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Preface

You are holding the proceedings of the 8th International Workshop on the
Economics of Grids, Clouds, Systems, and Services. This workshop brings to-
gether the research and practitioner communities active in the area of economics
and computer science to address the emerging interest in infrastructure, plat-
form, and software services. This includes the operation and structure of the
service market, the alignment of cost, revenue, and quality-related objectives,
and the creation of innovative business models and value chains.

This year again we received a number of high-quality paper submissions.
Each submission was reviewed at least three times by an international Program
Committee. Our final program consisted of five highly interactive and thought-
provoking sessions (two of which were work-in-progress sessions):

– Session A: Market Mechanisms and Negotiation
– Session B: Cost Models, Charging, and Trading Platforms
– Session C: Resource Allocation, Scheduling, and Admission Control
– Session D: Work in Progress: Risk Assessment and Economics of Cloud

Services
– Session E: Work in Progress: Cost-Aware Adoption of Cloud Services

As the five session titles suggest, the workshop brings together contributions
from economics, resource allocation, resource management, and risk assessment.
In total, there were 14 contributions (consisting of nine full papers and five work-
in-progress papers) selected from 27 submitted papers. The acceptance rate of
full papers is 33%.

The first paper in Session A by Haque et al. entitled “An Inspiration for
Solving Grid Resource Management Problem Using Multiple Economic Models”
compares a number of currently used economic models in grid computing, such as
commodity markets, continuous double auctions, English auctions, contract-net
protocols, and bargaining, in order to identify the settings in which one eco-
nomic model out performs another. A quantitative experimental evaluation is
undertaken to support this comparison—in particular to identify when to switch
between such models and when to use a combination of them. The contribu-
tion “Concurrent Negotiations in Cloud-Based Systems”by Siebenhaar et al. ad-
dresses the lack of quality-of-service guarantees available within existing cloud
systems. It proposes an automated negotiation approach that considers both the
individual business objectives and strategies of the negotiation partners along
with the dependencies between the different services and service tiers within a
cloud system. The last contribution in this session from Roovers et al. entitled
“A Reverse Auction-Based Market for IaaS Cloud Resources” investigates the
creation of an open market for IaaS resources and proposes a continuous reverse
auction along with a bidding language. It thereby specifically takes into account
the current pricing schemes of real-world cloud resource providers.
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Session B starts with a paper by Mohammad Mahdi Kashef and Jörn Alt-
mann entitled “A Cost Model for Running Hybrid Clouds,” which identifies a
usage-based cost model for running a cloud environment consisting of both pub-
lic and private (data center based) clouds. The author argues that although cloud
computing promises to reduce the cost of IT through lower capital and opera-
tional expenses, providing a clear specification of these costs is often lacking in
the existing literature. The subsequent contribution by Stefanov et al. entitled
“How to Do Successful Chargeback for Cloud Services”utilizes experience of field
experts from IBM. It provides factors that identify how to allocate IT service
costs to business users based on their service consumption and how to facilitate
the transition to a cloud environment. The authors argue that it is often difficult
to pinpoint the actual costs incurred through service provisioning and address
this limitation in their work. The final contribution in this session from Menych-
tas et al. entitled “A Marketplace Framework for Trading Cloud-Based Services”
proposes a cloud marketplace platform for the development and trading of XaaS
products. It provides a single point of access for consumers interested in services
and provides specialist support for sellers wishing to make their services available
through the platform.

Session C starts with a contribution from Macias and Guitart entitled“Client
Classification Policies for SLA Negotiation and Allocation in Shared Cloud Data-
centers,” focusing on how user types (internal vs. external, preferential vs. stan-
dard) could be used by providers during SLA negotiations. Experiments are used
to compare two such negotiation strategies: price discrimination and client-aware
overselling of resources. In their paper “Budget-Deadline Constrained Workflow
Planning for Admission Control in Market-Oriented Environments,” Zheng and
Sakellariou focus on workflow planning and execution, taking into account the
deadline and budget constraints of users submitting workflows. The proposed
heuristic also takes account of the existing load on the resources that must enact
the workflow. Finally, Li et al. in their paper entitled “Virtual Machine Place-
ment for Predictable and Time-Constrained Peak Loads” discuss how virtual
machines should be placed on servers within a data center in order to deal with
peaks in workload and make the execution time of tasks more predictable. They
discuss the trade-off between computation time and the quality of solutions pro-
vided by a binary integer program and three approximations that increase the
scale at which this NP complete problem can be solved.

The final two sessions constitute the “Work-In-Progress” papers—primarily
focusing on work that is at an early stage of maturity, but likely to make signifi-
cant contributions to the community. The first of these, Session D, focuses on risk
assessment and economic models associated with cloud service provision. Petri
et al. in their contribution “Risk Assessment in Service Provider Communities”
discuss the notion of financial risk from the perspective of various stakehold-
ers involved in cloud-based service provisioning. Künsemöller and Karl in their
paper entitled “A Game-Theoretical Approach to the Benefits of Cloud Com-
puting” identify characteristics of beneficiaries in an infrastructure-as-a-service
market and the potential actions they could take to gain financial benefit.
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Session E includes three contributions focusing on cost efficiency. The paper
by Sengupta and Annervaz entitled“Planning for Optimal Multi-Site Data Place-
ment for Disaster Recovery” discusses strategies for backup of critical business
data across (a large number of) multiple data centers (in different geographi-
cal locations). The approach takes into account criteria such as cost of storage
and network, protection level against site failures, as well as business and oper-
ational parameters such as recovery point and time objectives. Their approach
uses data-encoding techniques that can facilitate recovery from multiple data
center failures. Shi et al. in their contribution “Saga: A Cost-Efficient File Sys-
tem Based on Cloud Storage Service” describe a cost-efficient file system that
provides a POSIX interface on top of Amazon S3. Cost reduction is achieved by
minimizing the storage space used through “store-one-copy”and “copy-on-write”
strategies and by minimizing the number of requests through a distinction of ob-
jects loaded by write and read requests in the cache replacement algorithm. The
final contribution of this session from Stephen McGough entitled “Developing
a Cost-Effective Virtual Cluster on the Cloud” discusses how an entire cluster
computing environment could be run on a cloud system, taking into account
various usage policies and execution costs.

We would like to thank the reviewers and Program Committee members for
completing their reviews on time, and giving useful and valuable feedback to the
authors. We would also like to extend our thanks to the organizers of ICSOC
for hosting our workshop alongside their conference this year. Furthermore, we
would like to express our gratitude toward Alfred Hofmann from Springer for
his support in publishing the proceedings of GECON 2011.

December 2011 Kurt Vanmechelen
Jörn Altmann
Omer F. Rana
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An Inspiration for Solving Grid Resource Management 
Problems Using Multiple Economic Models 

Aminul Haque1, Saadat M. Alhashmi1, and Rajendran Parthiban2 

1 School of Information Technology, Monash University, Bandar Sunway, Malaysia 
{aminul.haque,alhashmi}@monash.edu 

2 School of Engineering, Monash University, Bandar Sunway, Malaysia 
parthiban.rajendran@monash.edu 

Abstract. Economic models can motivate resource providers to share resources 
across multiple administrations in Grid computing. Our survey on existing 
economic models in Grid computing identified that different economic models 
are suitable for different scenarios. In this paper, we conduct an experiment to 
quantify the strengths and weaknesses of widely proposed economic models in 
the Grid - Commodity Market, Continuous Double Auction, English Auction, 
Contract-Net-Protocol and Bargaining. Based on this experimental analysis, we 
identify regions where a particular economic model outperforms others. Then, 
we indicate that switching between the economic models could be used to 
maximize benefits in a specific scenario. 

Keywords: Domain of strength, economic models, Grid, optimization. 

1 Introduction 

Grid computing harnesses computational resources across geographical boundaries. 
The aim of this computing framework is to solve some complex problems, such as 
drug design in a more cost effective and standard way. Due to multiple boundaries, the 
problem solving through coordinated distributed environment becomes challenging. 
Extensive research has been conducted and it has been identified that economic-based 
approach is more efficient in meeting the challenge compared to traditional non-
economic based approach [1,2]. Economic models help to diagnose distributed 
scheduling problem while ensuring sufficient motivation to the resource providers. 
Price is a key term of any economic model and can be used to characterize different 
resources. Price can also be used to maintain equilibrium between supply and demand 
or sometimes to figure out the true value of resource demands. Different economic 
models have different pricing strategies and interaction protocols between users and 
providers. This adds dynamics in the Grid environment. 

In spite of the potential that economic models offer, selecting a particular model out 
of multiple models is challenging; since, 1) the standards of a particular model would 
be static; however, Grid is dynamic 2) a particular model could only provide limited 
features to utilize the potential of the Grid, while Grid users could have different 
aspirations from the Grid and finally, 3) examining the sustainability of a particular 
model in a large variety of scenarios is harder. We conducted an extensive survey on 
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different economic models in Grid computing [3]. We addressed the suitability of 
different economic models for different scenarios. This inspired us to conduct an 
extensive experimental analysis of the different economic models. Therefore, in this 
paper, we investigate, compare and contrast the performance of five most widely 
proposed economic models in the Grid. We consider a range of different parameters to 
evaluate the models and identify the regions/scenarios where a particular model 
outperforms all others. Our findings would help one to decide which model to use 
when and for what purpose. In this work, we particularly focus on provider strategy; 
therefore, our solutions are based on giving flexibility only to Grid providers. 

Section 2 provides some related work. Section 3 explains the development of the 
five economic models. Section 4 talks about the experimental setup and simulative 
study. Section 5 summarizes the paper. Section 6 gives the conclusion. 

2 Related Work 

Realizing the distributed resource management problem in Grid, Buyya et al. propose 
several economic models [4]. Not all the models proposed are suitable for Grid 
computing all the time [3]. English Auction (EA), Continuous Double Auction 
(CDA), Commodity Market Model (CMM), Contract-Net-Protocol (CNP) and 
Bargaining (BAR) are the five most widely proposed models in the Grid we will 
discuss in this paper. An extensive explanation on these models has already been 
given in [4]. We describe the core concepts of the five economic models in Section 3. 

Despite the significance of economic-based resource collaboration, there are only a 
few papers that analyze the performances of multiple economic models in the Grid 
[5,6,2]. Richard et al.  propose that CMM would be suitable for maintaining market 
equilibrium and minimizing communication cost compared to EA [6]. On the other 
hand, Tan and Gurd criticize CMM due to its system-oriented approach rather than 
being incentive-oriented [5]. They argue, in CMM, price formation process 
considering global information on supply and demand does not account for 
individual’s preference optimization; thus become undesirable for the participants [5]. 
CDA is proposed to be suitable compared to single-sided auctions such as EA in 
terms of communication and time efficiency [5]. 

It has been identified that EA is suitable to maximize revenue, economic efficiency 
(pareto-optimality in resource allocation) and the QoS [1,2]. CNP has been found to 
be suitable for the utility-based resource allocation and scalability [7]. It is also 
suitable to solve the distributed cooperation problem and to optimize meta-scheduling 
process. On the other hand, in a distributed environment such as Grid, BAR is 
proposed to be suitable; because it supports utility-based negotiation between a user 
and a service provider [8]. 

Due to the extensive and arbitrary nature of the Grid, Resinas et al. identity 
fundamental components for developing automated negotiation systems (ANS) in an 
open environment [9]. They describe several properties including prerequisites for 
supporting various negotiation models. On the other hand, a more focussed research 
on supporting multiple negotiation models in grid environment is studied by Brandic 
et al. [10]. They propose a meta-negotiation process to deal with the cross-interests of 
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grid entities. Their generic negotiation architecture would help the grid users to 
choose their suitable protocols before establishing the Service Level Agreements with 
the providers. However, neither of the papers extends the protocols to study user or 
provider benefits. In our research, we investigate the performance of the five most 
widely proposed models – EA, CDA, CMM, CNP and BAR - and identify their 
domains of strengths based on different performance metrics including user and 
provider benefits. 

3 System Design and Development 

To test the performances of the economic models, we use GridSim simulation toolkit. 
It is a discrete-event Grid simulation toolkit designed for large scale heterogeneous 
grid entities’ simulation [11]. The toolkit also supports the simulation of economic 
based resource management across distributed domains. By default, GridSim provides 
EA and CDA. We extend the existing EA and CDA to support deadline parameter. 
Additionally, we contribute CMM, CNP and BAR to the current GridSim distribution. 
The following subsections explain this contribution in detail.  Before moving on to 
the models let us briefly describe about the simulation entities, which are common for 
all the models. 

3.1 User 

Grid users can be characterized using their respective applications/Gridlets which 
need to be executed on the Grid resources. A Gridlet can be defined as a function of 
several parameters and is denoted by gl(id, length, dl, budget). Where, 

id  = Gridlet’s identity, 
length  = Gridlet’s processing length in MI (Million Instruction), 
dl  = Deadline to finish processing the Gridlet, 
budget  = Budget available to process the Gridlet. 

A Grid application can again be composed of several tasks. Based on the relationship 
and dependency among the tasks, Grid applications can be categorized into three 
types; Bag of Tasks1, MPI (Message Passing Interface) and Workflow. Currently our 
work is suitable only for Bag of Tasks applications. 

3.2 Broker 

In a Grid environment, the broker representing a user plays an important role by 
discovering and communicating to the resource nodes, submitting Gridlets to a 
suitable node and finally gets the results back from the execute-node. The crucial task 
for a broker is to process its Gridlet within the budget and deadline as requested by 
the user. 

                                                           
1  This kind of applications consist of multiple independent tasks requiring no communication 

among the tasks [12]. 
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3.3 Resource-Node 

Each resource-node is configured by some resource properties. If a resource-node is 
denoted by n, then it can be characterized as n(Id, mList, alloc_policy, cost), where, 

Id   = Node identity, 
mList  = Number of machines the node is comprised of. A particular 

machine further is a function of number of Processing Elements 
(PE) and Million Instruction per Second (MIPS) rating for each PE, 

alloc_policy  = Job scheduling policy by the node, 
cost   = Cost per second for using the node. 

To obtain the reflection of supply-demand variation, we assume that there is one 
machine per node and each machine contain one PE with varied MIPS rating or one 
can assume that all the resource-nodes are part of a big master-node. We employ 
space-shared allocation policy for the resources in all the models. From henceforth, 
we use the term “Gridlet” to refer to the broker. 

3.4 English Auction Interaction Protocol 

We consider the auction of ascending-bid type (Forward EA). This version of auction 
type is mostly proposed for the Grid [3]. The most crucial part of the auction is 
Auctioneer. It conducts the auction process among the interested Gridlets. 

 
 
 
 
 
 
 
 

 

Fig. 1. Forming groups of interested bidders in EA 

In our simulation scenario, multiple auctions can process concurrently which is 
consistent with a distributed market scenario. However, in such a scenario, a single 
Gridlet cannot participate in multiple auctions at the same time. The Auctioneer first 
obtains the information about resources for which the auctions are about to start. 
Since different Gridlets could choose different resources to compete, Auctioneer then 
requests for interested Gridlets by broadcasting the resource(s) properties to all the 
Gridlets. This is illustrated in Fig. 1 which describes how different Gridlets choose 
different resources to compete. It can be seen from Fig. 1 that Gridlet-1 and Gridlet-4 
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available Gridlets in the market is U and the set of interested Gridlets for a particular 
resource n is An, then, 

An ⊆ U    where, |An| ≥ 1 

Let a Gridlet, gl be the element of An if the respective resource n can meet the 
Gridlet’s deadline; because if the resource is unable meet the Gridlet’s deadline, there 
is no means to compete for the resource. Therefore, before start processing the 
auction(s), Auctioneer groups the Gridlets (bidders) depending on the Gridlets’ 
deadlines and resources properties. The cpuTime of a particular Gridlet, gl on a 
resource node n is given by, 

 cpuTime = gl-length / MIPS-rating of n       (1) 

If there are multiple groups competing for multiple nodes, then an auction for each 
node starts independently with its respective set of Gridlets. Once, the Auctioneer gets 
the An ready, it sends the call-for-proposal (cfp) to its corresponding Gridlet(s) for a 
counter-proposal. A cfp typically contains total number of rounds θ, current number 
of round θc and a current-bid the Auctioneer proposes. The bid typically starts with 0 
and keeps increasing over rounds. Over each round, Gridlets decide whether to accept 
or reject the current-bid. We use the same strategy to change the current-bid over 
rounds by the Auctioneer as defined in the GridSim. 

current-bid = current-bid + {(max-bid – min-bid) / (θ -1)} 

Detailed simulation parameters are appended in Table-1. The auction continues until 
the total number of rounds finishes or no Gridlet is willing to accept current cfp. 

We solve the Winner Determination Problem using the following two conditions, 

− Gridlet that accepts the latest cfp and 
− the bid in the cfp must satisfy the cpuCost of the Gridlet 

The second condition acts as a reservation price for the resource. As we are 
comparing the performances of different economic models, we employ this 
reservation price for every model. The advantage of this price is that no resource will 
be provisioned below its original execution cost. In case of auction failure, the failed 
Gridlets are again prompted to compete for other resources for which no auction has 
yet been initiated. The cpuCost of a Gridlet gl on a resource-node, n is given by, 

 cpuCost = gl-length * (cost-per-sec / MIPS-rating of n) (2) 

3.5 Continuous Double Auction 

We design the CDA of its most popular form, open cry with order queue [5]. In this 
form, resource costs (asks) are generated continuously until the Auctioneer finds a 
match between a bid (cfp) and an ask. Bids and asks can be placed any time during the 
auction phase. Outstanding bids and asks are maintained in an Order Book while bids 
are sorted in descending order and asks are in ascending order. The most important 
part of the protocol, Auctioneer, is described below (Algorithm-1). 
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Algorithm 1 is the extended version of the existing CDA in GridSim to support 
deadline parameter. A similar algorithm is designed to handle new asks. Unsuccessful 
bids and asks are maintained in their respective Order Books. The bids are sorted in 
the Book in terms of their budgets and asks are in terms of their costs. 

Algorithm 1. On_Receive_Bid
Input: bid, ask-Order-Book, bid-Order-Book 
Output: match/mismatch, Order-Books 
if (size of asks-Order-Book > 0) 

 
 
 
 

{Get the first ask from the  asks-Order-
Book 
Cast job from the received bid 
Cast node properties from the ask 
Get budget and dl from the job 
Compute cpuCost and cpuTime using (2) & 
(1) 

 
 
 
 
 

if (budget • cpuCost & dl • cpuTime &  cpuCost & dl • cpuTime & 
node-status = free) 
{Inform the Auctioneer about the match 
finalPrice = (cpuCost + budget) / 2 
Update the  asks-Order-Book by removing 
the ask 
Set the node-status = busy} 
}               
} 

else add the bid in the  bid-Order-Book 

3.6 Commodity Market Model 

The essence of CMM is to change resource price frequently based on supply and 
demand function. The price that brings the equilibrium between supply and demand in 
the market is called equilibrium/spot price. We use linear algorithms to determine the 
spot price. According to linear equilibrium theory, the demand and supply functions 
are given as, 

QD = -aP + b 

QS = cP + α 

Where QD refers to the quantity demanded at any specific time and QS is for supply; a, 
b and c are the scalar parts where a, c are the change in demand and supply 
respectively, b is the current_demand which is defined by the number of available 
Gridlets in the market still looking for resources. The values of a, c are ranges from 0 
to 1. The negative sign in demand function presents the relationship between price (P) 
and demand, which is, an increase in price will induce a decrease in the quantity 
demanded and vice versa. In supply function, α refers to the shift in supply which can 
be manipulated as, 

α = (initial_supply – current_supply) / initial_supply 

α = 1 – (current_supply / initial_supply) 
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Again, a is determined by calculating current_demand over the total_demand and c is 
calculated as current_supply over the total_supply. Current_supply is defined by the 
number of nodes available to serve Gridlets. Now, if we want to know the price at 
which total supply and demand at any given state diminishes, we need to solve the 
supply and demand functions for P when QD = QS. If P* be our spot price, we get, 

P* = (b - α) / (a + c) 

 

Fig. 2. The effect of spot and random prices over supply 

At every turn, cpuCost of a resource is computed using current spot-price. In order to 
ensure that the defined spot price is working for pushing the market into equilibrium, 
we conduct a sample experiment with 100 Gridlets and 50 nodes. The effect of 
random price and spot price in the market is shown in Fig. 2. The effect of spot prices 
is observable here. Because of the effect, the trend for the demand-supply ratio is 
smothering compared to the trend using random prices. On the other hand, because 
the random prices are not affected by supply and demand, the trend fluctuates 
randomly. 

3.7 Tender/Contract-Net-Protocol 

The roles of Gridlet and resource-node are known as manager and contractor 
respectively in this scenario [4]. However, to maintain the flow, we continue with 
stating “Gridlet” (manager) and “resource-node” (contractor). As mentioned in 
Section 2, in this model, Gridlets try to optimize their individual objective functions 
through selecting one or more resource nodes from available nodes. We have two 
objective functions, which are cost and time that the Gridlets are to define in their 
respective cfps. 

Preference Optimization Procedure. If the final node selected by a Gridlet is n, we 
can write down, 

 n = (n ∈ Pn | cpuCost (n) ≤ cpuCost (∀n′ (n′ ∈ (Pn – n))))          (3) 

0 500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6

8

10

12

14

Number of ticks

D
em

an
d 

/ 
S

up
pl

y 
ra

tio

Impact of spot prices over 100 jobs and 50 nodes

 

 

when spot price
when random price
expected ratio



8 A. Haque, S.M. Alhashmi, and R. Parthiban 

Where, Pn be the set of potential nodes those have shown interest to execute the 
Gridlet. Equation (1) and (2) are used by a node to decide whether to show the 
interest. Again, |Pn| ≥ 1 implies that there will be at least one potential node to form Pn 

and n′ is the number of potential nodes those have been rejected finally by the Gridlet. 
Equation (3) helps the Gridlet to find the resource-node with the minimum cost. A 
comparator is used to extract the cheapest resource from all the potential resources 
which is happened in the second part of the equation. In terms of time-optimization, 
the Gridlet uses the similar process with cpuTime. 

3.8 Bargaining Protocol 

We have briefly described about this model before. In this model, both the Gridlets 
and resource-nodes try to optimize their individual objective functions through 
negotiation. Here, a Gridlet might start with very low bid and a resource-node with 
very high bid and the negotiation process continues until they reach a mutually 
agreeable condition or any of them does not show any interest to continue [4]. We set 
the same number of rounds and bid update policy for BAR as we set for EA for 
consistency. In BAR a Gridlet and a resource-node use the following strategies to 
update their respective bids over the rounds. 

cfp-bid = cfp-bid + {(max-budget – min-budget) / (θ –1)} 

node-bid = node-bid – {(max-node-bid – min-node-bid) / (θ –1)} 

If a cfp-bid matches with a node-bid over rounds, negotiation succeeds. Otherwise the 
Gridlet looks for other nodes to negotiate. 

4 Simulative Study 

Performance of a market mechanism in a Grid environment is greatly influenced by 
supply and demand; however existing literature only considers a limited number of 
users and providers and vary them with sufficient gap (e.g. 5,10,15…), which may not 
give a comprehensive reflection of a model’s performance. We consider a parameter 
space consisting of Gridlets and nodes, which is a 100×100 mesh of (s, d), where s 
refers to the number of Gridlets (demand) and d is the number of nodes (supply). The 
inputs used in the simulation are shown in Table 1. 

Table 1. Resource configuration 

Parameters Values 
Number of rounds (θ) 10 
MIPS rating of a node (in MIPS) (350, 450) 

Cost-per-sec for a node (in G$) (cost) (1, 2) 

Gridlet length (in MI) (1000, 10000) 
Gridlet deadline (in simulation sec.) (dl) (12, 22) 
Gridlet budget (in G$) / max-budget (32, 45) 
min-bid, min-budget, min-node-bid 0 
max-bid, max-node-bid 45 
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4.1 Statistical Significance 

The behavior of Grid entities is stochastic; hence achieving same performance for a 
particular model at different times is uncertain. To minimize this uncertainty, we test the 
models by using 5 different distributions (samples/seeds) and present only their averages. 

The impact of economic models on Grid computing is extensive; hence, a complete 
evaluation of different economic models is almost impossible. There are several 
metrics to evaluate the strengths of the economic models in Grid computing [3]. Few 
of them are revenue, communication overhead, average turn-around time, resource 
utilization, user utility, resource utility and social welfare. We test the five economic 
models in terms of all of these criteria. We have chosen random values in such a way 
(in defining the seed value) to produce well-spaced sequences to remove correlation 
in the samples. Random uniform distribution is used to generate random values 
between the ranges (Table 1). To inject currency into the system, we use a limit. The 
rationality behind such currency injection is well explained in [13]. 

 

Fig. 3. Revenue comparison (considering communication cost) 

4.2 Revenue 

To identify which model generates more revenue for resources, we compare the five 
matrices representing the revenues (after averaging) for five models. We find that the 
EA always outperforms other four models in this case, which shows the similarity 
with existing literature (Section 2). While, EA generate the highest revenue, at the 
same time, it produces huge communication overhead/cost. Thus, we are encouraged 
to investigate about revenue over communication cost scenario. We normalize the 
both parameters and manipulate revenue over communication cost matrix. The 
contour diagram (Fig. 3) shows some promising outcomes. EA is fully absent here 
and CDA and BAR are the models show their strengths over other models. Due to the 
lowest communication overhead in most of the scenarios (Fig. 4), CDA performs 
better. However, when demand is sufficiently lower irrespective of supply, BAR 
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outperforms all the others. Due to higher supply, chance to start bargaining with 
appropriate resources is increased. Thus, Gridlets make quick acceptance on the 
resources, which leads to less communication overhead. Even, in this region, CMM 
shows less overhead than the BAR (Fig. 4), the ratio of revenue over communication 
cost is higher for BAR than the CMM; since in CMM, Gridlets are only paying their 
original job execution costs. In addition, spot prices provided by the CMM in this 
region are lower due to higher supply and lower demand. Thus, job execution costs 
are also lower. This prevents the CMM to generate more revenue in this particular 
region compared to BAR. To facilitate the design of autonomous switching between 
models, we mathematically model the strengths of CDA and BAR. 

Domains of Strength. To define the individual domains, we manually choose the closest 
trends. To formalize the strengths, we use the terms “s” and “d” to refer to supply and 
demand respectively. The domain for BAR is represented by the following boundaries, 

1. d = 0 
2. s = 13d-45 

The boundaries to define the domain of CDA are given by, 

1. s = 13d-45 
2. s = 0 

 

Fig. 4. Communication overhead comparison 

4.3 Communication Overhead 

We compute the communication overhead by counting the number of messages 
exchanged among entities during a simulation. Fig. 4 shows the regions where different 
models show their individual domains of strength. By “strength” of a particular model, 
we mean lower number of messages has been exchanged compared to other models. 
CDA and CMM are the two models that show their strengths over EA, CNP and BAR 
which is also conformant with the current literature (Section 2). Because of having 
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multiple rounds in BAR, EA, even to provision a single resource, it produces a huge 
amount of messages compared to other models. In terms of CNP, every potential 
resource sends its interest on executing a particular Gridlet. Therefore, the average 
number of messages exchanged to deal with a single Gridlet becomes higher. 

In terms of CDA, even though resource costs are generated continuously, 
Auctioneer, in this case, sorts both bids and asks in an approach (Section 3.5), it 
becomes much easier and quicker to clear the market. Therefore, at the end, a Gridlet 
or a node does not require to send too many messages. However, when supply is 
higher and demand is lower, CMM performs better. Due to the higher supply and 
demand, spot prices generated by CMM are lower. Thus, Gridlets can quickly find 
their suitable resources without travelling longer in the market. Eventually, this helps 
for not generating a lot of messages by CMM. 

These results help resource providers to choose which model to use for which 
scenario if a given network speed is not very high.  

Domains of Strength. The domain of strength for CMM is located in the left part of 
the contour (Fig. 4). The boundaries are represented as, 

1. d = 0 
2. s = 0.65d2 - 3.5d-23 

The boundaries to define the domain of CDA are given as, 

1. s = 0.65d2 - 3.5d-23 
2. s = 0 

 

Fig. 5. Average turn-around time per Gridlet 

4.4 Average Turn-Around Time per Gridlet 

This metric refers to the time required by a particular Gridlet to receive its final 
acceptance or rejection notification. CDA and CMM are the two models that outperform 
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all the other models in this case (Fig. 5). In terms of higher supply and lower demand, 
CMM performs better. Due to lower demand over resources, the spot prices determined 
by the CMM are lower. This helps the Gridlets to quickly consume the resources 
without much delay. However, as demand increases and supply is still higher, spot 
prices start rising up. This forces Gridlets to stay longer in the market due to higher 
number of rejection by the resources. Again, when supply starts decreasing and demand 
starts increasing, spot prices also rise up. However, due to higher demand over the 
resources, most of the resources are quickly consumed, which helps other Gridlets to 
quickly finish the looking process due to the shortage of resources. The reason for 
immediate resource allocation by CDA has already been given in an earlier section. 

As in previous sections, domains of strength can be identified for CDA and CMM, 
the details of which are omitted for brevity. 

 

Fig. 6. Resource utilization comparison 

4.5 Resource Utilization 

Fig. 6 illustrates the regions where different models show their strengths for resource 
utilization. When the supply is higher and demand is lower, most of the Gridlets are 
quickly occupied without any hard competition by any of the models. Again, because 
of more demand and less supply, there is an equal increase in competition for a 
particular resource for all the models. This helps to yield equal magnitude of 
utilization by all the models closer to the axes level regions. 

As the supply starts moving up all the models tend to perform equally better except 
EA. To utilize more resources, consistent resource allocation is crucial. CDA’s re-
arranging process (Algorithm 1) between bids and asks helps to give such consistent 
allocation. This is why; CDA is present across the whole space. Due to the higher 
demand compared to supply (until 66%), utilization equally increases for CNP, CMM 
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and BAR. However, as supply starts decreasing, overall utilization by the models also 
decreases. When supply further increases (above 66%), the randomness in selecting 
resources becomes significant by the Gridlets for CMM and BAR. Thus, more 
resources remain unutilized by the models for this region. When supply is above 83%, 
Gridlets in the front row by CNP, get chance to optimize their preferences quickly 
which leaves resources for which getting acceptance becomes harder by the rest of the 
Gridlets. In the middle of the contour, CDA alone performs better. Due to the higher 
supply, the drawback of consistent resource allocation by the other models becomes 
stronger. As demand starts decreasing (below 76%), due to the higher competition, 
utilization by all the models starts performing equally better again. As before, one can 
identify the domains of strength and lines where different models perform equally 
well from Fig. 6. Specific results have been left out for concision. 

 

Fig. 7. Social welfare comparison 

4.6 Social Welfare 

Social welfare is defined in terms of user and resource utility (welfare). As the society 
is comprised of users and resources, the social welfare is the sum of the utilities of the 
users and resources. In a nutshell, it is the profit made by the whole society. User 
utility is defined as the difference between the user’s original budget and the paid 
cost, whereas resource utility is defined as the difference between the agreed price 
and the resource’s original job execution cost [14]. The contour diagram (Fig. 7) 
demonstrates the regions representing the strengths of different economic models for 
social welfare. In this case, mainly CDA and CNP are the two models that outperform 
all the other models in two different regions. When supply is lower irrespective of 
demand, BAR seems to outperform; however, due to its little contribution, we ignore 
this. In terms of CNP, the welfare mainly comes from Gridlet (user) utility and for 
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CDA, it comes from both Gridlet and resource utilities. In terms of CNP, due to its 
resource selection process (Eq. 3), Gridlets get chance to maximize their utilities. As 
supply increases, the chance increases proportionally. Due to lower demand and 
higher supply, Gridlets in CDA, also get chance to maximize their utilities, since, in 
CDA, resources are sorted according to their costs and the cheapest resource is 
selected to execute the trade. As demand increases, the aggregated utility for CDA 
also becomes higher. This is the reason why CDA performs better in this region. 

As discussed earlier, domains of strength can easily be identified for CDA and 
CNP from Fig. 7. One can also come up with equations for the boundaries between 
these domains. 

Our experimental findings agree with our proposed theory, i.e. in a highly 
competitive and dynamic environment such as Grid, a single model is not suitable to 
cope with every scenario and for every criterion. This can raise a research question: 
“how can a resource provider employ these differences in a highly dynamic 
environment to optimize his/her objective function(s)?” With this in mind, currently 
we are developing a switching agent that keeps sensing environmental changes and 
switches between the models dynamically to optimize a particular or a combination of 
objective function(s). 

5 Summary and Future Work 

We summarize our findings by using the following proposition which is crucial for 
the agent’s knowledge. 

Proposition 1. There will be metrics for which no economic model performs better 
than the others, at least not under all circumstances, G. That will depend also on the 
domain, g. 

∀ (G) (∃ (g) (one eM outperforms other models)) 

For example, in terms of the communication overhead, we have identified two 
different regions where two different models (CMM and CDA) perform better 
compared to each other. Thus, it is possible to design an agent that dynamically 
switches between the models depending on their domains of strengths if a particular 
network would like to minimize (optimize) its overall communication cost. 

We plan to develop a switching agent and like to investigate its adaptive 
management capabilities, when it switches from one economic model to another. We 
further would like to measure the real time adaptability of our system on Grid test-
beds. Though we currently consider only computationally intensive applications, we 
believe our findings would equally be useful for data intensive applications. In data 
Grids, thousands or millions of datasets are stored and replicated across the Grid 
network [15]. These datasets are then invoked and processed by the Grid users to 
generate meaningful results. A range of parameters such as bandwidth for data 
replication, data storage capacity, computational requirements, and data security can 
be successfully managed using economic models. Thus, depending on the user’s 
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application and network availability, a specific model can be switched based on 
changing scenario. Therefore, we also would like to study the different economic 
models on data-intensive applications. 

6 Conclusions 

Economic models have the ability to contribute to the Grid from various dimensions. 
It not only brings sufficient motivation for resource providers to join, but also solves 
distributed scheduling problems cooperatively and consistently. In this paper, we 
discussed five most widely proposed economic models for the Grid. Existing 
literature concentrates on choosing a single model for the Grid. However, due to the 
limitation of a single model to satisfy a large scale cooperation problem, multiple 
models can add value. Our experimental findings showed the consistency with 
existing literature that different economic models are suitable for different scenarios 
in Grid computing. We identified the scenarios where one economic model shows its 
strength over other economic models for a range of performance criteria. Finally, we 
believe, our findings would help the Grid community to decide which model to use 
for what scenario and ultimately to what reason. 
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Abstract. Utilizing cloud-based services, consumers gain a high level of
flexibility, but they cannot obtain individual Quality of Service guaran-
tees or request service compositions according to their specific business
needs. Therefore, appropriate mechanisms for an automated negotiation
of Quality of Service parameters are required that do not only consider
the individual business objectives and strategies of the negotiation part-
ners involved, but do also account for the dependencies between the
different services and service tiers in cloud computing. This enables en-
terprises to increase the quality and flexibility of their business processes
and lays the foundation for market-based complex service provisioning.
In this paper, we present one such negotiation approach and evaluate
the application of different negotiation strategies.

Keywords: Concurrent Negotiation, Cloud Computing, SLA.

1 Introduction

In recent years, enterprises have experienced an increasing need to provide a
flexible and competitive business process infrastructure, with IT systems serving
as the key enabler. Several computing paradigms have been introduced, which
promise to provide more IT flexibility. The latest of these is cloud computing,
which enables on-demand access to arbitrary resources as a service (e.g., stor-
age). Although cloud computing is already applied in practice, current vendors
have only concentrated their effort on specific issues (e.g., scalability). To date,
they offer no or only limited support for dynamic negotiation of individual Qual-
ity of Service (QoS) guarantees [3]. Hence, obtaining cloud services according to
consumers’ specific business constraints remains an open issue. Yet, quality pa-
rameters such as reliability and availability are crucial in a business environment.
In order to retain control of the service quality, Service Level Agreements (SLAs)
can be negotiated to ensure the desired quality is maintained. An SLA is a formal
agreement, i.e., a contract between two parties and specifies the consumer’s ob-
jectives (e.g., QoS parameters) that must be fulfilled by a provider and penalties
in case of violations.
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Negotiating individual SLAs in cloud computing is challenging. Negotiations
typically involve consumers and providers with conflicting interests. Consumers
usually want to obtain a high-quality service at low costs. Likewise, providers try
to achieve the highest possible profit in line with demand, given their currently
available QoS levels and capacities. Finally, consumers and providers each have to
decide on a promising negotiation strategy. Since both parties try to achieve the
highest possible utility and, due to the business context, do not want to disclose
too much private information (e.g., business goals, cost factors), a negotiation
of QoS parameters is necessary.

In addition, there can be multiple competing providers in the market, which
offer the same type of service, but with different properties. Therefore, consumers
wish to explore the heterogeneous service properties of different providers in ad-
vance in order to determine the most suitable services before establishing an
agreement with a specific provider. Furthermore, if consumers want to combine
services from different cloud providers, also the composition must satisfy the con-
sumers’ QoS requirements. Hence, it is necessary to negotiate concurrently with
multiple providers from a consumer’s point of view. Likewise, it is also required to
conduct concurrent negotiations with multiple consumers from a provider’s point
of view in order to determine the consumers which generate the highest possible
profit. Further challenges arise in relation to the several dependencies between
the different service tiers (e.g., software, infrastructure) [2] in cloud computing.
While service consumers wish to obtain specific services from different service
providers, the service providers in turn must acquire the necessary resources
for service execution from infrastructure providers. Hence, besides the issue of
resource availability, also the adherence to SLAs across different administrative
domains has to be considered.

Due to the large number of cloud providers and cloud consumers, the infor-
mation exchange between the parties involved is very complex. Thus, a dynamic,
scalable, and automated approach is required for negotiating SLAs with multiple
providers across heterogeneous domains.

In the past, several approaches have been proposed for SLA negotiation in
different fields of research (e.g., [17], [19]). However, very few effective solutions
for automated negotiation have been provided so far [18]. In this paper, we
present an approach for negotiating SLAs with multiple cloud providers across
multiple tiers. We propose a cloud negotiation support system (CNSS) that can
be employed on every service tier. Furthermore, we compare different negotiation
strategies to be applied in our scenario.

The remainder of the paper is structured as follows. Section 2 discusses re-
lated approaches in the field of concurrent negotiations with multiple parties. In
Section 3, the requirements for negotiating SLAs with multiple cloud providers
across heterogeneous domains are described. Section 4 introduces our negotiation
approach and Section 5 presents initial experimental results of our evaluation of
different negotiation strategies. The paper closes with a conclusion and future
directions in Section 6.
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2 Related Work

Several approaches for concurrent negotiations with multiple providers have been
proposed so far in different fields of research (cf. Table 1).

Aknine et al. [1] present an extension of the contract net protocol (CNP) [16]
in order to support concurrent many-to-many negotiations. Basically, the con-
tract net protocol is a simple one round-based protocol for task distribution in
IT systems. The authors introduce a two-phase negotiation process which en-
ables prospective contractors to overbid other offers. However, strategies and the
assignment of multiple tasks are not considered in their approach.

Chhetri et al. [4] also adapt the CNP and propose a coordinated architec-
ture for agent-based SLA negotiations. In their architecture, a global coordi-
nator agent is responsible for determining a service composition according to
consumer’s QoS requirements. Local negotiation agents in turn conduct nego-
tiations with multiple providers in order to achieve an agreement for a specific
service type. A negotiation agent negotiates with multiple providers in an iter-
ative manner over multiple rounds. No bidding strategies are specified.

In [7], Di Nitto et al. suggest a search-based solution for SLA negotiation.
Similar to the work in [4], each negotiation participant is represented by a co-
ordinator and several negotiators. In contrast to [4], Di Nitto et al. make use of
an intermediate mediator in the form of a marketplace. The marketplace issues
proposals to the participants based on an optimization algorithm in order to im-
prove the convergence of the offers. The authors do not explicitly state a protocol
for message exchange and private information is disclosed to the marketplace.

Sim and Shi [13] propose an approach for allocating multiple types of resources
to perform a particular computation in grid computing. Consumers and providers
apply a time-dependent strategy and are allowed to break an intermediate con-
tract by paying a penalty fee. In addition, the strategy of the consumers is based
on the calculation of the expected utility of the proposals and the probabilities
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that providers will renege from an intermediate contract. This approach requires
the management of commitment and decommitment of contracts. Furthermore,
a breach of contract may affect reputation.

In [6], Dang and Huhns adapt the alternate offers protocol in order to support
concurrent negotiations with multiple issues in case of many-to-many negotia-
tions. Their approach is based on the extended CNP [1] and also introduces two
negotiation phases. Since counter-proposals can overbid formal proposals, it is
obvious, that the negotiation may result in an infinite loop. The authors argue
that this situation can be prevented by enforcing time constraints. However,
time-dependent strategies are not considered in their approach.

Sim [15] focuses on market-based SLA negotiations in cloud computing. He
considers a three-tier model where negotiation takes place between consumers,
brokers and resource providers. A market-driven strategy is applied, where the
concession amount depends on time, trading alternatives and competition. In
his model, an agent can also renege from an intermediate contract by paying
a penalty fee. The main goal for consumers is price minimization. However, for
general SLA negotiation support, other QoS parameters must also be considered.

Our approach allows to combine services from multiple providers and to nego-
tiate individual QoS parameters across multiple tiers. We introduce coordinating
entities to manage the composition and make use of a two-phase protocol for
concurrent negotiations with multiple providers. In the second phase of the pro-
tocol, we permit multiple overbidding. Furthermore, we apply time-dependent
strategies, which stop the overbidding process if necessary.

3 Negotiation Model and Requirements

The work at hand focuses on service composition in cloud computing, where
m services from different providers can be combined to form a complex service.
Our approach is based on a market model where consumers submit their require-
ments to brokers in terms of desired functional and non-functional properties for
specific services [3]. The brokers have access to a service registry in the mar-
ket. By querying the registry, a broker is able to determine the sets of the most
suitable cloud providers for the different m services based on the functional prop-
erties. A broker acting on behalf of a consumer conducts the negotiation of the
non-functional properties, i.e., QoS parameters for the m services resulting in an
agreement or in the breakdown in negotiations. For this purpose, a broker has to
start m negotiation processes. Each process consists of concurrent one-to-many
negotiations for a specific type of service with a set of providers. In addition, it
may also be necessary for a service provider to initiate further negotiations with
multiple providers on the lower resource level in order to lease infrastructure for
the deployment of a specific service instance. To realize our approach, an ap-
propriate negotiation mechanism is required to conduct concurrent negotiations
with multiple providers, even across multiple tiers.
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3.1 One-to-Many Negotiations

Basically, a negotiation mechanism consists of two components: a negotiation
protocol and the negotiation strategies of the negotiating parties [9]. The
negotiation protocol specifies the rules for interaction (i.e., message exchange,
conditions for agreement) between the negotiating parties and the negotiation
strategies must be compatible with the applied protocol. A negotiation strat-
egy defines the sequence of actions planned to make during negotiation by a
participant.

In our scenario, each negotiation concerns a specific service and the nego-
tiating parties have multiple conflicting interests (e.g., price). The conflicting
interests refer to the negotiable values in the form of non-functional parameters
of a service. Similar to Microsoft Office1 and research conducted in the area of
Web services [19], we assume that each service is offered in the form of different
priced packages (e.g., Gold, Silver, Bronze).

As input for negotiation, consumers and providers must specify their require-
ments for each service. We assume that the consumer specifies ranges for the
several QoS parameters reflecting the lower and upper bounds he is willing to
accept (e.g., response time between 5 ms and 10 ms). Since some parameters
may be more important than others, we also assume that the consumers and
providers specify weights for each QoS parameter. Furthermore, a goal is re-
quired on both, consumer and provider side, in order to make decisions during
each round of the negotiation process and, ultimately, to reach an agreement.
On both sides, the goal can be expressed based on the expected benefit from a
given service offer. From a consumer’s perspective, this can be mathematically
expressed as follows: Given a set of m attributes X = {x1, ..., xm} and different
weights W = {w1, ..., wm} for the attributes with

∑m
i=1 wi = 1 for a desired

cloud-based service. Let U t
e = f(W,X) be the expected utility of the service

consumer in round t and let U
′
e be the minimum expected utility of the service

consumer. Further, let Ot = {o1, ..., on} be the set of service offers provided by
n cloud providers in round t and U t(oi) be the utility of the consumer for the
service offer from the ith provider. Given these parameters, the general goal is to
choose a service offer oi during negotiation that results in a minimum distance
between the consumer’s expected utility U t

e and the utility U t(oi) of the service
offer oi to the consumer (cf. Equation 1).

arg min
i

f(i) =
∣∣(U t

e − U t(oi))
∣∣ where U t(oi), U

t
e ≥ U

′
e (1)

3.2 Complex Cloud Service Negotiation Requirements

Several implicit and explicit assumptions are already part of the one-to-many ne-
gotiation model mentioned above. However, further requirements must be taken
into account for our global cloud service composition scenario.

1 http://office.microsoft.com/en-us/buy/office-2010-which-suite-is-right-for-you-
FX101825640.aspx [last access: 2011-10-01]



22 M. Siebenhaar et al.

– Common Protocol: In order to enable interoperability, consumers and
providers must agree on a common protocol first before participating in a ne-
gotiation. This issue is addressed by conducting so-called meta-negotiations
(e.g., [3]), which are performed before the actual negotiation takes place.
Meta-negotiations are not part of our work.

– Imperfect Information: To allow for optimal negotiation results, the scor-
ing information must be public [11]. However, if the parties have competing
interests, the parties do not want to disclose their strategies to other parties.
Hence, some information must be private (e.g., decision models) and other
information must be public (e.g., expected QoS parameters of a consumer).

