Privacy Supporting Cloud Computing:
ConfiChair, a Case Study™

Myrto Arapinis, Sergiu Bursuc, and Mark Ryan

School of Computer Science, University of Birmingham
{m.d.arapinis,s.bursuc,m.d.ryan}@cs.bham.ac.uk

Abstract. Cloud computing means entrusting data to information sys-
tems that are managed by external parties on remote servers, in the
“cloud”, raising new privacy and confidentiality concerns. We propose a
general technique for designing cloud services that allows the cloud to see
only encrypted data, while still allowing it to perform data-dependent
computations. The technique is based on key translations and mixes in
web browsers.

We focus on the particular cloud computing application of conference
management. We identify the specific security and privacy risks that ex-
isting systems like EasyChair and EDAS pose, and address them with a
protocol underlying ConfiChair, a novel cloud-based conference manage-
ment system that offers strong security and privacy guarantees.

In ConfiChair, authors, reviewers, and the conference chair interact
through their browsers with the cloud, to perform the usual tasks of
uploading and downloading papers and reviews. In contrast with current
systems, in ConfiChair the cloud provider does not have access to the
content of papers and reviews and the scores given by reviewers, and
moreover is unable to link authors with reviewers of their paper.

We express the ConfiChair protocol and its properties in the language
of ProVerif, and prove that it does provide the intended properties.

1 Introduction

Cloud computing means entrusting data to information systems that are man-
aged by external parties on remote servers, “in the cloud.” Cloud-based storage
(such as Dropbox), on-line documents (such as Google docs), and customer-
relationship management systems (such as salesforce.com) are familiar exam-
ples. Cloud computing raises privacy and confidentiality concerns because the
service provider has access to all the data, and could accidentally or deliberately
disclose it.

Cloud-based conference management systems such as EasyChair or the Ed-
itor’s Assistant (EDAS) represent a particularly interesting example [29]. For
example, EasyChair currently hosts more than 3000 conferences per year, and
therefore contains a vast quantity of sensitive data about the authoring and re-
viewing performance of tens of thousands of researchers world-wide. This data is

* This is a short version of the paper. A longer version is available on our web pages.

P. Degano and J.D. Guttman (Eds.): POST 2012, LNCS 7215, pp. 89-[[08] 2012.
© Springer-Verlag Berlin Heidelberg 2012

90 M. Arapinis, S. Bursuc, and M. Ryan

in the possession of the EasyChair administrators, and could be accidentally or
deliberately disclosed. A conference chair that is thinking of hosting her confer-
ence on a cloud-based conference system therefore faces a dilemma: if she uses
the system, she adds to this mountain of data and the risks associated with it;
if she doesn’t use the system, she deprives herself of the advantages of a readily-
available, well-engineered system that already has user accounts for the majority
of participants in her conference (authors, PC members, and reviewers).

Note that the data confidentiality issue concerns the cloud conference sys-
tem administrator (who administrates the system for all conferences), not the
conference chair (who is concerned with a single conference). The conference sys-
tem administrator has access to all the data on the system, across thousands of
conferences and tens of thousands of authors and reviewers. An individual con-
ference chair, on the other hand, has access to the data only for the particular
conference of which she is chair. Moreover, an author or reviewer that chooses
to participate in the conference can be assumed to be willing to trust the chair
(for if he didn’t, he would not participate); but there is no reason to assume that
he trusts or even knows the conference management system provider.

In this paper, we identify a set of confidentiality requirements for conference
management and propose ConfiChair, a cloud-based conference management
protocol that supports them. The confidentiality guarantees ensure that no-one
has access to conference data, beyond the access that is explicitly granted to
them by their participation in the conference. In particular, this is true about
the cloud provider and managers. ConfiChair is loosely modelled on EasyChair
or EDAS, but with the additional security guarantees. We describe a protocol
in which authors, reviewers and the conference chair interact through their web
browsers with the cloud-based management system, to perform the usual tasks
of uploading and downloading papers and reviews. The cloud is responsible for
fine-grained routing of information, in order to ensure that the right agents
are equipped with the right data to perform their task. It is also responsible
for enforcing access control, for example concerning conflicts of interest and to
ensure that a reviewer doesn’t see other reviews of a paper before writing her
own. However, all the sensitive data is seen by the cloud only in encrypted form.

For brevity, we use the term “cloud” to include all roles that are not an explicit
part of the conference management; that includes the conference management
system administrator, the cloud service provider, the network administrator, etc.
The security properties that our system provides may be summarised as follows.

— Secrecy of papers, reviews and scores. The cloud does not have access
to the content of papers or reviews, or the numerical scores given by reviewers
to papers.

— Unlinkability of author-reviewer. The cloud does have access to the
names of authors and the names of reviewers. This access is required in
order to route information correctly, to enforce access control, and to al-
low a logged-in researcher to see all his data in a unified way. However, the
cloud does not have the ability to tell if a particular author was reviewed

Privacy Supporting Cloud Computing: ConfiChair, a Case Study 91

by a particular reviewer. In particular, for each encryption of each review
or score held by the cloud, either the cloud does not know which author it
applies to, or does not know which reviewer submitted it.

Summary of contribution

1. We identify a set of requirements for cloud-based conference management
systems, notably privacy requirements such as secrecy and unlinkability.

2. We propose ConfiChair, a conference management protocol that provides
the usual functionalities while offering strong privacy guaranties.

3. We show the usability of ConfiChair by providing a prototype implementa-
tion. We demonstrate that using ConfiChair is as easy and useful as using
EasyChair, except for the requirement of two copy-paste operations (one
performed by authors, one performed by reviewers).

