VMAD: An Advanced Dynamic Program
Analysis and Instrumentation Framework

Alexandra Jimborean, Luis Mastrangelo,
Vincent Loechner, and Philippe Clauss

INRIA Nancy-Grand Est (CAMUS), LSIIT,
University of Strasbourg, CNRS, France
{firstname.lastname}@inria.fr

Abstract. VMAD (Virtual Machine for Advanced Dynamic analysis)
is a platform for advanced profiling and analysis of programs, consisting
in a static component and a runtime system.

The runtime system is organized as a set of decoupled modules, ded-
icated to specific instrumenting or optimizing operations, dynamically
loaded when required. The program binary files handled by VMAD are
previously processed at compile time to include all necessary data, in-
strumentation instructions and callbacks to the runtime system. For this
purpose, the LLVM compiler has been extended to automatically gen-
erate multiple versions of the code, each of them tailored for the tar-
geted instrumentation or optimization strategies. The compiler chooses
the most suitable intermediate representation for each version, depend-
ing on the information to be acquired and on the optimizations to be
applied. The control flow graph is adapted to include the new versions
and to transfer the control to and from the runtime system, which is in
charge of the execution flow orchestration.

The strength of our system resides in its extensibility, as one can
add support for various new profiling or optimization strategies, inde-
pendently of the existing modules. VMAD’s potential is illustrated by
presenting several analysis and optimization applications dedicated to
loop nests: instrumentation by sampling, dynamic dependence analysis,
adaptive version selection.

1 Introduction

Runtime code analysis and optimization becomes the main strategy for facing
the ever extending and changing variety of processor architectures and execution
environments that an application can meet. Unlike static compilers, that have
to take conservative decisions from restricted information extracted from the
source code, runtime profilers and optimizers rely on information captured at
execution time. While today’s processors provide more and more computing re-
sources at the price of increasing usage complexity, particularly with the advent
of multicore processors, efficient program optimizations such as adaptive and
speculative parallelism, require accurate and advanced runtime analyses. How-
ever, such analyses inevitably incur time overhead that has to be minimized.

M. O‘Boyle (Ed.): CC 2012, LNCS 7210, pp. 220-E39] 2012.
© Springer-Verlag Berlin Heidelberg 2012

VMAD: Advanced Dynamic Program Analysis and Instrumentation 221

In this paper, we present a framework called VMAD, that includes a virtual
machine handling x86 64 binary files, tailored at compile time thanks to ded-
icated passes developed in the LLVM compiler [22]. One of VMAD’s specific
feature is that low level profiling is initiated from the source code by the pro-
grammer through the insertion of a dedicated pragma. The inserted pragmas
delimit the regions of the source code of interest and specifies the type of analy-
sis to be performed at runtime. This approach provides the programmer a direct
view of the actual execution behavior of his source code. We have extended the
LLVM compiler and the Clang front-end to handle such pragmas.

VMAD has the ability of dynamically loading separated modules that im-
plement various analysis strategies. The modules are loaded and unloaded on
demand, and several instances of the same module can be loaded simultane-
ously to handle different code regions. Profiling by sampling, as well as code
transformations, are achieved using the same mechanism of multi-versioning and
chunking. At compile-time, several versions of the targeted code are automat-
ically generated depending on the semantics of the pragma. For instrumenting
by sampling, original and instrumented versions are prepared, while for opti-
mizations, a pattern that can support various code transformations is built.
Optimizations are usually preceded by a profiling phase. In this respect, the
multiple versions are prepared such that they can be launched successively in
chunks of code of various sizes. For example one chunk might represent a subset
of iterations of a loop, or a number of function calls. The runtime system then
takes the decision concerning the version to be run and adjusts the chunk size
correspondingly.

To show VMAD’s potential, we present some advanced analysis processes.
The first one consists in collecting all memory addresses that are accessed dur-
ing a selected number of successive iterations of each loop of a loop nest. This
instrumentation is rather specific since it occurs on non-contiguous phases of the
loop nest execution. The analysis process tries to interpolate addresses succes-
sively accessed through each memory reference as a linear function. The second
application extends the previous one by performing a dynamic dependence anal-
ysis: when all accessed memory addresses can be represented as linear functions,
these are transmitted to a dependence analysis module which determines if the
loop nest may be parallelized. Finally, the third application is a runtime version
selector handling distinct versions of loop nests generated by applying different
optimizations. Samples of each version are launched successively and the perfor-
mance of each version is evaluated by accessing the CPU time stamp counter.
The best version is then run for the remaining iterations.

The remainder of the paper is organized as follows. In Sect. 2] we present an
overview of our static-dynamic framework. The runtime component is detailed
in Sect. Bl and the static preparation of the code is presented in Sect. @l The
loop analysis processes implemented in VMAD are further described in Sect. Bl
Finally, we summarize related work in Sect. [f] and conclude in Sect. [l

222 A. Jimborean et al.

2 Framework Overview

VMAD has been built by taking great care of its performance and its run-
time overhead. Hence, we avoided the use of software dynamic translation that
would delay the execution of the input program. Further, instrumentation in-
structions are not inserted on-the-fly by replacing some NOP instructions that
have been previously inserted at compile time, as done with PEBIL [2I]. Rather,
we use multi-versioning: several copies are built from the targeted code extracts
at compile time. The price to pay with this approach is the larger size of the
program binary file. However, great care can also be taken to minimize the size
of the copies by inserting branches to the original code whenever possible. Be-
sides performance, another noticeable benefit is the opportunity of implementing
advanced analyses which can use versions far different from the original code.

The static-dynamic collaborative framework is depicted in Fig. Il At compile
time, the C/C++ source code, annotated with dedicated pragmas, is trans-
lated into the LLVM intermediate representation (IR) with additional specific
metadata. An LLVM pass creates copies of the targeted code extracts, some-
times customized with instrumentation instructions. Depending on the type of
information intended to be captured during the analysis phase, instrumentation
instructions may be inserted either in the LLVM IR, for high-level information,
or in the final assembly code, for low-level information. As an example, tracing
memory accesses in LLVM IR is not possible, as register allocation is not yet
done at this level.