– Time Limits: We assume a given time limit as a condition for the comple-
tion of negotiations, since service brokers do not have an infinite amount of
time to reach an agreement [12].

– Administrative Domains: In a common three-tier cloud model [2], users
need to negotiate with service providers, who must, in turn, negotiate with
resource providers to acquire the required resources. The QoS levels provided
by service providers depend on the QoS levels provided by the resource
providers. Hence, SLAs must be established across tiers while considering
the dependencies between the QoS levels on different tiers.

– Coordination: Besides the dependencies across tiers, it is also necessary to
coordinate the service composition. Coordinators must be established in or-
der to balance the dependencies between the QoS parameters of the different
services and to manage the available resources (e.g., [4], [7]).

– Security: The communication between the negotiating parties must be per-
formed in a secure manner (e.g., SSL encryption of messages). These issues
are not considered in our work.

4 Approach

Based on the assumptions and requirements outlined in the last section, we
propose an approach for concurrent negotiations in cloud-based systems in order
to combine services from multiple providers. From the discussion of related work
in Section 2 it follows that coordinating entities are required when consumers
want to combine services from multiple providers. In addition, other entities are
necessary, which are controlled by coordinators, to conduct the negotiations.

4.1 Negotiation Architecture

Our negotiation architecture is based on the models proposed by Di Nitto et al. [7]
and Chhetri et al. [4]. Each entity participating in the negotiation is represented in
the form of a Cloud Negotiation Support System (CNSS) as depicted in Figure 1.
After having received a service composition request from a consumer, a broker de-
termines the most suitable cloud providers for each of the different services based
on the consumer’s functional requirements. Subsequently, the service composition
request is passed to the CNSS of the broker together with the provider lists. The
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Fig. 1. Negotiation Architecture

CNSS then creates a coordinating entity (CE) responsible for managing the con-
current negotiations with the providers. The CE in turn creates several negotiat-
ing entities (NE) according to the number of services in the composition request.
Each of them has the task to negotiate concurrently with multiple providers over
the QoS parameters of a particular service. It can be observed in Figure 1, that
this setup enables negotiations across different tiers. Service providers who want
to obtain resources from resource providers initiate concurrent negotiations in a
similar way. That is, a CE creates the required number of NEs which start ne-
gotiations with the respective resource providers. In order to account for the QoS
parameters resulting from the negotiations with the brokers on consumer side, the
CE of a service provider’s CNSS must also observe these negotiations. Hence, the
tasks of a CE can be defined from two perspectives.

– CE on behalf of consumers: Before initiating negotiations with providers,
a CE has to split the consumer’s requirements into global requirements for
the composition and local requirements for each service that is part of the
composition. The global requirements are observed by the CE and the local
requirements are passed to the respective NEs. Since the CE manages the
whole negotiation process, additional information such as session deadlines,
reserve values or strategies is also passed to the NEs.

– CE on behalf of providers: A CE on provider side must be aware of the
currently available service levels or resources. Furthermore, CEs on provider
level must pass this information to NEs and observe their behaviour during
negotiation on a higher level.

4.2 Two-Phase Negotiation Protocol

Communication between negotiating parties is essential in order to reach an
agreement. Furthermore, the different parties must be aware of the rules of the
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Table 2. List of Message Types

Message (CE ↔ NE) Meaning

inform CE passes required negotiation information to NE
notify NE uses notify message to report negotiation status

Message (NE ↔ NE) Meaning

call for proposal Negotiation is initiated by requesting for proposals
propose Negotiation is initiated with initiated proposal
pre-proposal Agent makes pre-proposal in the warum-up phase
pre-accept Agent temporarily accepts a proposal
pre-reject Agent temporarily rejects other agent
definitive-accept Agent is formally bound to an agreement
definitive-proposal Agent makes final (formal) proposal
definitive-reject Agent rejects other agent completely
withdraw Agent leaves the negotiation

negotiation they are participating in. Basically, the rules for interaction can be
specified in the form of a negotiation protocol. In our negotiation architecture,
a CE creates, informs, and also commands NEs if required. The NEs in turn
communicate with multiple other NEs outside their own CNSS by exchanging
messages. The message types, which are required in our concurrent negotiation
scenario, are depicted in Table 2. The proposed message types are based on
the FIPA specification [8] and the work by Aknine et al. [1]. As prerequisite for
determining preferences for service offers and for conducting automated negotia-
tions, the issues must be expressed in a common and formal way. Our expression
is based on that proposed by Sierra et al. [11]. Each issue is characterized by a
constraint interval in terms of a minimum and maximum value. Typically, either
the minimum or the maximum value for an issue will be part of the initial pro-
posal. The remaining upper or lower bound of the interval represents the reserve
value. In our scenario, a proposal is defined as follows.

Definition 1 (Proposal). A proposal P is a message sent from a participant
p to an opponent o and contains a set S of n issues and their values proposed by
p. Each issue xi with i = 1...n of the proposal corresponds to a specific quality
parameter of a cloud service under negotiation. A proposal is valid, if every issue
in the proposal is valid. An issue xi is considered a valid issue, if its proposed
value is within the intervals of p and o defined for this issue, i.e., ∀xi ∈ P ,
xi ∈ [minp

i ,maxp
i ] and xi ∈ [mino

i ,maxo
i ].

During negotiation, each party aims to maximize its utility. Since the negotiat-
ing parties have conflicting interests, concessions have to be made in order to
reach a mutual agreement. The amount of concession depends on the applied
strategy. In order to reach an agreement, the negotiating parties typically al-
ternate in making proposals. Based on the issues in the proposal, the utility
for a proposal is calculated. Intuitively, a participant prefers one proposal over
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another, if the utility of the opponent’s proposal to the participant is equal or
higher than the utility of the participant’s own proposal. In this case, a proposal
is acceptable. However, since the negotiations in our scenario involve multiple
parties, more than a single acceptable proposal may exist. Therefore, a proposal
can be (temporarily) accepted, if the following condition holds [5]:

Definition 2 (Acceptance Condition). Let Bi with i = 1...n be a set of pro-
viders a consumer C negotiates with. A Proposal PBi→C sent from provider
Bi to consumer C can be accepted by C, if UC(PC→Bi) ≤ UC(PBi→C) and
UC(PBi→C) = max(UC(PBj→C)) ∀PBj→C .

After having given a formal expression for the negotiation issues and an ac-
ceptance condition for proposals, we can now elaborate on the different mes-
sage types of the negotiation protocol applied in our scenario. The negotiation
protocol is based on the protocols proposed by Dang and Huhns [6] and Ak-
nine et al. [1]. As in their approaches, we also introduce two phases into the
negotiation process: a warm-up and a countdown phase. During the warm-up
phase, proposals are exchanged to find mutual interests. Afterwards, providers
have to compete with other providers for the best proposal during the count-
down phase. A two-phase approach has been chosen, since this protocol supports
negotiations in a flexible manner. The negotiation participants are not immedi-
ately bound to the first accepted proposal. Instead, the negotiation continues,
which allows the participants to find more appropriate proposals. The different
message types are described in the following.

Message exchange between CE and NE: CEs create NEs to conduct concurrent
negotiations with multiple providers for a particular type of service. An inform
message is sent from a CE to an NE to provide the NE with all the information
required for a negotiation (e.g., deadline, reserve value, strategy). In addition, a
CE can send an inform message to interfere in the negotiation process (e.g., with-
draw an NE from a negotiation). An NE in turn is able to report the negotiation
status to a CE by sending a notify message.

Message exchange between NE and NE: NEs initiate negotiations with providers
upon request of a CE by either sending an initial proposal or a call for proposal
message to their opponents. In the latter case, NEs request initial proposals from
providers. The negotiation is carried out in rounds. During the warm-up phase,
the participants alternate in sending pre-proposal and counter pre-proposal mes-
sages until there is at least one acceptable proposal. An NE then determines the
best proposal and sends a pre-accept message to the owner of this proposal
and pre-reject messages to all other opponents. Subsequently, the receiver of the
pre-accept message formulates a definitive-proposal message and sends it back
to the NE. Other opponents, who received a pre-reject message, may still par-
ticipate in the negotiation. They can formulate pre-proposal messages and try to
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overbid the currently best proposal. Even a definitive-proposal can be overbid by
a pre-proposal sent by one of the participants in the last round. The overbidding
process continues until a definitive-proposal is accepted as the best proposal.
The owner of this proposal is notified by sending a definitive-accept message. All
others receive a definitive-reject message and the negotiation is over. The last
message type to be mentioned is the withdraw message. Such a message can be
sent in any round during negotiation by a participant, who wants to leave the
negotiation.

Simply by using the negotiation protocol, there is no guarantee that an agree-
ment can be reached. Therefore, appropriate negotiation strategies are also nec-
essary in order to increase the probability of reaching an agreement.

4.3 Negotiation Strategies

Negotiation strategies do not only affect the probability of reaching an agree-
ment, but also affect the quality of an agreement (e.g., in terms of the achieved
utility). Different strategies have been proposed in related work so far. Since time
plays an important role in negotiation, even more so when concurrent negoti-
ations are conducted between multiple competing parties, we apply and assess
time-dependent strategies in our scenario.

In Section 4.2 we stated that each participant defines ranges xi ∈ [mini,maxi]
for each negotiable issue. The utility values for an issue are typically defined as
a value within a range from 0 to 1, with 1 representing the highest utility. Con-
cerning the negotiation strategy, we find it intuitive to make an initial offer with
the most preferred value for each issue and make concessions during negotia-
tion to reach an agreement. Therefore, the utility value for the i-th issue xi of a
proposal P can be calculated by a utility function U as follows (e.g., [19], [14]):

UP (xi) =

{ maxi−xi

maxi−mini
if a decrease of xi leads to a higher utility

xi−mini

maxi−mini
if an increase of xi leads to a higher utility

It can be obtained from the equations that the most preferred value for an issue is
the minimum value in the first case and the maximum value in the second case. In
order to determine the concession amounts for each issue in round t, we apply the
time-dependent tactics as proposed by Sierra et al. [11]. Basically, a negotiation
strategy can be defined by using one or more tactics. A pure strategy applies
a single tactic to compute the next value for an issue, while a mixed strategy
makes use of a weighted combination of tactics [10]. In our scenario, we use pure
strategies based on the time-dependent tactic family. Using a time-dependent
tactic, a counter proposal for issue i at round t ≤ tmax with tmax representing
the deadline is calculated as follows [11]:

xi =

{
mini + αi(t)(maxi −mini) if UP (xi) is decreasing
mini + (1− αi(t))(maxi −mini) if UP (xi) is increasing
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Function αi(t) determines the concession amount made for issue i in round t.
Besides the exponential function stated below, also a polynomial function can
be used. We decided to use the exponential function, since it concedes slower at
the beginning. The function is calculated as follows [11]:

αi(t) = e(1−
t

tmax
)β ln ki

The initial proposal can be obtained from αi(t) by multiplying ki with the size
of the constraint interval. The constant ki can be chosen based on experience.
The tactics are parameterized by the value β, which influences the concession
amount [11]:

– Conceder (β > 1): the negotiating party makes a great concession already
at the beginning and soon reaches the reserve value

– Linear (β = 1): the negotiating party makes an equal2 concession in each
round during negotiation

– Boulware (β < 1): the negotiating party maintains its proposed value nearly
all the time and only makes a great concession shortly before the deadline

5 Experimental Results

This section presents initial experimental results of our approach. For this pur-
pose, the two-phase negotiation protocol as described in Section 4.2 has been im-
plemented. Furthermore,we performa comparison of the different time-dependent
strategies applied for concurrent one-to-many negotiations in our cloud-based sce-
nario. The evaluation is a proof-of-concept for the proposed approach and at the
same time analyzes the influence of different provider and consumer strategies as
well as different deadlines on the success rate and on consumer and provider util-
ity. The simulations have been performed on a laptop with a Core 2 Duo 2.40GHz
processor with 2 GB RAM and Ubuntu 11.04 as operating system. The different
negotiating entities are represented by software agents. Repast Simphony3 has
been used as agent framework. Our setup for the experiments uses the settings
applied in [10] as guideline. In each experiment, a consumer negotiates concur-
rently with 10 cloud providers and a specific type of strategy is applied one each
side. All providers use the same type of strategy, but the strategic parameter β
(i.e., the concession amount) can be different. The strategies on consumer and
provider side do not change during negotiation. We performed separate experi-
ments to analyze the effect of different strategies and deadlines on the utility val-
ues and success rate. Each strategy has been evaluated with respect to the other
three time-dependent strategies using either low or high deadlines on both sides.
Hence, comparing 3 consumer strategies with 3 provider strategies using 2 differ-
ent deadlines we obtain a total number of 18 experiments. For each experiment,
20 test cases have been generated. The β value of the consumer is 0.5, 1, and 2.5

2 When using the exponential αi(t) function concession is made in near constant rate.
3 http://repast.sourceforge.net/
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(a) Linear Tactic for Provider (b) Linear Tactic for Provider

Fig. 2. Average Consumer and Provider Utility and Linear Tactic for Provider

(a) Boulware Tactic for Provider (b) Boulware Tactic for Provider

Fig. 3. Average Consumer and Provider Utility and Boulware Tactic for Provider

for strategy boulware, linear, and conceder, respectively. Providers’ β values are
randomly selected between (0.0,1.0) if boulware strategy is used, are equal to 1.0 if
the strategy is linear, and are in range (1.0,5.0] if the conceder strategy is applied.
In each experiment, consumer and providers either randomly select their deadline
between [10,15] rounds in case of a low deadline experiment or between [25,30]
rounds in case of a high deadline experiment. The initial proposals of consumer
and providers are also generated at random for each of the 20 scenarios, but the
20 scenarios are fixed for all of the 18 experiments. Proposals in our experiments
comprise three different issues: price, response time, and availability. The ranges
of the different issues used for proposal generation are listed in Table 3.

The outcomes of the evaluation are depicted in Figures 2 to 4. The Figures
display the average utility either to consumer or provider of all successful deals
depending on the strategies and deadlines used in each experiment. In addition,
each bar indicates the percentage of successful deals (i.e., success rate). For each
experiment, average utility and success rate are calculated as follows:

avg. utilitycust/prov =

∑
utilitycust/prov
|Dealssucc|

succ. rate =
|Dealssucc|
|Dealsall|

(2)

The average run times of a single scenario in case of low and high deadlines are
50 ms and 80 ms, respectively. The simulation of a single experiment (20 scenar-
ios) takes between 0.7 and 2.5 seconds. It can be obtained from the results that
the deadline has only a marginal effect on the utility values of the consumer and
provider, but even more on the success rate of the negotiations. Therefore, it can
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(a) Conceder Tactic for Provider (b) Conceder Tactic for Provider

Fig. 4. Average Consumer and Provider Utility and Conceder Tactic for Provider

be more beneficial to make use of a higher deadline in order to reach an agree-
ment. Nevertheless, in case of low deadlines, the success rates of the different
strategies differ considerably. Hence, if there is an urgent need for a consumer to
reach an agreement, applying a conceder strategy or, as the second best option,
a linear strategy, gives a consumer the biggest chance to succeed. On average,
the linear strategy provides a greater utility to the consumer than the conceder
strategy. The boulware strategy is the dominant strategy on consumer side con-
cerning the amount of utility, but only with little chance to succeed in case of
low deadlines. On provider side, the boulware and the linear strategy provide
the highest utility to the provider. They do not differ very much concerning the
amount of utility, but their success rates slightly differ depending on the strategy
applied by the consumer. The conceder strategy should not be applied from a
provider’s point of view, since it achieves the worst utility values in all experi-
ments. Finally, the utility values of consumer and provider must be compared to
each other. If the consumer applies a boulware strategy, the amount of utility to
the consumer is always higher than the amount of utility to the provider. The
reverse case occurs, when a consumer applies the conceder strategy, except for
this situation when the provider also applies the conceder strategy. Nearly sim-
ilar utility values are obtained on average, when the consumer applies a linear
strategy and the provider applies a boulware strategy.

Summarizing, if we consider the best trade-off between amount of utility and
success rate, a consumer should apply a linear strategy in case of low deadlines
and a boulware strategy in case of high deadlines. On the provider side, the linear
strategy has higher success rates on average, but the boulware strategy provides
a slightly higher amount of utility to the provider. If a balance must be achieved
between the average utility values of consumer and provider, a consumer should
apply a linear strategy while a provider uses a boulware strategy.

Table 3. Ranges for Consumer and Provider Proposals

Issue Consumer Provider

Price min[8,12] max[18,22] min[10,15] max[20,25]
Resp. Time min[1,5] max[10,15] min[1,7] max[13,17]
Availability min[-99.999,95] max[-85,-80] min[-99.9,-90] max[-80,-70]
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6 Conclusion

In this paper, we have presented an approach for concurrent negotiations in
cloud-based systems. We have introduced a CNSS-based architecture and a two-
phase negotiation protocol to conduct negotiations with multiple providers across
multiple tiers. In addition, we have evaluated the applicability of three different
time-dependent strategies for negotiation in our scenario. The results reveal that
the deadline has a large effect on the success rate, but less on the achieved utility.
Furthermore, we have seen in low deadline experiments that the best strategy of
a consumer in terms of utility and success rate highly depends on the strategy
of the opponent. Therefore, appropriate mechanisms have to be developed to
determine a previously unknown strategy or new strategy variants of the op-
ponent. This permits an agent acting on behalf of a consumer to better react
to the providers’ strategies. For this purpose, also appropriate decision support
systems have to be developed, which choose the most promising strategies for
consumers. Further enhancements of our approach are the evaluation of other
negotiation strategies (e.g., resource dependent tactics) and the assessment of
mixed strategies. Finally, a coordinator mechanism must be developed, which
specifies the actions of a CE, when and how to interfere in negotiations.
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Abstract. The proliferation of the Infrastructure-as-a-Service (IaaS)
paradigm has introduced possibilities for trading computational resources
on a scale thatmoves beyond the individual provider level. At present how-
ever, the adoption of open markets for trading IaaS resources has been
largely unexplored. This paper investigates the design of such an open
market. Our focus thereby lies on flexibility and the ability to model and
integrate currently deployed pricing schemes of real-world providers in-
stead of imposing new schemes. We discuss the issues encountered by the
Continuous Double Auction (CDA) in this regard and introduce a Contin-
uous Reverse Auction (CRA) that is paired with a novel bidding language
based on tag and constraint sets.

Keywords: Markets, Bidding Language, Reverse Auction, Double Auc-
tion, IaaS, Cloud Computing.

1 Introduction

Infrastructure-as-a-Service (IaaS) providers materialize the cloud computing mo-
del by offering consumers access to (virtualized) hardware resources while charg-
ing them based on how these resources are used. As the IaaS market continues
to grow and the number of IaaS players continues to increase (as predicted by
Gartner [6]), possibilities arise for trading IaaS resources on a scale that moves
beyond the individual provider level. Such trading is used in other commodities
markets such as electricity markets, to efficiently balance supply and demand on
relatively short timescales and foster competition.

An important desirable property of such an envisioned market is that it needs
to be open, accommodating the policies of current real-world providers. Only
when a market has a sufficiently low entry barrier that brings together many dif-
ferent consumers and providers, will the price of computing resources be subject
to market discipline rather than being dictated by specific providers. Realizing
this criterion is non-trivial, and at present, the possibilities for creating such
open markets have been largely unexplored. The complexity of an IaaS good is
significantly higher than that of many other commodities as IaaS resources are
heterogeneous and multi-dimensional. As standardization of resources and APIs
among IaaS providers is currently non-existent, defining the exact properties of
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the goods that are being traded is non-trivial, and imposing a common stan-
dard is difficult. Additionally, many providers use different allocation and price
models (all based on the pay-what-you-use model, but implemented differently)
to charge their customers. Bringing together these different models into a single
IaaS market is not addressed in current related work [3,5,11,7,2,1] on market
mechanisms for utility and grid computing systems, and forms the focus of this
paper.

In this contribution we investigate whether it is feasible to design such an open
market for IaaS resources. We spend particular attention to the Continuous Dou-
ble Auction (CDA) mechanism that is used in many commodity markets, and
find it unsuitable for this purpose in the current IaaS setting due to the com-
plexity and diversity of price models used by providers. We therefore introduce
a new market mechanism called the Continuous Reverse Auction (CRA) that is
combined with a flexible bidding language based on tag and constraint sets to
deal with these shortcomings.

2 Tag and Constraint Sets

In order to introduce flexibility into the market with respect to heterogeneity of
IaaS goods and pricing models, we rely on the use of tag and constraint sets. We
extend the notion resource sets as defined by Dubé within the context of a CDA-
based market for Grid resources [4], and accommodate it to the IaaS setting.
Dubé introduces resource sets that describe resource properties in bids and offers
to a CDA. Consider for example the resource set S in 1 which represents a
computer with a x86 system architecture, two-core processor clocked at 2.4 GHz,
4GB of RAM and 16GB of hard disk space.

S = {x86proc arch, 2proc cores, 2.4proc clock, 4mem size, 16disk size} (1)

Obviously, the used unit as well as the type and domain of each of the items
in the set should be clearly defined. In [4], this is done by specifying a discrete,
finite domain set for each of the resource types, along with the used unit (if
applicable). Examples of such domain sets are shown in 2.

Φproc cores = {1, 2, 4, 6, 8, 16, 32}
Φmem size = {1, 2, 4, 6, 8, 16, 32, 64, 128, 256} (GB)

Φnet bw = {10, 100, 1000, 2000} (MB/s)

(2)

Given a requirement set Rb accompanying an ask and a component set Co in-
cluded in an offer:

Rb matches Co ⇐⇒ Co matches Rb ⇐⇒ Rb ∩ Co = Rb (3)

A shortcoming of this approach is that it lacks the expressiveness and flexibil-
ity that is needed to express some of the more complex constraints that are
inherently part of IaaS solutions. For example, a constraint on refund policy
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will typically include very provider specific conditions under which a refund can
occur, as well as what this refund actually includes. As such, it cannot be ex-
pressed by a match on a single value. Another example is the implementation
of a region constraint for which geographical knowledge is needed to determine
which regions are included or overlap with others. A final issue is that in Dubé’s
approach a market is needed that has specific knowledge about each of the re-
source types in order to match sets, i.e. it needs to know the different matching
semantics of each of the resources. In a situation where more and more complex
constraints are used with complex matching semantics, using such a system is
no longer viable. Indeed, given the heterogeneity of IaaS solutions today, using a
matching mechanism in which the market must be aware of all possible resources
and constraints is not manageable nor future proof.

To address these issues, we introduce tag sets and constraint sets, which enable
the specification of more complex constraints. In particular, the specification of a
constraint on a resource that a consumer is requesting or a provider is offering will
be separated from the specification of the values that characterize that resource.
Splitting the values from the matching semantics enables the specification of
complex constraints that span multiple resources. Our approach to matching
also removes the need for the market to have knowledge of each type of item in
the sets. When a consumer or provider describes a resource, requirement, service
or feature it uses tag sets that describe its different characteristics. Formally, a
tag T in a tag set T S is defined as the tuple in 4. It contains a name and a set
of attributes that define the tag.

T = [NT ,AT ] (4)

The name NT of the tag can be any regular string, but has to be unique for each
type of tag and within a tag set. The attributes AT associated with the tag (see
5) are a set of key-value pairs.

AT = {(x, f(x))}
f : x ∈ string 	→ value

(5)

These attributes contain the values that further characterize a given tag. For
example, in the case of a Disk tag (NT =“Disk”), the tag attributes will contain
both the unit in which the hard disk size is specified as well as the size of the
disk, i.e. [Disk, {(unit, GB), (value, 160)}]. Attribute values do not have
to be singular, they can also be of a compound nature. That is, it is also possible
that these values are lists or nested tags. For example, if multiple operating
systems are supported by a provider, they can be listed as follows.

[SupportedOperatingSystems, {(list, {

[OperatingSystem, {(name, Windows), (version, 7)}],

[OperatingSystem, {(name, Ubuntu), (version, 11.04)}]}

)}]
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Tag sets can therefore group multiple attributes under a single tag, allowing for
a more hierarchical approach compared to resource sets. A less visible difference
to [4] is that tag sets themselves only describe the characteristic of a request or
offer. The matching semantics are encoded by constraint sets that accompany
tag sets. These contain constraints that define a certain matching restriction.
Formally, a constraint (6) is a function that defines a matching restriction on a
request R, by expressing restrictions on the tags of R and the tags of an offer
O against which R is matched.

C : (T SR, T SO) 	→ {true, false} (6)

Given the generic definition in 6, it is clear that the outcome of a constraint
function can depend on a large number of factors. As an example, consider a
memory constraint as given by Algorithm 1.

Algorithm 1. MemoryConstraint(T S1, T S2)

T1 ← T S1[“Memory”];
T2 ← T S2[“Memory”];
if T1 �= null and T2 �= null then

if (AT1 [“unit”] = AT2 [“unit”]) and (AT1 [“value”] ≤ AT2 [“value”]) then
return true;

end if
end if
return false;

A constraint function always takes two arguments: the tag set (T S1) that
belongs to the request to which the constraint belongs and the tag set (T S2)
associated with the offer against which the constraint is verified. The Memory

constraint works as follows. First, the occurrence of the Memory tag is evaluated
in both tag sets. If one of both sets does not contain the tag, the result of
the constraint is negative. Otherwise, the “unit” attributes are compared first
to verify whether both tags are specified in the same unit1, and then checks
whether “value” specified in T1 is less than or equal to that of T2 . If this is
the case, the constraint is fulfilled. In this example, the Memory constraint was
used to define matching semantics. Besides the Memory constraint, many other
constraints obviously exist. Some of these operations should be standardized
by the market to avoid confusion among the market participants, while others
can remain consumer- or provider-specific. An example where a consumer would
specify a custom constraint is the previously mentioned case where a trade-off
between resource uptime and refund policy is required.

Note that verifying consumer- or provider-specific constraints requires that the
algorithm embodying the constraint is made available to the entity performing
the matching. The most obvious way to do this, is by allowing consumers and

1 The operation could be modified to contain logic to do unit conversions.
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providers to run custom code that can verify constraints within the market
during the matching process. Despite the fact that the action of running custom
programming code on a remote location itself is relatively straightforward using
a proper platform and software libraries, doing so introduces a set of technical
challenges w.r.t. code verification and protecting the market’s integrity.

By giving the market a database of standard constraints for which it knows the
matching semantics and leaving the matching of non-standardized constraints
to the consumer and provider themselves, the technical difficulties that remote
code introduces are effectively avoided. In practice, such a system lets consumers
and providers specify the name of the constraint as part of the constraint set
when a standard constraint is used and specify the endpoint of a web service
that can verify custom constraints in the other cases.

To increase the number of constraints that can be checked locally, we introduce
a set of generic constraints such as the LessThan relational constraint defined in
Algorithm 2. In order to express which tag is checked in a generic constraint, the
notation Constraint[Parameters...] (as in Resource[Memory] will be used
in the remainder of this contribution.

Algorithm 2. LessThanConstraint(T S1, T S2, tagName, attributeName)

T1 ← T S1[tagName];
T2 ← T S2[tagName];
if T1 �= null and T2 �= null then

if AT1 [attributeName] < AT2 [attributeName] then
return true;

end if
end if
return false;

Algorithm 3. ResourceConstraint(T S1, T S2, tagName)

T1 ← T S1[tagName];
T2 ← T S2[tagName];
if T1 �= null and T2 �= null then

if (AT1 [“unit”] = AT2 [“unit”]) and (AT1 [“value”] ≤ AT2 [“value”]) then
return true;

end if
end if
return false;

To further indicate the usefulness of such constraints, consider the Resource

constraint in Algorithm 3 which is a generalization of the Memory constraint of
Algorithm 1 that can also be used to implement many other hardware related
constraints (such as Disk or CpuClock).
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3 Combining the CDA with Tag and Constraint Sets

The aforementioned tag and constraint sets could be used in conjunction with a
traditional CDA approach. A bid or ask is then represented by a 5-tuple:

[Volume, Price, ExpirationDate, TagSet, ConstraintSet]

As an example, consider the case where Amazon submits an ask to a CDA,
specifying a volume of 5 small instances at the price of $0.10 per hour :

Ask = [5, 0.10, 12/07/11 13:00:00 UTC-7, {

[Memory, {(unit, MB), (value, 1700)}], [EC2_ECU, {(value, 1)}],

[Disk, {(unit, GB), (value, 160)}], [Platform, {(value, x86)}],

[EC2_API, {(value, m1.small)}], [SLA_Uptime, {(value, 99.95)}],

[SupportedOperatingSystems, {(list, ...)}],

[SupportedEC2_AMI_IDS, {(list, ...)}],

[Splittable, {(value, 1)}],

[AllocationType, {(value, OnDemand)}],

[Time, {(value, 1), (unit, hour)}],

[Region, {(value, USA/Virginia)}]

[Provider, {(name, Amazon AWS), (url, http://aws.amazon.com)}] },

{ ConsumerLocationExclusion["Cuba"], ... }

]

A consumer submits a bid with a price of $0.12 and some hardware constraints.

Bid = [2, 0.12, 05/06/11 02:00:00 UTC+1, {

[Disk, {(unit, GB), (value, 100)}],

[Memory, {(unit, MB), (value, 1500)}],

[AllocationType, {(value, OnDemand)}],

[Time, {(value, 1), (unit, hour)}],

[Consumer, {(name, "Jan Wolk"),

(location, "Brussels, Belgium, EU")}] },

{ Resource["Disk"], Resource["Memory"],

Equal["AllocationType", "value"], EqualAll["Time"] }

]

Note the flexibility that our tags introduce with respect to describing the re-
sources and conditions under which the good is traded. The Splittable tag
for example allows the provider to indicate whether its offered volume can be
partially matched or not and constrains the granularity of the split. Further
note that a constraint is specified on the ask which constrains the geographi-
cal location of the consumer with the matching bid (e.g. to conform to trading
agreements).

Although the use of tag and constraint sets increases the flexibility of the
CDA, a fundamental problem remains that relates to the way real-world IaaS
resources are currently priced. The price that consumers pay for a set of resources
is not only determined by their defining characteristics, but also by how these
resources are used. The total usage cost is not determined by a single price (e.g.
cost per VM hour) but depends on a variety of different price components (e.g.



38 J. Roovers, K. Vanmechelen, and J. Broeckhove

cost per GB inbound bandwidth consumed) that have different weights according
to the actual resource usage. Because of this, adopting a CDA that only takes
a single price component into account to sort the bid and ask queues is not
desirable. If such a CDA would be used, it is destined to be gamed by providers
that advertise very low prices for that component while charging high prices for
the use of other resource components, thus leading to inefficient allocations.

Introducing a multi-price component model is possible if consumers add usage
values to their tag sets, and providers provide component-wise prices in their
offers. The market could then determine the transfer price for matching bid b
with ask a as in 7.

P (a, b) =
∑

T ∈ (T Sa ∪ T Sb)

v(T ) pA(T ) (7)

where the price P (a, b) for a certain bid b that is matched with an ask a of
provider A is determined by the weighted sum (according to the usage of the
consumer) of the different price components specified by the provider’s ask. The
weights are given by v(T ), which is defined to be the value of the usage-tag that
is used by the price-component for the resource specified by tag T . The term
pA(T ) is then the unit price specified by provider A for usage of the resource
specified by tag T . A provider would need to encode the relation between usage
tags and price tags (e.g. in a table) as shown in Table 1.

Table 1. Provider specified table that defines the relations between usage and price
tags

Resource Tag Usage Tag Usage unit Unit price

Memory TimeUsage hour 0.10
CpuClock
CpuCores
Disk

OS (Windows based) TimeUsage hour 0.03

LoadBalancing TimeUsage hour 0.10

LoadBalancing OutgoingBandwidthUsage GB 0.02

LoadBalancing IncomingBandwidthUsage GB 0.02

OutgoingBandwidth OutgoingBandwidthUsage GB 0.13

Disk I/O DiskAccessUsage million accesses 0.05

By grouping the resources, providers can indicate that the consumer should
only be charged once for those resources. Similarly, by adding a resource multiple
times with different usage tags, the provider can indicate that certain resources
incur costs that are determined by multiple factors (in the case of the load
balancing service, both per hour and per in- or outgoing GB).

However, this still requires the transfer price to be a linear combination of
the component prices, which is not the case in practice. Consider for example
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NewServers [8] that provide 3GB of free outgoing bandwidth per hour, charging
$0.10 per additional GB, or Amazon’s tiered S3 pricing model.

4 Continuous Reverse Auction for IaaS Resources

The Continuous Reverse Auction (CRA) combines properties of the Reverse
Auction and the Continuous Double Auction to trade IaaS resources among
multiple buyers and sellers to deal with aforementioned issues. A systematic
overview of how the CRA works, is provided in Figure 1.

Fig. 1. Schematic overview of the workings of the Continuous Reverse Auction

4.1 Mechanism and Principles

In the Continuous Reverse Auction, consumers direct requests to the market,
while providers deliver quotes in response to these requests. A consumers sub-
mits a requests to the market that subsequently returns the cheapest quote by
querying a group of previously registered providers. Providers reply by either
sending a quote to the market or by indicating that they are unable to match
the given request. Upon receiving the quote from the market, the consumer can
either accept or decline it.

The bidding process is initiated by a consumer that wants to allocate a set of
IaaS resources and submits a request to the market. The bidding language that
is used to specify this request, is based on the tag and constraint sets that were
introduced in section 2:

Request = [Volume, TagSet, ConstraintSet]

A consumer can decide to accept or decline an offered quote, it is therefore no
longer necessary to specify a price as part of his request. Also, as a request in the
CRA is either matched immediately or not at all (if no provider is able to fulfill
the consumer specified constraints), there is no need to specify an expiration
date as part of the request. The components of a request are a Volume indicating
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how many units a consumer wishes to allocate, and a TagSet and Constraint

specifying the resource to allocate.
Once the request has arrived at the market, a price request is sent out to all

registered providers, to which the providers respond with a quote or with a reply
that they cannot match the request.

Quote = [Price, Volume, Identifier]

Besides the Price, the quote also contains a Volume that indicates how many
units the provider can or is willing to match. The (securely encoded) Identifier
in the quote allows a consumer to actually allocate resources after a match has
been found on the market; it allows the consumer to prove the commitment a
provider made when it handed out a certain quote. For further details we refer
to [9].

After all registered providers have replied, the market returns the cheapest
quote as a match to the consumer. If bids can be split, the market can match dif-
ferent units of a consumer’s request with different providers and return multiple
matches. Naturally, this matching occurs according to the quote prices specified
by the providers (cheaper providers are matched first). Algorithm 4 outlines the
matching procedure2.

Algorithm 4. submitRequest(r: Request): Match

bestQuotes ← {}
for p in providers do

bestQuote ← bestQuotes.first();
currentQuote ← p.getQuote(r);
if bestQuote = null or currentQuote.getPrice() < bestQuote.getPrice() then

bestQuotes ← {currentQuote}
else if bestQuote.getPrice() = currentQuote.getPrice() then

bestQuotes.add(currentQuote)
end if

end for
matchingQuote ← selectRandomElement(bestQuotes);
return new Match(matchingQuote);

As providers no longer submit asks to the market but are asked to deliver
a quote on the basis of an individual request, providers are free to apply their
own pricing scheme. Additionally, as providers now determine whether they can
match a request with one of their offers or not, the market no longer needs
to know how to match constraints, nor does it need to have constraint-specific
knowledge. Indeed, when using the CRA mechanism, the market is constraint-
agnostic, and acts only as an intermediate. Note that within the CRA, a con-
sumer does not specify a maximum price as part of his request. This frees the

2 In order to be concise, Algorithm 4 does not incorporate splittable bids.
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consumer from the task of performing an accurate price estimation for a re-
quest. By allowing the consumer to accept or decline a quote (match) given its
price, the consumer can do accurate price discovery and individual rationality is
maintained.

4.2 Price Discovery

Price discovery is the process by which buyers and sellers determine or ap-
proximate the price of a good in the marketplace. Consumers in particular can
make use of price discovery techniques to make an upfront trade-off between
the price they will need to pay on the market and the resources and quality of
service they will receive for that price. Additionally, price discovery techniques
allow consumers and providers to determine bidding strategies by monitoring the
price for a specific resource in the market and choosing the time at which they
buy or sell certain resources intelligently as to maximize their personal profit.

In the CRA market, price discovery is in fact already built-in for consumers
as they have the possibility to request a quote from the market at any given
time without any further obligation. As such, both new as existing consumers
can always obtain a quote for a request in order to direct their actions. Providers
however, have no idea at which price and rate certain resources are being traded
except when they are actually matched to a specific request.

In order to solve this lack of price discovery tools for providers, the CRA in-
cludes a billboard on which the market publishes anonymized accepted matches.
This is done in real-time; after a match is found, it is directly published on the
billboard. Because of this real-time behavior, the billboard effectively represents
the current market situation. Providers can analyze the anonymized matches
and adjust their pricing strategy accordingly. If a provider is able to infer that
the price of matches in a specific category of requests is consistently lower than
the price it is offering, it can adjust its strategy in order to get more matches.
Analogously, it might increase the quote price for a category of requests, in
order to increase its profit. As such indirect competition among providers is in-
troduced and competitive prices can be formed. In future work we will focus on
the development and experimental analysis of such strategies.

4.3 Sharing Semantics of Tag and Constraint Sets

In order to guarantee correct matching behavior, constraints should be precisely
defined so that there is a clear and unique understanding among all market par-
ticipants of what the constraint exactly specifies. As it is a core characteristic
of the CRA that the market itself is unaware of constraint semantics, an ad-
ditional entity is required to provide these. We therefore introduce a separate
(market independent) constraint catalogue service that clearly specifies how con-
straint names map to actual matching semantics. In order to specify constraint
semantics, the service can make use of a set of (algebraic) rules, pseudocode or
a specific programming language.
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As constraints are a core part of the contract between provider and consumer
when a match is accepted, it is paramount that catalogue services are officially
recognized and accredited by a mutually trusted third party,. This third party
(which could potentially be the market itself), can then be trusted to objectively
verify whether the contract is met by both parties or not. Such verification en-
tails validating that the consumer has made correct payments, as well as verifying
that provided resources actually meet the constraints specified in the consumer’s
request3. Note that the concept of the catalogue does not necessarily need to
materialize into a web service; as long as there is a way for providers and con-
sumers to share the semantics of particular constraints. In many cases it suffices
that a provider states the meaning of a certain constraint on its website.

In order to lower the entry-barrier for providers, a standard set of common
constraints can be provided as a software library. This way, providers will not
need to download code from the constraint catalogue or implement the con-
straints themselves based on the catalogue’s definition. If providers internally
model their offers using tag and constraint sets, they can even use the software
library to determine whether a given request matches one of their offers or not.
Alternatively intermediaries such as brokers can perform this function. Addition-
ally, providing such a library will limit the proliferation of constraints that have
similar or the same semantics. A consumer specifying a constraint includes the
qualified name of the class that implements the desired constraint as part of a
ConstraintDescription that is attached to its request. A provider then creates
an instance of the specified constraint class4, and calls the validate method on
the resulting object, passing the consumers tags, the tags used to model the
provider’s offer and the constraint parameters as specified by the consumer.

Although using constraints with well specified semantics is the main require-
ment for market participants, it is unlikely that many matches will occur if the
tags that consumers and providers use to model resources, requirements, services
and features are not standardized. That is, most (if not all) constraints require
that there are tags with specific names or attributes in the tag set that accom-
panies the constraint. For example, when using the ResourceConstraint, a tag
with a specific name that has value and unit attributes is required in both the
consumer and the provider tag set in order for a match to occur. To address
this, catalogues should also define tags (names and associated attributes) be-
sides constraint semantics. As is the case with constraint names, a reverse DNS
naming convention can be used to avoid name clashes. The constraint library
should include this set of standard tags (and the default catalogue service should
consequently also contain them).

Besides standardized constraints, consumers also have the possibility to specify
custom constraints that allow them to express specific matching behavior that is
not available as part of the standard library or in any of the catalogue services.Todo
this, the consumer or its broker deploys a web service that is able to check whether

3 Doing so is certainly non-trivial as it involves thoroughly examining and monitoring
the allocated resources.

4 This can be done generically using reflection, e.g. in the Java programming language.
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a given constraint is met, given a tag set that was specified by the consumer and a
tag set that describes a provider’s offer. Figure 2 outlines this approach.

Fig. 2. Implementation of custom constraints using web services

Note that from an efficiency standpoint, it is preferable that a provider or the
provider’s broker first verifies all standardized constraints in order to decrease
the probability that time-consuming web service calls need to be made.

A full implementation of our market based on Web Service technology (Java
EE, JAX-WS, Spring, AJAX) is publicly available [10]. The implementation,
which has been deployed to Amazon’s EC2 platform, includes provider-side mod-
els for Amazon, GoGrid, CloudSigma and Rackspace, demonstrating that our
bidding language can cope with the large amount of heterogeneity in resource
specification and price models of current cloud providers.

4.4 Computational and Communicative Tractability

It is intuitively clear that the algorithmic complexity of the market’s operation
itself is rather low as the market’s only task involves determining which of the
quotes for a specific request contains the lowest price. By letting the providers
determine whether they match a certain request as well as determine the price
for that specific request, the market has effectively distributed the computa-
tional complexity that is inherent in matching and pricing heterogeneous IaaS
resources. Furthermore, as no bids or asks need to be stored in queues as is
the case in the double auction, no state (apart from the billboard) needs to be
maintained between subsequent matches. As such, parallelizing and distributing
the market’s operation over different servers is possible, adding to attractiveness
of the CRA mechanism from a computational point of view.
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Fig. 3. Hierarchical market setup to reduce the potential for a communication bottle-
neck in the CRA

A downside of the CRA compared to a CDA is that the amount of communi-
cation between all involved market actors will be larger as the market sends out
price requests to all providers for each consumer request. If there are n registered
providers that can all fulfill a certain consumer request, 2n+3 messages will be
needed for a match to occur. That is:

– 1 initial request from the consumer to the market
– n price requests from the market to the providers
– n responses from the providers to the market
– 1 match message from the market to the consumer
– 1 match acceptance message from the consumer to the market

As in the CDA no additional messages need to be exchanged with providers for
an incoming consumer bid, it is clear that the flexibility the CRA offers comes
at a considerable communication cost. In order to keep this cost manageable,
providers might use brokers that have very good connectivity to the market. In
order to prevent the network connectivity to the market to become a bottle-
neck, market process can be organized in a hierarchical manner, in which each
node determines the cheapest match and subsequently forwards it to its parent
component. An overview of this organization is shown in Figure 3.

5 Conclusion

Infrastructure as a Service providers are starting to embrace models that dy-
namically price their resources. Currently, the application of such models is con-
strained to individual providers and an open market for IaaS resources is yet
to emerge. For such a market to materialize, flexible approaches are required
that allow providers within the market to express their pricing schemes and re-
source models in line with their current modus operandi. The design of a market
mechanism and bidding language that is flexible enough to realize this goal is
an open research problem. In this contribution we discuss the issues encountered
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by CDA-based approaches in this regard and introduce a Continuous Reverse
Auction (CRA) that is paired with a novel bidding language based on tag and
constraint sets. Our approach can accommodate the heterogeneity present in
price and resource models currently used by providers, while allowing consumer
bids to be matched with multiple providers. As such, it forms an important step
towards a more structured and organized form IaaS resource trading.
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4. Dubé, N.: SuperComputing Futures: the Next Sharing Paradigm for HPC Re-
sources. Ph.D. thesis, Université Laval (2008)
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Abstract. Cloud computing aims at allowing customers to utilize computational 
resources and software hosted by service providers. Thus, it shifts the complex 
and tedious resource and software management tasks typically done by 
customers to the service providers. Besides promising to eliminate these 
obstacles of resource management for consumers, Cloud computing also 
promises to reduce the cost of IT infrastructure. In particular, it promises to 
reduce the cost of IT through lower capital and operational expenses, stemming 
from a Cloud’s economies of scale and from allowing organizations to purchase 
just as much computer and storage resources as needed whenever needed. A 
clear specification of savings however requires a detailed specification of the 
costs incurred. Although there are some efforts to define cost models for 
Clouds, the need for a comprehensive cost model, which covers all cost factors, 
is undeniable. In this paper, we cover this gap by suggesting a cost model for 
hybrid Clouds (i.e., the combinations of a private data center (private Cloud) 
and the public Cloud). This model is based on a comprehensive literature 
research on cost factors and the idea of combining cost of data centers and cost 
for using Clouds. Finally, we demonstrate the workings of the suggested cost 
model by applying it to a specific Cloud scenario.  

Keywords: Cloud computing, hybrid Clouds, Infrastructure-as-a-Service, 
Cloud service migration, cost modeling, IT cost factors, Cloud economics, cost 
model comparison. 

1 Introduction 

The Cloud computing paradigm has been established as a promising model for using 
computational resources and software resources on-demand [2, 15, 21]. It shifts the 
complex and tedious resource and software management tasks typically performed by 
the customers to the service providers. Therefore, it increases the flexibility to adapt 
to changes in demand [3] [19]. It also reduces the infrastructure investments and the 
cost of organizing the IT resources. The capital and operational expenses are lower, 
stemming from the Cloud’s economies of scale. Consequently, Cloud computing has 
sparked a huge amount of interest in the IT industry. It is not only very attractive to 
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business customers but also to small research groups in the computational science and 
engineering field [3]. Some statistics state that the market for Cloud computing 
services was $16billion in 2008 and will rise to $42billion/year by 2012 [17].  

Despite these benefits and optimistic outlooks, there are also some researchers 
opposing those positive claims. A report by McKinsey argued that there would be 
only a few savings from a migration to the Cloud. They even state that moving to the 
Cloud would actually cost 144% more than current expenditures [12, 25]. The 
considerable uncertainty about cost savings and need for more details about actual 
expenditure were also discussed by Kondo et al. [3]. This still-ongoing discussion 
highlights the necessity for an overall cost model [11, 13]. 

