


Lecture Notes in Computer Science 7215
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Madhu Sudan, USA

Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Madhu Sudan, Microsoft Research, Cambridge, MA, USA

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Carnegie Mellon University, Pittsburgh, PA, USA



Pierpaolo Degano Joshua D. Guttman (Eds.)

Principles of Security
and Trust

First International Conference, POST 2012
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2012
Tallinn, Estonia, March 24 – April 1, 2012
Proceedings

13



Volume Editors

Pierpaolo Degano
Università di Pisa
Dipartimento di Informatica
Largo Bruno Pontecorvo, 3
56127 Pisa, Italy
E-mail: degano@di.unipi.it

Joshua D. Guttman
Worcester Polytechnic Institute
Department of Computer Science
100 Institute Road
Worcester, MA 01609, USA
E-mail: guttman@wpi.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-28640-7 e-ISBN 978-3-642-28641-4
DOI 10.1007/978-3-642-28641-4
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012932616

CR Subject Classification (1998): C.2.0, D.4.6, E.3, K.4.4, K.6.5, D.2, J.1

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Foreword

ETAPS 2012 is the fifteenth instance of the European Joint Conferences on
Theory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998 by combining a number of existing and new conferences.
This year it comprised six sister conferences (CC, ESOP, FASE, FOSSACS,
POST, TACAS), 21 satellite workshops (ACCAT, AIPA, BX, BYTECODE,
CMCS, DICE, FESCA, FICS, FIT, GRAPHITE, GT-VMT, HAS, IWIGP,
LDTA, LINEARITY, MBT, MSFP, PLACES, QAPL, VSSE and WRLA), and
eight invited lectures (excluding those specific to the satellite events).

The six main conferences received this year 606 submissions (including 21
tool demonstration papers), 159 of which were accepted (6 tool demos), giving
an overall acceptance rate just above 26%. Congratulations therefore to all the
authors who made it to the final programme! I hope that most of the other
authors will still have found a way to participate in this exciting event, and that
you will all continue to submit to ETAPS and contribute to making it the best
conference on software science and engineering.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis, se-
curity and improvement. The languages, methodologies and tools that support
these activities are all well within its scope. Different blends of theory and prac-
tice are represented, with an inclination towards theory with a practical moti-
vation on the one hand and soundly based practice on the other. Many of the
issues involved in software design apply to systems in general, including hardware
systems, and the emphasis on software is not intended to be exclusive.

ETAPS is a confederation in which each event retains its own identity, with
a separate Programme Committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronised parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for ‘unifying’ talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

This year, ETAPS welcomes a new main conference, Principles of Security
and Trust, as a candidate to become a permanent member conference of ETAPS.
POST is the first addition to our main programme since 1998, when the orig-
inal five conferences met in Lisbon for the first ETAPS event. It combines the
practically important subject matter of security and trust with strong technical
connections to traditional ETAPS areas.
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A step towards the consolidation of ETAPS and its institutional activities has
been undertaken by the Steering Committee with the establishment of ETAPS
e.V., a non-profit association under German law. ETAPS e.V. was founded on
April 1st, 2011 in Saarbrücken, and we are currently in the process of defining
its structure, scope and strategy.

ETAPS 2012 was organised by the Institute of Cybernetics at Tallinn Uni-
versity of Technology, in cooperation with

� European Association for Theoretical Computer Science (EATCS)
� European Association for Programming Languages and Systems (EAPLS)
� European Association of Software Science and Technology (EASST)

and with support from the following sponsors, which we gratefully thank:

Institute of Cybernetics at TUT; Tallinn University of Tech-

nology (TUT); Estonian Centre of Excellence in Computer

Science (EXCS) funded by the European Regional Develop-

ment Fund (ERDF); Estonian Convention Bureau; and Mi-

crosoft Research.

The organising team comprised:

General Chair: Tarmo Uustalu

Satellite Events: Keiko Nakata

Organising Committee: James Chapman, Juhan Ernits, Tiina Laasma,
Monika Perkmann and their colleagues in the
Logic and Semantics group and administration
of the Institute of Cybernetics

The ETAPS portal at http://www.etaps.org is maintained by RWTH Aachen
University.

Overall planning for ETAPS conferences is the responsibility of its Steering
Committee, whose current membership is:

Vladimiro Sassone (Southampton, Chair), Roberto Amadio (Paris 7), Gilles
Barthe (IMDEA-Software), David Basin (Zürich), Lars Birkedal (Copenhagen),
Michael O’Boyle (Edinburgh), Giuseppe Castagna (CNRS Paris), Vittorio
Cortellessa (L’Aquila), Koen De Bosschere (Gent), Pierpaolo Degano (Pisa),
Matthias Felleisen (Boston), Bernd Finkbeiner (Saarbrücken), Cormac Flanagan
(Santa Cruz), Philippa Gardner (Imperial College London), Andrew D. Gordon
(MSR Cambridge and Edinburgh), Daniele Gorla (Rome), Joshua Guttman
(Worcester USA), Holger Hermanns (Saarbrücken), Mike Hinchey (Lero,
the Irish Software Engineering Research Centre), Ranjit Jhala (San Diego),
Joost-Pieter Katoen (Aachen), Paul Klint (Amsterdam), Jens Knoop (Vienna),
Barbara König (Duisburg), Juan de Lara (Madrid), Gerald Lüttgen (Bamberg),
Tiziana Margaria (Potsdam), Fabio Martinelli (Pisa), John Mitchell (Stanford),
Catuscia Palamidessi (INRIA Paris), Frank Pfenning (Pittsburgh), Nir
Piterman (Leicester), Don Sannella (Edinburgh), Helmut Seidl (TU Munich),
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Scott Smolka (Stony Brook), Gabriele Taentzer (Marburg), Tarmo Uustalu
(Tallinn), Dániel Varró (Budapest), Andrea Zisman (London), and Lenore Zuck
(Chicago).

I would like to express my sincere gratitude to all of these people and or-
ganisations, the Programme Committee Chairs and PC members of the ETAPS
conferences, the organisers of the satellite events, the speakers themselves, the
many reviewers, all the participants, and Springer-Verlag for agreeing to publish
the ETAPS proceedings in the ARCoSS subline.

Finally, I would like to thank the Organising Chair of ETAPS 2012, Tarmo
Uustalu, and his Organising Committee, for arranging to have ETAPS in the
most beautiful surroundings of Tallinn.

January 2012 Vladimiro Sassone
ETAPS SC Chair



Preface

The first conference on Principles of Security and Trust (POST) was held
25–27 March 2012 in Tallinn, as part of ETAPS 2012. POST resulted from an
alliance among the workshops it will replace: Automated Reasoning and Secu-
rity Protocol Analysis (ARSPA), Formal Aspects of Security and Trust (FAST),
Security in Concurrency (SecCo), and the Workshop on Issues in the Theory of
Security (WITS). Some of these events met jointly, affiliated with ETAPS, in
2011 under the name Theory of Security and Applications (TOSCA). The IFIP
WG 1.7 on Theoretical Foundations of Security Analysis and Design has long
helped to nourish this community.

We are pleased that POST attracted 67 submissions for its first occurrence,
from which the committee selected 20. This volume also contains an abstract of
the talk given by our invited speaker, Cynthia Dwork, and a paper by Bruno
Blanchet, an ETAPS unifying speaker. We would like to thank them for their
contributions.

We are grateful to our dedicated and collegial Program Committee, and to the
ETAPS Steering Committee for start-up help. We thank the Organizing Com-
mittee in Tallinn. Finally, Andrei Voronkov very helpfully ensured that Easychair
worked smoothly.

January 2012 Pierpaolo Degano
Pisa and Boston Joshua Guttman
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Differential Privacy and the Power

of (Formalizing) Negative Thinking

(Extended Abstract)

Cynthia Dwork

Microsoft Research, Silicon Valley
dwork@microsoft.com

Abstract. Differential privacy is a promise, made by a data curator to
a data subject: you will not be affected, adversely or otherwise, by al-
lowing your data to be used in any study, no matter what other studies,
data sets, or information from other sources is, or may become, available.
This talk describes the productive role played by negative results in the
formulation of differential privacy and the development of techniques for
achieving it, concluding with a new negative result having implications
related to participation in multiple, independently operated, differen-
tially private databases.

Keywords: differential privacy, foundations of private data analysis,
lifetime privacy loss, independently operated differentially private
databases.

In the digital information realm, loss of privacy is usually associatedwith failure to
control access to information, to control the flow of information, or to control the
purposes for which information is employed. Differential privacy arose in a con-
text in which ensuring privacy is a challenge even if all these control problems are
solved: privacy-preserving statistical analysis of data. Here, even defining the goal
is problematic, as the data analyst and the privacy adversary are one and the same.

The Formal Definition. A database is modeled as a collection of rows, with
each row containing the data of a different individual. Differential privacy will
ensure that the ability of an adversary to inflict harm – of any sort, to any set of
people – should be essentially the same, independent of whether any individual
opts in to, or opts out of, the dataset. This is done indirectly, by focusing on the
probability of any given output of a privacy mechanism and how this probability
can change with the addition or deletion of any row. Thus, we concentrate on
pairs of databases (D,D′) differing only in one row, meaning one is a subset of
the other and the larger database contains just one additional row. Finally, to
handle worst case pairs of databases, the probabilities will be over the random
choices made by the privacy mechanism.

Definition 1. [3,4] A randomized function K gives (ε, δ)-differential privacy if
for all data sets D and D′ differing on at most one row, and all S ⊆ Range(K),

Pr[K(D) ∈ S] ≤ exp(ε)× Pr[K(D′) ∈ S] + δ (1)

P. Degano and J.D. Guttman (Eds.): POST 2012, LNCS 7215, pp. 1–2, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 C. Dwork

where the probability space in each case is over the coin flips of K1.

Both the definition and the earliest techniques for achieving it were strongly
influenced by negative results [2,5].

Consider a differentially private mechanism answering simple “counting
queries” of the form “How many people in the database have property P?” Since
a differentially private mechanism exhibits a similar probability distribution on
answers for neighboring databases D,D′, it is clear that the responses given
must sometimes be inaccurate; the goal of algorithmic research in this field is
to minimize this inaccuracy. The Laplace method achieves (ε, 0)-differential pri-
vacy for counting queries by adding noise generated according to the Laplace
distribution with parameter 1/ε to the true answer, and releasing this “noisy”
value [4]. The resulting expected error is on the order of 1/ε.

Differential privacy holds regardless of what the adversary knows, now or in
the future. In consequence, differential privacy composes obliviously and au-
tomatically; the k-fold composition of (ε, δ)-differentially private mechanisms,
involing either k operations on a single database or the mutually oblivious
operation of k independent databases with arbitrary overlap, is still roughly
(
√
kε, δ′)-differentially private [7]. It follows that adding independently gener-

ated noise with distribution Lap(
√
k/ε) permits k queries to be answered with

a total privacy loss of about ε and expected error per query
√
k/ε.

A series of results beginning with [1] shows one can do much better – with er-
ror depending polylogarithmically on the number of queries – using coordinated
noise. In fact coordination is essential to beat the “

√
k” composition bound [6],

so we have reached the end of the line for mutually oblivious, independently op-
erated, differentially private mechanisms running against arbitrarily knowledge-
able adversaries. Addressing this newly understood limitation is a fundamental
challenge in differentially private data analysis.

References
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Security Protocol Verification:

Symbolic and Computational Models

Bruno Blanchet

INRIA, École Normale Supérieure, CNRS, Paris
blanchet@di.ens.fr

Abstract. Security protocol verification has been a very active research
area since the 1990s. This paper surveys various approaches in this area,
considering the verification in the symbolic model, as well as the more
recent approaches that rely on the computational model or that ver-
ify protocol implementations rather than specifications. Additionally, we
briefly describe our symbolic security protocol verifier ProVerif and sit-
uate it among these approaches.

1 Security Protocols

Security protocols are programs that aim at securing communications on in-
secure networks, such as Internet, by relying on cryptographic primitives. Se-
curity protocols are ubiquitous: they are used, for instance, for e-commerce
(e.g., the protocol TLS [110], used for https:// URLs), bank transactions,
mobile phone and WiFi networks, RFID tags, and e-voting. However, the de-
sign of security protocols is particularly error-prone. This can be illustrated
for instance by the very famous Needham-Schroeder public-key protocol [161],
in which a flaw was found by Lowe [148] 17 years after its publication. Even
though much progress has been made since then, many flaws are still found
in current security protocols (see, e.g., http://www.openssl.org/news/ and
http://www.openssh.org/security.html). Security errors can have serious
consequences, resulting in loss of money or loss of confidence of users in the sys-
tem. Moreover, security errors cannot be detected by functional software testing
because they appear only in the presence of a malicious adversary. Automatic
tools can therefore be very helpful in order to obtain actual guarantees that
security protocols are correct. This is a reason why the verification of security
protocols has been a very active research area since the 1990s, and is still very
active. This survey aims at summarizing the results obtained in this area. Due
to the large number of papers on security protocol verification and the limited
space, we had to omit many of them; we believe that we still present repre-
sentatives of the main approaches. Additionally, Sect. 2.2 briefly describes our
symbolic verification tool ProVerif.

1.1 An Example of Protocol

We illustrate the notion of security protocol with the following example, a sim-
plified version of the Denning-Sacco public-key key distribution protocol [109].

P. Degano and J.D. Guttman (Eds.): POST 2012, LNCS 7215, pp. 3–29, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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4 B. Blanchet

Message 1. A→ B : {{k}skA
}pkB

k fresh
Message 2. B → A : {s}k

As usual, A→ B : M means that A sends to B the message M ; {M}sk denotes
the signature of M with the secret key sk (which can be verified with the public
key pk); {M}pk denotes the public-key encryption of messageM under the public
key pk (which can be decrypted with the corresponding secret key sk); {M}k
denotes the shared-key encryption of message M under key k (which can be
decrypted with the same key k). In this protocol, the principal A chooses a fresh
key k at each run of the protocol. She signs this key with her signing key skA,
encrypts the obtained message with the public key of her interlocutor B, and
sends him the message. When B receives it, he decrypts it (with his secret key
skB), verifies the signature of A, and obtains the key k. Having verified this
signature, B is convinced that the key was chosen by A, and encryption under
pkB guarantees that only B could decrypt the message, so k should be shared
between A and B. Then, B encrypts a secret s under the shared key k. Only A
should be able to decrypt the message and obtain the secret s.

In general, in the literature, as in the example above, the protocols are de-
scribed informally by giving the list of messages that should be exchanged be-
tween the principals. Nevertheless, one must be careful that these descriptions
are only informal: they indicate what happens in the absence of an adversary.
However, an adversary can capture messages and send his own messages, so the
source and the target of a message may not be the expected one. Moreover,
these descriptions leave implicit the verifications done by the principals when
they receive messages. Since the adversary may send messages different from
the expected ones, and exploit the obtained reply, these verifications are very
important: they determine which messages will be accepted or rejected, and
may therefore protect or not against attacks. Formal models of protocols, such
as [5, 7, 73, 118] make all this precise.

Although the explanation above may seem to justify its security informally,
this protocol is subject to an attack:

Message 1. A→ C : {{k}skA
}pkC

Message 1’. C(A)→ B : {{k}skA
}pkB

Message 2. B → C(A) : {s}k

In this attack, A runs the protocol with a dishonest principal C. This principal
gets the first message of the protocol {{k}skA}pkC

, decrypts it and re-encrypts
it under the public key of B. The obtained message {{k}skA

}pkB
corresponds

exactly to the first message of a session between A and B. Then, C sends this
message to B impersonating A; above, we denote by C(A) the dishonest partic-
ipant C impersonating A. B replies with the secret s, intended for A, encrypted
under k. C, having obtained the key k by the first message, can decrypt this
message and obtain the secret s.

The protocol can easily be fixed, by adding the identity of B to the signed
message, which yields the following protocol:
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Message 1. A→ B : {{B, k}skA
}pkB

k fresh
Message 2. B → A : {s}k

When he receives the first message, B verifies that his own identity appears as
first component. After this change, in a session betweenA and C, the adversaryC
receives {{C, k}skA

}pkC
. It cannot transform this message into {{B, k}skA

}pkB
,

because it cannot transform the signature that contains C into a signature that
contains B instead. Therefore, the previous attack is impossible. However, this
point does not prove that the protocol is correct: there may be other attacks, so
a security proof is needed.

1.2 Models of Protocols

In order to obtain proofs that security protocols are correct, one first needs to
model them mathematically. Two models of protocols have been considered:

– In the symbolic model, due to Needham and Schroeder [161] and Dolev and
Yao [111] and often called Dolev-Yao model, the cryptographic primitives
are represented by function symbols considered as black-boxes, the messages
are terms on these primitives, and the adversary is restricted to compute
only using these primitives. This model assumes perfect cryptography. For
instance, shared-key encryption is basically modeled by two function sym-
bols, enc and dec, where enc(x, y) stands for the encryption of x under key
y and dec(x, y) for the decryption of x with key y, with the equality:

dec(enc(x, y), y) = x. (1)

Hence, one can decrypt enc(x, y) only when one has the key y. More generally,
one can add equations to model algebraic properties of the cryptographic
primitives, but one always makes the assumption that the only equalities
that hold are those explicitly given by these equations.

– In the computational model, developed at the beginning of the 1980s by Gold-
wasser, Micali, Rivest, Yao, and others (see for instance [124, 125, 181]), the
messages are bitstrings, the cryptographic primitives are functions from bit-
strings to bitstrings, and the adversary is any probabilistic Turing machine.
This is the model generally used by cryptographers.

In this model, the length of keys is determined by a value named security
parameter, and the runtime of the adversary is supposed to be polynomial in
the security parameter. A security property is considered to hold when the
probability that it does not hold is negligible in the security parameter. (A
function is said to be negligible when it is asymptotically smaller than the
inverse of any polynomial.) This probability can also be bound explicitly as
a function of the runtime of the adversary and of the probability of breaking
each cryptographic primitive; this is called exact security.

For instance, shared-key encryption can be modeled by two functions enc
and dec with the same equality (1) as above, but the security of encryption
is expressed (informally) by saying that the adversary has a negligible prob-
ability of distinguishing encryptions of two messages of the same length [39].
Equalities other than (1) may exist, even if they are not made explicit.
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The computational model is much more realistic, but complicates the proofs,
and until recently these proofs were only manual. The symbolic model, however,
is suitable for automation, essentially by computing the set of all messages the
adversary can know. Starting in the 1990s, the proof of protocols in the symbolic
model has been an important application field for formal verification methods.

We emphasize that even the computational model is just a model, which ig-
nores many important aspects of reality. In particular, it ignores physical attacks
against the devices: side-channel attacks exploit power consumption, timing,
noise, . . . and fault attacks introduce faults in the system in order to break its
security. As protocols are better studied and verified formally, physical attacks
become increasingly important and are an area of active research, with some
workshops, such as FTDC (Fault Diagnosis and Tolerance in Cryptography)
and CHES (Cryptographic Hardware and Embedded Systems), focusing mainly
on this area. This survey will not deal with physical attacks.

1.3 Security Properties

Security protocols can aim at a wide variety of security goals. The main security
properties can be classified into two categories, trace properties and equivalence
properties. We define these categories and mention two particularly important
examples: secrecy and authentication. These are two basic properties required by
most security protocols. Some protocols, such as e-voting protocols [105], require
more complex and specific security properties, which will not be discussed here.

Trace and Equivalence Properties. Trace properties are properties that
can be defined on each execution trace (each run) of the protocol. The protocol
satisfies such a property when it holds for all traces in the symbolic model,
except for a set of traces of negligible probability in the computational model.
For example, the fact that some states are unreachable is a trace property.

Equivalence or indistinguishability properties mean that the adversary cannot
distinguish two processes. For instance, one of these processes can be the proto-
col under study, and the other one can be its specification. Then, the equivalence
means that the protocol satisfies its specification. Equivalences can be therefore
be used to model many subtle security properties. In the symbolic model, this
notion is called process equivalence, with several variants (observational equiv-
alence, testing equivalence, trace equivalence) [5–7], while in the computational
model, one rather talks about indistinguishability. Equivalences provide compo-
sitional proofs: if a protocol P is equivalent to P ′, P can be replaced with P ′ in
a more complex protocol. In the computational model, this is at the basis of the
idea of universal composability [71]. However, in the symbolic model, their proof
is more difficult to automate than the proof of trace properties: they cannot be
expressed on a single trace, they require relations between traces (or processes).
So most equivalence proofs are still manual, even if tools begin to appear as we
shall see in Sect. 2.1.
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Secrecy. Secrecy, or confidentiality, means that the adversary cannot obtain
some information on data manipulated by the protocol. In the symbolic model,
secrecy can be formalized in two ways:

– Most often, secrecy means that the adversary cannot compute exactly the
considered piece of data. In case of ambiguity, this notion will be called
syntactic secrecy. For instance, in the protocol of Sect. 1.1, we may want to
prove that the adversary cannot obtain s nor the key k shared between A
and B. These properties hold only for the fixed protocol of Sect. 1.1.

– Sometimes, one uses a stronger notion, strong secrecy, which means that the
adversary cannot detect a change in the value of the secret [1, 49]. In other
words, the adversary has no information at all on the value of the secret. In
the fixed protocol of Sect. 1.1, we could also show strong secrecy of s.

The difference between syntactic secrecy and strong secrecy can be illustrated
by a simple example: consider a piece of data for which the adversary knows
half of the bits but not the other half. This piece of data is syntactically secret
since the adversary cannot compute it entirely, but not strongly secret, since the
adversary can see if one of the bits it knows changes. Syntactic secrecy cannot
be used to express secrecy of data chosen among known constants. For instance,
talking about syntactic secrecy of a bit 0 or 1 does not make sense, because
the adversary knows the constants 0 and 1 from the start. In this case, one has
to use strong secrecy: the adversary must not be able to distinguish a protocol
using the value 0 from the same protocol using the value 1. These two notions
are often equivalent [92], both for atomic data (which are never split into several
pieces, such as nonces, which are random numbers chosen independently at each
run of the protocol) and for probabilistic cryptographic primitives.

Strong secrecy is intuitively closer to the notion of secrecy used in the compu-
tational model, which means that a probabilistic polynomial-time adversary has
a negligible probability of distinguishing the secret from a random number [9].

Syntactic secrecy is a trace property, while strong secrecy and computational
secrecy are equivalence properties.

Authentication. Authentication means that, if a participant A runs the pro-
tocol apparently with a participant B, then B runs the protocol apparently with
A, and conversely. In general, one also requires that A and B share the same
values of the parameters of the protocol.

In the symbolic model, this is generally formalized by correspondence prop-
erties [149, 180], of the form: if A executes a certain event e1 (for instance, A
terminates the protocol with B), then B has executed a certain event e2 (for
instance, B started a session of the protocol with A). There exist several vari-
ants of these properties. For instance, one may require that each execution of e1
corresponds to a distinct execution of e2 (injective correspondence) or, on the
contrary, that if e1 has been executed, then e2 has been executed at least once
(non-injective correspondence). The events e1 and e2 may also include more or
fewer parameters depending on the desired property. These properties are trace
properties.
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For example, in the fixed protocol of Sect. 1.1, we could show that, if B
terminates the protocol with A and a key k, then A started the protocol with B
and the same k. The injective variant does not hold, because the adversary can
replay the first message of the protocol.

The formalization is fairly similar in the computational model, with the notion
of matching conversations [41] and more recent formalizations based on session
identifiers [9,40], which basically require that the exchanged messages seen by A
and by B are the same, up to negligible probability. This is also a trace property.

2 Verifying Protocols in the Symbolic Model

A very large number of techniques and tools exist for verifying protocols in
the symbolic model. We first present a survey of these techniques, then provide
additional details on the tool that we have developed, ProVerif.

2.1 Verification Techniques

The automatic verification of protocols in the symbolic model is certainly easier
than in the computational model, but it still presents significant challenges.
Essentially, the state space to explore is infinite, for two reasons: the message
size is not bounded in the presence an active adversary; the number of sessions
(runs) of the protocol is not bounded. However, we can easily bound the number
of participants to the protocol without forgetting attacks [85]: for protocols that
do not make difference tests, one honest participant is enough for secrecy if
the same participant is allowed to play all roles of the protocol, two honest
participants are enough for authentication.

A simple solution to this problem is to explore only part of the state space,
by limiting arbitrarily both the message size and the number of sessions of the
protocol. One can then apply standard model-checking techniques, using systems
such as FDR [148] (which was used to discover the attack against the Needham-
Schroeder public-key protocol), Murφ [159], Maude [107], or SATMC (SAT-
based Model-Checker) [16]. These techniques allow one to find attacks against
protocols, but not to prove the absence of attacks, since attacks may appear
in an unexplored part of the state space. (One can indeed construct a family of
protocols such that the n-th protocol is secure for n−1 sessions but has an attack
with n parallel sessions [154]. More generally, an arbitrary number of sessions
may be needed [85].)

If only the number of sessions is bounded, the verification of protocols remains
decidable: protocol insecurity (existence of an attack) is NP-complete with rea-
sonable assumptions on the cryptographic primitives [171]. When cryptographic
primitives have algebraic relations, the verification is much more difficult, but
the complexity class does not necessarily increase. For instance, exclusive or is
handled in the case of a bounded number of sessions in [79,80,87] and the Diffie-
Hellman key agreement in [78], still with an NP-complexity. Practical algorithms
have been implemented to verify protocols with a bounded number of sessions,
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by constraint solving, such as [155] and CL-AtSe (Constraint-Logic-based Attack
Searcher) [81], or by extensions of model-checking such as OFMC (On-the-Fly
Model-Checker) [35].

The previous results only deal with trace properties. The verification of equiv-
alence properties is much more complex. First, decision procedures were designed
for a fixed set of basic primitives and without else branches [113, 135], but
their complexity was too large for practical implementations. Recently, more
practical algorithms were designed for processes with else branches and non-
determinism [76, 77] or for a wide variety of primitives with the restriction that
processes are determinate, that is, their execution is entirely determined by the
adversary inputs [82, 88]. Diff-equivalence, a strong equivalence between pro-
cesses that have the same structure but differ by the terms they contain, is
also decidable [36]; this result applies in particular to the detection of off-line
guessing attacks against password-based protocols and to the proof of strong
secrecy. These techniques rely on symbolic semantics: in a symbolic semantics,
such as [65,104,147], the messages that come from the adversary are represented
by variables, to avoid an unbounded case distinction on these messages.

For an unbounded number of sessions, the problem is undecidable [115] for
a reasonable model of protocols. Despite this undecidability, many techniques
have been designed to verify protocols with an unbounded number of sessions,
by restricting oneself to subclasses of protocols, by requiring user interaction,
by tolerating non-termination, or with incomplete systems (which may answer
“I don’t know”). Most of these techniques deal with trace properties; only the
type system of [1] and ProVerif [55] deal with equivalence properties. Next, we
present a selection of these techniques.

– Logics have been designed to reason about protocols. Belief logics, such as
the BAN logic, by Burrows, Abadi, and Needham [70], reason about what
participants to the protocol believe. The BAN logic is one of the first for-
malisms designed to reason about protocols. However, the main drawback
of these logics is that they do not rely directly on the operational semantics
of the protocol.

Another logic, PCL (Protocol Composition Logic) [101, 116] makes it
possible to prove that a formula holds after some participant has run certain
actions, by relying on the semantics of the protocol. It allows systematic and
rigorous reasoning on protocols, but has not been automated yet.

– Theorem proving was used for proving security properties of protocols [165].
Proofs in an interactive theorem prover typically require much human inter-
action, but allow one to prove any mathematically correct result.

– Typing was also used for proving protocols. Abadi [1] proved strong se-
crecy for protocols with shared-key encryption. Abadi and Blanchet [2] de-
signed a type system for proving secrecy, which supports a wide variety of
cryptographic primitives. Gordon and Jeffrey [126–128] designed the system
Cryptyc for verifying authentication by typing. They handle shared-key and
public-key cryptography.

In all these type systems, the types express information on the security
level of data, such as “secret” for secret data and “public” for public data.
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Typing is better suited for at least partly manual usage than for fully auto-
matic verification: type inference is often difficult, so type annotations are
necessary. Type checking can often be automated, as in the case of Cryp-
tyc. Types provide constraints that can help protocol designers guaranteeing
the desired security properties, but existing protocols may not satisfy these
constraints even if they are correct.

– Strand spaces [118] are a formalism that allows to reason about protocols.
This formalism comes with an induction proof technique based on a partial
order that models a causal precedence relation between messages. It was
used both for manual proofs and in the automatic tool Athena [175] which
combines model checking and theorem proving, and uses strand spaces to
reduce the state space. Scyther [100] uses an extension of Athena’s method
with trace patterns to analyze a group of traces simultaneously. These tools
sometimes limit the number of sessions to guarantee termination.

– Broadfoot, Lowe, and Roscoe [67, 68, 170] extended the model-checking ap-
proach to an unbounded number of sessions. They recycle nonces, to use a
finite number of nonces for an infinite number of executions.

– One of the very first approaches for protocol verification is the Interroga-
tor [156, 157]. In this system, written in Prolog, the reachability of a state
after a sequence of messages is represented by a predicate, and the program
runs a backward search to determine whether a state is reachable or not.
The main problem of this approach is non-termination. It is partly solved by
making the program interactive, so that the user can guide the search. The
NRL Protocol Analyzer (NPA, which evolved into Maude-NPA) [117, 151]
considerably improves this technique by using narrowing in rewrite systems.
It does not make any abstraction, so it is sound and complete but may not
terminate.

– Decidability results can be obtained for an unbounded number of sessions,
for subclasses of protocols. For example, Ramanujan and Suresh [169] showed
that secrecy is decidable for a class of tagged protocols. Tagged protocols are
protocols in which each message is distinguished from others by a distinct
constant, named tag. Their tagging scheme prevents blind copies, that is, sit-
uations in which a message is copied by a participant of the protocol without
verifying its contents. Extensions of this decidability result include [14, 83].
In general, these decidability results are very restrictive in practice.

– Several methods rely on abstractions [99]: they overestimate the attack pos-
sibilities, most often by computing a superset of the knowledge of the adver-
sary. They yield fully automatic but incomplete systems.

• Bolignano [64] was a precursor of abstraction methods for security pro-
tocols. He merges key, nonces, . . . so that a finite set remains. He can
then apply a decision procedure.

• Monniaux [160] introduced a verification method based on an abstract
representation of the knowledge of the adversary by tree automata. This
method was extended by Goubault-Larrecq [129]. Genet and Klay
[123] combine tree automata with rewriting. This method lead to the
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implementation of the verifier TA4SP (Tree-Automata-based Automatic
Approximations for the Analysis of Security Protocols) [63].

This approach abstracts away relational information on terms: when
a variable appears several times in a message, one forgets that it has
the same value at all its occurrences in the message, which limits the
precision of the analysis. However, thanks to this approximation, this
method always terminates.

• Weidenbach [179] introduced an automatic method for proving protocols
based on resolution on Horn clauses. This method is at the heart of the
verifier ProVerif and will be detailed in Sect. 2.2. It is incomplete since
it ignores the number of repetitions of each action of the protocol. Ter-
mination is not guaranteed in general, but it is guaranteed on certain
subclasses of protocols, and it can be obtained in all cases by an addi-
tional approximation, which loses relational information by transforming
Horn clauses into clauses of the decidable subclassH1 [130]. This method
can be seen as a generalization of the tree automata verification method.
(Tree automata can be encoded as Horn clauses.) With Mart́ın Abadi [2],
we showed that this method is equivalent to the most precise instance
of a generic type system for security protocols.

• Other abstraction-based techniques for security protocol verification in-
clude control-flow analysis [60–62], Feret’s abstract-interpretation-based
relational analysis [119], Heather and Schneider’s rank functions veri-
fier [134], Backes et al.’s causal graph technique [19], and the Hermès
protocol verifier [66]. While most verifiers compute the knowledge of the
adversary, Hermès computes forms of messages, such as encryption under
certain keys, that guarantee preservation of secrecy.

Platforms that group several verification techniques have also been implemented:

– CAPSL (Common Authentication Protocol Specification Language) [108]
provides a protocol description language, which is translated into an in-
termediate language, CIL (CAPSL Intermediate Language), based on mul-
tiset rewriting (or equivalently on Horn clauses with existentials in linear
logic) [73]. This intermediate language can be translated into the input lan-
guages of Maude, NPA, Athena, and of the constraint solving verifier of [155].

– AVISPA (Automated Validation of Internet Security Protocols and Appli-
cations) [17] provides, like CAPSL, a protocol description language HLPSL
(High-Level Protocol Specification Language), which is translated into an in-
termediate language based on multiset rewriting. Four verifiers take as input
this intermediate language: SATMC for a bounded state space, CL-AtSe and
OFMC for a bounded number of sessions, TA4SP for an unbounded number
of sessions.

Even if it is rather long, this survey of protocol verification techniques in the
symbolic model is certainly not exhaustive. It still shows the wide variety of tech-
niques that have been applied to protocol verification, and the interest generated
by this problem in the formal method community.
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Protocol:
Pi calculus + cryptography

Properties to prove:
Secrecy, authentication, . . .

Horn clauses Derivability queries

Resolution with free selection

The property is true Potential attack

Automatic translator

Fig. 1. The verification method of ProVerif

2.2 ProVerif

As mentioned above, the protocol verifier ProVerif is based on an abstract repre-
sentation of the protocol by a set of Horn clauses, and on a resolution algorithm
on these clauses. This tool has the following features:

– It is fully automatic. The user gives only the specification of the protocol
and the properties to verify.

– It can handle a wide variety of cryptographic primitives, defined by rewrite
rules or by certain equations.

– In contrast to finite state techniques, it can verify protocols without arbi-
trarily bounding the number of executed sessions (even in parallel) of the
protocol or the size of messages. This makes it possible to obtain actual
proofs of the security properties.

– It can verify secrecy, correspondence, and some equivalence properties.

Of course, there is a price to pay for these advantages: ProVerif does not always
terminate and it is not complete (it may find false attacks). It is still precise and
efficient in practice, as demonstrated by case studies, such as [3, 4, 53, 56].

The verification method is summarized in Fig. 1. The Horn clause verification
technique is not specific to any formalism for representing the protocol. Among
the many existing formalisms, we focused on extensions of the pi calculus with
cryptographic primitives. The pi calculus itself [158] is a minimal programming
language that models systems communicating on channels. Its cryptographic
extensions are particularly well-suited for specifying cryptographic protocols.
This line of research was pioneered by the spi calculus [7], which adds encryption,
signatures, and hash functions to the pi calculus. It was considerably extended by
the applied pi calculus [5], which provides a generic treatment of cryptographic
primitives, defined by an equational theory. In our work, we first focused on a
simpler case in which cryptographic primitives are defined by rewrite rules. This
case can still represent many cryptographic primitives. We distinguish two kinds
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of primitives: constructors and destructors. Constructors, such as encryption enc,
build new terms, while destructors, such as decryption dec, compute on terms.
Destructors are defined by rewrite rules. For example, shared-key decryption can
be defined by the rewrite rule: dec(enc(x, y), y) → x. Decrypting a ciphertext
enc(x, y) with the encryption key y yields the cleartext x.

We then extended the tool to support some primitives defined by equations,
by translating these equations into rewrite rules automatically [55]. Hence res-
olution, on which ProVerif relies, can still use ordinary syntactic unification
(instead of unification modulo the equational theory), and thus remains effi-
cient. In particular, this technique supports block ciphers, for which decryption
never fails (it may return junk), and a simple model of Diffie-Hellman key agree-
ments. It still has limitations; in particular, it cannot handle associativity, so
it does not support XOR (exclusive or). Extensions have been proposed for
supporting XOR [140] and for improving the treatment of Diffie-Hellman key
agreements [141]. Support for associative-commutative symbols can be offered
by unification modulo the equational theory, as in Maude-NPA [117].

The protocol represented in this calculus is automatically translated into a
set of Horn clauses (a logic program). This translation is defined in [2]. The
main idea of the Horn clause representation is to use a predicate attacker, such
that attacker(M) means “the attacker may have the message M”. For example,
the fact that the attacker can encrypt, resp. decrypt, when it has the key is
represented by the following two clauses:

attacker(x) ∧ attacker(y)⇒ attacker(enc(x, y))

attacker(enc(x, y)) ∧ attacker(y)⇒ attacker(x)

When the attacker has the cleartext x and the key y, it can built the ciphertext
enc(x, y), and when the attacker has the ciphertext and the key, it can obtain
the cleartext. The messages exchanged by the honest participants of the protocol
can also be represented by similar clauses. The participants are considered as
oracles that the attacker can call to increase its knowledge. When a participant
A sends a message M after receiving messages M1, . . . , Mn, we have a clause:

attacker(M1) ∧ . . . ∧ attacker(Mn)⇒ attacker(M)

Indeed, when the attacker has M1, . . . , Mn, it can send them to A; A replies
with M , which the attacker can intercept. For instance, in the original proto-
col of Sect. 1.1, B receives a message of the form {{y}skA

}pkB
, modeled by the

term penc(sign(y, skA), pk(skB)), where penc represents the public-key encryp-
tion, sign the signature, and pk computes the public key from the corresponding
secret key. Then, B replies with the secret s encrypted under the key y, {s}y,
modeled by the term enc(s, y). Hence, we obtain the clause:

attacker(penc(sign(y, skA), pk(skB)))⇒ attacker(enc(s, y))

More details on this representation as well as the complete coding of the protocol
of Sect. 1.1 can be found in [54].
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This representation of protocols is approximate in that the application of Horn
clauses can be repeated any number of times, while the real protocol repeats
each step only once per session. So, the state of the participants is only partly
modeled. A model that does not make such an approximation can be obtained
by using clauses in linear logic instead of classical logic, to control the number
of repetitions of each step [114]. The Horn clause model can be seen as a sound
abstraction, in the abstract interpretation sense [99], of the linear logic model,
obtained by ignoring the number of repetitions of each action [50]. Hence, our
technique is sound (when it says that a security property is true, then it is
actually so), but not complete (false attacks can be found). However, in our tests,
false attacks rarely occur. In fact, false attacks occur typically for protocols that
first need to keep data secret, then publish them later in the protocol. In that
situation, the Horn clause model considers that the attacker can re-inject the
secret in the early part of the run, which is not possible in reality (V. Cortier,
personal communication). Ignoring the number of repetitions of each action is a
key to verify protocols without bounding the number of sessions.

Using this representation, secrecy can be inferred from non-derivability: if
attacker(M) is not derivable, then the attacker cannot have M , that is, M is
secret. Even if derivability is undecidable in general, several techniques can be
used to determine whether a fact is derivable from a set of clauses. However,
the simplest techniques, such as SLD-resolution used in Prolog, would never
terminate. (For example, the clause for decryption given above immediately leads
to a loop.) More elaborate resolution techniques succeed in this task:

– Ordered resolution with selection has been used in [179] and is implemented
in the theorem prover SPASS (http://www.spass-prover.org/).

– Ordered resolution with factorization and splitting terminates on protocols
that blindly copy at most one message at each step [84]. (This class of pro-
tocols results in clauses with at most one variable.)

– ProVerif uses resolution with free selection (without ordering) [18]. This
strategy terminates on tagged protocols [58]: in these protocols, each appli-
cation of a cryptographic primitive is distinguished from others by a constant
(the tag). For example, we use enc((c0,m), k) for encrypting m under k, in-
stead of enc(m, k). It is easy to add tags, and it is also a good design practice:
it can make protocols more secure, in particular by avoiding type flaw at-
tacks [133]. When we verify a tagged protocol, the implemented protocol
should of course also be tagged, since the security proof for the tagged pro-
tocol does not imply the security of a non-tagged version. A key to obtain
termination is to avoid resolving on facts of the form attacker(x). Indeed,
these facts resolve with all facts of the form attacker(M), which leads to
non-termination in almost all examples coming from protocols.

These three techniques terminate on numerous practical examples, even outside
the decision classes mentioned above.

In case attacker(M) is derivable from the representation of the protocol,
ProVerif cannot prove secrecy. In this case, ProVerif uses the derivation of

http://www.spass-prover.org/
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attacker(M) to reconstruct an attack automatically [13]. (Such a reconstruction
fails if a false attack has been found.)

We have extended this technique to more complex security properties:

– ProVerif can verify complex non-injective and injective correspondence prop-
erties [53], which can in particular model authentication.

– It can also verify a limited class of process equivalences: it verifies a strong
equivalence between processes that have the same structure, but differ only
by the terms they contain [55] (named diff-equivalence in [36]). This equiva-
lence is useful, for instance to prove strong secrecy [49] and to detect guessing
attacks against password-based protocols. ProVerif is so far the only tool that
can prove process equivalences for an unbounded number of sessions.

Using our tool, we verified numerous protocols from the literature, finding known
attacks or proving the correctness of the protocols. Most examples were verified
in less than 0.1 s [53]. We also used ProVerif for verifying a certified email proto-
col [3], the protocol JFK (a proposed replacement for the key exchange protocol
of IPsec) [4], and the cryptographic filesystem Plutus [56]. ProVerif was also
used by other authors, for instance for verifying Web services, by translating
XML protocols to ProVerif using the tool TulaFale [47, 150], e-voting proto-
cols [21, 105, 139], zero-knowledge protocols [23], RFID protocols [69], and the
TPM (Trusted Platform Module) [75, 106]. An extension was proposed for sup-
porting protocols with mutable global state [15]. ProVerif can be downloaded at
http://www.proverif.ens.fr/.

3 Verifying Protocols in the Computational Model

Proving protocols automatically in the computational model is much more dif-
ficult than in the symbolic model. Still, much research tackled this task. This
section presents these approaches.

3.1 Computational Soundness

An attack in the symbolic model directly leads to an attack in the computational
model. However, the converse is not true in general: a protocol may be proved
secure in symbolic model and still be subject to attacks in the computational
model. Following the seminal work by Abadi and Rogaway [8], many compu-
tational soundness results have been proved. These results show that, modulo
additional assumptions, if a protocol is secure in the symbolic model, then it is
also secure in the computational model. They provide a way of obtaining auto-
matic proofs of protocols in the computational model, by first proving them in
the symbolic model, then applying a computational soundness theorem. Some
work following this line follows.

– Abadi and Rogaway [8] showed that, if two messages are indistinguishable
in the symbolic sense, then they are also indistinguishable in the computa-
tional sense, if the only primitive is shared-key encryption, assuming a few
additional technical restrictions.
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– This initial result was followed by considerable extensions. In particular,
Micciancio and Warinschi [152] showed that states and traces in the com-
putational model match (up to negligible probability) states and traces in
the symbolic model, for public-key encryption in the presence of an active
adversary. Therefore, authentication in the symbolic model implies authen-
tication in the computational model. This result was further extended to sig-
natures [93, 136], hash functions [90, 137], non-malleable commitment [122],
and zero-knowledge proofs [29]. Cortier and Warinschi [93] also showed that
syntactic secrecy in the symbolic model implies secrecy in the computational
model for nonces. A tool [89] was built based on [93] to obtain computational
proofs using the symbolic verifier AVISPA, for protocols that use public-key
encryption and signatures.

While the previous results dealt with traces, Comon and Cortier showed a
computational soundness result for observational equivalence, for protocols
that use authenticated shared-key encryption [86].

These results consider a fixed protocol language and a few primitives at
a time, limiting the scope of the results. Frameworks were designed to make
computational soundness proofs modular, by encoding many input languages
into one [20, 24] and by allowing to compose proofs obtained independently
for several primitives [94].

– Backes, Pfitzmann, andWaidner [25–27] developed an abstract cryptographic
library including authenticated shared-encryption, public-key encryption,
message authentication codes, signatures, and nonces, and have shown its
soundness with respect to computational primitives, under arbitrary active
attacks. This work relates the computational model to a non-standard ver-
sion of the Dolev-Yao model, in which the length of messages is present.
It has been used for a proof of the Needham-Schroeder protocol fixed by
Lowe [148] verified in a proof assistant [176].

– Canetti and Herzog [72] showed how a symbolic analysis in the style of the
Dolev-Yao model can be used to prove security properties of protocols in the
framework of universal composability [71] for a restricted class of protocols
that use only public-key encryption. They then use ProVerif [49] to verify
protocols in this framework.

We refer the reader to [91] for a more detailed survey of computational soundness
results. This approach enjoyed important successes, but also has limitations:
additional hypotheses are necessary, since the two models do not match exactly.
The cryptographic primitives need to satisfy strong security properties so that
they match the symbolic primitives. For instance, encryption has to hide the
length of messages, or the symbolic model must be modified to take into that
length. These results often assume that all keys (even those of the adversary)
are generated by the correct key generation algorithm. Moreover, the protocols
need to satisfy certain restrictions. Indeed, for shared-key encryption, there must
be no key cycle (in which a key is encrypted directly or indirectly under itself,
as in {k}k or {k}k′ , {k′}k) or a specific definition of security of encryption is
necessary [10,28]. (The existence of key cycles for a bounded number of sessions



Security Protocol Verification: Symbolic and Computational Models 17

is a NP-complete problem [95].) These limitations have lead to the idea of directly
automating proofs in the computational model.

3.2 Adapting Techniques from the Symbolic Model

Another way of proving protocols in the computational model is to adapt tech-
niques previously designed for the symbolic model.

For instance, the logic PCL [101, 116], first designed for proving protocols in
the Dolev-Yao model, was adapted to the computational model [102,103]. Other
computationally sound logics include CIL (Computational Indistinguishability
Logic) [30] and a specialized Hoare logic designed for proving asymmetric en-
cryption schemes in the random oracle model [96, 97].

Similarly, type systems [98, 144, 146, 173] can provide computational secu-
rity guarantees. For instance, [144] handles shared-key and public-key encryp-
tion, with an unbounded number of sessions. This system relies on the Backes-
Pfitzmann-Waidner library. A type inference algorithm is given in [22].

3.3 Direct Computational Proofs

Finally, the direct approach to computational proofs consists in mechanizing
proofs in the computational model, without relying at all on the symbolic model.
Computational proofs made by cryptographers are typically presented as se-
quences of games [42,172]: the initial game represents the protocol to prove; the
goal is to show that the probability of breaking a certain security property is
negligible in this game. Intermediate games are obtained each from the previous
one by transformations such that the difference of probability between consec-
utive games is negligible. The final game is such that the desired probability is
obviously negligible from the form of the game. The desired probability is then
negligible in the initial game. Halevi [132] suggested to use tools for mechanizing
these proofs, and several techniques have been used for reaching this goal.

CryptoVerif [51,52,57,59], which we have designed, is the first such tool. It gen-
erates proofs by sequences of games automatically or with little user interaction.
The games are formalized in a probabilistic process calculus. CryptoVerif pro-
vides a generic method for specifying security properties of many cryptographic
primitives. It proves secrecy and authentication properties. It also provides a
bound on the probability of success of an attack. It considerably extends early
work by Laud [142, 143] which was limited either to passive adversaries or to a
single session of the protocol. More recently, Tšahhirov and Laud [145, 178] de-
veloped a tool similar to CryptoVerif but that represents games by dependency
graphs; it handles public-key and shared-key encryption and proves secrecy prop-
erties.

The CertiCrypt framework [31,32,34,37,38] enables the machine-checked con-
struction and verification of cryptographic proofs by sequences of games. It re-
lies on the general-purpose proof assistant Coq, which is widely believed to be
correct. EasyCrypt [33] generates CertiCrypt proofs from proof sketches that
formally represent the sequence of games and hints, which makes the tool easier
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to use. Nowak et al. [11, 162, 163] follow a similar idea by providing Coq proofs
for several basic cryptographic primitives.

4 Verifying Protocol Implementations

The approaches mentioned so far verify specifications of protocols in models such
as the applied pi calculus or its variants. However, errors may be introduced when
the protocol is implemented. It is therefore important to prove security properties
on the implementation of the protocol itself. Two approaches to reach this goal
can be distinguished.

A simple approach consists in translating the model into an implementation
by a suitable compiler which has been proved correct. This approach was used
in tools such as [153, 166, 168, 174]. A limitation of this approach is that the
protocol modeling language offers less flexibility in the implementation of the
protocol than a standard programming language.

A more flexible, but more difficult, approach consists in analyzing the imple-
mentation of the protocol. Results in this approach differ by the input language
they consider. Analyzing C code is obviously more difficult than analyzing lan-
guages such as F# and Java, in particular due to pointers and memory safety.
However, it allows one to verify practical implementations, which are generally
written in C. We can also distinguish two ways of analyzing implementations:

– One can extract a protocol specification from the implementation, and verify
it using existing protocol verification tools. For instance, the tools FS2PV [46]
and FS2CV [121] translate protocols written in a subset of the functional lan-
guage F# into the input language of ProVerif and CryptoVerif, respectively,
so that protocol can be proved in the symbolic model and in the computa-
tional model. These techniques were applied to an important case study: the
protocol TLS [44]. They analyze reference implementations written in F#
in order to facilitate verification; one verifies that these implementations in-
teroperate with other implementations, which provides some assurance that
they match practical implementations; however, it is very difficult to analyze
the code of implementations written without verification in mind.

Similarly, Elijah [164] translates Java programs into LySa protocol speci-
fications, which can be verified by the LySatool [60].

Aizatulin et al. [12] use symbolic execution in order to extract ProVerif
models from pre-existing protocol implementations in C. This technique cur-
rently analyzes a single execution path of the protocol, so it is limited to pro-
tocols without branching. Furthermore, computational security guarantees
are obtained by applying a computational soundness result.

– One can also adapt protocol verification methods to the verification of im-
plementations or design new methods for verifying implementations. The
tool CSur [131] analyzes protocols written in C by translating them into
Horn clauses, yielding a model fairly similar to the one used in ProVerif.
These clauses are given as input to the H1 prover [130] to prove properties
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of the protocol. Similarly, JavaSec [138] translates Java programs into first-
order logic formulas, which are then given as input to the first-order theorem
prover e-SETHEO.

The tools F7 and F� [43, 45, 177] use a dependent type system in order
to prove security properties of protocols implemented in F#, therefore ex-
tending to implementations the approach of Cryptyc [126–128] for models.
This approach scales well to large implementations but requires type anno-
tations, which facilitate automatic verification. This approach is also being
extended to the computational model [120]: one uses a type system to ver-
ify the conditions needed in order to apply a game transformation. Then,
the game transformation is applied, and the obtained game is typed again,
with a different typing judgment, to justify the next game transformation,
and transformations can continue in this way until security can be proved
directly by inspecting the game.

Poll and Schubert [167] verified an implementation of SSH in Java using
ESC/Java2: ESC/Java2 verifies that the implementation does not raise ex-
ceptions, and follows a specification of SSH by a finite automaton, but does
not prove security properties.

ASPIER [74] uses software model-checking, with predicate abstraction
and counter-example guided abstraction refinement, in order to verify C
implementations of protocols, assuming the size of messages and the number
of sessions are bounded. In particular, this tool has been used to verify the
main loop of OpenSSL 3. Dupressoir et al. [112] use the general-purpose C
verifier VCC in order to prove both memory safety and security properties of
protocols, in the symbolic model. They use “ghost state” in order to relate
C variables and symbolic terms.

5 Conclusion and Future Challenges

This survey shows that research in the field of security protocol verification
has been very active, and has enjoyed unquestionable successes. Progress has
been made in all directions: verification both in the symbolic model and in the
computational model, as well as verification of implementations. We believe that
the verification of protocols in the symbolic model has reached a fairly mature
state, even though some aspects still need further research, for instance the proof
of process equivalences or the treatment of some complex equational theories.
However, there is still much work to do regarding the verification of protocols
in the computational model and the verification of implementations. We are
still far from having a push button tool that would take as input a practical
implementation of the protocol and would prove it secure in the computational
model. Even if this goal may be out of reach, more progress is undoubtedly
possible in this direction. Taking into account physical attacks is a challenging
area in which formal methods just start to be used, and in which much research
will certainly be done in the future.
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31. Barthe, G., Grégoire, B., Lakhnech, Y., Zanella Béguelin, S.: Beyond Provable
Security Verifiable IND-CCA Security of OAEP. In: Kiayias, A. (ed.) CT-RSA
2011. LNCS, vol. 6558, pp. 180–196. Springer, Heidelberg (2011)

32. Barthe, G., Grégoire, B., Heraud, S., Zanella Béguelin, S.: Formal Certification
of ElGamal Encryption. A Gentle Introduction to CertiCrypt. In: Degano, P.,
Guttman, J., Martinelli, F. (eds.) FAST 2008. LNCS, vol. 5491, pp. 1–19. Springer,
Heidelberg (2009)
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135. Hüttel, H.: Deciding framed bisimilarity. In: INFINITY 2002, pp. 1–20 (2002)

http://msr-inria.inria.fr/projects/sec/fs2cv/
http://eprint.iacr.org/2005/181


Security Protocol Verification: Symbolic and Computational Models 27
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Abstract. Routing protocols aim at establishing a route between nodes
on a network. Secured versions of routing protocols have been proposed
in order to provide more guarantees on the resulting routes. Formal meth-
ods have proved their usefulness when analysing standard security proto-
cols such as confidentiality or authentication protocols. However, existing
results and tools do not apply to routing protocols. This is due in par-
ticular to the fact that all possible topologies (infinitely many) have to
be considered.

In this paper, we propose a simple reduction result: when looking for
attacks on properties such as the validity of the route, it is sufficient to
consider topologies with only four nodes, resulting in a number of just
five distinct topologies to consider. As an application, we analyse the
SRP applied to DSR and the SDMSR protocols using the ProVerif tool.

1 Introduction

Routing protocols aim at establishing a route between distant nodes on a net-
work. Attacking routing protocols is a first step towards mounting more sophis-
ticated attacks. For example, forcing a route to visit a malicious node allows an
attacker to monitor and listen to the traffic, possibly blocking some messages.
Therefore, secured versions of routing protocols have been proposed to provide
more guarantees on the resulting routes, but they are often still subject to at-
tacks. For example, the SRP protocol [26] is a generic construction for securing
protocols. However, applied to DSR [23], a standard routing protocol, it has been
shown to be flawed, allowing an attacker to modify the route, making the source
node to accept an invalid route [15]. This shows that the design of secure routing
protocols is difficult and error-prone.

In the context of standard security protocols such as confidentiality or authen-
tication protocols, formal methods have proved their usefulness for providing
security guarantees or detecting attacks. For example, a flaw has been discov-
ered (see [5]) in the Single-Sign-On protocol used e.g. by Google Apps. It has
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been shown that a malicious application could very easily access to any other
application (e.g. Gmail or Google Calendar) of their users. This flaw has been
found when analyzing the protocol using formal methods, abstracting messages
by a term algebra and using the AVISPA platform [6]. More generally, many
decision procedures (e.g. [27,12]) have been proposed for automatically analyz-
ing the security of protocols. Tools like AVISPA, ProVerif [13], or Scyther [18]
have been developed and successfully applied to protocols, yielding discoveries
of attacks or security proofs.

However, these results and tools do not apply to routing protocols. One of
the main reasons is the fact that analysing routing protocols requires one to
consider a different attacker model. Indeed, in contrast to standard security
protocols where the attacker is assumed to control all the communications, an
attacker for routing protocols is localized, i.e. it can control only a finite number
of nodes (typically one or two). Since a node broadcasts its messages to all its
neighbours, it is very easy for a malicious node to listen to the communication
of its neighbours but it is not possible to listen beyond the neighbouring nodes.
Therefore, the existence of an attack strongly depends on the network topology,
that is, how nodes are connected and where malicious nodes are located.

Some dedicated techniques have been developed for formally analyzing rout-
ing protocols. For example, S. Nanz and C. Hankin [25] have proposed one of the
first formal models for routing protocols and have shown how to automatically
analyze a finite number of attack scenarios. For a general attacker, M. Arnaud
et al. [7] have proposed an NP decision procedure for a finite number of sessions.
Several case studies have also been conducted. For example, D. Benetti et al. [10]
have analyzed the ARAN and endairA protocols with the AVISPA tool, consid-
ering a finite number of scenarios. G. Ács et al. [3] have developed a framework
for analyzing the distance vector routing protocols SAODV and ARAN. However,
these results are rather ad-hoc and no decision procedure has been implemented.

Our contribution. Instead of proposing a new decision procedure, we propose in
this paper a simple reduction result: if there is an attack, then there is an attack
on a small network topology with only four nodes. More precisely, we show that
at most five distinct topologies (each with four nodes) need to be considered
when looking for an attack. We therefore reduce the number of topologies to
be considered from infinitely many to only five. Our reduction result holds for
properties such as route validity and for a very general class of routing protocols.
Indeed, we consider arbitrary cryptographic primitives (provided they can be
expressed as terms) and arbitrary protocol transitions. For example, our model
allows neighbourhood tests, recursive operations, and of course standard pattern-
matching, encompassing the models proposed in [25,7,8].

The proof of our reduction result consists in two main steps. First, we show that
if there is an attack, then the attack is preserved when adding all but one edge
to the network topology, yielding a quasi-complete graph. Second, we show how
to merge all the nodes having the same neighbourhood and honesty/dishonesty
status. It is then sufficient to observe that merging quasi-complete graphs results
into only five distinct topologies, each of them containing four nodes.
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An interesting consequence of our reduction result is that it allows one to
reuse techniques and tools developed for standard security protocols. Indeed, it
is now possible to consider the five fixed topologies one by one and to analyse
the protocol in each of the five cases using existing tools, provided of course
that the protocol’s primitives are supported by the tool. As an application, we
analyse the SRP applied to DSR [23,26] and the SDMSR [20] protocols using the
ProVerif tool, retrieving the existing attacks. Detailed proofs of our results can
be found in [17].

Related work. Our result follows the spirit of [16] where it is shown that only two
distinct identities need to be considered when studying confidentiality or authen-
tication properties. To our knowledge, the only approach proposing a reduction
result in the context of routing protocols is [4]. In this paper, the authors show
how to reduce the number of network topologies that need to be considered,
taking advantage of the symmetries. However, the total number of configura-
tions is still infinite in the general case or really large even when considering a
bounded number of nodes. For example, more than 30000 topologies need to be
considered when the number of nodes is bounded by six. In contrast, our result
reduces to only five topologies, even when considering attacks with arbitrarily
many nodes.

2 Messages and Attacker Capabilities

For modeling messages, we consider an arbitrary term algebra and deduction
system, which provides a lot of flexibility in terms on which cryptographic prim-
itives can be modeled.

2.1 Messages

Messages are represented by terms where cryptographic primitives such as en-
cryption, signature, and hash function, are represented by function symbols.
More precisely, we consider a signature (S, Σ) made of a set of sorts S and a set
of function symbols Σ together with arities of the form ar(f) = s1× . . .×sk → s
where f ∈ Σ, and s, s1, . . . , sk ∈ S. We consider an infinite set of variables X
and an infinite set of names N that typically represent nonces, session keys, or
agent names. We assume that names and variables are given with sorts.

Regarding the sort system, we consider a special sort agent that only contains
names and variables. These names represent the names of the agents, also called
the nodes of the network. We assume a special sort term that subsumes all
the other sorts and such that any term is of sort term. Terms are defined as
names, variables, and function symbols applied to other terms. Of course function
symbol application must respect sorts and arities. For A ⊆ X ∪ N , the set of
terms built from A by applying function symbols in Σ is denoted by T (Σ,A).
A term t is said to be a ground term if it does not contain any variable.
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Example 1. A typical signature for representing the primitives used in routing
protocols such as the SRP [26] protocol is the signature (SSRP, ΣSRP) defined
by SSRP = {agent, list, term} and ΣSRP = {hmac, 〈〉, ::,⊥, shk , req, rep}, with the
following arities:

– hmac : term× term→ term,
– 〈〉 : term× term→ term,
– shk : agent× agent→ term,

– :: : agent× list→ list,
– ⊥ : → list,
– req, rep : → term.

The symbol :: is the list constructor whereas ⊥ is a constant representing an
empty list. The constants req and rep are used to identify the request phase
and the reply phase. The term shk(A,B) (= shk(B,A)) represents a shared
key between A and B. The term hmac(m, k) represents the keyed hash message
authentication code computed over message m with key k while 〈〉 is a pairing
operator. We write 〈t1, t2, t3〉 for the term 〈t1, 〈t2, t3〉〉, and [t1; t2; t3] for t1 ::
(t2 :: (t3 :: ⊥)).

Substitutions are written σ = {x1 → t1, . . . , xn → tn} with dom(σ) = {x1, . . . ,
xn}, and img(σ) = {t1, . . . , tn}. We only consider well-sorted substitutions, that
is substitutions for which xi and ti have the same sort. The substitution σ is ground
if the ti are ground. The application of a substitution σ to a term t is written σ(t)
or tσ. A most general unifier of two terms t and u is a substitution denoted by
mgu(t, u). We write mgu(t, u) = � when t and u are not unifiable.

2.2 Attacker Capabilities

The ability of the attacker is modeled by a deduction relation �⊆ 2term × term.
The relation I � v represents the fact that the term v is computable from the set
of terms I. Such a relation is defined through an inference system, i.e. a finite set

of rules of the form
u1 . . . un

u
where u, u1, . . . , un ∈ T (Σ,X ). The deduction

relation can be arbitrary in our model as long as the terms u, u1, . . . un do not
contain any names. An example of such a relation is provided below.

A term u is deducible from a set of terms I, denoted by I � u, if there exists a
proof, i.e. a tree such that the root is labelled with u and the leaves are labelled
with v ∈ I and every intermediate node is an instance of one of the rules of the
inference system.

Example 2. We can associate to the term algebra (SSRP, ΣSRP) defined in Exam-
ple 1, the following inference system.

y1 y2

〈y1, y2〉
〈y1, y2〉

y1

〈y1, y2〉
y2

x z

x :: z

x :: z

x

x :: z

z

y1 y2

hmac(y1, y2)

The terms y1, y2 are variables of sort term, x is a variable of sort agent, whereas z
is a variable of sort list. This inference system reflects the ability for the attacker
to concatenate terms, to build lists, and to retrieve components of lists and pairs.
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The last inference rule models the fact that an attacker can also compute a MAC
when he knows the key (and the message to be MACed).

Let I = {S,D,A1, A2,⊥, 〈req, S,D, id , [S], hmac(〈req , S,D, id〉, shk (S,D))〉} and
m = 〈req , S,D, id, [A1;A2;S], hmac(〈req , S,D, id〉, shk(S,D))〉 where S, D, A1,
and A2 are names of sort agent. The term m typically represents a message that
the attacker would like to send over the network while I represents its knowledge
so far, typically having listened to the first step of the SRP protocol. Considering
the inference system described above, we have that I � m.

2.3 Functions over Terms

In order to be as general as possible, we consider protocols that perform any
operation on the terms they receive. We therefore consider functions over terms,
that is, functions of the form f : T (Σ,N )× . . .× T (Σ,N )→ T (Σ,N ).

These functions can of course model standard applications of cryptographic
operations. For example, the function (x, y, z) → {〈x, y〉}z represent the function
that concatenates the terms x and y and then encrypts it with z. They can also
be used to model various operations on lists. For instance, we can define the
reverse function that takes as input a list [A1, . . . , An] and outputs the reversed
list [An, . . . , A1].