Besides instrumentation instructions, we insert decision blocks, providing the
means to toggle between versions. We also insert callbacks, in order to invoke
VMAD and its related modules when necessary. To be generic, callbacks are
inserted as indirect calls and the address of the function to be called is patched
at start-up by the virtual machine.

application
source code

\

LLVM compiler
dedicated passes
binary instrumentation

Virtual Machine Application binary file

“headers rea ding T instructions
module 0 L 1 code
relevant modules labels
module 1 —| loading callbacks
module 2 modules data for the VM
executions headers data
initalization #headers
activation headers:
deactivation header 1
termination header 2
reinitialization ...
specific parameters for
operations the modules

Fig. 1. Framework overview

VMAD: Advanced Dynamic Program Analysis and Instrumentation 223

Moreover, the compiler inserts data in the final binary file to inform the VM
regarding the analysis process to be performed and to provide the necessary
static information.

At runtime, we use LD PRELOAD to load VMAD’s dynamic shared library
at startup. LD PRELOAD provides its own version of the C-library entry point

libc start main, allowing VMAD to read the information statically prepared,
to load the required modules and to patch the binary file. Next, control is given
to the input program. When necessary, VMAD is reactivated through the call-
backs.

3 The Virtual Machine VMAD

The virtual machine makes use of three kinds of information inserted at compile
time in the program binary file: instrumentation code that has been inserted
before or after original instructions in order to monitor their run; decision blocks
to control the selection of the versions; static data corresponding to module
parameters, and pointers to the addresses of the inserted code and the callbacks.

Each analysis collaborates with a dynamic module. They share information
using a fixed size header which resides inside the binary file. At startup, as soon
as the headers and their associated parameters have been read, the VM loads
the relevant modules and instantiates them. Parameters fetched at this point are
static data, and are accessed either by the VM, in order to know which modules
are required, or by the modules loaded by VMAD, for instance for obtaining
the addresses of the code snippets that have to be patched, or by instrumenting
instructions, for allocating memory to backup registers. On the other hand,
dynamic data is accessed through pointers set up by the corresponding VM
modules which allocate the memory they require.

Each module is structured with at least five main entry points: init to in-
stantiate an analysis process, quit to kill such an instance, on, off and reset to
activate, deactivate and reset an analysis process. Additional operations can also
be provided by a module. They are invoked thanks to callbacks patched initially
by init in order to point to the relevant instance of the module and operation.
These callbacks are inserted at some control points in the program binary file,
as detailed in Sect. M and Sect. B, and have the common form shown in Fig. 2

4 Preparing the Code at Compile Time Using LLVM

Code analysis and optimization starts, in our approach, at the level of the original
source code, where the programmer guards interesting regions of code with a spe-
cific pragma. The code is then statically shaped to enable the analysis phase, by
performing the following steps, detailed below: code tracking, multi-versioning,
customizing the versions for instrumentation or optimization, inserting callbacks
to the VM, and appending static information required by the VM. An extra chal-
lenge is taken when a high optimization level is applied, such as -O3, due to the
aggressive code transformations being performed. We first optimize the code

224 A. Jimborean et al.

sub $0x80,%rsp // backup the stack red zone

// backup the scratch registers here...

mov %rsp,%rbp stack adjustement (x86 64 convention)

mov SOXTIFEEEEELLLFFEE0 ,Torsi

and %rsi,%rsp

mov $0x0,%rax // x86 64 convention

mov $0x0,%rdi // address of the module ($0x0 will be patched)
mov $0x0,% rsi // address of the operation (30x0 will be patched)
callg *%rsi // function call

mov Y%rbp,%rsp // stack readjustement

// restore the scratch registers here...

add $0x80,%rsp // restore the stack red zone

Fig. 2. callback in x86 64 assembly code

(03), then we generate multiple versions and run a few optimization passes to
optimize them, without altering the code which requires patching.

Code tracking. Our work relies on the LLVM compiler and on the Clang front-
end, which must be extended in order to handle the newly defined pragma. The
semantics of the pragma and the delimited region must be preserved from the
source code, through the internal phases of the compiler, until the code gen-
eration. The original source code is converted into the LLVM IR, annotated
with metadata information to mark the code enclosed in the pragma scope. The
difficulties of tracking code throughout optimization phases is that metadata
information is not entirely preserved, and that code suffers significant trans-
formations. For instance, if one marks the instructions building up a loop and
performs loop optimizations, additional code is included (e.g. due to loop fusion)
or excluded (e.g. loop invariants, loop split) from its original body. Therefore,
identifying all original instructions is not always possible. Focusing on loops, the
conservative solution we propose is to consider that the original loop is trans-
formed into the code region containing

— all loops that include ...
e at least one basic block containing ...
* at least one instruction that carries metadata

The consequence is that more code than the one originally marked for multi-
versioning might be considered. However, in this manner, we ensure that all
instructions of the targeted code region are safely enclosed.

Multi-versioning. Once the region is identified, several clones are generated.
We designed an LLVM pass which creates clones of these regions and builds
a selection mechanism. The steps to follow for building multiple versions are
described in Fig. Bl Using the LLVM copying utilities, we build clones of the
instructions found in the region. By default, the clones represent identical copies
of the original values. To restore the control flow graph between the copies, a
map of the original values and the corresponding clones needs to be built. Based
on it, we replace all uses of the original values inside the cloned region, with
the corresponding cloned value, thus obtaining a clone of the entire region, as

VMAD: Advanced Dynamic Program Analysis and Instrumentation 225

depicted in Fig. [3B. Finally, each version is extracted into a new function and
the selection mechanism is inserted.

Each code version is converted into a suitable intermediate representation,
depending on its objectives. Versions created for high level code analysis and
optimizations are preserved in the LLVM IR, while versions targeting low-level
information are transformed into x86 64 assembly code. For instance, tracing
memory behaviour is a difficult task in LLVM IR, because register allocation is
not available at this compilation step, and because LLVM IR is in SSA form,
containing #-nodes. The number of “load” and “store” instructions from LLVM
IR is greatly reduced by the optimizers during the code generation, hence they
do not represent actual memory accesses. A lower level representation, such as
x86 64 assembly, is required for this type of instrumentation. On the other hand,
for performing dependence analysis, it suffices to track the “load” and “store”
LLVM instructions since it is not relevant for this purpose whether a register or
a memory location from the internal memory is accessed.

e
™
el

£
—t

L]
BB1 clone; BB1: BE1 clone:

' L]
BB2_clone:| BB2: BB2 clone:

e | __— .]
| BB3: BB4: IBB3_clone: [BB4 clone:| BRI BE4: BB3 clone:; |BB4_clone:
| | |
I J33: — > BB1_clone s 7
- BB2 > BB2_clone
BB5: BB3 - > BB3_clone BBS:
| = | BB4 > BB4 clone | -
A. Cloning B. Rebuild control-flow-graph between clones
ersion_1: -
entry: | BB1 |
- l
LT] A BB2: |
Decision T
block: 1
T _— ¥

T | BBE3: BB4:

- L]
Call Call
Version _1: Version_2: Vorsion 2:

i
BE1_clones

pE——
BB2 clone:

s | 2 L]
BES: ;Hll.t ('Ium::. BB4_clone:

C. Extract versions in separate functions

Fig. 3. Multi-versioning

Converting regions of code into different intermediate representations justifies
the necessity of extracting the versions in separate functions, further compiled
and processed independently. Also, in this manner, we have a clean separation
between the regions marked for multi-versioning and the embedding code, from
the source level to the LLVM IR and till the x86 64 assembly form. The clones

226 A. Jimborean et al.

represented in the LLVM IR are inlined in the original code once they have
been customized, to reduce the runtime overhead, but this is not possible for
the versions in x86 64 assembly representation, due to register allocation. Nev-
ertheless, the overhead incurred by extracting the versions in separate functions
is negligible in most situations.

Chunking. The applications we currently propose for evaluating our framework
regard analysis and instrumentation of loop nests, as well as dynamic selection
between different optimized versions of loop nests. For these purposes, we build
chunks of successive iterations by inserting a virtual iterator vi and new con-
ditions lower Bound < vi < upperBound in each loop, in order to manage the
number and the position of the executed iterations, relatively to the preceding
executed chunk. Under these circumstances, sampling is achieved by executing
a chunk of the instrumented version, and then switching to the original version.
More generally, our strategy provides the means to switch between different
versions of a loop nest while completing its execution. After the execution of
each chunk, based on the information registered from instrumentation, the VM
is invoked to perform additional computations and to guide the decision con-
cerning the next chunked version to be executed. By adjusting the values of the
lower Bound and upper Bound dynamically, one can control the sampling rate,
restart instrumentation when necessary, and, more generally, can vary the chunk
size and the occurring frequency of any version.

Invoking the VM. The selection mechanism consists in preceding each set of
versions by a decision block, which invokes the VM to decide upon the version to
be executed. Additional callbacks to the VM (Fig. [2)) are performed at runtime
to transmit the data collected via instrumentation, as presented in section[3l The
callbacks are placed statically at the beginning and end of each version, and for
loops, in addition, they mark the beginning and the end of each instrumented
iteration.

Following a generic approach, all callbacks have a standard form, using indi-
rect calls. This approach enables the compiler to generate multiple versions in
a generic form, and relies on the VM to patch the address of the corresponding
function, at runtime.

Since we patch the code dynamically, our strategy is to inline these code snip-
pets in x86 64 assembly code, ensuring that the size of the code to be patched
is fixed. The inline code contains new labels and jumps and the callbacks to the
VM. First, this ensures that the VM can track the position of the callbacks in
the binary file by using the addresses of the labels. And second, it prevents the
modification of the code snippets in the last phases of the code generation, as all
jumps and callbacks are inserted in fixed size hexadecimal representation. What
we obtain is a partial control flow graph managed as x86 64 assembly code, in-
lined in the LLVM IR. On the other hand, the inline code is not accessible to
the LLVM compiler in this compilation phase. As a consequence, to preserve the
validity of the LLVM IR code, we have to maintain both the original CFG, rep-
resented as LLVM branches, as well as the jumps inserted in the inline assembly
code. The CFG expressed in inline code is the one actually executed, however,

VMAD: Advanced Dynamic Program Analysis and Instrumentation 227

the LLVM branches are preserved to avoid compile time errors, or false cases of
dead-code elimination.

Finally, handling inline assembly code throughout the optimizations requires
considerable efforts to protect the inlined code against duplications, relocations
or dead code eliminations, and to minimally perturb the optimizing passes.

The steps presented above, for statically processing the code, are indepen-
dent of the type of profiling or optimization to be performed. Next, the clones
are modified following the individual specifications and a list of parameters is
appended to transmit relevant static information to the VM.

Customizing the Versions. Each function containing a code version is cus-
tomized according to the type of instrumentation or optimization, either by
inserting snippets of instrumenting code, or by performing various code trans-
formations. This is the step when the most suitable intermediate representation
is selected. For the examples we address in this paper, various representations are
preferred. For tracking the memory locations and building interpolating linear
functions, we insert the instrumenting instructions in the final assembly code,
after the register allocation. For performing dependence analysis, we instrument
the memory accessing instructions at the LLVM IR level and verify pair-wise
dependences of load and store instructions. Finally, to perform runtime version
selection, for the purpose of this example, the versions are embedded in the
source code. The application benefits on the possibility of executing samples
of each version and evaluate them using processor counters. The code snippets
for evaluating the performance of each version are automatically inserted in the
LLVM IR.

Inserting Static Information. In addition to preparing the code, a set of
headers and parameters is annexed to the generated binary code (Fig.H]). The list
of headers is specific to the type of instrumentation, as they determine the mod-
ules to be loaded in the VM (vmad 0 entry, vmad loop entry). Headers are linked
to the corresponding parameters (vmad 0 param), containing higher level infor-
mation statically available, but which would be time-expensive to identify in the
binary representation (for example, the loop depth). Furthermore, the compiler
transmits as parameters instrumentation specific information, for instance the
addresses of the code snippets inserted in the original code (vmad 0 loop reinstru,
vmad 0 instru call).

5 Illustrating Applications

5.1 Analyzing Memory Accesses in Loop Nests

The first application we propose for evaluating VMAD consists in instrument-
ing and profiling the memory accesses of critical pieces of code, with a minimal
time overhead. In our examples, the target is non-statically analyzable code. We
focus on loop nests, as they represent a significant part of the total execution
of compute-intensive applications. The goal of the instrumentation framework

228 A. Jimborean et al.

number of headers. #list of headers #list of parameters
.global vimad_headers nb . global vmad_headers . global vmad 0 param
vmad_headers nb: vmad_headers: vmad 0 param:

Jdong 1 . global vmad 0 entry lb long 3 # loop depth

vmad 0 entry lb:
quad vmad 0 entry
.quad vmad loop entry
.quad vmad 0 param

.quad vmad 0 end original
.quad vmad 0 loop reinstru
.quad vmad_0_instru_call

Fig. 4. Headers and parameters

is to collect the memory addresses accessed during samples of iterations and, if
possible, to compute linear functions interpolating their values. Additionally, the
loop trip counts of each loop, except the outermost ones, are collected for a few
runs to be linearly interpolated. Such a profiling is particularly useful for nested
loops, either while-, for- or goto-loops, accessing memory through indirect refer-
ences or pointers. If the memory accesses and the loop bounds can be expressed
by means of linear functions, the enclosing loop nests can be optimized and par-
allelized using for-loop dedicated approaches, such as the polyhedral model [4/]5].
To handle all loop types in the same manner, we introduce “virtual” iterators,
which are maintained to mirror the number of executed iterations.