Our research objective is to clarify whether and under which conditions Cloud 
computing can actually save money. In particular, we intend to construct an overall 
cost model that can be used by Cloud users to decide whether to use the Cloud for 
certain applications. This overall cost model comprises a comprehensive set of cost 
factors, necessary for making good cost estimation for running applications in a in-
house data center or on a public Cloud.  

In particular, we address the following three questions: (1) Which cost factors and 
what type of cost factors have been considered for Clouds? (2) How is a cost model 
for hybrid Clouds structured? (3) How can this cost model be applied? 

To answer these questions, we conduct the following steps: First, we perform a 
systematic literature review of papers on cost factors and cost models in Cloud 
computing. Second, we identify the gaps in the current research on Cloud cost 
modeling. Based on the result, we perform a cost-benefit analysis to design a 
comprehensive overall cost model for hybrid Clouds. Finally, we apply this new cost 
model to demonstrate its workings. 

The remainder of the paper is organized as follows. The next chapter gives an 
overview about cost factors and cost models, which have been proposed already in 
literature. Chapter 3 introduces our cost model for hybrid Clouds. The application of 
our cost model in a Cloud computing scenario is shown in chapter 4. The final 
chapter, chapter 5, concludes the paper.  

2 Background 

2.1 Cloud Computing 

Although there are still many Internet forums and blog discussions on what Cloud 
computing is and is not, the NIST definition seems to have captured the commonly 
agreed Cloud computing aspects that are mentioned in most of the academic papers 
published in this area [19]. The NIST definition states that Cloud computing is “A 
model for enabling convenient, on-demand network access to a shared pool of 
configurable computing resources (e.g., networks, servers, storage, applications, and 
services) that can be rapidly provisioned and released with minimal management 
effort or service provider interaction.” As Cloud computing is still in its infancy, the 
definition of Cloud computing is likely to be improved later when new ideas, services, 
and developments in Cloud computing will be explored. Nonetheless, for the purpose 
of our paper, the definition given by NIST is fully sufficient. 
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2.2 The Need for Cost Models for Clouds 

The majority of participants of a survey (which Rayport and Andrew conducted [18]) 
indicated that they used already public Clouds or discussed, planned, trialed, or 
implemented the use of a Cloud infrastructure. Their objective for using Cloud 
technology has been the potential reduction of data center costs. Even though there is 
a lot of mentioning about the benefits and even inevitability of migrating to a Cloud 
[14], the exact costs are still unknown. This lack of a cost model makes any decision 
on migration uncertain. This has been noticed in the academic and business world 
manifold [6, 7, 13, 15, 17].  

Many statements have also been made about the need for cost models for Clouds [3, 
8, 11]. A cost model would allow determining the actual cost of using the Cloud. Using 
these cost values, one may investigate economic factors like Return-on-Investment 
(ROI), Net-Present-Value (NPV), Benefit-to-Cost-Ratio (BCR), and Discounted-
Payback-Period (DPP). These measures are essential to decide when and under which 
conditions it is better to use Clouds [6, 7]. In other words, any company using Clouds 
has to execute a detailed cost-benefit analysis to determine whether running their 
services on the Cloud is more cost effective than purchasing in-house resources.  

However, to perform this cost analysis, intimate knowledge about applications, 
hardware, and the load levels is required [1]. The difficulty in obtaining this 
knowledge makes it non-trivial to estimate short-term or long-term costs. As Ali et al. 
pointed out, it is difficult to know “the actual resources consumed by a system”, “the 
deployment option used by a system, which can affect its costs as resources” and the 
“probable changes in the Cloud service provider’s pricing scheme” [8]. 

2.3 Existing Research on Cost Factors 

In order to find all major papers addressing our research objectives, we searched 
research databases with a combination of keywords from two groups. The first group 
comprises the keywords Cloud computing, elastic computing, utility computing, 
Infrastructure-as-a-Service, IaaS, Platform-as-a-Service, PaaS, Software-as-a-Service, 
SaaS, Everything-as-a-Service, and XaaS. The second group of keywords includes 
cost model, business model, cost estimation, cost parameters, and economics. The 
research databases used are IEEE Explore, ACM Digital Library, ISI Web of 
Knowledge, SpringerLink, ScienceDirect, and Google scholars. 

In total, we have found 10 papers that discuss cost factors and cost models in the 
context of Clouds.  

The first paper evaluates claims about the financial advantages that companies 
would gain from using a commercial Cloud [1]. The authors have calculated costs in 
four Cloud scenarios. For that, a comparison of the costs for a company, which 
purchases resources from Amazon EC2 or from a hardware vendor for its in-house 
data center, were pointed out. 

Helping to decide when and under which situation it is recommended to move to the 
Cloud, a very good coverage of cost factors has been given by Tak et al. [2]. Moreover, 
the authors have also classified costs into quantifiable and less quantifiable cost factors. 
In particular, their classification also includes a grouping into direct or indirect cost.  
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Even though Kondo et al., the authors of [3], have not proposed any cost model, 
they conducted an economic comparison. For that, they covered all cost aspects of a 
Cloud project. In total, they considered 11 cost factors. 

Besides identifying 6 cost factors, Armbrust et al. also compared Cloud and in-
house cases, using a trade-off formula [4]. The authors did not focus on cost modeling 
but gave a general understanding of various aspects of Cloud computing. They have 
pointed to the cost-benefit tradeoff of migrating to the Cloud, and have proposed a 
simple formula to quantify decision makings [4].  

The challenges, which enterprises face when applying hybrid Cloud models, were 
discussed by Hajjat [5]. Component placement is one of the challenges, addressing 
the decision of which of the components must be kept local and which components 
can be migrated. Another challenge is the specification of cost factors with respect to 
computing components, storage components, and wide-area communication. As the 
cost savings from migration depend on the placement of compute, storage-intensive, 
and communication intensive components, graph theory has been used to model the 
network of components and their data transfer relations.  

Truong and Dustbar present a service for estimating and monitoring costs. The 
service distinguishes three situations: the complete use of on-premise resources, the 
partial use of Cloud resources, or the complete use of Cloud resources [6]. In 
particular, they discuss the composability of cost models and the migration of some 
application components to the Cloud. They have introduced seven cost models. The 
data used for the comparison of the models came from Cloud providers’ pricing 
specifications [6].  

Alford and Morton present an economic analysis to investigate the potential 
savings from a migration of services to the Cloud. They focus on IT data centers and 
use a proprietary cost model [7]. The study takes into consideration transition costs 
and life-cycle operations, as well as migration schedules. Although they did not 
specify the cost model, they emphasize the existence of the cost model that is owned 
by the Booz Allen Hamilton Inc. The cost model is used to compare the three 
scenarios: public Cloud, hybrid Cloud, and private Cloud. 

Khajeh-Hosseini introduced the Cloud Adoption Toolkit. The toolkit provides a 
collection of tools that support decision making with respect to the adoption of Cloud 
computing in an enterprise. However, the cost model mentioned here has also not 
been described and presented. Only the cost factors have been described [8]. 

There is a very detailed analysis of costs in [9]. The authors conducted an analysis 
of different cost factors that have to be considered by a provider of a computational 
Grid. This analysis uses realistic values. In addition to this, the authors have shown an 
estimation of the total costs for resource providers in two real-world examples. 

Although the main contribution of [10] is in the area of Software-as-a-Service 
only, some of the considered cost factors for the software selection process can be 
used in the overall Cloud environment. The authors have focused on the software 
license selection support. Their model helps users to select a SaaS Licensing (SaaSL) 
model or a Perpetual Software Licensing (PSL) model.  

Among those 10 papers, which have been covered in this literature review, just 
three of them have proposed their own sophisticated quantitative model. These are the 
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works in [4, 5, 6]. Although there are three other papers, which indicated to have their 
own cost models, they did not provide any details, making it impossible to evaluate or 
use them. 

2.4 Cost Factors 

All 20 cost factors, which have been identified within the papers listed in the previous 
section, are structured and categorized into six groups: electricity, hardware, software, 
labor, business premises, and service. This classification is shown in Table 1. In the 
column labeled ‘Papers’, the paper identifiers are listed. The paper identifiers are the 
same as the literature references. The meaning of the cost factors is as follows: 

Electricity: The power usage for the consumption of in-house electronic devices like 
servers, gateways, routers, and other network devices is considered in this class [1, 2, 
3, 4, 7, 9]. In some papers, the electricity consumed through cooling has been 
considered separately from other electronic devices [2, 4, 7, 9]. Additionally, for 
achieving accurate estimates, two kinds of values need to be considered for all 
devices: the power consumption, when the system is idle, and the power consumption, 
when the system is heavily used [9]. 

Hardware: Hardware cost refers to the acquisition of hardware resources. In 
particular, it distinguishes between the purchasing cost of computing hardware needed 
in-house [1, 2, 3, 7, 9, 10] and the purchasing cost of network devices (e.g., switches, 
routers) needed in-house [2, 7, 10]. In order to determine the actual annual costs of 
the resources, their economic lifetime has to be considered as well [9]. We consider a 
depreciation time of three years. 

Software: The purchasing price of licenses of software, which is used in-house, is 
considered in this class. There are three types of software, which should be considered 
separately: basic server software, middleware software, and application software. 
Basic server software (e.g., operating system software, back-up software) refers to 
server licensing cost [2, 7, 10]. Middleware software refers to any commercial 
middleware software that is needed for running applications [7]. Application software 
refers to customer applications (e.g., Web server, enterprise resource planning 
software). Inevitably, depending on the application being used, the cost can vary in a 
very wide range [1, 2, 3, 6, 7, 9, 10]. 

Labor: This category comprises salaries for technicians, who work on maintaining 
software [2, 7], hardware [2, 7, 9], or on providing support [2, 3, 7, 9]. This cost 
factors are impacted by the region or country, in which the data center is located. 

Business Premises: This category includes the basic costs, which are essential to 
establish an in-house data center. These basic costs are the cost for renting or 
purchasing the data center facility [4], the cost for racks and other non-electronic 
instruments, which are required for the safety and the reliability of the data center, as 
well as the cost of cabling the data center [7]. 

Service: The remaining cost factors, which are categorized as services, are mainly in-
tangible items. Some of the service costs may incur independently to whether the 
customer uses in-house data center services or Cloud-based services. One cost factor is 
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the charge for Internet connectivity (i.e., for Internet access for the enterprise) [3, 5]. 
Another cost factor is the usage cost for servers (CPU hours) [1, 2, 3, 5, 6, 8]. The cost 
for incoming data transfer (e.g., Cloud data transfer in) is another factor [1, 3, 4, 5, 6, 8, 
9]. Similarly, there is the cost for the amount of outgoing data transfer (e.g., Cloud data 
transfer out) [1, 3, 4, 5, 6, 8, 9]. The Cloud storage factor describes the amount of storage, 
which is used in the Cloud [1, 3, 4, 5, 6, 8]. Finally, there is the cost for executing input 
requests (i.e., the cost of a write request to a database) as well as the cost for executing an 
output requests (i.e., the cost of a read request from a database) [3, 8]. 

Table 1. Comparison of contributions of papers with respect to cost factors 

Cost  
Type 

Cost  
Factor 

 
Literature 

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] 
Number of 

Factors
Number 
of Papers 

7 12 11 6 6 5 11 6 9 4 

a)  
Electricity 

a1) Cooling   4 1 1 1 1 
a2) Electronic devices  6 1 1 1 1 1 1 

b)  
Hardware 

b1) Server  6 1 1 1 1 1 1 
b2) Network device 3 1 1 1 

c)  
Software 

c1) Basic server software 3 1 1 1 
c2) Middleware 1 1 
c3) Application software 7 1 1 1 1 1 1 1 

d)  
Labor 

d1) Software 
maintenance  2 1 1 

   
d2) Hardware 
maintenance  3 1 1 

 
1 

 
d3) Other support  4 1 1 1 1 

e)  
Business 
Premises 

e1) Air conditioner, rack 2 1 1 
e2) Cabling 2 1 1 
e3) Facility  1 1 

f)  
Cloud Service

f1) Internet connectivity 2 1 1 
f2) Server usage  6 1 1 1 1 1 1 
f3) Data transfer into 
Cloud   7 1 1 1 1 1 1 1 

 
f4) Data transfer from 
Cloud  7 1 1 1 1 1 1 1 

 
f5) Cloud storage  6 1 1 1 1 1 1 
f6) Requests to input to 
Cloud  2 1 1 

  
f7) Requests to output 
from Cloud  2 1 1 

  

2.5 Shortcomings of Existing Cost Models 

Among those ten papers contributing to cost modeling of Cloud computing, just three 
of them proposed an explicit cost model [4, 5, 6]. However, even these three papers 
center only on either an analysis of certain scenarios or provide a very generic 
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economic solution that has not been adapted well to the Cloud application area (e.g., 
Armbrust et al. has proposed a very broad economic formula [4]). This general 
formula needs much more efforts to be applicable in practice in the Cloud application 
area. Although the paper of Hajjat et al. provides details about optimization of 
application components, no cost formula has been specified [5]. But clearly, any kind 
of optimization should be based on the total cost. Finally, Truong et al. have 
suggested seven formulas, each one of them addressing a certain activity in Clouds 
[6]. But, in case of using hybrid Clouds, those formulas are incomplete. The formulas 
miss information about data center costs. 

For that, none of these three works has given us a comprehensive estimation of 
costs for hybrid Clouds. Most probably, using those models leads to inaccurate 
estimates. Consequently, any optimization based on these estimates will be of little 
help. This uncertainty is an obstacle for applying these cost models in practice in 
hybrid Clouds.  

3 The Proposed Hybrid Cloud Cost Model 

3.1 Model Context 

As shown in the following figure, the context of our model considers four stakeholders 
in the Cloud computing market: large enterprises, small and medium-sized enterprises 
(SMEs), Cloud providers, and Internet data centers (IDCs). Cloud providers offer 
consumers to buy resources on demand. The IDCs provide solutions for long-term 
outsourcing of IT infrastructures to consumers. Users in this market can be either 
SMEs or large enterprises. 

 

    

Fig. 1. Stakeholders in the Cloud computing market 

The focus of this paper is on large enterprises and their relationship to Cloud 
providers. The reason for choosing this relationship is that large-sized enterprises 
have the option of migrating their tasks to the Cloud completely, keeping all tasks in-
house (which is equivalent to using an IDC), or run a hybrid solution. This is the most 
challenging situation with respect to resource allocation decisions. For comparison, 
SMEs that have a few small IT jobs to complete the most fitting solutions will be to 
use Cloud providers. 

Internet 
Data 

Centers

Large 
Enterprises 

 
SMEs 

Cloud 
Providers 
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3.2 Conceptual Model 

The conceptual model assumes an organization, which comprises the execution of N 
applications and M services (across all applications). Applications usually consist of 
services, which are composed to run a business process. Services are assumed to be 
basic units, which can perform a set of functions. Users buy those services to 
construct their applications. Each service can communicate with all other services (if 
the other services allow) and transfer a specific amount of input data and output data 
(Figure 2). 

 

 

Fig. 2. A schematic view of a set of N applications build on M different services with specific 
data transfer relations (black arrows) between services 

The representation of services and their data transfer relationships using graph 
theory allows the use of network analysis methods. Obviously, the resulting graph is a 
directed and weighted graph. Vertices represent services, while edges show data 
communications. If there is edge from vertex i to vertex j with aij as edge label, there 
is an average monthly data transfer from service i to j. An example of this 
representation is shown in Figure 3. 

 

               
 

Using this representation of services, the distance matrix D can be used to 
represent the data-transfer related cost factors aij between service i and j. The matrix 
elements aij of the distance matrix that do not represent an arrow get infinity assigned. 

1 2 

3 
4 

a41 
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Fig. 3. Graph representation of services and their data transfers 
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To calculate the total data transfer into the Cloud (i.e., Cloud data transfer inward TIn) 
and the total data transfer out of the Cloud (i.e., Cloud data transfer outward TOut), we 
propose two formulas: 

Cloud data transfer in:  ∑ ∈ , ∈     , ∈              (1) 

 

Cloud data transfer out:  ∑ ∈ , ∈    , ∈             (2) 

 

where i and j denote services. The set I represents the set of services that run in-house 
and the set C represents the set of services that run in the Cloud.  

3.3 Cost Formula 

Based on the cost factors listed in section 2.4, we propose a comprehensive formula 
that covers all aspects of costs. The costs considered are the purchasing cost for all 
servers needed (∑  ; b1 of Table 1), the purchasing cost for all network devices 
needed ( ∑  ; b2 of Table 1), the costs for all basic server software licenses 
(∑  ; c1 of Table 1), the costs for middleware licenses (∑  ; c2 of Table 1), the 
costs for application software licenses (∑ ; c3 of Table 1), the cost of facility space 
( ; e3 of Table 1) that the company needs for its data center, the cost of the none-
electronic equipment ( ; e1 of Table 1) that is needed for a data center, and the 
cost for cabling ( ; e2 of Table 1). These costs are fixed costs. The sum of these 
fixed costs FC is shown in equation 3:  ∑ ∑ ∑ ∑ ∑  (3) 

The parameters used in equation 3 are as follows: d denotes the depreciation period in 
units of months.  is the number of server devices, which are needed to run all 
services.  is the cost of server i.  is the number of network devices that are 
needed.  is the cost of network device i.  denotes the number of basic server 
software.  is the cost of basic server software k.  denotes the number of 
middleware software which is needed.  is the cost of middleware software i.  is 
the number of application software, which is used.  is the cost of application 
software i. F denotes the size of the facility in square meters.  is the cost of 
facility space in square meters. Note, facility cost can be calculated based on rent 
contract conditions.  

The following variable cost factors are calculated over time. They are summed up 
for each time period (e.g., monthly or annually). They comprise the cost of electricity 
usage from cooling and from other electric devices ( ; a1 and a2 of 
Table 1), the cost for Internet connectivity of the data center ( ; f1 of Table 1), 
the cost of labor for maintaining software ( ; d1 of Table 1), for hardware ( ; 
d2 of Table 1), for other work ( ; d3 of Table 1), the cost for data transfer that 
goes into the Cloud ( ; f3 of Table 1) and out of the Cloud ( ; f4 of 
Table 1), the cost for Cloud storage ( ; f5 of Table 1), the Cloud server usage 
cost (∑ , ; f2 of Table 1), and finally the cost of requests for input to the 
Cloud (∑ , , ; f6 of Table 1) and the cost of requests for output from the 
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Cloud (∑ , , ; f7 of Table 1). Consequently, the total variable cost VC is 
calculated as the sum of all these costs as shown in the following equation: 

                   ∑ , ∑ , ,                   ∑ , , . (4)
 

The parameters used in equation 4 are as follows:  is the cost of electricity per 
unit in month m.  specifies the amount of electricity used for cooling in month m. 
Similarly,  specifies the amount of electricity used for all other devices in month 
m.  is the cost for Internet usage per unit. Im is the usage of the Internet in month 
m. (Note: the Internet cost calculation should be adjusted to the Internet contract, i.e., 
pricing scheme, used).  is the cost of labor for maintaining software per unit and 

 is amount of labor in month m.  is the cost of labor for maintaining the 
hardware per unit and  is the amount of labor for maintaining hardware in month 
m.  is the cost of labor for other tasks per unit and  is the amount of this labor 
in month m.  is the cost of in-bound Cloud data transfer per unit in month m.  
is the amount of data transferred into the Cloud in month m.  is the cost for out-
bound data transfer per unit in month m.  is the amount of data transferred out of 
the Cloud in month m.  is the cost of Cloud storage per unit in month m. Hm is the 
usage of storage in month m. (Note: in some cases, different types of storage costs 
need to be considered). ,  is the Cloud server usage cost for server type i per unit in 
month m.  is the amount of server usage of type i in month m.  ,  is the cost per 
input requests to the Cloud for input request type i in month m. ,  denotes the 
number of input requests to the Cloud for input request type i in month m. The 
meaning of  ,  and ,  is similar.  ,  is the cost per output requests to the 
Cloud for output request type i in month m. ,  denotes the number of output 
requests to the Cloud for output request type i in month m. 

Therefore, the total cost of running a hybrid Cloud over d months (i.e., a 
depreciation period of d months) is the sum of the fixed cost and the variable cost 
over the period of d months:  

 ∑ . (5) 

3.4 Discussion and Open Issues 

The first eight terms of the formula 3 (i.e., the fixed cost formula) can easily be 
populated, since it requires only capital expenditure (CAPEX) information. This 
information can be obtained from vendors or IT consultancy companies that design 
data centers for enterprises.  

In making the decision about whether to move an existing service to the Cloud, one 
must additionally estimate the expected average and peak resource utilization. This is 
very difficult, since the applications deployed may have highly variable spikes in 
resource demand, the practical limits on real-world utilization of purchased equipment 
are not widely known, and the operational costs differ widely, depending on the type of 
Cloud environment considered [8]. In addition to this, finding the estimates for 
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variable cost factors (e.g., cost factors on data transfer, Cloud storage usage, and server 
usage) requires further effort. In particular, a good estimate of the distance matrix for 
the in-bound and out-bound data transfer is difficult to get. For that, econometric 
methods need to be applied on past trends of data transfers between services. 

Besides, the importance of each cost factor should be considered when estimating 
the overall cost. To be more precise, accurately focusing on major cost factors is 
suggested, since any error in their estimates has a large impact on the accuracy of the 
overall cost estimation. For instance, in many cases, 31% of cost of data centers 
comes from labor, 30% from servers, and 25% from cooling [20]. A low-quality 
estimate on those cost factors has a large impact on the result. 

4 Analysis Example 

For demonstrating the workings of the cost model, we assume a small scenario. The 
scenario comprises a large enterprise with a few software applications, which require 
10 different services. Some services run on an in-house data center, which is owned 
by the enterprise, and some services run in the Cloud. All 10 services require the same 
amount of computational resources. As the enterprise has its own data center, the 
information about the fixed cost factors (equation 3) can easily be obtained from the 
accounting department of the enterprise. The fixed cost information includes the 
purchasing price of servers and network devices, the license costs for basic server 
software, middleware software, and application software, as well as the business 
premises costs (Table 2).  

Table 2. Cost factor values for running an in-house data center, based on market research [16] 

Cost Category Cost Factor Usage 
Cost (€€ /year) Assuming a Three Year 

Depreciation Period 

Electricity 
Cooling   

6000 
Elect. devices  

Hardware 
Server  6000 (for 6 servers) 
Network device  15000

Software 
Basic server software 10000
Middleware software 5000
Application software 40000

Labor 
Software maintenance 

90000 Hardware maintenance 
Other support  

Business 
Premises 

Air conditioner, Rack 25000
Cabling 5000
Facility  70000 (in case of purchasing).  

Cloud Service 

Internet usage  1920

Server usage 12*2.5 KH 21000 (0.07 €/CPU-hr1) 

Storage usage 12*200 GB 192 (0.08 €/GB-month2) 
Requests to input 12*18 M I/O 17,28 (0.08 €/million I/O requests) 
Requests to output 12*120 M I/O 115,2 (0.08 €/million I/O requests) 

                                                           
1  Based on Amazon EC2. 
2  Based on Amazon S3. 
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The variable cost, which comprises the usage-based cost for electricity, Internet, 
and storage, the labor costs in terms of maintaining the software, hardware, and other 
tasks, need to be estimated using the past consumption and the price development in 
the market. For our scenario, we assume the following cost factor values, which are 
based on market research for data center (Table 2). 

The cost for the in-house data center covers sufficient computational resources to 
run 6 services, of which are five security critical services (i.e., they have to run on the 
in-house data center). Services numbered 1-4 run currently in the Cloud (e.g., 
Amazon EC2). Since all services require the same computational resources, the cost 
of running in the Cloud would incur the same cost for all 10 services (i.e., the cost for 
Cloud server usage would be the same). The only missing values are the data transfer 
into the Cloud and out of the Cloud. 

For calculating the data transfer cost into and out of the Cloud, we analyze the data 
transfer. Figure 4 shows the ten services and their data transfers. The average monthly 
data traffic between these services has been illustrated as weights of the edges (in 
units of 100 GB). Services labeled 5 to 10 run on the in-house data center. Services 6 
to 10 are the security critical services. 

 

 

Fig. 4. Scenario services that run in the Cloud (dark vertices) and on the local data center 
(white vertices) and the data transfer between these services 

Based on the data shown in Figure 4, the distance matrix D can be constructed, as 
described in section 3.2: 

D  
0 ∞ ∞ ∞ 37 15 ∞ ∞ 22 ∞12 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞∞ 15 0 23 ∞ ∞ ∞ ∞ ∞ ∞∞ ∞ ∞ 0 ∞ ∞ ∞ ∞ 24 ∞13 ∞ ∞ ∞ 0 ∞ ∞ ∞ ∞ ∞∞ 3 14 ∞ ∞ 0 12 ∞ ∞ ∞∞ ∞ ∞ ∞ ∞ 9 0 ∞ ∞ 18∞ ∞ ∞ ∞ ∞ ∞ 27 0 ∞ ∞∞ ∞ ∞ ∞ ∞ 24 ∞ ∞ 0 ∞∞ ∞ ∞ ∞ ∞ 16 ∞ ∞ ∞ 0

 (6) 

 

Applying equation 1 and equation 2 on the distance matrix D (equation 6), the in-
bound and out-bound traffic for the current situation (i.e., service 1 to 4 run in the 
Cloud) can be calculated. In order to figure out which of the 5 services (service 1 to 5) 
should run in-house, we calculate equation 1 and equation 2 also for the other 4 cases 
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(e.g., services 1, 2, 3, 5 run in the Cloud and service 4 in-house). The results for these 
five cases are shown in Table 3. 

Table 3. Calculated monthly in-bound and out-bound data traffic (in GB) for the five different 
cases of the scenario 

 Services that Run in the Cloud 
Case 1 Case 2 Case 3 Case 4 Case 5 

1, 2, 3, 4 1, 2, 3, 5 1, 2, 4, 5 1, 3, 4, 5 2, 3, 4, 5 

D
at

a 
Tr

af
fic

 

 3000 1700 4100 2600 5400 

 9800 3700 6100 7600 4900 

 
The data transfer cost is set to 0.14 €€ /GB. By using these values, we can apply the 

fixed cost function (equation 3) and the variable cost function. The result shows that 
the fixed cost equals to €€ 388,000. The monthly variable cost for each of the five cases 
is depicted in Table 4.  

Table 4. Total variable cost per month (€€ ) for each case 

 Services that run in the Cloud 
Case 1 Case 2 Case 3 Case 4 Case 5 

1, 2, 3, 4 1, 2, 3, 5 1, 2, 4, 5 1, 3, 4, 5 2, 3, 4, 5 
Total Variable Cost 21012 13612 18412 18412 18512 

 
Table 4 shows that case 1 (i.e., service 1 to 4 run in the Cloud and service 5 runs in 

in-house data center) incurs the highest cost. Therefore, the current allocation needs 
and can be improved. Case 2 (i.e., services 1, 2, 3, 5 run in the Cloud and service 4 
runs in the in-house data center) incurs the lowest variable cost. Therefore, case 2 is 
the best option to lower the cost. This result is also depicted in Figure 5.  

 

Fig. 5. Comparison between the overall costs for five scenarios and the fixed cost (FC) 

Figure 5 also shows that there is a large cost difference between the current 
alloation (i.e., case 1) and the low cost option (i.e., case 2). The savings over a period 
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of 3 years (i.e., the depriciation period for fixed costs) are significant. Case 1 incurs 
cost of 1,144,429 Euro while case 2 incurs cost of 878,029 Euro only. 

5 Conclusion and Future Work 

In this paper, we have reviewed cost factors of Cloud computing, which have been 
considered in the research community, and have represented them in a categorized 
form. Our contribution is the presentation of these cost factors in a comprehensive 
cost model for hybrid Clouds (i.e., some of the enterprise services run on an in-house 
data center and some run in the Cloud). This cost model is useful for enterprises that 
own a data center. 

For the calculation of the data transfer cost factor within the cost model, we 
suggest to use a graph representation for the data transfer between services. This 
allows performing service placement optimization, considering data transfers in and 
out of the Cloud. In order to show the workings of the cost model, we apply it to a 
specific scenario. The analysis example focuses on the application of the cost model 
and demonstrates the service placement optimization. 

The main objective of our present work has been to cover all costs for hybrid 
Clouds. However, to be more useful in practice, enterprises need decision making 
support for running hybrid Clouds. Therefore, a future step of our research work is to 
propose a resource allocation model that considers the cost model presented in this 
paper. The resource allocation model will help finding the optimum set of services to 
run in the Cloud. The resource allocation model can also be extended to consider 
hybrid Clouds with more than one Cloud provider.  

Acknowledgement. This work has been funded by the Korea Institute for 
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References 

1. Risch, M., Altmann, J.: Cost Analysis of Current Grids and Its Implications for Future 
Grid Markets. In: Altmann, J., Neumann, D., Fahringer, T. (eds.) GECON 2008. LNCS, 
vol. 5206, pp. 13–27. Springer, Heidelberg (2008) 

2. Tak, B.C., Urgaonkar, B., Sivasubramaniam, A.: To Move or Not to Move: The 
Economics of Cloud Computing. In: Third USENIX Workshop on Hot Topics in Cloud 
Computing (HOTCLOUD 2011), Portland, Oregon (2011) 

3. Kondo, D., Javadi, B., Malecot, P., Cappello, F., Anderson, D.P.: Cost-Benefit Analysis of 
Cloud Computing versus Desktop Grids. In: IEEE International Symposium on Parallel & 
Distributed Processing, Rome, pp. 1–12 (2009) 

4. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., 
Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: A Berkeley View of 
Cloud Computing. Tech. Rep. UCB/EECS-2009-28, U.C. Berkeley (2009) 

5. Hajjat, M., Sun, X., Sung, Y.W.E., Maltz, D., Rao, S., Sripanidkulchai, K., Tawarmalani, 
M.: Cloudward Bound: Planning for Beneficial Migration of Enterprise Applications to the 
Cloud. In: ACM SIGCOMM 2010, New Delhi, India (2010) 



60 M.M. Kashef and J. Altmann 

6. Truong, H.L., Dustdar, S.: Composable Cost Estimation and Monitoring for 
Computational Applications in Cloud Computing Environments. In: Intl. Conference on 
Computational Science (ICCS 2010), pp. 2175–2184. Elsevier, Amsterdam (2010) 

7. Alford, T., Morton, G.: The Economics of Cloud Computing, Addressing the Benefits of 
Infrastructure in the Cloud. Booz Allen Hamilton (2009) 

8. Khajeh-Hosseini, A., Greenwood, D., Smith, J.W., Sommerville, I.: The Cloud Adoption 
Toolkit: Supporting Cloud Adoption Decisions in the Enterprise. In: Software: Practice 
and Experience (2011) 

9. Opitz, A., König, H., Szamlewskax, S.: What does Grid Computing Cost? Journal of Grid 
Computing 6(4), 385–397 (2008) 

10. Altmann, J., Rohitratana, J.: Software Resource Management Considering the Interrelation 
between Explicit Cost, Energy Consumption, and Implicit Cost: A Decision Support 
Model for IT Managers. In: Multikonferenz Wirtschaftsinformatik (MKWI 2010), IT 
Resource Management, Göttingen, Germany (2010) 

11. Khajeh-Hosseini, A., Greenwood, D., Sommerville, I.: Cloud Migration: A Case Study of 
Migrating an Enterprise IT System to IaaS. In: IEEE Third International Conference on 
Cloud Computing, Miami, U.S.A, pp. 450–457 (2010) 

12. West, D.M.: Saving Money Through Cloud Computing, Governance Studies at Brookings 
(2010) 

13. Khajeh-Hosseini, A., Sommerville, I., Sriram, I.: Research Challenges for Enterprise 
Cloud Computing. Technical Report, arXiv:1001.3257v1 (2010) 

14. Weinman, J.: Mathematical Proof of the Inevitability of Cloud Computing (2009),  
http://www.joeweinman.com/Resources/ 
Joe_Weinman_Inevitability_Of_Cloud.pdf (accessed on December 2011) 

15. Klems, M., Nimis, J., Tai, S.: Do Clouds Compute? A Framework for Estimating the 
Value of Cloud Computing. In: Weinhardt, C., Luckner, S., Stößer, J. (eds.) WEB 2008. 
LNBIP, vol. 22, pp. 110–123. Springer, Heidelberg (2009) 

16. Koomey, J., Brill, K., Turner, P., Stanley, J., Taylor, B.: A Simple Model for Determining 
True Total Cost of Ownership for Data Centers. The Uptime Institute, Santa Fe (2007) 

17. Whiteside, R.: Taylor Woodrow Migrates 1,800 Users to Google Apps (2008),  
http://googleenterprise.blogspot.com/2008/07/ 
taylor-woodrow-migrates-1800-users-to.html (accessed December 2011) 

18. Rayport, J., Andrew, H.: Envisioning the Cloud: The Next Computing Paradigm. 
Marketspace Point of View (2009) 

19. Mell, P., Grance, T.: Draft NIST Working Definition of Cloud Computing (2009),  
http://www.scribd.com/doc/19002506/ 
Draft-NIST-Working-Definition-of-Cloud-Computing-v15  
(accessed December 2011) 

20. Gleeson, E.: Computing Industry Set for a Shocking Change (2009),  
http://www.moneyweek.com/investment-advice/ 
computing-industry-set-for-a-shocking-change-43226.aspx 
(accessed December 2011) 

21. Bany Mohammed, A., Altmann, J., Hwang, J.: Cloud Computing Value Chains: 
Understanding Business and Value Creation in the Cloud. In: Economic Models and 
Algorithms for Distributed Systems. Autonomic Systems book series. Birkhäuser, 
Springer, Heidelberg (2009) 



K. Vanmechelen, J. Altmann, and O.F. Rana (Eds.): GECON 2011, LNCS 7150, pp. 61–75, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

How to Do Successful Chargeback for Cloud Services 

Hristo Stefanov1,2, Slinger Jansen1, Ronald Batenburg1,  
Eugene van Heusden2, and Ravi Khadka1 

1 Utrecht University, Utrecht, The Netherlands 
{h.stefanov,slinger.jansen,r.s.batenburg,r.khadka}@uu.nl 

2 IBM, Amsterdam, The Netherlands 
{hristo.stefanov,heusden}@nl.ibm.com 

Abstract. With pay-per-use pricing models, elastic scaling of resources, and the 
usage of shared virtualized infrastructure, ‘the Cloud’ offers more efficient use 
of capital, great cost reductions, and breakthrough agility. Yet, it turns out that 
to leverage the cloud advantages, organizations have to introduce cloud-specific 
chargeback practices. That is, they have to allocate IT service costs to business 
users in a way that reflects service consumption. To help organizations 
transition to a cloud environment, this work provides an overview of the factors 
that impact the design of successful cloud-specific chargeback models. The 
findings can assist organizations in the design of chargeback models that allow 
the business flexibility and cost reductions associated with the Cloud to be fully 
leveraged. The results are based on an empirical study involving twenty-five 
field experts from IBM and its client and partner network.  

Keywords: IT chargeback, IT cost allocation, billing, IT chargeback models, 
economics of cloud computing, factors impacting chargeback success. 

1 Introduction 

In Information Technology (IT) management, chargeback or charging, refers to the 
practice of charging the costs of IT back to the different departments and business 
units that use IT [3, 16, 31]. Chargeback makes service consumers aware of the costs 
of IT and it is generally used to control escalating IT costs, to improve decision 
making, to align behavior with organizational goals, and to lead to a more effective 
use of IT [13]. However, in comparison to charging back for physical products, 
chargeback for intangible products such as IT is still poorly understood by many 
organizations [16], and is rarely applied to their advantage because of the lack of 
successful chargeback models that are well aligned with organizational objectives and 
are clear and acceptable to all the involved stakeholders [26].  

To make the situation more complicated, organizations are adopting cloud 
computing (CC), an environment with untraditional and non-fitting characteristics 
from a chargeback perspective. With pay-per-use pricing models, elastic scaling of 
resources, and the usage of shared virtualized infrastructure, the Cloud fundamentally 
changes the economics of IT [18]. It enables more efficient use of capital, cost 
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reductions, and business flexibility. However, to fully leverage those benefits 
organizations also need to employ some form of pay-per-use based chargeback, 
something that is seldom done in the current chargeback practices [29]. Failure to 
allocate cloud-based costs in a per-use manner can lead to an explosion of 
unnecessary consumption that can offset the cost reductions and to an inability to 
leverage the business advantage offered by flexible pricing [29]. Yet, the current 
chargeback models are oriented towards more traditional IT environments in which 
costs do no vary with usage. This raises the question how to develop chargeback 
models that are suitable for cloud services.  

The design of better chargeback models for cloud services requires understanding 
of the factors that make a chargeback model successful in a CC environment. This 
need was expressed in six interviews by three service management specialists from 
IBM who were increasingly faced with the problem of helping their clients to adjust 
their chargeback practices for the dynamics of the Cloud. The scientific literature 
offers hardly any answers. This leads to the formulation of the research question: 

What factors that can be influenced through the design of a chargeback model 
impact the success of a chargeback model for cloud services?  

Answering the above research question adds both scientific and societal value. 
From an academic perspective, to the best of own knowledge, this is the first work to 
offer a systematic list of factors influencing the success of chargeback for cloud 
services. As we validate the list with a diverse group of field experts, the findings can 
help organizations realize the implications of the Cloud for their chargeback models, 
and how to improve the latter. 

The research question is answered by reviewing the relevant literature on the topic 
of chargeback and Cloud. In addition, twenty-five semi-structured interviews are 
conducted with field specialists from IBM and its client and partner network. 

The rest of this paper is structured as follows. Section 2 provides an overview of 
the relevant literature. This is followed by descriptions of the research method in 
Section 3, and of the discovered and validated factors in Section 4. The discussion 
and conclusion are in Section 5 and Section 6, respectively. 

2 Theoretical Background 

According to the notion used behind the term chargeback in the scientific and 
management literature [15, 16, 21, 23, 28, 31], chargeback for cloud services can be 
defined as the process of allocating the costs of the cloud services that an organization 
provides to its employees to the organizational units that use those services. In 
contrast, a chargeback model is just a conceptual representation of how the costs are 
allocated to the organizational units using those services. Thus, the chargeback 
process could be viewed as an implementation of the model. 

Regardless of the terminology, chargeback is mainly recognized as a means of IT 
governance [8, 16, 28] that enables IT cost reductions. On the consumption side, it 
makes users cost-aware and results in a more cost-efficient choice of services [12, 
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16]. On the delivery side, increased understanding of service costs facilitates more 
effective IT investment and provisioning decisions [11, 13].  

2.1 Cloud Computing 

Vaquero et al. [32] provide a comprehensive definition of CC that is adopted here. 
According to them cloud services are provisioned from clouds and “clouds are a large 
pool of easily usable and accessible virtualized resources (such as hardware, 
development platforms and/or services). These resources can be dynamically 
reconfigured to adjust to a variable load (scale), allowing also for an optimum 
resource utilization. This pool of resources is typically exploited by a pay-per-use 
model in which guarantees are offered by the [provider] by means of customized 
[Service Level Agreements] (SLAs).” Furthermore, it should be added that cloud 
services, are delivered over a computer network or the Internet [1]. 

Especially relevant for the topic at hand are the characteristics that differentiate CC 
from a traditional IT environment. Thus, Table 1 describes a list of five fundamental 
characteristics of CC that describe it well and differentiate it from traditional IT [33]. 

Table 1. Five characteristics of the Cloud that set it apart from traditional IT (based on [33]) 

Cloud 
characteristic 

Description 

Flexible pricing / 
Pay-per-use 

Computing capabilities are exploited in pay-per-use models. Users 
have to pay for the actual consumption of services and/or resources.  

Elastic scaling Resource availability can scale up or down by large factors as 
demand increases/decreases 

Rapid provisioning Computing capabilities and services are immediately provisioned 
without physical delivery and transferring ownership or resources.  

Standardized 
offerings (through 
self-service) 

Cloud services are highly standardized and offer limited 
customization. They are usually available through self-service 
interfaces and the request and provisioning processes are automated. 

Virtualization Computing resources are virtualized to provide independence of the 
underlying infrastructure and optimal utilization of resources. 

Two high level business advantages of the Cloud are also relevant for 
understanding the discussion in the following sub-section on the impact of CC on 
chargeback. Firstly, the Cloud can offer substantial cost reductions that are enabled by 
high utilization of resources due to virtualization, efficient use of capital due to pay-
per-use, automation, standardization, and self-service [18, 22]. Secondly, the Cloud 
also offers great business flexibility, because of the flexible pricing, rapid 
provisioning, and elastic scaling [1, 22].  

2.2 Impact of Cloud Computing on Chargeback 

Recent research on the impact of CC on chargeback shows that organizations that 
want to fully leverage the benefits of the Cloud should apply pay-per-use chargeback 
practices [29]. No per-use charging for cloud services leads to an explosion in 
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consumption and to a subsequent increase in costs that can offset the cost reduction 
benefits of the Cloud. Furthermore, for internal users, no pay-per-use chargeback for 
cloud services diminishes the business value of CC. From a business perspective pay-
per-use is an advantage because costs follow value generation and demand, 
subsequently allowing efficient use of capital and flexibility in consumption behavior. 

To sum up, the need to charge for Cloud is compelling. However, there are 
numerous challenges to that [29]. For example, how to match between individual 
consumers and the costs of the shared virtualized infrastructure behind the Cloud? 
What pricing models (e.g. subscriptions or some forms of metered service 
consumption) are most suitable for the different types of cloud services? How to 
charge the costs of the overprovisioned resources that are necessary to enable elastic 
scaling? To provide practitioners with a helpful tool with which to address those 
problems the following section lists some factors that influence chargeback success. 

2.3 Factors That Influence Chargeback Success 

A review of the literature reveals five factors that are explicitly mentioned by some 
authors. Furthermore, a few more factors can be inferred through detailed analysis. 

Explicitly Mentioned Factors. The five concepts that are explicitly recognized in the 
scientific literature to influence chargeback success are accuracy, cost of costing, 
transparency and understandability, controllability, and fairness.  

Accuracy. Accuracy is a factor influencing chargeback success that is universally 
recognized by scholars [3, 7, 11, 16, 20, 28]. This is a property of a chargeback model 
that describes to what extent the charges allocated to an organizational unit for each 
service accurately approximate the actual costs incurred by the organization for 
delivering the service to the unit. The better the costs are approximated with the 
charges, the higher the accuracy of the chargeback model. High accuracy has a 
profound two-fold effect on the success of chargeback. Firstly, it is conducive to 
realizing cost reductions, because it bases both provisioning and consumption 
decisions on actual costs [7, 11]. Secondly, it makes chargeback more acceptable to 
the involved stakeholders, because it motivates the correctness of the charges and 
prevents attempts for overthrowing the model based on low accuracy arguments [28].  

Cost of costing. While high accuracy has positive impact on the successfulness of a 
chargeback model, it might be expensive to achieve. The term cost of costing is used 
to quantify the costs of the application of chargeback and accounting models and to 
compare them against the potential benefits [2, 9, 19]. The employment of chargeback 
models is associated with significant design, implementation, labor, and IT systems 
costs. Therefore, chargeback designers should take the costing factor into account in 
order to develop models, the benefits of which outweigh the related expenses. 

The direct impact of the cost of costing on success is negative, because those costs 
offset the cost savings realized through chargeback. However, by investing in 
improving accuracy, for example, the success of the chargeback model could be 
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indirectly enhanced. Therefore the design of a chargeback model should be optimized 
to balance between costs and accuracy, as well as other factors that positively affect 
success at the expense of higher costs [9, 19]. 

Transparency and understandability. Researchers who investigate organizational 
behavior in relation to chargeback note that a chargeback model should be 
understandable and transparent to the involved stakeholders [11, 30]. 

Understandability describes whether the charges recipients understand what they 
are charged for. That is, do they understand the units of service and their prices? For 
example, charges for cloud services based on a user subscription are more 
understandable than charges based on utilized central processing unit (CPU) cycles. 

Transparency, on the other hand, describes whether the involved stakeholders 
understand how the charges are formed. Therefore, transparency characterizes the 
capability of stakeholders to comprehend the chargeback model and the opportunity 
to enjoy non-obscure chargeback processes, while understandability deals with the 
capability to understand the charges, the end product of applying the chargeback 
model.  

The two concepts are closely related and discussed together in the literature [11, 
30]. Understandability is necessary in order to have transparency, because lack of 
understanding of the charges themselves (low understandability) leads to inability to 
comprehend the process of forming the charges (low transparency). 

The major effect of transparency and understandability on chargeback success is 
related to obtaining stakeholders’ buy-in. Low transparency and understandability 
lead to resentment of the chargeback model [11, 30].  

Controllability. Nolan [25] uses the controllability concept to denote to what extent 
consumers are in control of their IT costs. Chargeback models that enable users to 
have impact on IT bills by changing consumption behavior have high controllability. 
On the contrary, if users cannot influence IT bills, then controllability is low. 

Controllability has profound impact on chargeback success. On the one hand, it is 
essential to enable cost reduction opportunities on the consumption side, because it 
allows managers to reduce their IT bills by changing consumption behavior. On the 
other hand, controllability influences the users’ acceptability for the chargeback 
model [25]. Low controllability leads to resentment, because chargeback is perceived 
as unnecessary overhead that does not benefit managers, while high control allows 
them to realize cost reductions and accept the chargeback model. 

Fairness. Fairness is another concept investigated by chargeback researchers [20, 21]. 
Those authors dub perceived fairness (PS) “the key to chargeback systems 
effectiveness.” In their works, “allocative” fairness is used as a synonym to accuracy, 
while perceived fairness refers to user’s perception of how fair the method is. It is 
unclear, however, whether in this case the term fair can be used as a synonym to the 
words “just” or “unprejudiced.” Managers’ self-interest and opportunism lead to 
perception of high fairness only when the chargeback model is consistent with their 
goals (e.g. allows them to get a higher bonus because their profit increases due to 
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lower IT costs). On the other hand, if a chargeback model is highly accurate, or 
“allocatively” fair, but leads to higher IT costs for a manager, he/she might be likely 
to perceive the model as unfair. 

