
PTaCL: A Language for Attribute-Based

Access Control in Open Systems

Jason Crampton1 and Charles Morisset1,2,�

1 Information Security Group,
Royal Holloway, University of London,

Egham, Surrey TW20 0EX, U.K.
Jason.Crampton@rhul.ac.uk

2 Security Group,
Istituto di Informatica e Telematica (IIT), C.N.R.,

Via Giuseppe Moruzzi, 1, 56124 Pisa, Italy
Charles.Morisset@iit.cnr.it

Abstract. Many languages and algebras have been proposed in recent
years for the specification of authorization policies. For some proposals,
such as XACML, the main motivation is to address real-world require-
ments, typically by providing a complex policy language with somewhat
informal evaluation methods; others try to provide a greater degree of
formality – particularly with respect to policy evaluation – but support
far fewer features. In short, there are very few proposals that combine
a rich set of language features with a well-defined semantics, and even
fewer that do this for authorization policies for attribute-based access
control in open environments. In this paper, we decompose the problem
of policy specification into two distinct sub-languages: the policy target
language (PTL) for target specification, which determines when a pol-
icy should be evaluated; and the policy composition language (PCL) for
building more complex policies from existing ones. We define syntax and
semantics for two such languages and demonstrate that they can be both
simple and expressive. PTaCL, the language obtained by combining the
features of these two sub-languages, supports the specification of a wide
range of policies. However, the power of PTaCL means that it is possi-
ble to define policies that could produce unexpected results. We provide
an analysis of how PTL should be restricted and how policies written
in PCL should be evaluated to minimize the likelihood of undesirable
results.

Keywords: Target, Policy, Composition, PCL, PTL, PTaCL.

1 Introduction

One of the fundamental security services in computer systems is access control,
a mechanism for constraining the interaction between (authenticated) users and

� Work partially supported by EU FP7-ICT project NESSoS (Network of Excellence
on Engineering Secure Future Internet Software Services and Systems) under the
grant agreement n. 256980.

P. Degano and J.D. Guttman (Eds.): POST 2012, LNCS 7215, pp. 390–409, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



PTaCL: A Target-Based Authorization Language 391

protected resources. Generally, access control is implemented by an authorization
service, which includes an authorization decision function (ADF) for deciding
whether a user request to access a resource (an “access request”) should be
permitted or not. In its simplest form an authorization decision function either
returns an allow or a deny decision.

Many access control models and systems are policy-based, in the sense that
a request for access to protected resources is evaluated with respect to a policy
that defines which requests are authorized. Many languages have been proposed
for the specification of authorization policies, perhaps the best known being
XACML [3,8,14]. However, it is generally acknowledged that XACML suffers
from having poorly defined and counterintuitive semantics [12,13]. More formal
approaches have provided well-defined semantics and typically use “policy oper-
ators” to construct complex policies from simpler sub-policies [1,4,17]. However,
such approaches tend to support fewer “features” than XACML.

In a “closed” information system – one in which all authorized users are known
to the system – it is possible to authenticate users of the system and to ascribe an
identity to processes associated with those users. Hence, access control decisions
and the policies that inform those decisions can be based on user identifiers.

Increasingly, it is necessary to define authorization policies for “open” sys-
tems, where we must make access control decisions based on user attributes,
rather than identities. Hence, access request formats need to change from the
user-centric subject-object-action triples of classical access control models [2,9],
although such request formats are still widely used in the specification of access
control models and authorization policy languages [3,4,8,14,17].

An authorization policy is typically defined by a target, a set of child policies
and a decision-combining algorithm. The target, either implicitly or explicitly,
identifies a set of requests. The policy is said to be “applicable” if the access
request belongs to (or “matches”) the target. If a policy is applicable, then its
child policies are evaluated and the results returned by those child policies are
combined using the decision-combining algorithm.

Informally, a policy may be regarded as a tree, in which the leaf nodes return
a “conclusive” decision (allow or deny). If a request does not match the target
of a leaf policy then the evaluation of that policy returns a “not applicable”
decision. Hence, the set of possible decisions is 3-valued.

However, it may be the case that it is not possible to evaluate request ap-
plicability: perhaps the simplest case arises when the request is malformed. But
once the request format is extended to accommodate attribute-based access con-
trol, the problem of evaluating the applicability of a request becomes even more
acute. In other words, the result of request applicability is not necessarily bi-
nary: in particular, we must include a value that represents that some error has
occurred while trying to evaluate request applicability. Naturally, extending the
set of results that can be returned when evaluating request applicability means
that we need to reconsider policy evaluation.



392 J. Crampton and C. Morisset

We believe that existing proposals for authorization policy languages suffer
from at least one of the following problems:

– no support for attribute-based requests (and hence attribute-based autho-
rization policies);

– a lack of formality in the definition of target and policy evaluation, leading
to ambiguity about the meaning of policies;

– a poor understanding of the way in which attribute-based requests, targets
and policies interact.

Our main objective is to define a policy language that addresses the same prob-
lem space as XACML 3.0 [15] while retaining the formality of recent work on pol-
icy algebras [1,4,5,6,17]. XACML (eXtensible access control markup language)
is a standardized language: XACML 2.0 was ratified in 2005; XACML 3.0 will
add support for attribute-based access control and policy administration. More
specifically, our objectives are:

– to define a request format that is appropriate for attribute-based authoriza-
tion policies;

– to define a syntax for specifying policy targets;
– to formally define an evaluation method for those targets that is sufficiently

robust to withstand deliberate attempts to exploit the greater freedom pro-
vided by our request format;

– to define a syntax for policies, which makes use of the policy target language;
– to formally define an evaluation method for those policies that is able to

handle errors in target evaluation gracefully and securely.

In this paper, we develop two distinct languages for completely defining autho-
rization policies. Roughly speaking, our goals are to combine support for the
wide variety of policies that can be defined in more informal approaches such
as XACML with the more formal semantics with which policy algebras are fur-
nished. Our policy target language (PTL) provides a syntax for specifying policy
targets, while our policy composition language (PCL), provides a language for
combining policies (that is, constructing policy trees). Together, we call this
PTaCL, read “p-tackle”, to denote policy target and composition language. We
also provide “authorization policy semantics”, which enable us to ascribe a mean-
ing to a policy for a given request. That meaning is determined by the target
semantics and the composition semantics.