Loop Nest Instrumentation. Efficient loop nest instrumentation by sampling
consists in profiling only a subset of the executed iterations of each loop. The
complexity of the method is outlined in the case of nested loops, as instrumen-
tation depends not only on the iteration of the current loop, but also on the
parent loops. For a thorough understanding, consider the loop nest in Fig.
In this example, the first three iterations of each loop are instrumented. One
may easily notice that instrumented and non-instrumented iterations alternate,
hence the execution has to switch from one code version to another at runtime.
Once the outermost loop profile has been completed, the execution can continue
with a non-profiled version of the loop nest, thus inducing no overhead for the
remaining iterations.

For linear interpolation of memory accesses, each memory instruction should
be profiled during the execution of at least three iterations, in order to get suffi-
cient address values. However, since some memory instructions can be guarded
by conditional branches, it is required to profile such instructions for more iter-
ations, to increase the chances of collecting enough, i.e., at least three, address
values. This contributes to the accuracy of the computed interpolating functions.
In our experiments, we fixed the number of instrumented iterations to 10, which
was a good trade-off between overhead and accuracy. The sampling rate can be
set by a parameter. The first two collected values are dedicated to computing
the affine function coefficients, while the remaining values are used to verify the
interpolation correctness.

Statically, our LLVM pass creates copies of the loop nests, extracts them
in new functions and converts them to x86 64 assembly code. A second pass
analyzes the functions and precedes each instruction accessing memory with in-
strumentation code that computes the actual memory location being accessed,

VMAD: Advanced Dynamic Program Analysis and Instrumentation 229

RS = Runtime System

leop | i=01,2
" i=0;1,2
k=0,1,2 ->instrumented
loop j k=3 --> non-instrumented
=
loop k k=0,.. -2 non-instrumented
i=3 ..
jm0, ..
k=0,.. == non-instrumented
(a) Loop nest instrumentation. (b) Code structure.

Fig. 5. Instrumenting loop nests

and makes a call to the VM to transmit the collected data. Fig. illustrates
the structure of the code from Fig. and the links between different versions.
Blocks O;, O; and Oy, represent the original versions, while I;, I; and I}, represent
the instrumented bodies of each loop. The instrumented and original versions
are connected together at their entry point, where a choice is made at runtime
deciding which version to run, based on the values of the virtual iterators. One
decision block is associated to each loop, represented by D;, D; and Dy, cor-
respondingly, containing a callback to the VM. The VM is also invoked when
entering or exiting a version of the loop, to retrieve dynamic information. At
compile time, we mark the beginning and end of the original and instrumented
versions with labels, and append them to the list of parameters given to the VM.

Lastly, a list of headers and parameters is prepared, notifying the VM which
are the modules required for this instrumentation: module vmad handle loop,
vmad gather memory addresses and vmad interpolation. One instance of each of
these modules is created per loop, at runtime. The first module encloses the
mechanisms necessary for handling loops, the second one collects the memory
accesses performed inside the loops, while the last module performs the inter-
polation. Each module uses the information from the previous one to complete
its task, however, they are decoupled, hence each module may be employed in
performing new types of analysis. The list of parameters contains specific infor-
mation, such as addresses of the code to be patched at startup, or the structure
of the loop nest. At startup, the VM parses the list of headers, loads the solicited
modules and patches the code to enable instrumentation.

Analyzing Memory Accesses. Since the number of memory locations ac-
cessed inside loops can be very high, considering a memory intensive loop nest,
it is recommended that the acquired data is processed immediately by the in-
terpolation process, rather than stored for a later utilization.

For each instrumented loop, a buffer is created at compile time, to (re)store
the state of the machine before the interpolation process. At runtime, the VM
allocates space to be populated dynamically with the accessed memory locations
and to store the coefficients of the linear functions.

230 A. Jimborean et al.

As the instrumented iterations of a loop are executed, the VM reads the values
of the memory locations from the designated buffer and the corresponding func-
tion coefficients are computed and stored in the associated positions. Subsequent
instrumented iterations are used to verify the linearity of these functions.

Communication with the VM is achieved by means of a dirty flag, which
indicates that a new memory location is available in the buffer.

Experiments. For our experiments, we targeted the C codes from the SPEC
CPU 2006 benchmark suite [29] and four codes from the Pointer-Intensive bench-
marks [27]. We inserted a dedicated pragma in the source codes, marking the
loop nests (#pragma instrument_mem_add { // loop nest}) in the most
time consuming functions [3I]. We ran the benchmarks using the ref input files
to compute VMAD’s runtime overhead, and using the test input files to get
output files with the interpolation results, since runs using the ref files pro-
duce an amount of data too large to be stored on the disk, but suitable for
online consuming. We have carried out the experiments using the O0 and the
03 optimization levels. The execution platform is a 3.4 Ghz AMD Phenom II
X4 965 micro-processor with 4GB of RAM running Linux 2.6.32. We ran each
program in its original form and in its instrumented form to compute the run-
time overhead introduced by using VMAD. For each instrumented loop nest,
the dynamic profiling is activated each time its enclosing function is invoked, for
the experiments using OO0 optimization level. In the experiments with a higher
optimization level (O3) we instrument the first eight calls of each function.

Our measurements are shown in Tab.[Il The columns show for each program:
the program name (first part of the table: SPEC CPU 2006, second part: Pointer-
Intensive); VMAD’s runtime overhead, both with O0 and with O3; the code
size increase; the number of instructions performing linear memory accesses;
the number of instrumented memory instructions; the percentage of memory
accesses that were identified to be linear.