More interestingly, such functions encompass recursive operations and recur-
sive tests. Typical examples can be found in the context of routing protocols,
when nodes check for the validity of the route. For example, in the SMNDP pro-
tocol [20], a route from the source A0 to the destination An is represented by a
list lroute = [A1; . . . ;An]. This list is accepted by the source node A0 only if the
received message is of the form:

[�〈An, A0, lroute〉�sk(A1); �〈An, A0, lroute〉�sk(A2); . . . ; �〈An, A0, lroute〉�sk(An)]

where �〈An, A0, lroute�sk(Ai) is a signature performed by Ai. This test and many
others (e.g. [21,15]) can be easily modelled using functions over terms. Clearly,
not all functions over terms are meaningful to model protocols. In particular,
some of them might not be executable. Actually, a precise definition of exe-
cutability is not relevant for our result: our result holds for non executable func-
tions as soon as they satisfy the properties stated in our Theorem 1.

3 Models for Protocols

Several calculi have been proposed to model security protocols (e.g. [2,1]). How-
ever, they are not well-adapted for routing protocols. For instance, in contrast to
standard security protocols, the attacker is localized to some nodes and cannot
control all the communications. The nodes, i.e. the processes, have to perform
some specific actions that can not be easily modeled in such calculi, like recursive
checks (checking a chain of signatures) or some sanity checks on the routes they
receive, such as neighbourhood properties.
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Actually, our calculus is inspired from CBS# [25] and generalize the calculus
given in [7] by allowing processes to perform any operation on the terms they
receive and considering an arbitrary signature for terms.

3.1 Syntax

The intended behavior of each node of the network can be modeled by a process
defined by the grammar given below. Our calculus is parametrized by a set P
of predicates and a set F of functions over terms, whose purpose is to represent
the computations performed by the agents. We assume that these functions are
total and deterministic. This means that a partial function will be modeled by
returning a special constant fail when it is needed.

Φ,Φ1, Φ2 := Formula
p(u1, . . . , un) literal with p ∈ P
Φ1 ∧ Φ2 conjunction

P,Q,R := Processes
0 null process
out(f(u1, . . . , un)).P emission
in(u).P reception
if Φ then P conditional
P | Q parallel composition
!P replication
new n.P fresh name generation

where u, u1, . . . , un are terms that may contain variables, n is a name, f ∈ F , and Φ is
a formula.

Fig. 1. Syntax of processes

The process “in(u).P” expects a message m of the form u and then behaves
like Pσ where σ = mgu(m,u). The process “out(f(u1, . . . , un)).P” computes
the term u = f(u1, . . . , un), emits u, and then behaves like P . The purpose of
f(u1, . . . , un) is to model any operation f on the terms u1, . . . , un (the variables in
u1, . . . , un will be instantiated when the evaluation will take place). For instance,
such a function f can be used to reverse a list, or to apply some cryptographic
primitives on top of u1, . . . , un, or any combination of these operations. The
process “if Φ then P” behaves like P when Φ is true and stops otherwise.

We assume that the predicates p ∈ P are given together with their semantics
that may depend on the underlying graph G that models the topology of the
network. Such a graph G = (V,E) is given by a set of vertices V ⊆ {A | A ∈
N of sort agent} and a set of edges E ⊆ V × V . Since the purpose of this graph
is to model the communication network, we consider topologies where E is a
reflexive and symmetric relation. We consider two kinds of predicates: a set PI of
predicates whose semantics is independent of the graph, i.e. [[p(u1, . . . , uk)]]G =
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[[p(u1, . . . , uk)]]G′ for any graphs G and G′ and any ground terms u1, . . . , uk;
and a set PD of predicates whose semantics is dependent on the graph. The
semantics of a formula is then defined as expected. The purpose of PD is to
model neighbourhood checks that are typically performed in routing protocols.

Example 3. As an illustrative purpose, we consider the set PSRP = PI ∪ PD

where PI = {first, last} and PD = {check, checkl}. The purpose of the predicates
in PI is to model some sanity checks that are performed by the source when it
receives the path. The semantics of these predicates is independent of the graph
and is defined as follows:

– first(A, l) = true if and only if l is of sort list and its first element is A;
– last(A, l) = true if and only if l is of sort list and its last element is A.

The purpose of the predicates in PD is to model neighbourhood checks. Given
a graph G = (V,E), their semantics is defined as follows:

– check(A,B) checks for neighbourhood of two nodes, [[check(A,B)]]G = true
if and only if (A,B) ∈ E, with A,B of sort agent;

– checkl(C, l) checks for local neighbourhood of a node in a list, [[checkl(C, l)]]G
= true if and only if C is of sort agent, l is of sort list, and for any l′ subterm
of l, if l′ = A :: C :: l1, then (A,C) ∈ E; whereas if l′ = C :: B :: l1, then
(C,B) ∈ E.

We write fv(P ) for the set of free variables that occur in P , i.e. the set of variables
that are not in the scope of an input. We consider ground processes, i.e. processes
P such that fv(P ) = ∅, and parametrized processes, denoted P (x1, . . . , xn) where
x1, . . . , xn are variables of sort agent, and such that fv (P ) ⊆ {x1, . . . , xn}. A
routing role is a parametrized process that do not contain any name of sort
agent. A routing protocol is then simply a set of routing roles.

3.2 Example: Modeling the SRP Protocol

We consider the secure routing protocol SRP applied on DSR introduced in [26],
assuming that each node already knows his neighbours (running e.g. some neigh-
bour discovery protocol). SRP is not a routing protocol by itself, it describes a
generic way for securing source-routing protocols. We model here its application
to the DSR protocol [23]. DSR is a protocol which is used when an agent S (the
source) wants to communicate with another agent D (the destination), which is
not his immediate neighbour. In an ad hoc network, messages can not be sent
directly to the destination, but have to travel along a path of nodes.

To discover a route to the destination, the source constructs a request packet
and broadcasts it to its neighbours. The request packet contains its name S,
the name of the destination D, an identifier of the request id , a list containing
the beginning of a route to D, and a hmac computed over the content of the
request with a key shk(S,D) shared by S and D. It then waits for an answer
containing a route to D with a hmac matching this route, and checks that it
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is a plausible route by checking for instance that his neighbour in the route is
indeed a neighbour of S in the network.

Consider the signature given in Example 1, the predicates PSRP introduced
in Example 3, and the set FSRP of functions over terms that only contains the
identity function (for sake of clarity, we omit it). Let id be a name, xS , xD be
variables of sort agent, and xL be a variable of sort list. The process executed
by the agent xS initiating the search of a route towards a node xD is:

Psrc(xS , xD) = new id .out(u1).in(u2).if ΦS then 0

where

⎧⎨⎩
u1 = 〈req, xS , xD, id , xS :: ⊥, hmac(〈req, xS , xD, id〉, shk (xS , xD))〉
u2 = 〈rep, xD, xS , id , xL, hmac(〈rep, xD, xS , id, xL〉, shk(xS , xD))〉
ΦS = checkl(xS , xL) ∧ first(xD, xL) ∧ last(xS , xL)

The names of the intermediate nodes are accumulated in the route request
packet. Intermediate nodes relay the request over the network, except if they
have already seen it. An intermediate node also checks that the received request
is locally correct by verifying whether the head of the list in the request is one of
its neighbours. Below, xV , xS , xD and xA are variables of sort agent whereas xr is
a variable of sort list and xid , xm are variables of sort term. The process executed
by an intermediary node xV when forwarding a request is as follows:

Prequest(xV ) = in(w1).if ΦV then out(w2).0

where

⎧⎨⎩
w1 = 〈req, xS , xD, xid , xA :: xr , xm〉
ΦV = check(xV , xA)
w2 = 〈req, xS , xD, xid , xV :: (xA :: xr), xm〉

When the request reaches the destination D, it checks that the request has a
correct hmac and that the first node in the route is one of his neighbours. Then,
the destination D constructs a route reply, in particular it computes a new hmac
over the route accumulated in the request packet with shk(xS , D), and sends the
answer back over the network.The process executed by the destination node xD

is the following:
Pdest(xD) = in(v1).if ΦD then out(v2).0

where:⎧⎪⎪⎨⎪⎪⎩
v1 = 〈req, xS , xD, xid , xA :: xl, hmac(〈req , xS , xD, xid〉, shk (xS , xD))〉
ΦD = check(xD, xA)
v2 = 〈rep, xD, xS , xid , lroute , hmac(〈rep, xD, xS , xid , lroute〉, shk (xS , xD))〉
lroute = xD :: xA :: xl

Then, the reply travels along the route back to xS . The intermediary nodes check
that the route in the reply packet is locally correct (that is that the nodes before
and after them in the list are their neighbours) before forwarding it. The process
executed by an intermediary node xV when forwarding a reply is the following:

Preply(xV ) = in(w′).if Φ′
V then out(w′)

where w′ = 〈rep, xD, xS , xid , xr, xm〉, and Φ′
V = checkl(xV , xr).
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Example 4. In our model, the routing protocol SRP is defined by the following
set of parametrized processes:

{Psrc(xS , xD); Prequest(xV ); Preply(xV ); Pdest(xD)}.

3.3 Configuration and Topology

Each process is located at a specified node of the network. Unlike the classical
Dolev-Yao model [19], the intruder does not control the entire network but can
only interact with its neighbours. More specifically, we assume that the topology
of the network is represented by a tuple T = (G,M, S,D) where:

– G = (V,E) is an undirected graph with V ⊆ {A ∈ N | A of sort agent},
where an edge in the graph models the fact that two agents are neighbours.
We only consider graphs such that {(A,A) | A ∈ V } ⊆ E which means that
an agent can receive a message sent by himself;

– M is a set of nodes that are controlled by the attacker. These nodes are
called malicious whereas nodes not in M are called honest ;

– S and D are two honest nodes that represent respectively the source and the
destination for which we analyse the security of the routing protocol.

Note that our model is not restricted to a single malicious node. In particular,
our results apply to the case of several compromised nodes that communicate
(and therefore share their knowledge), using out-of-band resources or hidden
channels (e.g. running other instances of the routing protocols).

A configuration of the network is a pair (P ; I) where:

– P is a multiset of expressions of the form �P �A that represents the (ground)
process P executed by the agent A ∈ V . We will write �P �A ∪ P instead of
{�P �A} ∪ P .

– I is a set of ground terms representing the messages seen by the malicious
nodes as well as their initial knowledge.

Example 5. Continuing our modeling of SRP, a typical initial configuration for
the SRP protocol is

K0 = (�Psrc(S,D)�S | �Pdest(D)�D; I0)

where both the source node S and the destination node D wish to communicate.
A more realistic configuration would include intermediary nodes but this initial
configuration is already sufficient to present an attack. We assume that the
initial knowledge of the intruder is given by a possibly infinite set of terms I0
that typically contains the names of sort agent, the constants req, rep, and ⊥,
and the dishonest keys, i.e. those that belong to a malicious node.
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(Comm)
(
{�in(uj).Pj�Aj | (A,Aj) ∈ E ∧ mgu(t, uj) �= �}∪

�out(f(t1, . . . , tn)).P �A ∪ P ; I
)
→T

(
{�Pjσj�Aj } ∪ �P �A ∪ P ; I′ )

where

{
σj = mgu(t, uj) where t is the result of applying f on t1, . . . , tn
I′ = I ∪ {t} if (A, I) ∈ E for some I ∈ M and I′ = I otherwise.

(In)
(
�in(u).P �A ∪ P ; I

)
→T

(
�Pσ�A ∪ P ; I

)
if (A, I) ∈ E with I ∈ M, I 	 t, and σ = mgu(t, u)

(Then)
(
�if Φ then P �A ∪ P ; I

)
→T

(
�P �A ∪ P ; I

)
if [[Φ]]G = 1

(Par)
(
�P1 | P2�A ∪ P ; I

)
→T

(
�P1�A ∪ �P2�A ∪ P ; I

)
(Repl)

(
�!P �A ∪ P ; I

)
→T

(
�P �A ∪ �!P �A ∪ P ; I

)
(New)

(
�new m.P �A ∪ P ; I

)
→T

(
�P{m 
→ m′}�A ∪ P ; I

)
where m′ is a fresh name

where T = (G,M, S,D) and G = (V, E).

Fig. 2. Transition system

A possible topology T0 = (G0,M0, S,D) is modeled by the graph G0 below,
where I is a malicious node, i.e. M0 = {I} while A1 and A2 are two extra
(honest) nodes.

S

A2

I

A1

D

3.4 Execution Model

The communication system is formally defined by the rules of Figure 2. They
are parametrized by the underlying topology T .

The Comm rule allows nodes to communicate provided they are (directly)
connected in the underlying graph. We do not assume that messages are neces-
sarily delivered to the intended recipients. They may be lost. In particular, the
exchange message is added to the knowledge of the attacker as soon as the agent
emitting the message is a direct neighbour of a malicious node. This reflects the
fact that a malicious node can listen to the communications of its neighbours
since messages are typically broadcast to all neighbours. The In rule allows a
malicious node to send any message it can deduce to one of its neighbours. The
other rules are standard.

The relation →∗
T is the reflexive and transitive closure of →T .
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Example 6. Continuing the example developed in Section 3.2, the following se-
quence of transitions is enabled from the initial configuration K0.

K0→∗
T0

(
�in(u2).if ΦS then 0�S ∪ �Pdest(D)�D; I0 ∪ {u1}

)
where

⎧⎨⎩
u1 = 〈req, S,D, id , S :: ⊥, hmac(〈req , S,D, id〉, shk(S,D))〉
u2 = 〈rep, D, S, id , xL, hmac(〈rep, D, S, id, xL〉, shk (S,D))〉
ΦS = checkl(S, xL) ∧ first(D, xL) ∧ last(S, xL)

During this transition, S broadcasts a request to find a route to D to its neigh-
bours. The intruder I is a neighbour of S in T0, so he learns the request message.
Assuming that the intruder knows the names of its neighbours, i.e. A1, A2 ∈ I0,
he can then build the following fake message request:

m = 〈req , S,D, id, [A1;A2;S], hmac(〈req , S,D, id〉, shk(S,D))〉
and send it to D. Indeed, we have that I0 � m (see Example 2).

Since (A1, D) ∈ E, D accepts this message and the resulting configuration of
the transition is

(
�in(u2).if ΦS then 0�S ∪ �out(v2σ).0�D; I0 ∪ {u1}

)
where:

v2 = 〈rep, D, S, xid , D :: xA :: xl, hmac(〈rep, D, S, xid , D :: xA :: xl〉, shk (S,D))〉
σ = {xid → id, xA → A1, xl → [A2;S]}.

3.5 Security Properties

Routing protocols aim at establishing a valid route between two nodes S and D,
that is a route that represents an existing path from S to D in the graph rep-
resenting the network topology. However, it is well-known that the presence of
several colluding malicious nodes often yields straightforward attacks, the so-
called wormhole attacks (e.g. [22,24]). Indeed, as soon as a malicious node is on
the way of the request, he can behave as if he was a neighbour of another mali-
cious node. This is a fact that our definition of security must tolerate, otherwise
we cannot hope that any routing protocol will satisfy it. This observation leads
to the following definition of admissible path.

Definition 1 (admissible path in T ). Let T = (G,M, S,D) be a topology
with G = (V,E). We say that a list l = [A1, . . . , An] of agent names is an
admissible path in T if for any i ∈ {1, . . . , i − 1}, (Ai, Ai+1) �∈ E implies that
Ai ∈M and Ai+1 ∈M.

Another option could be to consider a weaker attacker model, assuming that the
attackers can not communicate using an out-of-band channel, and to consider
a stronger security property requiring the path to be a real path in G. In such
a setting, routing protocols are often vulnerable to hidden channel attacks (see
e.g. [14]). In our setting, this type of attack would not be considered as an attack,
as it is an instantiation of the so-called wormhole attack that consists, for two
dishonest nodes, in making the network believe they are neighbors.

After having successfully executed a routing protocol, the source node typi-
cally stored the resulting received route. For the sake of simplicity, we assume
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that processes representing instances of routing protocols contain a process (typ-
ically a session of the source node) that contains a special action of the form
out(end(l)). Checking whether a routing protocol ensures the validity of accepted
routes can be defined as a reachability property.

Definition 2 (attack on a configuration K in T ). Let T = (G,M, S,D)
be a topology and K be a configuration. We say that K admits an attack in T
if K→∗

T (�out(end(l)).P �A ∪ P ; I) for some A,P,P , I, and some term l that is
not an admissible path in T .
Example 7. For the SRP protocol, we recover the attack mentioned in [15] with
the topology given in Example 5, and from the initial configuration:

Kinit =
(
�P0(S,D)�S | �Pdest(D)�D; I0

)
where P0(xS , xD) is Psrc(xS , xD) in which the null process 0 has been replaced
by out(end(xL)).0.
Indeed, we have that:

Kinit →∗
T0

(�in(u2).if ΦS then P �S ∪ �out(m′).0�D; I)
→T0 (�in(u2).if ΦS then P �S ∪ �0�D; I ′)
→T0 (�out(end([D;A1;A2;S])).0�S ; I ′)

where:

m′ = 〈rep, D, S, id, [D;A1;A2;S], hmac(〈rep, D, S, id, [D;A1;A2;S]〉, shk(S,D))〉
I = I0 ∪ {u1} with u1 = 〈req , S,D, id , S :: ⊥, hmac(〈req , S,D, id〉, shk(S,D))〉
I ′ = I0 ∪ {u1} ∪ {m′}.

The list [D;A1;A2;S] is not an admissible path in T0. Indeed, (A1, A2) �∈ E0

whereas A1 and A2 are both honest nodes, i.e. not in M.

4 Reduction Results

Our main contribution is a reduction result that allows one to analyse the se-
curity of a routing protocol considering only some specific and small topologies
(typically the underlying graph will contain four nodes). Our reduction result is
established in two main steps.

1. We show that the existence of an attack is preserved when adding edges
to the graph, actually added all edges but one, yielding a quasi-complete
topology (see Section 4.1).

2. We show how we can merge almost all nodes together, yielding a graph with
only four nodes (see Section 4.2).

We finally conclude in Section 4.3 exhibiting five particular network topologies
such that if there exists a network topology admitting an attack then there is an
attack on one of the five exhibited topologies. This reduction result drastically
reduces the search space (from infinitely many to only five network topologies).
As a consequence, it is possible to analyse routing protocols using existing tools,
e.g. the AVISPA platform [6] or the ProVerif tool [12], provided the protocols
perform only actions supported by the tool.
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4.1 From an Arbitrary Topology to a Quasi-Complete One

The main idea of our reduction result consists of projecting agents/nodes to
the same node. However, we can only do that safely when the agents have the
same status (honest/dishonest) and the same neighbourhood. The purpose of
the first step (completing the graph) is to ensure that most of the nodes will
have the same neighbourhood. This will ensure us to obtain a small graph after
the merging step. Of course, we can not consider a complete graph since then
any route would be valid thus there would not be any attack. The most complete
topology on which an attack can be mounted is a quasi-complete topology.

Definition 3 (quasi-completion). Let T = (G,M, S,D) be a topology with
G = (V,E), and A,B be two nodes in V that are not both in M, and such
that (A,B) �∈ E. The quasi-completion of T w.r.t. (A,B) is a topology T + =
(G+,M, S,D) such that G+ = (V,E+) with E+ = V × V � {(A,B); (B,A)}.

Example 8. The quasi-completion of the topology T0 = (G0,M0, S,D) (defined
in Example 5) w.r.t. (A1, A2) is the topology T +

0 = (G+
0 ,M0, S,D) described

below. The only missing edge is (A1, A2).

S

A2

I

A1

D

Note that the execution described in Example 7 is still an execution w.r.t. the
topology T +

0 and this execution leads to an attack. This result holds for any
protocol that uses completion-friendly predicates (see Proposition 1).

Definition 4 (completion-friendly). A predicate p is completion-friendly if
[[p(u1, . . . , uk)]]G = true implies [[p(u1, . . . , uk)]]G+ = true for any ground terms
u1, . . . , uk, and quasi-completion T + = (G+,M, S,D) of T = (G,M, S,D).

We say that a configuration (resp. a routing protocol) is completion-friendly
if PD (i.e. the predicates that are dependent of the graph) are completion-friendly.

Example 9. All the predicates that do not depend on the underlying graph
are completion-friendly. The predicates check and checkl (see Example 3) that
are those used in our running example are completion-friendly whereas their
negation are not. This allows us to conclude that the routing protocol PSRP is
completion-friendly.

Proposition 1. Let T = (G,M, S,D) be a topology and K be a configuration
that is completion-friendly. If there is an attack on K in T , then there exists an
attack on K in T + where T + is a quasi-completion of T . Moreover, T + is a
quasi-completion of T w.r.t. a pair (A1, A2) such that A1 �∈ M or A2 �∈ M.
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4.2 Reducing the Size of the Topology

Let T = (G,M, S,D) be a topology whereG = (V,E) with E a reflexive relation,
and ρ be a renaming on the agent names (not necessarily a bijective one). We
say that the renaming ρ

– preserves neighbourhood of T if ρ(A) = ρ(B) implies that

{A′ ∈ V | (A,A′) ∈ E} = {B′ ∈ V | (B,B′) ∈ E}
– preserves honesty of T if ρ(A) = ρ(B) implies that A,B ∈M or A,B �∈ M.

Given a term u, we denote by uρ the term obtained by applying the renaming ρ
on u. This notation is extended to set of terms, configurations, graphs, and
topologies. In particular, given a graph G = (V,E), we denote Gρ the graph
(V ρ,E′) such that E′ = {(ρ(A), ρ(B)) | (A,B) ∈ E}.
Example 10. Going back to our running example, we may want to consider the
identity renaming on agent names. Such a renaming preserves neighbourhood
and honesty but it is not really interesting since it does not allow us to reduce the
size of the topology, i.e. the number of vertices in the graph. A more interesting
renaming that preserves neighbourhood and honesty of T +

0 is ρ defined as follows:

ρ(A1) = A1, ρ(A2) = A2, ρ(S) = ρ(D) = S, and ρ(I) = I

Note that ρ does not preserve neighbourhood of the topology T0 (thus the com-
pletion step is important). The topology T +

0 ρ is described below:

S

A2

I

A1

In order to safely merge nodes together, we need the predicates and the functions
to be stable over renaming of names of sort agent.

Definition 5 (projection-friendly). A predicate p is projection-friendly if
[[p(u1, . . . , uk)]]G = true implies [[p(u1ρ, . . . , ukρ)]]Gρ = true for any ground terms
u1, . . . , uk and any renaming ρ that preserves neighbourhood and honesty.

A function f over terms of arity k is projection-friendly if f(u1ρ, . . . , ukρ) =
f(u1, . . . , uk)ρ for any ground terms u1, . . . , uk and any renaming ρ that preserves
neighbourhood and honesty.

We say that a routing protocol (resp. a configuration) is projection-friendly if
the predicates in PI ∪ PD, and the functions in F are projection-friendly.

Example 11. The predicates check and checkl are projection-friendly since we
consider renaming that preserves neighbourhood. In our running example, the
set FSRP only contains the identity function. Clearly, this function is projection-
preserving. More generally, all examples of functions provided in Section 2.3 are
projection-friendly. Some predicates such as checking disequality constraints or
verifying whether an agent name occurs twice in a list are not projection-friendly.
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T1 T2 T3

T4 T5

malicious node

honest node

source node

destination node

Fig. 3. Topologies T1, T2, T3, T4, and T5

Proposition 2. Let T be a topology, K0 be a configuration that is projection-
friendly, and ρ be a renaming that preserves neighbourhood and honesty of T . If
there is an attack on K0 in T , then there exists an attack on K ′

0 in T ′ where K ′
0

and T ′ are obtained by applying ρ on K0 and T .

4.3 Only Five Topologies Are Sufficient!

Relying on Proposition 1 and Proposition 2, we are now able to show that the
existence of an attack on a routing protocol that is completion-friendly and
projection-friendly can be reduced to the problem of deciding the existence of
an attack for the five topologies given in Figure 3.

Our reduction result is even slightly stronger as we show that we can actually
also reduce the initial knowledge of the attackers, considering only the keys
associated to the four nodes appearing in the topologies defined in Figure 3.
Typical initial knowledges for the attacker are defined as the union of some public
information from any agent and private information from malicious agents. More
precisely, we assume that such a knowledge is given by a template I0, i.e. a set
of terms in T (Σ,N ∪ XV ∪ XM) where XV and XM are two disjoint sets of
variables of sort agent where XV represents all the nodes while XM represent
the malicious nodes. Moreover, we assume that the only subterms of sort agent
in I0 are the variables in XV and XM Then, given a set of nodes V and a
set of malicious nodes M, the knowledge Knowledge(I0, V,M) derived from the
template I0 is obtained by considering all possible substitutions that preserve
the honesty status:

Knowledge(I0, V,M) =

{
(tσV )σM

∣∣∣∣ t ∈ I0, dom(σV ) = XV , img(σV ) ⊆ V,
dom(σM) = XM, and img(σM) ⊆M

}
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Example 12. For instance, this allows us to express that the attackers know all
the public keys, and all the private keys that belong to malicious nodes:

I0 = {xv, pk (xv), sk(xm), shk(xv , xm), shk (xm, xv)}
with xv ∈ XV , and xm ∈ XM.

Definition 6 (configuration valid for Prouting and P0 w.r.t. T and I0).
Let T = (G,M, S,D) be a topology where G = (V,E), and I0 be a template
representing the initial knowledge. A configuration K = (P , I) is valid for the
routing protocol Prouting and the routing role P0 w.r.t. T and I0 if

1. P = �P0(S,D)�S �P ′ and for each �P ′�A1 ∈ P ′ there exists P (x1, . . . , xk) ∈
Prouting, and A2, . . . , Ak ∈ V such that P ′ = P (A1, . . . , Ak); and

2. the only process containing a special action of the form out(end(l)) is P0(S,D)
witnessing the storage of a route by the source node S;

3. I = Knowledge(I0, V,M).

The first condition says that we only consider configurations that are made up
using P0(S,D) and roles of the protocol, and the agent who executes the process
is located at the right place. Moreover, we check whether the security property
holds when the source and the destination are honest. Note that, we consider the
case where an honest source initiates a session with a malicious nodes (Psrc(S, I))
can occur in the configuration). The second condition ensures that the process
witnessing the route is the process P0(S,D).

Definition 7 (attack on Prouting and P0 w.r.t. I0). We say that there is an
attack on the routing protocol Prouting and the routing role P0 w.r.t. the template
I0 if there exists a topology T = (G,M, S,D) and a configuration K that is valid
for Prouting and P0 w.r.t. T and I0 such that K admits an attack in T .

If there is an attack, then there is an attack on one of the five topologies depicted
in Figure 3.

Theorem 1. Let Prouting be a routing protocol and P0 be a routing role that are
both completion-friendly and projection-friendly and I0 be a template.

There is an attack on Prouting and P0 w.r.t. I0 for some topology T if, and
only if, there is an attack on Prouting and P0 w.r.t. I0 for one of the topologies
depicted in Figure 3.

The proof of Theorem 1 follows from the successive applications of graph comple-
tion (Proposition 1) and nodes projection (Proposition 2). Our result holds for
an unbounded number of sessions since we consider arbitrarily many instances
of the roles occurring in Prouting, and it encompasses many families of routing
protocols.

Corollary 1. Let Prouting be a routing protocol and P0 be a routing role that
are both built using functions over terms defined in Section 2.3 and predicates
defined in Example 3, and I0 be a template.
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There is an attack on Prouting and P0 w.r.t. I0 for some topology T if, and
only if, there is an attack on Prouting and P0 w.r.t. I0 for one of the topologies
depicted in Figure 3.

Interestingly, a more careful analysis of the proof shows that our reduction result
strictly preserves the number of sessions: if there is an attack on an arbitrary
topology with k sessions, then there is an attack with k sessions for one of
the topologies of Figure 3. Therefore our result holds for a bounded number of
sessions as well.

Example 13. Going back to our running example, the topology T0 on which an
attack has been found does not correspond to one of the topologies presented in
Figure 3. However, we can retrieve the attack by considering the topology T1.

I

A1

S

A2

The attack described in Example 7 is obtained con-
sidering the template I0 = {xV } with xV ∈ XV

which corresponds to an attacker who knows the
names of all the agents. The topology T1 (see the
picture on the right) does not correspond exactly to
the topology T +

0 ρ, i.e. the one obtained after com-
pletion and projection of T0. Indeed, the node A1 is
assumed to be malicious in the topology T1, but not
in T +

0 ρ . Note that the attack still exists in presence
of this additional malicious node.

We consider the configurationK ′
init = (�P0(S, S)�S |

�Pdest(S)�S ; I ′) where I ′0 = {A1;A2; I;S}. Since S is an honest node, this con-
figuration is a valid configuration w.r.t. T and I0. We have that:

K ′
init →∗

T1
(�in(u2).if ΦS then P �S ∪ �out(m′).0�S ; I)

→T1 (�in(u2).if ΦS then P �S ∪ �0�S ; I ′)
→T1 (�out(end([S;A1;A2;S])).0�S ; I ′)

where m′ = 〈rep, S, S, id, lroute , hmac(〈rep, S, S, id, lroute〉, shk (S, S))〉 and
lroute = [S;A1;A2;S]. The list [S;A1;A2;S] is not an admissible path in T1.

5 Case Studies Using ProVerif

In this section, relying on our reduction result, we propose an analysis of the
SRP applied to DSR and the SDMSR protocols using the ProVerif tool [12].

5.1 Proverif

ProVerif constitutes a well-established automated protocol verifier based on Horn
clauses resolution that allows for the verification of several security properties.
The tool takes as input processes written in a syntax close to the one described
in Section 3. It does not consider arbitrary functions over terms as we did, but it
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can handle many different cryptographic primitives, including shared and public
key cryptography (encryption and signatures), hash functions, lists, . . . . It can
handle an unbounded number of sessions of the protocol and an unbounded mes-
sage space. This is possible thanks to some well-chosen approximations, which
means that the tool can give false attacks. Actually, the tool may return three
kinds of answer: either an attack is found (and ProVerif gives the attack trace),
or no attack is found (but this does not mean that the protocol is secure), or
else the protocol is proved secure.

It is interesting to notice that for the five topologies we have characterized,
we can safely consider an attacker who listens all the communication channels.
Moreover, we can easily encode neighbourhood checks, or the property to be an
admissible path by defining predicates through Horn clauses. For instance, the
predicate check(A,B) can be defined by enumerating all the existing links in the
four-nodes topology under study.

5.2 Case Studies

As an application, we consider two source routing protocols. The first one is the
protocol SRP applied on DSR that has been described in Section 3.2. We also
studied the multipath routing protocol SDMSR introduced in [11] whose aim is
to find several paths leading from the source S to the destination D.

We give below a brief description of the SDMSR protocol (a more detailed
description can be found in [17]). First, the source constructs a request packet
and broadcasts it to its neighbours.

〈req, S,D, id , S :: [], �〈req , S,D, id〉�sk(S)〉.

This packet contains in particular the beginning of a route to D, and a signature
over the content of the request, computed with the private key sk(S). The source
then waits for a reply containing a route to D signed by one of his neighbours,
and checks that this route is plausible. The names of the intermediate nodes are
accumulated in the route request packet and the attached signature is checked
by each intermediate node. When the request reaches the destination D via the
node B, he performs some checks and constructs a route reply.

〈rep, D, xS , id , D, lroute , �〈rep, D, S, id , lroute〉�sk(D)〉.

In particular it computes a signature over the route lroute accumulated in the
request packet with its private key sk(D). It then sends the reply back over
the network. The reply travels along the route back to S, and the interme-
diate nodes check that the signature in the reply packet is correct, and that
the route is plausible, before forwarding it. Each node V replaces the signa-
ture �〈rep, D, S, id , lroute〉�sk(A) computed by its neighbour by its own signature
�〈rep, D, S, id , lroute〉�sk(V ).

5.3 Results

We analyse these protocols considering the five different topologies that have been
described in Section 4.3 and for an unbounded number of sessions.We analyse the
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configuration where each node of the topology plays an unbounded number of ses-
sions of each role (each node can act as a source, a destination, or an intermediate
node).

Note also that even if ProVerif is able to manipulate lists and predicates
defined through Horn clauses, those predicates are quite powerful and ProVerif
is not always able to handle them in a satisfactory way. Therefore, we did not
model the sanity check last(S, xL) that is normally performed by the source.
But this did not introduce any false attack: the attacks that are reported by the
ProVerif tool are still valid when considering this additional check.

SRP applied on DSR SDMSR
T1 attack found attack found
T2 attack found attack found
T3 no attack found no attack found
T4 no attack found no attack found
T5 no attack found no attack found

We retrieve the attack on the protocol SRP applied to DSR, mentioned in
Example 7. Actually, the SDMSR protocol is subject to the same kind of attack
than SRP applied to DSR (see [9]). The running time of ProVerif was less than a
few secondes for each topology. All the files for these experiments are available
at: http://www.lsv.ens-cachan.fr/~{}delaune/RoutingProtocols.

6 Conclusion

When checking whether a routing protocol ensures that resulting routes are
valid even in the presence of malicious nodes, we have shown a simple reduction
result: there is an attack on an arbitrary topology if and only if there is an
attack on one of five particular topologies, each of them having only four nodes.
It is therefore possible to use standard verification tools for analysing routing
protocols, provided they make use of primitives supported by the tools.

Our execution model of protocols is very general, encompassing many fami-
lies of routing protocols, e.g. with recursive tests/operations and various kinds
of neighbourhood checks. Our only restriction is the fact that tests should be
stable under projection of nodes names, typically disallowing test of difference.
Disequality tests are useful to discard a route that contains twice the same
node, or for checking disequality of session ids to avoid answering twice the
same request. Investigating how to extend our reduction result to some families
of difference tests is left for future work. Also, the five topologies we obtain may
seem unrealistic, for example because the source and the destination are neigh-
bours. It seems feasible to refine our reduction result adding some topological
constraints such as avoiding the source and the destination to be neighbours,
possibly considering a larger (but still finite) number of nodes. A limitation of
our work is the fact that it is limited to a single (crucial) property: the validity

http://www.lsv.ens-cachan.fr/~{}delaune/RoutingProtocols
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of the resulting route. Our reduction result certainly works for other properties.
But understanding (and formalizing) which security properties are relevant for
routing protocols is a difficult question. Another extension would be to model
mobility during the execution of the protocol. This would allow us to consider
changes in the network topology and to analyze the security of route updates.
This requires to model an appropriate security property.
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Abstract. The address translation subsystem of operating systems, hypervisors,
and virtual machine monitors must correctly enforce address space separation
in the presence of adversaries. The size, and hierarchical nesting, of the data
structures over which such systems operate raise challenges for automated model
checking techniques to be fruitfully applied to them. We address this problem by
developing a sound and complete parametric verification technique that achieves
the best possible reduction in model size. Our results significantly generalize prior
work on this topic, and bring interesting systems within the scope of analysis. We
demonstrate the applicability of our approach by modeling shadow paging mech-
anisms of Xen version 3.0.3 and ShadowVisor, a research hypervisor developed
for the x86 platform.

1 Introduction

A common use of protection mechanisms in systems software is to prevent one execu-
tion context from accessing memory regions allocated to a different context. For exam-
ple, hypervisors, such as Xen [5], are designed to support memory separation not only
among guest operating systems, but also between the guests and the hypervisor itself.
Separation is achieved by an address translation subsystem that is self-contained and
relatively small (around 7000 LOC in Xen version 3.0.3). Verifying security properties
of such separation mechanisms is both: (i) important, due to their wide deployment in
environments with malicious guests, e.g., the cloud; and (ii) challenging, due to their
complexity. Addressing this challenge is the subject of our paper.

A careful examination of the source code for two hypervisors – Xen and ShadowVi-
sor, a research hypervisor – reveals that a major source of complexity in separation
mechanisms is the size, and hierarchical nesting, of the data-structures over which they
operate. For example, Xen’s address translation mechanism involves multi-level page
tables where a level has up to 512 entries in a 3-level implementation, or up to 1024
entries in a 2-level implementation. The number of levels is further increased by op-
timizations, such as context caching (see Section 3 for a detailed description). Since
the complexity of model checking grows exponentially with the size of these data-
structures, verifying these separation mechanisms directly is intractable.

We address this problem by developing a parametric verification technique that is able
to handle separation mechanisms operating over multi-level data structures of arbitrary
size and with arbitrary number of levels. Specifically, we make the following contribu-
tions. First, we develop a parametric guarded command language (PGCL+) for modeling
hypervisors and adversaries. In particular, PGCL+ supports: (i) nested parametric arrays
to model data structures, such as multi-level page tables, where the parameters model the
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size of page tables at each level; and (ii) whole array operations to model an adversary
who non-deterministically sets the values of data structures under its control.

In addition, the design of PGCL+ is driven by the fact that our target separation mech-
anisms operate over tree-shaped data structures in a row independent and hierarchically
row uniform manner. Consider a mechanism operating over a tree-shaped multi-level
page table. Row independence means that the values in different rows of a page table
are mutually independent. Hierarchical row uniformity implies that: (a) for each level
i of the page table, the mechanism executes the same command on all rows at level i;
(b) the command for a row at level i involves recursive operation over at most one page
table at the next level i+ 1; (c) the commands for distinct rows at level i never lead to
operations over the same table at level i+ 1. Both row independence and hierarchical
uniformity are baked syntactically into PGCL+ via restricted forms of commands and
nested whole array operations.

Second, we propose a parametric specification formalism for expressing security
policies of separation mechanisms modeled in PGCL+. Our formalism is able to express
both safety and liveness properties (via a new logic PT SL+) that involve arbitrary nesting
of quantifiers over multiple levels of the nested parametric arrays in PGCL+.

Third, we prove a set of small model theorems that roughly state that for any system
M expressible in PGCL+, and any security property ϕ in our specification formalism,
an instance of M with a data structure of arbitrary size satisfies ϕ iff the instance of M
where the data structure has 1 element at every level satisfies ϕ. These theorems yield
the best possible reduction – e.g., verifying security of a separation mechanism over an
arbitrarily large page table is reduced to verifying the mechanism with just 1 page table
entry at each level. This ameliorates the lack of scalability of verification due to data
structure size. For brevity, we defer proofs to the full version [17].

Finally, we demonstrate the effectiveness of our approach by modeling, and verify-
ing, shadow paging mechanisms of Xen version 3.0.3 and ShadowVisor, together with
associated address separation properties. The models were created manually from the
actual source code of these systems. In the case of ShadowVisor, our initial verification
identified a previously unknown vulnerability. After fixing the vulnerability, we are able
to verify the new model successfully.

The rest of the paper is organized as follows. Section 2 surveys related work. Sec-
tion 3 presents an overview of address translation mechanisms and associated separation
properties. Section 4 presents the parametric modeling language, the specification logic,
as well as the small model theorems and the key ideas behind their proofs. Section 5
presents the case studies. Finally, Section 6 presents our conclusions.

2 Related Work

Parametric verification has been applied to a wide variety of problems [10, 11, 13, 15],
notably to verify cache coherence protocols [9, 11, 12, 14, 19]. However, we are distin-
guished by the focus on security properties in the presence of an adversary (or, attacker).
Existing formalisms for parameterized verification of data-independent systems either
do not allow whole-array operations [23], or restrict them to a reset or copy operation
that updates array elements to fixed values [24]. Neither case can model our adversary.
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Pnueli et al [26], Arons et al., [4], and Fang et al. [16] investigate finite bounded-
data systems, which support stratified arrays that map to Booleans, a notion similar to
our hierarchical arrays. However, they consider a restricted logic that allows for safety
properties and a limited form of liveness properties referred to as response properties.
In contrast, we consider both safety and more expressive liveness properties that can
include both next state and until operators in addition to the forall operator. Moreover,
the cutoffs of their small model theorems are a function of the type signatures, number
of quantified index variables, and other factors. When instantiated with the same types
used in our language, their small model theorems have larger cutoffs than our own.
By focusing on the specific case of address translation systems and address separation
properties, we are able to arrive at smaller cutoffs.

This paper generalizes our prior work [18] from a single parametric array to a tree
of parametric arrays of arbitrary depth. The generalization requires new conceptual and
technical insights and brings interesting systems (such as multi-level paging and context
caching as used in Xen) within the scope of analysis. The concept of hierarchical row
uniformity did not arise in the previous work. Moreover, our language PGCL+ supports
a more general form of guarded commands. At a technical level, the proofs are more
involved because of the generality of the language and the logic. In particular, the use
of mutual recursion in the definition of the programming language necessitates the use
of mutual induction in establishing several key lemmas.

Neumann et al. [25], Rushby [27], and Shapiro and Weber [28] propose verifying
the design of secure systems by manually proving properties using a logic and without
an explicit adversary model. A number of groups [20, 22, 29] have employed theorem
proving to verify security properties of OS implementations. Barthe et al. [6] formalized
an idealized model of a hypervisor in the Coq proof assistant and Alkassar et al. [1, 2]
and Baumann et al. [7] annotated the C code of a hypervisor and utilized the VCC
verifier to prove correctness properties. Our approach is based on automatic verification
via model checking.

3 Address Space Translation and Separation

In this section, we give an overview of the systems we target, viz., address space trans-
lation schemes, and the properties we verify, viz., address separation.

3.1 Address Space Translation

Consider a system with memory sub-divided into pages. Each page has a base address
(or address, for short). Address space translation maps source addresses to destination
addresses. In the simplest setting, it is implemented by a single-level “page table” (PT).
Each row of the PT is a pair (x,y) such that x is a source base address and y is its
corresponding destination base address.

More sophisticated address translation schemes use multi-level PTs. A n-level PT
is essentially a set of tables linked to form a tree of depth n. Specifically, each row
of a table at level i contains either a destination address, or the starting address of a
table at level i+ 1. In addition to addresses, rows contain flags (e.g., to indicate if the



54 J. Franklin et al.

Page Table Base Address 

Page Directory 
Table 

Page Table 

Physical Page 

Physical 
Address Space 

Physical 
Address 

Virtual Address 

Fig. 1. Typical two-level page table structure

row contains a destination addresses or the address of another table). We now present a
concrete example.

Example 1. Figure 1 shows a typical two-level address translation. A 2-level PT con-
sists of a top level Page Directory Table (PDT ) and a set of leaf PTs. A source address
i is split into two parts, whose sizes are determined during the design of the PT. Let
i = (i1, i2). To compute the destination address corresponding to i, we first find the row
(i1,o1) in the PDT . The entry o1 contains an address a1, a Page Size Extension flag
PSE , and a present flag PRESENT . If PRESENT is unset, then there is no destination
address corresponding to i. Otherwise, if PSE is set, then the destination address is a1.
Finally, if PSE is unset, we find the entry (i2,a2) in the table located at address a1,
and return a2 as the destination address. Note the use of PSE and PRESENT to disam-
biguate between different types of rows. Also, note the dual use of the address field a1

as either a destination address or a table address.

3.2 Address Space Separation

While the systems we target are address translation schemes, the broad class of proper-
ties we aim for is address separation. This is a crucial property – in essence requiring
that disjoint source addresses spaces be mapped to disjoint destination address spaces.
Our notion of address separation is conceptually similar to that used by Baumann et
al. [7]. Formally, an address translation scheme M violates separation if it maps ad-
dresses a1 and a2 from two different source address spaces to the same destination
address. For example, an OS’s virtual memory manager enforces separation between
the address spaces of the OS kernel and various processes. Address space separation is
a safety property since its violation is exhibited by a finite execution.
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The key technique, used by hypervisor address translation schemes, to ensure mem-
ory separation is “shadowing”. For example, a separation kernel employs shadow pag-
ing to isolate critical memory regions from an untrusted guest OS. In essence, the kernel
maintains its own trusted version of the guest’s PT, called the shadow PT or sPT. The
guest is allowed to modify its PT. However, the kernel interposes on such modifications
and checks that the guest’s modifications do not violate memory separation. If the check
succeeds, the sPT is “synchronized” with the modified guest’s PT.

Multi-level PTs are the canonical tree-shaped data-structures that motivates our
work. In real systems, such PTs are used for various optimizations. One use is to trans-
late large source address spaces without the overhead of one PT entry for each source
base address. Another use is to implement context caching, a performance optimiza-
tion – used by both Xen and VMWare – for shadow paging. Normally, every virtual
address space (or, context) has its own PT, e.g., for a hypervisor, each process running
on each guest OS has a separate context. Suppose that all context PTs are shadowed to
a single sPT. When the context changes (e.g., when a new process is scheduled to run),
the sPT is re-initialized from the PT of the new context. This hampers performance.
Context caching avoids this problem by shadowing each context PT to a separate sPT.
In essence, the sPT itself becomes a multi-level PT, where each row of the top-level PT
points to a PT shadowing a distinct context.

Our goal is to verify address separation for address translation schemes that operate
on multi-level PTs with arbitrary (but fixed) number of levels and arbitrary (but fixed)
number of rows in each table, where each row has an arbitrary (but fixed) number of
flags. These goals crucially influence the syntax and semantics of PGCL+ and our spec-
ification formalism, and our technical results, which we present next.

4 Definitions of PGCL+ and PT SL+

In this section, we present our language PGCL+ and our specification formalism for
modeling programs and security properties, respectively.

4.1 PGCL+ Syntax

All variables in PGCL+ are Boolean. The language includes nested parametric arrays to
a finite depth d. Each row of an array at depth d is a record with a single field F, a finite
array of Booleans of size qd . Each row of an array at depth z (1≤ z < d) is a structure
with two fields: F, a finite array of Booleans of size qz, and P an array at depth z+ 1.
Our results do not depend on the values of d and {qz | 1≤ z≤ d}, and hence hold for
programs that manipulate arrays that are nested (as describe above) to arbitrary depth,
and with Boolean arrays of arbitrary size at each level. Also, Boolean variables enable
us to encode finite valued variables, and arrays, records, relations and functions over
such variables.

Let 1 and 0 be, respectively, the representations of the truth values true and false.
Let B be a set of Boolean variables, i1, . . . ,id be variables used to index into P1, . . . ,Pd ,
respectively, and n1, . . . ,nd be variables used to store the number of rows of P1, . . . ,Pd ,
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Natural Numerals K

Boolean Variables B

Parametric Index Variables i1, . . . ,id
Parameter Variables n1, . . . ,nd
Expressions E ::= 1 | 0 | ∗ | B | E∨E | E∧E | ¬E
Param. Expressions (1≤ z≤ d) Êz ::= E | P[i1] . . .P[iz].F[K] | Êz∨ Êz | Êz∧ Êz

| ¬Êz

Instantiated Guarded Commands G ::= GC(Kd)
Guarded Commands GC ::= E ? C1 : C1

| GC ‖ GC Parallel
Commands (depth 1≤ z≤ d) Cz ::= B := E (if z = 1) Assignment

| for iz do Êz ? Ĉz : Ĉz Parametric for
| Cz;Cz Sequencing
| skip Skip

Param. Commands (1≤ z≤ d) Ĉz ::= P[i1] . . .P[iz].F[K] := Êz Array assign
| Ĉz; Ĉz Sequencing
| Cz+1 (if z < d) Nesting

Fig. 2. PGCL+ Syntax, z denotes depth

respectively. The syntax of PGCL+ is shown in Figure 2. PGCL+ supports natural num-
bers, Boolean variables, propositional expressions over Boolean variables and F ele-
ments, guarded commands that update Boolean variables and F elements, and parallel
composition of guarded commands. A skip command does nothing. A guarded com-
mand e ? c1 : c2 executes c1 or c2 depending on if e evaluates to true or false. We
write e ? c to mean e ? c : skip. The parallel composition of two guarded commands
executes by non-deterministically picking one of the commands to execute. The sequen-
tial composition of two commands executes the first command followed by the second
command. Note that commands at depth z+ 1 are nested within those at depth z.

Language Design. Values assigned to an element of an F array at depth z can depend
only on: (i) other elements of the same F array; (ii) elements of parent F arrays along the
nesting hierarchy (to ensure hierarchical row uniformity); and (iii) Boolean variables.
Values assigned to Boolean variables depend on other Boolean variables only. This is
crucial to ensure row-independence which is necessary for our small model theorems
(cf. Sec. 4.5).

4.2 ShadowVisor Code in PGCL+

We use ShadowVisor as a running example, and now describe its model in PGCL+.
ShadowVisor uses a 2-level PT scheme. The key unbounded data structures are the
guest and shadow Page Directory Table (gPDT and sPDT) at the top level, and the
guest and shadow Page Tables (gPTs and sPTs) at the lower level. Since each shadow
table has the same size as the corresponding guest table, we model them together in the
2-level PGCL+ parametric array.
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shadow page fault ≡
for i1 do

PDT[i1].F[gPRESENT]∧PDT[i1].F[gPSE]∧
PDT[i1].F[gADDR]< MEM LIMIT−MPS PDT ?
PDT[i1].F[sADDR] := PDT[i1].F[gADDR];

for i2 do

PDT[i1].F[gPRESENT]∧PDT[i1].PT[i2].F[gPTE PRESENT]∧
PDT[i1].PT[i2].F[gPTE ADDR]< MEM LIMIT−MPS PT ?
PDT[i1].PT[i2].F[sPTE ADDR] := PDT[i1].PT[i2].F[gPTE ADDR];

shadow invalidate page ≡
for i1 do

(PDT[i1].F[sPRESENT]∧¬PDT[i1].F[gPRESENT])∨
(PDT[i1].F[sPRESENT]∧PDT[i1].F[gPRESENT]∧
(PDT[i1].F[sPSE]∨PDT[i1].F[gPSE])) ?
PDT[i1].F[sPDE] := 0;

for i1 do

PDT[i1].F[sPRESENT]∧PDT[i1].F[gPRESENT]∧
¬PDT[i1].F[gPSE]∧¬PDT[i1].F[sPSE] ?
for i2 do

PDT[i1].PT[i2].F[sPTE] := 0;

adversary ≡
for i1 do

PDT[i1].F[gPDE] := ∗;
for i2 do

PDT[i1].PT[i2].F[gPTE] := ∗;

shadow new context ≡
for i1 do

PDT[i1].F[sPDE] := 0;

Fig. 3. ShadowVisor model in PGCL+

For simplicity, let PDT be the top-level array P. Elements PDT[i1].F[gPRESENT] and
PDT[i1].F[gPSE] are the present and page size extension flags for the i1-th gPD en-
try, while PDT[i1].F[gADDR] is the destination address contained in the i1-th gPD en-
try. Elements sPRESENT, sPSE, and sADDR are defined analogously for sPD entries.
Again for simplicity, let PDT[i1].PT be the array P[i1].P. Elements gPTE PRESENT and
gPTE ADDR of PDT[i1].PT[i2].F are the present flag and destination address contained in
the i2-th entry of the PT pointed to by the i1-th gPDT entry. Elements sPTE PRESENT

and sPTE ADDR of PDT[i1].PT[i2].F are similarly defined for the sPDT. Terms gPDE

refers to the set of elements corresponding to a gPDT entry (i.e., gPRESENT, gPSE, and
gADDR). Terms gPTE, sPDE and sPTE are defined similarly for the gPT, sPDT, and sPT,
respectively.

Our ShadowVisor model (see Figure 3) is a parallel composition of four guarded
commands shadow page fault, shadow invalidate page, shadow new context,
and adversary. Command shadow page fault synchronizes sPDT and sPT with
gPDT and gPT when the guest kernel: (i) loads a new gPT, or (ii) modifies or cre-
ates a gPT entry. To ensure separation, shadow page fault does not copy addresses
from the gPT or gPDT that allow access to addresses at or above MEM LIMIT. This re-
quires two distinct checks depending on the level of the table since pages mapped in
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σn = (�k1�, . . . ,�kd�) {σ} gc {σ′}
{σ} gc(k1, . . . ,kd) {σ′}

Parameter Instantiation

{σ} c {σ′′} {σ′′} c′ {σ′}
{σ} c;c′ {σ′}

Sequential
{σ} skip {σ}

Skip

σn
1,z = (1z−1,N) ê ? ĉ1 : ĉ2 ∈ (Êz ? Ĉz : Ĉz)[i1 → 1] . . . [iz−1 → 1]
∀y ∈ [1,N] �{σ � (1z−1,y)} (ê ? ĉ1 : ĉ2)[iz → 1] {σ′ � (1z−1,y)}

{σ} for iz do ê ? ĉ1 : ĉ2 {σ′}
Unroll

〈e,σ〉 → true∧{σ} c1 {σ′}
∨
〈e,σ〉 → false∧{σ} c2 {σ′}

{σ} e ? c1 : c2 {σ′}
GC

〈e,σ〉 → t

{σ} b := e {σ[σB → σB[b → t]]}
Assign

{σ} gc {σ′}∨{σ} gc′ {σ′}
{σ} gc ‖ gc′ {σ′}

Parallel

ê ∈ Êz 〈ê,σ〉 → t (�k1�, . . . ,�kz�,�r�) ∈ Dom(σP
z )

{σ} P[k1] . . .P[kz].F[r] := ê {σ[σP → σP[σP
z → [σP

z [(�k1�, . . . ,�kz�,�r�) → t]]]]}
P. Assign

Fig. 4. Rules for commands

the PDT are of size MPS PDT and pages mapped in the PT are of size MPS PT. Com-
mand shadow invalidate page invalidates entries in the sPD and sPT (by setting to
zero) when the corresponding guest entries are not present, the PSE bits are inconsis-
tent, or if both structures are consistent and the guest OS invalidates a page. Command
shadow new context initializes a new context by clearing all the entries of the sPD.
Finally, command adversary models the attacker by arbitrarily modifying every gPD
entry and every gPT entry.

For brevity, we write c to mean 1 ? c. Since all PGCL+ variables are Boolean, we
write x < C to mean the binary comparison between a finite valued variable x and a
constant C.

4.3 PGCL+ Semantics

We now present the operational semantics of PGCL+ as a relation on stores. Let B be
the truth values {true, false}. Let N denote the set of natural numbers. For two natural
numbers j and k such that j ≤ k, we write [ j,k] to mean the set of numbers in the
closed range from j to k. For any numeral k we write �k� to mean the natural number
represented by k in standard arithmetic. Often, we write k to mean �k� when the context
disambiguates such usage.

We write Dom( f ) to mean the domain of a function f ; (t, t′) denotes the concate-
nation of tuples t and t′; ti, j is the subtuple of t from the ith to the jth elements, and ti

means ti,i. Given a tuple of natural numbers t= (t1, . . . , tz), we write⊗(t) to denote the
set of tuples [1, t1]×·· ·× [1, tz]. Recall that, for 1 ≤ z ≤ d, qz is the size of the array F

at depth z. Then, a store σ is a tuple (σB,σn,σP) such that:
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– σB : B→ B maps Boolean variables to B;
– σn ∈ Nd is a tuple of values of the parameter variables;
– σP is a tuple of functions defined as follows:

∀z ∈ [1,d] �σP
z :⊗(σn

1,z,qz)→ B

We omit the superscript of σ when it is clear from the context. The rules for evaluating
PGCL+ expressions under stores are defined inductively over the structure of PGCL+

expressions, and shown in Figure 5. To define the semantics of PGCL+, we first present
the notion of store projection.

〈1,σ〉 → true 〈0,σ〉 → false 〈∗,σ〉 → true 〈∗,σ〉 → false

b ∈ dom(σB)

〈b,σ〉 → σB(b)

〈e,σ〉 → t

〈¬e,σ〉 → [¬]t
(�k1�, . . . ,�kz�,�r�) ∈ Dom(σP

z )

〈P[k1] . . .P[kz].F[r],σ〉 → σP
z (�k1�, . . . ,�kz�,�r�)

〈e,σ〉 → t 〈e′,σ〉 → t ′

〈e∨e′,σ〉 → t[∨]t ′
〈e,σ〉 → t 〈e′,σ〉 → t ′

〈e∧e′,σ〉 → t[∧]t ′

Fig. 5. Rules for expression evaluation. [∧], [∨], and [¬] denote logical conjunction, disjunction,
and negation, respectively.

We overload the → operator as follows. For any function f : X →Y , x∈ X and y∈Y ,
we write f [x → y] to mean the function that is identical to f , except that x is mapped
to y. X[y → w] is a tuple that equals X, except that (X[y → w])y = w. For any PGCL+

expression or guarded command X, variable v, and expression e, we write X[v → e] to
mean the result of replacing all occurrences of v in X simultaneously with e. For any
z ∈N, 1z denotes the tuple of z 1’s.

Definition 1 (Store Projection). Let σ = (σB,σn,σP) be any store and 1 ≤ z≤ d. For
k= (k1, . . . ,kz)∈⊗(σn

1, . . . ,σ
n
z ) we write σ � k to mean the store (σB,σm,σQ) such that:

1. σm = σn[1 → 1][2 → 1] . . . [z → 1]
2. ∀y ∈ [1,z] �∀X ∈ Dom(σQ

y ) �σQ
y (X) = σP

y (X [1 → k1][2 → k2] . . . [y → ky])

3. ∀y ∈ [z+ 1,d] �∀X ∈Dom(σQ
y ) �σQ

y (X) = σP
y (X [1 → k1][2 → k2] . . . [z → kz])

Note: ∀z ∈ [1,d] �∀k ∈ ⊗(σn
1, . . . ,σ

n
z ) �σ � k= (σ � k) � 1z.

Intuitively, σ � k is constructed by retaining σB, changing the first z elements of σn to
1 and leaving the remaining elements unchanged, and projecting away all but the ky-th
row of the parametric array at depth y for 1 ≤ y≤ z. Note that since projection retains
σB, it does not affect the evaluation of expressions that do not refer to elements of P.

Store Transformation. For any PGCL+ command c and stores σ and σ′, we write
{σ} c {σ′} to mean that σ is transformed to σ′ by the execution of c. We define
{σ} c {σ′} via induction on the structure of c, as shown in Figure 4.
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Basic Propositions BP ::= b , b ∈ B | ¬BP | BP∧BP
Parametric Propositions PP(i1, . . . ,iz) ::= {P[i1] . . .P[iz].F[r] | �r� ≤ qz}

| ¬PP(i1, . . . ,iz)
| PP(i1, . . . ,iz)∧PP(i1, . . . ,iz)

Universal State Formulas USF ::= BP
| ∀i1 . . .∀iz �PP(i1, . . . ,iz)
| BP∧∀i1 . . .∀iz �PP(i1, . . . ,iz)

Existential State Formulas ESF ::= BP
|Æ1i1 . . .Æziz �PP(i1, . . . ,iz)
| BP∧Æ1i1 . . .Æziz �PP(i1, . . . ,iz)

Generic State Formulas GSF ::= USF | ESF | USF∧ESF
PTSL+ Path Formulas TLPF ::= TLF | TLF∧TLF | TLF∨TLF

| X TLF | TLF U TLF
PTSL+ Formulas TLF ::= USF | ¬USF | TLF∧TLF

| TLF∨TLF | A TLPF

Fig. 6. Syntax of PT SL+ (1≤ z≤ d). In ESF, Æy is ∀ or ∃, at least one Æy is ∃.

The “GC” rule states that σ is transformed to σ′ by executing the guarded command
e ? c1 : c2 if: (i) either the guard e evaluates to true under σ and σ is transformed to σ′
by executing the command c1; (ii) or e evaluates to false under σ and σ is transformed
to σ′ by executing c2 .

The “Unroll” rules states that if c is a for loop, then {σ} c {σ′} if each row of σ′
results by executing the loop body from the same row of σ. The nesting of for-loops
complicates the proofs of our small model theorems. Indeed, we require to reason using
mutual induction about loop bodies (Êz ? Ĉz) and commands (Cz), starting with the loop
bodies at the lowest level, and moving up to commands at the highest level.

4.4 Specification Formalism

We support both reachability properties and temporal logic specifications. Reachability
properties are expressed via “state formulas”. In addition, state formulas are also used
to specify the initial condition under which the target system begins execution. The
syntax of state formulas is defined in Figure 6. We support three types of state formulas
– universal, existential, and generic. Specifically, universal formulas allow only nested
universal quantification over P, existential formulas allow arbitrary quantifier nesting
with at least one ∃, while generic formulas allow one of each.

Temporal logic specifications are expressed in PTSL+, a new logic we propose in
this paper. In essence, PT SL+ is a subset of the temporal logic ACTL* [8] with USF
as atomic propositions. The syntax of PT SL+ is defined in Figure 6. The quantifica-
tion nesting allowed in our specification logic allows expressive properties spanning
multiple levels of P. This will be crucial for our case studies, as shown in Sec. 5.

ShadowVisor Security Properties in PT SL+. ShadowVisor begins execution with
every entry of the sPDT and sPT set to not present. This initial condition is stated in the
following USF state formula:
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ϕinit � ∀i1,i2 � ¬PDT[i1].F[sPRESENT]∧¬PDT[i1].PT[i2].F[sPTE PRESENT]

ShadowVisor’s separation property states that the physical addresses accessible by the
guest must be less than MEM LIMIT. This requires two distinct conditions depending
on the table since pages mapped in the PDT are of size MPS PDT and pages mapped
in the PT are of size MPS PT. Given a PDT mapped page frame starting at address a,
a guest OS can access from a to a+ MPS PDT and a+ MPS PT for a PT mapped page
frame. Hence, to enforce separation, ShadowVisor must restrict the addresses in the
shadow page directory to be less than MEM LIMIT−MPS PDT and page table to be less
than MEM LIMIT−MPS PT. Note that we are making the reasonable assumption that
MEM LIMIT > MAX PDT and MEM LIMIT > MAX PT to avoid underflow. This security
property is stated in the following USF state formula:

ϕsep � ∀i1,i2 � (PDT[i1].F[sPRESENT]∧PDT[i1].F[sPSE]⇒
(PDT[i1].F[sADDR]< MEM LIMIT−MPS PDT))∧
(PDT[i1].F[sPRESENT]∧¬PDT[i1].F[sPSE]∧
PDT[i1].PT[i2].F[sPTE PRESENT]⇒
(PDT[i1].PT[i2].F[sADDR]< MEM LIMIT−MPT PT))

Semantics. We now present the semantics of our specification logic. We further over-
load the → operator such that for any PT SL+ formula π, variable x, and numeral m, we
write π[x → m] to mean the result of substituting all occurrences of x in π with m. We
start with the notion of satisfaction of formulas by stores.

Definition 2. The satisfaction of a formula π by a store σ (denoted σ |= π) is defined,
by induction on the structure of π, as follows:

– σ |= b iff σB(b) = true
– σ |= P[k1] . . .P[kz].F[r] iff (�k1�, . . . ,�kz�,�r�) ∈ Dom(σP

z ) and
σP

z (�k1�, . . . ,�kz�,�r�) = true
– σ |= ¬π iff σ �|= π
– σ |= π1∧π2 iff σ |= π1 and σ |= π2

– σ |= π1∨π2 iff σ |= π1 or σ |= π2

– σ |=Æ1i1, . . . ,Æziz �π iff Æ1k1 ∈ [1,σn
1] . . .Æzkz ∈ [1,σn

z ] �σ � (k1, . . . ,kz) |= π[i1 →
1] . . . [iz → 1]

The definition of satisfaction of Boolean formulas and the logical operators are stan-
dard. Parametric formulas, denoted P[k1] . . .P[kz].F[r], are satisfied if and only if the
indices k1, . . . ,kz,r are in bounds, and the element at the specified location is true.
Quantified formulas are satisfied by σ if and only if appropriate (depending on the quan-
tifiers) projections of σ satisfy the formula obtained by substituting 1 for the quantified
variables in π. We present the semantics of a PGCL+ program as a Kripke structure.