Therefore, the term PS could be considered a misnomer, because of its slightly 
contradictory meaning to the word fair (just, unprejudiced). Nevertheless, it is a 
useful concept to describe stakeholders’ attitude towards the chargeback model and 
whether they are likely to accept (high PS) or reject it [20, 21]. 

Inferred Factors. A close inspection of the above factors influencing chargeback 
success reveals that their impact is realized in two separate ways. The examined 
forces either affect the effectiveness of the model [3, 11, 12, 25, 27], or the 
acceptability to the stakeholders [11, 20, 21, 25, 30]. These two aspects of chargeback 
success are used in the authors cited above to describe how accuracy, cost of costing, 
transparency and understandability, and controllability affect success. According to 
the above-referenced works, Fig. 1 visualizes how acceptability and effectiveness can 
be recognized as two high level dimensions that explain how the other forces 
influence success (Fig. 1). 

 

Fig. 1. Factors that impact success according to the scientific literature [3, 11, 12, 20, 21, 25, 
27, 30]. Solid arrows visualize a positive relationship, while the dashed ones depict a negative 
relationship. Fairness is merged into acceptability and discussed further below. 

Effectiveness determines whether the chargeback model stimulates the desired 
chargeback results, such as cost awareness and control, behavior steering, 
minimization of internal conflicts, more competitive costing and pricing.  

Acceptability describes whether all the involved stakeholders find the model 
acceptable. High acceptability means that stakeholders find the model agreeable and 
are supportive of the chargeback process, while low acceptability stands for the lack 
of support for the model and results in resentment for the model. 

In Fig. 1, fairness has been merged into acceptability because the latter excellently 
captures the meaning implied by Hufnagel and Birnberg [20, 21]. The substitution is 
appropriate, because those authors equate low PF to the resentment of the model, 
while high PF is considered equivalent to the acceptance of the model. 



 How to Do Successful Chargeback for Cloud Services 67 

3 Research Method 

The above factors resulting from the literature review tend to apply for chargeback in 
general and do not to take into account the characteristics of the Cloud. In the 
following research step, semi-structured interviews with Cloud and chargeback 
professionals were conducted to verify whether those factors indeed applied in a 
cloud environment and what other dimensions had to be also taken into account. 

3.1 Interviewee Selection Process 

To identify an extensive list of factors that influence chargeback success, twenty-five 
semi-structured interviews were conducted with field experts from IBM and IBM’s 
client and partner network. Respondents from different backgrounds and positions 
were selected to ensure the comprehensiveness of the findings. Five types of 
stakeholders were identified in total: executives and board members, chargeback 
specialists, charges recipients, IT specialists, and consultants. 

Despite the differences in background, all interviewees also shared some common 
characteristics. They were from Dutch origin and worked for seven large 
organizations in The Netherlands. In Table 2 below, each organization is briefly 
described in terms of industry and size. 

Table 2. Organizations participating in the research by industry, size and number of respondents 

Alias1 Industry  Size (№ employees) № of respondents 
IBM Consulting, technology > 10,000 16 
INS1 Insurance 1,000 – 10,000 1 
INS2 Insurance 1,000 – 10,000 2 
MUN Government/municipality 1,000 – 10,000 1 
GOV Government > 10,000 3 
TRANS Transportation > 10,000 1 
HOUS Housing/construction 1,000 – 10,000 1 

3.2 Interview Structure and Research Approach 

The objective of the interviews was to ask the participants to identify what 
characteristics of a chargeback model affected its success and how. This required 
respondents to be given the opportunity to freely discuss the topic and the researcher 
to ask clarifying questions. The need for free bi-directional communication precluded 
the usage of questionnaires or formally structured interviews [10, 24]. Thus, semi-
structured interviews were preferred over unstructured interviews to allow 
comparison between the responses of the different participants and to keep the 
interviews focused on the topic [24].  

A two-page interview guide was developed to impose a common structure on all 
interviews. On top of an introduction and wrap-up, it contained sections with 

                                                           
1  For confidentiality reasons aliases are used for the names of partners and clients of IBM. 
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interviewee background and experience, unguided questions, guided questions, and 
cross-validation. In the introduction the researcher and the research topic were 
introduced, while the background check was used to determine the stakeholder 
category of the interviewee. 

In the guided and unguided sections the respondents were asked questions such as: 
“What characteristics of a chargeback model do you find relevant for the success of a 
chargeback model for cloud services?” and “How do those characteristics influence 
success?”  No directions were provided by the interviewer, and subsequent questions 
were asked mainly to clarify what the interviewee meant by a certain concept. In the 
guided part of the interview, the concepts identified from literature were introduced 
and the respondents were asked to comment on them. It was also queried if they 
brought to mind additional factors. Finally, the cross-validation phase was used to 
validate the findings. This is discussed in the following sub-section. The wrap-up was 
used to verify whether the researcher had properly captured all the points made by the 
interviewee. 

3.3 Cross Validation 

The twenty-five interviews were used to empirically cross-validate the findings for 
correctness and completeness. Correctness was evaluated by asking the respondents 
whether all the discovered factors were relevant for the success of a chargeback 
model. Completeness was determined by asking the participants to comment on the 
comprehensiveness of the compiled list.  Since the latter was always larger than the 
list identified by each individual interviewee, the participants mostly made positive 
comments on comprehensiveness. Therefore, the method described below was also 
applied to more reliably evaluate completeness. 

Since it was impossible to guess how many interviews would be necessary to reach 
an “extensive” list a priori, a theoretical data saturation principle was applied to 
empirically determine the required number [14, 17]. Interviews were conducted until 
the moment a data saturation point was reached, i.e. the list of discovered forces 
started to converge and no additional factors were brought up in subsequent 
interviews. At this point it was deemed that the probability for additional findings 
from questioning more respondents was too low to justify the required research 
efforts and the list was considered as sufficiently complete. It was experienced that 
the saturation point had been reached by the twenty-fifth interview, because after 
interview number twenty-one each discovered factor had been mentioned at least four 
times, and no new factor had been identified since the twelfth interview. 

4 Results 

To start with, the results confirmed the relevance of the dimensions listed in Fig. 1. 
Furthermore, four additional factors were found to be conducive to chargeback 
success, and to be especially relevant in a cloud environment. These are 
measurability, predictability, accountability, and comparability. Table 3 displays how 
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many respondents mentioned each factor during the interviews. Fig. 2 visualizes how 
all the identified factors impact success. Subsequently, the newly discovered factors 
are explained. 

Table 3. Number of times each factor was mentioned during the interviews by background of 
the twenty-five respondents 

 Total
2
 Executives Chargeback 

recipients 
IT 
specialists 

Chargeback 
specialists 

Consultants 

Effectiveness 13 2 0 4 6 5 
Acceptability 12 1 1 5 4 6 
Measurability 6 0 0 6 0 3 
Accuracy 21 2 4 9 6 9 
Transparency & 
understandability 

12 1 3 4 5 4 

Controllability 8 0 3 4 5 1 
Predictability 14 0 4 11 1 7 
Accountability 7 0 1 4 3 1 
Cost efficiency 8 2 0 3 1 5 
Comparability 4 0 0 2 2 2 

Measurability was a concept that was mentioned mostly by the interviewed IT 
specialists who had in depth experience with Cloud. The term was used to refer to the 
degree of ease with which the chargeback model allowed measuring how many 
service consumption units had been used and to determine who had used those. For 
example, if a certain service is charged based on completed transactions, it must be 
possible to count how many transactions have been completed over a charging period 
and by whom. High measurability implied that it was possible to measure usage 
without highly specialized or custom made metering systems, while low measurability 
required such technology. 

The interviewees motivated the importance of measurability, by explaining that it 
was difficult to measure usage in the shared virtualized infrastructure behind the 
Cloud and that there were still a number of technical limitations of metering systems, 
especially when it came to charging units such as CPU cycles or memory. Yet, as one 
respondent remarked, “(…) usage based charging [was] possible only through 
measuring.” 

Regarding the impact of measurability on success, the interviewees suggested that 
it positively influenced both acceptability and effectiveness. From an effectiveness 
perspective the capability to gather detailed usage data allowed for effective decision 
making and more accurate charges. On the other hand, high measurability reassured 
the stakeholders in the accuracy of the model, consequently improving acceptability. 

Predictability describes to what extent chargeback recipients are able to predict 
future bills. Predictability becomes far more significant in a cloud world, because 
pay-per-use and elastic scaling of resources could lead to fluctuating bills that tend to 
bother budget minded managers. The latter do not mind bills that are smaller than 
expected, but it turns out that they are afraid of bills that greatly exceed expectations.  
 

                                                           
2  Since a few respondents fell into two stakeholder categories due to their diverse job 

responsibilities, the sum of the five rightmost columns is greater than the total count. 
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Fig. 2. Factors impacting the success of a chargeback model 

Despite these concerns, the interviewees commented that predictability did not impact 
the effectiveness of the chargeback model. It affected only the acceptability, as 
unpredictability led to resentment towards the chargeback model.  

Accountability is the extent to which charges recipients are able to verify the 
correctness of the bill. The easier it is for them to do it, the higher the accountability, 
and consequently, the higher the acceptability. Fixed subscription fees on a per user 
basis offer the highest accountability, because managers are just able to multiply the 
number of people in their team by the amount of the subscription fee and verify the 
correctness the bill. However, accountability decreases when metering of IT resource 
consumption is involved, such as transactions made and bandwidth consumed, 
because that requires from managers higher technical competence and access to 
specialized IT systems. 

The respondents motivated the relevance of accountability by explaining that they 
often witnessed disputes, sometimes well-grounded, over the correctness of the bill. 
One interviewee summarized the general opinion as follows: “The lower the 
accountability, the more often you see disputes over the bill.” 

Comparability is the degree to which consumers are able to compare the prices of 
internally provisioned services to similar or equivalent services offered on the market. 
The standardization characteristic of the Cloud leads to the availability of highly 
similar standardized services available on the market. Therefore, in a cloud 
environment it becomes much easier to benchmark IT costs on a per-service basis. 
Yet, this still depends on how the chargeback model is designed, and whether internal 
service pricing follows the pricing patterns of public providers. If the chargeback 



 How to Do Successful Chargeback for Cloud Services 71 

model is designed in a way that allows easy price comparison, then comparability is 
high. This results in cost reductions on the provisioning side, because internal users 
who are able to compare prices start to exercise pressure for more efficient IT 
delivery on the IT department. 

5 Discussion 

A closer analysis of the results also provides additional insights about the chargeback 
landscape. To start with, the interview data show that the current chargeback literature 
is almost oblivious in regards to the Cloud and that further research in the field is 
necessary. This is suggested by the fact that all the factors identified through literature 
research hold both for traditional and cloud environments. With CC, however, 
additional factors such as measurability, predictability, and comparability have been 
put forward by the interviews. 

Another intriguing conclusion that can be drawn from Table 3 is that different 
types of stakeholders tend to recognize different forces. This can be used to better 
explain the chargeback landscape, the rationale behind the behavior of individual 
stakeholders, and thus to remind chargeback designers to address the unique concerns 
of all stakeholders. Some notable patterns that can be identified from the results are 
the following: chargeback specialists do not seem to be concerned with the cost of 
costing; measurability is a force recognized mainly by IT specialists; predictability 
tends to be mainly a concern of chargeback recipients and IT specialists, but not of 
chargeback specialists. Below these trends and their implications are discussed. 

The fact that only one out of six chargeback specialists mentioned the cost of 
costing is at first sight perplexing, because these professionals usually have strong 
accounting backgrounds and their task is to keep an overview of the involved 
financials. One possible explanation supported during the interviews is that the 
negative impact of the cost of costing is offset by the benefits arising from investing 
in improving other factors. Yet, this view seems to contradict previous research [9].  

Opportunism might provide an explanation why chargeback specialists tend to 
avoid recognizing the importance of cost of costing. Firstly, higher cost of costing 
could be expected to provide more work for the chargeback specialists and to lead to 
increased job security. Secondly, the application of more complex and expensive 
chargeback practices, but more challenging and interesting from a practitioner’s point 
of view, could be regarded as a source of professional satisfaction. 

The fact that only one out of six chargeback specialists mentioned predictability 
and none of them recognized measurability suggests that chargeback for Cloud is 
poorly understood, and that the current practices fail to leverage pay-per-use. If it 
were otherwise, then the concerns of charges recipient about predictability and of IT 
specialists about both predictability and measurability would have had proliferated 
also to chargeback specialists. 

On top of information about the current chargeback practices, the discussion also 
confirms that chargeback involves a lot of political play and opportunistic behavior. 
For example, chargeback specialists might be inclined to adopt heavy chargeback 
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processes both for job security and out of professional interest. Chargeback recipients 
might show resentment for the charging practices if the latter put them at a 
disadvantage, and external consultants and solution providers might have incentives 
to push through expensive technology and services. Therefore, chargeback designers 
should be well aware of possible opportunistic behavior and should take into account 
the positions of all stakeholders, as well as all the factors impacting success. 

5.1 Limitations 

The field specialists who participated in the semi-structured interviews, the performed 
cross-validation of the findings, and the adherence to a data saturation principle 
support the validity of the findings. Nevertheless, this research has some limitations 
related mainly to the choice of interview participants.  

To start with, the Netherlands based chargeback experience of the interviewees 
brings forward the question whether the findings apply globally. European and North 
American organizations, for example, have a history of using different accounting 
approaches [6]. Nevertheless, there are a number of reasons that allow for a relatively 
reliable generalization of the results. 

Firstly, no evidence for significant differences between chargeback practices in 
European and non-European environments was found in the literature. Moreover, the 
results confirm the findings from the predominantly U.S. based literature used for this 
research. Thirdly, the majority of the newly discovered criteria were mainly related to 
the technology characteristics of the Cloud and those are globally valid. Finally, the 
findings are motivated by location independent arguments why certain forces impact 
success. Due to all those reasons, it can be considered relatively safe to assume that 
the findings are valid at a global level. 

Another potential limitation is that the results rely mostly on IBM’s chargeback 
expertise, because more than half the respondents were affiliated with IBM. However, 
the aim of this research was to provide an extensive set of factors influencing 
chargeback success, rather than to rank the different factors in importance or to 
describe how chargeback concerns differed between organizations. Therefore, 
expanding the list of interviewees with additional respondents with broad chargeback 
and cloud experience from IBM can be viewed as an appropriate decision. 

5.2 Future Research  

To start with, the limitations presented above already offer some opportunities for 
future research. For example, this study could be replicated with different companies 
and in different geographic areas to explore whether there are additional factors that 
impact success in those environments. However, the findings presented here enable 
further research with far more significant contributions. 

This work contributes to the understanding of the impact of Cloud on chargeback 
and the knowledge which dimensions of a chargeback model contribute to its success. 
These insights can be leveraged by researchers to develop cloud-friendly chargeback 
models and methods that assist chargeback designers to create such models. 
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Furthermore, a system of metrics that allows the operationalization of the proposed 
above model of success factors can be developed. Such a system would not only 
allow for the impact of the different factors to be quantitatively verified, but would 
also enable research that measures the impact of different chargeback design 
decisions on success, and that fine-tunes chargeback models accordingly. 

5.3 Contribution 

To the best of own knowledge, this research provides the most comprehensive 
overview of the factors that impact chargeback success. Moreover, it explores the 
topic from the perspective of CC. Not only does this work empirically confirm the 
findings reported in the literature [3, 7, 9, 11, 16, 19–21, 25, 28, 30], but it also adds 
new factors that have not been known to researchers so far. Finally, it enables further 
research on the development of more cloud-specific chargeback models that can 
further improve how organizations benefit from chargeback and CC. 

This work also has a significant societal contribution. In times of common views 
that IT investments do not pay back [4, 5], leveraging the findings could help improve 
the effectiveness of delivering and using IT in contemporary organizations. To start 
with, cloud adopters can benefit from this work by implementing chargeback models 
that can help them leverage the cost advantages and business flexibility of the Cloud 
and further reduce IT costs. Moreover, the results can be useful to cloud providers and 
providers of chargeback systems and services. Cloud providers can benefit by 
acquiring more knowledge about the chargeback requirements of their clients in order 
to offer more competitive pricing schemes. Vendors of chargeback software can 
update their products to better support cloud-specific chargeback models. Finally, 
providers of chargeback services can also use it to convince their clients of the value 
of external help in chargeback design and implementation. 

6 Conclusion 

This paper provides an overview of the factors that should be taken into account in the 
process of chargeback model design. Eight factors are empirically validated to affect 
the success of chargeback in a cloud environment – accuracy, cost of costing, 
transparency and understandability, controllability, measurability, predictability, 
accountability, and comparability – and their impact on success is explained through 
two higher level variables, acceptability and effectiveness. The findings suggest that 
to develop successful chargeback models, chargeback designers should try to 
optimally balance between the presented dimensions and should address the concerns 
of the different stakeholders. Furthermore, while measurability, predictability, and 
comparability tend to be irrelevant or neglected in a traditional IT environment, the 
results evidence that special attention should be paid to these factors in a CC context.  

Finally, a few concluding remarks are made on the timeliness of this work. The 
results emerge at a moment in which the adoption of cloud services is at its beginning. 
Therefore, the findings can promptly assist organizations that need to implement 



74 H. Stefanov et al. 

cloud-specific chargeback models as part of the transition to the Cloud. Rather than 
summarizing the accumulated chargeback experience once the transition is in a more 
developed stage, this research provides timely empirical findings that can enable 
immediate actions and future research that can further facilitate the move to the 
Cloud. 
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Abstract. The importance of marketplace frameworks, where demand and supply 
for electronic services meet, has gained momentum with the recent technological 
innovations of cloud computing. In particular the emerging market for cloud and 
XaaS offerings is, in the current early stage of development, scattered and 
represented by many single offerings. New intermediaries are required for  
the consolidation of the available service offerings and for providing a one-stop-
shopping opportunity for customers. This paper proposes a new cloud 
marketplace solution that enables on the one hand an integrated platform for the 
development and selling of XaaS products and on the other hand a one-stop-
shopping for customers interested in services. Service providers can merchandise 
and sell their products through the marketplace supporting the whole lifecycle of 
these products. Service consumers are provided with a unique personalized 
service search and resolution engine, helping them to find and customize the 
products they need. 

Keywords: Electronic marketplace, cloud computing, trading services, 
business resolution, analytics. 

1 Introduction 

Clouds can be considered nowadays as a common solution for trading and 
provisioning any type of ICT assets as products, which in the cloud terminology is 
denoted as XaaS (Everything as a Service) [2, 19]. The term refers to an increased 
number of cloud-based resources and services provided over the Internet, with the 
most common examples, following the SPI model [18], Software (SaaS), Platform 
(PaaS) and Infrastructure (IaaS) as a service. Other examples of XaaS may be storage, 
communications, network and monitoring as a service. Besides the technical 
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advancements in the area of cloud computing, there are still several limitations [3], 
especially from the business perspective that clouds need to overcome in order to 
allow the wide adoption of clouds as true business ecosystems. In this paper, we 
propose a marketplace for cloud-based services that provides simplified, effective and 
agile processes to all stakeholders involved in the value chain of a product, for 
consuming or providing services and resources. The purpose of this marketplace is 
not only to offer a single, well-known meeting point for the different stakeholders but 
also to support the various technical and business requirements in all phases of the 
service lifecycle (planning, analysis and design, development and testing, 
provisioning, deployment, discovery, composition, execution, and monitoring, - see 
[14]). The marketplace, as part of an integrated cloud platform [1], will allow XaaS 
providers to publish their products in a managed environment, which controls the 
business terms and conditions (price, revenue sharing, promotion, etc.), including 
advanced pricing and billing capabilities [12]. 

In that sense, a cloud marketplace should address several challenges in order to 
provide efficient communication between the various stakeholders involved. In the 
service discovery phase, marketplaces should be capable to interpret the high level 
business and technical requirements from customers and select products or 
recommend product compositions. While various approaches exist on performance 
prediction and according to that, proceed with the aforementioned discovery phase 
(e.g. [8]), marketplace operations mainly depend on cost effective pricing models and 
Service Level Agreements (SLAs) which capture the technical and business 
requirements of customers and providers [6]. Based on the selected pricing models 
and SLAs, the required services and resources are identified, resolved (analysis of the 
dependencies) and deployed while respective monitoring and management policies 
are negotiated with the underlying cloud layers.  

The proposed framework aims at providing advanced functionality for trading of 
services in the cloud that fosters the development of a dynamic and fair ecosystem for 
services and service-based applications. To this direction, a provider that will use the 
marketplace will be able to define new product offerings, including all business 
information (price, application level SLAs, etc.), while the customer will be able to 
search for services, customize and contract them. 

Even though the marketplace is currently an integral part of the overall cloud 
platform developed in the 4CaaSt project [1], we envision that it could be integrated 
to any cloud environment since it follows a service oriented architectural design and 
state of the art technologies and standards. The marketplace represents the customer 
interface of the platform and therefore will simplify the interactions between the 
customer and the cloud and cover many aspects of the overall lifecycle. In addition, 
its functionality will be enhanced with processes for collecting valuable information 
for rating, billing and settling the incomes as well as statistics analytics in favour of 
providers and the marketplace itself. By analysing past interactions between 
providers and consumers, the marketplace will be able to offer best practices as an 
added value. 
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Through the marketplace, service providers are allowed to define and customize a 
commercial offer that will be resolved, deployed and fulfilled in a personalized 
manner for each customer by selecting the most appropriate services from the 
available ones. To this direction, the customers will be able to receive a customized 
product, the price of which may be determined dynamically based on the 
configuration options defined by the provider and the deployment decisions taken by 
the cloud platform. In addition, extended functionality for simulating the business 
aspects of the offered products, for defining effectively their business terms and 
conditions, is provided. 

The rest of the paper is structured as follows. Chapter 2 presents the related work 
on electronic marketplaces and the outcomes of a survey on the capabilities of 
existing electronic marketplace environments. Chapter 3 highlights the functionality 
of the proposed solution as part of a cloud ecosystem. The architecture and 
implementation details of the framework are presented in chapters 4 and 5 
respectively. Chapter 6 analyses the innovations of the marketplace based on the 
evaluation of the first implemented prototype and finally chapter 7 concludes our 
work. 

2 Related Work 

An electronic marketplace is a platform where demand and supply for certain goods 
meet in order to: a) offer products and services in an structured manner as well as to 
select and find required products and services, b) to negotiate the price and 
conditions, c) to set up a contract, and d) to pay and deliver the offered products and 
services [7, 10]. A typical market transaction within an electronic marketplace 
therefore contains four specific phases: a) information, b) negotiation and price 
setting, c) contracting, and d) settlement. This already indicates the three major roles 
and players that are active on a marketplace. First, the providers of products and 
services, second the consumers of products and services, and finally, the marketplace 
provider himself who is basically providing the market infrastructure and may support 
and participate actively, also taking a share of the revenues generated on the 
marketplace. In contrast to traditional markets, electronic markets are placeless resp. 
ubiquitous, just like cloud-based services. In this sense, an electronic marketplace 
corresponds to the concept of cloud-based services, which also have a global and 
instantaneous reach [20]. 

According to [4] "...the interesting question is whether and how services will be 
traded in the future". Further prior studies that have noted the importance of the role 
of intermediaries in electronic markets are among others [5, 9]. Within Table 1 six of 
the most sophisticated, existing electronic marketplaces have been evaluated based on 
their support of a typically market transaction. The four main phases of market 
operation plus the analytics process (which is a cross-phase process) have been 
broken down into a list of features, which serve as evaluation criteria within the paper 
at hand. 
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Table 1. Evaluation of existing marketplaces for electronic services 
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1. Information phase 
1.1 Product Definition + + + + + + + + 
1.2 Product Description  - + - + + + - - 
1.3 Product Search + + + + + + + + 
1.4 Bid Search - - + - + - - + 
1.5 Related Products + + + + + + - + 
1.6 Recommendation - - - + + + - - 
1.7 Competition Analysis - - - + + + - - 
1.8 Business Analytics - + + + + + - - 
1.9 Community rating & comments + + + + + + - - 
1.10 Social Graph Analysis  - - - - - - - - 
2. Negotiation phase 
2.1 Bid to Product - - - - + - - + 
2.2 Product Resolution - - - - + - - - 
2.3 Product Customizing - + + - + + - - 
2.4 Product Specification - - + + + + - - 
2.5 Composite Resolution - - + - + - - - 
2.6 Real-time Resolution - - - + + - - + 
2.7 Profile based Resolution - - - + - + - - 
2.8 Basket Management - - + + + + - - 
3. Contracting phase 
3.1 Contract Management - + + - + + - - 
4. Settlement phase 
4.1 Delivery Support - + + + + + + + 
4.2 Payment Support - + + + - + - - 
4.3 Rating & Charring  - + - + - - - - 
5. Analytics 
5.1 Show Competitive Products - - - + - - + + 
5.2 Reporting on Products, Incomes - + - - - + + + 

The Windows Azure Marketplace, Amazon Web Services, SuiteApp.com and 
Zoho provide advanced service and application directories, where service providers 
offer their products and services in a structured manner. However, they mainly focus 
on the first phase of a market transaction. The negotiation, contracting and settlement 
phase are not covered. These activities are usually handled by the service providers 
themselves rather than being supported by the marketplace.  
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The focus of the Android Market, as well as Apples’ App Store, is slightly 
different, since most of the traded products are games and entertainment applications. 
Furthermore, these products are no cloud-based services as such, since they are 
installed locally. However, both marketplaces provide sophisticated features for 
service/application providers, as for instance service definition and description, 
business model specification and revenue analysis. 

Google Apps Marketplace takes advantage of the broad palette of Google tools to 
cover the different phases of a market transaction. Marketplace users can utilize other 
services provided by Google like Checkout, Analytics or Product Ideas. The Google 
Apps Marketplace itself puts emphasis on refined search functions for consumers and 
delegates other phases of the market transaction to complementary Google products.  

AppExchange from Salesforce.com is the most advanced marketplace within our 
evaluation, since it covers most of the required features for trading cloud-based 
services. However AppExchange, just like the other marketplaces within our 
investigation, does not support dynamic price and revenue networks.  

Composite services and resolutions are supported by the Google Apps Marketplace 
and AppExchange from Salesforce.com. According to the imposed restrictions and 
the current demand, in AppExchange from Salesforce.com and Zoho real-time service 
resolution takes place. Most of the examined marketplaces keep some information 
about users which help them personalize and ease service recommendations but only 
Android Market performs a customer profile based resolution. 

3 Marketplace Functionality in the Cloud Ecosystem 

Following the analysis of the electronic marketplaces in the previous section, we have 
identified the most relevant user roles for a cloud-based marketplace. On the 
consumer side, we can distinguish between a) end-consumers, who just consume a 
certain service, b) business customers, in particular SMEs, who take advantage of the 
cloud services available on the marketplace and c) enterprises that exploit the 
platform resources as a special case of cloud bursting. On the provider side, we can 
distinguish between Network as a Service (NaaS), Infrastructure as a Service (IaaS), 
Platform as a Service (PaaS), and Software as a Service (SaaS) providers [18]. 
Another important entity in service oriented infrastructures and Clouds is the service 
aggregator with the role of both consumer and provider, who combines offerings of 
different types into new composite products that will be merchandised afterwards in 
the marketplace.  

The main marketplaces processes are separated in four different phases (Fig. 1). In the 
first phase, so called information phase, the market players need to exchange information. 
A service provider describes his products technically and economically, while a consumer 
is looking and searching for the specific service that might fit his needs. 

In the second phase, after the consumer has chosen certain services, resolution and 
price building takes place. The consumer is allowed to define specific constraints for 
his/her request or select from a set of customization options, predefined by the service 
provider, for a particular product. The marketplace will identify any business 
dependencies and propose a selection of services and resources that satisfy the 
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constraints that are defined by the consumer. Part of this process are the price 
aggregations and the selection of appropriate pricing models based on a) the request 
parameters, b) the availability of services and resources from the Cloud, c) the user 
profile and finally d) the experience from previous selections exploiting the analytics 
functionality of the marketplace. Following the proposal(s) from the marketplace, 
customers are able to negotiate (if allowed by the product definition) the explicit terms 
and conditions under which the product and its dependencies will be provisioned. In 
that sense, if a customer is not satisfied with the returned results, he/she is able to 
change his/her constrains and customization options and repeat the resolution process.  

In the third phase, when provider and consumer have agreed on a specific product 
and price, a legally-binding contract has to be defined. The contract, which is created 
automatically from the information obtained in the previous phases includes also a set 
of appropriate SLAs with contains, compensations and provisioning policies for all 
involved entities. The outcome of this phase is a signed contract which becomes a 
legally binding document for both sides.  

The final phase of the marketplace is the so-called settlement. The settlement has 
two major activities: a) the delivery, which means that the consumer gets access to 
and can use the contracted service or application and b) the payment. Part of the 
settlement phase is the actual deployment and instantiation of the required services on 
the Cloud, a process that is carried out from the underlying layers of the platform. 
Payment, on the other hand, involves the transfer of money from the consumer to the 
provider through the marketplace. This activity also includes the automatic 
distribution of the income among all the involved parties in case a product is an 
aggregation of offerings from different providers.  

 

Fig. 1. Marketplace processes 

The four main phases of the marketplace are also enhanced with the marketplace 
analytics functionality. The marketplace analytics is a horizontal process that aggregates 
information from various sources (operational, business, social, user feedback) in order to 
gain knowledge for improving the business terms and conditions for new products and 
business models. Based on the knowledge on the performance of previous business 
resolutions, the marketplace can perform more efficient selections of products, identify 
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optimal pricing models and recommend product compositions, which will lead to 
increased revenues for all involved stakeholders that are involved in the product lifecycle. 

4 Architecture 

The detailed architectural design of the marketplace including the main components, 
repositories and interfaces is depicted in Fig. 2. On the top layer, the marketplace 
includes a frontend for communication with the end-users which is composed of four 
elements: a) marketplace management, where the marketplace manager can define 
price models, settlement rules and policies, the service provider defines the business 
terms and conditions for a product based on its functional and non-functional 
specification and also customers that contract applications and services; b) 
composition support, where a consumer defines the constraints for his request and 
customizes the product; c) payment, where providers and consumers get information 
about payments, revenues and the revenue sharing; and finally d) reporting, where 
providers and customers can access reports and information about services 
consumption and billing, statistics and results of simulations. 

 

Fig. 2. Marketplace architecture 

The marketplace architecture defines four main repositories (although other 
components may have their own persistence mechanisms). The first repository is the  
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Product Catalogue, where the product specification is stored and linked to the 
corresponding services and applications in the service repository. This repository is 
always up-to-date, with the providers allowed to update or delete dynamically the 
created products. Off course these changes only affect the future selections and not 
the contracted or past products. A second repository is the Contracts Repository, 
where the agreements between providers and consumers for each marketplace 
transaction are stored. The contracts stored in this repository also include the detailed 
specification of the contracted product (customization parameters, SLAs for the QoS 
parameters, business and operational management policies, etc.). The Marketplace 
Configuration repository is used for the internal operation of the marketplace 
environment storing information for user profiles, user rights etc. Finally, the 
Charging and Settlement repository keeps the accounting information for each 
product that is instantiated and provisioned on the Cloud. This information is used 
afterwards for the payment and revenue share between the various stakeholders. 

In the business logic layer we have identified and implemented the following 
components: 

− Resolution Engine, where the business constraints defined by both the service 
provider and the customer are used to select the best platform, infrastructure and 
services to resolve the service description. 

− Contracting that handles negotiation, configuration and price building of 
services. 

− Search Engine that helps in selecting the best product according to a number of 
criteria, including past experience and user profiles. 

− Rating and Settlement components are in charge of rating the consumed services 
and settling the incomes according to the participation in the services and 
revenue sharing policies. 

− Business Analytics that aggregates the functionality of generating reports and 
statistics, business intelligence and simulations of the marketplace under 
different conditions. 

− Marketplace Management components are responsible for the basic operational 
aspects of the marketplace (users, profiles, rights, products). 

5 Implementation 

5.1 Product Definition 

One of the main objectives of the proposed marketplace is to be able to trade any 
kind of cloud-based services following the notion of XaaS. In that sense, the 
product model that is used in all marketplace processes should be carefully 
designed in order to cover the technical and business aspects of any XaaS offering. 
The product model is depicted in Fig. 3. It is described as an XML Schema, in order 
to facilitate the exchange of product instances between the different components of 
the marketplace.  
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Fig. 3. Product XML schema 

The product description includes the following information: 

− ProductName: The name of the product to be shown to the customer. 
− BlueprintId: The Id of the service on which the product is based. 
− ProductDescription: A customer friendly description of the product. 
− PublicationDate: Date of release of the product in the marketplace. 
− ValidityFrom: Date from which the product can be contracted in the 

marketplace. 
− ValidityUntil: Date until which the product can be contracted in the 

marketplace. 
− Version: Release version of the product. 
− Brand: Commercial Brand of the product/service provider. 
− ServiceProviderId: Id of the service provider in the marketplace. 
− License: Textual name of the (usually software) license that applies to the 

product. 
− Attribute: A set of configuration attributes, fixed in design/definition type that 

allows the customer to customize the application or service. This attributes are 
specified with a name, unit, range of values and step.  

− Price: Defines the cost of the product based on other technical or business 
parameters and is described by the unified service description language (USDL). 

− Status: If the service is already active or not in the marketplace. 
− ProductType: Description of the type of product/service (SaaS, PaaS, IaaS). 
− Category: Application category (games, databases, etc.). 
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5.2 Product Search and Selection Lifecycle 

The Product Search and Selection functionality is considered as fundamental in any 
electronic marketplace, and therefore the implementation and evaluation of the initial 
marketplace prototype focused on this aspect. The various interactions among the end 
user and the different components of the marketplace are presented in Fig. 4 and 
described in detail below. 
 

 

Fig. 4. Product search and selection lifecycle 

1) The search and selection process is triggered when a user accesses the 
marketplace through its frontend in order to find possible products addressing 
effectively his needs.  

2) The user browses the product catalogue and searches among the already existing 
products. In order to make his search more effective and less time consuming, 
the queries may be categorized into groups, according to the product type etc. 
The result of this query is the set of candidate products that are compliant with 
the initial request. 

3) Based on the results of the query, the end-user is asked to impose, through the 
portal, QoS and/or business constraints, as well as to select from a set of 
customization options for the available products. These constraints and/or 
customization options, which may be of different types, are categorized into 
business and technical. The technical are provided as input to the technical 
resolver, while the business ones are treated in the marketplace resolution.  

4) The technical resolution (part of the underlying cloud layers as tightly coupled 
to the technical and deployment aspects of the service) performs a functional 
analysis and resolution, to an abstract list of services (and service dependencies) 
based on which the final set of products will be selected. The technical 
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resolution process uses as main input “blueprint” documents that are stored in 
the service database. These documents, provided by the service developers, 
describe the requirements and dependencies of each service from the undelaying 
layers or from other services to be functional.  

5) From a business perspective, the resolution refers to identifying those products 
that fulfil some business constraints, especially related to pricing and SLAs. To 
this direction, the products that are loaded and then evaluated according to the 
user requests, correspondent to the abstract services list from the previous step. 
The marketplace resolution engine in order to perform an effective business 
resolution and product selection must take into consideration also the pricing 
aspects and therefore the Price Aggregator (step 6) is “called”. The final product 
selection will be made based on the predefined, by the user, desirable 
performance and characteristics, the weighted parameters showing their 
importance to the user and the predicted usage (ex: per use or month). Each 
selection comes with detailed policies for provisioning the product, from both 
business and technical perspectives, considering a) the multi-tenancy and 
elasticity capabilities of each product, b) the capabilities of the platform and 
infrastructure layers and c) the customer requirements and constraints. 

6) The Price Aggregator calculates the final price for each product, based on the 
different pricing functions and business models suitable for each one. In 
addition, it analyses the pricing and business functions and describes the 
corresponding revenue sharing schemas.  

7) When the final selection is made, a contract is generated and signed 
electronically by all involved stakeholders. This contract contains the 
description of the terms for the provisioning of the product, the pricing model 
and the SLA terms. 

6 Marketplace Innovations 

6.1 Integrated Marketplace 

The proposed marketplace fosters the creation of dynamic business ecosystems in 
which multiple service providers may find a fair environment to develop and provide 
new services [13]. The support of flexible revenue models will help cloud providers 
to monetize the effort of creating and maintaining the platform, while service 
providers can make business with a zero capital expenditure (CAPEX) entrance 
barrier [11]. 

The marketplace supports the trading of different types of services in a unified 
way, a single access point to all type of service offerings: SaaS, PaaS, IaaS, NaaS or 
generally XaaS. A tight relationship with the service engineering layer supports the 
specification of commercial offers for any type of service, using the most appropriate 
revenue models for each service, simplifying the process of building applications. The 
marketplace can also apply specific policies and constraints for deciding which 
platforms and services will be used in the final service deployment, based on the 
business requirements of both the service provider and the customer.  
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At the settlement phase, the services running in Cloud are provisioned, monitored 
and accounted according to the signed contracts. Since the services may be the result 
of a resolution and composition process, the marketplace revenue sharing mechanism 
simplifies the accounting process allowing the service providers to foster the usage of 
their offer in the final applications and services. 

6.2 Service Search, Selection, and Resolution 

One of the most important functions of the marketplace is the resolution of the 
customers’ requirements to appropriate products or product compositions that will be 
contracted and provisioned. The requirements are typically associated with high level, 
application-specific aspects of the product and in that sense, a great advancement of 
the marketplace will be the capability to analyse and translate customer requirements 
to a set of technical and business parameters for services, technologies and resources. 
During this resolution (technical and business), appropriate SLAs that include 
obligations and policies for the provisioning of a product on the required Quality of 
Service (QoS) level, are identified and selected.  

Part of this process is also the selection of appropriate pricing model(s) capable to 
support effectively the business aspects of a product, for both the provider and the 
customer, as well as to identify appropriate SLAs for the products of the resolution 
tree, based on the customers QoS and/or business constraints. The resolution and 
selection of products and pricing models is based on a dynamic set of parameters, 
taking into consideration not only the customer’s request but also information from 
the cloud such as the user profile (contextual information related with a user), the 
market and infrastructure status and the experience about the effectiveness of previous 
resolutions. In order to support this, the business resolution engine implemented 
following a pluggable architectural design, will allow developers, providers and 
marketplace operators to produce advanced and sophisticated algorithms for the 
resolution of specific types of requests or products. The dynamicity of the resolution 
process enables further optimization of native and immigrant products and platform 
resources, in both technical and business level and also the development of new, 
personalized product offerings, product compositions, and pricing models. 

6.3 Generic Handling of Price and Revenue Models 

Depending on his business model, a service provider may choose one or more price 
models for each of his service offerings. In the general case, the price is a function that 
depends on one or more parameters. For instance, a price may be the combination of a 
fixed subscription rate s plus a transaction fee tf, say price p(x) = s + x tf, where x is 
number of service calls. A provider may also choose to define several different price 
model alternatives for the same service in order to meet different customer demands. 
Also, a price model may be adapted during the negotiation phase between service 
provider and service consumer. A key functionality of our marketplace is that it allows 
the service provider to define appropriate price models and supports him on this task, 
e.g., by preconfigured, best practice price models or by simulation and analysis. 
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The proposed framework also envisions that several existing service offerings can 
be combined into new, composite ones, either by one of the original service providers 
or by another one (who would then either be a mere reseller or provide a value-added 
service). In the general case, each service may be based on other services forming a 
service network. At the same time, each service is offered by a certain provider who 
may then be the consumer of another provider. The marketplace processes allow 
service providers (and consumers) to analyse this business network (e.g. by 
simulating alternatives when selecting services and price models) and calculate the 
overall price model for the consumer of a service network. Vice versa, when 
distributing the generated income for a certain market transaction from the final 
consumer to all involved providers according to the business network, the resulting 
complex revenue sharing model is also managed by the marketplace.  

7 Conclusions and Outlook 

At present, the cloud market is scattered and consists of providers specializing in 
IaaS, PaaS or on specific SaaS offerings. However, the potential customers of cloud 
services increasingly require integrated solutions for both developers and providers of 
services. This paper presents a new cloud marketplace as a solution for increasing the 
transparency and efficiency of the cloud market.  

The proposed marketplace offers a one-stop support for providers and customers. 
Providers can draw upon an integrated offering of PaaS and support for the full 
development life cycle of their services on the one hand and for the selling phase of 
the software on the other hand. In particular, in the selling phase of the life cycle of a 
service, the developers can rely on the marketplace for sophisticated price resolution 
and revenue sharing support. Potential customers of services are supported by 
functionality for a broad selection of XaaS, sophisticated service search, selection and 
resolution as well as one-stop pricing of bundles of services. In our future work, the 
search and resolution facility will be enhanced with social recommendations 
including information for relationships among suppliers, customers and services, 
allowing more effective and personalized use of all cloud assets. 
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Abstract. In Utility Computing business model, the owners of the com-
puting resources negotiate with their potential clients to sell computing
power. The terms of the Quality of Service (QoS) to be provided as well
as the economic conditions are established in a Service-Level Agreement
(SLA). There are situations in which providers must differentiate the
SLAs in function of the type of Client that is willing to access the re-
sources or the agreed QoS e.g. when the hardware resources are shared
between users of the company that own the resources and external users.

This paper proposes to consider the information of potential users
when the SLA is under negotiation to allow providers to prioritize users
(e.g. internal users over external users, or preferential users over common
users). Two policies for negotiation are introduced: price discrimination
and client-aware overselling of resources. The validity of the policies is
demonstrated through exhaustive experiments.

Keywords: Cloud Computing, Client Classification, SLA Negotiation,
SLA Allocation, Business Modeling.

1 Introduction

In recent years, the Utility Computing business model is increasing its accep-
tance in the Information Technology sector [19] thanks to the burst of Cloud
Computing paradigm [8]. In Utility Computing, the users of the resources are
not necessarily their owners: users run their applications or services in remote
data centers and pay in function of the usage, as with other utilities such as
water provision or the electric grid. The terms of the Quality of Service (QoS)
to be provided and the economic conditions are established in a Service-Level
Agreement (SLA). Utility Computing allows the users to economically benefit
from economies of scale, because it minimizes the space and maintenance costs.
However, despite of the economic benefits of using computing as a utility, there
are still open security reasons to not submit the critical or confidential data to
resources that are located in third parties [13].

Companies may decide to hire out the spare resources of their data centers
to external users that do not have such security or confidentiality restrictions
[11]. The price that external users pay to use the resources contributes to amor-
tize the cost of the data centers. However, a binary classification of the users as
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internal/external is not accurate enough in many situations. For example, head-
quarters of a big company may classify the users of its data centers according
to different levels: users from the headquarters that owns the resources are com-
pletely internal, users from other companies are completely external, and users
from other headquarters of the same company have an intermediate range. Even
multinationals could define more degrees of proximity for headquarters in the
same country and headquarters in other countries. Whilst completely external
users pay a fee and completely internal users use the resources for free, the users
in between would pay a reduced fee that does not report profit, but encour-
ages each location to only use resources from external locations when strictly
necessary.

Another example of intermediate users are users from trusted entities that
decide to share their computing resources for sharing risks and dealing with
peaks of workload without the need of overprovision resources. Examples of
trusted entities are different companies from the same business cluster [17].

Clients may be classified according to other criteria. Many service providers
classify their clients according to the QoS that they have purchased. For example,
Spotify [5] is an online music provider that classifies its clients in three categories
(free, unlimited and premium) according to their monthly fee. The higher the fee
the more services and QoS: unlimited streaming hours, highest quality of sound,
available downloads, etc. The provider must consider the purchased QoS when
allocating the resources.

The usage of the resources by external users can affect the QoS of internal
users if the SLAs do not reflect priorities between clients in terms of pricing
or allocation of resources. This paper suggests applying Client Classification
to keep high QoS to internal users or users with high QoS requirements. Client
Classification considers the information about the users when giving them access
to the resources and prioritizes some SLAs according to two criteria:

QoS that the users are willing to acquire: the higher the QoS the higher the
price. This is the traditional classification of services in Utility Computing.

Affinity between the client and the provider: clients from the same com-
pany as the provider or from entities that have a privileged relationship with the
provider can hire the services at better prices, better QoS, or any other privilege.
This novel approach was devised with the success of Cluster and Grid Comput-
ing, in which organizations share part of their resources with users from other
organizations. By prioritizing users to which there is high affinity, organizations
can ensure that their internal users will have enough resources or QoS when
there is a peak of external demand.

According to previous considerations, our contributions are:

1. Proposal of new approaches to perform Client Classification in pricing and
SLA allocation policies.

2. Demonstration of the validity of the model through fine-grained experiments
that demonstrate how a provider can reach its Business-Level Objectives
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(BLO) without penalizing its internal users or external users with prior-
ity SLAs. The results are evaluated in terms of revenue and proportion of
priority users in the system.

We propose policies to allocate SLAs by pursuing a main BLO: users differentia-
tion according of their Affinity/QoS relationship with the provider. In addition,
our model also considers the economic profit as secondary BLO when negotiat-
ing the SLAs: prices at peak hours are higher than prices at off-peak hours for
all the users. In that way, costs are amortized faster and companies are encour-
aged to move part of their tasks (such as resource-intensive unattended batch
executions) to hours with low demand, such as the late night.

The experiments have been performed with the Economically Enhanced Re-
source Manager (EERM) simulator [4]: a customizable Cloud market simulator
that applies several Business policies and allows users to define new policies as
JBoss Drools rules [3].