For most programs, VMAD induces a very low runtime overhead, which is
even negligible for bzip2, milc, hmmer, h264ref and lbm. For the programs
sjeng and sphinx3, the significant overheads are mainly due to the fact that
the instrumented loops execute only a few iterations, but they are enclosed by
functions that are called many times (with O0). Thus, all iterations are run while
being fully instrumented. However, the profiling strategy is improved in order to
manage such cases by deactivating the instrumentation after a few calls (with
03). Program milc shows an opposite behavior since a few memory instructions
are executed many times. In such a case the runtime overhead is very low. For
the Pointer-Intensive benchmarks, the execution times are too small — of the
order of milliseconds — to get relevant overhead measurements: either a large
runtime overhead is obtained since VMAD inevitably induces a fixed minimum
overhead (bc), or even a speedup is obtained (£t), which may be explained by
cache locality, new alignments or new optimization opportunities. The overhead
is higher when instrumenting optimized code (-O3), since modifying optimized
code impacts its performance, still, the execution time is better than with OO0.

VMAD: Advanced Dynamic Program Analysis and Instrumentation 231

Table 1. Measurements made on some of the C programs of the SPEC CPU 2006
(first part) and Pointer-Intensive (second part) benchmark suites

Program Runtime Runtime code size # linear # instrumented Percentage

overhead overhead increase m.a. m.a. of linear
(-00) (-03) m.a.
bzip2 0.24% 12.31% 218% 608 1,053 57.74%
mcf 20.76% 17.23% 213% 2,848,598 4,054,863 70.25%
milc 0.081% 3.61% 44% 1,988,256,000 1,988,256,195 99.99%
hmmer 0.062% 0.76% 63% 845 0 0%
sjeng 182% 11.13% 80% 1,032,148,267 1,155,459,440 89.32%
libquantum 3.88% 2.76% 21% 203,078 203,581 99.75%
h264ref 0.49% 4.59% 0.44% 30,707,102 32,452,013 94.62%
Ibm 0% 0.93% 170% 358 0 0%
sphinx3 172% 27.62% 20% 51,566,707 78,473,958 65.71%
anagram -5.37% 34.88% 73% 134 159 84.27%
bc 183% 36.79% 11% 243,785 302,034 80.71%
ft -8.46% 176% 86% 22 36 61.11%
ks 29.7% 2.98% 268% 29,524 42,298 69.79%

We also noticed that this particular instrumentation process increases the size
of a program’s binary file by 400 bytes per instrumented memory instruction,
on average. However, the code size variation strongly depends on the depth of
the loop nests and on the percentage of code selected for instrumentation.

5.2 Dynamic Dependence Analysis

The second application is an extension of the previous one. It adds a module to
determine, for a loop nest, which are the loop levels that might be parallelized,
according to the memory behavior observed during profiling. Such information
can be a useful indication for a developer in order to identify and further analyze
such loops, to decide whether they can be effectively parallelized. Our framework
identifies the candidate loops by speculatively analyzing dependences between
iterations, based on the linear functions interpolating the memory addresses ac-
cessed during profiling. The module considers each couple of memory instructions
and their associated linear functions, where at least one of them is a write.

We use a simple value range analysis method to determine if the two referenced
address spaces can overlap, using the linear functions to compute the minimal
and the maximal values of the memory addresses accessed by each instruction.
Each write instruction is also considered solely since it can carry an output
self-dependence. A loop level not carrying any dependence is then identified as a
candidate for parallelization. We used the OmpSCR benchmark suite [26] for our
experiments, a set of scientific kernels that are already manually parallelized by
the programmer using OpenMP pragmas. Even if these have been deactivated
for our runs, they indicate loops being effectively parallel. Loops inside these

232 A. Jimborean et al.

Table 2. Dynamic dependence analysis and parallel loop detection in the OmpSCR
benchmark suite

Benchmark #OMP +#Linear #Detected Parallel
pragmas loop nests as parallel loop levels

FFT 2 2 0
FFT6 3 10 4 1/3/12/12
Jacobi 2 4 1 1,2
LUreduction 1 2 2 1,2 /23
Mandelbrot 1 2 1 1
Md 2 2 1 1,2
Pi 1 1 0
QuickSort 1 2 1 1

kernels contain memory references through pointers, through parameterized ar-
ray accesses and references to dynamically allocated arrays. Such memory ref-
erences cannot be handled statically by a compiler. Results are shown in table
Bl For two benchmarks, FFT6 and LUreduction, more loop nests than the ones
with OpenMP pragmas where detected as parallel. When less parallel loop nests
are detected, it is due to dependences induced by reductions.

5.3 Dynamic Version Selection

A loop nest can be optimized using different kinds of transformations such as
loop fusion/fission, interchange, skewing, tiling, unrolling, etc. A subset of those
transformations can be applied, in different order, or with different parameters
(unrolling factor, tile size, ...) to generate distinct versions. Hence many versions
can be obtained in this way, and each of them may be the best performing one in
some execution contexts, while being slower in some others. Such a phenomenon
can occur, for example, when the amount of accessed data generates a lot of cache
misses if the computation size exceeds a given threshold. Another case is when
the locality of the data accesses depends on some input parameters, or when
the control flow traverses costly branches in some circumstances depending on
intermediate computations. More exactly, it is a combination of such phenomena
that impacts the global performance. Hence, it is in general impossible to predict
in advance which version would yield the lowest execution time.

The implemented runtime mechanism consists in first measuring the time per
iteration when executing a small chunk of each version, and then running the
fastest one for the remaining iterations. Different versions are provided in the
source code, delimited by dedicated pragmas. Each version includes an additional
condition in the outermost loop, constraining the iterator between a lower and
an upper bound, which is required for the chunking mechanism.

At compile-time, the multiple versions are identified and a callback to the
dedicated runtime selector module is added, as well as the mechanism to switch
between the versions.

VMAD: Advanced Dynamic Program Analysis and Instrumentation 233

The runtime module performs the following operations: for each version, one
by one, it sets the chunk bounds such that each new chunk will continue the
execution of the previous one, it gets the processor’s time stamp counter using the
RDTSC instruction, launches the version, gets the new CPU time information,
computes the execution time per iteration and stores a reference to the fastest
version so far. Finally, when all versions have been evaluated, the fastest version
is launched to complete the execution. This naive approach already selects the
best version in most cases, but the algorithm can be further refined. Similarly to
the sampling rate in the first example, the size of the instrumented chunk can
be set by a parameter.