Kripke Semantics. Let gc be any PGCL+ guarded command and k ∈ Nd . We denote
the set of stores σ such that σn = k, as Store(gc(k)). Note that Store(gc(k)) is finite.
Let Init be any formula and AP = USF be the set of atomic propositions. Intuitively,
a Kripke structure M(gc(k), Init) over AP is induced by executing gc(k) starting from
any store σ ∈ Store(gc(k)) that satisfies Init.
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Definition 3. Let Init ∈ USF be any formula. Formally, M(gc(k), Init) is a four tuple
(S ,I ,T ,L), where:

– S = Store(gc(k)) is a set of states;
– I = {σ|σ |= Init} is a set of initial states;
– T = {(σ,σ′) | {σ}gc(k){σ′}} is a transition relation given by the operational

semantics of PGCL+; and
– L : S → 2AP is the function that labels each state with the set of propositions true

in that state; formally,

∀σ ∈ S �L(σ) = {ϕ ∈ AP | σ |= ϕ}

If φ is a PT SL+ formula, then M,σ |= φ means that φ holds at state σ in the Kripke
structure M. We use an inductive definition of |= [8]. Informally, an atomic proposition
π holds at σ iff σ |= π; A φ holds at σ if φ holds on all possible (infinite) paths starting
from σ. TLPF formulas hold on paths. A TLF formula φ holds on a path Π iff it holds
at the first state of Π; X φ holds on a path Π iff φ holds on the suffix of Π starting at
second state of Π; φ1 U φ2 holds on Π if φ1 holds on suffixes of Π until φ2 begins to
hold. The definitions for ¬, ∧ and ∨ are standard.
Simulation. For Kripke structures M1 and M2, we write M1 � M2 to mean that M1

is simulated by M2. We use the standard definition of simulation [8] (presented in the
full version of our paper [17]). Since satisfaction of ACTL* formulas is preserved by
simulation [8], and PTSL+ is a subset of ACTL*, we claim that PT SL+ formulas are
also preserved by simulation.

4.5 Small Model Theorems

In this section, we present two small model theorems. Both theorems relate the behavior
of a PGCL+ program when P has arbitrarily many rows to its behavior when P has a
single row. First, a definition.

Definition 1 (Exhibits). A Kripke structure M(gc(k), Init) exhibits a formula ϕ iff there
is a reachable state σ of M(gc(k), Init) such that σ |= ϕ.

The first theorem applies to safety properties.

Theorem 1 (Small Model Safety 1). Let gc(k) be any instantiated guarded command.
Let ϕ ∈ GSF be any generic state formula, and Init ∈ USF be any universal state for-
mula. Then M(gc(k), Init) exhibits ϕ iff M(gc(1d), Init) exhibits ϕ.

The second theorem is more general, and relates Kripke structures via simulation.

Theorem 2 (Small Model Simulation). Let gc(k) be any instantiated guarded
command. Let Init ∈ GSF be any generic state formula. Then M(gc(k), Init) �
M(gc(1d), Init) and M(gc(1d), Init)�M(gc(k), Init).

Since, simulation preserves PT SL+ specifications, we obtain the following immediate
corrollary to Theorem 2.
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Corollary 1 (Small Model Safety 2). Let gc(k) be any instantiated guarded command.
Let ϕ ∈ USF be any universal state formula, and Init ∈ GSF be any generic state for-
mula. Then M(gc(k), Init) exhibits ϕ iff M(gc(1d), Init) exhibits ϕ.

Note that Corollary 1 is the dual of Theorem 1 obtained by swapping the types of ϕ and
Init. The proofs of Theorems 1 and 2 involve mutual induction over both the structure of
commands, and the depth of the parametric array P. This is due to the recursive nature of
PGCL+, where commands at level z refer to paramaterized commands at level z, which
in turn refer to commands at level z+ 1. For brevity, we defer these proofs to the full
version of our paper [17].

5 Case Studies

We present two case studies – ShadowVisor and Xen – to illustrate our approach. In
addition to these two examples, we believe that our approach is, in general, applicable to
all paging systems that are strictly hierarchical. This includes paging modes of x86 [21],
and paging modes of ARM except for the super-pages [3] (due to the requirement that
16 adjacent entries must be identical).

5.1 ShadowVisor

Recall our model of ShadowVisor from Section 4.2 and the expression of ShadowVi-
sor’s initial condition and security properties as PT SL+ formulas from Section 4.4.
ShadowVisor’s separation property states that the physical addresses accessible by the
guest OS must be less than the lowest address of hypervisor protected memory, denoted
MEM LIMIT. This requires two distinct conditions depending on the table containing the
mapping. Pages mapped in PDTs are of size MPS PDT and pages mapped in PTs are of
size MPS PT. Given a page frame of size s with starting address a, a guest OS can access
any address in the range [a,a+ s]. Hence, subtracting the maximum page size prevents
pages from overlapping the hypervisor’s protected memory. Note that we are making
the reasonable assumption that MEM LIMIT > MPS PDT and MEM LIMIT > MPS PT to
avoid underflow.

In ShadowVisor’s original shadow page fault handler (shown in
shadow page fault original ), the conditionals allowed page directory and
page table entries to start at addresses up to MEM LIMIT. As a result, ShadowVisor
running shadow page fault original has a serious vulnerability where separation
is violated by an adversary that non-deterministically chooses an address a such that
a+MPS PDT≥ MEM LIMIT or a+MPS PT≥ MEM LIMIT.

shadow page fault original ≡
for i1 do

PDT[i1].F[gPRESENT]∧PDT[i1].F[gPSE]∧PDT[i1].F[gADDR]< MEM LIMIT ?
PDT[i1].F[sADDR] := PDT[i1].F[gADDR];

for i2 do

PDT[i1].F[gPRESENT]∧PDT[i1].PT[i2].F[gPTE PRESENT]∧
PDT[i1].PT[i2].F[gPTE ADDR]< MEM LIMIT ?
PDT[i1].PT[i2].F[sPTE ADDR] := PDT[i1].PT[i2].F[gPTE ADDR];
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Table 1. ShadowVisor verification with increasing PT size. * means out of 1GB memory limit;
Vars, Clauses = # of CNF variables and clauses generated by CBMC.

PT-Size Time(s) Vars Clauses

1 0.07 1816 3649
10 3.48 93503 199752
20 37.8 360275 775462
30 * * *

Verification of our initial model of ShadowVisor detected this vulnerability. The vul-
nerability exists in ShadowVisor’s design and C source code implementation. We were
able to fix the vulnerability by adding appropriate checks and verify that the resulting
model is indeed secure. We present our verification of PGCL+ models below.

Both the vulnerable and repaired ShadowVisor programs are expressible as a PGCL+

program, the initial state is expressible in USF, and the negation of the address sepa-
ration property is expressible in GSF. Therefore, Theorem 1 applies and we need only
verify the system with one table at each depth with one entry per table (i.e., a parameter
of (1,1)).

Effectiveness of Small Model Theorems. For a concrete evaluation of the effective-
ness of our small model theorems, we verify ShadowVisor with increasing sizes of page
tables at both levels. More specifically, we created models of ShadowVisor in C (note
that a guarded command in PGCL+ is expressible in C) for various PT sizes (the sizes
at both PT levels were kept equal).

We verify two properties using CBMC1, a state-of-the-art model checker for C:

Basis. The initial state of the system ensures separation;

Inductive step. If the system started in a state that ensures separation, executing any
of the four guarded commands in the ShadowVisor model preserves separation.

By induction, this guarantees that ShadowVisor ensures separation perpetually. Our
results are shown in Table 1. Note that verification for size 1 (which is sound and com-
plete due to our small model theorem) is quick, while it blows up for even page tables of
size 30 (an unrealistically small number, implying that brute-force verification of Shad-
owVisor is intractable). The tools and benchmarks for our experiments are available at
https://www.cs.cmu.edu/~jfrankli/post12/vrfy-expr.tgz.

5.2 Xen

Next, we analyzed address separation in a model of the Xen hypervisor, built from the
source code of Xen version 3.0.3. Xen manages multiple virtual machines (VMs), each
running a guest OS instance with multiple processes (i.e., contexts). Xen maintains a
separate sPT for each context, and uses context caching (cf. Sec. 3).

1 www.cprover.org/cbmc

https://www.cs.cmu.edu/~jfrankli/post12/vrfy-expr.tgz
www.cprover.org/cbmc
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We model Xen’s context cache using a nested parametric array of depth 4. At the
top level, row P1[ii] (denoted VM[i1] below) contains an entry for a particular VM’s
guest. At the next level, the array P1[i1].P2 (denoted VM[i1].Ctx below) contains an
entry for each context of the i1-th guest. Next, the array P1[i1].P2[i2].P3 (denoted
VM[i1].Ctx[i2].PDT) represents the PDT of the i2-th context of the i1-th guest OS. Fi-
nally, the array P1[i1].P2[i2].P3[i3].P4 (denoted VM[i1].Ctx[i2].PDT[i3].PT) is the PT
of the i3-th page directory table entry of the i2-th context of the i1-th guest.

Our separation property requires that the destination addresses accessible by a guest
OS are less than a pre-defined constant MEM LIMIT. We consider a natural extension of
this separation property for a context caching system with multiple VMs that states that
all VMs and contexts should be separate from VMM protected memory. This security
property is stated in the following USF formula:

ϕsep � ∀i1,i2,i3,i4�
(VM[i1].Ctx[i2].PDT[i3].F[sPRESENT]∧
VM[i1].Ctx[i2].PDT[i3].F[sPSE]⇒
(VM[i1].Ctx[i2].PDT[i3].F[sADDR]< MEM LIMIT−MPS PDT))∧
(VM[i1].Ctx[i2].PDT[i3].F[sPRESENT]∧
¬VM[i1].Ctx[i2].PDT[i3].F[sPSE]⇒
(VM[i1].Ctx[i2].PDT[i3].PT[i4].F[sADDR]< MEM LIMIT−MPS PT))

We model Xen as starting in an initial state where all entries of all of the shadow page
directory tables and shadow page tables are marked as not present. This is expressed by
the following USF formula:

Init � ∀i1,i2,i3,i4 � ¬VM[i1].Ctx[i2].PDT[i3].F[sPRESENT]∧
¬VM[i1].Ctx[i2].PDT[i3].PT[i4].F[sPRESENT]

We define the Xen address translation system using context caching in PGCL+ as fol-
lows:

XenAddressTrans ≡ shadow page fault

‖ shadow invalidate page

‖ context caching new context

‖ Xen adversary

The commands shadow page fault and shadow invalidate page generalize their
counterparts for ShadowVisor over multiple VMs and contexts, and are omitted. The
following PGCL+ guarded command implements context caching new context .

context caching new context ≡
for i1 do

for i2 do

for i3 do

∗ ? VM[i1].Ctx[i2].PDT[i3].F[sPDE] := 0;

Note that, to model VMs and process scheduling soundly, we assume non-deterministic
context switching. Hence, we extend ShadowVisor’s shadow new context to non-
deterministically clear contexts.
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Table 2. Xen verification with increasing PT size. * means out of 1GB memory limit; Vars,
Clauses = # of CNF variables and clauses generated by CBMC.

PT-Size Time(s) Vars Clauses

1 0.41 5726 13490
3 2.38 34192 80802
6 12.07 121206 286650
9 * * *

Finally, we consider an adversary model where the the attacker has control over an
unbounded but finite number of VMs, each with a unbounded but finite number of
contexts. This adversary is therefore expressed as follows:

Xen adversary ≡
for i1 do

for i2 do

for i3 do

VM[i1].Ctx[i2].PDT[i3].F[gPDE] := ∗;
for i4 do

VM[i1].Ctx[i2].PDT[i3].PT[i4].F[gPTE] := ∗;

Our Xen model is clearly expressible in PGCL+, its initial state is expressible in USF,
and the negation of the address separation property is expressible in GSF. Therefore,
Theorem 1 applies and we need only verify the system with one table at each depth
with one entry per table (i.e., a system parameter of (1,1,1,1)).

Effectiveness of Small Model Theorems. As in the case of ShadowVisor we verify
the Xen model with increasing (but equal) sizes of page tables at both levels, and 2
VMs and 2 contexts per VM. We verify the same two properties as for ShadowVisor
to inductively prove that Xen ensures separation perpetually. Our results are shown in
Table 2. Note again that verification for size 1 (which is sound and complete due to
our small model theorem) is quick, while it blows up for even page tables of size 9
(an unrealistically small number, implying that brute-force verification of Xen is also
intractable).

6 Conclusion

Verifying separation properties of address translation mechanisms of operating systems,
hypervisors, and virtual machine monitors in the presence of adversaries is an important
challenge toward developing secure systems. A significant factor behind the complexity
of this challenge is that the data structures over which the translation mechanisms oper-
ate have both unbounded size and unbounded nesting depth. We developed a parametric
verification technique to address this challenge. Our approach involves a new modeling
language and specification mechanism to model and verify such parametric systems.
We applied this methodology to verify that the designs of two hypervisors – Shad-
owVisor and Xen – correctly enforce the expected security properties in the presence
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of adversaries. Extending our approach to operate directly on system implementations,
and relaxing the restrictions of row independence and hierarchical row uniformity, are
areas for further investigation.
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Abstract. We present a novel, simple technique for proving secrecy
properties for security protocols that manipulate lists of unbounded
length, for an unbounded number of sessions. More specifically, our tech-
nique relies on the Horn clause approach used in the automatic verifier
ProVerif: we show that if a protocol is proven secure by our technique
with lists of length one, then it is secure for lists of unbounded length.
Interestingly, this theorem relies on approximations made by our verifi-
cation technique: in general, secrecy for lists of length one does not imply
secrecy for lists of unbounded length. Our result can be used in partic-
ular to prove secrecy properties for group protocols with an unbounded
number of participants and for some XML protocols (web services) with
ProVerif.

1 Introduction

Security protocols are protocols that rely on cryptographic primitives such as
encryption and signatures for securing communication between several parties.
They aim at ensuring security properties such as secrecy or authentication. His-
torically, attacks were often found against protocols that were thought correct.
Furthermore, security flaws cannot be detected by testing since they appear only
in the presence of an attacker. The confidence in these protocols can then be in-
creased by a formal analysis that proves the desired security properties. To ease
formal verification, one often uses the symbolic, so-called Dolev-Yao model [8],
which abstracts from the details of cryptographic primitives and considers mes-
sages as terms. In this work, we also rely on this model.

The formal verification of security protocols with fixed-size data structures
has been extensively studied. However, the formal verification of protocols that
manipulate more complex data structures, such as lists, has been less studied
and presents additional difficulties: these complex data structures add another
cause of undecidability.

In this work, we present a technique for proving secrecy properties for security
protocols that manipulate lists of unbounded length. This technique is based on
the Horn clause approach used in the automatic verifier ProVerif [1,4]. ProVerif
is an automatic protocol verifier that takes as input a protocol, translates it into
a representation in Horn clauses, and uses a resolution algorithm to determine
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whether a fact is derivable from the clauses. One can then infer security proper-
ties of the protocol. For instance, we use a fact att(M) to mean that the attacker
may have the message M . If att(s) is not derivable from the clauses, then s is
secret. The main goal of this approach is to prove security properties of protocols
without bounding the number of sessions of the protocol.

Like other protocol verifiers, ProVerif can analyze protocols with lists if we
fix the lengths of the lists a priori. However, if the protocol is verified only for
some lengths, attacks may exist for other values. So our goal is to prove the
protocols for lists of any length. To reach this goal, we extend the language
of Horn clauses, introducing a new kind of clauses, generalized Horn clauses,
to be able to represent lists of any length. We consider a class of protocols
that manipulate list elements in a uniform way. Because of this uniformity, one
might intuitively think that secrecy for lists of length one implies secrecy for
lists of any length. We show that this intuition is not exactly true: in general,
secrecy for lists of length one does not imply secrecy for lists of any length, as
demonstrated in Sect. 4.2. However, we show that, for a certain class of Horn
clauses, if secrecy is proved by our Horn clause technique for lists of length
one, then secrecy also holds for lists of unbounded length. This result relies on
the sound abstractions made by the translation into Horn clauses. Additionally,
we provide an approximation algorithm that can transform generalized Horn
clauses into clauses of the class on which our result holds. All facts derivable
from the initial clauses are also derivable from the clauses generated by the
approximation algorithm, so that we can prove secrecy on the latter clauses,
and conclude secrecy for the initial clauses. Our result therefore provides an
easy way of obtaining a strong security guarantee: we prove using ProVerif that
att(s) is not derivable from the clauses for lists of length one, and we can then
immediately conclude that secrecy holds for lists of unbounded length, with an
unbounded number of sessions.

Applications of our results include in particular proving secrecy properties
for some group protocols that manipulate unbounded lists, with an unbounded
number of participants. In this paper, we focus mainly on group protocols and
illustrate our work on the Asokan-Ginzboorg protocol [2]. We prove secrecy of
the session key exchanged in this protocol by verifying with ProVerif its version
with lists of length one and the size of the group equal to one. Another possi-
ble application is the treatment of XML protocols such as web services, XML
documents being modeled using possibly nested lists.

Related Work. The first approach considered for proving protocols with recursive
data structures was interactive theorem proving: Paulson [17] and Bryans et
al [5] study a recursive authentication protocol for an unbounded number of
participants, using Isabelle/HOL for [17], and rank functions and PVS for [5].
However, this approach requires considerable human effort.

Meadows et al [15] used the NRL protocol analyzer (NPA), based on a com-
bination of model checking and theorem-proving techniques, to verify the Group
Domain of Interpretation (GDOI) protocol suite. NPA could not handle the in-
finite data structures required for modeling general group protocols, so a single
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key was used instead of a key hierarchy. Several problems including type flaw
attacks were found in the protocol and fixed in later versions of GDOI. The
early verification of the A.GDH-2 protocol using NPA [14] seems to have missed
attacks [18], although the tool supports the Diffie-Hellman exponentiation [16].

Steel and Bundy [20] have used CORAL, a tool for finding counterexamples
to incorrect inductive conjectures, to model protocols for group key agreement
and group key management, without any restrictions on the scenario. They have
discovered new attacks against several group protocols, but cannot prove that
protocols are correct.

Kremer, Mercier, and Treinen [11] verify secrecy for group protocols with mod-
ular exponentiation and XOR, for any number of participants and an unbounded
number of sessions, but only for a passive adversary (eavesdropper).

Several works consider the case of a bounded number of sessions. Pereira and
Quisquater [18] discovered several attacks on the CLIQUES protocol suite [21],
which extends theDiffie-Hellman key agreementmethod to support dynamic group
operations (A-GDH). They converted the problem of the verification of security
properties to the resolution of linear equation systems. In [19], they proved a first
generic insecurity result for authentication protocols showing that it is impossi-
ble to design a correct authenticated group key agreement protocol based on the
A-GDH. Truderung [22] showed a decidability result (in NEXPTIME) for secrecy
in recursive protocols. This result was extended to a class of recursive protocols
with XOR [13] in 3-NEXPTIME. Chridi et al [6,7] present an extension of the
constraint-based approach in symbolic protocol verification to handle a class of
protocols (Well-Tagged protocols with Autonomous keys) with unbounded lists
in messages. They prove that the insecurity problem for Well-Tagged protocols
with Autonomous keys is decidable for a bounded number of sessions.

We consider a class of protocols that includes the one of [6,7] but, instead of
proving decidability for a bounded number of sessions, we provide a technique
that can prove protocols for an unbounded number of sessions and any number
of protocol participants, using abstractions.

Outline. The next section recalls the technique used by ProVerif. In Sect. 3,
we formally define generalized Horn clauses, and their semantics by giving their
translation into Horn clauses. Additionally, we introduce our running exam-
ple and motivate the introduction of this new type of clauses. In Sect. 4, we
show our main theorem: for a class of generalized Horn clauses, if att(s) is
not derivable for lists of length one, then it is also not derivable for lists of
any length. In Sect. 5, we provide an approximation algorithm for transforming
generalized Horn clauses into clauses that satisfy the hypothesis of our main
theorem. The proofs can be found in the long version of the paper available at
http://www.di.ens.fr/~paiola/publications/PaiolaBlanchetPOST12.html.

2 A Reminder on ProVerif

ProVerif translates the initial protocol into a set of Horn clauses. The syntax
of these clauses is defined in Fig. 1. The patterns represent messages that are

http://www.di.ens.fr/~paiola/publications/PaiolaBlanchetPOST12.html
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p ::= patterns
x, y, z, v, w variable
a[p1, . . . , pn] name
f(p1, . . . , pn) constructor application

F ::= att(p) facts

R ::= F1 ∧ · · · ∧ Fn ⇒ F Horn clause

Fig. 1. Syntax of Horn clauses

exchanged between participants of the protocol. A variable can represent any
pattern. Names represent atomic values, such as keys and nonces. Each par-
ticipant can create new names. Instead of creating a fresh name at each run
of the protocol, the created names are considered as functions of the messages
previously received by the principal that creates it, represented by the pattern
a[p1, . . . , pn]. Hence names are distinguished only when they are created after
receiving different messages. As shown in, e.g., [1], this is a sound approximation.
When a name has no arguments, we write a instead of a[ ]. We use v, w, x, y, z
for variables and other identifiers a, b, c, e, L, pw, r, s, . . . for names.

The fact att(p) means that the attacker may have the pattern (message) p. A
clause F1∧· · ·∧Fn ⇒ F means that if all facts Fi are true then the conclusion F
is also true. We use R for a clause, H for its hypothesis, and C for its conclusion.
The hypothesis of a clause is considered as a multiset of facts. A clause with no
hypothesis ⇒ F is written simply F .

Cryptographic primitives are represented by functions and perfect cryptogra-
phy is assumed. There are two kinds of functions: constructors and destructors.
A constructor f is a function that explicitly appears in the patterns that rep-
resent messages and builds new patterns of the form f(p1, . . . , pn). Destructors
manipulate patterns. A destructor g is defined by a set def (g) of rewrite rules of
the form g(p1, . . . , pn) → p where p1, . . . , pn, p are patterns with only variables
and constructors and the variables of p appear in p1, . . . , pn. Using constructors
and destructors, one can represent data structures and cryptographic opera-
tions. For instance, senc(x, y) is the constructor that represents the symmetric
key encryption of the message x under the key y. The corresponding destructor
sdec(x′, y) returns the decryption of x′ if x′ is a message encrypted under y. The
rewrite rule that defines sdec is

sdec(senc(x, y), y)→ x.

A protocol is represented by three sets of Horn clauses:

1. initial knowledge of the attacker: we have a fact att(p) for each p initially
known by the attacker.

2. abilities of the attacker:
– att(a)
– for each constructor f of arity n:

att(x1) ∧ · · · ∧ att(xn)⇒ att(f(x1, . . . xn))
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– for each destructor g,
for each rule g(p1, . . . , pn)→ p in def (g):
att(p1) ∧ · · · ∧ att(pn)⇒ att(p)

The first clause represents the ability of the attacker to create fresh names a:
all fresh names that the adversary may create are represented by the single
name a. The other clauses mean that if the attacker has some messages, then
he can apply constructors and destructors to them.

3. the protocol itself: for each message p of the protocol sent by agent A, we
create the clause att(p1)∧· · ·∧att(pn)⇒ att(p), where p1, . . . , pn are patterns
representing the messages received by A before sending message p. Indeed,
if the attacker has p1, . . . , pn, then it can send them to A and intercept A’s
reply p.

This representation of protocols by Horn clauses is approximate, in particular
because Horn clauses that represent the protocol itself can be applied any number
of times instead of exactly once per session. However, it is sound: if att(p) cannot
be derived from the clauses, then the protocol preserves the secrecy of p. (This is
proved by [1, Theorem 7.2.3] when the clauses are generated from a pi calculus
model of the protocol.)

ProVerif determines whether att(p) is derivable from the clauses using resolu-
tion with free selection [3]: we combine pairs of clauses by resolution; the literals
upon which we perform resolution are chosen by a selection function. Next, we
define when a given fact is derivable from a given set of clauses.

Definition 1 (Subsumption). We say that R1 = H1 ⇒ C1 subsumes R2 =
H2 ⇒ C2, and we write R1  R2, if and only if there exists a substitution σ
such that σC1 = C2 and σH1 ⊆ H2 (multiset inclusion).

We say that R1 subsumes R2 when R2 can be obtained by adding hypotheses
to a particular instance of R1. In this case, all facts that can be derived by R2

can also be derived by R1, so R2 can be eliminated.

Definition 2 (Derivability). Let F be a
closed fact, that is, a fact without variable. Let
R be a set of clauses. F is derivable from R if
and only if there exists a derivation of F from
R, that is, a finite tree defined as follows:

1. Its nodes (except the root) are labeled by
clauses R ∈ R;

2. Its edges are labeled by closed facts;
3. If the tree contains a node labeled R with

one incoming edge labeled by F0 and n out-
going edges labeled by F1, . . . , Fn, then R  
F1 ∧ · · · ∧ Fn ⇒ F0.

4. The root has one outgoing edge labeled by
F . The unique son of the root is named the
subroot.

subroot

root

FnF1

. . . . . .. . .

. . .
. . .

. . .

η′

η

R′

R

F

F0

Fig. 2. Derivation of F
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This definition is illustrated in Fig. 2. In a derivation, if there is a node labeled
by R with one incoming edge labeled by F0 and n outgoing edges F1, . . . , Fn

then F0 can be derived by F1, . . . , Fn by the clause R. Therefore there exists a
derivation of F from R if and only if F can be derived from clauses in R (in
classical logic).

3 Abstract Representation of Protocols by Generalized
Horn Clauses

This section is devoted to the abstract representation of protocols by generalized
Horn clauses. After introducing a running example and motivating our choices,
we give the syntax and semantics of generalized Horn clauses.

3.1 Running Example

As a running example, we use a version of the Asokan-Ginzboorg protocol [2] for
key agreement, also used in [7,20]. Let the set of players be {ai, i = 1, . . . ,N }
for N ≥ 1 and L be the leader. The protocol describes the establishment of a
session key between the leader and the other N participants.

(1) L→ ALL : (L, {|e|}pw)
(2) ai → L : (ai, {|(ri, si)|}e)
(3) L→ ai : {|(s1, . . . , sN , s′)|}ri
(4) ai → L : (ai, {|(si, h(s1, . . . , sN , s′))|}K),

for some i, where K = f(s1, . . . , sN , s′)

At the beginning, the participants share the knowledge of a password pw and
of two N +1-input hash functions f and h. (In this paper, we ignore dictionary
attacks against pw and consider pw as a strong key.) First, the leader sends to
all other participants his identity paired with a fresh key e encrypted with the
password pw. Each participant ai for i ∈ {1, . . . ,N } decrypts {|e|}pw and then
creates a fresh key ri and a fresh nonce si which will be his contribution to
the final session key. Then he sends {|(ri, si)|}e paired with his identity. When
L receives this message, he decrypts it and assumes that it has been created
by ai. After receiving all N messages, the leader creates his contribution s′ to
the final key and sends to each participant ai for i ∈ {1, . . . ,N } the list of
all contributions encrypted with the key ri that ai previously sent. If step 3
is completed successfully, each participant can compute the session key K =
f(s1, . . . , sN , s′). In the end, the leader randomly picks one of the other players
and asks him for step 4.

3.2 Need for Generalizing Horn Clauses

We would like to model the example protocol of Sect. 3.1 by Horn clauses and
use ProVerif to verify it. Since we consider a parametric group size, we encounter
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several problems. First, we have to deal with lists whose length is not fixed but
is the size N of the group, such as s1, . . . , sN in message 3 of the example. Next,
we need conjunctions of N facts (and N is again not fixed) to represent that
some agents receive one message from each group member. For example, when
translating message 3 into Horn clauses, the leader L expects messages 2 of
the form (ai, {|(vi, wi)|}e) from each ai. (The leader cannot verify the incoming
values of ri, si so they become variables vi, wi.) Then L replies with message 3
{|(w1, . . . , wN , s′)|}vi where s′ is a fresh name generated by L, modeled as a
function of the previously received messages s′[v1, w1, . . . , vN , wN ]. The attacker
can send the incoming messages and intercept L’s reply, so we find the clause

att((a1, senc((v1, w1), e))) ∧ · · · ∧ att((aN , senc((vN , wN ), e)))⇒
att(senc((w1, . . . , wN , s′[v1, w1, . . . , vN , wN ]), vi)).

(1)

where senc is the encryption function. We solve those two problems by adding
two new constructs to the syntax of Horn clauses: list(i ≤ N , pi) for the list of
elements pi with index i in the set {1, . . . ,N }, that is, list(i ≤ N , pi) stands for
〈p1, . . . , pN 〉 (inspired by the mpair construct of [7]) and

∧
i1≤N ,...,ih≤N F for

the conjunction of facts F with indices i1, . . . , ih in {1, . . . ,N }.

3.3 Syntax

This section formally defines the syntax and semantics of generalized Horn
clauses.

pG, s, t ::= patterns
xi1,...,ih variable (h ≥ 0)
f(pG1 , . . . , p

G
l ) function application

ai[p
G
1 , . . . , p

G
l ] indexed names

list(i ≤ M,pG) list constructor

FG ::=
∧

i1≤M1,...,ih≤Mh
att(pG) facts

RG ::= FG
1 ∧ · · · ∧ FG

n ⇒ att(pG) generalized Horn clause

Fig. 3. Syntax of our protocol representation

The syntax of these new clauses is defined in Fig. 3. The patterns pG that
represent messages are enriched with several new constructs. The variables may
have indices xi1,...,ih . The pattern for function application f(pG1 , . . . , p

G
l ) includes

not only constructor application but also names a[pG1 , . . . , p
G
l ] where a is a name

without index. The indexed name ai[p
G
1 , . . . , p

G
l ] represents a name created by

the group member number i. We added a particular constructor list(i ≤M,pG)
to represent lists of length M , where M is an unknown bound.

In the Asokan-Ginzboorg protocol, we can write, for example, at message
3: senc((list(j ≤ N , sj), s

′), ri) for senc((s1, . . . , sN , s′), ri). The last element s′
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is not included in the list list(j ≤ N , sj), to distinguish s′ that has just been
created by the leader from si with i = 1, . . . ,N that has just been received by
him: s1, . . . , sN are treated in a uniform way while s′ is treated differently.

We extend facts to model the possibility of having a conjunction of facts de-
pending on indices, so that the syntax for facts becomes

∧
i1≤M1,...,ih≤Mh

att(pG).

For example, intuitively,
∧

i≤M att(pG) represents att(pG{i → 1}) ∧ · · · ∧
att(pG{i → M}), where pG{i → i′} denotes pG in which i has been replaced
with i′. The conjunction

∧
i1≤M1,...,ih≤Mh

with h = 0 is omitted: the fact is then

simply att(pG).
The generalized Horn clause FG

1 ∧· · ·∧FG
n ⇒ att(pG) means that, if the facts

FG
1 , . . . , FG

n hold, then the fact att(pG) also holds. The conclusion of a clause
does not contain a conjunction

∧
i1≤M1,...,ih≤Mh

: we can simply leave the indices

of att(pG) free to mean that att(pG) can be concluded for any value of these
indices.

3.4 Representation of the Protocol

The representation of the abilities of the attacker includes the clauses given in
Sect. 2. For our running example, att(ai) and att(L) represent that the attacker
initially knows ai and L, and the clauses

att(a)

att(x) ∧ att(y)⇒ att(senc(x, y)) att(senc(x, y)) ∧ att(y)⇒ att(x)

att(x)⇒ att(f(x)) att(x)⇒ att(h(x))

att(x) ∧ att(y)⇒ att((x, y)) att((x, y))⇒ att(x) att((x, y))⇒ att(y)

represent that the attacker can create fresh names, encrypt and decrypt mes-
sages, apply hash functions, compose and decompose pairs.

In addition, we have clauses for list , which generalize clauses for pairs:∧
i≤M att(xi)⇒ att(list(j ≤M,xj)) (2)

att(list(j ≤M,xj))⇒ att(xi) (3)

Let us now give the clauses that represent the protocol itself. We suppose that
each principal always plays the same role in the protocol; we could build a more
complex model in which the same principal can play several roles by adding
clauses. The leader L sends the first message (L, {|e|}pw) and the attacker inter-
cepts it, so we have the fact:

att((L, senc(e, pw))).

Each agent ai with i = 1, . . . ,N expects a message 1 of the form (L, {|y|}pw). (ai
cannot verify the value of the key e, so it becomes a variable y.) Agent ai replies
with message 2: (ai, {|(ri, si)|}y), where the new names ri and si are encoded
as functions of the key y just received. If the attacker sends the first message
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(L, {|y|}pw) to ai, ai replies with (ai, {|(ri, si)|}y), and the attacker can intercept
this reply, so we obtain the clause:

att((L, senc(y, pw)))⇒ att((ai, senc((ri[y], si[y]), y))) (4)

For the output of message 3, the leader replies with {|(w1, . . . , wN , s′)|}vi where s′
is a fresh name generated by L modeled as a function of the previously received
messages s′[v1, w1, . . . , vN , wN ]: the clause (1) was already given in Sect. 3.2; we
adapt it using list and conjunctions over the set of participants:∧

j≤N att((aj , senc((vj , wj), e)))⇒
att(senc((list(j ≤ N , wj), s

′[list(j ≤ N , (vj, wj))]), vi))
(5)

Finally, if ai has received a message 1 of the form (L, {|y|}pw) and a message 3
of the form {|(z1, . . . , zN , z′)|}ri[y], encoded as {|(list(j ≤ N , zj), z

′)|}ri[y],1 then
ai computes the session key K = f((list(j ≤ N , zj), z

′)) and one ai sends to the
leader message 4: (ai, {|(si[y], h((list(j ≤ N , zj), z

′)))|}K).

att((L, senc(y, pw))) ∧ att(senc((list(j ≤ N , zj), z
′), ri[y]))⇒

att((ai, senc((si[y], h((list(j ≤ N , zj), z
′))),K)))

where K = f((list(j ≤ N , zj), z
′))

(6)

We want to prove the secrecy of the session key K. However, this key depends on
data received by protocol participants, so we cannot simply test the derivability
of att(K). We can use the following trick: to test the secrecy of the key K that
participant ai has, we consider that ai sends the encryption {|s′′|}K of a secret s′′

under K. If K is secret, the adversary will not be able to decrypt the message,
so s′′ will remain secret. Therefore, we add the clause

att(senc((list(j ≤ N , zj), z
′), ri[y]))⇒

att(senc(s′′, f((list(j ≤ N , zj), z
′))))

to model the output of {|s′′|}K , and we test the derivability of att(s′′). We have
also used a similar clause to prove the secrecy of the key K that L has.

3.5 Type System for the New Clauses

In Fig. 4, we define a simple type system for the generalized Horn clauses. The
goal of this type system is to guarantee that all variables use indices that vary

1 In the protocol, the participant ai can check whether the component zi of the list
is his own contribution si[y], but cannot check the other components. Our represen-
tation of lists does not allow us to model such a test: in fact, we cannot substitute
ai directly because, in the construct for lists list(j ≤ N , zj), all elements zj need to
have the same form. Moreover, we have built examples of protocols with such tests,
for which our result does not hold: intuitively, the test breaks the uniform treatment
of the elements of lists, so proving secrecy by the Horn clause technique for lists
of length one does not imply secrecy for lists of unbounded length. We shall prove
secrecy without the test on zi; this implies a fortiori secrecy with this test, because
the clause without test subsumes the one with the test. In general, removing these
tests may obviously lead to false attacks.
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i : [1,M ] ∈ Γ

Γ 	 i : [1,M ]
(EnvIndex)

x : [1,M1]× · · · × [1,Mh] ∈ Γ

Γ 	 x : [1,M1]× · · · × [1,Mh]
(EnvVar)

Γ 	 x : [1,M1]× · · · × [1,Mh] Γ 	 i1 : [1,M1] . . . Γ 	 ih : [1,Mh]

Γ 	 xi1,...,ih

(Var)

Γ 	 pG1 . . . Γ 	 pGh
Γ 	 f(pG1 , . . . , p

G
h )

(Fun)

Γ 	 pG1 . . . Γ 	 pGh Γ 	 i : [1, N ]

Γ 	 ai[pG1 , . . . , p
G
h ]

(Name)
Γ, i : [1,M ] 	 pG

Γ 	 list(i ≤ M,pG)
(List)

Γ, i1 : [1,M1], . . . , ih : [1,Mh] 	 pG

Γ 	
∧

i1≤M1,...,ih≤Mh
att(pG)

(Fact)

Γ 	 FG
1 . . . Γ 	 FG

n Γ 	 FG

Γ 	 FG
1 ∧ · · · ∧ FG

n ⇒ FG
(Clause)

Fig. 4. Type system for generalized Horn clauses

in the appropriate interval. We shall see in Sect. 4 that this type system is also
very helpful in order to establish our main result.

Definition 3. An index i is bound if:

– it appears as an index of a conjunction defining a fact, so, for instance, in
the fact

∧
i1≤M1,...,ih≤Mh

att(pG), i1, . . . , ih are bound in att(pG) .
– it appears as an index for a list constructor, that is, in the pattern list(i ≤

M,pG), i is bound in pG.

Indices that are not bound are free.

For simplicity, we suppose that the bound indices of clauses have pairwise distinct
names, and names distinct from the names of free indices. This can easily be
guaranteed by renaming the bound indices if needed.

In the type system, the type environment Γ is a list of type declarations:

– i : [1,M ] means that i is of type [1,M ], that is, intuitively, the value of index
i can vary between 1 and the value of the bound M .

– x : [1,M1]× · · ·× [1,Mh] means that the variable x expects indices of types
[1,M1], . . . , [1,Mh].

The type system defines the judgments:

– Γ � i : [1,M ], which means that i has type [1,M ] in environment Γ , by rule
(EnvIndex);

– Γ � x : [1,M1]× · · · × [1,Mh], which means that x expects indices of types
[1,M1], . . . , [1,Mh] according to environment Γ , by rule (EnvVar);

– Γ � pG, Γ � FG, Γ � RG, which mean that pG, FG, RG, respectively, are
well typed in environment Γ .
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Most type rules are straightforward. For instance, the rule (Var) means that
xi1,...,ih is well typed when the types expected by x for its indices match the
types of i1, . . . , ih. The rule (Name) deserves an additional explanation: we have
no information in Γ to set the type of the index of name a, and hence the index
of a can have any type. A priori, it is obviously expected that the index of a
certain name a always has the same type. However, the additional freedom given
by the type rule will be useful in the rest of the paper: the transformations of
Sect. 5 can create clauses in which the same name a has indices of different types.
The formal meaning of such clauses can be defined by assuming that the name
a exists for indices up to the value of the largest bound.

It is easy to verify that the clauses of Sect. 3.4 are well typed in our type
system. Clause (2) is well typed in the environment x : [1,M ], (3) in the envi-
ronment x : [1,M ], i : [1,M ], and the other clauses in the environment in which
all free indices have type [1, N ] and the variables expect indices of type [1, N ].

3.6 Translation from Generalized Horn Clauses to Horn Clauses

A generalized Horn clause represents several Horn clauses: for each value of the
bounds M and of the free indices i that occur in a generalized Horn clause
RG, RG corresponds to a certain Horn clause. This section formally defines this
correspondence.

p ::= patterns
xı1,...,ıh variable
aı[p1, . . . , ph] name
f(p1, . . . , ph) constructor application
〈p1, . . . , ph〉 list

F ::= att(p) facts

R ::= F 1 ∧ . . . ∧ Fn ⇒ F Horn clauses

Fig. 5. Syntax of Horn clauses

The syntax of Horn clauses obtained by translation of generalized Horn clauses
is given in Fig. 5. This syntax is similar to that of initial Horn clauses (Fig. 1)
except that variables and names can now have indices ı, which are integer values,
and that we include a pattern 〈p1, . . . , ph〉 for representing lists (which will be
generated by translation of list).

Definition 4. Given a generalized Horn clause RG well typed in Γ , an envi-
ronment T for RG is a function that associates to each bound M a fixed integer
MT and to each free index i that appears in RG, an index iT ∈ {1, . . . ,MT}, if
Γ � i : [1,M ].

Given an environment T and values ı1, . . . , ıh, we write T [i1 → ı1, . . . , ih → ıh]
for the environment that associates to indices i1, . . . , ih the values ı1, . . . , ıh
respectively and that maps all other indices as in T .
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Given an environment T , a generalized Horn clause RG is translated into the
standard Horn clause RGT defined next. We denote respectively pGT , FGT , . . .
the translation of pG, FG, . . . using the environment T .

The translation of a pattern pG is defined as follows:

– (xi1,...,ih)
T = xiT1 ,...,iTh

.

– f(pG1 , . . . , p
G
l )

T = f(pGT
1 , . . . , pGT

l ).
– ai[p

G
1 , . . . , p

G
l ]

T = aiT [p
GT
1 , . . . , pGT

l ].

– list(i ≤M,pG)T = 〈pGT [i�→1], . . . , pGT [i�→MT ]〉.

The translation of list is a list; we stress that this translation uses a list symbol
〈. . .〉 different from the tuple symbol (. . .): list is the only construct that can
introduce the list symbol 〈. . .〉. This is important to make sure that confusions
between tuples that may occur in the protocol and list do not occur for particular
list lengths. In the implementation of the protocol, one must also make sure to
use distinct encodings for list and for tuples.

The translation of a fact FG =
∧

i1≤M1,...,ih≤Mh
att(pG) is

FGT = att(p1) ∧ . . . ∧ att(pk)

where {p1, . . . , pk} = {pGT ′ | T ′ = T [i1 → ı1, . . . , ih → ıh] where ıj ∈
{1, . . . ,MT

j } for all j in {1, . . . , h}}, and (FG
1 ∧ · · · ∧FG

n )T = FGT
1 ∧ · · · ∧FGT

n .

Finally, we define the translation of the generalized Horn clause RG = HG ⇒
att(pG) as RGT = HGT ⇒ att(pGT ).

For instance, the translation of the clause (5) in the environment T = {N →
1, i → 1} is att((a1, senc((v1, w1), e)))⇒ att(senc((〈w1〉, s′[〈(v1, w1)〉]), v1)).

When RG is a set of generalized Horn clauses, we define RGT = {RGT | RG ∈
RG, T is an environment for RG}. In terms of abstract interpretation, the sets
of generalized Horn clauses ordered by inclusion constitute the abstract domain,
the sets of Horn clauses ordered by inclusion the concrete domain, and RGT

is the concretization of RG. The set RGT includes clauses translated for any
values of the bounds. In our running example, for instance, this allows one to
consider several sessions of the protocol that have different group sizes N , and
interactions between such sessions.

4 From Any Length to Length One

In this section, we define a mapping from lists of any length to lists of length
one, and show that derivability for lists of any length implies derivability for lists
of length one, for a particular class of Horn clauses.

4.1 Main Result

Given a generalized Horn clause RG, there exists only one environment T for
RG such that all bounds are equal to 1. Hence by now we use RG1 for the only
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possible translation of RG when all bounds are 1. We define RG1 = {RG1 |
RG ∈ RG}.

Next, we define a translation from clauses in which bounds can have any value,
following the syntax of Fig. 5, to clauses in which the bounds are fixed to 1:

I(p) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{x1,...,1︸︷︷︸
h

} if p = xı1,...,ıh

{f(p′1, . . . , p′h) | p′1 ∈ I(p1), . . . , p
′
h ∈ I(ph)} if p = f(p1, . . . , ph)

{a1[p′1, . . . , p′h] | p′1 ∈ I(p1), . . . , p
′
h ∈ I(ph)} if p = aı[p1, . . . , ph]

{〈p〉 | p ∈ I(p1) ∪ · · · ∪ I(ph)} if p = 〈p1, . . . , ph〉

This translation maps all indices of variables and names to 1. The translation of
a list is a list with one element, containing the translation of any element of the
initial list. Several choices are possible for the translation of a list; I(p) returns
the set of all possible patterns.

Given a fact F = att(p), its translation when the bounds are fixed to 1 is
I(att(p)) = {att(p) | p ∈ I(p)} Given a conjunction of facts F 1 ∧ · · · ∧ Fh, its
translation when the bounds are fixed to 1 is I(F 1∧· · ·∧F h) = I(F 1)∪· · ·∪I(F h).

We say that a term or fact is linear when it contains at most one occurrence
of each variable x (with any indices, so it cannot contain xi and xj for instance).
Finally, we can state the main theorem of our paper:

Theorem 1. Let RG be a set of generalized Horn clauses such that, for each
clause RG ∈ RG, RG is well typed, that is, there exists Γ such that Γ � RG,
with the following conditions:

1. the free indices of RG have pairwise distinct types in Γ ;

2. the conclusion of RG is linear and the bound indices in the conclusion of RG

have pairwise distinct bounds, and bounds different from the bounds of free
indices of RG in Γ .

For all facts F , if F is derivable from RGT , then for all F ∈ I(F ), F is derivable
from RG1 .

If we show that, for some F ∈ I(F ), F is not derivable from RG1 , then using this
theorem, F is not derivable from RGT . Suppose that we want to show that s is
secret in a protocol represented by the clauses RG. We show using for instance
ProVerif that att(s) is not derivable from RG1 , that is, we prove secrecy when
the bounds are all fixed to 1. By Theorem 1, we conclude that att(s) is not
derivable from RGT , so we obtain secrecy for any bounds.

Unfortunately, this theorem does not apply to all Horn clauses: Hypotheses 1
and 2 have to be satisfied. The clauses of our running example do not satisfy
these hypotheses. We shall see in Sect. 5 how to transform the clauses so that
they satisfy the required hypotheses.
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4.2 Examples

To illustrate why the hypotheses of the theorem are necessary, we provide ex-
amples for which the theorem does not hold because some hypotheses are not
satisfied. Consider the following protocol:

(1) A→ B : {(a, a)}k
(2) B → A : ({(b, b)}k, {s}f(a,b))
(3) A→ C : 〈{(a1, a′1)}k, . . . , {(aN , a′N )}k〉
(4) C → A : 〈〈f(a1, a′1), . . . , f(a1, a′N)〉, . . . , 〈f(aN , a′1), . . . , f(aN , a′N )〉〉

At the beginning, the participants A, B, C share a key k. A first sends to B
a fresh nonce a paired with itself and encrypted under k. When B receives
it, he creates a fresh nonce b, computes the hash f(a, b) and sends the pair
({(b, b)}k, {s}f(a,b)), where s is some secret. A can then decrypt {(b, b)}k, obtain
b, compute f(a, b), decrypt {s}f(a,b), and obtain s, but an adversary should be
unable to compute s. In the second part of the protocol (Messages 3 and 4), A
sends to C a list of N fresh pairs (ai, a

′
i) encrypted with k and C replies with

the matrix of the hashes f(ai, a
′
j).

Now, if an attacker sends 〈{(a, a)}k, {(b, b)}k〉 to C as Message 3, he obtains
f(a, b) by decomposition of the list 〈〈f(a, a), f(a, b)〉, 〈f(b, a), f(b, b)〉〉 and can
now decrypt {s}f(a,b) and obtain the secret s.

However, if we consider only lists of one element, there is no attack: the last
message consists of 〈〈f(a, a′)〉〉 if Message 3 was {(a, a′)}k, so the adversary
would need to have {(a, b)}k in order to obtain f(a, b).

The generalized Horn clause for Message 4 is:

att(list(i′ ≤ N, senc((xi′ , yi′), k)))⇒ att(list(i ≤ N, list(j ≤ N, f(xj , yi))))

In this clause, the Hypothesis 2 of Theorem 1 is not satisfied, because the bound
indices i and j have the same bound N . If we translate this clause for lists of
one element, we obtain

att(〈senc((x1, y1), k)〉)⇒ att(〈〈f(x1, y1)〉〉)

and with this clause (and other clauses representing this protocol), att(s) is not
derivable because att(f(a, b)) is not derivable, while with lists of length two, as we
previously showed, there is an attack: att(s) is derivable. This example confirms
that bound indices in the conclusion must have pairwise distinct bounds.

Similarly, we can define a group protocol between a participant B, a leader
L, and N group members Ai:

(1) L→ B : {(a, a)}p
(2) B → L : ({(b, b)}p, {s}f(a,b))
(3) L→ Ai : 〈{(a1, a′1)}p, . . . , {(aN , a′N)}p〉
(4) Ai → L : 〈f(a1, a′i), . . . , f(aN , a′i)〉

In this case, the generalized Horn clause for Message 4 is:

att(list(i′ ≤ N, senc((xi′ , yi′), p)))⇒ att(list(j ≤ N, f(xj , yi)))
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where again the Hypothesis 2 of Theorem 1 is not satisfied: the bound index j
has the same bound N as the free index i, because they index the same variable
x . As above, att(s) is derivable from the clauses for lists of length 2 but not
for lists of length one. There are similar examples regarding Hypothesis 1, for
instance with the clause

att(list(i′ ≤ N, senc((xi′ , yi′), p)))⇒ att(f(xj , yi))

in which the free indices i and j have the same type [1, N ], but it is more difficult
to find a concrete protocol that would generate such a clause. (Typically, the
protocol participants are indexed by a single index i, so clauses often have a
single free index.)

Next, we consider a different kind of example: for the following protocol, the
set of Horn clauses satisfies the hypothesis of Theorem 1, so we can apply the
theorem. However, the protocol preserves secrecy for lists of length one but not
for lists of unbounded length. This illustrates that the approximations made
in the translation to Horn clauses are key for our theorem to hold: att(s) is
derivable from the clauses, even for lists of length one. Let A and B be the two
participants of the protocol that share a key k. Let h be a hash function.

(1) A→ B : {e}k, (b1, b2), {s}h({b1}e,{b2}e)

(2) B → A : 〈x1, . . . , xM 〉
(3) A→ B : 〈{x1}e, . . . , {xM}e〉

A chooses a fresh key e and two random nonces b1, b2, and sends to B the message
{e}k, (b1, b2), {s}h({b1}e,{b2}e) where s is a secret. B obtains e by decryption,
computes the key h({b1}e, {b2}e), and obtains s by decrypting with this key.
Later, B sends a list 〈x1, . . . , xM 〉 and A returns that list with all components
encrypted under e. Clearly, if we consider this protocol for lists of length M ≥
2, there is an attack: the attacker can send to A the list 〈b1, b2, . . . 〉 and he
obtains at Message 3 the list 〈{b1}e, {b2}e, {. . . }e〉. He can then compute the
hash h({b1}e, {b2}e) and decrypt {s}h({b1}e,{b2}e) to obtain the secret s. However,
if we translate this protocol to lists of length one, we do not find the attack: the
attacker can only ask for 〈{b1}e〉 or 〈{b2}e〉, but cannot obtain both. For this
point to hold, it is important that the participants do not repeat the Messages 2-3
more than once for each session.

ProVerif finds an attack against this protocol (which is a false attack for lists
of length one): the abstraction done with the representation by Horn clauses
in fact allows the participants to repeat their messages more than once. The
translation of the protocol into clauses for lists of length one contains:

A sends the first message:

att((senc(e, k), (b1, b2), senc(s, h(senc(b1, e), senc(b2, e))))) (7)

A receives message 2 and sends message 3:

att(〈x〉)⇒ att(〈senc(x, e)〉) (8)

plus clauses for tuples, encryption, and the hash function h, where 〈·〉 is a unary
function such that att(〈x〉) ⇒ att(x) and att(x) ⇒ att(〈x〉). Now, if we query
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for the secrecy of s, ProVerif will find the attack: att(s) is derivable from these
clauses. Indeed, we get b1 and b2 from (7), then obtain senc(b1, e) and senc(b2, e)
by two applications of (8) (note that we apply this clause twice for the same e,
while the corresponding action can in fact be applied only once in the protocol it-
self), then compute h(senc(b1, e), senc(b2, e)), and finally obtain s by decrypting
senc(s, h(senc(b1, e), senc(b2, e))).

4.3 Proof of Theorem 1

This section sketches the proof of Theorem 1. Lemmas and details of the proof
can be found in the long version of the paper. The proof proceeds by building a
derivation of F from RG1 , from a derivation of F from RGT , by induction on
this derivation. Informally, the derivation of F fromRG1 is obtained by applying
I to the derivation of F from RGT . If F is derived by RGT = HGT ⇒ CGT , F is
an instance of CGT by a substitution σ: F = σCGT ; we show that any F ∈ I(F )
is an instance of CG1 by a substitution σ′ obtained from σ: F = σ′CG1 . Hence,
in order to derive F using RG1 = HG1 ⇒ CG1 , we need to derive σ′HG1 from
RG1 , knowing a derivation of σHGT from RGT . Informally, to show that this
is possible, we prove that σ′HG1 ⊆ I(σHGT ) and conclude by induction.

5 An Approximation Algorithm

In Sect. 3.4, we gave the representation of the Asokan-Ginzboorg protocol with
generalized Horn clauses. However, some of them do not satisfy the hypotheses
of Theorem 1. For example, the clause (6) does not have a linear conclusion and
the same bound appears twice in the conclusion.

5.1 Approximation Algorithm

Here we give an algorithm for transforming generalized Horn clauses into clauses
that satisfy the hypothesis of Theorem 1. We suppose that the initial set of
clauses RG satisfies:

Hypothesis 1. For each clause RG ∈ RG, RG is well-typed, that is, there exists
Γ such that Γ � RG, and each variable has indices of pairwise distinct types,
that is, if Γ � x : [1, N1]× . . . ,×[1, Nh], then N1, . . . , Nh are pairwise distinct.

This hypothesis on the initial clauses is often satisfied in practice. In particular, it
is satisfied by our running example, and it should generally be satisfied by group
protocols. Indeed, the variables typically have only one index (the number of the
group member).

Given a clause RG well typed in Γ , the approximation algorithm performs
the following three steps, until it reaches a fixpoint:

1. Suppose RG = HG ⇒ att(pG), where HG contains a free index i such that
Γ � i : [1, N ] and pG contains a bound index j with bound N , or RG contains
two free indices i, j such that Γ � i : [1, N ] and Γ � j : [1, N ].
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The algorithm chooses a fresh variable y = ρx for each variable x that
occurs in RG with index i, and replaces all occurrences of variables x that
have index i with ρx (the indices remain the same).
The obtained clause can then be typed in an environment Γ ′ equal to Γ
except that Γ ′ � i : [1,M ] for some fresh bound M and that Γ ′ � y :
[1,M1]×· · ·× [1,Mh] if y = ρx , Γ � x : [1, N1]×· · ·× [1, Nh], and for each
k = 1, . . . , h, Mk = Nk if Nk �= N and Mk = M if Nk = N . The indices i
and j then have different types in the obtained clause.

2. Suppose RG = HG
1 ∧ HG

2 ⇒ att(pG), where pG contains a pattern list(i ≤
N, pG1 ) as well as a pattern list(j ≤ N, pG2 ) or a free index j such that
Γ � j : [1, N ], HG

1 contains all hypotheses of RG in which the bound N
appears or a free index of type [1, N ] appears, and HG

2 contains the other
hypotheses of RG.
The algorithm chooses a fresh bound M and replaces RG with

HG
1 ∧H ′G

1 ∧HG
2 ⇒ att(p′G)

where:
– ρ is a substitution that replaces each variable x of HG

1 and pG1 such that
Γ � x : [1, N1] × · · · × [1, Nh] with Nk = N for some k ∈ {1, . . . , h}
with a fresh variable y (the indices remain the same); the obtained
clause will be typed in an environment Γ ′ obtained from Γ by adding
Γ ′ � y : [1,M1]× · · · × [1,Mh] where, for each k = 1, . . . , h, Mk = Nk if
Nk �= N and Mk = M if Nk = N ;

– H ′G
1 is obtained from ρHG

1 by replacing the bound N with M ;
– p′G is obtained from pG by replacing list(i ≤ N, pG1 ) with list(i ≤

M,p′G1 ), where p′G1 is pG1 in which all occurrences of variables x that
have index i have been replaced with ρx .

3. Suppose RG = HG
1 ∧ HG

2 ⇒ att(pG) where pG contains at least two oc-
currences of a variable x , HG

1 contains all hypotheses of RG in which x
appears, and HG

2 contains the other hypotheses of RG.
The algorithm chooses a fresh variable y and replaces RG with

HG
1 ∧H ′G

1 ∧HG
2 ⇒ att(p′G)

where H ′G
1 is obtained from HG

1 by replacing each occurence of x with y
(the indices remain the same), and p′G is obtained from pG by replacing one
occurrence of x with y .

Step 1 is applied first, until it cannot be applied. Then step 2 is applied, until
there are no list constructors that match the condition. Step 2 may already
rename some variables that occur more than once in the conclusion of the clause.
Then, when a fixpoint is reached with step 2, we start applying step 3, until
no variable occurs more than once in the conclusion. Step 1 ensures that free
indices have pairwise distinct types and that free indices of the hypothesis have
types distinct from those of bound indices in the conclusion. Step 2 ensures that
the bound indices in the conclusion have pairwise distinct bounds and bounds
distinct from the bounds of free indices in the conclusion. Step 3 ensures that
the conclusion is linear.
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This algorithm is similar to the algorithm that transforms any Horn clauses
into Horn clauses of the class H1 [10]. Both algorithms ensure the linearity of
the conclusion in the same way (step 3). Step 2 uses an idea similar to step 3 to
guarantee that the types of the indices are distinct.

We illustrate this algorithm on an example below. The next theorem shows
its correctness. Its proof can be found in the long version of the paper.

Theorem 2. Let RG be a set of clauses that satisfies Hypothesis 1. The approx-
imation algorithm terminates on RG and the final set of clauses R′G satisfies
the hypothesis of Theorem 1. Moreover, for any fact F , if F is derivable from
RGT , then F is also derivable from R′GT .

5.2 Examples

We apply the approximation algorithm to our running example. For instance,
let us transform the clause (6):

att((L, senc(y, pw))) ∧ att(senc((list(j ≤ N , zj), z
′), ri[y]))

⇒ att((ai, senc((si[y], h((list(j ≤ N , zj), z
′))), f((list(j ≤ N , zj), z

′)))))

First, as there are two list constructors with the same bound N in the conclusion,
we apply step 2 of the algorithm: we rename the bound and variables of one of
the two occurrences of list(j ≤ N , zj) in the conclusion, so we obtain:

att((L, senc(y, pw))) ∧
att(senc((list(j ≤ N , zj), z

′), ri[y])) ∧ att(senc((list(j ≤M,xj), z
′), ri[y]))

⇒ att((ai, senc((si[y], h((list(j ≤ N , zj), z
′))), f((list(j ≤M,xj), z

′)))))

Next, as variable z′ appears twice in the conclusion, we apply step 3 and obtain:

att((L, senc(y, pw))) ∧
att(senc((list(j ≤ N , zj), z

′), ri[y])) ∧ att(senc((list(j ≤M,xj), z
′), ri[y]))

att(senc((list(j ≤ N , zj), x
′), ri[y])) ∧ att(senc((list(j ≤M,xj), x

′), ri[y]))

⇒ att((ai, senc((si[y], h((list(j ≤ N , zj), z
′))), f((list(j ≤M,xj), x

′)))))

Finally, this clause satisfies the hypothesis of Theorem 1. All clauses RG given
in Sect. 3.4, which represent our running example, can be transformed in a similar
way, yielding clauses R′G. We have then shown that att(s) is not
derivable from R′G1 , using ProVerif with the input file given at
http://www.di.ens.fr/~paiola/publications/PaiolaBlanchetPOST12.html.
By Theorem 1, we conclude that att(s) is not derivable from R′GT , so by The-
orem 2, att(s) is not derivable from RGT . Therefore, the Azokan-Ginzboorg
protocol preserves the secrecy of s, that is, it preserves the secrecy of the key K
that ai has. We have shown in a similar way that it preserves the secrecy of the
key K that L has.

We have also considered a basic XML encryption [9] protocol. It is a very
simple protocol between two principals A and B that share an encryption key

http://www.di.ens.fr/~paiola/publications/PaiolaBlanchetPOST12.html
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k and a MAC key k′. In order to encrypt a list 〈a1, . . . , aM 〉 using the encrypt-
then-MAC scheme, one encrypts each component of the list, and computes a
MAC of the list of ciphertexts:

A→ B : (〈{a1}k, . . . , {aM}k〉,mac(k′, 〈sha1({a1}k), . . . , sha1({aM}k)〉)).

We have used ProVerif to show that att(a1) is not derivable from the set of
Horn clauses for the protocol with lists of length one. Therefore, this protocol
preserves the secrecy of each aj , for j = 1, . . . ,M .

6 Conclusions and Future Work

We have proposed a new type of clauses, generalized Horn clauses, useful to
represent protocols that manipulate lists of unbounded length, as well as group
protocols with an unbounded number of participants. We have shown that, for
a subclass of generalized Horn clauses, if secrecy is proved by the Horn clause
technique for lists of length one, then we have secrecy for lists of any length. We
have also provided an approximation algorithm that transforms a set of general-
ized Horn clauses for satisfying the hypothesis of our main theorem. Using these
results, one can prove secrecy for lists of any length for some group protocols,
as we did for the Azokan-Ginzboorg protocol, and for simple XML protocols.

Future work includes supporting more general data structures and protocols,
including more realistic XML protocols (web services). This will probably require
a new extension of Horn clauses and of the resolution algorithm, since these proto-
colsmay not fit in a class for which secrecy for lists of any length can be proved from
underivability for lists of length one. In particular, as wementioned in Sect. 3.4, our
technique does not support equality tests on certain components of lists, because
in the representation of unbounded lists, all elements need to have the same form.
We plan to support such tests in the future. Moreover, some group protocols (e.g.
A.GDH-2) use the Diffie-Hellman key agreement, which we cannot handle yet.We
believe that it could be handled by combining our result with [12].

ProVerif supports a variant of the applied pi calculus for modeling protocols.
However, our result models group protocols with generalized Horn clauses. We
plan to extend the input language of ProVerif to model group protocols, and to
translate it automatically to generalized Horn clauses.

Finally, we plan to consider other security properties, such as authentication,
perhaps using lists of length two instead of one.

Acknowledgments. This work was partly supported by the ANR project
ProSe (decision number ANR-2010-VERS-004-01).

