognise their unique
style [3].

17.4.1.1 Texts for Analysis

To illustrate the concepts and elements of stylometric analysis, as texts for pro-
cessing there were selected works by Edith Wharton and Jane Austen (listed in
Table 1), available due to Project Gutenberg (http://www.gutenberg.org).
Their novels provide the corpora wide enough for the characteristic features, found
basing on the training data, to be representative of other texts. This generalised
knowledge can be employed to either discount or confirm the possibility of any
of the considered writers being recognised as the author of a text of unknown
origin.

As within an author characterisation stylometric task there is included deter-
mination of gender [19], it is not a coincidence that both selected authors are fe-
male. Their novels contain dialogs and narrative parts, and on one hand show some
similarities while on the other are diversified enough to constitute a basis for the
analysis.

In the learning and testing set there were included 200 and 90 samples respec-
tively, corresponding to parts of comparable lengths for several works for each
writer. Such approach enables discarding from the considerations the influence of
a text length upon its style. Each sample is several pages long.

http://www.gutenberg.org
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Table 1 Works by Edith Wharton and Jane Austen selected for the analysis.

a) Learning set
Author Title
Edith Wharton A Backward Glance

The Age of Innocence
The Glimpses of the Moon
The Reef

Jane Austen Emma
Mansfield Park
Persuasion
Pride and Prejudice

b) Testing set
Author Title
Edith Wharton Certain People

House of Mirth
Summer

Jane Austen Northanger Abbey
Love and Friendship
Sense and Sensibility

17.4.1.2 Selection of Characteristic Features and Processing Techniques

For the texts selected for stylistic analysis, structural and content-specific markers
could not be used reliably as author invariants. All texts contain no specific format-
ting and the vocabulary is too diversified to look for words of some key meaning
[6]. That leaves lexical and syntactic descriptors.

Syntactic markers reflect the structure of sentences as organised by the punctu-
ation marks [5]. Some authors create simple sentences while other prefer complex
ones, some writers use many commas while others employ both commas and colons,
one author inserts a comment in brackets and another puts commas around it, some
emphasis can be expressed with a question or exclamation mark. All this depends on
an individual style of writing, thus to work as textual markers there were considered
frequencies of usage for 8 punctuation marks: a fullstop, a comma, a question mark,
an exclamation mark, a semicolon, a colon, a bracket, a hyphen.

Lexical descriptors seem to be the most natural ones to be employed. They give
averages or frequencies of usage for single letters, words, or groups of words. To
minimise the influence of vocabulary on the author recognition there were selected
17 entries form the list of the most popular words in English language as follows:
but, and, not, in, with, on, at, of, this, as, that, what, from, by, for, to, if.

The resulting set of 8 syntactic+17 lexical = 25 descriptors has proven its effi-
ciency in authorship attribution studies [33, 34].

For processing there were selected two techniques from the artificial intelligence
domain: the connectionist approach of artificial neural networks and rule-based ap-
proach of rough set theory. As frequencies obtained are continuous values, they are
not directly applicable in Classical Rough Set Approach that works on abstract or
discrete data. In such case it is possible to use some discretisation strategy by defin-
ing a discretisation factor [32]. On the other hand, the data is ready for Dominance-
Based Rough Set Approach since clearly there is ordering in value sets.

However, from the stylometric point of view it cannot be definitely stated how
attributes are preference ordered as it would imply some a priori knowledge that
some greater or lower frequency is preferable to others as characteristics for the
considered writers.
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17.4.2 Connectionist Classification

Artificial neural networks can be simulated with dedicated hardware or software. In
the research described here there was employed the latter approach, implemented
by California Scientific Brainmaker.

As the base topology of an artificial neural network, there was used the feed-
forward Multilayer Perceptron with the sigmoid activation function, trained by the
classical backpropagation algorithm. The number of inputs was equal to the number
of textual descriptors used and there were two outputs to reflect the two recognised
authors.

To establish the best network structure, that is with the highest classification ac-
curacy for the task, there were conducted experiments with varying the numbers
of hidden layers and neurons in them. Since initiation of interconnections weights
can greatly influence the training results, there was employed the multi-starting
approach with the learning procedure repeated 20 times. The results are given in
Table 2, and there is specified not only the average performance for each network
configuration but also minimal and maximal classification accuracies.

Table 2 Performance of ANN classifier in relation to the network structure.

Number of hidden layers
0 1 2

Number of neurons in hidden layers
25 25 14 21 19

0 27 25 14 13 7 25 2 13 6 6
Classification accuracy [%]
Minimal 90,00 90,00 90,00 90,00 90,00 90,00 90,00 90,00 88,89 90,00 90,00
Median 90,00 91,11 91,11 91,11 91,11 91,11 91,11 91,11 91,11 91,11 91,11
Maximal 91,11 92,22 91,11 92,22 92,22 92,22 93,33 92,22 91,11 92,22 93,33

These results are very similar but for two hidden layers the maximal classifica-
tion accuracy is the highest. With several network layers usually there is adopted
the structure of an inverted pyramid: the input layer is the most numerous, then the
numbers of neurons decrease as the layers get closer to the output. Thus the right-
most column specifies the structure selected and employed within further research
dedicated to dimensionality reduction, with incorporating the analysis of the signif-
icance of individual characteristic features for the task, described in Sec. 17.4.5.

17.4.3 Rule-Based Classification

DRSA methodology requires indication of a preference order for all attributes, both
condition and decision ones. Stylistics domain knowledge is insufficient to answer
this question in some universal way, therefore another approach must be employed.
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For just two classes to be recognised for a single decision attribute, there are only
two possibilities of preference ordering, but for 25 condition attributes there are as
many as 225, which in total gives 226 different preference orderings. Trying all of
them and testing to find the best would be far too time-consuming. Some detailed
analysis of values for all learning samples could betray the preferences for writers,
but they are not necessarily conclusive. In the presented experiments the preference
order was established arbitrarily for all attributes.

When the efficiency of rule-based classifiers obtained is verified with testing sam-
ples, the results are given in three categories: correct decisions, incorrect decisions,
and ambiguous decision. The last category corresponds to cases of no matching
rules, but can also mean that there are several contradicting decisions. Then for the
final verdict for a sample, the decision can be based on the majority of decisions
by voting, or supports of constituent rules, yet such approach can lengthen the pro-
cessing time even several times, especially when decision algorithms comprise high
numbers of decision rules. To avoid this additional processing, all ambiguous deci-
sions were treated as incorrect.

The details of DRSA processing are given in Table 3. The number of relative
reducts was almost two thousand with cardinalities varying from 2 to 10, yet the rel-
ative core was empty. The classification with minimal cover algorithm gave unsat-
isfactory results of only 51%, thus all rules on examples algorithm was calculated,
returning 52,108 constituent decision rules. With such high number of rules, when
there are no constraints on them, decisions for all testing samples are ambiguous.
The highest classification accuracy was 74% of correct decisions and it was obtained
when limiting the set of rules by the values of their support.

The threshold support on rules resulting in the highest classification accuracy
was for 47, 48, 49 and 51, giving the number of rules equal to 35, 30, 23 and 12

Table 3 Details of DRSA processing involving all attributes.

Relative reducts
Number of reducts 1979
Reduct cardinalities from 2 to 10
Relative core empty
Union of reducts complete set of attributes
Minimal cover algorithm
Number or rules 55
Rule lengths from 1 to 3
Rule supports from 1 to 43
Classification accuracy 51%
All rules on examples algorithm
Number or rules 52,108
Rule lengths from 1 to 9
Rule supports from 1 to 61
Threshold support 51
Number of rules in shortened algorithm 12
Classification accuracy 74%
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respectively. This shortest decision algorithm, comprising just four rules classifying
to "edith" class and eight rules with decisions "jane", is as follows, the numbers at
the end of each rule giving its support.