The main contribution of this work is therefore the definition of PTaCL, which,
although far simpler syntactically than XACML 2.0 and 3.0, can express any
desired target or policy, thanks to the functional completeness of PTL and PCL.
We specify precisely how to evaluate any target and policy expressed in PTaCL,
thus providing the basis for a low-level language into which XACML policies, for
example, could be compiled and evaluated. Moreover, we identify the problem of
attribute-hiding attacks, where a user deliberately suppresses attributes in order
to gain favorable authorization decisions, and we propose different restrictions on
the definition of a target in order to avoid such attacks. We note that such attacks
are not peculiar to PTaCL; they are a potential problem for any attribute-based



PTaCL: A Target-Based Authorization Language 393

access control mechanism. We believe we are the first to identify and, therefore,
propose mitigation strategies for, this type of attack.

In the next section, we define our request format and illustrate some of the
challenges introduced by attribute-based access control. Then, in Section 3, we
define the syntax and evaluation method for targets. In Section 4, we define
policy syntax and evaluation. In this section, we reflect on the problems that
might arise because of the more flexible request format we use and explain how
those problems inform the development of PTaCL. We also explain how PTL
can be restricted to provide certain guarantees about the decisions returned by
policy evaluation, thereby addressing the problem of attribute-hiding attacks.
We conclude the paper with a discussion of related work and some ideas for
future work.

2 Attribute-Based Requests

The simplest authorization policy languages assume that an access request com-
prises three identifiers: the requester, the resource to which access is requested,
and the type of the requested interaction (such as read, write, etc), often known
as subject, object and action, respectively. The authorization decision function
(ADF) associated with a given language will take that request and an autho-
rization policy as input and return a decision. For more complex languages, the
ADF may require additional information, such as the roles or security groups
associated with a user, in order to make a decision. These attributes may be
“pushed” with the request or “pulled” from authoritative information sources
(such as the policy information points in the XACML architecture). The increas-
ingly “open” nature of distributed computer systems, where the user population
is not known in advance, requires authorization languages that are not based
on user identities. For this reason, attribute-based access control (ABAC) and
languages that support ABAC are expected to become increasingly important.

PTaCL comprises two sub-languages: PTL for target specification and PCL
for policy specification. Policies written in PTaCL are used to evaluate access
requests that may contain arbitrary attributes associated with users, resources
and actions.

We model a request as a set of name-value pairs, where each name specifies
an attribute and each value specifies a value for the corresponding attribute.
In the simplest situation, for example, we might have attribute names such as
subject, object and action, and a request might have the form

{(subject, alice), (object, test .txt), (action, read)} .
The above request is no different from the usual view of an access request as a
subject-object-action triple. However, the request format described above is not
limited to requests of this form and can be used to represent requests that do
not contain identifiers for subjects, objects and actions. We could, for example,
have a request of the form

{(role, nurse), (object, test .txt), (action, read)} .



394 J. Crampton and C. Morisset

An attribute name may appear multiple times in the request; the above request
could include multiple role identifiers, for example. The use of some set of name-
value pairs, rather than the fixed format subject-object-action triples (as used
in XACML 2.0 [14] and most other policy languages), means that we can specify
targets and requests with greater freedom than is usually the case. However, the
greater freedom with which requests can be specified also means that we have
to take greater care in the specification of policies.

As an example, we consider a simplified instance of the Chinese Wall policy,
where a company A defines a policy to protect a set of confidential resources.
Informally, this policy states that if a user is working for A, then she can ac-
cess the (confidential) resource o, unless she is also working for B, the direct
competitor of A, in which case the access is denied. We consider the following
requests:

r1 = {(employer, A), (confidential, true)} ;
r2 = {(employer, A), (employer, B), (confidential, true)} ;
r3 = {(confidential, false)} ;
r4 = {(confidential, true)} .

Informally, an ABAC policy defines a set of atomic policies (or rules), where
each atomic policy describes the subset of requests to which it applies – the
policy’s target – and the decision to take when it is applicable. When a request
does not belong to the policy’s target, then this policy is non-applicable, which
has a different meaning from saying that the request is denied. The decisions
returned by the evaluation of the atomic policies are then combined together
using decision combination operators.

For instance, the policy enforced by the company A should comprise two
rules, the second of which is applicable to all requests and returns allow. The
first rule is applicable if the request contains (confidential, true), and in this
case, if the user works for A, then it is allowed, unless she also works for B,
in which case it is denied. The two rules are combined using a deny-overrides
combination operator. The first rule would not be applicable to request r3 and
hence the request would be allowed. The first rule would be applicable to the
remaining requests. Therefore, the evaluation of r1 would return allow, while the
evaluation of request r2 would return deny.

Note that if the user is able to suppress the element (employer, B) in r2,
then the resulting request would be allowed. We call such a situation a partial
attribute hiding attack, where, by hiding some of her attributes, a user is able
to obtain a more favorable authorization decision. A second possibility is for the
user to suppress all the employer attributes. Hence, we might wish to insist that
if the resource is confidential, then the request must contain information about
the employer(s) of the requesting user, otherwise the evaluation of the request
should fail. In particular, r4 must not be allowed, returning either deny or some
appropriate evaluation-error decision.

We now describe PTaCL, which provides mechanisms to tackle the issues
raised by this simple example, in particular by considering attribute requests



PTaCL: A Target-Based Authorization Language 395

instead of subject-object-action requests; by distinguishing between optional and
mandatory attributes; and by stating two properties of monotonicity, thus al-
lowing the detection of policies vulnerable to partial attribute hiding attacks.

3 Targets

We first define a syntax for targets. Then, in Section 3.1, we will define how
to evaluate a target with respect to a request. We define three types of atomic
target :

– nullT is a target;
– n is a target, where n is an attribute name;
– (n, v, f) is a target, where n is an attribute name, v is an attribute value

and f is a binary predicate.

The most usual predicate is likely to be a test for (string) equality, but other
predicates, such as �, <,� and>, are possible. For ease of exposition, we assume
throughout that all attributes are of type string and that f is string equality;
henceforth we omit f from the definition of an atomic target.

We build more complex targets by defining two binary target operators, andT
and orT, and two unary target operators, optT and notT. Let t, t1 and t2 be
targets. Then the following terms are also targets:

optT t, notT t, (t1 andT t2) and (t1 orT t2).

The operators optT and notT bind more tightly than andT and orT: optT t andT t′,
for example, is interpreted as (optT t) andT t′, rather than optT(t andT t′). As we
will see in Section 3.1, the semantics of orT and andT are provided by associative,
commutative binary operators on the set of target evaluation decisions, so we
can (and will) omit brackets from expressions of the form (t1orT(t2orT . . .orT tk))
and (t1 andT (t2 andT . . . andT tk)).

In Section 4, we will define similar operators for policies and use a subscript
P to distinguish them from target operators. When no ambiguity can occur we
will omit the subscripts T and P.