4. We formalise the required privacy properties and automatically prove them
with ProVerif.

Applicability of the ideas. Cloud-based services are being adopted widely through-
out business. The following examples raise similar security concerns to those of
conference management:

— Customer relationship management systems (such as salesforce.com);

— Cloud-hosted recruitment process services, in which applicants, referees, re-
cruiters and employers interact to process job applications;

— Cloud-based finance and accounting services;

— Social networks, in which users share posts and status updates without wish-
ing that data to be mined by the cloud provider for profiling purposes.

We believe our technique of browser-based key translation and mixnets is readily
applicable to these examples too.

2 Description of the Problem and Related Work

Our problem is determined by three conflicting sets of requirements, namely
functionality, privacy and usability. As we show below, there is much existing
work related to our paper, but it can not be used to solve our problem either
because of its complexity, or because of its different perspectives on privacy, or
because it does not achieve the required balance between privacy and function-
ality.

2.1 Desired Properties and Threat Model

Functional requirements. As previously mentioned, we use the term “cloud”
to refer to the cloud service provider, conference management system and its
administrators, and the network. The responsibilities of the cloud are:

92 M. Arapinis, S. Bursuc, and M. Ryan

— To collect and store data relevant to the conference, including names of
reviewers and authors, papers, reviews and scores.

— To enforce access control in respect of conflicts of interest and ensuring that
reviewers see other reviews of a paper only after they have submitted their
own.

— To manage the information flow of the conference: from authors, to confer-
ence chair, to reviewers and back.

— To notify the authors of the acceptance decision about their papers.

Privacy requirements. We require that the cloud does not know

— the content of submitted papers,
— the content of submitted reviews,
— the scores attributed to submitted papers.

Further, when data is necessarily known to the cloud in order that it can fulfil
the functional requirements, we require what we call unlinkability property: the
cloud is unable to link

— authors to reviewers of their papers

Threat model. It is reasonable to trust the cloud to execute the specified
functional requirements. Indeed, an incorrect functionality would be detected in
the long run and the users would simply move into another cloud. On the other
hand, the cloud may try to violate privacy without affecting functionality, in
a way that cannot readily be detected. ConfiChair is designed to remove this
possibility. Obviously, there are inherent limitations on any protocol’s ability to
achieve this. For instance, if the cloud provider was invited to participate as
a PC member or a chair, then he necessarily would have access to privileged
information. Consequently, the privacy requirements are expected to hold in
our threat model only for conferences in which the cloud provider does not
participate, except as provider of the cloud service or as author of a paper.

We assume that users are running uncorrupted browsers on malware-free ma-
chines. The HTML, Java, and Javascript code that they download is also as-
sumed to be obtained from a trustworthy source and properly authenticated
(e.g. by digital signatures).

Usability requirements. The system should be as easy to use as present
day conference management systems, such as EasyChair, iChair, OpenConf or
HotCRP. The cost of security should not be unreasonable waiting time (e.g. for
encryption, data download), or software installation on the client-side (e.g. a
browser should be sufficient), or complex key management (e.g. public key in-
frastructure), etc. We discuss more about usability in section d] which describes
our prototype implementation.

2.2 Related Work

Generic solutions. Much work has been done that highlights the confidential-
ity and security risks that are inherent in cloud computing (e.g., [12] includes

Privacy Supporting Cloud Computing: ConfiChair, a Case Study 93

an overview), and there is now a conference series devoted to that topic [I7].
Although the issue is well-known, the solutions described are mostly based on
legislative and procedural approaches. Some generic technological solutions have
appeared in the literature. The first one uses trusted hardware tokens [30], in
which some trusted hardware performs the computations (such as key transla-
tions) that involve sensitive data. Solutions based on trusted hardware tokens
may work, but appear to have significant scalability issues, and require much
more research. Other papers advise designing cloud services to avoid having to
store private data, and include measures to limit privacy loss [25].

Fully-homomorphic encryption (FHE) has been suggested as another generic
solution to cloud-computing security. FHE is the idea that data processing can
be done through the encryption, and has recently been shown to be possible in
theory [19]. However, the range of functionality that can be provided through the
encryption is not completely general. For example, one cannot extract from a list
the items satisfying a given predicate, but one can return a list of encrypted truth
values that indicate the items that satisfy the predicate, which is less useful. It
is not clear to what extent FHE could alleviate the requirement to perform the
browser-side computations of ConfiChair. Moreover, FHE is currently woefully
inefficient in practice, and can only be considered usable in very specialised
circumstances.

Data confidentiality and access control. Many works consider the problem
of restricting the access of data in the cloud to authorised users only. For example,
attribute-based encryption [6/4] allows fine-grained control over what groups of
users are allowed to decrypt a piece of data. A different example is work that
aims to identify functionally encryptable data, i.e. data that can be encrypted
while preserving the functionality of a system [27]. Such systems, and others, aim
to guarantee that the cloud, or unauthorised third parties, do not access sensitive
data. Our problem requires a different perspective: how to design systems that
allow the cloud, i.e. the intruder, to handle sensitive data, but at the same time
ensure that sensitive data value links between them are not revealed.

Unlinkability. In many applications it is important that links between partic-
ipants, data, or transactions are kept hidden. In RFID-based systems [I4] or in
privacy enhancing identity management systems [16] for example, an important
requirement is that two transactions of a same agent should not be linkable in
order to prevent users from being tracked or profiled. Another exemplar appli-
cation that requires unlinkability is electronic voting: a voter must not be linked
to the vote that he has cast [18]. Moreover, like scores or identities in our case
study, a vote is at the same time functional (to be counted) and sensitive (to
be private). Voting systems achieve unlinkability by relying either on mix nets
[22021], or on restricted versions of homomorphic encryption that allow the ad-
dition of plaintexts [BJ5]. Our proposed protocol also relies on mixing, showing
how that idea can be adapted to new application areas.