All rules on examples algorithm (25 attributes and 52,108 rules, for threshold
support≥51 limited to 12 rules involving 10 attributes, classification accuracy 74%)

Rule 1235. (what >= 0.002147) & (; >= 0.002863)
& (- >= 0.016106) => edith [53]

Rule 3442. (? >= 0.003632) & (; >= 0.003148)
& (- >= 0.018644) => edith [54]

Rule 6345. (on >= 0.004737) & (what >= 0.00203)
& (; >= 0.003384) => edith [55]

Rule 18877. (on >= 0.007042) & (- >= 0.015649)
=> edith [52]

Rule 21807. (in <= 0.01701) & (; <= 0.002195)
=> jane [61]

Rule 33044. (and <= 0.035352) & (in <= 0.016907)
& (; <= 0.002459) => jane [53]

Rule 33791. (and <= 0.039362) & (in <= 0.016722)
& (; <= 0.002315) => jane [59]

Rule 34047. (and <= 0.037153) & (at <= 0.007326)
& (of <= 0.036368) & (; <= 0.00314)
=> jane [54]

Rule 34341. (at <= 0.008142) & (; <= 0.003016)
& ( ( <= 0.000603) => jane [60]

Rule 36278. (at <= 0.008724) & ( ( <= 0.001651)
& (- <= 0.010611) => jane [54]

Rule 49807. (in <= 0.017019) & (; <= 0.001761)
=> jane [54]

Rule 51590. (; <= 0.00142) & ( ( <= 0.00142)
=> jane [51]

Fig. 1 shows how the classification accuracies of decision algorithms change with
the increasing values of threshold support limiting rules included, and how it reflects
upon the number of remaining rules.

When the support required of rules is low, their high number works against their
classification accuracy: there are too many ambiguous decisions. The critical point
is crossed for support equal at least 32 which limits the rules to 301, and they return
51% of correct decisions. Then, along with the support, the correct recognition ratio
increases till 74%, to decrease when there are too few rules left.

When the results of rule-based classifier are compared against the ones obtained
for the connectionist solution, it may seem that they are much worse with 74%
against 91%, yet it should be taken into account that the distance between the two
numbers could be smaller if, instead of just discarding all ambiguous decisions, they
were further processed to arrive at either correct or incorrect verdict.
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Fig. 1 Classification accuracy in relation to: a) threshold values of support imposed on the
rules to be included in a decision algorithm, b) the numbers of rules included in decision
algorithms with limited support (displayed in logarithmic scale).

17.4.4 Analysis of Characteristic Features

Both processing methodologies employed possess their own ways of establishing
the importance of individual features for the classification task considered.

In artificial neural networks this is achieved by the training phase when inter-
connection weights are adjusted to arrive at the minimum of the error function.
For the already trained network, by some form of sensitivity analysis it is possi-
ble to find these inputs that have relatively small influence on the network outputs,
which in turn can lead to pruning. Pruning can involve the interconnections with
low weights, but also some neurons in the hidden layers, or inputs. Due to the con-
nectionist nature, these reduction techniques typically require time-consuming and
complex calculations [18, 16].

In rough set approach selection of relatives reducts assumes various significance
of some attributes, which influences decision rules constructed. Once they are in-
duced, still some features can be disregarded by exploiting not the full but limited
algorithm, with selection of rules based on some assumed measures [21].

To obtain some importance indicators for characteristic features, there can be also
employed elements of frequency analysis. It is the study of occurrence frequencies
for single letters or their groups, popularly exploited within cryptography to con-
struct or break ciphers. Basing on the wide corpus of texts of varied register and
style for a language, it is possible to compute how often, in relation to all, partic-
ular letters and words are used, which leads to ordering by their rank. Once this
order is known the encrypted message can be read even when some substitution or
transposition, or some more complex ciphers are applied [23].

In the considered context there were studied occurrences of attributes within the
calculated relative reducts and decision rules, included in the all rules on examples
algorithm. A basic analysis can involve just these frequencies of usage, yet such
attitude means treating all reducts and all rules alike, regardless of their parameters.

For relative reducts their cardinalities can be also taken under consideration
within the analysis. Lower cardinality means that fewer attributes express the same
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knowledge, hence it can be concluded that attributes belonging to such reducts are
more important than others which require a lot of company to form a reduct. The
distribution of reduct cardinalities for individual attributes is specified in Table 4.

The three right-most columns in Table 4 give values for three quality indicators
for features. QIN reflects directly the number of reducts in which each condition
attribute is included. QI1 is calculated as a sum of quotients, where divisors are
cardinalities of reducts and dividends the numbers of occurrences in reducts of such
cardinalities. With such calculation each reduct is assumed to have an influence
factor that is an inverse of its cardinality. QI2 is computed as a sum of products, each
reduct cardinality multiplied by the number of reducts with such cardinality in which
each feature is included. Thus while QI1 assumes greater significance of reducts
with lower cardinalities, QI2 does the same for these with higher cardinalities.

Next the focus was limited to reducts with the lowest four cardinalities, namely
2, 3, 4, and 5, and the frequencies of usage in such reducts for all attributes.

These four ways of interpreting the importance for the classification criteria lead
to their ordering accordingly to the obtained values of considered indicators, as

Table 4 Analysis of attributes based on relative reducts and their cardinalities.

Number of relative reducts with specific cardinality
Total 1 8 123 459 693 465 181 47 2 Quality indicators

Attribute 1979 2 3 4 5 6 7 8 9 10 QIN QI1 QI2

of 818 0 3 18 189 290 224 75 18 1 818 135,11 5106
with 726 0 0 20 108 284 207 88 18 1 726 116,60 4649
at 712 0 1 31 135 181 213 122 27 2 712 114,13 4618
! 711 0 1 8 117 237 232 91 24 1 711 112,52 4620
if 705 0 0 19 142 319 167 39 19 0 705 117,16 4352
as 690 0 0 15 96 227 202 111 37 2 690 107,83 4557
and 682 0 0 11 101 257 186 98 28 1 682 107,82 4439
. 652 0 1 13 134 247 162 75 20 0 652 106,29 4121
in 620 0 0 39 181 235 100 54 11 0 620 107,37 3702
from 609 0 1 24 106 208 165 77 27 1 609 98,50 3901
to 525 0 1 18 99 154 168 63 22 0 525 84,62 3372
that 521 0 2 50 106 186 123 48 6 0 521 89,60 3151
what 515 0 0 5 77 168 180 66 18 1 515 80,71 3373
? 510 0 2 23 120 219 97 40 9 0 510 86,77 3092
for 503 0 0 3 64 150 166 86 32 2 503 76,77 3390
- 456 1 3 47 220 152 33 0 0 0 456 87,30 2442
on 447 1 3 35 85 162 113 41 6 1 447 76,28 2731
but 372 0 0 3 6 87 162 85 28 1 372 53,43 2640
by 330 0 0 7 45 110 91 53 23 1 330 51,36 2191
this 290 0 0 5 43 92 77 53 18 2 290 45,01 1932
; 274 0 6 86 79 67 36 0 0 0 274 55,61 1411
( 235 0 0 10 21 72 87 26 18 1 235 36,48 1566
not 102 0 0 0 3 16 32 39 11 1 102 14,04 756
: 77 0 0 2 16 21 22 14 1 1 77 12,30 499
, 35 0 0 0 2 17 10 4 2 0 35 5,38 232
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given in Table 5. Within each ordering presented there could be distinguished the
increasing and decreasing order, with increasing or decreasing values of the con-
sidered measures, labelled with "L" or "M" respectively. "L" label means focus on
more important (with respect to the considered indicator) features while disregard-
ing these less important. "M" signifies discarding more important features while
keeping these that are less important.

A similar analysis was also performed for the calculated decision rules. In the
analysis there were taken under consideration the frequencies of usage for all condi-
tion attributes in the induced rules as well as supports of these rules, distribution of
which is given in Table 6. All rules can and have some influence upon the classifi-
cation accuracy, but when they have higher supports they are more likely to express
some patterns present not only in the learning samples, but also in testing ones. That
is why the support can be treated as an indicator of importance for the rules and the
attributes included in them.

To reflect these considerations, there were observed two orderings of condi-
tion attributes based on decision rules, one giving the numbers of rules including

Table 5 Ordering of characteristic features based on analysis of relative reducts and their
cardinalities.

Order RDN Order RD1 Order RD2 Order RD3
of of of -
with M1 if M1 with M1 on
at with ! ; M1
! at at of M2 L10
if L12 ! L10 as L15 that M3
as M2 as M2 and M2 ? L9
and L11 and if L14 at M4
. M3 L10 in . M3 L13 from L8
in M4 . L9 from M4 L12 to M5
from L9 from M3 L8 in M5 L11 . L7
to M5 that M4 for M6 ! M6 L6
that - what in M7 L5
what ? L7 to L10 with M8
? to M5 that M7 if
for L8 what L6 ? L9 as
- M6 for M6 on M8 and
on L7 on L5 but L8 ( L4
but M7 L6 ; M7 - M9 L7 by M9 L3
by M8 L5 but by M10 L6 what M10
this M9 by L4 this M11 L5 this L2
; L4 this M8 L3 ( M12 L4 for
( L3 ( L2 ; L3 but
not L2 not not L2 : L1
: L1 : L1 : L1 not
, , , ,
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Table 6 Distribution of rule supports for condition attributes.