The remainder of this paper is structured as follows. After the discussion of
the related work, Section 3 describes the scenario in which Client Classification
is applied: its participants and some preliminary definitions. Section 4 introduces
the proposed rules for Client Classification: their motivation and their concrete
implementation. Next, Section 5 describes the simulation environment and shows
the experimental results that demonstrate the validity of the rules. At the end,
Section 6 describes the conclusions of this paper and states the future research.

2 Related Work

In this paper, we extend part our previous work in Negotiation Models [16] and
Rule-Based SLA Management for maximizing BLOs [15]. Previous work intro-
duced several policies for maximizing the revenue of providers in Cloud Com-
puting Markets [9,14]: dynamic pricing, overselling of resources, dynamic scaling
of resources, migration of Virtual Machines (VMs), etc. This paper introduces
rules that are essentially similar, but focused in Client Classification from the
provider side.

Many previous works classify SLAs by considering the client information. The
innovation of this paper relies on the proposal of new rules for price discrimi-
nation and client-aware overselling of resources, and their exhaustive evaluation
in terms of revenue, client affinity, QoS, and SLA fulfillment. In addition, whilst
related works tend to classify users in function of their internal/external condi-
tion, this paper defines them in a continuous range between 0 (lowest preference)
to 1 (highest preference).

Client Classification is a usual practice in many businesses, such as banking
services [2]. These businesses categorize clients in function of their size, budget,
etc. and establish policies that define clearly the priorities of the clients, their
protection level, their assigned resources, Quality of Service, etc. In Cloud Com-
puting, Amazon Elastic Computing Cloud (EC2) provides a set of predefined
VM instances [1], each one with different performance profiles (CPU load, Mem-
ory, etc.), but a fixed Quality of Service: they promise that their machines have
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an annual availability of 99.5%. This approach may be economically suitable
for huge resource providers, but not for smaller providers. With this paradigm,
small providers should overprovision resources for minimizing risks and provide
high availability. We try to channel the risk to the SLAs with the lowest priority
according to the defined BLOs. In case of SLA violation, the Clients will receive
an economic compensation proportional to the seriousness of the violation.

Previous papers introduced some policies similar to those introduced in this
paper. Sulistio et al. [22] propose overbooking strategies for mitigating the ef-
fects of cancellations and no-shows for increasing the revenue. The overbooking
policies used in this paper consider in addition the possibility of under-usage of
the reserved resources of the client. Dube et al. [10] establish different ranges of
prices for the same resource and analyze an optimization model for a small num-
ber of price classes. Their proposal is similar to our proposal about establishing
Gold, Silver and Bronze ranges and optimizing their QoS performance giving
priority to the contracts that report the highest economic profit. We extend this
work by combining the QoS ranges with several other policies, such as Price
Discrimination. Another main difference between this paper and the work from
Sulistio et al. [22] and Dube et al. [10] is that the main BLO of our work is the
Client Classification instead of the Maximization of the Revenue.

Püschel et al. [18] propose a scheme for Client Classification by means of price
discrimination, different priorities in job acceptance and differentiation in Qual-
ity of Service. They adopt the architecture of an EERM. The EERM supports
the optimization of SLA Negotiation and Management by dealing with both eco-
nomic and technical information of Cloud Computing Markets. In addition, this
paper extends the research of Püschel et al. [18] in Client Classification with the
extension and detail of the policies, and deeper validation of them by means of
a tailored simulation of Clients, Cloud Market, EERM, and Resource Fabrics.

3 Preliminary Definitions

A Cloud Market has two main actors: Clients and Providers. Clients try to buy
resources in the Market to host their services, by sending offers to providers
to start a negotiation. Each provider owns a set of N physical machines. Each
physical machine can host several VMs that execute single tasks, such as Web
Services or Batch Jobs. The QoS terms of a task are described in SLA =

{Rev(vt), C,
−→
S ,Δt}:

– Rev(vt) is a revenue function that describes how much money the provider
earns after finishing correctly or incorrectly a task. vt is the amount of time
in which the provider has not provided the agreed QoS to the client. Let
MP be the Maximum Penalty (can be seen as negative revenue: lower MP
implies higher penalties), MR the Maximum Revenue, MPT the Maximum
Penalty Threshold, and MRT the Maximum Revenue Threshold, Equation
1 describes the revenue function. If vt < MRT the SLA is not violated
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(0 violations); if vt > MPT , the SLA is completely violated (1 violations).
MPT > vt > MRT implies a partial violation ( vt−MRT

MPT−MRT violations).

Rev(vt) =
MP −MR

MPT −MRT
(vt−MRT ) +MR (1)

This equation allows a grace period where the provider can violate the SLA
without being penalized. When vt surpasses theMRT threshold, the revenue
linearly decreases (see Figure 1) in function of vt. The Maximum Penalty
MP is defined for avoiding infinite penalties. Client and provider can ne-
gotiate the values of MRT , MR, MPT , MP for establishing different QoS
ranges for the clients, which report different revenues and penalties for the
providers [16].

– C is the client information. Let id be the client identifier and
−−→
CD a vector

that handles the description of the client, then C = {id,−−→CD}. The infor-

mation contained in
−−→
CD must be decided by the System Administrator and

applied consequently in the policies.

–
−→
S describes the QoS of the purchased service: throughput, response time,
and so on.

– Δt is the time period requested to allocate the task.

The revenue function Rev(vt) (as well as all the revenue figures in the evaluation)
subtracts the penalties from the incomes, so it indicates how profitable is the
allocation and execution of a SLA with a given set of policies. However, it does
not indicate the provider’s net benefit because it does not consider other costs,
such as infrastructure maintenance.

Fig. 1. Revenue of a SLA in function of the violation time (Equation 1)

3.1 Client Classification Criteria

We propose the classification of clients according to the priority that the provider
assigns to them. This priority can be described using two different criteria:

Client Affinity: The affinity (aff ⊆ [0, 1]) measures how the client is related to
the provider. For example, aff = 1 for a completely internal user; aff = 0.25 ∼
0.75 for a client from a company with privileged relationship with the provider
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(e.g. in the same business cluster); aff = 0 for a completely external client. The
calculation of the affinity may be different among different providers, depending
on their business goals. How affinity is calculated is not important in this paper:
the main topic is how to discriminate clients in function of their affinity.

Quality of Service: The same Cloud provider could host critical tasks and
tasks that can tolerate lower QoS. For example, e-commerce applications may
need extra QoS guarantees to avoid losing money on service unavailability. It is
reasonable to allow critical clients to buy extra QoS guarantees at higher prices,
and keep cheap prices (but fewer QoS guarantees) for non-critical tasks. The
different ranges of QoS are defined by establishing different values for MRT ,
MR, MPT and MP in Rev(vt) (Equation 1). We define three ranges of QoS,
in descending order: Gold, Silver, and Bronze. The higher the QoS range, the
higher MR and the lower MP , MRT and MPT (lower values of these three
values imply higher penalties).

The policies for Client Classification are applied when the SLAs are negotiated
between client and provider and allocated by the provider: the EERM gives prior-
ity to users to which the provider has high affinity when providing access to the re-
sources by applying policies for PriceDiscrimination andOverselling of Resources.

4 Applying Client Classification in Negotiation Time

To facilitate the reading of this paper, the names of the policies have been ab-
breviated according to the next notation: PolicyNamePriorityType. PolicyName
is an abbreviation of the policy name. The abbreviations of all the policies are
shown below, enclosed in parentheses next to their names. PriorityT ype is an
abbreviation of the magnitude that is used for calculating the priority of the
client: the affinity (Aff) or the Quality of Service (QoS). When the policies for
Client Classification are compared with policies that prioritize the maximization
of the revenue, the abbreviation for this last priority is RM (Revenue Maximiza-
tion). As example, Price Discrimination policies that apply discount to clients
according to their affinity are notated as PrDscAff .

The proposed policies are:

Price discrimination (PrDsc): The price of a task varies in function of the
time slot, the workload of the resources of the provider, and the amount of
resources required for providing the agreed QoS [16]. In addition, we propose to
apply discounts to clients proportionally to their affinity.

Overselling of Resources (Ovrs): Clients do not always use all the resources
that they buy. In consequence, the spare resources are resold to other clients
according to their priority. This policy will increase both the revenue of the
provider and the average priority of the clients in the system.

4.1 Price Discrimination (PrDsc)

In our previous works, providers dynamically establish the prices for maximizing
their revenue. They ask for high prices when the workload is high (peak hours)
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and low prices when it is low (off-peak hours) [16,15]. This maximizes the profit
by attracting clients when the system is idle and maximizing prices when the
demand is high.

PrDscAff policy is built on top of the PrDscRM policy: after calculating
the best resource allocation for maximizing the economic profit according to the
Dynamic Pricing policies introduced in our previous works (PrDscRM ) [16,15],
the calculated revenue is multiplied by (1 − affinity). This allows users with
some affinity to receive a discount that is proportional to their affinity. This
policy combines Client Classification with Revenue Maximization as a secondary
BLO and always considers affinity as the main priority. Multiplying price by
(1−affinity) will linearly prioritize users (a user whose affinity is 1 will have the
double of priority than a user whose affinity is 0.5). However, other distributions
such as (1− affinity2) could be considered in function of the provider policies.

The PrDscQoS policy is not considered because it would not have sense: Gold
tasks must not be cheaper than Silver tasks, and Silver tasks must not be cheaper
than Bronze tasks.

4.2 Overselling of Resources (Ovrs)

Sometimes the clients do not use all the capacity that they have reserved because
they tend to slightly overprovision the required computing resources that they
finally use. Thanks to Cloud Computing elasticity mechanisms, the overprovi-
sioning required by clients is very low [12]. However, the summation of the spare
resources of all the clients may be sold to other clients to increase the resources
usage.

We propose the sale of capacity that has been sold previously but the client
is not using: when a client negotiates a SLA and there are not enough resources
to allocate it, the scoring function in Equation 2 is calculated over the set
j = {1 . . .N} of N physical machines. The physical resource j with the highest
positive score is selected as candidate for executing the task and the PrDsc pol-
icy is triggered for establishing a price. If there are not physical resources whose
score is positive, the job is rejected.

scorej = 1−
∫ tf
ti

R′
used(t) +Rreq(t) dt∫ tf

ti
Rj(t) dt

(2)

The terms of Equation 2 are described herewith:

– Rreq(t) is a constant function that represents the amount of bottleneck re-
sources requested in the SLA under negotiation.

– Rj(t) is a constant function that represents the amount of bottleneck re-
sources in the physical resource j.

– Let Rused(t) be a prediction of the bottleneck resources that the SLA under
negotiation will use; let δ ⊂ [0, 1] be the maximum percentage to penalize or
unpenalize the predicted workload in function of the client priority P . The
priority-corrected prediction is defined as R′

used(t) = (1 + δ − 2δP )Rused(t).
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The prediction of the used resources is artificially increased when the priority
of the client that negotiates the SLA is low and artificially decreased when
the priority is high.

The amount of resources used by services at a given time can be obtained from
monitoring information. The prediction of resource usage for a given service
(Rused(t)) can be calculated statistically or by several Machine Learning algo-
rithms [20] from the monitoring information. In this paper, we use the CPU
usage from Resource Monitoring because it is the bottleneck resource for the
majority of services to be executed in the Cloud Provider. Equation 2 is ab-
stract enough to allow using any other type of resource, such as memory or
network bandwidth.

The corrections made in R′
used(t) will motivate a higher acceptance of clients

to which the provider has high affinity. As example, δ = 0.4 in the experiments.
This value is only chosen for showing the tendency of the graphs. Higher values
of δ would decrease the revenue and increase both the average affinity and the
number of SLA violations. Lower values of δ would have the opposite effect.

5 Experimental Results

This section describes the experimental environment and its configuration values.
We have used the EERM Simulator [4] to execute and evaluate the policies
that are introduced in this paper. The EERM Simulator is a fine-grained Cloud
Market simulator, which simulates the complete cycle of a Cloud Resource sale
and execution: services discovery, SLA negotiation process between provider and
client, execution of web services or batch jobs and monitoring of the resources.
It supports many features of Cloud Computing, such as elasticity of resources
or migration of VMs. In addition, it integrates the Drools [3] Rule Engine to
configure the SLA allocation and management policies in function of the BLOs
(e.g. the Client Classification policies described in this paper).

The advantages of using a simulation environment instead of real machines
is the possibility of generate more data with fewer resources in less time, so the
evaluation is more accurate. For every experiment, a total of 64 CPUs working
during a week have been simulated using real web workloads to acquire statisti-
cally representative data.

5.1 Simulation Environment

The constant values and the parameters of the simulation described are arbi-
trary because there are no real market traces to extract data from. Different
real market scenarios could require different values, but the contribution of this
paper is to show how Client Classification reports benefit qualitatively but
not quantitatively. In other words, the paper shows how a given policy can im-
prove the average affinity of the clients that use the system but not whether its
values are optimum, because they would vary in function of the market status.
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Fig. 2. Sample pattern of web workload

In our future work, the provider will automatically adjust its parameters for
self-adapting to changing market environments.

A Cloud Market has two main actors: Clients and Providers. Providers of-
fer VMs of variable sizes. Clients try to buy resources in the Market to host

their services, by sending offers that contain {QoS,C,
−→
S ,Δt}, in which QoS =

{Gold, Silver, Bronze}. For the same task in equal time and load conditions,
the maximum price that the client is willing to pay for Gold QoS is 50% higher
than the one for Silver QoS, and the maximum price that the client is willing to
pay for Silver QoS is 20% higher than the one for Bronze QoS.

The Web workload is acquired from a real anonymous ISP (see figure 2), and
varies in function of the hour of the day and the day of the week [7].

When the offer is in the market, the providers that accept it return a revenue
function Rev(vt), which specifies the prices and penalties to pay for the execution
of that service. Finally, the client chooses the provider with a best price and time
schedule for its interests and sends him a confirmation.

When a provider checks the offer from the client, it applies Machine Learning
techniques to predict future workloads and verify whether the offered job can be
executed correctly [20,21]. A bad prediction might entail a violation of the SLA.

In all the simulations, four different Cloud providers sell their services in a
market during a week. For each experiment there is:

1. A provider that executes all the introduced policies until that subsection. It
prioritizes users to which there is high affinity.

2. Same as Provider 1, but prioritizing tasks with high QoS.
3. A provider that executes all the introduced policies until the previous subsec-

tion. It prioritizes users to which the provider has high affinity in experiments
that compare it with Provider 1 or tasks with high QoS in experiments that
compare it with Provider 2. In the first section, it does not execute any policy
and uses a fixed pricing schema as current Cloud providers [1,6].

4. A provider that executes the same policies as Providers 1 and 2 but without
client classification as a main BLO. Its priority is the maximization of the
economic profit [15].

Every provider belongs to a different organization. All of them have the same
number of resources: two 8-CPU physical machines. Every provider has an affin-
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ity higher than 0 to the 25% of the clients in the market, and equal to 0 to the
other 75% of clients. The affinity of the clients of the same organization than
the provider ranges from 0 (non-inclusive) to 1 (inclusive) following a uniform
distribution. Summarizing, the average affinity of all the clients is ∼ 0.21 for
every provider.

Each client asks for Gold, Silver or Bronze QoS, independently of their orga-
nization. 1/6 of the clients ask for Gold QoS, 2/6 ask for Silver QoS, and 3/6
ask for Bronze QoS.

It is important to evaluate how the providers behave and how effective the
policies are in different scenarios. For example, if there are many providers and
few clients, the prices and the load of the system will be low; if there are too many
clients and the providers cannot host all of them, prices and the system workload
will be high. To evaluate the policies in all the scenarios, the experiments are
repeated with different offer/demand ratios for each policy, gradually from low
to high demand.

5.2 Price Discrimination (PrDsc)

Figure 3a compares the average affinity of the clients that buy services in provi-
ders that are competing in the market (see Section 5). Every provider has
different policies for Price Discrimination: NoPrDsc policy, PrDscRM , and
PrDscAff . The x axis shows the number of clients in each experiment, and
the y axis represents the average affinity of the clients that used each resource.
Each column group represents the obtained results of the providers in different
experiments. The figure shows that the provider that implements PrDscAff in-
crements the average affinity of its clients by 50%. The average affinity of clients
in providers without PrDscAff is almost the same as the average affinity of all
the clients in the market (∼ 0.21).

Figure 3b is structured similarly to Figure 3a, but instead of showing the
average affinity for each provider in each experiment, it shows the revenue of
the providers (y axis). It shows that revenue is noticeably decreased if compared
with fixed-pricing and revenue maximization providers. It is demonstrated that
the increment of the average affinity of the clients of PrDscAff penalizes the
revenue. To compensate the impact in revenue of PrDscAff , hardware resources
may be oversold as explained in next section.

5.3 Resources Overselling (Ovrs)

Figure 4a has a similar structure to Figure 3a: it shows the average affinity
of the clients according to the policy combination in the provider. The three
providers apply PrDscAff but they differ in how they implement Overselling.
The provider of the previous section is labeled NoOvrs, because it does not
apply Overselling. To compare the usefulness of overselling based on affinity
discrimination (OvrsAff ), the figure also includes the results of a provider that
performs PrDscAff , but its overselling policy is driven by revenue instead of
affinity (labeled as OvrsRM ). As the intention of OvrsQoS is not to attract
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(a) Average affinity (b) Revenue

Fig. 3. Average affinity and revenue when using different PrDsc policies

clients to which the provider has high affinity, this policy is not included in the
figure. Figure 4a shows that not considering the client affinity in the overselling
policy decreases average affinity of the clients. It is not caused by any type of
penalization, but it is a statistical fact: more clients enter the system, regardless
their affinity. OvrsAff maintains similar affinity levels to those of NoOvrs but
increasing the revenue of the provider, as in Figure 4b.

Figure 4b compares the revenue of four providers.All four implementPrDscAff ,
but different overselling policies. The provider labeled as NoOvrs does not ap-
ply any overselling policy, as in previous section. The other providers apply over-
selling policies based on RevenueMaximization (OvrsRM ), affinity discrimination
(OvrsAff ), and QoS range (OvrsQoS). Figure 4b shows that all the overselling
policies have a positive impact on earnings. The provider labeled asNoOvrs is the
lower bound and the provider labeled as OvrsRM is the higher bound. OvrsAff

andOvrsQoS stay in the middle of both: the clients are classified without renounc-
ing the revenue completely. The revenue with OvrsAff is lower than the revenue
withOvrsQoS becauseOvrsQoS prioritizesGold andSilver contracts,which report
more revenue than Bronze ones.

(a) Average affinity (b) Revenue

Fig. 4. Average affinity and revenue when using different Ovrs policies
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Fig. 5. Number of violations when using Ovrs policies

Fig. 6. Average affinity of the violations when using OvrsAff

Fig. 7. Proportion of violations by QoS range when using OvrsQoS
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However, overselling considerably increases the number of SLA violations (Fig-
ure 5) because of two reasons: the associated error to the predictor component,
and the permissiveness with clients to which the provider has high affinity in
terms of workload that makes the provider to violate a highest proportion of
SLAs of this kind of clients (Figure 6). The provider that applies OvrsQoS re-
ports the highest number of violations because Gold and Silver SLAs have stricter
requirements that are more difficult to accomplish, as shown in Figure 7. De-
spite the increase in the number of violations, the proportion of violated SLAs
over the total of allocated SLAs remains below 2% in the worst case. Figure 7
is a stacked chart that shows the percentage of each QoS range from the total
of violations for OvrsQoS provider in several market simulations with different
number of clients. It shows that the higher the QoS rank, the higher the per-
centage of violated SLAs. More violations of high-QoS SLAs do not mean that
the QoS for Gold SLAs is lower than the QoS for Silver SLAs: it is more difficult
to achieve the QoS requirements of Gold SLAs because the QoS requirements
are higher, but an achievement of 90% of the QoS for Gold is still higher than
the 100% of the QoS for Silver or Bronze.

The negative effects of OvrsAff and OvrsQoS can be minimized by apply-
ing policies for runtime management of resources from our previous work [15]:
usage of VMs elasticity, selective SLA violation and live migration of VMs for
dynamically reconfiguring the Cloud data centers and minimize the number of
violations.

6 Conclusions and Future Work

In this paper, we have introduced a set of policies for managing SLAs in a
Cloud provider considering the classification of clients. Two facets can be used
to classify the clients: client affinity and QoS. These policies have been evaluated
through experiments that show the improvement of adding each policy to the
set of previously introduced policies. We have introduced PrDsc and Ovrs for
increasing the proportion of high-priority SLAs in the provider. After the ap-
plication of all the policies, the EERM increases the number of priority clients
(high-affinity or Gold and Silver, depending on the chosen type of priority), keep-
ing a reasonable compromise between giving access preference to priority users
and keep a high revenue from non-priority users.

We conclude that Client Classification policies in SLA negotiation achieve
their objectives: the percentage of priority users is increased when applying them
in negotiation time. Classification by QoS is suitable for a pure Cloud provider
whose business is only based on selling its resources (it does not use them for its
internal applications). Classification by affinity is more suitable for organizations
that mix internal and external applications on their resources.

The policies presented in this paper rely on some constant values that may not
lead to the optimum achievement of the BLOs. However, getting the optimum
results is not the main objective in this paper. The key value of this work is to
show the tendencies of applying the explained policies in terms of increment of
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high-priority clients that use the system. The aim to further improve brings a
research opportunity for future work: adding dynamism to rules to allow them
self-adapting at runtime. Dynamic Rules will allow providers to autonomously
adapt to the changes in the environment and achieve the optimum results ac-
cording to their own BLOs.

Applying the policies enhances client classification but also increases the num-
ber of SLA violations and the proportion of violations of high-priority SLAs.
Since the violations percentage is acceptable (below 2% of the allocated SLAs),
we can state that the advantages of applying PrDsc and Ovrs outweight the
disadvantages for achieving the BLO for which both policies have been designed.

Our previous work in Rule-based SLA Management [15] introduced several
policies for mitigating the negative effects of Ovrs policies. Our future work will
enhance existent policies for resources elasticity, selective SLA violation and live
migration of VMs, by adding them client awareness to allow highest achievement
of Client Classification BLOs.
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Abstract. There is an increasing interest for distributed computing
technologies to be delivered through a market-based paradigm, which
allows consumers to make use of and pay for services that meet cer-
tain Quality of Service requirements. In turn, providers receive income
for successful provision of these services. In this paper, we assume an
environment with multiple, heterogeneous resources, which provide ser-
vices of different capabilities and of a different cost. Users want to make
use of these services to execute a workflow application, within a certain
deadline and budget. The problem considered in this paper is to find a
plan for admission control. This allows providers to agree on constraints
set by the user and allocate services for the execution of a workflow so
that both deadline and budget constraints are met while account is also
taken of the existing load (confirmed reservations) in the environment
and the planning costs. A novel heuristic is proposed and evaluated using
simulation with four different real-world workflow applications.

Keywords: Market-Oriented Computing, Workflow Execution, Work-
flow Planning, SLA.

1 Introduction

In market-oriented environments, such as grid or cloud platforms where resource
owners provide services of different capacities and of different prices [15], users
may want to use these services to execute complex applications, such as work-
flows [3]. Typically, a user may require his/her workflow application to complete
within a certain deadline and budget; such requirements are generally recog-
nised as Quality of Service (QoS) requirements. In analogy to markets in the
real world, a Service Level Agreement (SLA) [10], which acts as a bilateral con-
tract between a user and a service provider, is usually specified to capture the
user’s QoS requirements and act as a guarantee of the expected QoS. However,
to establish an SLA, the service provider must have a way of determining in ad-
vance if it is feasible to fulfil a user’s request. From the service provider’s point
of view, this implies that there is a need to find a plan for the execution of every
new workflow to see if both the budget and deadline constraints requested by
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the user can be met according to the current load of the service provider’s re-
sources. Such a plan is called a Budget-Deadline Constrained plan, or, in short,
‘BDC-plan’. The planning procedure is called ‘BDC-planning ’. BDC-planning
should be part of the admission control of a workflow request: if a BDC-plan
is found, a user’s request can be accepted and a relevant SLA can be agreed;
otherwise, the user’s request should be rejected.

BDC-planning is an important but also remarkably challenging problem for
market-oriented environments. First, such a planning problem is NP-complete [12].
Second, the non-dedicated nature of resources imposes more difficulties as the
contention for shared resources (due to other, already agreed workloads) needs
to be considered during planning. This suggests that the planner may have to
somehow query resources for their runtime information (e.g., the existing load)
to make informed decisions. Moreover, at the same time, BDC-planning should
be performed in short time, because: (i) users may require a real-time response,
and (ii) the (runtime) information, on which a planning decision has been made,
varies over time and, thus, a planning decision made using out-of-date informa-
tion may not be valid any more.

Essentially, the problem considered in this paper boils down to bi-criteria
DAG planning, as we assume that every workflow application is represented by
a Directed Acyclic Graph (DAG). This problem involves the planning process to
optimize two metrics at the same time to meet the specified constraints (budget
and deadline). There have been quite a few bi-criteria DAG planning heuristics
in the literature [12,25,26,16,5,20,19]. However, some of them do not take the
existing load of resources into account (or adopting them to do so could be too
costly). Moreover, most of these heuristics have sophisticated designs, such as
guided random research or local search, which usually require considerably high
planning costs. Such features do not make existing heuristics particularly suitable
for the BDC-planning problem discussed above (as opposed to the problem of
scheduling a workflow already admitted, in which case high-cost approaches
could be justified). This motivates the work presented in this paper.

In this paper, a new BDC-planning heuristic is proposed with the objective
to simultaneously provide effective BDC-planning and fast planning time. The
proposed heuristic is based on the Heterogeneous Earliest Finish Time (HEFT)
algorithm [21], which is a well-known list scheduling heuristic aiming at minimiz-
ing the overall execution time of a DAG application in a heterogeneous environ-
ment. While being powerful at optimizing makespan, the HEFT algorithm does
not consider the monetary cost and budget constraint when making scheduling
decisions. In this paper, the HEFT algorithm is extended in order to resolve the
BDC-planning problem and the new algorithm is named the Budget-constrained
Heterogeneous Earliest Finish Time (BHEFT). In the experimental section of
the paper, it is demonstrated that, for the BDC-planning problem, the proposed
heuristic addresses well the aforementioned challenges. In addition, it performs
at least as effectively as sophisticated heuristics, but costs much less in terms of
computation and communication overheads.
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In the rest of this paper, related work is reviewed in Section 2. The model
assumed and a problem definition are presented in Section 3. A novel BDC-
planning heuristic (BHEFT) is described in Section 4. Experimental details and
simulation results are discussed in Section 5. The paper is concluded in Section 6.

2 Related Work

Admission control problems have been studied in various computing platforms
where QoS is considered. Yeo and Buyya [23] investigated the advance impact
of inaccurate runtime estimates for deadline constrained job admission control
in clusters. Yin et al. [24] proposed a predictive admission control algorithm to
support advance reservation in equipment grids. Admission control issues were
also studied as a subproblem of resource management in grids which support
SLAs [9,1]. Nevertheless, none of these works takes budget requirements from
users into account; moreover, their targeted applications are not workflows.

Admission control for workflows in market-oriented grids requires bi-criteria
DAG planning techniques. A grid capacity planning approach is presented in [17],
which aims at producing a plan for a workflow without reservation conflicts to
optimize resource utilization and multiple QoS constraints. However, this pa-
per mainly focused on a 3-layer negotiation mechanism rather than a planning
heuristic itself. The studies in [14,13] proposed mapping heuristics to meet dead-
line constraints, at the same time minimizing the reservation cost of workflows,
but they regarded workflow tasks as being multiprogramming, something not
commonly adopted in workflow scheduling studies [22]. Based on the model of
Utility Grids, the time-cost constrained optimization has been studied for meta-
scheduling [8,6,7] in which planning is considered at application-level, but ap-
plications are assumed to be independent rather than task-based and bounded
by dependencies as is the case in workflow DAGs. Therefore, although they con-
sider both time and cost constraints in planning, these techniques are not really
applicable for admission control for workflows.

To resolve the multi-objective (time and cost, commonly) DAG planning prob-
lem, evolutionary techniques (e.g., genetic algorithms) have been widely used.
Examples can be found in [25,26,20,19]. Although algorithms based on evolu-
tionary techniques normally perform well on optimization, they also require sig-
nificantly high planning costs and thus are naturally too time-consuming for
BDC-planning.

There are also bi-criteria scheduling heuristics for workflow applications de-
rived from local search and list scheduling techniques. Wieczorek et al. [12] pro-
pose a two-phase algorithm (DCA) to address the optimization problem with
two independent generic criteria for workflows in Grid environments. The al-
gorithm optimizes the primary criterion in the first phase, then optimizes the
secondary criterion while keeping the primary one within the defined sliding
constraint. In [16], two scheduling heuristics based on guided local optimiza-
tion, LOSS and GAIN, were developed to adjust a schedule, and these may be
generated by a time-optimized heuristic or a cost-optimized heuristic, to meet
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users’ budget constraints. As an extension to the DLS algorithm [18], BDLS is
presented in [5] which focuses on developing bi-criteria scheduling algorithms to
achieve a trade-off between execution time and reliability. Based on local search,
DCA and LOSS require a considerable number of repetitions to obtain a final
result. As a list scheduling heuristic, BDLS may have low complexity. The main
planning costs of BDLS arise from the computation of dynamic priorities when
making scheduling decisions. The main issue with these heuristics is that they do
not consider the existing load of resources in their assumptions, and thus tend
to produce plans which may lead to reservation conflicts, i.e., given that one
resource can only execute one task at a time, the planned task may overlap with
the tasks of other workflows which have already been reserved. However, with an
added communication phase between the planner and service providers (as men-
tioned in Section 3) and a slight change of algorithm design, these heuristics may
be able to produce BDC-plans without reservation conflicts. In Section 5, these
slightly-changed heuristics will be compared with BHEFT in terms of planning
performance and overheads.

To the best of our knowledge, there is no previous study which attempts to
address equally all four key elements of the problem at the same time, that is: (i)
workflow planning for (ii) admission control of (iii) market-oriented environments
while (iv) considering dynamically existing loads in non-dedicated resources.
Unlike the aforementioned works which exhibit drawbacks according to the BDC-
planning challenges mentioned in Section 1, BHEFT is a novel bi-criteria DAG
planning heuristic proposed to address these challenges. By applying BHEFT,
the planner of a market-oriented environment is enabled to effectively determine
whether a workflow request should be accepted or not in a real-time manner so
that the establishment of an SLA can be facilitated.

3 Problem Description

A workflow is modelled as a DAG consisting of a group of nodes and a set of
directed edges. A node denotes a task ti, (1 ≤ i ≤ n), where n is the number
of tasks. An edge represents a task dependency ti → tj , where ti is called a
parent task of tj and tj a child task of ti. A child task cannot be executed until
all the input data depending on parent tasks have been received. Information
associated with each task (ti) are: the service type the task wants to use (yi)
and the task size (zi). A workflow request is submitted with a budget B and a
deadline D.

There is a group of service types Y = {s0, s1, · · ·}, and a set of heterogeneous
resources which are fully interconnected. A resource rp may provide a set of
service types Yp ⊆ Y. Service instance sx,p exists if sx ∈ Yp. Mapping a task
to sx,p means allocating the task to resource rp. Task ti can be mapped to rp
for execution if and only if yi ∈ Yp. Different service types may have different
capacities with a different executing cost. For each service type sx, a parameter
βx is given to depict its standard execution time, which is one of the factors
to estimate the execution time of a task which uses this service type. Similarly,
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Fig. 1. An example of program input

different resources may have different powers with different prices. For each re-
source rp, a power ratio αp is given to depict its power. The larger αp is, the
more powerful the resource will be. Thereby, for ti, the execution time on rp (i.e.,
eti,p) is defined as eti,p = zi × βx/αp, and the execution cost eci,p = μp × eti,p,
where μp is the price unit for resource rp; it is assumed μp = αp(1+αp)/2. Also,
the time to transmit data between two dependent tasks which are respectively
mapped to specific (different) resources is given. Moreover, in a resource, con-
firmed reservations may exist. This is regarded as existing load denoted by the
set of pairs L = {(st0, f t0), · · · (stk, f tk), · · ·}, where st means the start time of
a reservation and ft the finish time. Here, it is assumed that only one service
can run at a time on a resource. Thus, each reservation reserves a certain period
of a whole resource for a task which wants to use a service instance provided by
the resource.

All the above-mentioned types of input are illustrated with an example shown
in Fig. 1, which includes a 4-node DAG and two resources. Every resource im-
plements two service types s0 and s1, of which the standard execution time is
given by β0 = 12 and β1 = 18. In Fig. 1(b), the parameters associated with
each task and each resource are presented and used to compute execution time
and cost on different resources. The data transfer times and existing load are
respecitively depicted in Fig. 1(c) and Fig. 1(d).

The BDC-planning problem is to map every task onto a suitable service in-
stance (i.e., a resource) and specify an appropriate start time for each mapped
task so that the execution time and overall cost of the workflow is within D and
B, respectively, and the produced plan does not overlap with existing reserva-
tions. With the same input, different heuristics may differ at deciding whether
a BDC-plan can be obtained. The objective of a BDC-planning heuristic is to
maximize the likelihood that a BDC-plan can be successfully found for a given
workflow request.

It is worth mentioning that the planner has to communicate with resource
owners to produce a plan without reservation conflict. We assume that the plan-
ner has to send a Time Slot Query (TSQ), i.e., ask for a certain length of time
slot on a specific resource, and then the resource owner responds with the ear-
liest availability. Here, the alternative of allowing the planner to retrieve all
free time slots of resources is not considered, since the service providers may
not want their workload, which may be commercially sensitive, to be exposed.
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Input: DAG G with Budget B and Deadline D;
Output: A BDC-plan

1. Compute rank (as defined in Eq.(1)) for all tasks.
2. Sort all tasks in a planning list in the non-ascending order of rank.
3. for k := 0 to n do (where n is the number of tasks)
4. Select the kth task from the planning list.
5. Compute the Spare Application Budget for task k (as defined in Eq.(2)).
6. Compute the Current Task Budget for task k (as defined in Eq.(3)).
7. Construct the set of Affordable Services (as defined in Eq.(4)) for task k.
8. for each service which can be used by task k do
9. Compute the earliest finish time of mapping task k to the service using

TSQ as described in Section 3.
10. endfor
11. Select a service for task k according to the defined selection rules.
12. endfor

Fig. 2. The BHEFT Heuristic

Let Lp be the existing load of resource rp, we define TSQ in the form of
fQ(ti, rp, dati,p, dur) = min{(a, b)|(a, b)∩Lp = ∅, a ≥ dati,p, b = a+ dur}, where
dati,p means the time all required data is available for task ti on resource rp,
and dur denotes the required duration which is considered to be equal to the es-
timated execution time eti,p. According to Fig. 1, L1 = {(0, 6), (8, 12), (30, 50)}
and for task 0, dat0,1 = 0 and et0,1 = 3, then it holds that fQ(0, 1, 0, 3) = (12, 16).

With TSQ, there are two ways for a planning heuristic to avoid reservation
conflicts. One is invoking TSQ every time when computing the estimated earliest
finish time for a task on a resource. A planning heuristic, such as DCA [12] or
LOSS [16], normally involves lots of such estimates, and thus may introduce
heavy communication costs if using this approach. The other way is producing
an initial plan without considering the existing reservations and then using TSQ
to reallocate the time slot for each mapped tasks in the order that tasks are
initially scheduled. In this case, the communication costs may be small but the
performance of the heuristic may degrade.

4 The Proposed Heuristic

This section describes the details of BHEFT, of which the outline is shown in
Figure 2. Similar to the original HEFT algorithm, the BHEFT also has two
major phases: task prioritizing and service selection.

In the task prioritizing phase, the priorities of all tasks are computed using
upward ranking which is the same as defined in HEFT. The rank of a task i is
recursively defined by

ranki = eti + max
j∈Succ(i)

{dti,j + rankj} (1)
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where Succ(i) is the set of the child tasks of task i, eti is the average execution
time of task ti, dti,j is the average data transfer time of edge ti → tj . In the case
of childless nodes, the rank equals to the average execution time.

In the service selection phase, the tasks are selected in order of priority. Each
selected task is allocated to its “best possible” service, of which the metric may
change according to an assessment of the spare budget which varies as planning
proceeds. For this assessment, two variables are used: Spare Application Budget
(SAB) and Current Task Budget (CTB). Suppose that the kth task is being
allocated, SABk and CTBk are respectively computed by

SABk = B −
∑k−1

i=0
ci −

∑n−1

j=k
cj (2)

CTBk =

{
ck + SABk × ck/

∑n−1
i=k ci : SABk ≥ 0

ck : SABk < 0
(3)

where B is the given budget, ci is the reservation cost of the allocated task i, cj
is the average reservation cost of the unallocated task j over different resource
mappings, n is the number of tasks. Provided that task tk uses service type sx,
a set S∗

k is constructed consisting of an affordable service for task k, i.e.,

S∗
k = {sx,p|∃sx,p, ck,p ≤ CTBk} (4)

Then the “best possible” service is selected by the selection rules as follows:

1. If S∗
k �= ∅, the affordable service with the earliest finish time is selected;

2. If S∗
k = ∅ and SBA ≥ 0, the service with the earliest finish time selected;

3. If S∗
k = ∅ and SBA < 0, the cheapest service is selected;

Using the example presented in Fig. 1 and assuming a budget B = 89 and
a deadline D = 60, the planning results derived by using the above-described
heuristic are shown in Fig. 3, where tasks are planned in the order t0, t1, t2, t3
and a BDC-plan is successfully obtained.

5 Performance Evaluation

5.1 Experimental Setting

To run the experiments, a job planner (broker) and a set of resources were simu-
lated by java programs distributed on computing nodes with 3.0 Ghz CPU, 1 GB
memory and connection through Gigabit Ethernet. The communication between
the broker and the service providers was implemented by socket programming.
The existing load of resources was also randomly generated for simulation. Given
a specific period between time a and b, the existing load of each resource p (i.e.,
Lp) is parameterized by two pre-specified values: Utilization Rate (UR) and Av-
erage Task Load (ATL). The former is the ratio of the total reserved time to
the whole period, and the latter is the ratio of the number of tasks appearing
during a certain period to the length of this period. Then, the average duration
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Fig. 3. Planning derived using BHEFT (Avg.=Average)

of a reservation slot is RD = UR/ATL and the average duration of an idle slot
is ID = (1− UR)/ATL.

The following procedure describes how the existing load of resource p (Lp)
was constructed: (1) Set Lp = ∅ and current time CT = a. (2) Randomly
determine current state among reserved and idle. (3) If reserved: (3.a)
randomly generate reserved duration RD by normal distribution with mean
RD and standard deviation RD/2 whereas only RD > 0 is adopted; (3.b) set
Lp = Lp ∪ (CT,CT + RD); (3.c) set CT = CT + RD; (4.d) switch current
state to idle. (4) If idle: (4.a) randomly generate idle duration ID by normal
distribution with mean ID and standard deviation ID/2 whereas only ID > 0
is adopted; (4.b) set CT = CT + ID; (4.c) switch current state to reserved.
(5) Repeat Steps 3 and 4 till CT reaches b.

There were 2 service providers in the evaluation, each of which managed 3
resources, hence, there were 6 resources in total. There were 4 service types
having a standard execution time of 10, 15, 25 and 30 respectively. For each
resource p, the capability ratio αp was randomly generated from the interval
[0.5, 2.0]. The period considered for existing load modelling was [0, 5000].

Four types of DAGs, corresponding to real-world workflow applications, were
considered in the experiments; these are: fMRI [27] with 17 nodes, Montage [2]
with 34 nodes, AIRSN [11] with 53 nodes and LIGO [4] with 77 nodes. For
each task i, yi was randomly selected from the provided service types, and zi
was randomly generated from [0.5, 2.0]. The communication computation ratio
(CCR) was randomly selected from [0.1, 1.0].

Given a DAG, constraints for reasonable values for deadline and budget were
generated as follows. For simplicity, a job was always assumed to start at time
0. The makespan MHEFT was computed by applying the HEFT algorithm [21]
to the DAG without considering the existing load of resources. The deadline
constraint DC was considered to be located between the lower bound LBdc =
MHEFT and the upper bound UBdc = 5 × MHEFT . A deadline ratio φd was
used to depict the position of DC by DC = LBdc + φd × (UBdc −LBdc), where
0 ≤ φd ≤ 1.0. For budget constraint, LBbc was the lowest total cost obtained
by mapping each task to the cheapest service, and UPbc, the highest total cost
obtained conversely. Similarly, a budget ratio φb was used to specify the possible
budget constraint BC = LBbc + φb × (UBbc − LBbc), where 0 ≤ φb ≤ 1.0.
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BHEFT was compared with DCA [12], LOSS [16] and BDLS [5] in the exper-
iments. As mentioned in Section 3, some modification is needed to adapt these
heuristics, which do not consider the existing load of resources, to produce a
contention-free plan. According to the evaluation in [12], where existing loads
on resources (and hence TSQ) are not considered, DCA, which is based on ex-
tensive local search, has the best optimization performance but the highest time
overhead, as opposed to BDLS which is a static list scheduling heuristic using
a dynamic priority. Therefore, TSQ was introduced into LOSS and BDLS only,
while DCA was modified in the other way mentioned in Section 3 (that is, a plan
is first generated without considering existing loads and, then, TSQ is used to
reallocate the time slot allocated to each task to resolve reservation conflicts).
When showing the experimental results in figures, the suffix ‘ TSQ’ was added
to the names of the algorithms which used TSQ, to distinguish them from DCA
which does not consider TSQ, while the original names are used for short in the
discussion. In terms of the configuration of DCA and BDLS, the same settings
as used in [12] are adopted, i.e., LOSS3 in [16] is adopted to represent LOSS, a
memorization table consisting of 100 cells with up to 10 intermediate solutions
stored in each cell was used by DCA, and the parameter δ for BDLS was deter-
mined by a binary search with a maximum of 15 loop iterations. Moreover, all
heuristics terminate immediately when a BDC-plan is found.

For each experiment, all of the parameters except for those which were given
and fixed, were re-initialized at random with the above specifications. After a
heuristic was run, if a BDC-plan was found, the planning succeeded, otherwise,
a failure was reported. To analyze the performance of each heuristic, the experi-
ment was repeated multiple times and the metric Planning Success Rate (PSR)
was used, as defined below:

PSR = 100× number of times for which a BDC-plan was found

number of total repeated times of experiment
(5)

Four sets of experiments were carried out. In the first one, φd and φb were fixed
to be 0.5, while UR was varied for each resource from 0.0 to 0.6 in the step of
0.1 with the corresponding ATL = 0.05×UR. The experiment was repeated 500
times to observe how the existing load of resources affected the PSR of each
heuristic. In the second set of experiments, UR was randomly generated in the
interval [0.1, 0.4], and the ATL was computed correspondingly. φd and φb were
selected from the set {0.25, 0.5, 0.75} to form 9 combinations which covered
a wide spectrum of diverse user requests; the experiment was then repeated
500 times for each combination. Thus, the value of PSR was investigated under
various constraints (from tight to relaxed). In the third set of experiments, we
studied the same 9 combinations for user requests but for three specific values of
UR. Finally, in the fourth experiment, the average running time of each heuristic
to do planning was measured. This experiment was repeated 100 times for each
workflow with various combinations of constraints.
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(a) fMRI, 17 nodes (b) Montage, 34 nodes

(c) AIRSN, 53 nodes (d) LIGO, 77 nodes

Fig. 4. PSR with different utilization rate of resources

5.2 Experimental Results

First set of experiments: Figure 4 shows the results of the first set of experiments
where the impact of the existing load of resources is investigated. Here, φd and
φb are both fixed to be 0.5 to avoid unnecessary disturbance caused by setting
the user constraints to be too tight or too relaxed. It can be seen from Figure 4
that the behaviour of the compared heuristics in terms of their PSR follows the
same pattern regardless of the type of DAG. BHEFT almost always shows the
best performance, with a notable exception in the case of fMRI, which could be
attributed to its small number of nodes. As expected, all heuristics perform worse
as UR increases. In such cases, the better performance exhibited by BHEFT
is more profound in the graphs. Its performance is followed by BDLS, which
appears to be second best outperforming LOSS and DCA. It is noted that this
performance classification changes (or differences become less clear) when there
is no existing load on resources (as also observed in [12] where LOSS seems to
give better performance than BDLS).

Second set of experiments: In the second set of experiments, the performance of
each heuristic was investigated under various circumstances of user constraints,
from tight to relaxed. As already mentioned we considered nine combinations
of different types of constraints. Figure 5 shows the value of PSR for different
types of DAG and different budget-deadline constraints. The first observation
is that when both the deadline constraint and the budget constraint are tight,
for example, φd=0.25 and φb=0.25, all four heuristics obtain low PSRs; among
them, BHEFT achieves the best PSR which is between 20% to 40%. When a
small DAG (e.g., fMRI) is used, both DCA and BDLS obtain PSRs which are
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(a) fMRI, 17 nodes (b) Montage, 34 nodes

(c) AIRSN, 53 nodes (d) LIGO, 77 nodes

Fig. 5. PSR with different types of constraints

comparable to those of BHEFT. However, their PSRs turn significantly lower
when a DAG such as LIGO is used. It is interesting to note that the performance
of LOSS is particularly poor when the budget constraint is tight. This may be
because the initial plan of LOSS, constructed using HEFT, usually has a small
makespan regardless of the monetary cost; then, it may not be straightforward
for LOSS to adjust the plan to meet the budget constraint with a limited number
of local searches. BDLS can be almost as effective as BHEFT in many cases, for
example, when both budget and deadline constraints are above 50%. In the case
where a small DAG (e.g., fMRI) is used, BDLS can occasionally achieve a better
PSR than BHEFT. However, overall, in most cases, BHEFT performs better
than BDLS. The advantage of BHEFT is more profound when at least one of
the constraints is tight and the used DAG has a large number of nodes.