References

1. Abadi, M., Blanchet, B.: Analyzing Security Protocols with Secrecy Types and
Logic Programs. Journal of the ACM 52(1), 102–146 (2005)



88 M. Paiola and B. Blanchet

2. Asokan, N., Ginzboorg, P.: Key agreement in ad hoc networks. Computer Com-
munications 23(17), 1627–1637 (2000)

3. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Handbook of Auto-
mated Reasoning, vol. 1, ch. 2, pp. 19–100. North Holland (2001)

4. Blanchet, B.: Using Horn clauses for analyzing security protocols. In: Cortier, V.,
Kremer, S. (eds.) Formal Models and Techniques for Analyzing Security Proto-
cols. Cryptology and Information Security Series, vol. 5, pp. 86–111. IOS Press,
Amsterdam (2011)

5. Bryans, J., Schneider, S.: CSP, PVS and recursive authentication protocol. In:
DIMACS Workshop on Formal Verification of Security Protocols (1997)

6. Chridi, N., Turuani, M., Rusinowitch, M.: Constraints-based Verification of Pa-
rameterized Cryptographic Protocols. Research Report RR-6712, INRIA (2008),
http://hal.inria.fr/inria-00336539/en/

7. Chridi, N., Turuani, M., Rusinowitch, M.: Decidable analysis for a class of crypto-
graphic group protocols with unbounded lists. In: CSF 2009, pp. 277–289. IEEE,
Los Alamitos (2009)

8. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Transactions
on Information Theory IT-29(12), 198–208 (1983)

9. Eastlake, D., Reagle, J.: XML encryption syntax and processing. W3C Candidate
Recommendation (2002),
http://www.w3.org/TR/2002/CR-xmlenc-core-20020802/

10. Goubault-Larrecq, J.: Une fois qu’on n’a pas trouvé de preuve, comment le faire
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13. Küsters, R., Truderung, T.: On the Automatic Analysis of Recursive Security Pro-
tocols with XOR. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393,
pp. 646–657. Springer, Heidelberg (2007)

14. Meadows, C.: Extending formal cryptographic protocol analysis techniques for
group protocols and low-level cryptographic primitives. In: WITS 2000 (2000)

15. Meadows, C., Syverson, P., Cervesato, I.: Formal specification and analysis of the
Group Domain of Interpretation protocol using NPATRL and the NRL protocol
analyzer. Journal of Computer Security 12(6), 893–931 (2004)

16. Meadows, C., Narendran, P.: A unification algorithm for the group Diffie-Hellman
protocol. In: WITS 2002 (2002)

17. Paulson, L.C.: Mechanized proofs for a recursive authentication protocol. In:
CSFW 1997, pp. 84–95. IEEE, Los Alamitos (1997)

18. Pereira, O., Quisquater, J.J.: Some attacks upon authenticated group key agree-
ment protocols. Journal of Computer Security 11(4), 555–580 (2003)

19. Pereira, O., Quisquater, J.J.: Generic insecurity of cliques-type authenticated group
key agreement protocols. In: CSFW 2004, pp. 16–19. IEEE, Los Alamitos (2004)

20. Steel, G., Bundy, A.: Attacking group protocols by refuting incorrect inductive
conjectures. Journal of Automated Reasoning 36(1-2), 149–176 (2006)

21. Steiner, M., Tsudik, G., Waidner, M.: CLIQUES: A new approach to group key
agreement. In: ICDCS 1998, pp. 380–387. IEEE, Los Alamitos (1998)

22. Truderung, T.: Selecting Theories and Recursive Protocols. In: Abadi, M., de Alfaro,
L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 217–232. Springer, Heidelberg (2005)

http://hal.inria.fr/inria-00336539/en/
http://www.w3.org/TR/2002/CR-xmlenc-core-20020802/


Privacy Supporting Cloud Computing:

ConfiChair, a Case Study�

Myrto Arapinis, Sergiu Bursuc, and Mark Ryan

School of Computer Science, University of Birmingham
{m.d.arapinis,s.bursuc,m.d.ryan}@cs.bham.ac.uk

Abstract. Cloud computing means entrusting data to information sys-
tems that are managed by external parties on remote servers, in the
“cloud”, raising new privacy and confidentiality concerns. We propose a
general technique for designing cloud services that allows the cloud to see
only encrypted data, while still allowing it to perform data-dependent
computations. The technique is based on key translations and mixes in
web browsers.

We focus on the particular cloud computing application of conference
management. We identify the specific security and privacy risks that ex-
isting systems like EasyChair and EDAS pose, and address them with a
protocol underlying ConfiChair, a novel cloud-based conference manage-
ment system that offers strong security and privacy guarantees.

In ConfiChair, authors, reviewers, and the conference chair interact
through their browsers with the cloud, to perform the usual tasks of
uploading and downloading papers and reviews. In contrast with current
systems, in ConfiChair the cloud provider does not have access to the
content of papers and reviews and the scores given by reviewers, and
moreover is unable to link authors with reviewers of their paper.

We express the ConfiChair protocol and its properties in the language
of ProVerif, and prove that it does provide the intended properties.

1 Introduction

Cloud computing means entrusting data to information systems that are man-
aged by external parties on remote servers, “in the cloud.” Cloud-based storage
(such as Dropbox), on-line documents (such as Google docs), and customer-
relationship management systems (such as salesforce.com) are familiar exam-
ples. Cloud computing raises privacy and confidentiality concerns because the
service provider has access to all the data, and could accidentally or deliberately
disclose it.

Cloud-based conference management systems such as EasyChair or the Ed-
itor’s Assistant (EDAS) represent a particularly interesting example [29]. For
example, EasyChair currently hosts more than 3000 conferences per year, and
therefore contains a vast quantity of sensitive data about the authoring and re-
viewing performance of tens of thousands of researchers world-wide. This data is
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in the possession of the EasyChair administrators, and could be accidentally or
deliberately disclosed. A conference chair that is thinking of hosting her confer-
ence on a cloud-based conference system therefore faces a dilemma: if she uses
the system, she adds to this mountain of data and the risks associated with it;
if she doesn’t use the system, she deprives herself of the advantages of a readily-
available, well-engineered system that already has user accounts for the majority
of participants in her conference (authors, PC members, and reviewers).

Note that the data confidentiality issue concerns the cloud conference sys-
tem administrator (who administrates the system for all conferences), not the
conference chair (who is concerned with a single conference). The conference sys-
tem administrator has access to all the data on the system, across thousands of
conferences and tens of thousands of authors and reviewers. An individual con-
ference chair, on the other hand, has access to the data only for the particular
conference of which she is chair. Moreover, an author or reviewer that chooses
to participate in the conference can be assumed to be willing to trust the chair
(for if he didn’t, he would not participate); but there is no reason to assume that
he trusts or even knows the conference management system provider.

In this paper, we identify a set of confidentiality requirements for conference
management and propose ConfiChair, a cloud-based conference management
protocol that supports them. The confidentiality guarantees ensure that no-one
has access to conference data, beyond the access that is explicitly granted to
them by their participation in the conference. In particular, this is true about
the cloud provider and managers. ConfiChair is loosely modelled on EasyChair
or EDAS, but with the additional security guarantees. We describe a protocol
in which authors, reviewers and the conference chair interact through their web
browsers with the cloud-based management system, to perform the usual tasks
of uploading and downloading papers and reviews. The cloud is responsible for
fine-grained routing of information, in order to ensure that the right agents
are equipped with the right data to perform their task. It is also responsible
for enforcing access control, for example concerning conflicts of interest and to
ensure that a reviewer doesn’t see other reviews of a paper before writing her
own. However, all the sensitive data is seen by the cloud only in encrypted form.

For brevity, we use the term “cloud” to include all roles that are not an explicit
part of the conference management; that includes the conference management
system administrator, the cloud service provider, the network administrator, etc.
The security properties that our system provides may be summarised as follows.

– Secrecy of papers, reviews and scores. The cloud does not have access
to the content of papers or reviews, or the numerical scores given by reviewers
to papers.

– Unlinkability of author-reviewer. The cloud does have access to the
names of authors and the names of reviewers. This access is required in
order to route information correctly, to enforce access control, and to al-
low a logged-in researcher to see all his data in a unified way. However, the
cloud does not have the ability to tell if a particular author was reviewed
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by a particular reviewer. In particular, for each encryption of each review
or score held by the cloud, either the cloud does not know which author it
applies to, or does not know which reviewer submitted it.

Summary of contribution

1. We identify a set of requirements for cloud-based conference management
systems, notably privacy requirements such as secrecy and unlinkability.

2. We propose ConfiChair, a conference management protocol that provides
the usual functionalities while offering strong privacy guaranties.

3. We show the usability of ConfiChair by providing a prototype implementa-
tion. We demonstrate that using ConfiChair is as easy and useful as using
EasyChair, except for the requirement of two copy-paste operations (one
performed by authors, one performed by reviewers).

4. We formalise the required privacy properties and automatically prove them
with ProVerif.

Applicability of the ideas. Cloud-based services are being adopted widely through-
out business. The following examples raise similar security concerns to those of
conference management:

– Customer relationship management systems (such as salesforce.com);
– Cloud-hosted recruitment process services, in which applicants, referees, re-

cruiters and employers interact to process job applications;
– Cloud-based finance and accounting services;
– Social networks, in which users share posts and status updates without wish-

ing that data to be mined by the cloud provider for profiling purposes.

We believe our technique of browser-based key translation and mixnets is readily
applicable to these examples too.

2 Description of the Problem and Related Work

Our problem is determined by three conflicting sets of requirements, namely
functionality, privacy and usability. As we show below, there is much existing
work related to our paper, but it can not be used to solve our problem either
because of its complexity, or because of its different perspectives on privacy, or
because it does not achieve the required balance between privacy and function-
ality.

2.1 Desired Properties and Threat Model

Functional requirements. As previously mentioned, we use the term “cloud”
to refer to the cloud service provider, conference management system and its
administrators, and the network. The responsibilities of the cloud are:



92 M. Arapinis, S. Bursuc, and M. Ryan

– To collect and store data relevant to the conference, including names of
reviewers and authors, papers, reviews and scores.

– To enforce access control in respect of conflicts of interest and ensuring that
reviewers see other reviews of a paper only after they have submitted their
own.

– To manage the information flow of the conference: from authors, to confer-
ence chair, to reviewers and back.

– To notify the authors of the acceptance decision about their papers.

Privacy requirements. We require that the cloud does not know

– the content of submitted papers,
– the content of submitted reviews,
– the scores attributed to submitted papers.

Further, when data is necessarily known to the cloud in order that it can fulfil
the functional requirements, we require what we call unlinkability property: the
cloud is unable to link

– authors to reviewers of their papers

Threat model. It is reasonable to trust the cloud to execute the specified
functional requirements. Indeed, an incorrect functionality would be detected in
the long run and the users would simply move into another cloud. On the other
hand, the cloud may try to violate privacy without affecting functionality, in
a way that cannot readily be detected. ConfiChair is designed to remove this
possibility. Obviously, there are inherent limitations on any protocol’s ability to
achieve this. For instance, if the cloud provider was invited to participate as
a PC member or a chair, then he necessarily would have access to privileged
information. Consequently, the privacy requirements are expected to hold in
our threat model only for conferences in which the cloud provider does not
participate, except as provider of the cloud service or as author of a paper.

We assume that users are running uncorrupted browsers on malware-free ma-
chines. The HTML, Java, and Javascript code that they download is also as-
sumed to be obtained from a trustworthy source and properly authenticated
(e.g. by digital signatures).

Usability requirements. The system should be as easy to use as present
day conference management systems, such as EasyChair, iChair, OpenConf or
HotCRP. The cost of security should not be unreasonable waiting time (e.g. for
encryption, data download), or software installation on the client-side (e.g. a
browser should be sufficient), or complex key management (e.g. public key in-
frastructure), etc. We discuss more about usability in section 4 which describes
our prototype implementation.

2.2 Related Work

Generic solutions. Much work has been done that highlights the confidential-
ity and security risks that are inherent in cloud computing (e.g., [12] includes
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an overview), and there is now a conference series devoted to that topic [17].
Although the issue is well-known, the solutions described are mostly based on
legislative and procedural approaches. Some generic technological solutions have
appeared in the literature. The first one uses trusted hardware tokens [30], in
which some trusted hardware performs the computations (such as key transla-
tions) that involve sensitive data. Solutions based on trusted hardware tokens
may work, but appear to have significant scalability issues, and require much
more research. Other papers advise designing cloud services to avoid having to
store private data, and include measures to limit privacy loss [25].

Fully-homomorphic encryption (FHE) has been suggested as another generic
solution to cloud-computing security. FHE is the idea that data processing can
be done through the encryption, and has recently been shown to be possible in
theory [19]. However, the range of functionality that can be provided through the
encryption is not completely general. For example, one cannot extract from a list
the items satisfying a given predicate, but one can return a list of encrypted truth
values that indicate the items that satisfy the predicate, which is less useful. It
is not clear to what extent FHE could alleviate the requirement to perform the
browser-side computations of ConfiChair. Moreover, FHE is currently woefully
inefficient in practice, and can only be considered usable in very specialised
circumstances.

Data confidentiality and access control. Many works consider the problem
of restricting the access of data in the cloud to authorised users only. For example,
attribute-based encryption [6,4] allows fine-grained control over what groups of
users are allowed to decrypt a piece of data. A different example is work that
aims to identify functionally encryptable data, i.e. data that can be encrypted
while preserving the functionality of a system [27]. Such systems, and others, aim
to guarantee that the cloud, or unauthorised third parties, do not access sensitive
data. Our problem requires a different perspective: how to design systems that
allow the cloud, i.e. the intruder, to handle sensitive data, but at the same time
ensure that sensitive data value links between them are not revealed.

Unlinkability. In many applications it is important that links between partic-
ipants, data, or transactions are kept hidden. In RFID-based systems [14] or in
privacy enhancing identity management systems [16] for example, an important
requirement is that two transactions of a same agent should not be linkable in
order to prevent users from being tracked or profiled. Another exemplar appli-
cation that requires unlinkability is electronic voting: a voter must not be linked
to the vote that he has cast [18]. Moreover, like scores or identities in our case
study, a vote is at the same time functional (to be counted) and sensitive (to
be private). Voting systems achieve unlinkability by relying either on mix nets
[22,21], or on restricted versions of homomorphic encryption that allow the ad-
dition of plaintexts [3,5]. Our proposed protocol also relies on mixing, showing
how that idea can be adapted to new application areas.

Other systems identify applications where the cloud can be provided with
“fake” data without affecting functionality [20]. In that case, privacy of “real”
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data may be preserved, without the cloud being able to detect the substitution.
That is a stronger property than what we aim for, and at the same time the
solution proposed in [20] is restricted to very specific applications. In particular,
a conference management system can not function correctly with “fake” data
provided to the cloud.

Conference management. There has been work exposing particular issues
with conference management systems, related to data secrecy, integrity and ac-
cess control [23,28]. These are also important concerns, but that are quite orthog-
onal to ours, where we are interested in system design for ensuring unlinkability
properties. More importantly, none of these works considers our threat model,
where the attacker is the cloud.

3 The Protocol

3.1 Description

The protocol is informally described in Figures 1-3 on the following pages. Some
details, such as different tags for messages in each phase of the conference, are
left out, but the detailed formal definition is given in an appendix of the long
version. The main idea of the protocol is to use a symmetric key KConf that
is shared among the members of the programme committee. This key will be
used to encrypt sensitive data before uploading it to the cloud. However, the
cloud needs access to some sensitive data, like the reviewers of a paper, in order
to implement the functional requirements of the protocol. To reveal that data
to the cloud, without compromising privacy, our protocol makes use of the fact
that different types of data are needed by the cloud at different phases of the
conference. Thus, in transitioning from one phase to another, the conference chair
can hide the links between authors and reviewers. He does so by performing a
random mix on the data he needs to send to the cloud before moving to the next
phase. Each conference has a public key, that authors use to encrypt symmetric
keys, that in turn serve to encrypt papers.

Notation. As we just explained, the privacy of participants relies on the chair
performing random mixes of the data he sends to the cloud. This is specified
in Figures 1-3 by representing the databases DBr

Keys, DBr
notf as randomised

permutations (denoted by by ←R) of sets.

In the description of the ConfiChair protocol in Figures 1-3, we haven’t included
a biding phase. Although this phase is of great practical importance, it is con-
ceptually similar to reviewing and discussion phases, and can be handled in a
similar way. Indeed, provding a biding phase in a way that would preserve the
users’ privacy would also rely on the chair performing a reencryption mix on the
papers before sending them to the reviewers through the cloud.
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C Cloud R A

Initialisation

create Conf, KConf, pub(Conf), priv(Conf)

Conf, R1, . . . , R�

DBKeys ← ∅
DBPapers ← ∅

KConf

Submission
create λ, p, k

key ← (λ, A, {λ, k}pub(Conf))
paper ← (λ, A, {λ, A, p}k)

(key, paper)

DBKeys ← DBKeys ∪ {key}
DBPapers ← DBPapers ∪ {paper}

Initialisation. The conference chair C generates the symmetric key KConf, a public
key pub(Conf) and a corresponding private key priv(Conf). The symmetric key is
then shared among the reviewers in a way that does not reveal it to the cloud
(see section 3.2). Then C requests from the cloud the creation of the conference
named Conf, sending along the names of the chosen reviewers R1, . . . ,R� for the
programme committee.

Submission. An author A creates a paper p and a symmetric key k. He uploads to
the cloud p encrypted with k and k encrypted with pub(Conf). An identifier λ is
used to refer to this encrypted submission. The first role of the key k is to provide
a symmetric key for the encryption of papers. The second role of k will be to
encrypt the reviews assigned to p, for the notification that will be sent through
the cloud back to the author. The cloud creates two corresponding databases: one
with encrypted submission keys and one with encrypted papers.

Fig. 1. ConfiChair: initialisation and submission phases
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C Cloud R A

Reviewing
DBKeys

DBPapers

DBr
Keys ←R

j
(μ, {μ, λ, k}KConf

,R, C)

˛̨
˛̨ (λ, A, {λ, k}pub(Conf)) ∈ DBKeys,

μ ∈r N, R, C ⊆r {R1, . . . , R�}, R∩ C = ∅

ff

DBr
Keys

for all (μ, {μ, λ, k}KConf
,R, C) ∈ DBr

Keys ∧ R 	∈ C
DBμ ← ∅

(μ, {μ, λ, k}KConf
,R)

if R ∈ R then
pick s ∈ S
create r

rev ← {μ, λ, k, r, s, ∅}KConf

(μ, rev)

DBμ ← DBμ ∪ {(R, rev)}

Reviewing. The chair downloads the database with encrypted keys, decrypts them
using the private key priv(Conf) of the conference and encrypts them back with
the shared symmetric key KConf. A new identifier μ is introduced for each paper. C
also assigns the reviewers R to review the paper corresponding to μ, and declares
the conflicts C restricting the set of reviewers that are allowed to see the data
concerning μ. Finally, he mixes the elements in DBr

Keys before sending it to the
cloud. The cloud filters the submissions according to these choices and sends them
to reviewers.
The reviewers download the database with papers and can decrypt papers. For the
papers they have been assigned to review (R ∈ R), they upload reviews and scores
in encrypted form back to the cloud. Note that the cloud is told to what identifier
μ this encrypted review refers to. This allows the cloud to manage the data flow,
without being able to link μ with λ, and hence the reviewer with the author.

Fig. 2. ConfiChair: reviewing phase
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C Cloud R A

Discussion (R′, {(μ, λ, k, r′, s′, D)}KConf
) ∈ DBμ

create d

rev′ ← {μ, λ, k, r′, s′, (D, d)}KConf

(μ, rev′)

DBμ ← DBμ ∪ {(R, rev′)}

Notification & report generation[
μ

(μ, DBμ)

DBr
notf ←R

8>><
>>:

(λ, {λ, dec, revs}k)

˛̨̨
˛̨
˛̨̨

DBμ =
[

j∈{1,...,nμ}

(Rij
, {μ, λ, k, rj , sj , dj}KConf

,

revs = (r1, . . . , rnμ)
dec ∈R {acc, rej}

9>>=
>>;

DBnotf

(λ, A, sub) ∈ DBConf

(λ, notf) ∈ DBnotf

(λ, notf)

Report generation

Discussion. The reviews of each paper are submitted to the programme committee
members (except for the conflicting reviewers) for discussion. Each reviewer can
read a submitted review and the ongoing discussion D and add a comment d to it.

Notification. For each paper, the chair of the conference creates a notification includ-
ing the decision and the reviews. This notification is encrypted with the author’s
symmetric key k (chosen at submission). The encrypted notification along with
the submission identifier λ is uploaded to the cloud, allowing it to manage the
information flow without compromising the privacy of the authors.

Fig. 3. ConfiChair: discussion and notification phases
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3.2 Discussion

Distribution of the reviewing symmetric key. The privacy properties of
our protocol rely on the sharing of a symmetric key KConf among the members
of the programme committee in such a way that the cloud does not get hold of
KConf. Here we suggest a few possible solutions in the context of our applica-
tion, reflecting different trade-offs between security and usability. Our protocol
is independent of which of the three solutions is adopted:

(1) Public keys. Each reviewer may be expected to have a public key. Then, the
symmetric key can be encrypted with each of the chosen reviewer’s public key and
uploaded to the cloud. The distribution can be made more flexible and efficient by
relying on key distribution protocols like [10]. An important issue in this setting
is the authentication of public keys of reviewers invited to participate in the
conference. This may be done either relying on a hierarchical certification model
such as PKI or, what is more probable in the case of conference management,
on a distributed web of trust, such as that of PGP.

(2) Token. In this solution, each reviewer generates a symmetric key kR and
uploads {kR}pub(Conf) to the cloud. Then, the chair sends {KConf}kR

to the re-
viewer using a channel that is outside the control of the cloud. He does this
by checking the reviewer’s authenticated email address and sends {KConf}kR

to
that address. The reviewer then decrypts this token to obtainKConf. In this case,
even if the cloud has access later to a reviewer’s email, it cannot compromise
the privacy properties that our protocol ensures.

(3) Email. If we assume that email infrastructure is not in the control of the
cloud service provider that hosts ConfiChair (as is most probably the case in
conference management), the key KConf could be sent to reviewers directly by
email. In that case, if the email of a reviewer is compromised later on, its privacy
for the conference Conf is also compromised. Note that it is only the key KConf

that must be sent by email, all the rest of the protocol being executed in the
cloud.

Computation in the cloud. We stress that non-trivial computation takes
place in the cloud, namely routing of messages, and optionally collection of
statistics. It is essential for usability and take-up of the proposed system that
these computations are done by the cloud. The difficulties in designing the proto-
col thus lie in releasing the necessary information for the cloud to perform these
operations without compromising the users of our system’s privacy. In particu-
lar, the link between the sender of a message (e.g. the author of a paper) and
the end receiver of this message (e.g. the reviewer of this paper) should remain
private and this although it is the cloud that is responsible for routing messages.

Optionally, the protocol can be extended to allow the cloud to collect statis-
ticts or other anonymised data about the conference, its authors, papers, and
reviewers. This can be achieved by adding code which extracts this information
during the manipulations performed by the chair’s browser. For example, along
with the computation of DBr

notf in Figure 3.1, the chair could also compute the
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average score asμ = (s1 + · · · + snμ)/nμ for each paper and return the vector
(asμ)μ to the cloud. (Such optional features must be carefully designed to avoid
weakening the security properties, and are not considered in our formal model
in Secrion 5.)

Efficiency and usability. It may seem that there is a considerable amount of
work to be done by the chair, especially in the transition between phases. As
we discuss in the next section, this does not have to be evident to the chair.
Our experiments with our prototype show that the browser can transparently
execute the protocol.

4 Implementation

The ideal implementation of our protocol would look and feel very similar to
existing cloud-based conference management systems such as OpenConf, EDAS
and EasyChair, and should require no additional software beyond a web browser.

We constructed a prototype implementation [26], in order to discover any
potential problems with a practical implementation and to find how much time
and memory such a system may require, both on server-side and on client-side.

Overview. We implemented the ConfiChair prototype so that only a browser
is necessary for participating as an author, a reviewer, or a chair. Overall, our
prototype of ConfiChair feels very similar to current web-based management
systems. A user of the system can perform his usual tasks by simply clicking a
few buttons.

For example, to submit a paper an author logs to his ConfiChair account,
selects the link for the conference to which he wants to submit, clicks the new
submission button, selects the PDF file of his paper and clicks the submit button
to complete his submission. All the key generation and the secure storing, as well
as the encryption dictated by our protocol is transparently performed by the
browser. The only aspect not currently performed by the browser is the retrieval
of the conference public-key pub(Conf); this key must be manually input by the
author (by copy-paste from the call for papers for example).

Similarily, the chair of a conference wanting to create a ConfiChair page for
his conference Conf, loggins to his ConfiChair account and clicks the create new
conference button. His browser will transparently, generate and securily store
the keys KConf, pub(Conf), and priv(Conf).

Performance. The system is expected to handle hundreds of papers without
overhead on the chair. In particular, browser-side re-encryption and mixing while
transitioning between phases should not take more than a few minutes. From that
perspective, the results of our experiments with the prototype implementation
are promising. They are presented in a figure of the long version. The time taken
for transitioning to the review stage is about 25s for 500 papers. The times for
the other two transitions are about 70s and 350s.
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Transparency of key management. To hide the complexity of the encryption
keys from the user, these are managed and retrieved by the browser transparently
when logging to ConfiChair. The login procedure implemented relies on each user
having an identity id and a secret password pswid from which the browser derives
two keys: the ConfiChair account key Kdf1(pswid) to authenticate the user to the
the cloud provider, and a second key Kdf2(pswid) used to encrypt the key purse
of the user. This key purse contains the set of keys generated by the browser in
previous accesses to the ConfiChair system, for example submission keys if the
user has used ConfiChair as an author in the past, or conference keys if he has
used it as a programme committee member.

When submitting a paper, the author’s browser generates a symmetric key k
which it uses to automatically encrypt the paper before sending it to the cloud.
This key k is in turn added to the key purse of the user, which is uploaded
encrypted with Kdf2(pswauthorid) to the cloud. To the submitter, this does not
look like anything other than a normal file upload. Similarly, when the chair
moves the conference to the review stage, it appears to be just like clicking on
a normal link, since the chair’s browser has already retrieved from the cloud
the chair’s key purse, and decrypted it with Kdf2(pswchairid), and can then
transparently decrypt and reencrypt the submissions according to the protocol.

In this way, the only key that needs to be securely backed up by a user id is
his ConfiChair password pswid. All the other keys are stored in encrypted form
in the cloud, and retrieved when needed by his browser.

Currently, the authors need to copy and paste from the call for papers the
public key of the conference pub(Conf) to which they want to submit, and the re-
viewers need to copy and paste from their email the shared-key of the conference
K(Conf) for which they are reviewers.

5 Formal Model and Verification

(This section has been shortened for the proceedings version of the paper. We
recommend the full version on our web pages for more details of the verification.)

It is difficult to ascertain whether or not a cryptographic protocol satisfies its se-
curity requirements. Numerous deployed protocols have subsequently been found
to be flawed, e.g. the Needham-Schroeder public-key protocol [24], the public-
key Kerberos protocol [13], the PKCS#11 API [11], or the BAC protocol in
e-Passports [15]. In this section, we formally show that ConfiChair does satisfy
the announced security properties. The formal verification of the protocol has
been done automatically using the ProVerif tool [7,9]. The ProVerif specifica-
tion of the ConfiChair protocol is available online [26]. The verification requires
a rigorous description of the protocol in the ProVerif calculus as well as formal
definitions of the desired properties, each discussed in detail in the following
section.
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5.1 The Process Calculus

The ProVerif calculus [7,9] is a language for modelling distributed systems and
their interactions. It is a dialect of the applied pi calculus [2]. In this section, we
briefly review the basic ideas and concepts of the ProVerif calculus.

Terms. The calculus assumes an infinite set of names, a, b, c, . . ., an infinite
set of variables, x, y, z, . . . and a finite signature Σ, that is, a finite set of func-
tion symbols each with an associated arity. Function symbols are divided in
two categories, namely constructors and destructors. Constructors are used for
building messages from other messages, while destructors are used for analysing
messages and obtaining parts of the messages they are applied to. Names and
variables are messages. A new message M may be built by applying a construc-
tor f ∈ Σ, to names, variables and other messages, M1, . . . ,Mn, and denoted
as usual f(M1, . . . ,Mn). A term evaluation D is built by applying any function
symbol g ∈ Σ (constructor or destructor) to variables, messages or term evalu-
ations, D1, . . . , Dn, denoted g(D1, . . . , Dn). The semantics of a destructor g of
arity n is given by a finite set of rewrite rules of the form g(M1, . . . ,Mn)→M0,
where M0,M1, . . . ,Mn are messages that only contain constructors and vari-
ables. Constructors and destructors are used to model cryptographic primitives
such as shared-key or public-key encryption. The ProVerif calculus uses tuples of
messages (M1, . . . ,Mn), keeping the obvious projection rules implicit.

In the following, and for the purpose of modelling the ConfiChair protocol
presented in section 3, we will consider the signature

Σ = {senc/3, sdec/2, pub/1, aenc/3, adec/2, subm/0,

initrv/0, revw/0, dsc/0, ntf/0, one/0, two/0}

where senc (resp. aenc) is a constructor of arity 3 that models the randomised
shared-key (resp. randomised public-key) encryption primitive, sdec (resp. adec)
is the corresponding destructor of arity 2, and pub is a constructor of arity 1
that models the public key associated to the private key given in argument. The
signature also contains the constants initrv, revw, dsc, and ntf corresponding to
the tags used to label messages originating from different phases of the protocol;
and the constants one and two representing the possible scores for papers. The
semantics of the two destructors is given by the two following rules

sdec(x, senc(x, y, z))→ z
adec(x, aenc(pub(x), y, z))→ z

We model the probabilistic shared-key encryption of the message m with the key
k by senc(k, r,m), where the r is fresh for every encryption; and the probabilistic
public-key encryption of the message m with the pubic key corresponding to the
secret key k by aenc(pub(k), r,m).

We will write D ⇓M if the term evaluation D can be reduced to the message
M by applying some destructor rules. For example, if we consider the following
term evaluation E and message N
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E = senc(k, r, sdec(k′, senc(k′, r′, s)))
N = senc(k, r, s),

by application of the first rewrite rule given above, we have E ⇓ N .

Processes. Processes are built according to the grammar given below, where
M is a message, D is a term evaluation, n is a name, and c is a channel name.

P,Q,R ::= processes
0 null process
P | Q parallel composition
!P replication
newn;P name restriction
let M = D in P else Q term evaluation
in(c,M);P message input
out(c,M);P message output

Replication handles the creation of an unbounded number of instances of a pro-
cess. The process let M = D in P else Q tries to evaluate D and matches the
result with M ; if this succeeds, then the variables in M are instantiated accord-
ingly and P is executed; otherwise Q is executed. We will omit the else branch
of a let when the process Q is 0. Names that are introduced by a new construct
are bound in the subsequent process, and they represent the creation of fresh
data. Variables that are introduced in the term M of an input or of a let con-
struct are bound in the subsequent process, and they represent the reception or
computation of fresh data. Names and variables that are not bound are called
free. We denote by fn(P ), respectively fv(P ), the free names, respectively free
variables, that occur in P .

Notation. A process definition P will sometimes be denoted by P (�v), where �v
is a vector of free variables that occur in P and that can be seen as parameters
for the process P . Then we will abbreviate the process let �v = �w in P simply by
P (�w), and we will say that P (�w) is an instance of P (�v).

Example 1. The process A models the authors’ part of the ConfiChair protocol.

A
def
= new ida; !A′(ida)

A′(xida)
def
= new p; new k; A′′(xida, p, k)

A′′(yida, yp, yk)
def
= new l; new r1; new r2;

in(cpbk, xpbk);
let k subm = (l, ida, aenc(xpbk, r1, (subm, l, k))) in (
let p subm = (l, ida, senc(k, r2, (l, ida, pap))) in (
out(c, (k subm, p subm));
in(c, xn)))
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An author with identity ida can submit many times to many different con-
ferences (!A′(ida)). For each submission he generates the paper p and the sub-
mission key k, he chooses the conference he wants to submit to, fetches the
corresponding public (in(cpbk, xpbk)), and generates the identifier l (correspond-
ing to the λ in the diagrams of Section 3). He then builds the submission message
((k subm, p subm)) as described in the diagrams of Section 3, and sends his sub-
mission to the cloud on the public channel c. He finally waits for the notification
(in(c, xn)).

Altogether, the ConfiChair protocol can be fully modelled by the process

CC
def
= new cshk; new cpbk; (!C | !R | !A)

The subprocesses C, R, and A model the behaviour of a conference chair, a
reviewer, and an author respectively. A is fully detailed above, and C and R are
detailed in an appendix of the long version. We consider a general system CC
with an unbounded number of chairs, reviewers, and authors. In CC, cshk is
the private channel (discussed in the first paragraph of Section 3.2) on which
the shared-keys of conferences are sent to reviewers. The channel cpbk is an
authenticated channel from which the authors can access the public key of a
conference in order to submit a paper. Although this channel is restricted to
model that the public keys of conferences should be authenticated, the chair also
publishes on the public channel c the public key of his conference, for anyone
including the attacker to submit papers to it.

Semantics. Details of the semantics of the process language are given in the
long version. Two processes are said to be observationally equivalent if their
behaviour is identical in all contexts. We express secrecy and unlinkability as
the observational equivalence of two processes.

5.2 Properties and Analysis

In this work, we prove using the ProVerif tool, that the ConfiChair protocol
satisfies the intended secrecy and unlinkability properties informally described in
section 2.1. The purpose of this section is to formally define these properties, and
to show how they can be automatically verified with ProVerif. We define both
secrecy and unlinkability properties as equivalences between processes adapting
the classical approach of [31,1,18] to our context.

To express security properties we will need to consider particular authors and
reviewers in interaction with the rest of the system. For this we consider a hole
in the process CC, where we can plug any process, i.e. we let:

CC[ ]
def
= new cshk; new cpbk; (!C | !R | !A | )

To express authors and reviewers who submit some specific data (of which the
privacy will be tested), we consider the processes:

– Apap(ida, p, k) - for an author whose identity is ida and that behaves like a
regular author, with the single difference that amongst other submissions,
he also submits the paper p with the corresponding submission-key k.
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– Rsc(idr, sc) - for a reviewer whose identity is idr and that behaves like a
regular reviewer, with the single difference that amongst other reviews, he
also reviews a paper to which it attributes the score sc.

– Rrev(idr, k, rev) - for a reviewer whose identity is idr and that behaves like
a regular reviewer, with the single difference that amongst other reviews, he
also reviews the paper corresponding to the submission-key k, and writes
the review rev.

The formal definition of these processes is detailed in an appendix of the long
version of this paper.

Secrecy properties. To formalise the considered secrecy properties, we rely
on the notion of strong secrecy defined in [8].

Paper secrecy. We say that a conference management protocol satisfies strong
secrecy of papers if, even if the cloud initially knows p1 and p2, the cloud can-
not make a distinction between an execution of the protocol where an author
submitted the paper p1 and an execution where he has submitted the paper p2.

To formally capture this, we construct from CC[ ] two processes: in the first
one the hole is filled with an author that submits the publicly known (i.e. free)
paper p1, and in the second one the hole is filled with that author submitting
the publicly known (i.e. free) paper p2. We verify using ProVerif that these two
processes are observationally equivalent:

CC[new ida; new k; Apap(ida, p1, k)] ≈ CC[new ida; new k; Apap(ida, p2, k)]

Score secrecy. Similarly, in order to verify the strong secrecy of scores, we build
from CC[ ] one process in which the hole is filled with a reviewer that attributes
one to some paper, and one process in which the hole is filled with the reviewer
attributing two to it.

CC[new idr; Rsc(idr, one)] ≈ CC[new idr; Rsc(idr, two)]

Review secrecy. The definition of secrecy of reviews is a bit more subtle. Reviews
are sent to the authors at the notification phase, and the attacker could very
well have submitted a paper. He would then rightfully obtain the review to his
paper. So the property we want to formalise is that an attacker doesn’t get to
see the reviews of other authors’ papers. In other words, review secrecy holds
if, even if the cloud initially knows rev1 and rev2, the cloud cannot distinguish
an execution of the protocol where a reviewer to a paper not submitted by the
attacker writes the review rev1 from an execution where the reviewer writes the
review rev2.

To capture this, we construct from CC[ ] two processes. In the first one, the
hole is filled with an honest author that submits a paper p with the corresponding
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submission-key k and a reviewer reviewing this paper and writing the publicly
known (i.e. free) review rev1. In the second one, an honest author that submits
a paper p with the corresponding submission-key k and a reviewer reviewing this
paper and writing the publicly known (i.e. free) review rev2. For review secrecy
to hold, the following equivalence must hold:

CC

⎡⎣new ida; new p; new k; new idr;
(Apap(ida, p, k) |
Rrev(idr, k, rev1))

⎤⎦ ≈ CC

⎡⎣new ida; new p; new k; new idr;
(Apap(ida, p, k) |
Rrev(idr, k, rev2))

⎤⎦
Analysis. We used the ProVerif tool to prove that the equivalences described
above hold, and thus that as announced ConfiChair does provide secrecy of pa-
pers, scores and reviews. The ProVerif source code for each of these equivalences
is available online [26].

Author-reviewer unlinkability. This property aims to guarantee that the
links between a given author and the reviewers of his papers remain hidden
from the cloud. To formalise it one could ask whether two processes are in
observational equivalence: one in which ida’s paper is reviewed by a reviewer
idr1, and another in which ida’s paper is reviewed by a reviewer idr2.

However, similarly to privacy in electronic voting [18], definitions of unlinka-
bility are a bit more tricky. Since the identities of the authors that submit papers
are revealed to the cloud at submission time, and the identities of the reviewers
are published when the review is submitted, unlinkability can not be ensured
when there is a single reviewer, or a single author.

In order to give robust definitions of unlinkability we need to consider confer-
ences with at least two reviewers and at least two authors submitting papers to
it that are being reviewed by these reviewers. It is the chair’s task to ensure that
this is indeed the case. Accordingly, there is in the formal model a processes Car

that ensures that at each stage of the conference at least two authors and two
reviewers have executed their role. The detailed definition of Car is given in an
appendix of the long version of this paper.

We prove that there is no observable difference between the case where re-
viewer idr1 reviews ida1’s paper and reviewer idr2 reviews ida2’s paper (left-
hand-side process), and the case where reviewer idr2 reviews ida1’s paper and
reviewer idr1 reviews ida2’s paper (right-hand-side process):

CC

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

new p1; new p2; new k1; new k2;
new rev1; new rev2
Car(k1, k2, idr1, idr2) |
Apap(ida1, p1, k1) |
Apap(ida2, p2, k2) |
Rrev(idr1, k1, rev1) |
Rrev(idr2, k2, rev2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
≈ CC

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

new p1; new p2; new k1; new k2;
new rev1; new rev2
Car(k1, k2, idr2, idr1) |
Apap(ida1, p1, k1) |
Apap(ida2, p2, k2) |
Rrev(idr1, k2, rev1) |
Rrev(idr2, k1, rev2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Analysis. We used the ProVerif tool to prove that the equivalence described
above hold, and thus that as announced ConfiChair does provide author-reviewer
unlinkability. The ProVerif source code for this equivalence is available on-
line [26].

6 Conclusion

The accumulation of sensitive data on servers around the world is a major prob-
lem for society, and will be considerably exacerbated by the anticipated take-up
of cloud-computing technology. The fact that confidential data about the au-
thoring and reviewing performance of tens of thousands of researchers across
thousands of conferences is stored by well-known cloud-based systems serves to
show how widespread and ubiquitous the problem is [29].

We have introduced a general technique that can be used to address this
problem in a wide variety of circumstances, namely, the technique of translating
between keys and mixing data in a trustworthy browser. We have proposed
ConfiChair, a conference management system that uses this technique to obtain
strong privacy properties while having all the advantages of cloud computing.
In ConfiChair, the cloud sees sensitive data only in encrypted form, with no
single person holding all the encryption keys (our protocol uses a different key
for each conference). The conference chair’s browser decrypts data with one key
and encrypts it with possibly another one, while mixing and re-randomising to
ensure unlinkability properties.

We are able to state and prove strong secrecy and unlinkability properties
for ConfiChair. The protocol still enables the cloud provider to route informa-
tion to the necessary chairs, reviewers and authors, to enforce access control,
and optionally to perform statistics collection. We have demonstrated that the
cryptography and key management can be handled by a regular web browser
[26] (specifically, we used LiveConnect). We plan to continue developing our
prototype into a complete system.

An important design decision in ConfiChair is the fact that a single key KConf

is used to encrypt all the information for the conference Conf. Stronger secrecy
properties could be obtained if a different key were used for different subsets
of reviewers and papers, but this would be at the cost of simplicity. Using a
single key per conference seems to strike a good balance between usability and
security. Finer-grained access control is implemented (as on current systems) by
the cloud, e.g. for managing the conflicts of interest.

In further work, we intend to apply the ideas to work with other cloud-
computing applications (such as those mentioned in the introduction), and to
provide a framework for expressing secrecy and unlinkability properties in a more
systematic way.

Acknowledgments. Thanks to Joshua Phillips for much help with the im-
plementation and typesetting. We also gratefully acknowledge financial support
from EPSRC via the projects Trust Domains (TS/I002529/1) and Trustworthy
Voting Systems (EP/G02684X/1).
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A Formal Analysis of the Norwegian E-voting
Protocol�

Véronique Cortier and Cyrille Wiedling
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Abstract. Norway has used e-voting in its last political election in
September 2011, with more than 25 000 voters using the e-voting option.
The underlying protocol is a new protocol designed by the ERGO group,
involving several actors (a bulletin box but also a receipt generator, a
decryption service, and an auditor). Of course, trusting the correctness
and security of e-voting protocols is crucial in that context. Formal def-
initions of properties such as privacy, coercion-resistance or verifiability
have been recently proposed, based on equivalence properties.

In this paper, we propose a formal analysis of the protocol used in
Norway, w.r.t. privacy, considering several corruption scenarios. Part of
this study has conducted using the ProVerif tool, on a simplified model.

Keywords: e-voting, privacy, formal methods.

1 Introduction

Electronic voting protocols promise a convenient, efficient and reliable way for
collecting and tallying the votes, avoiding for example usual human errors when
counting. It is used or have been used for political elections in several countries
like e.g. USA, Estonia, Switzerland and recently Norway, at least in trials. How-
ever, the recent history has shown that these systems are highly vulnerable to
attacks. For example, the Diebold machines as well as the electronic machines
used in India have been attacked [13,24]. Consequently, the use of electronic vot-
ing raises many ethical and political issues. For example, the German Federal
Constitutional Court decided on 3 March 2009 that electronic voting used for
the last 10 years was unconstitutional [1].

There is therefore a pressing need for a rigorous analysis of the security of
e-voting protocols. A first step towards the security analysis of e-voting pro-
tocols consists in precisely defining security w.r.t. e-voting. Formal definitions
have been proposed for several key properties such as privacy, receipt-freeness,
coercion resistance, or verifiability, most of them in terms of equivalence-based
properties (see e.g. [12,17]). It is however difficult to formally analyse e-voting
protocols for two main reasons. First there are very few tools that can check
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equivalence properties: ProVerif [5,6] is probably the only one but it does not
really work in the context of e-voting (because it tries to show a stronger notion
of equivalence, which is not fulfilled when checking for ballot secrecy). Some
other very recent (yet preliminary) tools have been proposed such as Datep [8]
or AKiSs [7]. However, the cryptographic primitives used in e-voting are rather
complex and non standard and are typically not supported by existing tools.

In this paper, we study the protocol used in last September for political elec-
tions in Norway [2]. E-voting was proposed as trials in several municipalities
and more than 25 000 voters did use e-voting to actually cast their vote. The
protocol is publicly available [15] that has four main components: a Bulletin
Box, a Decryption Service, and a Receipt Generator and an Auditor which
aim at watching the Bulletin Box recording the votes. The resulting protocol
is therefore complex, e.g. using El Gamal encryption in a non standard way.
In [15], Gjøsteen describes the protocol and discusses its security. To our knowl-
edge, there does not exist any security proof, even for the crucial property of
vote privacy.

Our contribution. We conduct a formal analysis of the Norwegian protocol
w.r.t. privacy. Our first contribution is the proposition of a formal model of
the protocol in applied-pi calculus [3]. One particularity of the protocol is to
distribute public keys pk(a1), pk(a2), and pk(a3) for the three authorities, such
that the corresponding private keys a1, a2, and a3 verify the relation a1 + a2 =
a3, allowing one component (here the Bulletin Box) to re-encrypt messages.
The protocol also makes use of signature, of zero-knowledge proofs, of blinding
functions and coding functions. We have therefore proposed a new equational
theory reflecting the unusual behavior of the primitives.

Our second contribution is a formal security proof of privacy, in the presence of
arbitrarily many dishonest voters. Given the complexity of the equational theory
(with e.g. four associative and commutative symbols), the resulting processes can
clearly not be analyzed with existing tools, even ProVerif. We therefore proved
privacy (expressed as an equivalence property) by hand. The proof happens to
be quite technical. Its first step is rather standard and consists in guessing a
relation such that the two initial processes and all their possible evolutions are
in relation. The second step is more involved: it requires to prove equivalent an
infinite number of frames, the frames representing all possible attacker knowl-
edge. Indeed, unlike most previously analyzed protocols, the Norwegian protocol
emits receipts for the voters, potentially providing extra information to the at-
tacker. Proving static equivalence is also made difficult due to our equational
theory (e.g. four associative and commutative symbols).

Our third contribution is an analysis of the protocol for further corruption
scenarios, using the ProVerif tool in a simplified model (therefore possibly losing
attacks). In conclusion, we did not find any attack, except when the bulletin
box and the receipt generator or the decryption service alone (if no shuffling is
made) are corrupted. These attacks are probably not surprising but we found
interesting to make them explicit.
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Related Work. [15] provides a discussion on the security of the Norwegian pro-
tocol but no security proof. We do not know any other study related to this
protocol. Several other e-voting protocols have been studying using formal meth-
ods. The FOO [14], Okamoto [23] and Lee et al. [21] voting protocols have been
analysed in [12]. Similarly, Helios has been recently proved secure both in a
formal [10] and a computational [4] model. However, all these protocols were
significantly simpler to analyse. The more complex Civitas protocol was ana-
lyzed in [18]. In contrast, the Norwegian protocol is both complex and fully
deployed. There are also been studies of hybrid protocols (not fully electronic),
such as Scantegrity [20] or ThreeBallot [19].

We informally describe the protocol in Section 2. The applied-pi calculus is
briefly defined in Section 3. We then provide a formal modeling of the protocol
in Section 4 and formally state and prove the privacy properties satisfied by
the protocol in Section 5. The results obtained with ProVerif are described in
Section 6. Concluding remarks can be found in Section 7. All the proofs are
provided in a research report [11].

2 Norwegian E-voting Protocol

Norwegian protocol features several players including four players representing
the electronic poll’s infrastructure : a ballot box (B), a receipt generator (R), a
decryption service (D) and an auditor (A). Each voter (V) can log in using a
computer (P) in order to submit his vote. Channels between computers (voters)
and the ballot box are considered as authenticated channel, channels between
infrastructure’s player are untappable channels and channel between voters and
receipt generator is a unidirectional out-of-band channel. (Example of SMS is
given in [15].) The protocol can be divided in three phases : the setting phase,
the submission phase, where voters submit their votes, and the counting phase,
where ballots are counted and auditor verifies the correctness of the election.

2.1 Setting Phase

Before the election, private keys a1, a2, and a3 (such that a1 + a2 = a3) are
distributed over, respectively D, B, and R, while the corresponding public keys
are made publicly available. The receipt generator R is assumed to have a signing
key idR which corresponding verification key is distributed to P. The voters are
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Fig. 1. Submission of one vote

also assume to each have a signing key idV with the corresponding verification
key distributed to B. The bulletin board B is provided with a table V �→ sV

with a blinding factor sV for each voter V . The receipt generator R is given a
table V �→ dV with a permutation function dV for each voter V . Finally, each
voter V is assumed to received by post a table where, for each voting option o
corresponds a precomputed receipt code dV (f(o)sV ) where f is some encoding
function for voting options.

2.2 Submission Phase

The submission phase is depicted in Figure 1. We detail below the expected
behavior of each participant.

Voter (V). Each voter tells his computer what voting option o to submit and
allows it to sign the corresponding ballot on his behalf. Then, he has to wait for
an acceptance message coming from the computer and a receipt ř sent by the
receipt generator through the out-of-band channel. Using the receipt, he verifies
that the correct vote was submitted, that is, he checks that ř = dV (f(o)sV ) by
verifying that the receipt code ř indeed appears in the line associated to o.

Computer (P). Voter’s computer encrypts voter’s ballot with the public key
y1 using standard El Gamal encryption. The resulting ballot is (gr, yrf(o)). P
also proves that the resulting ciphertext corresponds to the correct vote, by
computing a standard signature proof of knowledge pfk . How pfk is computed
exactly can be found in [15]. P also signs the ballot with idV and sends it to the
ballot box. It then waits for a confirmation siR coming from the latter, which
is a hash of the initial encrypted ballot, signed by the receipt generator. After
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checking this signature, the computer notifies the voter that his vote has been
taken into account.

Bulletin Box (B). Receiving an encrypted and signed ballot b from a computer,
the ballot box checks first the correctness of signatures and proofs before re-
encrypting with a2 and blinding with sV the original encrypted ballot, also
generating a proof pfk ′, showing that its computation is correct. B then sends
the new modified ballot b′ to the receipt generator. Once the ballot box receives
a message siR from the receipt generator, it simply checks that the receipt gen-
erator’s signature is valid, and sends it to the computer.

Receipt generator (R). When receiving an encrypted ballot b′ = (b, x̌, w̌, p̌) from
the ballot box, the receipt generator first checks signature and proofs (from the
computer and the ballot box). If the checks are successful, it generates:

– a receipt code ř = dV (w̌x̌a3) sent by out-of-band channel directly to the
voter. Intuitively, the receipt generator decrypts the (blinded) ballot, apply-
ing the permutation function dV associated to the voter. This gives assurance
to the voter that the correct vote was submitted to the bulletin board.

– a signature on a hash of the original encrypted ballot for the ballot box.
Once transmitted by the bulletin board, it allows the computer to inform
the voter that his vote has been accepted.

2.3 Counting Phase

Once the ballot box is closed, the counting phase begins (Figure 2). The bal-
lot box selects the encrypted votes x1, . . . , xk which need to be decrypted (if
a voter is re-voting, all the submitted ballots are in the memory of the ballot
box and only the last ballot should be sent) and sends them to the decryption
service. The whole content of the ballot box b1, . . . , bn (n ≥ k) is revealed to
the auditor, including previous votes from re-voting voters. The receipt gener-
ator sends to the auditor the list of hashes of ballots it has seen during the
submission phase. The decryption service decrypts the incoming ciphertexts
x1, . . . , xk received from the ballot box and mix the results before outputting
them dec(xσ(1), a1), . . . , dec(xσ(k), a1) where σ denotes the permutation obtained
by shuffling the votes. It also provides the auditor with a proof pfk showing that
the input ciphertexts and the outcoming decryption indeed match. Using the
ballot box content and the list of hashes from the receipt generator, the auditor
verifies that no ballots have been inserted or lost and computes his own list of
encrypted ballots which should be counted. He compares this list with the one
received from the decryption service and verifies the proof given by the latter.

3 Applied Pi Calculus

We use the framework of the applied-pi calculus [3] for formally describing the
Norwegian protocol. To help with readability, the definitions of the applied-pi
calculus are briefly recalled here.
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Fig. 2. Counting phase

3.1 Terms

As usual, messages are represented by terms built upon an infinite set of names N
(for communication channels or atomic data), a set of variables X and a signa-
ture Σ consisting of a finite set of function symbols (to represent cryptographic
primitives). A function symbol f is assumed to be given with its arity ar (f).
Then the set of terms T (Σ,X ,N ) is formally defined by the grammar :

t, t1, t2, . . . ::=
x x ∈ X
n n ∈ N
f(t1, . . . , tn) f ∈ Σ,n = ar(f)

We write {M1/x1
, . . . ,Mn /xn} for the substitution that replaces the variables xi

with the terms Mi. Nσ refers to the result of applying substitution σ to the free
variables of term N . A term is called ground when it does not contain variables.

In order to represent the properties of the primitives, the signature Σ is
equipped with an equational theory E that is a set of equations which hold
on terms built from the signature. We denote =E the smallest equivalence rela-
tion induced by E, closed under application of function symbols, substitution of
terms for variables and bijective renaming of names. We write M =E N when
the equation M = N is in the theory E.

Example 1. A standard signature for representing encryption is Σ = {dec, penc}
where penc represents encryption while dec is decryption. Decryption is modeled
by the theory Eenc, defined by the equation dec(penc(x, r, pk(k)), k) = x.

3.2 Processes

Processes and extended processes are defined in Figure 3. The process 0 repre-
sents the null process that does nothing. P | Q denotes the parallel composition
of P with Q while !P denotes the unbounded replication of P (i.e. the unbounded
parallel composition of P with itself). ν n.P creates a fresh name n and the be-
haves like P . if φ then P else Q behaves like P if φ holds and like Q otherwise.
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P, Q,R ::= (plain) processes
0 null process
P | Q parallel composition
!P replication
ν n.P name restriction
if φ then P else Q conditional
u(x).P message input
u〈M〉.P message output

A, B, C ::= extended processes
P plain process
A | B parallel composition
ν n.A name restriction
ν x.A variable restriction
{M/x} active substitution

Fig. 3. Syntax for processes

u(x).P inputs some message in the variable x on channel u and then behaves
like P while u〈M〉.P outputs M on channel u and then behaves like P . We write
ν ũ for the (possibly empty) series of pairwise-distinct binders ν u1. · · · .ν un.
The active substitution {M/x} can replace the variable x for the term M in
every process it comes into contact with and this behaviour can be controlled
by restriction, in particular, the process ν x

(
{M/x} | P

)
corresponds exactly to

let x = M in P . As in [10], we slightly extend the applied-pi calculus by letting
conditional branches now depend on formulae φ, ψ ::= M = N |M �= N | φ ∧ ψ.
If M and N are ground, we define [[M = N ]] to be true if M =E N and false
otherwise. The semantics of [[ ]] is then extended to formulae as expected.

The scope of names and variables are delimited by binders u(x) and ν (u). Sets
of bound names, bound variables, free names and free variables are respectively
written bn(A), bv(A), fn(A) and fv(A). Occasionally, we write fn(M) (respec-
tively fv(M)) for the set of names (respectively variables) which appear in term
M . An extended process is closed if all its variables are either bound or defined
by an active substitution.

An context C[_] is an extended process with a hole instead of an extended
process. We obtain C[A] as the result of filling C[_]’s hole with the extended
process A. An evaluation context is a context whose hole is not in the scope of a
replication, a conditional, an input or an output. A context C[_] closes A when
C[A] is closed.

A frame is an extended process built up from the null process 0 and active
substitutions composed by parallel composition and restriction. The domain of
a frame ϕ, denoted dom(ϕ) is the set of variables for which ϕ contains an active
substitution {M/x} such that x is not under restriction. Every extended process
A can be mapped to a frame ϕ(A) by replacing every plain process in A with 0.
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Par-0 A ≡ A | 0
Par-A A | (B | C) ≡ (A | B) | C
Par-C A | B ≡ B | A
Repl !P ≡ P | !P
New-0 ν n.0 ≡ 0
New-C ν u.ν w.A ≡ ν w.ν u.A
New-Par A | ν u.B ≡ ν u.(A | B) if u �∈ fv(A) ∪ fn(A)

Alias ν x.{M/x} ≡ 0

Subst {M/x} | A ≡ {M/x} | A{M/x}
Rewrite {M/x} ≡ {N/x} if M =E N

Fig. 4. Structural equivalence

3.3 Operational Semantics

The operational semantics of processes in the applied pi calculus is defined by
three relations : structural equivalence (≡), internal reduction (→) and labelled
reduction ( α→). Structural equivalence is defined in Figure 4. It is closed by α-
conversion of both bound names and bound variables, and closed under applica-
tion of evaluation contexts. The internal reductions and labelled reductions are
defined in Figure 5. They are closed under structural equivalence and applica-
tion of evaluation contexts. Internal reductions represent evaluation of condition
and internal communication between processes. Labelled reductions represent
communications with the environment.

3.4 Equivalences

Privacy properties are often stated as equivalence relations [12]. Intuitively, if a
protocol preserves ballot secrecy, an attacker should not be able to distinguish
between a scenario where a voter votes 0 from a scenario where the voter votes 1.
Static equivalence formally expresses indistinguishability of sequences of terms.

Definition 1 (Static equivalence). Two closed frames ϕ and ψ are stati-
cally equivalent, denoted ϕ ≈s ψ, if dom(ϕ) = dom(ψ) and there exists a set
of names ñ and substitutions σ, τ such that ϕ ≡ ν ñ.σ and ψ ≡ ν ñ.τ and for
all terms M,N such that ñ ∩ (fn(M) ∪ fn(N)) = ∅, we have Mσ =E Nσ holds
if and only if Mτ =E Nτ holds. Two closed extended processes A,B are stat-
ically equivalent, written A ≈s B, if their frames are statically equivalent; that
is, ϕ(A) ≈s ϕ(B).

Example 2. Consider the signature and equational theory Eenc defined in Exam-
ple 1. Let ϕ1 = ν k.σ1 and ϕ2 = ν k.σ2 where σ1 = {penc(s1,r1,pk(k))/x1

, pk(k)/x2
},

σ2 = {penc(s2,r2,pk(k))/x1
, pk(k)/x2

} and s1, s2, k are names. We have that ϕ1 �≈s

ϕ2. Indeed, we penc(s1, r1, x2)σ1 =E x1σ1 but penc(s1, r1, x2)σ2 �=E x1σ2. How-
ever, we have that ν k, r1.σ1 ≈s ν k, r2.σ2.
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(Comm) c〈x〉.P | c(x).Q −→ P | Q

(Then) if φ then P else Q → P if [[φ]] = true

(Else) if φ then P else Q → Q otherwise

(In) c(x).P
c(M)−−−→ P{M/x}

(Out-Atom) c〈u〉.P c〈u〉−−−→ P

(Open-Atom)
A

c〈u〉−−−→ A′ u �= c

ν u.A
ν u.c〈u〉−−−−−→ A′

(Scope)
A

α−→ A′ u does not occur in α

ν u.A
α−→ ν u.A′

(Par)
A

α−→ A′ bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅
A | B

α−→ A′ | B

(Struct)
A ≡ B B

α−→ B′ B′ ≡ A′

A
α−→ A′

where α is a label of the form c(M), c〈u〉, or ν u.c〈u〉 such that u is either a channel
name or a variable of base type.

Fig. 5. Semantics for processes

Observational equivalence is the active counterpart of static equivalence, where
the attacker can actively interact with the processes. The definition of observa-
tional equivalence requires to reason about all contexts (i.e. all adversaries),
which renders the proofs difficult. Since observational equivalence has been
shown to coincide [3,22] with labelled bisimilarity, we adopt the later in this
paper.

Definition 2 (Labelled bisimilarity). Labelled bisimilarity (≈l) is the largest
symmetric relation R on closed extended processes such that ARB implies:

1. A ≈s B;
2. if A −→ A′, then B −→∗ B′ and A′RB′ for some B′;
3. if A α−→ A′ such that fv(α) ⊆ dom(A) and bn(α)∩fn(B) = ∅, then B −→∗ α−→−→∗

B′ and A′RB′ for some B′.

Examples of labelled bisimilar processes will be provided in Section 5.

4 Modelling the Protocol in Applied-Pi Calculus

We now provide a formal specification of the protocol, using the framework of
the applied-pi calculus, defined in the previous section. The first step consists in
modeling the cryptographic primitives used by the protocol.
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4.1 Equational Theory

We adopt the following signature to capture the cryptographic primitives used
by the protocol.

Σsign = {Ok, fst, hash, p, pk, s, snd, vk, blind, d, dec,+, ∗, ◦, �, pair,

renc, sign, unblind, checkpfk1, checkpfk2, checksign, penc, pfk1, pfk2}

with function Ok is a constant ; fst, hash, p, pk, s, snd, vk are unary functions ; blind,
d, dec, +, ∗, ◦, �, pair, renc, sign, unblind are binary functions ; checkpfk1, checkpfk2,
checksign, penc are ternary functions and pfk1, pfk2 are quaternary functions.

The term pk(K) denotes the public key corresponding to the secret key K in
asymmetric encryption. Terms s(I), p(I), and vk(I) are respectively the blinding
factor, the parameter and the verification key associated to a secret id I. The
specific coding function used by the receipt generator for a voter with secret
id I, applied to a message M is represented by d(p(I),M). It corresponds to
the function dI(M) explained in Section 2.2. The term blind(M,N) the message
M blinded by N . Unblinded such a blinded term P , using the same blinding
factor N is denoted by unblind(P,N). The term penc(M,N,P ) refers to the
encryption of plaintext M using random nonce N and public key P . The term
M ◦N denotes the homomorphic combination of ciphertexts M and M ′ and the
corresponding operation on plaintexts is written P � Q and R ∗ S on nonces.
The decryption of ciphertext C using secret key K is denoted dec(C,K). The
term renc(M,K) is the re-encryption of the ciphertext M using a secret key K
and leads to another ciphertext of the same plaintext with the same nonce but
a different public key. The operation between secret keys is denoted by K + L.
The term sign(M,N) refers to the signature of the message M using secret id
N . The term pfk1(M,N,P,Q) represents a proof of knowledge that proves that
Q is a ciphertext on the plaintext P using nonce N . The term pfk2(M,N,P,Q)
denotes another proof of knowledge proving that Q is either a re-encryption or
a masking of a term P using a secret key or nonce N . We introduce tuples using
pairings and, for convenience, pair(M1, pair(. . . , pair(Mn−1,Mn))) is abbreviated
as (M1, . . . ,Mn) and fst(sndi−1(M)) is denoted Πi with i ∈ N.

The properties of the primitives are then modelled by equipping the signature
with an equational theory E that asserts functions +, ∗, ◦ and � are commutative
and associative, and includes the equations defined in Figure 6. The three first
equations are quite standard. Equation (4) allows to decrypt a blinded cipher-
text in order to get the corresponding blinded plaintext. Equation (5) models
the homomorphic combination of ciphertexts. Equation (6) represents the re-
encryption of a ciphertext. The operation of unblinding is described through
Equation (7). Equations (8), (9) and (10) allows respectively the verification of
signatures and proofs of knowledge for pfk1 and pfk2 proofs.

4.2 Norwegian Protocol Process Specification

The description of the processes representing the actors of the protocol makes
use of auxiliary checks that are defined in Figure 7. We did not model re-voting
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fst(pair(x, y)) = x (1)
snd(pair(x, y)) = y (2)

dec(penc(xplain, xrand, pk(xsk)), xsk) = xplain (3)
dec(blind(penc(xplain, xrand, pk(xsk)), xblind), xsk) = blind(xplain, xblind) (4)

penc(xpl, xrand, xpub) ◦ penc(ypl, yrand, xpub) =

penc(xpl � ypl,xrand ∗ yrand, xpub) (5)
renc(penc(xplain, xrand, pk(xsk)), ysk) =

penc(xplain,xrand, pk(xsk + ysk)) (6)
unblind(blind(xplain, xblind), xblind) = xplain (7)

checksign(xplain, vk(xid), sign(xplain, xid)) = Ok (8)
checkpfk1(vk(xid), ball, pfk1(xid, xrand, xplain, ball)) = Ok

where ball = penc(xplain, xrand, xpub) (9)
checkpfk2(vk(xid), ball, pfk2(vk(xid), xbk, xplain, ball)) = Ok

where ball = renc(xplain, xbk) or ball = blind(xplain, xbk) (10)

Fig. 6. Equations for encryption, blinding, signature and proof of knowledge

since it is explicitely and strongly discouraged in [15], as it may allow an attacker
to swap two votes (the initial casted one and its revoted one).