Number of with support in specific range Maximal Total number
decision rules 48026 3015 731 247 77 12 support of rules
Attribute 1-10 11-20 21-30 31-40 41-50 51-61 61 52108
in 11138 723 125 47 21 4 61 12058
; 3818 762 290 127 46 10 61 5053
at 11514 754 153 38 11 3 60 12473
( 9202 709 130 38 11 3 60 10093
and 12203 518 114 33 3 3 59 12874
on 6429 1020 286 79 34 2 55 7850
what 9994 387 49 27 7 2 55 10466
of 12724 599 152 63 13 1 54 13552
- 5324 693 221 94 31 4 54 6367
? 7409 717 150 33 11 1 54 8321
that 9313 810 171 56 15 0 49 10365
from 11140 521 96 26 6 0 48 11789
if 9114 494 76 13 1 0 47 9698
. 9865 386 66 17 3 0 45 10337
by 9423 254 57 12 2 0 45 9748
, 4200 34 5 1 1 0 44 4241
with 12078 708 137 12 2 0 42 12937
this 9386 212 24 1 1 0 42 9624
to 10027 320 53 15 1 0 42 10416
but 8546 151 17 0 1 0 41 8715
as 10133 263 39 3 1 0 41 10439
! 10832 252 35 6 0 0 39 11125
for 9644 193 21 7 0 0 37 9865
: 2472 13 4 0 0 0 29 2489
not 524 1 0 0 0 0 11 525

attributes regardless of rule support, and another based on the maximal support of
rules, as shown in Table 7.

The presented orderings of condition attributes were next employed to con-
struct modified versions of both connectionist and rule-based classifiers, with re-
duced numbers of characteristic features. For ANN the new structures involved
also decreasing the number of neurons in hidden layers, in order to keep the in-
verted pyramid structure. In DRSA processing new algorithms were found by re-
moving these decision rules from the complete set, which in their premise parts
contained conditions on the discarded attributes. The performance for all classi-
fiers was compared against results obtained previously for the whole set of at-
tributes, and trends present observed, as described in more detail in the next
section.
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Table 7 Ordering of characteristic features based on the number of decision rules in which
the features are included, and supports of these rules.

Order RLN Order RS1
of in
with M1 ;
and at M1
at M2 (
in M3 and M2 L13
from M4 L13 on M3
! M5 L12 what L12
what M6 of M4
as -
to ? L11
that that M5 L10
. L11 from M6 L9
( M7 L10 if M7 L8
for M8 L9 . M8
by M9 by L7
if , M9 L6
this L8 with M10
but M10 L7 this
? M11 L6 to L5
on M12 L5 but M11
- L4 as L4
; L3 ! L3
, L2 for L2
: L1 : L1
not not

17.4.5 Performance for Feature Reduction

Dimensionality reduction can be attempted for a variety of reasons. It can be the
only way to deal with a problem otherwise unsolvable because of unmanageable
amounts of data. It can lead to implementation of a classifier that works faster, is
more efficient, cheaper. It can help to increase the correct recognition ratio. But it
also leads to more detailed analysis of the characteristic features, not always neces-
sary, yet revealing more about the significance of features for the considered task.

Application of elements from DRSA methodology in dimensionality reduction
for a connectionist classifier means creating a hybrid classifier. Such hybrid solu-
tions have become quite popular. Not only do they often perform better, but offer
also another perspective, from which the features can be studied. It is highly infor-
mative to observe whether the importance of features established for one technique
can be transferred to another, especially so distinctively different. Connectionist and
rule-based approaches are typically presented as opposites. ANN detects subtle re-
lationships in the input datasets while DRSA tries to find these most striking.



17 Rough Set and Artificial Neural Network Approach to Computational Stylistics 463

45

50

55

60

65

70

75

80

85

90

95

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24C
la

ss
if

ic
at

io
n 

ac
cu

ra
cy

 [
%

]

Number of characteristic features 

Reduct number Most Reduct number Least

65

70

75

80

85

90

95

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24C
la

ss
if

ic
at

io
n 

ac
cu

ra
cy

 [
%

]

Number of characteristic features 

Reduct cardinality 3 Most Reduct cardinality 3 Least

a) b)

Fig. 2 ANN classification accuracy in relation to the number of features, with their reduction
based on: a) numbers of reducts in which they are included regardless of their cardinalities
(Order RDN), b) numbers of reducts of the lowest cardinalities in which the attributes are
included (Order RD3).

When there are considered the relative reducts and how many times each char-
acteristic feature is used to construct them, reflected by QIN and Order RDN,
the results of reduction of attributes (presented in Fig. 2a) lead to the immediate
conclusion: the features less often included in reducts are more important for ANN
classifier. When they are disregarded, the performance worsens - the classification
accuracy barely reaches 50% when there are fewer than ten inputs left. In con-
trast, when there are discarded the attributes most often exploited in construction
of reducts, the network performance remains at the same or slightly increased level,
as long as there are at least ten remaining inputs. Below ten, it decreases just by 2%,
even when there are as few as five inputs left.

When the focus is limited to the relative reducts with the lowest cardinalities as
in Order RD3, from the observation of feature reduction results given in Fig. 2b, it
can be inferred that without losing the power of the classifier we can discard several
of the features (12 out of 25 makes almost 50% of inputs) most often included in the
reducts with low cardinalities. Rejecting the condition attributes least often present
in such small reducts decreases the classification accuracy, yet not that dramatically
as in the previous case depicted in Fig. 2a.

When the consideration is given to all relative reducts and their respective cardi-
nalities, either assuming that these with lower cardinalities are more important (Or-
der RD1) or that these with higher cardinalities are more significant (Order RD2),
from the results of dimensionality reduction shown in Fig. 3, it can be induced that
for both orderings the connectionist classifier performance is similar, and in both
cases it is safer to remove more often exploited features.

All these tests lead to a conclusion that the importance of condition attributes, as
observed within the analysis of relative reducts found and their cardinalities, should
be given an inverse meaning when processing with a connectionist classifier.

Even though for this hybrid classifier the increase in the correct recognition ratio
is so small (by 2%) that cannot be treated as statistically significant, the reduction
of characteristic features is around 50%.
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Fig. 3 ANN classification accuracy in relation to the number of features, with their reduction
for Order RD1 and Order RD2: a) from more significant side, b) from less significant side.

Moving the analysis of features to the rough set domain, there are constructed
limited decision algorithms. The rules included in them are only those that have
no conditions upon the discarded attributes. When the decision rules are numerous,
even when some are rejected, still the number remains high and there are many
ambiguous decisions. To minimise their number the threshold support of the rules
is required, limiting the algorithms even further, and making their length to be of
manageable proportions.

Performance of a rule-based classifier, with feature reduction based on the num-
ber of reducts in which the condition attributes are employed (Order RDN), is spec-
ified in Table 8. There are given the numbers of attributes remaining, the numbers of
rules within the limited algorithms, the threshold support values required to achieve
the highest classification accuracy, the numbers of rules that meet these criteria, and
these maximal classification accuracies. All details are listed for the reduction of
either most (M-labelled columns) or least (L-labelled columns) significant features.

While rejecting the more significant attributes, the number of remaining decision
rules falls rapidly, yet with decreasing the required threshold value of support, there
are 76% correct decisions for 10 attributes discarded (40%). On the other hand,
for removing the less significant features the classification accuracy is kept only at
the beginning of the reduction process, when the 12 rules from the full algorithm
that give the highest accuracy remain intact. Once they are rejected along with the
attributes, the performance worsens.

When the reduction is based on relative reducts with lowest cardinalities (re-
sults shown in Table 9), setting aside the more important features again unsurpris-
ingly quickly reduces the number of decision rules, and the classification accuracy
steadily decreases. For the less significant features the rate of descent in the number
of rules is much slower, while the correct recognition ratio can be kept at the same
level with lowering of the imposed support, for reduction of up to 30% of attributes.
Then it falls down, only to increase to 78% for just four features left.