The benchmark programs contain 12 loop nests. The code 2mm consists of two
matrix multiply (D = A x B x C), adi is the ADI kernel provided as an ex-
ample with the automatic optimizer Pluto [7], covariance is a covariance matrix
computation, gemm is taken from BLAS [6], jacobi-1d and jacobi-2d are the 1D
and 2D versions of the Jacobi kernel, 1u is a LU decomposition kernel, matmul is a
simple matrix multiply, matmul-init is a matrix multiply combined with the ini-
tialization of the result matrix, mgrid is a kernel extracted from the mgrid code
in SPECOMP [3] and seidel is a Gauss-Seidel kernel also provided with Pluto.

Such loops are good candidates for loop optimizations such as skewing, loop
interchange or tiling. We generated 6 or 7 different versions for each benchmark,
either using Pluto or manually. Some versions are tiled, some others are tiled two
times in two levels, some others are just skewed or their loops have been inter-
changed, and finally some are the result of a combination of these transforma-
tions. All versions, as well as VMAD’s code selector, have been run on a Intel
Xeon W3520 at 2.67Ghz under Linux 2.6.38. Results are shown in table Bl For
each benchmark, it shows the execution time of the best and of the worst version,
the average execution time of all versions, the time when executing with VMAD,
and finally a comparison between VMAD and the average execution time.

In most cases, VMAD selects the best version and its execution time is close
to the best execution times, and very far from the worst ones. Although it does
not select the best version in all cases, it still selects one of the best ones. The
overhead is higher when some versions are very slow compared to others.

5.4 Other Possible Applications

In addition to the examples presented above, the VMAD platform can find its
applications in debugging or instrumentation, distributed among multiple users.
Thanks to the sampling approach and the multiple versions, the selection mech-
anism can be adjusted such that the version chosen for execution differs from
one user to another. Moreover, each version contains only a subpart of the in-
strumenting or debugging instructions, which ensures a very low overhead, but
together, the instrumentation inserted in all versions cover the entire targeted
code. Distributed debugging or instrumentation becomes attractive when there
is a high number of testers, as each version is executed at least by one user. More-
over, since the overhead is negligible, users are not hindered from executing the
versions multiple times. On the other hand, when overhead is not a concern,

234 A. Jimborean et al.

Table 3. Dynamic code selection with VMAD

Benchmark #Versions Best Worst Average VMAD Gap to the
exec. time exec. time exec. time exec. time average version

2mm 6 2.68 19 8.29 4.80 -42.09%
adi 7 32.99 34.17 33.24 33.10 -0.42%
covariance 6 9.71 145.55 55.81 17.54 -68.5%
gemm 6 7.21 57.10 15.79 9.94 -37.04%
jacobi-1d 6 8.34 11.05 9.70 9.72 0.2%
jacobi-2d 6 2.74 5.24 4.12 4.22 2.42%
lu 6 3.94 51.26 12.11 6.31 -47.89%
matmul 7 4.96 31.49 16.90 6.96 -58.81%
matmul-init 6 3.29 27.04 7.38 4.72 -36.04%
mgrid 6 11.58 16.50 13.45 13.03 -3.12%
seidel 6 76.59 87.71 85.07 86.66 1.86%

the framework can be employed for fully tracing the behavior of the code. This
can be achieved by setting the chunk size to a maximal value and selecting the
instrumented version.

6 Related Work

VMAD’s goal is to be a generic platform running advanced low-level analyses
of programs that are initiated from the source code. To our knowledge, there
are no previous works directly comparable. However, VMAD can still be related
to frameworks that are similar in some important aspects: code instrumenta-
tion, code tracking, code cloning and multi-versioning. We also reference a few
proposals related to our illustrating applications.

Code Instrumentation. Most of the noticeable code instrumentation tools apply
on binary codes. One of the most popular is Pin [23], a software system that per-
forms runtime binary instrumentation. It enables the user to build a wide variety
of program analysis tools, known as pintools. A pintool consists of instrumenta-
tion, analysis, and callback routines. The insertion of instrumenting instructions is
based on software dynamic translation (SDT): a just-in-time compiler recompiles
small chunks of binary instructions immediately prior to executing them. Dynamic
instrumentation, such as the interpolation of memory accesses in loops presented in
this paper, would be impossible to be implemented efficiently with Pin. Of course,
the compile-time phase of our framework plays an important role in providing a
wider scope of analysis opportunities and in the runtime overhead minimization.
The PEBIL toolkit [21] is more similar to VMAD since it does not use SDT,
but static binary instrumentation. PEBIL performs function relocation to ac-
quire enough space at instrumentation points to insert branch instructions at
runtime. We use two different strategies to transfer control from the applica-
tion to the instrumentation code: at compile time, we insert branch instructions

VMAD: Advanced Dynamic Program Analysis and Instrumentation 235

branching initially to the next instruction and that are patched at runtime;
we also insert callbacks in the instrumented code snippets that are patched at
start-up with the address of the corresponding functions of VMAD.

The above mentioned tools are designed for instrumenting and profiling the
code, nevertheless the goal of VMAD goes beyond code analysis. We aim code
instrumentation followed by optimization on the fly. This emphasizes the need of
a mechanism for creating multiple versions of code and switching between them
at runtime (multi-versioning). On the contrary, PIN and PEBIL are tailored to
instrument the code for the whole execution time. Their advantage is that they
provide easy-to-use APIs allowing the programmer to develop new instrumenta-
tion tools, with the cost of an increased overhead at runtime. VMAD requires a
new LLVM pass and a new module to support additional instrumentation types.
In favour of VMAD comes the fact that it is more flexible in handling multiple
instrumented or optimized versions simultaneously. It also allows sampling, by
enabling/disabling instrumentation at any time. Moreover, the target code dele-
gates instrumentation related tasks, such as processing the acquired information,
to the virtual machine.

Code Tracking. Tracking code has always been a necessary technique, evolv-
ing from the simple strategies employed in the early debuggers, to complex ap-
proaches meant to correlate the original source code with dynamically optimized
code. In our framework, tracking the code through the optimization phases plays
a key role, both for identifying the region marked for instrumentation in the
source code, and the code that must be patched.

Tracking the suite of code transformations performed in the optimization
phase has early been identified as an impractical solution, since compilers re-
order, replicate, delete, merge, transform the code, eliminate variables or syn-
thesize new ones. A viable alternative is presented by Brooks et al. [§] as a
method for acquiring extended debugging information, communicated from one
optimization phase to another.

More recent and daring work tackling debugging of dynamically optimized
code has been reported [I7JI9]. The challenge consists in discerning between the
optimized code and the optimizers dynamically, and to map it back with the
source code, which is no longer available at runtime.

