
A Reverse Auction Market for Cloud Resources

Joris Roovers, Kurt Vanmechelen, and Jan Broeckhove

University of Antwerp,
Department of Computer Science and Mathematics,

Middelheimlaan 1, 2020 Antwerp, Belgium
kurt.vanmechelen@ua.ac.be

Abstract. The proliferation of the Infrastructure-as-a-Service (IaaS)
paradigm has introduced possibilities for trading computational resources
on a scale thatmoves beyond the individual provider level. At present how-
ever, the adoption of open markets for trading IaaS resources has been
largely unexplored. This paper investigates the design of such an open
market. Our focus thereby lies on flexibility and the ability to model and
integrate currently deployed pricing schemes of real-world providers in-
stead of imposing new schemes. We discuss the issues encountered by the
Continuous Double Auction (CDA) in this regard and introduce a Contin-
uous Reverse Auction (CRA) that is paired with a novel bidding language
based on tag and constraint sets.

Keywords: Markets, Bidding Language, Reverse Auction, Double Auc-
tion, IaaS, Cloud Computing.

1 Introduction

Infrastructure-as-a-Service (IaaS) providers materialize the cloud computing mo-
del by offering consumers access to (virtualized) hardware resources while charg-
ing them based on how these resources are used. As the IaaS market continues
to grow and the number of IaaS players continues to increase (as predicted by
Gartner [6]), possibilities arise for trading IaaS resources on a scale that moves
beyond the individual provider level. Such trading is used in other commodities
markets such as electricity markets, to efficiently balance supply and demand on
relatively short timescales and foster competition.

An important desirable property of such an envisioned market is that it needs
to be open, accommodating the policies of current real-world providers. Only
when a market has a sufficiently low entry barrier that brings together many dif-
ferent consumers and providers, will the price of computing resources be subject
to market discipline rather than being dictated by specific providers. Realizing
this criterion is non-trivial, and at present, the possibilities for creating such
open markets have been largely unexplored. The complexity of an IaaS good is
significantly higher than that of many other commodities as IaaS resources are
heterogeneous and multi-dimensional. As standardization of resources and APIs
among IaaS providers is currently non-existent, defining the exact properties of

K. Vanmechelen, J. Altmann, and O.F. Rana (Eds.): GECON 2011, LNCS 7150, pp. 32–45, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Reverse Auction Market for IaaS Cloud Resources 33

the goods that are being traded is non-trivial, and imposing a common stan-
dard is difficult. Additionally, many providers use different allocation and price
models (all based on the pay-what-you-use model, but implemented differently)
to charge their customers. Bringing together these different models into a single
IaaS market is not addressed in current related work [3,5,11,7,2,1] on market
mechanisms for utility and grid computing systems, and forms the focus of this
paper.

In this contribution we investigate whether it is feasible to design such an open
market for IaaS resources. We spend particular attention to the Continuous Dou-
ble Auction (CDA) mechanism that is used in many commodity markets, and
find it unsuitable for this purpose in the current IaaS setting due to the com-
plexity and diversity of price models used by providers. We therefore introduce
a new market mechanism called the Continuous Reverse Auction (CRA) that is
combined with a flexible bidding language based on tag and constraint sets to
deal with these shortcomings.

2 Tag and Constraint Sets

In order to introduce flexibility into the market with respect to heterogeneity of
IaaS goods and pricing models, we rely on the use of tag and constraint sets. We
extend the notion resource sets as defined by Dubé within the context of a CDA-
based market for Grid resources [4], and accommodate it to the IaaS setting.
Dubé introduces resource sets that describe resource properties in bids and offers
to a CDA. Consider for example the resource set S in 1 which represents a
computer with a x86 system architecture, two-core processor clocked at 2.4 GHz,
4GB of RAM and 16GB of hard disk space.

S = {x86proc arch, 2proc cores, 2.4proc clock, 4mem size, 16disk size} (1)

Obviously, the used unit as well as the type and domain of each of the items
in the set should be clearly defined. In [4], this is done by specifying a discrete,
finite domain set for each of the resource types, along with the used unit (if
applicable). Examples of such domain sets are shown in 2.