Both groups of tests indicate that the condition attributes most frequently in-
cluded in relative reducts stand much better chance at maintaining the power of the
rule-based classifier than these features that are used seldom.
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Table 8 Classification results for reduced decision algorithms. Reduction of attributes based
on the number of reducts in which they are included, regardless of their cardinality (Order
RDN).

Number of Number Threshold Nr of rules Classification
attributes of rules support in short alg. accuracy [%]

Algorithm M L M L M L M L M L
01 24 24 38556 47867 49 51 22 12 73 74
02 20 23 12966 45653 44 51 36 12 77 74
03 18 22 6651 45170 45 51 30 12 76 74
04 17 21 5127 35626 45 47 29 29 76 71
05 15 19 2145 25404 46 38 20 48 76 65
06 10 18 470 20154 29 38 44 48 73 65
07 8 17 141 16543 4 38 94 47 51 65
08 7 15 124 11236 4 23 92 27 51 42
09 6 10 67 2589 4 11 51 47 50 47
10 8 1098 7 94 53
11 7 652 6 80 41
12 5 297 4 111 40

Table 9 Classification results for reduced decision algorithms. Reduction of attributes based
on the maximal cardinalities of relative reducts in which they are included (Order RD3).

Number of Number Threshold Nr of rules Classification
attributes of rules support in short alg. accuracy [%]

Algorithm M L M L M L M L M L
01 23 23 38345 47368 40 51 37 12 75 74
02 22 20 34373 30579 23 51 47 12 54 74
03 21 18 24620 19982 23 48 41 27 56 74
04 19 17 14611 16141 15 48 40 27 46 74
05 17 12 7110 3498 10 47 99 22 43 66
06 15 11 3146 2145 6 41 238 35 25 70
07 14 10 1963 1705 6 41 172 35 27 70
08 13 8 1146 956 6 41 93 32 30 66
09 8 6 47 373 1 29 47 85 0 70
10 7 4 30 171 1 6 30 147 0 78

Exploiting the analysis of decision rules, dimensionality reduction can be gov-
erned by their number for each of the considered criteria, reflected by Order RLN.
The results are listed in Table 10, and their examination reveals that when the more
important, that is more frequently exploited, features are set aside, after the initial
slight decrease, the classification accuracy remains steadily high even when there
are just 6 condition attributes left. In contrast, when reducing the less frequently
used attributes, only at the beginning of reduction the classification accuracy is pre-
served, then it gradually decreases.

These observations may seem rather surprising and contrary to those for reduc-
tion based on reducts, yet such conclusion would be premature. To understand these
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Table 10 Classification results for reduced decision algorithms. Reduction of attributes based
on the number of decision rules in which they are included, regardless of their properties
(Order RLN).

Number of Number Threshold Nr of rules Classification
attributes of rules support in short alg. accuracy [%]

Algorithm M L M L M L M L M L
01 24 24 38556 51583 49 51 22 12 73 74
02 22 23 19733 49111 49 51 20 12 73 74
03 21 22 14084 45170 45 51 31 12 76 74
04 20 21 8874 40924 46 36 21 80 76 66
05 19 20 6325 35540 46 33 21 33 76 57
06 18 19 5076 29592 46 23 21 47 76 54
07 13 18 1195 23977 39 16 29 100 76 45
08 12 17 779 19287 22 16 70 96 75 45
09 11 14 587 9182 22 16 70 71 75 40
10 8 13 155 7246 23 16 48 71 75 40
11 7 12 122 5022 23 12 48 106 75 35
12 6 7 86 589 9 2 58 420 74 34
13 6 289 2 244 40

results it should be remembered that here there are considered all decision rules,
regardless of their supports. As it happens, most rules have low supports. Out of
52,108 rules over 92% have supports in the lowest range, between 1 and 10. The
rules with such low supports reflect patterns present in few of the learning samples,
which are less likely to be found in the testing set than the patterns described by
decision rules with higher supports.

While limiting considerations to the maximal supports of decision rules in which
the attributes are included, as shown in Table 11, the results fully confirm the in-
tuitive expectations. Disregarding the features from rules with the highest maximal
supports results in the immediate decrease in the classification accuracy, while keep-
ing them, and removing those in rules with lower supports, gives almost constant
level of classification accuracy, even when reduction reaches over 70% of features.

It could be argued that application of this last approach has no merit, as the same
version of the decision algorithm can be obtained by taking all rules on examples
algorithm with its full set of calculated decision rules, and imposing some threshold
support that gives the highest number of correct decisions. As listed in Sec. 17.4.3,
this limited algorithm contains 12 rules involving 10 attributes, it is obtained for
support equal at least 51, and returns 74% correct decisions. Undeniably the same
12 rules give correct recognition here, but using just a support for restricting deci-
sion rules, without reduction of features, does not explain the results for the 12th
algorithm. It works on just 7 attributes, and returns 77% of correct decisions for the
threshold support required equal at least 32. For all rules on examples algorithm
this value of support is the previously indicated crucial point, when 301 rules en-
sure 51% recognition. Reduction of features based on the maximal support of rules
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Table 11 Classification results for reduced decision algorithms. Reduction of attributes based
on the maximal support of decision rules in which they are included (Order RS1).

Number of Number Threshold Nr of rules Classification
attributes of rules support in short alg. accuracy [%]

Algorithm M L M L M L M L M L
01 23 24 35830 51583 36 51 55 12 68 74
02 21 23 20390 49111 28 51 108 12 71 74
03 20 22 13724 39741 28 51 94 12 68 74
04 18 21 8971 31165 16 51 202 12 55 74
05 15 19 2763 20610 6 51 224 12 31 74
06 14 16 1770 9852 6 51 99 12 34 74
07 13 15 1140 9161 4 51 120 12 28 74
08 12 13 716 5744 3 51 114 12 24 74
09 10 12 266 4229 1 51 266 12 15 74
10 9 11 240 3090 1 51 240 12 14 74
11 6 10 20 2148 1 51 20 12 0 74
12 7 661 32 51 77
13 5 197 17 67 60
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Fig. 4 Classification accuracy in relation to the numbers of rules included in the decision
algorithms. Reduction of features based on the maximal support of rules in witch they are
included (Order RS1), for threshold support equal at least 32.

enables restricting these 301 rules, which causes the gradual increase in the classifi-
cation accuracy, as shown in Fig. 4.

Actually, it is only due to the fact that this shortest algorithm of the highest clas-
sification accuracy is so atypically short (consists of so few constituent decision
rules), that it is not further reduced within the feature reduction procedure exploit-
ing rule supports. For longer algorithms some rules can be set aside, without the
change for the worse in the classifier performance.
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17.5 Conclusions and Future Research

Both connectionist (ANN) and rule-based (DRSA) classifiers perform with the sat-
isfying accuracy in an authorship attribution task of computational stylistics, for
the selected lexical and syntactic markers working as effective style discriminators.
The descriptors correspond to frequencies of usage for some function words and
punctuation marks. Such selection of characteristic features is explained by rather
subconscious habits of applying these common elements of language by authors,
therefore they are less likely and more difficult to be imitated.

The significance of the selected features for the considered classification and
recognition task is studied by applying elements of simple frequency analysis to the
relative reducts and decision rules calculated within DRSA procedures. The anal-
ysis leads to assigning some quality indicators for each of the characteristic fea-
tures, and provides a basis for their ordering. These observations are exploited to
advantage within the feature reduction process for both processing methodologies,
without additional computationally complex calculations, which are so common in
dimensionality reduction.

When these rough set-based quality indicators are used for pruning the inputs
of an artificial neural network, it turns out that in the connectionist context their
meaning is inverted: the attributes more important for DRSA processing are less
important for ANN. While staying within the rough set domain, the values of the
quality indicators confirm the significance of condition attributes.

Within future research there will be taken into consideration yet another param-
eter of the induced decision rules: their length. When rules are long and contain
many conditions on attributes, it may result in overfitting the data, when the rules so
closely describe the learning examples that they lose their generalisation ability and
cannot fit the testing or new data. Thus rule length distributions for the individual
attributes could be studied in the context of their selection for both connectionist
and rule-based classifier.

Also, instead of an arbitrary choice for a preference order assumed for each at-
tribute within DRSA processing, some analysis of value sets could be executed,
leading to an informed decision, which can influence not only the processing time
but also, which is more important, the performance of the constructed classifier.

Furthermore, each computational stylistics task requires a new selection of de-
scriptors to work as efficient discriminators for the studied texts. Thus for an author
characterisation and comparison, which would be useful for example in automatic
categorisation of texts, some new sets of textual markers should be found.