Other systems identify applications where the cloud can be provided with
“fake” data without affecting functionality [20]. In that case, privacy of “real”

94 M. Arapinis, S. Bursuc, and M. Ryan

data may be preserved, without the cloud being able to detect the substitution.
That is a stronger property than what we aim for, and at the same time the
solution proposed in [20] is restricted to very specific applications. In particular,
a conference management system can not function correctly with “fake” data
provided to the cloud.

Conference management. There has been work exposing particular issues
with conference management systems, related to data secrecy, integrity and ac-
cess control [23]28]. These are also important concerns, but that are quite orthog-
onal to ours, where we are interested in system design for ensuring unlinkability
properties. More importantly, none of these works considers our threat model,
where the attacker is the cloud.

3 The Protocol

3.1 Description

The protocol is informally described in Figures 1-3 on the following pages. Some
details, such as different tags for messages in each phase of the conference, are
left out, but the detailed formal definition is given in an appendix of the long
version. The main idea of the protocol is to use a symmetric key Kcons that
is shared among the members of the programme committee. This key will be
used to encrypt sensitive data before uploading it to the cloud. However, the
cloud needs access to some sensitive data, like the reviewers of a paper, in order
to implement the functional requirements of the protocol. To reveal that data
to the cloud, without compromising privacy, our protocol makes use of the fact
that different types of data are needed by the cloud at different phases of the
conference. Thus, in transitioning from one phase to another, the conference chair
can hide the links between authors and reviewers. He does so by performing a
random mix on the data he needs to send to the cloud before moving to the next
phase. Each conference has a public key, that authors use to encrypt symmetric
keys, that in turn serve to encrypt papers.

Notation. As we just explained, the privacy of participants relies on the chair
performing random mixes of the data he sends to the cloud. This is specified
in Figures 1-3 by representing the databases DBY.ys, DB} as randomised
permutations (denoted by by <) of sets.

In the description of the ConfiChair protocol in Figures 1-3, we haven’t included
a biding phase. Although this phase is of great practical importance, it is con-
ceptually similar to reviewing and discussion phases, and can be handled in a
similar way. Indeed, provding a biding phase in a way that would preserve the
users’ privacy would also rely on the chair performing a reencryption mix on the
papers before sending them to the reviewers through the cloud.

Privacy Supporting Cloud Computing: ConfiChair, a Case Study 95

C Cloud R A

Initialisation

create Conf, Kcont, pub(Conf), priv(Conf)

Conf,Ry,...,Ry

DBkeys «— 0
DBPapers — Q)

Submission
create \,p, k

key — (/\a A7 {/\a k}pub(Conf))
baper (A7 A7 {A7 Avp}k:)

(key, paper)

DBKQys — DBKCyS @] {key}
DBPapers — DBPapers U {paper}

Initialisation. The conference chair C generates the symmetric key Kcont, a public
key pub(Conf) and a corresponding private key priv(Conf). The symmetric key is
then shared among the reviewers in a way that does not reveal it to the cloud
(see section 3.2). Then C requests from the cloud the creation of the conference
named Conf, sending along the names of the chosen reviewers Ri,..., R, for the
programme committee.

Submission. An author A creates a paper p and a symmetric key k. He uploads to
the cloud p encrypted with k and k encrypted with pub(Conf). An identifier A is
used to refer to this encrypted submission. The first role of the key k is to provide
a symmetric key for the encryption of papers. The second role of k will be to
encrypt the reviews assigned to p, for the notification that will be sent through
the cloud back to the author. The cloud creates two corresponding databases: one
with encrypted submission keys and one with encrypted papers.

Fig. 1. ConfiChair: initialisation and submission phases

96

Reviewing

M. Arapinis, S. Bursuc, and M. Ryan

C Cloud R A

s (>‘7 A7 {>‘7 k}pub(Conf)) S DBKey57
DBKeys R { (1, {#a A, k}KConf7R7 C) peN, R,CCr{Ry,...,R}, RNC = 0

DB

s
Keys

for all (1, {tt, A\, k} Kcones R C) € DBieys A REC
DB, « 0

(ll’7 {M7)‘7 k}KCOnf7 R)

if R € R then
pick s € S
create r
rev — {p, Ak, 7, 8,0 koo

(p,rev)

DB, <« DB, U{(R,rev)}
I

Reviewing. The chair downloads the database with encrypted keys, decrypts them

using the private key priv(Conf) of the conference and encrypts them back with
the shared symmetric key Kcont. A new identifier y is introduced for each paper. C
also assigns the reviewers R to review the paper corresponding to u, and declares
the conflicts C restricting the set of reviewers that are allowed to see the data
concerning p. Finally, he mixes the elements in DB, before sending it to the
cloud. The cloud filters the submissions according to these choices and sends them
to reviewers.

The reviewers download the database with papers and can decrypt papers. For the
papers they have been assigned to review (R € R), they upload reviews and scores
in encrypted form back to the cloud. Note that the cloud is told to what identifier
4 this encrypted review refers to. This allows the cloud to manage the data flow,
without being able to link g with A\, and hence the reviewer with the author.

Fig. 2. ConfiChair: reviewing phase

Privacy Supporting Cloud Computing: ConfiChair, a Case Study 97

C Cloud R A

Discussion (R, {(1, A, k7", 8", D)} o) € DB

create d
7"611/ — {M7 >\7 k7 Tl? 8/7 (D7 d)}Kconr

(p,rev’)

DB, < DB, U{(R,rev')}

Notification & report generation

U(.uﬂ DBM)
©w
DBH = U (R’i_y‘v{M7/\7k77‘]'73j7dj}KConf7
DB}, A AN d FE Ly}
not R (A {A, dee revs}y) revs = (T1,...,7n,)
dec €r {acc,rej}
DBnotf |

|
(/\, A, 5ub) € DBconf
(A, notf) € DBpott
I (A, notf)
[

| Report generation |

Discussion. The reviews of each paper are submitted to the programme committee
members (except for the conflicting reviewers) for discussion. Each reviewer can
read a submitted review and the ongoing discussion D and add a comment d to it.