Φproc cores = {1, 2, 4, 6, 8, 16, 32}
Φmem size = {1, 2, 4, 6, 8, 16, 32, 64, 128, 256} (GB)

Φnet bw = {10, 100, 1000, 2000} (MB/s)

(2)

Given a requirement set Rb accompanying an ask and a component set Co in-
cluded in an offer:

Rb matches Co ⇐⇒ Co matches Rb ⇐⇒ Rb ∩ Co = Rb (3)

A shortcoming of this approach is that it lacks the expressiveness and flexibil-
ity that is needed to express some of the more complex constraints that are
inherently part of IaaS solutions. For example, a constraint on refund policy

34 J. Roovers, K. Vanmechelen, and J. Broeckhove

will typically include very provider specific conditions under which a refund can
occur, as well as what this refund actually includes. As such, it cannot be ex-
pressed by a match on a single value. Another example is the implementation
of a region constraint for which geographical knowledge is needed to determine
which regions are included or overlap with others. A final issue is that in Dubé’s
approach a market is needed that has specific knowledge about each of the re-
source types in order to match sets, i.e. it needs to know the different matching
semantics of each of the resources. In a situation where more and more complex
constraints are used with complex matching semantics, using such a system is
no longer viable. Indeed, given the heterogeneity of IaaS solutions today, using a
matching mechanism in which the market must be aware of all possible resources
and constraints is not manageable nor future proof.

To address these issues, we introduce tag sets and constraint sets, which enable
the specification of more complex constraints. In particular, the specification of a
constraint on a resource that a consumer is requesting or a provider is offering will
be separated from the specification of the values that characterize that resource.
Splitting the values from the matching semantics enables the specification of
complex constraints that span multiple resources. Our approach to matching
also removes the need for the market to have knowledge of each type of item in
the sets. When a consumer or provider describes a resource, requirement, service
or feature it uses tag sets that describe its different characteristics. Formally, a
tag T in a tag set T S is defined as the tuple in 4. It contains a name and a set
of attributes that define the tag.

T = [NT ,AT] (4)

The name NT of the tag can be any regular string, but has to be unique for each
type of tag and within a tag set. The attributes AT associated with the tag (see
5) are a set of key-value pairs.

AT = {(x, f(x))}
f : x ∈ string �→ value

(5)

These attributes contain the values that further characterize a given tag. For
example, in the case of a Disk tag (NT =“Disk”), the tag attributes will contain
both the unit in which the hard disk size is specified as well as the size of the
disk, i.e. [Disk, {(unit, GB), (value, 160)}]. Attribute values do not have
to be singular, they can also be of a compound nature. That is, it is also possible
that these values are lists or nested tags. For example, if multiple operating
systems are supported by a provider, they can be listed as follows.

[SupportedOperatingSystems, {(list, {

[OperatingSystem, {(name, Windows), (version, 7)}],

[OperatingSystem, {(name, Ubuntu), (version, 11.04)}]}

)}]

A Reverse Auction Market for IaaS Cloud Resources 35

Tag sets can therefore group multiple attributes under a single tag, allowing for
a more hierarchical approach compared to resource sets. A less visible difference
to [4] is that tag sets themselves only describe the characteristic of a request or
offer. The matching semantics are encoded by constraint sets that accompany
tag sets. These contain constraints that define a certain matching restriction.
Formally, a constraint (6) is a function that defines a matching restriction on a
request R, by expressing restrictions on the tags of R and the tags of an offer
O against which R is matched.

C : (T SR, T SO) �→ {true, false} (6)

Given the generic definition in 6, it is clear that the outcome of a constraint
function can depend on a large number of factors. As an example, consider a
memory constraint as given by Algorithm 1.

Algorithm 1. MemoryConstraint(T S1, T S2)

T1 ← T S1[“Memory”];
T2 ← T S2[“Memory”];
if T1 �= null and T2 �= null then

if (AT1 [“unit”] = AT2 [“unit”]) and (AT1 [“value”] ≤ AT2 [“value”]) then
return true;

end if
end if
return false;

A constraint function always takes two arguments: the tag set (T S1) that
belongs to the request to which the constraint belongs and the tag set (T S2)
associated with the offer against which the constraint is verified. The Memory

constraint works as follows. First, the occurrence of the Memory tag is evaluated
in both tag sets. If one of both sets does not contain the tag, the result of
the constraint is negative. Otherwise, the “unit” attributes are compared first
to verify whether both tags are specified in the same unit1, and then checks
whether “value” specified in T1 is less than or equal to that of T2 . If this is
the case, the constraint is fulfilled. In this example, the Memory constraint was
used to define matching semantics. Besides the Memory constraint, many other
constraints obviously exist. Some of these operations should be standardized
by the market to avoid confusion among the market participants, while others
can remain consumer- or provider-specific. An example where a consumer would
specify a custom constraint is the previously mentioned case where a trade-off
between resource uptime and refund policy is required.

