

Lecture Notes in Computer Science 7210
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Madhu Sudan, USA

Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Madhu Sudan, Microsoft Research, Cambridge, MA, USA

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Carnegie Mellon University, Pittsburgh, PA, USA

Michael O’Boyle (Ed.)

Compiler
Construction

21st International Conference, CC 2012
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2012
Tallinn, Estonia, March 24 – April 1, 2012
Proceedings

13

Volume Editor

Michael O’Boyle
University of Edinburgh
School for Informatics
10 Crichton Street, Edinburgh, EH8 9AB, UK
E-mail: mob@inf.ed.ac.uk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-28651-3 e-ISBN 978-3-642-28652-0
DOI 10.1007/978-3-642-28652-0
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012932643

CR Subject Classification (1998): D.2, D.3, D.2.4, C.2, D.4, D.1, F.3.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

ETAPS 2012 is the fifteenth instance of the European Joint Conferences on
Theory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998 by combining a number of existing and new conferences.
This year it comprised six sister conferences (CC, ESOP, FASE, FOSSACS,
POST, TACAS), 21 satellite workshops (ACCAT, AIPA, BX, BYTECODE,
CMCS, DICE, FESCA, FICS, FIT, GRAPHITE, GT-VMT, HAS, IWIGP,
LDTA, LINEARITY, MBT, MSFP, PLACES, QAPL, VSSE and WRLA), and
eight invited lectures (excluding those specific to the satellite events).

The six main conferences received this year 606 submissions (including 21
tool demonstration papers), 159 of which were accepted (6 tool demos), giving
an overall acceptance rate just above 26%. Congratulations therefore to all the
authors who made it to the final programme! I hope that most of the other
authors will still have found a way to participate in this exciting event, and that
you will all continue to submit to ETAPS and contribute to making it the best
conference on software science and engineering.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis, se-
curity and improvement. The languages, methodologies and tools that support
these activities are all well within its scope. Different blends of theory and prac-
tice are represented, with an inclination towards theory with a practical moti-
vation on the one hand and soundly based practice on the other. Many of the
issues involved in software design apply to systems in general, including hardware
systems, and the emphasis on software is not intended to be exclusive.

ETAPS is a confederation in which each event retains its own identity, with
a separate Programme Committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronised parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for ‘unifying’ talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

This year, ETAPS welcomes a new main conference, Principles of Security
and Trust, as a candidate to become a permanent member conference of ETAPS.
POST is the first addition to our main programme since 1998, when the orig-
inal five conferences met in Lisbon for the first ETAPS event. It combines the
practically important subject matter of security and trust with strong technical
connections to traditional ETAPS areas.

VI Foreword

A step towards the consolidation of ETAPS and its institutional activities has
been undertaken by the Steering Committee with the establishment of ETAPS
e.V., a non-profit association under German law. ETAPS e.V. was founded on
April 1st, 2011 in Saarbrücken, and we are currently in the process of defining
its structure, scope and strategy.

ETAPS 2012 was organised by the Institute of Cybernetics at Tallinn Uni-
versity of Technology, in cooperation with

� European Association for Theoretical Computer Science (EATCS)
� European Association for Programming Languages and Systems (EAPLS)
� European Association of Software Science and Technology (EASST)

and with support from the following sponsors, which we gratefully thank:

Institute of Cybernetics at TUT; Tallinn University of Tech-

nology (TUT); Estonian Centre of Excellence in Computer

Science (EXCS) funded by the European Regional Develop-

ment Fund (ERDF); Estonian Convention Bureau; and Mi-

crosoft Research.

The organising team comprised:

General Chair: Tarmo Uustalu

Satellite Events: Keiko Nakata

Organising Committee: James Chapman, Juhan Ernits, Tiina Laasma,
Monika Perkmann and their colleagues in the
Logic and Semantics group and administration
of the Institute of Cybernetics

The ETAPS portal at http://www.etaps.org is maintained by RWTH Aachen
University.

Overall planning for ETAPS conferences is the responsibility of its Steering
Committee, whose current membership is:

Vladimiro Sassone (Southampton, Chair), Roberto Amadio (Paris 7), Gilles
Barthe (IMDEA-Software), David Basin (Zürich), Lars Birkedal (Copenhagen),
Michael O’Boyle (Edinburgh), Giuseppe Castagna (CNRS Paris), Vittorio
Cortellessa (L’Aquila), Koen De Bosschere (Gent), Pierpaolo Degano (Pisa),
Matthias Felleisen (Boston), Bernd Finkbeiner (Saarbrücken), Cormac Flanagan
(Santa Cruz), Philippa Gardner (Imperial College London), Andrew D. Gordon
(MSR Cambridge and Edinburgh), Daniele Gorla (Rome), Joshua Guttman
(Worcester USA), Holger Hermanns (Saarbrücken), Mike Hinchey (Lero,
the Irish Software Engineering Research Centre), Ranjit Jhala (San Diego),
Joost-Pieter Katoen (Aachen), Paul Klint (Amsterdam), Jens Knoop (Vienna),
Barbara König (Duisburg), Juan de Lara (Madrid), Gerald Lüttgen (Bamberg),
Tiziana Margaria (Potsdam), Fabio Martinelli (Pisa), John Mitchell (Stanford),
Catuscia Palamidessi (INRIA Paris), Frank Pfenning (Pittsburgh), Nir
Piterman (Leicester), Don Sannella (Edinburgh), Helmut Seidl (TU Munich),

Foreword VII

Scott Smolka (Stony Brook), Gabriele Taentzer (Marburg), Tarmo Uustalu
(Tallinn), Dániel Varró (Budapest), Andrea Zisman (London), and Lenore Zuck
(Chicago).

I would like to express my sincere gratitude to all of these people and or-
ganisations, the Programme Committee Chairs and PC members of the ETAPS
conferences, the organisers of the satellite events, the speakers themselves, the
many reviewers, all the participants, and Springer-Verlag for agreeing to publish
the ETAPS proceedings in the ARCoSS subline.

Finally, I would like to thank the Organising Chair of ETAPS 2012, Tarmo
Uustalu, and his Organising Committee, for arranging to have ETAPS in the
most beautiful surroundings of Tallinn.

January 2012 Vladimiro Sassone
ETAPS SC Chair

Preface

This volume contains the paper presented at CC 2012, the 21st International
Conference on Compiler Construction held on March 28–29 in Tallinn, Estonia
as part of the European Joint Conferences on Theory and Practice of Software
(ETAPS 2012). Papers were solicited from a wide range of areas including com-
piler analysis, code generation and optimization, runtime systems, just-in-time
compilation, programming tools, techniques for specific domains and the de-
sign and implementation of novel language constructs. The submssions and the
papers in this volume reflect the variety of our research domain.

There were 51 submissions. Each submission was reviewed by at least three
Program Committee members and was subjected to several rounds of thorough
discussions. The Program Committee finally decided to accept 13 papers.

Many people contributed to the success of this conference. First of all, I would
like to thank the authors for submitting their papers of high quality. I would
particularly like to thank the members of the Program Committee for their
insightful reviews and keeping to often tight timescales. Also thanks are due to
the developers and supporters of the EasyChair conference managment system
for making life so much easier for the authors and the Program Committee.

CC 2012 was made possible by the ETAPS Steering Committee and the Local
Organizing Committee. Finally, I would like to thank Francois Bodin for his
CC 2012 invited talk entitled “Programming Heterogeneous Many-Cores Using
Directives.”

January 2012 Michael O’Boyle

Organization

Program Committee

Erik Altman IBM, USA
Rastislav Bodik UC Berkeley, USA
John Cavazos University of Delaware, USA
Nathan Clark Georgia Tech, USA
Murray Cole University of Edinburgh, UK
Alain Darte CNRS, France
Bjorn De Sutter Ghent University, Belgium
Amer Diwan University of Colorado, USA
Derek Dreyer Max Planck Institute for Software Systems,

Germany
Matthew Flatt University of Utah, USA
Sumit Gulwani Microsoft Research, USA
Atsushi Igarashi Graduate School of Informatics, Kyoto

University, Japan
Ranjit Jhala UC San Diego, USA
Andreas Krall TU Wien, Austria
Julia Lawall DIKU/INRIA-Regal, France
Anton Lokhmotov ARM Ltd., UK
Püschel Markus ETH Zurich, Switzerland
Michael O’Boyle University of Edinburgh, UK
Erez Petrank Microsoft Research and Technion, Israel
David Sands Chalmers, Sweden
Vivek Sarkar Rice University, USA
Jan Vitek Purdue University, USA

Invited Program

Programming Heterogeneous Many-Cores

Using Directives

Francois Bodin

CAPS Enterprise, Rennes, France
http://www.caps-entreprise.com/

Abstract. Directive-based programming models are a pragmatic way of
adapting legacy codes to heterogeneous many-cores such as CPUs cou-
pled with GPUs. They provide programmers an abstracted and portable
interface for developing many-core applications. The directives are used
to express parallel computation, data transfers between the CPU and
the GPU memories and code tuning hints. The challenge for such envi-
ronment is to achieve high programming productivity and at the same
time provide performance portability across hardware platforms.

In this presentation we give an overview the state of the art of directives
based parallel programming environments for many-core accelerators. In
particular, we describe OpenACC (http://www.openacc-standard.org/),
an initiative from CAPS, CRAY, NVIDIA and PGI that provides a new
open parallel programming standard for C, C++ and Fortran languages.
We show how tuning can be performed in such programming approach and
specifically address numerical library inter-operability issues.

Table of Contents

GPU Optimisation

Improving Performance of OpenCL on CPUs . 1
Ralf Karrenberg and Sebastian Hack

Automatic Restructuring of GPU Kernels for Exploiting Inter-thread
Data Locality . 21

Swapneela Unkule, Christopher Shaltz, and Apan Qasem

Program Analysis

Programming Paradigm Driven Heap Analysis . 41
Mark Marron, Ondřej Lhoták, and Anindya Banerjee

Parallel Replication-Based Points-To Analysis . 61
Sandeep Putta and Rupesh Nasre

A New Method for Program Inversion . 81
Cong Hou, George Vulov, Daniel Quinlan, David Jefferson,
Richard Fujimoto, and Richard Vuduc

Analytical Bounds for Optimal Tile Size Selection . 101
Jun Shirako, Kamal Sharma, Naznin Fauzia, Louis-Noël Pouchet,
J. Ramanujam, P. Sadayappan, and Vivek Sarkar

Objects and Components

Static Detection of Unsafe Component Loadings . 122
Taeho Kwon and Zhendong Su

Object Model Construction for Inheritance in C++ and Its Applications
to Program Analysis . 144

Jing Yang, Gogul Balakrishnan, Naoto Maeda, Franjo Ivančić,
Aarti Gupta, Nishant Sinha, Sriram Sankaranarayanan, and
Naveen Sharma

GC-Safe Interprocedural Unboxing . 165
Leaf Petersen and Neal Glew

XVI Table of Contents

Dynamic Analysis and Runtime Support

Compiler Support for Value-Based Indirect Branch Prediction 185
Muhammad Umar Farooq, Lei Chen, and Lizy Kurian John

Compiler Support for Fine-Grain Software-Only Checkpointing 200
Chuck (Chengyan) Zhao, J. Gregory Steffan, Cristiana Amza, and
Allan Kielstra

VMAD: An Advanced Dynamic Program Analysis and Instrumentation
Framework . 220

Alexandra Jimborean, Luis Mastrangelo, Vincent Loechner, and
Philippe Clauss

Sambamba: A Runtime System for Online Adaptive Parallelization 240
Kevin Streit, Clemens Hammacher, Andreas Zeller, and
Sebastian Hack

Author Index . 245

Improving Performance of OpenCL on CPUs

Ralf Karrenberg and Sebastian Hack

Saarland University, Germany
{karrenberg,hack}@cdl.uni-saarland.de

Abstract. Data-parallel languages like OpenCL and CUDA are an im-
portant means to exploit the computational power of today’s computing
devices. In this paper, we deal with two aspects of implementing such
languages on CPUs: First, we present a static analysis and an accom-
panying optimization to exclude code regions from control-flow to data-
flow conversion, which is the commonly used technique to leverage vector
instruction sets. Second, we present a novel technique to implement bar-
rier synchronization. We evaluate our techniques in a custom OpenCL
CPU driver which is compared to itself in different configurations and to
proprietary implementations by AMD and Intel. We achieve an average
speedup factor of 1.21 compared to näıve vectorization and additional
factors of 1.15–2.09 for suited kernels due to the optimizations enabled by
our analysis. Our best configuration achieves an average speedup factor
of over 2.5 against the Intel driver.

Keywords: OpenCL, SIMD, Vectorization, Data Parallelism, Code
Generation, Synchronization, Divergent Control Flow.

1 Introduction

In this paper, we present two techniques to speed up data-parallel programs on
machines with explicit SIMD operations (e.g. current CPUs). Although we focus
on OpenCL in this paper, the presented techniques are also applicable to similar
languages like CUDA. A data-parallel program is written in a scalar style. It
is then executed in n instances (sometimes called threads, however this is not
to be confused with an operating system thread) on a computing device. To
a certain extent, the order of execution among all instances of the program is
unspecified to allow for parallel or sequential execution as well as a mixture of
both. Every instance is identified with a thread ID which is called tid in the
following. Usually, the data-parallel program uses the tid to index data. Hence,
every instance can process a different data item.

Since data-parallel semantics explicitly do not define an order of the instances,
languages like OpenCL lend themselves to vector processing. In this paper, we
consider machines that support SIMD instruction sets such as Intel’s SSE and
AVX, or ARM’s NEON. SIMD instructions operate on a vector of W data items
where W is the SIMD width (e.g. 4 32 bit values for SSE, 8 for AVX). To
implement a data-parallel program on such a processor, one creates a vector

M. O‘Boyle (Ed.): CC 2012, LNCS 7210, pp. 1–20, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 R. Karrenberg and S. Hack

program that executes W instances of the original program in parallel. The
challenge in this setting is divergent control flow: at a conditional jump, it might
be the case that instance i takes the branch, while instance j does not. Hence,
the vector program must accommodate both situations. Usually this is solved by
control-flow to data-flow conversion [1] where branches are replaced by predicate
variables which express the control condition. Then, control flow is linearized,
i.e. the vector program executes every instruction of the program and masks
out the inactive computations using the predicates. The latter happens either
by explicit blending of the values or by instruction predication provided by the
hardware.

However, applying control-flow linearization näıvely leaves some potential un-
exploited: in many data-parallel programs, several branches do not diverge be-
cause they depend on values which are the same (uniform) for all instances.
Consider the example in Figure 1:

__kernel void foo(int* data , int x) {
/* A */ ...
/* B */ if (expr(x))
/* C */ data[tid] = ...;

...
else

/* D */ ...
/* E */ ...

}

A

B

C D

E

A

B

C

D

E

Fig. 1. An example kernel, the control-flow graph of its scalar version, and one possible
linearization of the vector version after applying control-flow to data-flow conversion

The condition expr(x) only depends on uniform values.1 Hence, the branch
need not be linearized because either all instances take it or none. In addition,
the evaluation of the condition can be hoisted outside the kernel. On the other
hand, the computations inside the branch cannot be hoisted because they depend
on the variable tid which is not uniform across all instances.

Previous work [22] injects code into the linearized vector program to dynam-
ically test whether all instances evaluate a condition to the same value. If so,
the corresponding code part can be bypassed by a branch, trading a reduction
of the amount of executed code for some overhead for the dynamic test. While
this reduces the number of instructions executed, it cannot compensate another
drawback of control-flow to data-flow conversion: the increase of register pres-
sure on architectures that do not support predication. Reconsider the example
in Figure 1. When control flow is linearized, every variable that is live at the
entrance of D will be live throughout C. Correspondingly, all variables live out
at C will live throughout D. Our experiments have shown that the increase in
register pressure often causes more spilling and reloading which deteriorates

1 Note that the arguments passed to the kernel are the same for every instance, hence
they are uniform.

Improving Performance of OpenCL on CPUs 3

performance. Keeping control flow for this code part prevents the increase of
register pressure.

In this paper, we present a static analysis to identify branches that will never
diverge and a code transformation that exploits these results to avoid control-
flow linearization whenever possible. The result is a vector program in which
only code parts of which we could not prove non-divergence are linearized.

Another important feature of languages like OpenCL is barrier synchroniza-
tion. A kernel can use a barrier statement to enforce that no instance of a thread
group executes the statement following the barrier before all instances of that
group have reached the barrier. GPUs have dedicated hardware support to im-
plement barrier synchronization. On CPUs, barriers need to be implemented in
software. Simple implementations use the support of the runtime system and
the operating system [24] which boils down to saving and restoring the complete
state of the machine. More sophisticated techniques use loop fission on the ab-
stract syntax tree to decompose the kernel into separate pieces that are executed
in a way such that all barriers are respected [25]. However, this technique po-
tentially introduces more synchronization points than needed. In this paper, we
generalize the latter approach to work on control-flow graphs (CFGs, instead of
abstract syntax trees) while not increasing the amount of synchronization points.

1.1 Contributions

To summarize, this paper makes three main contributions:

1. We present a static analysis that identifies blocks in the CFG of a data-
parallel program that do not diverge. For these blocks, control flow can be
retained and need not be replaced by data flow.

2. We present an SSA-based linearization algorithm that leverages the diver-
gence analysis by retaining control flow, even in presence of irregular and
arbitrarily nested control-flow structures (e.g. loops with multiple exits or
jumps that exit multiple loops).

3. We present a novel technique to implement barrier synchronization for data-
parallel languages on CPUs that splits the function into continuations. This
does not require costly interaction with the OS, prevents introduction of
additional synchronization points, and reduces overhead by only saving the
live values.

1.2 Structure of This Paper

In the next section, we give an overview of our OpenCL driver and present our
implementation of barrier synchronization. Section 3 describes the divergence
analysis and how it can be used to increase the efficiency of vectorized ker-
nels. Section 4 discusses related work and Section 5 presents our experimental
evaluation.

4 R. Karrenberg and S. Hack

2 OpenCL Driver Implementation

In this section, we describe code-generation techniques to improve the efficiency
of an OpenCL driver. The compilation scheme of our driver looks like this:

1. Perform SIMD vectorization → Section 2.1

2. Implement barriers → Section 2.3

3. Create loops over local instances → Sections 2.2, 2.3

4. Remove API callbacks (such as get global id()) → Section 2.2

5. Create wrapper for driver interface

The interface wrapper allows the driver to call the kernel with a static signature
that receives only a pointer to a structure with all parameters. Pseudo-code
for the modified kernel is shown in Figure 2 (before inlining and the callback
optimizations described in Section 2.2).

2.1 SIMD Vectorization

We employ a modified algorithm for “Whole-Function Vectorization” (WFV) [12]
to exploit SIMD instruction sets by transforming the kernel such that it computes
W instances of the original kernel.

EnablingWFV inOpenCL can be summarized as follows:Vectorization is based
upon changing the callback functions get global id() and get local id() to
return a vector of the W IDs whose instances are executed by the vectorized
kernel. From there, all uses of these indices are vectorized, mask and blend oper-
ations are created as necessary, and control flow is linearized [12]. However, we
enhance these phases by additional analyses and optimizations that are described
in Section 3.

2.2 Runtime Callbacks

OpenCL allows the user to organize threads in multiple dimensions (each thread
is identified by an n-tuple of IDs for n dimensions). Furthermore, it allows to
create groups of threads that are executed together and can be synchronized
(see Section 2.3).

Given a kernel and a global number of threads Nx ×Ny organized in a two-
dimensional grid with groups of size Gx×Gy, the driver is responsible for calling
the kernel Nx × Ny times and for making sure that calls to get local id()

etc. return the appropriate thread ID of the given dimension. The most natural
iteration scheme for this employs nested “outer” loops that iterate over the
number of groups of each dimension (Nx/Gx and Ny/Gy) and nested “inner”
loops that iterate over the size of each group (Gx and Gy). Consider Figure 2
for some pseudo-code.

If the application uses more than one dimension for its input data, the driver
has to choose one SIMD dimension for vectorization. This means that only

Improving Performance of OpenCL on CPUs 5

clEnqueueNDRangeKernel(Kernel kernelWrapper , TA arg_struct ,
int* globalSizes , int* localSizes) {

int iter_0 = globalSizes[0] / localSizes[0];
int iter_1 = globalSizes[1] / localSizes[1];
for (int i=0; i<iter_0; ++i) {

for (int j=0; j<iter_1; ++j) {
int groupIDs [2] = { i, j };
kernelWrapper(arg_struct , groupIDs , globalSizes , localSizes);

} } }

void kernelWrapper(TA arg_struct , int* groupIDs ,
int* globalSizes , int* localSizes) {

T0 param0 = arg_struct.p0;
...
TN paramN = arg_struct.pN;
int base0 = groupIDs [0] * localSizes[0];
int base1 = groupIDs [1] * localSizes[1];
__m128i base0V = <base0 , base0 , base0 , base0 >;
for (int i=0; i<localSizes[1]; ++i) {

int lid1 = i; // local id (dim 1)
int tid1 = base1 + lid1; // global id (dim 1)
for (int j=0; j<localSizes[0]; j+=4) {

__m128i lid0 = <j, j+1, j+2, j+3>; // local ids (dim 0)
__m128i tid0 = base0V + lid0; // global ids (dim 0)
simdKernel(param0, ..., paramN , lid0 , lid1 , tid0 , tid1 ,

groupIDs , globalSizes , localSizes);
} } }

Fig. 2. Pseudo-code implementation of clEnqueueNDRangeKernel and the kernel
wrapper before inlining and optimization (2D case, W = 4). The outer loops iterate
over the number of groups, which can easily be parallelized across multiple threads. The
inner loops iterate over all instances of a group (step size 4 for the SIMD dimension 0).

queries for instance IDs of this dimension will return a vector, queries for other
dimensions return a single ID. Because it is the natural choice for the kernels we
have analyzed so far, our driver currently always uses the first dimension. How-
ever, it would be easy to implement a heuristic that chooses the best dimension,
e.g. by comparing the number of memory operations that can be vectorized in
either case. The inner loop that iterates over the dimension chosen for vector-
ization is incremented by W in each iteration as depicted in Figure 2.

We automatically generate a wrapper around the original kernel that includes
the inner loops while only the outer loops are implemented directly in the driver
(to allow multi-threading, e.g. via OpenMP). This allows us to remove all over-
head of the callback functions: All these calls query information that is either
statically fixed (e.g. get global size()) or only depends on the state of the
inner loop’s iteration (e.g. for one dimension, get global id() is the local size
multiplied with the group ID plus the local ID). The static values are supplied as
arguments to the wrapper, the others are computed directly in the inner loops.
After the original kernel has been inlined into the wrapper, we can remove all
overhead of callbacks to the driver by replacing each call by a direct access to
a value. Generation of the inner loops “behind” the driver-kernel barrier also
exposes additional optimization potential of the kernel code together with the

6 R. Karrenberg and S. Hack

surrounding loops and the callback values. For example, loop-invariant code
motion moves computations that only depend on group IDs out of the innermost
loop (reconsider the example in Figure 1).

2.3 Continuation-Based Synchronization

OpenCL provides the barrier() statement to implement barrier synchroniza-
tion of all threads in a group. A barrier enforces all threads of the group to reach
it before the threads in the group can continue executing instructions behind the
barrier. This means that the current context of a thread needs to be saved when
it reaches the barrier and restored when it continues execution. Instead of rely-
ing on costly interaction with the operating system, we use the following code
transformation to implement barrier synchronization.

Let the set {b1, . . . , bn} be the set of all barriers in the kernel. We apply the
following recursive scheme: From the start node of the CFG, start a depth-first
search (DFS) which does not traverse barriers. All nodes reached by this DFS are
by construction barrier free. The search furthermore returns a set of barriersB =
{bi1 , . . . , bim} which it hit. At each hit barrier, we determine the live variables
and generate code to store them into a structure. For every instance in the group,
such a structure is allocated by the driver. The last instruction generated is a
return with the ID of the hit barrier. Now, the instructions bi1 , . . . , bim are taken
as start points for m different kernels. For each one, we apply the same scheme
until there are no more kernels containing barriers. Figure 3 gives an example
for this transformation.

a

b

c

d

e

a1

a2

b

c1

c2

d1

d2

e

a1 a2

b

c1

c2 d2

d1 b e

c1

F1

next: F2

F2

next: F3

F3

next: F4

F4

next: F3

return

Fig. 3. Example CFG of a kernel which requires synchronization (the barriers are
indicated by the bars crossing the blocks), the CFG after splitting blocks with barriers,
and the resulting set of new functions {F1, . . . , F4}

Then, we generate a wrapper that switches over the generated functions de-
pendent on the last returned barrier ID (see Figure 4).

Improving Performance of OpenCL on CPUs 7

void newKernel(T0 param0 , ..., TN paramN , int localSize , ...) {
void* data[localSize/W] = alloc ((localSize/W) * liveValSize);
int next = BARRIER_BEGIN;
while (true) {

switch (next) {
case BARRIER_BEGIN:

for (int i=0; i<localSize; i+=W)
next = F1(param0 , ..., paramN, tid , ..., &data[i/W]);

break;
case B2:

for (int i=0; i<localSize; i+=W)
next = F2(tid , ..., &data[i/W]);

break;
...
case B4:

for (int i=0; i<localSize; i+=W)
next = F4(tid , ..., &data[i/W]);

break;
case BARRIER_END: return ;

} } }

Fig. 4. Pseudo code for the kernel of Figure 3 after implementation of barriers and
before inlining and optimization (1D, computations of tid etc. are omitted). The value
of liveValSize is the maximum size required for any continuation, data is the storage
space for the live variables of all instances.

Note that the semantics of OpenCL require all instances to hit the same
barrier, otherwise the program’s behavior is undefined. Hence, if not all instances
return the same ID, the kernel is in a bad state anyways, so we simply use the
ID returned by the last instance.

3 Exploiting Uniform Computations

In this section, we describe our main contribution, a static analysis of control-
flow divergence and its application in the context of whole-function vectorization.
The analysis is based on a value analysis presented by Karrenberg and Hack [12]
which identifies uniform computations.

3.1 Uniform Value Analysis

The uniform value analysis determines whether an operation produces the same
value for all instances of a kernel. If a value is not uniform, we call it vary-
ing. If a branch depends on a varying condition, we call it a varying branch.
Input arguments to OpenCL kernels are always uniform because all instances
are called with the same arguments. The OpenCL functions get global id()

and get local id() produce varying values if called with the SIMD dimension
as parameter. If called with another dimension, they produce uniform values
because we only vectorize one dimension (see Section 2.2).

8 R. Karrenberg and S. Hack

3.2 Divergence Analysis

As described in the introduction, our goal is to retain as much control flow
during vectorization as possible. To exclude a certain code part from control-
flow to data-flow conversion, we must prove that the instances implemented
by the vector program never diverge in this code part. In general, this is a
dynamic property that can change for different kernel inputs. The following
definition describes an overapproximation of divergence which can be statically
proven.

Definition 1 (Static Divergence). Let b be a block that can be reached from
another block v that ends with a varying branch. b is marked as divergent if

1. b is a direct successor of v, or
2. there exist two disjoint paths from v to b, or
3. b is an exit block of a loop which includes v, and there exist two disjoint

paths from v to b and from v to the loop’s latch �.2

Figure 5 illustrates these conditions, Figures 6 and 7 depict some more involved
examples.

v

b

v

v

b

v

h

v

b �

v

u

Fig. 5. Illustration of the three possibilities for divergence of a block b (Definition 1).
Note that in the second case, b is neither required to post-dominate v, nor is v required
to dominate b.

Informally, the second condition means that in the kernel execution under
consideration, b can be reached by some instances from both edges that leave v.
Hence, b is subject to control-flow to data-flow conversion.

The third condition is required because loops behave differently in terms of
divergence: If b is a loop exit and v is inside the loop, there might be a path
from one edge of v to an exit block and another, disjoint path from the other
edge to a back edge. Even if all exit branches are uniform, this would still make
it possible that some instances are still active in the loop when an exit edge is
taken. Therefore, b is divergent under this condition.

2 We assume that every loop has a latch which is the only basic block in the loop that
has a back edge to the header.

Improving Performance of OpenCL on CPUs 9

a

b c

d e f

g h

i

u

v u

u

a

b

c

d

e

f

u

v

a

b

c d

e f

h

i

u

u

v

Fig. 6. Example CFGs showing our analysis results. Uniformity of conditional branches
is shown with a lowercase letter below the block, divergent blocks are shaded. Our
analysis determines that significant parts of these CFGs are non-divergent and therefore
do not have to be linearized (see Figure 10).

a

b c

e f

j

v

u u

u u

a

b c

d e f g

i j k

u

v v

u u u u

Fig. 7. More complex examples. In the left CFG, j is neither always executed by
all instances that were active in a nor is it only executed by instances that took the
left or right branch in a. Therefore, the linearized CFG has to make sure that j has
to be executed regardless of the branch decision in a. In the right CFG, i, j, and k
are non-divergent because none can be reached from both edges of the same varying
branch. However, linearization requires duplication (see Section 3.3).

We compute uniformity and divergence using a data-flow analysis. Both prop-
erties influence each other mutually: First, as can be seen from Definition 1,
divergence depends on uniformity. If a branch is labelled varying, control flow
diverges. Second, divergence also influences uniformity. Consider a φ-function
over uniform arguments. If that φ-function resides in a divergent block, the φ’s
value is not uniform itself, because not all instances enter the φ’s block from the
same predecessor in every execution. However, if we can prove the φ’s block non-
divergent, the φ’s value is uniform, too. Hence, the data-flow analysis computes
divergence and uniformity together.

The analysis uses join (not meet) lattices and employs the common perspective
that instructions reside on edges not nodes. Program points thus sit between the
instructions (see Figure 8). This has the advantage that the join and the update
of the flow facts are cleanly separated.

10 R. Karrenberg and S. Hack

�a b

� ��

a b

�a � b��

Fig. 8. Left: Our analysis setup with separated join and update of flow facts. Right:
Classic setup with mixed join/update.

The analysis lattice uses two simple lattices for uniformity and divergence:

vvarying d divergent

uuniform n non-divergent

U D

The analysis lattice itself is defined as

L := P(V × V)× (V → U)× D

We record in every flow fact a set A of control-flow edges, a mapping u from
variables to uniformity information, and information about divergence d of that
program point. The join is defined component-wise:

(A, u, d) � (A′, u′, d′) = (A ∪ A′, u �U u′, λw. (d(w) �D d′(w)))

For a program point x, the update function

(A′, u′, d′) = �w��(A, u, d), �·�� : L→ L

is defined as follows. First, consider the divergence update which reflects Defini-
tion 1:

d′ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
d if ∃p ∈ pred(x). u(p) = v

d if ∃p1, p2 ∈ pred(x). divergedPathsA(p1, p2)

d if x ∈ EL ∧ divergedPathsA(x, �L)

n otherwise

where EL is the set of program points behind the exits of a loop L and �L is
the program point at the loop’s back edge. Further, pred(x) is the set of prede-
cessor program points of x. The Information whether two paths are disjoint and
divergent is given by the helper function

divergedPathsA(p1, p2) = ∃et, ef ∈ A(p1) ∪ A(p2). (et �∈ A(p1) ∨ ef �∈ A(p2)).

divergedPaths uses the set A which captures information about edges leaving
blocks with varying branch conditions. The control-flow edge is inserted into A
if the branch of a block was detected varying by the analysis. To this end, every

Improving Performance of OpenCL on CPUs 11

branch instruction gets two extra program points (one for the true and one for
the false program point) on which transfer functions can be placed that add
the corresponding edges to A. For each branch node v, let vt and vf be these
program points. For some v�, the update function for A is

A′ = A ∪
{
{v�} if u(v) = v

∅ otherwise,

otherwise we define A′ = A.
Finally, the uniformity part provides information to the other two compo-

nents of the analysis. A common operation s = ⊕(o1, . . . , on) is uniform if all
operands oi are uniform. Thus, using f | x �→ y as an abbreviation for

λw.

{
y if w = x

f(w) otherwise,

the uniformity update for non-φ instructions is given by:

u′ = u | s �→
⊔
i

u(oi)

For φ-functions, this does not hold. Even if all parameters of a φ are uniform,
the φ will not produce a uniform value if two instances can enter it via different
predecessors. Hence, to produce a uniform value, the φ-function’s program point
has to be detected non-divergent.

u′
φ = u | s �→

{
u if d(s) = n ∧

⊔
i u(oi) = u

v otherwise

We omit the proof of monotonicity due to space limitations.

3.3 Optimizations

In the following paragraphs we describe techniques to take advantage of the
results of the presented uniformity and divergence analyses.

Retaining Scalar Computations. The uniformity analysis allows us to pre-
vent vectorization of uniform values. The benefit of using uniform computations
is straightforward: register pressure is taken from the vector units and scalar
computations can be executed in parallel to the vector computations. Further-
more, if a uniform value is used by a varying instruction, the value is broadcast
to a vector beforehand. As a byproduct, our analysis computes the program
points where scalar values have to be broadcast to vector values. This is im-
portant because we observed that eager broadcasting often causes performance
degradation.

12 R. Karrenberg and S. Hack

Retaining Control Flow. As discussed in the introduction, the divergence
analysis opens up the possibility to retain uniform control flow. In the following,
we describe an algorithm for CFG linearization which allows to exclude arbitrary,
non-divergent control-flow structures.

First, we build regions of divergent blocks using a depth-first search on the
CFG. While traversing, we create a new divergent region whenever we see a
varying branch and mark this region as active. If we encounter a block that
post-dominates all blocks in this region, we finish the region and set the active
region to the last unfinished one. Divergent blocks are always added to the active
region. Regions that overlap or have common entry or exit blocks are merged.

Next, each region is linearized recursively (inner regions before outer regions)
as follows: We first determine an order for the contained blocks by sorting them
topologically by data dependencies (linearized, inner regions are treated like one
block). Next, we schedule the blocks of the region by rewiring all edges that target
a divergent block. A block is scheduled after all its edges have been visited. The
new target of each edge is the first divergent block of the current region’s order
that has not yet been scheduled. Edges that target non-divergent blocks remain
untouched.

The reason behind creating schedules of the blocks and rewiring edges is that
no block of a divergent region must be skipped during execution because this
may violate the semantics of the original kernel.

Figure 9 illustrates an example where the non-divergent block e has a neigh-
bor d that is divergent and thus always has to be executed. If we linearize all
divergent blocks and retain the incoming and outgoing edges of e, we end up
with a graph where blocks b and d can be skipped (Figure 9(d)), although some
instances might want to take the path a → b → d → f → g. Dependencies are
maintained correctly by rewiring the edge e → f to e → b (Figure 9(e)).

Figure 10 shows linearizations of the examples of Figure 6. In the leftmost
CFG, only d, e, g, and i have to be linearized due to the varying branch in b.
Because only one path from a to h leads through a varying branch, h is non-
divergent. In the middle CFG, the inner loop, although being nested in a loop
with varying exit, does not require any mask updates or blending because all
active instances always leave the loop together. The rightmost CFG shows a case
where it is allowed to retain the uniform loop exit branch in c: there are only
uniform branches inside the loop, so either all or no active instance will leave
the loop at this exit. However, h must not be skipped because of instances that
might have left the loop earlier.

Linearization of patterns such as in the second graph of Figure 7 requires
additional logic. This is because there is no schedule where all edges leaving i,
j, and k can be rewired to a single block that has not yet been scheduled with-
out violating dependencies. One possibility to handle this is duplication of code,
another one is inserting conditional branches that depend on the previously ex-
ecuted divergent block. Due to space constraints we omit linearization examples
for Figure 7 and leave a more detailed discussion of this issue for future work.

Improving Performance of OpenCL on CPUs 13

a

b c

d e

f

g

v

v u

(a) Example CFG

a

c

e

b

d

f

g

(b) Topological
Order

a

c

e

b

d

f

g

(c) Näıve
Linearization

a

c

b e

d

f

g

(d) Invalid
Linearization

a

c

b e

d

f

g

(e) Valid
Linearization

Fig. 9. CFG linearization example. In the original CFG (a), e is non-divergent because
it can not be reached through different edges of varying branches. The topological
sorting that is used in this linearization is shown in (b). The linearization (d) is invalid
because it must not be possible to skip b and d. The graph (e) shows the correct
linearization, which is likely to have better runtime than the näıve approach (c).

Reducing Mask Operations. During control-flow to data-flow conversion,
each block is assigned a mask that is updated at each varying branch (conjunc-
tion and negation) and at each join block (disjunction).

If a conditional branch is uniform however, we use the incoming mask of the
block for both outgoing edges instead of updating the mask with the comparison
result. This implies that on paths with only non-divergent blocks, all edges have
the same mask as the first block.

If our analysis found out that a block is always executed by all instances, the
mask is set to true. At the end of regions with a single entry and exit block, the
mask is reset to the one of the entry block. If a non-divergent block has multiple
incoming edges, we generate a φ-operation instead of mask disjunctions. This is
because only one of the incoming paths may have been executed.

In the rightmost CFG of Figure 10, blocks c and d can both use the entry
mask of block b instead of performing conjunction-operations with the (negated)
branch condition in b, and block f can use the same mask instead of the dis-
junction of both incoming masks.

Loops require special loop exit masks in order to store the information which
instances have left the loop through which exits [12]. However, if an exit block
is non-divergent, we omit its loop exit mask because it is equal to the active
mask. If all exit blocks are non-divergent no loop mask is required because all
instances that enter the loop will exit together through one of the exits.

Reducing Blend Operations. If control flow is linearized, φ-operations in
blocks with multiple predecessors have to be transformed to select-operations
that conditionally blend together incoming values based on the active mask.

14 R. Karrenberg and S. Hack

a

b c

d

e f

g h

i

a

b

c

d

e

f

u

v

a

b

c d

e f

h

i

u

u

v

Fig. 10. Valid linearizations of the CFGs shown in Figure 6

However, if a block with multiple incoming edges is non-divergent, we can
retain its φ-operations. Blending in such a case is not necessary because only
one of the incoming paths may have been executed. For example, in the leftmost
CFG of Figure 10, the φ’s in block h remain untouched.

If an edge is rewired, the φ’s from the old target block have to be modified (one
direction will yield only dummy values that are later masked out) and moved
to the new target block of the edge. For example, the φ’s in block f of Figure 9
have to be moved to block b.

Loops require a blend operation for all values live across loop boundaries
before the back branch of the loop [12]. If our analysis proves the loop to only
exit to non-divergent blocks, we also do not require any blending because all
instances will iterate equally often.

Optimizing Operations with Side-Effects. Operations with side-effects
such as store operations and function calls have to be split up and each scalar
operation must not be executed unless the corresponding mask element is true.
If our analysis proves that a block is always executed by all instances, we prevent
generation of such expensive code because all mask elements will be true when
reaching the block.

Optimizing Loop Induction Variables. A more subtle optimization aims
at values that are independent of any input of the function: values related to
loop induction variables. Consider the Mandelbrot kernel in Figure 11. The exit
condition of the main loop is varying because one of the two comparisons de-
pends on varying values (x2, y2). Therefore, all values that are live across loop
boundaries also have to be considered varying because they may differ between
instances due to different loop trip counts. This means that iter—because it
has a use after the loop—and all its uses (the increment and the comparison)
have to be vectorized.

Improving Performance of OpenCL on CPUs 15

uint iter;
for(iter=0; (x2+y2 <= scaleSquare) && (iter < maxIter); ++iter) {

y = 2 * x * y + y0;
x = x2 - y2 + x0;
x2 = x*x;
y2 = y*y;

}
int tid = get_global_id(0);
image[tid] = 255* iter/maxIter ;

Fig. 11. Main loop of the OpenCL Mandelbrot kernel

However, we can perform the following optimization: We introduce an addi-
tional vector variable that holds the “result” of iter which is updated after
every iteration of the loop and is also used to determine when to exit the loop.
The update is performed by a broadcast of iter (which remains scalar) followed
by blend operation. This allows us to perform all computations inside the same
loop iteration that only depend on input-independent or uniform values in scalar
registers.

In the Mandelbrot example, this means that the increment of iter and the
comparison iter < maxIter can remain scalar and maxIter does not require a
broadcast. We observed a speedup of over 400% when applying this optimization
(see Section 5). The reason for this is that the optimized operations are inside a
frequently executed loop. One required vector register less or more in this critical
part can affect performance significantly.

4 Related Work

Our SIMD vectorization technique stems from work of Allen [1] on the conversion
of control flow to data flow. In classic loop vectorization [2,5,23,6,17], the inner-
most loop level is unrolled before combining isomorphic statements to vector
operations (“unroll-and-jam”), either for vector machines or SIMD instruction
sets. Target loops are usually restricted to either static iteration counts, specific
data-dependency schemes, or straight-line code. Ngo [16] was the first to describe
“Outer-Loop Vectorization” (OLV) [18]. In OLV, outer loops are unrolled to im-
prove vectorization, e.g. due to longer trip counts of outer loops or better mem-
ory access schemes. Whole-Function Vectorization (WFV) [12] applied a scheme
similar to OLV to data-parallel languages like OpenCL. By vectorizing an entire
function, the new kernel computes W instances of the scalar code in parallel,
effectively vectorizing the driver-level loop over the input data. Less generic ap-
proaches have been applied to various domain-specific languages [7,20,9,21,15].

The uniform value analysis was introduced as part of WFV. We are not aware
of other related work that attempts to classify data-parallel code into uniform
and varying instructions automatically. However, some data-parallel languages
like ISPC [21] or the RenderMan Shading Language [4] have explicit keywords

16 R. Karrenberg and S. Hack

to enforce specific behavior where required. In languages like OpenCL [13] and
CUDA [19] this is not necessary because the semantics of the kernel are given
by the execution model.

The only prior work directly related to our divergence analysis that we are
aware of is a technique that employs “branches-on-superword-condition-code”
(BOSCC) introduced by Shin [22]. This technique reintroduces control flow into
vectorized code to exploit situations where the predicates (masks) for certain
parts of the code are entirely true or false at runtime. While this prevents
unnecessary execution of code, it suffers from some overhead for the dynamic test
and does not solve the problem of increased register pressure: the code still has
to account for situations where the predicate is not entirely true or false. Our
analysis can do better by providing the necessary information statically, which
allows to retain the original control flow that does not require any blending.
However, it is possible to benefit from both our optimizations and BOSCCs.
The next section will evaluate both approaches.

An increasing number of OpenCL drivers is being developed by different soft-
ware vendors for all kinds of platforms from GPUs to mobile devices. For com-
parison purposes, the x86 CPU drivers by Intel [10] and AMD [3] are most
interesting. However, there is not much detail on the underlying implementa-
tions. Both drivers have in common that they build on LLVM and exploit all
available cores with some multi-threading scheme. The Intel driver also performs
SIMD vectorization similar to our implementation3. However, to our knowledge,
it lacks analyses to retain uniform computations and control flow, an important
source of performance (see Section 5).

Recently, The Portland Group released an x86 CPU driver for CUDA [26]
that also makes use of both multi-threading and whole-function vectorization,
but no implementation details are publicly available. MCUDA [25] is another
x86 CPU implementation of CUDA that introduced the first “thread loop”-
based synchronization scheme. Their approach uses loop fission of the thread
loop to remove barriers, which results in similar code as our approach if no bar-
riers are inside loops. In that scenario however, MCUDA generates additional,
artificial synchronization points at the loop header and before the back branch.
This can impose significant overhead due to additional loading and storing of live
variables. Jääskeläinen et al. [11] implemented a standalone OpenCL compiler
that generates customized code for FPGAs and also uses this synchronization
scheme. In contrast to our driver, they rely on the instruction-level parallelism
of the FPGA design by duplicating kernel code W times instead of performing
explicit SIMD vectorization. TwinPeaks [8] is an implementation of the OpenCL
API that targets both CPUs and GPUs but does not perform aggressive code
transformations. Their synchronization scheme uses custom implementations of
setjmp()/longjmp() whereas our driver modifies the kernel code directly, stor-
ing only the live values instead of blindly saving registers. Clover [24] is an open

3 We have no information about the AMD driver but suspect that no whole-function
vectorization is used due to the inferior performance.

Improving Performance of OpenCL on CPUs 17

Table 1. Median kernel execution times of our OpenCL driver in different configura-
tions for different applications (no multi-threading, 50 iterations). The row “speedup”
shows the effect of our divergence optimizations, comparing “UniCF” to “UniVal” (95%
confidence level).

OpenCL Kernel Performance (milliseconds)

Application Input Size Scalar Näıve UniVal BOSCC UniCF Speedup

BitonicSort 1,048,576 1,649 549 519 518 519 1.00×
BlackScholes 16,777,216 2,743 713 672 672 672 1.00×
DCT 4,0002 732 1,100 857 857 411 2.09×
FastWalshTransform 134,217,728 9,852 13,317 13,450 13,451 13,458 1.00×
FloydWarshall 512 444 4,081 3,592 3,420 3,603 1.00×
Histogram 15,0002 1,575 1,703 1,454 1,469 1,266 1.15×
Mandelbrot 8,1922 4,136 8,114 1,724 1,727 1,725 1.00×
MatrixTranspose 12,0002 2,295 2,378 1,599 1,599 1,600 1.00×
NBody 19,968 3,768 2,099 1,410 1,408 1,035 1.36×

source OpenCL driver on top of Gallium3D which implements synchronization
with POSIX contexts. Both TwinPeaks and Clover do not employ WFV.

5 Experimental Evaluation

Our OpenCL driver is based on the LLVM compiler framework [14] and the
AMD APP SDK [3]. We did not attempt to implement the full OpenCL 1.1
API rather than a sufficiently complete fraction to run benchmarks from the
APP SDK. If necessary, the benchmarks were modified to only use scalar values
instead of the OpenCL built-in vectors to allow for automatic vectorization. All
experiments were conducted on a Core 2 Quad at 2.8 GHz with 4 GB of RAM
running Windows 7. The vector instruction set is Intel’s SSE 4.1, yielding a
SIMD width of four 32 bit values. The machine ran in 64 bit mode, thus 16
vector registers were available.

We report kernel execution times of our driver in different configurations and
compare to Intel’s [10] and AMD’s [3] CPU driver. Each measurement shows the
median of 50 individual runs per configuration per benchmark without warm-up.
Although the machine was not rebooted after every run, the numbers reported
here are as realistic as possible for one cold-started, arbitrary run of the applica-
tion. In addition, we conducted tests that ensure significance of our results using
the “SpeedUp Test” [27].

5.1 Benchmarks

Table 1 shows the runtime performance of a diverse set of applications in differ-
ent configurations: The first configuration (“scalar”) performs no vectorization,
so the kernel is executed sequentially. The “näıve” configuration performs vector-
ization without retaining uniform values and with complete linearization. The

18 R. Karrenberg and S. Hack

Table 2. Median kernel execution times of our OpenCL driver (VecOCL, vectorized
and multi-threaded) compared to the proprietary drivers of Intel and AMD. Values
marked with an asterisk are execution times without WFV: for FloydWarshall, the
Intel driver does not perform vectorization. We obtain an average speedup factor of
the median of over 2.5 against the Intel driver at a confidence level of 95%.

OpenCL Kernel Performance (milliseconds)

Application VecOCL Intel AMD Speedup vs Intel

BitonicSort 164 1,170 47,271 7.13×
BlackScholes 241 329 717 1.37×
DCT 201 350 693 1.74×
FastWalshTransform 4,944 6,661 8,601 1.35×
FloydWarshall 934(148*) 525* 471 0.56×(3.55×*)
Histogram 387 1,178 527 3.07×
Mandelbrot 632 1,930 29,045 3.05×
MatrixTranspose 1,072 2,933 10,748 2.74×
NBody 343 676 1,253 1.97×

“UniVal” configuration linearizes all control flow, but retains uniform values
where possible. The “UniCF” configuration additionally employs our analysis,
leaving non-divergent control flow intact. “BOSCC” refers to the “UniVal” con-
figuration with additional insertion of BOSCCs.

The overall observation is that performance increases with the addition of
analyses and optimizations (from left to right in Table 1). Retaining uniform
values proves to be effective for all of the benchmarks with an average speedup
factor of 1.21. Retaining non-divergent control flow helps most in presence of
loops with non-divergent exits as in DCT, Histogram, and NBody. These bench-
marks profit from the reduced overhead of mask and blend operations and re-
tained control flow, which results in speedup factors of 2.09, 1.15, and 1.36. As
expected, there is no effect on benchmarks that do not have any non-divergent
control flow, such as BitonicSort, BlackScholes, or MatrixTranspose.

Table 1 also shows numbers of a configuration that does not use our diver-
gence analysis but inserts BOSCCs after linearization. It can be observed that
this technique does not impact performance largely (only FloydWarshall runs
5% faster) in contrast to the configuration which makes use of our divergence
analysis. This is mostly due to the fact that BOSCCs do not help in presence
of loops, which are the hot spots in most of the benchmarks: a loop always has
to be executed as long as any instance is still iterating. Introducing BOSCCs
does not help here, whereas our optimizations can remove blend and mask op-
erations if all loop exits are non-divergent. When combining all techniques, we
match the performance of the “BOSCC”-configuration for FloydWarshall, all
other benchmark results remain unchanged from “UniCF”.

The Mandelbrot benchmark additionally profits from the special optimization
described in Section 3, which resulted in a reduction of the kernel execution time
from 8.1 seconds to 1.8.

Improving Performance of OpenCL on CPUs 19

It is also important to note that näıve vectorization is often inferior to scalar
execution (DCT, Histogram, and MatrixTranspose), which highlights the impor-
tance of additional optimizations. Despite our efforts, there are still benchmarks
that are not suited for vectorization such as FastWalshTransform and Floyd-
Warshall, which are dominated by random memory accesses.

For a fair comparison against Intel’s and AMD’s drivers we implemented a
näıve, unoptimized multi-threading scheme that uses OpenMP. Table 2 shows
that our custom driver significantly outperforms both drivers in all test-cases
(statistically significant with a confidence level of 95%).

6 Conclusion

Whole-function vectorization of kernels is the technique of choice to achieve
maximum performance of data-parallel languages on CPUs. However, näıvely
vectorizing all code can greatly limit the benefits due to the possibly large over-
head of control-flow to data-flow conversion. We presented key techniques to
reduce this overhead based on the analysis of divergent control flow.

In addition, we described code generation techniques to reduce the overhead
that is inherent to data-parallel languages like OpenCL and CUDA: we inte-
grated parts of the driver code into the kernel and used a novel synchronization-
scheme based on continuations to enable aggressive optimizations.

Our techniques have proven to be successful on a variety of different bench-
marks, significantly outperforming proprietary drivers by Intel and AMD.

We are aware of the fact that we did not provide a formal proof of our trans-
formations. However, proving correctness requires a formal semantics of a data-
parallel language such as OpenCL which has not been developed yet. Such a
semantics would also enable a more formal definition of divergence. We leave
this for future work.

Acknowledgement. This work is part of the ECOUSS project and has been
funded by the German Ministry for Education and Science (BMBF) and the
Intel Visual Computing Institute Saarbrücken. The authors would like to thank
Christoph Mallon and Daniel Grund for insightful discussions about control-flow
divergence. Furthermore, we thank Roland Leißa and the anonymous reviewers
for their helpful comments and remarks.

References

1. Allen, J.R., Kennedy, K., Porterfield, C., Warren, J.: Conversion of control depen-
dence to data dependence. In: POPL, pp. 177–189. ACM (1983)

2. Allen, R., Kennedy, K.: Automatic translation of FORTRAN programs to vector
form. ACM Trans. Program. Lang. Syst. 9(4), 491–542 (1987)

3. AMD: AMD APP SDK v2.5 (March 2011)
4. Apodaca, A., Mantle, M.: RenderMan: Pursuing the Future of Graphics. IEEE

Computer Graphics & Applications 10(4), 44–49 (1990)

20 R. Karrenberg and S. Hack

5. Cheong, G., Lam, M.: An Optimizer for Multimedia Instruction Sets. In: Second
SUIF Compiler Workshop (1997)

6. Darte, A., Robert, Y., Vivien, F.: Scheduling and Automatic Parallelization.
Birkhauser, Boston (2000)

7. Fritz, N., Lucas, P., Slusallek, P.: CGiS, a New Language for Data-Parallel GPU
Programming. In: VMV, pp. 241–248 (2004)

8. Gummaraju, J., Morichetti, L., Houston, M., Sander, B., Gaster, B.R., Zheng, B.:
Twin peaks: a software platform for heterogeneous computing on general-purpose
and graphics processors. In: PACT, pp. 205–216. ACM, New York (2010)

9. Hormati, A.H., Choi, Y., Woh, M., Kudlur, M., Rabbah, R., Mudge, T., Mahlke, S.:
Macross: macro-simdization of streaming applications. In: ASPLOS, pp. 285–296.
ACM, New York (2010)

10. Intel: Intel OpenCL SDK 1.1 (June 2011)
11. Jaskelainen, P.O., de La Lama, C.S., Huerta, P., Takala, J.: OpenCL-based design

methodology for application-specific processors. In: SAMOS 2010, pp. 223–230
(July 2010)

12. Karrenberg, R., Hack, S.: Whole Function Vectorization. In: CGO, pp. 141–150
(2011)

13. Khronos Group: OpenCL 1.1 Specification (June 2011)
14. Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong Program

Analysis & Transformation. In: CGO (March 2004)
15. Newburn, C.J., So, B., Liu, Z., McCool, M.D., Ghuloum, A.M., Toit, S.D., Wang,

Z.G., Du, Z., Chen, Y., Wu, G., Guo, P., Liu, Z., Zhang, D.: Intel’s Array Building
Blocks: A retargetable, dynamic compiler and embedded language. In: CGO, pp.
224–235 (2011)

16. Ngo, V.: Parallel loop transformation techniques for vector-based multiprocessor
systems. Ph.D. thesis, University of Minnesota-Twin Cities (May 1994)

17. Nuzman, D., Henderson, R.: Multi-platform auto-vectorization. In: CGO,
pp. 281–294 (2006)

18. Nuzman, D., Zaks, A.: Outer-loop vectorization: revisited for short simd architec-
tures. In: PACT, pp. 2–11. ACM (2008)

19. NVIDIA: CUDA Programming Guide (2009)
20. Parker, S., et al.: RTSL: A Ray Tracing Shading Language. In: IEEE Symposium

on Interactive Ray Tracing (2007)
21. Pharr, M.: Intel SPMD Program Compiler (June 2011)
22. Shin, J.: Introducing Control Flow into Vectorized Code. In: PACT, pp. 280–291.

IEEE Computer Society (2007)
23. Sreraman, N., Govindarajan, R.: A vectorizing compiler for multimedia extensions.

Int. J. Parallel Program. 28(4), 363–400 (2000)
24. Steckelmacher, D.: An OpenCL State Tracker for Gallium based on Clover (August

2011), http://people.freedesktop.org/~steckdenis/clover
25. Stratton, J.A., Stone, S.S., Hwu, W.-m.W.: MCUDA: An Efficient Implementation

of CUDA Kernels for Multi-core CPUs. In: Amaral, J.N. (ed.) LCPC 2008. LNCS,
vol. 5335, pp. 16–30. Springer, Heidelberg (2008)

26. The Portland Group, Inc.: PGI CUDA-x86 (June 2011)
27. Touati, S.A.A., Worms, J., Briais, S.: The Speedup Test. Rapport de recherche

(2010), http://hal.inria.fr/inria-00443839/en/

http://people.freedesktop.org/~steckdenis/clover
http://hal.inria.fr/inria-00443839/en/

Automatic Restructuring of GPU Kernels

for Exploiting Inter-thread Data Locality�

Swapneela Unkule, Christopher Shaltz, and Apan Qasem

Texas State University, San Marcos, TX 78666, USA

Abstract. Hundreds of cores per chip and support for fine-grain multi-
threading have made GPUs a central player in today’s HPC world. For
many applications, however, achieving a high fraction of peak on current
GPUs, still requires significant programmer effort. A key consideration
for optimizing GPU code is determining a suitable amount of work to
be performed by each thread. Thread granularity not only has a direct
impact on occupancy but can also influence data locality at the register
and shared-memory levels. This paper describes a software framework to
analyze dependencies in parallel GPU threads and perform source-level
restructuring to obtain GPU kernels with varying thread granularity. The
framework supports specification of coarsening factors through source-
code annotation and also implements a heuristic based on estimated
register pressure that automatically recommends coarsening factors for
improved memory performance. We present preliminary experimental
results on a select set of CUDA kernels. The results show that the pro-
posed strategy is generally able to select profitable coarsening factors.
More importantly, the results demonstrate a clear need for automatic
control of thread granularity at the software level for achieving higher
performance.

1 Introduction

Increased programmability and inclusion of higher precision arithmetic hard-
ware has opened the doors for general-purpose computing on the GPU. With
hundreds of cores and extremely fine-grain multithreading, GPUs offer massive
amounts of on-chip parallelism. However, much of the raw computational power
of GPUs today, remain unrealized. Consider the recent release of the top500 list,
where three of the top five systems are configured with GPUs. Yet, none of these
three systems achieve more than 55% of peak floating-point computation, falling
significantly short of the 67% average for the entire list [4]. Furthermore, with the
exception of very regular streaming algorithms, successful porting of HPC ap-
plications to GPUs has required significant amount of manual tuning [22,28,17].
Thus, harnessing the computation power of these emerging platforms merits the
need for software tools that can reason about program behavior, automatically
restructure code to yield better performance and reduce programmer effort.

� This research was supported by IBM through a Faculty Award and by Nvidia Cor-
portation through an equipment grant.

M. O‘Boyle (Ed.): CC 2012, LNCS 7210, pp. 21–40, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

22 S. Unkule, C. Shaltz, and A. Qasem

A key consideration in producing high-performing GPU code is effectively
managing both the thread and memory hierarchies. In the CUDA programming
model, threads are grouped together in blocks and thread blocks are grouped
into grids. Thus, the programmer needs to deal with multi-level parallelism by
ensuring that not only the individual threads but the thread blocks can execute
in parallel. On the other hand, effectively utilizing the memory hierarchy on the
GPU is challenging because it is structured differently than its CPU counterpart
and is divided into various subspaces including global, local, constant, cache,
shared and texture memory. The element that further complicates the issue is
the sharing of memory resources at various levels in the thread hierarchy. For
example, unlike CPUs, the total number of registers is divided among threads
in the same thread block. Similarly, although each thread block has access to
its own shared memory, global memory is shared by all thread blocks in a grid.
Thus, the placement and reuse of data (both intra and inter thread reuse) at
various levels of the memory hierarchy and the decomposition of tasks are inter-
related and needs to be carefully orchestrated by the programmer to obtain the
desired performance.

1
2
3
4
5
6
7
8
9

10

12 11 10 9 8 7 6 5 4 3

no
rm

. e
xe

cu
tio

n
tim

e

allowed registers per thread

walsh
dwthaar
matmul
vecmatmul
scan
binom
align
mergesort
scalarprod

Fig. 1. Performance sensitivity to register pressure of selected CUDA SDK kernels

This work focuses on the register and shared-memory subspaces of the mem-
ory hierarchy and proposes a software-based strategy that enables automatic
adjustment of thread granularity for exploiting inter-thread data locality at the
shared memory level. Although current GPU platforms provide a large number
of registers per block [5], it has been shown that for some kernels, ineffective use
of the register space can cause significant loss in performance [24]. To understand
how register pressure (the ratio between required and available registers) can af-
fect performance, we conducted a simple experiment with a select set of kernels
from the CUDA SDK [2]. Since the number of required registers in a thread
cannot be modified arbitrarily, we used the maxregcount flag in NVIDIA’s nvcc
compiler to control the number of allocated registers, and thereby the register
pressure, in each kernel. Fig. 1 shows normalized execution times for nine ker-
nels as the register pressure is increased progressively by decreasing the available
registers. We observe that except for matrix-vector multiply (vecmatmul), the

Automatic Restructuring of GPU Kernels 23

performance of all other kernels are significantly affected by changes in regis-
ter pressure. Closer inspection revealed that most of this performance loss was
to due additional accesses to local or shared memory which could have been
curbed through better register reuse. One of the main factors that determines
register pressure is thread granularity. Generally, a coarser granularity implies
more work is done per thread with a higher demand for registers, while a finer
granularity indicates lower demands. However, there are two factors that com-
plicate this relationship between register pressure and thread granularity. First,
if sibling threads in a thread block exhibit data locality either at the shared
or global memory levels, then this locality can potentially be exploited at the
register level by fusing multiple threads and increasing granularity. Although
this will increase register pressure, the saved memory references can lead to im-
proved performance. The second complicating issue is that thread granularity is
also intimately tied with occupancy. Since GPU codes generally tend to perform
better with higher occupancy, when increasing granularity for improved register
reuse, care must be taken to not reduce occupancy to the point where it hurts
performance. Therefore, automatic thread coarsening requires careful considera-
tion of these two factors, and striking the right balance between occupancy and
register reuse. Our proposed approach aims to achieve this goal.

Our strategy supports both automatic and semi-automatic methods of thread
coarsening. In the semi-automatic mode, the programmer specifies the coarsen-
ing factor as a source-level pragma, whereas in the automatic method thread
granularity is determined using a compiler heuristic. In both cases, we verify
the legality of the coarsening transformation. To this end, we develop a gener-
alized dependence analysis framework that allows fast analysis of CUDA pro-
grams. The analysis is based on the observation that the CUDA programming
model enforces certain restrictions on thread execution, which are not enforced
on mutlithreaded code for CPUs. For example, only barrier synchronization is
supported among threads within a given thread block while no synchronization
is allowed between thread blocks. These constraints allow for the construction of
a simpler dependence framework and enables us to verify the legality of certain
code transformations that would not be feasible on CPUs. Although, applied
only to thread coarsening in this paper, the dependence framework has wider
applicability and can be used to determine legality and profitability of a range of
transformations including loop fusion and fission, unroll-and-jam and loop inter-
change. To facilitate fully automatic thread coarsening, we analyze the threads
to detect the presence of inter-thread data locality at the shared memory level
and then apply a heuristic that uses estimates of thread occupancy and register
pressure as constraints to select a profitable thread granularity. Thus, the main
contributions of this paper are

• a framework to provide compile-time support for both automatic and
semi-automatic thread coarsening of CUDA kernels

• a generalized dependence analyzer for fast implementation of compiler
optimizations of GPU codes

24 S. Unkule, C. Shaltz, and A. Qasem

• an analytical model to estimate register pressure in kernels, on a per-
thread basis

The rest of the paper is organized as follows. Section 2 describes related work.
Section 3 provides an example, illustrating the coarsening transformation. Sec-
tion 4 describes our dependence analysis framework, the thread coarsening al-
gorithm and the analytical model for estimating register pressure. Section 5
presents an overview of our optimization framework. Preliminary experimental
results appear in Section 6 and finally we conclude in Section 7.

2 Related Work

Because general-purpose computing on GPUs is a fairly new idea and the tech-
nology is still maturing, much of the software-based performance improvement
strategies have been limited to manual optimization. Ryoo et al. [23] present a
general framework for optimizing applications on GPUs. Their proposed strate-
gies include utilizing many threads to hide latency, and using local memories
to alleviate pressure on global memory bandwidth. Govindaraju et al. develop
new FFT algorithms for the GPUs and hand optimize the kernels to achieve
impressive performance gains over the CPU-based implementation [17]. The key
transformation used in their work was the combining of transpose operations
with FFT computation. Demmel and Volkov [24] manually optimize the matrix
multiplication kernel and produce a variant that is 60% faster than the auto-
tuned version in CUBLAS 1.1. Among the optimization strategies discussed in
this work are the use of shorter vectors at program level and the utilization of
the register file as the primary on chip storage space.

There has been some work in combining automatic and semi-automatic tun-
ing approaches with GPU code optimization. Murthy et al. have developed a
semi-automatic, compile time approach for identifying suitable unroll factors
for selected loops in GPU programs [15]. The framework statically estimates
execution cycle count of a given CUDA loop, and uses the information to se-
lect optimal unroll factors. Liu et al. [27] propose a GPU adaptive optimization
framework (GADAPT) for automatic prediction of near-optimal configuration of
parameters that affect GPU performance. They take unoptimized CUDA code as
input and traverse an optimization search space to determine optimal parame-
ters to transform the unoptimized input CUDA code into optimized CUDA code.
Choi et al. present a model-driven framework for automated performance tuning
of sparse matrix-vector multiply (SpMV) on systems accelerated by GPU [12].
Their framework yields huge speedups for SpMV for the class of matrices with
dense block substructure, such as those arising in finite element method appli-
cations. Williams et al. have also applied model-based autotuning techniques
to sparse matrix computation that have yielded significant performance gains
over CPU-based autotuned kernels [25]. Nukada and Matsuoko also provide a
highly-optimized 3D-FFT kernel [21]. Work on autotuning general applications
on the GPU is somewhat limited. Govindaraju et al. propose autotuning tech-
niques for improving memory performance for some scientific applications [16]

Automatic Restructuring of GPU Kernels 25

and Datta et al. apply autotuning to optimize stencil kernels for the GPU [14].
The MAGMA project has focused on autotuning dense linear algebra kernels for
the GPU, successfully transcending the ATLAS model to achieve as much as a
factor of 20 speedup on some kernels [20]. Grauer-Gray and Cavazos present an
autotuning strategy for utilizing the register and shared memory space for belief
propagation algorithms [18].

Automatic approaches to code transformation has been mainly focused on
automatically translating C code to efficient parallel CUDA kernels. Baskaran
et al. present an automatic code transformation system (PLUTO) that gen-
erates parallel CUDA code from sequential C code, for programs with affine
references [8]. The performance of the automatically generated CUDA code is
close to hand-optimized CUDA code and considerably better than the bench-
marks’ performance on a multicore CPU. Lee et al. [19] take a similar approach
and develop a compiler framework for automatic translation from OpenMP to
CUDA. The system handles both regular and irregular programs, parallelized
using OpenMP primitives. Work sharing constructs in OpenMP are translated
into distribution of work across threads in CUDA. However the system does not
optimize data access costs for access in global memory and also does not make
use of on-chip shared memory.

The work presented in this paper distinguishes itself from earlier work in two
ways. First the focus here is on automatic compiler methods rather than man-
ual optimization techniques. Second, the approach supports direct optimization
of CUDA source rather than C or OpenMP variants. We do not claim that
this approach is superior to the approaches proposed previously but rather that
framework can be used in conjunction with many of the strategies mentioned in
this section.

3 An Example

In this section, we use a simple example to illustrate the interaction between
data locality and thread granularity and discuss its performance implications.
Consider the CUDA kernel shown in Fig. 2(a). In this kernel, all threads are
organized in one single-dimensional thread block and each thread computes one
element of array A, based on elements in B and C. Arrays A and B are allocated
in global memory whereas C is allocated in shared memory. Because the compu-
tation is based on neighboring elements in B and C, the kernel exhibits temporal
reuse in both shared and global memory. Values in B and C, accessed in thread
i are reused by thread i + 1. Although the register pool on a multiprocessor
is shared among threads in a warp, the distribution of registers occurs before
thread execution and hence, during execution a thread cannot access registers
that belong to a co-running thread. This implies that inter-thread data reuse
will remain unexploited in the version of code shown in Fig. 2(a).

In Fig. 2(b), the kernel is transformed to perform two updates per thread and
is invoked with half as many threads as the original version, thereby increasing
thread granularity. This variant converts inter-thread reuse of data elements in

26 S. Unkule, C. Shaltz, and A. Qasem

__global__
void stencil (float *A,
 float *B, int nx) {

 __shared__ float C[nx];
 int i = threadIdx.x;

 if(i >= 1 && i < nx)
 A[i] = B[i] + B[i–1] +
 C[i] + C[i–1];
}

// kernel invocation
stencil<<<1, N>>>(A,B,N);

__global__
void stencil (float *A,
 float *B, int nx) {

 __shared__ float C[nx];
 int i = threadIdx.x * 2;

 if (i >= 1 && i < nx - 1) {
 A[i] = B[i] + B[i–1] + C[i] + C[i–1];
 A[i + 1] = B[i+1] + B[i] + C[i+1] + C[i];

 }

// kernel invocation
stencil<<<1, N/2>>>(A,B,N);

(a) kernel with one update per thread

inter thread reuse in

shared memory

potential register reuse

(b) kernel with two updates per thread

Fig. 2. Inter thread locality in stencil computation

B and C, into intra-thread reuse, allowing the compiler to allocate the values
B[i] and C[i] into registers of thread i, leading to better register reuse1. Thus,
the coarsening transformation shown in Fig. 2(b) can potentially reduce shared
memory traffic by 25%. In the CUDA programming model, however, employing
a fewer number of threads for the same computation generally implies a lower
warp occupancy. For the kernel in Fig. 2, if we assume 8 registers per thread
and 512 threads per block, then for a GPU with CC 2.0, we would have a 100%
occupancy. The occupancy remains at a 100% when we reduce thread count to
256. However, it falls to just 67% when the thread count is reduced to 128. Thus,
for this kernel, executing two updates per thread will almost inevitably lead to
performance gains but any further coarsening will have to be weighed against
the cost of the reduced occupancy.

The other performance consideration in this context is register pressure. In-
creasing thread granularity can potentially increase the number of required reg-
isters. This not only can lead to spills and cause more accesses to global memory
but also have an impact on occupancy. If we assume a register count increase
of two per coarsening factor for the example kernel then for a factor of 12, the
number of required registers is 32, which drops the occupancy down to 33%.
Therefore, all three factors : inter-thread data locality, register pressure and
occupancy, need to be considered for profitable thread coarsening.

4 Automatic Thread Coarsening

In this section, we describe the main code transformation in our proposed ap-
proach and discuss the analyses needed to apply this transformation safely and
profitably.

1 Our experience showed that nvcc does not always perform scalar replacement and
hence we included this transformation in our framework

Automatic Restructuring of GPU Kernels 27

4.1 Notation and Terminology

We introduce the following notation and terminology to describe our transfor-
mation framework

N number of simple high-level statements in kernel
T number of threads in thread block
si ith statement in kernel
synchi syncthreads primitive, appearing as ith statement in ker-

nel
si sj data dependence from si to sj
S(i,p) a simple statement instance: ith statement in kernel, exe-

cuted by pth thread
S(i,p) S(j,q) a dependence between statement instances S(i,p) and S(j,q),

where S(i,p) is the source and S(j,q) is the sink of the de-
pendence

Cx coarsening factor along dimension x

4.2 Dependence Analysis

The goal of our dependence analysis framework is to determine if there is a de-
pendence between two statement instances. To achieve this, we augment a data
dependence graph (DDG) to represent thread and statement instances and main-
tain data access information across execution of multiple threads. We assume
that the input to our framework is a CUDA program that is legally parallelized
for execution on a GPU. This assumption simplifies some of the analysis since
it implies, that in the absence of syncthreads() primitives (i.e., barrier syn-
chronization), statement instances that belong to different threads (or threads
blocks) are dependence-free. Thus, given this framework we can make the fol-
lowing claim:

if � ∃ syncthreads() primitives in the kernel body then
� ∃S(i,p) S(j,q), ∀i, j ∈ 1, ..., N and ∀p, q ∈ 1, ..., T

To detect and estimate inter-thread data locality, the analyzer needs to con-
sider read-read reuse of data, which may or may not occur between statement
instances, regardless of parallel configuration. For this reason, we extend our de-
pendence framework to handle input dependences. Our framework handles the
following two cases of dependence between two statement instances:

(i) ∃ S(i,p) S(j,q), iff S(i,p) and S(j,q) access the same memory location
(ii) ∃ S(i,p) S(j,q), iff ∃ synchk such that i < k < j

Conventional dependence analysis [7] can be applied to statements within the
body of a kernel to determine if statements access the same memory location. For
CUDA kernels, one issue that complicates the analysis is that memory accesses

28 S. Unkule, C. Shaltz, and A. Qasem

can be dependent on the value of thread ID. Hence, although a subscript analysis
of the source may show two statements as accessing the same memory location,
in reality they would access different memory locations. To handle this situation
we take the following strategy : we first identify all statements in the kernel
that are dependent on thread ID values; expand index expressions to replace
subscripts with thread ID values (using scalar renaming [13]) and then apply
the subscript test on the expanded expressions. Once all data dependences have
been identified, our dependence analyzer makes another pass through the DDG
to identify dependences that arise from the presence of syncthreads(). This
final pass mainly involves checking for the existence of condition (ii), mentioned
above.

4.3 Safety Analysis

For simplicity, we only describe the analysis necessary to safely apply thread coars-
ening along the innermost dimension, x. The same principles can be adopted, in a
relatively straightforward manner, for coarsening along the y dimension and also
for increasing thread block granularity (i.e., fusing two thread blocks).

Two factors determine the legality of the coarsening transformation. One is
the relationship between the coarsening factor Cx and the number of threads in
the original kernel T and the other is the presence of coarsening preventing de-
pendences. For coarsening to be legal, there have to be enough threads available
in the original configuration to satisfy the coarsening factor. If the coarsening
factor is larger than the original thread count then extra work will be performed
in each thread, violating the semantics. Also, when Cx does not evenly divide
T , special handling of the remaining threads is necessary, which complicates the
transformation and is likely to have a negative impact on overall performance.
For this reason, we enforce the constraint that Cx evenly divides T , for coars-
ening to be legal. Thus, the first legality constraint for coarsening is as follows:

T mod Cx = 0 (1)

A dependence between two statement instances will cause coarsening to be il-
legal, if as a result of coarsening, the direction of the dependence is reversed.
We refer to such a dependence, as a coarsening preventing dependence (cpd)
and derive the following conditions under which a cpd will not occur when the
coarsening factor is Cx.

� ∃ S(i,p) S(j,p−q), where i, j ∈ 1, ..., N, p ∈ {Cx + 1, . . . , T }, q ∈ {1, . . . , Cx}
(2)

or

∀S(i,p) S(j,p−q), where i, j ∈ 1, ..., N, p ∈ {Cx + 1, . . . , T }, q ∈ {1, . . . , Cx}

� ∃ S(k,p) S(j,p−q), where k ∈ {j + 1, . . . , N} (3)

Constraint (2) describes the situation where we have no dependence between
statement instances within the coarsening range. Note, we are only concerned

Automatic Restructuring of GPU Kernels 29

about dependences that emanate from a higher numbered thread. For the coars-
ening transformation, dependences that emanate from a lower numbered thread
is irrelevant, since, by default, all statement instances in p get executed after the
last statement in q, where p > q. Thus, all such dependences will be preserved
automatically. Constraint (3) considers the case where there is a dependence
within the coarsening range but we can avoid violating this dependence if, in the
merged thread body, we can move the source statement instance above the sink
of the dependence. In our framework, we use a variant of the partial redundancy
elimination (PRE) algorithm [9] that performs this task, once threads have been
coarsened.

4.4 Profitability Analysis

There are two main profitability considerations for the thread coarsening trans-
formation. First, we need to ensure that there is enough inter-thread data locality
in the kernel to make coarsening worthwhile. Second, we need to determine if
coarsening will cause an excessive increase in register pressure.

Detecting Inter-thread Locality. A CUDA kernel exhibits inter-thread data
locality if two threads in the same thread block access the same location, either
in shared memory or global memory. Generally, scalars are allocated to registers
within each thread and hence coarsening does not help with reuse of such values.
Thus, we focus on array references which are typically not allocated to registers
by the compiler. Also, on the Fermi chip, it is possible for two threads to access
two memory locations that map to the same cache line. However, we do not
explicitly consider the case of spatial reuse in this paper.

Given this framework, an array reference in the kernel can only exhibit ei-
ther self-temporal or group-temporal inter-thread data reuse. Self-temporal reuse
can only occur if no subscript in the array reference depends on any of the
thread ID variables. If the subscripts are not dependent on thread ID variables
it implies that for that reference, all threads in the thread block will access the
same memory location. Thus, identifying self-temporal reuse is simply a matter
of inspecting each array reference and determining if the subscript values are
independent of thread ID values.

To compute group-temporal reuse we introduce the notion of thread inde-
pendent dependence. There is a thread independent dependence between two
references if it can be established that there is a dependence between the two
references when the entire kernel executes sequentially. The advantage of us-
ing thread independent dependences is that their existence can be determined
by using conventional dependence tests. Once group-temporal reuse has been
established between two references M1 and M2 in a thread independent way,
we determine if the locality translates to inter-thread locality when the task is
decomposed into threads. For inter-thread reuse to exist, at least one subscript
in either reference has to be dependent on the thread ID value. This implies that

30 S. Unkule, C. Shaltz, and A. Qasem

Algorithm 1. Estimating Register Pressure
repeat

read each node in AST
if node is of type variable declaration then

add the variable name to the global array declared for storing all distinct variables in kernel

if variable name and data type match any of the kernel input variable then
set the scope as global

end if
if variable name is preceded by shared keyword then

set scope as shared else set the scope as register
end if

else if node type is assignment then
if RHS has only one term and that term is a variable then

save the index of RHS variable with LHS variable
end if

else if statement type is comparison then
for all variables present in the statement increment read count

end if
until end of AST

although M1 and M2 access the same memory location, the access may occur
from two different threads. We formally, define the presence of inter-thread reuse
as follows

There is inter-thread data reuse in kernel K if

(i) there exists an array reference A with subscripts i0, . . . , in in K such that
no i ∈ {i0, . . . , in} is a function of the thread ID value

(ii) there exists thread independent dependence between array reference M1 and
M2, and at least one subscript in M1 or M2 is an affine function of the
thread ID

Estimating Register Pressure. Both the PTX analyzer [1] and the CUDA
profiler [5] can provide fairly accurate per-thread register utilization informa-
tion. Nevertheless, because we apply the code transformations on CUDA source,
we require a method to estimate register pressure at the source level. To this
end, we developed a register pressure estimation algorithm based on the strategy
proposed by Carr and Kennedy [11]. An outline of our algorithm is given in Al-
gorithm 1. Our strategy operates on the source code AST and the DDG built by
our framework. The basic idea is to identify references that exhibit register level
reuse. If there are multiple references with register level reuse then we predict
that the compiler will coalesce them into a single register. One limitation of this
approach is that it does not consider the possibility of any other transformation
being applied to the kernel other than thread coarsening. We plan to extend this
model in future to address this issue.

4.5 Code Transformation

The goal of the coarsening transformation is to restructure the kernel to perform
more work in each thread. In essence, for a coarsening factor CF (CF > 1), we

Automatic Restructuring of GPU Kernels 31

__global__ void kernel1(int *in) {

 __shared__ float as[];

 sum = as[threadIdx.x] + 1;

}

(a) before

__global__ void kernel1(int *in){
 __shared__ float as[];
 int __i = threadIdx.x;
 for(int _k=0;_k<CF;
 _k++,__i+=(BS/CF)){
 sum = as[__i] + 1;

 }
}

(b) after

Fig. 3. Simple Thread Coarsening

want thread i to execute statements in thread (i+1) through (i+CF − 1). This
can be achieved by introducing a loop in the kernel body that iterates CF times.
Of course, the main challenge is in determining what statements are included
in the body of the loop and how the memory references need to be adjusted
to affect the change. Fig. 3 shows parts of a CUDA kernel in its original and
thread coarsened form. Here, BS represents block size, while CF represents the
coarsening factor. In the coarsened version, a loop is added around the core
computation to execute CF times. The variable i is used to store the value
of the current thread id. This variable is incremented by BS/CF during each
iteration of the loop, ensuring that the correct location in array as is accessed
in each iteration.