3.1 Evaluation

A target is evaluated with respect to a request, represented as a set of name-
value pairs (as described in Section 2). Informally, a request is said to “match”
an atomic target if the name of one of the attribute pairs in the request is the
same as the name defined in the atomic target and the predicate f evaluated at
v and the corresponding value in the request is true. If no such pair exists in the
request, then the request does not match the target.

The “universal” target null is matched by all requests; the target n is matched
by all requests that include an attribute pair (n, v) for any value v; the target
(n, v) is matched by any request that includes the specific attribute pair (n, v).
The target employer, for example, is matched by requests r1 and r2 defined in
Section 2 but not by the requests r3 and r4.



396 J. Crampton and C. Morisset

� 1T 0T ⊥T

1T 1T 0T ⊥T

0T 0T 0T ⊥T

⊥T ⊥T ⊥T ⊥T

(a)

� 1T 0T ⊥T

1T 1T 1T ⊥T

0T 1T 0T ⊥T

⊥T ⊥T ⊥T ⊥T

(b)

�̃ 1T 0T ⊥T

1T 1T 0T ⊥T

0T 0T 0T 0T

⊥T ⊥T 0T ⊥T

(c)

�̃ 1T 0T ⊥T

1T 1T 1T 1T

0T 1T 0T ⊥T

⊥T 1T ⊥T ⊥T

(d)

X ¬X ∼X

1T 0T 1T

0T 1T 0T

⊥T ⊥T 0T

(e)

Fig. 1. Binary and unary operators on the target decision set {1T, 0T,⊥T}

In addition, we may wish to distinguish the case where the request does not in-
clude the attribute name at all from the case where the attribute name was found,
but with a value that does not match. Consider the atomic target (employer, B):
then request r1 has a matching attribute name (employer), but A �= B; in con-
trast, requests r3 and r4 do not include any matching attribute.

Informally, a request must match both t1 and t2 for it to match target (t1 and
t2), while a request is only required to match one of t1 and t2 for it to match
target (t1 or t2). By default, a request is required to match a target t; we can
relax this requirement, while retaining the possibility of matching t, by writing
opt t.

More formally, we define the set of target evaluation decisions DecT to be
{1T, 0T,⊥T}, where ⊥T denotes that a request does not include the attribute
name, 1T denotes that a request matches an atomic target, and 0T denotes that
a request includes the attribute name but the predicate doesn’t hold.1

We define the binary operators �, �, �̃ and �̃ on {1T, 0T,⊥T} in Fig. 1. These
operators correspond to the weak and strong Kleene operators [11], respectively.
We also define two unary operators ¬ and ∼ in Fig. 1. Finally, we define the
total order 1T > 0T > ⊥T on DecT and let �̇ denote the least upper bound
operator on this ordered set.

Given a request q, we write �t�T(q) to denote the evaluation of t with respect
to q. That is, �t�T(q) ∈ DecT. As for target operators, we will omit the subscript
T where no ambiguity can arise. First, we define, for all requests q and for all
attributes n and all values v,

�null�(q) = 1T and �n�(∅) = �(n, v)�(∅) = ⊥T.

We then define the evaluation of targets n and (n, v) recursively.

�n�({(n′, v′)} ∪ q) =

⎧
⎨

⎩

1T if n = n′

�n�(q \ {(n′, v′)}) otherwise.

1 We will use analogous notation for policy-evaluation decisions, where 1P will denote
an “allow” decision and 0P will denote a “deny” decision. The symbol ⊥ will be used
to denote an evaluation error condition in the context of targets and “not-applicable”
in the context of policies.



PTaCL: A Target-Based Authorization Language 397

�(n, v)�({(n′, v′)} ∪ q) =

⎧
⎪⎪⎨

⎪⎪⎩

1T if n = n′, v = v′

0T �̇ �(n, v)�(q) if n = n′, v �= v′

�(n, v)�(q \ {(n′, v′)}) otherwise.

Note that, for all q, �n�(q) is either 1T or ⊥T. In evaluating (n, v), we compare
each element of the request with the atomic target and do one of the following:
we return 1T if a match is found; if the attribute name matches but the predi-
cate doesn’t hold then we record the fact that the attribute name matched and
continue processing; otherwise, we simply continue processing.

Since �̇ is a supremum operator, it is commutative and associative and hence
can be applied to any non-empty subset of DecT without ambiguity. Hence, for
a non-empty request q = {(n1, v1), . . . (nk, vk)}, it is easy to see that we have

�n�(q) = �̇ {�n�({(ni, vi)}) : 1 � i � k} ;
�(n, v)�(q) = �̇ {�(n, v)�({(ni, vi)}) : 1 � i � k} .

In other words, we can evaluate the applicability of a request with respect to
a target by splitting the request into single name-value pairs and evaluating
each of these requests separately. This, in turn, suggests that the evaluation of
requests can be parallelized, with different target evaluation functions (TEFs)
specialized for the evaluation of requests for particular attribute names.

We then define the semantics of not t, opt t, t1 and t2 and t2 or t2 as follows:

�not t�(q) = ¬�t�(q) �t1 and t2�(q) = �t1�(q) � �t2�(q)

�opt t�(q) = ∼�t�(q) �t1 or t2�(q) = �t1�(q) �̃ �t2�(q)

Here we see that opt modifies the target t by converting a ⊥T decision (missing
attribute) into a 0T decision (attribute not matched). The target optrole, for
example, evaluates to 1T if a request contains a role attribute pair and evaluates
to 0T (rather than ⊥T) if no such pair is present in the request.

It is important to note that the semantics for the and operator are provided by
weak conjunction �, not by �̃. The point here is that a target is specified as part of
a policy and it should not be possible to force target evaluation to return 0T when
the target is a conjunction and at least one of the conjuncts is mandatory. (Had
we combined targets using �̃, if t1 were to evaluate to 0T and t2 were to evaluate
to ⊥T, then t1 �̃ t2 would evaluate to 0T, not the desired ⊥T.)

3.2 Interface Targets

An atomic target of the form (n, v) requires that a particular attribute value
must appear in a request (to obtain a match). Such targets are little different
conceptually from those defined in XACML 2.0 and other authorization lan-
guages and are, therefore, of limited novelty or interest here.2

2 Targets in XACML 2.0 only consider subjects, objects and actions; targets in the
draft XACML 3.0 do consider other types of attributes.