Third set of experiments: In order to consider the impact of the Utilization Rate
in more detail, we studied the PSR for the nine different combinations of user
constraints and three different values of utilization rate. The results, for two types
of DAG, Montage and LIGO, are shown in Fig. 6. Once again, BHEFT performed
the best among the competitive heuristics in most of the circumstances. The
results highlight the impact that the existing load of resources may have on
BDC-planning. As expected, when the Utilization Rate is low, that is, there is
little existing load on resources, and the constraints for budget and deadline are
relaxed (e.g., φd=0.75 and φb=0.75), all heuristics perform equally well.
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(a) Montage, UtilizationRate = 0.2 (b) LIGO, UtilizationRate = 0.2

(c) Montage, UtilizationRate = 0.3 (d) LIGO, UtilizationRate = 0.3

(e) Montage, UtilizationRate = 0.4 (f) LIGO, UtilizationRate = 0.4

Fig. 6. PSR with different utilization rates and constraints for Montage and LIGO

Fourth experiment: In the fourth experiment, the execution time needed by
each algorithm to obtain a planning result was studied. Figure 7 shows how the
running time of each heuristic varies over diverse types of DAG and constraint
settings. It is not surprising that, in most of the cases, LOSS has the highest time
costs due to the overhead caused by numerous TSQs. It can be easily imagined
that some other sophisticated algorithms, such as DCA or genetic algorithms,
if using TSQ when scheduling, may need even more time compared to LOSS.
Our results suggest that even LOSS is not scalable to large applications and
too time-consuming for on-line workflow planning. Although not using TSQ, the
DCA heuristic considered in the experiment still has an execution time com-
parable to BDLS, and this is significantly higher than BHEFT. The latter two
algorithms are both based on list scheduling, whereas BHEFT needs evidently
less running time than BDLS due to simpler computation and the fact that less
communication is needed when making scheduling decisions. Moreover, BHEFT
is the most scalable in terms of the growth of DAG size (and potentially the
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Fig. 7. Execution time for each heuristic with different DAGs and user constraints

number of resources which is considered constant in this experiment). As can be
seen in the graph, when planning LIGO with 77 nodes on 6 resources, BHEFT
only needs around 0.2 seconds on average. This suggests that BHEFT copes well
with the real-time requirements of workflow planning.

Summary of observations: The results lead to the following observations:

– The existing load of resources may have significant impact on BDC-planning.
Directly applying a heuristic not considering the existing load of resources
in job planning (e.g., DCA) may result in a significant degradation of PSR.
In contrast, BHEFT, which takes the existing load of resources into account,
is able to achieve a significant improvement on the success rate of finding a
BDC-plan which simultaneously satisfies deadline and budget constraints.

– Some guided local search heuristics (for example, LOSS) may be too sensitive
regarding the existing load of resources and cannot perform reasonably well
for BDC-planning, even when the existing load of resources is taking into
account when making planning decisions.

– In the context of BDC-planning, simple list scheduling bi-criteria heuristics
(for example, BHEFT and BDLS) may be as effective as more sophisticated
heuristics based on extensive local search, such as DCA.

– With low running cost, BHEFT seems to be a good choice for BDC-planning.

6 Conclusion and Future Work

BDC-planning is required to establish an SLA in order to provide a certain level
of QoS for workflow execution in market-based environments. This paper pro-
posed BHEFT, a novel low-cost bi-criteria heuristic based on HEFT, to fulfill the
specific requirements of BDC-planning. The experimental results suggest that
BHEFT appears to be at least as effective, or even more so than other existing
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sophisticated bi-criteria workflow scheduling heuristics, and has a lowest execu-
tion time cost and good scalability. It also appears that BHEFT can effectively
and efficiently find a BDC-plan under various circumstances of constraints. This
enables a quick admission control decision (i.e., a judgement of whether or not
the submitted user request is acceptable), and provides the feasibility of au-
tomating the creation of an SLA over diverse user constraints. Based on the
work in this paper, our future work will try more experiments using different ap-
plications and platforms and will consider the overestimation of task execution
time in BDC-planning to cope with prediction uncertainty. In addition, we think
it is worth investigating BDC-planning with more sophisticated pricing policies.
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Abstract. We present an approach to optimal virtual machine place-
ment within datacenters for predicable and time-constrained load peaks.
A method for optimal load balancing is developed, based on binary inte-
ger programming. For tradeoffs between quality of solution and compu-
tation time, we also introduce methods to pre-process the optimization
problem before solving it. Upper bound based optimizations are used
to reduce the time required to compute a final solution, enabling larger
problems to be solved. For further scalability, we also present three ap-
proximation algorithms, based on heuristics and/or greedy formulations.
The proposed algorithms are evaluated through simulations based on
synthetic data sets. The evaluation suggests that our algorithms are
feasible, and that these can be combined to achieve desired tradeoffs
between quality of solution and execution time.

Keywords: Cloud Computing, Virtual Machine Placement, Binary In-
teger Programming, Off-line Scheduling, Load Balancing.

1 Introduction

Building on technologies such as distributed systems, autonomic computing, and
virtualization, cloud computing emerges as a promising computing paradigm
for providing configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction [13]. A key feature
of future cloud infrastructures is elasticity [2], i.e., the ability of the cloud to
automatically and rapidly scale up or down the resources allocated to a service
according to the workload demand while enforcing the Service Level Agree-
ments (SLAs) specified.

In this paper, we focus on elasticity scenarios where workloads are predictable
and to be deployed and scaled-out quickly through the rapid provisioning of Vir-
tual Machines (VMs). Predictable workload scenarios are frequently occurring,
e.g., online banking has regular peaks once a month, streaming video is con-
sumed mostly during evenings, and video gaming workloads exhibit predictable
daily and weekly changes [6], etc. Both the service and the cloud infrastructure
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can benefit from the predictability of the workloads, since placement schemes for
VMs are possible to be pre-calculated and resources can be set up in advance.

To fulfil the service demand, the cloud infrastructure usually produces VM
placement solutions improving criteria such as cost, performance, resource uti-
lization, etc. However, from a cloud infrastructure perspective, physical machines
usually have non-uniform capacities. Their respective utilizations may have high
variances. Users of a service may suffer from high latency due to high utilizations
of some physical servers. In other words, certain types of applications could ben-
efit from keeping the utilization of individual machines as close as possible to
the utilization of the entire system [15]. To tackle this problem, the worst case of
individual physical machine utilization should be minimized and load balancing
in the whole system should thus be optimized.

The VM placement problem can be generally formulated as a variant of the
class constrained multiple-knapsack problem that is known to be NP hard [14].
Existing approximation algorithms can scale to at most a few hundred machines,
and may produce placement solutions that are far from optimal when system re-
sources are scarce [15]. In this paper, we focus on properties of the load balancing
problem itself instead of proposing new generic approximation algorithms. We
analyse how the studied problem differs from general VM placement problems,
and present a linear programming formulation of the optimization problem along
with some approximations. An evaluation based on synthetic workloads is used
to investigate the feasibility of the algorithms.

The remainder of the paper is organized as follows. Section 2 briefly describes
the problem and motivates our work. Section 3 presents the problem formulation,
defines an optimal algorithm, as well as describes three problem-specific approx-
imations. Section 4 presents an evaluation of our approach. Section 5 discusses
related work. Finally, conclusions and future work are given in Section 6.

2 Problem Description

The studied scenario is illustrated in Figure 1. A set of physical machines with di-
verse capacities are used to execute VMs of different sizes. The VMs are grouped
by VM sets, i.e., prepared bundles of, e.g., application servers, front ends, and
data base replicas for managing peak loads of certain applications. These VM
sets are to be deployed across the physical machines, i.e., PM1, PM2, ..., PMm,
which may have different background loads and non-uniform capacities. Each
VM set is comprised of multiple VMs with various capacity requirements. The
durations and sizes of VMs are known in advance. This life cycles of VM sets
may be different, e.g., some may be provisioned longer than others, some may
start to run earlier than others, etc.

The most significant aspect that could distinguish the VM placement for pre-
dictable peak loads from general placement problems is that the peak loads
are time-constrained. After a certain period, the additional VMs are removed
from the cloud infrastructure. During this period, multiple placement requests



122 W. Li, J. Tordsson, and E. Elmroth

VM6

VM7

VM8

VM4

VM5

VM1

VM2

VM3

PM1

Placement Requests:

VM Set1 VM Set2

PM2
PM3

Fig. 1. Studied scenario illustration

may start or terminate. In this paper, the placement objective is load balancing,
i.e., to minimize the highest utilization of any individual physical machine during
this period.

3 Problem Analysis and Formulation

We use a quadruple r =< id, s, e,VMSet > to uniquely identify a placement
request, where s indicates when the request starts and e specifies the end-time.
A placement request set can thus be represented by an array of quadruples
temporally ordered by s. The VMSet is a collection of VMs, each of which may
have different computation capacities.

Table 1. Hardware metrics for instance types

Instance Type micro small medium large xlarge  
CPU (# cores) 1 1 1 2 4  
CPU (GHz/core) 1 1 2 2 2  
Memory (GB) 0.613 1.7 3.5 7.5 15  
Storage (GB) 50 160 300 850 1700  
Computing Capacity 1 2 4 8 16  

To distinguish VMs with different computation capacities, we use the hard-
ware discretization approach, used e.g., by Amazon EC2 as shown in Table 1.
An example of placement request is <23, 2011-05-30 18:30, 2011-06-02 12:00, {4,
2, 1, 4, 16}>. This request has id 23, starts at 2011-05-30 18:30, ends at 2011-
06-02 12:00 and demands 5 VMs with capacities 4, 2, 1, 4, and 16 respectively.
All VMs in a request are to start and terminate at the same time.
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Table 2. Symbols used in this paper

H Time period that includes placement requests.

N Number of placement requests.

Ni Size of the VMSet in the ith request.

Cij Capacity requirement of the jth VM in the ith
request.

M Number of physical machines.

wk Existing load of the kth physical machine.

Wk Total capacity of the kth physical machine.

xijk The placement decision variable. xijk = 1 iff the
jth VM in request i is placed on physical machine
k, and 0 otherwise.

G Number of overlap sets generated.

yig yig = 1 if the ith placement request is in the gth
overlap set, and 0 otherwise.

Table 2 contains an overview of the symbols used to formulate the load min-
imization placement problem. Now, for a given VM set in a request set R and
a set of M physical machines, the highest utilization of any individual physical
machine can be described by

Load(R) = Max
k∈[1..M ]

∑N
i=1

∑Ni

j=1(xijk ∗ Cij) + ωk

Wk
, (1)

where xijk is the decision variables for placement, Cij the VM capacity, and wk

and Wk the existing load and total capacity of the physical machines. For any
allocation of VMs to physical machines, the following constraints apply:

∀i ∈ [1..N ], j ∈ [1..Ni] :

M∑
k=1

xijk = 1 (2)

∀k ∈ [1..M ]

N∑
i=1

Ni∑
j=1

(xijk ∗ Cij) + ωk ≤ Wk. (3)

Constraint (2) specifies that each VM in every placement request has to be
assigned to exactly one physical machine, and constraint (3) describes how the
total capacity of each physical machine cannot be exceeded.

There are multiple possible approaches to the placement request allocation
problem for load minimization. Our first and simplest algorithm is a greedy
formulation that for each VM in each VM set (in order by request start time)
finds the placement that keeps the average load at a minimum. This is done by
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finding the physical machines that provide the worst-fit for each VM, i.e., leaves
the maximum residual capacity. Of course, before placing a certain request, pre-
vious requests that have terminated can be excluded and the physical machines
reused. This algorithm, Greedy Worst-Fit, is defined in Algorithm 1.

Algorithm 1. Greedy Worst-Fit(R)

Input: Placement request set R = {r1, r2, . . . , rn}.
Output: Placement Scheme for R.

1 Sort all the requests by start-time s;
2 for 1 ≤ i ≤ n do
3 for 1 ≤ j < i do
4 if rj is expired but still being provisioned then
5 exclude rj and release capacities of the physical machines that host

the VMs of rj ;
6 end

7 end
8 foreach vm in VMSeti do
9 pmk← the least loaded physical machine with highest residual capacity;

10 if vm can fit in pmk then
11 assign vm to pmk;
12 end
13 else
14 no feasible solution;
15 return;

16 end

17 end

18 end

Although the greedy formulation is fast to compute, it does not provide an
optimal solution to the VM placement problem (with respect to load balancing),
as VM placement is a version of the general assignment problem [7]. Our second
algorithm operates in a similar manner to the Greedy Worst-Fit one in that it
considers the placement requests sequentially in order of start time. However,
instead of performing a greedy allocation, the second algorithm finds, for each
point in time when a VM set is about to start, the allocation of all running VM
sets, including the new one, that minimizes the average utilization. This method,
(Sequential) is described in more detail in Algorithm 2 and the mathematical
expressions for load minimization is given by equations (1), (2), and (3). Note
that, in Algorithm 2, the minimization in each iteration (see line 8) treats only
the active request sets.

As the complete set of VM requests are known in advance, we can, at the
expense of additional complexity, solve the load balancing optimization problem
not only for the currently running VMs, but for all VMs. This algorithm is a
knapsack formulation, and is defined in Algorithm 3 (Knapsack).
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Fig. 2. Illustration for coexistence of placement requests

One key observation is that two VM sets may use the exact same physi-
cal resources if they do not overlap in runtime. More formally, two placement
requests are coexistent if and only if their lifetimes overlap, i.e., placement re-
quest r1 and r2 are coexistent if and only if s2 ≤ s1 < e2 or s1 ≤ s2 < e1.
Figure 2 shows an illustration of coexistence. In this figure, there are 7 place-
ment requests whose start-times are hi (1 ≤ i ≤ 7) for request ri, respectively.
For a given placement request set R, we introduce the notion of OverlapSets
to define a subset of R where any two requests in the subset are coexistent.
Furthermore, there exists no request in R that is not in OverlapSet that is co-
existent with every request in OverlapSet. For the example in Figure 2, we get
OverlapSets = {{r1, r2}, {r2, r3}, {r4, r5, r6}, {r4, r6, r7}}.

In principle, to calculate the highest utilization of any individual physical
machine during the whole period H , we must generate all OverlapSets, and
compute the maximum load of machines in each OverlapSet after placing all
VMs that run in that set. From the definition of the overlap sets, a straight-
forward recursive algorithm to generate the sets can be derived. However, this
recursion results in an exponential runtime complexity. It is thus a very time-
consuming task to complete generating all OverlapSets when the number of
placement requests is large. For example, in our experiments, the time required
to generate all OverlapSets varied from 0.01 second to 45 minutes.

Algorithm 2. SequentialP lacement(R)

Input: Placement request set R = {r1, r2, . . . , rn}.
Output: Placement Scheme for R.

1 Sort all the requests by start-time s;
2 for 1 ≤ i ≤ n do
3 for 1 ≤ j < i do
4 if rj is expired but still being provisioned then
5 exclude rj and release capacities of the physical machines that host

the VMs of rj ;
6 end

7 end
8 Minimize (1) with (2) and (3) as constraints;

9 end
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Algorithm 3. Knapsack(R)

Input: Placement request set R = {r1, r2, . . . , rn}.
Output: Placement Scheme for R.

1 Minimize (1) with (2) and (3) as constraints;

We instead use an approximation based on discrete time slots: The time from
the earliest request start-time to the latest end-time is divided into T time slots.
Every time slot is examined and placement requests in this slot are collected and
considered as a potential element of OverlapSets (see line 7 in Algorithm (4)).
If a potential element is not a subset of some element in OverlapSets, it is
finally added to OverlapSets after its subsets (if non-empty) are removed from
OverlapSets (lines 9 − 15 in Algorithm (4)). Obviously, the quality of solution
generated by this algorithm depends on T . If T is large enough, the solution
is close to the one generated by the exact recursive method. Since the time
complexity of Algorithm (4) is polynomial (Θ(T ∗n)), it is much faster than the
recursive formulation even when T and n are large. Through experiments, we
note that it takes around 2 seconds to complete the generation process when
T = 10000, H = 24 hours, and n = 1000, whereas with the recursive method,
this problem size would take a day or more.

Algorithm 4. GenerateOverlapSets(R, T )

Input: Placement request set R = {r1, r2, . . . , rn}, the number of time slots T .
Output: The OverlapSets of R.

1 OverlapSets ← {};
2 Sort all the requests by start-time s;
3 S = Min

i∈[1..n]
{si}, E = Max

i∈[1..n]
{ei}, interval = (E − S)/T ;

4 for 1 ≤ i ≤ T do
5 ts ← S + (i− 1) ∗ interval;
6 te ← S + i ∗ interval;
7 currentSet = {r ∈ R | r starts in [ts, te]};
8 should add ← true;
9 foreach P in OverlapSets do

10 if P ⊂ currentSet then
11 OverlapSets ← OverlapSets \ P ;
12 end
13 if currentSet ⊆ P then
14 should add ← false;
15 end

16 end
17 if should add then
18 OverlapSets ← OverlapSets ∪ currentSet;
19 end

20 end
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Incorporating the concept of overlap sets, our knapsack algorithm can now be
reformulated as:

Minimize { Maximize
R′∈GenerateOverlapSets(R)

Load(R′) }

Subject to

∀i ∈ [1..N ], j ∈ [1..Ni] :

M∑
k=1

xijk = 1 (4)

∀k ∈ [1..M ], g ∈ [1..G] :

N∑
i=1

Ni∑
j=1

(xijk ∗ Cij ∗ yig) + ωk ≤ Wk. (5)

Here, yig is a decision variable for coexistence used to determine if two VMs can
use the same physical resources i.e., if they do not overlap in time. Constraint
(4) is the same as constraint (2) and specifies that each VM in every placement
request has to be placed in exactly one physical machine. Constraint (5) is the
capacity constraint for each physical machine, with the coexistence as an addi-
tional feature. This is a Min-Max optimization problem, which is non-linear. To
transform this problem to a linear programming problem, we add μ to the list
of unrestricted variables subject to the constraints

∀R′ ∈ GenerateOverlapSets(R) : Load(R′) ≤ μ (6)

and try to minimize μ.
Two steps are required to solve the problem: generation of OverlapSets from

placement requests, and solving the model using the OverlapSets as inputs.
In principle, the solver must enumerate each possible placement scheme, check
whether it is viable, and compare the μ to the minimum found so far. There are
multiple potential optimizations to reduce the computation cost for generating
OverlapSets and solving this model. To reduce the search space, we can signifi-
cantly improve the performance of the solver by identifying upper bounds that
are easy to compute. Since Greedy Worst-Fit is polynomial and fast to complete,
we use the approximated load calculated through Greedy Worst-Fit as an upper
bound as shown in Equation (7):

μ ≤ γ, (7)

where γ is the highest utilization of any individual physical machine as calcu-
lated by Greedy Worst-Fit algorithm. This optimization tends to reduce the
time required to compute a solution drastically, thus improving scalability. We
refer to this approach that combines upper bound optimizations and overlap
sets as Time-bound Knapsack, as described in Algorithm 5. In this algorithm,
Line 1 calculates the approximative placement using Greedy Worst-Fit algo-
rithm. Lines 2-12 determine the upper bound value for the approximative place-
ment, by finding the highest load for any physical machine that follows the greedy
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placement scheme. Line 13 generates the overlap sets, and Line 14 minimizes the
maximum load.

Algorithm 5. Time-bound Knapsack(R, T )

Input: Placement request set R = {r1, r2, . . . , rn}, the number of time slots T .
Output: Placement Scheme for R.

1 Execute Greedy Worst-Fit algorithm to initialize variables xijk;
2 γ ← 0;
3 for 1 ≤ i ≤ n do
4 for 1 ≤ j < i do
5 if rj is expired but still being provisioned then
6 exclude rj and release capacities of the physical machines that host

the VMs of rj ;
7 end

8 end
9 if γ < Load(ri) then

10 γ ← Load(ri);
11 end

12 end
13 OverlapSets ← GenerateOverlapSets(R,T );
14 Minimize μ with (4), (5), (6) and (7) as constraints;

4 Evaluation and Discussion

In this section, the four proposed algorithms are studied from three perspectives:
how good they are at finding solutions to the placement problems, the quality of
the found solutions, and the computational complexity. The experimental setup
is a scenario with a cloud provider with 100 physical machines and 32 placement
requests, each with between 1 and 8 VMs (uniformly distributed). As outlined
in Table 3, VM capacity is uniformly distributed between micro (computing
capacity 1) and xxlarge (computing capacity 32). The background load for each
physical machine is uniformly distributed between 20% and 50%. The placement
problems are encoded using the AMPL [9] modelling language and solved with
the Gurobi [1] solver. All experiments are performed on a workstation with a
2.67 GHz quad-core CPU and 4 GB of memory.

To evaluate the performance of our approach with respect to quality of so-
lution, we first perform 1000 experiments with groups of placement requests.
We specify a one minute execution time limit for all algorithms. Even for very
short term peak loads, e.g., hourly spikes, this one minute limit should be short
enough to calculate a placement solution and configure the system accordingly.

Table 4 summarizes the 1000 experiments. We note that Sequential is able
to solve most problems (994), followed by Time-bound Knapsack (923), Greedy
Worst-Fit (870), and Knapsack trailing with 732 successfully solved problems.
Looking closer at the unsuccessfully solved problems, we note that Time-bound
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Table 3. Experiment Setup

H (experiment duration) 48 hours

Number of physical machines 100

Existing load for each physical machine Uniform(20%, 50%)

Capacity for each physical machine 2Uniform(0,7)

Number of placement requests 32

Number of VMs in a request Uniform(1, 8)

VM capacity demands 2Uniform(0,5)

Life-cycles of placement requests Uniform(1,H)

Table 4. 1000 groups experiment with 1 minute execution time limitation

Algorithms Feasible Solutions No Solution Time-out

Time-bound Knapsack 923 0 77

Knapsack 732 30 238

Sequential 994 4 2

Greedy Worst-Fit 870 130 0

Knapsack encounters no infeasible placements, whereas this happens 4 times
for Sequential, 30 for Knapsack and 130 for Greedy. Considering the problem
instances that could not be solved within feasible time (here selected as one
minute), we note that Greedy always completes within this time, but Sequential
fails in 2 cases, Time-bound Knapsack in 77, and Knapsack in 238 cases. When
combining the two reasons for failing to solve the placement problems, Time-
bound Knapsack and Sequential appear to be the most promising approaches.

Looking further into quality of solutions, we exclude, for each algorithm, the
experiments that could not be solved successfully (or within a minute). The left
part of Figure 3 shows the average load balance (i.e., the maximum load for
any machine during the experiments), including Standard Deviation (SD), for
the successfully solved instances for each algorithm. Here we note that Time-
bound Knapsack result in the best load balance, 71.9% ± 6.1%, whereas the
three other algorithms all result in loads above 80%, with Sequential the second
best at 80.5% ± 7.6%. The right part of Figure 3 shows the average execution
time, including deviation, for the successfully solved problems. As expected, the
polynomial Greedy algorithm is the fastest with average execution time less than
0.5 seconds, as compared to 8 seconds for Time-bound Knapsack, 11 seconds for
Sequential, and 13 seconds for Knapsack. For the last three algorithms, there
are large deviations in execution time for successfully solved problems, also after
excluding the experiments that failed to due exceeding the one minute threshold.

To understand the behaviour of the algorithms more in-depth, we focus on
how the maximum load of any physical machine (the load balance) varies over the
48 hours experiment duration for one of the 1000 experiments. As illustrated in
Figure 4, the Greedy algorithm results in volatile loads with large deviations over
time, whereas and Sequential is more stable but still experiences fluctuations. In
contrast, both Knapsack and Time-bound Knapsack are very stable, and keep the
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Fig. 3. Performance and execution time comparison for 1000 tests

maximum load constant for almost the full duration of the experiment. The low
load very early and very late for all algorithms is due to there being few running
VM sets at these points in time. Figure 4 also gives some insight into how often
the algorithms cannot find feasible solutions. For complicated problems with
many VMs, Greedy, Knapsack, and sometimes also Sequential may fail due to
capacity constraints of the physical machines, whereas Time-bound Knapsack is
more likely to find a solution.

To study the computational complexity (execution times) of the algorithms
further, we perform a second experiment with 100 groups of placement requests
where the execution time was unlimited. Here, we focus on the experiments
where the placement took longer than one minute to solve. Table 5 presents
the number of failures (experiments that ran for more than one minute) and
their execution time deviations in the evaluated 100 tests. Here, we observe that
Knapsack exceeds the time limit in 20% of all tests, Time-bound Knapsack in
4% of the tests, and Sequential in a single test, whereas Greedy always completes
well within one minute. Looking at the average execution times for these tests,
we note that Sequential requires 2.6 minutes, Time-bound Knapsack 95 ± 129
minutes, and Knapsack 346± 788 minutes, i.e., there are a few cases where the
latter two algorithms required several hours to complete. A comparison of the
required execution time and the percentage of problems successfully solved is
shown in Figure 5. This figure illustrates that although the Knapsack and Time-
bound Knapsack algorithms in a few specific cases can be very slow, they most
often generate solutions within a few seconds, and allowing these to execute a
couple of minutes improves the probability of finding a solution substantially.

To summarise these experiments, the Time-bound Knapsack algorithm gen-
erates the best solutions, i.e., finds the placement with the lowest average load,
and is also able to find valid placements in complicated cases where the other
algorithms fail. However, it can at times be very slow to execute. Conversely, the
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Table 5. Number of failures (slow executions) and execution times for 100 tests

Algorithms Failure Failure execution time (minutes)

Greedy Worst-Fit 0

Sequential 1 2.6± 0

Time-bound Knapsack 4 94.7 ± 128.6

Knapsack 20 345.5 ± 787.5

Greedy algorithm is very fast to compute and should scale well also for larger
problem sizes due to its polynomial complexity. However, it generates placements
with worse load balance and fails to find feasible solutions in some high workload
scenarios. In comparison with these two algorithms, Knapsack performs worse
in overall. Notably, Sequential can be a suitable compromise between quality of
solution and execution time, although it does not excel in either.

5 Related Work

Virtual machine placement across physical servers has recently gained a lot of
attraction. Our previous contributions within this area include integer program-
ming methods to obtain optimal cost-performance tradeoffs in deploying VMs
across multiple clouds [17] and methods to dynamically reschedule VMs (includ-
ing modeling of VM migration overhead) upon changed conditions [12].

Other contributions to VM placement include a binary integer program formu-
lation for cost-optimal scheduling in hybrid IaaS clouds for deadline constrained
workloads is proposed by den Bossche et al. [4]. It is demonstrated that this
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approach results in a tractable solution for scheduling applications in a public
cloud, but that the same method becomes much less feasible in a hybrid cloud
setting due to sometimes having long solving time. Compared to our work, their
approach also considers the life-cycles of workloads, but mainly focuses on cost-
effective scheduling of applications in a hybrid cloud setting. Load balancing
issues are not considered.

Bobroff et al. present a dynamic server migration and consolidation algorithm
to minimize the number of working physical machines without violating SLAs [3].
This work takes only CPU demands into account and uses classification of work-
load signatures to identify the servers that benefit most from dynamic migration.
Using adaptable forecasting techniques well suited for the classification, substan-
tial improvement over static VM placement is shown, reducing the amount of
required capacity and the rate of SLA violations.

A scalable application placement controller for enterprise data centres is pro-
posed by Tang et al. [15]. The objective of this controller is to maximize the total
satisfied application demand, to minimize the number of application starts and
stops, and to balance the load across machines. Compared to existing state-of-
the-art algorithms, this controller can produce within 30 seconds high-quality so-
lutions for hard placement problems with thousands of machines and thousands
of applications. This work is later extended to a binary search based framework
striving to limit the worst case of each individual server’s utilization by Tian et
al. [16]. The system cost, defined as the weighted combination of both placement
change and inter-application communication cost, can be also maintained at a
low level. However, life-cycles of workloads remain unexplored.

Breitgand et al. [5] propose a multiple-choice multidimensional knapsack prob-
lem formulation for policy-driven service placement optimization in federated
clouds, and a 2-approximation algorithm based on a greedy rounding of a linear
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relaxation of the problem. The proposed placement algorithms aims at max-
imizing provider profit while protecting Quality of Service (QoS) as specified
in SLAs of the workloads, and can be used to optimize power saving or load
balancing internally in a cloud, as well as to minimize the cost for outsourcing
workloads to external cloud providers. Breitgand et al. encode load balancing as
the standard deviation of the residual capacity, which is a non-linear function.
A binary search-based heuristic is used to minimize that function, and thus an
optimal solution is not guaranteed.

6 Conclusions and Future Work

We study the VM placement problem for load balancing of predictable and
time-constrained peak workloads. We formulate the problem as a Min-Max op-
timization one and present an algorithm based on binary integer programming,
along with three approximations for tradeoffs in scalability and performance.
An experimental study compares the proposed methods with respect to ratio of
problems successfully solved, quality of solution, and computational complexity.

Future directions for our work include studies of other load balancing met-
rics, e.g., looking at how to minimize the average load over time instead of
the maximum load. Another topic is how to refine the models and replace the
one-dimensional computing capacity performance metric, e.g., with CPU, mem-
ory, disk, etc. as suggested by Breitgand et al. [5] and to incorporate inter-VM
resources such as network bandwidth, as demonstrated by Lampe et al. [11].
Additionally, one interesting feature to consider in optimization is the grouping
of VMs to hosts based on the interference and overhead that one VM causes on
the other concurrently running VMs on the same physical host, as discussed by
Kousiouris et al. [10].
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Abstract. On-line service delivery undertaken between clients and ser-
vice providers often incurs risks for both the client and the provider, es-
pecially when such an exchange takes place in the context of an electronic
service market. For the client, the risk involves determining whether the
requested service will be delivered on time and based on the previously
agreed Service Level Agreement (SLA). Often risk to the client can be
mitigated through the use of a penalty clause in an SLA. For the provider,
the risk revolves around ensuring that the client will pay the advertised
price and more importantly whether the provider will be able to deliver
the advertised service to not incur the penalty identified in the SLA.
This becomes more significant when the service providers outsource the
actual enactment/execution to a data centre – a trend that has become
dominant in recent years, with the emergence of infrastructure providers
such as Amazon.com. In this work we investigate the notion of “risk”
from a variety of different perspectives and demonstrate how risk to a
service owner (who uses an external, third party data centre for service
hosting) can be managed more effectively. A simulation based approach
is used to validate our findings.

Keywords: Service Level Agreement, Risk Management, Fault
Tolerance.

1 Background

With the emergence of Cloud computing it has become possible to differenti-
ate between a software service owner (responsible for updating and managing
a software capability encapsulated as a service) and an infrastructure provider
(primarily offering computational, data and network resources that may be used
to deploy the software service). A service owner can utilize the capability of one
or more such infrastructure providers to offer the capability to clients, whereas an
infrastructure provider looks for possible service owners to offer them managed
access to resources, often at a pre-advertise price, at multiple capacities (small,
medium and large instances in the case of Amazon.com, for instance) and with
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varying types of Service Level Agreements. Such differentiation between the ser-
vice owner and infrastructure provider role is useful from a market perspective,
as it enables different combinations of price-performance tradeoffs to be made
available, thereby reducing the barrier to entry within a marketplace (as service
owners no longer need to manage complex infrastructure which often incur sig-
nificant capital cost) whilst also allowing specialist infrastructure providers to
emerge on the market.

However utilizing external infrastructure to deploy services incurs risks for
both the service owner and the infrastructure provider. Our focus is primar-
ily on financial risk, evoking the notion of uncertainty and randomness within
an exchange between a client and a provider. Significant literature exists about
the notion of risk in financial markets, with this term being used synonymously
with the “probability of a loss or gain arising from unexpected changes in market
conditions” [7]. Although in a financial market risk is often associated with a
change in market price of a product or derivative, in the context of this work, we
associate risk with the likely financial loss that a service owner or infrastructure
provider will incur due to their inability to deliver an advertised capability. It is
therefore necessary for the service owner to consider one of the following three
options: (i) trust the infrastructure provider and assume a certain degree of fault
tolerance and resilience; (ii) establish a Service Level Agreement (SLA) to ensure
that if a provider is unable to deliver the advertised capability, the infrastructure
provider incurs a financial penalty that must be payed to the service owner; (iii)
utilize resilience mechanisms directly to ensure that any possible faults that may
arise can be overcome through a pre-identified strategy, thereby ensuring contin-
ued, fault free operation for clients. In (i) when dealing with trusted participants
the process is simplified as there are already a number of approaches to ensure
correct service provisioning. Trust may be established based on prior interac-
tion with an infrastructure provider or based on the general reputation of the
provider within the marketplace. This aspect has been investigated previously
by a number of researchers [9,10]. On the other hand, in the context of untrusted
environments ensuring fault free operation can be difficult due to a variety of
possible outcomes that may arise during operation. This scenario is particularly
prevalent when these parties are unknown to each other and therefore the level
of risk associated with the transaction is considerably increased. Expanding on
the three considerations identified above:

1. Using Service Level Agreements – this is applicable when the participants are
unknown to each other – and therefore untrusted – with the behaviour of the
participants being regulated through a previously agreed SLA. Such agreements
are efficient instruments for mediating business transactions and can provide a
useful reference point for monitoring capability exchanged between a client and
provider (given that monitoring is carried out by either a trusted third party or
through a pre-trusted component known to the client and the provider). An SLA
may be used to specify Quality of Service (QoS) terms, the measurement criteria,
reporting criteria and penalty/reward clauses between participants. Within an
electronic market, an SLA may be used for: (i) an expression/proof of debts as
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well as credits – debts to the client and credits to the service provider; (ii) as a to-
ken of exchange between participants; (iii) as an identification of responsibilities
of participants involved (such as the client and service provider). Establishing
an SLA between two parties (client & service provider) implies that the service
provider has agreed to provide a particular capability to the client subject to
some QoS constraints. In return, the client must provide a monetary payment
(most often) or credit to the provider once the service has been delivered (sub-
ject to a penalty, often also monetary, in case the quality of service terms have
not been adhered to) [1].

2. Using trust mechanisms – this is applicable when the environment is trusted
and either: (i) clients and service providers have already interacted with each
and have a history of prior (un)successful interactions; (ii) clients and service
providers have access to feedback from other entities they trust – or through an
aggregated reputation service they can access. Reputation can either be based
solely on prior transactions, or be considered as a multi-dimensional charac-
teristic involving technology, business preferences and usage/business policy –
and their combinations [8]. With (ii), the feedback data provided by others to
calculate the reputation may be misleading and/or sparse – thereby limiting its
benefit. Hence, entities providing feedback can have different types of behaviours
(both truth telling and deception), whereby feedback about a particular provider
may be influenced by particular incentives that a client may have. By using ex-
isting trust mechanisms such malicious intent (based on incorrect feedback) can
bias the overall trust establishment within a community of clients and service
providers and trust values may change with the number of clients involved in
the community and with those providing feedback [11].

3. Using fault tolerance techniques – this is applicable when dealing with un-
known participants whose behaviour cannot be predetermined. Although a client
(the service owner) may have an SLA with the provider, the client may still wish
to minimise risk by ensuring that suitable fault tolerance strategies are available.
For instance, establishing SLAs with entities that may exhibit faulty behaviours
may represent a high risk. In order to mitigate these risks we propose a fault
tolerance mechanism where various services are replicated among a number of
peer-nodes.

The focus of this paper is to consider scenario (iii) where the service owner has
to balance the loss in revenue incurred due to failure with the additional cost of
replication. Determining the number of replicas to support needs to be balanced
with the revenue achieved through each service instance and the likely penalty
that may arise due to unavailability (arising from a failure). Section 2 discusses
related work in risk management with a particular emphasis on financial risk,
Section 3 describes the scenario we use to motivate this work and the overall
methodology we employ to analyse risk. Section 4 provides an evaluation of the
work through a number of experiments carried out on the PeerSim simulator.
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2 Related Work

Risk assessment mechanisms are critical to increase the trust between clients
and providers especially in distributed environments. The problem of risk man-
agement and associated cost mechanisms within a market of computational re-
sources has been discussed by projects such as AssessGrid [5] and GridEcon [12].
The AssessGrid project proposed the development of a brokering mechanism
that enabled risk-aware creation of SLAs between Grid service consumers and
providers. The focus of the project was to offer a risk-aware decision support sys-
tem allowing individuals to negotiate and consume Grid resources using SLAs.
A utility computing business model which fits in an open market business model
was used to monitor the system. The architecture of AssessGrid is divided into
three layers, one for each of the actors: end-user, broker and provider. The end-
user layer includes a portal which provides a number of abstract Grid applica-
tions which can interact with each other through an SLA Broker component
(implemented using the WS-Agreement and WSRF (Web Services Resource
Framework) specifications) [6]. The broker serves as the central actor of the
system and can play the role of a mediator or a contractor on behalf of different
participants. By investigating various scenarios and testing different roles that
a provider can adopt, AssessGrid provides a risk management framework for
supporting reliable service operations.

Multiple computing vendors such as HP, Amazon, Sun and IBM offer fa-
cilities for outsourcing service execution on commoditized servers using unit
(small, medium and large) pricing models. These remotely located resources do
not necessarily enable the end user to undertake specific analysis with particular
requirements at a given time or to manage the risk of the system. Li et al. [7]
try to predict availability by introducing risk analysis for Grids and propose new
means to construct Service Level Agreements (SLAs) by reference to techniques
of financial risk analysis. With this theoretical solution, prediction, quantifica-
tion of risk, and consideration of liability in case of failure can be applied for the
future provision of Grid Economics specifically, relating to the provision of SLAs
through resource brokers, and comparable to markets in other commodities. In
addition the model can be applicable to the configuration and management of
related architectures such as those of P2P systems, Clouds and various kinds
of network economics. For enriching the investigation, an analysis is performed
on the potential formulation of a Grid Economy as a commodity market, and
extended towards trading and hedging of risk, options, futures and structured
products. The assumptions of this approach were constructed by collecting data
regarding computational resource use on the UKs National Grid Service (NGS)
and subsequently using this data in combination with approaches from compu-
tational finance (in particular the idea of Value at Risk (VaR)) to lead towards
predicting availability of resources and associated insurance against losses.

Protector [2] is a probabilistic failure detector for cost-effective Peer-to-Peer
storage. Protector, based on a SuperPeer overlay creation algorithm provides risk
mitigation against transient failures. Protector presents applicability for group
replication where all peers host replicas of the same object by detecting the
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number of remaining replicas in a group, i.e., the number of replicas residing on
online peers or peers experiencing transient failures. By using a failure prediction
function calculated as the probability that a peer has permanently failed given
an observed failure of d time units, Protector performs an aggregation of failure
probabilities across all peers in the replica group in order to estimate the number
of remaining replicas. Simulation is used to demonstrate that Protector enables
the system to maintain objects in the most cost-efficient manner. Implementing
a set of methods such as (i) leveraging prior failure statistics, and (ii) making
estimates across a group of replicas which balance false positives for some peers
against false negatives for others, Protector is validated by deploying a P2P
storage system called AmazingStore – a storage sharing system that enables
trusted users to exchange spare capacity with each other.

3 Methodology

When establishing an SLA, the service provider agrees to provide a particular
capability to the client subject to some QoS constraints – referred to as Service
Level Objectives in the WS-Agreement specification. In return, the client must
provide a monetary payment (most often) or credit to the provider once the
service has been delivered (subject to a penalty, often also monetary, in case
the quality of service terms have not been adhered to). But when the service
providers replicate their services (within one or more infrastructure provider(s)
or data centre(s)), there are three important aspects to consider:

– Risk from the service owner’s perspective: how many instances of each ser-
vice should be replicated taking into account: (i) the cost associated with
deploying each replica, and (ii) the penalty that must be paid if a service is
unavailable (i.e. no working replica is available when a request is sent by a
client).

– Risk from the infrastructure provider’s perspective: determine how to opti-
mise service replication in order to reduce deployment (hardware and soft-
ware) costs and any penalties that may arise due to SLA non-compliance.

– Risk from the client’s perspective: how to construct the SLA considering
that a service owner may be unable to deliver the service.

Consider a server farm SF containing a collection of peer-nodes
P=[p1, p2, p3, ..., pn], some of which can be used for replicating a set of services
S. S is a collection of services S=[s1, s2, s3, ..., sm] deployed on the server farm
SF . A subset Sk ∈ S defines a collection of services Sk=[s1, s2, s3, ..., sm],m < n
owned by a provider Ok where each service si has a number of replicated
instances Ik. The set Ik identifies the number of instances for one service si,
Ik=[i1, i2, i3, ..., ik] and their associated costs; hence pairs (ii, ci) is associated
with service si with ci representing the cost of deploying instance ii.
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Fig. 1. Service Provision Scenario

3.1 Clients

A client searches for a service owner able to deliver a required capability, subject
to a set of QoS constraints. We consider SLAPr

Cl identifying the provider com-
mitment to deliver a service to the client, where the SLA encodes the particular
constraints that have been agreed between the two parties. Such an SLA may
encode characteristics for a single or multiple services from a provider. It is also
necessary to identify the cost that a client must pay to the provider in order to
acquire a needed capability si – identified as P , hence C(Cl) = P (SLAPr

Cl (s(i))).

3.2 Providers

For providers, deploying a single instance of si on the server farm incurs a cost
ci. As more instances are deployed, the cost can change based on the following
function: f(c) : Ik → Ck, where Ik is the definition domain of the function
containing instances ii used for the replication of si and C=[c1, c2, c3, ..., ck]
is domain of values identifying costs ci of replication. The cost function f(c)
depends on the particular type of infrastructure that is being used in the server
farm.

A server farm has a failure rate α calculated as the number of requests suc-
cessfully processed within a time interval. In particular, we use an SLA (see
figure 1) – SLAPr

Cl as an agreement between the client and the provider where
the provider Pr seeks to minimise a cost function f(c), whilst also maximising
fault tolerance, to ensure that agreement SLAPr

Cl is complied with, while the
client Cl seeks to receive the service capability described in SLAPr

Cl . In case of
non-compliance with SLAPr

Cl , the penalty mechanism is applied for adjusting the
difference in price payed based on terms agreed in the SLA. Hence, the cost of
service provisioning from a provider’s perspective can be expressed as: (i) the
cost of access to resources within the server farm SP , and (ii) the price paid
by the client Cl adjusted based on the penalty paid when the SLA cannot be
complied with. Cost for providers are represented by: (i) The adjustments made
due to possible penalties PEN – based on non-compliance with SLAPr

Cl ; (ii) the
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price P paid to the server farm owner Fo, SLAFo
Pr for deploying replicas. Hence,

C(Pr) = PEN(SLAPr
Cl (si)) + P (SLAFo

Pr(si)).
Profit for providers is represented by the difference between the price of the

SLA V and the cost affected for outsourcing the service into the server farm.
Therefore, P (Pr) = V (SLAPr

Cl (si))− P (SLAFo
Pr(si))− PEN((SLAPr

Cl (si))).

3.3 Server Farm Owner

Each server farm SFi has a failure rate such as SF = rk′/rk where rk′ defines
the number of successful requests of SFi over the interval Δt and rk represents
the number of total requests. We consider that a provider Pr acts as a client for
the server farm owner. Between the providers and farm owners we use SLAFo

Pr as
an agreement which specifies terms and conditions for deploying service replicas
on the server farm – hence: (i) the adjustments due to penalties PEN imposed
by SLAFo

Pr; (ii) the cost incurred for deploying n instances based on SLAFo
Pr.

This leads to the relation: C(Fo) = PEN(SLAPr
Cl (si)) + n ∗

n∑
i=1

(ci/ii)

Profit for farm owners is represented by the difference between the price of the
SLA V and the cost affected with the number of instances needed for replication.

Hence, P (Fo) = V (SLAFo
Pr(si))−n∗

n∑
i=1

(ci/ii)−PEN(SLAPr
Cl (si) It is important

to note that the cost of an instance in calculated as a product between the price
with the instance pi and the latency of response l: ci = pi ∗ l. The protocol for
calculating the latency of an instance is presented in algorithm 1.

Instance

Cost

0 i1

r1

r2

r3

c1

c2

i2

r31

r21

Fig. 2. Cost models

3.4 Cost Models

Depending on the number of replicas requested, the cost per replica can change
– as illustrated in figure 2. Hence, the cost per replica can change based on a:



142 I. Petri et al.

– Linear Model: defines a proportional increase in cost for each new instance
deployed. In figure 2 this is identified by curve r1. In the linear model an
increase in the number of instances over intervals [0, i1] and [i1, i2] produces
an increase of costs identifies as [0, c1] and [c1, c2].

– Decay Model: in this instance the cost of deploying new instances decrease
(per instance) and eventually become stable after a threshold number of
instances have been deployed. This implies that as more replicated instances
are added for each service (up to the capacity available in the server farm),
the system management and deployment costs do not increase. In figure 2
this is identified by curve r21. In the decay model increasing instances over
interval [0, i1] leads to an increase in costs over [0, i1], with a subsequent
reduction of costs [c1, c2] for instances [i1, i2].

– Mixed Model: identifies a mixture between the linear model and the decay
model. In figure 2 this is identified by curves r2 and r3. The mixed model can
identify either an increase of costs [c1, c2] when instances [i1, i2] are requested
–the case of r3 or r31 or a reduction – r2 or r21 of costs [c1, c2] when instances
[i1, i2] are requested.

The particular cost model that is applicable depends on the infrastructure being
used within a server farm. For instance, in a virtualized environment, adding
more virtual machines (VMs) – up to a threshold limit – to each physical ma-
chine may not incur any additional cost (especially where replicas are being
considered). There is an initial cost of transferring and instantiating a machine
image, initiating and deploying the VM, etc. Once this has been done, additional
VMs may incur less cost.