On the other hand, the presented methodology of establishing the importance of
characteristic features for the classification task, which can be exploited for dimen-
sionality reduction, should be applied in some different domain in order to confirm
its efficiency when working on datasets of different type.

Acknowledgements. All texts used in the experiments performed are available in electronic
form thanks to Project Gutenberg (http://www.gutenberg.org). 4eMka Software
used in search for relative reducts and decision rules [14, 30] was downloaded in 2008 from
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Chapter 18 
Application of Learning Algorithms to Image 
Spam Evolution 

Shruti Wakade, Kathy J. Liszka, and Chien-Chung Chan  

Abstract. Spam filters have become very proficient at identifying text spam, so 
spammers have developed different techniques to bypass filters. One such method is 
image spam, which first appeared in 2005 and quickly grew in popularity. KnujOn is 
a web site that collects and sorts spam for investigations and data analysis of email-
based threats. We have been collecting image spam from KnujOn on a daily basis 
since April 2008, culminating in a significantly large corpus of real data. In this chap-
ter, we have identified eight features for the detection of computer generated image 
spam versus ham (non-spam). We use J48 and J48 with reduced error pruning deci-
sion trees to classify the images. Finally, we perform a validation by feature analysis 
on thirteen months of our corpus and observe that our classification scheme is not  
affected by changes made to images for the purpose of avoiding OCR detection. 

Keywords: spam, image spam, decision trees, classification, feature analysis. 

18.1  Introduction 

Email is an integral part of our lives. The consequence of this convenience is 
spending time every day dealing with unsolicited advertisements for Viagra,  
Rolex watches, low-interest loans and other products. There are many ways 
spammers harvest your email address even if you never open spam email and click 
on suspicious links. Joining a social network without setting your privacy settings 
ensures your data will be available to anyone. This includes your location, email, 
and friend lists. Newsgroups are fertile ground for collecting email addresses. Dic-
tionary attacks are one of the oldest techniques for harvesting email addresses. 
Once there is an adequate list of names, botnets are created to infect machines 
owned by unsuspecting users to send spam. 
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Spam filters and blacklists are fairly adept at identifying spam but spammers 
relentlessly develop new techniques to trick their way into our inboxes. Originally, 
spam was sent as text in the body of an email. Bayesian filtering and other tech-
niques are fairly effective in fighting these types of messages. Enter image spam 
and the game changes. 

This research uses machine learning tools to identify image spam versus image 
attachments that are non-spam, or more commonly known as ham. Image spam, in 
this context, is a picture that is computer generated as opposed to photographs.  
There are emails from companies, such as Home Depot, that send an advertise-
ment in the form of a digital photo, such as solar lighting. Although we may not be 
interested in purchasing their products, this type of image is not the target of our 
research. Figure 1 (a) shows an example of this type. Figure 1(b) shows a comput-
er generated advertisement generated for the purpose of avoiding a spam filter. 

We identify a set of features in image spam and apply J48 plus pruning to 
create a classifier for spam detection. Our training set includes a number of trends 
that spammers have used to avoid detection by filters over the past several years. 
We add to the body of knowledge in this area by identifying why these features 
are effective, transcending the evolution of image spam generation techniques. 
The remaining chapter is organized as follows. In section 2 we discuss current re-
search in the area of applying machine learning algorithms to this problem. Sec-
tion 3 describes the image corpus and trends observed over the time span from  
 

 

 
 

(a) Photographic advertisement. 
 

 
 

(b) Computer generated image spam. 

Fig. 1 Image spam versus photographic advertising. 
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April 2008 through January 2011. Section 4 presents the features selected, prepro-
cessing steps and the actual feature extraction. Section 5 presents the results of 
classifying spam and non-spam images. In section 6, we do a validation by feature 
analysis on thirteen months and 50,000 spam images, to show that these are, in-
deed, a set of features that can be used to effectively classify ham versus spam. 
Finally conclusions and future are given in Section 7. 

18.2  Related Work 

E-mail spam started as simple text-based messages. Early spam filtering solutions 
based on machine learning tools and natural language processing techniques have 
been shown to be quite effective [1, 2, 3, 4, 5, 6]. However, it is known that 
spammers have been reactive in devising attacks to every successful filtering me-
thod [7]. Evolved from text spam, image spam has been used to successfully pass 
through text-based spam filters. It follows that many learning-based methods have 
been introduced for image spam filtering. In the following, we briefly review 
some methods that are related to current work. For more comprehensive survey 
and review of these methods, we refer to the work by [8, 9].  

One of the important issues in image-based spam filtering is how to identify 
and extract effective features to represent spam images to be used as training ex-
amples for learning algorithms. In [10], the Artificial Neural Networks (ANN) ap-
proach has been used for identifying image spam, where training images were first 
preprocessed by converting them into normalized gray scale values in the range of 
0 to 1. An artificial neural network was then trained on these images using a su-
pervised learning approach, and finally the ANN was tested for classification of 
new samples of spam images. A classification accuracy of 70% was reported.  

The Support Vector Machine (SVM) approach has been used by [11, 12, 13] to 
classify spam images using low-level features such as image width, height, aspect 
ratio, file size, compression and image area. All the features were extracted from 
the header of an image file. Other features used include number of colors, va-
riance, most appearing number of different colors in the image, primary color of 
the image and color saturation.  

Wang et al. [12] also computed the grey histogram of different gray scale val-
ues and used binary feature values to indicate type of file like JPEG or BMP or 
PNG. They reported accuracy over 95% in their experiment.  

Text detection from embedded images is a technique used by Aradhye et al. 
[11]. After the text was extracted, they applied a text-based method to analyze the 
text and computed two other features color saturation and color heterogeneity. 
Color saturation was defined in the same way as in [14], and color heterogeneity 
was calculated by scaling the original image by maximum possible intensity such 
that the intensities in the RGB channels are within the range [0, 1]. It was then 
converted to an indexed image using minimum variance quantization such that the 
number of colors in the indexed image was at most k (in their case 8 and 10). They 
reported an accuracy of 85% of their method. 

Krasser et al. [13] used the C4.5 classifiers to classify the images, and their re-
sults indicate that SVM algorithms perform better than C4.5 as it has a larger area 



474 S. Wakade, K.J. Liszka, and C.-C. Chan
 

under the Receiver Operating Characteristic (ROC) curve [15]. However, one of 
the advantages of decision tree based image spam filters is that it is easy to incor-
porate efficient Just In Time (JIT) feature extraction, namely, features can be  
extracted only when needed as demonstrated in [16]. 

He et al. [14] used low level properties along with the grey and color histo-
grams as features. They then set a threshold for these properties and used a two-
step classification strategy. In the first step, images are regarded as possible spam 
if the tested properties exceeded the threshold value. The possible candidates are 
further evaluated in the second step where the histogram similarity of test image 
and threshold value was compared. The advantage of this two-step classification 
was that the first step trapped many of the spam image files. They reported an ef-
ficiency of about 68% in JPEG images and 23% in GIF images for step 1, and 
84% for JPEG and 80% for GIF were achieved in step 2. 

Gao et al. [17] used a similarity measure on color histograms and gradient 
orientation histograms to cluster spam images using agglomerative hierarchical 
clustering algorithm [18]. They selected a training set from the clustered groups 
and built a probabilistic boosting tree (PBT) on the training set to distinguish spam 
images from ham images. They reported an accuracy of about 89%. 

In this research we propose eight features which are computed based on the 
pixels in an image. J48 and RepTree of Weka [19] are used as classification algo-
rithms to classify spam images from ham. The decision tree classifier J48 is a Java 
implementation of Quinlan’s C4.5 algorithm [20], and RepTree is an implementa-
tion of J48 with reduced error pruning in Weka. 

18.3  Spam Images Evolution and Datasets 

18.3.1  Types and Trends of Image Spam 

In general, spam refers to “unsolicited bulk email” [21, 22]. Though email spam is 
the most widely known form of spam it also appears in many other electronic media 
such as chats, internet telephony, social networks, and web spamming. We focus on 
email spam, although spam images are beginning to appear in these other contexts. 

Spam filters typically look for certain key words like Viagra, cash, or money 
that are commonly found in spam. Spammers counteract with techniques to  
obfuscate spam filters. Some examples taken from the wild are described in [14] 
including common tricks such as adding random words before HTML, using  
white text on white background, using strange characters like V1@gr@, adding 
bogus HTML tags with a lot of random text, or adding spaces in words like  
"l o w I n t e r e s t  R a t e".  