The voting process V represents both the voter and his computer. It is
parametrized by a free variable xvote representing voter’s vote and free names
cauth, cRV which denote the channel shared with the voter and, respectively, the
ballot box and the receipt generator. g1 is a variable representing the public key
of the election, id is the secret id of the voter and idpR is a variable representing
the verification key of the receipt generator. Note that messages sent over cauth

and cRV are also sent on the public channel cout to the adversary, to simulate
authenticated but not confidential channels.

φb(idpi, x) = [(Π1(x), Π2(x),Π3(x)) = x
∧checksign((Π1(x), Π2(x)), vk(idi), Π3(x)) = Ok

∧ checkpfk1(idpi, Π1(x), Π2(x)) = Ok]

φs(idpR, x, y) = [checksign(x, idpR, y) = Ok]

φv(idpR, idi, x, y, v, z) = [checksign(x, idpR, y) = Ok ∧ d(p(idi), blind(v, s(idi))) = z]

(∀k = 1..3, xk
i = Πk(Π1(x)), ∀k = 4..7, xk

i = Πk−2(x))
φr(idpi, x) = [(x1

i , x
2
i , x

3
i ) = Π1(x) ∧ (Π1(x), x4

i , x
5
i , x

6
i , x

7
i ) = x

∧ checksign((x1
i , x

2
i ), idpi, x

3
i ) = Ok ∧ checkpfk1(idpi, x

1
i , x

2
i ) = Ok

∧ checkpfk2(idpi, x
4
i , x

5
i ) = Ok ∧ checkpfk2(idpi, x

6
i , x

7
i ) = Ok]

Fig. 7. Auxiliary checks performed by the participants to the protocol
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V (cauth , cout, cRV , g1, id, idpR, xvote) = ν t .
let e = penc(xvote, t, g1) in
let p = pfk1(id, t, xvote, e) in
let si = sign((e, p), id) in
cout〈(e, p, si)〉 .
cauth〈(e, p, si)〉 . % encrypted ballot sent to B
cRV (x) . cauth(y) .
cout〈x〉 . cout〈y〉 .
let hv = hash((vk(id), e, p, si)) in % recomputes what should

be sent by R
if φv(idpR, id, h, x, xvote, y) then cauth〈Ok〉 % checks validity

Process Bn corresponds to the ballot box, ready to listen to n voters. The ballots
are coming from authenticated channels c1, . . . , cn and the ballot box can send
messages to the receipt generator, the decryption service and the auditor through
secure channels cBR, cBD and cBA. The parameters of the ballot box are keys :
g1, g3 (public) and a2 (secret); public ids of voters idp1, . . . , idpn (i.e. verification
keys) and corresponding blinding factors s1, . . . , sn. (Step c(sy1) is a technical
synchronisation, it does not appear in the real specification.)

Bn(cBR, cBD, g1, a2, g3, idpR, c1, idp1, s1, . . . , cn, idpn, sn) =
. . . . ci(xi) .
if φb(idpi, xi) then % checks validity of ballot
let ei = renc(Π1(xi), a2) in
let pfk e

i = pfk2(idpi, a2, Π1(xi), ei) in
let bi = blind(ei, si) in
let pfk b

i = pfk2(idpi, si, ei, bi) in % computes re-encrypted masked
ballot and corresponding proofs.

cBR〈(xi, ei, pfk
e
i , bi, pfk

b
i )〉.cBR(yi). % message sent to R

let hbi = hash((vk(idi), Π1(xi), Π2(xi), Π3(xi))) in
if φs(idpR, hbi, yi) then % checks validity of confirmation
ci〈yi〉 . ci(syi) . . . % transmit confirmation to the voter
cn〈yn〉 . cn(syn) .
cBD〈Π1(x1)〉 . . . . . cBD〈Π1(xn)〉 . % output encrypted votes to the

Decryption Service
cBA〈x1〉 . . . . . cBA〈xn〉 % output the content to the Auditor

Receipt generator’s process is denoted by Rn. It deals with the ballot box and the
auditor through secure channels cBR and cRA and directly with voters through
out-of-band channels cRV1

, . . . , cRVn . It is parametrized with keys: g1, g2 (pub-
lic) and a3 (secret); the public ids of voters and corresponding receipt coding
functions parametrized by pr1, . . . , prn.

Rn(cBR, g1, g2, a3, idR, cRV1
, idp1, pr1, . . . , cRVn , idpn, prn) =

. . . . cBR(xi) .
let xk

i = Πk(Π1(xi)), k = 1..3 in
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let xk
i = Πk−2(xi), k = 4...7 in

if φr(idpi, xi) then % checks ballot box’s computations
let hbr i = hash((idpi, x

1
i , x

2
i , x

3
i )) in

let hbpr i = hash((idpi, x
1
i , x

2
i )) in

let ri = d(pri, dec(x6
i , a3)) in % computes the receipt code for V

let sigi = sign(hbri, idR) in % computes confirmation for B
cRVi〈ri〉 . cBR〈sigi〉 . . . .
cRVn〈rn〉 . cBR〈sign〉 . . . .
cRA〈(idp1, hbpr1, hbr1)〉 . . . . . cRA〈(idpn, hbprn, hbrn)〉

% output content to the Auditor

The decryption service is represented by process Dn. Communicating securely
with the ballot box and the auditor through channels cBD and cDA, it also
outputs results through public channel cout. In order to decrypt ballots, it needs
to know the secret key a1. We model two processes, one including a swap between
the two first votes, to model the shuffling which is necessary to ensure ballot
secrecy.

Dn(cBD, cDA, cout, a1) =
cBD(x1) . . . . . cBD(xn) .
cDA〈hash((x1, . . . , xn))〉 . cDA(x) . % creating hash of ciphertexts and

waiting for auditor’s approval
let deck = dec(xk, a1), k = 1..n in % decryption of ciphertexts
cout〈dec1〉 . . . . . cout〈decn〉 % publication of results

Dn(cBD, cDA, cout, a1) =
cBD(x1) . . . . . cBD(xn) .
cDA〈hash((x1, . . . , xn))〉 . cDA(x) .
let dec1 = dec(x2, a1) in % the swap between the two first
let dec2 = dec(x1, a1) in votes is modelled here
let deck = dec(xk, a1), k = 3..n in
cout〈dec1〉 . . . . . cout〈decn〉

Finally, the auditor process, ADn, communicates with the other infrastructure
players using secure channels cBA, cRA and cDA. It knows public ids of voters.

ADn(cBA, cRA, cDA, idp1, . . . , idpn) =
cDA(hd) . % input of contents of B, R and D
cBA(x1) . . . . . cBA(xn) . cRA(h1) . . . . . cRA(h1) .
let hbai = hash((Π1(xi), Π2(xi), Π3(xi))) in
let hbpai = hash((Π1(xi), Π2(xi))) in
let ha = hash((Π1(x1), . . . , Πn(xn))) in
if φa(x1, h1, idp1, . . . , xn, hn, idpn, h, hd) then cDA〈Ok〉 else 0

% checks and approval sent to D.

where φa(x1, h1, idp1, . . . , xn, hn, idpn, h, hd) = [(Π1(xi), Π2(xi), Π3(xi)) = xi

∧(Π1(hi), Π2(hi), Π3(hi)) = hi ∧ Π2(hi) = hbpi ∧Π3(hi) = hbi ∧ hd = h
∧ checksign((Π1(xi), Π2(xi)), idpi, Π3(xi)) = Ok]
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The interaction of all the players is simply modeled by considering all the pro-
cesses in parallel, with the correct instantiation and restriction of the parameters.
In what follows, the restricted name a1, a2, a3 model secret keys used in the pro-
tocol and public keys pk(a1), pk(a2) and pk(a3) are added in the process frame.
The restricted name c1, c2 and cRV1

, cRV2
model authentic channels between

honest voters and, respectively, the ballot box and the receipt generator. The
restricted name id1, id2, idR represent secret ids of honest voters and receipt
generator, the corresponding public id’s are added in the process’s frame.

Then the setting of the authorities is modeled by An [_] where n is the number
of voters and the hole is the voter place. An [_] is the analogue of An [_] with
the Decryption service swapping the two first votes (its use will be clearer in the
next section, when defining vote privacy).

ñ = (a1, a2, id1, id2, idR, c1, c2, cRV1
, cRV2

, cBR, cBD, cBA, cRA, cDA)
Γ = {pk(a1)/g1

,pk(a2) /g2
,pk(a3) /g3

,vk(id1) /idp1
, . . . ,vk(idn) /idpn ,

vk(idR) /idpR}
An [_] = ν ñ .(let a3 = a1 + a2 in [_|Bn{s(id1)/s1

, · · · ,s(idn) /sn}
|Rn{p(id1)/pr1

, · · · ,p(idn) /prn}|Dn|ADn|Γ ])
An [_] = ν ñ .(let a3 = a1 + a2 in [_|Bn{s(id1)/s1

, · · · ,s(idn) /sn}
|Rn{p(id1)/pr1

, · · · ,p(idn) /prn}|Dn|ADn|Γ ])

The frame Γ represents the initial knowledge of the attacker: it has access to the
public keys of the authorities and the verification keys of the voters. Moreover,
since only the two first voters are assumed to be honest, only their two secret ids
are restricted (in ñ). The attacker has therefore access to the secret ids of all the
other voters. Parameters of subprocesses are left implicit except for s1, . . . , sn for
the ballot box and pr1, . . . , prn for the receipt generator which are respectively
replaced by s(id1), . . . , s(idn), the blinding factors, and p(id1), . . . , p(idn), used
to distinguish the coding dunction associated to a voter.

5 Formal Analysis of Ballot Secrecy

Our analysis shows that the Norwegian e-voting protocol preserves ballot secrecy,
even when all but two voters are corrupted, provided that the other components
are honest. We also identified several cases of corruption that are subject to
attacks. Though not surprising, these cases were not previously mentioned in
the literature.

5.1 Ballot Secrecy with Corrupted Voters

Ballot secrecy has been formalized in terms of equivalence by Delaune, Kremer,
and Ryan in [12]. A protocol with voting process V (v, id) and authority processA
preserves ballot secrecy if an attacker cannot distinguish when votes are swapped,
i.e. it cannot distinguish when a voter a1 votes v1 and a2 votes v2 from the case
where a1 votes v2 and a2 votes v1. This is formally specified by:

νñ.(A | V {v2/x,
a1 /y | V {v1/x,

a2 /y}) ≈l νñ.(A | V {v1/x,
a1 /y | V {v2/x,

a2 /y})
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We are able to show that the Norwegian protocol preserves ballot secrecy, even
all but two voters are corrupted.

Theorem 1. Let n be the number of voters. The Norwegian e-voting protocol
process specification satisfies ballot secrecy with the auditing process, even with
n− 2 voters are corrupted, provided that the other components are honest.

An[V {c1/cauth
,cRV1 /cRV }σ | V {c2/cauth

,cRV2 /cRV }τ ]
≈l An [V {c1/cauth

,cRV1 /cRV }τ |V {c2/cauth
,cRV2 /cRV }σ]

where σ = {v1/xvote} and τ = {v2/xvote}.

We can also show ballot secrecy, without an auditor. This means that the auditor
does not contribute to ballot secrecy in case the administrative components are
honest (which was expected). Formally, we define A′

n [_] and An [_]′ to be the
analog of An [_] and An [_], removing the auditor.

Theorem 2. Let n be the number of voters. The Norwegian e-voting protocol
process specification satisfies ballot secrecy without the auditing process, even
with n− 2 voters are corrupted, provided that the other components are honest.

A′
n[V {c1/cauth

,cRV1 /cRV }σ | V {c2/cauth
,cRV2 /cRV }τ ]

≈l A′
n [V {c1/cauth

,cRV1 /cRV }τ |V {c2/cauth
,cRV2 /cRV }σ]

where σ = {v1/xvote} and τ = {v2/xvote}.

The proof of Theorems 1 and 2 works in two main steps. First we guess a relation
R such that for any two processes P,Q in relation (PRQ) any move of P can be
matched by a move ofQ such that the resulting processes remain in relation. This
amounts to characterize all possible successors of An[V {c1/cauth

,cRV1 /cRV }σ |
V {c2/cauth

,cRV2 /cRV }τ ] andAn[V {c1/cauth
,cRV1 /cRV }τ |V {c2/cauth

,cRV2 /cRV }σ]. We
show in particular that whenever the attacker sends a term N that is accepted
by the ballot box for a voter with secret id id, then N is necessarily an id - valid
ballot for the following definition.

Definition 3. Let id ∈ {id1, . . . , idn}. A term N is said to be a id - valid ballot
if φb(id,N) = true, equivalently :⎧⎨

⎩
N = (N1, N2, N3)

checksign((N1, N2), vk(id), N3) =E Ok
checkpfk1(vk(id), N1, N2) =E Ok

.

The second and most involved step of the proof consists in showing that the
sequences of messages observed by the attacker remain in static equivalence.
This requires to prove an infinite number of static equivalences. Let us introduce
some notations.
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θsub = {pk(a1)/g1
}|{pk(a2)/g2

}|{pk(a3)/g3
}|{vk(idR)/idpR}|{ball1/b1}|{ballo2/b2}|

{{vk(idi)/idpi}| i = 1..n}|{{d(p(idi),dec(blind(renc(Π1(xi),a2),s(idi)),a3))/yi}|
{sign(hash((vk(idi),xi)),idR)/zi}| i = 1..n}

ΣL = {v1/x1
vote

,v2 /x2
vote

}
ΣR = {v2/x1

vote
,v1 /x2

vote
}

θct = {dec(Π1(x1),a1)/result1 ,
dec(Π1(x2),a1) /result2 ,

dec(Π1(xi),a1) /resulti
|i = 3..n}

θct = {dec(Π1(x2),a1)/result1 ,
dec(Π1(x1),a1) /result2 ,

dec(Π1(xi),a1) /resulti
|i = 3..n}

where ball1 and ball2 are the terms sent by the two honest voters.

The frame θsub represents the messages sent over the (public) network during
the submission phase. ΣL represents the scenario where voter 1 votes v1 and
voter 2 votes v2 while ΣL represents the opposite scenario. θct and θct represent
the results published by the decryption service.

All voters with secret id idi with i ≥ 3 are corrupted. Therefore, the attacker
can submit any deducible term as a ballot, that is any term that can be repre-
sented by Ni with fv(Ni) ⊆ dom(θsub)\{yj, zj}j≥i (i.e. a recipe that can only
re-use previously received messages). We are able to show that whenever the
message submitted by the attacker is accepted by the ballot box, then NiθsubΣ
is necessarily an idi-valid ballots for Σ ∈ {ΣL, ΣR}.

A key result of our proof is that the final frames are in static equivalence, for
any behavior of the corrupted users (reflected in the Ni).

Proposition 1. Let NiθsubΣ be idi-valid ballots for Σ ∈ {ΣL, ΣR} and i ∈
{3, . . . , n}, we have: νñ.(θsub |θct)σÑΣL ≈s νñ.(θsub |θct)σÑΣR,
where σÑ = {ball1/x1

, ball2/x2
, Nj/xj | j ∈ {3, . . . , n}}.

5.2 Attacks

Our two previous results of ballot secrecy hold provided all the administrative
components (bulletin box, receipt generator, decryption service, and auditor)
behave honestly. However, in order to enforce the level of trust, the voting system
should remain secure even if some administrative components are corrupted. We
describe two cases of corruption where ballot secrecy is no longer guaranteed.

Dishonest decryption service. The decryption service is a very sensitive com-
ponent since it has access to the decryption key a1 of the public key used for
the election. Therefore, a corrupted decryption service can very easily decrypt
all encrypted ballots and thus learns the votes as soon as he has access to the
communication between the voters and the bulletin box (these communications
being conducted on the public Internet network). Even if we did not find any
explicit mention of this, we believe that the designers of the protocol implic-
itly assume that a corrupted decryption would not be able to control (some of)
the communication over the Internet. It should also be noted that a corrupted
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decryption service could learn the votes even without access to Internet if the
bulletin box does not shuffle the ballots before sending them. Whether or not
shuflling is performed is not completely clear in [15].

Dishonest bulletin box and receipt generator. Clearly, if the bulletin box and the
receipt generator collude, they can compute a1 = a3 − a2 and they can then
decrypt all incoming encrypted ballots. More interestingly, a corrupted receipt
generator does not need the full cooperation of the bulletin box for breaking
ballot secrecy. Indeed, assume that the receipt generator has access, for some
voter V , to the blinding factor sV used by the bulletin to blind the ballot. Recall
that the receipt generator retrieves f(o)sV when generating the receipt codes
(by computing w̌x̌−a3). Therefore, the receipt generator can compute f(o′)sV

for any possible voting option o′. Comparing with the obtained values with
f(o)sV it would easily deduce the chosen option o. Of course, the more blinding
factors the receipt generator can get, the more voters it can attack. Therefore,
the security of the protocol strongly relies on the security of the blinding factors
which generation and distribution are left unspecified in the documentation. The
bulletin box can also perform a similar attack, provided it can learn some coding
function dV and additionally, provided that it has access to the SMS sent by the
receipt generator, which is probably a too strong corruption scenario.

6 Further Corruption Cases Using ProVerif

In order to study further corruption cases, we have used ProVerif, the only tool
that can analyse equivalence properties in the context of security protocols. Of
course, we needed to simplify the equational theory since ProVerif does not
handle associative and commutative (AC) symbols and our theory needs four of
them. So we have considered the theory E′ defined by the equations of Figure 6,
except equation (5) that represents homomorphic combination of ciphertexts
and we have replaced AC symbols + and ∗ by free function symbols f and g.
Using this simplified theory, it is clear that we can miss some attacks, but testing
corruption assumptions is still relevant even if the attacker is a bit weaker than
in our first study.

As ProVerif is designed to prove equivalences between processes that differ
only by terms, we need to use another tool, ProSwapper [16], to model the
shuffle done by the decryption service. More precisely, we actually used their
algorithm to compute directly a shuffle in our ProVerif specification.

The results are displayed in Table 1 and 2 and have been obtained with a
standard (old) laptop1. In these tables, � indicates that ballot secrecy is satisfied,
× shows that there is an attack, and - indicates that ProVerif was not able to
conclude. No indication of times means that we do not proceed to a test in
ProVerif but, as we already knew that there was an attack. In particular, all the
attacks described in Section 5.2 are displayed in the tables.

1 2.00 Ghz processor with 2 GB of RAM Memory.
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Table 1. Results and computation times for the protocol without auditor

�����������Corr. Players
Corr. Voters 0 1 2 5 10

None � � � � �
0.4" 0.9" 2.4" 16.1" 20’59"

Ballot Box (B) -
>1h

Receipt Generator (R) � � � � �
1.1" 2.4" 5.7" 1’15" 39’30"

Decryption Service (D) × ×
0.2"

B + R × ×
0.3"

D+B, D+R, D+R+B ×

Table 2. Results and computation times for the protocol with auditor

�����������Corr. Players
Corr. Voters 0 1 2 3 4

None � � � � �
0.6" 1,8" 4.1" 27.7" 11’1"

Ballot Box (B) -
>1h

Receipt Generator (R) � � � � �
1.1" 1.9" 5.9" 29.1" 10’33"

Auditor (A) � � � � �
0.4" 1.9" 2.6" 5.8" 12.1"

R + A � � � � �
0.6" 1.9" 5.5" 14.5" 34.4"

B+R, B+R+A, D ×
D + any other combination

Our case study with ProVerif indicates that ballot secrecy is still preserved
even when the Receipt Generator is corrupted (as well as several voters), at least
in the simplified theory. Unfortunately, ProVerif was not able to conclude in the
case the Ballot Box is corrupted.

7 Discussion

We have proposed the first formal proof that the e-voting protocol recently used
in Norway indeed satisfies ballot secrecy, even when all but two voters are cor-
rupted and even without the auditor. As expected, ballot secrecy is no longer
guaranteed if both the bulletin box and the receipt generator are corrupted.
Slightly more surprisingly, the protocol is not secure either if the decryption ser-
vice is corrupted, as discussed in Section 5.2. More cases of corruption need to be
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studied, in particular when the bulletin board alone is corrupted, we leave this
as future work. In addition, it remains to study other security properties such as
coercion-resistance or verifiability. Instead of doing additional (long and techni-
cal) proofs, a further step consists in developing a procedure for automatically
checking for equivalences. Of course, this is a difficult problem. A first decision
procedure has been proposed in [9] but is limited to subterm convergent theories.
An implementation has recently been proposed [8] but it does not support such
a complex equational theory. An alternative step would be to develop a sound
procedure that over-approximate the relation, losing completeness in the spirit
of ProVerif [5] but tailored to privacy properties.

We would like to emphasize that the security proofs have been conducted in
a symbolic thus abstract model. This provides a first level of certification, ruling
out “logical” attacks. However, a full computational proof should be developed.
Our symbolic proof can been seen as a first step, identifying the set of messages
an attacker can observe when interacting with the protocol. There is however
still a long way to go for a computational proof. In particular, it remains to
identify which the security assumptions are needed.

It is also important to note that the security of the protocol strongly relies on
the way initial secrets are pre-distributed. For example, three private decryption
keys a1, a2, a3 (such that a1 + a2 = a3) need to be securely distributed among
(respectively) the bulletin board, the receipt generator and the decryptor. Also, a
table (id, s(id)) containing the blinding factor for each voter needs to be securely
distributed to bulletin board and a table (id, did) containing a permutation for
each voter needs to be securely distributed to the receipt generator. Moreover,
anyone with access with both the codes mailed to the voters and to the SMS
emitted by the receipt generator would immediately learn the values of all the
votes. We did not find in the documentation how and by who all these secret
values were distributed. It should certainly be clarified as it could be a weak
point of the system.
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Abstract. We formally analyze the family of entity authentication pro-
tocols defined by the ISO/IEC 9798 standard and find numerous weak-
nesses, both old and new, including some that violate even the most basic
authentication guarantees. We analyse the cause of these weaknesses, pro-
pose repaired versions of the protocols, and provide automated, machine-
checked proofs of the correctness of the resulting protocols. From an
engineering perspective, we propose two design principles for security
protocols that suffice to prevent all the weaknesses. Moreover, we show
how modern verification tools can be used for falsification and certified
verification of security standards. The relevance of our findings and rec-
ommendations has been acknowledged by the responsible ISO working
group and an updated version of the standard will be released.

Introduction

Entity authentication is a core building block for security in networked sys-
tems. In its simplest form, entity authentication boils down to establishing
that a party’s claimed identity corresponds to its real identity. In practice,
stronger guarantees are usually required, such as mutual authentication, agree-
ment among the participating parties on the identities of their peers, or authen-
tication of transmitted data [27, 32].

The ISO (International Organization for Standardization) and IEC (Interna-
tional Electrotechnical Commission) jointly provide standards for Information
Technology. Their standard 9798 specifies a family of entity authentication pro-
tocols. This standard is mandated by numerous other standards that require
entity authentication as a building block. Examples include the Guidelines on
Algorithms Usage and Key Management [13] by the European Committee for
Banking Standards and the ITU-T multimedia standard H.235 [24].

Analysis of previous versions of the ISO/IEC 9798 standard has led to the
discovery of several weaknesses [3, 8, 12]. The standard has been revised several
times to address weaknesses and ambiguities, with the latest updates stemming
from 2010. One may therefore expect that such a mature and pervasive stan-
dard is “bullet-proof” and that the protocols satisfy strong, practically relevant,
authentication properties.

On request by CRYPTREC, the Cryptography Research and Evaluation Com-
mittee set up by the Japanese Government, we formally analyzed the most recent
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versions of the protocols specified in parts 1–4 of the ISO/IEC 9798 standard using
the Scyther tool [9]. To our surprise, we not only found that several previously
reported weaknesses are still present in the standard, but we also found new weak-
nesses. In particular, many of the protocols guarantee only weak authentication
properties and, under some circumstances, even no authentication at all. For the
majority of implementations of the standard where only weak authentication is re-
quired, these weaknesses will not lead to security breaches. However, our findings
clearly show that the guarantees provided by the protocols are much weaker than
might be expected. Moreover, in some cases, additional assumptions are required
to ensure even the weakest possible form of authentication.

We analyze the shortcomings in the protocols’ design and propose repairs. We
justify the correctness of our fixes by providing machine-checked proofs of the
repaired protocols. These proofs imply the absence of logical errors: the repaired
protocols provide strong authentication properties in a Dolev-Yao model, even
when multiple protocols from the standard are run in parallel using the same
key infrastructure. Consequently, under the assumption of perfect cryptography,
the repaired protocols guarantee strong authentication.

To generate the correctness proofs, we first extend the Scyther-Proof
tool [31] to handle bidirectional keys. We then use the tool to generate proof
scripts that are checked independently by the Isabelle/HOL theorem prover.
As input, Scyther-Proof takes a description of a protocol and its properties
and produces a proof in higher-order logic of the protocol’s correctness. Both the
generation of proof scripts and their verification by Isabelle/HOL are completely
automatic.

From an engineering perspective, we observe that applying existing principles
for constructing cryptographic protocols such as those of Abadi and Needham [2]
would not have prevented most of the discovered weaknesses. We therefore addi-
tionally propose two design principles in the spirit of [2] whose application would
have prevented all of the weaknesses.

Based on our analysis, the ISO/IEC working group responsible for the 9798
standard will release an updated version of the standard, incorporating our pro-
posed fixes.

Summary of Contributions. First, we find previously unreported weaknesses in
the most recent version of the ISO/IEC 9798 standard. Second, we repair this
practically relevant standard, and provide machine-checked proofs of the cor-
rectness of the repairs. Third, we propose two principles for engineering crypto-
graphic protocols in the spirit of [2] that would have prevented the weaknesses.
Fourth, our work highlights how modern security protocol analysis tools can be
used for falsification and machine-checked verification of security standards.

Organization. In Section 1, we describe the ISO/IEC 9798 standard. In Section 2,
we model the protocols and analyze them, discovering numerous weaknesses. In
Section 3, we analyze the sources of these weaknesses and present two design
principles that eliminate them. In Section 4, we explain how we automatically
generate machine-checked correctness proofs for these repaired protocols. We
describe related work in Section 5 and conclude in Section 6.
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1 The ISO/IEC 9798 Standard

1.1 Overview

We give a brief overview of the standard, which specifies a family of entity
authentication protocols. We consider here the first four parts of the standard.
Part 1 is general and provides background for the other parts. The protocols are
divided into three groups. Protocols using symmetric encryption are described
in Part 2, those using digital signatures are described in Part 3, and those using
cryptographic check functions such as MACs are described in Part 4.

Because the standard has been revised, we also take into account the most
recent technical corrigenda and amendments. Our analysis covers the protocols
specified by the following documents. For the first part of the standard, we
cover ISO/IEC 9798-1:2010 [21]. For the second part, we cover ISO/IEC 9798-
2:2008 [18] and Corrigendum 1 from 2010 [22]. For the third part, we cover
ISO/IEC 9798-3:1998 [16], the corrigendum from 2009 [19], and the amendment
from 2010 [23]. Finally, for the fourth part, our analysis covers ISO/IEC 9798-
4:1999 [17] and the corrigendum from 2009 [20].

Table 1 lists the 17 associated protocols. For each cryptographic mechanism,
there are unilateral and bilateral authentication variants. The number of mes-
sages and passes differs among the protocols as well as the communication struc-
ture. Some of the protocols also use a trusted third party (TTP).

Note that there is no consistent protocol naming scheme shared by the differ-
ent parts of the ISO/IEC 9798 standard. The symmetric-key based protocols are
referred to in [18] as “mechanism 1”, “mechanism 2”, etc., whereas the protocols
in [16, 20, 23] are referred to by their informal name, e. g., “One-pass unilateral
authentication”. In this paper we will refer to protocols consistently by com-
bining the document identifier, e. g., “9798-2” with a number n to identify the
n-th protocol in that document. For protocols proposed in an amendment, we
continue the numbering from the base document. Hence we refer to the first
protocol in [23] as “9798-3-6”. The resulting identifiers are listed in Table 1.

Most of the protocols are parameterized by the following elements:

– All text fields included in the protocol specification are optional and their
purpose is application-dependent.

– Many fields used to ensure uniqueness or freshness may be implemented
either by random numbers, sequence numbers, or timestamps.

– Some protocols specify alternative message contents.
– Some identifier fields may be dropped, depending on implementation details.

1.2 Notation

We write X ||Y to denote the concatenation of the bit strings X and Y . We write

{|X |}enck to denote the encryption of X with the symmetric key k and {|X |}signk

to denote the digital signature of X with the signature key k. The application of
a cryptographic check function f , keyed with key k, to a message m, is denoted
by fk(m).
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Table 1. Protocols specified by Parts 1-4 of the standard

Protocol Description

Part 2: Symmetric-key Cryptography
9798-2-1 One-pass unilateral authentication
9798-2-2 Two-pass unilateral authentication
9798-2-3 Two-pass mutual authentication
9798-2-4 Three-pass mutual authentication
9798-2-5 Four-pass with TTP
9798-2-6 Five-pass with TTP

Part 3: Digital Signatures
9798-3-1 One-pass unilateral authentication
9798-3-2 Two-pass unilateral authentication
9798-3-3 Two-pass mutual authentication
9798-3-4 Three-pass mutual authentication
9798-3-5 Two-pass parallel mutual authentication
9798-3-6 Five-pass mutual authentication with TTP, initiated by A
9798-3-7 Five-pass mutual authentication with TTP, initiated by B

Part 4: Cryptographic Check Functions
9798-4-1 One-pass unilateral authentication
9798-4-2 Two-pass unilateral authentication
9798-4-3 Two-pass mutual authentication
9798-4-4 Three-pass mutual authentication

In the standard, TVP denotes a Time-Variant Parameter, which may be a
sequence number, a random value, or a timestamp. TN denotes a time stamp
or sequence number. IX denotes the identity of agent X . Textn refers to a text
field. These fields are always optional and their use is not specified within the
standard. We write KAB to denote the long-term symmetric key shared by A
and B. If the key is directional, we assume that A uses KAB to communicate
with B and that B uses KBA. By convention, we use lower case strings for fresh
session keys, like kab.

1.3 Protocol Examples

Example 1: 9798-4-3. The 9798-4-3 protocol is a two-pass mutual authenti-
cation protocol based on cryptographic check functions, e. g., message authenti-
cation codes. Its design, depicted in Figure 1, is similar to two related protocols
based on symmetric key encryption (9798-2-3) and digital signatures (9798-3-3).

The initiator starts in role A and sends a message that consists of a time stamp
or sequence number TNA, concatenated with an optional text field and a crypto-
graphic check value. This check value is computed by applying a cryptographic
check function to the key shared between A and B and a string consisting of
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1. A → B : TNA || Text2 || fKAB (TNA || IB || Text1)
2. B → A : TNB || Text4 || fKAB (TNB || IA || Text3)

Fig. 1. The 9798-4-3 two-pass mutual authentication protocol using a cryptographic
check function

TokenPA = Text4 || {|TVPA || kab || IB || Text3 |}encKAP
|| {|TNP || kab || IA || Text2 |}encKBP

TokenAB = Text6 || {|TNP || kab || IA || Text2 |}encKBP
|| {|TNA || IB || Text5 |}enckab

TokenBA = Text8 || {|TNB || IA || Text7 |}enckab

1. A → P : TVPA || IB || Text1
2. P → A : TokenPA

3. A → B : TokenAB

4. B → A : TokenBA

Fig. 2. The 9798-2-5 four pass protocol with TTP using symmetric encryption

TNA, B’s identity, and optionally a text field Text1. When B receives this mes-
sage he computes the cryptographic check himself and compares the result with
the received check value. He then computes the response message in a similar
way and sends it to A, who checks it.

Example 2: 9798-2-5. Figure 2 depicts the 9798-2-5 protocol, which is based
on symmetric-key encryption and uses a Trusted Third Party. A first generates a
time-variant parameter TVPA (which must be non-repeating), and sends it with
B’s identity IB and optionally a text field to the trusted party P . P then gener-
ates a fresh session key kab and computes TokenPA, which essentially consists of
two encrypted copies of the key, using the long-term shared keys between P and
A, and P and B, respectively. Upon receiving TokenPA, A decrypts the first part
to retrieve the session key, and uses the second part to construct TokenAB . Fi-
nally, B retrieves the session key from this message and sends his authentication
message TokenBA to A.

1.4 Optional Fields and Variants

There are variants for each protocol listed in Table 1. Each protocol contains text
fields, whose purpose is not specified, and which may be omitted, giving rise to
another protocol variant. As can be seen in the previous examples, some of these
text fields are plaintext, whereas others are within the scope of cryptographic
operations (i. e., signed, encrypted, or cryptographically checked). Note that the
standard does not provide a rationale for choosing among these options.

In setups where symmetric keys are used, it is common that if Alice wants
to communicate with Bob, she will use their shared key, which is the same key
that Bob would use to communicate with Alice. Such keys are called bidirectional.
Alternatively one can use unidirectional keys where each pair of agents shares two
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symmetric keys, one for each direction. In this case KAlice,Bob and KBob,Alice are
different. For some protocols that employ symmetric keys, the standard specifies
that if unidirectional keys are used, some identity fields may be omitted from
the encrypted (or checked) payload. This yields another variant.

The two protocols 9798-3-6 and 9798-3-7 both provide two options for the
tokens included in their messages, giving rise to further variants. Note that in
Section 4 we verify corrected versions of all 17 protocols in Table 1, taking all
variants into account.

1.5 Threat Model and Security Properties

The ISO/IEC 9798 standard neither specifies a threat model nor defines the
security properties that the protocols should satisfy. Instead, the introduction
of ISO/IEC 9798-1 simply states that the protocols should satisfy mutual or
unilateral authentication. Furthermore, the following attacks are mentioned as
being relevant: man-in-the-middle attacks, replay attacks, reflection attacks, and
forced delay attacks. We note that the standard does not explicitly claim that
any of the protocols are resilient against the above attacks.

2 Protocol Analysis

We use two different analysis tools. In this section, we use the Scyther tool [9]
to find attacks on the ISO/IEC 9798 protocols. In Section 4, we will use the
related Scyther-Proof tool [31] to generate machine-checked proofs of the
corrected versions.

Scyther performs an automatic analysis of security protocols in a Dolev-
Yao style model, for an unbounded number of instances. It is very efficient at
both verification and falsification, in particular for authentication protocols such
as those considered here. Using Scyther, we performed protocol analysis with
respect to different forms of authentication. We explain these forms below when
discussing particular protocols.

Our analysis reveals that the majority of the protocols in the standard ensure
weak entity authentication. However, we also found attacks on five protocols and
two protocol variants. These attacks fall into the following categories: role-mixup
attacks, type flaw attacks, multiple-role TTP attacks, and reflection attacks. In
all cases, when an agent finishes his role of the protocol, the protocol has not been
executed as expected, which can lead the agent to proceed on false assumptions
about the state of the other involved agents.

In Table 2 we list the attacks we found using Scyther. The rows list the
protocols, the properties violated, and any additional assumptions required for
the attacks. We have omitted in the table all attacks that are necessarily entailed
by the attacks listed. For example, since 9798-2-5 does not satisfy aliveness from
B’s perspective, it also does not satisfy any stronger properties such as (weak)
agreement. We now describe the classes of attacks in more detail.
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Table 2. Overview of attacks found

Protocol Violated property Assumptions

9798-2-3 A Agreement(B,TNB,Text3)
9798-2-3 B Agreement(A,TNA,Text1)
9798-2-3-udkey A Agreement(B,TNB,Text3)
9798-2-3-udkey B Agreement(A,TNA,Text1)
9798-2-5 A Alive Alice-talks-to-Alice
9798-2-5 B Alive
9798-2-6 A Alive
9798-2-6 B Alive

9798-3-3 A Agreement(B,TNB,Text3)
9798-3-3 B Agreement(A,TNA,Text1)
9798-3-7-1 A Agreement(B,Ra,Rb,Text8) Type-flaw

9798-4-3 A Agreement(B,TNb,Text3)
9798-4-3 B Agreement(A,TNa,Text1)
9798-4-3-udkey A Agreement(B,TNb,Text3)
9798-4-3-udkey B Agreement(A,TNa,Text1)

2.1 Role-Mixup Attacks

Some protocols are vulnerable to a role-mixup attack in which an agent’s as-
sumptions on another agent’s role are wrong. Many relevant forms of strong
authentication, such as agreement [27], matching conversations [4] or synchroni-
sation [10], require that when Alice finishes her role apparently with Bob, then
Alice and Bob not only agree on the exchanged data, but additionally Alice can
be sure that Bob was performing in the intended role. Protocols vulnerable to
role-mixup attacks violate these strong authentication properties.

Figure 3 on the following page shows an example of a role-mixup attack on
the 9798-4-3 protocol from Figure 1. Agents perform actions such as sending and
receiving messages, resulting in message transmissions represented by horizontal
arrows. Actions are executed within threads, represented by vertical lines. The
box at the top of each thread denotes the parameters involved in the thread’s
creation. Claims of security properties are denoted by hexagons and a crossed-out
hexagon denotes that the claimed property is violated.

In this attack, the adversary uses a message from Alice in role A (thread 1)
to trick Alice in role B (thread 3) into thinking that Bob is executing role A and
is trying to initiate a session with her. However, Bob (thread 2) is only replying
to a message provided to him by the adversary, and is executing role B. The
adversary thereby tricks Alice into thinking that Bob is in a different state than
he actually is.

Additionally, when the optional text fields Text1 and Text3 are used, the role-
mixup attack also violates the agreement property with respect to these fields:
Alice will end the protocol believing that the optional field data she receives
from Bob was intended as Text1, whereas Bob actually sent this data in the



136 D. Basin, C. Cremers, and S. Meier

thread 1

role A

executed by Alice
initiating with Bob

thread 2

role B

executed by Bob
responding to Alice

thread 3

role B

executed by Alice
responding to Bob

TNA || Text2 || fKAlice,Bob
(TNA || IBob)

TNB || Text4 || fKAlice,Bob
(TNB || IAlice)

TN
′

B || Text4 || fKAlice,Bob
(TN ′B || IBob)

Agreement(Alice,Bob,TNB)

msc

Fig. 3. Role-mixup attack on 9798-4-3: when Alice finishes thread 3 she wrongly as-
sumes that Bob was performing the A role

Text3 field. Depending on the use of these fields, this can constitute a serious
security problem. Note that exploiting these attacks, as well as the other attacks
described below, does not require “breaking” cryptography. Rather, the adver-
sary exploits similarities among messages and the willingness of agents to engage
in the protocol.

Summarizing, we found role-mixup attacks on the following protocols: 9798-
2-3 with bi- or unidirectional keys, 9798-2-5, 9798-3-3, and 9798-4-3 with bi- or
unidirectional keys.

2.2 Type Flaw Attacks

Some protocol implementations are vulnerable to type flaw attacks where data
of one type is parsed as data of another type. Consider, for example, an imple-
mentation where agent names are encoded into bit-fields of length n, which is
also the length of the bit-fields representing nonces. It may then happen that
an agent who expects to receive a nonce (any fresh random value that it has
not seen before), therefore accepts a bit string that was intended to represent
an agent name.

Scyther finds such an attack on the 9798-3-7 protocol, also referred to as
“Five pass authentication (initiated by B)” [23, p. 4]. In the attack, both (agent)
Alice and (trusted party) Terence mistakenly accept the bit string corresponding
to the agent name “Alice” as a nonce.

2.3 Attacks Involving TTPs That Perform Multiple Roles

Another class of attacks occurs when parties can perform both the role of the
trusted third party and another role. This scenario is not currently excluded by
the standard.

In Figure 4 we show an attack on 9798-2-5, from Figure 2. The attack closely
follows a regular protocol execution. In particular, threads 1 and 3 perform the
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thread 1

role P

executed by Pete
assumes Alice in role A

assumes Bob in role B

thread 2

role A

executed by Pete
assumes Alice in role P

assumes Bob in role B

thread 3

role B

executed by Bob
assumes Alice in role A

assumes Pete in role P

TVPA || IBob || Text1

TokenPA = Text4 ||
{|TVPA || k || IBob || Text3 |}

enc

KAP
||

{|TNP || k || IAlice || Text2 |}
enc

KBP

TokenPA

TokenAB = Text6 ||
{|TNP || k || IAlice || Text2 |}

enc

KBP
||

{|TNA || IBob || Text5 |}
enc

k

TokenAB

TokenBA

Aliveness of Alice

msc

Fig. 4. Attack on the 9798-2-5 protocol where the trusted third party Pete performs
both the P role and the A role. The assumptions of thread 1 and 3 agree. Bob wrongly
concludes that Alice is alive.

protocol as expected. The problem is thread 2. Threads 1 and 3 assume that the
participating agents are Alice (in the A role), Bob (in the B role), and Pete (in
the P role). From their point of view, Alice should be executing thread 2. Instead,
thread 2 is executed by Pete, under the assumption that Alice is performing the
P role. Thread 2 receives only a single message in the attack, which is TokenPA.
Because the long-term keys are symmetric, thread 2 cannot determine from the
part of the message encrypted with KAP that thread 1 has different assumptions.
Thread 2 just forwards the other encrypted message part blindly to thread 3,
as it does not expect to be able to decrypt it. Finally, thread 3 cannot detect
the confusion between Alice and Pete, because the information in TokenAB that
was added by thread 2 only includes Bob’s name.

Summarizing, we found attacks involving TTPs that perform multiple roles
on the 9798-2-5 and 9798-2-6 protocol.

2.4 Reflection Attacks

Reflection attacks occur when agents may start sessions communicating with
the same identity, a so-called Alice-talks-to-Alice scenario. The feasibility and
relevance of this scenario depends on the application and its internal checks.

If an Alice-talks-to-Alice scenario is possible, some protocols are vulnerable to
reflection attacks. The Message Sequence Chart in Figure 5 shows an example for
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role A

executed by Alice

TNA || Text2 || fKAlice,Alice
(TNA || IAlice || Text1)

TNA || Text4 || fKAlice,Alice
(TNA || IAlice || Text1)

Agreement

msc

Fig. 5. Reflection attack on 9798-4-3

the 9798-4-3 protocol from Figure 1. In this attack, the adversary (not depicted)
reflects the time stamp (or nonce) and cryptographic check value from themessage
sent by Alice back to the same thread, while prepending the message Text4. This
attack violates one of the main requirements explicitly stated in the ISO/IEC9798-
1 introduction, namely absence of reflection attacks.

Summarizing, we found reflection attacks on the following protocols: 9798-2-
3 with bi- or unidirectional keys, 9798-2-5, 9798-3-3, and 9798-4-3 with bi- or
unidirectional keys.

3 Repairing the Protocols

3.1 Root Causes of the Problems

We identify two shortcomings in the design of the protocols, which together
account for all of the weaknesses detected.

1) Cryptographic Message Elements May Be Accepted at Wrong Positions. In
both the reflection and role mixup attacks, the messages that are received in a
particular step of a role were not intended to be received at that position. By
design, the protocol messages are all similar in structure, making it impossible
to determine at which point in the protocols the messages were intended to be
received.

As a concrete example, consider the reflection attack in Figure 5. Here, the
message sent in the protocol’s first step can be accepted in the second step, even
though this is not part of the intended message flow.

2) Underspecification of the Involved Identities and their Roles. As noted, the
symmetric-key based protocols with a TTP, 9798-2-5 and 9798-2-6, do not ex-
plicitly state that entities performing the TTP role cannot perform other roles.
Hence it is consistent with the standard for Alice to perform both the role of the
TTP as well as role A or B. In these cases, the aliveness of the partner cannot



Provably Repairing the ISO/IEC 9798 Standard for Entity Authentication 139

be guaranteed, as explained in Section 2.3. The source of this problem is that
one cannot infer from each message which identity is associated to which role.

For example, consider the first encrypted component from the third message
in the 9798-2-5 protocol with bidirectional keys, in Figure 2.

{|TNP || kab || IA || Text2 |}encKBP

This message implicitly includes the identities of the three involved agents: the
identity of the agent performing the A role is explicitly included in the encryption,
and the shared long-term key KBP implicitly associates the message to the key
shared between the agent performing the B and P roles. However, because the
key is bidirectional, the recipient cannot determine which of the two agents
(say, Bob and Pete) sharing the key performed which role: either Bob performed
the B role and Pete the P role, or vice versa. Our attack exploits exactly this
ambiguity.

3.2 Associated Design Principles

To remedy these problems, we propose two principles for designing security proto-
cols. These principles are in the spirit of Abadi and Needham’s eleven principles
for prudent engineering practice for cryptographic protocols [2].

Our first principle concerns tagging.

Principle: positional tagging. Cryptographic message components
should contain information that uniquely identifies their origin. In par-
ticular, the information should identify the protocol, the protocol vari-
ant, the message number, and the particular position within the message,
from which the component was sent.

This is similar in spirit to Abadi and Needham’s Principle 1, which states that
“Every message should say what it means: the interpretation of the message
should depend only on its content. It should be possible to write down a straight-
forward English sentence describing the content — though if there is a suitable
formalism available that is good too.” Our principle does not depend on the mean-
ing of the message as intended by the protocol’s designer. Instead, it is based
solely on the structure of the protocol messages and their acceptance conditions.

Note that we consider protocols with optional fields to consist of multiple
protocol variants. Thus, a message component where fields are omitted, should
contain information to uniquely determine which fields were omitted.

Our second principle is a stricter version of Abadi and Needham’s Principle 3.

Principle: inclusion of identities and their roles. Each crypto-
graphic message component should include information about the iden-
tities of all the agents involved in the protocol run and their roles, unless
there is a compelling reason to do otherwise.

A compelling reason to leave out identity information might be that identity
hiding is a requirement, i. e., Alice wants to hide that she is communicating with
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Bob. However, such requirements can usually be met by suitably encrypting
identity information.

Contrast this principle with the Abadi and Needham’s Principle 3: “If the
identity of a principal is essential to the meaning of a message, it is prudent to
mention the principal’s name explicitly in the message.” The original principle is
only invoked when the identity is essential. Instead, we propose to always include
information on all the identities as well as their roles. This principle would have
prevented attacks on many protocols, including the attacks on the 9798-2-5 and
9798-2-6 protocols, as well as the Needham-Schroeder protocol [26].

For protocols with a fixed number of roles, this principle can be implemented
by including an ordered sequence of the identities involved in each cryptographic
message component, such that the role of an agent can be inferred from its
position in the sequence.

3.3 Proposed Modifications to the Standard

All the previously mentioned attacks on the ISO/IEC 9798 can be prevented by
applying the previous two principles. Specifically, we propose three modifications
to the ISO standard, shown in Figure 6. The first two directly follow from the
principles and the third modification restricts the use of two protocols in the
standard. Afterwards we give an example of a repaired protocol.

Note that in this section we only give informal arguments why our modifica-
tions prevent the attacks. In Section 4, we provide machine-checked proofs that
this is the case.

Ensuring That Cryptographic Data Cannot Be Accepted at the Wrong
Point. We factor the first principle (positional tagging) into two parts and pro-
pose two corresponding amendments to the standard. First, we explicitly include
in each cryptographic message component constants that uniquely identify the
protocol, the message number, and the position within the message. Second, we
ensure that protocol variants can be uniquely determined from the messages.

In our first amendment, shown in Figure 6, we implement unique protocol
identifiers by using an existing part of the standard: the object identifier from
Annex B of the standard, which specifies an encoding of a unique protocol iden-
tifier. We also introduce a unique identifier for the position of the cryptographic
component within the protocol.

Amendment 1 prevents all reflection attacks because messages sent in one step
will no longer be accepted in another step. Furthermore, it prevents all role mixup
attacks, because the unique constants in the messages uniquely determine the
sending role. The final part of Amendment 1, stating that cryptographic keys
should not be used by other protocols, provides distinctness of cryptographic
messages with respect to any other protocols.

Our second amendment, also shown in Figure 6, ensures that the protocol
variant (determined by the omission of optional fields) can be uniquely deter-
mined from the messages. We implement this by requiring that the recipient of
a message can uniquely determine which optional fields, if any, were omitted.
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Amendment 1:

The cryptographic data (encryptions, signatures, cryptographic check values) used at
different places in the protocols must not be interchangeable. This may be enforced by
including in each encryption/signature/CCF value the following two elements:

1. The object identifier as specified in Annex B [23, p. 6], in particular identifying
the ISO standard, the part number, and the authentication mechanism.

2. For protocols that contain more than one cryptographic data element, each encryp-
tion must contain a constant that uniquely identifies the position of the element
within the protocol.

The recipient of a message must verify that the object identifier and the position
identifiers are as expected. The cryptographic keys used by implementations of the
ISO/IEC 9798 protocols must be distinct from the keys used by other protocols.

Amendment 2:

When optional fields, such as optional identities or optional text fields, are not used
then they must be set to empty. In particular, the message encoding must ensure
that the concatenation of a field and an empty optional field is uniquely parsed as a
concatenation. This can be achieved by implementing optional fields as variable-length
fields. If the optional field is not used, the length of the field is set to zero.

Amendment 3:

Entities that perform the role of the TTP in the 9798-2-5 and 9798-2-6 protocols must
not perform the A or B role.

Fig. 6. Proposed amendments to the ISO/IEC 9798 standard

To see why protocols with omitted optional fields must be considered as pro-
tocol variants, consider the following example: Consider a protocol in which a
message contains the sequence X || IA || Text , where IA is an identity field that
may be dropped (e. g., with unidirectional keys) and Text is an optional text
field. Then, it may be the case that in one protocol variant, an agent expects a
message of the form X ||IA, whereas the other implementation expects a message
of the form X ||Text . The interaction between the two interpretations can result
in attacks. For example, the text field is used to insert a false agent identity, or
an agent identity is wrongly assumed to be the content of the text field.

If we follow the second amendment in the above example, the expected mes-
sages correspond toX ||IA|| ⊥ andX || ⊥ ||Text , respectively, where ⊥ denotes the
zero-length field. Because the ISO/IEC 9798 standard requires that concatenated
fields can be uniquely decomposed into their constituent parts, misinterpretation
of the fields is no longer possible.

Together, Amendments 1 and 2 implement our first principle.

Addressing Underspecification of the Role Played by Agents. Almost
all the protocols in the ISO/IEC 9798 standard already adhere to our second
principle: unique identification of the involved parties and their roles. However,
all protocols in the standard conform to Abadi and Needham’s third principle
because the messages uniquely determine the identities of all involved parties.
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1. A → B : TNA || Text2 || fKAB (“9798-4-3 ccf1” |||||| TNA || IB |||||| ⊥⊥⊥)
2. B → A : TNB || Text4 || fKAB (“9798-4-3 ccf2” |||||| TNB || IA || Text3)

Fig. 7. Repaired version of the 9798-4-3 protocol with omitted Text1 field

There are only two protocols in the standard that conform to Abadi and
Needham’s principle but not to our second principle: 9798-2-5 and 9798-2-6. For
example, the messages of the 9798-2-5 protocol identify all parties involved by
their association to the long-term keys. However they do not conform to our
second principle because the roles of the involved identities cannot be uniquely
determined from the messages. This is the underlying reason why, as currently
specified, the 9798-2-5 and 9798-2-6 protocols do not guarantee the aliveness of
the partner, as shown in Section 2.3.

This problem can be solved by applying our principle, i. e., including the
identities of all three participants in each message, so that their roles can be
uniquely determined. This is an acceptable solution and we have formally verified
it using the method of Section 4. However, from our analysis with Scyther, we
observe that the attacks require that the Trusted Third Party also performs other
roles (A or B). Under the assumption that in actual applications a TTP will,
by definition, not perform the A or B role, the protocols already provide strong
authentication. Thus, an alternative solution is to leave the protocols unchanged
and make this restriction explicit. This results in more streamlined protocols
and also requires minimal changes to the standard. This is the proposal made
in Amendment 3 in Figure 6. We have also verified this solution as described in
Section 4.

Repaired Protocols. Applying our principles and proposed amendments to
the standard, we obtain repaired versions of the protocols. As an example, we
show the repaired version of the 9798-4-3 protocol with bidirectional keys in
Figure 7. In this example, the Text1 field is not used, and is therefore replaced
by ⊥. Each use of a cryptographic primitive (in this case the cryptographic check
function) includes a constant that uniquely identifies the protocol (9798-4-3) as
well as the position within the protocol specification (ccf1 and ccf2).

4 Proving the Correctness of the Repaired Protocols

The principles and amendments proposed in the previous section are motivated
by our analysis of the attacks and the protocol features that enable them. Con-
sequently, the principles and amendments are designed to eliminate these unde-
sired behaviors. Such principles are useful guides for protocol designers but their
application does not strictly provide any security guarantees. In order to ensure
that the repaired protocols actually have the intended strong authentication
properties, we provide machine-checked correctness proofs.

We use a version of the Scyther-Proof tool proposed in [31] to generate
proofs of these properties. Given a description of a protocol and its security
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properties, the tool generates a proof script that is afterwards automatically
checked by the Isabelle/HOL theorem prover [33]. If the prover succeeds, then the
protocol is verified with respect to a symbolic, Dolev-Yao model. To verify our
repaired protocols, we extended the tool with support for bidirectional symmetric
long-term keys.

The proofs generated by Scyther-Proof are based on a security protocol
verification theory that provides a sound way to perform finite case distinctions
on the possible sources of messages that are known to the intruder, in the context
of a given protocol. The generated proofs use these case distinctions to show
that the assumptions of a security property imply its conclusions, as explained
in Example 1. The theorems constituting this verification theory are formally
derived in Isabelle/HOL from the formalization of a symbolic, Dolev-Yao model.

The tool searches for the proofs with the fewest number of such case dis-
tinctions. For example, in the proofs of our repaired protocols, two such case
distinctions are required on average to prove a security property. Therefore, the
generated proof scripts (available from [1]) are amenable to human inspection
and understanding. To simplify the task of understanding how the proofs work
and, hence, why the protocol is correct, the tool also generates proof outlines.
These consist of a representation of the security property proven and a tree of
case distinctions constituting the proof.

For each repaired protocol, we prove that it satisfies non-injective agreement
on all data items within the scope of cryptographic operators in the presence
of a Dolev-Yao intruder. Moreover, we prove that this holds even when all the
protocols from the standard are executed in parallel using the same key infras-
tructure, provided that the set of bidirectional keys is disjoint from the set of
unidirectional keys. As the content of text fields is underspecified in the standard,
we assume that the intruder chooses their content immediately before they are
sent. We model timestamps and sequence numbers by random numbers that are
chosen at the beginning of a role and are public.

Example 1. Figure 8 on the next page specifies our model of the repaired 9798-4-3
protocol with bidirectional keys in the input language of the Scyther-Proof
tool. The leak A and the leak B steps model that the timestamps (represented
here as randomly generated numbers) are publicly known by leaking them to the
intruder. We model that the contents of the text 1 and text 2 fields is chosen
by the intruder by defining them as variables that receive their content from
the network, and therefore from the intruder. We model the cryptographic check
function by the hash function h.

Figure 9 on the following page shows the proof outline for non-injective agree-
ment for the A-role of this protocol, which is automatically generated by our tool.
We have taken minor liberties here in its presentation to improve readability. In
the figure, #i is a symbolic variable denoting some thread i and A#i is the
value of the A-variable in the thread i. Lines 3-9 state the security property:
for all threads #i that execute the A-role and have executed its Step 2 with
uncompromised (honest) agents A#i and B#i, there exists some thread #j that
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Repaired version of 9798-4-3

protocol isoiec_9798_4_3_bdkey_repaired
{

leak_A. A -> : TNa
leak_B. B -> : TNb

text_1. -> A: Text1, Text2
1. A -> B: A, B, TNa, Text2, Text1, h((’CCF’, k[A,B]), (’isoiec_9798_4_3_ccf_1’,

TNa, B, Text1))
text_2. -> B: Text3, Text4

2. B -> A: B, A, TNb, Text4, Text3, h((’CCF’, k[A,B]), (’isoiec_9798_4_3_ccf_2’,
TNb, A, Text3))

}
properties (of isoiec_9798_4_3_bdkey_repaired)

A_non_injective_agreement: niagree(A_2[A,B,TNb,Text3] -> B_2[A,B,TNb,Text3], {A, B})
B_non_injective_agreement: niagree(B_1[A,B,TNa,Text1] -> A_1[A,B,TNa,Text1], {A, B})

Fig. 8. Example input provided to the Scyther-Proof tool

1 property (of isoiec_9798_4_3_bdkey_repaired)
2 A_non_injective_agreement:
3 "All #i.
4 role(#i) = isoiec_9798_4_3_bdkey_repaired_A &
5 step(#i, isoiec_9798_4_3_bdkey_repaired_A_2) &
6 uncompromised( A#i, B#i )
7 ==> (Ex #j. role(#j) = isoiec_9798_4_3_bdkey_repaired_B &
8 step(#j, isoiec_9798_4_3_bdkey_repaired_B_2) &
9 (A#j, B#j, TNb#j, Text3#j) = (A#i, B#i, TNb#i, Text3#i)) "

10 sources( h((’CCF’, k[A#i,B#i]), (’isoiec_9798_4_3_ccf_2’, TNb#i, A#i, Text3#i)) )
11 case fake
12 contradicts secrecy of k[A#i,B#i]
13 next
14 case (isoiec_9798_4_3_bdkey_B_2_repaired_hash #k)
15 tautology
16 qed

Fig. 9. Example proof outline automatically produced by the Scyther-Proof tool

executed Step 2 of the B-role and thread #j agrees with thread #i on the values
of A, B, TNb, and Text3.

The proof proceeds by observing that thread #i executed Step 2 of the A-
role. Therefore, thread #i received the hash in line 10 from the network, which
implies that the intruder knows this hash. For our protocol, a case distinction
on the sources of this hash results in two cases: (1) the intruder could have
constructed (faked) this hash by himself or (2) the intruder could have learned
this hash from some thread #k that sent it in Step 2 of the B-role. There are no
other cases because all other hashes have different tags. Case 1 is contradictory
because the intruder does not know the long-term key shared between the two
uncompromised agents A#i and B#i. In Case 2, the security property holds
because we can instantiate thread #j in the conclusion with thread #k. Thread
#k executed Step 2 of the B-role and agrees with thread #i on all desired values
because they are included in the hash. $%
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We verify the parallel composition of all repaired protocols of the ISO/IEC 9798
standard as follows. Given the disjoint encryption theorem [14], it is sufficient to
verify only the parallel composition of protocols that use the same cryptographic
primitive and the same keys. We verify the properties of each protocol when
composed in parallel with all other protocols that use the same cryptographic
primitive and the same keys. Note that in the corresponding proofs, the case
distinctions on the source of messages known to the intruder range over the roles
of each protocol in the protocol group. Despite the substantial increase in the
scope of these case distinctions, the proof structure of the composed protocols
is the same as for the individual protocols, as all additional cases are always
trivially discharged due to the tagging: cryptographic components received by a
thread of one protocol contain tags that do not match with the tags in messages
produced by roles from other protocols.

Our extension of the Scyther-Proof tool as well as the protocol models
(including the property specifications) can be downloaded at [1]. Using a Core 2
Duo 2.20GHz laptop with 2GB RAM, the full proof script generation requires
less than 20 seconds, and Isabelle’s proof checking requires less than three hours.

5 Related Work

Previous Analyses of the ISO/IEC 9798 Protocols. Chen and Mitchell [8] re-
ported attacks based on parsing ambiguities on protocols from several standards.
They identify two types of ambiguities in parsing strings involving concatenation:
(1) recipients wrongly parse an encrypted string after decryption, or (2) recip-
ients wrongly assume that a different combination of data fields was input to
the digital signature or MAC that they are verifying. They show that such er-
rors lead to attacks, and propose modifications to the standards. Their analysis
resulted in a technical corrigendum to the ISO/IEC 9798 standard [19, 20, 22].

Some of the protocols have been used as case studies for security protocol
analysis tools. In [12], the Casper/FDR tool is used to discover weaknesses in
six protocols from the ISO/IEC 9798 standard. The attacks discovered are sim-
ilar to our reflection and role-mixup attacks. They additionally report so-called
multiplicity attacks, but these are prevented by following the specification of
the time-variant parameters in Part 1 of the standard. Contrary to our findings,
their analysis reports “no attack” on the 9798-2-5 and 9798-2-6 protocols as they
do not consider type-flaw attacks. A role-mixup attack on the 9798-3-3 protocol
was also discovered by the SATMC tool [3]. Neither of these two works suggested
how to eliminate the detected weaknesses.

In [11], the authors verify the three-pass mutual authentication protocols that
use symmetric encryption and digital signatures, i. e., 9798-2-4 and 9798-3-4.
Their findings are consistent with our results.

Related Protocols. The SASL authentication mechanism from RFC 3163 [34]
claims to be based on Part 3 of the ISO/IEC 9798 standard. However, the SASL
protocol is designed differently than the ISO/IEC protocols and is vulnerable to
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a man-in-the-middle attack similar to Lowe’s well-known attack on the Needham-
Schroeder public-key protocol. Currently, the SASL protocol is not recommended
for use (as noted in the RFC). The SASL protocol only provides authentication
in the presence of an eavesdropping adversary, which can also be achieved using
only plaintext messages.

In the academic literature on key exchange protocols, one finds references to a
Diffie-Hellman-based key exchange protocol known as “ISO 9798-3”. This proto-
col seems to be due to [7, p. 464-465], where a protocol is given that is similar in
structure to the three-pass mutual authentication ISO/IEC 9798 protocol based
on digital signatures, where each random value n is replaced by ephemeral public
keys of the form gx. However, in the actual ISO/IEC 9798 standard, no key ex-
change protocols are defined, and no protocols use Diffie-Hellman exponentiation.

6 Conclusions

Our findings show that great care must be taken when using current implemen-
tations of the ISO/IEC 9798 standard. Under the assumption that trusted third
parties do not play other roles, the protocols guarantee a weak form of authen-
tication, namely, aliveness. However, many of the protocols do not satisfy any
stronger authentication properties, which are needed in realistic applications. For
example, when using these protocols one cannot assume that when a text field is
encrypted with a key and was apparently sent by Bob, that Bob indeed sent it,
or that he was performing the intended role. In contrast, our repaired versions
satisfy strong authentication properties and hence ensure not only aliveness but
also agreement on the participating agents, their roles, the values of time-variant
parameters, and the message fields that are cryptographically protected.

Based on our analysis of the standard’s weaknesses, we have proposed amend-
ments and provided machine-checked proofs of their correctness. Our proofs guar-
antee the absence of these weaknesses even in the case that all protocols from
the standard are run in parallel using the same key infrastructure. The working
group responsible for the ISO/IEC 9798 standard will release an updated version
of the standard based on our analysis and proposed fixes.

Formal methods are slowly starting to have an impact in standardization
bodies, e. g., [5,6,15,25,29,30]. We expect this trend to continue as governments
and other organizations increasingly push for the use of formal methods for the
development and evaluation of critical standards. For example, ISO/IEC JTC
1/SC 27 started the project “Verification of cryptographic protocols (ISO/IEC
29128)” in 2007 which is developing standards for certifying cryptographic pro-
tocols, where the highest evaluation levels require the use of formal, machine
checked correctness proofs [28].