Note that verifying consumer- or provider-specific constraints requires that the
algorithm embodying the constraint is made available to the entity performing
the matching. The most obvious way to do this, is by allowing consumers and

1 The operation could be modified to contain logic to do unit conversions.

36 J. Roovers, K. Vanmechelen, and J. Broeckhove

providers to run custom code that can verify constraints within the market
during the matching process. Despite the fact that the action of running custom
programming code on a remote location itself is relatively straightforward using
a proper platform and software libraries, doing so introduces a set of technical
challenges w.r.t. code verification and protecting the market’s integrity.

By giving the market a database of standard constraints for which it knows the
matching semantics and leaving the matching of non-standardized constraints
to the consumer and provider themselves, the technical difficulties that remote
code introduces are effectively avoided. In practice, such a system lets consumers
and providers specify the name of the constraint as part of the constraint set
when a standard constraint is used and specify the endpoint of a web service
that can verify custom constraints in the other cases.

To increase the number of constraints that can be checked locally, we introduce
a set of generic constraints such as the LessThan relational constraint defined in
Algorithm 2. In order to express which tag is checked in a generic constraint, the
notation Constraint[Parameters...] (as in Resource[Memory] will be used
in the remainder of this contribution.

Algorithm 2. LessThanConstraint(T S1, T S2, tagName, attributeName)

T1 ← T S1[tagName];
T2 ← T S2[tagName];
if T1 �= null and T2 �= null then

if AT1 [attributeName] < AT2 [attributeName] then
return true;

end if
end if
return false;

Algorithm 3. ResourceConstraint(T S1, T S2, tagName)

T1 ← T S1[tagName];
T2 ← T S2[tagName];
if T1 �= null and T2 �= null then

if (AT1 [“unit”] = AT2 [“unit”]) and (AT1 [“value”] ≤ AT2 [“value”]) then
return true;

end if
end if
return false;

To further indicate the usefulness of such constraints, consider the Resource

constraint in Algorithm 3 which is a generalization of the Memory constraint of
Algorithm 1 that can also be used to implement many other hardware related
constraints (such as Disk or CpuClock).

A Reverse Auction Market for IaaS Cloud Resources 37

3 Combining the CDA with Tag and Constraint Sets

The aforementioned tag and constraint sets could be used in conjunction with a
traditional CDA approach. A bid or ask is then represented by a 5-tuple:

[Volume, Price, ExpirationDate, TagSet, ConstraintSet]

As an example, consider the case where Amazon submits an ask to a CDA,
specifying a volume of 5 small instances at the price of $0.10 per hour :

Ask = [5, 0.10, 12/07/11 13:00:00 UTC-7, {

[Memory, {(unit, MB), (value, 1700)}], [EC2_ECU, {(value, 1)}],

[Disk, {(unit, GB), (value, 160)}], [Platform, {(value, x86)}],

[EC2_API, {(value, m1.small)}], [SLA_Uptime, {(value, 99.95)}],

[SupportedOperatingSystems, {(list, ...)}],

[SupportedEC2_AMI_IDS, {(list, ...)}],

[Splittable, {(value, 1)}],

[AllocationType, {(value, OnDemand)}],

[Time, {(value, 1), (unit, hour)}],

[Region, {(value, USA/Virginia)}]

[Provider, {(name, Amazon AWS), (url, http://aws.amazon.com)}] },

{ ConsumerLocationExclusion["Cuba"], ... }

]

A consumer submits a bid with a price of $0.12 and some hardware constraints.

Bid = [2, 0.12, 05/06/11 02:00:00 UTC+1, {

[Disk, {(unit, GB), (value, 100)}],

[Memory, {(unit, MB), (value, 1500)}],

[AllocationType, {(value, OnDemand)}],

[Time, {(value, 1), (unit, hour)}],

[Consumer, {(name, "Jan Wolk"),

(location, "Brussels, Belgium, EU")}] },

{ Resource["Disk"], Resource["Memory"],

Equal["AllocationType", "value"], EqualAll["Time"] }

]

Note the flexibility that our tags introduce with respect to describing the re-
sources and conditions under which the good is traded. The Splittable tag
for example allows the provider to indicate whether its offered volume can be
partially matched or not and constrains the granularity of the split. Further
note that a constraint is specified on the ask which constrains the geographi-
cal location of the consumer with the matching bid (e.g. to conform to trading
agreements).