In image spam, spammers actually embed the spam message in a computer 
generated image instead of directly placing it as text content to evade spam filters. 
Optical character recognition (OCR) filters were quickly applied to extract words 
from the images and then determine if an image had spam content. This is an ex-
pensive process, but it worked in the beginning. Image spam techniques evolved 
as spammers devised new ways to evade OCR filters. Some of these include  
rotating the image, inducing a wave effect, adding noise, and slicing the image. 
Figure 2 shows several examples of this evolution. 
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(a) Adding noise to the image. 
 

 
 

(b) Producing a wave effect. 
 

 
 

(c) Rotating the image and adding noise. 

Fig. 2 Examples of the image spam evolution. 

Text only images are easy enough for OCR filters to catch. However, randomi-
zation can be used to thwart signature based anti-spam algorithms. Random color 
stripes, random colored pixels, and shades of colors are ways to mask the content 
and confuse filters. Wild, colorful backgrounds and uneven text fonts also make it 
difficult for OCRs to extract text in the images. Figure 3 shows several examples 
of these types of images collected from our corpus. Trickier yet, some images are 
split into multiple parts, some containing the message and others containing an 
animation. The frames in the image rotate fast enough to display only the final  
result to the user. 
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Standard images are usually professional, neat images with none of the above 
tricks employed, giving them a genuine look. The entire message is contained in 
the image and hence scanners cannot detect it. In fact, many of the images that 
come in as spam today have a very professional look like the one in Figure 4. 
 
 

 

(a) Text only image spam. 

 
(b) Adding random colored pixels. 

 

(c) Adding color streaks. 

Fig. 3 More evolution of image spam. 
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(d) Adding a wild background. 

Fig. 3 (continued) 

 

Fig. 4 A standard image. 

18.3.2  The Corpus 

A corpus refers to a collection, in our case ham and spam images that we have 
used in this research.  We have amassed a sizable set of spam images from the 
wild via a partnership with KnujOn (“no junk” spelled backwards), an anti-spam 
company [23]. Their mission is to fight against Internet threats, and specifically 
those delivered by email. They work with Internet governance bodies to help in-
vestigate abusive registrars and track cyber criminals. Part of the company’s busi-
ness is to allow users to upload their spam email and then process it, extracting 
hyperlinks and other information to help track the source of the message. In our 
case, images are automatically stripped out of the emails on a daily basis and for-
warded to us in an effort to build a corpus for the purpose of image spam research. 
To date, we have over 215,000 unique images from the time span April 2008 
through the February 2011. 
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For this research, we use 16,186 unique spam images collected from March 
2009 through September 2010. These were verified to be unique by using MD5 
(Message-Digest Algorithm 5), a cryptographic hash function with a 128-bit hash 
value [24]. It is very unlikely that two different files have same MD5 checksum, 
thus the MD5 hash acts like a digital fingerprint of a file. In case of spam images 
many spam images look similar but have different checksums. For example,  
Figure 5 shows two images that appear to be identical but have different check-
sums.  In addition, 5440 ham images were collected from several different 
sources including personal photographs, Flickr [25], and some images from  
Wikipedia [26] and National Geographic Channel [27] which are covered under 
the Creative Commons license [28].  

Spam images come in various formats. We have encountered .bmp, .gif, .jpeg 
and .png formats while collecting images for this research. The majority of images 
are JPEG. We convert the other images to the JPEG format for convenience in us-
ing the tools. It supports a 24-bit color map and has a small file size. JPEG is stan-
dard image format in many photography devices. 
 

 

(a) MD5 = 996484e6cc7340ee2067ee96074ce324 

 

(b) MD5 = 400fea9508fb5d759d9d698ef293c937 

Fig. 5 Similar spam images but with different MD5 checksums. 
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18.4  Learning from Spam Images 

18.4.1  Spam Image Representation 

When we look at an image we can easily (visually) identify whether it contains 
many different colors or is blurred but we cannot see other attributes clearly. In 
this research we have looked at some of these visual features to distinguish spam 
images from non-spam. The following features have been explored: 
 

a) Luminance- This refers to the brightness of an image. Some images are 
brighter than other, as illustrated in Figure 6. From our observation, spam 
images are not very bright, as they are not camera quality shots. 

 

 
 

(a) High luminance. 
 

 

(b) Low luminance. 

Fig. 6 Examples of different luminance. 
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We compare the luminance of different images using the log-average lu-
minance of an image. This is calculated by finding the geometric mean of 
the luminance values of all pixels. In a gray scale image, the luminance 
value is the pixel value. In a color image, the luminance value is found  
by a weighted sum, described in [30]. We then take an average of the  
luminance values for all the pixels in an image. 

luminance = 0.27 red + 0.67 green + 0.06 blue 

b) Numbers of colors- A JPEG image has a 24 bit color map, i.e., each pixel 
is 24 bits. This means that an image can potentially have 224  or 
16777216 different colors. We divide this range into 1677 bins with 1000 
consecutive colors falling into one bin. We then identify the number of 
colors in the range for each bin. In this way, we reduce it to 1677 maxi-
mum colors per image. 

c) Color saturation- This can be described as the pureness of a color. For 
example, this will determine “how red” is the color red in an image. If the 
pixel has a value of (R, G, B) = (255, 0, 0) the pixel has a high saturation 
of the color red. As defined in [11, 31] color saturation is the ratio of the 
total number of pixels in an image for which the difference: 

max(R,G,B)− min(R,G,B) 

is greater than some threshold, T, to the number of pixels. We set the 
threshold value, T = 50, as recommended by Frankel et al. [31]. For 
every pixel in an image we calculate the maximum and minimum among 
the R, G, B values and then take the difference. We use a counter to 
count how many pixels have the difference greater than T (T=50). Finally 
we divide the counter by the number of pixels in the image to determine 
the saturation value. 

d) White pixel concentration- Spam images generally have a solid back-
ground which is mostly pastel or white in color. For example, Figure 7 
shows a ham image with subtle shades of different colors but no solid 
background. Compare this with the spam image in Figure 8 which has a 
more white background color. We calculate how many pixels in a given 
image have their (R, G, B) component values to be above 250 as any val-
ue above this range is a pastel shade like gray, pale white, etc. Next we 
take the ratio of number of white pixels to total number of pixels in an 
image. If an image has more white pixels than any other color then we 
label it to be a background color for the image. 

e) Standard deviation of colors- This is the standard deviation of each  
(R, G, B) component, which tells us how much variation is there in each 
color component. 

f) Hue- Hue can be described as the dominant wavelength in a color model 
which describes a given color. For example, if we are looking at a ripe 
Macintosh apple, the hue value is red, indicating what color the apple 
looks to us. Java’s Color class provides a method to determine the hue 
value of a given pixel. We compute the hue values for each pixel and 
then compute mean of these values to represent the hue of the image. 
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Fig. 7 Ham image. 

 

Fig. 8 Spam image. 

There was some necessary cleaning performed on the images. We converted all 
images to JPEG format using ImageMagick [32], an open source utility that can 
converts images in various formats. We rescale exceedingly large ham images 
such that they did not exceed a size of 150KB. Rescaling does not affect the fea-
tures we are working with. The image features were computed using Java’s im-
ageIO package to retrieve pixel values of an image. Then we extract the (R, G, B) 
values for each of these for further processing. 

18.5  Experiments 

Of many algorithms available for decision trees, C4.5 [20] is the most popular 
one. In our experiments, we use J48 and RepTree from the Weka data mining 
tools. J48 is an open source Java implementation of the C4.5 algorithm, and RepT-
ree is another fast decision tree learner in Weka. It is an implementation of J48 
with reduced-error pruning strategy. 
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18.5.1  Experiment with J48 

In the first attempt we tried to use J48 to classify the data. We used a set of 16186 
unique spam images and 5440 ham images. We selected 90% for training and 10% 
randomly for testing from these sets. Since most of the values in the feature set are 
floating point, the decision tree generated by J48 is very wide and has many leaf 
nodes. Discretization alone did not help much in our experiments. So, though the 
accuracy was about 98%, the tree seems to overfit the data, the result is biased, 
and it is harder to comprehend due to the large number of tree nodes.  