3.5 Configuration

In our approach we assume that each SLAPr
Cl identifies a request for a single

service, however a server farm may be hosting multiple types of services (each of
which may have multiple replicas). When a service request is submitted at time
ti a number of replicas within the system may fail. We investigate how the system
reacts when: (i) a number of SLAs - SLAPr

Cl are executed in the server farms
generating a load on the system. Service execution starts at a particular time
interval defined by a frequency ν; (ii) during execution, k replicas of a service
may fail with probability p; (iii) each provider replicates service si based on the
cost function f(c). We use latency as a metric to measure the reaction of the
system in the context of a certain load determined by the number of SLAs being
executed. For triggering failures on the peer-nodes, we use a fault probability
p and an associated failure interval. Algorithm 1 explains how the latency is
calculated. Latency is calculated based on the number of replicate instances and
the number of requests submitted to the server farm. The averaged latency is
then included in the calculation of the overall cost associated with an instance.
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Algorithm 1. Enactment Protocol for Cost Calculation

1: for all i = 0; i < instancesNr; i++ do

2: SELECT node nk

3: for all j = 0; j < totalRequests; j ++ do

4: requestIssuingT ime = getClientIssuingT ime();

5: requestExecutionT ime = getExecutionT ime();

6: requestExecutionLatency = requestExecutionT ime− requestIssuingT ime;

7: if requestExecutionT ime > 0 then

8: averageRequestExecutionLatency+ = requestExecutionLatency;

9: numberOfExecutedRequests++;

10: else

11: numberOfPendingRequests++;

12: end if

13: end for

14: averageRequestExecutionLatency =

averageRequestExecutionLatency/numberOfExecutedRequests

15: end for

4 Evaluation and Results

Validation of our approach has been carried out through simulation, using a
P2P based resource sharing model. P2P systems present two important fea-
tures: (i) scalability and (ii) dynamism. We make use of PeerSim – a scalable
simulation environment that enables the definition of a number of different sce-
narios. In PeerSim, the protocols may either be implemented using a predefined
PeerSim API or they can embedded into a real implementation [3]. PeerSim of-
fers important modularity facilities as well as flexibility to support a variety of
different system configurations. The P2P network is modelled as a collection of
nodes, where each node has a list of associated protocols. The overall simulation
is regulated through initializers and controls – that allow either events to be
introduced into the simulation or to introduce particular capability at particular
simulation time points.

We consider a community where clients, providers and server farm owners
can establish SLAs to support service provisioning. We evaluate this community
based on the cost incurred by each participant for: (i) acquiring the service–the
primary action performed by clients, (ii) outsourcing the service–the primary
focus of providers and (iii) instances of replication – the key activity carried
out by server farm owners. Each client can request several services and each
service has a number of replicated instances. Services are delivered on the basis
of pre-established SLAs among peers. In our experiment we consider two metrics:

1. Cost such as: C = C(Cl) +C(Pr) + C(Fo) whereC(Cl) represents the cost
incurred by the client, C(Pr) is the cost to the provider and C(Fo) identifies
the cost incurred by the server farm owner.
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2. Profit such as: P = P (Pr)+P (Fo) where P (Pr) represents the profit of the
provider and P (Fo) represents the profit of the server farm owner.

We carry out a series of experiments to validate how the costs identified above are
impacted by different types of faults in the system. Each experiment attempts
to evaluate a particular objective.

Experiment 1. In this experiment we investigate how the overall cost and profit
within the community is affected when a number of replicas fail – based on a
failure rate parameter. Figure 3 illustrates how the cost and profit evolve with
different failure rates. We can observe that the cost and the profit in the system
are significantly affected when a high number of replicas fail. This experiment
considers the failure rate within the following set: 0.01, 0.05, 0.09, 0.5.
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It can be observed that the overall cost increases with fault probability. We
observe the difference of cost when considering failure rates over the range 0.09-
0.5. The cost is considerably increased for 0.5 while the profit remains stable.
This arises because when multiple service instances fail, the penalties associated
with SLA non-compliance are triggered, leading to an increase in the total cost.

Experiment 2. In this experiment we identify how the profit/loss are affected
when the demand for services increases. Demand for services in this case is iden-
tified based on the number of service execution based on pre-defined SLAs. This
experiment demonstrates how demand affects the overall community(service
client, owner and server farm owner) in terms of cost and profit.

From figure 4 we observe how the distribution of cost and profit evolves in
relation to different levels of demand. When using a regular demand in the
system (demand=0.01), the cost and the profit remain stable. When increasing
the demand to approximately 30 SLAs (demand=0.09) a significant impact of
the cost and profit is identified. The highest impact in the distribution of cost
and profit occurs when using a load of 120 SLAs (demand=0.09). From this
experiment we can conclude that an increased demand in the system represents
a factor of risk in the context of service deliveries.



Risk Assessment in Service Provider Communities 145

Experiment 3. Previous experiments demonstrate how risk within the system
increases when dealing with an increased demand. In this experiment we con-
sider the rate at which new demand can be introduced into the system. It is
important to note that the frequency of demand identifies the intervals between
service executions. This experiment investigates how a variability in the demand
frequency can affect the cost and the profit within the system.
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Increasing the demand frequency over a specific time interval represents an-
other factor which can affect the cost and the profit of the system – illustrated
in Figure 5. When demand frequency increases, the average latency increases,
whereas when service executions are separated by longer intervals, this leads to
lowered costs. We observe that the profit is stable while the cost increases in
direct proportion to the demand frequency – as the latter implies a higher load
on the server farm therefore a higher cost.

Experiment 4. Previous experiments demonstrate how the system changes when
providers are dealing with a certain number of replicas (see section 3). In this
experiment we extend the number of replicas and observe how the cost and
profit are distributed. Figure 6 illustrates the distribution of cost and profit
when increasing the number of replicas by 25%.

5 Conclusion

The emergence of Cloud computing deployment strategies enables us to differ-
entiate between a service owner and an infrastructure provider, where a service
owner may utilize the resources of an infrastructure provider to deploy a service.
Where the relationship between these two actors (service owner and infrastruc-
ture provider) is not based on trust (i.e. based on experience gained in previous
interactions), it is often necessary to establish an SLA. Such an agreement pro-
tects the service owner if the infrastructure provider is unable to deliver their
advertised capability. We consider the financial risk that would be incurred by
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both the service owner and the infrastructure provider, based on the price paid
for the service by a client, the penalty incurred due to non-compliance with the
SLA and the deployment cost for running multiple replicas on the infrastructure.

Through simulation we demonstrate that as the number of failures in the
system increase, this can have significant impact on the distribution of cost
and profit between the actors. We show that the demand for services represents
another factor which can determine the level of profit/loss within the community.
When an SLA is associated with each service execution, we demonstrate that the
higher the frequency of SLA violations the higher the variation in costs – based
on the deployment, penalties and replication costs present within the system.
We increase the number of replicas in the system to increase service availability
– focusing on a single server farm. The approach we present can be extended
to multiple server farms – operating in different geographical data centres (an
approach adopted by Amazon.com as part of their Availability Zones).
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Abstract. In order to answer the question whether or not to utilize
the cloud for processing, this paper aims at identifying characteristics of
potential cloud beneficiaries and advisable actions to actually gain finan-
cial benefits. A game-theoretic model of an Infrastructure-as-a-Service
(IaaS) cloud market, covering dynamics of pricing and usage, is sug-
gested. Incorporating the possibility of hybrid clouds (clouds plus own
infrastructure) into this model turns out essential for cloud computing
being significantly in favor of not only the provider but the client as well.
Parameters like load profiles and economy of scale have a huge effect on
likely future pricing as well as on a cost-optimal split-up of client demand
between a client’s own data center and a public cloud service.

Keywords: Cloud Computing, Markets, Game Theory.

1 Introduction

The question if cloud computing is a suitable alternative to a company-owned
data center is often regarded as highly individual and general assessments as
unapplicable in this context. Although a potential benefit of going to the cloud
can be expressed in numbers, this is usually done in the form of case studies.
While privacy concerns and tactical decisions are to be balanced against tem-
porary cost efficiency in particular cases, a more analytical perspective on the
topic provides a general understanding of the financial aspect. The development
of a market model helps to better understand provider’s and client’s potential
benefits from utilizing an Infrastructure-as-a-Service (IaaS) cloud. As these ben-
efits depend on both participants’ behavior, game theory can suggest likely or
advisable behavior by contrasting their possible courses of actions.

By exploring crucial parameters, this paper aims at general conclusions of
characteristics (load, efficiency, grade of automatization, ...) which a prospective
cloud beneficiary may feature and attempts an estimation of future pricing. Such
knowledge may shorten the market forming process as well as prevent wrong
decisions taken under false presumptions on both sides. Unlike the usual case
studies, decisions can be made not only under current conditions, but also under
those that are likely to come.
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Based on a cost estimation stated in Section 3, several aspects are discussed
and incorporated in a market model throughout Section 4. The final model and
resulting market outcome are stated in Section 5.

2 Related Work

Several publications deal with the suitability of cloud services for different appli-
cations, especially as a substitute for on-site corporate IT. Guidelines for orderly
decision making like in [8,10] usually include a financial comparison of feasible
solutions. Calculation models for total costs of ownership (TCO) of a data cen-
ter [3,9] can be taken as a basis for this. There also are ready-to-use calculators
[1] for a direct comparison of expected costs based on specified demand. Other
comparative work focuses more on technical than financial issues [7].

Some research addresses cloud related problems using game theory. Most of it
focuses on algorithmic solutions in resource management, e.g. [11,18]. Applying
game theory on cloud service negotiation is discussed in [19] by representing it
as a bargaining problem. Cloud pricing is targeted by [2] using an evolutionary
approach and is also covered in [15] using agent-based simulations in the setting
of software services.

3 Cost Estimation in a Case Study

Several calculation models for comparing the cost structure of cloud services
and local data centers exist [1,3,9]. The German IT magazine iX, for example,
published a case study for a hypothetical company, estimating the TCO of a
new data center or co-location setup versus Amazon’s EC2 service [3]. The case
study chose values for critical factors that made EC2 win this cost comparison
hands down. As those factors might change over time, the conclusion from this
study also may change. In the study, costs per year for an owned data center
consist of investment cost amortization and running costs. Investments are ac-
quisition costs for server and network hardware and operation system licenses (3
years write-off) as well as infrastructure and building costs (15 years write-off).
Running costs are maintenance, power, administration, and data transfer. EC2
costs, on the other hand, consist of instance costs to meet processing demand
plus data transfer. Instance price is set to 0,22e/h. The processing capability
of each server is regarded as equivalent to two EC2 instances.

The cost model underlying this (and similar) case studies can be easily gen-
eralized into two linear relationships:

DCcosts(x) ≈ 7150e · x (1)

Cloudcosts(a, x) = p · a · x · C · 24 · 365
≈ 3850e · a · x

(2)
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where x is a number of servers, p is the cloud instance price per per hour, a ∈
[0 . . . 1] is average load and C is the processing capability of a server in instances.1

The constant values in these equations are of course debatable; it is the point
of this paper to make the discussion about cloud benefits less dependent on such
constants. For example, the values here indicate that a cloud would always be
cheaper, irrespective of the workload. In more general settings, this is of course
not necessarily the case.

To keep things simple, co-location (buy servers and lease facilities and ad-
ministration for operation) is not included as an option. It is not regarded as
essentially different to an owned data center (buy servers and build facilities, em-
ploy administration personnel for operation) and briefly discussed in Section 6.
Also, we shall use Cloudcosts as a representative for all kinds of cloud offerings,
not necessarily restricted to the Amazon cloud as such.

4 Towards a Market Model

4.1 Pricing

When one tries to anticipate the development of the cloud market, models as in
Section 3 that assume constant prices are insufficient. As long as a cloud provider
chooses a price that results in lower cost in the cloud compared to an own data
center even at full workload (a = 1), we can expect the demand to stay constant.
For any price p that causes Cloudcosts(x, 1) > DCcosts(x) at full workload (a = 1),
there is a break-even workload a(p) < 1 at which Cloudcosts(x, a(p)) = DCcosts(x).
This break-even workload is a decreasing function of the price p. For customers
with a workload higher than the break-even workload (i.e., a > a(p)), it is
unattractive to use the cloud at the given price. Similar to this, a break-even
price p(a) can be defined as the price at which Cloudcosts(x, a) = DCcosts(x),
which is a decreasing function of a given workload a. A price higher than break-
even price makes the cloud more expensive than the data center option for a
client with the given workload. Thus, pricing unsurprisingly affects sales volume
as well as profit margin. Long-term pricing will in all likelihood maximize the
product of these factors, as providers want to maximize their profit. How to
determine the best price for more complex load situations and decision options
is part of the question in dispute.

4.2 A Game-Theoretical Setup

An interaction model that maps both contractors’ courses of action using game
theory is hereby suggested; the goal is to estimate future pricing. To start simple,
the model is set up as one player being the client under the case study’s premises.
The client has the options of building its own data center or use the cloud.

1 More general cost models, e.g., a model where Cloudcosts(a, x) = c1ax + c2a + c3x
are easily conceived. We restrict the discussion in this paper to a linear modest; yet
our approach should carry over to such affine cost models as well.
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The cloud provider, as the opposing player, might have three discrete pricing
possibilities (Fig. 1). Payoffs are based on client costs and provider revenues (in
million euro per year). An extensive form game [13] is used, as the provider is
making its offer and subsequently the client is free to accept it or not.

The provider will gain most when asking for the highest price at which cloud
usage is anticipated. Although the game features several strategy combinations
in a Nash equilibrium [12], most of them are incredible: The client will accede
to the cloud agreement when an offered price causes lower costs and build a
data center otherwise. Any other statement is an incredible thread and can be
safely ignored. Incredible equilibria can be sorted out by asking for subgame
perfection [16] which means that strategies in equilibrium have to remain best
responses throughout all possible in-game situations. The highest possible price
p < break-even price in combination with the client using the cloud when p <
break-even price and building a data center when p ≥ break-even price is the
only subgame perfect Nash equilibrium of the game. This equilibrium’s outcome
is highlighted in Fig. 1.

Any other offer in addition to the three price examples is possible, of course.
To include all courses of action, continuous strategies come into play, with one
continuum being the price between two discrete extreme choices. The price in
subgame perfect equilibrium is right below the break-even price from Section 4.1.
Any savings by using cloud services would be devoured by the provider in its
pursuit of profit (Section 6).
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Fig. 1. A simple cloud model limited to three pricing possibilities. Payoffs are based on
the case study with (a) 2% and (b) 50% peak load. (Order: Provider; Client; Highlights:
Outcome of the subgame perfect Nash equilibrium)

4.3 Combining Cloud and Data Center

As implementations for local deployment of cloud services become available (e.g.
Eucalyptus [4] or Openstack [14]) a client might want to combine a private cloud
(build an own data center providing cloud services) and the public cloud (internet
cloud services) to meet its demand. Usually, some capacity is always in use (base
load) and some capacity is idle at times (peak load). The phrase peak volume
refers to the total processing demand which exceeds base load (overall processing
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demand minus base volume). Peak volume is disproportionally expensive to self-
provide, as costs are only amortized over the time the necessary capacity is
actually used. Thus, building a smaller data center to meet base load and buy
instances from the cloud to meet peak demand could be a sensible choice. This
also means that higher prices can be tolerated for public cloud instances.

From a client’s perspective, all options seem to be reasonable in their own
range of cloud pricing (Fig. 2): Naturally, complete outsourcing is most attractive
when the service is really cheap. Instead of one break-even price up to which
the cloud is more affordable (Section 4.1), there are two others: A Pricelow <
break-even price, up to which the exclusive cloud solution is cheaper than a
combination of cloud services with an own data center catering for base load.
And a Pricehigh > break-even price, up to which the combination is cheaper
than an own data center covering all demand. The more peak volume the client
demands, the less do Pricelow and Pricehigh differ.

Both break-even prices give incentive to change the solution when exceeded.
These solution changes come along with a break-in of demand and thus in total
profit. Hence, there are two pricing candidates for the provider’s profit maxi-
mization, when including this possibility of combining an own data center and
public cloud services: The lower price is right below Pricelow the higher price
is right below Pricehigh. While the latter depends on specific demand, Pricelow
is not influenced by the load profile (only depends on data center costs of the
client). It can be determined by identifying DCcosts(x) with Cloudcosts(1, x):

Pricelow =
DCcosts(1)

24 · 365 · C
(3)

where C is the capability of a server in instances.
At this price, the revenues generated by the client’s peak volume are higher

than those which could be gained from covering all volume at the lower price.
Hence, there is no appeal to offer the latter. For a load profile that results in
break-even in costs of cloud and the combined solution at higher annual costs
(higher average load), this might turn out differently (Section 4.4). Either way,
provider revenue is lower than data center costs and thus lower than they are
without the client’s possibility of combining private and public cloud. For the
client, this possibility is only profitable if it does not have to be implemented
(as the lower price is offered).

4.4 Different Load Profiles

Limiting a combined solution to processing base load in a private and all peak
volume in the public cloud is too simple. Load can be described using a function
time(a), where a is some amount of load and the function returns the amount of
time, the data center is under a load of a or more (Fig. 3). A resulting load curve
usually features a smooth transition between peak and base load. Thus, several
capacities of a data center might be reasonable for combination with a public
cloud: Higher instance prices justify a larger data center when extra capacity
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Fig. 2. From a client’s perspective, all options can be worthwhile

is used effectually (meaning that substituting usage of this extra capacity with
cloud instances would be more expensive). Those client possibilities are covered
by another continuum: The fraction of overall capacity (DCfrac) that is met by
a data center (private cloud). It extends from an exclusive use of an own data
center to utilization of cloud instances for all demand. A value of 0.4 means an
own data center capable of meeting 40% of peak capacity and using public cloud
instances to meet any further demand. The cost optimal combination under
certain pricing is given, when:

DCcosts(x) = Cloudcosts(time(DCfrac), x)

⇒ DCfrac = time−1(
DCcosts(x)

Cloudcosts(1, x)
)

(4)

With time−1(z) being 0 for an z ≥ 1 (any price ≤ Pricelow). As the client
is reducing the cloud share of its demand when price is increased, there is no
break-even price of one specific combined solution and a data center (Pricehigh)
as a credible price candidate. The best price has to be determined by identifying
the most desireable of all combined solution that can be anticipated. This can
be done by backwards induction: Pricebest is the price that maximizes revenue
from the expected amount of usage under this pricing (Pricebest might be equal
to Pricelow):

f ′(Pricebest) = 0 and f ′′(Pricebest) < 0

where f(price) = price ·
∫ 1

DCfrac

time(z)dz
(5)

4.5 Provider Profit

Payoffs are based on provider’s revenues so far. Although growth might be
a worthy business objective, revenue as such is in vain if the business is not
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Fig. 3. Two prototypical load profiles. Base load (here: 30%) is always in use, higher
utilization occurs more and more rarely.

profitable in the end. Thus, it is important to include provider costs into the
model to have its payoffs based on profit. The provider actually has to build a
data center itself to provide the service and provider costs can be estimated like
the client’s data center option in general.

In [3] the following factors are considered: Network hardware is assessed at
20% of server cost, maintenance at 10% of server and network hardware costs.
Power consumption of a server is estimated at 50% of its specification, consump-
tion of network gear at 44% of server consumption. For the total data center
consumption these values are multiplied by a PUE (Power Usage Effectiveness)
factor of 2,5 and assessed at 0,1e/kWh. The building and infrastructure in-
vestments are measured at 2024e/m2 (2,84m2 per rack) and 16200e per kW
hardware power consumption (referring to uptime institute [17]). Administration
costs are set to 73000e a year per administrator, each one capable of covering
80 servers. Data transfer is included at a flat rate of 400e/month.

The provider has to operate equivalent hardware to provide a service of the
same capabilities which a client’s local data center would feature. Without some
cost advantage in operation, a profitable offer at Pricelow would be impossible.

For a huge provider, there is a cost advantage due to economy of scale: Ac-
cording to James Hamilton from Amazon Web Services, the PUE of a large data
center (50000+ servers) is between 1,2 and 1,5 and in comparison to a mid-sized
data center (∼1000 servers) admin costs can be reduced by factor 7 due to au-
tomatization [6]. Compared to the case study’s accounting, this reduces average
costs per server by about 18%. A little over 20% would be theoretically possible
with full automatization (no admin costs) and an ideal PUE of 1. Advantages
of location like cheaper power or building costs might gain further benefits.

On the other hand, letting out instances on demand comes along with unpaid
idle time. To compensate for the investment, time under utilization would have
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to be more expensive than Pricelow. But a provider is serving several clients
(Section 5.2). Probably, these clients all have peaks but they are likely to be
scattered over time. Hence, the provider does not have to operate a reserved
amount of servers for each client: They can be overbooked (statistical multiplex-
ing). There is no need to operate the same amount of servers a client would
have to, but only the amount to meet average demand (in the best case). The
provider runs the risk of not fulfilling its service level agreements; the probability
depends on how much peaks are correlated in time. There is the risk of several
client’s peaks happening at the same time, of course, but the larger the number
of clients the less variation from overall average demand has to be expected (law
of large numbers). Demand correlation can be an issue, though (Section 6).

Costs of extending the provider’s center to meet additional demand are:

DCcostsPr(a, x) = DCcosts(v · a · x) · EoSfactor (6)

where x is a number of servers, a is average load, v is the variation in all demand
the provider meets (multiple of average demand expected at maximum) and
EoSfactor is the fraction of client data center costs that a provider has to spent
on a data center (extension) of the same capabilities due to economies of scale.

As v goes to 1 when a provider serves a very large number of clients of huge
diversity, a huge provider can offer Pricelow and still be profitable. A smaller
provider with fewer clients, on the contrary, has to operate a larger amount
of reserve capacity for variation and pass on costs to actually sold instances.
Pricelow becomes unprofitable at a v > (1/EoSfactor).

5 The Final Game Model

Fig. 4 shows the game model which is developed in Section 4: The provider
chooses a price and subsequently the client is free to use the service on these
terms by any amount in combination with a private cloud.

Provider

1 ct/h

Client

0% capacity in cloud

Payoffs(price, cloud fraction)

100% capacity in cloud200 ct/h

Fig. 4. A market model of the EC2 market using continuous strategies
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5.1 Payoffs and Subgame Perfect Nash Equilibrium

Payoffs are determined as follows, where x is the number of necessary servers
to meet peak demand, DCfrac indicates the client’s choice of what fraction of
peak demand an owned data center handles and time(z) is load as described
in Section 4.4. DCcosts and Cloudcosts are defined in Section 3 and DCcostsPr in
Section 4.5.

Client’s payoff = −DCcosts(x ·DCfrac)

− Cloudcosts(

∫ 1

DCfrac

time(z)dz, x)
(7)

Provider’s payoff = Cloudcosts(

∫ 1

DCfrac

time(z)dz, x)

−DCcostsPr(x ·
∫ 1

DCfrac

time(z)dz)

(8)

The game features a subgame perfect Nash equilibrium within the combination
of Pricebest and the client combining public and private cloud services in a cost-
optimal split-up (Section 4.4). Pricebest is equal to Pricelow at minimum.

5.2 Future Pricing

The former considerations are based on the demand of one client. To make a
statement on probable long-term pricing, the dynamics between provider and all
potential clients have to be reckoned. The single client is replaced by an aggre-
gation of all potential clients. This meta-client has distinct processing demand,
formed by combining all individual demand in the market: The demanded peak
capacity x is the sum of all individual peak capacities and load can be described
by a time(x) function which is a weighted (by individual capacity) average of
individual load. The equilibrium price does not target a maximization of profit
gain from any individual client. But Pricebest based on this average load curve
is the best trade-off. While research on the distribution of load profiles and as-
sociated demand volume is needed to tell how its agglomeration would look like,
what was said about the single-client-situation can be generalized to client aggre-
gation: A client’s best response on certain pricing remains unaltered by different
load profiles up to instance costs which – when paid all along – correspond to
the costs of a data center equivalent: Pricelow. A higher price leads to a break-
in of demand, as base load (lots of volume) is handled by owned data centers.
Outsourcing processing peaks generates sloping demand (Fig. 5).

How exactly the demand wears off over price depends on the load profile. In
consequence, the load defines if revenues at higher prices retain a volume which
allows exceeding profit compared to Pricelow. Profit at Pricelow is gathered from
mass usage at a comparatively low margin. As discussed in Section 4.5, the data
center cost advantage is determined by economies of scale and expected demand
variation. At higher pricing, these factors become less important for the margin
and thus better economies of scale make Pricelow more likely (Fig. 6).
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50 100 150 200
pricing [ct/h]

-5e5

5e5

1e6

Costs per year [Euro]

Best combination costs @ even
Cloud revenue @ even
Cloud profit @ even

Fig. 5. Best response costs and their EC2 share and profit (EoSfactor = 0,8; v = 1)

50 100 150 200
pricing [ct/h]

-4e5

-3e5

-2e5

-1e5

1e5

2e5

3e5

Costs per year [Euro]

Cloud profit @ convex, EoSfactor=0,8
Cloud profit @ convex, EoSfactor=0,6
Cloud profit @ even, EoSfactor = 0,6

Fig. 6. Expected provider profit at different economies of scale and load (v = 1)

6 Discussion and Conclusions

Long-term pricing should be considered when decisions are taken. Cloud services
might be cheap today, but things could look different as soon as cloud services are
established and have to prove themselves as sustainably profitable. Likely pricing
can be estimated based on data of average load in the market (the meta-client
in Section 5.2). Each client can determine its individual, cost-optimal, combined
solution based on this price. Not using the cloud at all is never favorable, al-
though the suggested combined solution might contain a very small public cloud
share. In general, all clients derive advantage from cloud computing, but those
with higher-than-average load gain less than the average client.

Provided that the accounting assumptions are correct (especially that two
EC2 instances are equivalent to one of the accounted servers), the EC2 service
is currently not cost-effective. Instead, a price raise to 0,40e/h is likely in the
future. Assuming an average load in the market equal to convex (Fig. 3), an even
higher instance price of over 1e/h is more profitable (and is likely to be asked
once the provider should achieve a monopoly position). At this instance price,
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a client featuring even load would be best off building a data center capable of
about 75% of its peak capacity and outsource exceeding demand to the cloud.

As stated before, demand is very robust up to Pricelow which is determined by
the total costs of ownership of the clients’ hypothetical data centers. Pricing that
targets peak demand instead of mass usage depends on good market knowledge
and is thus easily misapplied. Regarding this, a provider might as well refrain
from this option if its gain is not considerable.

In order that both parties benefit from the cloud, it is important to easily
combine instances from several sources (public and private clouds). For some
applications, data exchange between these sources might be an issue. If a combi-
nation with arbitrary shares is not granted by the service, Pricebest is right below
DCcosts (Section 4.2) and thus far more likely to be in equilibrium. Although this
option is minimizing overall idle time, which is good for environmental reasons,
the provider takes all the benefit. It is noteworthy, though, that such a setup
(Section 4.2) is quite similar to the ultimatum game [5]. Results in experimental
economics differ from theory regarding these games and a price which is not deliv-
ering enough benefit to the client might be perceived as somehow inappropriate
and is thus rejected.

Section 4.5 mentioned that a smaller provider is more likely to have idle times
than a huge provider due to suboptimal overbooking. Another reason might be
a huge share of clients demanding resources at the same time (e.g., at daytime
in a single timezone). Having to operate reserve capacity diminishes the profit
margin and if savings due to economies of scale are exceeded, Pricelow becomes
unprofitable. This not only means that a very large provider with clients scat-
tered all over the globe can expect more benefits from the cloud than a small
one serving regional clients. It also makes it very hard to establish a competi-
tor in the market as massive investments can be expected. The whole aspect of
competition needs a more in-depth analysis, of course. Regarding these obser-
vations, though, an oligopoly appears to be the most preferable market from a
client’s perspective as undercutting other offers keeps margins low, while costs
of production are low due to the providers’ size.

Looking at the market as a whole, the provider’s high degree of capacity uti-
lization is saving idle time and thus saves unnecessary hardware. This is the main
reason for the huge general benefit of the cloud and it depends on which price
is chosen, whether it is in favor of the client (Pricelow – leaving only economies
of scale to the provider) or both parties (Pricebest �= Pricelow). With Pricelow
so depending on good economies of scale, it is important to understand which
aspects are persistently cheaper on a larger scale. It is quite possible that tech-
nologies which provide a better PUE become available to smaller centers in the
future as well, for instance.

In the case study, co-location was discussed as an option (Section 3). It was
omitted in this paper as being quite similar to the data center option. As a fa-
cility that houses several client’s servers might be very large, economies of scale
effects are in effect as well as they are in favor of a cloud provider. Overbooking
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is not possible, though, as the servers are reserved for a specific client. As a
consequence, the benefit which is shared amongst provider and clients is much
smaller in comparison to cloud utilization. Providing inferior gain to both parties,
the whole business model of co-location is challenged by the existence of cloud
computing.
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5. Güth, W., Schmittberger, R., Schwarze, B.: An Experimental Analysis of Ulti-

matum Bargaining. Journal of Economic Behavior & Organization 3(4), 367–388
(1982)

6. Hamilton, J.: Cloud Computing Economies of Scale, MIX 2010 talk (2010),
http://channel9.msdn.com/events/MIX/MIX10/EX01/

7. Hazelhurst, S.: Scientific Computing Using Virtual High-Performance Computing:
A Case Study Using the Amazon Elastic Computing Cloud. In: Proceedings of
the 2008 Annual Research Conference of the South African Institute of Computer
Scientists and Information Technologists on IT Research in Developing Countries:
Riding the Wave of Technology, SAICSIT 2008, pp. 94–103. ACM, New York (2008)

8. Klems, M., Nimis, J., Tai, S.: Do Clouds Compute? A Framework for Estimating
the Value of Cloud Computing. In: Weinhardt, C., Luckner, S., Stößer, J. (eds.)
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Abstract. In this paper, we present DDP-DR: a Data Distribution Planner for 
Disaster Recovery. DDP-DR provides an optimal way of backing-up critical 
business data into data centres (DCs) across several Geographic locations. 
DDP-DR provides a plan for replication of backup data across potentially large 
number of data centres so that (i) the client data is recoverable in the event of 
catastrophic failure at one or more data centres (disaster recovery) and, (ii) the 
client data is replicated and distributed in an optimal way taking into 
consideration major business criteria such as cost of storage, protection level 
against site failures, and other business and operational parameters like 
recovery point objective (RPO), and recovery time objective (RTO). The 
planner uses Erasure Coding (EC) to divide and codify data chunks into 
fragments and distribute the fragments across DR sites or storage zones so that 
failure of one or more site / zone can be tolerated and data can be regenerated.  

Keywords: Disaster recovery, planning, data distribution, optimization. 

1 Introduction 

In today’s enterprise computing, data centers generate an overwhelming volume of 
data to support applications such as particle physics and large LHC [1], storing of web 
pages and indexes [2], engineering data of pharmaceutical and semi-conductor 
companies, large multi-national technology companies and hosting service providers. 
Disaster Recovery (DR) and Business Continuity planning (BCP) mandate that 
critical enterprise data is backed up periodically and is kept in geographically separate 
and secure locations. In the event of operational disruption at the primary site, the 
operation can be resumed at an alternate site where the backed up data and log files 
are shipped and applications / services can be instantiated again.  

1.1 Data Backup Technology 

Traditionally, the data backup and archival is done using magnetic tapes which are 
transported to a remote location. However, such procedure is manual and 
cumbersome and rapid data restoration and service resumption is often not possible. 
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Recently, with the advent of cheap disk-based storage and advances in networking, 
remote online backup options have become attractive [3]. The storage area network 
and virtualization technology has become sophisticated enough to create a storage 
volume snapshot to a remote site [4]. Increasingly, open-source technologies such as 
RSync are being used achieve the same goals; albeit with a lower efficiency.  

1.2 Multi-site Data Backup and Replication 

With Cloud computing and cheap storage technologies, backup architecture is now 
becoming distributed in nature. Data is now getting backed up in multiple 
geographically separated data centres to improve fault tolerance and availability [5]. It 
is also found that remote storing of backup data to a single third-party storage 
provider may not be good due to security / reliability / availability issues. It is 
advisable that an organization should hedge its bet by replicating data to multiple 
cloud locations (e.g. availability zones in Amazon) and data centers.   

1.3 Optimal Data Distribution Plan for Multi-site Backup 

Replication, however, increases data footprint in linear proportion to the number of 
sites. Eventually, the data footprint becomes quite large. Additionally, it is often seen 
that the strategy of data distribution is not driven from recovery standpoint – that is, 
there is no way of telling if the data recovery can happen on time. Therefore, there is a 
need for rationalizing and optimizing the backup data distribution with respect to data 
footprint, cost, security, availability and data recoverability (within time and cost). 
Disaster Recovery planning [6] often overlooks this critical issue. 

In this paper, we propose a novel planning approach named Data Distribution 
Planner for Disaster Recovery (DDP-DR). The planner creates a plan for distributing 
data across heterogeneous storage sites in a manner so that the overall cost of storage 
can be kept below a specified budget, the integrity of backup data can survive failure 
of up-to a specified number of sites, and the distributed data can be recovered within a 
specified time bound. To reduce data replication footprint, we take recourse to data 
fragmentation through Erasure Coding (EC) [7]. We combine EC-based data 
encoding technique with Linear Programming (LP) based constraint satisfaction 
algorithm. EC breaks data files into multiple data and code fragments. Coding rate of 
EC determines how many encoded fragments will be created from a data file. In this 
work, we optimize the coding rate, and therefore, the data footprint through a set of 
customer-specific constraints. This data fragmentation technique creates considerably 
less data redundancy than conventional multi-site replication method.   

The organization is the paper is as follows: in section 2, we describe the data 
backup and recovery processes associated with DR and also state our assumptions. 
We present the problem formulation in section 3. The solution description and key 
components of DDP-DR are described in section 4. In section 5, we compare the 
theoretical predictions with simulation generated results. Related works are described 
in section 6, followed by conclusion and possible extensions of the work. 
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2 Multi-site DR Process, Topology and Assumptions 

2.1 DR Process and Topological Assumptions 

In DR, a critical requirement is to keep the backup data as much synchronized as 
possible with the primary copy. This is because, in the event of failure, we want to 
resume operations with data which is as current as when the operation has failed. We 
treat the backup data as a single file even though it can be aggregate of multiple user 
and application data, log files, system configuration files etc. We call this file as Level 
0 or full copy backup (L0). Subsequently, the customer can upload changes / additions 
to the backup data on periodic basis, say between time intervals Ti and Ti-1. We call 
these additional files as L1 (delta) change.  

In this context, two definitions are pertinent to DR planning. 
 

− RTO: Recovery Time objective – this specifies an upper bound for the time 
limit within which, after disaster at the primary site, the entire backup data (L0 ) 
needs to be restored at the recovery site to resume operations.  

− RPO: Recovery Point Objective – this provides an upper bound of the time 
limit within which the L1 backups are to be committed to the backup storage. 
This value, in effect, also determines how old the DR data is at the time of 
disaster.  
 

In DDP-DR we model a multi-DC backup and disaster recovery scenario. One of the 
DC is the Primary site of a customer. Another DC may be chosen as Recovery site. 
Other DCs are used for storage of backup data.  Each DC / storage zone may have 
different types of storage. We basically model three types of storage – SATA (serial 
access), iSCSI (internet Small Computer System Interface) and FC (Fiber Channel). 
These protocols provide different types of data write and read rates into and from the 
storage, and they vary in cost.  

We also assume that each storage unit in the DC is divided into storage blocks (like 
object based storage) or Buckets. The data fragments get stored in these buckets.  

One of key parameters of our planning is Protection Level (PL) – which is 
defined by degree (a numerical integer number) to which the customer requires 
guarantee against simultaneous data centre failures. For example, if there are n DCs, 
the maximum protection level that can be guaranteed to the customer is n-1.  

Further, a customer can select if he wants a particular DC to be excluded or 
included from the list where the backup data can be placed. For example, a European 
bank may demand that customer data is only stored in DCs located in European 
Union for regulatory purposes. We capture this with Placement Constraint (PC) – 
which is taken as 0 if the data for a customer is not to be placed in a particular DC and 
1 otherwise.   

Finally, we note that in DR restoring data to the Recovery site is only the first step. 
This step is followed by other processes like infrastructure booting, application 
configuration, and service health-check etc. Those steps are beyond the scope of our 
current work. 
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2.2 Data Fragmentation Strategy 

To reduce the footprint of data distributed across sites, we use Erasure Coding [7]. 
We use MDS coding to code m data chunks with k error-correcting code fragments to 
achieve n = (m + k) fragments, with coding rate r = m / (m + k). One distinguishing 
feature of EC is that we require any m fragments to get back the data. The backup file 
is broken into chunks and each chunk is then erasure coded and encoded blocks are 
then dispatched to different DCs. When required, any m of stored fragments can be 
transmitted back to the Recovery site and decoded to get the original file.  

It has been established that EC allows lesser data footprint and lesser network 
bandwidth for similar resilience (system durability) than plain replication scheme [8]. 
Additionally, network coding schemes are found to be more efficient globally than 
many other local storage-level data protection schemes [9]. Complete treatise of these 
assertions is beyond the scope of the work. One of the drawbacks of EC is that to 
regenerate data from partial failures, one must recall all the remaining encoded 
fragments to decode, re-encode and redistribute. Newer network coding techniques 
[10] allow partial regeneration of data and, therefore, are more efficient. 

3 DDP-DR Approach 

In DDP-DR, an optimal plan for data distribution will be such so that the total cost of 
storage, the data backup time (RPO) and data recovery time (RTO) are minimized. 
The resultant decision problem is a multi-objective function. We try to break the 
multi-objective decision problem with single objectives at a time: 
 

− Objective 1: Minimize cost of storage and replication for a customer while 
maintaining the RTO and RPO time bounds and other policy level constraints; 

− Objective 2: Minimize the RTO (recovery time) for a customer while 
maintaining the cost bound and RPO time bound and other policy level 
constraints; 

− Objective 3: Minimize the RPO (backup time) for a customer while maintaining 
the cost bound and RTO time bound and other policy level constraints. 
 

In each case, customer policy level parameters such as Protection Level (PL) and, 
Placement Constraint (PC) are satisfied. The idea is to help the customer to select a 
suitable operating point after looking at the choices.  

We consider that network links to the data center are of equal bandwidth and cost; 
and hence, they do not affect our solution. However, our plan formulation can be 
augmented with network considerations as well. 

The distribution problem is a Mixed Integer Programming [11] problem. However, 
we have relaxed the problem into an LP and tried finding the feasibility in a convex 
hull. We found that the solutions do not go beyond a small bound beyond the actual 
MIP solution because of this relaxation.  
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3.1 Planning Parameters 

We list some of the main parameters of our formulation in the table 1 below with 
explanations. 

Table 1. Parameters for DDP-DR 

Parameters Explanation 

CustF  Total backup file size (L0) for Customer 

CustB  Size of Delta backup (L1) for Customer 

Bucket_size Bucket Size, presumed to be same across all storage units in DCs 

em  Total number of input (to-be coded) fragments for the customer 

⎥
⎥

⎤
⎢
⎢

⎡
sizebucketCust

F
_

 

en  Total number of output (encoded) fragments for the customer 

re , rd  Rate of encoding and rate of decoding at server 

i={1,..,n} Data centres 

ijBW  Available incoming bandwidth to data centre j from data centre i  

IOPS Data read-write rate in the group of storage servers in a zone     
(FC, iSCSI or SATA) 

No_of_disks Number of disks in a storage server in a storage zone 
Segment_size Size of the read/write segment in MB in the server 
BWijact Actual available bandwidth between data centers i and j  

ic  Weighted Average cost of storage in i-th data centre 

iX  Number of encoded fragments to be stored in data centre i 

 ( en = ∑
=

n

i
iX

1

) 

bP  Backup time bound for the customer data of size CustB   

(equivalent to RPO) 

bT  Recovery time bound for the customer data of size CustF  

(equivalent to RTO) 

bC  Cost bound for the customer 

iS  Total available storage in i-th data centre 
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Known (input) parameters are: CustF , CustB , em , re , rd ,bucket_size, ijBW , ic ,

bP , bT ,IOPS, no_of_disks, segment_size, and bC
 

Parameters to be determined are: iX , which is number of encoded fragments per 

data centre and, en  therefore,
 
Which is total number of encoded fragments for 

distribution. 

3.2 Constraints   

We now discuss the formulation of the constraints to the objective.  

RPO Constraint: RPO constraint states that, for a customer Cust, encoding of the L1 
delta backup data and transferring of encoded fragments into storage DCs should 

happen within bP time. We assume that data can be pushed simultaneously to all 

selected DCs. Mathematically,  

1

1 1
( * m ax ( * * ))

n
C ust

C ust j b
j

r sj act e

B
B X P

e B W m=
+ ≤  

Re-writing,   

1

1 1
max( * ) (( )*

act

n
b

j e
j

sj Cust r

P
X m

BW B e=
≤ −  

Re-writing again in standard LP form,    

                    {1, .. },j n∀             
1 1

( * ) (( )*
act

b
j e

sj Cust r

P
X m

BW B e
≤ −  

RTO Constraint: This constraint is connected with data recovery, i.e., in data 
recovery, encoded L0 data for customer Cust is to be pulled out of storage data centres 
and decoded within time bound  bT . As in the previous case, here also we assume that 

the data is fetched simultaneously to Recovery site through channels from different 
DCs. Mathematically, 

1

1 1
( * max( * * ))

n
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j
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F
F X T
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Re-writing in standard LP form, 
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i.e, },,..1{ nj∀                  
1 1

[( * ) (( )* )]b
j e

jsact Cust r

T
X m

BW F d
≤ −  

Storage Cost Constraint: The customer Cust may have a cost bound bC  The total 

cost for allocated storage across all DCs has to be within this bound. Mathematically, 

1

( ) * *
n

C u s t
i i b

ei

F c X Cm
=

≤∑
 

PL Constraint:  Enough encoded fragments are to be spread across the DCs so that a 
failure of up-to PL DCs may be tolerated. To support a failure of a single DC j, there 
should be enough decodable fragments available across other DCs. 

{1, .. }j n∀       
1,

n

i e
i i j

X m
= ≠

≥∑  

So, in order to support a protection level of simultaneous failures of up-to k DCs, there 
should be enough encoded fragments in rest (n-k) DCs. Thus,   

S = {1,..,n};       ( , )[ ]i e
i O

O S n k X m
∈

∀ ∈ ℜ − ≥∑  

Where, ),( knS −ℜ is the combination from a data centres set S taken (n-k) at a 

time. 

PC Constraint: The customer Cust may want to exclude a subset Q of the available n 
DCs to store any fragments of the backup data.  

0, , {1,.., }iX i Q Q n= ∈ ⊂
 

Storage Availability constraint: The total size of all of the fragments that are stored in 
DC i should be less than the space available in DC i:  

*
{1,.., }[ ]i Cust

i
e

X F
i n S

M
∀ ∈ <∑  

Available Bandwidth constraint:  The actual rate of data transfer from DCi to DCj may 
the smaller of the network bandwidth and the read/write rate of the storage unit. The 
read/write rate (in GB) of the storage unit can determined as  
(IOPS * no_of_disks * segment_size / 1024).  

Mathematically, available bandwidth have been derived by 

)),1024/)_*__*((( ijij BWsizesegmentdisksofnoIOPSMINBW
act

=  

3.3 Problem Formulation 

As discussed earlier, we have broken the multi objective minimization problem into 
three sets of minimizations and allow users to choose from the available feasible 
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solutions. To that effect, we now discuss the corresponding Linear Programming 
formulations one after the other. 

Cost Minimization: For a customer, the objective function for cost minimization may 
be written as the sum of the product of the size of each encoded fragment, the number of 
encoded fragments written to DC i, and the cost of storage per unit in DC i across all n 
DCs: 

Minimize    
1

( ) * *
n

Cust
i i

ei

F c Xm
=
∑                                 (A) 

The minimization is subjected to RTO, RPO, PL, PC, Storage Availability and 
Bandwidth constraints.  

RPO Minimization: The objective function for minimization of the RPO may involve 
minimizing the total time to encode and store the encoded fragments of incremental 
backup, L1 across DCs:  
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This may be written as: 
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The minimization is subject to Storage Cost, RTO, PL, PC, Storage Availability and 
Bandwidth constraints.  

RTO Minimization: The objective function for minimizing the RTO will involve 
minimizing the time to retrieve the full backup, L0, from each of the DCs that store 
coded fragments of the backup data: 

Minimize    
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4 Implementation, Results and Simulation 

DDP-DR has been implemented as a standalone software tool.  The tool can accept the 
business SLAs through an input file as a set of values, bounds and parameters. For 
erasure coding, we use standard MDS module implementing Reed-Solomon technique. 
IBM ILOG CPLEX Optimizer was used as LP solver. We have taken extensive runs 
with number of DCs varying from 3 to 15. For infrastructure and customer parameters 
similar to the one discussed in the illustrative example to be discussed next; the problem 
formulation consisted an LP with less than 50 variables. On a machine with 2GB of 
RAM and 2.6GHz dual core processor, running Ubuntu 10.04, the results for each of the 
cases took less than few seconds. The number of iterations for solution to converge 
varied between 10 and 30, depending on the numerical values. 

4.1 Discussion of Results 

We discuss few sample results for illustration of the concept. We consider a 
hypothetical example with a customer C1 and 6 DCs.  The parameters specific to each of 
the customers are listed below in Table 2 and those specific to the storage DCs are 
presented in Table 3. We take bucket_size of the servers as 10 GB. Please note that we 
did not put any explicit Placement Constraint for customer data at any of the DCs. 