Although the use of tag and constraint sets increases the flexibility of the
CDA, a fundamental problem remains that relates to the way real-world IaaS
resources are currently priced. The price that consumers pay for a set of resources
is not only determined by their defining characteristics, but also by how these
resources are used. The total usage cost is not determined by a single price (e.g.
cost per VM hour) but depends on a variety of different price components (e.g.

38 J. Roovers, K. Vanmechelen, and J. Broeckhove

cost per GB inbound bandwidth consumed) that have different weights according
to the actual resource usage. Because of this, adopting a CDA that only takes
a single price component into account to sort the bid and ask queues is not
desirable. If such a CDA would be used, it is destined to be gamed by providers
that advertise very low prices for that component while charging high prices for
the use of other resource components, thus leading to inefficient allocations.

Introducing a multi-price component model is possible if consumers add usage
values to their tag sets, and providers provide component-wise prices in their
offers. The market could then determine the transfer price for matching bid b
with ask a as in 7.

P (a, b) =
∑

T ∈ (T Sa ∪ T Sb)

v(T) pA(T) (7)

where the price P (a, b) for a certain bid b that is matched with an ask a of
provider A is determined by the weighted sum (according to the usage of the
consumer) of the different price components specified by the provider’s ask. The
weights are given by v(T), which is defined to be the value of the usage-tag that
is used by the price-component for the resource specified by tag T . The term
pA(T) is then the unit price specified by provider A for usage of the resource
specified by tag T . A provider would need to encode the relation between usage
tags and price tags (e.g. in a table) as shown in Table 1.

Table 1. Provider specified table that defines the relations between usage and price
tags

Resource Tag Usage Tag Usage unit Unit price

Memory TimeUsage hour 0.10
CpuClock
CpuCores
Disk

OS (Windows based) TimeUsage hour 0.03

LoadBalancing TimeUsage hour 0.10

LoadBalancing OutgoingBandwidthUsage GB 0.02

LoadBalancing IncomingBandwidthUsage GB 0.02

OutgoingBandwidth OutgoingBandwidthUsage GB 0.13

Disk I/O DiskAccessUsage million accesses 0.05

By grouping the resources, providers can indicate that the consumer should
only be charged once for those resources. Similarly, by adding a resource multiple
times with different usage tags, the provider can indicate that certain resources
incur costs that are determined by multiple factors (in the case of the load
balancing service, both per hour and per in- or outgoing GB).

However, this still requires the transfer price to be a linear combination of
the component prices, which is not the case in practice. Consider for example

A Reverse Auction Market for IaaS Cloud Resources 39

NewServers [8] that provide 3GB of free outgoing bandwidth per hour, charging
$0.10 per additional GB, or Amazon’s tiered S3 pricing model.

4 Continuous Reverse Auction for IaaS Resources

The Continuous Reverse Auction (CRA) combines properties of the Reverse
Auction and the Continuous Double Auction to trade IaaS resources among
multiple buyers and sellers to deal with aforementioned issues. A systematic
overview of how the CRA works, is provided in Figure 1.

Fig. 1. Schematic overview of the workings of the Continuous Reverse Auction

4.1 Mechanism and Principles

In the Continuous Reverse Auction, consumers direct requests to the market,
while providers deliver quotes in response to these requests. A consumers sub-
mits a requests to the market that subsequently returns the cheapest quote by
querying a group of previously registered providers. Providers reply by either
sending a quote to the market or by indicating that they are unable to match
the given request. Upon receiving the quote from the market, the consumer can
either accept or decline it.

The bidding process is initiated by a consumer that wants to allocate a set of
IaaS resources and submits a request to the market. The bidding language that
is used to specify this request, is based on the tag and constraint sets that were
introduced in section 2:

Request = [Volume, TagSet, ConstraintSet]

A consumer can decide to accept or decline an offered quote, it is therefore no
longer necessary to specify a price as part of his request. Also, as a request in the
CRA is either matched immediately or not at all (if no provider is able to fulfill
the consumer specified constraints), there is no need to specify an expiration
date as part of the request. The components of a request are a Volume indicating

40 J. Roovers, K. Vanmechelen, and J. Broeckhove

how many units a consumer wishes to allocate, and a TagSet and Constraint

specifying the resource to allocate.
Once the request has arrived at the market, a price request is sent out to all

registered providers, to which the providers respond with a quote or with a reply
that they cannot match the request.