Notification. For each paper, the chair of the conference creates a notification includ-
ing the decision and the reviews. This notification is encrypted with the author’s
symmetric key k (chosen at submission). The encrypted notification along with
the submission identifier A is uploaded to the cloud, allowing it to manage the
information flow without compromising the privacy of the authors.

Fig. 3. ConfiChair: discussion and notification phases

98 M. Arapinis, S. Bursuc, and M. Ryan

3.2 Discussion

Distribution of the reviewing symmetric key. The privacy properties of
our protocol rely on the sharing of a symmetric key Kcons among the members
of the programme committee in such a way that the cloud does not get hold of
Kcont- Here we suggest a few possible solutions in the context of our applica-
tion, reflecting different trade-offs between security and usability. Our protocol
is independent of which of the three solutions is adopted:

(1) Public keys. Each reviewer may be expected to have a public key. Then, the
symmetric key can be encrypted with each of the chosen reviewer’s public key and
uploaded to the cloud. The distribution can be made more flexible and efficient by
relying on key distribution protocols like [10]. An important issue in this setting
is the authentication of public keys of reviewers invited to participate in the
conference. This may be done either relying on a hierarchical certification model
such as PKI or, what is more probable in the case of conference management,
on a distributed web of trust, such as that of PGP.

(2) Token. In this solution, each reviewer generates a symmetric key kg and
uploads {kRr}pub(cont) to the cloud. Then, the chair sends {Kconf}r to the re-
viewer using a channel that is outside the control of the cloud. He does this
by checking the reviewer’s authenticated email address and sends {Kconf}ks tO
that address. The reviewer then decrypts this token to obtain Kcont. In this case,
even if the cloud has access later to a reviewer’s email, it cannot compromise
the privacy properties that our protocol ensures.

(3) Email. If we assume that email infrastructure is not in the control of the
cloud service provider that hosts ConfiChair (as is most probably the case in
conference management), the key Kconr could be sent to reviewers directly by
email. In that case, if the email of a reviewer is compromised later on, its privacy
for the conference Conf is also compromised. Note that it is only the key Kconf
that must be sent by email, all the rest of the protocol being executed in the
cloud.

Computation in the cloud. We stress that non-trivial computation takes
place in the cloud, namely routing of messages, and optionally collection of
statistics. It is essential for usability and take-up of the proposed system that
these computations are done by the cloud. The difficulties in designing the proto-
col thus lie in releasing the necessary information for the cloud to perform these
operations without compromising the users of our system’s privacy. In particu-
lar, the link between the sender of a message (e.g. the author of a paper) and
the end receiver of this message (e.g. the reviewer of this paper) should remain
private and this although it is the cloud that is responsible for routing messages.

Optionally, the protocol can be extended to allow the cloud to collect statis-
ticts or other anonymised data about the conference, its authors, papers, and
reviewers. This can be achieved by adding code which extracts this information
during the manipulations performed by the chair’s browser. For example, along
with the computation of DB ., in Figure B} the chair could also compute the

Privacy Supporting Cloud Computing: ConfiChair, a Case Study 99

average score as, = (81 + --- + sp,)/n, for each paper and return the vector
(asy), to the cloud. (Such optional features must be carefully designed to avoid
weakening the security properties, and are not considered in our formal model
in Secrion [l)

Efficiency and usability. It may seem that there is a considerable amount of
work to be done by the chair, especially in the transition between phases. As
we discuss in the next section, this does not have to be evident to the chair.
Our experiments with our prototype show that the browser can transparently
execute the protocol.

4 Implementation

The ideal implementation of our protocol would look and feel very similar to
existing cloud-based conference management systems such as OpenConf, EDAS
and EasyChair, and should require no additional software beyond a web browser.

We constructed a prototype implementation [26], in order to discover any
potential problems with a practical implementation and to find how much time
and memory such a system may require, both on server-side and on client-side.

Overview. We implemented the ConfiChair prototype so that only a browser
is necessary for participating as an author, a reviewer, or a chair. Overall, our
prototype of ConfiChair feels very similar to current web-based management
systems. A user of the system can perform his usual tasks by simply clicking a
few buttons.

For example, to submit a paper an author logs to his ConfiChair account,
selects the link for the conference to which he wants to submit, clicks the new
submission button, selects the PDF file of his paper and clicks the submit button
to complete his submission. All the key generation and the secure storing, as well
as the encryption dictated by our protocol is transparently performed by the
browser. The only aspect not currently performed by the browser is the retrieval
of the conference public-key pub(Conf); this key must be manually input by the
author (by copy-paste from the call for papers for example).

Similarily, the chair of a conference wanting to create a ConfiChair page for
his conference Conf, loggins to his ConfiChair account and clicks the create new
conference button. His browser will transparently, generate and securily store
the keys Kcont, pub(Conf), and priv(Conf).

Performance. The system is expected to handle hundreds of papers without
overhead on the chair. In particular, browser-side re-encryption and mixing while
transitioning between phases should not take more than a few minutes. From that
perspective, the results of our experiments with the prototype implementation
are promising. They are presented in a figure of the long version. The time taken
for transitioning to the review stage is about 25s for 500 papers. The times for
the other two transitions are about 70s and 350s.

100 M. Arapinis, S. Bursuc, and M. Ryan

Transparency of key management. To hide the complexity of the encryption
keys from the user, these are managed and retrieved by the browser transparently
when logging to ConfiChair. The login procedure implemented relies on each user
having an identity ¢d and a secret password psw;q from which the browser derives
two keys: the ConfiChair account key Kdf; (psw;q) to authenticate the user to the
the cloud provider, and a second key Kdf(psw;q) used to encrypt the key purse
of the user. This key purse contains the set of keys generated by the browser in
previous accesses to the ConfiChair system, for example submission keys if the
user has used ConfiChair as an author in the past, or conference keys if he has
used it as a programme committee member.