We believe that the approach we have taken here to analyze and provably re-
pair the ISO/IEC 9798 standard can play an important role in future standard-
ization efforts. Our approach supports standardization committees with both
falsification, for analysis in the early phases of standardization, and verification,
providing objective and verifiable security guarantees in the end phases.
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Abstract. Symbolic and computational models are the two families of
models for rigorously analysing security protocols. Symbolic models are
abstract but offer a high level of automation while computational models
are more precise but security proof can be tedious. Since the seminal work
of Abadi and Rogaway, a new direction of research aims at reconciling
the two views and many soundness results establish that symbolic models
are actually sound w.r.t. computational models.

This is however not true for the prominent case of encryption. Indeed,
all existing soundness results assume that the adversary only uses hon-
estly generated keys. While this assumption is acceptable in the case of
asymmetric encryption, it is clearly unrealistic for symmetric encryption.
In this paper, we provide with several examples of attacks that do not
show-up in the classical Dolev-Yao model, and that do not break the
IND-CPA nor INT-CTXT properties of the encryption scheme.

Our main contribution is to show the first soundness result for sym-
metric encryption and arbitrary adversaries. We consider arbitrary in-
distinguishability properties and an unbounded number of sessions.

This result relies on an extension of the symbolic model, while keep-
ing standard security assumptions: IND-CPA and IND-CTXT for the
encryption scheme.

1 Introduction

Formal proofs of security aim at increasing our confidence in the security proto-
cols. The first formal proofs/attacks go back to the early eighties (for instance
[DY81]). Such proofs require a formal model for the concurrent execution of pro-
cesses in a hostile environment (for instance [AG99, AF01]). As a consequence,
the security proof only proves something about a formal model. That is why
we were faced to paradoxical situations, in which a protocol is proved to be se-
cure and later an attack is found. This is the case for the Bull authentication
protocol [RS98], or the Needham-Schroeder-Lowe protocol [War03, BHO09]. In
such cases, the proof is simply carried in a model that differs from the model in
which the attack is mounted. There are much more examples, since the security
proofs always assume some restrictions on the attacker’s capabilities, ruling out
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some side-channel attacks. The examples show however that we need to specify
as precisely as possible the scope of the proofs, i.e., the security assumptions.

This is one of the main goals of the work that started ten years ago on com-
putational soundness [AR00, BPW03]: what is the scope of formal proofs in a
Dolev-Yao style model ? This is important, because the automatic (or check-
able) proofs are much easier in a Dolev-Yao, called symbolic hereafter, model, in
which messages are abstract terms and the attacker is any formal process that
can intercept and send new messages that can be forged from the available ones.

Numerous results have been obtained in this direction, but we will only focus
on the case of symmetric encryption. If we assume only two primitives: symmetric
encryption and pairing, to what extent is the symbolic model accounting for
attacks performed by a probabilistic polynomial time attacker ? The first result
[AR00] investigates the case of a passive attacker, who cannot send fake messages,
but only observes the messages in transit. Its goal is to distinguish between two
message sequences, finding a test that yields 1 on a sequence and yields 0 on
the other sequence (for a significant subset of the sample space). The authors
show for instance that, if the encryption scheme is IND-CPA, is “which key-
preserving” (two encrypted messages with the same key are indistinguishable
from two messages encrypted with different keys) and hides the length, then the
symbolic indistinguishability implies the computational indistinguishability. In
short, in that case, the symbolic model accounts for the probabilistic polynomial
time attacks on the implementations of the messages.

To our knowledge, only two further works extend this result: first M. Backes
et al in [BP04] and two of us in [CLC08a]. Both works try to consider an active
attacker, thus allowing an interaction of the attacker with the protocol. Both
works require additional assumptions: INT-CTXT for the encryption scheme,
no dynamic corruption of keys, no key cycles,... The main difference between
the two results lies in the security properties that are considered: while [BP04]
considers trace properties, [CLC08a] considers equivalence properties. Therefore
the proof methods are quite different.

We wish however to insist on another issue: in [CLC08a], the encryption keys
are assumed to be authentic. In other words, if the attacker forges a key, then
this key must be generated using the key generation algorithm. This is a strong
assumption, that is hard to ensure in practice. For a public key cryptosystem,
we can imagine that the public keys are certified by a key-issuing authority and
that this authority is trusted. But in the case of symmetric encryption, there
are many examples in which a participant generates himself a session key. This
limitation and its consequences are discussed at length in [CC11].

Concerning [BP04], the case of dishonest keys is not mentioned explicitly,
while the proof assumes that there is no such key: the paper implicitly assumes
that all keys are generated using the key generation algorithm.

On the other hand, the problem of dishonest keys is important: the crypto-
graphic assumptions, such as IND-CPA, INT-CTXT, IND-CCA,... rely on a sam-
pling of the keys. This does not say anything on any particular key: there could
be a key for which all the properties fail and such a key could be chosen by the
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attacker. As we show in section 2, there are many situations in which we can mount
an attack, even when the encryption scheme has all the desired properties.

The main source of examples of formal security proofs of protocols using
symmetric key encryption (not assuming that keys are always honest) is Cryp-
toVerif [Bla08]. These proofs show, as an intermediate step, that the keys used
for encryption by a honest agent for a honest agent are honestly generated. In
this way, the security properties of the encryption scheme are only applied to
ciphertexts using a randomly generated key. This works for many protocols, but
cannot work for a soundness result since there are protocols that are secure,
while at some point a honest agent may use a fake key (sent by the attacker) for
encrypting a message sent to a honest participant.

The issue of dishonest keys is also considered in [KT09]. Here, the authors
identify sufficient conditions on protocols such that dishonest keys are provably
harmless. These conditions are satisfied by a large family of key exchange pro-
tocols. These conditions may however be too strong. For example, the protocol
we analyse at the end of this paper does not meet their conditions, while we can
prove it secure using our framework.

In this paper, we propose a solution to the dishonest keys problem, adding
capabilities to the symbolic attacker. We try to capture the ability to forge a key,
that has an arbitrary behavior (choosen by the attacker), on messages that have
been sent so far. Roughly, the attacker may forge a particular key k, such that
given any pair of known messages (m1,m2), the encryption (resp. decryption) of
m1 with k yields m2. As we show in an example in section 2, the attacker must
also get any encryption/decryption of a message that uses a fake key.

This model is formalized in section 3, building on the applied π-calculus of
[AF01]. We then show in section 5 that this model is computationally sound,
without assuming of course that keys are honestly generated. More precisely,
we prove, in the case of simple processes, that, if two processes P , Q are obser-
vationally equivalent, then their implementations �P �, �Q� are computationally
indistinguishable, provided that the encryption scheme is IND-CPA and INT-
CTXT. In other words, as in [CLC08a] we (also) cover equivalence properties.
This soundness proof is similar to the proof of [CLC08a]: we prove a tree sound-
ness result and a trace mapping. There are some significant technical differences,
that will be pointed out. Also, a gap in the final proof of [CLC08a] is fixed here,
considering a new indistinguishability game.

Finally, we show that our soundness result does not give too much power
to the symbolic attacker: we give a computationally secure process in our ex-
tended model, in which the attacker may send fake keys that are then used for
decryption.

2 Motivation : Some Examples of Insufficiency of Current
Models

Standard cryptographic assumptions do not provide any guarantee for keys that
are not generated using the key generation algorithm. In particular, the IND-
CPA and IND-CTXT properties do not exclude the case where some keys have
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particular properties. We provide below several examples of protocols whose
security is broken due to the behavior of dishonestly generated keys. For the
sake of clarity, we provide with an informal specification of the protocols and
we consider attacks that consist of some agent reaching an undesired bad state.
These examples could be easily turned into examples with confidentiality or
authenticity properties. For simplicity, we also omit the randomness used for
encryption.

A first fact about dishonest keys is that decrypting honest cyphertexts with
dishonest keys does not necessary fail and may, on the contrary, result into
plaintext that can be exploited by an attacker.

Example 1. Assume kAB is a secret key shared between A and B.

A→ 〈c, {c}kAB 〉
B ← 〈z, {{b}z}kAB 〉
B → bad

B waits for a key z and a message looking like {{b}z}kAB and goes in a bad
state. For all usual formal models, B can not reach the bad sate. On the other
hand, it is computationally feasible for an adversary to forge a key k such that
D(c, k) = b (D(c, k) is the decryption of c with k), in that case B goes in the
bad state receiving 〈k, {c}kAB 〉.

This example can easily be generalized to the case where the decryption of
several ciphertexts with some dishonest key yields exploitable results.

Example 2. Assume kAB is a secret key shared between A and B.

A→ 〈〈c, {c}kAB 〉, 〈d, {d}kAB 〉〉
B ← 〈k, 〈{{b}k}kAB , {{b′}k}kAB 〉〉
B → bad

The standard cryptographic assumptions do not prevent the adversary from
forging a key k such that D(c, k) = b and D(d, k) = b′ simultaneously.

The two previous examples seem to rely on the fact that the adversary knows the
(honest) cyphertexts that are decrypted. This is actually not needed to mount
attacks.

Example 3. Assume kAB is a secret key shared between A and B and s be a
secret known only to A.

A→ {s}kAB

B ← 〈k, {{b}k}kAB 〉
B → bad

In the computational setting the adversary could forge a key k such that, if s
is randomly chosen , D(s, k) = b with a non negligible probability. Receiving
k, {s}kAB , B would reach the bad state with non negligible probability.

Another important behavior of dishonest keys is the fact that attempting to
decrypt a message with a dishonest key may actually reveal the message.
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Example 4. Consider the following protocol where s is secret.

A→ {s}kAB

B ← 〈k, {{z}k}kAB 〉
B → ok

The agent B simply tries to decrypt the message received under kAB and outputs
ok if he succeeds. In any usual formal model, s stays secret.

Let us consider a key ki such that ki decrypts s if and only if the i-th bit of
s is with a 0. Sending ki, {s}kAB to a copy of B the adversary learns the i− th
bit of s and is then able to learn s entirely.

The previous examples exhibit problematic behaviors when decrypting with a
dishonest key. Similar issues occur when encrypting with a dishonest key. The
next example shows that the adversary may use dishonest keys to build equalities
between cyphertexts.

Example 5. Assume kAB is a secret key shared by A and B.

A→ {a}kAB

A← k
A→ {{s}k, {a}kAB}kAB

B ← {x, x}kAB

B → bad

As previously, nothing prevents the adversary from building a key k such that
for a random s, {s}r

k = {a}kAB with non negligible probability. Using that key,
it is possible to drive B in the bad state.

More generally, {x}k may be an arbitrary function of (x, r) and the previous
knowledge of the adversary.

Example 6. Assume kAB is a secret key shared by A and B, s is a secret nonce
known to A and s′ is a nonce (not necessarily secret).

A← k
A→ {{〈s, s′〉}k}kAB

B ← 〈k′, {{〈s, s〉}k′}kAB 〉
B → bad

The adversary could forge k, k′ such that D({〈x, y〉}r
k, k

′) = 〈x, x〉 (when x and
y are of equal length) which allows B to go in the bad state.

One could think that the collisions induced by a dishonest key k are determined
by the message under encryption/decryption and the knowledge of the adversary
at the moment he forged k. The last example shows that it is actually not the
case.

Example 7. Assume that kAB is a secret ket shared by A and B and that s is
initially secret.

A← 〈k0, k1, k2〉
A→ 〈{k0}kAB , {k1}kAB , {k2}kAB

A→ {〈A,A〉}kAB

A→ s
A← {〈x, s〉}kAB

A→ bad

B ← 〈{k}kAB , {t}kAB 〉
B → {{t}k}kAB
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Running B an arbitrary (polynomial) number of times yields a computational
attack. Consider the three following keys :

– k0 such that {〈i, n〉}k0
= 〈i+ 1, n〉

– k1 such that {〈i, n〉}k1
= 〈i− 1, n〉

– k2 such that {〈i, n〉}k2
= 〈i, n′〉 where n′ is the same bitstring as n apart

from the i-th bit which is flipped.

With these keys, we can use role B to transform any cyphertext {〈m1,m2〉}kAB

into {〈x, s〉}kAB .

Let us summarize the lessons provided by these examples. Clearly, existing sym-
bolic models are unsound. There are three main options for establishing sound-
ness: either re-enforcing the security assumptions of the primitives, or identifying
sufficient conditions for recovering soundness, or relaxing the symbolic models.
In this paper, we have opted for the third option. Examples 1, 2, and 3 show
that we need to let the adversary adds equations when decrypting or encrypting
with a dishonest key. Examples 5 and 6 show that these equations may depend
on the knowledge of the attacker when he add them. Example 4 demonstrates
that any message under decryption/encryption with a dishonest key should be
added to the adversary knowledge. Example 7 shows that we have to delay the
commitment on the properties of the dishonest key until the state, at which the
encryption/decryption with that key is used.

Let us note that in some examples we try to decrypt a honest nonce which
should be forbidden by tagging but it is easy to patch these examples by replacing
the honest nonces by honest encryptions.

3 Model

Our model is an adaptation of the applied pi-calculus [AF01], enriched with a
syntax that allows the attacker to create new equalities between terms, corre-
sponding to equalities permitted by the IND-CCA and the IND-CTXT proper-
ties, as illustrated in the previous section.

3.1 Syntax and Deduction

Messages are represented by terms build upon a set V of variables, a set Names of
names and the signature F = {{_}_

_, 〈_,_〉, dec(_,_), π1(_), π2(_)}. As usual,
the term {s}r

k represents the encryption of s with the key k and the randomness
r, 〈u, v〉 represents the concatenation of u and v, while dec(_,_), π1(_), π2(_)
represent respectively the decryption and the left and right projections of a
concatenation. We may write 〈x, y, z〉 for 〈〈x, y〉, z〉. The set of ground terms
(i.e. terms without variables) is denoted by T (F). We divide the set Names into
three (infinite) subsets: K1 for honest keys, K2 for dishonest keys, and N for the
nonces. The set V is divided into V1 = {x1, x2, · · · } and V2 = {y1, y2, · · · } that
will be respectively used to store terms and equations.
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We assume given a length function l : T (F) �→ H from ground terms to a set
H that measures the symbolic length of a term. An example of a length function
will be given in the Section 4.2.

We write {x1 �→ u1, . . . , xn �→ un} for the substitution that maps xi to ui.
The substitution is ground when every term ui is ground. The application of a
substitution σ to a term u is denoted uσ. The signature F is equipped with an
equational theory, that is closed under application of function symbols, substi-
tution of terms for variables. We write M =E N when the equation M = N is in
the theory E. We may omit the subscript E when it is clear from the context. In
this paper, we will consider in particular the theory E0 defined by the following
(infinite, yet recursive) set of equations.

dec({x}z
k, k) = x for k ∈ K1 ∪ K2 π1(〈x, y〉) = x π2(〈x, y〉) = y

E0 will then be enriched by the equalities created by the adversary.
The current knowledge of an adversary is represented by a frame φ = νn̄ · σ

where σ is a ground substitution that represents the messages accessible to the
adversary while n̄ denotes the private names (that the adversary does not know
initially). From its knowledge φ, an attacker can then deduce any term that it
can build from the terms in σ and applying function symbols and public names.

Definition 1 (deductibility). A ground term s is deducible from φ = νn̄ · σ
and an equation set E (we write φ �E s) if there exists a public term (i.e. not
containing names from n̄) R such that Rσ =E s.

Example 8. Let φ = νn1, n2, n3, r1, r2, r3 · σ with σ = {x1 �→ {n1}r1

k1
, x2 �→

〈{n2}r2

n1
, {n3}r3

n2
〉}. Then φ �E0

n3. The corresponding public term is : R =
dec(π2(x2), dec(π1(x2), dec(x1, k1))).

As in [CLC08b], we first extend the applied pi-calculus with predicates that
represent the tests that an adversary can perform. We consider four predicates:
M(u) states whether a term u is valid (i.e. will have a computational inter-
pretation); EQ(u, v) checks whether two terms are equal; Psamekey(u, v) checks
whether u and v are two cyphertexts using the same key; and EL(u, v) checks
whether two terms have the same length. A formula, as defined in Figure 1, is a
Boolean combination of these atomic formulas.

The processes are then defined as usual (in Figure 1) with the addition of two
new constructors (eq and neq) that allow to generate new equalities or disequal-
ities between terms. These constructions may appear in attackers processes, but
not in the protocols.

The behaviour of a process depends on the equational theory. We therefore
consider localized process E,Xw, Xc, P where E is a set of ground equations and
disequations, that have already been added by the adversary,Xw andXc are sets
of variables and P is a process. The adversary will be allowed to add equations
in E “on-the-fly” depending on what he learns. More precisely, when we need
to evaluate a test, that involves dishonest keys, the attackers enters a “ADD”
mode in which he has to commit to the (non)-validity of equalities containing
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Φ1, Φ2 ::= Formula
EQ(s, t), M(s), Psamekey(s, t), EL(s, t) predicate application
Φ1 ∧ Φ2 conjunction
Φ1 ∨ Φ2 disjunction
¬Φ1 negation

P, Q, R ::= Processes
c(x) · P, c̄(s) · P input, output on channel c
eq(s, t) · P, neq(s, t) · P equation, disequation
0 null process
P‖Q parallel composition
!P replication
(να)P restriction
if Φ then P else Q conditional

A, B ::= Extended processes
P process
A‖B parallel composition
(να)A restriction
{x �→ s} substitution

For simplicity reasons we will often write if Φ then P else cout(⊥) as [Φ]P .

Fig. 1. Syntax of Formula and Processes

such keys. In this mode, the frame of P records, using the variables in Xw,
the equalities that need a commitment. It also records, using the variables Xc,
the equalities on which he committed since he entered the “ADD” mode. When
leaving the mode, committed (dis)-equalities have been flushed in E.

Example 9. Let us consider the protocols of the Examples 4 and 5. For the sake of
conciseness, we do not describe the role of A. We instead directly enrich the initial
frame with the message emitted by A. We also make use of a pattern-matching
notation like in ProVerif [Bla05]. For example, c(〈a, {y}kab

〉).c̄(y) denotes the
process c(x).[(π1(x) = a) ∧M(dec(π2(x), kab))].c̄(dec(π2(x), kab)).

The process modeling the protocol described in Example 4 is:

P4 = (νk, r, kAB){x �→ {s}r
kAB

}‖!cin(〈z1, {z2}kAB 〉).[M(dec(z2, z1))]cout(ok)

where s = {n}r
k. Similarly, the process modeling Example 5 is:

P5 = (νk, r, r1, r2, r3, kAB){x1 �→ {a}r2

kAB
, x2 �→ k, x3 �→ {{s}r1

k , {a}
r3

kAB
}r2

kAB
}

‖cin({z1, z2}kAB ).[EQ(z1, z2)]cout(bad)

where s = {n}r
k.

3.2 Operational Semantics

Our operational semantics is inspired by the applied π-calculus. For localized
processes of the form E,Xw, Xc, A, terms are interpreted in T /E ∪ E0. E ∪ E0



Security Proof with Dishonest Keys 157

E, Xw , Xc, A‖0 ≡ E, Xw, Xc, A
E, Xw, Xc, A‖B ≡ E, Xw, Xc, B‖A

E,Xw , Xc, (A‖B)‖C ≡ E, Xw, Xc, A‖(B‖C)
E, Xw, Xc, (να)(νβ)A ≡ E, Xw, Xc, (νβ)(να)A
E, Xw , Xc, (να)(A‖B) ≡ E, Xw, Xc, A‖(να)B if α 	∈ fn(A) ∪ fv(A)

E, Xw, Xc, (νx){x �→ s} ≡ E, Xw, Xc,0
E, Xw, Xc, (να)0 ≡ E, Xw, Xc,0

E,Xw , Xc, !P ≡ E, Xw, Xc, P‖!P
E, Xw, Xc, {x �→ s}‖A ≡ E, Xw, Xc, {x �→ s}‖A{x �→ s}

E, Xw, Xc, {x �→ s} ≡ E, Xw, Xc, {x �→ t} if s =E t
E, ∅, Xc, P ≡ E, ∅, ∅, P

Fig. 2. Structural equivalence

is completed into a convergent rewriting system, that minimizes the number of
destructors in a term. t↓E will denote the normal form of the term t w.r.t. such
a rewrite system. More generally, in what follows, when we refer to E, we will
implicitly assume E ∪ E0.

Structural equivalence is very similar to applied π-calculus and is defined in
Figure 2.

We first define the semantics of the four predicates as follows.

– E � M(s) if, for all subterms t of s, t↓E does not contain destructors or
variables and uses only keys in key position.

– E � EQ(s, t) if E � M(s) ∧ M(t) and s↓E= t↓E .
– E � Psamekey(s, t) if E � M(s) ∧ M(t) and ∃k, u, v, r, r′ such that E �

EQ(s, {u}r
k) ∧ EQ(t, {v}r′

k )
– E � EL(s, t) if E � M(s) ∧ M(t) and l(s) = l(t).

The semantics of formulas is then defined as expected.
We are now ready to define how an attacker can add new equalities between

terms. A first condition is that equalities should be well-formed in the sense that
they should not contradict previously added equalities and they should involve
either dishonest encryption or dishonest decryption.

Definition 2. Let s and t be two ground terms such that l(s) = l(t) and t is
without destructors. An equation s = t is well formed with respect to an equation
set E, a set of expected equations Y and a frame φ (written wfE

Y,φ(s = t)) if

– E �� (s = t)
– if (v �= w) ∈ E, E ∪ {s = t} �� v = w
– E ∪ {s = t} �� n = n′ with n, n′ names and n �= n′

– E ∪ {s = t} �� {u}r
k = {u′}r′

k′ with k, k′ ∈ K1 and k �= k′ or r �= r′

– E ∪ {s = t} �� u = v when u is a pair and v is not a pair or when u is a
ciphertext and v is a private name.

and the equation satisfies of one of the two following sets of conditions:
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1. s = {u}r
k with k ∈ K2 and 〈u, k, r, t, enc〉 ∈ Y

2. φ, u � t
3. u is in normal form for E and without destructors

i s = dec(u, k) with k ∈ K2 and 〈u, k dec〉 ∈ Y and (dec(u, k) = ∗) �∈ E
ii φ, u � t or t = ⊥
iii u is in normal form for E, without destructors, and u is either a public

nonce or an encryption.

Similarly, a disequation (s �= t) is well formed, denoted wfE
X,φ(s �= t) if s is also

without destructors and

– s = {u}r
k with k ∈ K2 and 〈u, k, r, t, enc〉 ∈ X

– E ∪E0 �� s = t

We define wfE
φ (e) to hold if there exists X such that wfE

X,φ(e) holds.

Intuitively, an adversary can add an equation of the form {u}r
k = t or dec(u, k) =

t only if t is deducible from φ, u since dishonest encryption and decryption must
be function of the current knowledge φ and their input u.

After receiving a message, an agent typically checks the validity of some condi-
tion. This test may pass or fail, depending on the value of dishonest encryptions
and decryptions performed during the test. As illustrated in Example 4, this
may provide the adversary with an additional knowledge, which we define now:

Definition 3. Let E be a set of ground equations, ϕ and X be two frames, and
Φ be a formula. The additional knowledge induced by the condition Φ w.r.t. E
and X, writen KE

X,ϕ(Φ) is the union of the two following sets :
the set of all 〈s, k,dec〉 s.t.

– There exists a literal M(u) in Φ such that dec(s, t) ∈ St(u) with E � M(s),
t↓E= k and k ∈ K2.

– E �� M(dec(s, k)) (to ensure that the condition is not trivially true, in which
case the adversary does not learn anything)

– ∀y′ ∈ V2, ∀s′ =E s, {y′ �→ 〈s′, k, dec〉} �∈ X (avoiding redundancy)

and the set of all 〈s, k, r, v, enc〉 s.t.

– there exists a literal EQ(t, u) in Φ such that E � M(t) ∧ M(u) and t↓E=
C[t1, · · · , tn], u↓E= C[u1, · · · , un]

– for all i ∈ {1, · · · , n} there exist si and ki ∈ K2 such that
• either ti = {si}ri

ki
and wfE

ϕ (ti = ui). In that case we let vi = ui.
• or ui = {si}ri

ki
and wfE

ϕ (ui = ti). In that case we let vi = ti.
– ∃i ∈ {1 · · ·n} such that si = s, ki = k, ri = r, vi = v (we chose a pair of

terms)
– ∀y′ ∈ V2, {y′ �→ 〈s, k, r, v, enc〉} �∈ X (to avoid redundancy).

Example 10. Back to Example 4 ,K∅
∅,(νs,r,kAB){x �→{s}r

kAB
}(M(dec(s, k))). Indeed,

the only literal in the condition is M(dec(s, k)), and the knowledge set is empty,
therefore K∅

∅,(νs,r,kAB){x �→{s}r
kAB

}(M(dec(s, k))) = 〈s, k,dec〉.
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ỹ are the next #KE
φ(P )|Xw

,φ(P )\(Xw∪Xc)(tΦ(P )) free variables in V2

E,Xw , Xc, P
ε−→ E, Xw ∪ {ỹ}, Xc, P‖{ỹ �→ KE

Xw
(PtΦ(P ))}

R-Add

wfE
φ(z),φ\(Xw∪Xc)(s = t) z ∈ Xw

E, Xw, Xc, eq(s, t).P‖φ τ−→ E ∪ {s = t}, Xw\z, Xc ∪ {z}, P‖φ
R-Eq

wfE
φ(z),φ\(Xw∪Xc)(s 	= t) z ∈ Xw

E, Xw, Xc, neq(s, t).P‖φ τ−→ E ∪ {s 	= t}, Xw\z, Xc ∪ {z}, P‖φ R-Neq

E, ∅, ∅, c(x).P‖c̄(t).Q τ−→ E, ∅, ∅, P‖Q‖{x �→ t}
R-Com

E ∪ E0 � Φ

E, ∅, ∅, if Φ then P else Q
τ−→ E, ∅, ∅, P

R-Cond1

E ∪ E0 	� Φ

E, ∅, ∅, if Φ then P else Q
τ−→ E, ∅, ∅, Q

R-Cond2

φ(P ) denotes the maximal frame which can be extracted from process P . If X =
{x1, · · · , xn} is a set of terms (ordered), then {ỹ �→ X} denotes the frame {y1 �→
x1, · · · , yn �→ xn}. φ\X stands for φ|V\X . tΦ(P ) is set of conditions that occurs in
head in P , that is tΦ(P ) = {Φ1, . . . , Φn} if P ≡ νn̄[Φ1]P1‖ · · · ‖[Φn]Pn‖Q where n is
maximal.

Fig. 3. Reduction semantics

The reduction semantics is defined in Figure 3. The rules R-Com, R-Cond1,
R-Cond2 are the standard communication and conditional rules. Note that
these rules require the sets Xw and Xc to be empty. The validity of a condition
Φ may depend on the behavior of dishonest encryption/decryption performed
when evaluating the condition. The R-Add rule adds to the frame the knowledge
induced by the conditions that are about to be evaluated, making it available to
the attacker. Simultaneously, R-Add adds in Xw the variables referring to all
the equations that need to be decided before evaluating the conditions. It is then
necessary to apply the rules R-Eq and R-Neq until Xw is empty, in order to de-
cide whether each possible equality involving a dishonest encryption/decryption
should be set at true or false.

The R-Add rule should be applied before evaluating a condition (i.e. be-
fore applying R-Cond1, R-Cond2). Therefore, we define →∗ as the smallest
transitive relation containing ≡, ( τ−→ ε−→) and closed by application of contexts.

We will write, if t#ñ : P
c(t)−−→ Q if P →∗ E,Xw, Xc, (νñ)c(x).P ′‖Q′, and

E,Xw, Xc, (νñ)P ′‖Q′‖{x �→ t} ε−→→∗ Q

We also write, if t#ñ : P
c̄(t)−−→ Q if P →∗ E,Xw, Xc, (νñ)c̄(t).P ′‖Q′, and

E,Xw, Xc, (νñ)P ′‖Q′‖{x �→ t} ε−→→∗ Q

We also write E,Xw, Xc, P
(n)eq(s,t)−−−−−−→ E ∪ {s = t}, X ′

w, X
′
c, Q if we have

E,Xw, Xc, P‖(n)eq(s, t) →∗ E ∪ {s(�=) = t}, X ′
w, X

′
c, Q
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3.3 Examples

We show how the computational attacks described in Section 2 are now reflected
in our symbolic model.

For attacking the process P4, we consider the following (symbolic) adversary:

A4 = cin(〈k, x〉).eq(dec(π2(y1)), n).c(π2(y1))

With rule R-Com and some structural congruences, ∅, ∅, ∅, A4‖P4 reduces to
∅, ∅, ∅, Q1 where Q1 is:

(νs, r, kAB){x �→ {s}r
kAB

}‖[M(dec(s, k))]cout(ok)
‖eq(dec(π2(y1)), n).c(π2(y1))‖{z �→ 〈k, {s}r

kAB
〉}

As explained in Example 10, K∅
∅,(νs,r,kAB){x �→{s}r

kAB
}(M(dec(s, k))) = 〈s, k,dec〉.

Applying R-Add we get that ∅, ∅, ∅, Q1 reduces to ∅, {y1}, ∅, Q2 where Q2 is:

(νs, r, kAB){x �→ {s}r
kAB

}‖[M(dec(s, k))]cout(ok)
‖eq(dec(π2(y1)), n).c(π2(y1))‖{z �→ 〈k, {s}r

kAB
〉}‖{y1 �→ 〈dec, s, k〉}

With rule R-Eq and some structural congruences, as dec(s, k) = n is well formed,
we obtain {dec(s, k) = n}, ∅, {y1}, Q3 where Q3 is:

(νs, r, kAB){x �→ {s}r
kAB

}‖[M(dec(s, k))]cout(ok)
‖c(s)‖{z �→ 〈k, {s}r

kAB
〉}‖{y1 �→ 〈dec, s, k〉}

With rule R-Cond1 and some structural equivalence, we have {dec(s, k) =
n}, ∅, ∅, Q4 where Q4 is :

(νs, r, kAB){x �→ {s}r
kAB

}‖{z �→ 〈k, {s}r
kAB

〉}‖{y1 �→ 〈dec, s, k〉}
‖cout(ok)‖c(s)

The adversary is now able to emit s on channel c and, even if it was not necessary
to learn s, the process P4 has progressed to his last state, which would not have
been possible with another symbolic model.

Let now show how we also capture the computational attack described for
Example 5. The adversary is as follows :

A5 = cin(x3).eq({π1(y1)}π3(y1)
π2(y1)

, x1)

The localized process ∅, ∅, ∅, P5‖A5 reduces in some steps to ∅, {y1}, ∅, Q1 where
Q1 is

(νs, r, r1, r2, kAB){x1 �→ {a}r
kAB

, x2 �→ k, x3 �→ {{s}r1

k , {a}r
kAB

}r2

kAB
}

‖{z �→ {{s}r1

k , {a}r
kAB

}r2

kAB
}‖{y1 �→ 〈s, k, r1, {a}r

kAB
, enc〉}

‖[EQ({s}r1

k , {a}
r
kAB

]cout(bad)‖eq({s}r1

k , {a}
r
kAB

)
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∅, {y1}, ∅, Q1

eq({s}r1

k ,{a}r
kAB

,ε,τ,ε
−−−−−−−−−−−−−−→ {{s}r1

k = {a}r
kAB

}, ∅, ∅, Q2 where Q2 is :

(νs, r, r1, r2, kAB){x1 �→ {a}r
kAB

, x2 �→ k, x3 �→ {{s}r1

k , {a}r
kAB

}r2

kAB
}

‖{z �→ {{s}r1

k , {a}
r
kAB

}r2

kAB
}‖{y1 �→ 〈s, k, r1, {a}r

kAB
, enc〉}

‖cout(bad)

where P5 is in the bad state we wanted to avoid.

3.4 Observational Equivalence

We recall the classical definition of observational equivalence, stating that there is
no context (or adversary) yielding an emission on a channel c in one experiment,
and no emission on c in the other experiment:

Definition 4 (observational equivalence). An evaluation context is a pro-
cess C = (νᾱ)([·]‖P ) where P is a process. We write C[Q] for (νᾱ)(Q‖P ). A
context (resp. process) is called closed if fv(C) ∩ V1 = ∅. Let us note that we do
not forbid free names.

The observational equivalence relation ∼o is the largest equivalence relation
on completed processes such that A ∼o B implies :

– If, for some evaluation context C, term s and process A′, A ∗−→ C[c̄(s) · A′],
then for some context C′, term s′ and process B′, B ∗−→ C′[c̄(s′) ·B′]

– If A ∗−→ A′, then for some B′, B ∗−→ B′ and A′ ∼o B
′

– For any closed evaluation context C, C[A] ∼o C[B]

In the proof, we also rely on static equivalence, in order to model the indis-
tinguishability of two sequences of term for the adversary. Two frames φ, φ′ are
statically equivalent if, for any public term sequence s1, . . . , sk and any predicate
p, E |= p(s1, . . . , sk)φ iff E |= p(s1, . . . , sk)φ′.

4 Computational Interpretation

We only need a small fragment of our calculus in order to describe the vast
majority of protocols. These are called simple processes and are built as described
in Section 4.1. We then provide their computational interpretation in Section 4.2.

4.1 Simple Processes

Definition 5. A simple condition with respect to a set of terms S is a conjunc-
tion of atomic formulas of one of the following forms :

– M(s) where s contains only destructors, names and variables
– EQ(s1, s2) where each si is of one of the two following forms :

• si contains only destructors, names and variables
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• si is a subterm of the a term in S.
We also exclude the case in which s1 and s2 are two subterms of the frame.

Let x̄ be a sequence of variable in V1, i a name called pid (the process identifier),
and n̄ a sequence of names, S be a set of terms such that fv(S) ⊆ x̄ and fn(S) ⊆ n̄.
We define recursively basic processes B(i, n̄, x̄, S) as follows.

– 0 ∈ B(i, n̄, x̄, S)
– If B ∈ B(i, n̄, x̄, S ∪ {s}), s ∈ T (n̄, x̄), Φ is a simple condition with respect

to S such that fn(Φ) ⊆ n̄ and fv(Φ) ⊆ x̄, then :

[Φ ∧ M(s)]cout(s).B ∈ B(i, n̄, x̄, S)

If Φ is true, the the process checks if s is well formed and sends it out.
– If B ∈ B(i, n̄, x̄, x, S) and x �∈ x̄ then

cin(x) · [EQ(π1(x), i)]B ∈ B(i, n̄, x̄, S)

The process checks that it was the intended recipient of the message and
processes it.

Basic processes are sequences of inputs and tests followed by an output. Else
branches must be trivial. Basic processes are used to build simple processes.

Definition 6. A simple process is obtained by composing and replicating ba-
sic processes, hiding some names and variables. Formally it is a process of the
following form :

(νn̄)[(νx̄1, n̄1B1‖σ1)‖ · · · ‖(νx̄k, n̄kBk‖σk)‖
!(νz̄1, l1, m̄1cout(〈1, l1〉)B′

1)‖ · · · ‖!(νz̄n, ln, m̄ncout(〈n, ln〉)B′
n)]

with Bj ∈ B(ij, n̄ � n̄j, x̄j , ∅), dom(σj) ⊆ x̄j , B
′
j ∈ B(lj, n̄ � m̄j, z̄j , {lj}). Let us

note that each replicated process outputs its pid in order to let the adversary
communicate with it.

We also assume that for every subterm {t}v
k occurring in a process, v is a name

which occur only in this term and is restricted. We allow several occurrences of
the term {t}v

k. This ensures that the randomness of an encryption is re-used
somewhere else.

In what follows, we also assume that no key cycle is generated by the process.
This can be ensured by defining a key hierarchy.

4.2 Computational Model

As in [CLC08b] each simple process is interpreted as a network of Communicat-
ing Turing Machine (CTM), and we can relate each state of a process to a state
of the corresponding Turing Machine. We assume that each Turing Machine has
an independent random tape. We denote by τ the set of random tapes of the
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machines under consideration. The attacker controls the network: it is a CTM
equipped with an additional control tape, that contains the CTM’s id that will
be used for the next communication. It may perform an internal transition, or
a send (resp. receive) action, that copies the contents of its sending (resp.the
designated CTM sending) tape to the designated CTM receiving (resp. its re-
ceiving) tape. In addition, it may perform a new action, creating a new copy of
a machine implementing the replicated process specified on the control tape. We
only give the implementation hypotheses here.

The implementation of the symmetric encryption is a joint IND-CPA and
INT-CTXT symmetric encryption scheme. Let K be the key generation algo-
rithm, E the encryption algorithm an D the decryption algorithm. All honest
keys are drawn using K and, for any key k, message m, and randomness r,
D(E(m, k, r), k) = m.

We assume that pairing is non ambiguous and that there are four different
tags, one for the pairs, one for the encryptions, one for the keys and one for
the honest nonces; every bitstring starts with the tag corresponding to the last
constructor used to build it. Dishonest messages need not to be properly tagged.
We assume that the symbolic length function l is such that two terms have the
same length if and only if the corresponding bitstrings have the same length.
It is easy to build such a function for example if the length of the nonces are
proportional to the security parameter η, the computational length of pair is
|v‖w| = |v|+|w|+a.η for some a and the length of the encryption is |E(m, k, r)| =
|m| + b.η for some b.

We also need to give the implementation of the predicates used by the simple
processes : �M� is the set of bitstring which are different from ⊥, and �EQ� is
the set pairs of non ⊥ identical bitstrings.

Let us note that for simple processes, the computation of the network answer
to a request is always in polynomial time. This ensures that if the attacker is a
PPT (with an oracle for the process), then running it with the process as oracle
is still in polynomial time. We write �P �τ

η for the implementation of the simple
process P with security parameter η and randomness τ . We will often write Aτ

for the attacker using the random tape specified by τ .

5 Main Result

We show two main results. First, any computational trace is now reflected by
a symbolic one, even in the presence of an attacker that dishonestly generates
its keys. This allows to transfer all trace-based properties. Second, we show that
we can also transfer equivalence-based properties, showing that observational
equivalence implies computational indistinguishability.

5.1 Results

Let us start by defining the sequence of the messages exchanged between P and
A, and what it means for such a trace to be fully abstracted in the process P .
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Note that, given τ and η, the behaviour of A interacting with P , denoted by
�P �τ

η‖Aτ , is deterministic.

Definition 7. Given τ , let (γi) be the sequence of configurations preceding a
send action in the deterministic computation of Aτ interacting with �P �τ

η . The
execution sequence of Aτ‖�P �τ

η is the sequence γ1, L1
m1−−→ γ2, L2 · · ·

mn−−→ γn, Ln

where mi is the content of the sending tape in γi, Li = Li−1 ·mi−1 · Ri and Ri

is the sequence of contents of the receiving tape along the computation from γi−1

to γi (L1 = R1).

Let us now define symbolic traces of a process P as the sequence of terms ex-
changed with the adversary:

Definition 8. s = α1. · · · .αn is a trace of P if ∅, ∅, ∅, P α1−→ E1, X1
w, X

1
c , P1

α2−→
· · · αn−−→ En, Xn

w, X
n
c , Pn and for all i ≤ n if αi = cin(ti), then Pi−1 = P ′‖φ with

φ a frame and φ �Ei−1
ti.

The full abstraction property states that a computational execution is the inter-
pretation of some symbolic trace:

Definition 9 (Full abstraction). Let γ1, L1
m1−−→ γ2, L2 · · ·

mn−−→ γn, Ln be an
execution, s be a trace of P . Let us write s = α1. · · · .αm. Let αn1

· · ·αnk
be the

subsequence of s which are inputs.
s fully abstracts γ1, L1

m1−−→ γ2, L2 · · ·
mn−−→ γn, Ln if k = n and ∀j ≤ n

– αnj = cin(tj) and �tj�
τ
η = mj

– If P
α1.··· .αnj+1−1

−−−−−−−−−→ Ej , Xj
c , X

j
w, Q

j‖φj with Qj not containing active substi-
tutions, then
• �Qj�τ

η = γj

• �φj ∩ {x �→ t|t ∈ T , x ∈ V1}�τ
η = Lj

• ∀(s = t) ∈ Ej , �s�τ
η = �t�τ

η

• ∀(s �= t) ∈ Ej , �s�τ
η �= �t�τ

η

A computational trace Γ is fully abstracted if there exists a trace s of the process
P which fully abstracts Γ .

We are now able to give our full abstraction theorem :

Theorem 1. Let P be a simple process without key cycles. For every PPT A,
for every security parameter η, the sequence Messages(P, η, τ) is fully abstracted
with overwhelming probability (over τ).

This result ensures that it is sufficient to prove trace properties in our model for
them to hold in the computational model. Our second result is the computational
soundness of observational equivalence.

Theorem 2. Let P and Q be two simple processes without key cycles, such that
P ∼o Q. Then �P � ≈ �Q�.

This second result allows us to prove any indistinguishability property in our
model instead of proving it in a computational setting.
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P, ∅, ∅

�
∀t · t

[M(dec(t, k)))]cout(dec(t, k)), {x1 �→ t, y1 �→ 〈t, k, dec〉}, ∅
�

�
�

�
�

��
0, {x1 �→ t, y1 �→ 〈t, k, dec〉, x2 �→ t}, {dec(t, k) = u}

∀u · (dec(t, k) = u)

�
�

�
�

�
�

�
���

0, {x1 �→ t, y1 �→ 〈t, k, dec〉, x2 �→ ⊥}, {dec(t, k) = ⊥}

(dec(t, k) = ⊥)

The edge labelled by ∀t · t is in fact a multiple edge representing the edges t for all t.
As well the edge ∀u · (dec(t, k) = u) is a multiple edge representing the edge for all u.

Fig. 4. Process execution tree corresponding to the process P = cin(x) ·
if M(dec(x, k)) then cout(x) else cout(⊥) with k dishonest

5.2 Sketch of Proof

The main tool of the proof of Theorem 2 is the use of execution trees. The exe-
cution tree of a process is the set of traces of a process organized in a tree. An
example is provided in Figure 4. An execution tree is not necessarily the execu-
tion tree of a process. This generalization allows to consider transformations on
process trees, which would not have being possible directly on processes.

The proof then proceeds in the following steps.

1. We show that the observational equivalence of processes transfers to equiv-
alence of process execution trees.

2. We then replace all honest encryptions in a process tree by encryption of
zeros, showing that the trees are symbolically equivalent.

3. If two trees are equivalent, then their computational interpretation are in-
distinguishable.

4. The only result left to prove is that a process is computationally indistin-
guishable from its process tree. As all the traces are listed in the tree, this
amounts in proving Theorem 1. For this, we need to classify the cases in
which the full abstraction fails, and we then add these failure cases in the exe-
cution trees (this is the originality of our approach with respect to [CLC08b])
and prove that these cases can not be found with a non negligible probability
by the adversary given the computational hypotheses.
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6 Application

We show how our framework can be used to show the computational security
for protocols, even in the case where the attacker can create interesting equal-
ities between ciphertexts using dishonest keys. This section also demonstrates
that our symbolic model does not over-approximate too much the behavior of
computational attackers: our model is fine enough to complete security proof.

6.1 Specification of the Protocol

We describe below a protocol that is designed in such a way that honest partici-
pants may indeed use dishonest keys, making the security proof more challenging.
The protocols aims at securely transmitting sAB from B to A. We will use N as
a shortcut for {N ′}rN

kN
where kN is a secret key known only to A. We actually

simply need N to be of type cyphertext to make our example more interesting.

A −→ B k1, {{{k2}k3
}k1

, N}kAB

B −→ A {{k2}k3
, N}kAB

A −→ B {N, k3}kAB

B −→ A {sAB}k2

kAB is a long term shared key between A and B, the keys k1, k2, and k3 are
fresh and N is a fresh “session” nonce.

We first specify this protocol in the applied π-calculus, using a syntax with
pattern matching for simplicity reasons. The interpretation is that the protocol
checks with M and EQ all the constraints given by the pattern matching. For the
sake of clarity, we omit the verifications of process session identifiers. But it would
be easy to transform our process into a simple process. Instead of restricting all
the names used in N , we simply write (νN) as a shortcut for (νN ′, kN , rN ).

PA = (νk1, k2, k3, N, r1, r2, r3, r4)cout(〈k1, {{{k2}r1

k3
}r2

k1
, N}r3

kAB
〉).

cin({{k2}r1

k3
, N}−kAB

).cout({N, k3}r4

kAB
)

PB = (νr5, r6)cin(〈x1, {{x}−x1
, xN}−kAB

〉).cout({x, xN}r5

kAB
).

cin({xN , x3}−kAB
).[M(dec(x, x3))]cout({sAB}r6

dec(x,x3)
)

The process we consider is (νkAB , sAB)!PB‖!PA and the security property we
want to prove is as follows. For every A PPT with an oracle :

Pr(A‖[(νkAB , sAB)!PB‖!PA] → sAB) = negl(η)

where for a PPT M , M ← m stands for M accepts writing m on its output
tape.

This a priori not straightforward since introducing dishonest keys allows the
attacker to tamper with the normal behavior of the protocol. For example, the
adversary can learn any instance ofN and can obtain as output {u, kl

3}kAB where
u is any deducible term, with kl

3 an instance of k3. Indeed, once the attacker
knows {N, k3}kAB , it can forward it to B together with a dishonest key, that is
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sending k∗1 , {N, k3}kAB . As explained in Example 4, attempting to decrypt with
the dishonest key k∗1 potentially revealsN to the attacker. Then for any deducible
message u, the attacker can forge a dishonest key k∗2 such that dec(N, k∗2) = u,
which allows the attacker to obtain {u, kl

3}kAB from B.

6.2 Security

Despite the behaviors described in the preceding section, the protocol is secure
and we are able to prove it. Applying Theorem 1, it is sufficient to prove weak
secrecy in our symbolic model, that is, it is sufficient to prove the following
proposition.

Proposition 1. The process (νkAB , sAB)!PB‖!PA‖cin(x).[x = sAB].cerror never
emits on channel cerror .

The process cin(x).[x = sAB].cerror serves as a witness, checking whether the
intruder is able to emit sAB. The idea of the proof is that the second component
of the pair is only transmitted,so dishonnest keys will not help learning something
about it, and the k3 stays secret, which ensures that k2 also stays secret. This
is formally proved by computing on over-approximation of the messages learned
by the attacker.

7 Conclusion

We designed a symbolic model, for which the observational equivalence is sound,
even when the attacker may forge his own keys. We believe that it is the first
result on computational soundness considering dishonest keys.

We assumed in this work that the processes do not contain non-trivial condi-
tional branching and no nested replications, but it should not be very hard to
extend our results to these cases.

Another issue, that might be the subject of future work, concerns the au-
tomatisation of the proofs of observational equivalence, in this new model. It is
likely that deducibility constraint solving can be extended to ground equational
theories, which is what we need.

A full version of this paper, including the proofs, is available on the Cryptology
ePrint Archive at http://eprint.iacr.org/2012/008.
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Abstract. Verification of trace equivalence is difficult to automate in
general because it requires relating two infinite sets of traces. The
problem becomes even more complex when algebraic properties of cryp-
tographic primitives are taken in account in the formal model. For exam-
ple, no verification tool or technique can currently handle automatically
a realistic model of re-encryption or associative-commutative operators.

In this setting, we propose a general technique for reducing the set
of traces that have to be analyzed to a set of local traces. A local trace
restricts the way in which some function symbols are used, and this
allows us to perform a second reduction, by showing that some algebraic
properties can be safely ignored in local traces.

In particular, local traces for re-encryption will contain only a bounded
number of re-encryptions for any given ciphertext, leading to a sound
elimination of equations that model re-encryption. For associativity
and commutativity, local traces will determine a canonical use of the
associative-commutative operator, where reasoning modulo AC is no
stronger than reasoning without AC.

We illustrate these results by considering a non-disjoint combination
of equational theories for the verification of vote privacy in Prêt à Voter.
ProVerif can not handle the input theory as it is, but it does terminate
with success on the theory obtained using our reduction result.

1 Introduction

Equivalence of formal processes, typically under the form of observational
equivalence or trace equivalence, is fundamental in modeling security proper-
ties related to privacy. Some examples are strong secrecy [7], resistance against
guessing attacks [14], authentication [3], unlinkability and anonymity [4], etc.
Process equivalence can also be used to verify that a system implementation
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conforms to a given system specification [3]. Another example is ballot secrecy
in electronic voting [20], which is of particular relevance for this paper.

In order to not miss attacks, and sometimes even to be able to execute the
protocols, the formal model has to take into account relevant algebraic properties
of cryptographic primitives that are used [17]. The integration of algebraic prop-
erties in models and tools for automated verification of reachability properties,
like secrecy, has been quite successful. However, only few results are known for
verification of process equivalence. They are in general restricted to a bounded
number of sessions and a basic Dolev-Yao theory [22,29,9,10], and do not go
further than subterm-convergent theories [5,15], where the right-hand side of
each equation is either a constant or a subterm of the left-hand side. ProVerif
can handle an unbounded number of sessions and a broad class of equational
theories [8], but may not terminate and may discover false attacks. None of the
above-mentioned techniques can handle associative-commutative properties, like
those of XOR, abelian groups, Diffie-Hellman, etc.

The starting point of our work is a case study that can not be handled by
ProVerif, namely analysis of vote privacy in Prêt à Voter (PaV) [28]. Privacy in
many electronic voting systems, not only in PaV, is based on a re-encryption
mixnet, whose role is to break the link between ballots that are cast and bal-
lots that are decrypted. A realistic model for such protocols has to contain not
only equations that model re-encryption, but also at least equations for the
associative-commutative properties of the underlying group and for the zero-
knowledge proofs output by the mixnet. However, ProVerif does not terminate
for PaV even when only the single re-encryption equation renc(enc(x, y, z), z′) =
enc(x, y, f(z, z′)) is considered along with the standard Dolev-Yao theory for
public-key encryption.

Our contributions. We show how, in general, trace equivalence modulo a non-
disjoint combination E ∪ Erenc ∪AC, can be reduced to trace equivalence modulo
E ′ - a slightly augmented version of E . If E is subterm-convergent, then E ′ is
subterm-convergent as well. In particular, ProVerif terminates with success for
E ′PaV - the result of applying our reduction to the combination of theories sug-
gested above. The main idea in the construction of E ′ is to anticipate in advance
the maximal number of re-encryptions that are necessary to apply for any given
ciphertext. We only prove the soundness of the given reduction in this paper.
This means that our reduction may fail to prove that some processes are equiv-
alent, but the value of the proposed approach is shown by our ability to carry
an automated proof of privacy for PaV. This is a first automated proof of trace
equivalence for protocols relying on re-encryption and AC symbols.

Related work. The idea of bounding the number of application of rewrite rules
is similar to the finite variant property [13] and has already been helpful to make
ProVerif work modulo XOR [25]. Less like [13], and more like [25], our bound is
not intrinsic to the theory, but comes from a restriction on the class of protocols.
Another similarity with [25] is in our way of removing AC, but we will show that
there is a fundamental difference when one considers equivalence properties. The
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reduction of [25], and also the one for Diffie-Hellman in [24], have also been proven
to be complete. On the other hand, these reductions are restricted to reachability
properties, and do not cover equivalence properties. Furthermore, they consider
a representation of protocols in terms of Horn clauses, which limits the aplicabil-
ity of their results to ProVerif (or other tools based on Horn clauses) and is less
general than the applied pi-calculus [2], that we use. [27,26] also consider abstrac-
tions of Diffie-Hellman and show that they are sound for reachability properties.
Diffie-Hellman has some similarities with re-encryption, but the interaction of re-
encryption with encryption is making it significantly different.

If results for process equivalence are limited to subterm-convergent theories
[22,29,9,10,5,15], results for static equivalence go further than that. [1] shows de-
cidability in presence of blind signatures and homomorphic encryption (without
AC), and there is also a tool available [6]. Furthermore, the theory and imple-
mentation of [11] cover also trapdoor bit-commitment and malleable encryp-
tion. Malleable encryption is similar to re-encryption, but it is not associative-
commutative: the value of the random can be changed, but it does not depend on
its previous value. There are also results showing that algorithms for static equiv-
alence can be combined for disjoint theories [16], and that a function symbol can
be eliminated from the theory if it respects a hierarchy of sorts [23]. Our theory is
a non-disjoint combination of encryption, re-encryption and other cryptographic
primitives. Furthermore, [23] can not be applied to separate re-encryption from
encryption, because a strict hierarchy of sorts can not be established due to the
presence of the equation renc(enc(x, y, z), z′) = enc(x, y, f(z, z′)).

2 Preliminaries

2.1 Terms and Equational Theories

We start with an infinite set of constants N , called names, and an infinite set
of variables X . Given a finite signature F , N ′ ⊆ N and X ′ ⊆ X , we denote by
T (F ,N ′,X ′) the set of terms obtained by recursively applying symbols from F
to elements from N ′ ∪ X ′. Terms will be denoted by u, v, s, t, . . ., variables by
x, y, z, . . ., and names by n,m, r, . . . We let F0 be the set of constants in F .

For a term t, we will denote by var(t) the set of its variables, by st(t) the set
of its subterms and by sig(t) the set of function symbols that occur in t. We say
that a term is ground if var(t) = ∅. A term context C[ ] is a term that has a
special symbol , called hole, in place of a subterm. The application of C[ ] to a
term t is the term C[t], i.e. the result of replacing the hole with t.

Given three terms t, u, v, we denote by t{u → v} the term obtained from t by
replacing every occurence of u with v. A replacement ρ is a partial function from
terms to terms: if ρ = {u1 → v1, . . . , un → vn}, we have dom(ρ) = {u1, . . . , un}
and ran(ρ) = {v1, . . . , vn}. We assume that u1, . . . , un are ordered such that
ui ∈ st(uj) =⇒ j < i. Then, for any term t, the application of ρ to t is
tρ = t{u1 → v1} . . . {un → vn}.

A substitution σ is a replacement with dom(σ) ⊆ X . Substitutions will be de-
noted by σ, θ, τ . . ., whereas replacements will be denoted by (annotations of) ρ.
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The composition of two substitutions σ and θ is a substitution σ ◦ θ defined by
the set {x → (xσ)θ | x ∈ dom(σ)} ∪ {x → xθ | x ∈ dom(θ) � dom(σ)}. Given a
substitution σ, if the composition σ ◦ . . . ◦ σ has a finite least fix point we denote
it by σ∗, i.e. we have σ∗ = σ ◦ . . .◦σ and σ∗ ◦σ = σ∗. Note that, if the variables in
dom(σ) can be ordered as x1, . . . , xn such that i < j =⇒ xj /∈ var(xiσ), then σ∗

exists. The restriction of a substitution σ to a set V ⊆ dom(σ) is denoted by σ|V .
An equational theory is given by a pair E = (R,ACS), where ACS is a set of

equations modeling the associativity and commutativity of symbols in S ⊆ F
and R is a rewrite system convergent modulo ACS . The rules of R are written as
l→ r, with l, r ∈ T (F ,X ) and var(r) ⊆ var(l). Given a rewrite systemR, there is
a rewriting step (resp. rewriting step modulo ACS) from u to v if u = C[w], w = lσ
(resp. w =ACS lσ) and v = C[rσ], for some context C, rewrite rule l→ r ∈ R and
substitution σ. The term w is called a redex. The normal form of a term t with
respect to R (resp. modulo ACS) will be denoted by t↓ (resp. t↓AC), or by t↓R
(resp. t↓R,AC) when R is not clear from the context. Then, we have by definition
u =E v if and only if u↓R,AC =AC v↓R,AC. The existence of a rewriting step (resp.
modulo AC) from u to v will be denoted by u → v (resp. u →AC v). Relying on
the convergence of R, we can restrict ourselves to bottom-up rewriting steps, i.e.
all the strict subterms of a redex are in normal form. For two terms u, v, we write
u = v to denote their syntactic equality, u =E v to denote their equality modulo
E , and u =AC v to denote their equality modulo ACS .

An equational theory (R, ∅) is subterm-convergent if for every rule l→ r ∈ R,
we have r ∈ st(l) ∪ F0. To avoid confusion, when the equational theory is not
clear from the context, we annotate all our symbols by the theory to which they
refer to.

Example 1. The classical Dolev-Yao theory for public-key encryption is modeled
by the signature FDY = {enc, dec, pub, 〈, 〉, π1, π2} and the subterm-convergent
equational theory EDY = (RDY, ∅), where

RDY =
{
dec(enc(x, pub(y), z), y)→ x, π1(〈x, y〉) = x, π2(〈x, y〉) = y

}
The re-encryption property of public-key encryption schemes like El-Gamal can
be modeled by the signature Frenc = {enc, renc, f} and the equational theory
Erenc = (Rrenc,ACf ), where

Rrenc =

{
renc(enc(x, y, z), z′)→ enc(x, y, f(z, z′))
renc(renc(x, z), z′)→ renc(x, f(z, z′))

2.2 Processes and Operational Semantics

To model communication channels we consider a distinct set of constants Ch
such that Ch ∩ (N ∪ F) = ∅. Elements of Ch are called channel names and will
be typically denoted by a, b, c, . . . Processes of our calculus are defined by the
following grammar [2]:

A,B := 0 plain processes P,Q := processes
A | B c〈u〉.A c(x).A νn.A A νx.P νn.P
!A if u = v then A else B P | Q {x 
→ u}
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A name n that occurs in a process P is bound if it occurs under a νn, otherwise
it is free. A variable x that occurs in P is bound if it occurs under a νx or under
a c(x), otherwise it is free. We will denote by bn(P ), bv(P ), bv(P ), resp. fv(P )
the bound names (including channel names), free names, bound variables and
resp. free variables of P . By α-conversion of bound names and variables we will
always assume that bn(P ) ∩ fn(P ) = ∅, bv(P ) ∩ fv(P ) = ∅, and there are no two
distinct binders for the same name or the same variable. We denote by Pα the
process obtained by substituting every bound name and variable in P with a
fresh one. A process P is closed if any variable in P is either bound or occurs in
a subprocess of the form {x → u}. A process context C[ ] is a process that has a
special symbol , called hole, in the place of a sub-process. The application of C[ ]
to a process P is C[P ], i.e. the result of replacing the hole with P . An evaluation
context is a process context whose hole is not in the scope of a replication, a
conditional, an input, or an output. We let sp(P ) = {Q | ∃C[ ]. P = C[Q]} be
the set of sub-processes, st(P ) be the set of terms (and their subterms) and
sig(P ) = sig(st(P )) be the set of function symbols that occur in P .

Structural equivalence is the smallest equivalence relation ≡ on processes
that is closed under the application of evaluation contexts and the application
of the following equations:

P | 0 ≡ P ; νu.0 ≡ 0; !P ≡ Pα |!P ; P | Q ≡ Q | P ; νu.νw.P ≡ νw.νu.P
P | (Q | R) ≡ (P | Q) | R; P | νu.Q ≡ νu.(P | Q), if u /∈ fn(P ) ∪ fv(P )

A frame φ is a (static) process of the form νñ.νx̃.σ, where ñ is a sequence of
names in N , x̃ is a sequence of variables and σ is a substitution such that σ∗

exists. We have bn(φ) = ñ and dom(φ) = dom(σ) � x̃. The set of recipes for
φ is defined as )(φ) = T (F ,N � bn(φ), dom(φ)). Recipes will sometimes be
denoted by ζ, χ, . . . For a term u (in particular, u can be a recipe), we define
the application of the frame φ = νñ.νx̃.σ to u as the application of σ∗ to u,
i.e. we let u[φ] = uσ∗. For a frame φ = νñ.νx̃.σ and a substitution θ, we let
φ ∪ θ = νñ.νx̃.(σ ∪ θ).

For a process P , we let fr(P ) be the frame associated to P , defined as fr(P ) =
νñ.νx̃.σ, where ñ = bn(P ) ∩ N , x̃ = bv(P ) and σ is the substitution obtained
by the union of all the sub-processes of P of the form {x → u}. Our transition
relation will ensure that all variable x has a single occurence as {x → u} in P ,
thus σ is well-defined. Furthermore, for all processes P , it will be the case that
the variables in dom(σ) can be ordered as x1, . . . , xn such that i < j =⇒ xj /∈
var(xiσ). Therefore, σ

∗ always exists and fr(P ) is indeed a frame.
Labeled reduction is a relation between closed processes defined by the

following rules, modulo structural equivalence: for any evaluation context C[ ]
with φC = fr(C[ ]),

COMM C[c〈u〉.A | c(x).B]
τ−→ C[νx.(A | B | {x → u})]

THEN C[if u = v then A else B]
τ−→ C[A] if u[φC] =E v[φC]

ELSE C[if u = v then A else B]
τ−→ C[B] if u[φC] �=E v[φC]

IN C[c(x).A]
c(ζ)−−→ C[νx.(A | {x → ζ})] if c /∈ bn(C[ ]) & ζ ∈ )(φC)

OUT C[c〈u〉.A] νx.c〈x〉−−−−→ C[A | {x → u}] if c /∈ bn(C[ ]) & x /∈ var(C[c〈u〉.A])
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The semantics is very similar to the one in [2], with superficial differences that
help in our proofs. The most notable difference is that we never apply the frame
to the process, but only use the frame where it makes a difference, i.e. in tests.
Similarly, equational reasoning is not part of structural equivalence, but is only
used in tests. A trace is a sequence of labeled reductions P1

α1−→ P2
α2−→ . . .

αn−−→
Pn. We will denote such a trace by P1

w−→ Pn, where w = α1 . . . αn. We let obs(w)
be the sequence of labels obtained by erasing all occurence of τ in w.

Example 2. Consider the theory E = EDY ∪ Erenc from Example 1, and
P = νk.c〈enc(a, pub(k), r)〉.c(x).c〈〈x, x〉〉.c(y).if x �= enc(a, pub(k), r) &

y �= enc(a, pub(k), r) & dec(x, k) = dec(y, k) then c〈dec(y, k)〉
We have P

νz1.c〈z1〉−−−−−−→ c(renc(z1,n1))−−−−−−−−→ νz2.c〈z2〉−−−−−−→ c(renc(π1(z2),n2))−−−−−−−−−−−→ τ−→ P0, where

P0 ≡ νk.νx.νy.(c〈dec(y, k)〉 | {z1 → enc(a, pub(k), r)} | {x → renc(z1, n1)} |
{z2 → 〈x, x〉)} | {y → renc(π1(z2), n2)})

and y[fr(P0)] = renc(π1(〈renc(z1[φ], n1), x[φ]〉), n2) =E enc(a, pub(k), f(f(r, n1),

n2)). Furthermore, P0
νz3.c〈z3〉−−−−−−→ P1 for some process P1 = νk.νx.νy.fr(P1) such

that fr(P1) = fr(P0) ∪ {z3 → dec(y, k)}. Then, we have z3[fr(P1)] =E a.

2.3 Trace Equivalence and Secrecy

Definition 1 (static equivalence). We say that two frames φ, ψ are in static

equivalence modulo an equational theory E, denoted by φ
s∼ ψ, if dom(φ) =

dom(ψ) and ∀ζ1, ζ2 ∈ )(φ) ∩ )(ψ). ζ1[φ] =E ζ2[φ]⇔ ζ1[ψ] =E ζ2[ψ]

When E is not clear from the context, we use the notation φ
s∼E ψ. We say that

two traces P
w1−−→ P ′ and Q

w2−−→ Q′ are in static equivalence if obs(w1) = obs(w2)

and fr(P ′)
s∼ fr(Q′).