Quote = [Price, Volume, Identifier]

Besides the Price, the quote also contains a Volume that indicates how many
units the provider can or is willing to match. The (securely encoded) Identifier
in the quote allows a consumer to actually allocate resources after a match has
been found on the market; it allows the consumer to prove the commitment a
provider made when it handed out a certain quote. For further details we refer
to [9].

After all registered providers have replied, the market returns the cheapest
quote as a match to the consumer. If bids can be split, the market can match dif-
ferent units of a consumer’s request with different providers and return multiple
matches. Naturally, this matching occurs according to the quote prices specified
by the providers (cheaper providers are matched first). Algorithm 4 outlines the
matching procedure2.

Algorithm 4. submitRequest(r: Request): Match

bestQuotes← {}
for p in providers do

bestQuote← bestQuotes.first();
currentQuote← p.getQuote(r);
if bestQuote = null or currentQuote.getPrice() < bestQuote.getPrice() then

bestQuotes← {currentQuote}
else if bestQuote.getPrice() = currentQuote.getPrice() then

bestQuotes.add(currentQuote)
end if

end for
matchingQuote← selectRandomElement(bestQuotes);
return new Match(matchingQuote);

As providers no longer submit asks to the market but are asked to deliver
a quote on the basis of an individual request, providers are free to apply their
own pricing scheme. Additionally, as providers now determine whether they can
match a request with one of their offers or not, the market no longer needs
to know how to match constraints, nor does it need to have constraint-specific
knowledge. Indeed, when using the CRA mechanism, the market is constraint-
agnostic, and acts only as an intermediate. Note that within the CRA, a con-
sumer does not specify a maximum price as part of his request. This frees the

2 In order to be concise, Algorithm 4 does not incorporate splittable bids.

A Reverse Auction Market for IaaS Cloud Resources 41

consumer from the task of performing an accurate price estimation for a re-
quest. By allowing the consumer to accept or decline a quote (match) given its
price, the consumer can do accurate price discovery and individual rationality is
maintained.

4.2 Price Discovery

Price discovery is the process by which buyers and sellers determine or ap-
proximate the price of a good in the marketplace. Consumers in particular can
make use of price discovery techniques to make an upfront trade-off between
the price they will need to pay on the market and the resources and quality of
service they will receive for that price. Additionally, price discovery techniques
allow consumers and providers to determine bidding strategies by monitoring the
price for a specific resource in the market and choosing the time at which they
buy or sell certain resources intelligently as to maximize their personal profit.

In the CRA market, price discovery is in fact already built-in for consumers
as they have the possibility to request a quote from the market at any given
time without any further obligation. As such, both new as existing consumers
can always obtain a quote for a request in order to direct their actions. Providers
however, have no idea at which price and rate certain resources are being traded
except when they are actually matched to a specific request.

In order to solve this lack of price discovery tools for providers, the CRA in-
cludes a billboard on which the market publishes anonymized accepted matches.
This is done in real-time; after a match is found, it is directly published on the
billboard. Because of this real-time behavior, the billboard effectively represents
the current market situation. Providers can analyze the anonymized matches
and adjust their pricing strategy accordingly. If a provider is able to infer that
the price of matches in a specific category of requests is consistently lower than
the price it is offering, it can adjust its strategy in order to get more matches.
Analogously, it might increase the quote price for a category of requests, in
order to increase its profit. As such indirect competition among providers is in-
troduced and competitive prices can be formed. In future work we will focus on
the development and experimental analysis of such strategies.

4.3 Sharing Semantics of Tag and Constraint Sets

In order to guarantee correct matching behavior, constraints should be precisely
defined so that there is a clear and unique understanding among all market par-
ticipants of what the constraint exactly specifies. As it is a core characteristic
of the CRA that the market itself is unaware of constraint semantics, an ad-
ditional entity is required to provide these. We therefore introduce a separate
(market independent) constraint catalogue service that clearly specifies how con-
straint names map to actual matching semantics. In order to specify constraint
semantics, the service can make use of a set of (algebraic) rules, pseudocode or
a specific programming language.