As mentioned in Section 4.3, the presence of syncthreads(), which acts as a
barrier synchronization, complicates the coarsening transformation. We identify
three separate cases related to syncthreads() that need to be handled by our
algorithm:

(i) syncthreads() is not present in the kernel: This is the simple case that
corresponds to constraint (2), derived in Section 4.3. This implies there are
no dependences between statement in different threads. Therefore, in this
case, we only need to insert the loop and adjust the memory references (as
shown in Fig. 3).

(ii) syncthreads() is present but is not control-dependent on any loop: Fig. 4
depicts the scenario where a syncthreads() primitive is present in the
kernel but the primitive does not appear inside a loop. In this case, to increase
thread granularity, we can insert the loop and then distribute it around
the syncthreads() statement. The distribution ensures that the barrier
synchronization is preserved, as it forces all statements controlled by the
synchronization directive to execute before the syncthreads() statement.
The value of i needs to be reinitialized at the point of distribution to ensure
correct memory reference by statements in the second loop.

The case where there is a dependence from the part of the code above
syncthreads() to the part following it and the value in the dependence

32 S. Unkule, C. Shaltz, and A. Qasem

__global__ void kernel2(int *in)
{
as[threadIdx.x] = in[index];
__syncthreads ();
sum = as[threadIdx.x] +
 as[threadIdx.x+2];
. . . .
}

(a) before

__global__ void kernel2(int *in){
 int __i = threadIdx.x;
 for(int _k = 0; _k < CF;
 _k++,__i+=(BS/CF)){
 as[__i] = in[index];
 }
 __syncthreads ();
 __i = threadIdx.x;
 for(int _k = 0; _k < CF;
 _k++,__i+=(BS/CF)){
 sum = as[__i] + as[__i+2]

 }
}

(b) after

Fig. 4. Thread Coarsening in the presence of syncthreads()

is a function of thread ID, needs special handling. In this situation, while
distributing the loop we need to change the scalar variable to an array with
size equal to CF . This allows for all values computed in the top loop to be
saved and thus preserves the dependence across the two loops.

(iii) syncthreads() is present and is control-dependent on some loop: If a
synchronization primitive appears inside a loop in the kernel then loop dis-
tribution results in an illegal transformation. In such a case, we perform
(implicitly) an unroll of the loop by the coarsening factor. Fig. 5 illustrates
this transformation.

__global__ void kernel3 (float* A) {

 __shared__ float as[] , sum;

 for (int i = 0; i <size; i++) {
 int v1 = as[threadIdx.x] ;
 __syncthreads();
 sum += as[i];
 }

}

(a) before

__global__ void kernel3 (float* A){

__shared__ float as[],sum;
. . . .
for (int i = 0; i <size; i++){
 int v1 = as[threadIdx.x] ;
 int v2 = as[threadIdx.x+(BS/CF)];
 __syncthreads();
 sum += as[i];
 }
. . . .
}

(b) after

Fig. 5. Thread Coarsening in the presence of syncthreads() in loops

Our coarsening algorithm accounts for all three cases mentioned above. The
current implementation will detect the third case but the unrolling of the coars-
ening loop has to be performed by hand. The algorithm for thread coarsening is
shown in Algorithm 2.

Automatic Restructuring of GPU Kernels 33

Algorithm 2. Thread Coarsening Transformation
get the first reference of the thread Id
declare a new variable (i) and assign thread Id value to it
add the variable declaration before the first reference of thread Id
replace all the occurrences of thread Id with this new variable (i)
from block size and coarsening factor calculate the increment value (inc) for thread Id
create a for loop with iterations equal to coarsening factor and increment the value of i by inc
with each iteration
add this for loop after the variable declaration i
find all the occurrence of syncthreads() in the kernel and store in a list
if list is not empty then

if none of the occurrence of syncthreads() are inside a loop then
repeat

take reference of next occurrence of syncthreads()
limit the for loop body before this reference
after the reference of syncthreads() reinitialize variable i to thread Id value
start a new for loop after reinitialization of i variable
check for occurrences of syncthreads() in rest of the code

until end of list
else

return from function with error signal
end if

else
expand loop body till last statement of kernel and return

end if

5 CREST : CUDA Kernel Restructuring and AutoTuning

Fig. 6 gives an overview of CREST, our code restructuring and tuning framework
for CUDA kernels. The framework leverages several existing tools including nvcc
for code generation, HPCToolkit [6] and PAPI [10] for collection of performance
metrics, and PSEAT [26] for online search algorithms. The rest of the components
have been developed from scratch.

Kernel
Extractor nvcc

CUDA Prof
(PAPI)

CUBIN Code
Restructurer EXECUTE

FEEDBACK

PSEAT
search + ML modeling

(Annotated)
CUDA
Source

SVM KCCA GA planned
extension

Fig. 6. Overview of CREST

5.1 Kernel Extraction

To facilitate analysis, a stand alone Perl script is used to extract the kernel from
the CUDA source file before parsing. This simplifies the parser by setting aside
everything external to the kernel being analysed. The extraction is performed
on a line by line basis, using Perl regular expressions to detect the kernel specific
portion of the source file. The kernel is extracted into a separate file for further
processing and everything else is held in temporary files for later reassembly.

34 S. Unkule, C. Shaltz, and A. Qasem

The kernel extraction is designed to be independent of the succeeding phases,
and could be used in any application where CUDA kernels are to be examined.

5.2 Code Restructurer

At the heart of the framework is a source-to-source code transformation tool
that analyzes dependences in CUDA kernels and implements a range of opti-
mizations, some of which, to our knowledge, are currently not supported by any
source-to-source transformer or by nvcc. These transformations include unroll-
and-jam, scalar replacement, multi-level loop fusion and distribution, loop inter-
change, and thread coarsening. More specialized transformations such as array
padding for eliminating conflicts in cache (on Fermi) and shared memory banks,
array contraction for orchestrating placement of data, and iteration space splic-
ing for reducing conditionals in kernels are currently being included in the tool.
In addition to providing support for high-level code transformations, the code
restructurer also implements several GPU specific heuristics for profitable appli-
cation of these transformations. For example, when applying tiling on the GPU,
the framework selects a tile size (and shape) that aims to improve intra-thread
locality and reduce the number of synchronizations.

Another useful feature of the code restructurer is its support for fine-grain
control over optimizations through source code annotation. Fig. 7 shows exam-
ple directives for thread coarsening and unroll-and-jam, embedded in the 3D
Jacobi kernel. A directive is simply a comment line that specifies a particular
transformation and one or more optional parameter values. In the matrix trans-
pose code, the directive specifies coarsening of threads within a block, along the
x dimension by a factor of two, and unroll-and-jam of the outer loop by a factor
of 4. These directives can be associated with any loop, data structure, or kernel,
providing explicit control over the scope of the optimization. This level of fine-
grain control over transformations is generally not available in compilers. nvcc
exposes a few control knobs to the user (e.g., –maxregcount). For comprehensive
tuning of CUDA kernels, however, this merely scratches the surface.

5.3 Autotuning Support

Autotuning of kernels and applications has emerged as a dominant strategy in
the HPC domain. As architectures and applications grow in scale and complexity,
the need for autotuning is likely to be even more pronounced. With this picture in
mind, we have designed our framework with support for autotuning. Currently,
cudaprof is used to collect performance feedback from CUDA kernel execution.
This feedback is sent to a search engine, PSEAT, that implements a variety
of online (genetic algorithm, simulated annealing), and offline (support vector
machines, kernel component analysis) search methods. Our future plans include
developing an interface with PAPI 4.2 to collect better diagnostic feedback to
make the tuning process more efficient.

Automatic Restructuring of GPU Kernels 35

// pragma specifies action, dimension and factor

coarsen X 2

__global__ void jacobi(float *un, float *u,) {

 unsigned int j = blockIdx.x * BLOCK_DIM + threadIdx.x;

 unsigned int k = blockIdx.y * BLOCK_DIM + threadIdx.y;

uj 4

 for (unsigned int i = 1; i <= N; i++)

 for (; j <= N; k++)

 for (; k <= N; k++)

 Un[i, j, k] = (U[i-1, j, k] + U[i+1, j, k]

 + U[i, j-1, k] + U[i, j+1, k]

 + U[i, j, k-1] + U[i, j, k+1]) * c

}

Fig. 7. Source code directives in CREST

Table 1. Description of CUDA kernels used in experimental evaluation

Kernel Description Source

stencil computes sum of neighbouring elements within a
block

Hand coded

reduce computes min, max, sum SC CUDA Tutorial [3]
lintext demonstrates use of textures bound to pitch linear

memory
CUDA SDK 3.2

surfacewrite demonstrates use of texture fetches in CUDA CUDA SDK 3.2
transpose performs transpose of a single-precision matrix CUDA SDK 3.2

6 Experimental Results

Experimental Setup. All experiments are performed on a Tesla C2050
NVIDIA Fermi GPU. The card has a compute capability of 2.0 and consists of
448 cores divided among 14 multiprocessors. Number of 32-bit registers allocated
to each multiprocessor is 32K, while the amount of shared memory available per
block is 48K. All CUDA programs are compiled with nvcc version 3.2, and all C
programs are compiled with GCC 4.1.2. CUDA kernels used in our experiments
are described in Table 1.

Performance Potential. We first conduct an experiment to gauge the effec-
tiveness of the proposed strategy under ideal circumstances. To this end, we
construct a synthetic benchmark synth with a high degree of inter-thread reuse.
synth, uses an array with 512K elements which is divided into 1024 blocks of
size 512. Each thread running on a block, computes the sum of all 512 elements
residing in the block which are stored in shared memory. Threads running on
different blocks all access different elements.

We ran synth with varying coarsening factors from 2 to 16. Fig. 8 shows
the overall performance, occupancy, and shared and global memory access for
synth as the coarsening factor is varied. The best speedup of 8.5 is obtained at a

36 S. Unkule, C. Shaltz, and A. Qasem

0
1
2
3
4
5
6
7
8
9

2 4 6 8 10 12 14 16 18

Sp
ee

d
up

 O
ve

r B
as

el
in

e

Number of Outputs / thread

Speedup

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16 18

O
cc

up
an

cy

Number of Outputs / thread

Occupancy

0

50000

100000

150000

200000

250000

300000

350000

0 2 4 6 8 10 12 14 16 18

Sh
ar

ed
 M

em
or

y
Ac

ce
ss

Number of Outputs / thread

Shared Access

2300

2310

2320

2330

2340

2350

2360

2370

2380

0 2 4 6 8 10 12 14 16 18

G
lo

ba
l M

em
or

y
Ac

ce
ss

Number of Outputs / thread

Global Access

Fig. 8. Performance characteristics of synth for varying coarsening factors

coarsening factor of 16. This performance gain is directly attributed to reduced
shared and global memory traffic. The shared memory traffic never increases as
a result of increasing the thread granularity, however, there is a spike in global
memory access when going from factor 2 to 4. This spike may be explained by
increased register pressure. Our model estimates an increase of 8 registers per
thread for each coarsening factor. Thus, the spike indicates a situation where the
combination of register pressure and thread block size causes spills. Interestingly,
the maximum performance is achieved at the lowest occupancy levels (16%),
which emphasizes the need for considering factors other than occupancy when
optimizing code for GPUs.

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10

Sp
ee

d
uP

 O
ve

r B
as

el
in

e

Number of Outputs/thread

Coarsening in X direction

0
0.5

1
1.5

2
2.5

3
3.5

4

0 2 4 6 8 10

Sp
ee

d
up

 O
ve

r B
as

el
in

e

Number of Outputs/thread

Coarsening in X and Y direction

Fig. 9. Multi-dimensional coarsening with transpose

Automatic Restructuring of GPU Kernels 37

0

0.5

1

1.5

2

2.5

0 5 10 15 20

Sp
ee

du
p

O
ve

r B
as

el
in

e

Number of Outputs/thread

Speedup

Fig. 10. Performance sensitivity to coarsening factors for reduce

Multi-dimensional Coarsening. We evaluate the effects of coarsening along
multiple dimensions with transpose. The chart on the left in Fig. 9 shows per-
formance of transpose for different coarsening factors along the X dimension,
while the chart on the right depicts the performance when coarsening is done
along both X and Y dimensions. Clearly, for transpose, it is more profitable
to coarsen along both X and Y dimensions, which obtains a speedup of 3.5 over
the baseline version. We also note that performance degrades (below the base-
line) for larger coarsening factors when coarsening along the X dimension. This
indicates that there is not enough inter-thread locality along this dimension to
outweigh the costs of lower occupancy. Therefore, it is important to consider
data locality in other dimensions when coarsening.

Performance Sensitivity. Although thread coarsening helps in improving
performance, it is not guaranteed that performance will always increase. Fig. 10
shows the speedup observed for reduce with different coarsening factors. We
observe that performance increases when the kernel is coarsened by factors of
2 and 4 but beyond that it starts decreasing rapidly, with factor 16 more than
doubling the execution time. On further inspection, we found that this decrease
in performance is mainly due to increase in global memory and shared mem-
ory accesses. This indicates that perhaps not enough registers were available to
exploit the exposed data reuse. The other factor that contributed to the loss is
the lower occupancy. For reduce, our model was able to rightly predict that the
optimal coarsening factor is 4.

Overall Performance. Fig. 11 shows the speedup obtained for each kernel in
our test suite, using our strategy. We only selected kernels that had some amount
of inter-thread locality. Therefore, it is not too surprising that we observe perfor-
mance improvement on all five kernels. Themore interesting aspect of these results
is that not all coarsening factors yielded good performance for all kernels. In fact,
for some coarsening factors the performance degraded significantly. However, our
proposed strategy was able to weed out the bad values and balance the cost of
lower occupancy against the benefits of reduced memory traffic to pick suitable
coarsening factors that resulted in significant performance gains.

38 S. Unkule, C. Shaltz, and A. Qasem

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Stencil Reduce Lintext SurfaceWrite Transpose

 S
pe

ed
 u

p
ov

er
 B

as
el

in
e

Fig. 11. Performance improvement from thread coarsening

7 Conclusions

This paper presented an automatic approach for controlling thread granular-
ity in GPU kernels. We described the analysis required to apply the coarsening
transformation, safely and profitably. The dependence analyzer presented in this
paper can serve as a framework for implementing a range of memory hierarchy
transformations on the GPU. The model for register pressure estimation can
be used in developing compiler heuristics and also in the realm of autotuning.
The experimental results suggest that the proposed approach can select suit-
able coarsening factors to improve register reuse, reduce shared memory traffic
and increase overall performance for kernels that exhibit inter-thread data local-
ity. These results are preliminary and more extensive experimentation is needed
to evaluate the true effectiveness of the proposed method. Nevertheless, these
results reiterate the need for an automatic strategy for controlling thread gran-
ularity for improved performance of GPU code.

Acknowledgement. We would like to thank the reviewers for helping us im-
prove the quality of the final version of this paper. We also thank Dr. Martin
Burtscher for allowing us compute time on his GPUs.

References

1. CUDA PTX ISA, http://www.nvidia.com/content/CUDAptxisa1.4.pdf
2. GPU Computing SDK, http://developer.nvidia.com
3. Kernel for min-max and reduction, http://supercomputingblog.com/cuda/

cuda-tutorial-3-thread-communication/

4. Top 500 Supercomputer Sites, http://www.top500.org
5. CUDA Programming Guide, Version 3.0. NVIDIA (2010)
6. Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey,

J., Tallent, N.R.: Hpctoolkit: tools for performance analysis of optimized parallel
programs. Concurrency and Computation: Practice and Experience 22(6), 685–701
(2010)

http://www.nvidia.com/content/CUDAptxisa1.4.pdf
http://developer.nvidia.com
http://supercomputingblog.com/cuda/cuda-tutorial-3-thread-communication/
http://supercomputingblog.com/cuda/cuda-tutorial-3-thread-communication/
http://www.top500.org

Automatic Restructuring of GPU Kernels 39

7. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures. Morgan
Kaufmann (2002)

8. Baskaran, M.M., Ramanujam, J., Sadayappan, P.: Automatic C-to-CUDA Code
Generation for Affine Programs. In: Gupta, R. (ed.) CC 2010. LNCS, vol. 6011,
pp. 244–263. Springer, Heidelberg (2010)

9. Briggs, P., Cooper, K.D.: Effective partial redundancy elimination. In: Proceedings
of the ACM SIGPLAN 1994 Conference on Programming Language Design and
Implementation, PLDI 1994 (1994)

10. Browne, S., Dongarra, J., Garner, N., London, K., Mucci, P.: A scalable cross-
platform infrastructure for application performance tuning using hardware coun-
ters. In: ACM/IEEE 2000 Conference, Supercomputing (November 2000)

11. Carr, S., Kennedy, K.: Improving the ratio of memory operations to floating-
point operations in loops. ACM Transactions on Programming Languages and
Systems 16(6), 1768–1810 (1994)

12. Choi, J.W., Singh, A., Vuduc, R.W.: Model-driven autotuning of sparse matrix-
vector multiply on GPUs. In: PPoPP 2010: Proceedings of the 15th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp.
115–126. ACM, New York (2010)

13. Cytron, R., Ferrante, J.: What’s in a name? -or- the value of renaming for paral-
lelism detection and storage allocation. In: ICPP 1987, pp. 19–27 (1987)

14. Datta, K., Murphy, M., Volkov, V., Williams, S., Carter, J., Oliker, L., Patter-
son, D., Shalf, J., Yelick, K.: Stencil computation optimization and auto-tuning
on state-of-the-art multicore architectures. In: SC 2008: Proceedings of the 2008
ACM/IEEE Conference on Supercomputing, pp. 1–12. IEEE Press, Piscataway
(2008)

15. Murthy, G., Ravishankar, M., Sadayappan, M.B., Optimal, P.: loop unrolling for
gpgpu programs. In: IEEE International Symposium on Parallel Distributed Pro-
cessing (2010)

16. Govindaraju, N.K., Larsen, S., Gray, J., Manocha, D.: A memory model for
scientific algorithms on graphics processors. In: SC 2006: Proceedings of the
2006 ACM/IEEE Conference on Supercomputing, p. 89. ACM, New York
(2006)

17. Govindaraju, N.K., Lloyd, B., Dotsenko, Y., Smith, B., Manferdelli, J.: High per-
formance discrete fourier transforms on graphics processors. In: SC 2008: Proceed-
ings of the 2008 ACM/IEEE Conference on Supercomputing, pp. 1–12. IEEE Press,
Piscataway (2008)

18. Grauer-Gray, S., Cavazos, J.: Optimizing and Auto-tuning Belief Propagation on
the GPU. In: Cooper, K., Mellor-Crummey, J., Sarkar, V. (eds.) LCPC 2010.
LNCS, vol. 6548, pp. 121–135. Springer, Heidelberg (2011)

19. Lee, S., Min, S.J., Eigenmann, R.: OpenMP to GPGPU: a compiler framework for
automatic translation and optimization. In: Proceedings of the 14th ACMSIGPLAN
Symposium on Principles and Practice of Parallel Programming (2009)

20. Nath, R., Tomov, S., Dongarra, J.: Accelerating GPU Kernels for Dense Linear Al-
gebra. In: Palma, J.M.L.M., Daydé, M., Marques, O., Lopes, J.C. (eds.) VECPAR
2010. LNCS, vol. 6449, pp. 83–92. Springer, Heidelberg (2011)

21. Nukada, A., Matsuoka, S.: Auto-tuning 3-d FFT library for CUDA GPUs. In: SC
2009: Proceedings of the Conference on High Performance Computing Networking,
Storage and Analysis, pp. 1–10. ACM, New York (2009)

40 S. Unkule, C. Shaltz, and A. Qasem

22. Rahimian, A., Lashuk, I., Veerapaneni, S., Chandramowlishwaran, A., Malhotra,
D., Moon, L., Sampath, R., Shringarpure, A., Vetter, J., Vuduc, R., Zorin, D.,
Biros, G.: Petascale direct numerical simulation of blood flow on 200k cores and
heterogeneous architectures. In: Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and Analysis
(2010)

23. Ryoo, S., Rodrigues, C.I., Baghsorkhi, S.S., Stone, S.S., Kirk, D.B., Hwu, W.M.W.:
Optimization principles and application performance evaluation of a multithreaded
GPU using CUDA. In: Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (2008)

24. Volkov, V., Demmel, J.W.: Benchmarking GPUs to tune dense linear algebra.
In: SC 2008: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing
(2008)

25. Williams, S., Oliker, L., Vuduc, R., Shalf, J., Yelick, K., Demmel, J.: Optimization
of sparse matrix-vector multiplication on emerging multicore platforms. Parallel
Comput. 35(3), 178–194 (2009)

26. Yi, Q., Qasem, A.: Exploring the Optimization Space of Dense Linear Algebra
Kernels. In: Amaral, J.N. (ed.) LCPC 2008. LNCS, vol. 5335, pp. 343–355. Springer,
Heidelberg (2008)

27. Yixun, L., Zhang, E.Z., Shen, X.: A cross-input adaptive framework for GPU pro-
gram optimizations. In: Proceedings of the 2009 IEEE International Symposium
on Parallel & Distributed Processing (2009)

28. Zhuo, Y., Wu, X.L., Haldar, J.P., Hwu, W.M., Liang, Z.P., Sutton, B.P.: Accelerat-
ing iterative field-compensated mr image reconstruction on GPUs. In: Proceedings
of the 2010 IEEE International Conference on Biomedical Imaging: From Nano to
Macro, ISBI 2010 (2010)

Programming Paradigm Driven Heap Analysis

Mark Marron1, Ondřej Lhoták2, and Anindya Banerjee1

1 IMDEA Software Institute
{mark.marron,anindya.banerjee}@imdea.org

2 University of Waterloo
olhotak@uwaterloo.ca

Abstract. The computational cost and precision of a shape style heap analy-
sis is highly dependent on the way method calls are handled. This paper intro-
duces a new approach to analyzing method calls that leverages the fundamental
object-oriented programming concepts of encapsulation and invariants. The anal-
ysis consists of a novel partial context-sensitivity heuristic and a new take on
cutpoints that, in practice, provide large improvements in interprocedural analy-
sis performance while having minimal impacts on the precision of the results.

The interprocedural analysis has been implemented for .Net bytecode and an
existing abstract heap model. Using this implementation we evaluate both the
runtime cost and the precision of the results on a number of well known bench-
marks and real-world programs. Our experimental evaluations show that, despite
the use of partial context sensitivity heuristics, the static analysis is able to pre-
cisely approximate the ideal analysis results. Further, the results show that the in-
terprocedural analysis heuristics and the approach to cutpoints used in this work
are critical in enabling the analysis of large real-world programs, over 30K byte-
codes in less than 65 seconds and using less than 130 MB of memory, and which
could not be analyzed with previous approaches.

1 Introduction

Understanding the structure and evolution of the program heap is a critical part of under-
standing the semantics of a program, and thus is a central issue to optimizing, refactor-
ing, or checking a program for errors. A central challenge when analyzing the memory
behavior of a program is that memory structures are often long lived and can be passed
through many method calls which may both use and modify them. Thus, using context-
sensitivity when analyzing method calls is critical to the efficiency and accuracy of a
static analysis of the program heap (12, 17, 27, 30). Context insensitive analysis ap-
proaches provide good computational performance. However they often result in overly
approximate analysis results. Conversely fully context-sensitive analyses provide pre-
cise heap information but are computationally expensive and often intractable for all
but trivial programs. Thus, there is interest in the development of heuristics that trade
off small amounts of precision for large increases in analysis performance (12, 17). The
general approach to analyzing a program in a context-sensitive manner involves build-
ing a memo table of the analysis input and outputs (ĥin, ĥout) for each method in the
program. Whenever a method call is encountered the analysis checks if there is an ap-
propriate match in the memo table. If there is a match it is used, otherwise a new entry

M. O‘Boyle (Ed.): CC 2012, LNCS 7210, pp. 41–60, 2012.
© Springer-Verlag Berlin Heidelberg 2012

42 M. Marron, O. Lhoták, and A. Banerjee

is added and the needed output model is computed. When analyzing a program in this
manner it is critical to minimize the number of entries in these memo tables.

Approaches to minimizing the number of states in the memo tables include defining
normal form constructions (16, 31) for the heap models, the introduction of
cutpoints (17, 26), and partially context-sensitive call analysis heuristics (12, 27). How-
ever, the introduction of these heuristics (and simplifications) are often done in an ad-
hoc manner and can be improved upon by explicitly considering how encapsulation,
invariants, and pre/post conditions are used in the construction of object-oriented pro-
grams. While very few programs actually contain explicit (much less machine readable)
annotations for these properties, empirical results (1, 14) suggest that in general object-
oriented programs make heavy implicit use of these design concepts. This paper pro-
ceeds under the assumption that the program under analysis has been constructed using
basic encapsulation and class invariant concepts but that these invariants (or pre/post
conditions) are not made explicit in the code. If this assumption does not hold then the
precision of the results will be decreased although they will still be sound.

Under the assumption that a program generally follows good object-oriented design
principles there are a number of inferences that can be made about the state of the heap
at the entry and exit of method calls. In particular at the entry of a method call every
object that is visible to the callee should satisfy its class invariant and the reachable
heap state should satisfy the pre-condition of the method. Similarly we know that at
the return from the method all objects should again satisfy their class invariants and the
caller should not depend on anything that is not ensured by the method post-condition.
In an ideal world this would imply that context insensitive analyses would work well but
in practice developers do not adhere to this strict use of isolation and uniformity in their
programs. To allow for this practical reality we need to take a more relaxed approach
to merging and simplifying the input/output models. One way to do this is to use the
hypothesis that if a method has a simple implementation then the programmer is more
likely to break encapsulation by peering into the implementation while for complex
methods the programmer will make few assumptions beyond what is implied by the
class invariants and pre/post conditions. We can use the call graph structure as a measure
of how complex the called method is based on the number of subcalls and recursion.

Contributions. To address the challenges in analyzing real world object-oriented pro-
grams with a shape style heap domain this paper makes the following contributions:

– This paper introduces a hybrid call graph structure and abstract domain based
context-sensitivity heuristic. This is motivated by features of object-oriented pro-
gramming paradigms, class invariants, and encapsulation. It uses the structure of
the call graph to heuristically estimate which calls are good candidates to apply
partially sensitive merging operations and how aggressive the merging should be.
This approach provides a framework for understanding why, and to what extent,
we can expect the use of partial context-sensitivity to impact the precision of the
analysis.

– To support the context-sensitive analysis we propose unique fresh cutpoints as an
alternative definition for cutpoints (17, 26). These cutpoints allow us to project out
the part of the abstract heap model that cannot be accessed by the callee method. In

Programming Paradigm Driven Heap Analysis 43

contrast to previous work these cutpoints are always created with fresh names. This
eliminates issues with spurious name conflicts and the creation of multiple memo
table entries that differ due to naming of cutpoints, while still ensuring termination.

In order to quantify the performance and precision impacts of the interprocedural anal-
ysis technique we present an extensive experimental evaluation (Section 4) of well
known benchmarks from SPEC JVM98 and DaCapo. The evaluation shows that the
interprocedural analysis techniques proposed in this paper have a negligible impact on
the precision of the analysis. The base domain used in this paper is capable of precisely
expressing the majority of the connectivity, shape, and sharing properties that occur in
practice and, despite the use of partial context-sensitivity, the static analysis is able to
precisely (with a rate of 80-90%) approximate the ideal results. The approach in this
paper enables the analysis of real world programs with an expressive shape style heap
domain, requiring less than 65 seconds and 130 MB of memory for programs up to
30K bytecodes. Thus, this work provides a new framework, based on the principles of
object-oriented program design, for thinking about interprocedural analysis techniques.

2 Abstract Heap Domain

For concreteness and to enable empirical evaluation it is useful to have a fixed abstract
heap model. Thus, for this work we use the Structural Analysis domain from (16) which
is briefly summarized in this section.

2.1 Concrete Heaps

The state of a concrete program is modeled in a standard way where there is an en-
vironment, mapping variables to addresses, and a store, mapping addresses to objects.
We refer to an instance of an environment together with a store and a set of objects as a
concrete heap. Given a program that defines a set of concrete types, Types, and a set of
fields (and array indices), Labels, a concrete heap is a tuple (Env,σ ,Ob) where:

Env ∈ Environment = Vars⇀ Addresses

σ ∈ Store = Addresses→ Objects∪{null}
Ob ∈2Objects

Objects =OID×Types× (Labels⇀ Addresses)

where the object identifier set OID= N

Each object o in the set Ob is a tuple consisting of a unique identifier for the object,
the type of the object, and a map from field labels to concrete addresses for the fields
defined in the object. We use the notation Ty(o) to refer to the type of an object. The
notation o.l refers to the value of the field (or array index) l in the object. It is also
useful to refer to a non-null pointer as a specific structure in a number of definitions.
Therefore, we define a non-null pointer p associated with an object o and a label as l
in a specific concrete heap, (Env,σ ,Ob), as p = (o, l,σ(o.l)) where σ(o.l) �= null. We
define a helper function Fld : Types �→ 2Labels to get the set of all fields (or array indices)
that are defined for a given type.

44 M. Marron, O. Lhoták, and A. Banerjee

In the context of a specific concrete heap, (Env,σ ,Ob), a region of memory is a
subset of concrete heap objects C ⊆ Ob. It is useful to define the set P(C1,C2,σ) of all
non-null pointers crossing from region C1 to region C2 as:

P(C1,C2,σ) = {(os, l,σ(os.l)) | ∃os ∈C1, l ∈ Fld(Ty(os)) .σ(os.l) ∈C2}
Injectivity. Given two regions C1 and C2 in the heap, (Env,σ ,Ob), the non-null pointers
with the label l from C1 to C2 are injective, written inj(C1,C2, l,σ), if for all pairs of non-
null pointers (os, l,ot) and (o′s, l,o

′
t) drawn from P(C1,C2,σ), os �= o′s ⇒ ot �= o′t . As a

special case when we have an array object, we say the non-null pointer set P(C1,C2,σ)
is array injective, written, inj[](C1,C2,σ), if for all pairs of non-null pointers (o′s, i,ot)
and (os, j,o′t) drawn from P(C1,C2,σ) and i, j valid array indices, i �= j ⇒ ot �= o′t .

Shape. We characterize the shape of regions of memory using standard graph theoretic
notions of trees and general graphs treating the objects as vertices in a graph and the
non-null pointers as defining the (labeled) edge set. We note that in this style of defi-
nition the set of graphs that are trees is a subset of the set of general graphs. Given a
region C in the concrete heap (Env,σ ,Ob):

– The predicate any(C) is true for any graph. We use it as the most general shape that
doesn’t satisfy a more restrictive property.

– The predicate tree(C) holds if the subgraph (C,P(C,C,σ)) is acyclic and does not
contain any pointers that create cross edges.

– The predicate none(C) holds if the edge set in the subgraph is empty, P(C,C,σ) = /0.

2.2 Abstract Heaps

An abstract heap is an instance of a storage shape graph (3). More precisely, an abstract
heap graph is a tuple: (Ênv, σ̂ ,Ôb) where:

Ênv ∈ Environments = Vars⇀ ̂Addresses

σ̂ ∈ Stores = ̂Addresses→ Inj× 2Nodes

where the injectivity values Inj= {true, false}
Ôb ∈ Heaps = 2Nodes

Nodes =NID× 2Types×Sh× (L̂abels⇀ ̂Addresses)

where the shape values Sh= {none, tree,any}
and the node identifier set NID= N

The abstract store (σ̂) maps from abstract addresses to tuples consisting of the injec-
tivity associated with the abstract address and a set of target nodes. Each node n in the
set Ôb is a tuple consisting of a unique identifier for the node, a set of types, a shape
tag, and a map from abstract labels to abstract addresses. The use of an infinite set of
node identity tags, NID, allows for an unbounded number of nodes associated with a
given type/allocation context allowing the local analysis to precisely represent freshly
allocated objects for as long as they appear to be of special interest in the program (16).
The abstract labels (L̂abels) are the field labels and the special label []. The special label

Programming Paradigm Driven Heap Analysis 45

[] abstracts the indices of all array elements (i.e., array smashing). Otherwise an abstract
label l̂ represents the object field with the given name.

As with the concrete objects we introduce the notation T̂y(n) to refer to the type set
associated with a node. The notation Ŝh(n) is used to refer to the shape property, and
the usual n.l̂ notation to refer to the abstract value associated with the label l̂. Since
the abstract store (σ̂) maps to tuples of injectivity and node target information we use
the notation Înj(σ̂ (â)) to refer to the injectivity and T̂rgts(σ̂(â)) to refer to the set of
possible abstract node targets associated with the abstract address. We define the helper

function F̂ld : 2Types → 2L̂abels to refer to the set of all abstract labels that are defined for
the types in a given set (including [] if the set contains an array type).

2.3 Abstraction Relation

We are now ready to formally relate the abstract heap graph to its concrete counterparts
by specifying which heaps are in the concretization (γ) of an abstract heap:

(Env,σ ,Ob) ∈ γ((Ênv, σ̂ ,Ôb))⇔∃ an embedding μ where

Injective(μ ,Env,σ ,Ob, Ênv, σ̂ ,Ôb)∧Shape(μ ,Env,σ ,Ob, Ênv, σ̂ ,Ôb)

A concrete heap is an instance of an abstract heap, if there exists an embedding function
μ : Ob → Ôb which respects the structure and labels of the concrete heap and also
satisfies the injectivity and shape relations between the structures.

Injective(μ ,Env,σ ,Ob, Ênv, σ̂ ,Ôb) = ∀ns,nt ∈ Ôb, l̂ ∈ F̂ld(T̂y(ns)) . Înj(σ̂ (ns.l̂))⇒
(l̂ �= []⇒ inj(μ−1(ns),μ−1(nt), l,σ))∧ (l̂ = []⇒ inj[](μ−1(ns),μ−1(nt),σ))

The injectivity relation guarantees that every pointer set marked as injective corresponds
to injective (and array injective as needed) pointers between the concrete source and
target regions of the heap.

Shape(μ ,Env,σ ,Ob, Ênv, σ̂ ,Ôb) = ∀n ∈ Ôb

Ŝh(n) = tree⇒ tree(μ−1(n,σ))∧ Ŝh(n) = none⇒ none(μ−1(n,σ))

The shape relation guarantees that for every node n, the concrete subgraph μ−1(n,σ)
abstracted by node n satisfies the corresponding concrete shape predicates.

2.4 Example Heap

Figure 1(a) shows a snapshot of the concrete heap from a simple program that manip-
ulates expression trees. An expression tree consists of binary nodes for Add, Sub, and
Mult expressions, and leaf nodes for Constants and Variables. The local variable
exp (rectangular box) points to an expression tree consisting of 4 interior binary ex-
pression objects, 2 Var, and 2 Const objects. The local variable env points to an array
representing an environment of Var objects that are shared with the expression tree.

46 M. Marron, O. Lhoták, and A. Banerjee

(a) A Concrete Heap. (b) Corresponding Abstract Heap.

Fig. 1. Concrete and Abstract Heap

Figure 1(b) shows the corresponding abstract heap for this concrete heap. To ease
discussion each node in a graph is labeled with a unique node id. The abstraction sum-
marizes the concrete objects into three regions represented by the nodes in the abstract
heap graph: (1) a node representing all interior recursive objects in the expression tree
(Add, Mult, Sub), (2) a node representing the two Var objects, and (3) a node represent-
ing the two Const objects. The edges represent possible sets of non-null cross region
pointers associated with the given abstract labels. Details about the order and branch-
ing structure of expression nodes are absent but other more general properties are still
present. The label tree{l,r} on the self-edge expresses that pointers stored in the l

and r fields of the objects represented by node 1 form a tree.
The abstract graph also captures the fact that no Const object is referenced from mul-

tiple expression objects but that several expression objects might point to the same Var
object. The abstract graph shows this possible non-injectivity using wide orange colored
edges (if color is available), whereas normal edges indicate injective pointers. Similarly
the edge from node 4 (the env array) to the set of Var objects represented by node 2 is
injective, not shaded and wide. This implies that there is no aliasing between the pointers
stored in the array (a fact which could not be obtained via points-to analysis).

2.5 Normal Form

Given the definitions for the abstract heap it is clear that the domain is infinite. Thus, we
define a normal form that ensures the number of distinct normal form graphs is finite
and use this set during the fixpoint computation (see (16) for additional information).

Definition 1 (Normal Form). We say that the abstract heap is in normal form iff:

1. All nodes are reachable from a variable or static field.
2. All recursive structures are summarized (Definition 2).
3. All equivalent successors are summarized (Definition 4).
4. All variable/global equivalent targets are summarized (Definition 5).

Programming Paradigm Driven Heap Analysis 47

This normal form definition possesses three key properties that ensure finiteness: (1)
the resulting abstract heap graph has a bounded depth, (2) each node has a bounded out
degree, and (3) for each node the possible targets of the abstract addresses associated
with it are unique wrt. the label and the types in the target nodes.

As each of the properties (recursive structures, ambiguous successors, and ambigu-
ous targets) are defined in terms of, congruence between abstract nodes the transfor-
mation of an abstract heap into the corresponding normal form is fundamentally the
computation of a congruence closure over the nodes in the abstract heap followed
by merging the resulting equivalence sets. Thus, we build a map from the abstract
nodes to equivalence sets (partitions) using a Tarjan union-find structure. Formally

Π : Ôb→ {π1, . . . ,πk} where πi ∈ 2Ôb and {π1, . . . ,πk} are a partition of Ôb.

Recursive Structures. The first step in computing the normal form is to identify any
nodes that may be parts of unbounded depth structures. This is accomplished by ex-
amining the type system for the program that is under analysis and identifying all the
types, τ1 and τ2, that have mutually recursive type definitions denoted: τ1 ∼ τ2.

Definition 2 (Recursive Structure). Given two partitions π1 and π2 we define the re-
cursive structure congruence relation as1:

π1 ≡Π
r π2 ⇔∃τ1 ∈

⋃
n1∈π1

T̂y(n1),τ2 ∈
⋃

n2∈π2
T̂y(n2) .τ1 ∼ τ2

∧∃n ∈ π1, l̂ ∈ F̂ld(T̂y(n)) . T̂rgts(σ̂(n.l̂))∩π2 �= /0
Equivalent Successors and Targets. The other part of the normal form computation is
to identify any partitions that have equivalent successors and variables that have equiv-
alent targets. Both of these operations depend on the notion of a successor partition
which is based on the underlying structure of the abstract heap graph and a general
notion of node compatibility: π1 a successor of π2 and l̂ ⇔∃n2 ∈ π2 . T̂rgts(σ̂(n2.l̂))∩
π1 �= /0.

Definition 3 (Partition Compatibility). We define the relation Compatible(π1, π2) as:
Compatible(π1,π2)⇔

⋃
n′∈π1

T̂y(n′)∩⋃
n′∈π2

T̂y(n′) �= /0.

Definition 4 (Equivalent Successors). Given π1, π2 which are successors of π on la-
bels l̂1, l̂2 we define the relation π1, π2 equivalent successors as: π1 ≡Π

s π2 ⇔ l̂1 =

l̂2∧Compatible(π1,π2).

Definition 5 (Equivalent on Targets). Given a root r (a variable or a static field) and
two target partitions π1, π2 we define the equivalent targets relation as: π1 ≡Π

t π2 ⇔
Compatible(π1,π2)∧ (r is a static field∨π1,π2 only have local var predecessors).

Using the recursive structure relation and the equivalent successor (target) relations
we can efficiently compute the congruence closure over an abstract heap producing the
corresponding normal form abstract heap (Definition 2). This computation can be done
via a standard worklist algorithm that merges partitions that contain equivalent nodes
and can be done in O((N +E)∗ log(N)) time where N is the number of abstract nodes
in the initial abstract heap, and E is the number of abstract addresses in the heap.

1 The definition is symmetric on the properties of the nodes, the τ1 ∼ τ2 equivalence relation on
types, but is not symmetric on the structure of the underlying graph.

48 M. Marron, O. Lhoták, and A. Banerjee

3 Interprocedural Analysis

In order to understand how aggressively abstract models can be merged during the
analysis and on which methods the precision loss due to the use of partial context-
sensitivity will be the smallest we look to the principles of object-oriented program
design. Fundamentally, object-oriented programming is designed around the concepts
of encapsulation and information hiding.

These concepts can be seen in the use of object invariants and pre/post conditions
which allow a client to use a class with only a minimal knowledge of the internal func-
tioning and allow an implementor to build a class that hides most of the internals from
the outside world. This requires the caller to ensure the pre-condition at each method
call site and allowing the method implementor to assume this condition. Conversely
at call exit the implementor is responsible for ensuring that the post-condition is sat-
isfied and the caller is then allowed to assume anything implied by the post-condition.
These conditions are augmented by the class invariants which ensure/guarantee that at
the method boundaries each object satisfies the class required invariant in addition to
properties in the pre/post conditions of the method. Thus, in the ideal case from the
standpoint of the program implementation and the static analysis we could assume that
for any property P in the program:

1. If the callee depends on a property P holding as part of the pre-condition of the
method (or a class invariant) then all callers to the method must ensure that P holds.

2. If the caller depends on a property P that is part of the post-condition (or is a class
invariant) then every path through the method must ensure that P holds.

3. Alternatively a property P may hold on the portion of the heap that is only reachable
from the caller but not reachable from the callee in which case the property P will
remain unchanged across the call and will not affect the behavior of the callee.

In the context of the heap analysis the first condition (along with scope visibility) en-
sures that for every property that holds on the program state accessible to the callee that
either it is part of the precondition and holds for every abstract model or that the callee
makes no assumption on the property. Assuming the join operator (�, e.g. (16) for the
domain in Section 2) and the domain are sufficiently precise, the merging should have
no impact on the accuracy of the analysis. For example if the callee assumes that an
argument (say variable x) is always non-null then all calls to this method must occur in
states where x is non-null. Thus, all abstract models should entail that x is non-null and
the join of all these models should result in a model that also entails that x is non-null.

From the perspective of the caller the second condition (along with call scope vis-
ibility) ensures that for every property P of the program state after the call, either the
property P is part of the post-condition and always holds at method exit or it involves
parts of the model that were not accessible to the callee and the value of the property is
assumed to be unchanged. In the first case, as the property holds for all models at return
from the called method, the join at method return loses no information. Alternatively if
the property does not involve part of the program state accessible to the callee then the
joins will not affect it (since the use of a project/extend ensure these parts of the abstract
model are not involved in the joins). The project and extend operations can be seen as
the addition of a frame rule (25, 31) for the interprocedural analysis.

Programming Paradigm Driven Heap Analysis 49

3.1 Unique Fresh Cutpoints

One simple and effective way to accomplish the splitting into a reachable and external
heap section is to define a project and an extend operation based on cutpoints (17,
26). The cutpoints are special names introduced for abstract storage targets (edges)
that cross from the caller only reachable portion of the abstract heap into the callee
reachable portion of the abstract heap. However, as noted in previous work, using a
fixed set of names leads to the creation of many redundant entries in the memo tables
(that differ only in the names of the cutpoints) and inevitably results in the spurious
reuse of the same cutpoint name for multiple cross abstract pointers (17, 26). However,
simply creating a fresh name for each cutpoint that is created leads to non-termination
in recursive calls due to the constant addition of new names. To avoid these issues we
treat the cutpoints as more than syntactic constructs by defining notions of equivalence
classes on them and by extending equality on cutpoints beyond a syntactic property.

To accomplish this we extend the abstract model with a mapping from an unbounded
set of cutpoint names, CPNames, to the abstract addresses ĈP ∈ CPEnvironment =
CPNames ⇀ ̂Addresses, and we extend the definition of the abstract store to be σ̂ :
̂Addresses→ {true, false}× (2Ôb∪CPNames). We use fresh names for each cutpoint

we introduce but to avoid the termination issues we add them such that each abstract
heap location has at most one cutpoint associated with it. Finally, we add an addi-
tional clause to the normal form computation in Definition 1 to handle the cutpoints.
For equality matching we check for the existence of an isomorphism between the cut-
point name sets in the two graphs.

Definition 6 (Cross References and Cutpoints). Given an abstract heap, ĥin, to a
method call and the set of abstract nodes reachable from the callee scope C ⊆ Ôb then:

– An abstract location l̂ in node n is a cross pointer if n �∈C∧ T̂rgts(σ̂(n.l̂))∩C �= /0.

– An abstract location v is a cross variable if T̂rgts(σ̂ (Ênv(v)))∩C �= /0.

– A cutpoint cp is redundant if T̂rgts(σ̂(ĈP(cp)))∩C �= /0.

The project operation works by partitioning the set of nodes in the graph into two sets
based on their reachability from the local variables. For each node in the reachable set
that has a cross pointer from a location in the unreachable set, a cross variable, or a
redundant cutpoint we add a fresh cutpoint which refers to the node. Next we associate
this newly created cutpoint with all the cross references to the node (replacing the node
target with the name of the freshly created cutpoint). The resulting abstract heap has at
most one cutpoint which refers to any node and as each cutpoint name that is added is
fresh we are ensured that there are no name collisions. We note that in our heap model
there are no relational properties between the incoming pointers (cutpoints) to a node.
In domains that do associate relational properties with pointers the same technique can
be applied via a generalization to one cutpoint per equivalence set of cross pointers.

Additionally, as the particular domain we are using does not perform strong up-
dates (16) we can obtain further speedups in the analysis by taking advantage of the
fact that the input heap model is always an under-approximation of the output heap
model. So in the project operation defined here we want to extract the callee reachable

50 M. Marron, O. Lhoták, and A. Banerjee

portion of the heap and also preserve the entire heap structure (extended with the cut-
point information) in the remaining heap model. If the underlying domain performed
strong updates to externally visible heap locations then we would need to, slightly, alter
the definition to fully partition the heap structure as done in (17, 26).

project :−→v ,(Ênv, σ̂ ,Ôb, ĈP) � (Ênve, σ̂e,Ôbe, ĈPe),(Ênvr, σ̂r,Ôbr, ĈPr) where

Ôbreach = {n | n ∈ Ôb∧n reachable from a callee variable in −→v }
(Ôbr,Ôbe) = (Ôbreach,Ôb)

(Ênvr, Ênve) = ({[v �→ âv] | v ∈−→v }, Ênv)
(σ̂r, σ̂e) = ({[â �→ σ̂ (â)] | â a reachable address from a callee variable}, σ̂)

(ĈPr, ĈPe) = (/0, ĈP)

∀nr ∈ Ôbr let cp be fresh cutpoint name for n

∀ne ∈ Ôbe, l̂ ∈ F̂ld(T̂y(ne)) if ne, l̂ is cross pointer then

σ̂e(ne.l̂) = (Înj(σ̂e(ne.l̂)), T̂rgts(σ̂e(ne.l̂)∪{cp})
∀v ∈Dom(Ênv) if v is cross variable then

σ̂e(Ênve(v)) = (true, T̂rgts(σ̂e(Ênve(v)))∪{cp})
∀c′p ∈ Dom(ĈP) if c′p is redundant then

σ̂e(ĈPe(c
′
p)) = (true, T̂rgts(σ̂e(ĈPe(c

′
p)))∪{cp})

ĈPr = ĈPr ∪{[cp �→ âcp]} where âcp a fresh address

σ̂r = σ̂ ∪{[âcp �→ {n}]}

extend: (Ênve, σ̂e,Ôbe),(Ênvr, σ̂r,Ôbr) � (Ênv
′
, σ̂ ′,Ôb

′
) where

Ôb
′
= Ôbe� Ôbr

Ênv
′
= Ênve +[vret �→ Ênvr(vret)]

σ̂ ′ = σ̂e� σ̂r

∀cp ∈ Dom(ĈPr), â ∈ Dom(σ̂ ′)

if cp ∈ T̂rgts(σ̂ ′(â)) then

σ̂ ′ = σ̂ ′+[â �→ (Înj(σ̂ ′(â)), T̂rgts(σ̂ ′(â))\ {cp}∪ σ̂r(ĈPr(cp)))]

ĈP
′
= ĈPe

After analyzing the callee method body we need to recombine the two partitions of the
abstract heap. The extend operation handles this recombination. It proceeds by taking
the union of the contents of the two abstract heaps (the callee reachable and only caller
reachable partitions) and then replacing the cutpoint names inserted in the project op-
eration with the needed values. Since we preserved the entire original heap structure
in the project operation we cannot simply union the abstract nodes and environments
(since the same node or address mapping may appear in both). Instead we must perform

Programming Paradigm Driven Heap Analysis 51

a join on these structures by taking the union of any elements that appear in only one of
the abstract heaps and performing a pairwise join on the properties (16) of any duplicate
nodes or environment mappings.

In the normal form computation of the abstract heap graph, Section 2, the normal
form is based on the construction of equivalence classes based on predecessor relations
and the identification of recursive data structures. As the introduction of cutpoints adds
a new source of possible predecessors we need to extend the normal form to deal with
these as well. We note that cutpoints can be introduced in both calls to simple acyclic
parts of the call-graph as well as to parts which may contain recursive calls.

In order to preserve as much information as possible we want to only merge nodes
that have the same sets of cutpoints referring to them but in order to ensure termination
we must ensure that this condition does not result the violation of conditions 2 through
4 in Definition 1. For example it would be possible for a recursive call to allocate a new
node and add it to a list before making a recursive call with the list as an argument. This
would result in a new node with a distinct cutpoint being created at each call and the
abstract graph having no upper bound on its size. We note that the only way this can
happen is with cutpoints added in recursive calls, any non-recursive path though the call
graph has a finite length and thus only creates a finite number of cutpoints. Thus, we
can strongly distinguish nodes in the graph based on cutpoints added in non-recursive
calls and only weakly distinguish them based on cutpoints from recursive calls. Thus
we update the Compatible relation Definition 3 to distinguish on cutpoints in addition
to types, where NonRecCP(π) returns the set of all cutpoints that refer to a node in the
given partition and were introduced in a non-recursive call:

Compatible(π1,π2)⇔
⋃

n′∈π1

T̂y(n′)∩
⋃

n′∈π2

T̂y(n′) �= /0∧NonRecCP(π1) = NonRecCP(π2)

With these definitions we can now split and rejoin the heap into the section that is
relevant to a callee method and the part that is guaranteed to be unchanged across a
method call as in (17, 26). The use of unique fresh cutpoints and associated constructions
eliminates the problem of creating unneeded memo contexts or spurious name collisions
via the use of fresh names. Further, the normal form and uniqueness requirements still
ensure termination.

3.2 Context-Sensitivity Heuristics

As most programs deviate from the very strict uses of invariants and pre/post conditions
described previously we want to selectively relax how aggressively we merge different
call contexts based on how strongly a method adheres to the ideal version of informa-
tion hiding within the implementation. A simple hypothesis is that the complexity of
the called method will have a large impact on the amount of additional assumptions,
beyond the invariant and pre/post conditions, that the programmer may depend on. For
example simple leaf methods such as getters or setters can often be called in many unre-
lated states and have very broad pre/post conditions associated with them. Similar cases
hold for other methods that are near the leaves in the call graph that can easily have their
implementations examined or that may have very broad pre/post conditions. Conversely

52 M. Marron, O. Lhoták, and A. Banerjee

methods that are more complex, higher in the call graph and particularly those that are
part of large recursive call structures, are much more likely to have strict pre/post con-
ditions and the callers of these methods generally avoid making additional assumptions
about the behavior of the called method. This leads to the following heuristic for select-
ing which methods should be handled with full context-sensitivity and which methods
could be handled in a partially context-sensitive manner.

Definition 7 (Context Compatibility). A given abstract heap ĥin is compatible with a pre-
viously memoized input ĥmemo for the call to the method m if:

– The method m is in an acyclic part of the call graph and ĥin � ĥmemo.
– The method m is in a cyclic part of the call graph and ĥin ≈ ĥmemo.

The � operations is fundamentally an extension of the basic equality operation on the
abstract heaps from (16) to include the cutpoint set names. Given two abstract heaps
(Ênv1, σ̂1, Ôb1ĈP1) and (Ênv2, σ̂2, Ôb2, ĈP2) we first determine if they are structurally
isomorphic (i.e., if there is an isomorphism, φ on the graph structures that respects
variable and field labels), then we check that all abstract node and store properties
in (Ênv2, σ̂2, Ôb2, ĈP2) have the same values in (Ênv1, σ̂1, Ôb1, ĈP1) under the isomor-
phism. Finally, we check is there is an isomorphism φcp between the cutpoints that
respects the reachability relations on the graphs.

(Ênv1, σ̂1, Ôb1)� (Ênv2, σ̂2, Ôb2)⇔∃φ ,φcp

∀n ∈ Ôb1 . T̂y(n) = T̂y(φ(n))∧ Ŝh(n) = Ŝh(φ(n))

∧∀l̂ ∈ F̂ld(T̂y(n)) . Înj(σ̂1(n)) = Înj(σ̂2(φ(n)))

∧∀ cutpoints cp ∈ ĈP1 . T̂rgts(σ̂2(φcp(cp))) = {φ(n′) | n′ ∈ T̂rgts(σ̂1(cp))}

For the ≈ operation, given ĥmrg = ĥin � ĥmemo, then ≈ is defined as: ĥin ≈ ĥmemo ⇔ ∀v ∈
Ênvmemo the points-to set in ĥmrg for v is identical to the points-to set for v in ĥmemo.
Formally, given Tmemo = T̂rgts(σ̂memo(Ênvmemo(v))) and Tmrg = T̂rgts(σ̂mrg(Ênvmrg(v)))
which we assume always are empty or have size zero (Algorithm 1) or one then:

Tmemo ≡ Tmrg ⇔ |Tmrg|= |Tmemo| ∧∀nmrg ∈ Tmrg,nmemo ∈ Tmemo

T̂y(nmrg)∩ T̂y(nmemo) �= /0

∧ InDegree(nmrg) = InDegree(nmemo)∧ InVars(nmrg) = InVars(nmemo)

This test is based on the hypothesis that at the entry of complex method calls the pro-
grammer makes very few assumptions about the behavior of the method beyond what
is provided by the pre/post conditions. Thus, if two abstract heaps have the same alias-
ing relations on the argument variables then any differences are in the internal heap
structures and are unimportant details that are irrelevant to the overall behavior of the
program. This matching enables the analysis to remain fully-context sensitive for sim-
ple methods that may not follow a strict pre/post condition protocol with while more
complex (and recursive methods) that are likely to have more strict pre/post conditions
will be treated with less context-sensitivity.

Programming Paradigm Driven Heap Analysis 53

3.3 Complete Partial Context-Sensitive Call Analysis

The overall interprocedural analysis algorithm is based on a simple worklist approach
where methods are taken from and added to a pending worklist as new input models are
seen or the result of a child call is updated. During the analysis when a call to a method
m is encountered with the input described by the abstract heap ĥ the interprocedural
analysis looks at the memoized results in the memotable for the given method. If we
find an entry that matches with the input model we return the memoized result model
otherwise a new model is added to the memotable for later analysis.

Definition 8 (Memo Table Representation). For each method m in the program we main-
tain a list of memoized analysis models [λ1, . . .λk] where λi = ((Ênv, σ̂ , Ôb, ĈP)in

i ,

(Ênv, σ̂ , Ôb, ĈP)out
i).

The AnalyzeCall method (Algorithm 1) takes a method call and a receiver object. The
first step ensures that each argument variable has at most one abstract target. Next we
find the set of possible method implementations for the virtual call. For each of these
possibilities we analyze the callee method body (or fetch the memoized result) with the
given input abstract heap. The possible implementation methods are then analyzed as
needed (via the AnalyzeBody method) with the argument abstract model and the results
are accumulated to produce the result abstract model (ĥ f).

The EnsureUniqueAbstractTarget method simply checks each argument variable and
does case splitting if there is more than one target. This splitting operation is useful in
preventing ambiguity in the caller scope from propagating into the callee scope which
improves the effectiveness of the memoization. The GetImpls algorithm takes a call
signature csig and an abstract heap ĥ. It then looks up every possible method target of
that call signature given the possible types of the receiver object (this).

Algorithm 1. AnalyzeCall

input : program p, caller mfrom, call sig. csig, abstract heap ĥ

output: abstract heap ĥ f

ĥ f ←⊥;

heapset ← EnsureUniqueAbstractTarget(ĥ);
for ĥi ∈ heapset do

methodset ← p.GetImpls(csig, ĥi);
for m ∈ methodset do

ĥt ← AnalyzeBody(m, ĥi);
ĥ f ← ĥ f � ĥt ;

return ĥ f ;

The AnalyzeBody method begins by examining an approximate call graph computed
by the frontend (IsComplexCall) and selects one of the matching strategies, for simple
acyclic components or for calls that are part of a cyclic component of the call graph,
and selects the appropriate matching algorithm, ≈ or �, to use in searching for a match.

54 M. Marron, O. Lhoták, and A. Banerjee

Algorithm 2. AnalyzeBody

input : method m, abstract heap ĥ
output: abstract heap ĥ f

if IsComplexCall(m) then
(cmplx, match) ← (true, ≈);

else
(cmplx, match) ← (false, �);

memotable ← MemoTableFor(m);
(ĥe, ĥr) ← project(m.Args, ĥ.Copy(), cmplx);
if memotable.HasMatchFor(ĥr, match) then

ĥacc ← memotable.GetMatchMergeIfNeeded(ĥr, cmplx, match);
else

ĥacc ← memotable.AddNewEntry(ĥr);
ĥ f ← extend(ĥe, ĥacc);
return ĥ f ;

If we are matching via the≈ operation then the analysis also updates memoized input
state as the merge of the matched memoized input model and the new argument model.
The algorithm for handling the matching and merge if needed, GetMatchMergeIfNeeded,
is shown in Algorithm 3. The two helper functions UniqueifyCutpoints and RemapCut-
points are used to ensure that after the join the one cutpoint per node property is main-
tained and then to ensure that the set of cutpoints used in the input model match the set
of cutpoints that appear in the output model.

Algorithm 3. GetMatchMergeIfNeeded

input : memoized values [λ1, . . .λk], abstract heap ĥ, bool cmplx, compare
match

output: abstract heap ĥ f

for λ ∈ [λ1, . . .λk] do
if match(ĥ, λ in) then

if cmplx then
λ in ← λ in� ĥ;
cpremap ← UniqueifyCutpoints(λ in);
λ out ← λ out� ĥ;
RemapCutpoints(cpremap, λ out);

return λ out;

4 Experimental Evaluation

Our benchmark suite consists primarily of direct C# ports of commonly used Java
benchmarks from Jolden (9), the db and raytracer programs from SPEC JVM98 (28),
and the luindex and lusearch programs from the DaCapo suite (9). Additionally we have

Programming Paradigm Driven Heap Analysis 55

analyzed the heap abstraction code, runabs, from (19). In practice we translate the .Net
assemblies to a simplified IR (intermediate representation) which allows us to remove
most .Net specific idioms from the core analysis and to perform specialized analyses on
the standard libraries (20). Our test machine is an Intel i7 class processor at 2.66 GHz
with 2 GB of RAM available. We use the standard 32 bit .Net JIT and runtime frame-
work provided by Windows 7. The domain, operations, and data flow analysis algo-
rithms are all implemented in C# and are publicly available.2

Client Applications
The analysis in this paper tracks general classes of properties that have shown, in
past work, to be both relevant and useful in a wide range of client applications (5–
8, 11, 14, 18). However, we have performed additional small scale implementations
and case studies with the analysis results to ensure that the particulars of the domain
defined in this paper are useful for these types of optimization and program understand-
ing applications. These case studies include:

– The introduction of thread-level parallelization, as in (18), to obtain a 3× speedup
for bh on our quad-core machine.

– Data structure reorganization to improve memory usage and automated leak detec-
tion, as in (19), to obtain over a 25% reduction in live memory in raytrace.

– The computation of ownership information for object fields, as in (14), identifying
ownership properties for 22% of the fields and unique memory reference properties
for 47% of the fields in lusearch.

However, we want to examine the quantitative precision of the analysis in a way that
is free from biases introduced by the selection of a particular client application. Thus,
we examine the precision of the static analysis relative to a hypothetical perfect anal-
ysis which uses the same abstract domain. This notion of precision is a more general
measurement of the possible imprecision due to the partial context-sensitivity heuris-
tics than the use of a specific client application (which may hide precision losses that
happen not to matter for the particular client).

Quantitative Precision
We define precision relative to a hypothetical perfect analysis which uses the same ab-
stract domain from Section 2 but that is able to perfectly predict the effects of every
program operation. Since we cannot actually build such an analysis we approximate it
by collecting and abstracting the results of concrete executions. By definition this col-
lection of results from the concrete execution is an under-approximation of the universal
information we want to compute, and in the limit of execution of all possible inputs is
identical. Formally, given a method and a set of concrete heaps {h1, . . . ,hk} and a set of
abstract heaps {ĥ1, . . . , ĥ j} we can compute differences between

⊔
h∈{h1,...,hk}α(h) and⊔{ĥ1, . . . , ĥ j}. This gives an unbiased measure of how close our results are to the opti-

mal solution, wrt. the abstract domain we are working with in a way that is independent
of peculiarities of a client application or other analysis technique.

2 Source code and benchmarks available at: http://jackalope.codeplex.com

http://jackalope.codeplex.com

56 M. Marron, O. Lhoták, and A. Banerjee

One possible concern with this approach is that the base abstract domain may be very
coarse, i.e.,

⊔
h∈{h1,...,hk}α(h) is always � or another very imprecise value. To account

for this we report the average percentage of properties (shape and injectivity) that the
runtime result marks as precise (none or tree and injective) in the models (the Runtime
Precise Rate group in Table 1). This table shows that in practice the domain achieves a
very high rate of precise identification of shape values, on average over 90% or more of
nodes are precisely identified (the Shape column), and a similarly high rate of precise
injectivity values, on average nearly 90% of the edges are identified as being injective
(the Injectivity column). For reference the example abstract heap, Figure 1(b), abstract
heap would have a 100% precise shape rate and a 75% precise injectivity rate. Thus, we
can see that in general the base domain is exceptionally effective in representing the
heap properties we are interested and is an effective baseline for comparison.

Table 1. Static Match is percentage of each property (at method entries) which is accurately pre-
dicted by the static analysis when compared to perfect analysis. Runtime Precise is the percentage
of properties that the perfect analysis captures precisely.

Static Match Rate Runtime Precise Rate
Benchmark Region Shape Injectivity Shape Injectivity
power 100% 100% 100% 100% 100%
bh 100% 90% 87% 100% 100%
db 100% 100% 81% 100% 100%
raytracer 80% 85% 83% 89% 98%
luindex 95% 95% 82% 100% 91%
lusearch 93% 90% 84% 96% 89%
runabs 97% 98% 87% 94% 90%

Table 1 shows the results of comparing the results from our perfect analysis with
the results from the static analysis described in this paper. In this table we report the
percentage of properties in the static analysis results that are the same as reported by
the runtime analysis for regions, shapes, and injectivity values. The region percentage
(the Region column) is the number of nodes that can be exactly matched between the
statically computed and ideal result structure. Using this matching we then compute
the percentage of the shape and injectivity properties that are precisely identified by the
static analysis (the Shape and Injectivity columns). These results show that the analysis
is able to extract a large percentage of the properties that can be expressed via the
abstract domain (i.e. the static analysis is able to answer any client query on aliasing or
shape as accurately as possible given the underlying domain for 80% to 90% of queries).
Running the static analysis without the partial context-sensitivity heuristics provides a
slight increase in the accuracy (3% in the best case) and running the analysis without
the use of the unique-cutpoints is infeasible (per Table 2). Thus, the use of the fresh
cutpoints and context-sensitivity heuristics result in only small losses in precision in
practice.

Programming Paradigm Driven Heap Analysis 57

Analysis Performance
We next examine the time and memory requirements of analyzing a program using
the method described in this paper. Table 2 shows the cost of running several analysis
variations. The cost of analyzing a program with full context-sensitivity and without
the use of the fresh cutpoints is generally infeasible (the No Opt column in Table 2)
with the heap domain we are using (all but two of the benchmarks time out). The next
variation of interprocedural analysis we examine (the Project column) uses full context-
sensitivity but applies the project/extend with fresh cutpoints as described in this paper.
The Optimized column uses the partial context-sensitivity heuristics described in this
paper and the fresh cutpoint project/extend operations. For each benchmark we list the
number of bytecode instructions and the number of methods that each program contains
after being translated into the internal IR. These numbers exclude much of the code that
would normally be part of the runtime system libraries. This is due to the fact that during
the translation from .Net bytecode to the internal IR code which is never referenced is
excluded. Additionally for the builtin types/methods that are used the implementations
are often replaced by simplified versions or specialized domain operations.

Table 2. Statistics and aggregate performance of the No Opt, Project, and Optimized analysis.
For the timeout we use a limit of 10 min. or 500MB of memory.

Benchmark Statistics No Opt Project Optimized
Name Insts Methods Time Mem Time Mem Time Mem
power 3298 320 1.21s ≤20MB 0.11s ≤20MB 0.09s ≤20MB
bh 3723 351 5.38s 72MB 0.61s ≤20MB 0.42s ≤20MB
db 2873 315 - - 0.21s ≤20MB 0.21s ≤20MB
raytrace 9808 476 - - 12.11s 40MB 6.72s 32MB
luindex 26852 246 - - 20.15s 70MB 12.1s 53MB
lusearch 33632 272 - - 197.79s 489MB 64.3s 130MB
runabs 27875 253 - - 12.84s 68MB 10.4s 60MB

The no opt approach is unable to handle most of the benchmarks, so we do not discuss
it further. When compared to the project approach the optimized technique is a factor of
2-4 faster in all of the smaller benchmarks and enables the analysis to complete the
larger program where the project analysis times out (lusearch). Both the project and
optimized analysis require very little memory to analyze the simpler programs (less than
20MB for most of them). However, as the size and complexity of the program increases
we see that the optimized analysis improves memory usage as well.

To understand the source of this difference we examine the impact of the optimized
analysis on the maximum number of memo entries for any method and the average
number of memo entries per method (shown in Table 3). Looking at the results in the
table the impact on the number of memo entries per method is quite significant. This
reduction occurs in the maximum number of entries and in the average number per
method. This has a huge impact on the number of comparisons that need to be done to
test if a given call model is memoized and in the number of times each method body
is analyzed. As the program gets larger this reduction has a large impact in the amount

58 M. Marron, O. Lhoták, and A. Banerjee

of time and memory needed to analyze a program. We note that the improvement is
small on the simpler benchmarks but become increasingly important as the complexity
increases in db and raytrace, and is critical to successfully analyzing luindex, lusearch,
and runabs.

Table 3. Comparison of the Project and Optimized analysis on model set size and memo table
entries. Avg Entries is the average number of entries for each method memotable, Max Entries is
the maximum number of entries, and Max Iters. is the maximum number of times a memo table
entry is analyzed before it reaches a fixpoint.

Benchmark Project Optimized
Name Avg Entries Max Entries Max Iters. Avg Entries Max Entries Max Iters.
power 1.03 2 3 1.02 2 3
bh 1.46 5 3 1.11 5 2
db 1.80 5 1 1.80 5 1
raytrace 2.36 15 4 2.14 15 4
luindex 2.54 21 7 2.46 17 6
lusearch 11.60 100 17 2.08 22 16
runabs 2.15 14 4 2.11 13 4

These results emphasize the robustness of the scaling of the interprocedural analy-
sis with respect to growth in the memo table sizes. In particular the average number
of memo entries is nearly constant regardless of the size of the program and thus the
memory (time) required by the analysis scales with the number of contexts and number
of iterations required to reach a fixpoint.

5 Related Work

There has been a substantial amount of work on techniques for speeding up interproce-
dural dataflow analysis. These range from methods for efficiently encoding call contexts
using BDD’s (13, 29), to heuristics that alter the level of context sensitivity based on
structural properties of the call or flow graph (12, 21, 24), to methods for generating
partial call context tokens (10, 22, 30). The work in this paper draws on the general
concepts of context heuristics presented in (12, 15, 21, 23, 24) and work on projec-
t/extend operations (17, 26), to efficiently and precisely manage the challenges present
when performing interprocedural heap analysis on object-oriented programs.

This work differs substantially from previous work in a number of respects. One of
the key insights into this work is that there exist specific points in the program where
the programmer makes generalizing assumptions about the state of the program and
thus most of the differences between abstract heaps are not critical to understanding
the later behavior of the program. This idea has been exploited implicitly in previous
work which often applies some set of heuristics for merging states either at call or local
control flow joins (17, 21, 23, 31) but there is little empirical or conceptual justification
(beyond the experimental results) for why the specific set of join points selected is a
good choice.

Programming Paradigm Driven Heap Analysis 59

Recent work on modular shape analysis (2, 4) has also shown promise in scaling
to large programs. However these approaches place substantial restrictions on the pro-
grams that are being analyzed. Techniques in (2) do not allow generalized sharing in the
heap structures while the techniques in (4) do not handle programs that contain recursive
data structures. Further, the programs that these approaches have been demonstrated on
contain relatively shallow and small data structures and the code does not heavily em-
ploy recursion or dynamic dispatch. In contrast the approach in this paper does not place
any constraints on the programs under analysis and has been demonstrated on a range
of programs that use large and complex data structures that are connected in a variety
of ways. The benchmark programs used in this paper also extensively employ dynamic
dispatch and contain non-trivial recursive traversals of heap structures.

6 Conclusion

This work introduced and provided justification for a novel partial context-sensitivity
heuristic, and a new take on cutpoints that produce a computationally efficient analy-
sis which is still able to produce precise results in practice. The impact of these con-
tributions was demonstrated by integrating them, and an existing high precision heap
analysis domain, into a complete context-sensitive dataflow analysis. Using this algo-
rithm we analyzed a number of well known object-oriented programs. The results pro-
vide empirical evidence that the use of fresh cutpoints and partial-context sensitivity
heuristics based on principles of object-oriented program design drastically reduce the
time and memory required to analyze a program (in a number of cases it is faster than
many state of the art context-sensitive points-to analyses). Further, these performance
improvements were obtained without a substantial degradation in the precision of the
results. Thus, we believe the interprocedural analysis presented in this paper represents
an important technical advancement in the state of the art in precise and scalable heap
analysis techniques and also introduces a new way to think about how program devel-
opment concepts can be leveraged in the design of static analysis techniques.

References

1. Barr, E., Bird, C., Marron, M.: Collecting a Heap of Shapes. Technical Report MSR-TR-
2011-135, Microsoft Research (December 2011)

2. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis by means
of bi-abduction. J. ACM (2011)

3. Chase, D., Wegman, M., Zadeck, K.: Analysis of pointers and structures. In: PLDI (1990)
4. Dillig, I., Dillig, T., Aiken, A., Sagiv, M.: Precise and compact modular procedure summaries

for heap manipulating programs. In: PLDI (2011)
5. Ghiya, R., Hendren, L.J.: Is it a tree, a dag, or a cyclic graph? A shape analysis for heap-

directed pointers in C. In: POPL (1996)
6. Gulwani, S., Tiwari, A.: An Abstract Domain for Analyzing Heap-Manipulating Low-Level

Software. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 379–392.
Springer, Heidelberg (2007)

7. Guyer, S.Z., McKinley, K.S.: Finding your cronies: static analysis for dynamic object colo-
cation. In: OOPSLA (2004)

8. Guyer, S.Z., McKinley, K.S., Frampton, D.: Free-me: a static analysis for automatic individ-
ual object reclamation. In: PLDI (2006)

60 M. Marron, O. Lhoták, and A. Banerjee

9. Jolden Suite, http://www-ali.cs.umass.edu/DaCapo/
10. Jones, N., Muchnick, S.: Flow analysis and optimization of Lisp-like structures. In: POPL

(1979)
11. Lattner, C., Adve, V.: Automatic pool allocation: improving performance by controlling data

structure layout in the heap. In: PLDI (2005)
12. Lattner, C., Lenharth, A., Adve, V.: Making context-sensitive points-to analysis with heap

cloning practical for the real world. In: PLDI (2007)
13. Lhoták, O., Hendren, L.: Evaluating the benefits of context-sensitive points-to analysis using

a BDD-based implementation. ACM Trans. Softw. Eng. Method. 18(1) (2008)
14. Ma, K.-K., Foster, J.: Inferring aliasing and encapsulation properties for Java. In: OOPSLA

(2007)
15. Manevich, R., Sagiv, M., Ramalingam, G., Field, J.: Partially Disjunctive Heap Abstraction.

In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 265–279. Springer, Heidelberg
(2004)

16. Marron, M.: Structural analysis: Combining shape analysis information with points-to anal-
ysis computation. arXiv:1201.1277v1 [cs.PL] (2012)

17. Marron, M., Hermenegildo, M., Kapur, D., Stefanovic, D.: Efficient Context-Sensitive Shape
Analysis with Graph Based Heap Models. In: Hendren, L. (ed.) CC 2008. LNCS, vol. 4959,
pp. 245–259. Springer, Heidelberg (2008)

18. Marron, M., Méndez-Lojo, M., Hermenegildo, M., Stefanovic, D., Kapur, D.: Sharing anal-
ysis of arrays, collections, and recursive structures. In: PASTE (2008)

19. Marron, M., Sanchez, C., Su, Z., Fahndrich, M.: Abstracting runtime heaps for program
understanding (2011), http://heapdbg.codeplex.com/

20. Marron, M., Stefanovic, D., Hermenegildo, M., Kapur, D.: Heap analysis in the presence of
collection libraries. In: PASTE (2007)

21. Mauborgne, L., Rival, X.: Trace Partitioning in Abstract Interpretation Based Static Ana-
lyzers. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 5–20. Springer, Heidelberg
(2005)

22. Milanova, A., Rountev, A., Ryder, B.: Parameterized object sensitivity for points-to and side-
effect analyses for Java. In: ISSTA (2002)

23. Muthukumar, K., Hermenegildo, M.: Compile-time derivation of variable dependency using
abstract interpretation. JLP 13(2/3) (1992)

24. Reps, T., Lal, A., Kidd, N.: Program Analysis Using Weighted Pushdown Systems. In:
Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 23–51. Springer, Hei-
delberg (2007)

25. Reynolds, J.: Separation logic: a logic for shared mutable data structures. In: LICS (2002)
26. Rinetzky, N., Bauer, J., Reps, T., Sagiv, S., Wilhelm, R.: A semantics for procedure local

heaps and its abstractions. In: POPL (2005)
27. Smaragdakis, Y., Bravenboer, M., Lhoták, O.: Pick your contexts well: understanding object-

sensitivity. In: POPL (2011)
28. Standard Performance Evaluation Corporation. JVM98 Version 1.04 (August 1998),

http://www.spec.org/jvm98

29. Whaley, J., Lam, M.: Cloning-based context-sensitive pointer alias analysis using binary
decision diagrams. In: PLDI (2004)

30. Wilson, R., Lam, M.: Efficient context-sensitive pointer analysis for C programs. In: PLDI
(1995)

31. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.: Scal-
able Shape Analysis for Systems Code. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS,
vol. 5123, pp. 385–398. Springer, Heidelberg (2008)

http://www-ali.cs.umass.edu/DaCapo/
http://heapdbg.codeplex.com/
http://www.spec.org/jvm98

Parallel Replication-Based Points-To Analysis

Sandeep Putta and Rupesh Nasre

Indian Institute of Technology, Bombay, India
Indian Institute of Science, Bangalore, India

sandeep.p@iitb.ac.in, nasre@csa.iisc.ernet.in

Abstract. Pointer analysis is one of the most important static analyses
during compilation. While several enhancements have been made to scale
pointer analysis, the work on parallelizing the analysis itself is still in in-
fancy. In this article, we propose a parallel version of context-sensitive
inclusion-based points-to analysis for C programs. Our analysis makes
use of replication of points-to sets to improve parallelism. In comparison
to the former work on parallel points-to analysis, we extract more paral-
lelism by exploiting a key insight based on monotonicity and unordered
nature of flow-insensitive points-to analysis. By taking advantage of the
nature of points-to analysis and the structure of constraint graph, we de-
vise several novel optimizations to further improve the overall speed-up.
We show the effectiveness of our approach using 16 SPEC 2000 bench-
marks and five large open source programs that range from 1.2 KLOC
to 0.5 MLOC. Specifically, our context-sensitive analysis achieves an av-
erage speed-up of 3.4× on an 8-core machine.

1 Introduction

Points-to analysis [1,28,6,4,17] is a method of statically determining whether two
pointers may point to the same location at runtime. The two pointers are then
said to be aliases of each other. While pointer analysis is immensely helpful for
compiler optimizations and extracting parallelism, the analysis itself can be run
in parallel to take advantage of the multiple resources available.

There is very little literature on parallelizing pointer analysis. Kahlon [17]
proposed bootstrapping that identifies alias sets using Steensgaard’s analysis [28]
and then Andersen’s analysis [1] is simulated to run in parallel on each alias set.
Lojo et al. [20] proposed speculative parallelization of inclusion-based pointer
analysis to expose amorphous data-parallelism in C programs. Recently, Ed-
vinsson et al. [7] proposed parallel points-to analysis for multi-core machines by
exploiting the independence of polymorphic calls and control-flow branches of
Java programs. Our method finds more fine-grained parallelism compared to the
above methods.

A typical method of parallelizing points-to analysis involves two tasks: (i)
identifying non-conflicting constraints and (ii) analyzing the non-conflicting con-
straints in parallel. The parallelism extracted by the existing techniques is limited
due to the inherent irregular nature of the applications (e.g., several SPEC 2000

M. O‘Boyle (Ed.): CC 2012, LNCS 7210, pp. 61–80, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

62 S. Putta and R. Nasre

benchmarks). For instance, speedup in parallel online analysis time in Lojo et
al.’s work [20] is maximum 2x using 8-cores over a set of open source C programs
analyzed, while in Edvinsson et al.’s work [7] it is maximum 1.76 using 8-cores
over a set of Java benchmarks. Thus, we see that irregularity of applications
(as defined in [20]) has been a stumbling block while extracting parallelism for
performing points-to analysis.

We observe that the monotonicity of a flow-insensitive points-to analysis can
help us achieve more parallelism. A key insight is that by allowing the analy-
sis to keep multiple copies of points-to sets, one can reduce dependence across
constraints. In fact, with sufficient number of copies, task (i) above gets trivial-
ized since no two constraints conflict! This allows us complete flexibility while
scheduling constraints on multiple cores. On the downside, this kind of data
replication can affect analysis soundness, as certain data flow facts may not get
computed. However, by exploiting monotonicity property of a flow-insensitive
analysis, we show that the analysis soundness can be preserved by carefully
merging the multiple copies in each iteration of the analysis. This helps us de-
velop a replication-based, yet sound, parallel analysis.

Major contributions of this paper are as below.

– A replication-based data flow analysis to improve parallelism and a novel
method based on monotonicity and unordered nature of flow-insensitive al-
gorithm to achieve a sound analysis in the presence of replicated data.

– Instantiating the data-flow analysis to develop a replication-based parallel
points-to analysis.

– Several engineering optimizations specific to pointer analysis, like parallel
online cycle elimination and limited cycle detection for extracting more par-
allelism and for a scalable implementation.