In the gee compiler [12], generating debug information is possible via the
option -g. Also, one can control the amount of information transmitted to the
debugger by specifying the level, from -g0 to -g3. This option has been imple-
mented in LLVM [22] and in the Clang front-end [I0] and the result consists
in populating the code represented in LLVM IR with a significant amount of
metadata information, which is then transformed into debug information.

We have adopted a similar approach in tracking code from the source level
to the intermediate representation, by marking interesting code regions with
metadata information.

The next step in performing multi-versioning is cloning, associated with the
construction of a selection mechanism.

236 A. Jimborean et al.

Cloning, Multi-versioning, Instrumentation by Sampling. Multi-versioning is a
widely adopted strategy to reduce the cost of code instrumentation by sam-
pling. A selection mechanism periodically switches execution between a number
of versions embedding instrumentation code and the original version. Chilimbi
and Hirzel [14J9] add finer control on the sampling rate and eliminate redundant
checks to decrement the overhead. They operate directly on the x86 assembly
code using Vulcan [I1] for capturing sequences of data references (dynamic exe-
cutions of loads or stores).

An interesting use of sampling is presented by Chilimbi and Hauswirth [I3]
for checking program correctness. They develop an adaptive profiling where the
sampling rate is the inverse of the frequency of execution of each code region.
They adapt the framework introduced by Arnold and Ryder [2] to detect memory
leaks. Marino et al. [24] extend this solution to multi-threaded programs to find
data races.

Our goal is to create a static-dynamic framework that supports multi-versio-
ning and sampling, by means of a generic runtime system that patches the code
to enable various types of profiling, instrumentations and code optimizations.
We plan to extend our work to accommodate all frameworks described above.

Similarly, ICI [I6] has been developed with the aim of providing access to
the internal functionalities of compilers. Extensions to ICI [I5] provide generic
function cloning, program instrumentation, pass reordering and control of indi-
vidual optimizations. Patching is used to insert an event call before and after
the execution of each version, either only for transferring information for further
processing, or to change the selection decision of the compiler. In these regards,
we have a very similar approach, as we insert callbacks to a runtime system to
guard the execution of each code version. However, ICI makes multi-versioning
available at function call level only, while we target more precise control for
example to enable/disable instrumentation at loop level.

Runtime Code Selection. Several studies proposed a runtime selection between
various algorithms, or code extracts, or versions of a function. PetaBricks [I] pro-
vides a language and a compiler where having multiple implementations of mul-
tiple algorithms to solve a problem is the natural way of programming. Mars and
Hundt’s static/dynamic SBO framework [25] consists in generating at compile-
time several versions of a function that are related to different dynamic scenarios.
The STAPL adaptive selection framework [30] runs a profiling execution at in-
stall time to extract architectural dependent information. In [28], Pradelle et
al. propose a framework to select between versions of loop nests resulting from
various polyhedral transformations.

Dynamic Dependence Analysis. The analyzer pp [20] is one of the earliest work
that proposed hierarchical dependence testing to estimate the parallelism in loop
nests. Some recent works are Alchemist [32] and SD3 [18] where runtime and
memory overhead is reduced through the use of parallelization and compression.

VMAD: Advanced Dynamic Program Analysis and Instrumentation 237

7 Conclusion

In this paper, we presented VMAD, an infrastructure for dynamic profiling,
where advanced analyses can be implemented with almost negligible runtime
overhead, since it does not use software dynamic translation like most of the
dynamic profiling tools. We extended the LLVM compiler to handle specific
pragmas allowing the developer to initiate low-level analyses from selected parts
of the source code. Dedicated LLVM passes duplicate the targeted code regions
into various versions: instrumentation instructions, version selection mechanism,
and callbacks are inserted. At runtime, and when activated, the virtual machine
of VMAD loads the necessary analysis modules and patches the callback ad-
dresses in the application code. To our knowledge, VMAD is the first proposal
allowing developers to initiate low-level analyses from the source code.

Regarding the API, there are two scenarios to be emphasized. If one chooses
already defined code analyses, the instrumentation process is totally invisible.
The only task is to mark the regions of code of interest with a pragma. We
underline that the programmer is not required to annotate the source code with
callbacks to the VM, nor to write the decision blocks. These code transforma-
tions are handled automatically by our framework. On the other hand, for the
compilation expert to develop new types of analysis, it is necessary to write an
LLVM pass and to add a module in the virtual machine, containing analysis
specific operations. Both the pass and the module are programmed in C/C++
and may include inline assembly code.

VMAD?’s potential has been shown by implementing the following analyses.
First, we instrumented memory accesses in a targeted loop nest, by using sam-
pling. The dedicated LLVM passes duplicate each loop into instrumented and
non-instrumented versions, and the control switches from instrumented to non-
instrumented code until having collected enough data. Then, we implemented an
analysis strategy interpolating those memory accesses as linear functions. Using
the results of the interpolation, the next application was to perform dependence
analysis and offer hints to the programmer regarding the loops which are good
candidates for parallel execution. The last application that we implemented is
a runtime adaptive version selector, that takes as input several differently op-
timized code versions, and selects the best performing one. In this respect, a
sample of each version is executed and evaluated based on the processor coun-
ters, and the best one is selected to execute until the end of the computations.

Our experiments for interpolating memory accesses as linear functions have
been conducted on the SPEC CPU 2006 and on the Pointer Intensive bench-
mark suites. They reveal almost negligible overhead in most cases, of less than
4%, with -O0 optimization level, and varying between 0,5% and 27% with -O3
optimization level. The two other experiments, on different benchmark suites,
also show good results.

We plan to extend the framework to support new types of code instrumen-
tation and optimization. For instance, using the results of the data dependence
analysis, we target speculative parallelism by generating code on-the-fly.

238 A. Jimborean et al.
References
1. Ansel, J., Chan, C., Wong, Y.L., Olszewski, M., Zhao, Q., Edelman, A., Amaras-

10.

11.

12.

13.

14.

15.