42 J. Roovers, K. Vanmechelen, and J. Broeckhove

As constraints are a core part of the contract between provider and consumer
when a match is accepted, it is paramount that catalogue services are officially
recognized and accredited by a mutually trusted third party,. This third party
(which could potentially be the market itself), can then be trusted to objectively
verify whether the contract is met by both parties or not. Such verification en-
tails validating that the consumer has made correct payments, as well as verifying
that provided resources actually meet the constraints specified in the consumer’s
request3. Note that the concept of the catalogue does not necessarily need to
materialize into a web service; as long as there is a way for providers and con-
sumers to share the semantics of particular constraints. In many cases it suffices
that a provider states the meaning of a certain constraint on its website.

In order to lower the entry-barrier for providers, a standard set of common
constraints can be provided as a software library. This way, providers will not
need to download code from the constraint catalogue or implement the con-
straints themselves based on the catalogue’s definition. If providers internally
model their offers using tag and constraint sets, they can even use the software
library to determine whether a given request matches one of their offers or not.
Alternatively intermediaries such as brokers can perform this function. Addition-
ally, providing such a library will limit the proliferation of constraints that have
similar or the same semantics. A consumer specifying a constraint includes the
qualified name of the class that implements the desired constraint as part of a
ConstraintDescription that is attached to its request. A provider then creates
an instance of the specified constraint class4, and calls the validate method on
the resulting object, passing the consumers tags, the tags used to model the
provider’s offer and the constraint parameters as specified by the consumer.

Although using constraints with well specified semantics is the main require-
ment for market participants, it is unlikely that many matches will occur if the
tags that consumers and providers use to model resources, requirements, services
and features are not standardized. That is, most (if not all) constraints require
that there are tags with specific names or attributes in the tag set that accom-
panies the constraint. For example, when using the ResourceConstraint, a tag
with a specific name that has value and unit attributes is required in both the
consumer and the provider tag set in order for a match to occur. To address
this, catalogues should also define tags (names and associated attributes) be-
sides constraint semantics. As is the case with constraint names, a reverse DNS
naming convention can be used to avoid name clashes. The constraint library
should include this set of standard tags (and the default catalogue service should
consequently also contain them).

Besides standardized constraints, consumers also have the possibility to specify
custom constraints that allow them to express specific matching behavior that is
not available as part of the standard library or in any of the catalogue services.Todo
this, the consumer or its broker deploys a web service that is able to check whether

3 Doing so is certainly non-trivial as it involves thoroughly examining and monitoring
the allocated resources.

4 This can be done generically using reflection, e.g. in the Java programming language.

A Reverse Auction Market for IaaS Cloud Resources 43

a given constraint is met, given a tag set that was specified by the consumer and a
tag set that describes a provider’s offer. Figure 2 outlines this approach.

Fig. 2. Implementation of custom constraints using web services

Note that from an efficiency standpoint, it is preferable that a provider or the
provider’s broker first verifies all standardized constraints in order to decrease
the probability that time-consuming web service calls need to be made.

A full implementation of our market based on Web Service technology (Java
EE, JAX-WS, Spring, AJAX) is publicly available [10]. The implementation,
which has been deployed to Amazon’s EC2 platform, includes provider-side mod-
els for Amazon, GoGrid, CloudSigma and Rackspace, demonstrating that our
bidding language can cope with the large amount of heterogeneity in resource
specification and price models of current cloud providers.

4.4 Computational and Communicative Tractability

It is intuitively clear that the algorithmic complexity of the market’s operation
itself is rather low as the market’s only task involves determining which of the
quotes for a specific request contains the lowest price. By letting the providers
determine whether they match a certain request as well as determine the price
for that specific request, the market has effectively distributed the computa-
tional complexity that is inherent in matching and pricing heterogeneous IaaS
resources. Furthermore, as no bids or asks need to be stored in queues as is
the case in the double auction, no state (apart from the billboard) needs to be
maintained between subsequent matches. As such, parallelizing and distributing
the market’s operation over different servers is possible, adding to attractiveness
of the CRA mechanism from a computational point of view.