18.5.2  Experiment with RepTree 

We decided to see if any other classifier could be used which had a comparable 
accuracy to J48’s results and generated a more comprehensible tree. RepTree is 
another classifier in Weka which is a fast decision tree learner. It builds a deci-
sion/regression tree using information gain/variance and prunes it using reduced-
error pruning. It also lets you limit the depth of tree and sorts numeric attributes 
only once there by reducing number of branches of the tree. The accuracies were 
almost equal to using J48 with the advantage of a smaller tree.  

However, the question is what value to set the depth parameter, and how to de-
termine a reasonable value for the parameter. We picked our value by applying a 
simple hill-climbing strategy. We started with a depth of 1 and then kept increas-
ing the depth with intervals of 1. We observed the accuracy at each interval 
change, and the point at which the accuracy stopped increasing and either became 
constant or started declining is selected for the depth of the tree. Table 1 below 
lists the depth value for each of different datasets with mixed ratios of spam and 
ham images we have tried in our experiments. 

Table 1 Depth value parameter applied to the RepTree tool. 

Ratio of Spam to Ham No. of Spam No. of Ham Depth 
1:1 5440 5440 5 
3:1 16186 5440 7 
1:9 604 5440 4 
9:1 9000 1000 6 

 
In real time there are no statistics on how many spam images are encountered 

for each ham image because ham images cannot be harvested in the same manner 
we harvest spam images. People do not donate their private correspondence con-
taining photographs to the Knujon site. We either collected ham from our own 
photographs or used Flickr, or Google to get the images. The problem here was in 
what ratios do we choose ham images and spam images to form a realistic training 
set. We started with 16186 spam images and 5440 ham images which are approx-
imately in a ratio of 3:1, i.e., three spam images to one ham image. We ran the  
experiments with RepTree and computed the classification accuracy. 
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We also tried different ratio mixes, 1:1, 1:9, and 9:1 and computed their accu-
racies. Table 2 lists the accuracies of each of these combinations and number of 
images in each set. From Table 2, we can see that we get fairly similar accuracies 
for different ratio mixes. We did not choose 1:9 and 9:1 as these are extreme  
cases. We chose 3:1 as it had better accuracy than 1:1 ratio.  

Table 2 Accuracy of classification for different ratios of ham and spam images. 
 

 

Based on the 3:1 ratio, a training set of 16186 spam images and 5440 ham im-
ages was constructed. The RepTree generated contains 63 leaf nodes. Figure 9 
shows the tree generated by Weka. The important features from the tree are  
average luminance, number of colors and white pixel concentration.  

Experiments were performed using the RepTree classifier with 10-fold cross-
validation and independent testing file. The experiment was repeated 10 times, 
and we obtained an average classification accuracy of 98.28% in training. 

To evaluate performance of the RepTree classifier on unseen images, we used a 
sample of 53300 unique images collected from the year 2010. We also down-
loaded 717 images for January 2011 to test how the classifier would work on  
recent spam images. The same tree was applied to 13 testing files created from 
samples collected over 13 months with sizes and types shown in Table 3. 

Table 3 Sample distribution of different types of spam images in 2010. 

 

 

Ratio of Spam to 
Ham 

No. of Spam No. of Ham Accuracy 

1:1 5440 5440 97.94 
3:1 16186 5440 98.28 
1:9 604 5440 99.23 
9:1 9000 1000 98.05 

Month No. of Images No. of JPEG No. of GIF 
Jan-10 2341 1945 396 
Feb-10 2333 1689 644 
Mar-10 12991 10626 2365 
Apr-10 11471 9077 2394 
May-10 8502 5801 2701 
Jun-10 15734 14292 1442 
Jul-10 5263 4620 643 

Aug-10 33698 32631 1067 
Sep-10 8777 8054 723 
Oct-10 1713 1223 490 
Nov-10 2303 2248 55 
Dec-10 795 670 125 
Jan-11 717 259 458 
Total 106638 93135 13503 

Unique Images 53300 
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avgLuminance< 192.36 
|   whiteConc< 0.11 
|   |   stdDevRed< 84.51 
|   |   |   avgLuminance< 142.59 
|   |   |   |   avgSaturation< 0.81 : N (2824/60) [1411/42] 
|   |   |   |   avgSaturation>= 0.81 
|   |   |   |   |   avgLuminance< 93.95 : Y (25/11) [9/4] 
|   |   |   |   |   avgLuminance>= 93.95 : N (126/9) [50/4] 
|   |   |   avgLuminance>= 142.59 
|   |   |   |   numColor< 260.5 
|   |   |   |   |   avgSaturation< 0.16 : N (177/2) [78/2] 
|   |   |   |   |   avgSaturation>= 0.16 
|   |   |   |   |   |   numColor< 173.5 : Y (12/4) [3/0] 
|   |   |   |   |   |   numColor>= 173.5 : N (223/23) [104/9] 
|   |   |   |   numColor>= 260.5 
|   |   |   |   |   avgHue< 0.44 : N (44/16) [22/10] 
|   |   |   |   |   avgHue>= 0.44 : Y (15/0) [8/3] 
|   |   stdDevRed>= 84.51 
|   |   |   avgSaturation< 0.72 
|   |   |   |   numColor< 263.5 : N (100/8) [82/7] 
|   |   |   |   numColor>= 263.5 
|   |   |   |   |   whiteConc< 0.01 : N (29/2) [15/2] 
|   |   |   |   |   whiteConc>= 0.01 : Y (29/7) [18/8] 
|   |   |   avgSaturation>= 0.72 
|   |   |   |   numColor< 294.5 
|   |   |   |   |   avgHue< 0.27 : N (3/1) [3/0] 
|   |   |   |   |   avgHue>= 0.27 : Y (29/0) [15/0] 
|   |   |   |   numColor>= 294.5 : N (3/1) [0/0] 
|   whiteConc>= 0.11 
|   |   numColor< 256.5 
|   |   |   avgLuminance< 174.3 
|   |   |   |   stdDevGreen< 107.79 
|   |   |   |   |   numColor< 220.5 : Y (6/2) [2/0] 
|   |   |   |   |   numColor>= 220.5 : N (145/12) [77/3] 
|   |   |   |   stdDevGreen>= 107.79 
|   |   |   |   |   avgSaturation< 0.01 : Y (5/0) [5/0] 
|   |   |   |   |   avgSaturation>= 0.01 
|   |   |   |   |   |   avgLuminance< 156.92 : N (4/1) [3/0] 
|   |   |   |   |   |   avgLuminance>= 156.92 : Y (2/0) [1/0] 
|   |   |   avgLuminance>= 174.3 
|   |   |   |   stdDevRed< 75.59 
|   |   |   |   |   stdDevGreen< 81.19 : N (12/2) [1/0] 
|   |   |   |   |   stdDevGreen>= 81.19 : Y (2/0) [2/0] 
|   |   |   |   stdDevRed>= 75.59 : Y (22/1) [5/0] 
|   |   numColor>= 256.5 
|   |   |   avgLuminance< 158.41 
|   |   |   |   stdDevGreen< 96.66 
|   |   |   |   |   whiteConc< 0.11 : Y (7/0) [2/0] 
|   |   |   |   |   whiteConc>= 0.11 : N (25/8) [12/5] 
|   |   |   |   stdDevGreen>= 96.66 : Y (32/0) [17/2] 
|   |   |   avgLuminance>= 158.41 : Y (68/1) [33/2] 
avgLuminance>= 192.36 
|   numColor< 279.5 
|   |   whiteConc< 0.04 : Y (46/19) [19/7] 
|   |   whiteConc>= 0.04 
|   |   |   avgHue< 0.14 
|   |   |   |   avgLuminance< 224.89 
|   |   |   |   |   avgSaturation< 0.08 : Y (10/2) [11/2] 
|   |   |   |   |   avgSaturation>= 0.08 : N (4/0) [6/2] 
|   |   |   |   avgLuminance>= 224.89 : Y (100/2) [70/3] 
|   |   |   avgHue>= 0.14 : Y (652/4) [324/4] 
|   numColor>= 279.5 : Y (9636/0) [4801/0] 

Fig. 9 RepTree classifier generated by Weka 
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The test files were generated for each month with equal number of spam and ham 

images. We had 1688 ham images which were not used for training. So, for each 
month, we created a test file consisting of 1688 ham images and 1688 spam images 
to maintain a 1:1 ratio. For the month December 2010, we had lesser than 1688 
spam images in the corpus, in such case we picked equal number of ham images 
randomly from 1688 images. Similarly, if number of spam samples were more than 
1688 we chose 1688 images randomly from them. Table 4 lists the performance of 
classification for each of the months. The average accuracy of the classifier for un-
seen samples is 89%. The False Positive Rate (FPR) is defined as FP / (FP + TN), 
and the False Negative Rate is defined as FN / (FN + TP) where False Positive (FP) 
is the number of testing negative instances that are wrongly classified as positive by 
the classifier, True Negative (TN) is the number of negative instances that are classi-
fied as negative, False Negative (FN) is the number of positive instances classified 
as negative, and True Positive (TP) is the number of positive instances classified as 
positive. The Recall is defined as TP / (TP + FN), the Precision is defined as TP / 
(TP + FP), and the F-Measure is defined as 2*TP / (2*TP+FN+FP). In Table 4, the 
average FPR is 5.22%, and the average FNR is around 18.51%. The recall rate fluc-
tuated with the accuracy; however, the average precision is staying above 92%. The 
average Recall, also called True Positive Rate (TPR), is 81.5%. 