When submitting a paper, the author’s browser generates a symmetric key k
which it uses to automatically encrypt the paper before sending it to the cloud.
This key k is in turn added to the key purse of the user, which is uploaded
encrypted with Kdfa(pswauthoria) to the cloud. To the submitter, this does not
look like anything other than a normal file upload. Similarly, when the chair
moves the conference to the review stage, it appears to be just like clicking on
a normal link, since the chair’s browser has already retrieved from the cloud
the chair’s key purse, and decrypted it with Kdfz(pswehairid), and can then
transparently decrypt and reencrypt the submissions according to the protocol.

In this way, the only key that needs to be securely backed up by a user id is
his ConfiChair password psw;q. All the other keys are stored in encrypted form
in the cloud, and retrieved when needed by his browser.

Currently, the authors need to copy and paste from the call for papers the
public key of the conference pub(Conf) to which they want to submit, and the re-
viewers need to copy and paste from their email the shared-key of the conference
K (Conf) for which they are reviewers.

5 Formal Model and Verification

(This section has been shortened for the proceedings version of the paper. We
recommend the full version on our web pages for more details of the verification.)

It is difficult to ascertain whether or not a cryptographic protocol satisfies its se-
curity requirements. Numerous deployed protocols have subsequently been found
to be flawed, e.g. the Needham-Schroeder public-key protocol [24], the public-
key Kerberos protocol [13], the PKCS#11 API [I1], or the BAC protocol in
e-Passports [15]. In this section, we formally show that ConfiChair does satisfy
the announced security properties. The formal verification of the protocol has
been done automatically using the ProVerif tool [7J9]. The ProVerif specifica-
tion of the ConfiChair protocol is available online [26]. The verification requires
a rigorous description of the protocol in the ProVerif calculus as well as formal
definitions of the desired properties, each discussed in detail in the following
section.

Privacy Supporting Cloud Computing: ConfiChair, a Case Study 101

5.1 The Process Calculus

The ProVerif calculus [709] is a language for modelling distributed systems and
their interactions. It is a dialect of the applied pi calculus [2]. In this section, we
briefly review the basic ideas and concepts of the ProVerif calculus.

Terms. The calculus assumes an infinite set of names, a,b,c,..., an infinite
set of variables, x,y, z,... and a finite signature X', that is, a finite set of func-
tion symbols each with an associated arity. Function symbols are divided in
two categories, namely constructors and destructors. Constructors are used for
building messages from other messages, while destructors are used for analysing
messages and obtaining parts of the messages they are applied to. Names and
variables are messages. A new message M may be built by applying a construc-
tor f € X to names, variables and other messages, M, ..., M,, and denoted
as usual f(My,...,M,). A term evaluation D is built by applying any function
symbol g € X' (constructor or destructor) to variables, messages or term evalu-
ations, D1,..., D, denoted ¢g(D,...,D,). The semantics of a destructor g of
arity n is given by a finite set of rewrite rules of the form g(Ma, ..., M,) — Moy,
where My, M1, ..., M, are messages that only contain constructors and vari-
ables. Constructors and destructors are used to model cryptographic primitives
such as shared-key or public-key encryption. The ProVerif calculus uses tuples of
messages (M, ..., M,), keeping the obvious projection rules implicit.

In the following, and for the purpose of modelling the ConfiChair protocol
presented in section B we will consider the signature

X = {senc/3,sdec/, pub,;,aenc/3, adec 5, subm)y,
initrv /o, revw /o, dsc o, ntf /9, one o, two /o }

where senc (resp. aenc) is a constructor of arity 3 that models the randomised
shared-key (resp. randomised public-key) encryption primitive, sdec (resp. adec)
is the corresponding destructor of arity 2, and pub is a constructor of arity 1
that models the public key associated to the private key given in argument. The
signature also contains the constants initrv, revw, dsc, and ntf corresponding to
the tags used to label messages originating from different phases of the protocol;
and the constants one and two representing the possible scores for papers. The
semantics of the two destructors is given by the two following rules

sdec(x, senc(z,y,2)) = 2
adec(x, aenc(pub(z),y,z)) — =

We model the probabilistic shared-key encryption of the message m with the key
k by senc(k,r, m), where the r is fresh for every encryption; and the probabilistic
public-key encryption of the message m with the pubic key corresponding to the
secret key k by aenc(pub(k),r,m).

We will write D || M if the term evaluation D can be reduced to the message
M by applying some destructor rules. For example, if we consider the following
term evaluation F and message N

102 M. Arapinis, S. Bursuc, and M. Ryan

E = senc(k,r,sdec(k’, senc(k',r', s)))
N = senc(k,r,s),

by application of the first rewrite rule given above, we have E || N.

Processes. Processes are built according to the grammar given below, where
M is a message, D is a term evaluation, n is a name, and c is a channel name.

PQ,R:= processes
0 null process
P|Q parallel composition
P replication
newn; P name restriction
let M =D in P else Q term evaluation
in(c, M); P message input
out(c, M); P message output

Replication handles the creation of an unbounded number of instances of a pro-
cess. The process let M = D in P else @) tries to evaluate D and matches the
result with M if this succeeds, then the variables in M are instantiated accord-
ingly and P is executed; otherwise @ is executed. We will omit the else branch
of a let when the process @ is 0. Names that are introduced by a new construct
are bound in the subsequent process, and they represent the creation of fresh
data. Variables that are introduced in the term M of an input or of a let con-
struct are bound in the subsequent process, and they represent the reception or
computation of fresh data. Names and variables that are not bound are called
free. We denote by fn(P), respectively fv(P), the free names, respectively free
variables, that occur in P.