– Detailed evaluation of our method using SPEC 2000 benchmarks and five
large open source programs (httpd, sendmail, ghostscript, gdb and wine-
server). Our context-sensitive (insensitive) inclusion-based parallel version
achieves an average speed-up of 3.4x (3.0x) on an 8-core machine.

2 Motivation and Background

While our approach applies to several data-flow analyses, we illustrate it by
parallelizing Andersen’s inclusion-based analysis [1]. Thus, we deal with flow-
insensitive points-to analysis. For analyzing a general purpose C program, it is
sufficient to consider all pointer statements of the following forms: address-of
assignment (p = &q), copy assignment (p = q), load assignment (p = ∗q) and
store assignment (∗p = q) [24]. Address-of constraints can be evaluated only
once. Thus, the analysis iterates over the other three kinds of constraints until
a fixed-point.

Consider the following example program.

p = &a, a = &x, b = &y, c = &z, d = &w, q = p, a = b,
e = a, r = q, a = c, s = r, e = ∗a, t = s, a = d, ∗e = a

Parallel Replication-Based Points-To Analysis 63

Table 1. Running example (13 steps: 10 for Iteration 1 and 3 for Iteration 2)

Statement Iteration 0 Iteration 1 Iteration 2 Iteration 3

p = &a p→{a}
a = &x a→{x}
b = &y b→{y}
c = &z c→{z}
d = &w d→{w}
q = p q→{a}
a = b a→{y}
e = a e→{x,y} e→{z,w}
r = q r→{a}
a = c a→{z}
s = r s→{a}
e = *a
t = s t→{a}
a = d a→{w}
*e = a x,y→{x,y,z,w} z,w→{x,y,z,w}

A sequential analysis of the above program is given in Table 1. Iteration 0
shows the initial points-to information after processing address-of constraints.
We denote points-to information as a set of variables (e.g., {x,y}) and the points-
to relation using an arrow (→). The analysis requires three iterations to reach a
fixed-point which contains the following points-to facts.

p, q, r, s, t→ {a}, a, e, x, y, z, w→ {x, y, z, w},
b→ {y}, c→ {z}, d→ {w}

For exposition purpose, we define a step as a computation of points-to informa-
tion of a variable. Intuitively, it is proportional to the amount of time required
to analyze a constraint. Thus, each copy and load constraint requires a single
step, while each store constraint requires zero or more steps depending upon
the points-to information of the dereferenced variable. Thus, the above exam-
ple requires 13 steps (of non-address-of constraints) to reach a fixed-point for a
sequential analysis. It is easy to see that the non-address-of constraints in the
example require at least 12 steps to compute the fixed-point.

Analyzing a constraint DST = SRC involves (i) reading points-to information
of SRC and (ii) updating points-to information of DST. Depending upon the
type of the constraint, we have different read and write sets as shown in Table 2.
The read-set for the load constraint (p = *q) contains not only the pointees of q
but also q itself. Similarly, the read-set of the store constraint (*p = q) contains
both p and q. Due to weak-typing of C language, read and write sets for a
constraint need not be mutually exclusive. For instance, following statement is
valid (with type-casting): p = *p, and its read-set as well as write-set contain p.

Two constraints C1 and C2 conflict with each other if at least one of the fol-
lowing three conditions holds: (i) ReadSet(C1) ∩ WriteSet(C2) �= φ (ii) Write-
Set(C1) ∩ ReadSet(C2) �= φ (iii) WriteSet(C1) ∩ WriteSet(C2) �= φ.

64 S. Putta and R. Nasre

Table 2. Read-Write sets for points-to constraints

Constraint Read Set Write Set

p = q {q} {p}
p = *q {q} ∪ {x : q → {x}} {p}
*p = q {q, p} {x : p → {x}}

The conflict relation is reflexive, symmetric and non-transitive. The above
conditions can be easily generalized to multiple constraints. Non-conflicting con-
straints can be analyzed in parallel. Therefore, identifying the constraints that
can be evaluated in parallel involves computing read and write (RW) sets of
various constraints in some form. As more points-to information gets computed,
the read sets of load constraints and the write sets of store constraints also go
on increasing in size, potentially reducing opportunities for parallelism as the
analysis progresses. Due to monotonic nature of the flow-insensitive analysis,
the RW sets never shrink. Note that since the points-to sets are computed dy-
namically, the RW sets need to be updated dynamically. Using the RW sets, one
can parallelize analyzing the example as shown in the parallel schedule below.

Thread T1: q = p, r = q, s = r, t = s
Thread T2: a = b, a = c, a = d, e = *a, e = a, *e = a

The parallel schedule involves analyzing the two sets of constraints using two
threads T1 and T2. Compared to 12 (minimum number of) steps of the sequential
analysis, the parallel analysis requires at most 9 steps to reach the fixed-point:
one step each for the first five copy and load constraints of T2 and four steps
for the last store constraint of T2 as pointer e points to four variables {x, y,
z, w}. However, due to conflicting constraints, it is not possible to take advan-
tage of more than two cores for this example using a naive parallel points-to
analysis. Thus, even if a points-to analysis is provided with four or eight cores,
the parallel analysis would still require at least 9 steps. Further, computing and
maintaining RW sets, identifying conflicts across constraints and generating a
parallel schedule is a time-consuming process. As the RW sets of a constraint
change, it needs to be checked for conflict against all other non-conflicting con-
straints. This checking requires O(n2) operations per change in the read-write
set where n is the number of constraints. Conflicting constraints are common-
place [13] and therefore, a naive parallel analysis is going to be prohibitive in
terms of not only the amount of parallelism but also the parallel execution time.
Our technique illustrates how to extract more parallelism efficiently even when
several conflicting constraints exist.

3 Replication-Based Analysis

In this section we first introduce our replication-based approach at a higher level
by giving an outline of the algorithm.We prove that a replication-based approach
is sound for a monotonic, unordered data-flow analysis (e.g., a flow-insensitive

Parallel Replication-Based Points-To Analysis 65

points-to analysis). We then explain in detail how replication works for our par-
allel points-to analysis algorithm.

A flow-insensitive analysis ignores the control-flow information and assumes
that program statements may be executed in any order. We state a well-known
property of flow-insensitive data-flow analysis to prove soundness of our method.

Theorem 1. A flow-insensitive data-flow analysis computes the same fixed-
point irrespective of the order in which the program statements are analyzed.

3.1 Algorithm Outline

A data-flow analysis is monotonically increasing if it never kills a computed
data-flow fact. A flow-insensitive points-to analysis is an example of a monoton-
ically increasing (or simply, monotonic) analysis whereas a flow-sensitive points-
to analysis is an example of a non-monotonic analysis. Since flow-insensitive
points-to analysis is monotonic and its solution does not depend upon the order
of evaluation, our method partitions the set of constraints arbitrarily, analyzes
them in parallel, merges the individual solution sets and repeats this process
until a fixed-point, as shown in Algorithm 1. The merge operation performs a
union of points-to information for each pointer. Thus, if thread T1 computes the
following points-to information: p → {a}, q → {b}, and thread T2 computes the
following points-to information: p → {c}, q → {a,b}, r → {c}, then the merge
operation on Line 5 of Algorithm 1 computes the following points-to information:
p → {a,c}, q → {a,b}, r → {c}.

We first prove that the parallel algorithm computes a safe solution. It is suffi-
cient to prove that the algorithm computes the same solution as that computed
by a sequential analysis.

Theorem 2. Algorithm 1 is sound.

Proof. Let SEQ be the least fixed-point points-to set computed by a flow-
insensitive sequential analysis. We prove that Algorithm 1 computes a solution
PAR which equals SEQ, i.e., SEQ = PAR. In this proof, we make a simplistic
assumption that in every iteration of the parallel analysis, the constraints are
executed in the same order. A multithreaded schedule of the input points-to
constraints C can then be represented as an interleaving of the constraints, with
constraints analyzed in parallel placed in an arbitrary (but fixed) order. This
interleaving forms a sequential ordering S over all the constraints and since it is
derived from the parallel schedule, its least fixed-point solution SEQ′ must equal
PAR, i.e., SEQ′ = PAR. Now, assume a sequential flow-insensitive analysis ana-
lyzing C in the order denoted by S. By Theorem 1, the least fixed-point solution
SEQ′ computed by this sequential analysis must equal SEQ, i.e., SEQ = SEQ′.
Therefore, SEQ = PAR, proving that Algorithm 1 computes the same solution
as that computed by a sequential analysis.

We would like to emphasize that both monotonicity and unorderedness are the
required properties of the underlying data-flow analysis for our parallel algorithm

66 S. Putta and R. Nasre

Algorithm 1. Outline of our parallel points-to analysis

Require: set C of points-to constraints, number of cores N
1: partition C arbitrarily into N threads
2: repeat
3: schedule N threads on N cores
4: wait for N threads to complete
5: merge points-to sets of N threads
6: until fixed-point

to compute a safe result. Our algorithm is general and is applicable to any
analysis that is monotonic and unordered. For instance, it can be applied to
0-CFA [25].

3.2 Replication

Our method handles conflicting constraints by keeping multiple copies of the con-
flicting variables and their associated points-to sets. For instance, the constraints
p = q, r = p and p = s conflict. However, if they are analyzed in separate threads
T1, T2 and T3 respectively, our method creates a copy of p’s points-to set in T1
and T3 since their write sets contain p. Since T2 only reads p, it continues to read
the master (original) copy of p. The newly computed points-to information of T1
and T3 is merged with that of the master copy of p at the end of each iteration.
Note that T2 would contain a copy of the points-to set of r. Further note that it is
possible to use multiple copies of variables since the analysis is monotonic. If the
analysis is non-monotonic (for instance, if it is flow-sensitive) then naively making
multiple copies of the points-to sets may not preserve the solution.

The merge operation performs a union of points-to information for each
pointer. Merging of the points-to information for multiple pointers is done in
parallel. However, merging of local points-to information of a pointer with its
master copy is done in a sequential manner.

Table 3 shows the parallel analysis of the example program using our method.
Recall from Section 2 that a naive parallel analysis using read-write sets could
not take advantage of more than two cores. Therefore, we illustrate our technique
using three threads. Column 1 shows the thread number. Column 2 shows the
points-to constraints assigned to each thread. Column 3 and 4 show the new
points-to information created as a local copy and the merging of the local copies
with the master copies for Iteration 1. The local copies of variable v are denoted
as v’, v”, ... Further columns show the analysis for further iterations.

In contrast to three iterations of the sequential analysis, the parallel analy-
sis requires four iterations to reach the fixed-point. This happens because some
points-to information computed by the constraints partitioned across different
threads requires another iteration to propagate. In general, our multi-copy par-
allel analysis requires upto 30% more number of iterations over its sequential
counterpart. However, by utilizing more cores and extracting more parallelism
by making copies, the overall parallel analysis time gets much smaller.

Parallel Replication-Based Points-To Analysis 67

Table 3. Parallel analysis using three threads (12 steps): Iterations 1, 2, 3 require 4,
2, 3 steps respectively and each merge requires 1 step

T Stmt Itr 1 Merge 1 Itr 2 Merge 2 Itr 3 Merge 3 Itr 4
q = p q’→{a}

1 a = b a’→{y}
r = q r’→{a}
e = a e’→{x,y} a→{y,z,w}, e’→{x,y,z,w} e→{z,w} z,w→{x,y,z,w}
a = c a”→{z} e→{x,y} x,y→{x,y,z,w} t→{a}

2 e = *a q,r→{a} s→{a}
s = r s’→{a}
a = d a”’→{w}

3 t = s t’→{a}
*e = a x’,y’→{x,y,z,w} z’,w’→{x,y,z,w}

Table 4. Parallel analysis using four threads (9 steps): Iterations 1, 2, 3 require 2, 1,
3 steps respectively and each merge requires 1 step

T Stmt Itr 1 Merge 1 Itr 2 Merge 2 Itr 3 Merge 3 Itr 4
1 q = p q’→{a}

e = a e’→{x} e’→{y,z,w}
2 r = q a→{y,z,w}, r’→{a} e→{y,z,w} y,z,w→{x,y,z,w}

a = c a”→{z} e→{x}, x→{x,y,z,w} s,t→{a}
e = *a q→{a} r→{a}

3 s = r
t = s s’,t’→{a}
a = d a”’→{w}

4 *e = a x’→{x,y,z,w} y’,z’,w’→{x,y,z,w}
a = b a’→{y}

Observe from Table 3 that our parallel analysis requires 12 steps (or time-
units) to reach the fixed-point (4 for Iteration 1, 2 for Iteration 2 and 3 for
Iteration 3). Since merge operation for multiple pointers is done in parallel, we
add one step for each merge operation. If we increase the number of threads
to four, our analysis computes the same fixed-point in 9 steps (Table 4: 2 for
Iteration 1, 1 for Iteration 2, 3 for Iteration 3 and 3 for the merge operations). If
we further increase the number of threads to five, our analysis can compute the
fixed-point in 8 steps (Table 5: 1 for Iteration 1, 1 for Iteration 2, 3 for Iteration 3
and 3 for the merge operations). Recall from Section 2 that the sequential version
required at least 12 steps to reach the fixed-point and the naive parallel version
required 9 steps. This illustrates the unique ability of our method to extract
more and more fine-grained parallelism from a seemingly sequential component
of a program and improving the resource usage of multiple cores.

Note also that replication of points-to information is not transparent to the
threads. Each thread simply deals with its own copy whenever it modifies data.
A thread does not need to know about other threads or the number of copies
of the points-to information it accesses in the system. This helps in keeping
the multithreaded code simple and greatly eases the code understanding. We
would like to emphasize that this property is an artifact of the monotonicity and
unorderedness of flow-insensitive analysis.

68 S. Putta and R. Nasre

Table 5. Parallel analysis using five threads (8 steps): Iterations 1, 2, 3 require 1, 1,
3 steps respectively and each merge requires 1 step

T Stmt Itr 1 Merge 1 Itr 2 Merge 2 Itr 3 Merge 3 Itr 4
1 e = a e’→{x} e’→{y,z,w}
2 q = p q’→{a}
3 r = q a→{y,z,w}, r’→{a} e→{y,z,w} y,z,w→{x,y,z,w}

a = c a”→{z} e→{x}, x→{x,y,z,w} s,t→{a}
e = *a q→{a} r→{a}

4 s = r
t = s s’,t’→{a}
a = d a”’→{w}

5 *e = a x’→{x,y,z,w} y’,z’,w’→{x,y,z,w}
a = b a’→{y}

4 Parallel Points-to Analysis Algorithm

In this section we discuss our parallel points-to analysis algorithm in more de-
tail. Next, we discuss key optimizations which improve overall parallelism of the
analysis.

Each analyzer thread runs Algorithm 2. The scheduler (parent) thread com-
municates with the analyzer threads using global variablesmystatei. Each thread
runs an indefinite loop until fixed-point (Lines 1–33). The fixed-point is deter-
mined by the parent thread during merging operations (Line 5). When a thread
is scheduled with an input set of constraints, it analyzes each constraint and de-
pending upon the type of the constraint, it creates local copies of the write-sets
and updates the points-to information locally. Note that the local copies are not
erased at the end of an iteration and therefore get automatically cached for the
further iterations by the thread. As more points-to information is computed, ad-
ditional local copies of variables are created by the thread. Lines 13–15 process a
load constraint (p = *q), The for-loop at Lines 22–24 process a store constraint
(*p = q) and Line 29 process a copy constraint (p = q). After processing all the
input constraint, Thread i updates its state in global variable mystatei.

The parent thread spawns analyzer threads, waits for them to complete an
iteration each, merges their local copies of points-to sets with the master copy
in parallel and checks if the fixed-point is reached. Although not shown in the
Algorithm, accesses to the global variables (fixed-point and mystatei) are pro-
tected using locks. Since these accesses occur infrequently (once per thread per
iteration), these do not affect the analysis performance in any significant manner.

4.1 Load Balancing

Replication allows an arbitrary distribution of constraints to threads. However,
to achieve good performance, proper load-balancing of work is necessary. Un-
fortunately, the amount of points-to information propagated from one pointer
to another differs significantly across pointers and across iterations. Therefore,
a static constraint partitioning, which assigns a constraint evaluation to a fixed
thread throughout the analysis, achieves only a limited success. On the other ex-
treme, re-calculating the partitions for a perfect load-balance makes the analysis

Parallel Replication-Based Points-To Analysis 69

Algorithm 2. Points-to analysis by thread i

Require: thread id i, set Ci of points-to constraints
1: while true do
2: while mystatei = I do not have work do
3: ;
4: end while
5: if fixed-point reached then
6: break;
7: end if
8: for each constraint c ∈ Ci do
9: if c is a load constraint p = *q then
10: if p is not copied locally then
11: make a local copy p’ of p
12: end if
13: for each v ∈ points-to set of q do
14: points-to set(p’) ∪= points-to set(v)
15: end for
16: else if c is a store constraint *p = q then
17: for each v ∈ points-to set(p) do
18: if v is not copied locally then
19: make a local copy v’ of v
20: end if
21: end for
22: for each v ∈ points-to set(p) do
23: points-to set(v’) ∪= points-to set(q)
24: end for
25: else if c is a copy constraint p = q then
26: if p is not copied locally then
27: make a local copy p’ of p
28: end if
29: points-to set(p’) ∪= points-to set(q)
30: end if
31: end for
32: mystatei = Another iteration done
33: end while

slower than no load-balancing at all! Therefore, we employ a greedy, incremental
approach, which achieves an approximately load-balanced threads at a much re-
duced cost. Our algorithm first distributes copy and load constraints to threads
in an even (round-robin) manner, since both kinds of constraints have a single-
ton write-set (see Table 2). It then makes a single pass over the (costly) store
constraints to distribute those to threads again in an even manner. Recall that
store constraints may update the points-to sets of multiple pointers. Each thread
also maintains a single number indicating its load (amount of work), based on
the constraints assigned. In each iteration, as a constraint evaluation results
in new points-to information, each thread updates its load-indicator, keeping
track of how much information each constraint changed in that iteration. If the

70 S. Putta and R. Nasre

new load-indicator is more than its value in the previous iteration by a threshold
(pre-determined based on the number of constraints and threads), the thread or-
phans a few (fixed at 5 in our experiments) constraints that added the maximum
points-to information and adds those to a shared worklist. Other threads, at the
end of each iteration, check this worklist and adopt a few constraints if their
load-indicator is less than the threshold. Higher value of the threshold results
in less number of accesses to the shared worklist with reduced load-balancing,
whereas lowering the threshold results in improved load-balancing but more
communication (via the worklist) across threads. We experimented with several
values for the threshold and the optimal value differs considerably across appli-
cations. We found that a threshold set to approximately 7 – 10% of the number
of variables achieves a good trade-off for our benchmarks. Note that checking for
overload is a (thread-)local strategy, which avoids costly thread-communication
overhead. The strategy works reasonably well in practice because the amount
of new points-to information added by a constraint in each iteration can be
predicted based on that in the previous iteration [22].

4.2 Parallel Online Cycle Elimination

Inclusion-based points-to analysis is generally represented using a constraint
graph G wherein a node represents a pointer and a directed edge from node
n1 to node n2 represents the inclusion relationship points-to set(n1) ⊆ points-to
set(n2). The points-to information is propagated across the edges. Load and store
constraints add more and more edges to G as the analysis progresses generating
more opportunities for points-to information propagation. Accumulation of more
points-to information at the nodes may result in more edges being added to G.
This process is repeated until a fixed-point. Cycles may occur in G at any stage
during the analysis. A cycle in G happens due to inter-dependent variables. In
terms of RW sets, a cycle indicates a chain c1, c2, ..., cn of constraints such that
write-set(c1) ∩ read-set(c2) �= φ, write-set(c2) ∩ read-set(c3) �= φ, ..., write-
set(cn−1) ∩ read-set(cn) �= φ and write-set(cn) ∩ read-set(c1) �= φ. For instance,
a = b and b = a indicates a cycle. An important property of the pointers in
a cycle is that all of them (eventually) have the same points-to information.
Therefore, to reduce unnecessary propagations, cycles are collapsed. Detecting
and collapsing cycles is vital for a scalable inclusion-based points-to analysis [9].
We use Tarjan’s algorithm to find strongly connected components (SCC) of a
directed graph [29] to detect cycles in the constraint graph.

Cycle elimination involves replacing the nodes in the cycle by a representative
node with its points-to information as a union of the points-to information from
all the replaced nodes. Further, the incoming edges to and the outgoing edges
from the replaced nodes need to be updated to be to and from the representative
node respectively. Our algorithm collapses disjoint cycles in parallel. We reuse the
same threads as for solving constraints to collapse cycles, since cycle detection
and collapsing is done when no threads are solving any constraints.

It is possible for two threads collapsing disjoint cycles to update the incom-
ing edges from the same node, potentially resulting in a conflict. However, this

Parallel Replication-Based Points-To Analysis 71

happens infrequently and therefore, we use locking over the nodes to be updated
while collapsing cycles.

In order to get maximum benefit out of cycle detection, one needs to carefully
tune the cycle detection frequency [12]. We check for cycles once per iteration.

We observed that the advantage of cycle detection is high during only the
initial few iterations of the analysis and it gradually reduces as the analysis
progresses. Towards the end of the analysis, the cost of cycle detection outweighs
its benefits and therefore, we perform cycle detection only upto certain number
of initial iterations of the analysis.

4.3 Reducing the Number of Copies

In this section we discuss optimizations that reduce the number of copies of
points-to sets across threads. Reducing the number of copies also reduces the
number of iterations to reach the fixed-point.

It is unnecessary to make a copy of a variable’s points-to set when there is
a single writer thread. We detect this situation by maintaining the number of
writer threads for each variable and using directly the master copy when no more
than one thread writes to the variable. For instance, in the example shown in
Table 3, the constraints q = p, r = q, s = r, t = s and *e = a directly update
the master copy of the variables in the write-sets.

Our analysis also takes advantage of difference propagation [14] for improving
efficiency. Difference propagation involves keeping track of the difference between
points-to information of the nodes forming an edge. This helps in propagating
only the additional new information across the edge. Our analysis does not initi-
ate a merge operation if the difference between the points-to information of the
local copy and the master copy is nil.

While the soundness of our replication-based analysis is oblivious to the way
points-to constraints are distributed across threads in each iteration of the anal-
ysis, we use a fixed partitioning across all iterations to improve its performance.
This helps us cache certain points-to information locally with the thread, updat-
ing it using difference propagation with the master only when some other thread
has written to it. Using a fixed constraint partitioning also helps each thread
make local decisions on the constraint evaluation.

4.4 Limited Scheduling

The amount of new points-to information computed is high in the initial itera-
tions and gradually reduces as the analysis progresses. In fact, towards the end
of the analysis, only a few constraints add more points-to information. There-
fore, our method restricts parallel analysis to a limited number of iterations. The
decision of when to change from parallel to sequential analysis is taken based
on the amount of new points-to information Pi computed in an iteration i. As
soon as it falls below 10% of Pi−1 computed in iteration i−1, our method starts
evaluating constraints sequentially.

72 S. Putta and R. Nasre

Algorithm 3. Context-sensitive analysis

Require: Function f, callchain cc, constraints C, variable set V
1: for all statements s ∈ f do
2: if s is of the form p = alloc() then
3: if inrecursion == false then
4: V = V ∪ (p, cc)
5: end if
6: else if s is of the form non-recursive call fnr then
7: cc.add(fnr)
8: add copy constraints to C for actual and formal arguments
9: call Algorithm 3 with parameters fnr, cc, C
10: add copy constraints to C for return value of fnr and �-value in s

11: cc.remove()
12: else if s is of the form recursive call fnr then
13: inrecursion = true
14: C-cycle = {}
15: repeat
16: for all functions fc ∈ cyclic callchain do
17: call Algorithm 3 with parameters fc, cc, C-cycle
18: end for
19: until no new constraints are added to C-cycle
20: inrecursion = false
21: C = C ∪ C-cycle
22: else if s is an address-of, copy, load, store statement then
23: c = constraint(s, cc)
24: C = C ∪ c

25: end if
26: end for

5 Context-Sensitive Analysis

We extend Algorithm 2 for context-sensitivity using an invocation graph based
approach [8]. The approach readily disallows non-realizable interprocedural ex-
ecution paths. The context-sensitive algorithm starts from function main and
maintains a stack of function invocations, similar to the runtime. Thus, a re-
turn from a function always matches the function invocation at the top of the
stack. We handle recursion, which can introduce potentially unbounded number
of contexts, by iterating over the cyclic call-chain and computing a fixed-point
of the points-to tuples. Our analysis is field-insensitive, i.e., we assume that any
reference to a field inside a structure is to the whole structure. We do not model
setjmp-longjmp instructions. Our algorithm handles function pointers similar
to [8] by gradually refining the target functions. The context-sensitive version is
outlined in recursive Algorithm 3.

The algorithm takes four parameters: the function f to be processed, its call-
ing context cc, the set of constraints C to be generated and the set of variables V
to be created. The analysis first adds(g, {}) to V for each global variable g where
{} denotes an empty context (not shown in the algorithm). It then makes the

Parallel Replication-Based Points-To Analysis 73

first call to the algorithm with parameters main, {main}, C={}, V. The proce-
dure processes all the statements in the function and generates context-sensitive
points-to constraints in C. C is later evaluated using Algorithm 2. Lines 2–5 in Al-
gorithm 3 process memory allocation and create a new variable on encountering
an alloc statement outside recursion. Lines 6–11 handle a non-recursive call. It
first adds the callee to the callchain and then maps the actual arguments to the
formal arguments. The algorithm recursively calls itself in Line 9 to process the
invocation graph of the callee. The callee is analyzed the same way and the set
of constraints C keeps getting updated. On the callee function’s return, its return
value is mapped to the �-value in the call statement. Finally, the calling context
is updated by removing the callee. A recursive call is handled in Lines 12–21 by
iterating over the cyclic call chain and computing a fixed-point of constraints in
C-cycle. Note that the recursive call to Algorithm 3 in Line 17 uses the same
callchain. The fixed-point over the constraints C-cycle generated in the cyclic
call graph is then merged with C in Line 21. The corresponding context-sensitive
constraints for address-of, copy, load and store statements are added in Lines 22–
25. A context-sensitive constraint contains variables in a particular context. The
two sets, C and V are finally passed on to Algorithm 2 for solving. The reason for
designing the analysis as a two step process (generating constraints and solving
them), rather than interleaving the two tasks, is to have a common constraint
solving phase (with minor modifications). Thus, Algorithm 2 is used for both
context-insensitive and context-sensitive analysis.

Making the analysis context-sensitive increases the number of (context-wise)
variables and reduces the sizes of read-write sets for constraints. Thus, making
the analysis context-sensitive reduces the number of conflicts across constraints,
and in turn, the cost of merging. This helps a context-sensitive analysis achieve
a better speed-up over the context-insensitive version.

6 Experimental Evaluation

We evaluate the effectiveness of our approach using 16 SPEC C/C++ bench-
marks and five large open source programs, namely httpd, sendmail, ghostscript,
gdb and wine-server. The benchmark characteristics are given in Table 6. All
programs are run on an 8-core Intel Xeon E5440 with 2.83 GHz clock, 16 GB
RAM running Debian GNU/Linux 5.0.

6.1 Context-Insensitive Analysis

Analysis Time. Table 7 shows the speedup obtained using different number of
threads. Column SEQ indicates the absolute sequential analysis time in seconds.
This base analysis is inclusion-based points-to analysis with offline variable sub-
stitution [26] and online cycle elimination [9] implemented. Both the sequential
and the parallel implementations use sparse bitmaps to store points-to informa-
tion. Columns titled 1, 2, 4, 6, 8 indicate the speedup obtained over the sequential
version using the said number of threads.

74 S. Putta and R. Nasre

Table 6. Benchmark characteristics

Benchmark KLOC # Total # Pointer # Func
Inst Inst

176.gcc 222.185 328,425 119,384 1,829
253.perlbmk 81.442 143,848 52,924 1,067
254.gap 71.367 118,715 39,484 877
255.vortex 67.216 75,458 16,114 963
177.mesa 59.255 96,919 26,076 1,040
186.crafty 20.657 28,743 3,467 136
300.twolf 20.461 49,507 15,820 215
175.vpr 17.731 25,851 6,575 228
252.eon 17.679 126,866 43,617 1,723
188.ammp 13.486 26,199 6,516 211
197.parser 11.394 35,814 11,872 356
164.gzip 8.618 8,434 991 90
256.bzip2 4.650 4,832 759 90
181.mcf 2.414 2,969 1,080 42
183.equake 1.515 3,029 985 40
179.art 1.272 1,977 386 43
httpd 125.877 220,552 104,962 2,339
sendmail 113.264 171,413 57,424 1,005
ghostscript 438.204 906,398 488,998 6,991
gdb 474.591 576,624 362,171 7,127
wine-server 178.592 110,785 66,501 2,105

The average speedup as a geometric mean is 3.001 on 8 cores. The best
speedup of 4.119 is obtained for perlbmk. Our parallel version takes 10% more
time than SEQ for a single thread. However, all the benchmarks we experimented
with perform better than SEQ for two (and more) threads.

We compare our results with the parallel points-to analysis built using Ga-
lois system [20]1. Figure 1 shows the average speedups over the base sequential
versions. The Galois system obtains an average speedup of 2.314 on the set of
benchmarks using 8 cores. Our implementation performs consistently better for
any number of threads. It should be emphasized that the parallel points-to anal-
ysis in Galois uses speculative parallelism which can rollback an activity if a
conflict is detected. Our method uses multiple copies of points-to sets and re-
sults in no conflicts across threads. It does not incur any rollback overheads.
Therefore, it is suited even for a non-speculative execution. We believe that it
is possible to improve Galois speedup by taking advantage of the monotonicity
and unordered nature of flow-insensitive points-to analysis.

Memory. Table 7 shows the memory requirements (in MB) of SEQ, our paral-
lel algorithm PARALLEL with 8 cores and the Galois system with 8 cores for
each benchmark. On an average, PARALLEL requires 12% more memory than
SEQ. This is due to a few additional copies of points-to sets stored locally by
each thread. However, GALOIS requires 53% more memory than PARALLEL
and 71% more than SEQ. The authors of GALOIS [20] attribute the high mem-
ory consumption to Java implementation. Our C++ implementation performs
optimizations to reduce the number of copies of points-to sets across threads.

1 Downloaded from http://users.ices.utexas.edu/∼marioml/hardekopfPointsTo.html.

Parallel Replication-Based Points-To Analysis 75

Table 7. Context-insensitive analysis: Analysis time, Speedup and Memory

Benchmark SEQ Speedup Memory (MB)
Time(s) 1 2 4 6 8 SEQ PARALLEL GALOIS

gcc 6.546 0.80 1.02 2.39 2.96 3.84 83 95 179
perlbmk 2.345 0.92 1.18 2.14 3.03 4.11 100 135 188
vortex 1.445 0.96 1.04 1.97 2.46 3.59 16 24 28
eon 2.446 0.92 1.29 2.41 3.31 4.00 248 314 346
parser 0.889 0.98 1.11 1.74 2.43 3.23 4 7 7
gap 2.777 0.96 1.17 1.69 2.19 2.99 8 13 14
vpr 0.601 0.89 1.18 1.59 2.00 2.46 2 3 3
crafty 0.595 0.99 1.25 1.83 2.38 2.87 1 2 3
mesa 2.045 0.98 1.18 1.77 2.75 3.58 14 16 23
ammp 0.575 0.95 1.03 1.48 1.98 2.68 3 4 5
twolf 0.686 0.97 1.05 1.68 1.99 2.44 4 4 6
gzip 0.456 0.87 1.06 1.72 2.24 2.89 1 1 2
bzip2 0.396 0.90 1.02 1.49 1.80 2.33 1 1 1
mcf 0.382 0.88 1.00 1.36 1.79 2.17 1 1 2
equake 0.436 0.82 1.04 1.47 1.75 2.01 1 1 1
art 0.485 0.84 1.00 1.60 2.10 2.44 1 1 1

httpd 4.447 0.85 1.18 2.13 2.80 3.68 674 705 1028
sendmail 3.311 0.86 1.18 2.07 2.68 3.43 256 279 511
ghostscript 84.497 0.88 1.19 2.22 2.89 3.71 2871 3193 5719
gdb 174.355 0.89 1.09 1.68 2.31 3.01 3556 3976 5362
wine-server 4.452 0.89 1.08 1.78 2.22 2.77 185 210 336

average 14.008 0.91 1.11 1.80 2.35 3.00 382 428 655

6.2 Context-Sensitive Analysis

Analysis Time. The context-sensitive version of our parallel analysis performs
similar to its context-insensitive counterpart. The speedup results are detailed
in Table 8. In comparison to the context-insensitive results, since variables now
have smaller points-to sets, the number of potential conflicts across threads re-
duces and the analysis requires less number of local copies and merging. Our
parallel analysis achieves a speedup of 3.4x on an 8-core machine. Considering
that points-to analysis is an irregular application with dynamic constraint graph,
we believe, this speedup is quite remarkable.

Memory. Memory requirement of our context-sensitive parallel points-to analy-
sis is shown in Table 8. Once again, PARALLEL-CS requires 14% more memory
than SEQ-CS.

In summary, our parallel points-to analysis exploits more fine-grained paral-
lelism from programs and promises a scalable approach to parallelizing mono-
tonic, unordered analyses.

76 S. Putta and R. Nasre

Fig. 1. Speedup comparison between our replication-based approach and Galois system

7 Related Work

Replication-Based Techniques. Replication-based techniques are prevalent
in distributed systems, but their main focus is reliability [11,16]. Bal et al. [2] pro-
pose partial replication based techniques for speeding up parallelization. Their
approach is based on replicating an object based on its read-write access pat-
tern. While being applicable to parallel points-to analysis, their approach does
not exploit the monotonicity property of flow-insensitive analysis, which is key
to the arbitrary constraint partitioning employed by our algorithm.

Ziegler et al. [32] propose a data-flow analysis algorithm to uncover the paral-
lelization opportunities for array replication and their temporary privatization.
Their algorithm does not take advantage of any monotonic computation.

A few optimistic thread executions involve limited forms of data replication.
For instance, in the Grace system [3] used for eliminating concurrency errors,
threads execute optimistically and write their updates speculatively but locally.
Burckhardt et al. [5] propose isolation types which can be used by threads to read
and modify local copies of shared data. Our approach exploits the monotonic
and unordered nature of flow-insensitive analysis to eliminate contention.

Prabhu et al. [25] develop an algorithm called EigenCFA for accelerating 0-
CFA with a GPU. Similar to our analysis, EigenCFA takes advantage of the
monotonicity of 0-CFA to allow stale reads. In their analysis, the same row in
the representation matrix may have multiple copies of the same lambda term if
they try to add the same information at the same time. They claim that this is a
“rare inefficiency”. In contrast, our analysis heavily depends upon this property
and exploits it to improve parallelism. Further, the focus of their work is to run
the analysis on a GPU whereas our focus is to run it on a multicore.

Sequential Pointer Analysis. The area of sequential points-to analysis is
rich in literature. See [15] for a survey. Most scalable algorithms proposed use
unification [28][10]. Steensgaard[28] proposed an almost linear time single-pass

Parallel Replication-Based Points-To Analysis 77

Table 8. Context-sensitive analysis: Analysis time, Speedup and Memory

Benchmark SEQ-CS Speedup Memory (MB)
Time(s) 1 2 4 6 8 SEQ-CS PARALLEL-CS

gcc 329.463 0.87 1.12 2.69 3.41 4.28 2859 3419
perlbmk 143.448 0.96 1.29 2.47 3.21 4.03 2133 2628
vortex 91.283 0.98 1.22 2.52 3.22 3.81 1857 2014
eon 93.495 0.96 1.31 2.72 3.41 3.98 1276 1443
parser 35.445 0.99 1.32 2.66 3.33 3.86 478 549
gap 128.478 0.98 1.27 2.50 3.13 3.77 457 514
vpr 29.456 0.93 1.22 2.69 3.08 3.64 735 770
crafty 29.337 0.99 1.28 2.51 2.96 3.46 672 736
mesa 89.388 0.98 1.27 2.01 2.68 3.32 894 949
ammp 34.236 0.96 1.10 1.89 2.77 3.15 427 447
twolf 41.499 0.98 1.10 2.10 2.69 2.90 624 696
gzip 25.234 0.92 1.08 1.74 2.56 2.98 514 641
bzip2 23.322 0.92 1.06 1.85 2.43 2.68 633 686
mcf 22.395 0.91 1.02 1.88 2.60 3.00 403 470
equake 24.306 0.90 1.08 1.96 2.75 3.23 546 610
art 26.459 0.92 1.04 1.92 2.43 2.84 597 656

httpd 224.534 0.89 1.24 2.47 3.01 3.68 991 1131
sendmail 172.743 0.91 1.28 2.58 3.10 3.57 914 1019
ghostscript 4384.238 0.93 1.30 2.66 3.11 3.81 8258 9761
gdb 9338.228 0.93 1.14 2.43 2.99 3.64 5894 6486
wine-server 201.323 0.97 1.16 2.01 2.58 3.10 774 858

average 737.539 0.95 1.19 2.28 2.91 3.44 1521 1737

algorithm that has been shown to scale to millions of lines of programs. However,
a unification based approach is very imprecise. Andersen [1] proposed inclusion-
based analysis that works on subsumption of points-to sets rather than a bidirec-
tional similarity. An inclusion-based (or subset-based) analysis is more precise
than a unification based analysis. However, it is also costly and has a theoretical
complexity of O(n3). Several techniques [4][14][30] have been proposed to improve
upon the original work by Andersen. [4] extracts similarity across the points-to
sets while [30] exploits similarity across the contexts to make use of the Binary
Decision Diagrams (BDD) to store information in a succinct manner. The idea
of bootstrapping [17] first reduces the problem by partitioning the set of pointers
into disjoint alias sets using a fast and less precise algorithm (e.g., [28]) and later
running more precise analysis on each of the partitions. To address the analysis
cost of a completely context-sensitive analysis, approximate representations were
introduced to trade off precision for scalability. Das [6] proposed one level flow,
Lattner et al. [18] unified contexts, while Nasre et al. [23,21] hashed contexts to
alleviate the need to store complete context information.

Parallel Pointer Analysis. In contrast to its sequential counterpart, parallel
points-to analysis is still not explored enough. The work on program decom-
position identifies various program components on which different analyses can

78 S. Putta and R. Nasre

be executed in parallel [31,27]. Bootstrapping [17] uses partitions of aliases to
simulate parallel processing. However, parallelizing is not the main objective of
the work and the parallelism extracted is very coarse. Lojo et al. [20,19] pro-
posed the first parallel implementation of inclusion-based points-to analysis by
exploiting the constraint graph formulation. Their analysis works on the assump-
tion of speculative parallelism and an activity may be rolled back if a conflict is
detected. In contrast, our work is general and does not require the support of
speculative execution. By making multiple copies of points-to sets, our analysis
strives to obtain more fine-grained parallelism.

A parallel points-to analysis for object oriented programs is proposed by Ed-
vinsson et al. [7] which deals with different target methods of polymorphic func-
tion calls and independent control-flow branches. Maximum speedup obtained
has been shown to be less than 2.0 for a set of Java benchmarks. Our parallel
analysis takes advantage of monotonicity property of a flow-insensitive analysis
to create multiple copies of points-to sets achieving better parallelism.

8 Conclusion

Taking advantage of the multi-core processing requires the analyses themselves
to be parallel. While several enhancements have been proposed for sequential
pointer analysis, enough work is yet to be done for parallel points-to analysis.
By exploiting the monotonicity of flow-insensitive points-to analysis, we pro-
posed a replication-based parallel inclusion-based points-to analysis that extracts
more fine-grained parallelism from seemingly sequential programs. We showed
the effectiveness of our approach over 16 SPEC 2000 benchmarks and five large
open source programs. Our parallel context-insensitive (context-sensitive) anal-
ysis achieves a speedup of 3.0x (3.4x) on an 8-core machine and illustrates a
promising approach to parallelizing a monotonic, unordered data-flow analysis.

Acknowledgments. We thank Mario Mndez-Lojo for helpful comments.

References

1. Andersen, L.O.: Program analysis and specialization for the C programming lan-
guage, PhD Thesis, DIKU, University of Copenhagen (1994)

2. Bal, H.E., Frans Kaashoek, M., Tanenbaum, A.S., Jansen, J.: Replication tech-
niques for speeding up parallel applications on distributed systems. Concurrency:
Pract. Exper. 4, 337–355 (1992)

3. Berger, E.D., Yang, T., Liu, T., Novark, G.: Grace: safe multithreaded program-
ming for c/c++. In: OOPSLA 2009, pp. 81–96. ACM, New York (2009)

4. Berndl, M., Lhoták, O., Qian, F., Hendren, L., Umanee, N.: Points-to analysis using
bdds. In: Proceedings of the ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation, PLDI 2003, pp. 103–114. ACM, New York
(2003)

5. Burckhardt, S., Baldassin, A., Leijen, D.: Concurrent programming with revisions
and isolation types. In: OOPSLA 2010, pp. 691–707. ACM, New York (2010)

Parallel Replication-Based Points-To Analysis 79

6. Das, M.: Unification-based pointer analysis with directional assignments. In: Pro-
ceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2000, pp. 35–46. ACM, New York (2000)

7. Edvinsson, M., Lundberg, J., Löwe, W.: Parallel points-to analysis for multi-core
machines. In: Proceedings of the 6th International Conference on High Performance
and Embedded Architectures and Compilers, HiPEAC 2011, pp. 45–54. ACM, New
York (2011)

8. Emami, M., Ghiya, R., Hendren, L.J.: Context-sensitive interprocedural points-to
analysis in the presence of function pointers. In: Proceedings of the ACM SIGPLAN
1994 Conference on Programming Language Design and Implementation, PLDI
1994, pp. 242–256. ACM, New York (1994)

9. Fähndrich, M., Foster, J.S., Su, Z., Aiken, A.: Partial online cycle elimination in in-
clusion constraint graphs. In: Proceedings of the ACM SIGPLAN 1998 Conference
on Programming Language Design and Implementation, PLDI 1998, pp. 85–96.
ACM, New York (1998)

10. Fähndrich, M., Rehof, J., Das, M.: Scalable context-sensitive flow analysis using
instantiation constraints. In: Proceedings of the ACM SIGPLAN 2000 Conference
on Programming Language Design and Implementation, PLDI 2000, pp. 253–263.
ACM, New York (2000)

11. Gifford, D.K.: Weighted voting for replicated data. In: SOSP 1979, pp. 150–162.
ACM, New York (1979)

12. Hardekopf, B., Lin, C.: The ant and the grasshopper: fast and accurate pointer
analysis for millions of lines of code. In: Proceedings of the 2007 ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2007,
pp. 290–299. ACM, New York (2007)

13. Harman, M., Binkley, D., Gallagher, K., Gold, N., Krinke, J.: Dependence clusters
in source code. ACM Trans. Program. Lang. Syst. 32, 1:1–1:33 (2009)

14. Heintze, N., Tardieu, O.: Ultra-fast aliasing analysis using cla: a million lines of c
code in a second. In: Proceedings of the ACM SIGPLAN 2001 Conference on Pro-
gramming Language Design and Implementation, PLDI 2001, pp. 254–263. ACM,
New York (2001)

15. Hind, M., Pioli, A.: Which pointer analysis should i use? In: Proceedings of the
2000 ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2000, pp. 113–123. ACM, New York (2000)

16. Joseph, T.A., Birman, K.P.: Low cost management of replicated data in fault-
tolerant distributed systems. ACM Trans. Comput. Syst. 4, 54–70 (1986)

17. Kahlon, V.: Bootstrapping: a technique for scalable flow and context-sensitive
pointer alias analysis. In: Proceedings of the ACM SIGPLAN 2008 Conference
on Programming Language Design and Implementation, PLDI 2008, pp. 249–259.
ACM, New York (2008)

18. Lattner, C., Lenharth, A., Adve, V.: Making context-sensitive points-to analy-
sis with heap cloning practical for the real world. In: Proceedings of the 2007
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2007, pp. 278–289. ACM, New York (2007)

19. Méndez-Lojo, M., Burtscher, M., Pingali, K.: A gpu implementation of inclusion-
based points-to analysis. In: Proceedings of the 17th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP 2012. ACM, New York
(2012)

80 S. Putta and R. Nasre

20. Méndez-Lojo, M., Mathew, A., Pingali, K.: Parallel inclusion-based points-to anal-
ysis. In: Proceedings of the ACM International Conference on Object Oriented
Programming Systems Languages and Applications, OOPSLA 2010, pp. 428–443.
ACM, New York (2010)

21. Nasre, R.: Approximating inclusion-based points-to analysis. In: Proceedings of the
2011 ACM SIGPLAN Workshop on Memory Systems Performance and Correct-
ness, MSPC 2011, pp. 66–73. ACM, New York (2011)

22. Nasre, R., Govindarajan, R.: Prioritizing constraint evaluation for efficient points-
to analysis. In: Proceedings of the 9th IEEE/ACM International Symposium on
Code Generation and Optimization, CGO 2011, pp. 267–276 (April 2011)

23. Nasre, R., Rajan, K., Govindarajan, R., Khedker, U.P.: Scalable Context-Sensitive
Points-to Analysis Using Multi-dimensional Bloom Filters. In: Hu, Z. (ed.) APLAS
2009. LNCS, vol. 5904, pp. 47–62. Springer, Heidelberg (2009)

24. Pereira, F.M.Q., Berlin, D.: Wave propagation and deep propagation for pointer
analysis. In: Proceedings of the 7th Annual IEEE/ACM International Symposium
on Code Generation and Optimization, CGO 2009, pp. 126–135. IEEE Computer
Society, Washington, DC (2009)

25. Prabhu, T., Ramalingam, S., Might, M., Hall, M.: Eigencfa: accelerating flow anal-
ysis with gpus. In: POPL 2011, pp. 511–522. ACM, New York (2011)

26. Rountev, A., Chandra, S.: Off-line variable substitution for scaling points-to anal-
ysis. In: Proceedings of the ACM SIGPLAN 2000 Conference on Programming
Language Design and Implementation, PLDI 2000, pp. 47–56. ACM, New York
(2000)

27. Ruf, E.: Partitioning dataflow analyses using types. In: Proceedings of the 24th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 1997, pp. 15–26. ACM, New York (1997)

28. Steensgaard, B.: Points-to analysis in almost linear time. In: Proceedings of the
23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 1996, pp. 32–41. ACM, New York (1996)

29. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM Journal on Com-
puting 1(2), 146–160 (1972)

30. Whaley, J., Lam, M.S.: An Efficient Inclusion-Based Points-To Analysis for
Strictly-Typed Languages. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002.
LNCS, vol. 2477, pp. 180–195. Springer, Heidelberg (2002)

31. Zhang, S., Ryder, B.G., Landi, W.: Program decomposition for pointer aliasing: a
step toward practical analyses. In: Proceedings of the 4th ACM SIGSOFT Sympo-
sium on Foundations of Software Engineering, SIGSOFT 1996, pp. 81–92. ACM,
New York (1996)

32. Ziegler, H.E., Malusare, P.L., Diniz, P.C.: Array Replication to Increase Parallelism
in Applications Mapped to Configurable Architectures. In: Ayguadé, E., Baum-
gartner, G., Ramanujam, J., Sadayappan, P. (eds.) LCPC 2005. LNCS, vol. 4339,
pp. 62–75. Springer, Heidelberg (2006)

A New Method for Program Inversion

Cong Hou1, George Vulov1, Daniel Quinlan2, David Jefferson2,
Richard Fujimoto1, and Richard Vuduc1

1 Georgia Institute of Technology, Atlanta, GA 30332
2 Lawrence Livermore National Laboratory, Livermore, CA 94551

{hou cong,georgevulov}@gatech.edu
{dquinlan,jefferson6}@llnl.gov
{fujimoto,richie}@cc.gatech.edu

Abstract. Program inversion has been successfully applied to several
areas such as optimistic parallel discrete event simulation (OPDES) and
reverse debugging. This paper introduces a new program inversion algo-
rithm for imperative languages, and focuses on handling arbitrary con-
trol flows and basic operations. By building a value search graph that
represents recoverability relationships between variable values, we turn
the problem of recovering previous values into a graph search one. For-
ward and reverse code is generated according to the search results. We
have implemented our algorithm as part of a compiler framework named
Backstroke, a C++ source-to-source translator based on ROSE compiler.
Backstroke targets optimistic simulation codes and automatically gener-
ates a reverse function to recover values modified by a target function.
Experimental results show that our method is effective and produces
better performance than previously proposed methods.

Keywords: Program inversion, SSA, SSA graph, reverse computation,
state saving, ROSE.

1 Introduction

We consider the problem of how to generate an efficient inverse of a program.
Informally, suppose a program P begins in state I and ends in state F . Then, an
inverse, P−1, reproduces the initial state I when started in state F . State I may
not be uniquely reproducible given state F , hence P may have to be instrumented
so that the original state I can be restored. The challenge in program inversion
is how to instrument P and construct P−1 so that, when executed, they incur
minimal storage and time overheads. This paper describes novel program analysis
and code generation techniques for automatically building the instrumented P
and a space- and time-efficient P−1.

Program inversion has numerous applications, but our focus is on optimistic
parallel discrete event simulations (OPDES). In this context, parallelization is
achieved by speculatively executing each event in parallel and using rollback
mechanisms to undo any events that have executed out of order [16,14].1 In

1 Every event has a timestamp, which establishes a total order on events [14].

M. O‘Boyle (Ed.): CC 2012, LNCS 7210, pp. 81–100, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

82 C. Hou et al.

a näıve implementation of OPDES, we might instrument P to save the initial
values of all variables that it modifies, so that P−1 simply restores those initial
values. However, for events that manipulate a significant amount of state, this
approach could incur significant overheads in both time and storage.

The alternative approach that we consider is reverse computation [8]. The idea
is to minimally instrument P to store just enough control and data information so
that, on rollback, a P−1 can computationally reconstruct the initial state through
algebraic manipulations. Since on modern systems simple algebraic operations
are much cheaper than memory accesses, reverse computation can be much more
efficient than näıvely saving state. Figure 1 shows an example of an event, and
its instrumented forward and reverse (inverse) versions (a and b are two state
variables); the forward and reverse versions were generated by our algorithm.
Rather than save both state variables, we can through reverse computation store
just b in one branch.

void foo_forward() {
 int trace = 0;
 if (a == 0) {
 trace |= 1;
 a = 1;
 }
 else {
 store(b);
 b = a + 10;
 a = 0;
 }
 store(trace);
}

void foo_reverse() {
 int trace;
 restore(trace);
 if ((trace & 1) == 1)
 a = 0;
 else {
 a = b - 10;
 restore(b);
 }
}

(b) (c)(a)

int a, b;
void foo() {
 if (a == 0)
 a = 1;
 else {
 b = a + 10;
 a = 0;
 }
}

Fig. 1. (a) The original event (b) The forward event (c) The reverse event

Contributions. We build a graph that shows explicit relationships between values
and allows us to restore values by searching the graph; costs on the edges of this
graph correspond to memory overheads in the generated code. This approach
allows us to flexibly mix state saving and reverse execution depending on which
is more efficient; other approaches focus on either one or the other. Although the
search problem is NP-complete, we provide heuristics that work well in practice.
We have implemented our approach in the reverse compiler Backstroke, which
automatically generates forward and reverse code as in Figure 1.

Limitations. In this paper we only target programs with scalar data types and
without function calls. We do not address aliasing, arrays, and structured types;
however we think the graph search approach to program inversion can be ex-
tended to these scenarios and provide similar benefits to the scalar case. While
our cost model accounts only for memory costs, our approach is transparent to
the cost model chosen; in the future, a more sophisticated cost model can be
built to include other kinds of overhead.

A New Method for Program Inversion 83

2 Related Work

Most of the work on inverting arbitrary (non-injective) imperative programs
has focused an incremental approach: the imperative program is essentially exe-
cuted in reverse, with each modifying operation in the original execution being
undone individually. For example, if statements s1s2 . . . sn are executed in the
forward directions, the reverse function executes statements s−1

n . . . s−1
2 s−1

1 . The
incremental approach cannot handle unstructured control flows and is difficult
to apply with early returns from functions; the approach presented in this pa-
per suffers from neither of these shortcomings. Furthermore, the incremental
inversion restores the initial state by restoring every intermediate program state
between the final state and the initial state, even though these states are not
needed.

Among the incremental inversion approaches, syntax-directed approaches ap-
ply only statement-level analysis. If an assignment statement is lossless, its in-
verse is used: for example, the inverse of an integer increment is an integer
decrement. Otherwise, the variable modified in the assignment has to be saved.
An early example of syntax-directed incremental inversion is Brigg’s Pascal in-
verter [7]. This approach was later extended to C and applied both to optimistic
discrete event simulation [8] and reversible debugging [6].

Akgul and Mooney introduced a more sophisticated incremental inversion al-
gorithm that uses def-use analysis to invert some assignment statements that
are not lossless [2]; we refer to this approach as regenerative incremental inver-
sion. In order to reverse a lossy assignment to the variable a, such as a ← 0,
the regenerative algorithm looks for ways to recompute the previous value of
a. One technique to obtain the previous value of a is to re-execute its defini-
tion; another technique is to examine all the uses of a and see if its value can
be retrieved from any of its uses. These two techniques are applied recursively
whenever a modifying operation is to be reversed; if they fail to produce a result,
the overwritten variable is saved during forward execution. Our approach takes
advantage of all the def-use relationships utilized by regenerative inversion, with-
out suffering from the drawbacks of incremental inversion. In addition to def-use
information, our approach also derives equality relationships between variables
from the outcome of branching statements that test for equality or inequality.

A related line of work is inverting programs that are injective, without us-
ing any state saving. Most such work focuses on inverting functional programs
[1,15,17]. Approaches to inverting imperative programs include translation to a
logic language [20] and template-based generation of inverse candidates using
symbolic execution [21].

3 Problem Setup

Let the set of target variables be S = {s1 . . . sn} with initial values V =
{v1 . . . vn}, where vi is the initial value of si. These variables are modified by
a target function2 M , producing V ′ = {v′1 . . . v′n}, the final values of the target

2 The function here is a C/C++ function, not a function in mathematics.

84 C. Hou et al.

variables. Our goal is generating two new functions, the forward function MS
fwd

and the reverse function MS
rvs, so that MS

fwd transfers V to V ′, and MS
rvs trans-

fers V ′ to V . We define available values as values which are ready to use at the
beginning of MS

rvs. For example, values in V ′ and constants are available values.
We also call values in V target values which are values we want to restore from
MS

rvs.
Note that M and MS

fwd have the same input and output, but MS
fwd is in-

strumented to store control flow information and values that are later used in
MS

rvs. This introduces two kinds of cost that must be considered when generat-
ing the forward-reverse pair {MS

fwd,M
S
rvs} : extra memory usage and run-time

overhead.

4 Reversing Functions without Loops

4.1 Framework Overview

We will first treat the inversion of loop-free code with only scalar data types,
without aliasing. When such code is converted to static single assignment (SSA)
form [11], each versioned variable is only defined once and thus there is a one-to-
one correspondence between each SSA variable and a single value that it holds.
We will also take advantage of the fact that loop-free code has a finite number
of paths. Loops will be discussed in the next section, and non-scalar data types
and aliasing will not be handled in this paper.

Given a cost measurement, for each path in the target function there should
exist a best strategy to restore target values. Strategies usually vary among
different paths. Therefore, the reversed function we produce should include the
best strategy for each path; each path in the original function should have a
corresponding path in the reverse function.

Target
Function

SSA form
CFG

SSA
Graph

Value
Search
Graph

Route
Graph

Forward
and

Reverse
Functions

Fig. 2. Overall framework of the inversion algorithm

To restore target values, we will build a graph which shows equality relation-
ships between values. We call this graph the value search graph, and it is built
based on an SSA graph [3,10]. Then a search is performed on the value search
graph to recursively find ways to recover the set of target values given the set of
available values. If there is more that one way to restore a value, we choose the
one with the smallest cost. The search result is a subgraph of the value search
graph which we call a route graph. For any path, a route graph shows a specific
way to recover each target value from available values. Finally, the forward and
reverse functions are built from a route graph. Figure 2 illustrates this process.

A New Method for Program Inversion 85

4.2 Building the Value Search Graph

We first build an SSA graph for the target function. An SSA graph [3,10], built
based on SSA form, consists of vertices representing operators, function sym-
bols, or φ functions, and directed edges connecting uses to definitions of val-
ues. It shows data dependencies between different variables. The full algorithm
for building an SSA graph is presented in [19]. Figure 3(a)(b) show the SSA-
transformed CFG and its SSA graph for the function in Figure 1(a). In this
example, a and b are two target variables with initial values a0 and b0, and final
values a3 and b2.

a0

b0

10

+

b1

1

a1

0

a2

Φ

a3

Φ

b2

==

0

(c)(b)

Entry

if (a0 == 0)

b1 = a0 + 10;

a2 = 0;
a1 = 1;

a3 = Φ(a1, a2);
b2 = Φ(b0, b1);

FT

Exit a0

b0

10

b1

1

a1

0

a2

Φ

a3

Φ

b2

0

+-

SS

{T}

{T,F}

{F}

{T,F} {F}

{F}

{T}

{F}

(a)

Fig. 3. (a) The SSA-transformed CFG of the function in Figure 1(a) (b) The corre-
sponding SSA graph (c) The corresponding value search graph. Nodes with bold out-
lines are available nodes; outgoing edges for these nodes are omitted because available
nodes need not be recovered. ‘SS’ is the special state saving node. Edges are annotated
with their CFG path set.

A value search graph enables efficient recovery of values by explicitly repre-
senting equality relationships between values. Unlike an SSA graph, operation
nodes are separated from value nodes in the value search graph, since their treat-
ment is different for recovering values. An edge connecting two value nodes u
and v implies that u and v have the same value. An edge from value node u to
an operation node op means that u is equal to the result of evaluating op with
its operands. To recover the value associated with node v, we can recursively
search the graph starting at v.

We attach a set of CFG paths to each edge in a value search graph, meaning
the edge is applicable only if one of the CFG paths in that set is selected in
the original function. For operation nodes in the SSA graph, let the set of paths
attached to each outgoing edge be the CFG paths for which the corresponding
operation is executed. Similarly, for φ nodes, each reaching-definition edge should
be annotated with all CFG paths for which the corresponding reaching definition
reaches the φ function. We will describe an implementation of the path set
representation later.

86 C. Hou et al.

During the execution of the forward function, once a variable is assigned with
a new value, its previous value may be destroyed and cannot be retrieved. To
guarantee that a search in the value search graph can always restore a value, we
introduce special state saving edges. The idea behind these edges is that each
value may be recovered by storing it during the forward execution. Whenever a
state saving edge appears in the search results, the forward function is instru-
mented to save the corresponding value. The path set associated with a state
saving edge for a value node v is the set of all paths that include v’s definition.
All state saving edges point to a unique state saving node.

We apply the following rules to convert an SSA graph into a value search
graph:

• For simple assignment v = w, there is a directed edge from v to w in the
SSA graph. Since we can retrieve w from v, add another directed edge from
w to v with the same path set.

• A φ node in the SSA graph has several outgoing edges connecting all its
possible definitions. For each of those edges, add an opposite edge with the
same path set.

• For each operation node in the SSA graph, split it into an operation node
and a value node, with an edge from the value node to the new operation
node. The new operation node takes over all outgoing edges, and the value
node takes over all incoming edges.

• If an equality operation (==) is used as a branching predicate and its outcome
is true, we know that the two operands are equal. Therefore, we add edges
from each operand to the other, with a path set for the edge equal to the path
set of the true CFG edge out of the branch. We add the edges analogously
for a not-equal operation (!=), but with the path set from the false side of
the branch.

• For every value that is not available, insert a state saving edge from the
corresponding value node to the state saving node.

Lossless operations. For certain operations, such as integer addition and exclusive-
or, we can recover the value of an operand given the operation result and the other
operand. For example, if a = b + c, we can recover b given a and c. For each
such lossless operation, insert new operation nodes that connect its result to its
operands, allowing the operands to be recovered from the result. The new nodes
are added according to the following rules:

• Negation (a = -b) and bitwise not (a = ~b): the new operations are b =

-a or b = ~a, respectively.
• Increment (++a) and decrement (--a): insert --a or ++a, respectively.
• Integer addition (a = b + c) and subtraction: for addition, the new oper-
ations are b = a - c and c = a - b; analogously for subtraction.

• Bitwise exclusive-or (a = b ^ c): insert b = a ^ c and c = a ^ b

There are two special types of nodes in a value search graph: target nodes are
value nodes containing target values, and available nodes are value nodes con-
taining available values plus the state saving node. As an optimization, we never

A New Method for Program Inversion 87

create any outgoing edges for an available node. Figure 3(c) shows the value
search graph built for the code in Figure 1(a). The available nodes are shown
with a bold outline. Since the function only has two paths, we use labels ‘T’
and ‘F’ to represent the CFG paths passing through the true and false body
in the target function, respectively. The ‘–’ operation node connecting a0 to b1
and the constant value ‘10’ is generated from the ‘+’ operation. The edge from
a0 to ‘0’ for the path ‘T’ is added based on the fact that a0 = 0 on that path.
The ‘SS’ node in the graph is the state saving node, and all unavailable nodes
are connected to it. From the value search graph, we can find two valid ways to
restore b0 for the path ‘T’: b0 to SS node and b0 to b2. Obviously the second one
is better since it avoids a state saving operation, and this better selection will
be produced from the search algorithm described later.

4.3 The Route Graph

A route graph is a subgraph of a value search graph connecting all target nodes to
available nodes. Each route graph represents one way to restore the target values,
and there may exist many valid route graphs for the same set of target values.
Edges in the route graph may have different path sets than the corresponding
edges in the value search graph. For each edge e in a route graph, let P (e) denote
the set of CFG paths that the edge is annotated with. The following properties
guarantee that the route graph properly restores all target values:

I) Let U be the set of all CFG paths. Then, for each target node t,⋃
out∈OutEdges(t)

P (out) = U

II) For each node n that is neither a target node nor an available node,⋃
out∈OutEdges(n)

P (out) =
⋃

in∈InEdges(n)

P (in)

III) For each value node n, given any two outgoing edges n → p and n → q,
P (n → p) ∩ P (n → q) = ∅

IV) If e is a route graph edge and its corresponding edge in the value search
graph is e′, then P (e) ⊆ P (e′)

V) For each directed cycle with edges e1 . . . en,
⋃n

i=1 P (ei) = ∅

Property I specifies that each target value is recovered for every CFG path.
Property II means that each value is recovered exactly for the paths for which it
is needed. Property III requires that for each CFG path, there is at most one way
to recover a value. Property IV requires that the set of CFG paths associated with
an edge in the route graph is a subset of the CFG paths originally associated with
that edge in the value search graph. Finally, property V forbids self-dependence:
restoring a value cannot require that value.

88 C. Hou et al.

a0

b0
SS

{T,F}

{T,F}

a0

b0

Φ

b2

0

SS

{T}

{F}

{F}

a0

b0

10

b1

Φ

b2

0

-

SS

{T}

{F}

{F}

{T}

{T}

{F}

(a) (b) (c)

Fig. 4. Three different route graphs for the target values a0 and b0 given the the value
search graph in Figure 3(c)

Figure 4 shows three valid route graphs for the value search graph in Figure
3. Route graph 4(a) only includes state saving edges. Route graph 4(b) takes
advantage of the fact that for the ‘T’ path the values of both a0 and b0 are
known; it only uses staving for the ‘F’ path. Route graph 4(c) improves upon
route graph 4(b) by recomputing a0 as b1-10 for the CFG path ‘F’; state saving
is only applied to b0 for path ‘F’.

4.4 Searching the Value Search Graph

Costs in Route Graphs. As we have seen in Figure 4, there may be multiple
valid route graphs that recover the target values, but with different overheads.
In order to choose the route graph with the smallest overhead, we must define a
cost metric.

Generally, there are two kinds of overhead in forward and reverse functions: ex-
ecution speed and additional memory usage; we only consider the storage costs.
State saving contributes the most to the overhead memory usage and it also sig-
nificantly affects the running time of both forward and reverse functions. Storing
the path taken during forward execution is the other factor that contributes to
memory usage; this overhead is bounded and is the same for all route graphs, so
we exclude it from our cost estimate. With each state saving edge in the value
search graph, we associate a cost equal to the size of the value that must be saved;
other edges have cost 0. The cost of a route graph for a specific CFG path is the
sum of the cost of those edges whose annotated path sets include that CFG path.

In Figure 4, suppose the cost to store and restore either a or b is c, the following
table shows the cost of three route graphs for each CFG path. Obviously the
third route graph is the best one.

CFG path route graph (a) route graph (b) route graph (c)

T 2c 0 0
F 2c 2c c

We have defined the cost of a single CFG path; however, a route graph may
have different costs for different CFG paths. When searching the value search

A New Method for Program Inversion 89

graph, we would like to treat groups of CFG paths that share some edges in the
route graph together, rather than performing a full search for each CFG path.
For this reason, the search algorithm partitions the CFG paths into disjoint
sets of paths that have equal cost and we save the cost for each set of paths
independently. In our search algorithm, we denote the costs of a route graph r
as r.costSet.

r.costSet = {〈Pi, ci〉|Pi is a set of CFG paths and ci is the cost}

Search Algorithm. Our search algorithm should aim to find a route graph
that has the minimum cost for each path. Theoretically, however, searching for a
minimal route graph is an NP-complete problem. To make the problem tractable,
we apply the heuristic of finding a route graph for each target value individually;
the individual route graphs are then merged into a route graph that restores all
the target values. Similarly, in order to recover the value of a binary operation
node, we recover each of the two operands independently and then combine the
results.

The pseudocode for our heuristic search algorithm is presented in Algorithm
1. The SearchSubRoute function returns a route graph given a target node, the
paths for which that node must be restored, and the set of value nodes visited
so far. The algorithm explores all ways to recover the current node by calling
itself recursively on all the nodes that are directly reachable from the current
node; available nodes are the base case. Lines 5–10 handle recovering the values
of operation nodes. In order to recover the value of an operation node, each
of its operands must be recovered. Lines 11–14 return a trivial route graph for
available nodes, with a cost of 0. The remaining body of the algorithm (lines
15–27) handles recovering a value node that is not available. Each of the out-
edges of the target node may be used to recover its value for the CFG paths
associated with that edge; these edges are explored in the for-loop in lines 15–
23. The variable newPaths on line 17 represents the set of paths that we are both
interested in and are associated with the current edge. In line 19, we recursively
find a route graph that recovers the target value by recovering the target of
the current outgoing edge. Lines 21–22 update the cost sets of the new route
graph; if it provides a lower cost for some CFG path than the solutions found
so far, the partial results are modified so that each CFG path is restored with
the cheapest route graph. Finally, the route graph from line 19 is added to the
list of partial results (line 23). After all out-edges of the target node have been
explored, the partial results are merged into a single route graph and returned
(lines 24–27). Note that it is unnecessary to check whether the target node has
been successfully recovered, since the state saving edge always provides a valid
route graph for the node. Figure 4(c) shows the route graph produced by the
algorithm when searching the value search graph from Figure 3(c).

The search algorithm enforces properties I–IV from section 4.3 during its
execution. To make sure that the search result does not contain cycles (property
V), we record which value nodes are already in the route using a set visited in
Algorithm 1. This alone is not sufficient to guarantee that the result is acyclic,

90 C. Hou et al.

Algorithm 1. Searching for a route graph in a value search graph

Initial input: The search start point target, with paths = ∅, visited = ∅
1 SearchSubRoute(target, paths, visited)
2 begin
3 resultRoute ← ∅, subRoutes ← ∅
4 if target is an operation node then
5 foreach edge ∈ OutEdges(target) do
6 if edge.target ∈ visited then return ∅
7 newRoute ← SearchSubRoute(edge.target, paths, visited)
8 if newRoute = ∅ then return ∅
9 add edge and newRoute to resultRoute

10 return resultRoute

11 if target is available then
12 add target to resultRoute
13 add 〈paths, 0〉 to resultRoute.costSet
14 return resultRoute

15 foreach edge ∈ OutEdges(target) do
16 if edge.target ∈ visited then continue

17 newPaths ← edge.pathSet ∩ paths
18 if newPaths = ∅ then continue

19 newRoute ← SearchSubRoute(edge.target, newPaths, visited ∪ {target})
20 add edge with paths newPaths to newRoute
21 foreach 〈paths, cost〉 in newRoute.costSet do cost += edge.cost
22 foreach route in subRoutes do ChooseMinimalCosts(route, newRoute)
23 add newRoute to subRoutes

24 add target to resultRoute
25 foreach route in subRoutes do
26 if route.pathSet �= ∅ then add route to resultRoute

27 return resultRoute

28 ChooseMinimalCosts(route1, route2)
29 begin
30 if route1.pathSet ∩ route2.pathSet = ∅ then return
31 foreach 〈paths1, cost1〉 in route1.costSet do
32 foreach 〈paths2, cost2〉 in route2.costSet do
33 if paths1 ∩ paths2 = ∅ then continue
34 if cost1 > cost2 then
35 paths1 ← paths1− paths2
36 Remove (paths1 ∩ paths2) from all edges of route1

37 else
38 paths2 ← paths2− paths1
39 Remove (paths1 ∩ paths2) from all edges of route2

40 route1.pathSet =
⋃

〈paths,cost〉∈route1.costSet paths

41 route2.pathSet =
⋃

〈paths,cost〉∈route2.costSet paths

A New Method for Program Inversion 91

for there may be two different paths with identical cost to recover a single value
node. If one way is chosen to recover a value node v during path of the search,
and then later v is recovered differently for the same CFG path, a cycle may
form. To prevent this situation from occurring, we always traverse out-edges in
the same order of line 19 of Algorithm 1; the first route graph with the smallest
cost is chosen. In addition, two paths coming from two different value nodes may
also form a cycle when all costs on edges of the cycle are 0. We eliminate this
possibility by replacing 0 by a small cost ε.

4.5 Instrumentation and Code Generation

Representing CFG Path Sets. Our search algorithm relies on efficiently
computing intersection, union, and complement of CFG path sets, as well as
testing whether the set of paths is empty; for this reason we suggest implementing
the set representations as bit vectors. Ball and Larus [5] present an path profiling
method in which each path is given a number from 0 to m− 1, where m is the
count of the CFG paths. We use their algorithm to number each path, and for
each path we associate exactly one bit in the bit vector used to represent a path
set.

Recording CFG Paths. We need to store path information in a way that
allows us to efficiently record the CFG path taken (for forward execution), and
to efficiently check if the path matches a given set of CFG paths attached to
a route graph edge (for reverse execution). However, if we encode each path
using its path number, then examining whether a path is a member of a set is
inefficient. Instead we use a bit vector to record the CFG path, in which each bit
represents the outcome of a branching statement. Since this method is similar to
bit tracing[4], we call this bit vector a trace. Note that two branches may share
the same bit if they cannot appear in the same path. Thus, the number of bits
required to store the path taken is equal to the largest number of branches that
appear on a single CFG path. Algorithm 2 calculates bit-vector position for each
branch node accordingly.

In the forward function, we use an integer as the bit vector to record all
predicate results3. Let trace be the variable recording a trace, initialized to zero;
then the true edge of each branch node v is instrumented with the statement 4

trace = trace | (1 << position(v));

where position(v) is calculated by Algorithm 2. The variable trace is stored
at the end of the forward function and restored at the beginning of the reverse
function. Note that we can further optimize the instrumentation by moving a
trace updating operations downward through the CFG and merging them.

3 Potentially we could omit recording predicates that do not affect the reverse function.
4 We use several operators in C/C++ syntax here and below, which includes bitwise
OR operator |, bitwise AND operator &, bitwise left shift operator <<, equal to
operator ==, and logical OR operator || .

92 C. Hou et al.

Algorithm 2. Generating the bit position for each branch node

foreach CFG node u in reverse topological order do
if u is a leaf node then

position(u) ← -1
else if u is a branch node then

/* u → v and u → w are its two out-going edges */

position(u) ← max(position(v), position(w)) + 1

else
/* u → v is its out-going edge */

position(u) ← position(v)

In the reverse function, we must test if trace matches the path sets that
appear on route graph edges. We start with transforming each path in the set
into a trace (the trace for each path can be computed by the same means as
recording a trace in the forward function). Then, checking if a path set contains
a path represented by trace is done by comparing it to each trace. Suppose a
path set containing two paths is transformed into two traces 01101 and 01001.
Instead of comparing trace to each of them as:

if (trace == 01101 || trace == 01001)

we can simplify this predicate by using a mask 11011 on trace:

if ((trace & 11011) == 01001)

The combined trace for 01101 and 01001 is 01×01, where × denotes that the
bit does not matter. Given a set of traces, we can combine pairs repeatedly to
reduce the size of the set. This greatly reduces the complexity of the branching
statements in the reverse code.

Algorithm 3 starts out with all traces corresponding to a set of CFG paths and
merges them into a minimal set of traces that can be used to test membership in
the set. The intuition behind Algorithm 3 is that if the traces are sorted so that
bit i is the least significant bit, the traces that are identical to each other except
for bit i will be adjacent. However, if we are careful we don’t have to pay the full
sorting cost for each bit i. If the traces are sorted when their bits are considered
in the order b1b2 . . . bi−1 bkbk−1 . . . bi and we want to sort them according to
the bit order b1b2 . . . bi−2 bkbk−1 . . . bi−1, we need only sort each sequence of
the trace for which bits 1 through (i− 2) are identical. For each such sequence,
there are at most three sorted subsequences, indexed by bit bi−1; these can be
merged in linear time (similarly to mergesort). If we use a linear-time sort, such
as radix sort, for the first iteration, the overall runtime of Algorithm 3 is O(kn),
where n is the size of the path set.

After the merge, if we have n traces t1, ..., tn for a path set, the resulting
predicate would be:

if ((trace & mask1) == obji || ... || (trace & maskn) == objn)

A New Method for Program Inversion 93

Algorithm 3. Merging a set of path traces

MergePathTraces(traces)
begin

/* Each trace has k "bits", and each bit is 0, 1, or × */

/* Bits are numbered ascendingly; e.g. m = b1b2 . . . bk */

for i ← k down to 1 do
/* Note: for i = k, the bit ordering is m = b1b2 . . . bk */

Sort traces, where trace bits are ordered b1b2 . . . bi−1 bkbk−1 . . . bi
for j ← 2 to Length(traces) do

if traces[j − 1] and traces[j] match except for bit i then
set bit i to × for traces[j − 1]
delete traces[j]

For each trace ti, maski is obtained by setting all bits which are × in ti to 0
and others to 1, and obji equals maski & ti.

Inserting State Saving Statements. The other instrumentation in the for-
ward function are state saving statements, which are inserted according to the
state saving edges in the route graph. For each state saving edge in the route
graph, suppose the variable to store is var and the path set on this edge is P .
Our task is finding one or several locations to store var according to the path
set P , ensuring that var is only saved once for each CFG path in P .

To find such locations, we first compute the corresponding path traces T of
P from Algorithm 3. For each trace in T , we traverse the CFG from the entry.
When we reach a branch node, check the corresponding bit in the trace: fall
through the true edge if the bit is 1, false edge if the bit is 0. If the bit is ×, the
traversal forks and that bit is assigned to 0 and 1 respectively forming two new
traces; and for each concretized trace the descent continues. The descent stops
immediately when all bits which are not checked in the trace are ×. After this
process, we obtain one or more locations where the descent has stopped. In each
location we find a point where the definition of var is reachable and a state saving
statement is inserted there. However, it is possible that the path set containing
the paths passing through this location is larger than the one on which the state
saving is needed. In this case, we guard the state saving statement with a branch
whose predicate corresponds to the trace at this location.

Building a CFG for the Reverse Function. We build the CFG for the
reverse function from a route graph; the reverse CFG is acyclic and each path
in it must obey the data dependencies represented in the route graph. Each
outgoing edge from a value node in the route graph will be translated to a
statement in the reverse function.

There could be a large number of correct reverse CFGs for a route graph,
resulting in different control flows and different numbers of branches. We choose

94 C. Hou et al.

to build a structured CFG to simplify the translation to source code. We also
attempt to minimize the number of predicates in the CFG.

There are three kinds of statements that can be generated from a route graph:

• An operator node with its operands and result induces an operation state-
ment, such as a = b + c.

• An edge with value nodes as both ends induces an assignment statement.
• An edge pointing to the SS node induces an value restoration statement.

The statements generated from route graph edges retain the path sets attached
to the corresponding edges. We build basic blocks of statements that all share the
same path sets, and insert branches so that each basic block is executed when
the corresponding path is taken in the forward function. While enforcing the
path set constraints ensures correct control flow, producing correct data flows
depends on the order in which statements are inserted in the CFG. Note that a
route graph corresponds to explicit data dependencies, and for each CFG path
in the forward function it is acyclic due to property V from section 4.3. Hence,
if we order statements in the reverse topological order of the route graph edges,
dataflow dependencies are correctly maintained.

Algorithm 4 shows how to build a CFG for the reverse function. We keep a
set of basic blocks, openBlocks, to which new statements can be appended. We
also maintain a set of statements, pendingStmts, whose data dependencies have
been satisfied, but which have not yet been inserted in the CFG. Each basic
block has an associated path set; these are the paths in the forward function
for which the corresponding basic block in the reverse function should execute.
Similarly, each statement has a set of paths from the forward function. If there is
a pending statement and an open basic block whose path sets match, we simply
append the statement to the basic block. When a statement is inserted into the
CFG, the data dependencies of new statements may now be satisfied; we call
the function BuildReadyStatements to generate the statements that are now
valid for insertion. If there is no pending statement whose path set matches the
path set of an open basic block, we must insert or join a branch in the CFG.
When a branch is inserted, two new basic blocks are created and the basic block
containing the branch is closed. When a branch is joined, the joined basic blocks
are closed and a new open basic block is created.

Note that it is possible that the instrumentation to the forward function
brings additional implicit data dependencies. For example, if stack is used for
state saving the order of values popped in the reverse function should be opposite
of the order of pushes in the forward function. In this case, we can order those
state saving statements in pendingStmts according to the order in which values
are pushed.