Table 4 Performance of classification for unseen samples. 

 Accuracy Recall Precision F-Measure FPR FNR 
10-Jan 0.9252 0.9055 0.9427 0.9237 0.0551 0.0945 
10-Feb 0.9057 0.8618 0.9448 0.9014 0.0503 0.1382 
10-Mar 0.9390 0.9313 0.9458 0.9385 0.0533 0.0687 
10-Apr 0.8990 0.8513 0.9411 0.8939 0.0533 0.1487 
10-May 0.8320 0.7174 0.9308 0.8103 0.0533 0.2826 
10-Jun 0.7933 0.6439 0.9184 0.7570 0.0572 0.3561 
10-Jul 0.8451 0.7469 0.9295 0.8282 0.0567 0.2531 

10-Aug 0.9648 0.9828 0.9485 0.9654 0.0533 0.0172 
10-Sep 0.9428 0.9390 0.9463 0.9426 0.0533 0.0610 
10-Oct 0.8182 0.6913 0.9263 0.7918 0.0550 0.3087 
10-Nov 0.9476 0.9359 0.9582 0.9469 0.0408 0.0641 
10-Dec 0.8241 0.6912 0.9415 0.7972 0.0429 0.3088 
11-Jan 0.8210 0.6960 0.9281 0.7955 0.0540 0.3040 

 
Table 5 shows the computing time for extraction features used in this study in 

seconds based on 21,626 images consisting of 16,186 spam images with average 
size of 21.32 Kbytes and 5440 ham with average size of 131.39 Kbytes. The time 
shown for computing the standard deviation feature is a combined time for all 
three colors. The table shows that it takes about 0.486 seconds to extract features 
for each image on the average. 

Note that J48 and RepTree use built-in filter-based feature selection algorithms 
[19]. There are other approaches based on wrappers [33, 36], rough sets [34, 35] or 
fuzzy sets [37]. One of our future works is to study how different approaches to feature 
reduction can further lead to improvement of computing time for feature extraction. 
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Table 5 Computing time for feature extraction. 

Features Spam(sec) ham(sec) ham + Spam(sec)
Avg.(ham + 

spam) 

Luminance 938.163 509.577 1447.740 0.067 

Saturation 1146.220 496.305 1642.525 0.076 

Hue 1416.485 573.444 1989.929 0.092 

Number of colors 1555.486 615.987 2171.473 0.100 

White Pixel Concentration 1022.250 461.654 1483.904 0.069 

Standard Deviation 1283.551 483.472 1767.023 0.082 

Total time for all features 7362.155 3140.439 10502.594 0.486 

18.6  Validation by Feature Analysis 

We had 53300 unique images in the test set. After feature extraction we look for a 
pattern in the values of the features for image spam. We use eight features, each 
with values that lie in a range. For example, the average value range for luminance 
is between 0−255, hue is between 0−1, and the number of colors is between  
0− 1677. We divide these ranges into equal intervals and count the number of  
images with feature values in that range. Figure 10 shows graphs with the  
distribution of spam and ham images in these ranges. 

The graphs show that most of the feature values for spam images lie in some 
specific narrower ranges. For example, most spam images have an average lumin-
ance value in the range of 200−220. However, for ham images these values are 
spread over a wider range and none of the values fall in the range of 200−220. 
Hence, this is a good way to determine if an image could be a spam. The decision 
tree also chooses luminance as the root of the tree and has a cutoff value of 192.36 
for average luminance. Next, if we look at average saturation of color values we 
see that ham images are spread over a wider range than spam images which have 
saturation values mostly in the range of 0−0.2. Ham images have saturation values 
mostly between 0−0.8. 

Similarly, the average hue for ham images is spread out into different ranges 
when compared to spam images. The number of colors and white/pastel pixel con-
centration are not very helpful measures to identify spam from ham as both of 
these spam and ham images have values in similar ranges. Standard deviation of 
color components is more spread out, again in the case of ham images rather than 
spam images. These are expected values as photographs have different shades of 
colors than a spam image. Pictures are taken at different times of the day, so the 
luminance values are spread across different ranges. Also, the luminance value of 
ham images is less than spam images because generally spam images are brighter 
so that they attract the user’s attention. The text may be skewed and there may be 
random noise in the image but the image is bright in appearance so that a human 
user can read it easily but an OCR can’t.   
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(a) Average luminance of spam. 

 

(b) Average luminance of ham. 

 

(c) Average color saturation of spam. 

Fig. 10 Feature set. 
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(d) Average color saturation of ham. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
(e) Average hue of spam. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

(f) Average hue of ham. 

Fig. 10 (continued) 
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(g) Average number of colors in spam. 
 

 

(h) Average number of colors in ham. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

(i) Average number of pastel pixels in spam. 

Fig. 10 (continued) 
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   (j) Average number of pastel pixels in ham. 
 

 
 
 
 
 
 
 

(k) Standard deviation of red pixels in spam. 
 

 

(l) Standard deviation of red pixels in ham. 

Fig. 10 (continued) 
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(m) Standard deviation of green pixels in spam. 
 
 
 

 
 
 
 

(n) Standard deviation of green pixels in ham. 
  
 
 
 
 
 
 
 
 
 
  
 
 
 

 

(o) Standard deviation of blue pixels in spam. 

Fig. 10 (continued) 
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(p) Standard deviation of blue pixels in ham. 

Fig. 10 (continued) 

Since the values of features are in clearly distinct ranges it is easy for the clas-
sifier to classify spam from ham images. The graphs also suggest that, even 
though spam images might contain rotated content, random noise, random pixels, 
or skewed text to obfuscate the filters, there are some features that do not change 
in spite of these tricks. For example, the luminance value is similar for many dif-
ferent spam images as shown in the graphs.  

18.7  Conclusions 

Our experiment has provided us with insightful observations about how spam im-
ages have evolved in a year. Many spam images are almost photo quality images 
and have multiple colors. This makes the classification process trickier as it gets 
harder to distinguish these images from photographs. Newer techniques are used 
in generating image spam like scraping off header information, images that do not 
load when viewed as thumbnails but will open with a picture editor, malware  
injection and so forth. We also observed that images seem to follow trends in a 
particular month, for example a dominant trend in a month could be the adver-
tisement of vines, exercise equipment, pharmaceuticals, chocolates etc., or it could 
be chain letters, dating websites, money making schemes and many others. 

The pros of using the described approach for image spam classification are that 
the features are simple and easily computable, and the generated decision tree 
classifiers achieve a good accuracy for unseen samples from a recent time period. 
Irrespective of image file size, resizing or converting image formats does not af-
fect values of the proposed features. In addition, the proposed features may com-
plement or enhance image spam filters based on low-level features, which used 
alone may not be sufficient as current spam images have comparable quality to 
photo images. However computing features from image is not computationally  
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inexpensive. One way to minimize the computational cost is to use the Just In 
Time (JIT) feature extraction approach proposed in [16]. 

Finally, if the classifier is updated frequently with new incoming spam images 
it might provide better classification performance over a period of time. In Table 
4, we can see that for November 2010 samples we have an accuracy of almost 
94%. This indicates that spam images recur with modifications like change in few 
pixels, rotation, or noise but the properties like luminance, saturation, hue are not 
modified frequently. Also, in each month we get an accuracy of at least 79%. 
Some months had very few spam samples and this could be a reason we see a 
slight dip in the accuracy. A challenge in the experiment was the ham images, 
since they are not available so easily. We can download images using Flickr API; 
however, processing these is a time consuming process, and hence our ham corpus 
is more limited than our spam corpus. 
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