Notation. A process definition P will sometimes be denoted by P(¥), where ¢
is a vector of free variables that occur in P and that can be seen as parameters
for the process P. Then we will abbreviate the process let ¥ = & in P simply by

—

P(w), and we will say that P(w) is an instance of P(%)

Example 1. The process A models the authors’ part of the ConfiChair protocol.

A Cf ewida; 1A (ida)

A (xida) def newp; newk; A”(xida,p,k)

A" (yida, yp, yk) def newl; newrl; newr2;
in(cpbk, zpbk);
let k subm = (I, ida, aenc(apbk, rl, (subm,l,k))) in (
let p subm = (1, ida, senc(k,r2, (I, ida, pap))) in (
out(c, (k subm,p subm));
in(c, xn)))

Privacy Supporting Cloud Computing: ConfiChair, a Case Study 103

An author with identity ¢da can submit many times to many different con-
ferences (!A’(ida)). For each submission he generates the paper p and the sub-
mission key k, he chooses the conference he wants to submit to, fetches the
corresponding public (in(cpbk, xpbk)), and generates the identifier [(correspond-
ing to the A in the diagrams of SectionB]). He then builds the submission message
((k subm,p subm)) as described in the diagrams of Section 3] and sends his sub-
mission to the cloud on the public channel c. He finally waits for the notification
(in(c, xn)).

Altogether, the ConfiChair protocol can be fully modelled by the process

cc © new cshk; newcpbk; (IC | IR |!1A)

The subprocesses C', R, and A model the behaviour of a conference chair, a
reviewer, and an author respectively. A is fully detailed above, and C' and R are
detailed in an appendix of the long version. We consider a general system C'C
with an unbounded number of chairs, reviewers, and authors. In CC, cshk is
the private channel (discussed in the first paragraph of Section B:2) on which
the shared-keys of conferences are sent to reviewers. The channel cpbk is an
authenticated channel from which the authors can access the public key of a
conference in order to submit a paper. Although this channel is restricted to
model that the public keys of conferences should be authenticated, the chair also
publishes on the public channel ¢ the public key of his conference, for anyone
including the attacker to submit papers to it.

Semantics. Details of the semantics of the process language are given in the
long version. Two processes are said to be observationally equivalent if their
behaviour is identical in all contexts. We express secrecy and unlinkability as
the observational equivalence of two processes.

5.2 Properties and Analysis

In this work, we prove using the ProVerif tool, that the ConfiChair protocol
satisfies the intended secrecy and unlinkability properties informally described in
section 2.l The purpose of this section is to formally define these properties, and
to show how they can be automatically verified with ProVerif. We define both
secrecy and unlinkability properties as equivalences between processes adapting
the classical approach of [3I/III]] to our context.

To express security properties we will need to consider particular authors and
reviewers in interaction with the rest of the system. For this we consider a hole
in the process CC, where we can plug any process, i.e. we let:

cCl] L pew cshk; new cpbk; (IC|R1A|)
To express authors and reviewers who submit some specific data (of which the
privacy will be tested), we consider the processes:

— Apap(ida,p, k) - for an author whose identity is ida and that behaves like a
regular author, with the single difference that amongst other submissions,
he also submits the paper p with the corresponding submission-key k.

104 M. Arapinis, S. Bursuc, and M. Ryan

— Ryc(idr, sc) - for a reviewer whose identity is idr and that behaves like a
regular reviewer, with the single difference that amongst other reviews, he
also reviews a paper to which it attributes the score sc.

— Ryey(idr, k,rev) - for a reviewer whose identity is idr and that behaves like
a regular reviewer, with the single difference that amongst other reviews, he
also reviews the paper corresponding to the submission-key k, and writes
the review rewv.

The formal definition of these processes is detailed in an appendix of the long
version of this paper.

Secrecy properties. To formalise the considered secrecy properties, we rely
on the notion of strong secrecy defined in [§].

Paper secrecy. We say that a conference management protocol satisfies strong
secrecy of papers if, even if the cloud initially knows p; and po, the cloud can-
not make a distinction between an execution of the protocol where an author
submitted the paper p; and an execution where he has submitted the paper ps.

To formally capture this, we construct from CC[| two processes: in the first
one the hole is filled with an author that submits the publicly known (i.e. free)
paper p1, and in the second one the hole is filled with that author submitting
the publicly known (i.e. free) paper po. We verify using ProVerif that these two
processes are observationally equivalent:

CClnew ida; new k; Apqp(ida,p1, k)] ~ CCluewida; newk; Apqp(ida,pa, k)]

Score secrecy. Similarly, in order to verify the strong secrecy of scores, we build
from C'C[] one process in which the hole is filled with a reviewer that attributes
one to some paper, and one process in which the hole is filled with the reviewer
attributing two to it.

CCnew idr; Rs.(idr,one)] =~ CClnewidr; Rsc(idr,two)]

Review secrecy. The definition of secrecy of reviews is a bit more subtle. Reviews
are sent to the authors at the notification phase, and the attacker could very
well have submitted a paper. He would then rightfully obtain the review to his
paper. So the property we want to formalise is that an attacker doesn’t get to
see the reviews of other authors’ papers. In other words, review secrecy holds
if, even if the cloud initially knows rev; and rewvs, the cloud cannot distinguish
an execution of the protocol where a reviewer to a paper not submitted by the
attacker writes the review rev; from an execution where the reviewer writes the
review revs.