Definition 2 (trace equivalence). We say that two plain processes P,Q are

in trace equivalence, denoted by P ∼ Q, if for every trace P
w1−−→ P ′, there exists

a trace Q
w2−−→ Q′ such that obs(w1) = obs(w2) and fr(P ′)

s∼ fr(Q′). Moreover,
each trace of Q must have a corresponding statically equivalent trace of P .

Example 3. Continuing example 2, let us consider the process Q = P{a → b}
and let P

w1−−→ P1 be the exhibited trace. Then, we have P �∼ Q, because

– for z3, a ∈ )(fr(P1)), we have z3[fr(P1)] =E a[fr(P1)]

– for every corresponding trace Q
w2−−→ Q1 with obs(w1) = obs(w2), we have

z3[fr(Q1)] �=E a[fr(Q1)], and thus fr(P1) � s∼ fr(Q1). In fact, we have z3[fr(Q1)] =

Eb[fr(Q1)].

Definition 3 (intruder knowledge and secrecy). Let E be an equational
theory. For a frame φ, we let I(φ, E) = {u | ∃ζ ∈ )(φ). ζ[φ] =E u}. For all

processes P , we let I(P, E) = {u | ∃Q,w. P
w−→ Q & u ∈ I(fr(Q), E)} and

S(P, E) = bn(P )� I(P, E).
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3 Motivation and Statement of the Reduction Result

3.1 Starting Point: The Case Study

In this paper and in the corresponding ProVerif code, we only perform the anal-
ysis of PaV for the case of two eligible voters idA, idB and two candidates a, b.
This is mainly for simplicity of presentation, but also because we believe that a
result like the one in [12] could be translated to privacy properties.

In addition to El-Gamal encryption and re-encryption, modeled by EDY and
Erenc from example 1, PaV relies on zero-knowledge proofs to provide universal
verifiability of the election result. We have to model these proofs in our anal-
ysis, to ensure that we do not miss any attacks on privacy that may be made
possible by the additional information that is published. In particular, PaV re-
lies on mixnet proofs and on proofs of correct decryption, that we model by
the signature Fver = {mixPf/6, checkMix/5, decPf/3, checkDec/4, ok/0} and the
equational theories EdecP = (RdecP, ∅), EmixP = (RmixP, ∅), where:

RdecP =

{
checkDec(decPf(enc(x, pub(y), z), x, y),

enc(x, pub(y), z), x, pub(y))→ ok

RmixP =

⎧⎪⎪⎨⎪⎪⎩
checkMix(mixPf(x, y, renc(x, zx), renc(y, zy), zx, zy),

x, y, renc(x, zx), renc(y, zy))→ ok
checkMix(mixPf(x, y, renc(y, zy), renc(x, zx), zy, zx),

x, y, renc(y, zy), renc(x, zx))→ ok

The main idea of PaV is that an election authority A creates ballots that contain
the names of the candidates in a random order on the left-hand side and their cor-
responding encryption in the same order on the right-hand side. This allows the
voter to mark a vote for the desired candidate and scan only the encrypted part
of the ballot, the right-hand side, to be posted on the bulletin board. Because the
random order of candidates in the ballot and the decryption key are assumed to
be secret, this ensures vote privacy, and even coercion-resistance, if care is taken
to destroy the left-hand side. We use the following equational theory to model
the actions of the voter during voting: Fvote = {vote, 〈, 〉} and Evote = {Rvote, ∅},
where Rvote = {vote(〈x, y〉, 〈xe, ye〉), x)→ xe, vote(〈x, y〉, 〈xe, ye〉), y)→ ye}.

After the encrypted votes get to the bulletin board, the design of PaV is similar
to other voting systems like JCJ/Civitas or Helios: ballots are anonymized by
a re-encryption mixnet and decrypted by the holders of the secret key. Putting
it all together, the equational theory and the process that model PaV are given
by EPaV and PPaV in figure 1. V is the process for a voter, A is the process for
the election authority that constructs the ballots, B is the process for the public
bulletin board,M is the process for a mix server and T is the process for a trustee
holding the decryption key.

In process M, we have {i, j} = {1, 2} and mixProof = mixPf(x1, x2,
renc(πi(xballots), n1), renc(πj(xballots), n2), n1, n2). In process T, we have decPi =
decPf(πi(xballots), dec(πi(xballots), sk), sk), for all i ∈ {1, 2}. The channel cprinter is
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EPaV = EDY ∪ Erenc ∪ EdecP ∪ EmixP ∪ Evote

PPaV = νsk.νcprinter.νcver.νctrustee. (V(idA, v1) | V(idB, v2) | A | B | M | T)

A = νcauth.(cauth〈a, b〉 | cauth〈b, a〉 | cauth(xcan).νr1.νr2.
cprinter〈xcan, 〈enc(π1(xcan), pub(sk), r1), enc(π2(xcan), pub(sk), r2)〉〉

V(id, v) = cprinter(xballot).cscanner〈id, vote(xballot, v)〉.cver〈id, vote(xballot, v)〉
B = cscanner(ballot1).cscanner(ballot2).cmix〈ballot1, ballot2〉
M = cver(y).cver(z).cmix(xballots).if 〈π1(y), π1(z), 〈π2(y), π2(z)〉〉 = 〈idA, idB, xballots〉

then νn1.νn2.ctrustee〈renc(πi(xballots), n1), renc(πj(xballots), n2)〉.
cboard〈renc(πi(xballots), n1), renc(πj(xballots), n2),mixProof〉

T = cboard〈pub(sk)〉.ctrustee(xballots).cboard〈π1(xballots), dec(π1(xballots), sk), decP1〉.
cboard〈π2(xballots), dec(π2(xballots), sk), decP2〉

Fig. 1. Formal model of Prêt à Voter

where V gets the ballots - it is private because the order of candidates should be
kept secret. cver is a private channel whose role is to enforce eligibility: exactly the
ballots of idA and idB go into the mix. Without this, the intruder could mount
an attack against the privacy of idA by replacing the ballot of idB with a copy of
the ballot of idA in one of the public channels cscanner or cmix, as in e.g. [19]. The
channel ctrustee has to be private to ensure that the ballots that are decrypted
are indeed the ones that are mixed, and are not supplied by the intruder. Note
that the channels cscanner, cboard and cmix are public, and all information that goes
on private channels is also published on cboard.

To verify that PPaV satisfies vote-privacy we check that PPaV{v1 → a}{v2 →
b} ∼EPaV

PPaV{v1 → b}{v2 → a} [20]. The motivation of our work is that, when
given as input this task (even without ACf , EmixP and EdecP), ProVerif does not
terminate. The non-termination is certainly due to Erenc, because EDY ∪ EdecP ∪
EmixP ∪ Evote is a subterm-convergent theory and is easily handled by ProVerif.

3.2 General Setting for the Reduction

For a term t and process P , we let:
re(t) = {u ∈ st(t) | top(u) ∈ {enc, renc}}; re(P ) = {u ∈ st(P ) | top(u) ∈ {enc, renc}}
ran(t) = v, if t = enc(t1, t2, v) ∨ t = renc(t1, v); ran(P ) = {ran(u) | u ∈ re(P )}

Assumptions about the equational theory. In general, we consider a signa-
ture F such that {enc, renc, f} ⊆ F and a class of equational theories InpTh
such that for all E ∈ InpTh, we have E = E ′ ∪ Erenc, for some equational
theory E ′ = (R′, ∅). We assume furthermore that for each rule l → r ∈ R′:
(ae1) top(l) /∈ {enc, renc} and f /∈ sig(l)
(ae2) sig(r) ∩ {renc, enc, f} = ∅

(ae3) for all t, t
′ ∈ re(l), we have:

· ran(t) ∈ var(l)� var(r)
· ran(t) = ran(t′) =⇒ t = t′

It is easy to see that EPaV satisfies (ae1)-(ae3).
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Assumptions about the class of processes. We define the weak symbols of
E = (R,ACf ) by W(E) = {g ∈ F | l → r ∈ R & g ∈ sig(l) =⇒ r ∈ F0}. For
example, we have W(EPaV) = Fver ∪ {f}. For all term u, we define:

stp(u) = {t ∈ st(u) | u = C[t] =⇒ ∃C1,C2. C[ ] = C1[C2[ ]] &
(top(C2) ∈ W(E) ∨ C2 = renc(t1,C

′
2[ ]) ∨ C2 = enc(t1, t2,C

′
2[ ]))}

Intuitively, stp(t) are the subterms of t whose every occurence is ”protected” by
a weak symbol or by {enc, renc}. For example, stp(〈a, c, renc(b, c), renc(b, d)〉) =
{d}. We assume the following properties about every process P that we consider:
(ap1) f /∈ sig(P )
(ap2) ran(P ) ⊆ bn(P )

(ap3) · u, u′ ∈ re(P ) & ran(u) = ran(u′) =⇒ u = u′

· t ∈ ran(P ) & u ∈ st(P ) & t ∈ st(u) =⇒ t ∈ stp(u)
(ap4) !Q ∈ sp(P ) =⇒ {renc, enc} ∩ sig(Q) = ∅

The main goal of assumptions (ap2),(ap3) is to ensure that the elements of ran(P )
are kept secret by the process. It is easy to see that PPaV satisfies (ap1)-(ap4).

The reduced theory. Given an input theory E = (R′∪Rrenc,ACf ) ∈ InpTh, let

R−1
renc be the inverse ofRrenc, that is:R−1

renc=

{
enc(x, y, f(z, z′)) → renc(enc(x, y, z), z′)
renc(x, f(z, z′)) → renc(renc(x, z), z′)

Note that R−1
renc is convergent modulo AC. Given a term t, we let varf (t) =

{s ∈ var(t) | enc(u, v, s) ∈ st(t) ∨ renc(u, s) ∈ st(t)}. Then, for all m ≥ 1, an
(f,m)-substitution for t is a substitution σ such that dom(σ) ⊆ varf (t) and
∀x ∈ dom(σ). xσ = f(. . . f(x0, x1) . . . , xk), where 1 ≤ k ≤ m & x0, . . . , xk /∈
var(t) & ∀x′ �= x.x0, . . . , xk /∈ var(x′σ). We denote by Θf,m(t) the set of (f,m)-
substitutions for t. Now, we consider a particular case of narrowing [21] with re-
spect to R−1

renc to define a set of variants [13] of a term: V renc
m (t) = {(tσ)↓R−1

renc
| σ ∈

Θf,m(t)}.
Example 4. We have V renc

2 (enc(a, b, x)) = {enc(a, b, x), renc(enc(a, b, x0), x1),
renc(renc(enc(a, b, x0), x1), x2)} and V renc

2 (renc(a, x))={renc(a, x), renc(renc(a, x0)
, x1), renc(renc(renc(a, x0), x1), x2)}
Finally, we can define the reduced theory that corresponds to E and m:

Em = (Rm, ∅) Rm = {l′ → r | ∃l→ r ∈ R′. l′ ∈ V renc
m (l)}

We let OutTh be the set of all reduced theories that correspond to some E ∈
InpTh and some m ≥ 1.

Example 5. Let us consider the theory EPaV and m = 1. We have EPaV,m =
(EPaV � Erenc) ∪ (S, ∅), where

S =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dec(renc(enc(x, pub(y), z0), z1), y)→ x
checkDec(decPf(renc(enc(x, pub(y), z0), z1), x, y),

renc(enc(x, pub(y), z0), z1), x, pub(y))→ ok
checkMix(mixPf(x, x, renc(renc(x, z0x), z

1
x), renc(y, zy), f(z

0
x, z

1
x), zy),

x, y, renc(renc(x, z0x), z
1
x), renc(y, zy))→ ok

plus rules for checkMix corresponding to other permutations and
to substitutions {zy → f(z0y, z

1
y)} and {zx → f(z0x, z

1
x), zy → f(z0y , z

1
y)}
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Lemma 1. For all E = E ′ ∪ Erenc ∈ InpTh such that E ′ is subterm-convergent,
Em is subterm-convergent.

We let ranr(P ) = {t | renc(u, t) ∈ st(P )}. Our main result is a reduction of trace
equivalence modulo any E ∈ InpTh to trace equivalence modulo Em ∈ OutTh, for
a well-chosen m:

Theorem 1 (Main theorem). For all processes P,Q that satisfy (ap1)-(ap4)
let m = 2 ∗ max(|ranr(P )|, |ranr(Q)|) + 1. Then, for all equational theory E ∈
InpTh, we have

P ∼Em Q =⇒ P ∼E Q

where Em ∈ OutTh is the reduced theory that corresponds to E and m.

4 Reduction of the Set of Traces

As a first step in the proof of theorem 1, we introduce a restricted notion of
trace equivalence, P , Q, that depends only on so-called local traces of P and
Q. We show that P ∼Em Q =⇒ P ,Em Q and P ,E Q =⇒ P ∼E Q.

4.1 Occurence Order for a Frame

In the following, we assume that for all frame φ we are given a partial order
≺ on variables in var(φ). For all P,Q such that P

w−→ Q, we associate such an
order ≺ to fr(Q): for all x, y ∈ var(fr(Q)) we have x ≺ y iff w = w1w2 and

there is a P1 such that P
w1−−→ P1

w2−−→ Q, x ∈ var(φ(P1)) and y /∈ var(fr(P1)).
We let x � y if x ≺ y ∨ x = y. The orders ≺ and � are extended to sets of
variables from var(φ) by: S1 � S2 ⇔ ∀x ∈ S1∃y ∈ S2.x � y and S1 ≺ S2 ⇔
S1 � S2 & ∃y ∈ S2∀x ∈ S1.x ≺ y. Finally, we extend ≺ (and �) to a pre-
order on terms in T (F ,N , var(φ)) by letting u ≺ v ⇔ var(u) ≺ var(v) (and
u � v ⇔ var(u) � var(v)).

Example 6. Let P = c〈a〉.c〈b〉.c〈renc(a, b)〉. Then, we have

P
νx1.c〈x1〉−−−−−−→ νx2.c〈x2〉−−−−−−→ νx3.c〈x3〉−−−−−−→ {x1 → a} | {x2 → b} | {x3 → renc(a, b)} = Q

and x1 ≺ x2 � renc(x1, x2) ≺ x3 and renc(x1, x2)[fr(Q)] = x3[fr(Q)].

For the trace P
w−→ P1 of example 2, we have z1 � renc(z1, n1) ≺ x ≺ z2 �

renc(π2(z2), n2) ≺ y.

4.2 Local Traces in General

The definitions and results from this section stand for any equational theory E ,
with no restriction on E and no restriction on the class of processes.

In the following, we consider given a locality function L, that associates to
each frame φ a subset of its recipes, i.e. L(φ) ⊆ )(φ).
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Definition 4 (local static equivalence). Let L be a locality function. We

say that two frames φ, ψ are in L-local static equivalence, denoted by φ
s, ψ, if

dom(φ) = dom(ψ) and ∀ζ1, ζ2 ∈ L(φ) ∩ L(ψ). ζ1[φ] =E ζ2[φ]⇔ ζ1[ψ] =E ζ2[ψ].

When L or E is not clear from the context, we use the notation φ
s,L,E ψ. We

say that two traces P
w1−−→ P ′ and Q

w2−−→ Q′ are in L-local static equivalence if

obs(w1) = obs(w2) and fr(P ′)
s,L fr(Q′). For a sequence of labels w, we let inp(w)

be the set of recipes that occur as inputs in w, i.e. inp(w) = {ζ | ∃w1, w2, c. w =

w1c(ζ)w2}. A trace P
w−→ Q is L-local if inp(w) ⊆ L(fr(Q)).

Definition 5 (local trace equivalence). Let L be a locality function. We say
that two processes P,Q are in L-local trace equivalence, denoted by P , Q, if
for all L-local trace P

w1−−→ P ′ there exists a L-local trace Q
w2−−→ Q′ such that

obs(w1) = obs(w2) and fr(P ′)
s, fr(Q′). Moreover, for all L-local trace of Q there

must exist a corresponding L-local statically equivalent L-local trace of P .

When L is not clear from the context, we use the notation P ,L,E Q.
The idea of L-locality is to restrict the set of traces that have to be considered.

A locality function is especially useful if it admits a normalization function that
assigns to each recipe an equivalent local recipe:

Definition 6 (Normalization function). Given two locality functions L1,L2

and a frame φ, a normalization function from L1 to L2 associates to each recipe
ζ ∈ L1(φ) an equivalent L2-local recipe N(ζ) that is smaller wrt � than ζ, i.e.
we have ∀ζ ∈ L1(φ). N(ζ) ∈ L2(φ) & N(ζ)[φ] =E ζ[φ] & N(ζ) � ζ.

We denote by normL1,L2(φ) the set of normalization functions from L1 to L2

for φ. When L1 = ), we may use the notation normL2(φ) for this set.

We say that a frame φ is issued from a (L-local) trace if there is a process P

and a (L-local) trace P
w−→ P ′ such that φ = fr(P ′). The following two proposi-

tions show under which conditions trace equivalence and local trace equivalence
coincide.

Proposition 1. Let L be a locality function such that, for all frames φ, ψ that
are issued from two statically equivalent traces, we have L(φ) = L(ψ). Then, for
all plain processes P,Q, we have P ∼ Q =⇒ P ,L Q.

Proposition 2. Let L be a locality function such that, for all frames φ, ψ that
are issued from two L-statically equivalent and L-local traces, there exists a nor-
malization function N ∈ normL(φ) ∩ normL(ψ). Then, for all processes P,Q, we
have P ,L Q =⇒ P ∼ Q.

To ease the construction of a normalization function for a locality function L2, we
can introduce an intermediary locality function L1, with L2(φ) ⊆ L1(φ) ⊆ )(φ),
and provide two normalization functions: one from ) to L1, and one from L1 to
L2. This is the role of the following corollary:

Corollary 1. Let L1,L2 be two locality functions such that,
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– for all frames φ, ψ that are issued from two L2-statically equivalent and
L2-local traces, there exists a normalization function N2 ∈ normL1,L2(φ) ∩
normL1,L2(ψ).

– for all frames φ, ψ that are issued from two L1-statically equivalent and
L1-local traces, there exists a normalization function N1 ∈ norm
,L1(φ) ∩
norm
,L1(ψ).

– for all frames φ, ψ that are issued from two statically equivalent traces, we
have L1(φ) = L1(ψ)

Then, for all processes P,Q, we have P ,L2 Q =⇒ P ,L1 Q =⇒ P ∼ Q

4.3 Local Traces for Re-encryption

We define a locality function Lrenc that will allow us to infer a bound on the
number of re-encryptions applied to any given ciphertext. The main idea of
Lrenc is to disalow nested applications of the function renc in recipes. In spite of
this strong restriction, Lrenc will admit a normalization function, because nested
applications of renc can be replaced with equivalent terms that are somehow
smaller, e.g. renc(π1(〈renc(ζ1, ζ2), χ〉, ζ3) can be replaced with renc(ζ1, f(ζ2, ζ3)).

Let φ be a frame and ≺ be an occurence order on recipes associated to φ. For
two recipes ζ1, ζ2 ∈ )(φ), we define

ζ1 . ζ2 ⇔ ζ2 = renc(χ1, χ2) & ζ1[φ] =E χ1[φ] & (ζ1 ∈ st(χ1) ∨ ζ1 ≺ χ1)

Intuitively, we have ζ1 . ζ2 if ζ2 is a re-encryption of ζ1. The role of the inter-
mediary recipe χ1 in the definition of . is to take into account the case where
ζ2 is not a direct re-encryption of ζ1, but there exists a context inbetween ζ2 and
ζ1 that may dissapear by rewriting. This context may be entirely contained in
χ1, and then we have ζ1 ∈ st(χ1), or it may descent into the substitution part
of χ1[φ], and then we have ζ1 ≺ χ1 (note that we require ≺, and not simply �).

Example 7. Let us consider the trace P
w−→ P1 of example 2. Let φ = fr(P1)

and ≺ be the corresponding occurence order. Then, we have renc(z1, n1) .
renc(π2(z2), n2), because π2(z2)[φ] = π2(〈x[φ], x[φ]〉) =E x[φ] = renc(z1, n1)[φ]
and renc(z1, n1) ≺ x ≺ z2 � π2(z2).

Now, given a frame φ, we can define the sets of recipes RR(φ) and respectively
RE(φ) that represent a nested application of re-encryptions and respectively the
re-encryption of an encryption. Local traces will avoid the use of such recipes.
Formally, we have:
RR(φ) = {ζ0 ∈ )(φ) | ∃ζ1 ∈ )(φ). ζ1 . ζ0 & top(ζ1) = renc}
RE(φ) = {ζ0 ∈ )(φ) | ∃ζ1 ∈ )(φ). ζ1 . ζ0 & top(ζ1) = enc}
Definition 7 (Locality function Lrenc). For all frame φ, we let

Lrenc(φ) = {ζ ∈ )(φ) | st(ζ) ∩ (RR(φ) ∪ RE(φ)) = ∅}

Example 8. Continuing example 7, we have renc(π2(z2), n2) /∈ Lrenc(φ), because
renc(z1, n1). renc(π2(z2), n2) and top(renc(z1, n1)) = renc.
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Lemma 2. For all equational theory E and all frames φ, ψ that are issued from
two statically equivalent traces, we have Lrenc(φ) = Lrenc(ψ).

Lemma 3 (Normalization function Nrenc). Consider the locality function
Lrenc and an equational theory E ∈ InpTh. For all frames φ, ψ that are issued from
two Lrenc-statically equivalent and Lrenc-local traces, there exists a normalization
function Nrenc ⊆ normLrenc(φ) ∩ normLrenc(ψ).

We prove lemma 3 by replacing every recipe renc(ζ0, χ0) ∈ st(ζ) ∩ (RR(φ) ∪
RR(ψ)), such that renc(ζ1, χ1) . renc(ζ0, χ0), with renc(ζ1, f(χ0, χ1)). We rely

on φ
s, ψ and on a well-chosen ordering of replacements to ensure that their

application is consistent in both frames. None of assumptions (ae1)-(ae3) or
(ap1)-(ap4) are used in the proof.

Example 9. Continuing example 8, we have Nrenc(renc(π2(z2), n2)) =
renc(z1, f(n1, n2)). Indeed, we have renc(z1, f(n1, n2)) ∈ Lrenc(φ), renc(z1,
f(n1, n2))[φ] = renc(π2(z2), n2)[φ] and renc(z1, f(n1, n2)) ≺ renc(π2(z2), n2).

4.4 Local Traces for Associativity-Commutativity

We define a locality function Lf that will ensure a canonical use of the AC
symbol f : the nested application of f -symbols always follows the same pattern
and arguments of f always respect a well-chosen order.

We consider multi-hole term contexts: C[ , . . . , ]n is a context with n holes,
and the subscript n will be dropped when n is clear from the context. For all
n ≥ 1, we let Cn

f be the n-hole context f(. . . f(f( , ), ) . . . , ).

Definition 8. Assume that t is a term such that t = C[t1, . . . , tn], with sig(C) =
{f} and top(t1) �= f, . . . , top(tn) �= f . Then, we define Factf (t) = (t1, . . . , tn)
and Cf (t) = C[ , . . . , ]. Sometimes we use the notation Factf (t) to also denote
the set {t1, . . . , tn}.

For example, Cf (f(f(a, b), f(a, b))) = f(f( , ), f( , )) and Factf (f(f(a, b),
f(a, b))) = (a, b, a, b).

Let φ be a frame and ≺ be the associated occurence ordering. We consider any
total extension of ≺, denoted by ≺f , that is compatible with the subterm order-

ing, i.e. u ∈ st(v)�{v} =⇒ u ≺f v. For all ζ ∈ )(φ), we define minφf (ζ) to be the

minimal wrt≺f recipe that is equivalent to ζ in φ, i.e. we haveminφf (ζ)[φ] =E ζ[φ]

and ∀ζ′ ∈ )(φ). ζ′[φ] =E ζ[φ] =⇒ minφf (ζ) ≺f ζ′.
Now, given a frame φ, we can define the set of terms GF(φ) that will determine

the restricted use of the symbol f :

GF(φ) = {t | Factf (t) = (t1, . . . , tn) =⇒ Cf (t) = Cn
f & ∃ζ1, . . . , ζn ∈ )(φ).

ζ1[φ]↓ = t1, . . . , ζn[φ]↓ = tn & minφf (ζ1) �f . . . �f minφf (ζn)}

Intuitively, GF(φ) requires that its members are in canonical form wrt associa-
tivity of f , via Cf (t) = Cn

f , and in canonical form wrt commutativity of f , via
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minφf (ζ1) �f . . . �f minφf (ζn). Recall that, for all term u, u↓ represents the
normalization of u wrt to R only, not considering ACf :

Definition 9 (Locality function Lf ). For all frame φ, we let

Lf (φ) = {ζ ∈ )(φ) | ∀ζ′ ∈ st(ζ). ζ′[φ]↓ ∈ GF(φ)}

One may wonder why, in the definition of GF(φ), we compare the minimal recipes

minφf (ζi) and not simply the terms ti, like in [25], or the recipes ζi. We do not
compare the terms ti, because they may contain information that is irrelevant
to observations that can be made in a frame, in particular they may contain
secret names. We want to abstract away from such details, especially since we
want to relate two frames that may well be distinct on their non-observable
parts. Furthermore, we do not compare the recipes ζi because that would not
be sufficient to eliminate AC properties in a Lf -local trace: we may have ζ1 ≺f

ζ2, χ1 ≺f χ2, f(ζ1[φ]↓, ζ2[φ]↓) =AC f(χ1[φ]↓, χ2[φ↓]) and f(ζ1[φ]↓, ζ2[φ]↓) �=
f(χ1[φ]↓, χ2[φ]↓). On the other hand, comparing minφf (ζi) ensures an ordering
on equivalence classes, and not merely an ordering on recipes.

Example 10. Consider the frames φ = νa.νb. {x1 → a, x2 → b, x3 → 〈b, a〉}
and ψ = νa.νb. {x1 → b, x2 → a, x3 → 〈a, b〉}, such that x1 ≺ x2 ≺ x3. Then,

minφf (π1(x3)) = x1 andminφf (π2(x3)) = x2. The recipes f(x1, f(x1, x1)), f(x2, x1)
and f(π1(x3), π2(x3)) are not in Lf (φ) and not in Lf (ψ).

In example 9, if we assume n2 ≺f n1, the recipe renc(z1, f(n1, n2)) is in
Lrenc(φ) � Lf (φ).

Definition 10 (Locality function Lrf). For all frame φ, we let

Lrf(φ) = Lrenc(φ) ∩ Lf (φ)

The following lemma is crucial in defining a normalization function for Lf , be-
cause it will allow us to obtain recipes of terms in Factf (ζ[φ]↓), that we can
re-arrange to transform a non-local recipe into a local one:

Lemma 4. Let P,Q be processes such that P
w−→ Q and let φ = fr(Q). Then,

for all recipe ζ ∈ )(φ) such that ζ[φ]↓ = f(t1, t2) there exist f(ζ1, ζ2) ∈ )(φ)
such that

– f(ζ1, ζ2) ∈ st(ζ) or f(ζ1, ζ2) ∈ st(inp(w)) & f(ζ1, ζ2) ≺ ζ
– and f(ζ1, ζ2)[φ]↓ = f(t1, t2)

Note that f(ζ1, ζ2) ∈ )(φ) ⇔ {ζ1, ζ2} ⊆ )(φ). The proof of lemma 4 relies on
assumptions (ae2),(ae3) and (ap1) to deduce that, whenever f(t1, t2) is deducible
in a trace, it must be the case that both t1 and t2 are deducible.

Lemma 5. For all equational theory E = (R, ∅) ∈ OutTh and all frames φ, ψ
that are issued from two statically equivalent traces, we have Lf (φ) = Lf (ψ).

The proof of lemma 5 is eased by the absence of AC symbols, and it relies on
lemma 4 and φ

s∼ ψ to transfer the Lf -locality of a recipe from φ to ψ.
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Lemma 6 (Normalization function Nf). Consider the locality functions
Lrenc,Lrf and an equational theory E ∈ InpTh. For all frames φ, ψ that are issued
from two Lrf -statically equivalent and Lrf -local traces, there exists a normaliza-
tion function Nf ⊆ normLrenc,Lrf

(φ) ∩ normLrenc,Lrf
(ψ).

We prove lemma 6 by replacing all ζ′ ∈ st(ζ) such that ζ′[φ]↓ /∈ GF(φ) and
Factf (ζ

′[φ]↓) = (t1, . . . , tn) with an equivalent ζ′′ such that ζ′′[φ]↓ ∈ GF(φ), to
obtain an Lf -local recipe. To construct ζ′′, we start with a sequence of recipes
ζ1, . . . , ζn such that ζ1[φ]↓ = t1, . . . , ζn[φ]↓ = tn, whose existence is ensured
by lemma 4. Then, we consider ζ′′ = Cn

f [ζi1 , . . . , ζin ], where ζi1 , . . . , ζin is a re-

ordering of ζ1, . . . , ζn such that minφf (ζi1 ) ≺f . . . ≺f minφf (ζin). We rely on φ
s, ψ

to ensure that these replacements are consistent in both frames φ and ψ.

Example 11. Continuing example 10, we have Nf (f(x1, f(x1, x1)) =
f(f(x1, x1), x1), Nf(f(x2, x1)) = f(x1, x2) and Nf (f(π1(x3), π2(x3))) = f(x1, x2).

4.5 Main Results of This Section

From proposition 1, lemma 2 and lemma 5, we have

Corollary 2. Consider the locality function Lrf and any equational theory Em ∈
OutTh. Then, for all plain processes P,Q, we have P ∼ Q =⇒ P ,Lrf

Q.

From corollary 1 (applied to Lrenc and Lrf) and lemmas 6, 3 and 2, we have:

Corollary 3. Consider the locality function Lrf and any equational theory E ∈
InpTh. Then, for all plain processes P,Q, we have P ,Lrf

Q =⇒ P ∼ Q.

To bridge the gap between P ∼Em Q and P ∼E Q it is sufficient now to show
that P ,Lrf ,Em Q =⇒ P ,Lrf ,E Q. This is the subject of the next section.

5 Reduction of Equational Theories

In this section, we use R for a rewrite system corresponding to a theory in InpTh,
and Rm for a corresponding rewrite system of a theory in OutTh. Lemma 7
simplifies reasoning modulo AC, by showing that ACf does not interfere with
rewriting. The proof relies on assumption (ae1), in particular on the fact that f
does not occur on the left-hand side of rewrite rules:

Lemma 7. For any equational theory E ∈ InpTh and for all terms u, v, we have
u→∗

AC v if and only if u→∗ v′, for some term v′ such that v′ =AC v.

Lemma 8 simplifies reasoning modulo re-encryption, by showing that nonces
from the protocol always stay secret:

Lemma 8. For all process P that satisfies (ap1)-(ap4) and all equational theory
E that satisfies (ae1)-(ae3), we have ran(P ) ⊆ S(P, E).
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The proof relies on assumptions (ap2) and (ap3), to ensure that elements of
ran(P ) are handled in a restricted way. Then, assumption (ae3) and the defini-
tions of stp,W(E) ensure that this indeed guarantees secrecy.

We will show that Lrf -local traces have a bounded re-encryption depth. To
define it, we must identify the chain of re-encryptions that have been applied to
obtain a given ciphertext. This chain will be the limit of recursively identifying
re-encryption witnesses :

Definition 11 (Re-encryption witness). Assume u →∗
R v. Then, for all

term t ∈ st(v) with top(t↓) ∈ {enc, renc}, a re-encryption witness for t in u is a
term rwu(t) ∈ st(u), such that rwu(t)→∗

R t↓ and top(rwu(t)) ∈ {enc, renc}.

For intuition, note that u = C′[rwu(t)]→∗
R C[t] = v, for some contexts C and C′.

Example 12. Let u = π1(〈renc(π1(〈enc(a, b, r1), c〉), r2), c〉). We have u → v1 →∗

v2 where v1 = π1(〈renc(enc(a, b, r1), r2), c〉) and v2 = enc(a, b, f(r1, r2)). Then, for
t = enc(a, b, r1) ∈ st(v1), we have rwu(t) = t. For t = enc(a, b, f(r1, r2)) ∈ st(v2),
we have rwv1(t) = renc(enc(a, b, r1), r2) and rwu(t) = renc(π1(〈enc(a, b, r1), c〉), r2).

Lemma 9. Assume u →∗
R v. Then, for all term t ∈ st(v) with top(t↓) ∈

{enc, renc}, there always exists a re-encryption witness rwu(t).

In particular, the previous lemma shows that for all term t with top(t↓) ∈
{enc, renc} there exists a re-encryption witness of t↓ in t, that is rwt(t↓).

Definition 12 (Re-encryption depth). For all term t, we define its re-
encryption depth rd(t) as follows:

– rd(t) = 0, if top(t↓R) /∈ {enc, renc}
– rd(t) = 1, if top(t↓R) = enc and top(rwt(t↓)) = enc
– rd(t) = rd(t′) + 1, if top(t↓R) ∈ {enc, renc} and rwt(t↓) = renc(t′, t′′)

Example 13. We have rd(renc(π1(〈renc(enc(a, b, r1), r2), renc(a, r0)〉, r3)) = 3.
Continuing example 12, we have rd(u) = 2.

Next we show that for all term u with a re-encryption depth bounded by m,
its normal form modulo Rm is the normal form modulo Rm of its re-encryption
witness modulo R:

Lemma 10. Let u be a term such that, for all t ∈ st(u), rd(t) ≤ m+ 1. Then,
for all term v such that u →∗

R v following a bottom-up rewriting sequence, we
have u→∗

Rm
vρ where

ρ = {t → rwu(t)↓Rm | t ∈ st(v) & top(t) ∈ {enc, renc} & t = t↓R}

Example 14. Consider the terms u = renc(π1〈enc(a, pub(k), r1), a〉, r2) and u1 =
dec(u, k). Then, rwu(u↓R) = u, and we obviously have u↓Rm = (u↓R)ρ =
rwu(u↓R)↓Rm = renc(enc(a, pub(k), r1), r2). On the other hand, we have u1 →Rm

dec(u↓Rm , k)→Rm a = u1↓R = u1↓Rρ, where we have used the rule
dec(renc(enc(x, pub(y), z0), z1), y)→ x for the last rewriting step.
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The following lemma bridges the gap backwards, from →∗
Rm

to →∗
R, and is an

easy consequence of assumption (ae3):

Lemma 11. For all terms u, v such that u→∗
Rm

v, we have u→∗
R v.

Relying on (ap2)-(ap4) and lemma 8, we can show that for all trace P
w−→ Q and

all nonce t ∈ ran(P ), there exists a unique term ciph(t) such that t = ran(ciph(t))
and ciph(t) = u[fr(Q)], for some term u ∈ st(P ) ∪ Lrf(fr(Q)).

Lemma 12. Let P
w−→RQ be a Lrf -local trace and φ = fr(Q). Let T be a term in

st(P ) ∪ Lrf(fr(Q)). Then, for all t ∈ st(T [φ]), we have:

(a) rd(t) ≤ 2 ∗ |ranr(P )|+ 2
(b) rd(t) > 1 =⇒ Factf (ran(t↓)) ∩ ran(P ) �= ∅
(c) rwt(t↓) = renc(u, v) =⇒

– either v ∈ ran(P ) and renc(u, v) = ciph(v)
– or else Factf (v↓) ∩ ran(P ) = ∅ and

• either top(u↓) /∈ {enc, renc}
• or else ∃t′ ∈ ran(P ). rwu(u↓) = ciph(t′)

The point (a) is obviously useful because it bounds the re-encryption depth
of all term t that occurs in Lrf -local traces. It is proved by considering any
chain of re-encryption witnesses starting from rwt(t↓) and showing that each
re-encryption performed by the environment (i.e. in recipes) must be followed
by a re-encryption performed in P . Because ciph(t) is unique for all t ∈ ranr(P ),
we can deduce from assumption (ap4) that the total number of re-encryptions
performed by P for every single ciphertext is bounded by |ranr(P )|, thus we
deduce a bound of 2 ∗ |ranr(P )| + 1 for the length of any re-encryption chain.
The points (b) and (c) will be useful to show that equalities of terms with pos-
itive re-encryption depth transfer to equalities of their respective re-encryption
witnesses. In conjunction with lemma 10, this will allow us to transfer equalities
modulo E to equalities modulo Em.

Finally, we prove a lemma showing that equivalence classes of E and Em are
the same in local traces:

Lemma 13. Let E ∈ InpTh and P
w−→EQ be a LE

rf -local trace. Let φ = fr(Q),
m = 2 ∗ |ranr(P )|+1 and Em ∈ OutTh be the reduced theory that corresponds to
E and m. Then,

A. for all terms u1, u2 ∈ st(P ) ∪ Lrf(fr(Q)), we have u1[φ] =E u2[φ] =⇒
u1[φ] =Em u2[φ]

B. for all terms u1, u2, we have u1[φ] =Em u2[φ] =⇒ u1[φ] =E u2[φ]

To prove A, we first eliminate the AC equations, relying on lemma 7, the point
(c) of lemma 12, lemma 8 and the definition of Lf . This gives us u1[φ] =E
u2[φ] =⇒ u1[φ]↓R = u2[φ]↓R. To complete the reduction, we first use the
point (a) of lemma 12 and lemma 10 to show that u1[φ]↓Rm = u1[φ]↓Rρ1 and
u2[φ]↓Rm = u2[φ]↓Rρ2, for some replacements ρ1, ρ2. Then, we use the points
(b),(c) of lemma 12 to show that we must have ρ1 = ρ2. Therefore, we have
u1[φ]↓R = u2[φ]↓R =⇒ u1[φ]↓Rm = u2[φ]↓Rm . As a consequence of lemma 13,
we have:
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Proposition 3. Consider given the locality function Lrf and E ∈ InpTh. Then,
for all plain processes P,Q, we have P ,Em Q ⇔ P ,E Q, where m = 2 ∗
max(|ranr(P )|, |ranr(Q)|) + 1.

We conclude the proof of theorem 1 as a consequence of corollary 2, proposition
3 and corollary 3.

Application to vote privacy in Prêt à Voter. We have EPaV = (RPaV,ACf ), with
RPaV = RDY ∪Rrenc ∪RdecP ∪RmixP ∪Rvote. Each of these five rewrite systems
is AC-convergent, and so is the system RPaV �RmixP. However, RPaV is not AC-
confluent (and therefore not AC-convergent) due to critical pairs between rules
in Rrenc and rules in RmixP. The system RPaV can be made AC-convergent by
completion, but this introduces other problems, notably violation of conditions
(ae1)-(ae3) and the addition of a significant number of new rules, that may
pose problems for ProVerif. That is why our current analisys does not cover the
mixnet proofs in RmixP - we leave it as a subject for future work.

Note that |ranr(PPaV{v1 → a}{v2 → b})| = |ranr(PPaV{v1 → b}{v2 → a})| =
2, corresponding to the re-encryption of ballots from idA and idB, and we deduce
a bound m = 5 in the application of Theorem 1. Therefore, from Theorem 1 and
the result returned by the ProVerif code available online, we conclude

Corollary 4. Prêt à Voter (without mixnet proofs) satisfies vote privacy for two
eligible voters and two candidates.

6 Conclusion and Future Work

Note that proposition 3 shows that abstracting E with Em is not only sound,
but also complete in local traces. This means that, to derive the completeness
of our reduction for the full set of traces, we only have to extend lemma 5 to
theories in InpTh and lemma 3 to theories in OutTh. In conjunction with lemma
1 and [5,15,10], this would lead to a first decision procedure for trace equivalence
outside the class of subterm-convergent systems.

To be really faithul to algebraic properties of ElGamal re-encryption, ACf

should probably be extended to AGf , unless e.g. it is computationally sound to
consider only ACf [18].

It would be nice to see how some of our restrictions can be lifted, in particular
the quite strong restrictions on the occurence of the AC symbol in the proto-
col and in the theory. The restriction not to have re-encryptions in replicated
processes, (ap4), looks natural for the reduction that we have in mind, but is it
really necessary in order to be able to handle re-encryption automatically?

Observational equivalence is stronger than trace equivalence, but it is unclear
whether it is more appropriate for definitions of security. In any case, our re-
duction could also be used for verification of observational equivalence, and we
would have to consider a notion of local trees instead of local traces for the
correctness proof.
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This paper shows that there exists an interesting relation between restrictions
of the set of traces and restrictions of the equational theory. We have exhibited
this relation only for two particular algebraic properties, and it would be inter-
esting to see how it can be formulated in general.
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27. Mödersheim, S.: Diffie-Hellman without difficulty. In: FAST (2011)
28. Ryan, P.Y.A., Schneider, S.A.: Prêt à Voter with Re-encryption Mixes. In: Goll-
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Abstract. We consider the question of the adequacy of symbolic models ver-
sus computational models for the verification of security protocols. We neither
try to include properties in the symbolic model that reflect the properties of the
computational primitives nor add computational requirements that enforce the
soundness of the symbolic model. We propose in this paper a different approach:
everything is possible in the symbolic model, unless it contradicts a computa-
tional assumption. In this way, we obtain unconditional soundness almost by con-
struction. And we do not need to assume the absence of dynamic corruption or the
absence of key-cycles, which are examples of hypotheses that are always used in
related works. We set the basic framework, for arbitrary cryptographic primitives
and arbitrary protocols, however for trace security properties only.

1 Introduction

The automatic analysis of security protocols has been quite successful since 1990, yield-
ing several tools [10,17,23]. However, when the outcome of one of these provers is “the
protocol is secure”, it must be understood as “secure in our model”. Nothing guaran-
tees that the necessary abstractions are relevant to actual implementations. For instance,
consider the Needham-Schroder-Lowe protocol [20]. It has been proved secure by all
the above-mentioned provers. However, there are several attacks, for instance when the
encryption scheme does not guarantee the ciphertext integrity [26] or when the pair-
ing is associative [21] or when some random number could be confused with some
pairings [8].

For this reason, it is important to investigate what exactly the assumptions are, on
the cryptographic primitives’ implementations, that guarantee the faithfulness of the
abstraction. (It is called soundness in the literature).

There are a lot of works providing some soundness results, typically the works ini-
tiated by Backes et al [5,3,6] and Abadi et al [1,15,13]. They essentially prove that a
given symbolic model is fully abstract with respect to a computational one, assuming
some properties of the security primitives. This guarantees that the security proofs that
have been completed in the abstract model are also valid in a computational model.
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However, these works require a very large set of assumptions, that are not always em-
phasized. For instance in [7] the complete list of assumptions for public-keys is listed;
it is a long list of strong hypotheses, that are not fullfilled by most actual protocols.
[13] make even less realistic assumptions, in order to get a stronger soundness result
(which includes more security properties). All these results typically assume that no
key cycles can ever be created, that bitstrings can be parsed in deterministic polynomial
time into terms, that there is no dynamic corruption, that keys are certified, etc. These
assumptions, as well as reasons why they are not realistic enough is discussed in [14].
Furthermore, each primitive requires a new soundness proof and each combination of
primitives also requires a new soundness proof, unless much stronger properties are
assumed [12]. Currently, it seems more realistic to use CRYPTOVERIF [11], complet-
ing the proofs directly in the computational model, than using a soundness result [2].
Is it really impossible to avoid manipulating computation times, probabilities, bitstring
lengths... ?

In this paper, we advocate a new way of performing proofs in a symbolic, abstract,
model, while keeping strong, computational guarantees establishing a general sound-
ness result, but without establishing many specific soundness results for specific prop-
erties of primitives. Such properties can later be proven and added.

The idea is to design a symbolic setting, in which any adversarial action is possi-
ble, unless it contradicts some axiom expressing a property that must be satisfied under
standard computational assumptions. In other words, computational properties, such as
IND-CCA, can be (symbolically) axiomatized and added to the system in order to limit
the possible adversarial moves. We do not require the axiomatization to be complete.
The idea is to only list properties that we know for certain about the implementation,
and allow any symbolic move consistent with those properties. In this way, either we
find an attack, in which case there is at least one possible set of primitives satisfying the
assumed properties and for which the security goal is violated, or the axioms were suffi-
cient to ensure the security of the protocol, in which case any implementation fulfilling
these axioms will ensure the security.

This approach has several advantages:

1. Though the proofs are performed in a symbolic setting, they are computationally
valid.

2. Thanks to our result (Theorem 2), adding a new cryptographic primitive only re-
quires to design an axiomatization of this primitive and prove it sound due to the
cryptographic assumptions: the additional soundness proof is short and modular; it
focuses on designated properties instead of considering whole execution models.

3. We may be able prove the security of protocols with weaker assumptions on the
primitives. For instance, if we prove the security using only axioms that are sound
for IND-CPA encryption, then IND-CPA will be a sufficient hypothesis for security.

4. In each security proof, all assumptions are clearly and formally stated as axioms.
5. In case an attack is found, it may be sufficient to add an axiom (expressing stronger

hypotheses on the computational implementation of the primtives) ruling out the
attack, then try proving again.

6. We may consider any cryptographic primitive, including XOR for instance (for
which there are strong limitations of the computational soundness approach [4,25]).
Dynamic corruption, key cycles, etc. are not a priori discarded.
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Related works. The most closely related works are probably those that consider a proof
system that is sound w.r.t. the computational semantics, such as [16,8]. Though these
works are related, as far as the computational semantics of the logic is concerned, the
overal strategy is completely different. We do not try to design a proof system working
directly in the computational model: we only use first-order logic and standard inference
rules in the symbolic model. Our approach is more inspired by circumscription [19],
however circumscribing what is not possible. In other words, we do not design inference
rules, we modify the transition system instead. This is similar in spirit to [24], in which
any property of the hash function, that is not explicitly forbidden by some axiom, is
considered as valid.

Contents of the paper. In this paper, we only state the framework of the method, prove
a general soundness theorem in the case of trace properties, and prove soundness of an
example axiom expressing secrecy of an IND-CCA encryption.

More precisely, protocols are identified to a formal transition system in the same
spirit as CoSP [7]: we do not commit to a very particular way of specifying such a tran-
sition system. The possible transitions are, roughly, defined by a formula, that guards
the transition by constraining the input message, a state move and a message that is sent
out when the guard is satisfied. Such transitions can be interpreted in different models:
symbolic models, in which the messages are terms and the guards are interpreted in
a Herbrand model, or computational models, in which messages are bitstrings. In the
symbolic models, we constrain the input messages to be deducible from the previous
outputs and the public information. Such a deducibility condition is formalised using a
deducibility predicate, whose interpretation is not fixed. This is a main difference with
classical protocol verification: the attacker capabilities are not fixed, but rather they
parametrize the model. Actually, we consider any attacker capability, that does not con-
tradict the (computationally sound) axioms. On the computational side, the attacker is
any probabilistic polynomial time Turing machine: the deduction capabilities are given
by any such machine. These models are explained in the sections 2.2, 2.3, 2.5.

Next, we need to speficy the axioms and the (trace) security properties. We con-
sider any first-order formula, that is built on the predicate symbols, that are used in the
guards, as well as the deducibility predicate symbol. We need such general formulas,
since we need to constrain the symbolic models of the deducibility relations, i.e., the
symbolic attacker capabilities, according to the computational assumptions on the prim-
itives. Typically, we may consider an axiom of the form: “if a plaintext can be deduced
(resp. computed) from a ciphertext and a set of messages φ, then the decryption key has
been sent out or else the plaintext can be deduced (resp. computed) from φ”, that reflects
some property of the encryption scheme. The meanings of these axioms/security prop-
erties become clear when we define a computational interpretation of such formulas,
which we provide in the section 2.6.

The Section 3 is devoted to the main result, which states a general trace-mapping
soundness property: independently of the primitives and their specific characteristics, if
there is a computational attack, then there is a symbolic attack. Once more, the symbolic
attacker has any capability, that is consistent with the axioms. So, this result, though
subtle and not at all trivial to prove, is not surprising. The whole system was actually
carefully designed with this aim in mind.
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We also show in the Section 4 some axiom examples, that are proven sound under
some standard cryptographic properties. We do not aim however at covering a large set
of axioms. Further axioms will be added to a library each time they are required for the
proof of a case study.

This paper aims at opening a new research direction: it seems very appealing and
promising. We need however to investigate several case studies. As a “proof of con-
cept”, we have designed a complete set of axioms and proved the NSL protocol in our
framework (available from the first-author’s web page or upon request). This sufficient
set of axioms shows also that some hypotheses of earlier works are not necessary (at
least for weak secrecy and authentication).

2 Symbolic and Computational Models

2.1 Terms and Frames

Terms are built out of a set of function symbols F that contains an unbounded set of
names N and an unbounded set of handles H. Let X be an unbounded set of vari-
ables. Names and handles are zero arity function symbols. We will use names to denote
items honestly generated by agents, while handles will denote inputs of the adversary.
A ground term is a term without variables. Frames are sequences of terms together with
name binders: a frame φ can be written (νn).p1 → t1, . . . , pn → tn where p1, . . . pn
are place holders that do not occur in t1, . . . , tn and n is a sequence of names. fn(φ),
the free names of φ are names occurring in some ti and not in n. The variables of φ are
the variables of t1, . . . , tn.

Example 1. We typically use a randomized public-key encryption symbol: {m}reKQ

is intended to represent the encryption of the plaintext m with the public-key of the
principal Q, with a random seed r. More generally, we consider the example when
there is a set of constructors Fc = {{ } , 〈 , 〉, e , d ,K }, and a set of destructors
Fd = {dec( , ), π1 ( ) , π2 ( )}, and F = Fc ∪ Fd ∪ N ∪H.

2.2 Formulas

Let P be a set of predicate symbols over tems. P is assumed to contain the equality
= (which is interpreted as a congruence), used as t1 = t2, and a predicate �, which
takes as arguments an n-tuple of terms on its left and a term on its right (and which is
intended to model the computation capabilities), that is, written as t1, ..., tn � t. (More
precisely, it is an infinite sequence of predicates, with arguments n+ 1.)

We are not interested in any specific symbolic interpretation of these predicate sym-
bols. We wish to consider any possible symbolic interpretation, that satisfies some re-
quirements; the aim is to allow anything that is not forbidden by explicit assumptions.

Example 2. ∀x, ∀y.({x}seKQ
= {y}s′eKQ

→ x = y) is such a formula, the validity of
which follows from the uniqueness of decryption.
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Let M denote then any first-order structure that interprets the function and predicate
symbols of the logic. We only assume that = is interpreted in M as the equality in the
underlying domain DM. The relation in M (that is, a relation for elements in DM),
interpreting the deducibility predicate � is denoted as �M.

Given an assigment σ of elements in DM to the free variables of term t, we write
[[t]]σM for the interpretation of t in M ([[ ]]σM is the unique extension of σ into a homo-
morphism of F -algebras).

For any first order structure M over the functions F and predicates P , given a first
order formula θ and an assignment σ of elements in the domain of M to the free vari-
ables of θ, the satisfaction relation M, σ |= θ is defined as usual in first-order logic.

Example 3. Consider the public-key encryption setting of example 1. We may use
unary predicate symbols to restrict sets of data. Assume for instance that W is sup-
posed to represent the set of agent names, and M is supposed to represent well formed
terms (that are equal to a term built with symbols in Fc).

W (π1(dec(h, db))) ∧M(π2(dec(h, db)))

is a formula, that expresses that the handle h can be decrypted and projected into two
components, one of which is an agent name.

2.3 Protocols

We do not stick to any particular syntax for the definition of protocols. We only assume
that it defines a transition system as follows. Q is a set of control states, together with a
finite set of free variables.

Definition 1. A protocol is a recursive (actually PTIME) set of tuples

(q(n), q′(n · n′), 〈x1, . . . , xk〉 , x, ψ, s)

where q, q′ ∈ Q, x1, . . . , xk, x are variables n, n′ are finite sequences of names, ψ is a
first order formula over the set of predicate symbols P and function symbols F and the
names n ∪ n′, whose free variables are in {x1, . . . , xn, x} and s is a term whose free
variables are in {x1, . . . , xn, x}.

For example, ψ can be a formula such as dec(x, k) = n, that checks that the current
input is a ciphertext whose plaintext is a previously generated nonce n: ψ guards the
transition. s is the output message, when the transition succeeds. The intended meaning
of these rules is that a transition from the sate q to the state q′ is possible, given the
previous inputs x1, . . . , xn and the new input x, if the formula ψ is satisfied. In such a
case, the names n′ are generated and the message s is sent.

Such a formalism is quite general; we only assume here (for simplicity) a single, pub-
lic, communication channel. Typically, applied π-calculus processes can be translated
into such transition rules, that are similar to the CoSP framework of [7].
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Example 4. Consider a single session of the NSL protocol. The states consist of pairs of
the local states of each of the processes for A and B. Instead of listing the transitions as
tuples, we write ψ : q(n)

s−→ q′(n) and they are diplayed in the figure 1. In this version
of the protocol, the responder is willing to communicate with anybody, hence only
checks W (π1(dec(y, dKB))); the intended meaning of W is a set of agent names. If

� : qA0 (n, r, r′′)
{〈A,n〉}reKB−−−−−−−−−−→ qA1 (n, r, r′′)

π1(dec(x, dKA)) = B

∧ π1(π2(dec(x, dKA))) = n

⎫
⎬

⎭
: qA1 (n, r, r′′)

{π2(π2(dec(x,dKA)))}r′′eKB−−−−−−−−−−−−−−−−−−−−→ qA2 (n, r, r′′)

W (π1(dec(y, dKB)))

∧ M(π2(dec(y, dKB)))

⎫
⎬

⎭
: qB0 (n′, r′)

{〈B,〈π2(dec(y,dKB )),n′〉〉}r′eKπ1(dec(y,dKB ))
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ qB1 (n′, r′)

dec(z, dKB)) = n′ : qB1 (n′, r′) −→ qB2 (n′, r′)

Fig. 1. The 3 transitions of 1 session of NSL

we wish to describe an unbounded number of sessions, we need to record in the control
state the states of every (opened) A-session and (opened) B-session. This yields an
infinite, yet recursive, set of transition rules.

Definition 2. A symbolic state of the network consists of:

– a control state q ∈ Q together with a sequence of names (that have been generated
so far) n1, . . . , nk

– a sequence constants called handles h1, . . . , hn (recording the attacker’s inputs)
– a ground frame φ (the agents outputs)
– a set of formulas Θ (the conditions that have to be satisfied in order to reach the

state).

A symbolic transition sequence of a protocol Π is a sequence

(q0(n0), ∅, φ0, ∅)→ . . .→ (qm(nm), 〈h1, . . . , hm〉 , φm, Θm)

if, for every m− 1 ≥ i ≥ 0, there is a transition rule

(qi(αi), qi+1(αi+1), 〈x1, . . . , xi〉 , x, ψ, s)

such that n = αi+1 \αi, φi+1 = (νn).(φi ·p → sρiσi+1), ni+1 = ni�n, Θi+1 = Θi∪
{φi � hi+1, ψρiσi+1} where σi = {x1 → h1, . . . , xi → hi} and ρi is a renaming of
the sequence αi into the sequence ni. We assume a renaming that ensures the freshness
of the names n: n ∩ ni = ∅.
Definition 3. Given an interpretationM, a transition sequence of Π

(q0(n0), ∅, φ0, ∅)→ . . .→ (qm(nm), 〈h1, . . . , hm〉 , φm, Θm)

is valid w.r.t.M if, for every m− 1 ≥ i ≥ 0,

M |= Θi+1
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Example 5. We show the beginning of a possible branch in the symbolic execution of
NSL.

(q0, ∅, φ0, ∅) (q1, H1, φ1, Θ1) (q2, H2, φ2, Θ2) (q3, H3, φ3, Θ3) (q4, H4, φ4, Θ4)
• • • • •� � � �

Where n = n, r, r′′, n′, r′, q0 = (qA0 , q
B
0 )(n), and q1 = (qA1 , q

B
0 )(n), q2 = (qA1 , q

B
1 )(n),

and q3 = (qA2 , q
B
1 )(n) and q4 = (qA2 , q

B
2 )(n). In other words, we interleave the actions

of A and B, as in an expected execution and assume that the two processes were first
activated (if not, we could introduce two transitions activating the processes).

– φ0 = νKAKBAB(p0 → (A,B, eKA, eKB)),
Θ0 = ∅

– H1 = 〈h1〉,
φ1 extends φ0 with p1 → {〈A, n〉}reKB

,
Θ1 = {φ0 � h1}

– H2 = 〈h1, h2〉,
φ2 extends φ1 with p2 → {〈B, 〈π2 (dec(h2, dKB)) , n

′〉〉}r′eKπ1(dec(h2,dKB))
,

Θ2 = Θ1 ∪ {φ1 � h2,M(π2 (dec(h2, dKB))),W (π1 (dec(h2, dKB)))}
– H3 = 〈h1, h2, h3〉,

φ3 extends φ2 with p3 → {π2 (π2 (dec(h3, dKA)))}r
′′

eKB
,

Θ3 = Θ2 ∪ {φ2 � h3, π1 (π2 (dec(h3, dKA))) = n, π1 (dec(h3, dKA)) = B},
– H4 = 〈h1, h2, h3, h4〉, φ4 = φ3,

Θ4 = Θ3 ∪ {φ3 � h4, dec(h4, dKB)) = n′},

LetM be a model in which π1 (dec(h2, dKB)) = A and

h2 =M {〈A, n〉}reKB
, h3 =M {〈B, 〈n, n′〉〉}r′eKA

, h4 =M {n′}r′′eKB
,

and �M is simply the classical Dolev-Yao deduction relation. Then the execution se-
quence is valid w.r.t. M, and this corresponds to the correct execution of the NSL
protocol between A and B.

There are however other models in which this transition sequence is valid. For in-
stance let M′ be such that h2 =M′ n and φ1 �M′ n and n =M′ {〈A, n〉}reKB

, (and
h3, h4 as above). We get again a valid transition sequence w.r.t. M′. Though, in what
follows, we will discard such sequences, thanks to some axioms.

Example 6. Consider again the transitions of the example 5. Now consider a modelM
in which n0, {B, n, n′}reKA

�M {B, n0, n
′}reKA

for an honestly generated nonce n0

that can be chosen by the attacker: the transition sequence of the previous example is
also valid w.r.t. this model. This will yield an attack, using a malleability property of the
encryption scheme, as in [26]. Discarding such attacks requires some properties of the
encryption scheme (for instance IND-CCA). It can be ruled out by a non-malleability
axiom (the discussion of which is out of the scope of this paper, but included in the NSL
proof referred to in the introduction).

From these examples, we see that unexpected attacks can be found when some assump-
tion is not explicitly stated as an axiom to limit adversarial capabilities.
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2.4 Axioms and Security Properties

For simplicity, we only consider reachability security properties. The extension to any
trace property should not be very difficult: it suffices to record some values along the
trace. Security properties (and, later, axioms) are first-order formulas that may contain
state-dependent predicates and/or predicates that get fixed interpretation. As in the pre-
vious sections,M is an arbitrary first-order structure and σ is an assignment of the free
variables to elements of DM.

First, we add atomic formulas φ̂, s1, . . . , sn � t, where φ̂ is just part of the syntax of
this predicate (not an input of the predicate), which aims at ranging over frames (when
interpretating the predicate) and is evaluated in every state. For t1, ..., tm closed terms,
M, σ, 〈t1, . . . , tm〉 , n |= φ̂, s1, . . . , sn � t iff M, σ |= s1, . . . , sn, t1, . . . , tm � t.

In addition, we consider the following atomic formulas, whose evaluation only de-
pends on the state, independently of the first-order structureM.

– RandGen(s) (s is a ground term) expresses that s has been randomly generated:
M, σ, 〈t1, . . . , tm〉 , (n1, . . . , nk) |= RandGen(s) iff s ∈ {n1, . . . , nk}

– t / φ̂ (t is a ground term) expresses that t is a subterm of the messages sent so far:
M, σ, 〈t1, . . . , tm〉 , n |= t / φ̂ iff t is a subterm of some ti.

– We also may use the derived predicate (as an abbreviation):

fresh(x, φ̂) = RandGen(x) ∧ x �/ φ̂

/ and RandGen() are interpreted predicates since their interpretation does not de-
pend on M. Bound variables that appear within an interpreted predicate are called
constrained variables. As in other works on constrained logics (see for instance [18]),
such variables are used to schematize several first-order formulas and are replaced with
ground terms built onF . Therefore, the interpretation of axioms and security properties
that may involve interpreted predicates, is modified, only in case of a quantification on
a constrained variable x, in which case x is replaced by any (or some, for existential
quantification) ground term:

If x is a constrained variable (that is, θ has an interpreted predicate and x appears in
it), then,

M, σ, 〈t1, . . . , tn〉 , (n1, . . . , nk) |= ∀x.θ

iff, for every ground term t,

M, σ, 〈t1, . . . , tn〉 , (n1, . . . , nk) |= θ{x → t}

We have a similar definition for existential quantifications of such variables. All other
cases follow the classical definition of the first-order satisfaction relation.1 This yields
a satisfaction relation M, σ, 〈t1, . . . , tm〉 , n |= θ, and thus of M, σ, φ, n |= θ with φ

1 It would in fact be possible to avoid the notion of constrained variables if we defined DM to
be a free F-algebra, and = a congruence relation on it (as opposed to the equality of DM), and
later parts of the paper could be adjusted accordingly. However, since constrained variables are
more convenient for automatic verification, the authors decided to present the theory utilizing
them.



Towards Unconditional Soundness: Computationally Complete Symbolic Attacker 197

having the terms 〈t1, . . . , tm〉. When θ has no free variable, we may omit σ. Similarly,
if θ does not contain atomic formulas that depend on φ (resp. n), we may omit these
components: we get back to the satisfaction relation of section 2.2.

We define now the satisfaction relation in a state:

M, (q, 〈h1, . . . , hm〉 , n, φm, Θ) |= θ iff M, φm, n |= θ.

Definition 4. A symbolic interpretation and a protocol satisfy the security property θ,
written as

M, Π |= θ,

if for any sequence of transitions that is executable in M and that yields the state
(qm, 〈h1, . . . , hm〉 , nm, φm, Θm),

M, (qm, 〈h1, . . . , hm〉 , nm, φm, Θm) |= θ.

Example 7. Concerning security properties, consider the NSL protocol. We may state
the confidentiality of n:

¬φ̂ � n

Consider now an authenticity property. We modify slightly the states of the transition
system, including a commitment on the nonce on which the parties are supposed to
agree. We let ci be a special function symbol, that takes as arguments A,B, n1, n2: who
commits, for who and the corresponding nonces. ci(A,B, n1, π2(π2(dec(x, dKB))))
is sent at the end by the initiator. For the responder, there is a similar commitment:
at the end of the protocol, B emits cr(π1(dec(x, dKB)), B, π2(dec(y, dKB), n2)). We
state as axioms that ci, cr cannot help the attacker and cannot be forged. For instance:
∀x, y, z, w.φ̂, ci(x, y, z, w) �� z, w and ∀x, y, z, w.φ̂ � ci(x, y, z, w)→ ci(x, y, z, w) /
φ̂. The agreement property (on n) may then be stated (for instance) as:

∀x, y, z, w.cr(x, y, z, w)) � φ̂ → ∃x′z′w′(ci(x
′, y, z′, w′) � φ̂ ∧ x = x′ ∧ z = z′ ∧w = w′)

That is: x’s view of z, w is the same as y’s view of z, w.