Generating Code. The forward function is generated by copying the target
function and adding state saving and control flow instrumentation (section 4.5).
The reverse function is translated from the CFG built by Algorithm 4. Trans-
lating a structured CFG to source code is straightforward. Since each variable
in the reverse CFG is in SSA form, we can use the versioned name during code

A New Method for Program Inversion 95

Algorithm 4. Generating a CFG for the reverse function from a route graph

GenerateReverseCFG(routeGraph)
begin

cfg ← ∅, pendingStmts ← ∅, openBlocks ← ∅, pathSetPairs ← ∅
foreach valNode in routeGraph do valNode.pathSet ← ∅
foreach available node availNode in routeGraph do

BuildReadyStatements(availNode, U , pendingStmts)

cfg.entry ← BuildBasicBlock(U)
while pendingStmts �= ∅ do

if ∃s ∈ pendingStmts, b ∈ openBlocks, and s.pathSet = b.pathSet then
Append s to b
valNode ← the source node of the edge that generated s
BuildReadyStatements(valNode, s.pathSet, pendingStmts)

else if ∃s ∈ pendingStmts, b ∈ openBlocks, and s.pathSet ⊂ b.pathSet
then

Append to b a branch, with the predicate generated from s.pathSet
b1 ← BuildBasicBlock(s.pathSet)
Append s to b1
b2 ← BuildBasicBlock(b.pathSet− s.pathSet)
Insert into cfg edges from b to b1 and b2 with labels true and false
Add 〈b1.pathSet, b2.pathSet〉 to pathSetPairs
openBlocks ← openBlocks− {b}
valNode ← the source node of the edge that generated s
BuildReadyStatements(valNode, s.pathSet, pendingStmts)

else if ∃b1, b2 ∈ openBlocks, and 〈b1.pathSet, b2.pathSet〉 ∈ pathSetPairs
then

b ← BuildBasicBlock(b1.pathSet ∪ b2.pathSet)
Insert into cfg two edges, from b1 and b2 to b
pathSetPairs ← pathSetPairs− {〈b1.pathSet, b2.pathSet〉}
openBlocks ← openBlocks− {b1, b2}
if |openBlocks| = 1 then break

return cfg

BuildReadyStatements(valNode, nodeAvailablePaths, pendingStmts)
begin

valNode.pathSet ← valNode.pathSet ∪ nodeAvailablePaths
foreach edge ∈ InEdges(valNode) do

if edge.pathSet ⊆ valNode.pathSet then
if edge.source is an operation node then

Set edge to be a available for edge.source
if all operands of edge.source are available then

Add to pendingStmts the statement for for edge.source, with
path set edge.pathSet

else
Add to pendingStmts the statement for edge, with path set
edge.pathSet

BuildBasicBlock(pathSet) begin
Build an empty basic block b and attach path sets pathSet to it.
cfg ← cfg ∪ { b }, openBlocks ← openBlocks ∪ { b }
return b

96 C. Hou et al.

generation. Because our framework generates source code that is later compiled
with another compiler, the redundant variables will be optimized away; the only
drawback of this approach is readability. If readability is an issue, we can com-
pute data dependencies in the reverse CFG and then remove versions attached to
variables where this does not affect data dependencies. After version removal, we
would also remove self-assignment statements such a = a. Figures 1(b) and 1(c)
show the generated forward and reverse functions from the code in Figure 1(a).

5 Handling Loops

Our discussion of loops only considers natural loops with only one entry; loops
with more than one entry are quite rare in practice and can be transformed into
natural loops [19]. Consider a loop that takes n iterations and modifies a value.
There are two approaches to restoring that value. The first one is generating
another loop in the reverse function which contains the inverse of the loop body
and also executes n times. The other approach is forgoing generating a loop and
using other methods such as state saving. We refer to the first approach as the
loop solution, and to the second as the non-loop solution.

Although the loop solution may be able to restore a value without state saving,
there are two pitfalls with this approach. First, a natural loop only has one entry,
but may have several exits (e.g. break and return). The loop exits may point
to anywhere topologically after the loop, so the inverse of a loop body may
have several entries with varying reaching definitions. Second, recovering a value
through reverse iterations may be less efficient than state saving. Memory storage
inside a loop, either for state saving or recording control flow, is multiplied by
the number of iterations. Even without memory overheads inside a loop, it may
be faster to just save and restore a value than to recompute it through a long
iteration.

In this paper we only deal with scalar variables, which seem unlikely to benefit
from the loop solution. For loops containing arrays and function calls, the loop
solution may be better or even necessary. Space restrictions preclude describing
both methods. We will describe the non-loop solution below and show the brief
idea of the loop solution.

Non-loop solution. In SSA form each variable has only one definition, but if that
definition is in a loop, the versioned variable no longer represents a single value;
the algorithm from section 4 is not applicable directly. Our non-loop solution
is removing value nodes containing definitions in loops (including the definition
from a φ function in the loop header) when building the value search graph.
Besides, each loop is reduced into a single node, and the loop-free algorithm
applies.

Loop solution. The loop solution applies a transformation on the loop to make
it only have one exit. This is done by separating the last iteration from oth-
ers, since it is the only iteration that may exit the loop. Afterwards, the loop

A New Method for Program Inversion 97

header becomes both the entry and exit of each iteration, and the loop as a
region becomes a hammock [12]. We then build the value search graph for this
hammock and embed it to the value search graph of the whole method. The
search algorithm still determines how to restore each value according to the cost
on edges.

6 Experiment Results

We have implemented the framework in our C/C++ source-to-source translator
Backstroke based on the ROSE compiler. Since this paper focuses on arbitrary
control flows and basic operations with only scalar data types, instead of trying
to reverse real-world code, which usually includes function calls, non-scalar data
types, aliasing, etc., we employ some representative synthetic benchmarks to
illustrate the power of our algorithm. Those benchmarks are listed below.

• NoBranch: A variable is modified in the function.
• Branches1: There are many CFG paths in the function and only one vari-
able is modified on one path.

• Branches2: There are many CFG paths in the function and on each path
a distinct variable is modified.

• Branches3: There are many CFG paths in the function and a variable is
modified up to three times on some paths and is not modified on other paths.

• Loop1: A loop in which a variable is modified. The loop is intended to have
many iterations at runtime.

• Loop2: A loop containing a simple branch and two variables are modified
in the true and false body respectively. The loop is intended to have many
iterations at runtime.

In addition, each benchmark has two versions in which every variable is modified
differently: in the first one, each variable is modified by an assignment; the other
one modifies each variable using an increment operation (++) so that the assign-
ment can be reversed trivially. We denote those two versions by Assignment
and Increment.

We compare our method5 to three other approaches commonly employed in
the OPDES community to implement rollback:

• CSS: Copy state saving. Every target variable is stored at the beginning of
the forward function and restored in the reverse function. Here we only store
the variables that are potentially modified.

• ISS: Incremental state saving. A variable is stored only the first time it is
modified. This technique is traditionally implemented by storing the vari-
able’s address along with its value, so one can check if the variable is already
stored.

• RCC: Reverse C compiler [8] is a syntax-directed incremental inversion
translator (see section 2).

5 Note that for loops we use the non-loop solution as defined in section 5.

98 C. Hou et al.

We count the maximum and minimum memory used for state saving. The
memory used to record the control flows outside of loops (including the counter
recording the number of iterations in a loop) is ignored because it does not scale
with the size of the program state. Figure 5 shows the experiment results, in
which (a) and (b) are maximum and minimum memory usage for all benchmarks
of the Assignment version, and (c) and (d) are of the Increment version. The
height of each column represents the memory usage.

From the result we can see for most benchmarks Backstroke is the most effi-
cient, which is because our method integrates the advantages from both incre-
mental reverse execution and incremental state saving. ISS stores the address
of every variable which introduces a large overhead if the address’s size is com-
parable to that of a value’s (for scalar data) meanwhile we utilize the CFG path
to ensure each variable is stored only once, with much less overhead. ISS out-
performs CSS when there are many variables which are potentially modified
but only a small number of them are modified during each execution (see Figure
5 Branches2). That is why incremental state saving performs very well when
each event only modifies a small portion of the whole state.

(a) Maximum memory usage of
Assignment

(b) Minimum memory usage of
Assignment

(c) Maximum memory usage of In-
crement

(d) Minimum memory usage of In-
crement

Fig. 5. Experiment results

From comparing the results from Figure 5 (a)(b) and (c)(d), it is clear that
the reverse execution approaches can save much memory. But the amount of
benefit from reverse execution is determined by the number of opportunities for
reverse computation. For programs that do not have many lossless operations
such as ++ and +=, state saving still plays an important role in their inversions.

We must be very cautious when reversing a loop. If the loop solution is applied,
we have to determine if storing control flow information is worth it or not. The
result of Loop2 from RCC shows that if the number of iterations is large,

A New Method for Program Inversion 99

storing control flows is not good idea. Saving state inside a loop normally is not
a wise choice, as the result of Loop1 + Assignment from RCC show.

7 Conclusion and Future Work

We have shown a novel framework for program inversion that combines the
advantage of both incremental state saving and incremental reverse execution.
Powered by compiler analysis and taking the cost for each operation into account,
we gain global optimization through a search algorithm that makes it possible to
find the best strategy when reversing a program. The experiment results show
that our method is effective comparing to other well-known methods.

Our future work will target reversing functions with structures, arrays, func-
tion calls, and aliasing. We believe that our framework is general enough to be
reused to solve those problems. For example, a function call can be treated as
a special operation. We can extend the value search graph to take advantage of
SSA extensions for pointers, arrays, object access, and function calls [9,13,18],
allowing us to integrate them into our inversion algorithm. We would also like to
run our translator on real-world large simulations and measure the performance
gains from parallel execution.

References

1. Abramov, S., Glück, R.: The Universal Resolving Algorithm: Inverse Computation
in a Functional Language. Science of Computer Programming 43(2-3), 193–229
(2002)

2. Akgul, T., Mooney III, V.J.: Assembly instruction level reverse execution for debug-
ging. ACM Transactions on Software Engineering and Methodology 13(2), 149–198
(2004)

3. Alpern, B., Wegman, M.N., Kenneth, F.: Detecting Equality of Variables in Pro-
grams. In: PPL (January 1988)

4. Ball, T., Larus, J.R.: Optimally profiling and tracing programs. ACM Transactions
on Programming Languages and Systems 16(4), 1319–1360 (1994)

5. Ball, T., Larus, J.R.: Efficient Path Profiling. In: MICRO 1996, pp. 46–57 (1996)
6. Biswas, B., Mall, R.: Reverse execution of programs. ACM SIGPLAN No-

tices 34(4), 61–69 (1999)
7. Briggs, J.S.: Generating reversible programs. Software: Practice and Experi-

ence 17(7), 439–453 (1987)
8. Carothers, C.D., Perumalla, K.S., Fujimoto, R.M.: Efficient Optimistic Parallel

Simulations Using Reverse Computation. In: PADS (1999)
9. Chow, F., Chan, S., Liu, S.-M., Lo, R., Streich, M.: Effective Representation of

Aliases and Indirect Memory Operations in SSA Form. In: Gyimóthy, T. (ed.) CC
1996. LNCS, vol. 1060, pp. 253–267. Springer, Heidelberg (1996)

10. Cooper, K.D., Taylor Simpson, L., Vick, C.A.: Operator strength reduction. ACM
Transactions on Programming Languages and Systems 23(5), 603–625 (2001)

11. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems 13(4), 451–490 (1991)

100 C. Hou et al.

12. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. ACM Transactions on Programming Languages and Sys-
tems 9(3), 319–349 (1987)

13. Fink, S., Knobe, K., Sarkar, V.: Unified Analysis of Array and Object References in
Strongly Typed Languages. In: SAS 2000. LNCS, vol. 1824, pp. 155–174. Springer,
Heidelberg (2000)

14. Fujimoto, R.M.: Parallel and Distributed Simulation Systems. Wiley (2000)
15. Glück, R., Kawabe, M.: Revisiting an automatic program inverter for Lisp. ACM

SIGPLAN Notices 40(5), 8–17 (2005)
16. Jefferson, D.R.: Virtual time. ACM Transactions on Programming Languages and

Systems 7(3), 404–425 (1985)
17. Kawabe, M., Glück, R.: The Program Inverter LRinv and Its Structure. In:

Hermenegildo, M.V., Cabeza, D. (eds.) PADL 2004. LNCS, vol. 3350, pp. 219–234.
Springer, Heidelberg (2005)

18. Knobe, K., Sarkar, V.: Array SSA form and its use in parallelization. In: POPL
1998, pp. 107–120. ACM Press, New York (1998)

19. Muchnick, S.S.: Advanced Compiler Design and Implementation (1997)
20. Ross, B.J.: Running programs backwards: The logical inversion of imperative com-

putation. Formal Aspects of Computing 9(3), 331–348 (1997)
21. Srivastava, S., Gulwani, S., Chaudhuri, S., Foster, J.S.: Path-based inductive syn-

thesis for program inversion. In: PLDI 2011, p. 492. ACM Press, New York (2011)

Analytical Bounds for Optimal Tile Size Selection

Jun Shirako1, Kamal Sharma1, Naznin Fauzia2, Louis-Noël Pouchet2, J. Ramanujam3,
P. Sadayappan2, and Vivek Sarkar1

1 Rice University
{shirako,kamal.g.sharma,vsarkar}@rice.edu

2 The Ohio State University
{fauzia,pouchet,saday}@cse.ohio-state.edu

3 Louisiana State University
jxr@ece.lsu.edu

Abstract. In this paper, we introduce a novel approach to guide tile size se-
lection by employing analytical models to limit empirical search within a sub-
space of the full search space. Two analytical models are used together: 1) an
existing conservative model, based on the data footprint of a tile, which ignores
intra-tile cache block replacement, and 2) an aggressive new model that assumes
optimal cache block replacement within a tile. Experimental results on multiple
platforms demonstrate the practical effectiveness of the approach by reducing the
search space for the optimal tile size by 1,307× to 11,879× for an Intel Core-2-
Quad system; 358× to 1,978× for an Intel Nehalem system; and 45× to 1,142×
for an IBM Power7 system. The execution of rectangularly tiled code tuned by
a search of the subspace identified by our model achieves speed-ups of up to
1.40× (Intel Core-2 Quad), 1.28× (Nehalem) and 1.19× (Power 7) relative to
the best possible square tile sizes on these different processor architectures. We
also demonstrate the integration of the analytical bounds with existing search op-
timization algorithms. Our approach not only reduces the total search time from
Nelder-Mead Simplex and Parallel Rank Ordering methods by factors of up to
4.95× and 4.33×, respectively, but also finds better tile sizes that yield higher
performance in tuned tiled code.

1 Introduction

Modern computer systems utilize multi-level memory hierarchies in which the latency
of data access from higher levels are orders of magnitude higher than the time required
to perform arithmetic operations. Loop Tiling [7, 17, 23, 29, 35, 36] is a classical tech-
nique to enhance data reuse in memory hierarchy levels close to the processor. Recent
advances have made it possible to automatically generate parametrically tiled code,
even for imperfectly nested loops [2, 15, 18, 24]. It is well known that the choice of
tile sizes has a significant effect on performance, but the effective selection of optimized
tile sizes remains an open problem that has become ever more challenging as processor
memory hierarchies increase in complexity and depth.

Past work has pursued two main types of approaches for tile size selection, analytical
and empirical. In analytical approaches, a compiler selects tile sizes based on static
analysis of loop nests and known characteristics of the memory hierarchy. Although
several analytical techniques for tile size selection have been proposed in the literature
[8, 10, 13, 16, 19, 26, 27, 28], none has been demonstrated to be sufficiently effective

M. O‘Boyle (Ed.): CC 2012, LNCS 7210, pp. 101–121, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

102 J. Shirako et al.

for use in practice. As a result, the gap between the performance delivered by the best
known tile sizes and those selected by an analytical approach has continued to widen,
thereby diminishing the utility of past analytical approaches.

Empirical approaches to tile size optimization treat the loop nest as a black box,
and perform empirical auto-tuning for a given architecture [4, 31, 32, 33] by actually
executing the tiled code for a range of different tile sizes. The highly successful ATLAS
(Automatically Tuned Linear Algebra Software) system [33] uses empirical tuning at
library installation time to find the best tile sizes for different problem sizes on the
target machine. One of the most challenging issues in empirical approaches for tile size
selection is the enormous search space that must be explored when tiling multiple loops.
As shown in many domains (e.g., by Goto and van de Geijn [14] for linear algebra and
by Datta et al. [11] for stencil codes), the optimal tile has different tile sizes in different
dimensions. The experimental results in this paper support this observation; compared
with the best “square” tile, i.e., equal tile sizes along all dimensions, the best non-
square tile showed performance speedups of up to 1.40, 1.28, and 1.19 on three different
platforms (Xeon, Nehalem, and Power7, respectively). Though many empirical tuning
systems attempt to reduce the search space by only examining square tiles, our results
reaffirm the importance of including non-square tiles in the search space.

Hybrid approaches to tile size selection that combine analytical models and empir-
ical search have also been pursued [9, 37]. For example, Chen et al. [9] introduced a
framework that combines the use of compiler models and search heuristics to perform
auto-tuning. However, we are not aware of any hybrid approach that has been demon-
strated to be both broadly applicable and effective in practice. In this paper, we develop
an analytical approach that is both broadly applicable as well as effectively usable in
conjunction with various empirical search strategies for auto tuning.

Since the search spaces for tile size selection increase explosively for multidimen-
sional, non-square and multi-level tiling, an effective approach to prune the search space
is critical. Furthermore, while expensive empirical tuning is feasible for libraries such
as BLAS that are tuned once per machine and reused across applications, tiled user
codes usually require empirical search to be done much more rapidly since the search
needs to be performed on all the time-consuming loop nests in the application.

In this paper, we introduce a novel approach using analytical bounds to limit the
search space with empirical tuning for square and non-square tiling. As shown in Sec-
tion 6, the proposed approach to pruning the search space is complementary to, and can
be combined with, existing empirical search strategies; e.g., the analytical bounds can
be integrated with existing auto-tuning frameworks such as ATLAS [33]. Experimental
results show that our approach can reduce the search space by up to four orders of mag-
nitude. Reduction factors of up to 11,879, 1,978, and 1,142 were realized on a Xeon,
Nehalem, and Power7, respectively, for the loop nests that we studied.

Our approach employs a pair of analytical models to prune the search space — a con-
servative model that underestimates the number of iterations in an optimal tile (DL),
and an optimistic model that overestimates the number of iterations in an optimal tile
(ML). DL (Distinct Lines) [12], a conservative model from past work, models the re-
quired cache capacity for a tile as its total data footprint. Under this model, any tiles with
a data footprint larger than the cache size are discarded, since they may incur capacity

Analytical Bounds for Optimal Tile Size Selection 103

misses during execution.However, this is a pessimistic assumption for many applica-
tions, especially applications with streaming data accesses. We therefore introduce an
optimistic analytical model, ML (Minimum working set Lines), that assumes an ideal
intra-tile cache block replacement. Because DL and ML respectively provide lower and
upper bounds for tile sizes, we can use them to bound tile size search space for empirical
tuning. Our experiments show that this bounded search space still contains optimal tile
sizes, despite reductions of up to four orders of magnitude in the size of the search space.

The paper is organized as follows. Section 2 reinforces the motivation for this work
via a case study that highlights some of the challenges arising from modern memory
hierarchies. In Section 3, we provide background on parametric tiling and the DL model
from past work. Section 4 introduces the new ML model for single-level tiling. Section 5
elaborates on how the DL and ML models can be used to bound the search space for
empirical tuning. Section 6 presents experimental results on three platforms using a
number of benchmarks to demonstrate the effectiveness of the approach. Optimal tile
sizes were always found within the reduced search space. Related work is discussed in
Section 7, and we conclude in Section 8.

2 Motivation and Case Study

Past work on performance models for tile size selection were usually geared towards
minimizing capacity and conflict misses for the first level of cache [10, 16, 34]. In
this section, we illustrate the impact of higher levels of data cache and Translation
Lookaside Buffer (TLB) on tile size selection. As a motivating example, we provide a
detailed analysis of the execution of a tiled matrix-multiply kernel. Figure 1 is a sample
code from [10] that uses the IKJ loop order.

/ / i n t e r − t i l e l o o p s
f o r i i = 1 t o N, Ti

f o r kk = 1 t o N, Tk
f o r j j = 1 t o N, Tj

/ / i n t r a − t i l e l o o p s
f o r i = i i t o min (i i +Ti ,N)

f o r k = kk t o min (kk+Tk ,N)
f o r j = j j t o min (j j +Tj ,N)

C[i] [j] += A[i] [k]∗B[k] [j] ;

Fig. 1. Tiled Matrix Multiply (IKJ loop order)

Tiling is critical in order to increase data locality in this case: Ti, Tj and Tk must
be selected such that the data accessed during the computation of a tile fits entirely
within the first level cache in order to avoid capacity misses. Reuse analysis suggests
that we set Ti to N, in order to obtain full temporal reuse of the matrix B along the i
loop [10]. This solution is motivated by the fact that no element of B will be used in
two different tiles, an apparently ideal solution in terms of L1 cache misses (provided
Tj and Tk are selected adequately). Furthermore, setting Ti = N allows us to explore
a two-dimensional search space Tk× Tj instead of a three-dimensional search space
Ti×Tk×Tj, thereby significantly reducing the search space for optimal tile sizes.

This solution focuses only on minimizing L1 cache misses. To illustrate the defi-
ciency of a Level 1 cache-centric approach, we examine performance variation on an

104 J. Shirako et al.

Intel Xeon (E7330 2.40 GHz processor with 32KB L1 cache, 3MB L2 cache, 16 entry
TLB1, and 256 entry TLB2 (4KB page size)) for a problem size of 3000×3000. Af-
ter performing an exhaustive empirical search over tile sizes, we found the optimal tile
size on this machine to be (Ti,Tk,Tj) = (60,10,120). Note that this optimal point has
unequal tile sizes in different dimensions because each dimension has a different data
reuse patterns on arrays, and a large tile size is needed along the vectorized dimension
(innermost tile size Tj) for effective vectorization. To illustrate the performance impact
of the values of Ti, we fix Tk = 10 and Tj = 120, and plot four metrics — execution
time, L1 data cache misses (L1 DCM), L2 data cache misses (L2 DCM), and L2 TLB
misses (TLBM DM) — for different values for Ti in Figure 2. Since the absolute values
of these metrics are incomparable, the graph plots use standard min-max normaliza-
tion to convert each metric to a value in the range 0 . . .1. The normalized value for
each metric is computed as the ratio, (x−min)/(max−min), where x, min and max
are respectively the absolute, minimum, and maximum value of that metric for different
values for Ti.

0

0.2

0.4

0.6

0.8

1

10

32

50

60

70

80

90

10
0

12
0

15
0

30
0

60
0

10
00

15

00

20
00

25

00

30
00

Matrix Multiplication IKJ 3000x3000
(Tk=10,Tj=120)

Norm Time
Norm L1_DCM
Norm L2_DCM
Norm TLB_DM

iterations in tile size, Ti

N
or

m
al

iz
ed

 m
et

ric

Fig. 2. Normalized Metrics for Matrix Multiplication with an IKJ Loop

First, we observe that L1 misses decrease as Ti increases, as expected. However, the
graph clearly shows that the optimal tile size does not occur at Ti = 3000. At Ti > 90, we
see an upward trend in execution time, in contrast to what is suggested by considering
just the L1 cache. As the cache footprint of the computation increases, TLB2 misses
and L2 misses increase, eventually leading to substantial degradation in execution time.

To better understand this effect, one must also consider the virtual-to-physical ad-
dress translation for this machine. A lookup for address translation is performed at both
the TLB levels. When an entry is not found in eiher TLB, a radix tree page walk is
performed, with higher (leftmost) bits fetched from the MMU Cache and lower (right-
most) bits from the L2 data cache. When address translation bits are not found in the
L2 cache, it causes DRAM accesses, leading to significant stalls for an application.
Thus, increasing an application’s footprint causes significant pressure on the data cache

Analytical Bounds for Optimal Tile Size Selection 105

and TLB. This page walk behavior is not just restricted to Intel architectures. AMD’s
Page Walking Cache and PowerPC’s Hashed Table approach exhibit a similar charac-
teristic, where address translation requires traversal of data caches in the case of TLB
misses [1, 3].

These observations led us to rethink the tile size selection model. While it is impor-
tant to optimize for L1 data cache to enable higher reuse, one also needs to consider the
reuse effect at higher levels of the memory hierarchy. This leads to considering multiple
memory hierarchy levels when searching the Ti×Tk×Tj space to find the best tile size
for even a single level of tiling. A key contribution of this paper is the development
of analytical models to bound the space of candidate tile sizes that take into account
multi-level data caches and TLBs. The results in Section 6 demonstrate the following:
(1) our analytical models significantly reduced the search space size, while preserving
the optimal points in the pruned space; (2) in most cases, the optimal points have non-
square tile sizes with performance improvements of up to 40% over square tiles; (3) the
developed model also effectively finds optimized tile sizes for parallel tiled code.

3 Background

3.1 DL: Distinct Lines

The DL (Distinct Lines) model was designed to estimate the number of distinct cache
lines accessed in a loop-nest [12, 27]. Consider a reference to a contiguously allo-
cated m-dimensional array, A, enclosed in n perfectly nested loops, with index variables
i1, · · · , in:

A(f1(i1, · · · , in), · · · , fm(i1, · · · , in)) (Fortran)
A[fm(i1, · · · , in)] · · · [f1(i1, · · · , in)] (C),

where f j(i1, · · · , in) is an affine function. An exact analysis to compute DL is only per-
formed for array references in which all coefficients are compile-time constants (i.e.,
for affine references). An upper bound for the number of distinct lines accessed by a
single array reference [12] with one-dimensional subscript expression f (i1, · · · , in) is

DL(f) ≤ min
(

(f hi− f lo)
g + 1,

⌈
(f hi− f lo)

L

⌉
+ 1

)
,

where g is the greatest common divisor of the coefficients of the enclosing loop indices
in f , and L is the cache line size in units of array element size; f hi and f lo are the max-
imum and minimum values of the subscript expression f across the entire loop nest. In
practice, the relative error of this estimation is small when, as is usually the case, the
range (f hi − f lo) is much larger than the values of the individual coefficients of f . For
a multidimensional array reference A(f1, · · · , fm), the upper bound estimate [12] is as
follows (with a heuristic assumption that the first dimension of the array has at least L
elements).

DL(f1, · · · , fm) = DL(f1)×∏m
j=2

(
(f hi

j − f lo
j)

g j
+ 1

)
.

Extensions of this model to account for multiple array accesses in a loop nest have also
been developed [12, 27]. These DL definitions for an entire loop nest are also applicable

106 J. Shirako et al.

to a tile whose loop boundaries are expressed using tile sizes. In such a case, the DL
definition is a symbolic function of tile sizes t1, · · · , tn denoted by DL(t1, · · · , tn) [27].

The DL definition can also be applied to any level of cache or TLB by selecting its
cache line size or page size as L. However, the DL model ignores possible replacement
of cache lines within a tile, and therefore provides only conservative upper bounds for
the number of cache lines needed.

3.2 Parametric Tiling

Although production compilers today may have limited tiling capability, there have been
significant recent advances in automatic source-to-source transformations for tiling and
several systems for parametric tiling have been developed and made publicly available
such as TLOG [24], HITLOG [18] and PrimeTile [15]. With such tiled-code generators,
it is now possible to generate tiled code for compute-intensive inner kernels (includ-
ing imperfectly nested loops), that can be tuned to the cache characteristics of the target
platform. Thus, just as ATLAS [33] is used in auto-tuning dense linear algebra codes,
it becomes feasible to use auto-tuning for user kernels such as stencil-based computa-
tions. However, unlike library kernel optimization, exhaustive search of the tile parameter
space over several hours to days is generally not attractive for tuning user kernels. This
motivates the approach developed in this paper to significantly prune the search space.

4 ML: Minimum Working Set Lines

We now introduce ML (Minimum working set Lines), a new analytical cost model based
on the cache capacity required for a tile when intra-tile reuse is taken into account. We
define the ML model next and then develop an approach to computing ML for a tile by
first constructing a special sub-tile based on analysis of reuse characteristics and then
computing the DL value for that sub-tile. Although we mainly focus on cache capacity
in this section, the model is directly applicable to TLBs by replacing the cache line size
with the page size.

4.1 Operational Definition of ML

The essential idea behind the ML model is to develop an estimate of the minimum cache
capacity needed to execute a tile without incurring any capacity misses; this minimum
cache capacity can be viewed as the minimum working set size for the tile. Consider a
memory access trace of the execution of a single tile, run through an idealized simula-
tion of a fully associative cache. The cache is idealized in that its size is “unbounded”
(i.e., any access to a data element in the tile will never lead to a capacity miss) and an
optimal replacement policy, where a line in the cache is marked for replacement as soon
as the last reference to any data on that line has been issued (through an oracle that can
determine all future references of the tile). Before each memory access, the simulator
fetches the desired line into the idealized cache if needed. After each memory access,
the simulator evicts the cache line if it is the last access (according to the oracle). ML
corresponds to the maximum number of lines (high water mark) held in this idealized
cache during the execution of the entire trace for the tile.

Analytical Bounds for Optimal Tile Size Selection 107

4.2 Model of Computation

In this paper, we focus on the class of affine imperfectly nested loops, where loop
bounds and array access expressions are affine functions of the surrounding loop it-
erators and program constants. For this class of program, it is possible to restructure the
code automatically [6, 15] to expose rectangular tiles of parametric size. Assuming that
a system such as PrimeTile [15] has already been used to generate parametric rectangu-
larly tiled code, we focus on the problem of tile size optimization for such codes.

The outermost loop inside a tile (i.e., the outermost intra-tile loop) is denoted by
loop1, and the innermost intra-tile loop is loopn. Since tiles are rectangular by con-
struction, loopi (1 ≤ i ≤ n) has the same trip count for any of its executions. Note that
the case of partial tiles is handled with prolog/epilog code [15]. The iteration domain
of a tile is represented with a tuple [T1; T2; · · · ; Tn]. A tile is surrounded by the loops
iterating on all tiles, i.e., the inter-tile loops. In this paper, we assume a single level of
tiling; extension to multi-level tiling is a subject for future work.

4.3 Distance in Tiled Iteration Space

A specific instance of the loop body is identified by an iteration vector, that is, a coor-
dinate in the iteration space, noted p = (p1, p2, · · · , pn). The distance between two iter-
ation vectors p and p′ is expressed as the distance vector d = (d1,d2, · · · ,dn) = p′ − p.
The scalar distance between two iteration vectors is the number of instances of the
inner-most loop body to be executed (in lexicographic ordering) between these two
iteration vectors. For instance, in a tiled loop nest the scalar distance between two con-
secutive iterations of the innermost loop loopn is 1, representing the shortest possible
scalar distance. It corresponds to the distance vector (0, · · · ,0,1) = (p1, · · · , pn−1, pn +
1)− (p1, · · · , pn−1, pn), for any values of p1, · · · , pn. It is always possible to find a sub-
tile tuple that corresponds to this scalar distance. Here it is [1; 1; · · · ; 1], i.e., the tuple
describing an n-dimensional rectangle containing exactly one point. We call this form
a sub-tile tuple expression of the tile tuple [T1; T2; · · · ; Tn].

Let us now consider the distance vector (1,2,3)=(p1+1, p2+2, p3+3)−(p1, p2, p3).
In general, to compute the associated scalar distance, we first compute the scalar dis-
tance corresponding to two consecutive iterations for each of the intra-tile loops: 1 for
loop3, T3 for loop2, and T2T3 for loop1. The scalar distance is computed by the dot
product (1,2,3).(T2T3,T3,1)t = T2T3 + 2T3 + 3. It is always possible to compute an
associated sub-tile tuple expression corresponding to the sub-part of the tile iteration
domain bounded by the two iteration points p and p′, by combining multiple rectangles
defined by individual sub-tile tuples. Here, [1; T2; T3] + [1; 2; T3] + [1; 1; 3] is the
associated sub-tile tuple expression.

One iteration of loopi strides over sizei, which is the total number of iteration points
within the loop body of loopi. sizei is defined in both scalar and sub-tile tuple expres-
sion as follows:

sizen = 1 = [1; 1; · · · ; 1] (i = n);
sizei = ∏n

j=i+1 Tj = [1; · · · ; 1; Ti+1; · · · ,Tn] (i < n).

108 J. Shirako et al.

Using size vector size = (size1,size2, · · · ,sizen), we define the scalar distance of the
distance vector d = (d1,d2, · · · ,dn) and its sub-tile tuple expression as follows:

Scalar distance: size ·d = ∑n
i=1(di × sizei);

Sub-tile tuple: ∑n
i=1([1; · · · ; 1; di; Ti+1; · · · ; Tn]).

4.4 Temporal and Spatial Reuse Distance

Temporal and spatial data reuse are expressed using widely used definitions of “reuse
distance vectors” (often shortened to “reuse vectors”) [34]. A number of previous efforts
introduced methods to compute spatial reuse vectors [34] while temporal reuse vectors
are computed from standard dependence analysis.

f o r (p 1 = [low1 : low1+T 1 −1])
f o r (p 2 = [low2 : low2+T 2 −1])

f o r (p 3 = [low3 : low3+T 3 −1])
B[p 1] [p 2] [p 3] = A[p 1] [p 3] + B[p 1 −2][p 2 −3][p 3] ;

Fig. 3. Sample Code

For array A in Figure 3, the pair ((p1, p2, p3),(p1, p2 + 1, p3)) has temporal reuse
with a reuse distance vector of d1 = (0,1,0). The pair ((p1, p2, p3),(p1, p2, p3 + 1))
has spatial reuse in array A with a reuse distance vector of d2 = (0,0,1). For array B,
the pair ((p1, p2, p3),(p1 + 2, p2 + 3, p3)) has a temporal reuse vector d3 = (2,3,0),
and the pair ((p1, p2, p3),(p1, p2, p3 + 1)) has a spatial reuse vector d4 = (0,0,1).

In Section 4.3, we defined the scalar distance for these reuse distance vectors. For
Figure 3, the size vector is size = (T2T3,T3,1). The scalar distance of temporal reuse
vector d1 = (0,1,0) is calculated by size · d1 = T3, and the scalar distance of spatial
reuse vector d2 = (0,0,1) is size · d2 = 1. They are also represented as sub-tile tuple
expressions: [1; 1; T3] and [1; 1; 1], respectively. Finally, we call the largest scalar
distance Maximum Reuse Distance, or MRD; the MRD is defined on a per-array basis.
For example, the MRD for array A in Figure 3 is [1; 1; T3], and MRD for array B is
[2; T2; T3]+ [1; 3; T3] due to d3.

The approximation of reuse distance vectors for non-uniform reuse patterns is still
an open question. As described in Section 5, ML is used to derive the upper bounds
of tile sizes and conservative approximation may make the tile size boundaries smaller
than optimal points. Therefore, we ignore non-uniform reuse so as to estimate tile sizes
optimistically, and leave approximation of non-uniform reuse distance to future work.

4.5 Computation of ML

Using Maximum Reuse Distance for array X, we define ML for array X as follows.
First, a pair of iteration instances (p1, p2, · · · , pn) and (p1 +d1, p2 +d2, · · · , pn +dn) has
the following Maximum Reuse Distance for array X:

MRDX = ∑n
i=1([1; · · · ; 1; di; Ti+1; · · · ; Tn]).

In order to exploit all data locality related to array X, the data at (p1, p2, · · · , pn) must
not be removed from the cache memory (p1 +d1, p2 +d2, · · · , pn +dn) is accessed. The

Analytical Bounds for Optimal Tile Size Selection 109

cache must keep all the distinct cache lines for array X within the distance of MRDX .
Since the MRD is also represented as a sub-tile tuple, the ML for array X is equivalent
to the DL of X for the sub-tile tuple defined by MRDX . Thus we have

MLX = DLX(MRDX).

To compute DL of a sum of sub-tile tuples, we compute the sum of DL of each individ-
ual sub-tile tuple. As shown above, the expression of Maximum Reuse Distance MRDX

does not include T1, therefore, MLX is also independent of T1. This is true for any ref-
erence: the sub-tile tuple never contains T1 in its components, as shown in Section 4.3.
For instance, MRDB and MLB for array B of Figure 3 are as follows.

MRDB = [2; T2; T3]+ [1; 3; T3];
MLB = DLB(MRDB) = DLB(2,T2,T3)+ DLB(1,3,T3).

ML is defined as the sum of the MLX values for each array X accessed in the tile:

ML = ∑X(MLX).

In order to leverage all intra-tile data locality, we should select tile sizes so that ML
is smaller or equal to the number of cache lines of the target cache memory, which is
usually level-1 cache.

4.6 Example

Figure 1 from Section 2 shows a single-level tiling example for Matrix Multiplication.
We assume an element of array has 8 Bytes, and the cache line size of L1/L2 is 64 Bytes
(a cache line contains eight elements). DL is calculated as follows:

DL = DLC(Ti,T k,T j)+DLA(Ti,T k,T j)+DLB(Ti,Tk,T j) = Ti
⌈

T j
8

⌉
+Ti

⌈
T k
8

⌉
+Tk

⌈
T j
8

⌉
.

Also, the MRD for each array is computed from size vector size = (T kT j, T j, 1)
and reuse distance vectors. MRDC = (T kT j, T j, 1) · (0,1,0) = [1; 1; T j], MRDA =
(T kT j, T j, 1) ·(0,1,0) = [1; 1; T j], and MRDB = (T kT j, T j, 1) ·(1,0,0) = [1; T k; T j]. As-
signing each MRD to the corresponding DL expression, the ML for single-level tiling
is computed as

ML = DLC(1,1,T j)+ DLA(1,1,T j)+ DLB(1,T k,T j) =
⌈

T j
8

⌉
+ 1 + Tk

⌈
T j
8

⌉
.

5 Bounding the Search Space by Using DL and ML

This section presents how our DL/ML model bounds a tiling search space. As discussed
in Section 4, ML is used for optimistic cache and TLB capacity constraints for intra-
tile data reuse and gives the upper boundaries for estimated tile sizes. In contrast, DL
is used for conservative constraints, and gives the lower boundaries. These lower and
upper boundaries drastically reduce the search space for single and multi-level tiling.
Furthermore, DL, which represents the number of distinct lines within a tile, can be
used as a capacity constraint for inter-tile data reuse on higher levels of cache/TLB.
The extension of our approach to multi-level tiling is the subject for future work.

110 J. Shirako et al.

5.1 Capacity Constraint for Intra-tile Reuse
Section 4.5 shows ML for single-level tiling can be dependent on tile sizes T2, T3, ...,
Tn and is independent on T1 while DL can depend on all tile sizes T1, T2, ..., Tn. CS1

represents the number of cache lines or TLB entries at level-1 cache or TLB memory.
All tile sizes within the lower boundaries due to DL and upper boundaries due to ML
satisfy the following constraints.

DL(T1,T2, · · · ,Tn) ≥CS1, ML(T2,T3, · · · ,Tn) ≤CS1.

We have two bounded regions according to cache and TLB. In our approach, we con-
sider the union of both the regions as candidates for optimal tile sizes, e.g., a point that
is within the DL/ML region due to cache but outside the region due to TLB is also a
candidate.

5.2 Capacity Constraint for Inter-tile Reuse
Although Section 5.1 shows the boundaries to maximize intra-tile data reuse of level-1
tile, the outermost tile size T1 is actually not bounded above by the ML constraint. As
discussed in Section 2, this corresponds to traditional single-level tiling to fit within
single-level cache, where the outermost loop is not tiled [8, 10, 20]. However, the out-
ermost tile size affects inter-tile reuse on higher levels of cache/TLB, and too large tile
size would harm the inter-tile data locality and even the overall performance. Using DL
definition, we define an additional capacity constraint in order to preserve inter-tile data
reuse on level-k (k > 1) cache/TLB as follows:

DL(T1,T2, · · · ,Tn) ≤CSk.

This inequality, which ensures that whole distinct lines within the tile can be kept on
level-k cache/TLB and guarantees the inter-tile data reuse, bounds the outermost tile
size T1. It is a subject for future work to select the suitable k according to the target
system. In the experiments in Section 6, we select the highest level of cache/TLB as k.

5.3 Empirical Search within Bounded Search Space for Single-Level Tiling
Described in previous section, DL/ML capacity constraints for single-level tile consist
of the following three conditions.

DL(T1,T2, · · · ,Tn) ≥CS1 (lower boundary for intra-tile reuse);
ML(T2,T3, · · · ,Tn) ≤CS1 (upper boundary for intra-tile reuse);
DL(T1,T2, · · · ,Tn) ≤CSk (upper boundary for inter-tile reuse).

Empirical search finds the optimal tile sizes for T1,T2, · · · ,Tn that minimizes the objec-
tive metrics such as execution time.

Let us calculate the search space of Figure 1, which is a single-level tiling example of
Matrix Multiplication. We assume the same experimental platform and program size as
Section 2 and Section 4.6; L1/L2 cache contains 512/49152 lines
respectively.1 The capacity constraints: DL = Ti

⌈
T j
8

⌉
+Ti

⌈
T k
8

⌉
+T k

⌈
T j
8

⌉
≥ 512, ML =⌈

T j
8

⌉
+ 1 + T k

⌈
T j
8

⌉
≤ 512, and DL = Ti

⌈
T j
8

⌉
+ Ti

⌈
T k
8

⌉
+ T k

⌈
T j
8

⌉
≤ 49152.

Figure 4 shows the bounded 2-D search space for Tk and T j when Ti is 60, which

1 We omit details on TLB constraints due to space limitations.

Analytical Bounds for Optimal Tile Size Selection 111

Fig. 4. Search Space for Matrix Multiplication for Ti = 60

is much smaller than the original 2-D search space 3000× 3000, and the optimal tile
size Ti = 60, T k = 10, and T j = 120 is found within the bounded region.

5.4 Compiler Pass for Bounded Search Space

Figure 5 shows the compiler framework to implement the DL-ML bounded search space
algorithm. This implementation requires standard compiler tools, such as dependence
vector computation and array index expression extraction, readily available in most
modern compilers. This is the only program-specific data required to compute the DL-
ML equations. Plugging the additional machine-specific information about the different
cache level sizes and associated line sizes results in a bounded search space of candidate
tile sizes, which is drastically smaller than the original set of candidates. Using these
bounds, a tile size tuning framework explores only a fraction of points in the original
search space, thereby considerably reducing the tuning overhead.

Input
loop nest

Extract
array index
expressions

Calculate
dependence

vectors

Compute
DL bounds

Compute
ML bounds

Bounded
Tile size search

region

Fig. 5. Compiler Implementation of DL-ML Bounding

6 Experimental Results

An experimental assessment was performed on three Linux-based systems: an Intel
Core i7 920 running at 2.66 GHz with shared L3 cache (labeled Nehalem), an IBM
Power 7 running at 3.55 GHz (Power7), and an Intel Xeon E7330 running at 2.40GHz
with shared L2 cache (Xeon). Previous work has used published cache capacity data
from manufacturers in analytical models for cache performance. However, due to fac-
tors such as page table entries, OS processes, etc., the full capacity of higher level
caches may not be actually available for use by the application. We report in Table 1
the effective capacities for the cache and TLB — the published capacity Spec versus

112 J. Shirako et al.

the effective capacity Effective that was observed using micro-benchmarks for hard-
ware characterization [25]. It may be seen that the effective capacity may be as low
as half the documented size, which can affect the DL/ML capacity constraints. In our
experiments, we used the effective capacities. The impact of using published capacities
instead of effective capacities is studied in Section 6.2.

Table 1. Cache characteristics of the architectures considered

L1 L2 L3 Line Size TLB1 TLB2 Page Size
Spec. Effective. Spec. Effective. Spec. Effective. Entries Entries

Nehalem 32kB 32kB 256kB 256kB 8MB 5.2MB 64B 64 512 4kB
Power7 32kB 32kB 256kB 256kB 32MB 18.4MB 128B 64 512 64kB
Xeon 32kB 32kB 3MB 1.5MB N/A - 64B 16 256 4kB

We studied five benchmarks using double precision floating point arithmetic. matmult
is a standard matrix-multiply kernel: C = A.B; dsyrk is a symmetric rank 1 computation:
C = α.A.AT +β.C; and dtrmm is a triangular in-place matrix multiplication: B = α.A.B
(A is triangular). We also considered a representative 9-point two-dimensional sten-
cil computation, 2d-jacobi, and a 2D Finite Difference Time Domain method, 2d-fdtd.
Parametrically tiled code for each benchmark was generated using the publicly avail-
able PrimeTile code generator [15] after any necessary preprocessing such as skewing
[6] to ensure that rectangular tiling of the loops was legal. For all tested versions, in-
cluding the original code, the same compiler optimization flags were used: for Nehalem
and Xeon, we used Intel ICC 11.0 with option -O3; for Power7, we used IBM XLC 10.1
with option -O3.

6.1 Performance Distribution of Different Tile Sizes

For each benchmark, in the case of single-level tiling, we conducted an extensive set of
experiments, for a subset of tile sizes for each loop ranging from 1 to the loop length, in
steps of 10 (approximately). Figure 6a plots the data for matmult (size 3000 × 3000) for
the three considered architectures. A point (x,y) in this cumulative plot indicates that
x% of the tile combinations achieved normalized performance greater than or equal to
y, where normalization is with respect to the best performing case among all runs and
performance is inversely proportional to execution time.

It may be observed that only a small fraction of the tile combinations achieve very
good performance — for example, on the Nehalem, only 2% of the tile size configura-
tions achieve more than 90% of the maximal performance. Also, there is a very large
variation in performance between the best and worst tile size choices, up to a factor of
10. The performance distribution also varies for different targets — for Power7, over
20% of the cases provide good performance. Further, we have also observed that the
points with good performance are not uniformly distributed in the search space but are
clustered in clouds. This highlights the complexity of the search problem when using a
blind random search — convergence towards an optimal point may require sampling of
a significant fraction of the search space.

Figure 6b shows a similar analysis for the 2d-jacobi benchmark. For the target ma-
chines, we observe quite a different trend compared to matmult: about 55% of the tile

Analytical Bounds for Optimal Tile Size Selection 113

Cumulative subsets of points searchedPe
rfo

rm
an

ce
 n

or
m

ali
ze

d
to

 b
es

t p
er

fo
rm

an
ce Xeon

Power7
Nehalem

Cumulative subsets of points searchedPe
rfo

rm
an

ce
 n

or
m

ali
ze

d
to

 b
es

t p
er

fo
rm

an
ce Xeon

Power7
Nehalem

Fig. 6. Performance Distribution for (a) matmult-3000x3000 and (b) 2d-jacobi-50x4000x4000 on
Nehalem, Xeon, and Power7

sizes achieve 90% or more of the maximal performance for Nehalem, while this ratio
significantly decreases for the two other architectures, down to 1% for Xeon.

6.2 Search Space Reduction by DL/ML Model

To assess the effectiveness of search space pruning by use of the DL/ML model, Fig-
ures 7-11 show the bounded search region superposed with a marking of all tile choices
that achieve over 95% of the maximal performance on Nehalem and Power7. 2 In each
3-D space, the x, y, and z axes show tile size values for the outer loop, middle loop and
inner loop respectively. These tile choices are called “best” points in this section. The
surface in each 3-dimensional plot represents the DL/ML upper boundary for single-
level tiling, considering intra-tile reuse for level-1 cache and TLB, and inter-tile reuse
on the highest level of cache and TLB, as described in Section 5. In order to enhance
viewability, the figures do not show the lower DL boundaries, since they fall below the
best points.

Fig. 7. Best tile sizes (within 95% and more of the optimal) for matmult-3000x3000 with k-i- j
loop ordering on 7a Nehalem and 7b Power7

For all the plots in Figures 7-11, we see that although a small number of points lie
outside the bounded search space, the vast majority of best points lie inside it. The
density of good solutions in the space is thus very much larger than in the non-pruned

2 Data for Xeon are not included due to space limitations.

114 J. Shirako et al.

Fig. 8. Best tile sizes (within 95% and more of the optimal) for dsyrk-3000x3000 with i- j-k loop
ordering on 8a Nehalem and 8b Power7

Fig. 9. Best tile sizes (within 95% and more of the optimal) for 2d-jacobi-50x4000x4000 with
t-i- j loop ordering on 9a Nehalem and 9b Power7

Fig. 10. Best tile sizes (within 95% and more of the optimal) for dtrmm-3000x3000 with i- j-k
loop ordering on 10a Nehalem and 10b Power7

space. For all the benchmarks, we found that an optimal tile was within the bounded
search region. Figures 7-11 also show that the best tile sizes are relatively smaller on
Nehalem, and larger on Power7. For example, the best points in dsyrk are within the
region of (Ti≤ 400, Tj≤ 50, Tk≤ 100) on both Nehalem and Xeon. However, the best
points on Power7 are distributed much more broadly, up to the maximum size of 3000.

Analytical Bounds for Optimal Tile Size Selection 115

Fig. 11. Best tile sizes (within 95% and more of the optimal) for 2d-fdtd-100x2000x2000 with
t-i- j loop ordering on 11a Nehalem and 11b Power7

This trend pertains to the impact of the level-1 TLB size on each system; the small
(4KB) page size on Nehalem and Xeon causes the best tile sizes to be small, while the
large (64KB) page size on Power7 allows much larger tiles without causing severe TLB
misses. These differences are directly reflected in the upper boundary of the DL/ML
model, which covers a larger region for Power7 than the other machines. As discussed
in Section 5.2, the outermost tile size (x axis) is bounded above only by the inter-
tile reuse constraints due to the highest level of cache and TLB. It is obvious that the
outermost tile size boundaries also contribute to search space reduction in Figures 7-11.

Table 2 shows the ratio of the space considered in the DL/ML range for the three
architectures, compared to the full space of tile sizes. This ratio corresponds to the
minimal acceleration factor for an exhaustive or random empirical search compared to
using the full space. The factor is much lower for Power7 due to the larger page size,
as explained above. In order to assess the impact of using published versus effective
capacities, we repeated our analysis also using the published capacity for the highest
level of cache instead of the effective capacity. We found the reduction in search space
by use of the ML model was virtually identical with use of published size or effective
size (Table 2), with one exception: for matmult with 3000×3000 size on Power7, the
reduction rate decreased from 93.79 to 84.01. This is because the constraint due to
the highest level of cache did not affect the search space boundaries for the evaluated
benchmarks and platforms except for Power7/matmult.

Table 2. Search space reduction factor across different architectures

Problem Size Xeon Power 7 Nehalem

matmul
600x600 81.12 1.46 21.90

3000x3000 8710.81 93.79 1856.49

dsyrk
1000x1000 492.24 2.04 91.62
3000x3000 11879.67 83.99 1978.26

dtrmm
600x600 41.37 2.31 32.74

3000x3000 2565.00 1142.23 1238.24
2d-jacobi 50x4000 3102.90 76.43 693.45
2d-fdtd 100x2000x2000 1307.19 45.55 358.74

116 J. Shirako et al.

6.3 Summary of Experiments

1-Level Tiling. We summarize our experiments for 1-level tiling in Table 3. We re-
port, for each benchmark and each architecture, the execution time (in seconds) of the
original, untiled code in the Untiled Time column. DL reports the tile sizes and its ex-
ecution time as obtained by the purely analytical approach using the DL model [12];
Best Square Tile reports the tile sizes and execution time obtained by an exhaustive
empirical search only for square tile sizes; and Best DL/ML is obtained by an exhaustive
empirical search in the DL/ML range. The Best DL/ML point was also the globally op-
timal point in the whole search space for all programs/platforms. We observed that the
optimal points represent non-square tile sizes for all cases. For efficient vectorization on
all three platforms, the vectorized dimension should correspond to a sufficiently large
tile size. Furthermore, the different temporal/spatial data reuse pattern along different
dimensions contributes to the unequal sizes of tiles in the different dimensions for the
optimal choices.

Table 3. 1-level Tiling Results (Time in seconds, N: Nehalem, P: Power7, X: Xeon)

Untiled DL Best Square Tile Best DL/ML Impr. by DL/ML
Time Tile Size Time Tile size Time Tile size Time vs. DL vs. Sq.

matmult-N 33.25 (40, 40, 30) 16.40 (80,80,80) 17.27 (150, 30, 80) 13.48 1.22× 1.28×
matmult-P 25.46 (50, 30, 20) 13.90 (80,80,80) 12.28 (90, 10, 120) 10.60 1.31× 1.15×
matmult-X 153.66 (40, 40, 30) 29.51 (50,50,50) 23.98 (100, 20, 120) 18.35 1.60× 1.31×
dsyrk-N 25.39 (30, 40, 40) 15.47 (80,80,80) 15.54 (30, 30, 90) 12.50 1.23× 1.24×
dsyrk-P 23.32 (40, 30, 30) 15.10 (300,300,300) 10.86 (60, 10, 1000) 9.16 1.64× 1.19×
dsyrk-X 84.89 (30, 40, 40) 26.08 (120,120,120) 25.44 (100, 30, 80) 18.19 1.43× 1.40×
dtrmm-N 142.42 (40, 40, 30) 19.20 (60,60,60) 18.87 (150, 30, 60) 18.20 1.05× 1.04×
dtrmm-P 62.74 (30, 50, 20) 14.60 (60,60,60) 13.06 (600, 30, 32) 11.96 1.22× 1.09×
dtrmm-X 114.70 (40, 40, 30) 28.98 (120,120,120) 29.13 (30, 10, 120) 23.49 1.23× 1.24×
2d-jacobi-N 2.43 (10, 40, 10) 2.60 (50,50,50) 2.24 (10, 8, 150) 2.16 1.20× 1.04×
2d-jacobi-P 2.10 (10, 40, 10) 2.09 (10,50,50) 1.31 (10, 40, 120) 1.19 1.76× 1.10×
2d-jacobi-X 8.75 (10, 40, 10) 2.77 (10,8,8) 2.81 (50, 40, 20) 2.54 1.09× 1.11×
2d-fdtd-N 15.35 (10, 60, 8) 2.41 (50, 8, 8) 2.35 (50, 50, 8) 2.26 1.07× 1.04×
2d-fdtd-P 9.56 (10, 40, 1) 6.90 (50,70,70) 2.11 (40,70,40) 2.09 3.30× 1.01×
2d-fdtd-X 16.42 (10, 60, 8) 4.47 (100,40,40) 4.22 (50,100,8) 4.01 1.11× 1.05×

Empirical Search Using DL/ML Model. This section demonstrates the integration
of the analytical bounds with existing search optimization algorithms, the Nelder-Mead
Simplex method [22] and the Parallel Rank Ordering (PRO) method [30]. In order to
handle boundary constraints due to the DL/ML model, we used the extended version
of the PRO algorithm introduced in the Active Harmony framework [32]. The same
extension to handle boundaries was employed in our implementation of the Simplex
method, and its stopping criteria are based on the work by Luersen [21]. Regarding
initial simplex selection for our Simplex search implementation, we used a model-
driven approach based on the DL model for square tiling. The square tile size tuple,
T 1 = T 2 = T 3, which satisfies the DL capacity constraint is selected as one vertex of
the initial simplex. Other tree vertices were chosen so as to form a regular triangular
pyramid. Note that all the studied kernel loops are triply nested and the simplex always

Analytical Bounds for Optimal Tile Size Selection 117

has four vertices. The initial simplex is bounded by the upper and lower tile sizes in
addition to the DL/ML bounds.

Table 4 shows the total execution time for the whole empirical tuning, the best tile
size found by each approach, and its execution time. The DL/ML bounds significantly
reduced the total tuning time by a factor of 1.02 to 4.95 on Nehalem, 1.33 to 2.48 on
Power7, and 2.95 to 4.66 on Xeon. Furthermore, the Simplex and PRO methods us-
ing DL/ML boundary constraints found better tile sizes than the cases without DL/ML
bounds, except for the simplex method on Nehalem. The tile size search space con-
tains various local optimal points, and these empirical search approaches not using the
boundary constraints got stuck at local optima far from the global optimal point. Note

Table 4. Empirical Search Results for 1-level Tiling

Without DL/ML Bounds With DL/ML Bounds
Total [sec] Best Size / Time [sec] Total [sec] Best Size / Time [sec]

matmult-nehalem-simplex 3173.36 (17, 120, 1369) / 13.86 640.98 (36, 56, 64) / 14.71
matmult-nehalem-pro 1294.88 (52, 344, 2270) / 15.64 380.73 (36, 80, 29) / 15.24
matmult-power7-simplex 940.81 (114,1142,858) / 11.4 709.22 (22,82,117) / 11.32
matmult-power7-pro 691.01 (172,1784,2989) / 11.39 442.26 (28,72,126) / 10.58
matmult-xeon-simplex 4268.52 (98,1257,1258) / 21.69 1039.69 (35,56,57) / 19.52
matmult-xeon-pro 2453.03 (97,904,1315) / 21.81 831.73 (31,64,56) / 19.22
2d-jacobi-nehalem-simplex 88.84 (42, 465, 498) / 2.25 26.48 (34,15,64) / 2.32
2d-jacobi-nehalem-pro 51.09 (29, 2001, 2000) / 2.41 50.33 (25,10,627) / 2.2
2d-jacobi-power7-simplex 96.95 (50,37,92) / 1.15 54.94 (50,28,116) / 1.14
2d-jacobi-power7-pro 83.98 (25,8,3495) / 1.61 33.81 (10,53,84) / 1.17
2d-jacobi-xeon-simplex 351.52 (50,40,16) / 2.49 75.49 (50,33,16) / 2.49
2d-jacobi-xeon-pro 248.12 (26,1976,2098) / 8.85 57.34 (10,12,21) / 2.75

Table 5. Parallel 1-level Tiling Results

Optimal Point (parallel) Optimal Point (sequential)
Tile Speedup vs. Tile Speedup vs.
Size Untiled Seq. Size Untiled Seq.

matmult-nehalem (8 Threads) (80, 10, 120) 9.39× (150, 30, 80) 2.47×
matmult-power7 (32 Threads) (100, 1, 300) 15.24× (90, 10, 120) 2.40×
matmult-xeon (8 Threads) (150, 32, 80) 57.12× (100, 20, 120) 8.37×
dsyrk-nehalem (8 Threads) (150, 30, 120) 0.86× (30, 30, 90) 2.03×
dsyrk-power7 (32 Threads) (32, 70, 300) 13.79× (60, 10, 1000) 2.54×
dsyrk-xeon (8 Threads) (30, 10, 90) 3.64× (100, 30, 80) 4.66×
dtrmm-nehalem (8 Threads) (32, 50, 32) 0.93× (150, 30, 60) 7.83×
dtrmm-power7 (32 Threads) (10, 30, 100) 1.90× (600, 30, 32) 5.25×
dtrmm-xeon (8 Threads) (1, 1, 30) 1.69× (30, 10, 120) 4.88×
2d-jacobi-nehalem (8 Threads) (10, 50, 120) 1.77× (10, 8, 150) 1.13×
2d-jacobi-power7 (32 Threads) (10, 32, 120) 2.12× (10, 40, 120) 1.76×
2d-jacobi-xeon (8 Threads) (10, 40, 600) 3.06× (50, 40, 20) 3.44×
2d-fdtd-nehalem (8 Threads) (30, 80, 8) 14.08× (50, 50, 8) 6.79×
2d-fdtd-power7 (32 Threads) (10, 80, 8) 15.17× (40, 70, 40) 4.57×
2d-fdtd-xeon (8 Threads) (10, 60, 8) 11.99× (50, 100, 8) 4.09×

118 J. Shirako et al.

that these search methods can take arbitrary tile sizes in the search space, and hence
found slightly better tile sizes in some cases than Table 3, which shows the result of
scanning the search space with strided access.

Parallel Execution of Tiled Code. Table 5 reports the best tile sizes found by an
exhaustive empirical search using DL/ML bounds when the outer-most tiling loop is
parallelized with OpenMP parallel for directives. It shows the speedup with respect
to the untiled sequential execution when running each program with all cores (parallel)
and when running with a single core (sequential, same as Table 3). Although the per-
formance with parallelization is not always better than sequential, the best tile sizes for
parallelized benchmarks also lie in the region bounded by the proposed DL/ML model
except for dtrmm and jacobi-2d on Xeon, whose parallel performance is lower than
sequential performance. This performance degradation results from inefficient data dis-
tribution, which may also cause unexpected effects on tile size selection.

7 Related Work

Exploiting data locality is a key issue in achieving high levels of performance and tiling
has been widely used to improve data locality in loop nests. Nevertheless, the choice
of tile sizes greatly influences the realized performance. Wolf and Lam [34] were the
first to provide precise definitions of reuse and locality and develop transformations to
improve locality. Ferrante el al. [12], Wolf and Lam [34], and Bodin et al. [5] were
among the earliest to develop cache estimation techniques designed for data locality
optimizations. Several authors proposed techniques for selecting tile sizes aimed at re-
ducing self-interference misses [10, 20]. Ghosh et al. [13] developed cache miss equa-
tions to find sizes of the largest tiles that eliminate self-interference, while fitting in
cache. Chame and Moon [8] developed techniques to minimize the sum of the capac-
ity and cross-interference misses while avoiding self-interference misses. Rivera and
Tseng [26] developed padding techniques to reduce interference misses and studied the
effect of multi-level caches on data locality optimizations. Hsu and Kremer [16] pre-
sented a comprehensive comparative study of tile size selection algorithms. To the best
of our knowledge, all of these techniques find a single tile size for each loop that is
being tiled. Recently, Yuki et al. [38] have explored the automatic creation of cubic tile
size models. In contrast, we have demonstrated (see Table 3) that the best performance
is often realized only for rectangular tiles.

Search-based techniques for finding tile sizes (and unroll factors) have received much
attention in performance optimization [4, 19, 31, 32, 33]. The ATLAS system employs
extensive empirical tuning to find the best tile sizes for different problem sizes in the
BLAS library; tuning is done once at installation. Unfortunately such an approach is
not suited for general tiled codes, as the search process is tuned for dense linear algebra
codes only. Only square tile sizes are considered, which significantly hampers the per-
formance of a variety of codes (such as stencil codes) that require rectangular tiles for
best performance. Furthermore, ATLAS currently includes a simplistic model where
tile sizes are searched as to not exceed the square root of the L1 cache size. Our ana-
lytical bounds offer a significantly higher accuracy, capturing both intra- and inter-tile
reuse at various cache level.

Analytical Bounds for Optimal Tile Size Selection 119

Kisuki et al. [19] have used different techniques such as genetic algorithms and sim-
ulated annealing to manage the size of the search space. Tiwari et al. [32] note: “a key
challenge that faces auto-tuners, especially as we expand the scope of their capabili-
ties, involves scalable search among alternative implementations.” The Active Harmony
project [31, 32] uses several different algorithms to reduce the size of the search space
such as the Nelder-Mead simplex algorithm. In contrast to these approaches, we use
a pair of analytical models — a conservative model that overestimates the number of
cache lines by ignoring lifetimes and an aggressive model that underestimates the num-
ber of cache lines — each leading to different sets of tile sizes, which are used to bound
the search space. With our technique, any of the algorithms from [19, 31, 32] can be
used to further reduce the search time.

8 Conclusion

In this paper we developed a novel approach to analytically bound the search space for
tile size selection based on two models, a conservative model (DL) that ignores intra-
tile cache block replacement and a new aggressive model (ML) that assumes optimal
replacement. We described how empirical search can be restricted (pruned) by the two
models (DL and ML). Search space reductions ranging from 45× - 11,879× were ob-
tained by using this pruning technique for five benchmarks on three different platforms.
Our experimental results for single-level tiling on different benchmarks show that al-
most all tile sizes that deliver 95% or more of the optimal performance fall between
the ML and DL bounds used in our approach. Furthermore, we demonstrated the inte-
gration of the analytical bounds with existing search optimization algorithms, and the
experimental results show that the total search time was reduced by factors ranging from
1.02× to 4.95×. The experiments for parallel execution show that our DL/ML model
is also effective for tile size selection of parallelized programs. Taken together, these
experimental results make a convincing case of the effectiveness of our new approach
to model-driven empirical search for tile sizes.

For future work, we propose to extend our approach to multi-level tiling, and also
to leverage correlation studies to identify which levels of the memory hierarchy are
most closely tied to performance and compute DL and ML bounds for those hierarchy
levels.

Acknowledgments. We thank the reviewers for their feedback and suggestions to im-
prove the presentation of the paper, and we are grateful to Jill Delsigne for her assis-
tance with proof-reading the final version of this paper. This work was supported in part
by the Defense Advanced Research Projects Agency through AFRL Contract FA8650-
09-C-7915, the Center for Domain-Specific Computing (CDSC) funded by the NSF
Expedition in Computing Award CCF-0926127, the U.S. National Science Founda-
tion through awards 0811457, 0811781, 0926687 and 0926688, and by the U.S. Army
through contract W911NF-10-1-0004. The opinions and findings in this document do
not necessarily reflect the views of the United States Government, Rice University, Ohio
State University or Louisiana State University.

120 J. Shirako et al.

References

1. Barr, T.W., Cox, A.L., Rixner, S.: Translation caching: skip, don’t walk (the page table). In:
ISCA 2010, pp. 48–59. ACM, New York (2010)

2. Baskaran, M., Hartono, A., Tavarageri, S., Henretty, T., Ramanujam, J., Sadayappan, P.:
Parameterized tiling revisited. In: CGO, pp. 200–209 (2010)

3. Bhargava, R., Serebrin, B., Spadini, F., Manne, S.: Accelerating two-dimensional page walks
for virtualized systems. In: ASPLOS XIII, pp. 26–35 (2008)

4. Bilmes, J., Asanovic, K., Chin, C., Demmel, J.: Optimizing matrix multiply using PHiPAC.
In: Proc. ICS, pp. 340–347 (1997)

5. Bodin, F., Jalby, W., Windheiser, D., Eisenbeis, C.: A quantitative algorithm for data locality
optimization. In: Code Generation, pp. 119–145 (1991)

6. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical automatic poly-
hedral program optimization system. In: PLDI (2008)

7. Boulet, P., Darte, A., Risset, T., Robert, Y. (Pen)-ultimate tiling? Integration, the VLSI Jour-
nal 17(1), 33–51 (1994)

8. Chame, J., Moon, S.: A tile selection algorithm for data locality and cache interference. In:
ICS, pp. 492–499 (1999)

9. Chen, C., Chame, J., Hall, M.: Combining models and guided empirical search to optimize
for multiple levels of the memory hierarchy. In: CGO 2005 (2005)

10. Coleman, S., McKinley, K.: Tile Size Selection Using Cache Organization and Data Layout.
In: PLDI, pp. 279–290 (1995)

11. Datta, K.: Auto-tuning stencil codes for cache-based multicore platforms. Technical report,
University of California, Berkeley (December 2009)

12. Ferrante, J., Sarkar, V., Thrash, W.: On Estimating and Enhancing Cache Effectiveness. In:
Banerjee, U., Nicolau, A., Gelernter, D., Padua, D.A. (eds.) LCPC 1991. LNCS, vol. 589,
pp. 328–343. Springer, Heidelberg (1992)

13. Ghosh, S., Martonosi, M., Malik, S.: Cache miss equations: a compiler framework for ana-
lyzing and tuning memory behavior. ACM TOPLAS 21(4), 703–746 (1999)

14. Goto, K., van de Geijn, R.A.: High-performance implementation of the level-3 BLAS. ACM
Trans. Math. Softw. 35(1) (July 2008)

15. Hartono, A., Baskaran, M.M., Bastoul, C., Cohen, A., Krishnamoorthy, S., Norris, B., Ra-
manujam, J., Sadayappan, P.: Parametric multi-level tiling of imperfectly nested loops. In:
Proc. ICS (2009)

16. Hsu, C., Kremer, U.: A quantitative analysis of tile size selection algorithms. J. Supercom-
put. 27(3), 279–294 (2004)

17. Irigoin, F., Triolet, R.: Supernode partitioning. In: ACM POPL, pp. 319–329 (1988)
18. Kim, D., Renganarayanan, L., Strout, M., Rajopadhye, S.: Multi-level tiling: ’m’ for the price

of one. In: SC (2007)
19. Knijnenburg, P.M.W., Kisuki, T., O’Boyle, M.F.P.: Combined selection of tile sizes and un-

roll factors using iterative compilation. The Journal of Supercomputing 24(1), 43–67 (2003)
20. Lam, M., Rothberg, E., Wolf, M.: The cache performance and optimizations of blocked al-

gorithms. In: Proc. 4th ACM ASPLOS, pp. 63–74 (1991)
21. Luersen, M., Riche, R.L., Guyon, F.: A constrained, globalized, and bounded nelder-mead

method for engineering optimization. Structural and Multidisciplinary Optimization 27(1-2),
43–54 (2004)

22. Nelder, J.A., Mead, R.: A simplex method for function minimization. Computer Journal 7(4),
308–313 (1965)

23. Ramanujam, J., Sadayappan, P.: Tiling multidimensional iteration spaces for multicomput-
ers. JPDC 16(2), 108–230 (1992)

Analytical Bounds for Optimal Tile Size Selection 121

24. Renganarayana, L., Kim, D., Rajopadhye, S., Strout, M.: Parameterized tiled loops for free.
In: PLDI, pp. 405–414 (2007)

25. Resource Characterization in the PACE Project,
http://www.pace.rice.edu/Content.aspx?id=41

26. Rivera, G., Tseng, C.: Locality optimizations for multi-level caches. In: SC (1999)
27. Sarkar, V.: Automatic Selection of High Order Transformations in the IBM XL Fortran Com-

pilers. IBM J. Res. & Dev. 41(3) (May 1997)
28. Sarkar, V., Megiddo, N.: An analytical model for loop tiling and its solution. In: IEEE

ISPASS (2000)
29. Schreiber, R., Dongarra, J.: Automatic blocking of nested loops. Tech. Report 90.38, RIACS,

NASA Ames Research Center (1990)
30. Tabatabaee, V., Tiwari, A., Hollingsworth, J.K.: Parallel parameter tuning for applications

with performance variability. In: Proc. Supercomputing 2005 (2005)
31. Tapus, C., Chung, I.-H., Hollingsworth, J.K.: Active harmony: towards automated perfor-

mance tuning. In: SC, pp. 1–11 (2002)
32. Tiwari, A., Chen, C., Chame, J., Hall, M., Hollingsworth, J.: Scalable autotuning framework

for compiler optimization. In: IPDPS 2009 (2009)
33. Whaley, R.C., Petitet, A., Dongarra, J.J.: Automated empirical optimization of software and

the ATLAS project. Parallel Computing 27(1–2), 3–35 (2001)
34. Wolf, M., Lam, M.S.: A data locality optimizing algorithm. In: PLDI 1991, pp. 30–44 (1991)
35. Wolfe, M.: More iteration space tiling. In: Proc. Supercomputing, pp. 655–664 (1989)
36. Xue, J.: Loop tiling for parallelism. Kluwer Academic Publishers, Norwell (2000)
37. Yotov, K., Pingali, K., Stodghill, P.: Think globally, search locally. In: International Confer-

ence on Supercomputing (2005)
38. Yuki, T., Renganarayanan, L., Rajopadhye, S., Anderson, C., Eichenberger, A., O’Brien, K.:

Automatic creation of tile size selection models. In: CGO, pp. 190–199 (2010)

http://www.pace.rice.edu/Content.aspx?id=41

Static Detection of Unsafe Component Loadings

Taeho Kwon and Zhendong Su

Department of Computer Science, University of California, Davis
{kwon,su}@cs.ucdavis.edu

Abstract. Dynamic loading of software components is a commonly used mecha-
nism to achieve better flexibility and modularity in software. For an application’s
runtime safety, it is important for the application to load only its intended compo-
nents. However, programming mistakes may lead to failures to load a component,
or even worse, to load a malicious component. Recent work has shown that these
errors are both prevalent and severe, sometimes leading to remote code execu-
tion attacks. The work is based on dynamic analysis by monitoring and analyzing
runtime component loadings. Although simple and effective in detecting real er-
rors, it suffers from limited code coverage and may miss important vulnerabilities.
Thus, it is desirable to develop effective techniques to detect all possible unsafe
component loadings.

This paper presents the first static binary analysis aiming at detecting all pos-
sible loading-related errors. The key challenge is how to scalably and precisely
compute what components may be loaded at relevant program locations. Our
main insight is that this information is often determined locally from the com-
ponent loading call sites. This motivates us to design a demand-driven analysis,
working backward starting from the relevant call sites. In particular, for a given
call site c, we first compute its context-sensitive executable slices, one for each
execution context. Then we emulate the slices to obtain the set of components
possibly loaded at c. This novel combination of slicing and emulation achieves
good scalability and precision by avoiding expensive symbolic analysis. We im-
plemented our technique and evaluated its effectiveness against the existing dy-
namic technique on nine popular Windows applications. Results show that our
tool has better coverage and is precise—it is able to detect many more unsafe
loadings. It is also scalable and finishes analyzing all nine applications within
minutes.

1 Introduction

Dynamic component loading is widely used in software development to build flexi-
ble and modular software. Operating systems (OSes) typically provide relevant system
calls, such as dlopen, to load dynamic components. Once a loading system call is
invoked, the underlying OS resolves and loads the specified component. Component
resolution depends on how the component is specified—either through the intended
component’s full path or its file name. Given a full path, the OS simply uses it for reso-
lution. Given only a file name, the OS searches over a sequence of directories to locate
a file with the specified name. Which sequence of directories to search is controlled at
runtime by the particular directory search order at the time of system call invocation.

M. O‘Boyle (Ed.): CC 2012, LNCS 7210, pp. 122–143, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Static Detection of Unsafe Component Loadings 123

The flexibility of this common style of component loading does come with a price—
it introduces an inherent security concern. For runtime safety and security, an applica-
tion should only load its intended components. However, as the OS resolves a com-
ponent only through its name, programming mistakes can lead to the loading of an
unintended component with the same name.

Although this issue was known, it is not until recently that studies have shown how
prevalent and serious the issue is in practice.In particular, it is shown that unsafe loadings
on Microsoft Windows are prevalent and can lead to remote code execution attacks [21].
Remote attacks are possible for two main reasons: 1) the OS looks for a component with
a given file name and cannot distinguish malicious ones from benign ones with the same
file name; and 2) the default directory search order on Microsoft Windows contains the
current directory (i.e., “.”), where remote attackers can trick a victim user to download
files to via social engineering or by exploiting other vulnerabilities.

Here is an example attack scenario on Windows. An attacker sends a victim user
via email an archive that contains an arbitrary .asx file and a malicious file named
rapi.dll. The user extracts the archive file and runs Winamp 5.58 to open the .asx

file, the rapi.dll is loaded, which leads to a remote code execution attack [21]. Be-
sides archive files, the Carpet-Bomb attack [28] and the WebDAV protocol [2] can be
exploited for launching remote attacks. This very issue has also received considerable
recent media coverage [11,25,27,36,44]. Microsoft released MS10-087, rated “Critical,”
to patch Microsoft Office [42]. To mitigate the issue, Microsoft also released a fix-it tool
to control the directory search order by introducing a new registry key [17, 26]. How-
ever, it changes the default system-wide setting and leads to backward compatibility
issues. Fundamentally, this is a safe programming issue. Microsoft provides program-
ming guidelines for safe dynamic loading [10] and is conducting an ongoing investiga-
tion to secure the loading procedure [23].

As the root cause of the issue is unsafe programming, it is important to detect this class
of dangerous programming mistakes. Kwon and Su [21] proposed a dynamic technique
to detect unsafe component loadings. This technique collects at runtime loading-related
information—such as the target component to be loaded, the directory search order, and
the actually loaded component—at each of the invocation sites for the loading system call.
It then performs an offline analysis to detect two types of unsafe loadings: resolution fail-
ure and unsafe resolution. A resolution failure happens when the target component is not
found, while an unsafe resolution happens when other directories are searched before the
directory where the loaded component resides. Besides crashing an application, unsafe
loadings also make the application vulnerable to component hijacking.

Although the proposed dynamic technique [21] is effective at detecting real unsafe
loadings, it may miss errors because of limited code coverage, an inherent weakness of
dynamic analysis. We illustrate this issue using delayed loading, an optimization to post-
pone the loading of infrequently used components until their first use. Delayed loading
is challenging for dynamic detection because it is difficult to trigger all delayed load-
ings at runtime. Figure 1 shows a code snippet that uses delayed loading in Microsoft
Windows. The code shows two functions f1 and f2 that use components registered for
delayed loading. In particular, f1 and f2 retrieve the addresses of OpenPrinter ex-
ported by WINSPOOL.DRV and GetSaveFile exported by COMDLG32.DLL respectively.

124 T. Kwon and Z. Su

Although the example only shows two functions f1 and f2, in practice, there are often
many more. The infrequent use of the components makes it difficult, if not impossible,
to trigger all possible loadings at runtime. Although we have illustrated the problem
using delayed loading, poor coverage of dynamic analysis is a general concern for de-
tecting unsafe loadings, as our results also confirm (cf. Section 3).

In this paper, we present the first static analysis to detect unsafe loadings from pro-
gram binaries. Two pieces of essential information are needed: 1) all components that
may be loaded at each loading call site, and 2) the safety of each possible loading. While
the second part is straightforward, the key challenge lies in the first part—how to pre-
cisely and scalably compute the possible loadings. Our key observation is: for a given
invocation of the loading system call, the set of possible loaded components is deter-
mined by the system call’s parameter values, which are often determined through com-
putations that originate not far from the call site. From these observations, we design
a two-phase analysis: extraction and checking. The extraction phase is demand-driven,
working backward from each loading call site to compute the set of possible loadings;
the checking phase determines the safety of a loading by examining the relevant direc-
tory search order at the call site.

Context-Sensitive Emulation. To realize the backward computation of parameter
values during the extraction phase, we introduce context-sensitive emulation, a novel
combination of slicing and emulation. For a given call site, we extract its context-
sensitive executable slices w.r.t. its parameters, one for each execution context. We then
emulate the slices to compute the parameter values.

1 void f1() {

2 ...

3 pDelayDesc1 = &WINSPOOL_DRV_DelayDesc;

4 // WINSPOOL_DRV_DelayDesc.dllname = "WINSPOOL.DRV"

5 func_addr = __delayLoadHelper2(

6 pDelayDesc1, "OpenPrinter"

7);

8 ...

9 }

10 void f2() {

11 ...

12 pDelayDesc2 = &COMDLG32_DLL_DelayDesc;

13 // COMDLG32_DLL_DelayDesc.dllname = "COMDLG32.DRV"

14 func_addr = __delayLoadHelper2(

15 pDelayDesc2, "GetSaveFile"

16);

17 ...

18 }

19 int __delayLoadHelper2(pImgDelayDesc, funcName) {

20 hMod = pImgDelayDesc->hMod; // init value = 0

21 if (hMod == 0) {

22 target_dllname = pImgDelayDesc->dllname;

23 hMod = LoadLibrary(target_dllname);

24 pImgDelayDesc->hMod = hMod;

25 }

26 func_addr = GetProcAddress(hMod, funcName);

27 return func_addr;

28 }

Fig. 1. Motivating example

Incremental and Modular Slicing. One
technical obstacle is how to compute
backward slices scalably. Standard slic-
ing techniques [1, 5, 13, 30, 35, 38] are
based on computing a program’s com-
plete system dependence graph (SDG) a
priori and are thus limited in scalability.
Because we only need to consider load-
ing call sites and the execution paths to
compute the parameter values to the calls
are usually relatively short, only a small
fraction of the complete SDG is relevant
for our analysis. This motivates the use
of an incremental and modular slicing al-
gorithm (cf. Section 2)—incremental be-
cause we build the slices lazily when
necessary; modular because when we en-
counter a function call foo(x,y), we use
an inferred summary of what dependen-
cies foo’s parameters and return value
have in analyzing the caller. At the end, we connect the function-level slices in the
standard way by linking formal and actual parameters.