44 J. Roovers, K. Vanmechelen, and J. Broeckhove

Fig. 3. Hierarchical market setup to reduce the potential for a communication bottle-
neck in the CRA

A downside of the CRA compared to a CDA is that the amount of communi-
cation between all involved market actors will be larger as the market sends out
price requests to all providers for each consumer request. If there are n registered
providers that can all fulfill a certain consumer request, 2n+3 messages will be
needed for a match to occur. That is:

– 1 initial request from the consumer to the market
– n price requests from the market to the providers
– n responses from the providers to the market
– 1 match message from the market to the consumer
– 1 match acceptance message from the consumer to the market

As in the CDA no additional messages need to be exchanged with providers for
an incoming consumer bid, it is clear that the flexibility the CRA offers comes
at a considerable communication cost. In order to keep this cost manageable,
providers might use brokers that have very good connectivity to the market. In
order to prevent the network connectivity to the market to become a bottle-
neck, market process can be organized in a hierarchical manner, in which each
node determines the cheapest match and subsequently forwards it to its parent
component. An overview of this organization is shown in Figure 3.

5 Conclusion

Infrastructure as a Service providers are starting to embrace models that dy-
namically price their resources. Currently, the application of such models is con-
strained to individual providers and an open market for IaaS resources is yet
to emerge. For such a market to materialize, flexible approaches are required
that allow providers within the market to express their pricing schemes and re-
source models in line with their current modus operandi. The design of a market
mechanism and bidding language that is flexible enough to realize this goal is
an open research problem. In this contribution we discuss the issues encountered

A Reverse Auction Market for IaaS Cloud Resources 45

by CDA-based approaches in this regard and introduce a Continuous Reverse
Auction (CRA) that is paired with a novel bidding language based on tag and
constraint sets. Our approach can accommodate the heterogeneity present in
price and resource models currently used by providers, while allowing consumer
bids to be matched with multiple providers. As such, it forms an important step
towards a more structured and organized form IaaS resource trading.

References

1. Altmann, J., Courcoubetis, C., Stamoulis, G.D., Dramitinos, M., Rayna, T., Risch,
M., Bannink, C.: GridEcon: A Market Place for Computing Resources. In: Alt-
mann, J., Neumann, D., Fahringer, T. (eds.) GECON 2008. LNCS, vol. 5206, pp.
185–196. Springer, Heidelberg (2008)

2. Bapna, R., Das, S., Garfinkel, R., Stallaert, J.: A market design for grid computing.
INFORMS Journal on Computing 20(1), 100–111 (2007)

3. Broberg, J., Venugopal, S., Buyya, R.: Market-oriented grids and utility computing:
The state-of-the-art and future directions. Journal of Grid Computing 6(2), 255–
276 (2008)

4. Dubé, N.: SuperComputing Futures: the Next Sharing Paradigm for HPC Re-
sources. Ph.D. thesis, Université Laval (2008)

5. Fujiwara, I., Aida, K., Ono, I.: Applying double-sided combinational auctions to
resource allocation in cloud computing. In: Proceedings of the 10th IEEE/IPSJ
International Symposium on Applications and the Internet (SAINT), pp. 7–14
(July 2010)

6. Leong, L.: Adopting cloud infrastructure as a service in the ’real world’. Tech. rep.,
Gartner (2011)

7. Neumann, D., Stoesser, J., Anandasivam, A., Borissov, N.: SORMA – Building an
Open Grid Market for Grid Resource Allocation. In: Veit, D.J., Altmann, J. (eds.)
GECON 2007. LNCS, vol. 4685, pp. 194–200. Springer, Heidelberg (2007)

8. NewServers: NewServers homepage (2009), http://www.newservers.com/
9. Roovers, J.: A Market Design for IaaS Cloud Resources. Master’s thesis, University

of Antwerp (2011), http://thesisjorisroovers.blogspot.com
10. Roovers, J., Vanmechelen, K.: IaaS Reverse Auction Market Prototype Implemen-

tation (2011), http://jorisroovers.com/files/IaaSMarketPrototype.zip
11. Vanmechelen, K., Depoorter, W., Broeckhove, J.: Combining futures and spot mar-

kets: A hybrid market approach to economic grid resource management. Journal
of Grid Computing 9(1), 81–94 (2011)

http://www.newservers.com/
http://thesisjorisroovers.blogspot.com
http://jorisroovers.com/files/IaaSMarketPrototype.zip

	A Reverse Auction Market for Cloud Resources
	Introduction
	Tag and Constraint Sets
	Combining the CDA with Tag and Constraint Sets
	Continuous Reverse Auction for IaaS Resources
	Mechanism and Principles
	Price Discovery
	Sharing Semantics of Tag and Constraint Sets
	Computational and Communicative Tractability

	Conclusion
	References