To capture this, we construct from C'C[] two processes. In the first one, the
hole is filled with an honest author that submits a paper p with the corresponding

Privacy Supporting Cloud Computing: ConfiChair, a Case Study 105

submission-key k and a reviewer reviewing this paper and writing the publicly
known (i.e. free) review rev;. In the second one, an honest author that submits
a paper p with the corresponding submission-key k and a reviewer reviewing this
paper and writing the publicly known (i.e. free) review revq. For review secrecy
to hold, the following equivalence must hold:

new ida; new p; new k; new idr; new ida; new p; new k; new idr;
CC | (Apap(ida,p, k) | ~ CC | (Apap(ida,p, k) |
Ryev(idr, kyrevy)) R, ey (idr, k, revs))

Analysis. We used the ProVerif tool to prove that the equivalences described
above hold, and thus that as announced ConfiChair does provide secrecy of pa-
pers, scores and reviews. The ProVerif source code for each of these equivalences
is available online [26].

Author-reviewer unlinkability. This property aims to guarantee that the
links between a given author and the reviewers of his papers remain hidden
from the cloud. To formalise it one could ask whether two processes are in
observational equivalence: one in which ida’s paper is reviewed by a reviewer
idri, and another in which ida’s paper is reviewed by a reviewer idrs.

However, similarly to privacy in electronic voting [I8], definitions of unlinka-
bility are a bit more tricky. Since the identities of the authors that submit papers
are revealed to the cloud at submission time, and the identities of the reviewers
are published when the review is submitted, unlinkability can not be ensured
when there is a single reviewer, or a single author.

In order to give robust definitions of unlinkability we need to consider confer-
ences with at least two reviewers and at least two authors submitting papers to
it that are being reviewed by these reviewers. It is the chair’s task to ensure that
this is indeed the case. Accordingly, there is in the formal model a processes Cy,.
that ensures that at each stage of the conference at least two authors and two
reviewers have executed their role. The detailed definition of C,, is given in an
appendix of the long version of this paper.

We prove that there is no observable difference between the case where re-
viewer idry reviews idai’s paper and reviewer idre reviews idas’s paper (left-
hand-side process), and the case where reviewer idre reviews iday’s paper and
reviewer idr; reviews idas’s paper (right-hand-side process):

new pi; New po; new ki; new ko; new pi; New po; new ki; new ka;

new revy; New reve new revi; NEw revs

Cm«(k‘l, k‘Q, id’l“l, id’r‘g) | Cm«(k‘l, k‘Q, id’r‘g, id’l“l) |
ccC Apap(idal,pl, k‘l) | ~CC Apap(idal,pl, k‘l) |

Apap idag,pg, k‘g) | Apap idag,pg, k‘g) |

((
Rye(idry, ky,revy) | R,e(idry, ko, revy) |
R,e(idra, ko, revs) Rye(idra, k1, reve)

106 M. Arapinis, S. Bursuc, and M. Ryan

Analysis. We used the ProVerif tool to prove that the equivalence described
above hold, and thus that as announced ConfiChair does provide author-reviewer
unlinkability. The ProVerif source code for this equivalence is available on-
line [26].

6 Conclusion

The accumulation of sensitive data on servers around the world is a major prob-
lem for society, and will be considerably exacerbated by the anticipated take-up
of cloud-computing technology. The fact that confidential data about the au-
thoring and reviewing performance of tens of thousands of researchers across
thousands of conferences is stored by well-known cloud-based systems serves to
show how widespread and ubiquitous the problem is [29].

We have introduced a general technique that can be used to address this
problem in a wide variety of circumstances, namely, the technique of translating
between keys and mixing data in a trustworthy browser. We have proposed
ConfiChair, a conference management system that uses this technique to obtain
strong privacy properties while having all the advantages of cloud computing.
In ConfiChair, the cloud sees sensitive data only in encrypted form, with no
single person holding all the encryption keys (our protocol uses a different key
for each conference). The conference chair’s browser decrypts data with one key
and encrypts it with possibly another one, while mixing and re-randomising to
ensure unlinkability properties.

We are able to state and prove strong secrecy and unlinkability properties
for ConfiChair. The protocol still enables the cloud provider to route informa-
tion to the necessary chairs, reviewers and authors, to enforce access control,
and optionally to perform statistics collection. We have demonstrated that the
cryptography and key management can be handled by a regular web browser
[26] (specifically, we used LiveConnect). We plan to continue developing our
prototype into a complete system.

An important design decision in ConfiChair is the fact that a single key Kcont
is used to encrypt all the information for the conference Conf. Stronger secrecy
properties could be obtained if a different key were used for different subsets
of reviewers and papers, but this would be at the cost of simplicity. Using a
single key per conference seems to strike a good balance between usability and
security. Finer-grained access control is implemented (as on current systems) by
the cloud, e.g. for managing the conflicts of interest.

In further work, we intend to apply the ideas to work with other cloud-
computing applications (such as those mentioned in the introduction), and to
provide a framework for expressing secrecy and unlinkability properties in a more
systematic way.

Acknowledgments. Thanks to Joshua Phillips for much help with the im-
plementation and typesetting. We also gratefully acknowledge financial support
from EPSRC via the projects Trust Domains (TS/1002529/1) and Trustworthy
Voting Systems (EP/G02684X/1).

Privacy Supporting Cloud Computing: ConfiChair, a Case Study 107

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Abadi, M.: Security protocols and their properties. In: Foundations of Secure Com-
putation. NATO Science Series, pp. 39-60. I0S Press (2000)

Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
Proceedings of the 28th ACM Symposium on Principles of Programming Languages
(POPL 2001), pp. 104-115 (January 2001)

. Adida, B.: Helios: Web-based open-audit voting. In: van Oorschot, P.C. (ed.)