Static Detection of Unsafe Component Loadings 125

Emulation of Context-sensitive Slices. Once we have computed the backward slice s
w.r.t. a given loading call site, we need to compute possible values for the relevant pa-
rameters. One natural solution is to perform standard symbolic analysis on the slice to
compute the values. The main challenge for this approach is the difficulty in reasoning
symbolically about system calls because the relevant parameters often depend on com-
plex, low-level system calls. For example, many Windows applications invoke the system
call RegQueryValueExW to retrieve the fullpath of the target specification stored in the
registry key. The system call invokes more than 100 distinct system calls exported by five
libraries. To symbolically analyze the system call, it is necessary to symbolically execute
its invoked system calls as well, leading to path explosion. Thus, it is difficult in practice
to engineer and scale symbolic analysis to compute the possible values of the parameters.

To overcome this difficulty, we use emulation. In particular, we generate, from the
backward slice s, a set of context-sensitive executable sub-slices, which we then emulate
to compute the parameter values (cf. Section 2). Essentially, we inline callees’ function-
level slices in each execution context to produce s’s sub-slices s1, . . . , sn. Instructions
in each sub-slice si are next emulated topologically, respecting their data- and control-
flow dependencies.

For evaluation, we implemented our technique in a prototype tool for Windows ap-
plications. We evaluated our tool’s effectiveness against the previous dynamic tool [21]
in terms of precision, scalability, and coverage. Results on nine popular applications
show that our tool is precise and scalable (cf. Section 3). For example, it took less
than two minutes to analyze each of the nine test subjects, including large applications
such as Acrobat Reader, Quicktime, and Safari. The results also show that our proposed
context-sensitive emulation achieves orders of magnitude reduction in the size of the
code needed to be analyzed and crucially contributes to the scalability of our technique.
In terms of coverage, our tool detected many more possible unsafe loadings and nicely
complements the dynamic technique.

Main Contributions

– We have developed the first static binary analysis to detect unsafe component load-
ings. Because of its scalability and higher code coverage, our technique effectively
complements the existing dynamic technique.

– We have proposed context-sensitive emulation, an effective approach that combines
slicing and emulation for the precise and scalable analysis of runtime values of
program variables.

– We have implemented our technique and evaluated its effectiveness by detecting
unsafe loadings in nine popular Windows applications.

The rest of this paper is organized as follows. Section 2 presents a detailed description
of our static detection algorithm. We describe our implementation and evaluation in
Section 3. Finally, Section 4 surveys additional related work, and Section 5 concludes
with a discussion of future work.

2 Static Detection Algorithm

In this section, we present background information on unsafe component loadings and
details of our analysis.

126 T. Kwon and Z. Su

2.1 Background
Dynamic component loading is commonly supported by operating systems through spe-
cific system calls that take as input a full path or file name for the intended component.
For example, Microsoft Windows provides component-loading system calls such as
LoadLibraryA. Once such a system call is invoked, the OS resolves the target compo-
nent as follows:

– The target component can be specified by its full path or its file name.
– When the full path is used, the OS directly resolves the target using the provided

full path.
– Otherwise, if file name is used and is known by the OS, the full path of the specified

file is predefined. For example, KERNEL32.DLL is known by Microsoft Windows
and its full path is predefined as "C:\WINDOWS\SYSTEM32\KERNEL32.DLL".

– If the given file name is unknown to the OS, it iterates through the predefined search
directories to locate the first file with the specified file name.

To formalize the component resolution process, it is necessary to model the file system
state, because even the same component-loading code may result in different resolu-
tions under different file system states. We define a file system state s to be the set of
full paths of all files stored on the current file system.

Definition 21 (Component Resolution). A component resolution function R takes a
component specification f ∈ Σ∗, a directory search order d = 〈d1, . . . , dn〉 ∈ Σ∗ ×
. . . × Σ∗ and a file system state s, and returns a resolved full path π ∈ Σ∗, where Σ
denotes the alphabet used to specify files and directories.

– If f is a full path,

R(f, d, s) =

{
f if f ∈ s;
ε otherwise.

where ε is the empty string.
– If f is a file name,

R(f, d, s) =

⎧⎪⎪⎨
⎪⎪⎩

π if f is known to the OS as π;
dk + \+ f if S = {i | di + \+ f ∈ s}

∧ S �= ∅ ∧ k = min(S);
ε otherwise.

where “+” denotes string concatenation.

We next formalize component loading, for which we need to consider the currently
loaded components. The reason is that the OS does not load the same component multi-
ple times. In our formalization, we let Π denote the set of full paths of all the currently
loaded components.

Definition 22 (Component Loading). Given the loaded components Π , a component
loading function L takes a component specification f ∈ Σ∗, a directory search order
d = 〈d1, . . . , dn〉 ∈ Σ∗× . . .Σ∗, a file system state s, and the set of loaded components
Π , and returns a resolution success or failure:

L(f, d, s,Π) =

{
success if R(f, d, s) �∈ {ε} ∪Π;
failure otherwise.

Static Detection of Unsafe Component Loadings 127

The formalized component loading mechanism in Definition 22 is commonly used
on major operating systems. However, as the OS determines a target component only
through its name, unsafe programming can make software load an unintended compo-
nent with the same name. Attackers can exploit this security vulnerability by modifying
the file system state. In particular, the loading of a target component can be hijacked
if a malicious file with the same name can be created in a directory searched before
the directory where the intended component resides. This component hijacking can be
misused for local or remote attacks [21].

To formalize unsafe component loading, it is necessary to determine the current file
system state as whether or not a component loading is safe is relative to a file system
state. We first define a normal file system state w.r.t. an application p.

Definition 23 (Normal File System State). A file system state s is normal w.r.t. an
application p if no unintended components are loaded while p executes in state s. We
use sp to denote a normal file system state w.r.t. the application p.

We formalize two types of unsafe loadings: resolution failure and unsafe resolution. We
use Rp and Lp to denote component resolution and component loading performed by
an application p, respectively.

Definition 24 (Resolution Failure). For an application p, a resolution failure occurs
at runtime if Rp(f, d, sp) = ε. In this case, with a full path specification f , an arbitrary
file with the same full path f can hijack the component loading. If f is file name, an
attacker can hijack this loading by placing a file (or tricking the user to place a file)
with the specified name f in any directory di writable by the attacker under the search
order d = 〈d1, . . . , dn〉.

Definition 25 (Unsafe Resolution). For an application p, an unsafe resolution occurs
at runtime if the following conditions hold: 1) f is the file name of the target component
and unknown to the OS; 2) Rp(f, d, sp) = dk+\+f∧ k > 1; and 3) Lp(f, d, ss, Π) =
success. In this case, an attacker can hijack the loading by placing a file (or tricking
the user to place a file) with the specified name f in any writable directory di by the
attacker where i < k.

To avoid unsafe loadings, it is necessary for developers to specify the target component
in a safe manner. We define safe target component specifications as follows.

Definition 26 (Safe Component Spec). Under a given threat model, a loading spec-
ification for an application p is safe if either of the following holds: 1) if f is a full
path, R(f, d, sp) �= ε and the attacker cannot overwite f or trick the user to overwrite
f ; and 2) if f is an unknown file name to the OS, R(f, d, sp) = di + \ + f and the
attacker cannot place a file or trick the user to place a file named f in any of the dj for
1 ≤ j ≤ i.

If a loading specification is unsafe, it leads to resolution failure or unsafe resolution.
While the first condition checks the resolution failure for the fullpath specification, the
second condition checks whether the filename specification leads to resolution failure or
unsafe resolution. As many Windows users have the administrator privilege, a realistic

128 T. Kwon and Z. Su

threat model under Windows is that an attacker may be able to trick a (non-malicious)
user to place a malicious component in a desired directory to hijack component loading.
We have adopted this threat model in our evaluation.

2.2 Detailed Analysis

Fig. 2. Component-interoperating code

We now present the details of
our analysis. Our technique stat-
ically detects unsafe component
loadings to achieve high cover-
age. It first extracts the target
component specifications from
possible code region executed at
runtime and checks their safety
based on Definition 26.

The executed code region is determined by loaded components. Figure 2 depicts the
component loading code whose execution path is controlled by a random variable x. If x
is zero, foo1 of component A and foo2 of component C are executed. Otherwise, bar1
of component B and bar2 of component D are executed. Our observation is that each
execution path covers the partial code region of the loaded components. For example, if
x is zero, the partial code regions of components Program, A, and C are executed. From
these observations, we design our static detection as shown in Figure 3: extraction and
checking. From the extraction phase, we obtain a set of the target component specifi-
cations from the components that can be loaded at runtime. In the checking phase, we
evaluate the safety of each target specification based on Definition 26.

Fig. 3. Detection framework

Extraction Phase. A component can
load other components at loadtime or
runtime. This loading introduces load-
time and runtime dependencies among
components [41]. Based on these de-
pendencies, we determine components
that can be loaded during program ex-
ecution. Specifically, we recursively re-
solve the components from the program
file based on their loadtime and runtime
dependencies. To resolve the dependent
components, the corresponding target
specifications, i.e., full path or file name, are needed. For loadtime dependencies, com-
pilers specify the dependent components in the executable format. For example, the
names of the loadtime dependent components are stored in IMAGE IMPORT DIRECTORY

with the PE format [24]. To obtain the specifications of the runtime dependent compo-
nents, we compute values of parameters to component-loading system calls. This suf-
fices for our setting because the program dynamically loads components via the system
calls and their parameters determine the loaded components.

As an example of recursive resolution, we search the components that can be loaded
by Program in Figure 2. Suppose that components E and F, which have no loadtime

Static Detection of Unsafe Component Loadings 129

1 PUSH EAX

2 PUSH EAX

3 PUSH offset 0x7D61AC5C; "xpsp2res.dll"

4 CALL DWORD PTR DS:[LoadLibraryExA]

(a) Memory indirect

1 MOV EBX, DWORD PTR DS:[LoadLibraryW]

2 PUSH offset 0x65015728; "CABINET.DLL"

3 CALL EBX

(b) Register indirect

Fig. 4. Two types of component-loading call sites

or runtime dependent components, implement the rand and LoadLibrary functions,
respectively. In this case, Program loads components E and F on its startup. Regarding
runtime dependencies, Program dynamically loads components with the specifications,
"A" on line 4 and "B" on line 8. From this information, we can detect the potentially-
loaded components by simulating component resolution. Similarly, we can infer that
C, D and F, which are loaded by A and B. Because C and D have no loadtime and run-
time dependent components, we stop the resolution process. Thus, we detect the seven
components potentially loaded at runtime: Program, A, B, C, D, E, and F.

The key step of the extraction phase is to obtain the target specification for com-
ponent loading in a binary. The specification of a loadtime dependent component can
be easily obtained from the binary file format. However, extracting the specification
of a runtime dependent component is nontrivial because it often requires to locate the
code relevant to the value of the specification and analyze its execution. For example,
the target component specification for system libraries under Microsoft Windows is
sometimes determined by concatenating the system directory path and the file name.
To obtain the specification, it is necessary to extract the related code and analyze its
execution result.

The concrete value of the parameter to the component-loading system call serves
as the specification for the runtime dependent component. From this observation, we
extract the specification by searching for the program variable for the specification
and then computing its value via context-sensitive emulation, a novel combination of
backward slicing and emulation. We describe details of the extraction in the following
sections.

Searching Program Variable for Specification. In binary code, invoking the
component-loading system calls follow the stdcall calling convention [45]. When pa-
rameters are passed to the call site, they are pushed from right to left. For example, Fig-
ure 4(a) represents the binary code corresponding to LoadLibraryExA(0x7D61AC5C,

EAX, EAX). Based on the parameter passing mechanism, we locate the program vari-
able, e.g., a register or a memory chunk, which stores the target specification. In partic-
ular, we detect the call site for component loading via static taint data analysis and then
extract the input operands of the instructions passing the parameter to the call site. We
describe details of each step in the rest of this section.

Locating Component-loading Call Sites. In this phase, we aim at finding the call
site for component loading in a binary. Our observation is that software stores the ad-
dress of the system call implementation in its memory space and utilizes it in the call
sites for component loading at runtime. Figure 4 shows the two types of component-
loading call sites in a binary, which are memory indirect and register indirect. The main
difference between them is what type of program variable stores the address of the

130 T. Kwon and Z. Su

component-loading system call at the call site. While the memory indirect type stores
the address in a memory chunk, the register indirect type stores the address in a register,
e.g., line 4 in Figure 4(a) and line 3 in Figure 4(b).

Based on this observation, we locate the component-loading call sites through static
taint data analysis. In particular, we define the taint sources and the taint sinks as fol-
lows:

– Taint source: an instruction that references a memory chunk that stores the address
of the component-loading system call.

– Taint sink: a branch instruction, e.g., call, whose target address is tainted. We
consider the taint sink instructions as the call sites.

We now present examples on how to detect call sites. In Figure 4(a), line 4 serves as
not only the taint source but also the taint sink, i.e., the component-loading call site,
because it is the branch instruction, accessing a memory chunk that stores the address
of LoadLibraryExA. For Figure 4(b), line 1 is the taint source, accessing the address
of the LoadLibraryA, and line 3 is the taint sink, because it is the call instruction
whose target is the address, stored in EBX.

Extracting Parameter Variables. Once a call site is located, we extract the program
variables for the target specification from the predefined number of the instructions
to pass the parameters to the call site. In particular, we detect the instructions, e.g.,
PUSH, to initialize the top of stack backward from the call site. Because the number of
parameters of a component-loading system call is known, we can precisely extract all
the variables to define this target specification. For example, the call site in Figure 4(a)
invokes LoadLibraryExA, and it has three parameters, i.e., 0x7D61AC5C,EAX, and EAX,
via the instructions on lines 1–3.

Context-Sensitive Emulation. In this phase, we compute the concrete values of the
parameter variables extracted in Section 2.2. The computation may seem trivial at first.
For example, the memory chunk at 0x7D61AC5C in Figure 4(a) contains the target spec-
ification, "xpsp2res.dll". However, the computation is in fact challenging because it
is necessary to extract the code to compute the variable, requiring interprocedural data
flow analyses (cf. Figure 1). Also, we need the runtime information of the code to obtain
the concrete values of the variable. Symbolic analysis can serve as a potential solution.
However, as we mentioned in Section 1, symbolic analysis suffers from poor scalability
and is limited in handling system calls, which are often complex.

To address this problem, we introduce context-sensitive emulation, which novely
combines backward slicing and emulation. Based on this combination, we can scalably
and precisely compute the values of the variables of interest. We describe its details in
the rest of this section.

Backward Slicing. This phase performs the interprocedural backward slicing w.r.t. the
parameter variable, extracting the instructions to compute the variable. This problem
has been extensively studied, and many slicing algorithms [1,5,13,30,35,38] have been
proposed. These algorithms commonly solve the graph reachability problem over a Sys-
tem Dependence Graph (SDG) [13], a set of Program Dependence Graphs (PDGs) [12]

Static Detection of Unsafe Component Loadings 131

and edges capturing data flow dependencies among them. In particular, a SDG is con-
structed beforehand based on an exhaustive data flow analysis over the subject program.
Then, the slicing outcome is determined by traversing the SDG from the given slicing
criteria. Although the approach has been widely used, it is not appropriate for our prob-
lem setting. The reason is that binary files are generally composed of a large number
of instructions, and an exhaustive data flow analysis over all the instructions is very
expensive, leading to limited scalability.

(a) Intra-backward

(b) Inter-backward
Fig. 5. Unnecessary data flow analysis

Our key observation is that the parameter
values are often locally determined, that is the
execution paths to compute the variables are rel-
atively short. Thus, exhaustive data flow analy-
sis is not be necessary to extract backward slices
w.r.t. the given slicing criteria. Figure 5 shows ex-
amples of the unnecessary data flow analysis dur-
ing intraprocedural and interprocedural backward
slicing.

Figure 5(a) shows an example of the CFG for
constructing the PDG. Suppose that we perform
intraprocedural backward slicing w.r.t. the instruc-
tion D. In this case, the bold instructions often only
affect the instruction D in terms of control flow. It
is possible that the instruction D can be affected
by the instructions without control flow dependen-
cies. For example, the instruction E initializes a
variable and the instruction B reads it. However,
this case rarely happens in our problem setting in
practice, because the parameters for the specification are generally computed by the
instructions executed before the component-loading call sites.

Suppose that Figure 5(b) depicts the SDG for the interprocedural backward slicing.
If the instructions of the bold PDGs for bar1 and bar2 are only traversed during slicing,
it is not necessary to perform data flow analysis on the instructions of the grayed PDGs.
Because the SDG consists of a large number of PDGs in binary and the target specifica-
tions are often locally determined, most of the PDGs are not relevant for interprocedural
backward slicing w.r.t. the parameter variables for the target specifications.

Based on this insight, we design our slicing technique as demand-driven, reducing
the unnecessary analysis of data flow dependencies. In particular, we perform interpro-
cedural backward slicing by incrementally combining intraprocedural backward slices
whose slicing criteria are determined when necessary.

Intraprocedural backward Slicing. For each intraprocedural backward slicing, we an-
alyze only the data flow dependencies among the instructions that are control dependent
on the given slicing criteria. To this end, we construct the PDG based on the predeces-
sor subgraph w.r.t. the slicing criterion under the CFG. Thus, we can avoid the analysis
of the data flow dependency among the instructions not traversed during slicing. Sup-
pose that we perform intraprocedural backward slicing w.r.t. the instruction D in the
CFG shown in Figure 5(a). If we construct the PDG based on the CFG, the data flow

132 T. Kwon and Z. Su

dependencies among all the instructions in the CFG are analyzed. However, the grayed
instructions do not affect the instruction D in terms of control flow dependencies. By
constructing the PDG based on the subgraph composed of the bold instructions, i.e., the
predecessor subgraph w.r.t. the instruction D, we can avoid some unnecessary data flow
analysis when performing slicing.

One challenge for PDG construction is caused by the call site instructions. Because
functions are not generally monolithic, it is necessary to identify which call sites affect
the slicing criteria. Although traversing the SDG provides such information, it requires
the computation of significant amount of unnecessary data-flow dependencies (cf. Fig-
ure 5(b)). To address this problem, we utilize the prototypes of the functions invoked
at the call sites. Specifically, we consider a call site instruction as a non-branching in-
struction during our PDG construction, and analyze the data flow dependencies related
to the call site in terms of the prototype of the callee function. For example, a call site
invokes a function foo whose prototype is int foo(in,inout). In this case, the call
to foo is considered to be an instruction that uses the first and second parameters and
defines the second parameter and the return variable. Based on this information, we can
effectively determine the data flow dependencies between the call site instructions and
the slicing criteria without a whole SDG traversal.

Interprocedural backward Slicing. As aforementioned, an exhaustive SDG construc-
tion often leads to significant amount of data flow analysis that is unnecessary for inter-
procedural backward slicing. To address this problem, we construct the interprocedural
backward slices incrementally combining the intraprocedural backward slices whose
slicing criteria are chosen in a demand-driven manner.

There are two key challenges for this demand-driven combination. First, it is nec-
essary to determine the new slicing criteria if the interprocedural backward slice con-
sists of multiple intraprocedural backward slices. For example, we construct the inter-
procedural backward slice in Figure 5(b) by combining the two intra-backward slices
extracted from functions bar1 and bar2. In this case, we need to determine the new
slicing criteria in the bar1 function. Second, the composed interprocedural backward
slice needs to be easily handled for the later emulation phase.

Fig. 6. Example context-sensitive backward slices

Our basic idea for building the new
slicing criteria is that the interprocedu-
ral data flow dependencies are captured
by parameter passing. In SDG-based
slicing, the PDGs are connected using
the edges that model parameter pass-
ing, which are traversed to analyze the
dependencies. Based on this idea, we
choose the slicing criteria as follows.
Suppose that an intraprocedural back-
ward slice s is extracted from an in-
struction whose input operand is initial-
ized through parameter p of the func-
tion f . In this case, we determine the
new slicing criterion as the parameter

Static Detection of Unsafe Component Loadings 133

variable corresponding to the parameter p. To locate this parameter variable, we use
caller-callee relationship and the callee’s function prototype. In particular, we de-
tect the call site for function f and analyze f ’s function prototype to obtain the
index of the parameter corresponding to p. For example, the intraprocedural back-
ward slice w.r.t. the target dllname in Figure 1 uses the first parameter, i.e.,
pImgDelayDesc, of delayLoadHelper2. As two call sites on lines 5–7 and lines
14–16 invoke delayLoadHelper2, we choose their first parameter variables, i.e.,
pDelayDesc1 on line 6 and pDelayDesc2 on line 15, as the new slicing criterion.

Once the new slicing criterion is determined, we construct the interprocedural back-
ward slice by composing the intraprocedural backward slices and use the composed
slice in the emulation phase. One simple method for composing the intraprocedural
slices is to collect the instructions of each intraprocedural backward slice. For example,
the interprocedural backward slice w.r.t. the target dllname in Figure 1 consists of
the instructions of three intraprocedural backward slices w.r.t. the slicing criteria, i.e.,
target dllname, pDelayDesc1, and pDelayDesc2. However, this simple method
produces context-insensitive slices, making the emulation phase complex. In particu-
lar, when emulating each instruction of the context-insensitive slice, we have to assume
that the values of its operands are determined under all of its calling contexts.

(a) Parameter access

(b) Stack layout

Fig. 7. Function prototype analysis

To better support emulation, we combine
the intraprocedural backward slices to con-
struct a set of context-sensitive interproce-
dural backward slices. In particular, for a
given intraprocedural backward slice s, if
multiple new slicing criteria, p1 . . . pn, are
determined, the set of the context-sensitive
slices are constructed as {si ∪ s|si = ∪pi

intraprocedural backward slice w.r.t. pi where
1 ≤ i ≤ n}. Thus, we can more straightfor-
wardly use the context-sensitive slices to compute
possible concrete values of the target component
specification. For example, Figure 6 shows the
context-sensitive interprocedural backward slices
w.r.t. target dllname in Figure 6, We can com-
pute the possible values of target dllname by
emulating them. We describe more details of our
backward slicing phase in an earlier version of this
paper [22].

Function Prototype Analysis. The backward slic-
ing phase relies on function prototypes, but such
information is often unavailable in binary code.
Our solution to this problem is as follows. For a given function f , its parameters are
stored in fixed locations during f ’s execution. Thus, we infer its prototype by analyzing
how the instructions of the function access the memory chunks for the parameters, i.e.,
read or write.

134 T. Kwon and Z. Su

Figure 7 shows an example of our proposed prototype analysis for the foo function.
Suppose that Figures 7(a) and 7(b) show part of foo and the stack layout at the be-
ginning of the function’s execution, respectively. In this case, the idx-th parameter is
stored at the address ebp+4×(idx+1) where the stack is aligned by four bytes. From
this observation, we can infer foo’s prototype. It reads data from the memory chunks
for its second and third parameters, and initializes the memory chunks for its first and
fourth parameters, i.e., its function prototype is "eax foo(inout,in,in,inout)".
Here we assume that its result is returned through the eax register.

To improve the precision of our prototype inference, we use the following effective
heuristic. If the effective address of the memory chunk, obtained by the lea instruction,
is passed to the function, we consider it as the inout parameter. The effective address
corresponds to a pointer variable and the memory chunk that it points to is often ini-
tialized during function execution. Although this heuristics may increase the size of
the computed slice, it is sufficient to compute possible values of the slicing criteria via
emulation.

Emulation Phase. In this phase, we compute the possible values of the target com-
ponent specification by emulating its corresponding context-sensitive slices. There are
three challenges for slice emulation. The first challenge is how to schedule the instruc-
tions because we do not know their runtime execution sequence. If the instructions are
incorrectly scheduled, they may violate the data and control flow dependencies among
them, which may lead to imprecise results or emulation failures. The second challenge
is how to pass function parameters. Although parameter passing captures useful data
flow dependencies, the context-sensitive slices do not explicitly specify the dependen-
cies. The third challenge is how to handle the call site instructions. Because we perform
the data flow analysis by considering a call site as an instruction, the backward slice
does not contain detailed code of the callee function.

Fig. 8. Data-flow dependency among basic blocks

Scheduling Algorithm. To develop
a practical scheduling algorithm, we
have analyzed all 682 backward
slices extracted from nine popular
Windows applications (cf., Table 1).
We have observed that all the ex-
tracted slices form directed acyclic
graphs. Therefore, we schedule the
basic blocks in their topological or-
der w.r.t. dataflow dependency. We
then determine the order of the in-
structions of each basic block w.r.t.
their sequence in the original code.
For example, Figure 8 shows the data
flow dependency among the basic
blocks of the first slice in Figure 6. In this case, we schedule the basic blocks as B1,
B2, and B3. For each basic block, the sequence of its instructions is determined as

Static Detection of Unsafe Component Loadings 135

follows: i1, i4,i2,i3,i5,i6, and i7. The scheduled sequence of the instructions
does not violate the data- and control-flow dependency among them.

Parameter Passing. To handle parameter passing, we initialize the stack frame before
emulating the callee function. In particular, suppose that a parameter p is passed to a
function f . In this case, before emulating f ’s basic blocks, we reserve the stack frame
and initialize its memory chunk for the parameter with the concrete value of p. The
location of the memory chunk is determined by the index of the passed parameter. For
example, the address of the memory chunk for the idx-th parameter can be computed
by ebp+ 4× (idx+ 1), (cf. Figure 7).

For example, Figure 8 shows how we handle the parameter passing from f1

to delayLoadHelper2. When B1 is emulated, top of the call stack for f1

stores offset WINSPOOL DRV DelayDesc. Assuming that the initial value of esp

for emulating B2 is equal to 0x13f258, the stored value initializes a memory
chunk at arg 0=0x13f258+4×2, because it corresponds to the first parameter to
delayLoadHelper2. The instructions use arg 0 to reference the first parameter

(e.g., i2).

Call Site Instruction. To obtain the possible values of the target component specifica-
tion, it is necessary to emulate the call site instruction. If the code of the invoked func-
tion resides in the current file, we can simply emulate the corresponding code. However,
if the call site invokes a system call, we may not be able to obtain the code from the
current file. Figure 9 shows an example slice with external library calls where each
edge represents data flow dependency between two instructions. The slice determines
the fullpath of the target component by concatenating the path to the system directory
with a string \kernel32.dll. In this case, the instructions invoked by i5 and i10 are
not available in the current file. In particular, GetSystemDirectoryW and wcscat s

are implemented in KERNEL32.DLL and MSVCRT.DLL, respectively.

Fig. 9. Backward slice with external library calls

One natural solution is to perform
instruction-level emulation over the sys-
tem call implementations obtained from
the corresponding libraries. However,
this is not practical because system call
implementations typically have a large
number of instructions and lead to poor
scalability.

Thus, we do not emulate the system
call code at the instruction-level. Instead,
we use code to model the side effects
of system calls and execute the mod-
els. For example, Figure 10(a) and Fig-
ure 10(b) show the stack layout before
and after processing i5 shown in Fig-
ure 9. The example models the side effect
of GetSystemDirectoryW: 1) retrieve
the two parameters from the stack; 2)

136 T. Kwon and Z. Su

obtain the system directory path by invoking GetSystemDirectoryW; 3) write the di-
rectory path to the memory chunk pointed to by the first parameter; 4) copy the system
call’s return value to eax register and adjust the esp register to clean up the stack frame.

(a) Before

(b) After

Fig. 10. Side effects of i5 in Figure 9

Based on the technique discussed above, we
can emulate the context-sensitive slices to com-
pute the possible values of the target component
specification. For example, we can compute the
value, "C:\Windows\System32\KERNEL32.DLL",
of lpLibFileName by emulating the backward
slice in Figure 9.
Checking Phase. In this phase, we evaluate the
safety of the target component specifications ob-
tained from the extraction phase. To this end, for
each specification, we check whether or not the
safety conditions in Definition 26 are satisfied. In particular, when the fullpath is speci-
fied, we check whether or not the specified file exists in the normal file system. For the
filename specification, we consider that a specification can lead to unsafe loading if the
target component is unknown and the OS cannot resolve it in the directory that is first
searched on the normal file system. Note that the names of the known component and
the first directory searched by the OS for the resolution are predefined [8, 9, 21].

As an example of this phase, we check the component loading discussed in the at-
tack scenario in Section 1. When opening the .asx file, Winamp 5.58 tries to load
rapi.dll. In this case, OS iterates through a list of predefined directories [9] to locate
the file named rapi.dll. However, no such file is found during the iteration. Thus,
this loading is unsafe, because attackers can hijack this loading by placing malicious
rapi.dll files in the checked directories. In particular, the current working directory,
one of the directories, is determined as the same directory as the .asx file, leading to
the remote code execution attack. Suppose that the file named rapi.dll exists in the
directory first searched, i.e., the Winamp program directory. In this case, this loading is
safe, because there is no directory such that attackers can misuse for hijacking.

3 Empirical Evaluation

In this section, we evaluate our static technique in terms of precision, scalability, and
code coverage. We show that our technique scales to large real-world applications and
is precise. It also has good coverage, substantially better than the existing dynamic
approach [21].

3.1 Implementation

We implemented our technique on Windows XP SP3 as a plugin to IDA Pro [15], a
state-of-the-art commercial binary disassembler. Our IDA Pro plugin is implemented
using IDAPython [16] and three libraries: 1) NetworkX [29] for graph analysis, 2)
PyEmu [32] for emulation, and 3) pefile [31] for PE format analysis.

For the precise analysis of binaries, it is important to map between C-like variables
and memory regions accessed by instructions. We adapt the concept of an abstract

Static Detection of Unsafe Component Loadings 137

location (a-loc) [3], which models a concrete memory address in terms of the base
address for a memory region and a relative offset. For example, the a-loc for &a[4] is
mem 4 where mem is the base address of the array a and 4 is the relative offset from the
base address. Refer to Balakrishnan and Reps [3] for more details.

Backward slicing in our technique requires function prototypes of system calls. To
this end, we analyzed the files in the system directory and collected prototypes for 3,291
system calls.

To emulate the code modeling side effects of system calls, we need to determine what
system call is invoked through a given call site instruction. We have extended PyEmu’s
set library handler function so that it can register callback functions for external
function calls. We implemented the callbacks for 68 system calls used by the extracted
slices.

To implement our tool, it is necessary to extract CFGs and call graphs from binaries.
We leverage the disassemble result of IDA Pro in our current implementation. It is well-
known that indirect jumps can be difficult to resolve for binaries. Although IDA Pro
does resolve certain indirect jumps, it may miss control-flow and call dependencies,
which is one source of incompleteness in our implementation.

3.2 Evaluation Setup and Results

We aim at detecting unsafe component loadings in applications. Because the detection
of unsafe loadings from the system libraries is performed by the operating system, we
only resolve the application components in the extraction phase.

The checking phase for a target specification requires the information on the first
directory searched by the OS for the resolution and the relevant normal file system
state (cf., Definition 26 and Section 2.2). We obtain this information by analyzing the
extracted parameters and the applications. For example, suppose that an application p
loads an unknown component by invoking LoadLibrary with the component’s file-
name. In this case, we can infer the directory where p is installed because Microsoft
Windows first checks the directory where p is loaded. Regarding the normal file sys-
tem state, we installed the applications with the default OS configuration and detected
unsafe loadings for each application. In this setting, we assume that 1) the default file
system state is normal, and 2) the application itself is benign in that does not cause
installed applications to have unintended component loadings.

Detection Results and Scalability. Table 1 shows our analysis results on nine pop-
ular Windows applications. We chose these applications as our test subjects because
they are important applications in wide-spread use. The results show that our technique
can effectively detect, from program binaries, unsafe component loadings potentially
loaded at runtime. Note that the results of the extraction phase for Seamonkey and
Thunderbird are identical. This is likely because both applications are part of the
Mozilla project and use the same set of program components.

We rely on IDA Pro for disassembling binaries, and Table 1 includes the time that
it took IDA Pro to disassemble the nine applications. This time dominates our analysis
time as we show later. These are large applications, and also we only need to disassem-
ble the code once for all the subsequent analysis.

138 T. Kwon and Z. Su

Table 1. Analysis of the static detection

Resolved files Context-sensitive Emulation Unsafe loadings / Specifications

Size (MB) Disasm. time Call sites Slices
Slice inst. (#)

Failures Loadtime Runtime
mean max

Acrobat Reader 9.3.2 18 38.2 34m 12s 85 145 5.1 40 34 12 / 109 40 / 111
Firefox 3.0 13 12.5 10m 48s 21 25 2.7 26 3 9 / 77 12 / 22
iTunes 9.0.3 2 25.1 11m 32s 53 128 13.7 187 74 18 / 36 31 / 54
Opera 10.50 3 11.6 12m 46s 28 30 3.0 29 2 8 / 28 11 / 28
Quicktime 7.6.5 17 40.5 9m 15s 70 119 13.5 54 58 19 / 109 19 / 61
Safari 5.31 24 37.5 11m 03s 72 137 5.8 48 33 16 / 158 67 / 104
Seamonkey 2.0.4 15 14.5 20m 44s 34 40 1.7 24 2 9 / 88 20 / 38
Thunderbird 3.0.4 15 15.0 19m 38s 34 40 1.7 24 2 9 / 88 20 / 38
Foxit Reader 3.0 2 10.2 5m 20s 18 18 2.1 13 5 10 / 24 6 / 13

Table 2. Analysis of scalability

Software

Detection time Relative cost of slice construction

Open (s) Call site (s) Slicing (s) Emulation (s) Total (s)
of analyzed functions # of inst. of analyzed functions

Demand-driven Static Demand-driven Static
mean max total total mean max total total

Acrobat Reader 9.3.2 95.68 0.03 3.11 6.17 104.93 1.4 3 205 264,551 48.4 220 7,019 9,907,069
Firefox 3.0 41.69 0.03 0.19 0.22 42.13 1.0 1 25 63,550 34.4 158 859 3,071,548
iTunes 9.0.3 15.47 0.03 23.53 16.80 55.83 2.2 5 280 42,689 222.3 7,017 28,460 3,612,724
Opera 10.50 15.35 0.03 0.20 0.57 16.15 1.0 1 30 54,387 28.1 140 843 2,789,126
Quicktime 7.6.5 46.70 0.02 4.65 25.64 77.01 1.9 7 221 63,995 84.4 1,542 10,038 4,885,911
Safari 5.31 48.34 0.02 1.96 3.70 54.02 1.5 7 201 80,899 49.5 500 6,788 5,058,285
Seamonkey 2.0.4 37.51 0.02 0.19 0.52 38.24 1.0 1 40 79,636 30.9 125 1,236 3,840,465
Thunderbird 3.0.4 37.22 0.02 0.22 0.53 37.99 1.0 1 40 78,520 30.9 125 1,236 3,782,799
Foxit Reader 3.0 12.08 0.01 0.17 0.28 12.54 1.2 3 22 56,439 22.8 72 411 2,032,545

According to our analysis of context-sensitive emulation, the number of slices is gen-
erally larger than that of the call sites. This indicates that parameters for loading library
calls can have multiple values, confirming the need for context-sensitive slices. The av-
erage number of instructions for the slices is quite small, which empirically validates
our analysis design decisions.

We now discuss the evaluation of our tool’s scalability. To this end, we measure its
detection time and the efficiency of its backward slicing phase. Table 2 shows the de-
tailed results of detection time and relative cost of slice construction. The results show
that our analysis is practical and can analyze all nine large applications within minutes.
To further understand its efficiency, we compared cost of our backward slicing with one
of standard SDG-based slicing. Although we do expect to explore fewer instructions
with a demand-driven approach, we include the comparison in Table 2 to provide con-
crete, quantitative data. For a standard SDG-based approach, one has to construct the
complete SDG before performing slicing. We thus measured how many functions and
instructions there are in each application as these numbers indicate the cost of this a
priori construction (cf. the two columns labeled “Static total”). As the table shows, we
achieve orders of magnitude reduction in terms of both the number of functions and the
number of instructions analyzed.

Comparison with Dynamic Detection. To evaluate our tool’s code coverage, we com-
pare unsafe loadings detected by the static and dynamic analyses. In particular, we
detected unsafe component loadings with the existing dynamic technique [21] and com-
pared its results with our static detection. To collect the runtime traces, we executed

Static Detection of Unsafe Component Loadings 139

Table 3. Static detection versus dynamic detection [21]

Software
Component loadings Unsafe loadings Static reachability

Dynamic Static ∩ Dynamic Static ∩ Reachable Unknown

Acrobat Reader 9.3.2 14 111 11 2 40 1 32 7
Firefox 3.0 16 22 11 6 12 4 1 7
iTunes 9.0.3 5 54 2 3 31 1 29 1
Opera 10.50 20 28 13 9 11 4 7 0
Quicktime 7.6.5 6 61 4 2 19 1 9 9
Safari 5.31 27 104 24 17 67 15 52 0
Seamonkey 2.0.4 24 38 12 9 20 6 0 14
Thunderbird 3.0.4 25 38 11 6 20 5 0 15
Foxit Reader 3.0 6 13 1 0 6 0 6 0

our test subjects one by one with relevant inputs (e.g., PDF files for Acrobat Reader)
and collected a single trace per application. Please note that the dynamically detected
unsafe loadings are only a subset of all real unsafe loadings.

In this evaluation, we focus on application-level runtime unsafe loadings as loadtime
dependent components are loaded by OS-level code. Table 3 shows the detailed results.
We see that our static analysis can detect not only most of the dynamically-detected
unsafe loadings but also many additional (potential) unsafe loadings, most of which we
believe are real and should be fixed. Next we closely examine the results.

Static-only Cases. Our static analysis detects many additional potential unsafe loadings.
We carefully studied these additional unsafe loadings manually. In particular, we ana-
lyzed whether they are reachable from the entry points of the programs, i.e., whether
there exist paths from the entry points to the call sites of the unsafe loadings in the pro-
grams’ interprocedural CFGss (ICFGs). In this analysis, we consider the main function
of an application and the UI callback functions as the entry points of the application’s
ICFG. Table 3 shows our results on this reachability analysis. Note that those loadings
marked as “Unknown” may still be reachable as it is difficult to resolve indirect jumps
in binary code, so certain control flow edges may be missing from the ICFGs. All the
statically reachable unsafe loadings lead to component-load hijacking if 1) the corre-
sponding call sites are invoked and 2) the target components have not been loaded yet.

Although it is difficult to trigger the detected call sites dynamically (due to the size
and complexity of the test subjects), we believe most of the call sites are dynamically
reachable as dead-code is uncommon in production software. As a concrete example
of unsafe loading, Foxit Reader 3.0 has a call site for loading MAPI32.DLL, which is
invoked when the current PDF file is attached to an email message. This loading can
be hijacked by placing a file with the same name MAPI32.DLL into the directory where
Foxit Reader 3.0 is installed.

Dynamic-only Cases. According to Table 3, our technique misses a few of the dynami-
cally detected unsafe loadings. We manually examined all these cases, and there are two
reasons for this: system hook dependency and failed emulation, which we elaborate next.

First, Microsoft Windows provides a mechanism to hook particular events (e.g.,
mouse events). If hooking is used, a component can be loaded into the process to handle
the hooked event. This component injection introduces a system hook dependency [41].
Such a loading may be unsafe, but since it is performed by the OS at runtime and is not
an application error, we do not detect it.

140 T. Kwon and Z. Su

Second, our extraction phase may miss some target component specifications due to
failed emulations. If this happens, we may miss some unsafe loadings even if their corre-
sponding call sites are found. Emulation failures can be caused by the following reasons.

External Parameters. A target specification may be defined by a parameter of an ex-
ported function that is not invoked. For example, suppose that a function foo exported
by a component A loads a DLL specified by foo’s parameter. If foo is not invoked by
A, the parameter’s concrete value will be unknown. One may mitigate this issue by ana-
lyzing the data flow dependencies among the dependent components. However, such an
analysis does not guarantee to obtain all the target specifications, because the exported
functions are often not invoked by the dependent components.

Uninitialized Memory Variables. The slices may have instructions referencing memory
variables initialized at runtime. In this case, our slice emulation may be imprecise or fail.
To address this problem, it is necessary to extract the sequence of instructions from the de-
pendent components that initialize these memory variables and emulate the instructions
before slice emulation. Although it is possible to analyze memory values, such as the
Value Set Analysis (VSA) [34], it is difficult to scale such analysis to large applications.

Imprecise Inferred Function Prototypes. Our technique infers function prototypes by
analyzing parameters passed via the stack. However, function parameters may be passed
via other means such as registers. For example, the fastcall convention uses ECX
and EDX to pass the first two parameters. Therefore, when function parameters are
passed through unsupported calling conventions, the inferred function prototypes may
omit parameters that determine the new slicing criteria. For example, suppose that we
extract a context-sensitive sub-slice s from a function foo, and ECX is used as a param-
eter variable of s. In this case, we do not continue the backward slicing phase, because
the inferred prototype does not contain ECX. Although imprecisely inferred function
prototypes may lead to emulation failure, our results show that this rarely happens in
practice—we observed only 14 cases out of a total of 213.

Unknown Semantics of System Calls. Detailed semantics of system calls is often undoc-
umented, and sometimes even their names are not revealed. When we encounter such
system calls, we cannot analyze nor emulate them. When information of such system
calls becomes available, we can easily add analysis support for them.

Disassemble Errors. Our implementation relies on IDA Pro to disassemble binaries, and
sometimes the disassemble results are incorrect. For example, IDA Pro sometimes is
not able to disassemble instructions passing parameters to call sites for delayed loading.
Such errors can lead to imprecise slices and emulation failures.

4 Related Work

We survey additional related work besides the one on dynamic detection of unsafe load-
ings [21], which we have already discussed.

Our technique performs static analysis of binaries. Compared to the analysis of
source code, much less work exists [1, 3, 4, 6, 7, 19, 20, 34, 39]. In this setting, Value
Set Analysis (VSA) [3, 34] is perhaps the most closely related to ours. It combines nu-
meric and pointer analyses to compute an over-approximation of numerical values of
program variables. Compared to VSA, our technique focuses on the computation of

Static Detection of Unsafe Component Loadings 141

string variables. It is also demand-driven and uses context-sensitive emulation to scale
to real-world large applications.

Starting with Weiser’s seminal work [43], program slicing has been extensively stud-
ied [40, 46]. Our work is related to the large body of work on static slicing, in par-
ticular the SDG-based interprocedural techniques. Standard SDG-based static slicing
techniques [1, 5, 13, 30, 35, 38] build the complete SDGs beforehand. In contrast, we
build control- and data-flow dependence information in a demand-driven manner, start-
ing from the given slicing criteria. Our slicing technique is also modular because we
model each call site using its callee’s inferred summary that abstracts away the internal
dependencies of the callee. In particular, we treat a call as a non-branching instruction
and approximate its dependencies with the callee’s summary information. This opti-
mization allows us to abstract away detailed data flow dependencies of a function using
its corresponding call instruction. We make an effective trade-off between precision and
scalability. As shown by our evaluation results, function prototype information can be
efficiently computed and yield precise results for our setting.

Our slicing algorithm is demand-driven, and is thus also related to demand-driven
dataflow analyses [14,33], which have been proposed to improve analysis performance
when complete dataflow facts are not needed. These approaches are similar to ours in
that they also leverage caller-callee relationship to rule out infeasible dataflow paths.
The main difference is that we use a simple prototype analysis to construct concise
function summaries instead of directly traversing the functions’ intraprocedural depen-
dence graphs, i.e., their PDGs. Another difference is that we generate context-sensitive
executable slices for emulation to avoid the difficulties in reasoning about system calls.

As we discussed earlier, instead of emulation, symbolic analysis [18, 37] could be
used to compute concrete values of the program variables. However, symbolic tech-
niques generally suffer from poor scalability, and more importantly, it is not practical
to symbolically reason about system calls, which are often very complex. The missing
implementation for undocumented system calls is the challenge for emulation, while
for symbolic analysis, complex system call implementation is an additional challenge.
We introduce the combination of slicing and emulation to address this additional chal-
lenge. Our novel use of context-sensitive emulation provides a practical solution for
computing the values of program variables.

5 Conclusion and Future Work

We have presented a practical static binary analysis to detect unsafe loadings. The core of
our analysis is a technique to precisely and scalably extract which components are loaded
at a particular loading call site. We have introduced context-sensitive emulation, which
combines incremental and modular slice construction with the emulation of context-
sensitive slices. Our evaluation on nine popular Windows application demonstrates the
effectiveness of our technique. Because of its good scalability, precision, and coverage,
our technique serves as an effective complement to dynamic detection [21]. For future
work, we would like to consider two interesting directions. First, because unsafe loading
is a general concern and also relevant for other operating systems, we plan to extend our
technique and analyze unsafe component loadings on Unix-like systems. Second, we
plan to investigate how our technique can be improved to reduce emulation failures.

142 T. Kwon and Z. Su

Acknowledgments. We thank the anonymous reviewers for their feedback on an earlier
version of this paper. This research was supported in part by NSF CAREER Grant No.
0546844, NSF CyberTrust Grant No. 0627749, NSF CCF Grant No. 0702622, NSF
TC Grant No. 0917392, and the US Air Force under grant FA9550-07-1-0532. The
information presented here does not necessarily reflect the position or the policy of the
Government and no official endorsement should be inferred.

References

1. Kiss, Á., Jász, J., Lehotai, G., Gyimóthy, T.: Interprocedural static slicing of binary executa-
bles. In: Proc. SCAM Workshop (2003)

2. An update on the DLL-preloading remote attack vector,
http://blogs.technet.com/b/srd/archive/2010/08/31/

an-update-on-the-dll-preloading-remote-attack-vector.aspx

3. Balakrishnan, G., Reps, T.: Analyzing Memory Accesses in x86 Executables. In: Duester-
wald, E. (ed.) CC 2004. LNCS, vol. 2985, pp. 5–23. Springer, Heidelberg (2004)

4. Balakrishnan, G., Reps, T.: Analyzing Stripped Device-Driver Executables. In: Ramakr-
ishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 124–140. Springer,
Heidelberg (2008)

5. Binkley, D.: Precise executable interprocedural slices. ACM Lett. Program. Lang. Syst.
2(1-4), 31–45 (1993)

6. Cifuentes, C., Fraboulet, A.: Intraprocedural static slicing of binary executables. In: Proc.
ICSM (1997)

7. Comparetti, P.M., Salvaneschi, G., Kirda, E., Kolbitsch, C., Kruegel, C., Zanero, S.: Identi-
fying dormant functionality in malware programs. In: Proc. SSP (2010)

8. dlopen man page, http://linux.die.net/man/3/dlopen
9. Dynamic-Link Library Search Order,

http://msdn.microsoft.com/en-us/library/ms682586(VS.85.)aspx

10. Dynamic-Link Library Security,
http://msdn.microsoft.com/en-us/library/ff919712(VS.85.)aspx

11. Exploiting DLL Hijacking Flaws,
http://blog.metasploit.com/2010/08/exploiting-dll-hijacking-flaws.html .

12. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and its use in
optimization. ACM Trans. Prog. Lang. Syst. 9(3), 319–349 (1987)

13. Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs. ACM
Trans. Prog. Lang. Syst. 12(1), 26–60 (1990)

14. Horwitz, S., Reps, T., Sagiv, M.: Demand interprocedural dataflow analysis. In: Proc. FSE
(1995)

15. IDA Pro Disassmelber, http://www.hex-rays.com/idapro/
16. IDAPython, http://code.google.com/p/idapython/
17. Insecure Library Loading Could Allow Remote Code Execution,

http://www.microsoft.com/technet/security/advisory/2269637.mspx

18. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–394 (1976)
19. Kruegel, C., Robertson, W., Valeur, F., Vigna, G.: Static disassembly of obfuscated binaries.

In: Proc. USENIX Security (2004)
20. Kruegel, C., Robertson, W., Vigna, G.: Detecting Kernel-Level Rootkits Through Binary

Analysis. In: Proc. ACSAC (2004)
21. Kwon, T., Su, Z.: Automatic detection of unsafe component loadings. In: Proc. ISSTA (2010)
22. Kwon, T., Su, Z.: Static detection of unsafe component loadings. UC Davis techical report

CSE-2010-17 (2010)

http://blogs.technet.com/b/srd/archive/2010/08/31/an-update-on-the-dll-preloading-remote-attack-vector.aspx
http://blogs.technet.com/b/srd/archive/2010/08/31/an-update-on-the-dll-preloading-remote-attack-vector.aspx
http://linux.die.net/man/3/dlopen
http://msdn.microsoft.com/en-us/library/ms682586(VS.85.)aspx
http://msdn.microsoft.com/en-us/library/ff919712(VS.85.)aspx
http://blog.metasploit.com/2010/08/exploiting-dll-hijacking-flaws.html
http://www.hex-rays.com/idapro/
http://code.google.com/p/idapython/
http://www.microsoft.com/technet/security/advisory/2269637.mspx

Static Detection of Unsafe Component Loadings 143

23. Microsoft Cooking Up Baker’s Dozen of Fixes for Patch Tuesday,
http://www.esecurityplanet.com/patches/article.php/3902856/

Microsoft-Cooking-Up-Bakers-Dozen-of-Fixes-for-Patch-Tuesday.htm
24. Microsoft Portable Executable and Common Object File Format Specification,

http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx
25. Microsoft releases tool to block DLL load hijacking attacks,

http://www.computerworld.com/s/article/print/9181518/

Microsoft releases tool to block DLL load hijacking attacks
26. Microsoft releases tool to block DLL load hijacking attacks,

http://www.computerworld.com/s/article/9181518/

Microsoft releases tool to block DLL load hijacking attacks
27. Microsoft Was Warned of DLL Vulnerability a Year Ago,

http://www.esecurityplanet.com/features/article.php/3900186/

Microsoft-Was-Warned-of-DLL-Vulnerability-a-Year-Ago.htm
28. MS09-014: Addressing the Safari Carpet Bomb vulnerability,

http://blogs.technet.com/srd/archive/2009/04/14/

ms09-014-addressing-the-safari-carpet-bomb-vulnerability.aspx
29. NetworkX, http://networkx.lanl.gov/
30. Orso, A., Sinha, S., Harrold, M.J.: Incremental slicing based on data-dependence types. In:

Proc. ICSM (2001)
31. pefile, http://code.google.com/p/pefile/
32. PyEmu, http://code.google.com/p/pyemu/
33. Reps, T.: Solving Demand Versions of Interprocedural Analysis Problems. In: Adsul, B. (ed.)

CC 1994. LNCS, vol. 786, pp. 389–403. Springer, Heidelberg (1994)
34. Reps, T., Balakrishnan, G.: Improved Memory-Access Analysis for x86 Executables. In: Hen-

dren, L. (ed.) CC 2008. LNCS, vol. 4959, pp. 16–35. Springer, Heidelberg (2008)
35. Reps, T., Horwitz, S., Sagiv, M., Rosay, G.: Speeding up slicing. In: Proc. FSE (1994)
36. Researcher told Microsoft of Windows apps zero-day bugs 6 months ago,

http://www.computerworld.com/s/article/print/9181358/

Researcher told Microsoft of Windows apps zero day bugs 6 months ago
37. Schwartz, E.J., Avgerinos, T., Brumley, D.: All you ever wanted to know about dynamic taint

analysis and forward symbolic execution (but might have been afraid to ask). In: Proc. SSP
(2010)

38. Sinha, S., Harrold, M.J., Rothermel, G.: System-dependence-graph-based slicing of pro-
grams with arbitrary interprocedural control flow. In: Proc. ICSE (1999)

39. Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, M.G., Liang, Z., Newsome,
J., Poosankam, P., Saxena, P.: BitBlaze: A New Approach to Computer Security via Binary
Analysis. In: Sekar, R., Pujari, A.K. (eds.) ICISS 2008. LNCS, vol. 5352, pp. 1–25. Springer,
Heidelberg (2008)

40. Tip, F.: A survey of program slicing techniques. Technical report, CWI, Amsterdam, The
Netherlands (1994)

41. Types of Dependencies,
http://dependencywalker.com/help/html/dependency_types.htm

42. Vulnerabilities in Microsoft Office Could Allow Remote Code Execution,
http://www.microsoft.com/technet/security/bulletin/ms10-087.mspx

43. Weiser, M.: Program slicing. In: Proc. ICSE (1981)
44. Windows DLL Exploits Boom; Hackers Post Attacks for 40-plus Apps,

http://www.computerworld.com/s/article/9181918/

Windows DLL exploits boom hackers post attacks for 40 plus apps
45. X86 Calling Conventions,

http://en.wikipedia.org/wiki/X86_calling_conventions
46. Xu, B., Qian, J., Zhang, X., Wu, Z., Chen, L.: A brief survey of program slicing. SIGSOFT

Softw. Eng. Notes 30(2), 1–36 (2005)

http://www.esecurityplanet.com/patches/article.php/3902856/Microsoft-Cooking-Up-Bakers-Dozen-of-Fixes-for-Patch-Tuesday.htm
http://www.esecurityplanet.com/patches/article.php/3902856/Microsoft-Cooking-Up-Bakers-Dozen-of-Fixes-for-Patch-Tuesday.htm
http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx
http://www.computerworld.com/s/article/print/9181518/Microsoft_releases_tool_to_block_DLL_load_hijacking_attacks
http://www.computerworld.com/s/article/print/9181518/Microsoft_releases_tool_to_block_DLL_load_hijacking_attacks
http://www.computerworld.com/s/article/9181518/Microsoft_releases_tool_to_block_DLL_load_hijacking_attacks
http://www.computerworld.com/s/article/9181518/Microsoft_releases_tool_to_block_DLL_load_hijacking_attacks
http://www.esecurityplanet.com/features/article.php/3900186/Microsoft-Was-Warned-of-DLL-Vulnerability-a-Year-Ago.htm
http://www.esecurityplanet.com/features/article.php/3900186/Microsoft-Was-Warned-of-DLL-Vulnerability-a-Year-Ago.htm
http://blogs.technet.com/srd/archive/2009/04/14/ms09-014-addressing-the-safari-carpet-bomb-vulnerability.aspx
http://blogs.technet.com/srd/archive/2009/04/14/ms09-014-addressing-the-safari-carpet-bomb-vulnerability.aspx
http://networkx.lanl.gov/
http://code.google.com/p/pefile/
http://code.google.com/p/pyemu/
http://www.computerworld.com/s/article/print/9181358/Researcher_told_Microsoft_of_Windows_apps_zero_day_bugs_6_months_ago
http://www.computerworld.com/s/article/print/9181358/Researcher_told_Microsoft_of_Windows_apps_zero_day_bugs_6_months_ago
http://dependencywalker.com/help/html/dependency_types.htm
http://www.microsoft.com/technet/security/bulletin/ms10-087.mspx
http://www.computerworld.com/s/article/9181918/Windows_DLL_exploits_boom_hackers_post_attacks_for_40_plus_apps
http://www.computerworld.com/s/article/9181918/Windows_DLL_exploits_boom_hackers_post_attacks_for_40_plus_apps
http://en.wikipedia.org/wiki/X86_calling_conventions

Object Model Construction for Inheritance in C++
and Its Applications to Program Analysis

Jing Yang1,2, Gogul Balakrishnan1, Naoto Maeda3, Franjo Ivančić1, Aarti Gupta1,
Nishant Sinha4,�, Sriram Sankaranarayanan5, and Naveen Sharma6

1 NEC Labs America
2 University of Virginia

3 NEC Corporation, Japan
4 IBM Research, India

5 University of Colorado, Boulder
6 NEC-HCL Tech., India

Abstract. Modern object-oriented programming languages such as C++ provide
convenient abstractions and data encapsulation mechanisms for software devel-
opers. However, these features also complicate testing and static analysis of pro-
grams that utilize object-oriented programming concepts. In particular, the C++
language exhibits features such as multiple inheritance, static and dynamic type-
casting that make static analyzers for C++ quite hard to implement. In this paper,
we present an approach where static analysis is performed by lowering the origi-
nal C++ program into a semantically equivalent C program. However, unlike ex-
isting translation mechanisms that utilize complex pointer arithmetic operations,
virtual-base offsets, virtual-function pointer tables, and calls to run-time libraries
to model C++ features, our translation is targeted towards making static program
analyzers for C++ easier to write and provide more precise results. We have im-
plemented our ideas in a framework for C++ called CILpp that is analogous to
the popular C Intermediate Language (CIL) framework. We evaluate the effec-
tiveness of our translation in a bug finding tool that uses abstract interpretation
and model checking. The bug finding tool uncovered several previously unknown
bugs in C++ open source projects.

1 Introduction

Modern object-oriented programming languages provide convenient abstraction and
data encapsulation mechanisms for software developers. Such mechanisms include
function and operator overloading, constructors and destructors, multiple class inher-
itance, dynamic virtual-function dispatch, templates, exceptions, functors, standard li-
braries such as STL and BOOST. However, on the flip side, these features complicate
the static analysis of programs that use such features. In the past decade, there have
been numerous approaches for static program analysis techniques based on source code.
These tools rely on abstract interpretation [12] or software model checking [9], such as
ASTREÉ [13], Saturn [40], SLAM [3], CBMC [8], Java PathFinder [16], and Find-
Bugs [17]. However, in practice, these tools have largely been developed and optimized

� Work done while at NEC Labs America.

M. O‘Boyle (Ed.): CC 2012, LNCS 7210, pp. 144–164, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Object Model Construction for Inheritance in C++ and Its Applications 145

to either address C or Java. With respect to static program analysis techniques for object-
oriented source code, most work has addressed Java partly because of its less intricate
class hierarchy concept. However, in industry, C++ is one of the predominant develop-
ment languages. Due to its intrinsic complexity mixing object-oriented programming
on top of full-fledged C code, there is a stark need for static program analysis for C++
supporting all of its many features.

There are several popular front-ends, such as Comeau C/C++ [10], EDG [15],
LLVM [19], and ROSE [27], that support all the complex features of C++. In spite
of the availability of C++ front-ends, it is still hard to perform static analysis of C++
programs as observed by the developers of Clang [6,7]:

“ . . . Support in the frontend for C++ language features, however, does not
automatically translate into support for those features in the static analyzer.
Language features need to be specifically modeled in the static analyzer so
their semantics can be properly analyzed. Support for analyzing C++ and
Objective-C++ files is currently extremely limited, . . .”

Modeling the C++ features directly in static analysis is a non-trivial task because the
C++ semantics is quite complicated [32]. Moreover, every static analyzer may need to
encode the semantics differently depending upon the requirements of the analysis. For
complex analysis, this process can easily get out of hand. One particular issue in han-
dling of C++ programs compared to other object-oriented programming languages such
as Java is the complexity of allowed class hierarchies. C++ allows multiple inheritance,
where a class may inherit from more than one class. Presence of multiple inheritance
gives rise to complex class hierarchies which must be handled directly (and precisely)
by any static analysis. Furthermore, multiple inheritance complicates the semantics of
otherwise simple operations such as casts and field accesses [33]. Therefore, techniques
developed for Java are not readily applicable to C++ programs. It is important to empha-
size that multiple inheritance is used quite frequently by developers even in large C++
projects. Nokia’s cross-platform UI framework Qt [25], Apache’s Xerces project [1],
and g++ standard IO stream library are good examples.

An alternative approach to analyzing C++ programs with complex hierarchies is to
utilize compiler front-ends that compile C++ programs into equivalent C programs (of-
ten referred to as “lowering of C++ programs”). A number of such approaches exist,
starting from the earliest C++ compilers, such as Cfront [34]. Today, there are com-
mercial C++ front-ends available that provide similar features, for example Comeau
C/C++ [10] or EDG [15]. Such translations are generally geared towards runtime perfor-
mance and small memory footprint. Therefore, these front-ends heavily utilize pointer
arithmetic operations, virtual-base offsets, virtual-function pointer tables, and rely on
runtime libraries, to achieve those goals. Such translations are hardly amenable to pre-
cise program analysis.

Consider, for example, the translation using one such generic lowering mechanism
shown in the middle column of the table in Fig. 1. Note how a static cast operation
in row (a) of Fig. 1 is translated into an adjustment of the source pointer pr by 8 bytes
in the lowered C program. Similarly, the dynamic cast operation is translated into
a call to an opaque runtime function dynamic cast, which may change the source
pointer as in the case of static cast. Such pointer adjustment operations are crucial

146 J. Yang et al.

Standard C++-to-C lowering CHROME-based lowering

(a)
pb =
((struct B *) ((pr != ((struct R *) 0))
? (((char *)pr) - 8UL) : ((char *) 0)));

assert(pr->soid == B_R);
pb = pr ? pr->dervB : 0;

(b)
pl = ((pr != ((struct R *)0))
? ((struct L *)(_dynamic_cast(...)))
: ((struct L *)0));

assert(pr->soid == B_R);
pl = pr? pr->dervB->baseL : 0;

(c)

// Access virtual function table
_T31 = ((((pl->_b_R)._vptr)) + 1);

// Call virtual function
(((void (*)(struct R * const))
((_T31->f))) (((struct R *)
(((char *) (&pl->_b_R)) +
((_T31->d))))));

switch(pl->soid) {
case B_L:
case L:
{ T* prt = pl->baseT;
prt->T::vfunc(prt);
break;
}
default: assert(false);
}

(d)
((*((struct T *) (((char *) pb) +
((((pb->_b_1L)._vptr))[(-3)])))).tp)
= ((int *) 0);

pb->baseL->baseT->tp
= (int *)0;

Fig. 1. Comparison of the standard C++-to-C lowering and CHROME-based lowering mech-
anisms: (a) pb = static_cast<B*>(pr), (b) pl = dynamic_cast<L*>(pr), (c)
pl->vfunc(), vfunc is a virtual function), and (d) pb->L::tp = 0, L::tp is a field
of a shared base class)

for preserving the semantics of class member accesses in the lowered C program. How-
ever, static analysis algorithms typically assume that such pointer adjustments (which
are akin to pointer arithmetic operations) do not change the behavior of the program,
and therefore, may ignore them completely. Consequently, the analysis of the lowered
C program is unsound. Alternatively, a conservative treatment of pointer arithmetic op-
erations results in a large number of false positives, thereby reducing the usefulness of
the analysis.

Further, note how a virtual-function call in Fig. 1(c) is translated into a complex com-
bination of virtual-function pointer table lookups (via vptr variable) and unintelligible
field accesses. Furthermore, in row (d) of Fig. 1, even a simple access to a field of a
shared base class (see Sect. 2) is translated into an access through the virtual-function
table [33]. Most conventional static analysis are not well equipped to precisely reason
about such code. In particular, they are generally imprecise in the presence of arrays
of function pointers or pointer offsets (such as the virtual-function pointer table). At a
virtual-function call, a naive analysis may enumerate all potential callees, thus causing
blowup in the computed call graph due to redundant function invocations. Alternatively,
many techniques safely approximate arrays using summary variables, which leads to a
severe imprecision in the resolution of field accesses and virtual-function calls.
Our Approach. In this paper, instead of encoding complex C++ semantics in static ana-
lyzers or simulating the behavior of the compiler, we adopt a more pragmatic approach
to analyzing C++ programs. We believe that in order to allow for a scalable, yet pre-
cise, static analysis of C++, such techniques need not have to reason about the low-level
physical memory layout of objects. Rather, we require a higher level of abstraction of
the memory that is closer to the developer’s understanding of the program.

Object Model Construction for Inheritance in C++ and Its Applications 147

Towards this goal, we propose a representation for modeling C++ objects that is
different from the object layout representations used by a compiler. The alternative rep-
resentation is referred to as CHROME (Class Hierarchy Representation Object Model
Extension) and uses the algebraic theory of sub-objects proposed by Rossie and Fried-
man [30]. Using the CHROME object model, we employ a sequence of source-to-source
transformations that translate the given C++ program with inheritance into a semanti-
cally equivalent C++ program without inheritance. Our source-to-source transforma-
tions comprises two main steps. The first step employs a clarifier module which makes
implicit C++ features explicit. An example of such an implicit feature is the invoca-
tion of constructors, destructors, and overloaded operators. The second step involves
the elimination of inheritance-related features using the proposed CHROME model. The
translations are semantics-preserving and static program analysis friendly. Our aim is
to allow state-of-the-art static program analyzers, that are currently oblivious to in-
heritance and multiple inheritance in programs, to naturally handle such transformed
programs while maintaining their efficiency and precision.

The last column in Fig. 1 shows the CHROME-based transformations. The key idea
underlying the CHROME model is to treat sub-objects due to inheritance as separate
memory regions that are linked to each other via additional base class and derived class
pointer fields. Instead of utilizing virtual-function pointer table lookups and address
offset computations to resolve issues related to dynamic dispatch and casts, we instead
follow a path in a sub-object graph utilizing these additional pointers to find the re-
quired sub-object of interest. Note that this sub-object graph walk may require multiple
pointer indirections and would thus be inefficient for runtime performance as well as
less memory efficient. However, static program analyzers routinely reason about heaps
and pointer indirections. Hence, we build upon the strengths of these tools to allow for
a efficient and precise analysis of complex C++ programs. The analysis of the resulting
C++ program is also simplified because program analysis tools can treat casts and ac-
cesses to fields of inherited classes and virtual-function calls in the same way as regulars
casts and accesses to fields of regular classes and normal function calls, respectively.

Our approach has multiple advantages. Various analyses can now focus on the re-
duced subset of C++ in a uniform manner without being burdened with having to deal
with inheritance. Further, we may adopt simpler object-oriented analyses, e.g., those
developed for Java programs, to analyze C++ programs. Finally, because the reduced
subset is quite close to C, the given C++ program can also be lowered to C. This en-
ables reuse of standard static analyses for C programs without necessitating the loss of
high-level data representation.

The transformed source code can be potentially used not only for static analysis
but also for dynamic program analysis, code understanding, re-engineering, runtime
monitoring, and so on. We believe that our approach provides a uniform way to resolve
the principal barrier to analyzing C++ programs, i.e., handling of inheritance precisely
in a scalable fashion.

To illustrate the practical utility of our approach, we experiment with an in-house
bug-finding tool called F-SOFT [18] that uses abstract interpretation [12] and model
checking [9]. Our experiments show that our method provides significant benefits as
compared to a straightforward C++-to-C lowering-based approach. We found a total of

148 J. Yang et al.

ten previously unknown bugs on some C++ open source projects, of which five were
only found due to the precise modeling of objects using the CHROME object model. We
also experimented with a publicly available bug finding tool called CBMC [8], which
showed similar improvements when using the CHROME object model.
Contributions. The key contributions of our paper are as follows:

– The CHROME (Class Hierarchy Representation Object Model Extension) object
model representation for modeling objects of derived classes.

– An algorithm for translating a C++ program with inheritance into a semantically
equivalent C++ program without inheritance using the CHROME object model.

– Performing the translation without the use of pointer arithmetic operations, virtual-
base offsets, virtual-function tables, and runtime functions. Our source-to-source
translation is designed with program analysis in mind and not for runtime perfor-
mance or a small memory footprint.

– Illustrating the practicality of our approach by evaluating the effectiveness of the
lowered C++ programs for abstract interpretation and model checking.

– A framework for C++ called CILpp that can be used to build analysis and verifi-
cation tools for C++ programs. CILpp is analogous to the popular C Intermediate
Language (CIL) framework for C programs [24].

Our implementation is based on the EDG frontend [15]. This allows us to focus on
the analysis while being able to handle arbitrary C/C++ dialects. Our current lowering
mechanism using the CHROME object model relies on the assumption that the tool
chain is aware of the complete class hierarchy. This restriction simplifies the object
model generation substantially since our generated object models do not have to address
dynamic class loading, for example.

The rest of the paper is organized as follows. Sect. 2 describes the algebraic theory of
Rossie-Friedman sub-objects. Sect. 3 presents the clarifier module that makes implicit
C++ features explicit. Sect. 4 presents the CHROME object model and the source-to-
source transformations that eliminate inheritance. Sect. 5 describes the results of our
experiments. Sect. 6 discusses the related work. Sect. 7 concludes the paper.

2 Rossie-Friedman Sub-objects

Informally, the Rossie-Friedman sub-object model [30] is an abstract representation of
the object layout. When a class inherits from another class, conceptually the base class
is embedded into the derived class. Therefore, an object of a derived class consists of
different (possibly overlapping) components that correspond to the direct and transitive
base classes of the derived class. Intuitively, a sub-object refers to a component of a
direct or transitive base class that is embedded in a derived class object. The complete
derived class object is also considered to be a sub-object.

Example 1. Consider a class L that inherits from another class T. An object of type L
consists of two sub-objects: (1) a sub-object of type T corresponding to the base class T,
and (2) a sub-object of type L that corresponds to the complete object itself. Fig. 4(I)(a)
shows the sub-objects of L. �

Object Model Construction for Inheritance in C++ and Its Applications 149

class T {int tf;}
class L: public T

{int lf;}
class R: public T

{int rf;}
class B: public L,
public R {int bf;}

T

L R

B

Replicated
[B, 〈B,L, T 〉] [B, 〈B,R, T 〉]

[B, 〈B,L〉] [B, 〈B,R〉]

[B, 〈B〉]

(a) (b) (c)

Fig. 2. Replicated multiple inheritance: (a) C++ program, (b) class-hierarchy graph, and (c) sub-
object poset for class B

C++ supports multiple inheritance through which a class inherits from more than one
base class. In case of single inheritance, there is only one copy of every (direct or
transitive) base class in a derived class object. However, with multiple inheritance, the
number of sub-objects corresponding to a direct or transitive base class depends upon
the number of paths between the base class and the derived class in the class hierarchy.

Example 2. Consider the program shown in Fig. 2(a). Fig. 4(I)(b) shows the object
layout for B. Because B inherits from L and R, a B-object contains sub-objects of type
L and R. Further, the sub-objects of type L and R each contain a distinct sub-object of
type T. Therefore, a B-object has two distinct sub-objects of type T: one inherited from
class L and the other inherited from class R. �

Virtual base classes. It is often not desirable to have multiple sub-objects of a base class
in a derived class. Therefore, to prevent replication of base class sub-objects in a derived
class, C++ provides virtual base classes. Unlike a non-virtual base class, a sub-object
of a virtual base class type is shared among the sub-objects of all its direct and transitive
derived classes.

Example 3. Consider the class hierarchy in Fig. 3(a). The keyword virtual indicates
that class T is a virtual base class. Fig. 4(I)(c) shows the object layout for B. A B-object
contains sub-objects of type L and R as usual. However, because T is a virtual base
class, it is shared among the direct and transitive derived classes L, R, and B. Therefore,
a B-object contains only one sub-object of type T.

When a class inherits from a non-virtual base class, it is referred to as replicated in-
heritance. When a class inherits from a virtual base class, it is referred to as shared
inheritance. The class hierarchy graph captures the shared and replicated inheritance
relationships among the classes.

Definition 1 (Class Hierarchy Graph (CHG)). A class hierarchy graph G is a tuple
〈C,≺s,≺r〉, where C is the set of class names,≺s⊆ C×C are shared inheritance edges,
and ≺r⊆ C × C are replicated inheritance edges. Let ≺sr= (≺s ∪ ≺r).

The formal description relies on the following operators to model transitive applica-
tions of ≺s and≺r. <s= (≺s)

+, ≤s= (≺s)
∗, <r= (≺r)

+, and≤r= (≺r)
∗. Similarly,

<sr= (≺sr)
+, and ≤sr= (≺sr)

∗.

150 J. Yang et al.

class T {int tf;}
class L: public
virtual T {int lf;}
class R: public
virtual T {int rf;}
class B: public L,
public R {int bf;}

T

L R

B

Replicated

[B, 〈T 〉]

[B, 〈B,L〉] [B, 〈B,R〉]

[B, 〈B〉]

Shared

(a) (b) (c)

Fig. 3. Shared multiple inheritance: (a) C++ program, (b) class hierarchy graph, and (c) sub-
object poset for class B

We require that the reflexive and transitive closure ≤sr of ≺sr is antisymmetric. This
ensures that a CHG is acyclic. Note that (C,≤sr) is a poset.

The Rossie-Friedman sub-object model formalizes the notion that, given a derived class
D, a sub-object of a D-object is either the complete D-object or a component of a base
class type B that is embedded in the D-object. Because C++ allows multiple inheritance,
a D-object may have multiple sub-objects of a base class type B. Therefore, it is not
sufficient to represent a sub-object of type B in a D-object simply as a pair 〈D,B〉. Rossie
and Friedman distinguish different sub-objects of the same base class in a derived class
using the path from the base class to the derived class in the CHG.

Definition 2 (Sub-object). Given a CHG 〈C,≺s,≺r〉, a sub-object σ is a pair
[C, 〈X,Y1, Y2, . . . , Yn〉], where

1. C,X, Y1, Y2, . . . , Yn ∈ C
2. X ≺r Y1 ≺r . . . ≺r Yn

3. (C = X) ∨ ∃(Z ∈ C)[C <sr Z <s X]

C is the derived class to which σ belongs, and Yn is the type of the sub-object. The
path X,Y1, Y2, . . . , Yn represents the path in the CHG through which class C inherits
Yn. For a repeated sub-object, X = C. For a shared sub-object, X is the least derived
virtual base class that contains Yn.

Example 4. Fig. 2(c) show the sub-objects of class B with replicated multiple inheri-
tance. The sub-object [B, 〈B,L, T 〉] in class B corresponds to class T that is inherited
transitively by class B through class L. The sub-object path 〈B,L, T 〉 represents the
corresponding path in the CHG. An instance of class B has two copies of T, one in-
herited from L and the other inherited from R. Therefore, there are two sub-objects
[B, 〈B,L, T 〉] and [B, 〈B,R, T 〉] that correspond to class T. The sub-object path of T
determines whether it is inherited from L or R.

Similarly, Fig. 3(c) shows the sub-objects of class B with shared inheritance. Note
that an instance of class B has only one copy of class T. Therefore, there is only one
sub-object that has an effective class type T, namely [B, 〈T 〉]. The sub-object path 〈T 〉
represents the fact that class B shared inherits T because the first class in the sub-object
path is not B. �

Object Model Construction for Inheritance in C++ and Its Applications 151

3 Clarifier

C++ provides convenient abstractions, such as constructors and destructors, that sim-
plify the life of a software developer. However, such abstractions also introduce ad-
ditional operations that are implicit in the control flow of the program. For example,
the destructors of the objects allocated on the stack are implicitly invoked whenever the
objects go out of scope. Examples of other such implicit operations are calls to construc-
tors and overloaded operators, the this parameter in member functions, and implicit
casts. The clarifier module exposes such implicit operations in the C++ program.

Example 5. Consider the following C++ program:

int cutLen(const string &s,size_t i,size_t n){
const char *str = s.substr(i,n).c_str();
return strlen(str);

}

The output of the clarifier is shown below:

int cutLen(const string &s,size_t i,size_t n){
const string tmp; // Only declaration, no call to constructor.
// Copy constructor call for ‘tmp’.
tmp.string(s.substr(i,n));
const char *str = tmp.c_str();
// Destruction of temporary ‘tmp’
tmp.˜string();
// Use of invalid pointer ‘str’
return strlen(str);

}

In the output, the copy constructor for the temporary object that gets created at the call to
s.substr(...) is made explicit. Similarly, the destructor for the temporary object
is invoked when the temporary goes out of scope, which happens immediately after
the initialization of str. Method call tmp.c str() returns a pointer to an internal
buffer, which is deallocated when the tmp object is destroyed. Therefore, strlen
uses a deallocated string str, which can cause a segmentation fault.1 The clarifier
maintains the correct C++ semantics by preserving the order in which the constructors
and destructors are invoked, and the order in which the initializations are performed.

The output of the clarifier is an intermediate representation called CILpp that is largely
inspired by the CIL front-end [24] with relevant extensions for C++ specific features.
The CILpp representation consists of a mixture of C and C++ constructs. Specifically,
the inheritance-related constructs are still present. The inheritance-related features are
eliminated by performing source-to-source transformations using the CHROME model
as described next.

1 This example is modeled on some bugs that our framework discovered in the gold project,
which provides a faster linker as part of the GNU binutils package [2].

152 J. Yang et al.

T

L

pt

pl

(a)

T

R

T

L

B

pb

pt

pl

T

R

L

B

pb

pt

pl

(b) (c)

T’s fields

[B, 〈B,L, T 〉]
T’s fields

[B, 〈B,R, T 〉]

L’s fields

[B, 〈B,L〉]
R’s fields

[B, 〈B,R〉]

B’s fields

[B, 〈B〉]

dervL dervR
baseT

baseT

dervB

dervB
baseL

baseR

(I) (II)

Fig. 4. (I) Object layout used by a standard C++-to-C lowering algorithm: (a) class L in Figs. 2
and 3, (b) class B with replicated inheritance in Fig. 2, and (c) class B with shared inheritance in
Fig. 3. (II) CHROME object model for the class B in Fig. 2. (pt, pl, and pb are pointers.)

4 CHROME Model

Standard C++-to-C lowering algorithms use a physical sub-object model for represent-
ing objects of derived classes, which is similar to how compilers layout objects at run-
time. In the physical sub-object model, the base classes are embedded into the derived
class objects. Fig. 4(I) shows the physical sub-object model for some classes that use
replicated and shared multiple inheritance.

There are several problems with using the physical sub-object model for analysis.
Because sub-objects are embedded inside the derived classes, a cast between a base and
derived class pointer has to be modeled as an offset adjustment to the source pointer.
For example, for the objects in Fig. 4(I), the cast statement “pl = (L*) pb”, where
pb is a pointer of type B*, requires moving pointer pb to the start of the corresponding
sub-object of type L in the B-object as follows: “pl = ((char*)pb) + 8;”.

In certain cases, the required offsets cannot be determined statically. For example,
consider a cast from a pointer pl of type L* to a pointer of type T*. If pl points to a
sub-object of type L as in Fig. 4(I)(a), no adjustment is necessary. On the other hand,
if pl points to a sub-object of type L in an object of type B as in Fig. 4(I)(c), pointer
pl has to be adjusted by 8 bytes. For such cases, the offsets are stored in the virtual-
function pointer table and are consulted at runtime. Consequently, the code generated
by a standard lowering algorithm includes a lookup of a virtual-function pointer table
even for simple casts. As mentioned in Sect. 1, static analysis algorithms are not precise
in the presence of such low-level pointer offset adjustments and arrays of pointers.

To avoid such problems, we propose the CHROME object model for representing
the objects of a derived class. In the CHROME object model, an object is viewed as a
collection of its sub-objects and no assumptions are made about the layout of the fields
in each class. Whenever an object is created, the sub-objects that belong to the class are
created independently, and are linked to each other via additional pointer fields.

Object Model Construction for Inheritance in C++ and Its Applications 153

Example 6. Consider the replicated inheritance hierarchy in Fig. 2. The CHROME ob-
ject model representation for a B-object is shown in Fig. 4(II). The different sub-objects
of the class are constructed separately and are connected to each other through addi-
tional pointer fields. For example, the dervL and baseT pointers connect the sub-
objects [B, 〈B,L〉] and [B, 〈B,L, T 〉]. �

These auxiliary object hierarchy edges are utilized by CHROME to walk the object when
arbitration of inheritance related features is needed. As an example, consider casts,
where, instead of computing pointer offset adjustments, we follow the additional point-
ers in the representation of the B-object. Next, we present the source-to-source trans-
formations for various C++ constructs through examples.