16.
17.

inghe, S.: Petabricks: a language and compiler for algorithmic choice. In: PLDI
2009, pp. 38-49. ACM (2009)

Arnold, M., Ryder, B.G.: A framework for reducing the cost of instrumented code.
SIGPLAN Notices 36(5), 168-179 (2001)

Aslot, V., Domeika, M.J., Eigenmann, R., Gaertner, G., Jones, W.B., Parady,
B.: SPEComp: A New Benchmark Suite for Measuring Parallel Computer Perfor-
mance. In: Eigenmann, R., Voss, M.J. (eds.) WOMPAT 2001. LNCS, vol. 2104,
pp. 1-10. Springer, Heidelberg (2001)

Banerjee, U.: Loop Transformations for Restructuring Compilers - The Founda-
tions. Kluwer Academic Publishers (1993) ISBN 0-7923-9318-X

Bastoul, C.: Code generation in the polyhedral model is easier than you think. In:
PACT 2004: Proc. of IEEE Int. Conf. on Parallel Architectures and Compilation
Techniques (2004)

Blackford, L.S., Demmel, J., Dongarra, J., Duff, I., Hammarling, S., Henry, G.,
Heroux, M., Kaufman, L., Lumsdaine, A., Petitet, A., Pozo, R., Remington, K.,
Whaley, R.C.: An updated set of basic linear algebra subprograms (blas). ACM
Transactions on Mathematical Software 28, 135-151 (2001)

Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical auto-
matic polyhedral parallelizer and locality optimizer. In: PLDI (2008)

Brooks, G., Hansen, G.J., Simmons, S.: A new approach to debugging optimized
code. In: ACM SIGPLAN Conf. on Programming Language Design and Implemen-
tation, PLDI (1992)

Chilimbi, T.M., Hirzel, M.: Dynamic hot data stream prefetching for general-
purpose programs. In: PLDI 2002: Proc. of ACM SIGPLAN Conf. on Programming
Language Design and Implementation (2002)

Official website of clang: a C language family frontend for LLVM,
http://clang.llvm.org

Edwards, A., Vo, H., Srivastava, A.: Vulcan binary transformation in a distributed
environment. Tech. rep. (2001)

The GNU Compiler Collection, http://gcc.gnu.org

Hauswirth, M., Chilimbi, T.M.: Low-overhead memory leak detection using adap-
tive statistical profiling. In: 11th Int. Conf. on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS-XI. ACM (2004)

Hirzel, M., Chilimbi, T.: Bursty tracing: A framework for low-overhead temporal
profiling. In: 4th ACM Workshop on Feedback Directed and Dynamic Optimization
FDDO4 (2001)

Huang, Y., Peng, L., Wu, C., Kashnikov, Y., Rennecke, J., Fursin, G.: Transforming
GCC into a research-friendly environment: plugins for optimization tuning and
reordering, function cloning and program instrumentation. In: 2nd Int. Workshop
on GCC Research Opportunities (GROW 2010), Pisa Italy (2010), Google Summer
of Code 2009 (2010)

Interactive Compilation Interface, http://ctuning.org/ici

Jaramillo, C., Gupta, R., Soffa, M.L.: FULLDOC: A Full Reporting Debugger for
Optimized Code. In: SAS 2000. LNCS, vol. 1824, pp. 240-260. Springer, Heidelberg
(2000)

http://clang.llvm.org
http://gcc.gnu.org
http://ctuning.org/ici

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

VMAD: Advanced Dynamic Program Analysis and Instrumentation 239

Kim, M., Kim, H., Luk, C.K.: Sd3: A scalable approach to dynamic data-
dependence profiling. In: Proceedings of the 2010 43rd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, MICRO, pp. 535-546. IEEE Computer
Society, Atlanta (2010)

Kumar, N., Childers, B., Soffa, M.L.: Transparent debugging of dynamically op-
timized code. In: Int. Symp. on Code Generation and Optimization, CGO 2009.
IEEE Computer Society (2009)

Larus, J.R.: Loop-level parallelism in numeric and symbolic programs. IEEE Trans.
Parallel Distrib. Syst. 4, 812-826 (1993)

Laurenzano, M., Tikir, M., Carrington, L., Snavely, A.: PEBIL: Efficient static bi-
nary instrumentation for linux. In: ISPASS-2010: IEEE Int. Symp. on Performance
Analysis of Systems and Software (2010)

LLVM compiler infrastructure, http://11lvm.org

Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: building customized program analysis tools with
dynamic instrumentation. In: PLDI 2005: Proc. of ACM SIGPLAN Conf. on Pro-
gramming Language Design and Implementation (2005)

Marino, D., Musuvathi, M., Narayanasamy, S.: Literace: effective sampling for
lightweight data-race detection. In: PLDI 2009: Proc. of ACM SIGPLAN Conf.
on Programming Language Design and Implementation (2009)

Mars, J., Hundt, R.: Scenario based optimization: A framework for statically en-
abling online optimizations. In: CGO 2009, pp. 169-179. IEEE Computer Society
OmpSCR: OpenMP source code repository,
http://sourceforge.net/projects/ompscr

Pointer-intensive benchmark suite,
http://pages.cs.wisc.edu/~austin/ptr-dist.html

Pradelle, B., Clauss, P., Loechner, V.: Adaptive runtime selection of parallel sched-
ules in the polytope model. In: ACM/SIGSIM High Performance Computing Sym-
posium (HPC 2011). ACM (April 2011)

SPEC CPU (2006), http://www.spec.org/cpu2006

Thomas, N., Tanase, G., Tkachyshyn, O., Perdue, J., Amato, N.M., Rauchwerger,
L.: A framework for adaptive algorithm selection in stapl. In: PPoPP 2005, pp.
277-288. ACM (2005)

Weicker, R.P., Henning, J.L.: Subroutine profiling results for the CPU2006 bench-
marks. SIGARCH Comput. Archit. News 35(1) (2007)

Zhang, X., Navabi, A., Jagannathan, S.: Alchemist: A transparent dependence
distance profiling infrastructure. In: Proceedings of the 7th annual IEEE/ACM
International Symposium on Code Generation and Optimization, CGO 2009, pp.
47-58. IEEE Computer Society, Washington, DC (2009)

http://llvm.org
http://sourceforge.net/projects/ompscr
http://pages.cs.wisc.edu/~austin/ptr-dist.html
http://www.spec.org/cpu2006

	VMAD: An Advanced Dynamic Program
Analysis and Instrumentation Framework
	Introduction
	Framework Overview
	The Virtual Machine VMAD
	Preparing the Code at Compile Time Using LLVM
	Illustrating Applications
	Analyzing Memory Accesses in Loop Nests
	Dynamic Dependence Analysis
	Dynamic Version Selection
	Other Possible Applications

	Related Work
	Conclusion
	References