398 J. Crampton and C. Morisset

In contrast, targets of the form n, have not previously been seen in the lit-
erature on authorization languages (to the best of our knowledge). A target of
the form n can be used to define a target that enforces a “request interface”: a
target of the form

opt(n1 and n2 and . . . and nk),

for example, only matches a request that contains particular named attributes
(corresponding to n1, . . . , nk); the evaluation of a request that doesn’t contain all
the required attributes will evaluate to 0T (because of the opt). In this way, we
can construct a target that “guards” conventional subject-object-action policies
and others that can respond to requests containing other types of attributes.

More complex “mixed” interfaces can also be constructed. An access control
list is a type of access control data structure that is widely used in operating
systems. The target for a policy used to represent an access control list for object
test .txt would have the form

opt((object, test .txt) and subject and action),

so that only requests that specify the desired object as well as including some
subject and action would match.

3.3 On Functional Completeness

By way of motivation, we first observe that it might be useful to be able to define
“conditional” interface targets, where the presence of one attribute in a request
requires the presence of some other attribute. Suppose, for example, we have
two attribute names n1 and n2. If a request doesn’t contain attribute n1 then
the evaluation of the target should be 0T. If, however, a request does contain n1

then it must contain n2. In other words, we have the following “match table”,
where the row headers indicate the values taken by the evaluation of n1 and the
column headers indicate the values taken by n2.

1T ⊥T

1T 1T ⊥T

⊥T 0T 0T

By inspection of the match tables in Fig. 1, we see that the above table could
be represented by the target ∼x �̃ y, where x and y denote the evaluation of n1

and n2, respectively. However, the semantics of and are given by the operator
�. Hence, it would be useful to demonstrate that our chosen target operators
opt, not, or and and are functionally complete. In particular, we would prefer to
define the interface target described above in terms of our existing operators,
rather than having to introduce another type of target conjunction.

We now prove that for all n and any function f : DecnT → DecT, f can be
constructed using the constants 1T, 0T and ⊥T and the operators opt, not and or.
We obtain this property by proving that the three-valued logic expressed over
the set {0T, 1T,⊥T} and defined by the operators �̃, ¬ and ∼ is functionally
complete, re-using a result of Jobe [10], stated below.



PTaCL: A Target-Based Authorization Language 399

• 3 2 1 E1 E2

3 3 2 1 3 1

2 2 2 1 1 2

1 1 1 1 2 3

(a) Over the set {3, 2, 1}

• 1T ⊥T 0T E1 E2

1T 1T ⊥T 0T 1T 0T

⊥T ⊥T ⊥T 0T 0T ⊥T

0T 0T 0T 0T ⊥T 1T

(b) Over the set {1T,⊥T, 0T}

Fig. 2. Jobe’s 3-valued logic

Theorem 1 (Jobe 1962). The three-valued logic E expressed over the set
{1, 2, 3} and defined by the operators •, E1 and E2, given in Fig. 2(a), is func-
tionally complete.

Corollary 1. The three-valued logic expressed over the set {0T, 1T,⊥T} and
defined by the operators �̃, ¬ and ∼ is functionally complete.

Proof. We first define the operator �̃ from �̃ and ¬: for any X1, X2 ∈ DecT,
(X1 �̃X2) = ¬(¬X1 �̃ ¬X2)

3.
We can clearly see from Fig. 2(b), that the operator �̃ is identical to • and

¬ is identical to E1. Therefore, we only need to define a unary operator that
swaps the values of 0T and ⊥T while leaving 1T unchanged. We write � to
denote such an operator. The table below demonstrates that �X is equivalent
to (X �̃ ⊥T) �̃ (∼(X �̃ ¬X)).

X X �̃ ⊥T ¬X X �̃ ¬X ∼(X �̃ ¬X) �X
1T 1T 0T 1T 1T 1T

0T ⊥T 1T 1T 1T ⊥T

⊥T ⊥T ⊥T ⊥T 0T 0T

We can therefore conclude that the logic defined over the set {0T, 1T,⊥T} by
the operators �̃,¬ and ∼ is functionally complete.

For instance, the operator and can be built directly from or and not, since we
can define the operator � from �̃ and ¬. Indeed, for any x, y ∈ DecT, we have
the following equivalences:

x � y = (x �̃ y) �̃ ((x �̃ ¬x) �̃ (y �̃ ¬y))
x � y = (x �̃ y) �̃ ((x �̃ ¬x) �̃ (y �̃ ¬y))

We also have x �̇y = (x �̃ (∼ y)) �̃ ((∼ x) �̃y), where �̇ is the supremum operator
used to define the evaluation of an atomic target.

3 Note that we also have the expected equivalence (X1 �̃X2) = ¬(¬X1 �̃ ¬X2).



400 J. Crampton and C. Morisset

4 Policies

PTaCL policies are defined inductively. Let d ∈ {1P, 0P}, and let p, p1 and p2
be policies. Then

– d is a policy;
– notP p – the negation of policy p – is a policy, which returns 1P if p returns

0P and vice versa;
– dbdP p – the deny-by-default of policy p – is a policy, which returns 1P if p

returns 1P and returns 0P otherwise;
– p1 andP p2 – the conjunction of two policies p1 and p2 – is a policy;
– (t, p) – the restriction of policy p to a target t – is a policy.

We discuss policy evaluation in detail in Section 4.1.
A policy tree is a convenient way of visualizing a policy and can be constructed

recursively from a policy. The policy d is represented as a tree comprising a
single node. The policy p1 andP p2 is represented as a tree comprising a root
node labelled andP and two child sub-trees representing p1 and p2. Policies of
the form (t, p), dbdP p and notP p are represented as trees comprising a root node
labelled t, dbdP and notP, respectively, a single child sub-tree representing p. An
illustrative policy tree representing the policy

dbdP(t5, notP(t3, (t1, 1P) andP (t2, 0P)) andP (t4, 1P))

is shown in Fig. 3(a) (on page 402). To save space, we have “absorbed” the nodes
labelled andP into their respective parents (t3 and t5).

4.1 Policy Evaluation

The evaluation of a policy with respect to a request q returns ⊥P if the policy is
not applicable to the request: that is, the evaluation of the policy’s target with
respect to q returned 0T. However, it may be the case that the evaluation of a
target returns neither 1T nor 0T, instead returning ⊥T. The possibility of target
evaluation failing is considered in XACML [14] and in the work of Li et al. [12]
and of Crampton and Huth [6]. The methods used to handle such failures assume
that target evaluation failures arise because of unexpected failures in hardware,
software or network connectivity and, accordingly, make a best effort to construct
a conclusive decision for the request.