Example 7 (Class Declarations). To facilitate the construction of the CHROME object
model, we add the following fields to every class C in the CHG: (1) a soid field that
is used to identify the sub-object that C represents, (2) a base pointer field and a derived
pointer for every immediate base and derived class of C, respectively. For the program
in Fig. 2, the classes are modified as follows (replicated multiple inheritance):

class T {int soid; L* dervL; R* dervR; int tf;}
class L {int soid; T* baseT; B* dervB; int lf;}
class R {int soid; T* baseT; B* dervB; int rf;}
class B {int soid; L* baseL; R* baseR; int bf;}

For the program in Fig. 3, classes L, and R are modified as shown above, and classes T
and B are modified as follows (shared multiple inheritance):

class T {int soid; L* dervL; R* dervR; B* dervB; int tf;}
class B {int soid; L* baseL; R* baseR; T* baseT; int bf;}

Note that pointers dervB and baseT are added because T is a shared base class of B.

Example 8 (Object Construction). Consider the statement “B* pb = new B()”,
where B is the class from Fig. 2. As a first step, all the sub-objects of the given class B
are allocated2 and the soid and base pointer fields are initialized:

// Create sub-objects
// (see Fig. 2)
B* pb = allocnew B();
L* pb_B_L = allocnew L();
R* pb_B_R = allocnew R();
T* pb_B_L_T = allocnew T();
T* pb_B_R_T = allocnew T();

// Set base pointer fields
pb->baseL = p_B_L;
pb->baseR = p_B_R;
pb->baseL->baseT = p_B_L_T;

pb->baseR->baseT = p_B_R_T;

// Set soid fields
pb->soid = SOID([B, 〈B〉]);
pb_B_L->soid = SOID([B, 〈B,L〉]);
pb_B_R->soid = SOID([B, 〈B,R〉]);
pb_B_L_T->soid=SOID([B, 〈B,L, T 〉]);
pb_B_R_T->soid=SOID([B, 〈B,R, T 〉]);

// Invoke the constructor for B
pb->B();

2 allocnew C() allocates memory for an object of type C on the heap. It should be noted
that we require that related calls to allocnew() either all succeed or the first one itself fails.

154 J. Yang et al.

In addition to the above steps, all the constructors are modified to initialize the de-
rived pointer fields of every immediate base class and shared base class, and subse-
quently, invoke their constructors. For example, the constructor for B is modified as
follows:

B::B(B* this) {
this->baseL->dervB = this; this->baseL->L();
this->baseR->dervB = this; this->baseR->R();
. . .

}

Similarly, the constructors of T, L, and R are also modified. The invocation of the con-
structors of L and R (which in turn would invoke the constructor of T) ensures that the
sub-objects of B are initialized properly. �

Note that while the number of sub-object types grows exponentially with the size of the
class inheritance graph, the actual number of sub-object instances only grows linearly
with the size of the class inheritance graph. Therefore, we have not seen the increase in
the number of sub-objects affect the scalability of the analysis (see Sect. 5).

Example 9 (Cast and Field Accesses). Consider a cast statement “tgt =(T*)src”,
where tgt is of type T and src is of type S. First, all the sub-objects that src may
legally point-to at runtime are determined. For every such sub-object σ, the access path
ρ starting from src consisting of a sequence of derived and base pointer fields to reach
the required T-sub-object is computed. Finally, a switch..case statement is gener-
ated with a case for every sub-object and access path pair 〈σ, ρ〉 that updates tgt.

Fig. 5 shows a few examples. Consider the translation for the cast state-
ment “pb = (B*) pt”. The sub-objects that pt may point-to at runtime are
[B, 〈B,L, T 〉] and [B, 〈B,R, T 〉] (see Fig. 2(c)). The corresponding access paths are
pt->dervL->dervB and pt->dervR->dervB, which are assigned to the target
pointer pb in the respective cases. Note that if pt does not point to either of the two
sub-objects, the target pointer pb is set to NULL, which mimics the semantics of a
dynamic cast.

The cast statement “pr = (R*)pt” in Fig. 5 demonstrates the case where the
access path consists of derived pointer fields followed by base pointer fields. The trans-
lation is shown in Fig. 5 (after grouping common cases). Note that there is no case
for [L, 〈L, T 〉] because (L ≮sr R), and therefore, [L, 〈L, T 〉] will not be in the set of
sub-objects that pt may legally point to at runtime.

Consider a field access tgt = src->S::m. The statement is transformed in
CHROME by considering it as tgt = ((S*)src)->S::m. The idea is to treat a
field access as equivalent to the code sequence consisting of a cast of src to (S*) fol-
lowed by the field access. Basically, the access path from src is generated and then the
member is accessed. Fig. 5 shows the translation for z = pl->tf. (A similar strategy
is used for member calls without dynamic dispatch.) �

Example 10 (Virtual-function calls). For p->C::foo(p,. . .), where C::foo is a
virtual function, all possible sub-objects that p could be pointing to at runtime is de-
termined. Finally, a switch..case statement is generated with a case for each

Object Model Construction for Inheritance in C++ and Its Applications 155

// Downcast: pb = (B*)pt
// (B* pb, T* pt)
switch(pt->soid) {
case SOID([B, 〈B,L, T 〉]):

pb = pt->dervL->dervB;
break;

case SOID([B, 〈B,R, T 〉]):
pb = pt->dervR->dervB;
break;

default:
pb = NULL;

}

// Cast: pr = (R*)pt
// (R* pr, T* pt)
switch(pt->soid) {
case SOID([R, 〈R, T 〉]):
case SOID([B, 〈B,R, T 〉]):

pr = pt->dervR;
break;

case SOID([B, 〈B,L, T 〉]):
pr =
pt->dervL->dervB->baseR;

break;
default: pr = NULL;

}

// Upcast: pt = (T*)pl
// (T* pt, L* pl)
switch(pl->soid) {
case SOID([B, 〈B,L〉]):
case SOID([L, 〈L〉]):

pt = pl->baseT;
break;

default: pt = NULL;
}

// Field access: z = pl->tf
// (int z, L* pl)
switch(pl->soid) {
case SOID([B, 〈B,L〉]):
case SOID([L, 〈L〉]):

z = pl->baseT->tf;
break;

default: assert(false);
}

Fig. 5. CHROME translation for casts and field accesses with the class hierarchy in Fig. 2

sub-object. The actual member function that would be invoked at run-time is called in
each case of the switch statement. Note that, in each case, the access paths need to be
adjusted accordingly for p. Consider the class hierarchy in Fig. 2. Suppose that class
T defines a virtual function vfunc and class L overrides it. The virtual-function call
pt->vfunc() is translated as shown in Fig. 6. Note that if pt points to a sub-object
inherited from L, L::vfunc is invoked. �

switch(pt->soid) {
case SOID([B, 〈B,L, T 〉]):
case SOID([L, 〈L, T 〉]):

pt->dervL->
L::vfunc(pt->dervL);

break;
case SOID([B, 〈B,R, T 〉]):
case SOID([T, 〈T 〉]):

pt->T::vfunc(pt);
break;

default: assert(false);
}

Fig. 6. CHROME translation for a virtual-
function call

Special Handling. It is easy to adapt
the transformations described so far to
the other constructs in the C++0x stan-
dard except for the following cases
that require special attention. (1) For
virtual-base classes, the CHROME trans-
formations ensure that the body of the
constructor (or destructor) of a virtual
base class is only invoked once and it
is always invoked from the constructor
(or destructor) of the most derived object.
(2) For virtual-function calls on an object
that is being constructed, the CHROME

lowering follows C++ semantics by

156 J. Yang et al.

treating the partially constructed object as though it is an object of the type to which
the constructor belongs. (3) At object assignments, the CHROME lowering generates
additional assignments that copies the sub-objects associated with the source into the
sub-objects associated with the target. (4) Template classes and functions are instanti-
ated. (5) Exceptional control-flow is made explicit for sound static analysis. We have
presented an algorithm for transforming a C++ program with exceptions into a se-
mantically equivalent C++ program without exceptions elsewhere [26]. The exception-
elimination transformations can be performed in conjunction with the inheritance-
elimination transformations described here.

Lowering without the soid field. For ease of presentation, the CHROME transforma-
tions presented so far used the soid field to determine valid paths in the sub-object
graph. However, we can often omit the soid field because the auxiliary base class and
derived class pointers themselves encode valid paths in the sub-object model; invalid
paths are indicated by NULL values for the base class and derived class pointer fields.
For example, the downcast in Fig. 5 can be translated without the soid field as follows:

// Downcast: pb = (B*)pt
// (B* pb, T* pt)
if (pt->dervR && pt->dervR->dervB) {
pb = pt->dervR->dervB;

} else if (pt->dervL && pt->dervL->dervB) {
pb = pt->dervL->dervB;

} else {
pb = NULL;

}

The advantage of using the auxiliary pointers directly is that subsequent static analysis
algorithms need not maintain the relationship between the value of the soid field and
the auxiliary base and derived class pointers.

Correctness of the transformations. Here we provide the intuition as to why the trans-
formations are semantics preserving. At object construction, it is easy to see that all
the sub-objects are allocated and the fields are initialized by the chaining of constructor
calls. After a cast statement, the target of a cast operation has to point to the relevant sub-
object. To achieve this, compilers generate code that adjusts the pointer appropriately at
runtime. The CHROME transformations mimic this behavior by generating access paths
consisting of derived and base pointer fields. Because the derived and base pointer fields
are set up to point to the correct sub-objects at object construction, the lowered code
mimics the behavior of casts correctly. Similarly, at a virtual-function call, the appro-
priate member function is invoked based on the runtime type stored in the soid field,
which is the expected behavior.

Because CHROME uses a different object layout, the memory behavior of a
CHROME-lowered program is different from the original program. This is not an issue
for the correctness of the transformations unless the program modifies the objects us-
ing low-level primitives like memset. However, programmers typically do not perform
low-level operations like memset on objects (like they sometimes do in C) that use in-
heritance because it is highly compiler-dependent and can mess up the virtual-function
pointer tables and other compiler-level data structures. Because we only change the

Object Model Construction for Inheritance in C++ and Its Applications 157

Table 1. Characteristics of the C++ benchmarks. LOC: the number of non-empty lines after
preprocessing. #class: the number of classes from the standard libraries (lib) and from the appli-
cation (app). #mult: number of classes with multiple inheritance in standard libraries (lib) and
the actual application (app). #VPTR: number of accesses to the virtual-function pointer table.
#FPTR: number of function-pointer calls. #T: time taken for CHROME-lowering in seconds.

C++ program Lowered C Program
COMPILER CHROME

#class #mult
LOC #T lib app lib app LOC #VPTR #FPTR LOC #FPTR

coldet (1.2) 5.1K 1.7s 32 61 0 4 7.0K 48 31 14.4K 0
mailutils (2.1) 8.3K 2.1s 14 106 0 0 8.7K 2 0 17.1K 0
tinyxml (2.5.3) 4.9K 2.0s 0 59 0 0 12.5K 110 79 21.6K 0
id3lib (3.8.3) 14.5K 8.0s 75 106 6 0 35.7K 632 499 77.7K 0
cppcheck (1.4.3) 30.9K 30s 148 104 7 5 99.9K 217 71 165.0K 0

objects that use inheritance, such low-level operations do not pose a problem for the
semantic correctness of our transformations assuming compiler-independent code.

5 Implementation and Experiments

We have implemented the ideas described in the paper in an in-house extension of
CIL [24] called CILpp. The C++ front-end for CILpp is based on EDG [15], and
therefore, handles all aspects of the C++0x standard. For the experiments, we translated
the given C++ program into an equivalent C program using (1) a standard compiler-
based lowering mechanism, and (2) the lowering mechanism based on the CHROME

object model. Henceforth, we refer to the C program obtained from compiler-based
lowering as COMPILER-lowered C program, and the one obtained from CHROME-based
lowering as CHROME-lowered C program.

Tab. 1 shows the characteristics of the open source benchmarks used for our exper-
iments. The open source library coldet (v1.2) implements collision detection algo-
rithms and is often used in game programming. GNU mailutils (v1.2) is a collection
of mail utilities, servers, and clients. TinyXML (v2.5.3) is a light-weight XML parser
which is widely used in open source and commercial products. The open source library
id3lib (v3.8.3) is used for reading, writing, and manipulating ID3v1 and ID3v2 tags,
which is the metadata format for MP3 audio files. cppcheck (v1.4.3) is a tool for
static C/C++ code analysis3 that uses a library of problematic code patterns to detect
common errors. For the experiments, the sources relevant to the project were merged
into a single C++ file and preprocessed. The preprocessed file was lowered using the
compiler-based and CHROME-based lowering mechanisms.

3 We also ran cppcheck on our set of benchmarks, but it did not find any of bugs reported in
Sect. 5.2. The patterns used by cppcheck are not sufficient enough to find bugs that deep
static analyzers are capable of detecting.

158 J. Yang et al.

5.1 Complexity of the Lowered C Programs

The column labeled “LOC” in Tab. 1 refers to the number of non-empty lines of code
in the merged file after preprocessing. The COMPILER-lowered C program is up to 3
times larger than the original C++. For the mailutils example, which has no virtual-
function calls, the size of the COMPILER-lowered program is roughly the same as the
original C++ program. This suggests that the extra statements generated by compiler-
based lowering mostly relate to the setup and access of virtual-function pointer tables.
The CHROME-lowered C program is roughly three to five times the size of the orig-
inal C++ program, and is roughly twice that of the COMPILER-lowered C program.
The difference in the sizes between COMPILER-based and CHROME-based lowering
is mostly due to switch..case statements generated by the CHROME transforma-
tions. Even though the COMPILER-lowered programs are smaller than the CHROME-
lowered programs, COMPILER-lowered programs contain operations that are hard for
a static analyzer to reason about, such as calls via function pointers and accesses to
virtual-function pointer tables. The column labeled “#FPTR” shows the number of
calls through function pointers, and the column labeled “#VPTR” shows the number
of accesses to virtual-function pointer tables. The function pointer calls in COMPILER-
lowered program correspond to the virtual-function calls in the original C++ pro-
gram. The CHROME-lowered programs do not have calls via function pointers because
CHROME-based transformations do not use function pointers for virtual-function calls.
Note that the number of accesses to a virtual-function pointer table is generally more
than the number of calls via function pointers, which indicates that virtual-function
pointer tables are also used for purposes other than dispatching virtual-function calls.

5.2 Effectiveness of Lowering for Software Verification

Table 2. Results of memory leak and
pointer validity checker using F-SOFT

on the lowered programs. #N: the num-
ber of NULL-pointer dereferences.
#M: the number of memory leaks. The
number in parenthesis shows the num-
ber of real bugs. The time limit was set
to 20 minutes for each function.

COMPILER CHROME

#N #M #N #M
coldet 0 0 5(2) 0
mailutils 0 0 0 0
tinyxml 3(0) 0 0 2(0)
id3lib 4(3) 1(1) 6(5) 6(1)
cppcheck 1(1) 0 3(2) 1(0)

For this experiment, we analyzed the COMPILER-
lowered and CHROME-lowered programs using
F-SOFT [18]. F-SOFT is a tool for finding bugs
in C programs, and uses a combination of ab-
stract interpretation and model checking to find
common programming mistakes, such as NULL-
pointer dereferences, memory leaks, buffer over-
runs, and so on. Given a C program, F-SOFT sys-
tematically instruments the program in such a way
that an assertion is triggered whenever a safety
property is violated. For example, at every deref-
erence of a pointer, the program is instrumented
to trigger an assertion if the pointer is NULL. An
abstract interpreter [12] is used as a proof engine
in F-SOFT. The abstract interpreter computes in-
variants that can be used to prove that certain as-
sertions can never be reached. Our abstract inter-
preter is inter-procedural, flow and context sensitive. It is built in a domain-independent
and extensible fashion, allowing for various abstract domains such as constants, in-
tervals [11], octagons [22], symbolic ranges [31] and polyhedra [14]. These domains

Object Model Construction for Inheritance in C++ and Its Applications 159

const uchar* ID3_FieldImpl::GetRawBinary() const
{

const uchar* data = NULL;
if (this->GetType() == ID3FTY_BINARY) {
data = _binary.data();

}
return data;

}
void ID3_FieldImpl::RenderBinary(ID3_Writer& writer)
{

writer.writeChars(this->GetRawBinary(),
this->Size());

}

Fig. 7. NULL pointer dereference in id3lib

are applied in increasing order of complexity. After each analysis is run, the assertions
that are proved to be unreachable are removed and the program is simplified by con-
stant propagation and slicing. After abstract interpretation, the remaining properties are
checked by a SAT-based bounded model checker. If the model checker finds any viola-
tions, they are reported to the user along with a witness trace. For the sake of usability,
F-SOFT does not report sound analysis results, and uses heuristics to identify patterns
that commonly result in false warnings and eliminates them.

Tab. 2 summarizes the results of a pointer-validity checker and a memory-leak
checker in F-SOFT, where the number of witnesses reported by the model checker is
presented along with the number of real bugs reported in parenthesis. The time limit was
set to 20 minutes for each function. It should be noted that the lowering techniques pro-
duce entirely different (but semantically equivalent) programs. Therefore, the number
of properties in the CHROME-lowered program is different from the number of prop-
erties in the COMPILER-lowered program. In summary, F-SOFT found a total of ten
real bugs, of which five were found only when F-SOFT analyzed the CHROME-lowered
program. Note, that all of these bugs were previously unknown. Finally, we note that
all witnesses found using the COMPILER-lowered were also found by F-SOFT when
analyzing CHROME-lowered program.

In the following, we highlight a few bugs that were found using the CHROME-
lowered C program. For the CHROME-lowered programs, F-SOFT reported a total of
14 NULL-pointer dereference witnesses of which 9 were found to be real bugs.

NULL-pointer dereference in virtual-function calls. Consider the code snippet from
id3lib shown in Fig. 7. It is possible to dereference a NULL pointer as follows:
the body of writeChars method (not shown) assumes that the first argument to
writeChars is never NULL, but GetRawBinary method may return NULL. The
class hierarchy in id3lib is not trivial: ID3 FieldImpl is derived from ID Field
and ID3 Writer is a base class for 9 derived classes of which 7 are immediate derived
classes. Further, all the methods invocations in Fig. 7 are virtual. When analyzing the
CHROME-lowered C program, F-SOFT presents a witness that invokesRenderBinary
with an object of type ID3 FieldImpl for the this pointer and an object of type

160 J. Yang et al.

Table 3. Effectiveness of CHROME in CBMC. C++ features are as follows: inheritance (INH),
multiple inheritance (MI), dynamic cast (DC), and virtual functions (VF). Results are as follows:
false positives (FP), false negative (FN), front-end failure (FF), and OK (

√
).

C++ Features CBMC CBMC F-SOFT

INH MI DC VF goto-cc COMPILER CHROME COMPILER CHROME

P1
√

FP
√ √

FN
√

P2
√ √

FF
√ √

FN
√

P3
√ √

FN FN
√

FN
√

P4
√ √ √

FN
√

FN
√

P5
√ √ √

FN FN
√

FN
√

P6
√ √ √ √

FF FN
√

FN
√

UnsyncedWriter for the reference parameter writer, followed by a call to the
method UnsyncedWriter::writeChars, where the NULL pointer dereference
occurs. This bug was not found when the COMPILER-lowered code is analyzed by F-
SOFT because of the use of a virtual-function pointer table at virtual-function calls.

Interprocedural NULL pointer dereferences. The analysis also discovered four more
scenarios where a NULL pointer dereference may occur in id3lib. These are related
to methods that return NULL pointers instead of valid C-strings under certain error con-
ditions. However, at certain call-sites to these methods, the returned C-string is passed
on to string manipulation functions such as strcmp without checking if the returned
string is NULL, thereby potentially causing segmentation faults. In addition, F-SOFT

found four bugs of a similar kind in coldet and cppcheck.
Finally, in the TiXmlComment::Parse method of the TinyXML project, F-

SOFT reported a NULL-pointer dereference. The NULL pointer dereference occurs
when the input string to TiXmlComment::Parse is empty. However, from further
investigation , it seems unlikely that this function will be called using an empty string.
Memory Leaks. When analyzing the CHROME-lowered program for memory leaks, it
reported 9 warnings, of which 1 was a real memory leak. The memory leak happens
in a method named convert i in file utils.cc of id3lib. F-SOFT reported this
leak for the COMPILER-lowered program also.

5.3 Applicability in Other Verification Tools

In addition to using F-SOFT, we also wanted to investigate the applicability of our
lowering in other verification tools. For this experiment, we created a collection of
microbenchmarks [23] that exercises various aspects of C++. Each program has two
assertions of which one always fails and the other always succeeds at runtime. For
each benchmark, we generated the COMPILER-lowered and CHROME-lowered pro-
grams and analyzed them using the CBMC verfication tool [8]. The CBMC suite uses
the goto-cc C++ front-end to generate an intermediate representation for analysis.

Tab. 3 shows the results of our experiments. The column labeled goto-cc shows
the results of running CBMC directly on the C++ program. A false negative refers to
the case where the tool does not report the failing assertion. A false positive refers
to the case where the tool reports an error for the succeeding assertion. As the table
shows CBMC with goto-cc does not perform well when complex C++ features such

Object Model Construction for Inheritance in C++ and Its Applications 161

as multiple inheritance and dynamic casts are used. It generates a false positive or a
false negative in many cases. The results highlight how difficult and error prone it is
to encode C++ semantics in program analyzers. When CBMC is used to analyze the
COMPILER-lowered program, it generates false negatives in many cases.

On the other hand, when CBMC is used to analyze the CHROME-lowered program,
it does not generate any false reports. (F-SOFT also performs well when a CHROME-
lowered program is analyzed.) This points to the effectiveness of using the CHROME

transformations even in other verification tools.

6 Related Work

The sub-object formalism presented by Rossie and Friedman forms the basis of our
CHROME object model transformations [30]. Ramalingam and Srinivasan present a
member lookup algorithm for C++ [28] which operates directly on the class hierar-
chy graph (CHG) instead of the sub-object graph, which may be exponential in the
size of the CHG. The issue of member lookup is orthogonal, but complementary, to the
problem of translating a C++ program with inheritance into a semantically equivalent
program without inheritance. Based on the Rossie-Friedman model, a number of class
hierarchy transformations have also been proposed which preserve the program seman-
tics, e.g., by slicing class hierarchies in libraries according to their clients for producing
optimized code [38].

Various approaches formalize the object layout in C++ to study space overhead and
performance aspects of object layouts [35,36], and perform formal verification of ob-
ject layouts [5,29,39]. These formalisms are geared towards devising memory efficient
layouts and the correctness of the layout algorithms. In contrast, the goal of CHROME

is to embed the object model into the program to make it more amenable to static anal-
ysis. However, such formalisms are complementary to our approach and may be used
to establish the correctness of CHROME transformations.

Another work that closely relates to this paper is the LLVM compiler frame-
work [19]. The LLVM framework translates a given C++ program into a low-level three
address code. Unlike our lowering algorithm, LLVM algorithm uses virtual function ta-
bles and runtime libraries during lowering, and therefore, produces code that is not very
amenable for precise program analysis.

The ROSE compiler front-end [27] and Clang static analyzer [6] are other popular
front-ends that generate an Intermediate Representation (IR) for C++ programs. These
front-ends support all C++ language features. However, the IR produced by these front-
ends still contain complex C++ features such as inheritance and casts. Therefore, every
analysis that uses their IR has to deal with inheritance and casts. On the other hand,
the source-to-source transformations presented in this paper eliminate complex C++
features, thereby making the implementation of subsequent analysis easier. The tech-
niques presented here may be used to simplify the IRs generated by ROSE and Clang.

A combination of the notions of delegation [21] (instantiating additional object
fields and forwarding method calls to them) and interfaces has been used [37] to sim-
ulate multiple inheritance in languages. However, these methods do not delve into the

162 J. Yang et al.

complexities of C++ object model, e.g., handling shared and replicated inheritance,
casting, etc. The CHROME transformations, in contrast, handle these features precisely.

Chen [5] proposed a typed intermediate language (IL) and a method to compile mul-
tiple inheritance into the language. The IL, however, is quite mathematical in nature
and dedicated analyses must be designed for the IL. In contrast, our target language
is (a subset of) C++ itself, and hence, the target program is immediately amenable to
conventional static analysis.

Finally, there is a vast literature on analysis (static or dynamic) of object-oriented
programs, mostly focused on Java programs [20]. In particular, Chandra et al. proposed
directed call graph construction [4] for Java programs to handle the explosion in the
number of potential virtual method calls, by interleaving call graph construction with
backward symbolic analysis.

7 Conclusions

In this paper, we presented an algorithm to translate a C++ program with inheritance
into a C++ program without inheritance using a representation of sub-objects called
CHROME. We also showed the effectiveness of the CHROME lowering on program anal-
ysis applications such as software model checking. The C program obtained using the
CHROME-based transformations enabled better results than the C program obtained
from a standard compiler-based lowering algorithm. We found a total of ten previously
unknown bugs, of which five were only found due to the precise modeling of objects
using CHROME. The results are quite encouraging and validates that our CHROME-
lowered code is better suited for program analysis.

References

1. Apache. Xerces project, http://xerces.apache.org/
2. Balakrishan, G., Maeda, N., Sankaranarayanan, S., Ivančić, F., Gupta, A., Pothengil, R.:

Modeling and analyzing the interaction of C and C++ strings. In: Int. Conf. on Formal Verif.
of Object-Oriented Software (2011)

3. Ball, T., Rajamani, S.K.: The SLAM project: debugging system software via static analysis.
In: POPL, pp. 1–3 (2002)

4. Chandra, S., Fink, S.J., Sridharan, M.: Snugglebug: A powerful approach to weakest precon-
ditions. In: PLDI, pp. 363–374 (2009)

5. Chen, J.: A typed intermediate language for compiling multiple inheritance. In: POPL (2007)
6. Clang static analyzer, http://clang-analyzer.llvm.org
7. C++ support for Clang, http://clang-analyzer.llvm.org/dev_cxx.html

(accessed January 6, 2012)
8. Clarke, E., Kroning, D., Lerda, F.: A Tool for Checking ANSI-C Programs. In: Jensen,

K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer, Heidelberg
(2004)

9. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press, Cambridge (1999)
10. Comeau C++ compiler, http://www.comeaucomputing.com

http://xerces.apache.org/
http://clang-analyzer.llvm.org
http://clang-analyzer.llvm.org/dev_cxx.html
http://www.comeaucomputing.com

Object Model Construction for Inheritance in C++ and Its Applications 163

11. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs. In: Proc.
2nd. Int. Symp. on Programming, Paris (April 1976)

12. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of
programs by construction of approximation of fixed points. In: POPL (1977)

13. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: The
ASTREÉ Analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 21–30. Springer,
Heidelberg (2005)

14. Cousot, P., Halbwachs, N.: Automatic discovery of linear constraints among variables of a
program. In: POPL, pp. 84–96 (1978)

15. C++ frontend. Edison Design Group, NJ
16. Havelund, K., Pressburger, T.: Model checking java programs using java pathfinder.

STTT 2(4), 366–381 (2000)
17. Hovemeyer, D., Pugh, W.: Finding more null pointer bugs, but not too many. In: PASTE, pp.

9–14 (2007)
18. Ivančić, F., Shlyakhter, I., Gupta, A., Ganai, M., Kahlon, V., Wang, C., Yang, Z.: Model

checking C programs using F-Soft. In: IEEE International Conference on Computer Design,
pp. 297–308 (October 2005)

19. Lattner, C.: LLVM: A compilation framework for lifelong program analysis and transforma-
tion. In: Int. Symp. on Code Generation and Optimization (2004)

20. Leavens, G.T., Leino, K.R.M., Müller, P.: Specification and verification challenges for se-
quential object-oriented programs. Formal Asp. Comput. 19(2), 159–189 (2007)

21. Lieberman, H.: Using prototypical objects to implement shared behavior in object oriented
systems. In: OOPSLA, pp. 214–223 (1986)

22. Miné, A.: The octagon abstract domain. In: Working Conf. on Rev. Eng. (2001)
23. NECLA verification benchmarks, http://www.nec-labs.com/research/

system/systems SAV-website/benchmarks.php
24. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate Language and Tools

for Analysis and Transformation of C Programs. In: CC 2002. LNCS, vol. 2304, pp. 213–
228. Springer, Heidelberg (2002)

25. Nokia. Qt: a cross-platform application and UI framework, http://qt.nokia.com/
26. Prabhu, P., Maeda, N., Balakrishnan, G., Ivančić, F., Gupta, A.: Interprocedural Excep-

tion Analysis for C++. In: Mezini, M. (ed.) ECOOP 2011. LNCS, vol. 6813, pp. 583–608.
Springer, Heidelberg (2011)

27. Quinlan, D.J.: Rose: Compiler support for object-oriented frameworks. Parallel Processing
Letters 10(2/3), 215–226 (2000)

28. Ramalingam, G., Srinivasan, H.: A member lookup algorithm for C++. In: SIGPLAN Conf.
on Prog. Lang. Design and Impl., pp. 18–30. ACM, New York (1997)

29. Ramananandro, T., Reis, G.D., Leroy, X.: Formal verification of object layout for C++ mul-
tiple inheritance. In: POPL (2011)

30. Rossie Jr., J.G., Friedman, D.P.: An algebraic semantics of subobjects. In: OOPSLA, pp.
187–199. ACM, New York (1995)

31. Sankaranarayanan, S., Ivančić, F., Gupta, A.: Program Analysis Using Symbolic Ranges.
In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 366–383. Springer,
Heidelberg (2007)

32. C. standards commitee. Working draft, standard for C++, http://
www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
(accessed January 6, 2012)

33. Stroustrup, B.: Multiple inheritance for C++. Computing Systems 2(4), 367–395 (1989)

http://www.nec-labs.com/research/system/systems_SAV-website/benchmarks.php
http://www.nec-labs.com/research/system/systems_SAV-website/benchmarks.php
http://qt.nokia.com/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf

164 J. Yang et al.

34. Stroustrup, B.: Evolving a language in and for the real world: C++ 1991-2006. In: Proc. of
History of Programming Languages III (2007)

35. Sweeney, P.F., Burke, M.: Quantifying and evaluating the space overhead for alternative C++
memory layouts. Softw. Pract. Exper. 33(7), 595–636 (2003)

36. Sweeney, P.F., Gil, J.Y.: Space and time-efficient memory layout for multiple inheritance. In:
OOPSLA. ACM, New York (1999)

37. Thirunarayan, K., Kniesel, G., Hampapuram, H.: Simulating multiple inheritance and gener-
ics in Java. Comp. Lang. 25(4), 189–210 (1999)

38. Tip, F., Sweeney, P.F.: Class hierarchy specialization. Acta. Inf. 36(12), 927–982 (2000)
39. Wasserrab, D., Nipkow, T., Snelting, G., Tip, F.: An operational semantics and type safety

proof for multiple inheritance in C++. In: OOPSLA, pp. 345–362. ACM Press (2006)
40. Xie, Y., Aiken, A.: Saturn: A scalable framework for error detection using boolean satisfia-

bility. Trans. on Prog. Lang. and Syst. 29(3) (2007)

GC-Safe Interprocedural Unboxing

Leaf Petersen and Neal Glew

Intel Labs, Santa Clara CA
{leaf.petersen,neal.glew}@intel.com

Abstract. Modern approaches to garbage collection (GC) require infor-
mation about which variables and fields contain GC-managed pointers.
Interprocedural flow analysis can be used to eliminate otherwise unneces-
sary heap allocated objects (unboxing), but must maintain the necessary
GC information. We define a core language which models compiler cor-
rectness with respect to the GC, and develop a correctness specification
for interprocedural unboxing optimizations. We prove that any optimiza-
tion which satisfies our specification will preserve GC safety properties
and program semantics, and give a practical unboxing algorithm satis-
fying this specification.

1 Introduction

Precise garbage collection (GC) for managed languages is usually implemented
by requiring the compiler to keep track of meta-data indicating which variables
and fields contain GC-managed references and which should be ignored by the
garbage collector. We refer to this information as the traceability of a field or
variable: a field or variable is traceable if it should be treated as a pointer into
the heap by the garbage collector.

In order to maintain this information in the presence of polymorphic func-
tions (including subtype polymorphism), many languages and compilers use a
uniform object representation in which every source level object is represented at
least initially by a heap allocated object. All interprocedural use of native (non-
heap) data therefore occurs only through fields of objects. This is commonly
referred to as boxing, objects represented in this way are referred to as boxed,
and projecting out of the uniform representation is referred to as unboxing. Box-
ing imposes substantial performance penalties for many reasons: the additional
overhead of the allocation and projection is substantial, arrays of boxed objects
exhibit poor locality, and the additional memory pressure can cause bottlenecks
in the hardware. In this paper, we show how to use the results of interprocedu-
ral flow analyses (reaching definitions) to implement an interprocedural unbox-
ing optimization while preserving the meta-data necessary for precise garbage
collection.

In the following sections, we define a high-level core language that captures
the essential aspects of GC meta-data and GC safety. We then give a high-level
specification of what a reasonable flow analysis on this language must compute,

M. O‘Boyle (Ed.): CC 2012, LNCS 7210, pp. 165–184, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

166 L. Petersen and N. Glew

and define a notion of a general unboxing optimization for this language. We
give a specification for when such an optimization is acceptable for a given flow
analysis. We show that the optimization induced by an acceptable unboxing
preserves the semantics of the original program, including GC safety. Finally, we
construct an algorithm closely based on one in use in our compiler and prove
that it produces an unboxing that satisfies our correctness specification, and
hence that it preserves the semantics of the program (including GC safety).

All the lemmas and theorems in the paper have been proven. Proofs are avail-
able in an extended technical report available from the first author’s website[7].

2 GC Safety

Consider the following program (using informal notation), where box denotes
a boxing operation that wraps its argument in a heap-allocated structure, and
unbox denotes its elimination form that projects out the boxed item from the
box:

let f = λx.(box x) in unbox(unbox(f (box 3)))

The only definition reaching the variable x is the boxed machine integer 3. In-
formation from an interprocedural analysis can be used to rewrite this program
to eliminate the boxing as follows:

let f = λx.x in f 3

In the second version of this program, the traceability of the values reaching x
has changed: whereas in the original program all values reaching x are repre-
sented as heap allocated pointers, in the second program all values reaching x
are represented as machine integers. From the standpoint of a garbage collector,
a garbage collection occuring while x is live must treat x as a root in the first pro-
gram, and must ignore x in the second program. There are numerous approaches
to communicating this information to the garbage collector. For example, some
implementations choose to dynamically tag values in such a way as to allow the
garbage collector to distinguish pointers from non-pointers by inspection. Such
an implementation might steal a low bit from the machine integer representation
to allow the machine integer 3 to be distinguished from a heap pointer.

Another very commonly used approach (particularly in more recent systems)
is to require the compiler to statically annotate the program with garbage col-
lection meta-data such that at any garbage collection point the garbage collector
can reconstruct exactly which live variables are roots. Typically, this takes the
form of annotations on variables and temporaries indicating which contain heap-
pointers (the roots) and which do not (the non-roots), along with information
at every allocation site indicating which fields of the allocated object contain
traceable data. It is this approach that we target in this paper.

The requirement that the compiler be able to annotate program variables with
a single static traceability constrains the compiler’s ability to rewrite programs

GC-Safe Interprocedural Unboxing 167

in that it must do so in a way that preserves the correctness of the GC meta-data
of the program. Consider an extension of the previous example.

let f = λx.x in unbox((f f) (box 3))

Assuming that functions are represented as heap-allocated objects then each
variable in this program can be assigned a traceability, since all objects passed
to f are heap references. However, an attempt to unbox this program as with
the previous example results in f being applied to both heap references (f) and
non-heap references (3).

let f = λx.x in(f f) 3

As this example shows, the concerns of maintaining garbage-collector meta-data
constrain optimization1 in ways not apparent in a GC-ignorant semantic model.

2.1 A Core Language for GC Safety

In order to give a precise account of interprocedural unboxing, we begin by defin-
ing a core language capturing the essential features of GC safety. The motivation
for the idiosyncracies of this language lies in the requirements of the underlying
model of garbage collection. We assume that pointers cannot be intrinsically
distinguished from non-pointers, and hence must be tracked by the compiler. In
our implementation, the compiler intermediate language under consideration is
substantially more low-level: a control-flow graph based, static single assignment
intermediate representation. We believe however that all of the key issues are
captured faithfully in this higher-level representation.

Traceabilities t ::= b | r
Term variables x, y, z

Constants c
Labels i ::= 0, 1, . . .

Labeled Terms e ::= mi | vi

Terms m ::= x | λxi:t.e | e1 e2 | boxt e |
unbox e | ρ(e)

Values v ::= c | 〈ρ, λxi:t.e〉 | 〈vi:t〉
Environments ρ ::= xi1

1 :t1 = v1
j1 , . . . , xin

n :tn = vn
jn

States M ::= (ρ, e)

Fig. 1. Syntax

Figure 1 defines the syntax of our core language. The essence of the language
is largely that of the standard untyped lambda calculus with an explicit envi-
ronment semantics, extended with a form of degenerate type information we call
traceabilities. Traceabilities describe the GC status of variables: the traceability
b (for bits) indicates something that should be ignored by the garbage collec-
tor, while the traceability r (for reference) indicates a GC-managed pointer.
The traceability b is inhabited by an unspecified set of constants c while the

1 It is worth noting that a serious compiler might be expected to duplicate the body
of f in this simple example thereby eliminating this constraint and allowing the
unboxing optimization to be more effective.

168 L. Petersen and N. Glew

traceability r is inhabited by functions (anticipating their implementation by
heap-allocated closures) and by boxed objects. Anticipating the needs of the
flow analysis, we label each term, value, and variable binding site with an inte-
ger label. We do not assume that labels or variables are unique within a program.

Expressions e consist of labeled terms mi and labeled values vi. The terms m
consist of variables, functions, applications, box introductions, box eliminations,
and frames. Variable binding sites are decorated with traceability information
(λxi:t.e), as are box introductions (boxt e). We represent heap allocation in the
language via the boxt e term, which corresponds to allocating a heap cell con-
taining the value for e. The traceability t gives the meta-data with which the
heap-cell will be tagged, allowing the garbage collector to trace the cell. Objects
can be projected out of an allocated object by the unbox e operation. Frames
ρ(e) are discussed below.

Values consist of either constants, closures, or heap-allocated boxes. We dis-
tinguish between the introduction form (boxt e) and the value form (〈vi:t〉) for al-
located objects. The introduction form corresponds to the allocation instruction,
whereas the value form corresponds to the allocated heap value. This distinction
is key for the formulation of GC safety and the dynamic semantics. For the pur-
poses of the dynamic semantics we also distinguish between functions (λxi:t.e)
and the heap allocated closures that represent them at runtime (〈ρ, λxi:t.e〉).

For notational convenience, we will sometimes use the notation vb to indicate
that a value v is a non-heap-allocated value (i.e. a constant c), and vr to indicate
that a value v is a heap-allocated value (i.e. either a lambda value or a boxed
value). If t is a traceability meta-variable, then we use vt to indicate that v is a
value of the same traceability as t. In examples, we use a derived let expression,
taking it to be syntactic sugar for application in the usual manner. Environments
ρ map variables to values. The term ρ(e) executes e in the environment ρ rather
than the outer environment – all of the free variables of e are provided by ρ. The
nested set of these environments at any point can be thought of as the activation
stack frames of the executing program. The traceability annotations on variables
in the environments play the role of stack frame GC meta-data, indicating which
slots of the frame are roots (traceability r). The environments buried in closures
(〈ρ, λxi:t.e〉) similarly provide the traceabilities of values reachable from the
closure, and hence provide the GC meta-data for tracing through closures. While
we do not make the process of garbage collection explicit, it should be clear how
to extract the appropriate set of GC roots from the environment and any active
frames.

This core language contains the appropriate information to formalize a notion
of GC safety consisting of two complementing pieces. First we define a dynamic
semantics in which reductions that might lead to undefined garbage-collector be-
havior are explicitly undefined. Programs that takes steps in this semantics do
not introduce ill-formed heap objects. Secondly, we define a notion of a traceable
program: one in which all heap values have valid GC meta-data. Reduction steps
in the semantics can then be shown to maintain the traceability property. The

GC-Safe Interprocedural Unboxing 169

GC correctness criteria for a compiler optimization then is that the optimization
map traceable programs to traceable programs, and that it not introduce new
undefined behavior.

2.2 Operational Semantics

We choose to use an explicit environment semantics rather than a standard
substitution semantics since this makes the GC meta-data for stack frames and
closures explicit in the semantics. Thus a machine state (ρ, e) supplies an environ-
ment ρ for e that provides the values of the free variables of e during execution.
Environments contain traceability annotations on each of the variables mapped
by the environment.

xi:t = vj ∈ ρ

(ρ, xk) �−→ (ρ, vj) (ρ, (λxi:t.e)
j
) �−→ (ρ, 〈ρ, λxi:t.e〉j)

t = t′

(ρ, (boxt vt′
i)

j
) �−→ (ρ, 〈vt′ i:t〉j)

(ρ, e1) �−→ (ρ, e′1)

(ρ, (e1 e2)
i) �−→ (ρ, (e′1 e2)

i
)

(ρ, e2) �−→ (ρ, e′2)

(ρ, (vi e2)
j
) �−→ (ρ, (vi e′2)

j
)

t = t′

(ρ, (〈ρ′, λxi:t.e〉j vt′
k)

l
) �−→ (ρ, (ρ′, xi:t = vt′

k)(e)
l
)

(ρ, e) �−→ (ρ, e′)

(ρ, (boxt e)
i) �−→ (ρ, (boxt e

′)i)

(ρ, e) �−→ (ρ, e′)

(ρ, (unbox e)i) �−→ (ρ, (unbox e′)i) (ρ, (unbox 〈vi:t〉j)k) �−→ (ρ, vi)

(ρ′, e) �−→ (ρ′, e′)

(ρ, ρ′(e)i) �−→ (ρ, ρ′(e′)i) (ρ, ρ′(vi)
j
) �−→ (ρ, vi)

Fig. 2. Operational Semantics

Reduction in this language is for the most part fairly standard. We deviate
somewhat in that we explicitly model the allocation of heap objects as a reduc-
tion step—hence there is an explicit reduction mapping a lambda term λxi:t.e
to an allocated closure 〈ρ, λxi:t.e〉, and similarly for boxed objects and values.
More notably, beta-reduction is restricted to only permit construction of a stack
frame when the meta-data attached to the parameter variable is appropriate for
the actual argument value. This captures the requirement that stack frames have
correct meta-data for the garbage collector. In actual practice, incorrect meta-
data for stack frames leads to undefined behavior (since incorrect meta-data may
cause arbitrary memory corruption by the garbage collector)—similarly here in
the meta-theory we leave the behavior of such programs undefined. In a similar

170 L. Petersen and N. Glew

fashion, we only define the reduction of the allocation operation to an allocated
value (boxt vt′ �−→ 〈vt′ :t〉) when the operation meta-data is appropriate for the
value (i.e. t = t′).

It is important to note that this semantics does not model a dynamically
checked language, in which there is an explicit check of the meta-data associated
with these reductions. The point is simply that the semantics only specifies how
programs behave when these conditions are met—in all other cases the behavior
of the program is undefined.

2.3 Traceability

The operational semantics ensures that no reduction step introduces mis-tagged
values. In order to make use of this, we define a judgment for checking that
a program does not have a mis-tagged value in the first place. Implicitly this
judgement defines what a well-formed heap and activation stack looks like; how-
ever, since our heap and stack are implicit in our machine states, it takes the
form of a judgement on terms, values, environments, and machine states.

The value judgement v v:t asserts that a value v is well-formed, and has
traceability t. In this simple language, this corresponds to having the meta-data
on the environment of each lambda value be consistent and the meta-data on
each boxed value be consistent with the traceability of the object nested in the
box. An environment is consistent, ρ tr, when the annotation on each variable
agrees with the traceability of the value it is bound to. Since we cannot check
the consistency of general terms with the first-order information available, the
term judgement e tr and machine state judgement M tr simply check that
all values and environments (and hence stack frames) contained in the term or
machine state are well-formed.

Labeled Terms � e tr

� m tr

� mi tr

�v v:t

� vi tr

Terms � m tr

� x tr

� e tr

� λxi:t.e tr

� e1 tr
� e2 tr

� e1 e2 tr

� e tr

� boxt e tr

� e tr

� unbox e tr

� ρ tr
� e tr

� ρ(e) tr

Values �v v:t

�v c:b

� ρ tr � e tr

�v 〈ρ, λxi:t.e〉:r
�v v:t

�v 〈vi:t〉:r

Environments � ρ tr

�v v1:t1 · · · �v vn:tn

� xi1
1 :t1 = v1

j1 , . . . , xin
n :tn = vn

jn tr

Machine States � M tr

� ρ tr � e tr

� (ρ, e) tr

Fig. 3. Traceability

GC-Safe Interprocedural Unboxing 171

The key result for traceability is that it is preserved under reduction. That is,
if a traceable term takes a well-defined reduction step, then the resulting term
will be traceable.

Lemma 1 (Preservation of traceability). If M tr and M �−→ M ′ then
 M ′ tr.

There is of course no corresponding progress property for our notion of traceabil-
ity, since programs can go wrong. Compiler optimizations are simply responsible
for ensuring that they do not introduce new ways to go wrong.

3 Flow Analysis

Our original motivation for this work was to apply interprocedural analysis to the
problem of eliminating unnecessary boxing in programs. There is a vast body of
literature on interprocedural analysis and optimization, and it is generally fairly
straightforward to use these approaches to obtain information about what terms
flow to what use sites. This paper is not intended to provide any contribution
to this body of work, which we will broadly refer to as flow analysis. Instead,
we focus on how to use the results of such a generic analysis to implement an
unboxing optimization that preserves GC safety.

In order to do this, we must provide some framework for describing what
information a flow analysis must provide. For the purposes of our unboxing op-

timization, we are interested in finding (inter-procedurally) for every (unbox vj)
i

operation the set of (boxt e)
k
terms that could possibly reach v. Under appro-

priate conditions, we can then eliminate both the box introductions and the
box elimination, thereby improving the program. The core language defined in
Section 2 provides labels serving as proxies for the terms and variables on which
they occur – the question above can therefore be re-stated as finding the set of
labels k that reach the position labeled with j.

More generally, following previous work we begin by defining an abstract
notion of analysis. We say that an analysis is a pair (C,). Binding environments
 simply serve to map variables to the label of their binding sites. The mappings
are, as usual, global for the program. Consequently, a given environment may
not apply to alpha-variants of a term. We do not require that labels be unique
within a program—as usual however, analyses will be more precise if this is
the case. Variables are also not required to be unique (since reduction may
duplicate terms and hence binding sites). However, duplicate variable bindings
in a program must be labeled consistently according to or else no analysis of
the program can be acceptable according to our definition. This can always be
avoided by alpha-varying or relabeling appropriately.

A cache C is a mapping from labels to sets of shapes. Shapes are given by the
grammar:

Shapes: s ::= ci | (i:t→ j)k | (boxt i)j

The idea behind shapes is that each shape provides a proxy for a set of terms that
might flow to a given location, describing both the shape of the values that might

172 L. Petersen and N. Glew

flow there and the labels of the sub-components of those values. For example,
for an analysis (C,), ci ∈ C(k) indicates that (according to the analysis) the
constant c, labeled with i, might flow to a location labeled with k. Similarly,
if (i:t→ j)k ∈ C(l), then the analysis specifies that among the values flowing
to locations labeled with l might be lambdas labeled with k, whose parameter
variable is labeled with i and annotated with t and whose bodies are labeled
with j. If (boxt k)

i ∈ C(l) then among the values that might flow to l (according
to the analysis) are boxed values labeled with i, with meta-data t and whose
bodies are labeled by some j such that C(j) ⊆ C(k).

It is important to note that the shapes in the cache may not correspond
exactly to the terms in the program, since reduction may change program terms
(e.g. by instantiating variables with values). However, reduction does not change
the outer shape and labeling of values—it is this reduction invariant information
that is captured by shapes.

Clearly, not every choice of analysis pairs is meaningful for program optimiza-
tion. While in general it is reasonable (indeed, unavoidable) for an analysis to
overestimate the set of terms associated with a label, it is unacceptable for an
analysis to underestimate the set of terms that flow to a label—most optimiza-
tions will produce incorrect results, since they are designed around the idea that
the analysis is telling them everything that could possibly flow to them. In order
to capture the notion of when an analysis pair gives a suitable approximation
of the flow of values in a program we follow the general spirit of Nielson et al.
[6], and define a notion of an acceptable analysis. That is, we give a declarative
specification that gives sufficient conditions for specifying when a given analysis
does not underestimate the set of terms flowing to a label, without commit-
ting to a particular analysis. We arrange the subsequent meta-theory such that
our results apply to any analysis that is acceptable. In this way, we completely
decouple our optimization from the particulars of how the analysis is computed.

Our acceptable-analysis relation is given in Figure 4 – the judgement C;
(ρ, e) determines that an analysis pair (C,) is acceptable for a machine state
(ρ, e), and similarly for the environment and expression forms of the judgement.
We use the notation lbl(e) to denote the outermost label of e: that is, i where e
is of the form mi or vi. The acceptability judgement generally indicates for each
syntactic form what the flow of values is. For example, in the application rule,
the judgment insists that for every lambda value that flows to the applicand
position, the set of shapes associated with the parameter of that lambda is a
super-set of the set of shapes associated with the argument of the application;
and that the set of shapes associated with the result of the lambda is a sub-set
of the set of shapes associated with the application itself.

Given this definition, we can show that the acceptability relation is preserved
under reduction.

Lemma 2 (Many-step reduction preserves acceptability). If C; M
and M �−→∗ M ′ then C; M ′.

GC-Safe Interprocedural Unboxing 173

C; � � e

C(�(x)) ⊆ C(i)

C; � � xi

�(x) = j C; � � e (j:t → lbl(e))i ∈ C(i)

C; � � (λxj :t.e)
i

C; � � e1 C; � � e2
∀(k:t → l)j ∈ C(lbl(e1)) :

C(lbl(e2)) ⊆ C(k) ∧ C(l) ⊆ C(i)

C; � � (e1 e2)
i

C; � � e (boxt j)
i ∈ C(i) C(lbl(e)) ⊆ C(j)

C; � � (boxt e)
i

C; � � e

∀(boxt k)j ∈ C(lbl(e)) : C(k) ⊆ C(i)

C; � � (unbox e)i

C; � � ρ C; � � e C(lbl(e)) ⊆ C(i)

C; � � ρ(e)i

ci ∈ C(i)

C; � � ci

�(x) = j C; � � ρ C; � � e (j:t → lbl(e))i ∈ C(i)

C; � � 〈ρ, λxj :t.e〉i

C; � � vj (boxt k)
i ∈ C(i) C(j) ⊆ C(k)

C; � � 〈vj :t〉i

C; � � ρ

∀1 ≤ k ≤ n : �(xk) = ik ∧ C(jk) ⊆ C(ik) ∧ C; � � vk
jk

C; � � xi1
1 :t1 = vi

j1 , . . . , xin
n :tn = vn

jn

C; � � M

C; � � ρ C; � � e

C; � � (ρ, e)

Fig. 4. Acceptable Analysis

4 Unboxing

The goal of the unboxing optimization is to use the information provided by
a flow analysis to replace a boxed object with the contents of the box. Doing
so may change the traceability, since the object in the box may not be a GC-
managed reference. Moreover, the object in the box may itself be a candidate for
unboxing; consequently, determining the traceability of boxed objects depends
on exactly which objects are unboxed. Function parameters may be instanti-
ated with objects from multiple different definition sites, some of which may be
unboxed and some of which may not.

174 L. Petersen and N. Glew

Consider again the first example from Section 1, written out with explicit GC
information and labels:

let f0:r = (λx1:r.(boxr x
2)

3
)
4
in (unbox (unbox (f5 (boxb 3

6)
7
)
8
)
9

)
10

It is fairly easy to see that this program is unboxable. The binding site for x
is only reached by the term labeled with 7 (the outer box introduction), and
hence there should be no problems with changing its traceability annotation.
Each box elimination is reached only by a single box introduction, and hence
the box/unbox pairs in this program should be eliminable, yielding an optimized
program:

let f0:r = (λx1:b.x2)
4
in (f5 36)

8

Notice that in order to rewrite the program, we have had to change the trace-
ability annotation at the binding site for x, since we have eliminated the box
introduction on its argument. This constraint is imposed on us by the need to
keep the GC information consistent. If we choose (perhaps because of limita-
tions on the precision of the analysis, or perhaps because of other constraints)
to only eliminate the innermost box/unbox pair, then we must similarly adjust
the traceability annotation on the remaining box introduction (labeled with 3).

let f0:r = (λx1:b.(boxb x
2)

3
)
4
in (unbox (f5 36)

8
)
9

Not all programs can be consistently rewritten in this manner. If we consider
again the second example from Section 1, we see an example of a program in
which we must forgo optimization if we wish to preserve GC safety.

let f0:r = (λx1:r.x2)
3
in (unbox ((f4 f5)

6
(boxb 3

7)
8
)
9
)
10

It is easy to see that any acceptable analysis must include the function labeled
with 3 and the boxed term labeled with 8 in the set of terms reaching the binding
site for x, labeled with 1. We might naively attempt to eliminate the box/unbox
pair as follows:

let f0:r = (λx1:?.x2)
3
in ((f4 f5)

6
37)

9

Unfortunately, there is no consistent choice of traceability annotation for the
binding site for x. If we choose b as the traceability annotation then after reduc-
tion we arrive at a state that has no defined reduction:

((〈ε, λx1:b.x2〉3 〈ε, λx1:b.x2〉3)
6
37)

9

The first application leads to undefined behavior, since the traceability of the
argument value does not match the traceability annotation on the parameter
variable. If we had instead chosen r as the traceability annotation, then one
further reduction would still lead us to undefined behavior.

(〈ε, λx1:r.x2〉3 37)
9

GC-Safe Interprocedural Unboxing 175

The requirement to preserve GC information imposes two burdens on us then:
we must provide some mechanism for assigning new GC meta-data when we
optimize the program, and we must also ensure that we do not optimize the
program in a way that does not admit a consistent assignment of such meta-
data. In the rest of this section, we first develop a framework for specifying an
unboxing assignment regardless of any correctness concerns, and then separately
define a judgement specifying when such an assignment is a reasonable one.

4.1 The Unboxing Optimization

We can divide the problem of specifying an unboxing into two sub-parts: choosing
the particular box/unbox pairs that are valid to eliminate and assigning new
traceability annotations to terms that are affected. An unboxing then is a pair
(T, Υ), where Υ is a set of labels, and T is a partial function from labels to
traceabilities. The unboxed set Υ is the set of labels to be unboxed, and the
traceability map T specifies new traceabilities for labels affected by the unboxing.
The fact that T is a partial function is essential for several reasons. On a technical
level, we do not require that labels be unique in a program. Consequently, it is
possible that there is no consistent choice for a specific label. More importantly,
requiring that T be a total function would put unsatisfiable requirements on
the flow analysis. For example, a program that allocates a mis-tagged object
after going into an infinite loop is GC safe according to our specification since
the bad allocation is never reached. Requiring the analysis to find a consistent
traceability map for such a program is equivalent to requiring it to solve the
halting problem, since it must statically prove that the set of values dynamically
reaching the mis-tagged allocation site is empty. By allowing T to be a partial
function, we allow for necessary imprecision in the analysis. Also of importance
is the need to allow for relative imprecision in the analysis. In order to achieve
faster compile times, we may choose to use less precise analyses that potentially
over-approximate the set of terms reaching a use point. Consequently, even if
a consistent traceability assignment exists, we may not have sufficiently precise
information to construct it.

An unboxing pair defines a total function mapping labeled terms to labeled
terms, as shown in Figure 5. For notational convenience, we take T(i) = t as
asserting that i is in the domain of T, and that its image is t. We also say that:
T(i) ≥ t if and only if T(i) = t or T(i) is undefined; and T(i, t) = T(i) if T
defined at i, otherwise t.

An important observation about the unboxing optimization as we have de-
fined it is unlike many previous interprocedural approaches (Section 6), it only
improves programs and never introduces instructions or allocation. This is easy
to see, since the unboxing function only removes boxes (which allocate and have
an instruction cost), and unboxes (which have an instruction cost) and never
introduces any new operations at all.

176 L. Petersen and N. Glew

�e�TΥ

�xi�TΥ = xi

�(λxj :t.e)
i�TΥ = (λxj :T(j, t).�e�TΥ)

i

�(e1 e2)
i�TΥ = (�e1�TΥ �e2�TΥ)

i

�(boxt e)i�TΥ = �e�TΥ i ∈ Υ

= (boxT(lbl(e),t) �e�TΥ)
i

i /∈ Υ

�(unbox e)i�TΥ = �e�TΥ lbl(e) ∈ Υ

= (unbox �e�TΥ)
i

lbl(e) /∈ Υ

�ρ(e)i�TΥ = �ρ�TΥ (�e�TΥ)
i

�ci�TΥ = ci

�〈ρ, λxj:t.e〉i�TΥ =

〈�ρ�TΥ , λxj :T(j, t).�e�TΥ 〉i

�〈vj :t〉i�TΥ = �vj�TΥ i ∈ Υ

= 〈�vj�TΥ :T(j, t)〉
i
i /∈ Υ

�ρ�TΥ
�xi1

1 :t1 = v1
j1 , . . . , xin

n :tn = vn
jn�TΥ =

xi1
1 :T(i1, t1) = �v1j1�TΥ , . . . , xin

n :T(in, tn) = �vnjn�TΥ
�M�TΥ �(ρ, e)�TΥ = (�ρ�TΥ , �e�TΥ)

Fig. 5. Unboxing

4.2 Acceptable Unboxings

While any choice of (T, Υ) defines an unboxing, not every unboxing pair is rea-
sonable in the sense that it defines a semantics preserving optimization. Just as
we defined a notion of acceptable analysis in Section 3, we will define a judge-
ment that captures sufficient conditions for ensuring correctness of an unboxing,
without specifying a particular method of choosing such an unboxing. By us-
ing analyses of different precisions or choosing different optimization strategies
we may end up with quite different choices of unboxings; however, so long as
they satisfy our notion of acceptability we can be sure that they will preserve
correctness.

Informally, we can eliminate a box introduction if certain criteria are met.
Firstly, we must be able to eliminate all of the unbox operations that it reaches.
Secondly, we must be able to find a consistent traceability assignment covering
each intermediate variable or field that it reaches, given all of the rest of our
unboxing choices. We can eliminate an unbox operation if we can eliminate all
of the box operations that reach it. Finally, we must also impose coherence re-
quirements on traceability assignments. For every variable whose binding-site
label occurs in the domain of T, we require that its new traceability assignment
agree with the traceability assignment of all of its reaching definitions. Similarly,
for every box introduction (or value form) that is not itself unboxed, we re-
quire that the traceability assignment for its contents agree with the traceability
assignment for every reaching definition in the flow analysis.

This informal description is made precise in Figure 6. We use the notation

i
T,Υ� j to indicate when an unboxing agrees at two labels i and j.

i
T� j iff either T(i) = T(j) (both defined) or T(i) and T(j) undefined

i
Υ� j iff either i, j ∈ Υ or i, j /∈ Υ

i
T,Υ� j iff i

T� j and i
Υ� j

GC-Safe Interprocedural Unboxing 177

An unboxing pair (T, Υ) is acceptable relative to an analysis (C,) for a program
M (judgement C M �� (T, Υ)) if the unboxing is cache consistent (judgement
C (T, Υ)), and consistent (judgement T, Υ M).

T, Υ � e

T, Υ � xi

T, Υ � e
T(j) ≥ r

T, Υ � (λxi:t.e)
j

T, Υ � e1
T, Υ � e2

T, Υ � (e1 e2)
i

i ∈ Υ
T(i) = T(lbl(e))

T, Υ � e

T, Υ � (boxt e)
i

i /∈ Υ T(i) ≥ r

T, Υ � e

T, Υ � (boxt e)
i

T, Υ � e

T, Υ � (unbox e)i

T, Υ � ρ T, Υ � e

T, Υ � ρ(e)i

T(i) ≥ b

T, Υ � ci

T, Υ � ρ T, Υ � e T(j) ≥ r

T, Υ � 〈ρ, λxi:t.e〉j

j ∈ Υ T(j) = T(i)
T, Υ � vi

T, Υ � 〈vi:t〉j

j /∈ Υ T(j) ≥ r
T, Υ � vi

T, Υ � 〈vi:t〉j

T, Υ � ρ
∀1 ≤ k ≤ n : T(ik, tk) = T(jk, tk) ∧ T, Υ � vk

jk

T, Υ � xi1
1 :t1 = v1

j1 , . . . , xin
n :tn = vn

jn

T, Υ � M
T, Υ � ρ T, Υ � e

T, Υ � (ρ, e)
C � (T, Υ)

∀i : s ∈ C(i) =⇒ i
T,Υ� lbl(s)

C � (T, Υ)

C � M �� (T, Υ)
C � (T, Υ) T, Υ � M

C � M �� (T, Υ)

Fig. 6. Consistent and acceptable unboxing

Cache consistency C (T, Υ) encapsulates the requirement that an unbox
can only be eliminated if all of the reaching definitions of its target are unboxed.
It requires agreement between the label of the target of the unbox and the labels
of everything in the cache of the target. The results from Section 3 ensure that
under any evaluation, any term reaching the unbox is in the cache of the original
target label, and hence that the unboxing approximation takes into account a
sufficient set of terms2.

Cache consistency does not put any constraints on the actual choice of trace-
abilities in T. The consistency judgement (T, Υ M) ensures that the traceabil-
ity map T encodes choices that are compatible with the actual labeled terms in
M , given a particular choice of terms to unbox Υ .

2 See the cache refinement lemma in the extended technical report [7] for more detail.

178 L. Petersen and N. Glew

For environments, the consistency judgement insists that the traceability map
assign consistent traceabilities to values and the variables to which they are
bound. In this way we can ensure that the result of unboxing an environment
still provides good traceability information for the garbage collector.

The term consistency judgement for the most part only requires that the
traceability map be consistent with the labeled values. Variable uses incur no
constraints, and neither do applications nor unbox operations (beyond requiring
the consistency of their sub-terms). For constants ci, we require that the trace-
ability assignment T, if defined at i, maps i to b. That is, we require that the
traceability assignment for i is consistent with the actual term inhabiting the la-
bel. Functions have a similar requirement: the traceability assignment for their
label, if present, must be r since functions are represented by heap allocated
closures. In the value form the closed over environment must be consistent as
well.

The only particularly interesting rules are those covering the boxed introduc-
tion form and isomorphically the boxed value form. There are two cases: one for
when the boxed value is selected for unboxing (that is, its label is in Υ), and one
for when it has not been selected for unboxing.

If the term is not to be unboxed (j /∈ Υ), then the consistency rule requires
that its traceability assignment (if any) be r. In the case that the term is to be
unboxed (j ∈ Υ) this is not required since the unboxed value may not in fact
end up having traceability r. Instead, we require that the traceability map have
an assignment both for the label of the box (j), and for the label of the contents
of the box (i), and that it assign the same traceability to both. This requirement
may be somewhat unexpected at first. The intuition behind it is that the end
result of unboxing will replace the outer box by the inner boxed value; therefore
we wish to treat the boxed value as having the same traceability as its contents.

Our goal is to show that the unboxing function induced by any acceptable
unboxing is in some sense correct as an optimization. The first part of this is to
show that unboxing preserves traceability.

Theorem 1 (Consistent unboxings preserve traceability)

– If T, Υ vi and v vi:t then v �vi�TΥ :T(i, t).
– If T, Υ e and e tr then �e�TΥ tr.
– If T, Υ ρ and ρ tr then �ρ�TΥ tr.
– If T, Υ M and M tr then �M�TΥ tr.

Theorem 1 tells us that if we have a traceable program, then the result of un-
boxing it is still traceable. The second step to showing correctness is to show
that unboxing does not introduce new undefined behavior.

Theorem 2 (Coherence)

– If C; M , C M �� (T, Υ), and M �−→∗ (ρ, vi) then �M�TΥ �−→∗

(�ρ�TΥ , �vi�
T
Υ).

– If C; M , C M �� (T, Υ), and M �−→ · · · then �M�TΥ �−→ · · · .

GC-Safe Interprocedural Unboxing 179

Theorem 2 shows that if two terms are related by reduction, then their images
under the unboxing function are also related by the many step reduction re-
lation given that the unboxing pair is acceptable; and that if a term diverges
under reduction, then its image under the unboxing function also diverges. In
other words, for an acceptable analysis and an acceptable unboxing, the induced
unboxing function preserves the semantics of the original program up to elimi-
nation of boxes. Since the semantics of the core language only defines reduction
steps that preserve GC safety, this theorem implies that the image of a GC safe
program under unboxing is also GC safe.

5 Construction of an Acceptable Unboxing

The previous section gives a declarative specification for when an unboxing pair
(T, Υ) is correct but does not specify how such a pair might be produced. In
this section we give a simple algorithm for constructing an acceptable unboxing
given an arbitrary acceptable flow analysis.

The idea behind the algorithm is that given a program and an acceptable flow
analysis for it, we use the results of the flow analysis to construct the connected
components of the inter-procedural flow graph of the program. Each connected
component initially defines its own equivalence class. For each equivalence class,
we then compute the least upper bound of the traceabilities of all of the introduc-
tion forms of all of the elements of the component except the box introductions.
Box introductions are left initially unconstrained, since we intend to eliminate
them. If the least upper bound is well-defined, then the equivalence class can
potentially be eliminated. We then consider each box introduction in turn and
attempt to eliminate it by combining the respective equivalence classes of the
box and its contents. This is possible whenever doing so will not over-constrain
the resulting combined equivalence class. When all possible boxes have been
eliminated, the algorithm terminates. In the rest of the section, we make this in-
formal algorithm concrete and show that the choice of unboxing that it produces
is in fact acceptable.

For the purposes of this section we ignore environments and the intermediate

forms ρ(e), 〈ρ, λxi:t.e〉j and 〈vi:t〉j . These constructs are present in the language
solely as mechanisms to discuss the dynamic semantics—in this sense they can be
thought of as intermediate terms, rather than source terms. It is straightforward
to incorporate these into the algorithm if desired.

Given a flow analysis (C,), we define the induced undirected flow graph FG
as an undirected graph with a node for every label in C, and edges as follows.

– For every label i and every shape s ∈ C(i), we add an edge between i and
lbl(s).

– For every box introduction in the program (boxt e)
i and every shape in the

cache (boxt j)
i ∈ C(i) we add an edge between lbl(e) and j.

The first set of edges simply connects up each program point with all of its
reaching definitions. The second set of edges is added to simplify the proofs in

180 L. Petersen and N. Glew

the pathological case that e has no reaching definitions (and hence the box itself
is dynamically dead and unreachable): in the usual case where values reach e
then the definition of an acceptable analysis implies that these edges are already
present.

We define equivalence classes of labels as disjoint sets of labels in the usual
way. The function EC maps labels i to the disjoint set containing i. We extend
traceabilities t to a complete flat lattice t̂ with a top element �, a bottom element
⊥ and the usual least upper bound function on t̂.

� � t = �
t � � = �

⊥ � t = t
t � ⊥ = t

t � t = t
b � r = �
r � b = �

We initialize the mapping EC by finding the connected components of the induced
undirected flow-graph FG, and initializing EC(i) with the connected component
containing i. As the algorithm proceeds, two equivalence classes may be collapsed
into a single equivalence class requiring an updated mapping EC.

We maintain a set of equivalence classes CN consisting of current candidates
for unboxing. When equivalence classes are collapsed, the elements of CN are
adjusted appropriately, as will be shown.

We maintain a set of labels Υ , which is an unboxing set in the sense of Section
4. The set Υ at all times contains all of the labels already selected for unboxing,
and is initially empty.

We maintain an extended traceability map T that maps equivalence classes
to extended traceabilities t̂. For notational convenience we define TEC to be the
derived function mapping labels to the extended traceabilities of their equiva-
lence classes: TEC(k) = T (EC(k)). The derivation of a standard traceability map
T from an extended traceability map T is then given as follows.

T(k) = TEC(k) ⊥ < TEC(k) < �
T(k) = r TEC(k) = ⊥
T(k) = undefined TEC(k) = �

The general idea is that an equivalence class is mapped by the T function to the
least upper bound of the traceabilities of all of the reaching definitions of all of
the labels in the equivalence class. An equivalence class containing no reaching
definitions will be unconstrained – for technical reasons we choose an arbitrary
traceability (r) for such classes. An equivalence class containing definitions with
inconsistent traceabilities will have no defined traceability in the induced map-
ping.

During the algorithm traceability constraints imposed by box introductions
in the candidate set are left out of the initial mapping and hence must be added
back in before computing the induced traceability map. We write T CN for the
extended traceability map obtained by adding in the delayed constraints for each
equivalence class, and T CN

EC for the extension of this to individual labels given
by T CN

EC (i) = T CN (EC(i)).

T CN (EC(k)) = T (EC(k)) if EC(k) /∈ CN
T CN (EC(k)) = T (EC(k)) � r if EC(k) ∈ CN

GC-Safe Interprocedural Unboxing 181

Note that by definition, if labels i and j are in the same equivalence class
(EC(i) = EC(j)), then the traceability map T induced by an extended traceability
map T agrees on i and j.

We define the immediate extended traceability of a labeled term itr(e) as
follows.

itr(ci) = b

itr((λxi:t.e)
j
) = r

itr((boxt e)
i
) = r

itr(e) = ⊥ otherwise

The algorithm starts with an empty unboxing set Υ . The candidate set CN is
initialized by including EC(i) for each (boxt e)

i
in the program. The extended

traceability map is initialized by setting for each equivalence class S:

T (S) =
⊔

i∈S, s∈C(i), s	=(boxt k)
j

itr(s)

That is, we take the extended traceability associated with the equivalence class
S to be least upper bound of the immediate traceabilities of all of the elements
of the cache of all the labels in the equivalence class, except those which are box
introductions. The practical effect of this is to make the extended traceability of
every label be the least upper bound of the traceability of every introduction form
in its connected component (again, excepting boxes). An equivalence class that
is unconstrained (⊥) either counts only box introductions among its definitions,
or contains no definitions at all and hence is uninhabited (this can arise because
of unreachable code).

The result of the initialization phase is a (T , Υ, CN , EC) quadruple, which
induces an unboxing pair (T, Υ) where T = T CN

EC . It can be shown that the
unboxing pair induced in this manner is acceptable.

Lemma 3 (The initial unboxing is acceptable). If C; e then the unbox-
ing quadruple (T , Υ, CN , EC) computed by the algorithm in this section induces
an unboxing (T, Υ) (where T = T CN

EC) such that C (T, Υ) and T, Υ e.

The unboxing pair created by the initial phase is acceptable, but does no un-
boxing. The second phase of the algorithm proceeds by incrementally moving
equivalence classes from the candidate set CN to the unboxing set Υ , while
maintaining the invariant that at every step (T , Υ, CN , EC) define an acceptable
(and increasingly useful) unboxing. Equivalence classes of boxes that get chosen
for unboxing are collapsed into the same equivalence class as the contents of the
box. We use the notation EC′ = ∪i,jEC to stand for combining the equivalence
classes for i and j to get a new equivalence class in the usual way.

For the unboxing steps, we consider in turn each (boxt e)
i
in the program.

Let T be the traceability map induced by T . The principal selection criterium
for choosing which things to unbox is that TEC(i) � T CN

EC (lbl(e)) < �. The idea
is that under the assumption that no further unboxing is done, combining the
equivalence classes for i and lbl(e) will not over-constrain the resulting equiva-
lence class, and hence that the final induced traceability map will be well-defined
at i and lbl(e). The extended traceability TEC(i) is the extended traceability as-
sociated with i under the assumption that EC(i) is unboxed, while T CN

EC (lbl(e))

182 L. Petersen and N. Glew

is the extended traceability associated with lbl(e) under the assumption that no
further unboxing is done. If i is either unconstrained, or constrained to something
compatible with lbl(e), then it is safe to unbox it.

Formally, if we have that EC(i) ∈ CN , EC(lbl(e)) �= EC(i), and TEC(i) �
T CN
EC (lbl(e)) < � then we select i for elimination. We then take the new unboxing

to be the updated quadruple (T ′, Υ ′, CN ′, EC′) where:

EC′ = ∪lbl(e),iEC
CN ′ = (CN − {EC(lbl(e)), EC(i)}) ∪ {EC′(i)} if EC(lbl(e)) ∈ CN

= (CN − {EC(lbl(e)), EC(i)}) if EC(lbl(e)) /∈ CN
Υ ′ = Υ ∪ {EC(i)}
T ′(s) = TEC(i) � TEC(lbl(e)) if s = EC′(i)

= T (s) otherwise

For EC′, we repartition the graph so that the equivalence classes for the box
and its contents are combined into a single equivalence class. We remove the two
original equivalence classes from the candidate set, and if the contents of the box
was a candidate for unboxing we add back in the new equivalence class, which
is the union of the two original classes. All of the elements of the original equiv-
alence class of the box introduction are added to the unbox set. The extended
traceability map is updated to map the new equivalence class (including both i
and lbl(e)) to the extended traceability of the contents of the box.

If the conditions for unboxing i are not satisfied, then we take CN ′ = CN −
{EC(i)} and take T ′(EC(i)) = T (EC(i)) � r and leave the rest of the data struc-
tures unchanged. Since we only consider each box introduction in the program
once, the algorithm terminates.

Lemma 4 (Unboxing steps preserve acceptability). If (T , Υ, CN , EC) de-
fine an acceptable unboxing as constructed by the initial phase of the algorithm
and maintained by the unboxing phase, then the (T ′, Υ ′, CN ′, EC′) quadruple pro-
duced by a single step of the algorithm above also define an acceptable unboxing.

Lemma 4 states that each step of the unboxing phase of the algorithm preserves
the property that the induced unboxing pair is acceptable. Consequently, the
algorithm terminates with an acceptable unboxing.

Theorem 3 (The algorithm produces an acceptable unboxing). If C;
e then the algorithm defined in this section produces a quadruple (T , Υ, CN , EC)
such that C e �� (T, Υ) where T = T CN

EC .

This construction demonstrates that the specification defined in Section 4 is a
useful one in the sense that it is satisfiable. While the algorithm defined here is
unlikely to be optimal, it has proved very effective in our compiler: on floating-
point intensive benchmarks we have measured an order of magnitude reduction
in allocation and substantial performance and parallel scalability gains.

GC-Safe Interprocedural Unboxing 183

6 Related Work

This paper provides a modular approach to showing correctness of a realistic
compiler optimization that rewrites the structure of program data structures
in significant ways. Our approach uses an arbitrary inter-procedural reaching
definitions analysis to eliminate unnecessary heap allocation in an intermediate
representation in which object representation has been made explicit. Our op-
timization can be staged freely with other optimizations. Unlike any previous
work that we are aware of, we account for correctness with respect to the meta-
data requirements of the garbage collector. For presentational purposes, we have
restricted our attention to the core concern of GC safety, but additional issues
such as value size, dynamic type tests, etc. are straightforward to incorporate.

There has been substantial previous work addressing the problem of unbox-
ing. Peyton Jones [3] introduced an explicit distinction between boxed and un-
boxed objects to provide a linguistic account of unboxing, and hence to allow
a high-level compiler to locally eliminate unboxes of syntactically apparent box
introduction operations. Leroy [4] defined a type-driven approach to adding co-
ercions into and out of specialized representations. The type driven translation
represented monomorphic objects natively (unboxed, in our terminology), and
then introduced wrappers to coerce polymorphic uses into an appropriate form.
To a first-order approximation, instead of boxing at definition sites this approach
boxes objects at polymorphic use sites. This style of approach has the problem
that it is not necessarily beneficial, since allocation is introduced in places where
it would not otherwise be present. This is reflected in the slowdowns observed
on some benchmarks described in the original paper. This approach also has
the potential to introduce space leaks. In a later paper [5] Leroy argued that a
simple untyped approach gives better and more predictable results.

Henglein and Jørgensen [2] defined a formal notion of optimality for local
unboxings and gave two different choices of coercion placements that satisfy their
notion of optimality. Their definition of optimality explicitly does not correspond
in any way to reduced allocation or reduced instruction count and does not seem
to provide uniform improvement over Leroy’s approach.

The MLton compiler [10] largely avoids the issue of a uniform object rep-
resentation by completely monomorphizing programs before compilation. This
approach requires whole-program compilation. More limited monomorphization
schemes could be considered in an incremental compilation setting. Monomor-
phization does not eliminate the need for boxing in the presence of dynamic type
tests or reflection. Just in time compilers (e.g. for .NET) may monomorphize dy-
namically at runtime.

The TIL compiler [1,9] uses intensional type analysis in a whole-program com-
piler to allow native data representations without committing to whole-program
compilation. As with the Leroy coercion approach, polymorphic uses of objects
require conditionals and boxing coercions to be inserted at use sites, and conse-
quently there is the potential to slow down, rather than speed up, the program.

Serrano and Feeley [8] described a flow analysis for performing unboxing sub-
stantially similar in spirit to our approach. Their algorithm attempts to find

184 L. Petersen and N. Glew

a monomorphic typing for a program in which object representations have not
been made explicit, which they then use selectively to choose whether to use a
uniform or non-uniform representation for each particular object. Their approach
differs in that they define a dedicated analysis rather than using a generic reach-
ing definitions analysis. They assume a conservative garbage collector and hence
do not need to account for the requirements of GC safety, and they do not prove
a correctness result.

References

1. Harper, R., Morrisett, G.: Compiling polymorphism using intensional type analysis.
In: Twenty-Second ACM Symposium on Principles of Programming Languages,
San Francisco, CA, pp. 130–141 (January 1995)

2. Henglein, F., Jørgensen, J.: Formally optimal boxing. In: Proceedings of the 21st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 1994, pp. 213–226. ACM, New York (1994)

3. Jones, S.L.P., Launchbury, J.: Unboxed Values as First Class Citizens in a Non-
Strict Functional Language. In: Hughes, J. (ed.) FPCA 1991. LNCS, vol. 523,
pp. 636–666. Springer, Heidelberg (1991)

4. Leroy, X.: Unboxed objects and polymorphic typing. In: Proceedings of the 19th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 1992, pp. 177–188. ACM, New York (1992)

5. Leroy, X.: The effectiveness of type-based unboxing. Tech. rep., Boston College,
Computer Science Department (1997)

6. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer-
Verlag New York, Inc., Secaucus (1999)

7. Petersen, L., Glew, N.: GC-safe interprocedural unboxing: Extended version (2012),
http://leafpetersen.com/leaf/papers.html

8. Serrano, M., Feeley, M.: Storage use analysis and its applications. In: Proceedings
of the First ACM SIGPLAN International Conference on Functional Programming,
ICFP 1996, pp. 50–61. ACM, New York (1996)

9. Tarditi, D., Morrisett, G., Cheng, P., Stone, C., Harper, R., Lee, P.: Til: a type-
directed, optimizing compiler for ml. SIGPLAN Not. 39, 554–567 (2004)

10. Weeks, S.: Whole-program compilation in MLton. In: Proceedings of the 2006
Workshop on ML, ML 2006, p. 1. ACM, New York (2006)

http://leafpetersen.com/leaf/papers.html

Compiler Support for Value-Based Indirect

Branch Prediction�

Muhammad Umar Farooq1, Lei Chen2, and Lizy Kurian John1

1 Department of ECE, The University of Texas at Austin
ufarooq@utexas.edu,ljohn@ece.utexas.edu
2 Intel Architecture Group, Intel Corporation

lei777@gmail.com

Abstract. Indirect branch targets are hard to predict as there may be
multiple targets corresponding to a single indirect branch instruction.
Value Based BTB Indexing (VBBI), a recently proposed indirect branch
prediction technique, utilizes the compiler to identify a ‘hint instruction’,
whose output value strongly correlates with the target address of an
indirect branch. At run time, multiple targets are stored at different
branch target buffer (BTB) locations indexed using the branch PC and
the hint instruction output value.