USENIX Security Symposium, pp. 335-348. USENIX Association (2008)

. Baden, R., Bender, A., Spring, N., Bhattacharjee, B., Starin, D.: Persona: an on-

line social network with user-defined privacy. In: Rodriguez, P., Biersack, E.W.,
Papagiannaki, K., Rizzo, L. (eds.) SIGCOMM, pp. 135-146. ACM (2009)

. Baudron, O., Fouque, P.-A., Pointcheval, D., Stern, J., Poupard, G.: Practical

multi-candidate election system. In: PODC, pp. 274-283 (2001)

. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-

tion. In: IEEE Symposium on Security and Privacy, pp. 321-334. IEEE Computer
Society (2007)

. Blanchet, B.: An efficient cryptographic protocol verifier based on Prolog rules. In:

Computer Security Foundations Workshop, CSFW 2001 (2001)

. Blanchet, B.: Automatic proof of strong secrecy for security protocols. In: IEEE

Symposium on Security and Privacy, pp. 86-100 (2004)

. Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equiva-

lences for security protocols. Journal of Logic and Algebraic Programming (2007)
Boneh, D., Gentry, C., Waters, B.: Collusion Resistant Broadcast Encryption with
Short Ciphertexts and Private Keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258-275. Springer, Heidelberg (2005)

Bortolozzo, M., Centenaro, M., Focardi, R., Steel, G.: Attacking and fixing
PKCS#11 security tokens. In: ACM Conference on Computer and Communica-
tions Security, pp. 260-269 (2010)

Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing
and emerging IT platforms: Vision, hype, and reality for delivering computing as
the 5th utility. Future Generation Computer Systems 25(6), 599-616 (2009)
Cervesato, 1., Jaggard, A.D., Scedrov, A., Tsay, J.-K., Walstad, C.: Breaking and
fixing public-key kerberos. Inf. Comput. 206, 402-424 (2008)

Chatmon, C., van Le, T., Burmester, T.: Secure anonymous RFID authentication
protocols. Technical Report TR-060112, Florida Stat University, Department of
Computer Science (2006)

Chothia, T., Smirnov, V.: A Traceability Attack against e-Passports. In: Sion, R.
(ed.) FC 2010. LNCS, vol. 6052, pp. 20-34. Springer, Heidelberg (2010)

ClauB}, S., Kesdogan, D., Kolsch, T., Pimenidis, L., Schiffner, S., Steinbrecher,
S.: Privacy enhancing identity management: Protection against re-identification
and profiling. In: Proceedings of the 2005 ACM Workshop on Digital Identity
Management (2005)

Cloud Security Alliance. Secure Cloud (2010),
http://www.cloudsecurityalliance.org/sc2010.html

Delaune, S., Kremer, S., Ryan, M.D.: Verifying privacy-type properties of electronic
voting protocols. Journal of Computer Security 17(4), 435-487 (2009)

Gentry, C.: Fully homomorphic encryption using ideal lattices. In: 41st ACM Sym-
posium on Theory of Computing, STOC (2009)

http://www.cloudsecurityalliance.org/sc2010.html

108

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

M. Arapinis, S. Bursuc, and M. Ryan

Guha, S., Tang, K., Francis, P.. NOYB: Privacy in online social networks. In:
Proceedings of the First ACM SIGCOMM Workshop on Online Social Networks
(2008)

Jakobsson, M., Juels, A., Rivest, R.L.: Making mix nets robust for electronic voting
by randomized partial checking. In: Boneh, D. (ed.) USENIX Security Symposium,
pp. 339-353. USENIX (2002)

Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:
Atluri, V., di Vimercati, S.D.C., Dingledine, R. (eds.) WPES, pp. 61-70. ACM
(2005)

Lo, S.-W., Phan, R.C.-W., Goi, B.-M.: On the Security of a Popular Web Sub-
mission and Review Software (WSaR) for Cryptology Conferences. In: Kim, S.,
Yung, M., Lee, H.-W. (eds.) WISA 2007. LNCS, vol. 4867, pp. 245-265. Springer,
Heidelberg (2008)

Lowe, G.: An attack on the Needham-Schroeder public-key authentication protocol.
Information Processing Letters 56(3), 131-133 (1996)

Pearson, S., Shen, Y., Mowbray, M.: A Privacy Manager for Cloud Computing. In:
Jaatun, M.G., Zhao, G., Rong, C. (eds.) CloudCom 2009. LNCS, vol. 5931, pp.
90-106. Springer, Heidelberg (2009)

Phillips, J., Roberts, M.: ConfiChair - prototype privacy-supporting conference
management system, https://confichair.markryan.eu

Puttaswamy, K.P.N., Kruegel, C., Zhao, B.Y.: Silverline: Toward data confiden-
tiality in third-party clouds. Technical Report 08, University of California Santa
Barbara (2010)

Qunoo, H., Ryan, M.: Modelling Dynamic Access Control Policies for Web-Based
Collaborative Systems. In: Foresti, S., Jajodia, S. (eds.) Data and Applications
Security and Privacy XXIV. LNCS, vol. 6166, pp. 295-302. Springer, Heidelberg
(2010)

Ryan, M.D.: Cloud computing privacy concerns on our doorstep. Communications
of the ACM 54(1), 36-38 (2011)

Sadeghi, A.-R., Schneider, T., Winandy, M.: Token-Based Cloud Computing. In:
Acquisti, A., Smith, S.W., Sadeghi, A.-R. (eds.) TRUST 2010. LNCS, vol. 6101,
pp. 417-429. Springer, Heidelberg (2010)

Schneider, S., Sidiropoulos, A.: CSP and Anonymity. In: Martella, G., Kurth, H.,
Montolivo, E., Bertino, E. (eds.) ESORICS 1996. LNCS, vol. 1146, pp. 198-218.
Springer, Heidelberg (1996)

https://confichair.markryan.eu

	Privacy Supporting Cloud Computing:
ConfiChair, a Case Study
	Introduction
	Description of the Problem and Related Work
	Desired Properties and Threat Model
	Related Work

	The Protocol
	Description
	Discussion

	Implementation
	Formal Model and Verification
	The Process Calculus
	Properties and Analysis

	Conclusion
	References