Our target language is expressly designed to support flexible request formats
for open environments. As a result, our language explicitly includes the possi-
bility that target evaluation may not be possible (if, for example, attributes are
missing). Hence, target evaluation may fail, not because of “benign” failures, but
because a user may withhold attributes in an attempt to force an error in target
evaluation and thereby circumvent policy evaluation. Therefore, we must ensure
that no advantage is gained by a malicious user who deliberately suppresses
information when making an access request.4

4 We also note the possibility that the user may not wish to divulge certain attributes
when making an application request.



PTaCL: A Target-Based Authorization Language 401

Our approach is to consider all possible decisions that might have arisen had
target evaluation not failed. In other words, policy evaluation may return a
set of decisions. We shall see that imposing appropriate restrictions on targets
and using a “conservative” method of deriving a single decision from a set of
decisions, will enable us to guarantee that a malicious user obtains no advantage
by withholding attribute information.

We recall the operators ¬, ∼ and �̃ on DecT (as shown in Fig. 1) and define
the same operators on DecP = {1P, 0P,⊥P}. We extend the unary operators to
X ⊆ DecP, writing ¬X to denote the set {¬x : x ∈ X} and ∼X to denote the
set {∼x : x ∈ X}; and we extend �̃ on DecP to sets X,Y ⊆ DecP, writing X �̃Y
to denote the set {x �̃ y : x ∈ X, y ∈ Y }.

Informally, the evaluation of targeted policy (t, p) for a request q proceeds in
the following way.
1. If t evaluates to 1T, we then inductively evaluate p (see below)
2. If t evaluates to 0T, we return {⊥P}
3. Otherwise, we evaluate p and take the union of the resulting set of decisions

with {⊥P}5
We write �p�P(q) to denote the evaluation of policy p with respect to a request
q, where

�d�P(q) = {d} ;
�notP p�P(q) = ¬(�p�P(q));
�dbdP p�P(q) = ∼(�p�P(q))

�(p1 andP p2)�P(q) = �p1�P(q) �̃ �p2�P(q);

�(t, p)�P(q) =

⎧
⎪⎪⎨

⎪⎪⎩

�p�P(q) if �t�T(q) = 1T,

{⊥P} if �t�T(q) = 0T,

{⊥P} ∪ �p�P(q) otherwise.

Consider the policy depicted in Fig. 3(a) and suppose that �t1�(q) = �t4�(q) =
�t5�(q) = 1T, �t2�(q) = 0T and �t3�(q) = ⊥T. The evaluation of this policy is
shown in Fig. 3(c). Note that the evaluation of the sub-tree with root t3 considers
the union of two sets of decisions because �t3�(q) = ⊥T. Note also that the strong
conjunction �̃ has the effect of preferring the ⊥P decision to the 1P decision. For
those familiar with previous related work, this may seem an unusual way in
which to combine policy decisions. We discuss this in more detail in the next
section and, in Section 4.3, we will discuss ways in which more familiar decision-
combining operators can be defined. Finally, note that the policy does evaluate
to a single decision (0P) for this request, although there is no reason in general
for this to occur. However, it is easy to establish the following result.

Lemma 2. Let p be a policy whose policy tree contains targets t1, . . . , tk and let
q be a request. If �ti�(q) �= ⊥T for all i, then �p�(q) = {x} for some x ∈ DecP.

5 In other words, the evaluation of p in this case considers the decisions that would
have been returned if the request had been applicable and if the request had not
been applicable.



402 J. Crampton and C. Morisset

�1P �0P

�t1 �
�
�

�t2�
�
�
�t3

�notP �
�
�

�1P

�t4�
�
�
�t5

�

dbdP

(a) Policy tree

�1T �
�
�

�0T�
�
�
�⊥T

�notP �
�
�

�1T�
�
�
�1T

�

dbdP

(b) Target evaluation

�{1P} �
�
�

�{⊥P}�
�
�
�{⊥P}

�{⊥P} �
�
�

�{⊥P}�
�
�
�{⊥P}

�

{0P}

(c) Policy evaluation

Fig. 3. Evaluating a PTaCL policy

In other words, if the applicability of all targets referenced by a policy can
be determined for a request q, our evaluation semantics will return a unique
authorization decision. The proof is a straightforward induction on the depth of
the policy tree.

Finally, we note that the functional completeness for the target language also
holds for our policy language, because optT and dbdP have identical properties, as
do notT and notP. However, it is also important to realize that the interpretation
of ⊥T and ⊥P are quite different: the former indicates that the request supplied
insufficient information to evaluate target applicability, whereas ⊥P indicates
that a policy is irrelevant to the evaluation of a request. Henceforth, we will
omit the subscript from �·�P and the PTL operators, although, for clarity, we
will retain the subscripts on decisions.

4.2 On the Non-monotonicity of Targets

The language we use for targets and the way in which targets are evaluated
means that, for some target t, there may exist requests q and q′ such that q′ ⊆ q,
�t�(q′) = 0T and �t�(q) = 1T. This feature of the language means that withhold-
ing attributes may provide some advantage to a malicious user: if we have a
policy p = (t, p′) such that �p′�(q) = 0P, and �t�(q) = 1T, then �p�(q) = 0P; if,
however, �t�(q) = 0T, then �p�(q) = ⊥P. In other words, it might be possible
for a malicious user to turn a 0P decision into a ⊥P decision by suppressing
certain attributes. For brevity, we refer to this as the non-monotonicity of tar-
gets. Hence, we might reasonably regard ⊥P as a potentially dangerous policy
decision. (This view of ⊥P is quite different from the interpretation used by
other policy languages and algebras.) It is this view that informs our use of �̃ to
combine policy decisions, which means that ⊥P �̃ 1P is defined to be ⊥P rather
than 1P.

Similarly, a user can force a target to evaluate to ⊥T (rather than 0T or 1T)
by withholding attributes. It is for this reason, that policy evaluation considers



PTaCL: A Target-Based Authorization Language 403

the possibility that a target might have been matched or not matched when
target evaluation returns ⊥T.

Following from the above discussion, we would like to prove a result of the
form: Let p be a policy whose policy tree contains targets t1, . . . , tk and let q be a
request. Then for any q′ ⊆ q, �p�(q) ⊆ �p�(q′). Informally, this result states that
if a request contains less information, then the result of evaluating the policy is
more uncertain. Then the authorization decision point can have a decision-set
“resolution strategy” that returns a single final decision. Such a strategy should
be “conservative” in the sense that the larger decision sets should be treated
with more caution. The obvious strategy of this nature is: for X ⊆ DecP, we
return 1P if X = {1P} and 0P otherwise.