In this paper, we present compiler support for the VBBI prediction
scheme. We also propose compiler and run time optimizations to increase
the dynamic instruction count between the indirect branch and its cor-
responding hint instruction. The more the dynamic instructions between
the hint-jump instruction pair, the more likely that the hint value will
be available when making the prediction.

Our evaluation shows that the proposed compiler and run time opti-
mizations improve the VBBI prediction accuracy from 66% to 80%. This
translates into performance improvement from 17.2% (baseline VBBI) to
24.8% (optimized VBBI) over the traditional BTB design and from 11%
(baseline VBBI) to 17.3% (optimized VBBI) over the best previously
proposed indirect branch prediction scheme.

Keywords: branch prediction, indirect branches, compiler guided
branch prediction, compiler optimizations, compiler-microarchitecture
interaction.

1 Introduction

Several high level programming language constructs such as virtual function
calls, switch-case statements, function pointers are implemented using indirect
branches. With object oriented programming languages gaining more popularity
in various computing arenas, indirect branches will become more prevalent in
future applications. As a result, whether or not the indirect branches can be

� This research was partially supported by NSF grant 1117895. The opinions and views
expressed in this paper are those of the authors and not those of NSF.

M. O‘Boyle (Ed.): CC 2012, LNCS 7210, pp. 185–199, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

186 M.U. Farooq, L. Chen, and L.K. John

accurately predicted will be a limiting factor of the overall system performance.
This trend is recognized by commercial microprocessor manufacturers includ-
ing Intel, whose recent processor includes a dedicated indirect branch predictor
[8]. Figure 1 shows the mispredictions per 1K instructions (MPKI) for differ-
ent applications using different indirect branch prediction schemes. On average,
indirect branch mispredictions account for 38%, 31% and 22% of the overall mis-
predictions, using the branch target buffer (BTB) [13], the tagged target cache
(TTC) [2] and the value-based BTB indexing (VBBI) [7] designs respectively.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

V
B

B
I

T
T

C
B

T
B

V
B

B
I

T
T

C
B

T
B

V
B

B
I

T
T

C
B

T
B

V
B

B
I

T
T

C
B

T
B

V
B

B
I

T
T

C
B

T
B

V
B

B
I

T
T

C
B

T
B

V
B

B
I

T
T

C
B

T
B

V
B

B
I

T
T

C
B

T
B

V
B

B
I

T
T

C
B

T
B

V
B

B
I

T
T

C
B

T
B

M
is

pr
ed

ic
tio

ns
 P

er
 K

ilo
 I

ns
tr

uc
tio

ns
 (

M
PK

I)

m88ksim li perl crafty perlbmk gap sjeng perlbench gcc AVG

direct
indirect

Fig. 1. MPKI for BTB, TTC and baseline VBBI prediction schemes

Prior research on indirect branch prediction has mainly focused on history-
based target prediction schemes [2,4,5,6,11,12]. In these schemes, branch history
information is used to distinguish different dynamic instances of the same indi-
rect branch. These purely dynamic schemes have the advantage of not requiring
compiler support and invisible to the software. However, hardware has limited
view of program execution and may not be able to capture certain program
behavior with reasonable cost.

The recently proposed VBBI scheme [7] shows that by tracing back the indi-
rect branch data dependence chain, an instruction can be found whose output
is directly related to the target taken by the indirect branch. This correlated in-
struction is referred to as the hint instruction, and its output as hint value. The
key idea of VBBI is to store multiple targets of an indirect branch at different
BTB indices computed by hashing the branch PC with the hint value.

Previous work on VBBI presented performance improvements without details
on compiler implementation [7]. In this paper, we propose compiler support for
the VBBI prediction scheme. For every static indirect branch instruction, the
compiler analyzes the source code to find the ‘most recent definition’ of the
variable on which the indirect branch is dependent. During code generation this
information is encoded in the indirect branch to be used at run time. In order to
maintain strong correlation between the target and the hint value, the current
hint value should be used for making the prediction, i.e. the hint instruction
should have finished its execution before the indirect branch is fetched. To this

Compiler Support for Value-Based Indirect Branch Prediction 187

end, we propose the compiler and run time optimizations for improving the
VBBI prediction accuracy by increasing the dynamic instruction count between
the hint instruction and the corresponding indirect jump instruction.

We show the performance improvement from these optimizations and com-
pare with the traditional BTB design and the tagged target cache (TTC) design
[2]. Our evaluation shows that the proposed compiler and run time optimiza-
tions improve the VBBI prediction accuracy from 66% (baseline VBBI) to 80%
(optimized VBBI). In terms of performance, the optimized VBBI improves the
performance from 17.2% (baseline VBBI) to 24.8% (optimized VBBI) over the
traditional BTB design and from 11% (baseline VBBI) to 17.3% (optimized
VBBI) over the TTC design.

This paper makes the following contributions:

1. We added compiler support for a recently proposed indirect branch predic-
tion technique, the VBBI scheme. The implementation is based on GCC
v4.2.1.

2. We propose compiler and run time optimizations to improve the VBBI pre-
diction accuracy. These optimizations are applicable to similar schemes, as
well as other design ideas exploiting data dependences and improving mem-
ory operations.

Rest of the paper is organized as follows. Section 2 gives the VBBI background.
Compiler analysis for the VBBI scheme is introduced in section 3. Section 4
presents compiler and run time optimizations. Our simulation methodology is
outlined in section 5. We discuss our results in section 6. Section 7 presents the
related work and we conclude the paper in section 8.

2 Value Based BTB Indexing (VBBI) Background

The VBBI prediction scheme relies on the compiler to identify a ‘hint instruction’
whose output value strongly correlates with the target taken by the indirect jump
instruction. Dynamically, multiple targets are stored at different BTB locations
indexed using the jump PC and the hint instruction output value. When a hint
instruction is executed, its output value is stored in a buffer. Subsequently, when
the corresponding jump instruction is fetched, it reads the hint value and uses it
to compute the BTB index. When the branch commits, the BTB is updated with
the correct target (if different from the predicted target) using the same index.

Figure 2 shows the overall operation of the VBBI prediction scheme. Each
entry in the Hint Instruction Buffer (HIB) has 3 fields, branch PC (jmp pc),
corresponding hint instruction PC (hint pc), and the hint value. HIB is accessed
in fetch and write-back (WB) stages. In the fetch stage, indirect jump instruc-
tions read the hint value from the HIB to compute the BTB index, while other
instructions access HIB to see if they are the hint instruction for an indirect
jump instruction. In the write-back stage, hint instructions write their output
value into the HIB.

188 M.U. Farooq, L. Chen, and L.K. John

+−

PC

hint_value

PC

1

0
0

=

=

0

1

+
BTB

Hint Instruction Buffer (HIB)

stage
Fetch

stage

offset

PC

<11:0>
<5:2>

Indirect jmp ?

Predicted target address

hint_inst_PC <5:2>

hint_inst output

WB

PC
hint_pcjmp_pc

is_a_hint_inst ?

Rest of the instruction information

Fig. 2. VBBI Hardware Design (from [7])

Target Prediction Overriding. VBBI scheme will be more accurate, if the
prediction is made using the current output of the hint instruction. In cases
where the jump instruction is fetched before the hint instruction has produced its
output, the jump instruction will use stale hint value for making the prediction.
When the latest hint value becomes available, another prediction is made using
the updated hint value, if it is different from the old value. This prediction will
override the initial prediction and redirect the fetch to the correct path, cycles
before the jump resolution.

3 Compiler Analysis for VBBI

VBBI prediction scheme relies on compiler to identify the ‘most recent definition’
of the variable onwhich an indirect jump instruction depends on. This variable can
be a switch-case control variable, a pointer to a function or an object, etc. During
code generation, offset of the jump instruction from the instruction holding the
‘most recent definition’ (i.e. the hint instruction) is encoded in the indirect jump
instruction. Since an indirect jump instruction specifies its target using an archi-
tectural register instead of an absolute address, some of the bits in the instruction
encoding are unused and are available for providing hints [3].

Implementation Details.We modified GCC v4.2.1 to support hint instruction
identification for the VBBI scheme. Figure 3 explains the modified passes using
a hand written example code. In Figure 3(a), the switch-case statement will
be compiled into an indirect jump instruction. The target taken by the jump
depends on the definition of the underlined variable p.

1. pass uncprop: This pass is executed before coming out of the SSA form (in
pass del ssa). While the code is still in the SSA form, we modified this pass
to identify the ‘last definition’ of the variable (i.e., the hint instruction), on
which the indirect jump is dependent on. Figure 3(b) shows that in the SSA

Compiler Support for Value-Based Indirect Branch Prediction 189

 if(p>100)
 m = get_m(p);
 else
 m = p − m;
 j = 2 + p;

 {
 case 0:
 m=j+1+m;
 printf("j = %d, m=%d \n",j,m);
 break;
 case 1: {

 case 0: goto <L4>;
 case 1: goto <L5>;

D.1948_13 = m_119 + k_293;
D.1947_12 = m_119 * 2;

 # m_3 = PHI <m_15(4), m_17(5)>;

 j_18 = p_14 + 2;

<L1>:;

<L2>:;

<L3>:;

 if (p_14 > 100) goto <L1>; else goto <L2>;

 m_15 = get_m (p_14);
 goto <bb 6> (<L3>);

 m_17 = p_14 − m_119;

 = 2*m*(k+m);

= D.1947_12 * D.1948_13;p_14

 switch ()

(insn:TI 17 37 19 (set (reg:DI 1 $1 [orig:78 D.1948] [78])

 (nil))

....

 (nil))

(insn:TI 21 19 23 (set (reg/v:DI 9 $9 [orig:74 p] [74])

 (nil))

(insn:TI 23 21 38 (set (reg:DI 3 $3 [85])
 (le:DI (reg/v:DI 9 $9 [orig:74 p] [74])
 (const_int 100 [0x64]))) 159 {*setcc_internal} (nil)
 (nil))

(insn: TI 19 17 21 (set (reg:DI 2 $2 [orig:79 D.1947] [79])

 (use (label_ref:DI 56)) 220 {*tablejump_osf_nt_internal} (nil)
 (nil))

(:TI 55 54 56 (set (pc) (reg:DI 1 $1 [96])) addq $29,$1,$1

 ldl $1,0($2)

 beq $1,$L11

 s4addq $2,$15,$2

 cmpule $2,27,$1

 addl $9,2,$9

 zapnot $9,15,$2

 addl $10,$11,$1

 addl $10,$10,$2

 cmple $9,100,$3

 subl $9,$10,$0

 beq $3,$L51

$L10:

 mull $2,$1,$9

$31,($1),8203 jmp
 # jump instruction (id 1)

 # hint instruction (id 1)

 p

 p_14

jump_insn

 (se:DI (subreg:SI (plus:DI (reg/v:DI 10 $10 [orig:72 m.87] [72])

 (se:DI (subreg:SI (ashift:DI (reg/v:DI 10 $10 [orig:72 m.87] [72])

 (se:DI (:SI (reg:SI 2 $2 [orig:79 D.1947] [79])

 (const_int 1 [0x1])) 0))) 69 {*ashldi_se} (nil)

 (reg:SI 1 $1 [orig:78 D.1948] [78])))) 28 {*mulsi_se} (nil)

 switch (

b) pass_uncpropa) example program

d) pass_finalc) pass_expand

 (reg:DI 11 $11 [orig:73 tmp.76] [73])) 0))) 4 {*addsi_se2} (nil)

 mult

 p)

Fig. 3. Modified compiler passes for VBBI hint instruction analysis

form, the program variable p is renamed to p 14. All the uses of p including
the switch-case statement reached by p’s assignment are also renamed to
p 14. Since in the SSA form, each USE has a unique DEF, we identify the
hint instruction as the one containing the DEF of the SSA variable p 14.

2. pass expand: This pass converts program statements from TREE format
into the RTL code. For every hint instruction identified in the earlier pass, its
corresponding RTL code is also marked as hint instruction. Figure 3(c) shows
RTL code for some of the statements in the example program. Note the un-
derlined mult code generated for statement ‘p 14 = D.1947 12 * D.1948 13’.
Similarly, the underlined jump inst code is generated corresponding to the
‘switch (p 14)’ statement.

3. pass final: This pass looks at the list of instructions in the RTL format and
outputs their corresponding assembly code. While going through the list of
instructions, a counter keeps track of the number (and size) of instructions
between the hint instruction and its corresponding jump instruction. This
gives the PC offset of the hint instruction from the jump instruction, which

190 M.U. Farooq, L. Chen, and L.K. John

Opcode Ra Rb offset from hint inst.1 = use VBBI
0 = no VBBIJump Type

01112131415162021252631

hint field

1 = −ve offset
0 = +ve offset

Fig. 4. Alpha indirect branch instruction augmented with VBBI hint bits

is then encoded in the jump instruction assembly code. Figure 3(d) shows
the assembly code generated for the example program. The underlined mull
instruction is the identified hint instruction for the underlined jmp instruc-
tion. The third argument of the jmp instruction is the VBBI related hint
information encoded in the jump instruction format shown in Figure 4, i.e.
bits 0 through 13 in the instruction. In this example, the hint information
shows that the offset between the hint-jump instruction pair is 11 instruc-
tions (8203 = 2ˆ13 + 11).

4 Optimizations for Improving VBBI Prediction
Accuracy

As indicated by the almost perfect prediction accuracy with VBBI target pre-
diction overriding [7], the VBBI scheme is highly accurate when the current
hint value is used, i.e. the hint instruction output is available when making the
prediction. We apply compiler and run time optimizations to increase the dy-
namic instructions between the hint-jump instruction pair. This results in higher
probability of the hint value being available when making the prediction. The
techniques presented in this section are applicable to similar prediction schemes,
as well as other design ideas exploiting data dependences to improve instruction
level parallelism (ILP) and memory operation performance.

4.1 Compiler Optimizations

Instruction Hoisting. In this optimization, the hint instruction is moved away
from its dependent jump instruction, thus creating more dynamic instructions
between the hint-jump pair. Figure 5(a) shows a code example from SPEC95
099.go benchmark that is suitable for such an optimization. In this example, the
switch-case statement will be compiled into an indirect jump instruction. The
target taken by the jump instruction depends on the underlined computation of
shapes[sh].where which can be hoisted up to the beginning of the for loop,
thus increasing the dynamic distance between the hint instruction and the jump
instruction.

Function Inlining. If the control variable of an indirect jump instruction is
passed as a function argument, that function can be inlined to increase the dy-
namic instruction count between the hint and the jump instruction. Figure 5(b)
shows a code example from SPEC2000 186.crafty benchmark that can benefit

Compiler Support for Value-Based Indirect Branch Prediction 191

 for(sh = 0; sh < numshapes; ++sh){
 if(shapes[sh].xsize > boardsize ||
 shapes[sh].ysize > boardsize)
 continue;
 bot = lsqr;

 if(left < 0)left = 0;
 up = yval[fsqr] − shapes[sh].ysize + 1;
 if(up < 0)up = 0;
 top = up * boardsize + left;

 left = xval[fsqr] − shapes[sh].xsize + 1;

 if(xval[bot] + shapes[sh].xsize > boardsize)
 bot −= xval[bot] + shapes[sh].xsize −
 boardsize;

 //variable initialization

void findshapes(int fsqr,int lsqr){

 && (f −> rsd_used) && ((ir−>dest) != 31))
 if (m88000.time_left[(ir −> dest)+1] > time)

 time = m88000.time_left[(ir −> dest)+1];

int Swap(int source, int target, int wtm)
{ //variable initialization

 attacks=AttacksTo(target);
 attacked_piece=p_values[PieceOnSquare(target)+7];
 color=ChangeSide(wtm);
 swap_list[0]=attacked_piece;
 sign=−1;
 attacked_piece=p_values[PieceOnSquare(source)+7];
 Clear(source,attacks); // #define Clear(a,b) b=And(clear_mask[a],b)

 if(yval[bot] + shapes[sh].ysize > boardsize)
 bot −= boardsize * (yval[bot] +
 shapes[sh].ysize − boardsize);
 right = xval[bot];
 width = right − xval[top] + 1;
 t = yval[top] == 0;
 b = yval[bot] == boardsize−shapes[sh].ysize;
 l = xval[top] == 0;
 r = xval[bot] == boardsize−shapes[sh].xsize;
 color = vclr[values[shapes[sh].startpoint]];
 point = points[shapes[sh].startpoint];
 switch(){

 //rest of the switch cases
 case ANYWHERE:

{

 return(Or(attacks,
 And(And(AttacksRank(from),RooksQueens),plus1dir[from])));

//rest of the switch cases
}

}

 case 1:

BITBOARD

 switch (direction) {

(BITBOARD attacks, int from, int)

} // end of the function
//rest of the function

 if (direction) attacks=

shapes[sh].where

(attacks,source, direction SwapXray

direction

 SwapXray

);

direction

//some code

 { return (retval);
 } else {

}

{
int Data_path (void)

 if ((retval =

(ir

, f)) == −1) ir(

//some code{

}

int

 if ((

{ ++instr_cnt;

 {

 case ADDU:
 case ADDUCO:
}

 /* integer and logical instructions */

void (struct IR_FIELDS *

 switch (ir−>op) /* operate on current instruction */

(struct IR_FIELDS * ir , struct SIM_FLAGS *f)

) ir Statistics

 Statistics);

 test_issue

 test_issue

 ir−>op == LDD)

a) Instruction hoisting example

b) Function Inlining example c) Interprocedural analysis example

 = directions[target][source];

Fig. 5. Code examples showing compiler optimizations for VBBI

from function inlining optimization. In this example, the indirect jump instruc-
tion in function SwapXray depends on the underlined variable direction which
is passed as an argument to the function. Without inlining, the instruction that
POPS the variable direction from the stack will be marked by the compiler
as the hint instruction. However, after inlining, this indirect jump instruction
is now dependent on the def of the variable direction in function Swap. Note
that this def of variable direction can be further moved to the beginning of the
function using the previous instruction hoisting optimization.

Inter-procedural Dataflow Analysis. This optimization aims at identifying
the hint instruction in a function other than the one containing the indirect
jump instruction. Figure 5(c) shows a code example suitable for such an op-
timization. In this example, taken from SPEC95 124.m88ksim benchmark, the
function Data path calls two other functions, test issue and Statistics, pass-
ing them the same pointer ir. The indirect jump instruction in function Statis-
tics depends on the underlined computation ir->op. The same computation is
also performed in an earlier function test issue. Marking the hint instruction in
function test issue instead of Statistics greatly increases the possibility that
the latest hint instruction outcome is available for making the prediction.

192 M.U. Farooq, L. Chen, and L.K. John

{
// some code {

 register int *bestp, *movep, *sortv, temp;
 register int history_value, bestval, done, index;

 switch (next_status[ply].phase) {

 case HASH_MOVE:
 next_status[ply].phase=GENERATE_CAPTURE_MOVES;
 if (hash_move[ply]) {

int

while ((current_phase[ply]=(in_check[ply]) ? NextEvasion(ply,wtm) :

 extended_reason[ply]&=check_extension;

// some other code

//rest of the code

} //end of while

} //end of Search

{
 register int piece, from, to, captured, promote;

// some code

// some code

case pawn:

0x120022930 55% 61% 88%

Jump PC BTB only VBBI baseline VBBI with load−store address matching

Prediction Accuracy (%)

int Search(int alpha, int beta, int wtm, int depth, int ply, int do_null)

 NextMove

 (ply, MakeMove

void (int ply, MakeMove , int wtm)

piece = Piece(); // define Piece(a) (((a)>>12)&7)move

switch () {piece

NextMove (int ply, int wtm)

 = hash_move[ply];

(ply,wtm))) {

 }
 else printf("bad move from hash table, ply=%d\n",ply);
 if (ValidMove(ply,wtm,current_move[ply])) return(HASH_MOVE);

 current_move[ply]

 case CAPTURE_MOVES:
 if (next_status[ply].remaining) {
 current_move[ply] = *(next_status[ply].last);

 next_status[ply].phase=KILLER_MOVE_1;
 }
 return(CAPTURE_MOVES);
 if (!next_status[ply].remaining) next_status[ply].phase=KILLER_MOVE_
 next_status[ply].remaining−−;
 *next_status[ply].last++=0;

 move int

,wtm);current_move[ply]

Fig. 6. Load to store address matching example (taken from SPEC2000.186.crafty)

4.2 Hardware Optimization

Load to Store Address Matching. Dynamic tracking of load and store depen-
dences has been used to support data speculation in code scheduling [9] [14]. We
apply this technique to improve target prediction for indirect branches. When
the hint instruction for an indirect jump is a load instruction, the address of the
load instruction can be recorded in a Hint Store Buffer (HSB). Subsequently,
each store address is compared against load addresses in the HSB. If a match
is found, the store value will be placed as the hint value in the corresponding
HIB entry. Figure 6 shows an example taken from SPEC2000 186.crafty bench-
mark. In this example, the while loop in function Search() computes the next
move by calling function NextMove(), which stores the computed move in cur-
rent move[ply]. Subsequently, current move[ply] is passed as an argument
to the function MakeMove() where current move[ply] is used as the switch-
case control variable. Dynamically tracking the load-store dependence and using
the store value as opposed to the load value as the hint value increases the possi-
bility of making the prediction using the latest hint value. As shown in Figure 6,
the load-to-store address matching optimization improved the prediction accu-
racy of this jump to 88% compared to 61% when the hint instruction originally
identified by the compiler was used for making predictions (VBBI baseline).

5 Simulation Methodology

We extended SimpleScalar [1] to simulate a 4-issue, 24-stage pipeline for eval-
uating VBBI prediction scheme. Table 2 shows the baseline parameters for our

Compiler Support for Value-Based Indirect Branch Prediction 193

Table 1. Characteristics of evaluated benchmarks

m88ksim li perl crafty perlbmk gap sjeng perlbench gcc

Static Indir. br. 59 39 4 8 59 35 8 62 543
Dynamic Indir. br. (K) 161 62 289 215 1252 1238 532 1170 474

Baseline IPC 0.98 0.69 0.78 0.88 0.74 0.73 0.62 0.62 0.59

processor. Our workload includes nine benchmarks, three each from SPEC95,
SPEC2000 and SPEC2006 suites [17]. Currently our compiler work for identify-
ing hint instruction only support benchmarks written in C language. We plan
to extend the support for C++ and Java benchmarks.

We use SimPoint [15] to find a representative program execution slice for each
benchmark using the reference input data set. All binaries are compiled using
modified GCC v4.2.1 with -O3 optimization running on Compaq Tru64 UNIX
V5.1B. Each benchmark is run for 100M Alpha instructions. Table 1 shows the
characteristics of simulated SimPoint for each benchmark.

Table 2. Processor parameters

Pipeline depth Evaluated multiple configurations ranging from 8 to 24 stages;

Instr. Fetch 4 instructions/cycle; fetch ends at first pred. taken br;

Execution 4-wide decode/issue/execute/commit;
Engine 512-entry RUU; 128-entry LSQ;

Branch 12KB hybrid pred. (8K-entry bimodal and selector,
Predictor 32K-entry gshare); 4K-entry, 4-way BTB with LRU repl.;

32-entry return addr. stack; 15 cycle min. br mispred. penalty;
16-entry HIB; 32-entry HSB;

16KB, 4-way, 1-cycle L1 D-cache; 16KB, 2-way, 1-cycle
Caches L1 I-cache; 1MB, 8-way, 10-cycle unified L2 cache;

All caches have 64B block size with LRU replacement policy;

Memory 300-cycle memory latency (first chunk), 15-cycle (rest);

6 Results

In this section we compare the performance of the baseline VBBI [7] with the
optimized VBBI. Sections 6.1 and 6.2 use the traditional BTB and the TTC
designs respectively as the reference point for comparison.

6.1 VBBI versus Traditional BTB

We compare the optimized VBBI prediction accuracy with the baseline VBBI
and with the traditional BTB scheme in Figure 7. On average, the VBBI predic-
tion accuracy is improved from 66% (baseline VBBI) to 80% (optimized VBBI).

194 M.U. Farooq, L. Chen, and L.K. John

Table 3. Average dynamic instruction count between hint-jump instruction pair

m88ksim li perl crafty perlbmk gap sjeng perlbench gcc AVG

VBBI baseline 45 58 10 63 12 31 47 15 51 37

VBBI optimized 168 110 16 158 43 39 174 24 64 88

Table 4. MPKI with traditional BTB, VBBI baseline and optimized VBBI

m88ksim li perl crafty perlbmk gap sjeng perlbench gcc AVG

Indir. br. MPKI (BTB only) 0.9 0.5 2.3 1.2 8.5 5.6 2.9 9.1 1.93 3.7
Indir. br. MPKI (VBBI baseline) 0.6 0.2 1.4 0.8 4.1 0.1 2.1 5.9 1.1 1.8
Indir. br. MPKI (VBBI optimized) 0.1 0.1 0.5 0.5 3.2 0.1 0.8 4.9 1.1 1.3

The BTB mispredictions are reduced by 2.1x using the optimized VBBI scheme.
The increase in prediction accuracy is due to the fact that more predictions are
made using the current and highly correlated hint value. Table 3 shows that
the proposed optimizations increase the average dynamic distance between hint-
jump instruction pair from 37 instructions to 88 instructions. Table 4 shows the
number of mispredictions for indirect branches per 1K instructions (MPKI) for
different prediction techniques. The optimized VBBI slashes the indirect branch
MPKI by a third compared with traditional BTB design, and by a half compared
with the baseline VBBI design.

Performance comparison of the optimized and the baseline VBBI scheme over
the traditional BTB design is shown in Figure 8. For a 4-issue, 24-stage pipeline,
the proposed VBBI optimizations enhance the baseline VBBI performance by
5.5%, achieving a 20.7% performance improvement over the traditional BTB
design. When target prediction overriding is also enabled, the VBBI scheme
achieves an overall performance improvement of 24.8% over the traditional BTB
technique.

 0%

 20%

 40%

 60%

 80%

 100%

24
−

st
ag

e
20

−
st

ag
e

16
−

st
ag

e
12

−
st

ag
e

8−
st

ag
e

bt
b_

on
ly

24
−

st
ag

e
20

−
st

ag
e

16
−

st
ag

e
12

−
st

ag
e

8−
st

ag
e

bt
b_

on
ly

24
−

st
ag

e
20

−
st

ag
e

16
−

st
ag

e
12

−
st

ag
e

8−
st

ag
e

bt
b_

on
ly

24
−

st
ag

e
20

−
st

ag
e

16
−

st
ag

e
12

−
st

ag
e

8−
st

ag
e

bt
b_

on
ly

24
−

st
ag

e
20

−
st

ag
e

16
−

st
ag

e
12

−
st

ag
e

8−
st

ag
e

bt
b_

on
ly

24
−

st
ag

e
20

−
st

ag
e

16
−

st
ag

e
12

−
st

ag
e

8−
st

ag
e

bt
b_

on
ly

24
−

st
ag

e
20

−
st

ag
e

16
−

st
ag

e
12

−
st

ag
e

8−
st

ag
e

bt
b_

on
ly

24
−

st
ag

e
20

−
st

ag
e

16
−

st
ag

e
12

−
st

ag
e

8−
st

ag
e

bt
b_

on
ly

24
−

st
ag

e
20

−
st

ag
e

16
−

st
ag

e
12

−
st

ag
e

8−
st

ag
e

bt
b_

on
ly

24
−

st
ag

e
20

−
st

ag
e

16
−

st
ag

e
12

−
st

ag
e

8−
st

ag
e

bt
b_

on
ly

Pr
e d

ic
tio

n
A

cc
ur

ac
y

124.m88ksim 130.li 134.perl 186.crafty 253.perlbmk 254.gap 458.sjeng 400.perlbench 403.gcc AVG

VBBI optimized
VBBI baseline
Traditional BTB

Fig. 7. VBBI Indirect branch prediction accuracy

Compiler Support for Value-Based Indirect Branch Prediction 195

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

24
−

st
ag

es
20

−
st

ag
es

16
−

st
ag

es
12

−
st

ag
es

8−
st

ag
es

24
−

st
ag

es
20

−
st

ag
es

16
−

st
ag

es
12

−
st

ag
es

8−
st

ag
es

24
−

st
ag

es
20

−
st

ag
es

16
−

st
ag

es
12

−
st

ag
es

8−
st

ag
es

24
−

st
ag

es
20

−
st

ag
es

16
−

st
ag

es
12

−
st

ag
es

8−
st

ag
es

24
−

st
ag

es
20

−
st

ag
es

16
−

st
ag

es
12

−
st

ag
es

8−
st

ag
es

24
−

st
ag

es
20

−
st

ag
es

16
−

st
ag

es
12

−
st

ag
es

8−
st

ag
es

24
−

st
ag

es
20

−
st

ag
es

16
−

st
ag

es
12

−
st

ag
es

8−
st

ag
es

24
−

st
ag

es
20

−
st

ag
es

16
−

st
ag

es
12

−
st

ag
es

8−
st

ag
es

24
−

st
ag

es
20

−
st

ag
es

16
−

st
ag

es
12

−
st

ag
es

8−
st

ag
es

24
−

st
ag

es
20

−
st

ag
es

16
−

st
ag

es
12

−
st

ag
es

8−
st

ag
es

IP
C

 d
el

ta
 o

ve
r

B
T

B
 o

nl
y

sc
he

m
e

124.m88ksim 130.li 134.perl 186.crafty 253.perlbmk 254.gap 458.sjeng 400.perlbench 403.gcc AVG

VBBI optimized + early_recovery
VBBI optimized
VBBI baseline

Fig. 8. IPC improvement of VBBI over traditional BTB scheme

6.2 VBBI versus Tagged Target Cache

We also compare the VBBI design with the TTC predictor [2], which is shown
to be the best previously proposed jump predictor in a recent study by [10] (in
Figure 17). In the TTC scheme, target addresses from recently executed indirect
jump instructions are recorded in a target history register. When an indirect
jump is fetched, the target cache is indexed using the XOR of the indirect branch
PC and target history register, and the address stored at that index is predicted
as the next target address. When the indirect jump retires, the computed target
address is written into the target cache using the same index. When updating
the history information, few bits from the target address are shifted into the
global target history register. Farooq et al. [7] show that the TTC gives the best
prediction accuracy with 14-bit global target history register. Upon update, 5
bits of target address (starting from the 3rd bit) are shifted into the target
history register.

Figure 9 compares the VBBI prediction accuracy with the TTC design. On
average, the optimized VBBI achieves a prediction accuracy of 80%, compared
to 56% achieved by the best performing TTC configuration. Figure 10 compares
the performance of the VBBI predictor with the TTC predictor. On average,
the baseline VBBI outperforms the TTC design by 9.1% with just 130B of addi-
tional storage [7] compared to 384KB storage of the TTC design. The optimized
VBBI further enhance the baseline VBBI performance by 4.7%, achieving 13.8%
improvement over the TTC design. With target prediction overriding, VBBI
achieves an overall performance improvement of 17.3% over the TTC predictor.

7 Previous Work

Lee and Smith [13] proposed branch target buffer (BTB) to predict indirect
branches. This technique predicts the same target for the current execution of
the branch that was taken in the last execution of that branch. Though simple
in design, this scheme does not work well for indirect branches that may switch
between multiple targets at run time.

196 M.U. Farooq, L. Chen, and L.K. John

 0%

 20%

 40%

 60%

 80%

 100%

24
−

st
ag

e
20

−
st

ag
e

16
−

st
ag

e
12

−
st

ag
e

8−
st

ag
e

T
T

C

24
−

st
ag

e
20

−
st

ag
e

16
−

st
ag

e
12

−
st

ag
e

8−
st

ag
e

T
T

C

24
−

st
ag

e
20

−
st

ag
e

16
−

st
ag

e
12

−
st

ag
e

8−
st

ag
e

T
T

C

24
−

st
ag

e
20

−
st

ag
e

16
−

st
ag

e
12

−
st

ag
e

8−
st

ag
e

T
T

C

24
−

st
ag

e
20

−
st

ag
e

16
−

st
ag

e
12

−
st

ag
e

8−
st

ag
e

T
T

C

24
−

st
ag

e
20

−
st

ag
e

16
−

st
ag

e
12

−
st

ag
e

8−
st

ag
e

T
T

C

24
−

st
ag

e
20

−
st

ag
e

16
−

st
ag

e
12

−
st

ag
e

8−
st

ag
e

T
T

C

24
−

st
ag

e
20

−
st

ag
e

16
−

st
ag

e
12

−
st

ag
e

8−
st

ag
e

T
T

C

24
−

st
ag

e
20

−
st

ag
e

16
−

st
ag

e
12

−
st

ag
e

8−
st

ag
e

T
T

C

24
−

st
ag

e
20

−
st

ag
e

16
−

st
ag

e
12

−
st

ag
e

8−
st

ag
e

T
T

C

Pr
e d

ic
tio

n
A

cc
ur

ac
y

124.m88ksim 130.li 134.perl 186.crafty 253.perlbmk 254.gap 458.sjeng 400.perlbench 403.gcc AVG

VBBI optimized
VBBI baseline
TTC

Fig. 9. Indirect branch prediction accuracy: VBBI prediction vs. Tagged Target Cache
(TTC)

History based two-level indirect branch predictor was first proposed by Chang
et al. [2]. This mechanism, known as ‘target cache’, uses the branch history in-
formation to distinguish different dynamic instances of the same indirect branch,
a concept similar to 2-level conditional branch predictor [18]. When an indirect
jump is fetched, the jump address and the global target history register are used
to form an index into the target cache. The target cache is accessed and the
resident address is predicted as the target address. Upon retiring the indirect
jump, the target cache entry and the target history register is updated with the
actual target address.

Driesen et al. [5] [6] focused on improving the indirect branch prediction ac-
curacy by combining multiple predictors using a cascaded predictor. Cascaded
predictor is a hybrid predictor consisting of a simple predictor for easy-to-predict
indirect branches, and a more complex predictor for hard-to-predict indirect
branches.

Kalamatianos et al. [11] proposed predicting indirect branches via data com-
pression. Their predictor uses prediction by partial matching (PPM) algorithm
of order three, which is a set of four Markov predictors of decreasing size, indexed
by an indexing function formed by a decreasing number of bits from previous
targets in the target history register.

Kim et al. [12] utilized the existing conditional branch predictor for predicting
indirect branches as well. The mechanism, known as the ‘VPC prediction’, treats
an indirect branch instruction with t targets as t direct branches, each with its
own unique target address. On fetching an indirect jump, the VPC prediction
algorithm makes MAX ITER attempts for predicting an indirect branch target,
each time as a different ‘virtual direct branch’ of the same indirect branch. This
iterative process stops either when a ‘virtual direct branch’ is predicted to be
taken, or MAX ITER number is reached, in which case the processor is stalled
until the indirect branch is resolved.MAX ITER determines the maximum num-
ber of attempts made to predict an indirect branch. Each attempt takes one cycle
during which no new instruction is fetched. A more recent study ([10] in Figure
13 and 14) shows that performance of VPC prediction degrades significantly for
workloads with higher number of dynamic targets.

Compiler Support for Value-Based Indirect Branch Prediction 197

 −10%

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

24
−

st
ag

es
20

−
st

ag
es

16
−

st
ag

es
12

−
st

ag
es

8−
st

ag
es

24
−

st
ag

es
20

−
st

ag
es

16
−

st
ag

es
12

−
st

ag
es

8−
st

ag
es

24
−

st
ag

es
20

−
st

ag
es

16
−

st
ag

es
12

−
st

ag
es

8−
st

ag
es

24
−

st
ag

es
20

−
st

ag
es

16
−

st
ag

es
12

−
st

ag
es

8−
st

ag
es

24
−

st
ag

es
20

−
st

ag
es

16
−

st
ag

es
12

−
st

ag
es

8−
st

ag
es

24
−

st
ag

es
20

−
st

ag
es

16
−

st
ag

es
12

−
st

ag
es

8−
st

ag
es

24
−

st
ag

es
20

−
st

ag
es

16
−

st
ag

es
12

−
st

ag
es

8−
st

ag
es

24
−

st
ag

es
20

−
st

ag
es

16
−

st
ag

es
12

−
st

ag
es

8−
st

ag
es

24
−

st
ag

es
20

−
st

ag
es

16
−

st
ag

es
12

−
st

ag
es

8−
st

ag
es

24
−

st
ag

es
20

−
st

ag
es

16
−

st
ag

es
12

−
st

ag
es

8−
st

ag
es

IP
C

 d
el

ta
 o

ve
r

T
T

C
 s

ch
em

e

124.m88ksim 130.li 134.perl 186.crafty 253.perlbmk 254.gap 458.sjeng 400.perlbench 403.gcc AVG

VBBI optimized + early_recovery
VBBI optimized
VBBI baseline

Fig. 10. Performance improvement: VBBI prediction vs. Tagged Target Cache (TTC)

Roth et al. [16] took a different approach for predicting indirect branch targets,
precomputating them in anticipation of having to make a prediction. Proposed
specifically for virtual function calls, the scheme dynamically captures the se-
quence of instructions involved in the target generation process. Whenever the
first instruction in the sequence completes, it uses a separate, fast execution en-
gine and computes the target before the actual call instruction is encountered.
Although this technique avoids using specialized jump predictor, it requires sig-
nificant hardware for capturing the target generation instructions along with a
fast execution engine to pre-compute the target. Furthermore, this technique is
very specific to target prediction of virtual function calls , as their target gener-
ation process consists of a fixed pattern of three dependent loads followed by an
indirect call.

Joao et al. [10] proposed a new way of handling indirect jumps, dynamically
predicating them. Instead of fetching from a single control path, when a hard-to-
predict indirect jump instruction is fetched, the processor starts fetching from N
different targets of the jump instruction. By fetching from more than one target,
the processor increases the probability of fetching from the correct target path
at the expense of executing more instructions. They showed that N=2 is a good
trade-off between performance and complexity.

Recently, Farooq et. al [7] proposed a compiler-guided, correlation-based tar-
get address prediction scheme that combines data dependences with indirect
branch target prediction. The proposed technique, known as Value based BTB
indexing (VBBI), relies on the compiler’s ability to statically capture data de-
pendences, and uses the hardware to exploit the correlation between the data
and branch target at run time. The key idea of VBBI is to identify a ‘hint in-
struction’ whose output is highly correlated with the target taken by the jump.
At run time multiple targets of an indirect branch are stored at different BTB
indices computed by hashing the branch PC with the output of the hint instruc-
tion. They show that by off-loading dependence analysis to the compiler, the
hardware predictor size can be kept much smaller.

198 M.U. Farooq, L. Chen, and L.K. John

8 Conclusion

The recently proposed VBBI prediction scheme uses a novel BTB indexing tech-
nique that allows multiple targets of an indirect branch to be stored at different
BTB indices. This technique relies on the compiler to identify a ‘hint instruction’
whose output strongly correlates with the target taken by the indirect branch.
At run time multiple targets are stored at different BTB indices computed by
hashing the branch PC and the hint instruction output value.

In this paper we propose the compiler support for identifying the hint in-
struction for the VBBI prediction scheme. We also propose the compiler and
run time optimizations that improve the VBBI prediction accuracy by increas-
ing the dynamic instructions between the hint-jump instruction pair. The more
the dynamic instructions between this instruction pair, the more likely that the
hint instruction outcome will be available when making the prediction.

Our evaluation shows that the proposed optimizations improve the VBBI
prediction accuracy from 66% to 80%. Compared to traditional BTB design, this
translates into average performance improvement from 17.2% (baseline VBBI)
to 24.8% (optimized VBBI). We also compare the VBBI with the best previously
proposed indirect jump predictor, the tagged target cache (TTC). Compared to
the TTC design, the proposed optimizations improve the performance by 6.3%,
from 11% (baseline VBBI) to 17.3% (optimized VBBI).

References

1. Burger, D., Austin, T.M.: The SimpleScalar Tool Set, Version 2.0. SIGARCH Com-
put. Archit. News 25(3), 13–25 (1997)

2. Chang, P., Hao, E., Patt, Y.N.: Target Prediction for Indirect Jumps. In: ISCA-24,
pp. 274–283 (1997)

3. COMPAQ. Alpha Architecture Handbook, V4 (October 1998)
4. Driesen, K., Hölzle, U.: Accurate Indirect Branch Prediction. In: ISCA-25,

pp. 167–178 (1998)
5. Driesen, K., Hölzle, U.: The Cascaded Predictor: Economical and Adaptive Branch

Target Prediction. In: MICRO-31, pp. 249–258 (1998)
6. Driesen, K., Hölzle, U.: Multi-stage Cascaded Prediction. In: Amestoy, P.R.,

Berger, P., Daydé, M., Duff, I.S., Frayssé, V., Giraud, L., Ruiz, D. (eds.)
Euro-Par 1999. LNCS, vol. 1685, pp. 1312–1321. Springer, Heidelberg (1999)

7. Farooq, M.U., Chen, L., John, L.K.: Value Based BTB Indexing for Indirect Jump
Prediction. In: HPCA-16, pp. 1–11 (January 2010)

8. Gochman, S., Ronen, R., Anati, I., Berkovits, A., Kurts, T., Naveh, A., Saeed, A.,
Sperber, Z., Valentine, R.C.: The Intel Pentium M Processor: Microarchitecture
and Performance. Intel Technology Journal 7(2) (May 2003)

9. Intel. Intel software college:
http://developer.intel.com/software/products/college/itanium/

10. Joao, J.A., Mutlu, O., Kim, H., Agarwal, R., Patt, Y.N.: Improving the Perfor-
mance of Object-Oriented Languages with Dynamic Predication of Indirect Jumps.
In: ASPLOS-13, pp. 80–90 (2008)

11. Kalamatianos, J., Kaeli, D.R.: Predicting Indirect Branches via Data Compression.
In: MICRO-31, pp. 272–281 (1998)

http://developer.intel.com/software/products/college/itanium/

Compiler Support for Value-Based Indirect Branch Prediction 199

12. Kim, H., Joao, J.A., Mutlu, O., Lee, C.J., Patt, Y.N., Cohn, R.: VPC Prediction:
Reducing the Cost of Indirect Branches via Hardware-Based Dynamic Devirtual-
ization. In: ISCA-34, pp. 424–435 (2007)

13. Lee, J.K.F., Smith, A.J.: Branch Prediction Strategies and Branch Target Buffer
Design. Computer 17(1), 6–22 (1984)

14. Lin, J., Chen, T., Hsu, W.C., Yew, P.C.: Speculative Register Promotion Using Ad-
vanced Load Address Table (ALAT). In: Proceedings of First Annual IEEE/ACM
International Symposium on Code Generation and Optimization, pp. 125–134.
IEEE Computer Society (2003)

15. Perelman, E., Hamerly, G., Biesbrouck, M.V., Sherwood, T., Calder, B.: Using Sim-
Point for Accurate and Efficient Simulation. In: SIGMETRICS 2003, pp. 318–319
(2003)

16. Roth, A., Moshovos, A., Sohi, G.S.: Improving Virtual Function Call Target Pre-
diction via Dependence-Based Pre-Computation. In: ICS-13, pp. 356–364 (1999)

17. SPEC. Standard Performance Evaluation Corporation, http://www.spec.org.
18. Yeh, T.-Y., Patt, Y.N.: Two-Level Adaptive Training Branch Prediction. In:

MICRO-24, pp. 51–61 (1991)

http://www.spec.org

Compiler Support for Fine-Grain Software-Only

Checkpointing

Chuck (Chengyan) Zhao1, J. Gregory Steffan1,
Cristiana Amza1, and Allan Kielstra2

1 Department of Electrical and Computer Engineering, University of Toronto
{czhao,steffan,amza}@eecg.toronto.edu

2 IBM Canada Toronto Laboratory
kielstra@ca.ibm.com

Abstract. Checkpointing support allows program execution to roll-back
to an earlier program point, discarding any modifications made since that
point. Existing software-based checkpointingmethods are mainly libraries
that snapshot all of working-memory, and hence have prohibitive over-
head for many potential applications. In this paper we present a light-
weight, fine-grain checkpointing framework implemented entirely in soft-
ware through compiler transformations and optimizations. A programmer
can specify arbitrary checkpoint regions via a simple API, and the com-
piler automatically transforms the code to implement the checkpoint at
the granularity of individual stores, optimizing to remove redundancy.We
explore two application areas for this support. First, we investigate its ap-
plication to debugging, in particular by providing the ability to rewind
to an arbitrarily-placed point in a buggy program’s execution. A study
using BugBench applications shows that our compiler-based approach is
more than 100x less overhead than full-process checkpointing. Second, we
demonstrate that compiler-based checkpointing support can be leveraged
to free the programmer frommanually implementing andmaintaining soft-
ware rollback mechanisms when coding a back-tracking algorithm, with
runtime overhead of only 15% compared to the manual implementation.

1 Introduction

Checkpointing [7,16,19,24,27,30,31] is a technique to back-up program state such
that execution can later revert to the backup, to recover from program failure or
mis-speculation. While proposed hardware-based checkpointing solutions [4,13]
show promising performance, they are not yet available in commodity systems.
Software-based checkpointing solutions [16,19,25,31] can be used on commodity
hardware, but can also have prohibitive overheads as they are typically coarse-
grained, meaning that they back-up large ranges of memory if not the entire
process image.

In this paper we propose a software-only method for checkpointing program
execution that is implemented in a compiler. In particular, our transformations
implement checkpointing at the level of individual variables, as opposed to previ-
ous work that checkpoints entire ranges of memory or entire objects [4,7,16,25].

M. O‘Boyle (Ed.): CC 2012, LNCS 7210, pp. 200–219, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Compiler Support for Fine-Grain Software-Only Checkpointing 201

Annotated
source

Enable
Checkpointing

Optimize
Checkpointing

LLVM frontend

Callsite Analysis

Inter-procedural Transformations

Intra-procedural Transformations

Handle Corner Cases

Source
code

C/C++ LLVM IR

LLVM
Backend

x86 … Power

(a) compiler framework

BEFORE AFTER

start_ckpt(); …

a = …;

memcpy(d, s, len);

foo();

…

stop_ckpt(c);

foo(…){ /* body of foo() */ }

…

start_ckpt(); …

backup(&a, sizeof(a));

a = …;

handleMemcpy(…);

memcpy(d, s, len);

foo_ckpt();

…

stop_ckpt(c);

foo(…){ /* body of foo() */}

foo_ckpt(…){

/* body of foo_ckpt()
*/ }…

(1)
(1)

(2) (2)

(3) (3)

(3)

(b) basic transformations

Fig. 1. Framework and basic transformations

The intuition is that such fine-grain checkpointing can (i) provide many oppor-
tunities for optimizations that reduce redundancy and increase efficiency, and
(ii) facilitate uses of checkpointing that demand minimal overhead. We present a
complete checkpointing framework and optimization infrastructure that can (i)
enable software-only checkpointing over arbitrarily large and complex program
regions and (ii) leverage compiler optimizations to reduce overhead. We show
that our fine-grain scheme is more efficient than coarse-grain approaches, and
that up to 98% of checkpoint buffer space and up to 95% of backup memory
calls can be eliminated.

We demonstrate the utility of our compiler-based checkpointing infrastructure
via two different applications of this support. The first is support for debugging,
in particular by giving the programmer the ability to roll-back execution to re-
peatedly examine the state of a program prior to the manifestation of a bug.
We study several flawed applications from the BugBench [20] suite and demon-
strate the low overheads of checkpointing support for rollback. The second is sup-
port for back-tracking algorithms, where the programmer can avoid manually
implementing support for rewinding data-structures, instead leveraging compiler-
based checkpointing to provide it automatically. We study VPR [5,6], in partic-
ular the simulated-annealing-based place-and-route algorithm for FPGAs, which
optimistically swaps blocks and either keeps or discards the swap depending on
whether a cost function is improved. We compare the original manual implemen-
tation of back-tracking support to our automatic compiler-based approach.

2 Basic Checkpointing

Figure 1(a) presents an overview of our checkpointing system, implemented as
passes in the LLVM [17,18] compiler infrastructure. It takes as input a source pro-
gram with programmer annotations, and outputs transformed LLVM IR code that
can target the multiple native platforms that LLVM supports. LLVM provides
a C back-end that allows the conversion of optimized IR back to C source code.

202 C. Zhao et al.

This source-to-source approach allows us to capitalize on all of the optimizations
of the back-end compilers.

Programmer Interface. We assume a very simple programmer interface to
checkpointing: the user delimits the desired checkpointing region via the inter-
face calls start ckpt() and stop ckpt(c), where c is a boolean variable that
indicates whether the checkpoint should be rewound/re-executed or committed.
The compiler then instruments all relevant write operations with backup calls,
each taking as arguments a pointer to the destination’s address and its size in
bytes. These backup calls are later optimized and inlined, but for now we show
them in the code for illustration.

Callsite Analysis. Our compiler needs to know all user-defined functions that
may be called directly or indirectly from the checkpoint region. We call the pro-
cess of discovering such functions callsite analysis. The callsite analysis visits each
node in the application’s sub call graph originated from the annotated checkpoint
region. It recursively identifies all user-defined functions in this partial call graph
and marks them as requiring the creation of a checkpoint-enabled version.

Intra-procedural Transformation. The compiler then converts code in the
user-annotated region into its checkpoint-enabled version in three steps. Step 1
is to precede each write with code to backup the write. Figure 1(b)(1) shows
that variable a is modified and thus preceded with a backup operation. Step
2 is to handle certain system functions that have implicit memory writes. Fig-
ure 1(b)(2) illustrates the handling of one such routine, memcpy, by placing a
handling function, handleMemcpy, immediately before it. Step 3 is to rename
any user-defined function callsite within the region. Figure 1(b)(3) shows that a
user callsite foo is renamed to its checkpoint-enabled version, foo ckpt.

Inter-procedural Transformation. The final step is to enable checkpoint-
ing on all user-defined routines that are identified through the callsite-analysis
phase. For each identified function, we clone its function body and rename it by
appending ckpt to its name, as shown in Figure 1(b)(3). Within the body of
the cloned function, we recursively and repetitively apply the same three actions
introduced in Intra-procedual Transformation above. In the end we produce
a checkpoint-enabled version for every user-defined function that can potentially
be called from the checkpoint region.

Handling Function Pointers. Since our checkpointing scheme clones user-
defined functions, the compiler needs to identify the precise callee function at
compile time. However, calls via function pointers might only be resolved at
runtime. As shown in Figure 2(a), we handle this function pointer ambiguity by
changing from a function pointer call to a normal function wrapper call with
function pointer arguments. Within the wrapper function, each possible callee
is explicitly examined through a list of parameter-matched candidates.

Handling Early Exits. Another special case deals with early exits from the
checkpointing region, as shown in Figure 2(b). A return within the checkpoint

Compiler Support for Fine-Grain Software-Only Checkpointing 203

6

FP fp; // func ptr decl
…
if (C) fp = &foo;
else fp = &bar;…

start_ckpt();
…

*fp(); // funcptr call
…
stop_ckpt(c);

BEFORE AFTER

FP fp; // func ptr decl
…
if (C) fp = &foo;
else fp = &bar;…

start_ckpt();
…

fp_wrapper(fp); //non-fpr call
…
stop_ckpt(c);
…
fp_wrapper(FP fp){

if(fp == foo) foo();
else if (fp == bar) bar();
else …

}

(a) function pointer

7

foo(…){
...
start_ckpt();
…

return k;
…
stop_ckpt(c);
…
}

BEFORE AFTER

foo(…){
int flag, T0;
...
start_ckpt();
…

flag = 1; T0 = k;
goto L0;

…
L0:
stop_ckpt(c);
if(flag) { return T0;}
…
}

(b) early exit

Fig. 2. Examples of handling function pointers and early exits

Annotated
source

Enable
Checkpointing Optimize Checkpointing

2. Pre Optimize

3. Redundancy Eliminations

4. Hoisting

6. Non Rollback Exposed Store Elimination

Source
code

C/C++ LLVM IR

1. CKPT Inlining

7. Heap Optimize

8. Array Optimize

9. Post Optimize

5. Aggregation

LLVM
Backend

x86 … Power

Fig. 3. Overview of optimization passes

region may prematurely terminate the checkpoint process without visiting the
stop ckpt marker. This violates the rule that the checkpoint region markers
must be visited in pairs. Figure 2(b) suggests a possible solution: code is trans-
formed to have a goto that branches to the stop ckpt marker and reserves the
appropriate return value.

3 Optimizations

Base transformations enable checkpointing on any user-annotated region by
backing up the memory contents before each explicit or implicit write. This
creates a large number of backup calls that are potentially redundant and leaves
ample opportunities for optimization. Figure 3 provides an overview of our check-
pointing optimization framework, that takes as input the checkpoint-enabled
code produced as described in the previous section. The framework includes

204 C. Zhao et al.

start_ckpt();
…
backup(&a, sizeof(a));
a = …;
…
backup(&a, sizeof(a));
a = …;
…
foo_ckpt();
…
if (C){

backup(&a, sizeof(a));
a = …; …

}
…
stop_ckpt(c);
…
foo_ckpt(){
int x;
…
backup(&a, sizeof(x));
x = …;

…}

(i) code with CKPT enabled (ii) redundancy-elim case1 (iii) redundancy-elim case1+2

start_ckpt();
…
backup(&a, sizeof(a));
a = …;
…
backup(&a, sizeof(a));
a = …;
…
foo_ckpt();
…
if (C){

backup(&a, sizeof(a));
a = …; …

}
…
stop_ckpt(c);
…
foo_ckpt(){
int x;
…
backup(&a, sizeof(x));
x = …;

…}

start_ckpt();
…
backup(&a, sizeof(a));
a = …;
…
backup(&a, sizeof(a));
a = …;
…
foo_ckpt();
…
if (C){

backup(&a, sizeof(a));
a = …; …

}
…
stop_ckpt(c);
…
foo_ckpt(){
int x;
…
backup(&a, sizeof(x));
x = …;

…}

(a) cases 1 and 2

backup(&a, sizeof(a));
a= …; …

…

backup(&a, sizeof(a));
a= …; …

…

BEFORE

AFTER

a= …;
…

…

a= …;
…

backup(&a, sizeof(a));
…

(b) case 3

Fig. 4. Redundancy elimination cases 1-3 via code examples

more than 10 different optimizations and we introduce them in order of impor-
tance.

Redundancy Elimination. The most important optimizations are three cases
of redundancy eliminations (RE1, RE2, and RE3), as illustrated in Figure 4.
RE1 uses dominating relationships among backup calls. It identifies all backup
calls with the same address and length that dominate the stop ckpt region
marker (e.g., the first three backup calls in Figure 4(a)), establishes the first
in the sequence as the leading backup call, and then removes any remaining
ones that are dominated by the leader. RE2 identifies all backup operations
on a function’s non-pointer-type local variables (i.e., the fourth backup call in
Figure 4(a)). Since local variables are allocated on the stack and have no memory
footprint in its enclosing function’s calling context, it is safe to remove backups
on local variables within any checkpoint-enabled function without impacting the
correctness of checkpointing. RE3 performs similarly to common sub-expression
elimination (CSE) by finding duplicate backup operations on both sides of a
branch (as shown in Figure 4(b)). Once it finds a suitable pair, it hoists one
of the backup calls into the immediate dominator block, and removes the other
backup call.

Hoisting. Hoisting optimization aims to reduce redundant backup calls within
loops (as illustrated in Figure 5(a)), by hoisting the backup of any variable
written unconditionally within a loop to the loop header (e.g., variable z in the
example). Such hoisting would not be performed by a normal compiler hoisting
pass since the write to the variable is not necessarily loop invariant. The decision
to hoist conditionally-modified backup calls is a trade-off, the conditional code
must be executed frequently enough to be worth the cost of the non-conditional
backup call in the hoisted version. Through experiment we found that it is
generally not worth hoisting such conditionally-modified variables, at least not
without profile feedback as a guide. To illustrate, in the example we choose not
to hoist variable y.

Compiler Support for Fine-Grain Software-Only Checkpointing 205

foo(){

int x, y, z;

start_ckpt();

…
backup(&x, sizeof(x));
x = …;

for(…){
…
backup(&z, sizeof(z));
z = …;
if(…) {

backup(&y, sizeof(y));
y = …;

}
…

} …

stop_ckpt(c);
…
}// end of foo()

(i) code with CKPT enabled (ii) hoisting optimization (iii) aggregation optimization

foo(){

int x, y, z;

start_ckpt();

…
backup(&x, sizeof(x));
backup(&z, sizeof(z));
x = …;

for(…){
…
z = …;
if(…) {

backup(&y, sizeof(y));
y = …;

}
…

} …

stop_ckpt(c);
…
}

foo(){

int x, z, y; // reordered

start_ckpt();

…
backup(&x,

sizeof(x) + sizeof(z));

x = …;

for(…){
…
z = …;
if(…) {

backup(&y, sizeof(y));
y = …;

}
…

}…
stop_ckpt(c);
…
}

(a) hoisting and aggregation

start_ckpt();
{ …
int * p = (int *) malloc(…);
…
backup(&p[i], sizeof(p[i]));
*p[i] = …;
…

}…
stop_ckpt(c);

Heap Optimize (BEFORE) Heap Optimize (AFTER)

int A[N]; // array decl …
start_ckpt();
…
for(i=0; i<N; ++i){

backup(&A[i1], sizeof(A[i1]));
A[i1] = …;
…
backup(&A[i2], sizeof(A[i2]));
A[i2] = …; …

}…
stop_ckpt(c);
Array Optimize (BEFORE)

int A[N]; // array decl …
start_ckpt();
…
backup(&A, sizeof(A));
for(i=0; i<N; ++i){
A[i1] = …;
…

A[i2] = …; …
}…

stop_ckpt(c);
Array Optimize (AFTER)

start_ckpt();
{ …
int * p = (int *) malloc(…);
…
backup(&p[i], sizeof(p[i]));
*p[i] = …;
…

}…
stop_ckpt(c);

(b) heap and array

Fig. 5. Examples of hoisting, aggregation, heap, and array optimizations

Aggregation. Aggregation examines backup calls for variables that are adja-
cent in memory, potentially rearranging the layout of the variables to ensure that
they are adjacent. Figure 5(a)(iii) shows that two individual backup operations
on variable x and z can be merged into a single one, covering the entire mem-
ory range for both variables.1 Aggregation reduces the overhead of managing
adjacent variables individually.

Dynamic Memory Optimization. Opportunities exist for any backup call
that operates on dynamically allocated (heap) memory. If the heap allocation site
is within the checkpoint region and it dominates the write, the backup operation
on this write into heap-allocated memory can be eliminated. Figure 5(b) demon-
strates the process of removing a backup on heap-allocated variable p[i]. Since
the heap allocation happens within the checkpoint region, the heap-allocated
contents have no memory footprint before checkpoint starts. Hence such backup
calls can be eliminated since they are unneccesary.

Array Optimization. More interesting cases occur among backup operations
on writes to array-based data inside a loop, as shown in Figure 5(b). Both writes
into A[i1] and A[i2] are correlated with loop index variable i. It could be
beneficial to merge multiple backups on individual array elements into a single
backup operation, potentially covering a continuous array sub-range or even the
entire array. We develop an algorithm that considers not only the array size,
loop trip count and store intensity, but also a tolerance factor that a user can
control through command-line options. Non-continuous array writes may happen
when the program executes inside the loop, thus the tolerance factor specifies
the trade-off in buffer-space used versus performance.

Non-rollback-Exposed Store Elimination. Given any variable that is writ-
ten inside the checkpoint region, if there is no read of that variable on any path

1 Note that for a source-to-source transformation this isn’t necessarily a safe opti-
mization as the back-end compiler may further rearrange the variable layout—an
implementation in a single unified compiler would not have this problem.

206 C. Zhao et al.

int a;
…
start_ckpt();

…
backup(&a, sizeof(a));
/* no use of a on any path
from start_ckpt() */

a = …;
…

…
stop_ckpt(c);

BEFORE AFTER

int a;
…
start_ckpt();

…
backup(&a, sizeof(a));
/* no use of a on any path
from start_ckpt() */

a = …;
…

…
stop_ckpt(c);

(a) example transformation

INPUT: CFG of the CKPT Region or Function
OUTPUT: NRESE optimized CFG
Intermediate: AliasSet AS; cond1= false, cond2 = true
BEGIN
// 1. analyze each possible backup call:
foreach backup call bkp within CKPT region or CKPT Function do
// 2. analyze backup address alias
addr = getAddr (bkp)
AS = getAliasSet (addr)
if (AS ==) cond1 = true
// 3. check for read access on any path
foreach instruction ins between start_ckpt and bkp do
foreach operand op in instruction ins do
if (use(op, addr)) cond2 = false

// 4. operate on NRESE
if (cond1 && cond2)
remove (bkp)

END.

(b) algorithm

Fig. 6. Non-rollback-exposed store elimination optimization (NRESE)

from the beginning of the region, and its address has no alias, then an optimiza-
tion can remove the respective backup operation for this variable without im-
pacting checkpointing correctness.We call this optimization non-rollback-exposed
store elimination (NRESE). Figure 6(a) shows an example of NRESE. Notice
that the backup operation on variable a can be safely removed, since there are
no direct or aliased reads of a along any path from the beginning of the check-
point region. The value of a is recomputed each time and this re-computation
is essentially independent of the current value of a. The algorithm presented in
Figure 6(b) relies on performing an alias analysis to that a has no alias—we use
the basic alias analysis (basic aa) provided with LLVM.

Miscellaneous Optimizations. Inlining is applied to all remaining backup

operations, allowing later standard optmiizations to schedule and optimize the
contained instructions. Pre-Optimize and Post-Optimize passes perform mis-
cellaneous clean-up operations, such as removing zero-length backup calls).

4 Buffering Implementation

The most important design decision in a checkpointing scheme is the approach
to buffering: whether it will be based on write-buffering [11,21] or undo-logging
[14,23]. A write-buffer approach buffers all writes from main memory, and there-
fore requires that the write-buffer be searched on every read. Should the check-
point commit, the write-buffer must be committed to main memory; should the
checkpoint fail, the write-buffer can simply be discarded. Hence for a write-buffer
approach the checkpointed code proceeds more slowly, but with the benefit that
parallel threads of execution can be effectively checkpointed and isolated (e.g., for
some forms of optimistic transactional memory [11,22]). An undo-log approach
maintains a buffer of previous values of modified memory locations, and allows the
checkpointed code to otherwise read or write main memory directly. Should the
checkpoint commit, the undo-log is simply discarded; should the checkpoint fail,
theundo-logmustbeused to rewindmainmemory.Thereforeanundo-logapproach

Compiler Support for Fine-Grain Software-Only Checkpointing 207

(i) empty checkpoint data buffer and meta buffer

(ii) checkpoint buffers populated with data

a …127 31

char a = ‘a’;
int b = 127;
short c = 31;
…
backup(&a, sizeof(a));
backup(&b, sizeof(b));
backup(&c, sizeof(c));
…

…meta buffer …0
&a

1
&b

5
&c

…

…idx
addr …

meta buffer:

data buffer:

meta buffer:

data buffer:

(a) 1D-array

int * addr;

int len;

struct hashNode * next;

char * data;

1

0

(i) hash node (ii) hashtable design

bucket array

3

2

…

…

N

&i 4

&c 1

&ld 12

backup of data i

backup of data c

backup of data ld

(b) hash table, pointer-to-data node

int * addr;

int len;

struct hashNode * next;

union { char * data_ptr;
char data[4]; }

1

0

(i) hash node (ii) hashtable design

bucket array

3

2

…

…

N

&c 4 data_c

backup of data ld

&i 4 data_i

&ld 4

(c) hash table, inline/union node

int * addr;

int len;

struct hashNode * next;

char data[4];

1

0

(i) hash node (ii) hashtable design

bucket array

3

2

…

…

N

&c 4 data_c

&i 4 data_i

&ld 4 data_ld

&ld 4 data_ld

&ld 4 data_ld

“i”
node

“c”
node

“ld”
nodes

(d) hash table, fixed-size node

Fig. 7. Design options for an undo-log implementation

is best for the case of single-threaded code where checkpoint-rewind is uncommon,
hence we focus solely on an undo-log approach for the remainder of this paper.

Figure 7(a)(i) illustrates a straightforward design of an undo-log based on the
use of 1D arrays, where we have divided the undo-log buffer into two structures:
(i) an array that is a concatenation of all backed-up data values of arbitrary
sizes; and (ii) a meta-data array that stores the length and starting address of
each element. As an example, Figure 7(a)(ii) shows the contents of an undo-log
after three backup calls. When a checkpoint commits, we simply move the data
and meta-data pointers back to the start of each array; when a checkpoint must
be rewound, we use the meta buffer to walk backwards through the data buffer,
writing each data element back to main memory.

While simple, a 1D-array-based undo-log suffers from redundancy, as each new
backup call simply appends a value to the log without searching for an existing
entry for that location; to search the array linearly would be prohibitively expen-
sive. An alternative is to use a hash-table to allow fast search of prior entries for
matches, to eliminate all redundancy in the undo-log. There will be a trade-off in
the performance savings of reduced storage (due to reduced redundancy) versus
the performance cost of hash-lookups.

208 C. Zhao et al.

0

0.5

1

1.5

2

2.5

3

3.5

1 10 25 40 55 70 85

Pointer-To-Data

Inline/Union

Fixed-Size

N
or

m
al

ize
d

Ba
ck

up
 P

er
fo

rm
an

ce

slower

faster

Redundancy Rate: 1% - 99%

Fig. 8. Performance impact of four different buffer schemes over a wide range of redun-
dancy rates. The x-axis represents redundancy rate from 1% to 99%; the y-axis is the
relative checkpoint performance normalized to using a 1D-array. The figure represents
checkpoint buffer with 1024 unique backup addresses, with only 4-byte backup length.

Hence we consider three hash-table designs, as illustrated in Figure 7, based
on the options for the design of a hash table node: pointer-to-data (PTD), that
stores a pointer to dynamically-allocated data storage; inline/union (union),
that stores a union field that can be used either to directly store a 32-bit value
inline, or instead as a pointer to dynamically-allocated data storage larger than
32 bits; and fixed-size (fixed), that always stores 32 bits of data per node and
requires a list of nodes to store larger data values.

To compare the potential undo-log implementations we measure their redun-
dancy rate, defined as follows. Let Access(R) denote the total number of backups
of a particular variable R that is written at least once within the checkpoint re-
gion, then the redundancy rate (RR) for this region can be defined as

RR =

∑n
1 (Access(Ri)− 1)∑n

1 Access(Ri)
(1)

where n is the total number of unique addresses that are checkpointed within
the region. RR quantifies the amount of checkpointing redundancy as a floating
point value between 0 and 1. In an ideal region where each unique variable
address is checkpointed exactly once, its RR rate will be 0. The higher the RR
rate, the more redundancy remains.

In Figure 8 we evaluate the trade-offs between the four buffering imple-
mentations above on microbenchmarks. We vary the microbenchmark access
patterns to produce redundancy rates that vary from 1% to 99%, and report

Compiler Support for Fine-Grain Software-Only Checkpointing 209

32

P: root cause of a bug

Q: place where the bug manifests

(a user or programmer notices the bug
at this point)

T: safe point, literally earlier than P, the
program can reach through checkpoint
recovery

CKPT
Region

(1)

(2)

(3)

(a) debugging

Initial guessInitial guess

Obtain a new result Obtain a new result

Check resultCheck result

commit and continuecommit and continue abort and try nextabort and try next

……

good bad

(b) back-tracking, for VPR

Fig. 9. Overview of applications enabled by fine-grained checkpointing support

checkpoint performance normalized to that of using a 1D array. Overall, the
solution based on a 1D array almost always outperforms all hashtable-based so-
lutions. All three curves converge at a very high RR rate (close to 99%). With
increasing redundancy rates, the performance difference among different backup
schemes diminishes. The three different hashtable-based implementations have
perfect storage behaviors; however this comes at a performance cost, mainly due
to the poor cache locality of their link-list accesses. Union and fixed are both
heavily optimized for dynamic memory management, thus their performance is
considerably and consistently better than PTD. In summary, because of its su-
perior performance, we focus on the 1D-array implementation of the undo-log
for the remainder of this paper.

5 Checkpoint-Enabled Applications

Our compiler-based fine-grained checkpointing scheme can be leveraged in a
wide range of applications. In this section, we introduce two important appli-
cation domains that can benefit by either gaining additional functionality or
through a simplified programming interface: checkpoint support for debugging,
and checkpoint-enabled automatic back-tracking.

5.1 Checkpoint Support for Debugging

Program debugging is used to identify and resolve software bugs. A normal de-
bugging session begins with user placing breakpoints at multiple pre-determined
program locations, and stops execution at each location to examine the pro-
gram’s logic and states. However, once execution passes a certain breakpoint, it
is normally difficult to rewind execution to a previous location though a user
may often find that the root cause of a bug is likely located close to a previous
breakpoint. Frequently restarting execution can be impractical because it may
take a long time to reach the suspicious bug location.

210 C. Zhao et al.

Debuggers enhanced with our checkpointing support can help alleviate this
situation. We expose the checkpoint APIs on the source-code level so that a
programmer can selectively mark a checkpoint region that likely contains the
bug, as shown in Figure 9(a). The programmer first inserts a end-region marker
slightly after the bug-trigger location. Properly identifying a start-region position
requires some understanding of the code. The region needs to be big enough to
contain the root cause of the bug, but can’t be too big so that the programmer is
lost in unrelated details. In practice, we often place breakpoints overlapping with
the checkpoint region boundaries. Once execution reaches the end of the region,
the programmer decides whether he wants to finish debugging this region (by
issuing a commit ckpt command), or rewind and re-examine the current region
(by issuing an abort ckpt command).

Debuggers with our checkpointing support can rewind execution to a previ-
ously identified program location and re-examine the program region with unlim-
ited number of retries. There is no restriction on the size of the region because we
checkpoint into main memory and can dynamically grow the checkpoint buffer
when needed. Eliminating program restart not only avoids all problems related
with non-deterministic execution and availability of input, but also helps to re-
duce debugging cycle time. In practice we find it easy to use such rewind-capable
debugger. The restart-free debugger with checkpointing support leads to shorter
debugging cycle – allowing a programmer to rapidly identify root causes of a
bug, thus converting the checkpointing capability into improved productivity.

5.2 Checkpoint Support for Automated Back-Tracking

Back-tracking refers to a set of algorithms that search for solutions in a given
space of possible choices. A partial result may be either committed or discarded,
depending on the evaluation result from it.

We study Versatile Placement and Route (VPR) [5,6], a CAD tool for gener-
ating high-quality circuit layouts on array-based FPGAs. VPR places and routes
on a wide variety of FPGAs and facilitate comparisons among different archi-
tectures. VPR implements a software back-tracking algorithm in its placement
phase, as shown in Figure 9(b). The algorithm starts as its input a randomly
generated guess. It evaluates the result based on this attempted input. If the
result is positive, it will be incorporated into the current system. Otherwise, the
negative result is discarded. This process continues until a desired terminating
condition is satisfied. Current implementation of VPR saves all necessary pro-
gram states before attempting a new input. Shell a discard happen, it manually
restores all saved program states from various complex data structures. VPR de-
signers need to understand not only the placement algorithms, but also pay close
attention to details of manually save and restore necessary program states. This
is a tedious and error-prone process that often has a negative impact on pro-
ductivity, especially when improving the algorithm that results data structure
changes.

By exposing the checkpoint APIs at the source-code level, our fine-grain check-
point framework frees VPR from details of conducting back-tracking operations.

Compiler Support for Fine-Grain Software-Only Checkpointing 211

Table 1. Benchmarks and Checkpoint Region Properties

Apps Region avg insts avg source lines entries

bc-1.05
S 2.2 K 3 3
M 208 K 430* 1
L 305 K 1200* 1

gzip-1.24
S 0.9 K 1 1
M 2.7 K 89* 1
L 194 M 119* 1

man-1.5h1
S 1.4 K 14 1
M 1.6 K 30* 1
L 645 K 89* 1

ncompress-4.2
S 0.8 K 2 1
M 149 K 149* 1
L 231 K 163* 1

polymorph-0.4.0
S 1.5 K 2 1
M 3.1 K 49* 1
L 148 K 76* 1

VPR-5.02 67.1 K 268* 371 K

VPR designers can ignore all details of manual checkpointing and instead call
abort ckpt() or commit ckpt(), which performs checkpoint abort and commit
actions respectively. The simple APIs enable automatic software back-tracking
on VPR, as well as all applications that have a need to perform back-tracking.
VPR designers can instead focus on improving the algorithm – an step that sim-
plifies application programming interface and improves end-user productivity.

6 Evaluation

In this section we evaluate our fine-grain software-only checkpointing framework.
Our compiler infrastructure builds on the LLVM [17,18] open-source compiler
infrastructure release 2.9—all analyses, transformations, and optimizations are
organized as LLVM passes. For debugging support we consider Bugbench [20]
applications, a suite containing various known software bugs plus program inputs
that trigger them; we select five BugBench applications that contain buffer-
overflow bugs. To evaluate back-tracking support we study a recent version of
VPR-5.02 [5], as described in Section 5.2. We measure on an Intel Core i7 920
CPU, with 4GB of DDR3 RAM, running Debian6-i386 with g++ version 4.4.5.

6.1 Checkpoint Region Selection

Table 1 summarizes the checkpoint regions for each benchmark application. For
the selected applications from the BugBench suite, we enclose the root cause and
manifestation of each bug in a minimal checkpoint region called the small (S)
region. We then grow the small region by both forward-and-backward extending

212 C. Zhao et al.

(a) our approach relative to coarse-
grain libCKPT

(b) our approach relative to runtime-
based ICCSTM

Fig. 10. Overhead reduction relative to conventional checkpointing methods for Bug-
Bench applications

the region boundaries, covering increasing granularity and complexity of the
source code. The result is amedium (M) region that contains a significant portion
of the program, and a large (L) region that can potentially cover the entire
application. VPR has only one checkpoint region as appropriate for properly
implementing back-tracking within the try swap function, although we have
two implementations, medium (M) and large (L), depending on whether the
region is marked from the function callee’s perspective or the caller’s perspective,
respectively. Checkpoint regions are vastly different in size: for example, a small
region usually contains around 1000 instructions and spans 2–3 lines of source
code, while a large region can contain up to 195 million instructions (e.g., gzip-
1.24) and covers 1000+ lines of source code (e.g., bc-1.05)2.

6.2 Comparison with Existing Checkpointing Solutions

In this section we compare our compiler-based checkpointing solution with two
alternative software approaches to checkpointing: a checkpointing library, and a
software transactional memory library supported by a commercial compiler.

Library-based schemes back-up all of the memory used by the running
process—thus the checkpointing overhead closely correlates to the size of memory
at checkpointing time. We use libCKPT [26] as the representative of a library-
based software checkpointing solution. Figure 10(a) shows that our fine-grained
checkpointing approach provides over 1000X overhead reduction compared to
coarse-grain checkpointing, for both the time-to-take a checkpoint and the time-
to-restore a checkpoint. The corresponding improvement in terms of the check-
pointing metrics of checkpoint buffer size and the number of instructions needed
to service a checkpoint are within the range of 100X to 1000X.

2 Note that M and L regions always contain user-defined functions, thus the number
of source lines presented in Table 1 marked with * only indicates the lower bound
of possible source-code span.

Compiler Support for Fine-Grain Software-Only Checkpointing 213

We further compare software overheads for supporting single-threaded specu-
lative optimization in Intel’s Software Transactional Memory (STM) [1,28] (ICC-
STM) versus our compiler-based checkpointing solution. (ICCSTM) is a soft-
ware solution for supporting optimistic parallelism, based on Intel’s production-
quality C/C++ compiler. Just like other STM systems, ICCSTM supports specu-
lative parallel execution through write-buferring and dependence tracking of the
reads and writes of multiple threads at run-time. The differences in performance
between the two software packages are expected to come from the different focus
and specialization on their respective main use cases.

ICCSTM is mainly optimized to support program parallelization based on
relatively short transactional regions. On the other hand, our checkpointing soft-
ware is optimized to support single-thread speculation, or debugging for larger
program regions. Based on the limited description available [1,28], ICCSTM
uses only basic compiler optimizations such as inlining and a very simple form
a partial redundancy elimination. Furthermore, to the best of our knowledge,
ICCSTM does not optimize for the single-threaded speculative execution case.
In this special case of speculation support, tracking of the single thread’s read-set
could be safely omitted. In contrast, our checkpointing scheme benefits from be-
ing specialized for the single-thread case. Specifically, we track only the write set
for the speculative thread via an efficient implementation based on undo-logging.
In the common case where speculation is successful, undo-logging avoids expen-
sive lookups on reads for matching prior writes, and also the copies of writes
to shared memory on commit. Overall, it is expected that our fine-grain check-
point support will have lower overheads, and/or better cache behavior than a
write-buffering STM.

Figure 10(b) compares ICCSTM to our baseline compiler-based checkpointing
solution (with no optimizations). We find that our solution outperforms ICCSTM
in almost all cases. On average, our solution outperforms the time-to-take a
checkpoint for ICCSTM by 5X, and the number of instructions needed to take
a checkpoint by 8X. The largest difference is in terms of the checkpoint buffer
size, which is almost 60X lower for our solution.

6.3 Optimization Effectiveness

To evaluate our checkpointing optimization framework, we run optimizations
over each application’s M and L regions. We gradually increase the number of
optimizations on each test region until all available optimizations are applied.
We focus the evaluation on the effectiveness of checkpointing overhead reduc-
tion as measured by the following metrics: checkpoint buffer size reduction, the
reduction in the number of backup calls, and the impact on the redundancy rate.