Table 2. Customer Data 

Customer  Incremental backup 
size   (L1 ) 

Total backup 
size (L0 ) 

Protection 
Level  

C1  35.0GB  350.0GB  1  

Table 3. Storage Properties 

Data Centre Storage Type Free Storage Per MB 
Storage Cost1   
($) 

IOPS 

DC1 , DC4 iSCSI 3 TB 0.008  750 
DC2 , DC5 SATA 3.9TB 0.0006  450 
DC3 , DC6  FC 2TB 0.09 24000 

The bandwidth of the network links was considered 10 MBPS. DC1 was chosen as 
Primary data centre and DC2 was chosen as Recovery site.  

We run DDP-DR on this dataset. For cost minimization objective, we run the 
optimization routine (A) with progressive relaxed RPO and RTO bounds. As depicted in 
Table 4, we start with an RPO bound of 1 hr and RTO bound of 4 hrs and found that 
that a data distribution plan is not feasible (i.e., the solution does not converge). We 
progressively relax RTO bound to 4.6 hrs and we find a feasible distribution plan with 
following distribution pattern: DC1 till DC5 will hold 80 GB of data each while DC6 
will hold 70 GB of data. The total storage cost for this plan is $15231, which is the 

                                                           
1  Representative cost, not actual. 
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lowest cost. A total of 470 GB of storage is used to store 350 GB of backup data of 
customer C1 (contrast this with pure Replication scheme where 700 GB will be 
required).  Accordingly, the erasure coding rate selected by DDP-DR is ne/me, which 
equals 47 /35. In practice, the L0 data would be broken up into 10 GB chunks and then 
encoded into EC fragments with coding rate of 47 /35. We show selective iterations 
with different RTO and RPO bounds.    

Table 4. Results for objective A 

RPO 
Bound 
(Hrs) 

RTO 
bound 
(Hrs)  

Minimized 
Cost 
Objective ($) 

m  n  Data Centre shares (DC1, 
DC2, DC3, DC4, DC5, DC6) 
of Fragments 

1.0  4.0  Infeasible     
1.0  4.6  15231.0  35 47  8,8,8,8,8,7, 
1.0  6.0  7289.0  35 46  10,10,6,10,10,0, 
1.0  24.0  1763.0  35 53  17,17,0,2,17,0, 

Table 5 describes few iterations where customer C1's RPO was minimized while 
continuing to satisfy the specified RTO and cost bounds (objective B). Note that for an 
RTO bound of 24 hrs and cost bound of $1950, we get a distribution strategy 
{9,14,0,14,14,0} which minimizes the RPO (0.86 hrs). If we relax the cost bound to 
$2000, we get a better RPO and different fragment distribution (comparatively more 
iSCSI disks get used).  

Table 5. Results of objective B 

Minimized 
RPO (Hrs) 

RTO 
bound 
(Hrs)  

Cost 
Bound 
($) 

m  n  Data Centre shares (DC1, 
DC2, DC3, DC4, DC5, 
DC6) of Fragments 

Infeasible  6.0  1950.0     
0.8628334  24.0  1950.0  35  51  9,14,0,14,14,0, 
Infeasible  4.0  1950.0     
0.82172227 24.0  2000.0  35  50  11,13,0,13,13,0, 

Table 6 describes few iterations where C1's RTO was minimized while continuing 
to satisfy the specified RPO and cost bounds (objective C). Note that RTO is 
relatively insensitive to RPO bounds as the data involved in recovery is much more 
than in periodic backups. 

Table 6. Results of objective C 

RPO 
Bound 
(Hrs) 

Minimized 
RTO (Hrs) 

Cost 
Bound ($)  

m  n  Data Centre shares (DC1, 
DC2, DC3, DC4, DC5, 
DC6) of Fragments 

1.0  8.503  1950.0  35  51   9,14,0,14,14,0, 
1.2  8.503  1950.0  35  51   9,14,0,14,14,0, 
1.4  8.503  1950.0  35  51   9,14,0,14,14,0, 
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4.2 Simulation  

To test the accuracy of the Planner, we carried out extensive simulation of the backup 
and recovery scenarios with ns2 network simulation tool [12], with a network having 
the multiple topologies. Generally, simulation results were well within with the Planner 
predicted results. In some cases, however, we get slightly higher values in simulation. 
Deviation is found within 5%. Our conjecture is that slightly lower network data 
transfer rate than theoretical limit in simulation has resulted in some delays. For brevity, 
we are omitting details of simulation results.  

5 Related Work 

There is little published literature on planning of distributed storage for DR for the 
purpose of data recoverability and meeting other SLAs. Minerva system, discussed in 
[13], deals with creating an array of storage nodes based on performance features 
such as I/O supported, disk characteristics etc. More recently, a study on storage 
planning for disaster recovery [14] has characterized the planning process for storage 
volume, paths, and DC zones. Data recovery scheduling after disaster has been 
studied in [15] by using heuristic (GA-based) techniques. In these works, authors 
have characterized the planning problem as an infrastructure provisioning problem 
(i.e., provisioning or sizing of storage infrastructure for DR). Our work, in contrast, 
looks at planning as constraint satisfaction problem (i.e., finding out if the distributed 
DR infrastructure can support customer SLAs at the time of recovery). 

Some works on using Erasure like distributed coding for distributed fault tolerance 
in large-scale archival systems have been discussed in OceanStore [16], and Farsite 
[17]. One of the important distinctions of our work from these is that these works 
have an eventual recovery model, i.e., no recovery time objective SLA is set; while in 
our case the coding structure and data distribution strategy is strictly SLA dependent. 

Multi-site replication of data for availability is also well investigated. There have 
been a series of work around data placement and replication in a data grid 
environment like Bell [18]. Data replication and job scheduling has been studied in 
[19]. QoS aware replication has been studies by [20]. Our problem is of different 
nature as we are studying replication related to archival fault-tolerance of data and not 
performance.  

6 Conclusion and Future Work 

With the advent of sophisticated online backup, multi-geography sites and cloud 
computing, multi-site DR is increasingly becoming popular for better reliability and 
availability of operational data. In this paper, we describe DDP-DR a novel data 
distribution plan for multi-site disaster recovery, where backup data can reside in 
multiple data centres including public cloud. The plan takes customer policy level 
constraints and infrastructural constraints into consideration to suggest a series of data 
distribution plans. The work tries to fit customer requirements into existing DR 
topologies as opposed to provisioning servers for DR as most of other DR planning 
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work has suggested. Initial verification of the plan with simulation suggests very 
encouraging results. As a future work, we will be looking at bringing network costs and 
other DR steps in overall optimization. We will also be looking at disaster recovery 
scenario with multiple customers (tenants) within same distributed DR architecture.  
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Abstract. Cloud Storage service providers such as Amazon Simple Stor-
age Service (S3) and Google Storage for Developers offer low-cost and
highly available scale storage resource with a simple pay-as-you-go charg-
ing model. The cost of running storage systems on such a Cloud Storage
service mainly depends on occupied storage space, number of requests
and amount of data transfer. Traditional design of storage stack based
on disk driver or tape didn’t consider cost as a system metric, hence it
brings considerable optimization space for the design of storage system
based on Cloud Storage.

In this paper we propose Saga, a user mode file system based on
Cloud Storage service, that is designed to support POSIX interface with
the goal of minimizing cost. Saga is specially designed under the cost
efficient principle that minimizes occupied storage space by store-one-
copy and copy-on-write strategies and minimizes number of requests by
distinguishing objects loaded by write or read requests. Saga is also effi-
cient from a performance perspective and utilizes parallel characteristics
of Cloud Storage to boost the performance. Experimental results show
that Saga is cost efficient and works well with general-purpose I/O work-
loads.

Keywords: Cloud Storage, Cost Efficiency, POSIX, S3.

1 Introduction

Cloud Computing, as the next generation computation framework for hosting
data and deploying software and services, has become more and more popular.
As a part of Cloud Computing, Cloud Storage services, such as Amazon Simple
Storage Service (S3) and Google Storage for Developers (Google Storage) offer
performance and interface that differ substantially from those traditional storage
devices in web hosting and scientific data analysis. Considering Cloud Storage
as a sort of “physical device”, then it has two new features comparing with
traditional storage devices. One is the native parallel characteristics that data
can be transferred by multiple threads using web service such as REST or SOAP.
The other is the new economical characteristics that cloud resources are charged
by a simple pay-as-you-go charging model.
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But for traditional storage system designs, there are two limitations when
they facing this new type of “physical device”. One problem is such “physical
device” has a different interface from generic file system. So applications based
on POSIX interface can’t directly use Cloud Storage to store data and need to
be rewritten. For the wide spread use of storage systems based on Cloud Storage,
they need to support POSIX interface. The other problem is the charging model
of Cloud Storage has made system cost as a critical metric. Storage systems
must be designed with consideration to minimize the cost of Cloud Storage.
Collectively, these changes have made existing storage systems designed for local
storage device do not adapt with Cloud Storage correspondingly.

In this paper, we explore cost efficiency as the continuation of design space. We
propose a file system based on Cloud Storage with the design goal of supporting
POSIX interface and minimizing cost, called Saga. Saga aims to adapt the new
opportunities and challenges created by the appearance of Cloud Storage. Rather
than embed static assumptions that the cost of write operation is the same as
the cost of read operation, write operation is much more expensive than read
operation in Cloud Storage. So Saga makes a distinction between write and read
operation. And Saga discriminates the data loaded by GET request and PUT
request in its cache module named Dragon Orb. Dragon Orb manages a local
cache which caches all the data fetched from Cloud Storage and going to store
to Cloud Storage.

In the remainder of this paper, we first discuss prior work in storage system
such as file system or database design based on Cloud Storage as well as the
analysis and evaluations of Cloud Storage under different workloads. Then we
give our cost analysis and evaluation of Cloud Storage. We then address the
design of Saga and provide an in-depth description of its implementation. Then
we evaluate Saga in performance and cost efficiency. We remark on conclude and
future work in the last.

2 Related Work

Our research is motivated by the new economical characteristics of storage sys-
tem introduced by Cloud Storage and aims to design a cost efficient storage
system under different workloads and support most of existing applications. We
review previous work based on Cloud Storage in the following wo aspects:

– Design of storage system based on Cloud Storage

Because of the easy interface and simple pay-as-you-go charging model of Cloud
Storage, it is widely used to backup data or cache data. Cumulus[9]is a backup
system built by Vrable et al., which can be used to backup whole file system to
Cloud Storage. Cumulus is specifically designed under a thin cloud assumption
and aims to minimize backup resource requirements, such as storage and net-
work, and ongoing monetary costs. Cumulus aggregates data from small files and
uses a segment cleaning strategy similar to Log-Structured File System(LFS)[8]
to maintain storage efficiency. The design of Cumulus is quite different from that
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of Saga. Cumulus is first a backup system while Saga is a generic network file
system. Saga can randomly access any block of any file while Cumulus only can
access the data of file after downloading and restoring the file at local file system.

Chiu at el. have utilized Cloud Storage as a sort of cache to accelerate service-
oriented computations[3]. By using Cloud Storage to cache data output from
services and proposing a self-adaption algorithm, their cache schema can scale
up the cache system during peak querying times and back down to save cost.
Using the elastic Cloud resource, a detailed evaluation showed that this cache
system is capable obtaining minimal miss rates while utilizing far less nodes than
statically allocated systems of fixed sizes in the span of the experiment.

Jungle Disk is a commercial software which has a design very similar to that
of Saga. The desktop edition runs like a local file system with Amazon S3 as the
backing store, and all read and write calls will redirect to Cloud Storage. Jungle
Disk can also used for backup, keeping copies of old versions of files instead of
delete them. At the backend, each file stored in Jungle Disk is an S3 object. So
when we need to use a big file, we need to wait for downloading the whole file.
Saga was inspired by Jungle Disk, but avoids this problem by chunk files into
blocks and storing blocks as S3 objects.

Brantner at el. built a database on Amazon S3[2] and demonstrate the op-
portunities and limitations of using S3 as a storage system for general-purpose
database applications which involve small objects and frequent updates. Exper-
iment results showed that database costs more when the level of consistency is
in higher level. For the highest level of consistency (Atomicity), the cost per
transaction is almost twenty times as high as for the Naive approach which is
used as a baseline.

– Analysis and evaluations of Cloud Storage

Several analysis and evaluations effort for estimating Cloud Storage whether be
suitable for scientific applications have concentrated on the access performance,
usability and low cost features of Cloud Computing.

Palankar at el. evaluated S3’s ability to provide storage support to large-scale
science projects and identify a set of additional functionalities that storage ser-
vices targeting data-intensive science applications should support[5]. Experiment
results showed the single-threaded GET bandwidth of S3 from an EC2 instance
in the same region for objects sized 1B, 1KB, 1MB, 16MB and 100MB. But
there is no evaluation of PUT bandwidth with different sized blocks. Concurrent
performance of access bandwidth is also given through experiments. They also
analyzed the data availability of S3 and cost and performance of S3 in scientific
computing.

3 Design of Saga

Firstly, we will introduce the price schema of Cloud Storage. Amazon S3 and
Google Storage are the two major Cloud Storage service providers. As Google
Storage is very similar to Amazon S3, the desing of Saga will focus on S3, which
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can also be applied to Google Storage. S3 only charges for occupied storage space,
number of requests and data transfer. Occupied storage space is charged in the
unit of Byte-Hours or GB-Months. S3 also charges for data request by number
of requests. For different types of request, there are different types of fees. PUT,
COPY, POST, or LIST, these four types of request cost $0.01 per 1,000 requests,
while GET and all other requests cost $0.01 per 10,000 requests. This indicates
that the GET request is cheaper than the PUT request. For data transfer, S3
makes a distinction whether it is in or out of the region. But for the COPY
request within the same region, there is no data transfer fee. Furthermore, there
is no data transfer fee for the transfer between S3 and Amazon EC2 instances
within the same region.

Saga is designed to utilize Cloud Storage and meet the following four critical
objectives.

– A generic file system to support random access To avoid rewriting the ex-
isting applications using POSIX interface, Saga is designed as a generic file
system to add a layer between applications and Cloud Storage interface and
support for POSIX interface and fine-grained operations such as random
access.

– Minimizing storage utilization A critical strategy to make Saga truly cost-
efficient in practice is to store only one copy for the objects with the same
content. We maintain a mapping table to record the map from the logical
objects to the physical objects stored in Cloud Storage. And we use the
copy-on-write (COW) strategy when the content of the objects is changed.

– Enhancing access performance By using a differentiated object cache named
Dragon Orb to cache objects at local file system, we can improve the ac-
cess performance of Saga by masking the PUT and GET requests to Cloud
Storage. Furthermore, Dragon Orb can significantly minimize the request fee
through reducing PUT and GET requests.

– Minimizing the cost of requests According to the analysis in Section 3.1, we
will find that PUT request is more expensive than GET request, so Saga is
designed to adapt this feature of Cloud Storage, and to minimize the request
fee by distinguishing the PUT and GET requests in the cache replacement
algorithm. Moreover, Saga uses a lazy-write strategy for its object cache to
reduce the requests.

3.1 Overview of Saga

Saga is designed as a user-space file system which supports POSIX interface with
the goal of minimizing cost. Cloud Storage is charged by occupied storage space,
number of requests and data transfer. For essential performance requirement of
generic file system, Saga needs to access Cloud Storage with relatively stable
network bandwidth. In our design, Saga is planned to deploy in EC2 instances
which are in the same region with S3 buckets. So there is no data transfer fee for
Saga. In Saga, we only consider occupied storage space and number of requests
as the target to minimize cost.
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Fig. 1. Architecture of Saga

All files stored in Saga are chunked into fixed size blocks and all the fixed size
blocks will be stored as objects in Cloud Storage. According to the functionalities,
Saga can be divided into three modules: a cache module named Dragon Orb, a
kernel module redirecting file system calls to Dragon Orb and a network module
taking charge of writing data to Cloud Storage and reading data from Cloud
Storage. The kernel module of Saga redirects all the file system calls to the user
mode cache module Dragon Orb. And Dragon Orb manages a fixed size cache
on local file system to store objects and utilizes a cache replacement algorithm
called DO-LRU to evict objects when an object has to be loaded into the full
object cache. If the evicted objects are dirty, they will be sent to the network
module and then stored in Cloud Storage through the service providers’ API.

Fig.1 illustrates the architecture of Saga. When the application needs to access
files stored in Saga, (1) kernel module will redirect the file system calls to Dragon
Orb. (2) Dragon Orb will firstly check the metadata and offset to find the needed
objects, and then check whether to store the objects in object cache or not. (3)
If the needed objects are stored in object cache, Dragon Orb will operate the
relevant objects in object cache and return the result to the kernel module;
otherwise, Dragon Orb will call the network module, get the relevant objects in
Cloud Storage, store them in local objects cache, operate the objects and then
return the result to the kernel module.

3.2 Saga Storage Policy

The analysis of S3’s price schema in Section 3.1 shows that occupied storage
space is an important factor to affect the cost of storage system based on Cloud
Storage. To be cost-efficient, Saga needs to be designed with the goal of minimiz-
ing the occupied storage space. This goal can be archieved through compression
algorithms to compress the data stored in Cloud Storage or some other methods.

Kulkarni et al. have showed that redundancy elimination at the block level is
an efficient method to eliminate a broad spectrum of redundant data in a scalable
and efficient manner[4]. Files stored in Saga are chunked into fixed size blocks and
blocks are logical storage unit. The block size can be set to 512KB, 1MB, 2MB
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or 4MB. There is a pointer for each block to point to the physical storage unit
stored in Cloud Storage, i.e. objects. In order to save the occupied storage space
in Cloud Storage, Saga is designed to allow the system to store only one copy and
use pointers to the original object instead of creating redundant objects. When
the content of an block in a file is changed, Saga utilizes a copy-on-write (COW)
strategy to create a new object and use pointers to point to it.

Block 1 Block 2 Block 3 Block 1Block 4 Block 2 Block 3 Block 1

File 2 File 3

Block 2

Object A Object B Object D
Object 

C
Object E Object F

Cloud 
Storage

File 1

Fig. 2. An illustration of how files stored in Saga

Fig.2 illustrates the method how files being stored in Saga. Three files stored
in Saga are chunked into blocks, which are stored in Cloud Storage. Object C
and object E are shared by different files while there are two pointers in the
same file pointing to object B. Because Saga chunks files into fixed-size blocks,
the size of blocks are almost the same. But in the rear of some files, there will
be a block size less than the fixed size. So the objects stored in Cloud Storage
almost have the same size with a few objects less than the fixed-size. There is
a reference counter for each object and it records the number of pointers point
to this object. When the reference counter of an object decreases to zero, this
object will be deleted.

File 1

Block 1 Block 2  Block 3 Block 1Block 4 Block 2 Block 3 Block 1

File 2 File 3

Block 2

Object A Object B Object D
Object 

C
Object E Object F

Cloud 
Storage

Object G Object H

Fig. 3. An illustration of COW in Saga

Fig.3 illustrates the COW strategy of Saga. When the content of the third
block of file1 is changed, a new object, object G, will be created and stored in
Cloud Storage. Then the pointer of this block will change to point to object G.
Similarly, the third block of file2 is changed and object H is created, when the
pointer of the block is changed to point to object H there is no pointer point to
object F and object F will be deleted.

Saga utilizes the store-one-copy strategy to save occupied storage space in
Cloud Storage, but it also can be configured to compress the storage space using
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zlib or bzip2 compression algorithms. Saga allows the user to assign different
compression policies to different file categories. A file category is determined
by two essential attributes: one is the absolute path of the directory where the
category’s files locate in, and the other is files’ extentions. To specify a file
category, the path attribute is necessary, while the extention attribute is optional.
Omitting the extention attribute means files with any extention are all included
by the file category specified by the path attribute.

3.3 Dragon Orb: Differentiated Object Cache

In order to enhance the performance of accessing files, Saga exploits the temporal
locality by the differentiated object cache module – Dragon Orb. When appli-
cations want to write or read a file, Saga will get affected objects from Cloud
Storage. Dragon Orb will cache these objects in a fixed size local cache space on
the local file system. The objective of Dragon Orb includes not only improving
access performance but also minimizing the request cost of Cloud Storage. On
the other aspect, Dragon Orb shields the fault caused by network by storing
dirty objects on local file system firstly.

For flash-based SSDs, write operations are more expensive than read opera-
tions because write operations must be operated after erasure operations while
erasure operations are expensive in time and lifetime of SSD. Park at el. ad-
dressed a replacement algorithm called CFLRU for flash memory and utilized
the characteristics of flash memory that write cost is more expensive than read
cost in the aspects of time and energy[6]. CFLRU is a variant of LRU and de-
signed for page level cache. CFLRU set a window from the LRU position in LRU
stack, clean pages will be evicted firstly in the window.

Inspired by CFLRU, Dragon Orb proposes a cache replacement algorithm
called DO-LRU, which is also a variant of LRU and designed with the goal that
objects loaded by write calls will have a longer lifetime than the objects loaded
by read calls. DO-LRU set three Clean Mark Positions (CMP) to distinguish
objects loaded by read calls from objects loaded by write calls in object cache.
Objects loaded by read calls will be placed after a chosen CMP instead of MRU
position of the cache stack. If the length of cache stack is L, the three CMPs
are placed apart from the LRU end in a distance of

⌊
L
8

⌋
,
⌊

L
4

⌋
and

⌊
L
2

⌋
, so LRU

replacement algorithm could be considered with CMP placed apart from the
LRU end in a distance of L. DO-LRU will perform a Clean Mark Dueling(CMD)
method to choose the Clean Mark by simulating DO-LRU replacement algorithm
with all three CMPs and LRU for a fixed time interval. CMD uses the set dueling
mechanism[7][10] to gather runtime values of CostDOand choose an appropriate
CMP. CostDO is caculated as following:

CostDO = CPUT /CGET ∗ NPUT + NGET (1)

CPUT and CGET is the cost of PUT and GET per request. NPUT is operation
number of PUT requests and NGET is operation number of GET requests.
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Fig. 4. Dragon Orb object cache structure

As illustrated by Fig.4, Dragon Orb utilizes a hash table for efficiently search-
ing out the hash of blocks belonging to a file according to the inode number of
the file. We refer the inodes of the files ever be opened as active inodes, and
only active inodes will be stored in a hash table. According to the active in-
ode, file composition information can be easily retrieved from the active inode
hash table. File composition information includes a hash table which record the
content hash of those blocks composed the file. Because objects are stored with
their content hash as the key, it is easy to retrieve the object with its content
hash. Those objects stored in the local cache called active objects. The number
of active objects is limited by the size of local cache, and active inode hash table
will only store those active inodes which have their object stored in local cache
space. So the size of memory used to store active inode hash table and file com-
position hash table will be limited by the size of cache space, which is relatively
small compared to the memory.

4 Implementation

We address details of the implementation of Saga in this section. Saga is the
prototype of our design and we implemented Saga as a user mode file system
based on FUSE[1] for simplicity. Our implementation of Saga is light weight
with only 4800 lines of Python source code implementing the core file system
functionality, along with 1400-line Python bindings for FUSE API. We chose S3
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as the backend Cloud Storage service to implement Saga because it’s the largest
Cloud Storage service provider and its API has be used widely.

Saga kernel module is a python bindings for FUSE API, we use the ctypes
package and libfuse to implement it. All file system calls to Saga will be redi-
rected from the VFS layer to kernel module, and then be sent to the user space
cache module Dragon Orb. Dragon Orb will perform the operations to the cor-
responding objects and return the result to the kernel module. Finally, kernel
module will return the result to the applications.

We save all types of metadata of Saga in a single S3 object. When the file
system is mounted, metadata object should firstly download from S3 and re-
construct the data structure in memory. We organized the metadata using table
strucure within the metadata object. Specifically, each of the file system hierar-
chy, file metadata information and file composition information corresponds to
a table in the metadata object. Appropriate indices are created in each table to
quicken the lookups frequently queried by the file system hierarchy and the file
composition information. The indices are stored back to the metadata object
periodically and when the file system is unmounted. For metadata in cache, we
organize them using two hash tables addressed in Section 3.3.

Compared with the traditional storage devices, Cloud Storage has a native par-
allel characteristics because data can be transfered by multiple threads using web
service such as REST or SOAP. Two thread pools are built for sending objects to
Cloud Storage and fetching them back, each of the thread pool has 10 threads.

5 Experiments and Evaluations

In this section, we evaluate the performance of Saga and its ability to save cost,
as well as gain insight for future improvement of Saga design and implemen-
tation. All following experiments run on a basic 64-bit Amazon Linux instance
with its Amazon Machine Image (AMI) id ami-8e1fece7 equipped with 2 Elastic
Compute Unit (ECU), 613MB RAM, and 8GB Elastic Block Store (EBS). ECU
was introduced by Amazon EC2 as an abstraction of computation resources.
One ECU provides the equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron
or 2007 Xeon processor.

5.1 Continious Read and Write

The goal of evaluating Saga’s continuously writing and reading performance is
to understand the bottlenecks inherent in its current design by comparative
analysis for different block size. To this end, a relatively large ISO file of around
700 MB is copied into and then out of Saga, and the continuously writing and
reading rates are measured as the file size divided by the time it takes to copy
the file. Fig.5 shows how the continuously writing and reading rates vary as
the data segment size increases. It is observed that nearly in every scenario the
continuously writing rate grows as the data segment becomes larger. But when
Saga utilizes bzip2 compression algorithm to compress data, the speed will not
always grow. It shows that when we use bzip2 to compress data, sometimes
computing becomes the bottleneck except IO and bzip2 speed curve has a jitter.
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Fig. 5. Continuously writing and reading performance

5.2 Randomly Read and Write

Fig. 6 shows the time to perform 10,000 random write and read system calls
respectively, 1 KB each time, against a binary file of around 900 MB. As can be
seen, different from continuously writing, randomly writing appears to slow down
as the data block size increases. The reason is that Saga performs operations in
granularity of block. Even if the amount of data requested to be written are
smaller than a block, Saga still needs to fetch at least one involved data block.
As a result, the larger is the data block, the less efficiency Saga can carry out
randomly writing and reading.
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Fig. 6. Randomly writing and reading time

5.3 Cost of Different Block Size

With the goal of evaluating the cost of Saga, we compared the occupied storage
space under different compression algorithms and compared the requests number
between DO-LRU and LRU cache replacement algorithm. To this end, we run
a bash script which is used to write data to Saga file system and fetch data
back to local file system. We repeat this experiment for 6*4 times with different
block size and different cache replacement algorithm. All these experiments run
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Fig. 7. Occupied storage space, requests number and cost under different environment

for 50 hours. Fig. 7 shows occupied storage space with different compression
algorithms, requests number with different cache replacement algorithms and
cost for different environment. It is observed that system cost decreases with
the block size grow. For object cache replacement algorithm, DO-LRU is more
cost-efficient than LRU.

6 Conclusions and Future Work

Cloud Storage service can offer low-cost and highly available scale storage re-
source with a simple pay-as-you-go charging model. Storage systems based on
Cloud Storage should consider cost as an important metric beside bandwidth and
latency. Compared with the transitional storage devices, Cloud Storage transfers
data by web service and charges for occupied storage space, number of requests
and data transfer.

Saga is a file system based on Cloud Storage and designed with the goal of
minimizing cost and supporting POSIX interface. Saga is specially designed un-
der the cost efficient principle which minimizes occupied storage space by store-
one-copy and copy-on-write strategy and number of requests by distinguishing
objects loaded by write or read requests. To the best of our knowledge, Saga is
among the first effort towards minimizing cost and realizing it on the file system
level. Preliminary evaluation shows that Saga is cost efficient and capable of
providing a usable data access performance for upper applications.

Although Saga is already able to achieve usable performace, many improve-
ments deserve to make. Saga is not a real network file system but a remote file
system at present. Now we use metadata object to save all types of metadata
on persistent layer. Moreover, we will build a metadata server utilized Cloud
Computing resources to realize the network file system based on Cloud Storage
and analyze the performance of concurrency and bandwidth.
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Abstract. The Cloud provides highly democratic access to computer
services on a pay-per-use basis. A fact that has encouraged many re-
searchers to adopt the Cloud for the processing of large computational
tasks and data storage. This has been used in the past for single research
endeavours or as mechanism for coping with excessive load on conven-
tional computational resources (clusters). In this paper we investigate,
through the use of simulation, the applicability of running an entire com-
puter cluster on the Cloud. We investigate a number of policy decisions
which can be made over such a virtual cluster to reduce the running cost
and the effect these policies have on the users of the cluster.

Keywords: Clouds, IaaS, Cost Optimization, Cluster, Simulation.

1 Introduction

Cloud Computing [4] provides a new model for computational processing and
data storage removing many of the access barriers to large-scale computing by
eliminating the need for capital expenditure on large private infrastructures.
Instead a user can ‘rent’ computational power or data space on a short-term basis
– more than they could afford to buy though enough to meet their immediate
needs – transferring expense to an operational cost. This approach tends to work
best in scenarios with significant temporal variation in requirements – alternating
between periods of little (or no) activity to periods of high activity.

This is in contrast to conventional resources available within organisations
such as Universities or Companies – often in the form of a cluster of computers.
Here capital expenditure is outlaid on a fixed number of computational resources
and data storage. The size is dominated by two factors: the available budget,
and the anticipated load on the cluster. The aim is to provision enough resources
to deal with all but the exceptional load scenarios placed on the resources.

Like many institutions Newcastle University provides a computational clus-
ter for researchers. This has the advantage of economy of scale – researchers
share resources allowing each access to more than they could individually af-
ford. Although researchers loose exclusive access to resources this is not seen
as a problem as few utilise the resources 24/7. The Newcastle cluster is formed
from the student access computers located around the campus. This has two
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disadvantages for cluster users: computers can be lost from the cluster at any
time due to students logging in, no choice on operating system – student access
mandates that computers run Windows, whilst most cluster users prefer Linux.

We have previously shown that ∼120MWh of energy was consumed in 2010 to
power the Newcastle Condor cluster [14]. Although additional capital expenses
for computer hardware and operational costs for computer maintenance exist
as these computers are primarily for other purposes we do not currently take
account of these. As the University is investigating the use of low powered thin
clients for student access and direct charging for the energy used in the cluster
this could lead to alternative approaches becoming more favourable in the future.

The advent of the Cloud, which removes capital cost and provides apparently
infinite resources, has given researchers a new way to work – often in-spite of
local resource availability. Large collections of resources can be provisioned in a
short period of time, quicker than many institutions can offer, for a relatively
small operational outlay, a fraction of the capital cost. A second approach, Cloud
Bursting, has emerged where owners of clusters have exploited the Cloud to cope
with excessive demand which exceeds the resources available in-house.

Here we explore an alternative use case – moving the entire cluster onto the
Cloud. Investigating if the economy of scale benefits of a conventional cluster
map onto a virtual cluster and the effectiveness of policies, applied to the virtual
cluster, in terms of cost savings and impact on the cluster users. We evaluate the
cost of using the Cloud in terms of the hours consumed on the Cloud and the
impact on the cluster users as the effect on the average make-span for their jobs.
Defining make-span as the time between job submission and job completion.

We use a high level trace-driven simulation [7], using trace logs from the
Condor cluster [10] based at Newcastle University [13,14], to evaluate the effec-
tiveness of our approach. Using just the submission times for jobs to the cluster
and their execution times allows us to submit jobs into the simulated Cloud clus-
ter where jobs will either receive service immediately, if virtual computational
instances (refereed to here as instances) are idle, or enter a queue awaiting exe-
cution otherwise. Policy can then be enacted to determine if (and when) a new
Cloud instance should be started or unused instances terminated. As the main
focus of this paper is to comparatively evaluate a number of policies we do not
concern ourselves with the appropriateness of these trace logs, using them only
for comparison – real deployment would almost certainly alter usage patterns.

We adopt the Cloud model used by many providers (e.g. Amazon’s EC2 [2]) al-
lowing users to deploy virtual machine images onto servers owned by the provider
– referred to as Infrastructure as a Service (IaaS) [18]. Billing is typically by the
hour with partly used hours incurring a full hour charge. The start of a billing
period varies between providers. Some charge from the start of the wall-clock
hour in which the instance was invoked – billing from 7pm for an instance stated
at 7:58pm – whilst others charge from the time the instance was invoked [9]. For
clarity we refer to the former case as wall-clock charging and the latter as exact
charging. It should be noted that although other billing intervals exist our results
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are not invalidated by the use of shorter (or longer) periods, they merely alter
the severity of the impacts that we seek to mitigate.

The rest of this paper is set out as follows. Section 2 discusses related research
to the work we propose. In section 3 we describe in more detail the cluster that
we are modelling. We present a number of policies for optimising the cost for
using the Cloud in Section 4 along with the perceived benefits of these policies.
The simulation environment is described in Section 5 with the simulation results
being presented in Section 6. Finally our conclusions are presented in Section 7.

2 Related Work

There is currently great interest in Cloud Computing [4]. This has lead to a
number of investigations into the applicability of the Cloud as a tool for aiding
researchers in their work. A number of simulation approaches to model the ben-
efits of Cloud computing have been performed. Deelman [8] evaluated the cost of
using Amazon’s Elastic Compute Cloud (EC2) [2] and Amazon’s Simple Storage
Service (S3) [3] to service the requirements of a single scientific application. Here
we seek to service the requirements of multiple users and multiple applications.

de Assuncao [5] proposed the use of Cloud computing to extend existing clus-
ters to deal with exceptional load. This work was further extended by Mat-
tess [12] by proposing the use of Amazon spot instances, supply-and-demand
driven pricing of instances, to further reduce the cost of Cloud Bursting. Our
approach differs to these in the sense that we seek to deploy our entire clus-
ter to the Cloud. The approach of using spot instances. however, could easily
be included in our approach and would allow for the same cost reduction as
proposed by Mattess. Van den Bossche [6] uses Binary Integer Programming to
select which workflows should be bursted to the Cloud. This approach is com-
putationally expensive to determine the optimal approach and does not address
the issue of when to terminate instances. It may be naively assumed that the
our approach here is no more than the degenerative case with no local resources.
However, these papers discuss when Cloud resources should be brought in, whilst
our work discusses how to optimally manage the invocation / termination of in-
stances. These two approaches can therefore be seen as complementary.

Marshall [11] proposes policies for how to extend the number of cloud instances
to use along with simulations of a small number of short running synthetic jobs
to evaluate overhead times. Here we use a full trace log containing over half a
million real jobs and evaluate for both overhead and Cloud cost.

Palankar [16] showed the criticality of data locality in the Cloud. We see that
moving our data to the Cloud will help to reduce the data locality problem.

Additional functionality such as Amazon CloudWatch [1] allow instances to
be brought up and down dependant on the characteristics of existing instances.
The approaches we propose can be built into such a system.
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3 Cloud Cluster Model

We discuss the general Cloud Cluster architecture that we are modelling. Each
individual user is able to submit jobs to the Cluster at any time. A Job Manage-
ment Service is used to deploy these jobs to dynamic pool of instances within the
Cloud. This can be one of the many existing Cluster management tool such as
Condor [10], PBS [17] or (Sun) Grid Engine [15]. Additional software is required
to allow the cluster to add Cloud instances, when required, and terminate these
when no longer needed. Instances within the Cloud Cluster can be seen as being
in one of three states with interactions illustrated in Figure 1:

– Unallocated: those potential Cloud instances not currently under contract
of the cluster – (effectively) an infinite set. The Job Management Service
can ‘hire’ such an instance to run a job placing it in the Active state.

– Active: the instance is ‘hired’ by the cluster and is currently servicing a job
for a user. On job completion the instance will enter the idle state.

– Idle: the instance is ‘hired’ by the cluster but not currently servicing a job.
The instance will become active if the cluster allocates a job before the end
of it’s billing period otherwise it will be released into the unallocated state.

As an instance incurs the same charge irrespective of when it is terminated within
a billing period it is always kept ‘hired’ until the end of this period – increasing
the chance of there being an idle instance when a job arrives. Instances can either
be provisioned for all users within a cluster or only a specific user.

Jobs are first matched against idle instances capable of accepting jobs from
that user. Receiving continuous service from the active instance until completion
when the instance will become idle. Jobs arriving to find no ‘idle’ instances
capable of servicing them will cause a new instance to be provisioned, requiring
time for the operating system and middleware to start, before running the job.

4 Policy

In this section we discuss a number of policies which can be applied to a Cloud
based Cluster aimed at reducing the number of hours consumed by the Cluster
in order to successfully complete all jobs. In each case we indicate how the policy
could be realised and how we would expect the Cloud cluster to be affected.

P1: Limiting the number of Cloud instances: Although the Cloud offers
(apparently) infinite availability each provider has thresholds over which prior
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approval is required for more resources – EC2 is restricted to 20 instances per
region, giving an overall limit of 200 instances. Limiting instances helps prevent
excessive instance consumption when users submit large numbers of short jobs.

Jobs arriving to find no instances in the ‘idle’ state can either cause the
invocation of a new instance, provided that the instance limit has not been
reached, or be placed into a queue of pending jobs. Pending jobs are services in
a FCFS manner as instances become ‘idle’. This will reduce the number of hours
consumed by the cluster at the expense of increasing the average make-span.

P2: Merging of different user’s jobs:Allowing users to share Cloud instances
could help reduce costs as less instances will be required and reduce make-span
as jobs are more likely to discover usable idle instances. As the current cluster
shares resources we are not reducing the security available to the user.

This can be implemented by having one central pool of Cloud instances with
jobs being allocated to any ‘idle’ instance. This does, however, bring in the
complexity of how to sub-charge for these ‘shared’ hours of Cloud usage. This
can be done after an instance has been terminated using the following equation:

Costi = hours× price×
∑Ni

j=1 execution timei,j∑M
k=1(

∑Nk

j=1 execution timek,j)
(1)

Where hours is the number of hours the instance was active, price is the unit
price per hour, Ni is the number of jobs from source i, M is the number of
sources and execution timei,j is the execution time for the j’th job from source
i. Thus each source’s cost is based on the proportion of the overall time the
source was active on the instance relative to all sources on this instance.

P3: Instance keep-alive: Experimentation has shown the time for an instance
to initialise and start accepting jobs can range from 1 to 15 minutes, with high
values being detrimental to overheads. This policy allows idle instances at the
end of a billing period to remain ‘hired’ for the next period with probability p.
To prevent a half-life decay an instance which is ‘idle’ for a full hour will always
terminate. This policy many have a more impact on the make-span than on the
cost saving, as an arriving job is more likely to find an ‘idle’ instance. The cost
may go up due to instances running when no jobs are present.

P4: Delaying the start of Instances: This policy, like P1, aims to reduce
the impact of short running jobs. Arriving jobs which cannot be allocated to an
‘idle’ instance are queued. If the job fails to obtain an instance within t minutes
then a new instance will be created. This helps the overall cost for using the
Cloud by reducing the chance of instances being brought up for short-running
jobs. The average make-span will go up due to the extra waiting time.

P5: Removing the delay on starting an Instance: Policy P4 can be slow to
react when large numbers of jobs are submitted. This throttling can be removed
while the queue size exceeds a given proportion (r) of the maximum instance
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Fig. 2. Profile of job submissions

count. Although this is expected to increase the cost of using the Cloud it should
reduce the average make-span.

P6: Waiting for the start of the next hour: Where a Cloud provider adopts
a wall-clock charging model it may not be economical to start an instance just
before the end of an hour. Jobs arriving within b minutes of the end of an hour
are delayed until the start of the next hour. Although this will increase the
make-span of the job it should decrease the cost to the Cloud.

5 Simulation Environment

Our simulations are based on trace logs from the Condor high-throughput clus-
ter at Newcastle University [13,14]. The 1359 student access desktops, running
Microsoft Windows XP, replaced on a four year rolling cycle. As the main focus
of our work is the comparison of different polices for reducing the cost of using
the Cloud we ignore the differences between local and Cloud performance and
assume the Cloud execution time will match the original execution time.

Figure 2 depicts the profile for the 574,701 successful jobs made between 13th
October 2005 to 13th March 2011 by 21 unique users requiring 228,688 hours to
execute. Jobs which were terminated before completing by the submitting user
have not been used for this simulation due to their lack of execution time.

6 Simulations and Results

We evaluate our policies in order to assess an optimal set of policies for our
Cloud cluster. These evaluations could be performed on different cluster data
and we believe that the conclusions from this work will be applicable to other
similar clusters. As the cost per hour of different providers varies and even tem-
porally within a provider we quote all values here in hours consumed. A simple
multiplication of this value by the current hourly rate will yield the real cost.
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Table 1 shows the results under the assumption of infinite instance availabil-
ity. Exact charging gives a significant decrease in hours consumed over wall-
clock charging. This equates to 97,000 hours or ∼23.3 minutes for each instance
started. The make-span is almost identical with the discrepancy attributable to
wall-clock instances (in general) powering down before exact charged instances,
thus arriving jobs are less likely to find idle instances. The rest of the results are
computed relative to the exact charge case to exemplify the relative benefits.

The following key letters are used to indicate the Cloud pricing model and
source merging policy (P2) in the following graphs: h - wall-clock charging, w -
exact charging, m - jobs can run on any instance, s - jobs can only be run on

Table 1. Baseline results for an infinite size Cloud Cluster

Charge Type Hours Consumed Average make-span

Exact charging 401,981 24.65 minutes
Wall-clock charging 472,571 24.75 minutes

Fig. 3. Varying the maximum instance count on Cloud hours consumed

Fig. 4. Effect of varying the maximum instance count on average make-span
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instances allocated to its own source. If present the number is the amount of
time (in minutes) relative the experiment being performed.

Figures 3 and 4 exemplify policy P1. Increasing the maximum instances in-
creases the hours consumed but reduces the average make-span. Exact charging
remains much more optimal than wall-clock charging. The impact of merging
jobs by different users (P2) appears to have only a marginal effect (1.3% ∼5,000
hours) on hours consumed, and no perceivable impact on make-span – a conse-
quence of the cluster users working at different times, if more users were active at
the same time this could lead to a significant reduction in hours. All subsequent
experiments have been performed with a maximum of 500 instances.

In figures 5 and 6 we investigate the effect of start-up time for instances and
whether it is beneficial to keep instances ‘idle’ in the absence of jobs (P3). As the
startup time of instances increases so too does the number of hours consumed
and the average make-span. Only for start-up times in excess of ten minutes
is there a perceivable benefit to the make-span in increasing the chance of an

Fig. 5. Varying the boot time and chance of keep-alive on hours consumed

Fig. 6. Varying the boot time and chance of keep-alive on average make-span
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Fig. 7. Varying max instance delay on hours consumed

Fig. 8. Varying max instance delay on average make-span

instance remaining ‘hired’, though the hours consumed increase almost linearly
as we increase the chance of an instance remaining ‘hired’. Therefore using a
policy to keep instances ‘hired’ in the absence of jobs only makes sense for boot
times over ten minutes and with a probability of only around 10-15%.

Policy P4 is evaluated in figures 7 and 8 in which we vary the maximum
delay time, for starting a new Cloud instance, in an attempt to reduce the hours
consumed. As we increase the maximum delay the hours consumed decreases
but the average make-span increases. As these two characteristics are inversely
proportional it is necessary to balance maximum delay against increases in make-
span. The reduction in hours consumed is slightly more pronounced for smaller
values of maximum delay whilst the make-span is almost linear which would
suggest that a small value for maximum job delay would be appropriate.

For figures 9 and 10 we investigate policy P5 in which we remove the delay
on starting new instances (P4) when there is a high influx of jobs to the Cloud
cluster. Here there is a clear distinction between the policies for merging or not
merging different users jobs. For the hours consumed if the policy is not to merge
sources then there is a benefit of having a 5% threshold on removing the delay
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to starting resources. However, increasing this threshold has no further impact.
If merging sources then the improvement isn’t immediate though it does become
better than the non-merged approach at around 10-20% capping. For make-span
the non-merged policy reaches a maximum at 5% threshold whilst the merged
policy approaches this as the threshold increases to 50%. Thus if used a capping
of over 5% for the non-merged approach and around 5-15% for merged sources.

We explore the effect of delaying starting up new instances till the start of the
next wall-clock hour (P6) in figures 11 and 12. The number of hours consumed
decreases as we increase the number of minutes before the start of an hour. This
is most significant for the cases of Cloud instances with wall-clock charging. The
exact charging model also shows this reduction as we are producing a variation
of policy P4 in which the maximum delay on instance creation is variable. When
we look at the average make-span the value does increase, but only slowly, rising
by only two minutes over the half hour range. Thus unless make-span is the
overriding concern then this policy should be used with a high value.

Fig. 9. Varying max job delay and job delay capping on hours consumed

Fig. 10. Varying max job delay and job delay capping on average make-span
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Fig. 11. Varying max delay to next hour on hours consumed

Fig. 12. Varying max delay to next hour capping on average make-span

7 Conclusions

In this paper we have demonstrated through the use of simulation how a Cluster
can be deployed completely on the Cloud. We have demonstrated how policies
over provisioning of instances can effect the overall cost of using the Cloud
and the consequence this has on average make-span for users jobs. All of these
policies have the potential to decrease the cost of using the Cloud at the expense
of increasing the make-span. It is therefore important to weigh up these two
considerations in order to select an optimal policy set for a given Cloud cluster.

The policies of delaying the start of instances (P4) and delaying the start
of instances to the next hour (P6) appear to have the biggest impact on cost
of using the Cloud with least impact on the job make-span. Especially in the
latter case for resources with wall-clock charging. All the presented policies have
the potential to be used together thus increasing the potential gain. As the
policies effect when to start up instances and how long to wait before doing so a
merging of the policies would require one policy to take precedence over another.
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For example delaying jobs for at least ten minutes (P4) unless they are within
twenty minutes of the start of the next hour (P6).

Although the Newcastle cluster is currently free it does have drawbacks: non-
dedicated resources and imposed operating system. If electricity charges were
introduced – 120MWh would currently equate to 335,000 hours on Amazon –
although the cost of working in-house would still be cheeper the cumulative
benefits for working on the Cloud would make it appear a much better option.
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