However, it is easy to see that the above result does not hold, because of the
functional completeness of our target language. In particular, we can create an
operator ⊕ such that ⊥T ⊕ ⊥T = 1T and 1T ⊕ ⊥T = ⊥T. Now consider the
target t = (n1, v1)⊕ (n2, v2), and the requests q1 = {(n1, v1)} and q2 = {}. Then

�t�(q1) = 1T ⊕⊥T = ⊥T and �t�(q2) = ⊥T ⊕⊥T = 1T.

Now consider the policy p = (t, 1P): we have �p�(q1) = {⊥P, 1P} and �p�(q2) =
{1P}, providing a counter-example to the desired result. In other words, there
are good reasons to restrict our target language so that only “well-behaved”
targets can be defined. Specifically, we would like to restrict our target language
so that all targets have the following property:

Definition 3. A target t is monotonic if for all requests q and for every q′ ⊆ q,
�t�(q′) ∈ {⊥T, �t�(q)}.
Then we have the following result (all the proofs of this paper are given in [7]
and have been encoded in the proof assistant Isabelle/Isar6).

Theorem 4. Let p be a policy whose policy tree contains monotonic targets
t1, . . . , tk and let q be a request. Then for any q′ ⊆ q, �p�(q) ⊆ �p�(q′).

Theobvious questions to asknoware:Whichof our target operators aremonotonic?
And does composition of monotonic target operators preserve monotonicity?

We say that an operator is monotonic if, given monotonic targets as inputs,
it returns a monotonic target. We prove in [7] that the operators not, and and or
are monotonic, as well as the operators corresponding to �̃ and �. However, the
operator opt is not monotonic, since it can transform a ⊥T into a 0T.

Unfortunately (and somewhat unexpectedly), an atomic target is not, in gen-
eral, monotonic. To see this, note that a request can contain several pairs with
the same attribute name. (A request might, for example, enumerate all the roles
with which the requester is associated.) Removing one occurrence from this set
of pairs can change the evaluation of the request from 1T to 0T. This situation
corresponds to a partial hiding of attribute values: that is, the ability for a user or
an attribute server to remove only some values for a given attribute. In practice,

6 http://isg.rhul.ac.uk/~jason/isabelle/ptacl.thy

http://isg.rhul.ac.uk/~jason/isabelle/ptacl.thy


404 J. Crampton and C. Morisset

such a situation is quite hard to detect and to prevent. However, let us assume
that an attribute server works in an “all-or-nothing mode”: that is, either it
returns all the values for a given attribute, or none. With this assumption, for
two requests q and q′ such that q′ ⊆ q and for any attribute name n such that
(n, v) ∈ q′ and (n, v′) ∈ q, then (n, v′) ∈ q′. With such an assumption, it is easy
to see that any atomic target is monotonic, and it follows that any target built
using the operators and, or and not is monotonic.

Such an assumption might not always hold, in particular when there is little
control over the attribute servers. Therefore, we now consider an alternative,
weaker notion of monotonicity, defined below.

Definition 5. A target t is weakly monotonic if for all requests q and for every
q′ ⊆ q, �t�(q′) � �t�(q), where we define ⊥T ≺ 0T ≺ 1T.

The operators ∼,�,� and �̃ preserve the weak monotonicity, as proven in [7],
but the operators ¬ and �̃ do not. Moreover, since any atomic target is clearly
weakly monotonic, any target built using any combination from the operators
∼,�,� and �̃ is also weakly monotonic. Although we cannot prove a result as
strong as Theorem 4, we can prove the following result (the proof of which can
be found in [7]).

Theorem 6. Let p be a policy whose policy tree contains weakly monotonic
targets t1, . . . , tk and let q be a request.
1. If p is constructed from the operators not and and, then for any q′ ⊆ q, if

�p�(q′) = {d}, with d ∈ {1P, 0P}, then �p�(q) = �p�(q′).
2. If p is constructed from the operators dbd and and, then for any q′ ⊆ q, if

�p�(q′) = {1P}, then �p�(q) = {1P}.
One consequence of Theorem 6 is that if a partial request is allowed, then the full
request would have been allowed too, and therefore an attacker has no advantage
in hiding some attribute values. However, this result requires a “conservative”
resolution strategy: that is, request q is only allowed if and only if �p�(q) = {1P}.

4.3 Decision Operators

We now discuss other ways in which decisions from sub-policies might be com-
bined. Following Crampton and Huth [6], we restrict attention to idempotent
and well-behaved decision operators.

Definition 7. Let ⊕ : DecP × DecP → DecP be a decision operator.

– If x⊕ x = x for all x ∈ DecP, then we say ⊕ is idempotent.
– If x⊕⊥P = x = ⊥P ⊕ x for all x ∈ DecP, then we say ⊕ is a ∪-operator.
– If x⊕⊥P = ⊥P = ⊥P⊕x for all x ∈ DecP, then we say ⊕ is an ∩-operator.
– We say ⊕ is well-behaved if it is either a ∪- or an ∩-operator.



PTaCL: A Target-Based Authorization Language 405

Informally, a ∪-operator ignores policies that evaluate to ⊥P by returning a
conclusive decision (that is, a decision that belongs to {1P, 0P}) if either operand
returns a conclusive decision. XACML, for example, assumes that all operators
are ∪-operators. In contrast, a ∩-operator only returns a conclusive decision if
both arguments are conclusive decisions. An operator of this nature is used by
Bonatti et al. in their policy algebra [4].

Intuitively, it seems reasonable to assume that a policy decision operator is
idempotent: if two policies return the same decision d, then we would expect
that the composition of those policies would also return d. An idempotent, well-
behaved decision operator is uniquely defined by the choices of x⊕⊥P, 1P ⊕ 0P
and 0P ⊕ 1P: the remaining values are fixed because the operator is idempotent
and well-behaved (as shown in Fig. 4 for an idempotent ∪-operator ⊕).

If we assume that ⊕ is commutative, then there are only three choices for an
idempotent ∪-operator (and three choices for an idempotent ∩-operator). And
if we assume that 1P ⊕ 0P ∈ {1P, 0P}, then there are only two choices for a
commutative, idempotent ∪-operator; both these operators are shown in Fig. 4,
labeled as and∪ and or∪. Analogous operators and∩ and or∩ can be defined by
making the obvious adjustments to the bottom row and rightmost column of the
tables for and∪ and or∪, respectively.

The operators and∪ and and∩ are rather similar to logical conjunction, while
or∪ and or∩ are rather similar to logical disjunction, respectively. Our deci-
sion operators play a similar role to the conflict resolution strategies or policy-
combining algorithms used in policy algebras and XACML. Such strategies are
used to resolve discrepancies in the results returned by different sub-policies. In
particular, and∪ has the same effect as the “deny-overrides” conflict resolution
strategy: namely, if one sub-policy returns 0P, then the combined decision is 0P.
Similarly, or∪ has the same effect as the “allow-overrides” strategy.