Checkpoint Buffer Size Reduction. Figure 11 shows the compiler optimiza-
tion impact on checkpoint buffer size when all optimizations are incrementally
applied. The effectiveness of our optimizations depends on the region size, as
well as the frequency of stores within the region. Normally, a larger region has
more opportunities for optimization. We observe that RE1 is the most effective
of all optimizations: as shown in Figures 11(a), and 11(b), respectively, RE1

214 C. Zhao et al.

77

0

20

40

60

80

100

120
% of Buffer Size Reduction INLINE

 +RE1

 +RE2

 +RE3

 +Hoist

 +Aggr

 +NRESE

 +HeapOpti

 +ArrayOpti0

20

40

60

80

100

120
% of Buffer Size Reduction INLINE

 +RE1

 +RE2

 +RE3

 +Hoist

 +Aggr

 +NRESE

 +HeapOpti

 +ArrayOpti

(a) large regions

80

0
10
20
30
40
50
60
70
80
90

% of Buffer Size Reduction INLINE

 +RE1

 +RE2

 +RE3

 +Hoist

 +Aggr

 +NRESE

 +HeapOpti

 +ArrayOpti

0
10
20
30
40
50
60
70
80
90

% of Buffer Size Reduction INLINE

 +RE1

 +RE2

 +RE3

 +Hoist

 +Aggr

 +NRESE

 +HeapOpti

 +ArrayOpti

(b) medium regions

Fig. 11. Incremental/cumulative impact of optimizations on buffer size

83

0

20

40

60

80

100

120
% of backup() call Reduction INLINE

 +RE1

 +RE2

 +RE3

 +Hoist

 +Aggr

 +NRESE

 +HeapOpti

 +ArrayOpti

0

20

40

60

80

100

120
% of backup() call Reduction INLINE

 +RE1

 +RE2

 +RE3

 +Hoist

 +Aggr

 +NRESE

 +HeapOpti

 +ArrayOpti

(a) large regions

86

0

10

20

30

40

50

60
% of backup() call Reduction

INLINE

 +RE1

 +RE2

 +RE3

 +Hoist

 +Aggr

 +NRESE

 +HeapOpti

 +ArrayOpti

0

10

20

30

40

50

60
% of backup() call Reduction

INLINE

 +RE1

 +RE2

 +RE3

 +Hoist

 +Aggr

 +NRESE

 +HeapOpti

 +ArrayOpti

(b) medium regions

Fig. 12. Incremental/cumulative impact of optimizations on number of backup calls

reduces the checkpoint buffer size by 92% in polymorph, and by almost 80% in
man. When optimizations are incrementally applied, we observe a stable trend of
buffer size reduction for both M and L regions. All performance numbers show
that our compiler optimizations either exploit opportunities for optimization and
hence improve checkpoint efficiency, or at least do not introduce negative effects
(regressions). On average, the optimizations reduce checkpoint buffer size by an
average of 52% for the L regions and 22% for the M regions.

Backup Call Reduction. in addition to buffer size reduction, our compiler
optimizations also reduce the total number of backup calls—another metric for
estimating the checkpointing overhead. Figure 12 shows that our optimizations
reduce the total number of backup calls by an average of 36% for the L region
and by 15% for the M region.

Redundancy Rate Impact. After all optimizations have been applied, it
is interesting to understand how much redundancy remains in the checkpoint
buffer, as a measure of what further optimization opportunities remain. We

Compiler Support for Fine-Grain Software-Only Checkpointing 215

%

%

%

%

%

0

20

40

60

80

100

120

BC

GZIP

MAN

NCOMPRES
S
POLYMORP
H
VPR

(a) large regions

%

%

%

%

%

%

0

5

10

15

20

25

30

BC

GZIP

MAN

NCOMPRESS

POLYMORPH

VPR

(b) medium regions

Fig. 13. Incremental/cumulative impact of optimizations on redundancy rate

(a) entire program (b) within try swap only

Fig. 14. Performance overhead of automated back-tracking support via our compiler-
based checkpointing, relative to manually-implemented back-tracking support

quantify this by studying the region’s redundancy rate (RR), as defined earlier
in Section 4. Figure 13 illustrates the impact of our compiler optimizations on RR
for both M and L regions when incrementally applying available optimizations.
Figure 13(b) indicates that our optimizations are more effective in eliminating
redundancy inM regions, since the highestRR is around 18% after optimizations.
This is because the opportunities in M regions are more likely to be captured by
our optimizations. Although optimizations do reduce redundancy for L regions
as well, in most cases the impact is small. Three applications (gzip, ncompress,
and man) still have very high RR even after applying all available optimizations.
After manually examining the source code for each case we conclude that the
high RR is due to extensive use of pointers, the presence of which hinders our
optimization framework.

216 C. Zhao et al.

6.4 Overhead of Back-Tracking Support

In this section we evaluate the use of our checkpointing framework for imple-
menting automatic back-tracking support in the VPR application, as introduced
earlier in Section 5.2. Automatic back-tracking support frees the developer from
having to manually implement support for checkpoint and restore, and also al-
lows for source code that is easier to read and maintain.

We focus our evaluation on the try swap function that implements the back-
tracking portion of VPR. This routine spans almost 300 lines of source code
including function calls and data access through link-list structures. Figure 13
shows that the final RR for VPR is 18%, and that RE1 exploits most of the opti-
mization opportunities. In addition to the 1D array buffer scheme, alternatively
we can try a hash table solution to achieve a perfect redundancy behavior.3 Sec-
tion 4 introduces the details of our hash table designs, and their performance
impact on checkpoint-enabled VPR is given in Figure 14.

Figure 14(a) presents the overall performance impact on VPR when our
compiler-based automatic back-tracking is enabled. We observe that the 1D-
array scheme achieves the best run-time performance after optimization. The
entire VPR program has a mild 15% slowdown with 18% of buffer redundancy
after applying all optimizations. When switching to buffers utilizing hash ta-
ble schemes, we measure increased performance penalty to 62%, 95% and 140%
when utilizing union, PTD, and fixed hash-table buffer schemes respectively.

We further zoom-in to the function level and measure the checkpointing
performance impact on the try swap routine alone (in Figure 14(b)) by com-
paring its execution time with and without our compiler-based checkpointing.
Figure 14(b) is very similar to Figure 14(a). They can be treated as scaling on
different levels of granularity. When measuring against try swap function only,
enabling automatic checkpointing will have performance penalties of 90%, 600%,
950% and 1500% for 1D array, union, PTD, and fixed respectively.

7 Related Work

Our techniques leverage prior work in related areas, including support for soft-
ware checkpointing, thread-level speculation (TLS), transactional memory (TM)
and program back-tracking.

Checkpointing. Checkpointing is a process of taking program snapshots to
facilitate later recovery. Feldman et al. [8] present the IGOR system capable
of conducting full-process checkpointing, optimized for checkpointing only dirty
pages. King’s time-traveling VM [15] discusses an OS-level debugging facility
by checkpointing entire OS states into disk files. Fine-grain refinement includes
both undo-log and redo-log, to reach any specific program location between two
consecutive full checkpoints. Xu et al. [32] demonstrate a re-tracing tool that

3 Note that a hashtable always performs a search before any insert, thus the redun-
dancy rate for all hashtable-based checkpoint buffer implementations is always 0.

Compiler Support for Fine-Grain Software-Only Checkpointing 217

uses VMWare’s deterministic replay technique to collect only non-deterministic
events during program execution and later expanding the collection into full
program traces using replay. In contrast to existing approaches that checkpoint
entire VM or application, we checkpoint on a per-store granularity to mem-
ory within a single application – a fine-grain checkpointing scheme that hasn’t
received much attention.

Speculation. Thread-level speculation [10,29] (TLS) and Transactional Mem-
ory [11,12,28] (TM) are optimistic program execution whose result might not be
needed. TLS and TM approaches provide for each optimistic thread the ability to
checkpoint and rollback, although this support is also intertwined with support
for tracking and detecting inter-thread conflicts. Hardware buffering support for
hardware TLS and TM implementations has the challenge that it can overflow.
Software implementations can be less limited in buffer capacity, but suffer from
high instrumentation overheads. In contrast to most TM or TLS solutions that
using hardware buffering for multi-threaded workload, we instead focus on using
software buffering for single-thread application. We further leverage compiler
optimizations to aggressively reduce checkpointing overhead.

Program Back-Tracking. Debugging often requires revisiting passed pro-
gram state while trying to locate the root cause of a bug. A checkpoint-enabled
debugger can greatly simplify the debugging process by eliminating the need
for program restart to look backwards. Agrawal et. al. [2,3] presented a proto-
type debugging tool that is based on dynamic program slicing and execution
back-tracking—it provides a structured view of dynamic events through run-
time traces, but is constrained by storage limitations. Recent versions of gdb [9]
allow inverse execution by conducting program replay, but are limited to one
million instructions. In contrast, our checkpointing scheme allocates its buffer in
main memory so that it can grow dynamically. This allows a checkpoint region
of relatively unbounded size and complexity. We expose the checkpointing func-
tionality to the user, so that programmers can have explicit control of rewind by
issuing debugger commands, to help reduce develop-run-debug cycle time and
improve productivity.

8 Conclusion

We have designed, implemented and evaluated a comprehensive checkpointing
framework that automatically enables software-only checkpointing over any user-
specified source program region. In this paper, we presented compiler analyses
and transformations that enable and optimize user-level checkpointing over pro-
grams of arbitrary size and complexity, and demonstrated that compiler op-
timizations are effective at eliminating checkpointing overhead. In particular,
they reduce checkpoint buffer size by up to 98% and remove up to 95% of redun-
dant backup calls. We showed that by leveraging our checkpointing framework,
a debugger can conduct unlimited retries of execution rewind over arbitrar-
ily large regions. We also showed that we can enable automatic back-tracking,

218 C. Zhao et al.

with a moderate performance overhead of only 15% for VPR’s place-and-route
algorithm.

Future Work. We plan to enhance our checkpointing API by allowing users
to specify non-checkpointable code within a checkpoint region; this will have an
immediate use for VPR because users will gain manual control within an other-
wise automatically-checkpointed region. Redundancy rates remain high for a few
applications after all optimizations due to extensive use of pointers, hence we
plan to develop deep pointer analyses to better understand such pointer behav-
iors and help to further reduce checkpointing overhead. We also plan to extend
our framework with multi-threading support, including evaluating a write-buffer
approach.

References

1. Adl-Tabatabai, A., Lewis, B.T., Menon, V.S., Murphy, B.R., Saha, B., Shpeis-
man, T.: Compiler and runtime optimizations for efficient software transactional
memory. In: ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI (2006)

2. Agrawal, H., Demillo, R., Spafford, E.: An execution-backtracking approach to
debugging. IEEE Transactions on Software (May-June 1991)

3. Agrawal, H., Demillo, R., Spafford, E.: Debugging with dynamic slicing and back-
tracking. Software: Practice and Experience (October 2006)

4. Akkary, H., Rajwar, R., Srinivasan, S.: Checkpoint processing and recovery: An
efficient, scalable alternative to reorder buffers. IEEE Computer Society (2003)

5. Betz, V., Rose, J.: Vpr: A new packing, placement and routing tool for fpga re-
search. In: VPR: A New Packing, Placement and Routing Tool for FPGA Research
(1997)

6. Betz, V., Rose, J., Marquardt, A.: Architecture and cad for deep-submicron fpgas.
Kluwer Academic Publishers (February 1999)

7. Elnozahy, W., Johnson, D., Zwaenepoel, W.: The performance of consistent check-
pointing. In: 11th Symposium on Reliable Distributed Systems, pp. 39-47 (October
1992)

8. Feldman, S.I., Brown, C.I.: Igor: A system for program debugging via reversible
execution. In: ACM SIGPLAN Notices, Workshop on Parallel and Distributed
Debugging (1989)

9. Free Softwar Foundation. Gdb: the gnu debugger manual 7.0 (September 2009)
10. Hammond, L., Willey, M., Olukotun, K.: Data speculation support for a chip mul-

tiprocessor. In: ACM SIGOPS Operating Systems (December 1998)
11. Hammond, L., Wong, V., Chen, M., Carlstrom, B.D., Davis, J.D., Hertzberg, B.,

Prabhu, M., Wijaya, H., Kozyrakis, C., Olukotun, K.: Transactional memory co-
herence and consistency. In: CM SIGARCH Computer Architecture News (March
2004)

12. Herlihy, M., Luchangco, V., Moir, M., Scherer, W.N.: Software transactional mem-
ory for dynamic-sized data structures. In: The Twenty-Second Annual Symposium
on Principles of Distributed Computing (2003)

13. Hwu, W., Patt, Y.: Checkpoint repair for out-of-order execution machines. In:
Computer Science Division. ACM, University of California at Berkeley (1987)

14. Jagadish, H.V., Silberschatz, A., Sudarshan, S.: Recovering from main-memory
lapses. In: Procs. of the International Conf. on Very Large Databases, VLDB (1993)

Compiler Support for Fine-Grain Software-Only Checkpointing 219

15. King, S.T., Dunlap, G.W., Chen, P.M.: Debugging operating systems with time-
traveling virtual machines. In: Annual USENIX Technical Conference (2005)

16. Kingsley, G., Beck, M., Plank, J.: Compiler-assisted checkpoint optimization using
suif. In: First SUIF Compiler Workshop (1995)

17. Lattner, C., Adve, V.: Llvm a compilation framework for lifelong program anal-
ysis and transformation. In: Proc. of the 2004 International Symposium on Code
Generation and Optimization (CGO) (March 2004)

18. Lattner, C., Adve, V.: The LLVM Compiler Framework and Infrastructure Tuto-
rial. In: Eigenmann, R., Li, Z., Midkiff, S.P. (eds.) LCPC 2004. LNCS, vol. 3602,
pp. 15–16. Springer, Heidelberg (2005)

19. Li, C., Stewart, E., Fuchs, W.: Compiler-assisted full checkpointing. Software-
practice and Experience 24(10), 871–886 (1994)

20. Lu, S., Li, Z., Qin, F., Tan, L., Zhou, P., Zhou, Y.: Bugbench: Benchmarks for
evaluating bug detection tools. In: Workshop on the Evaluation of Software Defect
Detection Tools (2005)

21. Mcdonald, A., Chung, J., Carlstrom, B.D., Minh, C.C., Chafi, H., Kozyrakis, C.,
Olukotun, K.: Architectural semantics for practical transactional memory. Com-
puter Architecture News (2006)

22. Moore, K.E., Bobba, J., Moravan, M.J., Hill, M.D., Wood, D.A.: Logtm: Log-based
transactional memory. In: High-Performance Computer Architecture (2006)

23. Eliot, J., Moss, B.: Log-based recovery for nested transactions. In: Proceedings of
the 13th International Conference on Very Large Data Bases (1987)

24. Ng, W., Chen, P.: The symmetric improvement of fault tolerance in the rio file
cache. In: Proceedings of 1999 Fault Tolerance Computing, FTC (1999)

25. Plank, J., Beck, M., Kingsley, G.: Compiler-assisted memory exclusion for fast
checkpointing. In: IEEE Technical Committee on Operating System and Applica-
tion Environments, Special Issue on Fault-Tolerance (1995)

26. Plank, J.S., Beck, M., Kingsley, G., Li, K.: Libckpt: Transparent checkpointing
under unix. In: Usenix Winter Technical Conference (1995)

27. Chandra, S.: An evaluation of recovery related properties of software faults. Ph.D.
thesis (2004)

28. Saha, B., Adl-Tabatabai, A.-R., Hudson, R.L., Minh, C.C.: Mcrt-stm: A high per-
formance software transactional memory system for a multi-core runtime. In: Prin-
ciples and Practice of Parallel Programming, PPOPP (2006)

29. Gregory Steffan, J., Colohan, C.B., Zhai, A., Mowry, T.C.: A scalable approach to
thread-level speculation. In: International Symposium on Computer Architecture
(ISCA) (June 2000)

30. Wang, Y., Huang, Y., Vo, K., Chung, P., Kintala, C.: Checkpointing and its appli-
cations. In: 25th Int. Symp. On Fault-Tol. Comp., pp. 22–31 (June 1995)

31. Whaley, J.: System checkpointing using reflection and program analysis
32. Xu, M., Malyugin, V., Sheldon, J., Venkitachalam, G., Weissman, B.: Retrace: Col-

lecting execution trace with virtual machine deterministic replay. In: 3rd Workshop
on Modeling, Benchmarking and Simulation (2007)

VMAD: An Advanced Dynamic Program

Analysis and Instrumentation Framework

Alexandra Jimborean, Luis Mastrangelo,
Vincent Loechner, and Philippe Clauss

INRIA Nancy-Grand Est (CAMUS), LSIIT,
University of Strasbourg, CNRS, France

{firstname.lastname}@inria.fr

Abstract. VMAD (Virtual Machine for Advanced Dynamic analysis)
is a platform for advanced profiling and analysis of programs, consisting
in a static component and a runtime system.

The runtime system is organized as a set of decoupled modules, ded-
icated to specific instrumenting or optimizing operations, dynamically
loaded when required. The program binary files handled by VMAD are
previously processed at compile time to include all necessary data, in-
strumentation instructions and callbacks to the runtime system. For this
purpose, the LLVM compiler has been extended to automatically gen-
erate multiple versions of the code, each of them tailored for the tar-
geted instrumentation or optimization strategies. The compiler chooses
the most suitable intermediate representation for each version, depend-
ing on the information to be acquired and on the optimizations to be
applied. The control flow graph is adapted to include the new versions
and to transfer the control to and from the runtime system, which is in
charge of the execution flow orchestration.

The strength of our system resides in its extensibility, as one can
add support for various new profiling or optimization strategies, inde-
pendently of the existing modules. VMAD’s potential is illustrated by
presenting several analysis and optimization applications dedicated to
loop nests: instrumentation by sampling, dynamic dependence analysis,
adaptive version selection.

1 Introduction

Runtime code analysis and optimization becomes the main strategy for facing
the ever extending and changing variety of processor architectures and execution
environments that an application can meet. Unlike static compilers, that have
to take conservative decisions from restricted information extracted from the
source code, runtime profilers and optimizers rely on information captured at
execution time. While today’s processors provide more and more computing re-
sources at the price of increasing usage complexity, particularly with the advent
of multicore processors, efficient program optimizations such as adaptive and
speculative parallelism, require accurate and advanced runtime analyses. How-
ever, such analyses inevitably incur time overhead that has to be minimized.

M. O‘Boyle (Ed.): CC 2012, LNCS 7210, pp. 220–239, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

VMAD: Advanced Dynamic Program Analysis and Instrumentation 221

In this paper, we present a framework called VMAD, that includes a virtual
machine handling x86 64 binary files, tailored at compile time thanks to ded-
icated passes developed in the LLVM compiler [22]. One of VMAD’s specific
feature is that low level profiling is initiated from the source code by the pro-
grammer through the insertion of a dedicated pragma. The inserted pragmas
delimit the regions of the source code of interest and specifies the type of analy-
sis to be performed at runtime. This approach provides the programmer a direct
view of the actual execution behavior of his source code. We have extended the
LLVM compiler and the Clang front-end to handle such pragmas.

VMAD has the ability of dynamically loading separated modules that im-
plement various analysis strategies. The modules are loaded and unloaded on
demand, and several instances of the same module can be loaded simultane-
ously to handle different code regions. Profiling by sampling, as well as code
transformations, are achieved using the same mechanism of multi-versioning and
chunking. At compile-time, several versions of the targeted code are automat-
ically generated depending on the semantics of the pragma. For instrumenting
by sampling, original and instrumented versions are prepared, while for opti-
mizations, a pattern that can support various code transformations is built.
Optimizations are usually preceded by a profiling phase. In this respect, the
multiple versions are prepared such that they can be launched successively in
chunks of code of various sizes. For example one chunk might represent a subset
of iterations of a loop, or a number of function calls. The runtime system then
takes the decision concerning the version to be run and adjusts the chunk size
correspondingly.

To show VMAD’s potential, we present some advanced analysis processes.
The first one consists in collecting all memory addresses that are accessed dur-
ing a selected number of successive iterations of each loop of a loop nest. This
instrumentation is rather specific since it occurs on non-contiguous phases of the
loop nest execution. The analysis process tries to interpolate addresses succes-
sively accessed through each memory reference as a linear function. The second
application extends the previous one by performing a dynamic dependence anal-
ysis: when all accessed memory addresses can be represented as linear functions,
these are transmitted to a dependence analysis module which determines if the
loop nest may be parallelized. Finally, the third application is a runtime version
selector handling distinct versions of loop nests generated by applying different
optimizations. Samples of each version are launched successively and the perfor-
mance of each version is evaluated by accessing the CPU time stamp counter.
The best version is then run for the remaining iterations.

The remainder of the paper is organized as follows. In Sect. 2, we present an
overview of our static-dynamic framework. The runtime component is detailed
in Sect. 3, and the static preparation of the code is presented in Sect. 4. The
loop analysis processes implemented in VMAD are further described in Sect. 5.
Finally, we summarize related work in Sect. 6 and conclude in Sect. 7.

222 A. Jimborean et al.

2 Framework Overview

VMAD has been built by taking great care of its performance and its run-
time overhead. Hence, we avoided the use of software dynamic translation that
would delay the execution of the input program. Further, instrumentation in-
structions are not inserted on-the-fly by replacing some NOP instructions that
have been previously inserted at compile time, as done with PEBIL [21]. Rather,
we use multi-versioning: several copies are built from the targeted code extracts
at compile time. The price to pay with this approach is the larger size of the
program binary file. However, great care can also be taken to minimize the size
of the copies by inserting branches to the original code whenever possible. Be-
sides performance, another noticeable benefit is the opportunity of implementing
advanced analyses which can use versions far different from the original code.

The static-dynamic collaborative framework is depicted in Fig. 1. At compile
time, the C/C++ source code, annotated with dedicated pragmas, is trans-
lated into the LLVM intermediate representation (IR) with additional specific
metadata. An LLVM pass creates copies of the targeted code extracts, some-
times customized with instrumentation instructions. Depending on the type of
information intended to be captured during the analysis phase, instrumentation
instructions may be inserted either in the LLVM IR, for high-level information,
or in the final assembly code, for low-level information. As an example, tracing
memory accesses in LLVM IR is not possible, as register allocation is not yet
done at this level.

Besides instrumentation instructions, we insert decision blocks, providing the
means to toggle between versions. We also insert callbacks, in order to invoke
VMAD and its related modules when necessary. To be generic, callbacks are
inserted as indirect calls and the address of the function to be called is patched
at start-up by the virtual machine.

Application binary file

instructions
code
labels
callbacks

data for the VM

Virtual Machine

headers reading

relevant modules
loading

modules
executions
 initalization
 activation
 deactivation
 termination
 reinitialization
 specific
 operations

module 0

module 1

module 2
...

}

application
source code

Fig. 1. Framework overview

VMAD: Advanced Dynamic Program Analysis and Instrumentation 223

Moreover, the compiler inserts data in the final binary file to inform the VM
regarding the analysis process to be performed and to provide the necessary
static information.

At runtime, we use LD PRELOAD to load VMAD’s dynamic shared library
at startup. LD PRELOAD provides its own version of the C-library entry point
libc start main, allowing VMAD to read the information statically prepared,

to load the required modules and to patch the binary file. Next, control is given
to the input program. When necessary, VMAD is reactivated through the call-
backs.

3 The Virtual Machine VMAD

The virtual machine makes use of three kinds of information inserted at compile
time in the program binary file: instrumentation code that has been inserted
before or after original instructions in order to monitor their run; decision blocks
to control the selection of the versions; static data corresponding to module
parameters, and pointers to the addresses of the inserted code and the callbacks.

Each analysis collaborates with a dynamic module. They share information
using a fixed size header which resides inside the binary file. At startup, as soon
as the headers and their associated parameters have been read, the VM loads
the relevant modules and instantiates them. Parameters fetched at this point are
static data, and are accessed either by the VM, in order to know which modules
are required, or by the modules loaded by VMAD, for instance for obtaining
the addresses of the code snippets that have to be patched, or by instrumenting
instructions, for allocating memory to backup registers. On the other hand,
dynamic data is accessed through pointers set up by the corresponding VM
modules which allocate the memory they require.

Each module is structured with at least five main entry points: init to in-
stantiate an analysis process, quit to kill such an instance, on, off and reset to
activate, deactivate and reset an analysis process. Additional operations can also
be provided by a module. They are invoked thanks to callbacks patched initially
by init in order to point to the relevant instance of the module and operation.
These callbacks are inserted at some control points in the program binary file,
as detailed in Sect. 4 and Sect. 5, and have the common form shown in Fig. 2.

4 Preparing the Code at Compile Time Using LLVM

Code analysis and optimization starts, in our approach, at the level of the original
source code, where the programmer guards interesting regions of code with a spe-
cific pragma. The code is then statically shaped to enable the analysis phase, by
performing the following steps, detailed below: code tracking, multi-versioning,
customizing the versions for instrumentation or optimization, inserting callbacks
to the VM, and appending static information required by the VM. An extra chal-
lenge is taken when a high optimization level is applied, such as -O3, due to the
aggressive code transformations being performed. We first optimize the code

224 A. Jimborean et al.

sub $0x80 ,%rsp // backup the stack red zone
// backup the sc ra t ch r e g i s t e r s h e r e . . .
mov %rsp ,%rbp // stack adjustement (x86 64 convention)
mov $ 0 x f f f f f f f f f f f f f f f 0 ,% r s i
and %r s i ,%rsp
mov $0x0 ,%rax // x86 64 convention
mov $0x0 ,% rd i // addre ss o f the module ($0x0 w i l l be patched)
mov $0x0 ,% r s i // addre ss o f the operat ion ($0x0 w i l l be patched)
ca l lq ∗%r s i // f unc t i on call
mov %rbp ,%rsp // stack read justement
// r e s t o r e the s c ra t ch r e g i s t e r s h e r e . . .
add $0x80 ,%rsp // r e s t o r e the stack red zone

Fig. 2. callback in x86 64 assembly code

(O3), then we generate multiple versions and run a few optimization passes to
optimize them, without altering the code which requires patching.

Code tracking. Our work relies on the LLVM compiler and on the Clang front-
end, which must be extended in order to handle the newly defined pragma. The
semantics of the pragma and the delimited region must be preserved from the
source code, through the internal phases of the compiler, until the code gen-
eration. The original source code is converted into the LLVM IR, annotated
with metadata information to mark the code enclosed in the pragma scope. The
difficulties of tracking code throughout optimization phases is that metadata
information is not entirely preserved, and that code suffers significant trans-
formations. For instance, if one marks the instructions building up a loop and
performs loop optimizations, additional code is included (e.g. due to loop fusion)
or excluded (e.g. loop invariants, loop split) from its original body. Therefore,
identifying all original instructions is not always possible. Focusing on loops, the
conservative solution we propose is to consider that the original loop is trans-
formed into the code region containing

– all loops that include ...
• at least one basic block containing ...

∗ at least one instruction that carries metadata

The consequence is that more code than the one originally marked for multi-
versioning might be considered. However, in this manner, we ensure that all
instructions of the targeted code region are safely enclosed.

Multi-versioning. Once the region is identified, several clones are generated.
We designed an LLVM pass which creates clones of these regions and builds
a selection mechanism. The steps to follow for building multiple versions are
described in Fig. 3. Using the LLVM copying utilities, we build clones of the
instructions found in the region. By default, the clones represent identical copies
of the original values. To restore the control flow graph between the copies, a
map of the original values and the corresponding clones needs to be built. Based
on it, we replace all uses of the original values inside the cloned region, with
the corresponding cloned value, thus obtaining a clone of the entire region, as

VMAD: Advanced Dynamic Program Analysis and Instrumentation 225

depicted in Fig. 3B. Finally, each version is extracted into a new function and
the selection mechanism is inserted.

Each code version is converted into a suitable intermediate representation,
depending on its objectives. Versions created for high level code analysis and
optimizations are preserved in the LLVM IR, while versions targeting low-level
information are transformed into x86 64 assembly code. For instance, tracing
memory behaviour is a difficult task in LLVM IR, because register allocation is
not available at this compilation step, and because LLVM IR is in SSA form,
containing Φ-nodes. The number of “load” and “store” instructions from LLVM
IR is greatly reduced by the optimizers during the code generation, hence they
do not represent actual memory accesses. A lower level representation, such as
x86 64 assembly, is required for this type of instrumentation. On the other hand,
for performing dependence analysis, it suffices to track the “load” and “store”
LLVM instructions since it is not relevant for this purpose whether a register or
a memory location from the internal memory is accessed.

BB1_clone:

x

x

x

BB1 ------> BB1_clone
BB2 ------> BB2_clone
BB3 ------> BB3_clone
BB4 ------> BB4_clone

BB2_clone:

BB3_clone: BB4_clone:

A. Cloning B. Rebuild control-flow-graph between clones

C. Extract versions in separate functions

Fig. 3. Multi-versioning

Converting regions of code into different intermediate representations justifies
the necessity of extracting the versions in separate functions, further compiled
and processed independently. Also, in this manner, we have a clean separation
between the regions marked for multi-versioning and the embedding code, from
the source level to the LLVM IR and till the x86 64 assembly form. The clones

226 A. Jimborean et al.

represented in the LLVM IR are inlined in the original code once they have
been customized, to reduce the runtime overhead, but this is not possible for
the versions in x86 64 assembly representation, due to register allocation. Nev-
ertheless, the overhead incurred by extracting the versions in separate functions
is negligible in most situations.

Chunking. The applications we currently propose for evaluating our framework
regard analysis and instrumentation of loop nests, as well as dynamic selection
between different optimized versions of loop nests. For these purposes, we build
chunks of successive iterations by inserting a virtual iterator vi and new con-
ditions lowerBound ≤ vi < upperBound in each loop, in order to manage the
number and the position of the executed iterations, relatively to the preceding
executed chunk. Under these circumstances, sampling is achieved by executing
a chunk of the instrumented version, and then switching to the original version.
More generally, our strategy provides the means to switch between different
versions of a loop nest while completing its execution. After the execution of
each chunk, based on the information registered from instrumentation, the VM
is invoked to perform additional computations and to guide the decision con-
cerning the next chunked version to be executed. By adjusting the values of the
lowerBound and upperBound dynamically, one can control the sampling rate,
restart instrumentation when necessary, and, more generally, can vary the chunk
size and the occurring frequency of any version.

Invoking the VM. The selection mechanism consists in preceding each set of
versions by a decision block, which invokes the VM to decide upon the version to
be executed. Additional callbacks to the VM (Fig. 2) are performed at runtime
to transmit the data collected via instrumentation, as presented in section 3. The
callbacks are placed statically at the beginning and end of each version, and for
loops, in addition, they mark the beginning and the end of each instrumented
iteration.

Following a generic approach, all callbacks have a standard form, using indi-
rect calls. This approach enables the compiler to generate multiple versions in
a generic form, and relies on the VM to patch the address of the corresponding
function, at runtime.

Since we patch the code dynamically, our strategy is to inline these code snip-
pets in x86 64 assembly code, ensuring that the size of the code to be patched
is fixed. The inline code contains new labels and jumps and the callbacks to the
VM. First, this ensures that the VM can track the position of the callbacks in
the binary file by using the addresses of the labels. And second, it prevents the
modification of the code snippets in the last phases of the code generation, as all
jumps and callbacks are inserted in fixed size hexadecimal representation. What
we obtain is a partial control flow graph managed as x86 64 assembly code, in-
lined in the LLVM IR. On the other hand, the inline code is not accessible to
the LLVM compiler in this compilation phase. As a consequence, to preserve the
validity of the LLVM IR code, we have to maintain both the original CFG, rep-
resented as LLVM branches, as well as the jumps inserted in the inline assembly
code. The CFG expressed in inline code is the one actually executed, however,

VMAD: Advanced Dynamic Program Analysis and Instrumentation 227

the LLVM branches are preserved to avoid compile time errors, or false cases of
dead-code elimination.

Finally, handling inline assembly code throughout the optimizations requires
considerable efforts to protect the inlined code against duplications, relocations
or dead code eliminations, and to minimally perturb the optimizing passes.

The steps presented above, for statically processing the code, are indepen-
dent of the type of profiling or optimization to be performed. Next, the clones
are modified following the individual specifications and a list of parameters is
appended to transmit relevant static information to the VM.

Customizing the Versions. Each function containing a code version is cus-
tomized according to the type of instrumentation or optimization, either by
inserting snippets of instrumenting code, or by performing various code trans-
formations. This is the step when the most suitable intermediate representation
is selected. For the examples we address in this paper, various representations are
preferred. For tracking the memory locations and building interpolating linear
functions, we insert the instrumenting instructions in the final assembly code,
after the register allocation. For performing dependence analysis, we instrument
the memory accessing instructions at the LLVM IR level and verify pair-wise
dependences of load and store instructions. Finally, to perform runtime version
selection, for the purpose of this example, the versions are embedded in the
source code. The application benefits on the possibility of executing samples
of each version and evaluate them using processor counters. The code snippets
for evaluating the performance of each version are automatically inserted in the
LLVM IR.

Inserting Static Information. In addition to preparing the code, a set of
headers and parameters is annexed to the generated binary code (Fig. 4). The list
of headers is specific to the type of instrumentation, as they determine the mod-
ules to be loaded in the VM (vmad 0 entry, vmad loop entry). Headers are linked
to the corresponding parameters (vmad 0 param), containing higher level infor-
mation statically available, but which would be time-expensive to identify in the
binary representation (for example, the loop depth). Furthermore, the compiler
transmits as parameters instrumentation specific information, for instance the
addresses of the code snippets inserted in the original code (vmad 0 loop reinstru,
vmad 0 instru call).

5 Illustrating Applications

5.1 Analyzing Memory Accesses in Loop Nests

The first application we propose for evaluating VMAD consists in instrument-
ing and profiling the memory accesses of critical pieces of code, with a minimal
time overhead. In our examples, the target is non-statically analyzable code. We
focus on loop nests, as they represent a significant part of the total execution
of compute-intensive applications. The goal of the instrumentation framework

228 A. Jimborean et al.

Fig. 4. Headers and parameters

is to collect the memory addresses accessed during samples of iterations and, if
possible, to compute linear functions interpolating their values. Additionally, the
loop trip counts of each loop, except the outermost ones, are collected for a few
runs to be linearly interpolated. Such a profiling is particularly useful for nested
loops, either while-, for- or goto-loops, accessing memory through indirect refer-
ences or pointers. If the memory accesses and the loop bounds can be expressed
by means of linear functions, the enclosing loop nests can be optimized and par-
allelized using for-loop dedicated approaches, such as the polyhedral model [4,5].
To handle all loop types in the same manner, we introduce “virtual” iterators,
which are maintained to mirror the number of executed iterations.

Loop Nest Instrumentation. Efficient loop nest instrumentation by sampling
consists in profiling only a subset of the executed iterations of each loop. The
complexity of the method is outlined in the case of nested loops, as instrumen-
tation depends not only on the iteration of the current loop, but also on the
parent loops. For a thorough understanding, consider the loop nest in Fig. 5(a).
In this example, the first three iterations of each loop are instrumented. One
may easily notice that instrumented and non-instrumented iterations alternate,
hence the execution has to switch from one code version to another at runtime.
Once the outermost loop profile has been completed, the execution can continue
with a non-profiled version of the loop nest, thus inducing no overhead for the
remaining iterations.

For linear interpolation of memory accesses, each memory instruction should
be profiled during the execution of at least three iterations, in order to get suffi-
cient address values. However, since some memory instructions can be guarded
by conditional branches, it is required to profile such instructions for more iter-
ations, to increase the chances of collecting enough, i.e., at least three, address
values. This contributes to the accuracy of the computed interpolating functions.
In our experiments, we fixed the number of instrumented iterations to 10, which
was a good trade-off between overhead and accuracy. The sampling rate can be
set by a parameter. The first two collected values are dedicated to computing
the affine function coefficients, while the remaining values are used to verify the
interpolation correctness.

Statically, our LLVM pass creates copies of the loop nests, extracts them
in new functions and converts them to x86 64 assembly code. A second pass
analyzes the functions and precedes each instruction accessing memory with in-
strumentation code that computes the actual memory location being accessed,

VMAD: Advanced Dynamic Program Analysis and Instrumentation 229

(a) Loop nest instrumentation.

INITwithout RS

with RS

RS = Runtime System

(b) Code structure.

Fig. 5. Instrumenting loop nests

and makes a call to the VM to transmit the collected data. Fig. 5(b) illustrates
the structure of the code from Fig. 5(a) and the links between different versions.
BlocksOi, Oj and Ok represent the original versions, while Ii, Ij and Ik represent
the instrumented bodies of each loop. The instrumented and original versions
are connected together at their entry point, where a choice is made at runtime
deciding which version to run, based on the values of the virtual iterators. One
decision block is associated to each loop, represented by Di, Dj and Dk, cor-
respondingly, containing a callback to the VM. The VM is also invoked when
entering or exiting a version of the loop, to retrieve dynamic information. At
compile time, we mark the beginning and end of the original and instrumented
versions with labels, and append them to the list of parameters given to the VM.

Lastly, a list of headers and parameters is prepared, notifying the VM which
are the modules required for this instrumentation: module vmad handle loop,
vmad gather memory addresses and vmad interpolation. One instance of each of
these modules is created per loop, at runtime. The first module encloses the
mechanisms necessary for handling loops, the second one collects the memory
accesses performed inside the loops, while the last module performs the inter-
polation. Each module uses the information from the previous one to complete
its task, however, they are decoupled, hence each module may be employed in
performing new types of analysis. The list of parameters contains specific infor-
mation, such as addresses of the code to be patched at startup, or the structure
of the loop nest. At startup, the VM parses the list of headers, loads the solicited
modules and patches the code to enable instrumentation.

Analyzing Memory Accesses. Since the number of memory locations ac-
cessed inside loops can be very high, considering a memory intensive loop nest,
it is recommended that the acquired data is processed immediately by the in-
terpolation process, rather than stored for a later utilization.

For each instrumented loop, a buffer is created at compile time, to (re)store
the state of the machine before the interpolation process. At runtime, the VM
allocates space to be populated dynamically with the accessed memory locations
and to store the coefficients of the linear functions.

230 A. Jimborean et al.

As the instrumented iterations of a loop are executed, the VM reads the values
of the memory locations from the designated buffer and the corresponding func-
tion coefficients are computed and stored in the associated positions. Subsequent
instrumented iterations are used to verify the linearity of these functions.

Communication with the VM is achieved by means of a dirty flag, which
indicates that a new memory location is available in the buffer.

Experiments. For our experiments, we targeted the C codes from the SPEC
CPU 2006 benchmark suite [29] and four codes from the Pointer-Intensive bench-
marks [27]. We inserted a dedicated pragma in the source codes, marking the
loop nests (#pragma instrument_mem_add { // loop nest}) in the most
time consuming functions [31]. We ran the benchmarks using the ref input files
to compute VMAD’s runtime overhead, and using the test input files to get
output files with the interpolation results, since runs using the ref files pro-
duce an amount of data too large to be stored on the disk, but suitable for
online consuming. We have carried out the experiments using the O0 and the
O3 optimization levels. The execution platform is a 3.4 Ghz AMD Phenom II
X4 965 micro-processor with 4GB of RAM running Linux 2.6.32. We ran each
program in its original form and in its instrumented form to compute the run-
time overhead introduced by using VMAD. For each instrumented loop nest,
the dynamic profiling is activated each time its enclosing function is invoked, for
the experiments using O0 optimization level. In the experiments with a higher
optimization level (O3) we instrument the first eight calls of each function.

Our measurements are shown in Tab. 1. The columns show for each program:
the program name (first part of the table: SPEC CPU 2006, second part: Pointer-
Intensive); VMAD’s runtime overhead, both with O0 and with O3; the code
size increase; the number of instructions performing linear memory accesses;
the number of instrumented memory instructions; the percentage of memory
accesses that were identified to be linear.

For most programs, VMAD induces a very low runtime overhead, which is
even negligible for bzip2, milc, hmmer, h264ref and lbm. For the programs
sjeng and sphinx3, the significant overheads are mainly due to the fact that
the instrumented loops execute only a few iterations, but they are enclosed by
functions that are called many times (with O0). Thus, all iterations are run while
being fully instrumented. However, the profiling strategy is improved in order to
manage such cases by deactivating the instrumentation after a few calls (with
O3). Program milc shows an opposite behavior since a few memory instructions
are executed many times. In such a case the runtime overhead is very low. For
the Pointer-Intensive benchmarks, the execution times are too small – of the
order of milliseconds – to get relevant overhead measurements: either a large
runtime overhead is obtained since VMAD inevitably induces a fixed minimum
overhead (bc), or even a speedup is obtained (ft), which may be explained by
cache locality, new alignments or new optimization opportunities. The overhead
is higher when instrumenting optimized code (-O3), since modifying optimized
code impacts its performance, still, the execution time is better than with O0.

VMAD: Advanced Dynamic Program Analysis and Instrumentation 231

Table 1. Measurements made on some of the C programs of the SPEC CPU 2006
(first part) and Pointer-Intensive (second part) benchmark suites

Program Runtime Runtime code size # linear # instrumented Percentage
overhead overhead increase m.a. m.a. of linear
(-O0) (-O3) m.a.

bzip2 0.24% 12.31% 218% 608 1,053 57.74%

mcf 20.76% 17.23% 213% 2,848,598 4,054,863 70.25%

milc 0.081% 3.61% 44% 1,988,256,000 1,988,256,195 99.99%

hmmer 0.062% 0.76% 63% 845 0 0%

sjeng 182% 11.13% 80% 1,032,148,267 1,155,459,440 89.32%

libquantum 3.88% 2.76% 21% 203,078 203,581 99.75%

h264ref 0.49% 4.59% 0.44% 30,707,102 32,452,013 94.62%

lbm 0% 0.93% 170% 358 0 0%

sphinx3 172% 27.62% 20% 51,566,707 78,473,958 65.71%

anagram -5.37% 34.88% 73% 134 159 84.27%

bc 183% 36.79% 11% 243,785 302,034 80.71%

ft -8.46% 176% 86% 22 36 61.11%

ks 29.7% 2.98% 268% 29,524 42,298 69.79%

We also noticed that this particular instrumentation process increases the size
of a program’s binary file by 400 bytes per instrumented memory instruction,
on average. However, the code size variation strongly depends on the depth of
the loop nests and on the percentage of code selected for instrumentation.

5.2 Dynamic Dependence Analysis

The second application is an extension of the previous one. It adds a module to
determine, for a loop nest, which are the loop levels that might be parallelized,
according to the memory behavior observed during profiling. Such information
can be a useful indication for a developer in order to identify and further analyze
such loops, to decide whether they can be effectively parallelized. Our framework
identifies the candidate loops by speculatively analyzing dependences between
iterations, based on the linear functions interpolating the memory addresses ac-
cessed during profiling. The module considers each couple of memory instructions
and their associated linear functions, where at least one of them is a write.

We use a simple value range analysis method to determine if the two referenced
address spaces can overlap, using the linear functions to compute the minimal
and the maximal values of the memory addresses accessed by each instruction.
Each write instruction is also considered solely since it can carry an output
self-dependence. A loop level not carrying any dependence is then identified as a
candidate for parallelization. We used the OmpSCR benchmark suite [26] for our
experiments, a set of scientific kernels that are already manually parallelized by
the programmer using OpenMP pragmas. Even if these have been deactivated
for our runs, they indicate loops being effectively parallel. Loops inside these

232 A. Jimborean et al.

Table 2. Dynamic dependence analysis and parallel loop detection in the OmpSCR
benchmark suite

Benchmark #OMP #Linear #Detected Parallel
pragmas loop nests as parallel loop levels

FFT 2 2 0

FFT6 3 10 4 1 / 3 / 1,2 / 1,2

Jacobi 2 4 1 1,2

LUreduction 1 2 2 1,2 / 2,3

Mandelbrot 1 2 1 1

Md 2 2 1 1,2

Pi 1 1 0

QuickSort 1 2 1 1

kernels contain memory references through pointers, through parameterized ar-
ray accesses and references to dynamically allocated arrays. Such memory ref-
erences cannot be handled statically by a compiler. Results are shown in table
2. For two benchmarks, FFT6 and LUreduction, more loop nests than the ones
with OpenMP pragmas where detected as parallel. When less parallel loop nests
are detected, it is due to dependences induced by reductions.

5.3 Dynamic Version Selection

A loop nest can be optimized using different kinds of transformations such as
loop fusion/fission, interchange, skewing, tiling, unrolling, etc. A subset of those
transformations can be applied, in different order, or with different parameters
(unrolling factor, tile size, ...) to generate distinct versions. Hence many versions
can be obtained in this way, and each of them may be the best performing one in
some execution contexts, while being slower in some others. Such a phenomenon
can occur, for example, when the amount of accessed data generates a lot of cache
misses if the computation size exceeds a given threshold. Another case is when
the locality of the data accesses depends on some input parameters, or when
the control flow traverses costly branches in some circumstances depending on
intermediate computations. More exactly, it is a combination of such phenomena
that impacts the global performance. Hence, it is in general impossible to predict
in advance which version would yield the lowest execution time.

The implemented runtime mechanism consists in first measuring the time per
iteration when executing a small chunk of each version, and then running the
fastest one for the remaining iterations. Different versions are provided in the
source code, delimited by dedicated pragmas. Each version includes an additional
condition in the outermost loop, constraining the iterator between a lower and
an upper bound, which is required for the chunking mechanism.

At compile-time, the multiple versions are identified and a callback to the
dedicated runtime selector module is added, as well as the mechanism to switch
between the versions.

VMAD: Advanced Dynamic Program Analysis and Instrumentation 233

The runtime module performs the following operations: for each version, one
by one, it sets the chunk bounds such that each new chunk will continue the
execution of the previous one, it gets the processor’s time stamp counter using the
RDTSC instruction, launches the version, gets the new CPU time information,
computes the execution time per iteration and stores a reference to the fastest
version so far. Finally, when all versions have been evaluated, the fastest version
is launched to complete the execution. This naive approach already selects the
best version in most cases, but the algorithm can be further refined. Similarly to
the sampling rate in the first example, the size of the instrumented chunk can
be set by a parameter.

The benchmark programs contain 12 loop nests. The code 2mm consists of two
matrix multiply (D = A × B × C), adi is the ADI kernel provided as an ex-
ample with the automatic optimizer Pluto [7], covariance is a covariance matrix
computation, gemm is taken from BLAS [6], jacobi-1d and jacobi-2d are the 1D
and 2D versions of the Jacobi kernel, lu is a LU decomposition kernel, matmul is a
simple matrix multiply, matmul-init is a matrix multiply combined with the ini-
tialization of the result matrix, mgrid is a kernel extracted from the mgrid code
in SPECOMP [3] and seidel is a Gauss-Seidel kernel also provided with Pluto.

Such loops are good candidates for loop optimizations such as skewing, loop
interchange or tiling. We generated 6 or 7 different versions for each benchmark,
either using Pluto or manually. Some versions are tiled, some others are tiled two
times in two levels, some others are just skewed or their loops have been inter-
changed, and finally some are the result of a combination of these transforma-
tions. All versions, as well as VMAD’s code selector, have been run on a Intel
Xeon W3520 at 2.67Ghz under Linux 2.6.38. Results are shown in table 3. For
each benchmark, it shows the execution time of the best and of the worst version,
the average execution time of all versions, the time when executing with VMAD,
and finally a comparison between VMAD and the average execution time.

In most cases, VMAD selects the best version and its execution time is close
to the best execution times, and very far from the worst ones. Although it does
not select the best version in all cases, it still selects one of the best ones. The
overhead is higher when some versions are very slow compared to others.

5.4 Other Possible Applications

In addition to the examples presented above, the VMAD platform can find its
applications in debugging or instrumentation, distributed among multiple users.
Thanks to the sampling approach and the multiple versions, the selection mech-
anism can be adjusted such that the version chosen for execution differs from
one user to another. Moreover, each version contains only a subpart of the in-
strumenting or debugging instructions, which ensures a very low overhead, but
together, the instrumentation inserted in all versions cover the entire targeted
code. Distributed debugging or instrumentation becomes attractive when there
is a high number of testers, as each version is executed at least by one user. More-
over, since the overhead is negligible, users are not hindered from executing the
versions multiple times. On the other hand, when overhead is not a concern,

234 A. Jimborean et al.

Table 3. Dynamic code selection with VMAD

Benchmark #Versions Best Worst Average VMAD Gap to the
exec. time exec. time exec. time exec. time average version

2mm 6 2.68 19 8.29 4.80 -42.09%

adi 7 32.99 34.17 33.24 33.10 -0.42%

covariance 6 9.71 145.55 55.81 17.54 -68.5%

gemm 6 7.21 57.10 15.79 9.94 -37.04%

jacobi-1d 6 8.34 11.05 9.70 9.72 0.2%

jacobi-2d 6 2.74 5.24 4.12 4.22 2.42%

lu 6 3.94 51.26 12.11 6.31 -47.89%

matmul 7 4.96 31.49 16.90 6.96 -58.81%

matmul-init 6 3.29 27.04 7.38 4.72 -36.04%

mgrid 6 11.58 16.50 13.45 13.03 -3.12%

seidel 6 76.59 87.71 85.07 86.66 1.86%

the framework can be employed for fully tracing the behavior of the code. This
can be achieved by setting the chunk size to a maximal value and selecting the
instrumented version.

6 Related Work

VMAD’s goal is to be a generic platform running advanced low-level analyses
of programs that are initiated from the source code. To our knowledge, there
are no previous works directly comparable. However, VMAD can still be related
to frameworks that are similar in some important aspects: code instrumenta-
tion, code tracking, code cloning and multi-versioning. We also reference a few
proposals related to our illustrating applications.

Code Instrumentation. Most of the noticeable code instrumentation tools apply
on binary codes. One of the most popular is Pin [23], a software system that per-
forms runtime binary instrumentation. It enables the user to build a wide variety
of program analysis tools, known as pintools. A pintool consists of instrumenta-
tion, analysis, and callback routines. The insertion of instrumenting instructions is
based on software dynamic translation (SDT): a just-in-time compiler recompiles
small chunks of binary instructions immediately prior to executing them. Dynamic
instrumentation, such as the interpolation ofmemory accesses in loops presented in
this paper, would be impossible to be implemented efficiently with Pin. Of course,
the compile-time phase of our framework plays an important role in providing a
wider scope of analysis opportunities and in the runtime overhead minimization.

The PEBIL toolkit [21] is more similar to VMAD since it does not use SDT,
but static binary instrumentation. PEBIL performs function relocation to ac-
quire enough space at instrumentation points to insert branch instructions at
runtime. We use two different strategies to transfer control from the applica-
tion to the instrumentation code: at compile time, we insert branch instructions

VMAD: Advanced Dynamic Program Analysis and Instrumentation 235

branching initially to the next instruction and that are patched at runtime;
we also insert callbacks in the instrumented code snippets that are patched at
start-up with the address of the corresponding functions of VMAD.

The above mentioned tools are designed for instrumenting and profiling the
code, nevertheless the goal of VMAD goes beyond code analysis. We aim code
instrumentation followed by optimization on the fly. This emphasizes the need of
a mechanism for creating multiple versions of code and switching between them
at runtime (multi-versioning). On the contrary, PIN and PEBIL are tailored to
instrument the code for the whole execution time. Their advantage is that they
provide easy-to-use APIs allowing the programmer to develop new instrumenta-
tion tools, with the cost of an increased overhead at runtime. VMAD requires a
new LLVM pass and a new module to support additional instrumentation types.
In favour of VMAD comes the fact that it is more flexible in handling multiple
instrumented or optimized versions simultaneously. It also allows sampling, by
enabling/disabling instrumentation at any time. Moreover, the target code dele-
gates instrumentation related tasks, such as processing the acquired information,
to the virtual machine.

Code Tracking. Tracking code has always been a necessary technique, evolv-
ing from the simple strategies employed in the early debuggers, to complex ap-
proaches meant to correlate the original source code with dynamically optimized
code. In our framework, tracking the code through the optimization phases plays
a key role, both for identifying the region marked for instrumentation in the
source code, and the code that must be patched.

Tracking the suite of code transformations performed in the optimization
phase has early been identified as an impractical solution, since compilers re-
order, replicate, delete, merge, transform the code, eliminate variables or syn-
thesize new ones. A viable alternative is presented by Brooks et al. [8] as a
method for acquiring extended debugging information, communicated from one
optimization phase to another.

More recent and daring work tackling debugging of dynamically optimized
code has been reported [17,19]. The challenge consists in discerning between the
optimized code and the optimizers dynamically, and to map it back with the
source code, which is no longer available at runtime.

In the gcc compiler [12], generating debug information is possible via the
option -g. Also, one can control the amount of information transmitted to the
debugger by specifying the level, from -g0 to -g3. This option has been imple-
mented in LLVM [22] and in the Clang front-end [10] and the result consists
in populating the code represented in LLVM IR with a significant amount of
metadata information, which is then transformed into debug information.

We have adopted a similar approach in tracking code from the source level
to the intermediate representation, by marking interesting code regions with
metadata information.

The next step in performing multi-versioning is cloning, associated with the
construction of a selection mechanism.

236 A. Jimborean et al.

Cloning, Multi-versioning, Instrumentation by Sampling. Multi-versioning is a
widely adopted strategy to reduce the cost of code instrumentation by sam-
pling. A selection mechanism periodically switches execution between a number
of versions embedding instrumentation code and the original version. Chilimbi
and Hirzel [14,9] add finer control on the sampling rate and eliminate redundant
checks to decrement the overhead. They operate directly on the x86 assembly
code using Vulcan [11] for capturing sequences of data references (dynamic exe-
cutions of loads or stores).

An interesting use of sampling is presented by Chilimbi and Hauswirth [13]
for checking program correctness. They develop an adaptive profiling where the
sampling rate is the inverse of the frequency of execution of each code region.
They adapt the framework introduced by Arnold and Ryder [2] to detect memory
leaks. Marino et al. [24] extend this solution to multi-threaded programs to find
data races.

Our goal is to create a static-dynamic framework that supports multi-versio-
ning and sampling, by means of a generic runtime system that patches the code
to enable various types of profiling, instrumentations and code optimizations.
We plan to extend our work to accommodate all frameworks described above.

Similarly, ICI [16] has been developed with the aim of providing access to
the internal functionalities of compilers. Extensions to ICI [15] provide generic
function cloning, program instrumentation, pass reordering and control of indi-
vidual optimizations. Patching is used to insert an event call before and after
the execution of each version, either only for transferring information for further
processing, or to change the selection decision of the compiler. In these regards,
we have a very similar approach, as we insert callbacks to a runtime system to
guard the execution of each code version. However, ICI makes multi-versioning
available at function call level only, while we target more precise control for
example to enable/disable instrumentation at loop level.

Runtime Code Selection. Several studies proposed a runtime selection between
various algorithms, or code extracts, or versions of a function. PetaBricks [1] pro-
vides a language and a compiler where having multiple implementations of mul-
tiple algorithms to solve a problem is the natural way of programming. Mars and
Hundt’s static/dynamic SBO framework [25] consists in generating at compile-
time several versions of a function that are related to different dynamic scenarios.
The STAPL adaptive selection framework [30] runs a profiling execution at in-
stall time to extract architectural dependent information. In [28], Pradelle et
al. propose a framework to select between versions of loop nests resulting from
various polyhedral transformations.

Dynamic Dependence Analysis. The analyzer pp [20] is one of the earliest work
that proposed hierarchical dependence testing to estimate the parallelism in loop
nests. Some recent works are Alchemist [32] and SD3 [18] where runtime and
memory overhead is reduced through the use of parallelization and compression.

VMAD: Advanced Dynamic Program Analysis and Instrumentation 237

7 Conclusion

In this paper, we presented VMAD, an infrastructure for dynamic profiling,
where advanced analyses can be implemented with almost negligible runtime
overhead, since it does not use software dynamic translation like most of the
dynamic profiling tools. We extended the LLVM compiler to handle specific
pragmas allowing the developer to initiate low-level analyses from selected parts
of the source code. Dedicated LLVM passes duplicate the targeted code regions
into various versions: instrumentation instructions, version selection mechanism,
and callbacks are inserted. At runtime, and when activated, the virtual machine
of VMAD loads the necessary analysis modules and patches the callback ad-
dresses in the application code. To our knowledge, VMAD is the first proposal
allowing developers to initiate low-level analyses from the source code.

Regarding the API, there are two scenarios to be emphasized. If one chooses
already defined code analyses, the instrumentation process is totally invisible.
The only task is to mark the regions of code of interest with a pragma. We
underline that the programmer is not required to annotate the source code with
callbacks to the VM, nor to write the decision blocks. These code transforma-
tions are handled automatically by our framework. On the other hand, for the
compilation expert to develop new types of analysis, it is necessary to write an
LLVM pass and to add a module in the virtual machine, containing analysis
specific operations. Both the pass and the module are programmed in C/C++
and may include inline assembly code.

VMAD’s potential has been shown by implementing the following analyses.
First, we instrumented memory accesses in a targeted loop nest, by using sam-
pling. The dedicated LLVM passes duplicate each loop into instrumented and
non-instrumented versions, and the control switches from instrumented to non-
instrumented code until having collected enough data. Then, we implemented an
analysis strategy interpolating those memory accesses as linear functions. Using
the results of the interpolation, the next application was to perform dependence
analysis and offer hints to the programmer regarding the loops which are good
candidates for parallel execution. The last application that we implemented is
a runtime adaptive version selector, that takes as input several differently op-
timized code versions, and selects the best performing one. In this respect, a
sample of each version is executed and evaluated based on the processor coun-
ters, and the best one is selected to execute until the end of the computations.

Our experiments for interpolating memory accesses as linear functions have
been conducted on the SPEC CPU 2006 and on the Pointer Intensive bench-
mark suites. They reveal almost negligible overhead in most cases, of less than
4%, with -O0 optimization level, and varying between 0,5% and 27% with -O3
optimization level. The two other experiments, on different benchmark suites,
also show good results.

We plan to extend the framework to support new types of code instrumen-
tation and optimization. For instance, using the results of the data dependence
analysis, we target speculative parallelism by generating code on-the-fly.

238 A. Jimborean et al.

References

1. Ansel, J., Chan, C., Wong, Y.L., Olszewski, M., Zhao, Q., Edelman, A., Amaras-
inghe, S.: Petabricks: a language and compiler for algorithmic choice. In: PLDI
2009, pp. 38–49. ACM (2009)

2. Arnold, M., Ryder, B.G.: A framework for reducing the cost of instrumented code.
SIGPLAN Notices 36(5), 168–179 (2001)

3. Aslot, V., Domeika, M.J., Eigenmann, R., Gaertner, G., Jones, W.B., Parady,
B.: SPEComp: A New Benchmark Suite for Measuring Parallel Computer Perfor-
mance. In: Eigenmann, R., Voss, M.J. (eds.) WOMPAT 2001. LNCS, vol. 2104,
pp. 1–10. Springer, Heidelberg (2001)

4. Banerjee, U.: Loop Transformations for Restructuring Compilers - The Founda-
tions. Kluwer Academic Publishers (1993) ISBN 0-7923-9318-X

5. Bastoul, C.: Code generation in the polyhedral model is easier than you think. In:
PACT 2004: Proc. of IEEE Int. Conf. on Parallel Architectures and Compilation
Techniques (2004)

6. Blackford, L.S., Demmel, J., Dongarra, J., Duff, I., Hammarling, S., Henry, G.,
Heroux, M., Kaufman, L., Lumsdaine, A., Petitet, A., Pozo, R., Remington, K.,
Whaley, R.C.: An updated set of basic linear algebra subprograms (blas). ACM
Transactions on Mathematical Software 28, 135–151 (2001)

7. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical auto-
matic polyhedral parallelizer and locality optimizer. In: PLDI (2008)

8. Brooks, G., Hansen, G.J., Simmons, S.: A new approach to debugging optimized
code. In: ACM SIGPLAN Conf. on Programming Language Design and Implemen-
tation, PLDI (1992)

9. Chilimbi, T.M., Hirzel, M.: Dynamic hot data stream prefetching for general-
purpose programs. In: PLDI 2002: Proc. of ACM SIGPLAN Conf. on Programming
Language Design and Implementation (2002)

10. Official website of clang: a C language family frontend for LLVM,
http://clang.llvm.org

11. Edwards, A., Vo, H., Srivastava, A.: Vulcan binary transformation in a distributed
environment. Tech. rep. (2001)

12. The GNU Compiler Collection, http://gcc.gnu.org

13. Hauswirth, M., Chilimbi, T.M.: Low-overhead memory leak detection using adap-
tive statistical profiling. In: 11th Int. Conf. on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS-XI. ACM (2004)

14. Hirzel, M., Chilimbi, T.: Bursty tracing: A framework for low-overhead temporal
profiling. In: 4th ACMWorkshop on Feedback Directed and Dynamic Optimization
FDDO4 (2001)

15. Huang, Y., Peng, L., Wu, C., Kashnikov, Y., Rennecke, J., Fursin, G.: Transforming
GCC into a research-friendly environment: plugins for optimization tuning and
reordering, function cloning and program instrumentation. In: 2nd Int. Workshop
on GCC Research Opportunities (GROW 2010), Pisa Italy (2010), Google Summer
of Code 2009 (2010)

16. Interactive Compilation Interface, http://ctuning.org/ici

17. Jaramillo, C., Gupta, R., Soffa, M.L.: FULLDOC: A Full Reporting Debugger for
Optimized Code. In: SAS 2000. LNCS, vol. 1824, pp. 240–260. Springer, Heidelberg
(2000)

http://clang.llvm.org
http://gcc.gnu.org
http://ctuning.org/ici

VMAD: Advanced Dynamic Program Analysis and Instrumentation 239

18. Kim, M., Kim, H., Luk, C.K.: Sd3: A scalable approach to dynamic data-
dependence profiling. In: Proceedings of the 2010 43rd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, MICRO, pp. 535–546. IEEE Computer
Society, Atlanta (2010)

19. Kumar, N., Childers, B., Soffa, M.L.: Transparent debugging of dynamically op-
timized code. In: Int. Symp. on Code Generation and Optimization, CGO 2009.
IEEE Computer Society (2009)

20. Larus, J.R.: Loop-level parallelism in numeric and symbolic programs. IEEE Trans.
Parallel Distrib. Syst. 4, 812–826 (1993)

21. Laurenzano, M., Tikir, M., Carrington, L., Snavely, A.: PEBIL: Efficient static bi-
nary instrumentation for linux. In: ISPASS-2010: IEEE Int. Symp. on Performance
Analysis of Systems and Software (2010)

22. LLVM compiler infrastructure, http://llvm.org
23. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,

Reddi, V.J., Hazelwood, K.: Pin: building customized program analysis tools with
dynamic instrumentation. In: PLDI 2005: Proc. of ACM SIGPLAN Conf. on Pro-
gramming Language Design and Implementation (2005)

24. Marino, D., Musuvathi, M., Narayanasamy, S.: Literace: effective sampling for
lightweight data-race detection. In: PLDI 2009: Proc. of ACM SIGPLAN Conf.
on Programming Language Design and Implementation (2009)

25. Mars, J., Hundt, R.: Scenario based optimization: A framework for statically en-
abling online optimizations. In: CGO 2009, pp. 169–179. IEEE Computer Society

26. OmpSCR: OpenMP source code repository,
http://sourceforge.net/projects/ompscr

27. Pointer-intensive benchmark suite,
http://pages.cs.wisc.edu/~austin/ptr-dist.html

28. Pradelle, B., Clauss, P., Loechner, V.: Adaptive runtime selection of parallel sched-
ules in the polytope model. In: ACM/SIGSIM High Performance Computing Sym-
posium (HPC 2011). ACM (April 2011)

29. SPEC CPU (2006), http://www.spec.org/cpu2006
30. Thomas, N., Tanase, G., Tkachyshyn, O., Perdue, J., Amato, N.M., Rauchwerger,

L.: A framework for adaptive algorithm selection in stapl. In: PPoPP 2005, pp.
277–288. ACM (2005)

31. Weicker, R.P., Henning, J.L.: Subroutine profiling results for the CPU2006 bench-
marks. SIGARCH Comput. Archit. News 35(1) (2007)

32. Zhang, X., Navabi, A., Jagannathan, S.: Alchemist: A transparent dependence
distance profiling infrastructure. In: Proceedings of the 7th annual IEEE/ACM
International Symposium on Code Generation and Optimization, CGO 2009, pp.
47–58. IEEE Computer Society, Washington, DC (2009)

http://llvm.org
http://sourceforge.net/projects/ompscr
http://pages.cs.wisc.edu/~austin/ptr-dist.html
http://www.spec.org/cpu2006

Sambamba : A Runtime System
for Online Adaptive Parallelization

Kevin Streit, Clemens Hammacher, Andreas Zeller, and Sebastian Hack

Saarland University, Saarbrücken, Germany
{streit,hammacher,zeller,hack}@cs.uni-saarland.de

Abstract. How can we exploit a microprocessor as efficiently as possi-
ble? The “classic” approach is static optimization at compile-time, op-
timizing a program for all possible uses. Further optimization can only
be achieved by anticipating the actual usage profile: If we know, for in-
stance, that two computations will be independent, we can run them in
parallel. In the Sambamba project, we replace anticipation by adapta-
tion. Our runtime system provides the infrastructure for implementing
runtime adaptive and speculative transformations. We demonstrate our
framework in the context of adaptive parallelization. We show the fully
automatic parallelization of a small irregular C program in combination
with our adaptive runtime system. The result is a parallel execution
which adapts to the availability of idle system resources. In our exam-
ple, this enables a 1.92 fold speedup on two cores while still preventing
oversubscription of the system.

Keywords: program transformation, just-in-time compilation, adapta-
tion, optimistic optimization, automatic parallelization.

1 Introduction

A central challenge of multi-core architectures is how to leverage their computing
power for programs that were not built with parallelism in mind—that is, the
vast majority of programs as we know them. Recent years have seen considerable
efforts in automatic parallelization, mostly relying on static program analysis to
identify sections amenable for parallel execution (often restricted to small code
parts, such as nested loops). There also have been speculative approaches that
execute certain code parts (identified by static analyses) in parallel and repair
semantics-violating effects, if any.

While these efforts have shown impressive advances, we believe that they will
face important scalability issues. The larger a program becomes, the harder it
gets to precisely identify dependences between code parts statically, resulting in
conservative approximations producing non-parallel and overly general code. The
problem is that the actual environment and usage profile cannot be sufficiently
anticipated [2]. Of course, one could resort to dynamic runtime techniques to de-
termine dependences, but the initial overhead of dynamic analysis so far would
not be offset by later performance gains. All of this changes, though, as soon
as one moves the analysis and code generation from compile-time to runtime.

M. O‘Boyle (Ed.): CC 2012, LNCS 7210, pp. 240–243, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Runtime System for Online Adaptive Parallelization 241

Rather than analyzing and compiling a program just once for all anticipated runs,
we can now reanalyze and recompile programs in specific contexts, as set by the
input and the environment. Interestingly, it is the additional power of multi-core
architectures that makes such a continuous adaptation possible: While one core
runs the (still sequential) programs, the other cores can be used for monitoring,
learning, optimization, and speculation. Moving from anticipation to adaptation
enables a number of software optimizations that are only possible in such dy-
namic settings. First and foremost comes adaptive parallelization—that is, the
execution of the program in parallel depending on the current environment.

2 The Sambamba Framework

Fig. 1. Sambamba execution steps

The Sambamba1 project aims to pro-
vide a reusable and extendable framework
for online adaptive program optimization
with a special focus on parallelization.
With Sambamba, one will be able to in-
troduce run-time adaptive parallelization
to existing large-scale applications simply
by recompiling; no annotation or other hu-
man input is required. Indeed, we aim to
make parallelization an optimization as
transparent and ubiquitous as, say, con-
stant propagation or loop unrolling.

Sambamba is based on the LLVM com-
piler framework and consists of a static
(compiler) part and a runtime system. The framework is organized in a com-
pletely modular way and can easily be extended. Modules consist of two parts:
Compile-time parts handle costly analyses such as inter-procedural points-to and
shape analysis as used by our parallelization module. These results are fed into
the runtime parts—analyses conducted at runtime which adapt the program to
runtime conditions and program inputs. Obviously, it is crucial for the runtime
analyses to be as lightweight as possible.

The flow of execution in the Sambamba framework is depicted in Figure 1:
[A] We use static whole-program analyses to examine the program for poten-

tial optimizations and propose a first set of parallelization and specializa-
tion candidates that are deemed beneficial. For long-running programs it
might be a viable alternative to also run these analyses at runtime.

[P] The runtime system provides means for speculatively parallelizing parts of
the program based on the initial static analysis and calibration information.

[X] We detect conflicts caused by speculative executions violating the pro-
gram’s sequential semantics and recover using a software transactional
memory system [1] which we adapted to our special needs.

1 Sambamba is Swahili for parallel, simultaneously or side by side.

242 K. Streit et al.

[C] We gather information about the execution profile and misspeculations to
calibrate future automatic optimization steps.

[S] Based on the calibration results, Sambamba supports generating different
function variants that are specialized for specific environmental parame-
ters and input profiles. These can then again be individually parallelized in
the next step.

3 Adaptive Parallelization

3.1 Data Dependence Analysis

The main obstacle for parallel execution of program parts is data dependences
over the heap. Parallel computation cannot start before all input data has been
computed. In large irregular programs, the interprocedural data flow is hard to
determine statically, so all known analyses only provide overapproximations.

In order to get a sound over-approximation of the existing data dependences,
we use a state of the art context-sensitive alias analysis called Data Structure
Analysis [3]. This information allows us to statically prove the absence of certain
dependences.

3.2 Parallel CFG Construction

Given a regular control flow graph in SSA form, Sambamba creates the so-called
parallel control flow graph (ParCFG). Unnecessary structural dependences defin-
ing an execution order are removed and replaced by real dependences caused by
possible side effects.

We formulated the graph partitioning related problem as integer linear pro-
gram (ILP). The solution of this ILP is then used to introduce so-called parallel
sections (ParSecs). Each ParSec defines at least one fork point πs and exactly
one join point πe for later parallel execution. Side-effect-free instructions might
be duplicated in this step in order to facilitate parallelization.

We do not put special emphasis on loop parallelization and deal with general
control flow instead. Very strong approaches of loop parallelization have been
proposed and implemented during the last 30 years. Enriching some of these
methods, like for example polyhedral loop optimization, with speculation is one
of our ongoing projects.

3.3 Scheduling and Parallel Execution

In this step, Sambamba generates executable code from the ParCFG. This task
includes the creation of an execution plan for concurrently executed parts as well
as the generation of LLVM bitcode, which is translated into machine code by a
just-in-time compiler.

In this demonstration, we only partition a region into parallel tasks if we could
prove the absence of data dependences between them. Thus, the execution order
of these tasks is not relevant. This will change as soon as we allow to speculate

A Runtime System for Online Adaptive Parallelization 243

on the absence of dependences. Then it may be beneficial to delay the execution
of a task T until all tasks that T might depend on complete.

The assignment of tasks to processors is done dynamically by using a global
thread pool initialized during load time of the program.

4 State of the Project

The demonstrated tool is a working prototype. Not every planned feature is fully
implemented yet. Especially the features of the runtime-system are implemented
on demand as we work on the modules for automatic parallelization.

At the time of writing, the following module independent parts are examples
of implemented features:

• Method versioning and a general method dispatch mechanism
• A software transactional memory system supporting speculative execution
• Integration of the LLVM just-in-time compiler.

Concerning automatic parallelization, the demonstrated implementation is able
to statically find sound candidates for parallelization. It identifies and rates data
dependences which could not be statically proven to exist (may dependences)
but prevent further parallelization. Execution adapts to the available system
resources by dispatching between the sequential and a sound parallel version of
parallelized methods.

For further details and news on the Sambamba framework please refer to the
project webpage: http://www.sambamba.org/.

Acknowledgments. The work presented in this paper was performed in the con-
text of the Software-Cluster project EMERGENT (www.software-cluster.org). It
was funded by the German Federal Ministry of Education and Research (BMBF)
under grant no. “01IC10S01”. The authors assume responsibility for the content.

References

1. Felber, P., Fetzer, C., Riegel, T.: Dynamic performance tuning of word-based soft-
ware transactional memory. In: Proceedings of the 13th ACM SIGPLAN Sympo-
sium on Principles and practice of parallel programming (PPoPP 2008), p. 237.
ACM Press, New York (2008)

2. Hammacher, C., Streit, K., Hack, S., Zeller, A.: Profiling Java programs for par-
allelism. In: Proceedings of the 2009 ICSE Workshop on Multicore Software Engi-
neering, pp. 49–55. IEEE Computer Society (2009)

3. Lattner, C., Lenharth, A., Adve, V.: Making context-sensitive points-to analysis with
heap cloning practical for the real world. In: Proceedings of the 2007 ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI 2007),
pp. 278–289. ACM, New York (2007)

Author Index

Amza, Cristiana 200

Balakrishnan, Gogul 144
Banerjee, Anindya 41

Chen, Lei 185
Clauss, Philippe 220

Farooq, Muhammad Umar 185
Fauzia, Naznin 101
Fujimoto, Richard 81

Glew, Neal 165
Gupta, Aarti 144

Hack, Sebastian 1, 240
Hammacher, Clemens 240
Hou, Cong 81

Ivančić, Franjo 144

Jefferson, David 81
Jimborean, Alexandra 220
John, Lizy Kurian 185

Karrenberg, Ralf 1
Kielstra, Allan 200
Kwon, Taeho 122

Lhoták, Ondřej 41
Loechner, Vincent 220

Maeda, Naoto 144
Marron, Mark 41
Mastrangelo, Luis 220

Nasre, Rupesh 61

Petersen, Leaf 165
Pouchet, Louis-Noël 101
Putta, Sandeep 61

Qasem, Apan 21
Quinlan, Daniel 81

Ramanujam, J. 101

Sadayappan, P. 101
Sankaranarayanan, Sriram 144
Sarkar, Vivek 101
Shaltz, Christopher 21
Sharma, Kamal 101
Sharma, Naveen 144
Shirako, Jun 101
Sinha, Nishant 144
Steffan, J. Gregory 200
Streit, Kevin 240
Su, Zhendong 122

Unkule, Swapneela 21

Vuduc, Richard 81
Vulov, George 81

Yang, Jing 144

Zeller, Andreas 240
Zhao, Chuck (Chengyan) 200

	Title�
	Foreword
	Preface
	Organization
	Table of Contents
	GPU Optimisation
	Improving Performance of OpenCL on CPUs
	Introduction
	Contributions
	Structure of This Paper

	OpenCL Driver Implementation
	SIMD Vectorization
	Runtime Callbacks
	Continuation-Based Synchronization

	Exploiting Uniform Computations
	Uniform Value Analysis
	Divergence Analysis
	Optimizations

	Related Work
	Experimental Evaluation
	Benchmarks

	Conclusion
	References

	Automatic Restructuring of GPU Kernelsfor Exploiting Inter-thread Data Locality
	Introduction
	Related Work
	An Example
	Automatic Thread Coarsening
	Notation and Terminology
	Dependence Analysis
	Safety Analysis
	Profitability Analysis
	Code Transformation

	CREST : CUDA Kernel Restructuring and AutoTuning
	Kernel Extraction
	Code Restructurer
	Autotuning Support

	Experimental Results
	Conclusions
	References

	Program Analysis
	Programming Paradigm Driven Heap Analysis
	Introduction
	Abstract Heap Domain
	Concrete Heaps
	Abstract Heaps
	Abstraction Relation
	Example Heap
	Normal Form

	Interprocedural Analysis
	Unique Fresh Cutpoints
	Context-Sensitivity Heuristics
	Complete Partial Context-Sensitive Call Analysis

	Experimental Evaluation
	Related Work
	Conclusion
	References

	Parallel Replication-Based Points-To Analysis
	Introduction
	Motivation and Background
	Replication-Based Analysis
	Algorithm Outline
	Replication

	Parallel Points-to Analysis Algorithm
	Load Balancing
	Parallel Online Cycle Elimination
	Reducing the Number of Copies
	Limited Scheduling

	Context-Sensitive Analysis
	Experimental Evaluation
	Context-Insensitive Analysis
	Context-Sensitive Analysis

	Related Work
	Conclusion
	References

	A New Method for Program Inversion
	Introduction
	Related Work
	Problem Setup
	Reversing Functions without Loops
	Framework Overview
	Building the Value Search Graph
	The Route Graph
	Searching the Value Search Graph
	Costs in Route Graphs.
	Search Algorithm.

	Instrumentation and Code Generation
	Representing CFG Path Sets.
	Recording CFG Paths.
	Inserting State Saving Statements.
	Building a CFG for the Reverse Function.
	Generating Code.

	Handling Loops
	Experiment Results
	Conclusion and Future Work
	References

	Analytical Bounds for Optimal Tile Size Selection
	Introduction
	Motivation and Case Study
	Background
	DL: Distinct Lines
	Parametric Tiling

	ML: Minimum Working Set Lines
	Operational Definition of ML
	Model of Computation
	Distance in Tiled Iteration Space
	Temporal and Spatial Reuse Distance
	Computation of ML
	Example

	Bounding the Search Space by Using DL and ML
	Capacity Constraint for Intra-tile Reuse
	Capacity Constraint for Inter-tile Reuse
	Empirical Search within Bounded Search Space for Single-Level Tiling
	Compiler Pass for Bounded Search Space

	Experimental Results
	Performance Distribution of Different Tile Sizes
	Search Space Reduction by DL/ML Model
	Summary of Experiments

	Related Work
	Conclusion
	References

	Objects and Components
	Static Detection of Unsafe Component Loadings
	Introduction
	Static Detection Algorithm
	Background
	Detailed Analysis

	Empirical Evaluation
	Implementation
	Evaluation Setup and Results

	Related Work
	Conclusion and Future Work
	References

	Object Model Construction for Inheritance in C++and Its Applications to Program Analysis
	Introduction
	Rossie-Friedman Sub-objects
	Clarifier
	CHROME Model
	Implementation and Experiments
	Complexity of the Lowered C Programs
	Effectiveness of Lowering for Software Verification
	Applicability in Other Verification Tools

	Related Work
	Conclusions
	References

	GC-Safe Interprocedural Unboxing
	Introduction
	GC Safety
	A Core Language for GC Safety
	Operational Semantics
	Traceability

	Flow Analysis
	Unboxing
	The Unboxing Optimization
	Acceptable Unboxings

	Construction of an Acceptable Unboxing
	Related Work
	References

	Dynamic Analysis and Runtime Support
	Compiler Support for Value-Based IndirectBranch Prediction
	Introduction
	Value Based BTB Indexing (VBBI) Background
	Compiler Analysis for VBBI
	Optimizations for Improving VBBI Prediction Accuracy
	Compiler Optimizations
	Instruction Hoisting.
	Function Inlining.
	Inter-procedural Dataflow Analysis.

	Hardware Optimization

	Simulation Methodology
	Results
	VBBI versus Traditional BTB
	VBBI versus Tagged Target Cache

	Previous Work
	Conclusion
	References

	Compiler Support for Fine-Grain Software-OnlyCheckpointing
	Introduction
	Basic Checkpointing
	Optimizations
	Buffering Implementation
	Checkpoint-Enabled Applications
	Checkpoint Support for Debugging
	Checkpoint Support for Automated Back-Tracking

	Evaluation
	Checkpoint Region Selection
	Comparison with Existing Checkpointing Solutions
	Optimization Effectiveness
	Overhead of Back-Tracking Support

	Related Work
	Conclusion
	References

	VMAD: An Advanced Dynamic ProgramAnalysis and Instrumentation Framework
	Introduction
	Framework Overview
	The Virtual Machine VMAD
	Preparing the Code at Compile Time Using LLVM
	Illustrating Applications
	Analyzing Memory Accesses in Loop Nests
	Dynamic Dependence Analysis
	Dynamic Version Selection
	Other Possible Applications

	Related Work
	Conclusion
	References

	Sambamba: A Runtime Systemfor Online Adaptive Parallelization
	Introduction
	TheSambamba Framework
	Adaptive Parallelization
	Data Dependence Analysis
	Parallel CFG Construction
	Scheduling and Parallel Execution

	State of the Project
	References

	Author Index