The most widely used non-commutative conflict resolution strategy is “first-
applicable”, which we denote by �. The operator � is defined in Fig. 4(d):
note, in particular, 1P � 0P = 1P and 0P � 1P = 0P.

7 The first-applicable
operator is commonly used in firewall rulesets as well as in policy algebras and
XACML. The other idempotent, well-behaved, non-commutative operator such
that 1P ⊕ 0P ∈ {1P, 0P} and 0P ⊕ 1P ∈ {1P, 0P} is what might be called “last-
applicable”, denoted by �, where x � y = y if y ∈ {1P, 0P} and is equal to x
otherwise. This operator does not appear to be widely supported or used.

We now show how to define the operators or∩, and∩, or∪, and∪ and � from
the PTL operators not, dbd and and. Since the logic ({1P, 0P,⊥P} , not, dbd, and)
is functionally complete, we can directly reuse the definitions of the operators
given in Fig. 1. Clearly, or∩ and and∩ are directly given by � and �, respectively.
Moreover, the operator or∪ corresponds to the supremum operator over the total
order 1P > 0P > ⊥P, so we can re-use the operator �̇ defined in Section 3.3. The
operator and∪ is defined as follows:

x and∪ y = not((notx) or∪ (not y))

7 Note that a first-applicable ∩-operator is vacuous, as it would be equivalent to a
unary, identity operator.



406 J. Crampton and C. Morisset

⊕ 1P 0P ⊥P

1P 1P x 1P

0P y 0P 0P

⊥P 1P 0P ⊥P

(a) Idempotent

and∪ 1P 0P ⊥P

1P 1P 0P 1P

0P 0P 0P 0P

⊥P 1P 0P ⊥P

(b) Conjunction

or∪ 1P 0P ⊥P

1P 1P 1P 1P

0P 1P 0P 0P

⊥P 1P 0P ⊥P

(c) Disjunction

� 1P 0P ⊥P

1P 1P 1P 1P

0P 0P 0P 0P

⊥P 1P 0P ⊥P

(d) First-applicable

Fig. 4. Decision tables for idempotent ∪-operators on {1P, 0P,⊥P}

In order to define the operator �, we first introduce the operator abd
(“allow-by-default”), which transforms ⊥P into 1P, and is defined by abdx =
not(dbd(notx)). The definition of � is then given by:

x� y = (abd(x �̃ (notx))) �̃ (x or∪ y)

Finally, x�y is equivalent to y�x. Henceforth, we will use the operators defined
above as syntactic sugar. Notice that our definitions of or∪, and∪ and� all require
the three PTL operators for their construction. Hence, a policy containing the
standard XACML operators does not satisfy the requirements of Theorem 6, so
we need to rely on the all-or-nothing assumption.

Finally, we note that the operators and, and∪ and and∩ can be regarded as
defining a greatest lower bound operator for suitable choices of ordering on DecP;
similarly or∪ and or∩ define least upper bound operators. These orderings are
summarized in Table 1.

Table 1. Decision operators and orderings on DecP

Operator Ordering

and 0P < ⊥P < 1P

and∪ 0P < 1P < ⊥P

and∩ ⊥P < 0P < 1P

or∪ ⊥P < 0P < 1P

or∩ 0P < 1P < ⊥P

The fact that each of the orderings is a total order means that and, and∪ and
and∩ take the minimum of their operands, while or∪ and or∩ take the maximum
of their operands. This, in turn, means that all four operators can be extended
to n-ary operators (for any natural number n > 1).

5 Related Work

It is important to note that PTaCL is neither intended to fix XACML nor to
provide formal semantics for XACML policy evaluation. Rather, PTaCL is a



PTaCL: A Target-Based Authorization Language 407

language that seeks to provide rigorous, alternative solutions to the same prob-
lems that motivated the development of XACML. Our work is also influenced
by the work of Li et al. [12] and of Crampton and Huth [6] on using a set of
decisions, rather than a single decision, to define the result of policy evaluation.

Although there is a substantial body ofwork onpolicy specification [1,4,5,13,17],
this prior work assumes a very restricted format for access requests and targets. To
the best of our knowledge, there is no previous work on a formal language for tar-
get specification and evaluation, let alone the consideration of missing attributes
names. Both the ratified standard XACML 2.0 [14] and the draft XACML 3.0 [15],
acknowledge that attributes may be missing from a request. However, the treat-
ment of target evaluation in such circumstances is, like much of the XACML stan-
dard, rather informal. Moreover, the XACML target syntax is unnecessarily com-
plicated and does not support interface targets. Finally, the XACML target syntax
only provides operators that are equivalent to the strong conjunction and strong
disjunction (in the 3-value Kleene logic), thereby limiting the expressive power of
XACML. On the other hand, the functional completeness of PTL means that any
XACML target can be represented in PTL.

The work on policy algebras varies in the operators that are supported, the
set of decisions that can arise as a result of policy evaluation, and the extent
to which policy evaluation can cope with failures in target evaluation. Ni et
al., for example, provide a functional complete policy algebra [13], where policy
evaluation returns a single decision from the set {1P, 0P,⊥P}. The functional
completeness of PCL means that we can express any operators that we might
wish to. In particular, we can express all XACML policy-combining algorithms.
Structurally, our atomic policies correspond to rules in XACML, while our policy
trees correspond to policies and policy sets. Crampton and Huth [6] extend
the work of Li et al. on policy evaluation in the presence of target evaluation
failure [12], where policy evaluation returns a set of decisions. Our treatment
of policy evaluation is rather similar to this earlier work, although the way in
which we resolve a set of decisions to a single decision that is enforced by the
AEF is completely different, due to the suspicion with which we choose to treat
the ⊥P decision.

An important contribution of this paper is the recognition that providing sup-
port for attribute-based access control and greater freedom for request formats
leads to the potential for attribute hiding by malicious users. By manipulating
requests in this way, it may be possible to circumvent the expected or intended
policy semantics. Existing work that supports attribute-based access control,
such as XACML 3.0 and that of Rao et al. [16], does not consider such pos-
sibilities and hence may be vulnerable to “attribute-hiding attacks”. Consider,
for example, the PTL policy p = (1P and∪ ((n, v), 0P)) – which corresponds to
an XACML policy with two rules combined using the deny-overrides operator –
and two requests q = {(n, v), (n, v′)} and q′ = {(n, v′)}. Then �p�(q) = 0P while
�p�(q′) = 1P: that is, by hiding some information, a more favorable answer is
obtained. Theorem 6 suggests that such behavior is to be expected because we
require all three PTL operators to represent and∪.



408 J. Crampton and C. Morisset

6 Concluding Remarks

Attribute-based access control, rather than the traditional identity-based access
control that is deployed extensively in closed systems, is likely to become in-
creasingly important in loosely coupled and open computing environments. This
paper introduces PTaCL, an expressive language for the definition of attribute-
based authorization policies. PTaCL can represent all commonly used policy
composition operators (indeed it can represent any desired operator) and, to the
best of our knowledge, PTaCL is the first language with a concise syntax for
policy targets and a precise semantics for their evaluation.

Nevertheless, PTaCL is rather simple syntactically, which enables us to iden-
tify and propose solutions to the problem of attribute hiding. Such an issue
is problematic in the context of open and distributed systems, and is not ad-
dressed in the literature, which define composition operators to favor conclusive
decisions over a not-applicable decision. Having identified the problem, we pro-
pose two approaches to address this issue, formally justifying each of them: either
forbidding optional targets, assuming the attribute servers to work in an “all-
or-nothing mode” and adopting a conservative evaluation; or constraining more
strictly the definition of the targets and the definition of the policies. The sec-
ond approach does not make any assumption about the behavior of the attribute
servers, but the standard policy composition operators can no longer be used.
We propose other operators that are resilient to attribute hiding and differ from
the standard ones in the way in which they handle the not-applicable decision.
These “new” operators actually correspond to the strong conjunction and strong
disjunction defined in the original Kleene three-valued logic.

There are many opportunities for future work. Clearly, when the evaluation
of a request returns more than one decision, it implies that some attributes are
missing in the request, and PTaCL should be extended in order for the set of
the decisions to also indicate which attributes are missing. Hence, the entity
in charge of collecting the attributes, for instance the Context Handler in the
XACML architecture. Hence, a useful extension to the operational semantics of
PTaCL would be to extend the return type of PCL so that the response includes
a list of missing attribute names. PCL can be similarly extended in order to
support obligations, that can be returned in addition to a set of decisions (as in
XACML).

These extensions naturally lead to the problem of understanding and formal-
izing the complete access control architecture, and in particular to the question
of attribute privacy. Indeed, in practice, a reason for a missing attribute can be
because the source responsible for providing its value considered that this value
was too sensitive to be shared. In such a case, the evaluation of the policy, or part
of it, needs to be delegated to the attribute source. However, the possible pres-
ence of multiple, sensitive and conflicting sources makes it a non-trivial problem
to solve. We believe that by completely formalizing the notion of attribute and
its treatment by the policy decision point, PTaCL paves the way to address the
problem of attribute privacy.



PTaCL: A Target-Based Authorization Language 409

References

1. Backes, M., Dürmuth, M., Steinwandt, R.: An Algebra for Composing Enterprise
Privacy Policies. In: Samarati, P., Ryan, P.Y.A., Gollmann, D., Molva, R. (eds.)
ESORICS 2004. LNCS, vol. 3193, pp. 33–52. Springer, Heidelberg (2004)

2. Bell, D., LaPadula, L.: Secure computer systems: Unified exposition and Multics
interpretation. Technical Report MTR-2997, Mitre Corporation (1976)

3. Bertino, E., Castano, S., Ferrari, E.: Author-X : A comprehensive system for se-
curing XML documents. IEEE Internet Computing 5(3), 21–31 (2001)

4. Bonatti, P., De Capitani Di Vimercati, S., Samarati, P.: An algebra for compos-
ing access control policies. ACM Transactions on Information and System Secu-
rity 5(1), 1–35 (2002)

5. Bruns, G., Huth, M.: Access-control policies via Belnap logic: Effective and efficient
composition and analysis. In: Proceedings of the 21st IEEE Computer Security
Foundations Symposium, pp. 163–176 (2008)

6. Crampton, J., Huth, M.: An Authorization Framework Resilient to Policy Eval-
uation Failures. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS
2010. LNCS, vol. 6345, pp. 472–487. Springer, Heidelberg (2010)

7. Crampton, J., Morisset, C.: Ptacl: A language for attribute-based access control in
open systems. CoRR, abs/1111.5767 (2011), http://arxiv.org/abs/1111.5767

8. Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., Samarati, P.: A fine-
grained access control system for XML documents. ACM Transactions on Infor-
mation and System Security 5(2), 169–202 (2002)

9. Harrison, M., Ruzzo, W., Ullman, J.: Protection in operating systems. Communi-
cations of the ACM 19(8), 461–471 (1976)

10. Jobe, W.: Functional completeness and canonical forms in many-valued logics.
Journal of Symbolic Logic 27(4), 409–422 (1962)

11. Kleene, S.: Introduction to Metamathematics. D. Van Nostrand, Princeton, NJ
(1950)

12. Li, N., Wang, Q., Qardaji, W., Bertino, E., Rao, P., Lobo, J., Lin, D.: Access
control policy combining: Theory meets practice. In: Proceedings of 14th ACM
Symposium on Access Control Models and Technologies, pp. 135–144 (2009)

13. Ni, Q., Bertino, E., Lobo, J.: D-algebra for composing access control policy deci-
sions. In: Proceedings of 2009 ACM Symposium on Information, Computer and
Communications Security, pp. 298–309 (2009)

14. OASIS. eXtensible Access Control Markup Language (XACML) Version 2.0, OA-
SIS Committee Specification (Tim Moses, editor) (2005)

15. OASIS. eXtensible Access Control Markup Language (XACML) Version 3.0, OA-
SIS Committee Specification 01 (Erik Rissanen, editor) (2010)

16. Rao, P., Lin, D., Bertino, E., Li, N., Lobo, J.: An algebra for fine-grained integra-
tion of XACML policies. In: Proceedings of the 14th ACM Symposium on Access
Control Models and Technologies, pp. 63–72. ACM, New York (2009)

17. Wijesekera, D., Jajodia, S.: A propositional policy algebra for access control. ACM
Transactions on Information and System Security 6(2), 235–286 (2003)

http://arxiv.org/abs/1111.5767

	PTaCL: A Language for Attribute-Based
Access Control in Open Systems
	Introduction
	Attribute-Based Requests
	Targets
	Evaluation
	Interface Targets
	On Functional Completeness

	Policies
	Policy Evaluation
	On the Non-monotonicity of Targets
	Decision Operators

	Related Work
	Concluding Remarks
	References