With such a definition, for any security property and any protocol there will (almost)
always be an interpretation for which the property is violated. Hence we restrict the
class of symbolic interpretations, ruling out the interpretation whose all computational
counterparts would violate some security assumption on the primitives. More precisely,
we consider a set of axioms A, which is a set of first-order formulas in the same for-
mat as the security properties. We restrict our attention to symbolic interpretations that
satisfy A.

Example 8. – For instance we could include in A a formula

fresh(k, φ̂)→ ¬(φ̂ � k)

that states that an attacker cannot guess (except with negligible probability) a ran-
domly generated name. Adding such an axiom in A rules out symbolic interpreta-
tions in which this deduction is possible.
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– If the computational implementation is such (e.g. they are tagged), we may include,

∀x, y, z, A, r.〈x, y〉 �= {z}rKA

stating that pairs and ciphertexts cannot be confused.

We will see more examples in Section 4.
We may assume w.l.o.g that the axioms and security properties are just (universally

quantified) clauses.

2.5 Computational Interpretation

The computational interpretations are just a special case of interpretation of our formu-
las, when they do not depend on the state of the transition system. We define them again
here, since we wish to introduce some additional notions. Also, the computational exe-
cutions of the protocols rely on a concrete adversary, given by a Turing machine, while
in general, the interpretation of functions and predicates need not to be computable.

We consider a familly computational algebras, parametrized by a security parameter
η, in which each function symbol is interpreted as a polynomially computable function
on bitstrings (that may return an error message). Given then a sample τ of names (for
every name n, its interpretation is a bitstring τ(n)), every ground term t is interpreted
as a bitstring [[t]]τ in such a way that [[ ]]τ is a homomorphism of F -algebras. More
generally, if σ is an assignment of the variables of t to bitstrings [[t]]στ is the (unique)
extension of τ (on names) and σ (on variables) as a homomorphism of F -algebras.

Similarly, all predicate symbols are interpreted as polynomially computable func-
tions on bitstrings. The equality predicate is interpreted as a strict equality on bitsrings:
τ |=c t1 = t2 if [[t1]]τ is not an error, [[t2]]τ is not an error and [[t1]]τ = [[t2]]τ .

This interpretation is extended to arbitrary closed formulas whose atomic formulas
do not depend on the state. This yields the satisfaction relation τ |=c θ. We will define
later the computational interpretation of arbitrary formulas in a given state.

We now define computational executions.

Definition 5. Given a set of transition rules, a computational state consists of

– A symbolic state s (that is itself a tuple q(n, h, φ,Θ))
– a sequence of bitstrings 〈b1, . . . , bm〉 (the attacker’s outputs)
– A sequence 〈b′1, . . . , b′n〉 of bitstrings (the agents outputs)
– The configuration γ of the attacker.

Definition 6. Given a PPT interactive Turing machineM and a sample τ , a sequence
of transitions

(s0, ∅, b′0, γ0)→ . . .→ (sm, 〈b1, . . . , bm〉 , 〈b′1, . . . , b′m〉 , γm)

is (computationally) valid w.r.t.M and τ if

– s0 → · · · → sm is a transition sequence of the protocol
– for every i = 0, ...m − 1, si = (qi(ni), hi, φi, Θi), φi+1 = (νn).φi · ui, [[ui]]τ =

b′i+1
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– for every i = 0, ...,m− 1, there is a configuration γ′
i of the machineM such that

γi �∗M γ′
i �∗M γi+1 and γ′

i is in a sending state, the sending tape containing bi+1,
γi+1 is in a receiving state, the receiving tape containing b′i+1

– for every i = 0, ...,m− 1, τ, {x1 → b1, . . . , x → bi+1} |=c Θi+1.

Intuitively, b′0 is the attacker’s initial knowledge and we simply replaced symbolic de-
ductions/symbolic models of the section 2.3 with computations/computational models.

2.6 Computational Validity of Security Properties and Axioms

We already considered the computational satisfaction of formulas, except for formulas
that depend on the states. Given a PT Turing machineA, we define then

A, τ |=c t1, . . . , tn � t iff A([[t1]]τ , . . . , [[tn]]τ ) = [[t]]τ

The difficulty now is that we do not want to define A, τ |=c φ̂ � t1 → φ̂ � t2 as
A, τ |= φ̂ � t2 or A, τ �|= φ̂ � t1. In order to understand this, consider for instance the
formula

θ : ∀t,K,R(φ̂, {t}ReK � t→ {t}ReK / φ̂ ∨ dK / φ̂ ∨ φ̂ � t)

We want (intuitively) IND-CCA encryption schemes to satisfy this formula. However,
consider an instance of this axiom in which φ̂ is the pair φ = νn1n2.〈n1, n2〉, and t is
n1. Now, letA be a machine which, on input [[〈n1, n2〉]]τ , [[{n1}reK ]]τ returns n1 and, on
input [[〈n1, n2〉]]τ only, returns [[n2]]τ . For every τ ,A, τ �|=c θ. Hence, whatever security
is provided by the encryption scheme, there is an attack on the property.

This paradox comes from the deterministic interpretation of the deducibility rela-
tion: while, symbolically, it is a relation, it must be a function in the computational
setting since we cannot consider non-deterministic machines. The intended interpreta-
tion therefore involves several machines: roughly, for any machine that can compute
[[t]]τ from [[φ]]τ , [[{t}reK ]]τ , either there is a machine that can compute [[t]]τ from [[φ]]τ or
else the actual frame contains either dK or {t}reK . These two machines need of course
to be independent of τ . This is the definition that we formalize now for arbitrary security
properties.

Let M be an interactive PPT Turing machine with a special challenge control state
qc. We may regard this machine as an attacker, who moves to the state qc when (s)he
thinks that (s)he is ready to break the security property.

In what follows, S is any (polynomial time) non-negligible set of interpretations of
names, and S� is the set of all name interpretations.M, Π |=c θ iff M, Π, S� |=c θ
and Π |=c θ if M, Π |=c θ for everyM with qc.

We introduce machines that compute witnesses for the unconstrainted quantified
variables.

– M, Π, S |=c ∃x.θ iff there is a PT machineAx such thatM, Π, S,Ax |=c θ
– M, Π, S,Ax1 , . . . ,Axn |=c ∀x.θ iff for any probabilistic polynomial time ma-

chine Ax,M, Π, S,Ax1 , . . . ,Axn ,Ax |=c θ
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If x is a constrained variable, the interpretation of ∀x.θ is analogous to the symbolic
case: M, Π, S,Ax1 , . . . ,Axn |=c ∀x.θ if and only if for every ground term t, the
satisfaction M, Π, S,Ax1 , . . . ,Axn |=c θ{x → t} holds (and similarly for existential
quantification). If σ is a sequence of machines, one for each free variable x of θ,

– M, Π, S, σ |=c θ1 ∧ θ2 iffM, Π, S, σ |=c θ1 andM, Π, S, σ |=c θ2.
– M, Π, S, σ |=c θ1 ∨ θ2 iff there are sets S1 ∪S2 = S such thatM, Π, S1, σ |=c θ1

andM, Π, S2, σ |=c θ2.
– M, Π, S, σ |=c θ1 → θ2 iff for any S′ ⊆ S non-negligible, M, Π, S′, σ |=c θ1

impliesM, Π, S′, σ |=c θ2
– M, Π, S, σ |=c ¬θ iff for any S′, ifM, Π, S′, σ |=c θ, then S ∩ S′ is negligible
– in the case of an atomic formula P (t1, . . . , tn) where P /∈ {�, /, RandGen()},
M, Π, S, σ |=c P (t1, . . . , tn) if there is an overwhelming subset S′ of S such that
the following holds. For any τ ∈ S′, consider the unique valid computation (if there
is one) of Π with respect toM, τ that yields a configuration ofM, which is in the
control state qc with a bitstring b on the output tape. Let q(n) be the control state
reached at this point and c be the restriction of τ to n. Let bx = Ax(b, c) for every
Ax ∈ σ, and α be the sequence of assignments x → bx. Then ([[t1]]

α
τ , . . . , [[tn]]

α
τ ) ∈

[[P ]].
– For the deducibility predicate, M, Π, S, σ |=c φ̂, t1, . . . , tn � t if for all non-

negligible S′ ⊆ S, there is a non-negligible S′′ ⊆ S′ such that there is a PT
Turing machine AD such that, for all τ ∈ S′′, the unique valid computation (if
there is one) of Π with respect to M, τ that yields a configuration of M, which
is in the control state qc with a bitstring b on the output tape, an actual frame φm

and such that, letting bx = Ax(b, c) where c = τ(n) for the names n in the cur-
rent state, for every Ax ∈ σ, and α be the sequence of assignments x → bx,
AD([[φm]]τ , [[t1]]

α
τ , . . . , [[tn]]

α
τ , b) = [[t]]ατ .

– M, Π, S, σ |=c t1, . . . , tn � t is defined exactly as above, however removing φ.
– If P is an interpreted predicate, M, Π, S, σ |= P (t1, . . . , tn) iff there is an over-

whelming subset S′ ⊆ S such that, for any τ ∈ S′, the unique valid computation
of Π with respect to M, τ that yields a computational state (q(n, h, φ,Θ), b, b′, γ)
in the control state qc such that P (t1, . . . , tn) is true in q(n, h, φ,Θ). (Remember
that the evaluation of such predicates do not depend on the model).

M, Π |=nnp θ (read “M, Π satisfies θ with non negligible probability”) if there is a
non-negligible set S and a PPT machine A such that A(n1, . . . , nk, b1, . . . , bk) returns
1 iff there is a τ ∈ S such that, for all i, τ(ni) = bi andM, Π, S |=c θ.

Lemma 1. IfM, Π, S, σ |=c θ and S′ ⊆ S, then we also haveM, Π, S′, σ |=c θ.

Proof. We proceed by induction on θ. SinceM, Π are fixed, we sometimes omit these
components.

– If θ is a atomic formula P (t1, . . . , tn) and P /∈ {�, fresh(),/}, then, by def-
inition, there is an overwhelming subset S1 ⊆ S such that, for any τ ∈ S1,
([[t1]]

α
τ , . . . , [[tn]]

α
τ ) ∈ [[P ]]. If S′ ⊆ S, we choose S′

1 = S′ ∩ S1. It is an over-
whelming subset of S′ and, for any τ ∈ S′

1, ([[t1]]ατ , . . . , [[tn]]
α
τ ) ∈ [[P ]].
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– If θ is a formula φ̂, t1, . . . , tn � t, then for any non negligible S1 ⊆ S, there is
a non-negligible S2 ⊆ S1 and there is a machine A, such that, for any τ ∈ S2,
A([[φ]]τ , [[t1]]ατ , . . . , [[tn]]ατ ) = [[t]]ατ . If S′ ⊆ S is non negligible, then any non-
negligible S′

1 ⊆ S′ is also a non-negligible S′
1 ⊆ S, hence the result.

– Other atomic formulas with = and / are rather trivial.
– If θ = ¬θ1, M, Π, S, σ |=c θ iff for any S1 ⊆ S such that M, Π, S1, σ |=c θ1,

S1 ∩ S is negligible. In that case, for any S′ ⊆ S, S′ ∩ S1 is also negligible, hence
the result (we do not use here the induction hypothesis).

– If θ = θ1∨θ2, S, σ |=c θ1∨θ2 implies S = S1∪S2 and S1, σ |=c θ1, S2, σ |=c θ2.
If S′ ⊆ S, then S′

1 = S1 ∩ S′ ⊆ S1 and S′
2 = S2 ∩ S′ ⊆ S2, hence, by induction

hypothesis, S′
1, σ |=c θ1 and S′

2, σ |=c θ2. It follows that (S′ =)S′
1∪S′

2 |=c θ1∨θ2
– If θ = θ1 ∧ θ2, we simply use the induction hypothesis for θ1 and θ2, with the same

S′ ⊆ S.
– If θ = ∃x.θ1, then we use the induction hypothesis with the same S, S′ (and a

different σ). Similarly for universal quantification.

3 Computational Soundness

We assume here that, in any formula, the negations appear only in front of an atomic
formula.

Theorem 1. Let Π be a protocol, s1 → . . . → sm be a symbolic transition sequence
of Π andM be a probabilistic polynomial time interactive Turing machine. If there is a
non-negligible set of coins S such that, for any τ ∈ S, there is a sequence of transitions
(s0, b0, b

′
0, γ0) → · · · → (sm, bm, b′m, γm) that is computationally valid w.r.t. M, τ

and γm is in the challenge state qc, then for any formula θ,M, Π, S |=c θ implies there
is a symbolic model S such that s0 → · · · → sm is a valid symbolic execution w.r.t. S
and S |= θ.

Proof. We assume in this proof that there are only two predicate symbols: = and �.
The extension to other predicate symbols is straightforward.

For any term t with free variables x1, . . . , xn and machines Ax1 , ...,Axn , and any
sample τ ∈ S, let [[t]]τ,σ be the computational interpetation of t, in which each vari-
able xi is interepreted according to σ(τ)(xi) = Axi(bτ , τ(n)) if bτ is the bitstring
on the output tape of γm, and n is the set of names in the state sm, for the execution
corresponding to τ .

Given a a decreasing chain of non-negligible sets of coins S ⊇ S1 ⊇ S2 ⊇ ..., we
define a first-order structureMS1⊇S2⊇... as follows. The domain ofMS1⊇S2⊇... is the
set of terms built on the function symbols, the names and the additional constants A
for any PT machine A. The interpretation of the predicate symbols is given, for any
assignment σ of the variables x1, . . . , xn to machinesAx1 , . . . ,Axn by:

– MS1⊇S2⊇..., σ |= t = u iff there is an i such that ∀τ ∈ Si, [[t]]τ,σ(τ) = [[u]]τ,σ(τ)
– MS1⊇S2⊇..., σ |= t1, ..., tn � t iff there is a PT algorithmA, an i such that ∀τ ∈ S′,
A([[t1]]τ,σ(τ), ..., [[tn]]τ,σ(τ)) = [[t]]τ,σ(τ).
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Let
MS =MS⊇S⊇...

Remark 1. Notice, that the definition is such that for S1 ⊇ S2 ⊇ ... and S′
1 ⊇ S′

2 ⊇ ...,
if for some m ∈ N, S′

i = Si for all i > m, then MS1⊇S2⊇..., σ |= θ if and only if
MS′

1⊇S′
2⊇..., σ |= θ. This is rather trivially true for θ atomic formula, and hence true

for any formula.

Let θ be a formula with free variables x1, . . . , xn such that only atomic formulas
are negated. We prove, by induction on θ that, if on a non-negligible set of coins S,
M, Π, S, σ |=c θ, then for any decreasing chain of non-negligible subsets S ⊇ S1 ⊇
S2 ⊇ ...., there is a decreasing chain of non-negligible subsets S′

1 ⊇ S′
2 ⊇ .... such

that S′
i ⊆ Si for all i = 1, 2, ..., and for any decreasing chain of non-negligible subsets

S′′
1 ⊇ S′′

2 ⊇ .... with S′′
i ⊆ S′

i for all i = 1, 2, ...,MS′′
1 ⊇S′′

2 ⊇...., σ |= θ.

– Suppose θ ≡ t = u. We know from Lemma 1 that M, Π, S, σ |=c θ implies
M, Π, S′, σ |=c θ for any subset S′ ⊆ S. Hence, given any decreasing chain of
non-negligible subsets S ⊇ S1 ⊇ S2 ⊇ ...., it suffices to choose S′

i = Si for every
i:

– If θ ≡ t �= u and S ⊇ S1 ⊇ S2 ⊇ .... is any decreasing sequence of non-negligible
sets, let S′

i = Si for every i. For any decreasing sequence of non-negligible sets
S′′
i ⊆ S′

i, for all i, since S′′
i , σ |=c t �= u by lemma 1, {τ ∈ S′′

i : [[t]]τ,σ = [[u]]τ,σ
is negligible. Hence there is at least one τ ∈ S′′

i such that [[t]]τ,σ �= [[u]]τ,σ . Hence
MS′′

1 ⊇S′′
2 ⊇...., σ �|= t = u.

– For θ ≡ t1, ..., tn � t, again given any decreasing chain of non-negligible subsets
S ⊇ S1 ⊇ S2 ⊇ ...., it suffices to choose S′

i = Si.
– If θ ≡ φ̂, u1, . . . , uk � t, we may replace φ̂ with the frame φm of the symbolic state

sm (this is because for any τ ∈ S, we reach the same symbolic state sm), hence we
are back to the previous case.

– If θ ≡ t1, ..., tn �� t, given any decreasing chain of non-negligible subsets S ⊇
S1 ⊇ S2 ⊇ ...., it suffices to choose S′

i = Si, as M, Π, S′, σ |=c t1, ..., tn � t is
not true on any non-negligible S′.

– If θ ≡ φ̂, t1, . . . , tn �� t, as before, we may replace φ̂ with the frame in sm and we
are back to the previous case.

– If θ ≡ θ1∨θ2, then S, σ |=c θ means that there are S′ and S′′ such that S′∪S′′ = S
and S′, σ |=c θ1 and S′′, σ |=c θ2. At least one of the two sets S′, S′′ is non-
negligible. Take any decreasing chain of non-negligible subsets S ⊇ S1 ⊇ S2 ⊇
..... Then either S′ ∩ S1 ⊇ S′ ∩ S2 ⊇ .... is a non-negligible chain, or S′′ ∩ S1 ⊇
S′′ ∩ S2 ⊇ .... is a non-negligible chain. (Because if both are negligible from a
certain point on, then there is an i such that S′∩Si and S′′∩Si are both negligible,
but that contradicts that their union, Si is not negligible.) Suppose the first. Notice,
that the first is a chain in S′. Then, by the induction hypothesis for θ1, there is a
chain S ⊇ S′ ⊇ S′

1 ⊇ S′
2 ⊇ ... such that S′

i ⊆ S′ ∩ Si and for any non-negligible
decreasing chain S′′

1 ⊇ S′′
2 ⊇ ... with S′′

i ⊆ S′
i, MS′′

1 ⊇S′′
2 ⊇..., σ |= θ1. Then

MS′′
1 ⊇S′′

2 ⊇..., σ |= θ. So the same S′
1 ⊇ S′

2 ⊇ ... works for θ.
– If θ ≡ θ1 ∧ θ2, by definition, S, σ |=c θ1 and S, σ |=c θ2. By induction hy-

pothesis for θ1, given any decreasing chain of non-negligible subsets S ⊇ S1 ⊇
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S2 ⊇ ...., there is a chain S ⊇ S′
11 ⊇ S′

12 ⊇ ... with S′
1i ⊆ Si, such that,

for any non-negligible decreasing chain S′′
1 ⊇ S′′

2 ⊇ ... with S′′
i ⊆ S′

1i for all
i, MS′′

1 ⊇S′′
2 ⊇..., σ |= θ1. By induction hypothesis for θ2, there is a chain S ⊇

S′
21 ⊇ S′

22 ⊇ ... with S′
2i ⊆ S′

1i such that, for any non-negligible decreasing
chain S′′

1 ⊇ S′′
2 ⊇ ... with S′′

i ⊆ S′
2i for all i, MS′′

1 ⊇S′′
2 ⊇..., σ |= θ2. Since

S′
2i ⊆ S′

1i, by the choice of S′
1i, we also have that for any non-negligible decreas-

ing chain S′′
1 ⊇ S′′

2 ⊇ ... with S′′
i ⊆ S′

2i for all i, MS′′
1 ⊇S′′

2 ⊇..., σ |= θ1. Hence,
for any non-negligible decreasing chain S′′

1 ⊇ S′′
2 ⊇ ... with S′′

i ⊆ S′
2i for all i,

MS′′
1 ⊇S′′

2 ⊇..., σ |= θ1 ∧ θ2. Thus, taking S′
i = S′

2i works.
– If θ ≡ ∃x.θ1, then there is anAx, for which we have that S,Ax1 , ...,Axk

,Ax |=c θ.
By induction hypothesis, for a chain S ⊇ S1 ⊇ S2 ⊇ ..., there is a chain S′

1 ⊇ S′
2 ⊇

... with S′
i ⊆ Si, such that, for any non-negligible S′′

i ⊆ S′
i, MS′′

1 ⊇S′′
2 ⊇..., σ, x →

Ax |= θ1. But then this impliesMS′′
1 ⊇S′′

2 ⊇..., σ |= ∃x.θ1. So the same S′
1 ⊇ S′

2 ⊇
... works.

– If θ ≡ ∀xθ1, then for all Ax, S,Ax1 , ...,Axk
Ax |=c θ1. Let’s fix S ⊇ S1 ⊇

S2 ⊇ .... Enumerate all possible algorithms for Ax: A1, A2,... First we show
that for A1, S,Ax1 , ...,Axk

A1 |=c θ1 holds. By induction hypothesis, there is a
chain S′

11 ⊇ S′
12 ⊇ S′

13 ⊇ ... with S′
1i ⊆ Si, such that, for any non-negligible

S′′
1 ⊇ S′′

2 ⊇ ..., if S′′
i ⊆ S′

1i for all i, then MS′′
1 ⊇S′′

2 ⊇..., σ, x → A1 |= θ1. Take
now A2. Then S,Ax1 , ...,Axk

A2 |=c θ1 holds. By the induction hypothesis, there
is a chain S′

21 ⊇ S′
22 ⊇ ... with S′

2i ⊆ S′
1i, such that, for any non-negligible chain

S′′
1 ⊇ S′′

2 ⊇ ... such that S′′
i ⊆ S′

2i for all i, MS′′
1 ⊇S′′

2 ⊇..., σ, x → A2 |= θ1. But,
because of Remark 1, it is also true, that for the chain S′

11 ⊇ S′
22 ⊇ S′

23 ⊇ ..., for
any non-negligible S′′

1 ⊇ S′′
2 ⊇ ..., with S′′

1 ⊆ S′
11, and S′′

i ⊆ S′
2i for i = 2, 3...,

MS′′
1 ⊇S′′

2 ⊇..., σ, x → A2 |= θ1, as it does not matter what the first set is. Further-
more, since S′

2i ⊆ S′
1i holds, we also haveMS′′

1 ⊇S′′
2 ⊇..., σ, x → A1 |= θ1. Contin-

uing in this manner, we get a chain S′
11 ⊇ S′

22 ⊇ S′
33 ⊇ .... Then, take any chain

S′′
1 ⊇ S′′

2 ⊇ ..., with S′′
i ⊆ S′

ii. Clearly, because of the construction, S′′
i ⊆ S′

1i also
holds (as S′

ii ⊆ S′
1i. Hence we haveMS′′

1 ⊇S′′
2 ⊇..., σ, x → A1 |= θ1. Further, since

S′′
i ⊆ S′

2i for i = 2, 3..., and S′′
1 ⊆ S′

11, we also haveMS′′
1 ⊇S′′

2 ⊇..., σ, x → A2 |=
θ1. And so on, we have for all n,MS′′

1 ⊇S′′
2 ⊇..., σ, x → An |= θ1. Now, if v is any

term in the domain of our models, MS′′
1 ⊇S′′

2 ⊇..., σ, x → v |= θ1. Indeed, let v′ be
the term v, in which any Ai occurring in v is replaced with a variable xi and σ′

be xi → Ai. The algorithm, that computes, for every τ ∈ S, [[v′]]τ,σ′ can be con-
structed from the Ai and is PT. Hence there is an index n such that, for any τ ∈ S,
An outputs [[v′]]τ,σ′ . Therefore, we also have MS′′

1 ⊇S′′
2 ⊇..., σ |= ∀xθ1, and that is

what we wanted to prove. �

The above result can be applied to a formula θ that is the conjunction of

– the intermediate conditions (that are part of the symbolic states) Θ
– finitely many computationally valid axioms A
– a formula that expresses the existence of an attack. NotSec.

Then it can be read as follows: if there is a computational attack, corresponding to a
symbolic trace s1 → · · · → sm, then this symbolic trace is valid in a model, which is
also a model of A and NotSec.
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Consider then a symbolic procedure, that discards only symbolic states, in which
Θ ∧ A is inconsistent. Then the symbolic procedure will not miss any attack. More
precisely, we get:

Theorem 2. For a bounded number of sessions, if there is a computational attack, there
is also a symbolic attack.

In other words, if the protocol is symbolically secure, then it is also computationally
secure.

It might be true for an undbounded number of sessions as well, but we need the
boundedness assumption if we wish to derive the theorem from the theorem 1: The
trick is, that in the bounded case, if there is a computational attack, there is also a com-
putational attack corresponding to a fixed sequence of symbolic states. This is simply
because the bounded number of sessions ensures that there are only finitely many possi-
ble sequences, and if there is a computational attack, that is, the property expressing the
attack is satisfied on some non-negligible set, then it must be satisfied non-negligibly
on one of the possible sequences.

4 Examples of Axioms

4.1 Examples of Axioms That Are Computationally Valid

– Increasing capabilities: φ̂ � y → φ̂, x � y

– Function of derivable items: φ̂ � t1 ∧ φ̂ � t2 ∧ ... ∧ φ̂ � tn → φ̂ � f(t1, t2, ..., tn)

– Self derivability: φ̂, t � t

The validity of these axioms is straightforward. We also include the following:

No telepathy: fresh(x, φ̂)→ φ̂ �� x

whose computational soundness follows from the polynomial bound on the machines
that interpret the deducibility relation on the one hand and the exponential number of
interpretations of any names, on the other hand.

4.2 Secrecy Axiom

The intuitive meaning of the following axiom is that the adversary cannot derive the
plaintext of a freshly generated encryption, unless its decryption key has been sent out,
or the plaintext could be derived earlier.

Proposition 1. If the encryption scheme is IND-CCA2, then the following axiom

θ = ∀tKR

(
RandGen(K) ∧ fresh(R, φ̂) ∧ φ̂, {t}ReK � t −→ dK / φ̂ ∨ φ̂ � t

)
is computationally valid.
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Proof. Suppose that it is not computationally valid. That is, there is a computational
structure (M, Π, S), withM, Π, S �|= θ. There are PPT machinesA = (At,AK ,AR)

such that M, Π, S,A �|= fresh(R, φ̂) ∧ φ̂, {t}ReK � t −→ dK / φ̂ ∨ φ̂ � t.
Therefore, there is a S1 ⊆ S non-negligible such that M, Π, S1,A |= fresh(R, φ̂) ∧
φ̂, {t}ReK � t andM, Π, S1,A �|= dK / φ̂ ∨ φ̂ � t. We claim that the second implies
that there is a non-negligible subset S2 of S1 such that M, Π, S2,A |= ¬(dK / φ̂)

andM, Π, S2,A �|= φ̂ � t. To see this, consider the following:

– TakeS2 = S1\{τ | the computation of A on τ yields a state q such that q |= dK /
φ̂}. Clearly,M, Π, S2,A |= ¬(dK / φ̂), andM, Π, S1 \ S2,A |= dK / φ̂

– Since M, Π, S1 \ S2,A |= dK / φ̂, we have M, Π, S2,A �|= φ̂ � t, because
otherwise we would have M, Π, S1,A |= dK / φ̂ ∨ φ̂ � t contradicting
M, Π, S1,A �|= dK / φ̂ ∨ φ̂ � t.

Since M, Π, S2,A �|= φ̂ � t, by the definition of the computational semantics of the
derivability predicate, there is a subset S4 of S2 such that on all subsets of S4, there
is no PT algorithm that computes the interpretation of t from the computational frame.
Then it is straightforward to check thatM, Π, S4,A |= ¬(φ̂ � t):

– Suppose it is not true, that is,M, Π, S4,A �|= ¬(φ̂ � t).
– Then there is an S5 ⊆ S4 such thatM, Π, S4,A |= φ̂ � t.
– That implies that S5 has a subset on which there is an algorithm that computes the

interpretation t from the computational frame, a contradiction.

Since S4 ⊆ S2, we also have that M, Π, S4,A |= ¬(dK / φ̂), and since S4 ⊆ S1,
we also have M, Π, S4,A |= fresh(R, φ̂) ∧ φ̂, {t}ReK � t. That is, M, Π, S4,A |=
φ̂, {t}ReK � t and M, Π, S4,A |= fresh(R, φ̂) and M, Π, S4,A |= ¬(dK / φ̂) and
M, Π, S4,A |= ¬(φ̂ � t). We have to create an adversaryACCA2 that wins the CCA2
game. Let x = {t}ReK .

Since M, Π, S4,A |= φ̂, {t}ReK � t holds, there is an S5 ⊆ S4 and an algo-
rithm C that computes the interpretation of t from the interpretation of φ̂ and {t}ReK
on S5. Clearly, M, Π, S5,A |= fresh(R, φ̂) and M, Π, S5,A |= ¬(dK / φ̂) and
M, Π, S5,A |= ¬(φ̂ � t). It may be the case that the S5 we have chosen depends
on evaluations of τ that are determined after M reaches the challenge state qc. How-
ever, clearly, if we include all possible future evaluations, the set that we receive this
way, S′ will still be such that there is an algorithm C that computes the interpreta-
tion of t from the frame at the challenge state qc and {t}ReK on S′. Moreover, it is
easy to see that M, Π, S′,A |= fresh(R, φ̂) and M, Π, S′,A |= ¬(dK / φ̂) and
M, Π, S′,A |= ¬(φ̂ � t) because these are properties that depend only on conditions
in the challenge stated, and not later ones.

SinceM, Π, S′,A |= dK �/ φ̂, the decryption key has never been sent.
We show that we can construct an algorithmACCA2 that breaks CCA2 security.
Let AΠ mean the protocol adversary.

– ACCA2 generates computational keys thatAΠ uses, except for the one correspond-
ing to K .
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– The encryption oracle generates a random bit b.
– The encryption oracle generates a computational key and publishes its public part.
ACCA2 encrypts with this key for encryptions with K , except for t.

– ACCA2 simulates both the agents andAΠ : It computes all messages that the agents
output according to their algorithm, and computes all messages that AΠ outputs
according to its algorithm. This way it builds up φ and the bit strings corresponding
to them as well as the equations.

– Whenever a decryption with dK has to be computed, there are two possibilities:
• If the ciphertext was created byACCA2 using the encryption algorithm, then it

knows the plaintext, so it can use it without decryption.
• If the ciphertext was created in some other way, the decryption oracle is used.

This can be freely done until x occurs.
– When A reaches the challenge state qc, using At, ACCA2 computes the bit string

for t, and submits it to the encryption oracle as well as a random bit string that has
the same length as the plaintext.

– According to our definition of satisfaction the computation by C is based on the
frame at the challenge state. We had M, Π, S′,A |= fresh(R, φ̂), which means
that R is independent of the items in φ. Further, since we included all future ran-
dom choices in S′, R is also independent of S′. Hence having it encrypted by the
encryption oracle will not lose any information as long as the oracle encrypts the
correct bit.

– The encryption oracle encrypts the interpretation of t if b = 0, and encrypts the
random bit string if b = 1. It gives the result c back to ACCA2.

– Run C on the bit string c returned by the oracle and on the bit strings of φn.
– If

• ACCA2 receives the value for t back using c and if the execution is in S′, then
ACCA2 returns bACCA2 = 0.

• Otherwise ACCA2 throws a fair coin and stores bACCA2 = 0 or bACCA2 = 1
with probability 1/2.

– We have Prob{bACCA2 = b | S′ ∧ b = 0} (the conditional probability of bACCA2 =
b given S′ and b = 0) is negligibly different from 1 because in this case the oracle
encrypts the correct string, and C’s computations are employed on the correct bit
string, and so it gives the interpretation of t. Note, we also use here that S′ and the
interpretation of R do not correlate.

– On the other hand, observe that Prob{bACCA2 = b | S′ ∧ b = 1} − 1/2 is neg-
ligible. The reason is that when b = 1, the encryption oracle computes something
that has nothing to do with the protocol and t. So the probability of computing t
with or without the encryption in this case, is the same. But, remember, we had that
M, Π, S′,A |= φ̂ �� t. This means that t cannot be computed without the encryp-
tion anywhere and therefore the adversary’s computation on the fake encryption
cannot give good result by more than negligible probability. So the adversary will
end up throwing a coin in this case.

– Putting the previous two points together, we have Prob{bACCA2 = b | S′} − 1
2

is non-negligible. Then, since outside S′, ACCA2 thows a coin, Prob{bACCA2 =
b} − 1

2 is non-negligible, which means CCA2 security is broken. �
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5 Conclusions

We have shown a technique to define symbolic adversaries that are at least as strong as
computational adversaries. The basic idea is that, instead of listing all manipulations the
symbolic adversary is allowed to do, we allow the symbolic adversary to do anything
unless it contradicts some axioms, which are derived from the limitations of the com-
putational adversary. In a rather involved theorem, we showed that at least when only
bounded number of protocol sessions are allowed, to any computational attack there is
a corresponding symbolic attack. Further, we have shown a few axioms that arise from
the limitations of computational adversaries, and which are to limit the symbolic adver-
sary. Besides some rather trivially valid axioms, we showed the validity of a ”secrecy
axiom”, that relies on IND-CCA2 security.

From our method, we can derive a verification procedure, simulating the (symbolic)
protocol rules, and checking at each computation step the consistency of the formulas
expressing that transitions are enabled, together with the axioms and the negation of
the security properties. In order to automate this process we mainly need a (hopefully
efficient) procedure checking the consistency of such a set of constrained formulas.
This is future work. We are however optimistic, because the examples of axioms that
we considered yield a saturated set of constrained formulas (as defined in [22]). On the
other hand, as shown in [9], the consistency of ground clauses, together with a saturated
set of clauses, can be performed in polynomial time.

We carried out a proof of a two sessions NSL, showing what are the minimal assump-
tions that guarantee its correctness, but we need to design an automated tool, in order
to carry out further experiments. Also extensions of the results to indistinguishability
properties could be investigated.
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Abstract. Many cryptographic systems based on elliptic curves are proven se-
cure in the Random Oracle Model, assuming there exist probabilistic functions
that map elements in some domain (e.g. bitstrings) onto uniformly and indepen-
dently distributed points in a curve. When implementing such systems, and in
order for the proof to carry over to the implementation, those mappings must be
instantiated with concrete constructions whose behavior does not deviate signif-
icantly from random oracles. In contrast to other approaches to public-key cryp-
tography, where candidates to instantiate random oracles have been known for
some time, the first generic construction for hashing into ordinary elliptic curves
indifferentiable from a random oracle was put forward only recently by Brier et
al. We present a machine-checked proof of this construction. The proof is based
on an extension of the CertiCrypt framework with logics and mechanized tools
for reasoning about approximate forms of observational equivalence, and inte-
grates mathematical libraries of group theory and elliptic curves.

1 Introduction

Following an established trend [18], the prevailing methodology for building secure
cryptosystems is to conduct a rigorous analysis that proves security under standard hy-
potheses. Sometimes this analysis is performed assuming that some components of the
system have an ideal behavior. However, ideal functionalities are difficult or even im-
possible to realize, leading to situations where provably secure systems have no secure
implementation. An alternative methodology is to devise systems based on construc-
tions that do not deviate significantly from ideal ones, and to account for these devia-
tions in the security analysis. Statistical distance is a natural notion for quantifying the
deviation between idealized functionalities and their implementations.

Verifiable security [3,4] is an emerging approach that advocates the use of interactive
proof assistants and automated provers to establish the security of cryptographic sys-
tems. It improves on the guarantees of provable security by delivering fully
machine-checked and independently verifiable proofs. The CertiCrypt framework, built
on top of the Coq proof assistant, is one prominent tool that realizes verifiable security
by using standard techniques from programming languages and program verification.
CertiCrypt is built around the central notion of observational equivalence of probabilis-
tic programs, which unfortunately cannot model accurately other weaker, quantitative,
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forms of equivalence. As a result, CertiCrypt cannot be used as it is to reason about
the statistical distance of distributions generated by probabilistic programs. More gen-
erally, the development of quantitative notions of equivalence is quite recent and rather
limited; see Section 7 for an account of related work.

One main contribution of this article is the formalization of several quantitative no-
tions of program equivalence and logics for reasoning about them. More specifically, we
extend CertiCrypt with the notion of statistical distance and develop a logic to upper
bound the distance between distributions generated by probabilistic programs. More-
over, we introduce approximate and conditional variants of observational equivalence
and develop equational theories for reasoning about them.

In a landmark article, Maurer et al. [23] introduce the concept of indifferentiabil-
ity to justify rigorously the substitution of an idealized component in a cryptographic
system by a concrete implementation. In a subsequent article, Coron et al. [13] ar-
gue that a secure hash function should be indifferentiable from a random oracle, i.e.
a perfectly random function. Although the random oracle model has been under fierce
criticism [10] and the indifferentiability framework turns out to be weaker than initially
believed [16, 25], it is generally accepted that proofs in these models provide some
evidence that a system is secure. Not coincidentally, all finalists in the ongoing NIST
Cryptographic Hash Algorithm competition have been proved indifferentiable from a
random oracle.

Elliptic curve cryptography allows to build efficient public-key cryptographic sys-
tems with comparatively short keys and as such is an attractive solution for resource-
constrained applications. In contrast to other approaches to public-key cryptography,
where candidates to instantiate random oracles have been known for some time, ad-
equate constructions for hashing into ordinary elliptic curves have remained elusive.
In 2010, Brier et al. [9] proposed the first generic construction indifferentiable from a
random oracle into elliptic curves. This construction is of practical significance since
it allows to securely implement elliptic curve cryptosystems. We present a machine-
checked and independently verifiable proof of the security of this construction. The
proof involves the various notions of equivalence we develop in this paper and is thus
an excellent testbed for evaluating the applicability of our methods. Additionally, the
proof builds on several large developments (including Théry’s formalization of elliptic
curves [30] and Gonthier et al. formalization of finite groups [19]) and demonstrates
that CertiCrypt blends well with large and complex mathematical libraries, and is apt
to support proofs involving advanced algebraic and number-theoretical reasoning.

Organization of the paper. The remainder of the paper is structured as follows. Sec-
tion 2 provides a brief introduction to CertiCrypt. Section 3 introduces the notion of sta-
tistical distance between probabilistic programs and describes programming language
techniques to bound it, whereas Sect. 4 defines weak forms of observational equiva-
lence and their associated reasoning principles. Section 5 presents a machine-checked
proof of the indifferentiability of a generalization of Brier et al.’s construction from a
random oracle into an abelian finite group; its application to elliptic curves is discussed
in Sect. 6. We survey prior art and conclude in Sections 7 and 8.
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2 An Overview of CertiCrypt

This section provides a brief description of the CertiCrypt framework. We refer the
reader to [4] for further details.

2.1 Representation of Distributions

CertiCrypt adopts the monadic representation of distributions proposed by Audebaud
and Paulin in [2]. A distribution over a set A is represented as a monotonic, continuous
and linear function of type

D(A) def
= (A→ [0, 1])→ [0, 1]

where [0, 1] denotes the unit interval. Intuitively, an element of type D(A) models the
expectation operator of a sub-probability distribution over A. Thus, the probability that
a distribution μ : D(A) assigns to an event X ⊆ A can be computed by measuring its
characteristic function 1X , i.e. Pr [μ : X ] def

= μ(1X).

2.2 Programming Model

We model games as probabilistic imperative programs with procedure calls. The set of
commands C is defined inductively by the clauses:

C ::= skip nop
| V ← E deterministic assignment
| V $← DE random assignment
| if E then C else C conditional
| while E do C while loop
| V ← P(E , . . . , E) procedure call
| C; C sequence

where V is a set of variables tagged with their scope (either local or global), E is a set
of deterministic expressions, and DE is a set of expressions that denote distributions
from which values can be sampled in random assignments. In the remainder, we let
true ⊕δ false denote the Bernoulli distribution with success probability δ, so that the
instruction x $← true ⊕δ false assigns true to x with probability δ, and we denote by
x $← A the instruction that assigns to x a value uniformly chosen from a finite set A.

A program (or game) consists of a command c and an environmentE that maps pro-
cedure identifiers to their declaration, specifying its formal parameters, its body, and a
return expression that is evaluated upon exit. (Although procedures are single-exit, we
often write games using explicit return expressions for the sake of readability.) Decla-
rations are subject to well-formedness and well-typedness conditions; these conditions
are enforced using the underlying dependent type system of Coq. Procedures corre-
sponding to adversaries are modelled as procedures with unknown code.

Program states (or memories) are dependently typed functions that map a variable of
type T to a value in its interpretation �T �; we letM denote the set of states. Expressions
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have a deterministic semantics: an expression e of type T is interpreted as a function
�e� :M→ �T �. The semantics of a command c in an environment E relates an initial
memory to a probability sub-distribution over final memories: �c, E� : M → D(M).
We often omit the environment when it is irrelevant.

By specializing the above definition of probability Pr [μ : X ] to programs, we have
that the probability Pr [G,m : X ] of an event X in a game G and an initial memory m
is given by �G� m 1X . The probability of termination of a game G starting in an initial
memory m is given by Pr [G,m : true]. We say that a game is lossless if it terminates
with probability 1 independently from the initial memory.

In order to reason about program complexity and define the class of probabilistic
polynomial-time computations, the semantics of programs is indexed by a security pa-
rameter (a natural number) and instrumented to compute the time and memory cost of
evaluating a command, given the time and memory cost of each construction in the
expression language. We chose not to make this parameterization explicit to avoid clut-
tering the presentation.

2.3 Reasoning Tools

CertiCrypt provides several tools for reasoning about games. One main tool is a prob-
abilistic relational Hoare logic. Its judgments are of the form |= G1 ∼ G2 : Ψ ⇒ Φ,
where G1 and G2 are games, and Ψ and Φ are relations over states. We represent rela-
tions as first-order formulae over tagged program variables; we use the tags 〈1〉 and 〈2〉
to distinguish between the value of a variable or formula in the left and right-hand side
program, respectively.

Formally, a judgment |= G1 ∼ G2 : Ψ ⇒ Φ is valid, iff for all memories m1 and m2

such that m1 Ψ m2, we have that (�G1� m1)L(Φ) (�G2� m2), where L(Φ) denotes the
lifting of Φ to distributions. Relational Hoare logic can be used to prove claims about
the probability of events in games by using, for instance, the following rule:

m1 Ψ m2 |= G1 ∼ G2 : Ψ ⇒ Φ Φ =⇒ (A〈1〉 =⇒ B〈2〉)
Pr [G1,m1 : A] ≤ Pr [G2,m2 : B]

Observational equivalence is defined by specializing the judgments to relations Ψ and
Φ corresponding to the equality relation on subsets of program variables. Formally, let
X be a set of variables, m1,m2 ∈M and f1, f2 :M→ [0, 1]. We define

m1 =X m2
def
= ∀x ∈ X. m1(x) = m2(x)

f1 =X f2
def
= ∀m1 m2. m1 =X m2 =⇒ f1(m1) = f2(m2)

Then, two gamesG1 andG2 are observationally equivalent w.r.t. an input set of variables
I and an output set of variables O, written |= G1 ,I

O G2, iff |= G1 ∼ G2 : =I ⇒ =O.
Equivalently, |= G1 ,I

O G2 iff for all memories m1,m2 ∈ M and functions f1, f2 :
M→ [0, 1],

m1 =I m2 ∧ f1 =O f2 =⇒ �G1� m1 f1 = �G2� m2 f2

Observational equivalence is amenable to automation. CertiCrypt provides mechanized
tactics based on dependency analyses to perform common program transformations
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and to prove that two programs are observationally equivalent (note that observational
equivalence is only a partial equivalence relation). The mechanized transformations
include dead code elimination, call inlining, inter- and intra-procedural code motion
and expression propagation.

We sometimes use a standard Hoare logic for reasoning about single programs. Its
judgments are of the form {P}G {Q}, where G is a game and P and Q are predicates
on states. Formally, a judgment {P} G {Q} is valid iff for every memory m ∈ M and
function f :M→ [0, 1],

P m ∧ (∀m. Q m =⇒ f(m) = 0) =⇒ �G� m f = 0

This logic is subsumed by the relational Hoare logic,

|= {P} G {Q} ⇐⇒ |= G ∼ skip : P 〈1〉 ⇒ Q〈1〉.

3 Statistical Distance

Statistical distance quantifies the largest difference between the probability that two
distributions assign to the same event. We refer to [28] for an in-depth presentation
of statistical distance and its properties. Formally, the statistical distance Δ (μ1, μ2)
between two distributions μ1 and μ2 over a set A is defined as:

Δ (μ1, μ2)
def
= sup

f :A→[0,1]

|μ1 f − μ2 f |

One important property of statistical distance that we frequently use in proofs is its
invariance under function application, i.e. for any function F : D(A) → D(B) and
distributions μ1, μ2 over A, Δ (F (μ1), F (μ2)) ≤ Δ (μ1, μ2).

Remark. In the traditional definition of statistical distance, f ranges only over Boolean-
valued functions. Our definition is more convenient for reasoning about our monadic
formalization of distributions. We have proved in Coq that the two definitions coincide
for discrete distributions.

3.1 A Logic for Bounding Statistical Distance

Statistical distance admits a natural extension to programs; we define the statistical
distance between two programs G1 and G2 as follows:

Δ (G1,G2)
def
= max

m,f
|�G1� m f − �G2� m f |

Or, fixing an initial memory m,

Δm (G1,G2)
def
= max

f
|�G1� m f − �G2� m f |

We define a logic that allows to upper bound Δm (G1,G2) by a function of the memory
m; the logic deals with judgments of the form �G1,G2� � g, where

�G1,G2� � g def
= ∀m. Δm (G1,G2) ≤ g m ≡ ∀m f. |�G1� m f − �G2� m f | ≤ g m
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�skip, skip� � λm. 0
[Skip]

�x ← e, x ← e� � λm. 0
[Ass]

∀m. Δ (�μ1� m, �μ2� m) ≤ g m

�x $← μ1, x $← μ2� � g
[Rnd]

�c1, c2� � g �c′1, c
′
2� � g′

�c1; c
′
1, c2; c

′
2� � λm.�c1�m g′ + g m

[Seq]

�c1, c
′
1� � g1 �c2, c

′
2� � g2

�if b then c1 else c2, if b then c′1 else c′2� � λm. if �b� m then g1 m else g2 m
[Cond]

�c1, c2� � g g0(m) = 0 gn+1(m) = if �b� m then �c1� m gn + g(m) else 0

�while b do c1,while b do c2� � sup(λn. gn)
[Whl]

�E1(p), E2(p)� � g g =X g ∀x. x ∈ X ⇒ global(x)

�y ← p(x), y ← p(x)� � g
[Call]

Fig. 1. Logic to bound the statistical distance between two probabilistic programs

Figure 1 presents the main rules of the logic; for readability, rules are stated for pairs
of commands rather than pairs of programs, and assume that this pair of programs are
executed in two fixed environments E1 and E2 respectively.

To prove the soundness, for instance, of the rule for sequential composition, we in-
troduce an intermediate program c1; c

′
2 (where c1 is executed in environment E1 and c′2

in environment E2) and prove that the distance between �c1; c
′
2� m and �c1; c

′
1� m is

bounded by �c1� m g′, while the distance between �c1; c
′
2� m and �c2; c

′
2� m is bounded

by g m. The rule for loops relies on the characterization of the semantics of a while loop
as the least upper bound of its n-th unrolling [while e do c]n, and on the auxiliary rule

�[while b do c1]n, [while b do c2]n� � gn

�while b do c1,while b do c2� � sup(λn. gn)

While the rules in Figure 1 are sufficient to reason about closed programs, they do
not allow to reason about games in the presence of adversaries. We enhance the logic
with a rule that allows to bound the statistical distance between calls to an adversaryA
executed in two different environments E1 and E2, i.e. it allows to draw conclusions
of the form �A,A� � g.1 In its simplest formulation, the rule assumes that oracles are
instrumented with a counter that keeps track of the number of queries made, and that the
statistical distance between the distributions induced by a call to an oracle x← O(�e) in
E1 and E2 is upper bounded by a constant ε, i.e. �O,O� � ε. In this case, the statistical
distance between calls to the adversaryA in E1 and E2 is upper bounded by q ·ε, where
q is an upper bound on the number of oracle calls made by the adversary.

For the application presented in Section 5, we need to formalize a more powerful
rule, in which the statistical distance between two oracle calls can depend on the pro-
gram state. Moreover, we allow the counter to be any integer expression, and only re-
quire that it does not decrease across oracle calls.

1 For the sake of readability, we write �A,A� � g instead of �x ← A(�e), x ← A(�e)� � g, and
likewise for oracles.
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Lemma 1 (Adversary rule). Let A be an adversary and let cntr be an integer expres-
sion whose variables cannot be written byA. Let h : N→ [0, 1] and define

h̄cntr(m,m′) def
= min

⎛⎝1,

�cntr�m′−1∑
i=�cntr�m

h(i)

⎞⎠
Assume that for every oracle O,

�O,O� � λm. �E1(O)� m (λm′. h̄cntr(m,m′))

and {cntr = i} E1(O) {i ≤ cntr}. Then,

�A,A� � λm. �E1(A)� m
(
λm′. h̄cntr(m,m′)

)
3.2 Reasoning about Failure Events

Transitions based on failure events allow to transform a game into another game that
is semantically equivalent unless some failure condition is triggered. The main tool to
justify such transitions is the following lemma.

Lemma 2 (Fundamental Lemma). Consider two games G1, G2 and let A,B, and F
be events. If Pr [G1 : A ∧ ¬F ] = Pr [G2 : B ∧ ¬F ] , then

|Pr [G1 : A]− Pr [G2 : B] | ≤ max{Pr [G1 : F ] ,Pr [G2 : F ]}

Note also that if, for instance, game G2 is lossless, then Pr [G1 : F ] ≤ Pr [G2 : F ].

When A = B and F = bad for some Boolean variable bad, the hypothesis of the
lemma can be automatically established by inspecting the code of both games: it holds
if their code differs only after program points setting bad to true and bad is never reset
to false. As a corollary, if two games G1, G2 satisfy this syntactic criterion and e.g. G2

is lossless, �G1,G2� � λm. Pr [G2,m : bad] .

4 Weak Equivalences

In this section we introduce quantitative notions of program equivalence and equational
theories to reason about them.

4.1 Approximate Observational Equivalence

Approximate observational equivalence generalizes observational equivalence between
two games by allowing that their output distributions differ up to some quantity ε. In-
formally, two games G1 and G2 are ε-observationally equivalent w.r.t. an input set of
variables I and an output set of variables O iff for every pair of memories m1,m2

coinciding on I ,
Δ ((�G1� m1)/ =O, (�G2�m2)/ =O) ≤ ε,
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where for a distribution μ over a set A and an equivalence relation R on A, we let μ/R
denote the quotient distribution of μ over A/R. For the purpose of formalization, it is
more convenient to rely on the following alternative characterization that does not use
quotient distributions, in part because the underlying language of Coq does not support
quotient types.

Definition 1. Two games G1 and G2 are ε-observationally equivalent w.r.t. an input set
of variables I and an output set of variables O, written |= G1 ,I

O G2 � ε, iff for all
memories m1,m2 ∈M and functions f1, f2 :M→ [0, 1]

m1 =I m2 ∧ f1 =O f2 =⇒ |�G1� m1 f1 − �G2� m2 f2| ≤ ε

Figure 2 provides an excerpt of an equational theory for approximate observational
equivalence; further and more general rules appear in the formal development. Most
rules generalize observational equivalence in the expected way. For instance, the rule
for random assignment considers the case of uniformly sampling over two finite sets A
and B: in case A = B, one obtains ε = 0.

|= c1 �I
O c2 � ε1 |= c2 �I

O c3 � ε2

|= c1 �I
O c3 � ε1 + ε2

|= c1 �I′
O′ c2 � ε′ I ′ ⊆ I O ⊆ O′ ε′ ≤ ε

|= c1 �I
O c2 � ε

|= c1 �I
O′ c2 � ε1 |= c′1 �O′

O c′2 � ε2

|= c1; c
′
1 �I

O c2; c
′
2 � ε1 + ε2

|= c1 �I
O c′1 � ε |= c2 �I

O c′2 � ε ∀m,m′. I m m′ =⇒ �b� m = �b′� m′

|= if b then c1 else c2 �I
O if b′ then c′1 else c′2 � ε

ε = #(A ∩B)| 1
#A

− 1
#B

|+max
{

#(A\B)
#A

, #(B\A)
#B

}
|= x $← A �I

I∪{x} x $← B � ε

Fig. 2. Selected rules for reasoning about approximate observational equivalence

4.2 A Conditional Variant

The application we describe in Section 5 requires reasoning about conditional approx-
imate observational equivalence, a generalization of approximate observational equiv-
alence. We define for each distribution μ and event P the conditional distribution μ |P
as

μ |P def
= λf. μ

(
λa.

f(a) 1P (a)

μ 1P

)
Intuitively, μ |P 1Q yields the conditional probability of Q given P .
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Definition 2. A game G1 conditioned on predicate P1 is ε-observationally equivalent
to a game G2 conditioned on P2 w.r.t. an input set of variables I and an output set
of variables O, written |= [G1]P1

,I
O [G2]P2

� ε, iff for any m1,m2 ∈ M and
f1, f2 :M→ [0, 1],

m1 =I m2 ∧ f1 =O f2 =⇒ |(�G1� m1) |P1 f1 − (�G2� m2) |P2 f2| ≤ ε

Conditional approximate observational equivalence subsumes classic approximate ob-
servational equivalence, which can be recovered by taking P1 = P2 = true.

5 Indifferentiability

In this section we present an application of the techniques introduced above to prove the
security of cryptographic constructions in the indifferentiability framework of Maurer
et al. [23]. In particular, we consider the notion of indifferentiability from a random
oracle. A random oracle is an ideal primitive that maps elements in some domain into
uniformly and independently distributed values in a finite set; queries are answered
consistently so that identical queries are given the same answer. A proof conducted in
the random oracle model for a function h : A → B assumes that h is made publicly
available to all parties.

Definition 3 (Indifferentiability). A procedure F that has access to a random oracle
h : {0, 1}∗ → A is said to be (tS , tD, q1, q2, ε)-indifferentiable from a random oracle
H : {0, 1}∗ → B if there exists a simulator S with oracle access to H and executing
within time tS such that any distinguisherD running within time tD and making at most
q1 queries to an oracle O1 and q2 queries to an oracle O2 has at most probability ε of
distinguishing a scenario where O1 is implemented as F and O2 as h from a scenario
where O1 is implemented as H andO2 as S instead. Put in terms of games,

Game G : L ← nil; b ← D( )

Oracle O1(x) : return F(x)

Oracle O2(x) :
if x /∈ dom(L) then
y $← A; L(x) ← y

return L(x)

Game G′ : L ← nil; b ← D( )

Oracle O1(x) :
if x /∈ dom(L) then
y $← B; L(x) ← y

return L(x)

Oracle O2(x) : return S(x)

|Pr [G : b = true]− Pr [G′ : b = true] | ≤ ε

Random oracles into elliptic curves over finite fields are typically built from a random
oracle h on the underlying field and a deterministic encoding f that maps elements of
the field into the elliptic curve. Examples of such encodings include Icart function [21]
and the Shallue-Woestijne-Ulas (SWU) algorithm [27]. In general, and in particular
for the aforementioned mappings, the function f is not surjective and only covers a
fraction of points in the curve. Hence, the naive definition of a hash function H as f ◦h
would not cover the whole curve, contradicting the assumption that H behaves as a
random oracle. In a recent paper, Brier et al. [9] show how to build hash functions into
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elliptic curves that are indifferentiable from a random oracle from a particular class of
encodings, including both SWU and Icart encodings.

We prove the indifferentiability of the construction put forward by Brier et al. in the
formal framework of CertiCrypt. The proof introduces two intermediate constructions
and is structured in three steps:

1. We first prove that any efficiently invertible encoding f can be turned into a weak
encoding (Theorem 1);

2. We then show an efficient construction to transform any weak encoding f into an
admissible encoding (Theorem 2);

3. Finally, we prove that any admissible encoding can be turned into a hash function
indifferentiable from a random oracle (Theorem 3).

Moreover, we show in Sect. 6 that Icart encoding is efficiently invertible and thus yields
a hash function indifferentiable from a random oracle when plugged in into the above
construction. We recall the alternative definitions of weak and admissible encoding
from [22]. Note that these do not match the definitions in [9], but, in comparison, are
better behaved: e.g. admissible encodings as we define them are closed under functional
composition and cartesian product.

Definition 4 (Weak encoding). A function f : S → R is an (α, ε)-weak encoding
if it is computable in polynomial-time and there exists a probabilistic polynomial-time
algorithm If : R→ S⊥ such that

1. {true} r $← R; s← If (r) {s = ⊥ ∨ f(s) = r}
2. |= [r $← R; s← If (r)]s�=⊥ ,

∅
{s} [s $← S] � ε

3. Pr [r $← R; s← If (r) : s = ⊥] ≤ 1− α−1

Definition 5 (Admissible encoding). A function f : S → R is an ε-admissible encod-
ing if it is computable in polynomial-time and there exists a probabilistic polynomial-
time algorithm If : R→ S⊥ such that

1. {true} r $← R; s← If (r) {s = ⊥ ∨ f(s) = r}
2. |= r $← R; s← If (r) ,∅

{s} s $← S � ε

Brier et al. [9] prove that if G is a finite cyclic group of order N with generator g,
a function into G indifferentiable from a random oracle can be built from any poly-
nomially invertible function f : A → G and hash functions h1 : {0, 1}� → A and
h2 : {0, 1}∗ → ZN as follows:

H(m) def
= f(h1(m))⊗ gh2(m) (1)

Intuitively, the term gh2(m) behaves as a one-time pad and ensures that H covers all
points in the group even if f covers only a fraction. Our proof generalizes this construc-
tion to finitely generated abelian groups.

We begin by showing that any efficiently invertible encoding is a weak encoding.

Theorem 1. Let f : S → R be a function computable in polynomial-time such that
for any r ∈ R, #f−1(r) ≤ B. Assume there exists a polynomial-time algorithm I
that given r ∈ R outputs the set f−1(r). Then, f is an (α, 0)-weak encoding, with
α = B #R/#S.
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Proof. Using I, we build a partial inverter If : R → S⊥ of f that satisfies the proper-
ties in Definition 4:

If (r) : X ← I(r); b $← true⊕#X/B false;
if b = true then s $← X ; return s else return ⊥

First observe that If (r) fails with probability 1−#f−1(r)/B or else returns an element
uniformly chosen from the set of pre-images of r, and thus satisfies the first property
trivially. In addition, for any x ∈ S we have

Pr [r $← R; s← If (r) : s = x] =
1

B#R

Pr [r $← R; s← If (r) : s �= ⊥] =
1

#R

∑
r∈R

#f−1(r)

B
=

#S

B#R

Hence, for a uniformly chosen r, the probability of If (r) failing is exactly 1 − α−1,
and the probability of returning any particular value in S conditioned to not failing is
uniform. $%

We show next how to construct an admissible encoding from a weak-encoding into a
finite abelian group. Recall that every finite abelian group G is isomorphic to a product
of cyclic groups2

G , Zn1 × · · · × Znk

If we fix generators gi for each Zni , then any x ∈ G admits a unique representation
as a vector (gz11 , . . . , gzkk ). We use log to denote the operator that returns the canonical
representation �z = (z1, . . . , zk) for any x ∈ G.

Theorem 2. Let G , Zn1×· · ·×Znk
be a finite abelian group and let gi be a generator

of Zni for i = 1 . . . k. Assume that f : A → G is an (α, ε)-weak encoding. Then, for
any polynomially bounded T , the function

F : A× Zn1 × · · · × Znk
→ G

F (a, z1, . . . , zk) = f(a)⊗ gz11 ⊗ · · · ⊗ gzkk

is an ε′-admissible encoding into G, with ε′ = ε+
(
1− α−1

)T+1
.

Proof. Since f is a weak encoding, there exists a polynomial-time computable inverter
If of f satisfying the conditions in Definition 4. Let T ∈ N be polynomially bounded.
Using If , we build a partial inverter IF of F that satisfies the properties in Definition 5:

IF (r) : i← 0; a← ⊥;
while (i ≤ T ∧ a = ⊥) do
�z $← Zn1 × · · · × Znk

;

x← r ⊗ g−z1
1 ⊗ · · · ⊗ g−zk

k ;
a← If (x); i← i+ 1

end;
if a �= ⊥ then return (a, �z) else return ⊥

2 The decomposition can be made unique by fixing additional conditions on n1 . . . nk .
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Game G1 : r $← G; s← IF (r)

Game G2 :
r $← G;
i← 0; a← ⊥;
while (i ≤ T ∧ a = ⊥) do

x $← G; �z ← log (r ⊗ x−1);
a← If (x); i← i+ 1

end;
if a �= ⊥ then s← (a, �z) else s← ⊥

Game G3 :
r $← G;
i← 0; a← ⊥;
while (i ≤ T ∧ a = ⊥) do

x $← G; a← If (x); i← i+ 1
end;
�z ← log (r ⊗ x−1);
if a �= ⊥ then s← (a, �z) else s← ⊥

Game G4 :
i← 0; a← ⊥;
while (i ≤ T ∧ a = ⊥) do

x $← G; a← If (x); i← i+ 1
end;

�z $← �Z;
if a �= ⊥ then s← (a, �z) else s← ⊥

Game G5 G6 :
i← 0; a← ⊥;
while (i ≤ T ∧ a = ⊥) do

x $← G; a← If (x); i← i+ 1
end;

�z $← �Z;
if a �= ⊥ then a $← A; s← (a, �z)
else bad← true;

s← ⊥ a $← A; s← (a, �z)

Game G7 : s $← A× Z

Fig. 3. Sequence of games used in Theorem 2

The partial inverter IF runs in time tIF = (T + 1) tIf
, where tIf

is a bound on the
running time of If . Hence, IF is polynomial-time for any polynomially bounded T .

For the sake of readability in the following we use �Z to denote Zn1 × · · · ×Znk
and

�gz to denote gz11 ⊗ · · · ⊗ gzkk . We prove that

|= r $← G; s← IF (r) ,∅
{s} s $← A× �Z � ε′

using the sequence of games G1, . . . ,G7 shown in Figure 3, the mechanized program
transformations of CertiCrypt, and the proof rules for observational and approximate
observational equivalence. We briefly describe the proof below.

We obtain game G2 by first inlining the call to IF in the initial game and then apply-
ing the following algebraic equivalence to transform the body of the while loop:

|= �z $← �Z; x← r ⊗ �g−z ,{r}
{r,x,z} x $← G; �z ← log (r ⊗ x−1)

We obtain game G3 by moving the assignment to �z outside the loop in game G2. This
transformation is semantics-preserving because �z is never used inside the loop and the
value that it has when exiting the loop only depends on the value of x in the last iteration.
Formally, this is proven by unfolding the first iteration of the loop and establishing that
the relation

={i,x,a,r} ∧ (�z = log (r ⊗ x−1))〈1〉
is a relational invariant between the loop in G2 and the loop resulting from removing
the assignment to �z. By appending �z ← log (r ⊗ x−1) to the latter loop, we recover
equivalence on �z.
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Since r is no longer used inside the loop, we can postpone its definition after the
loop, and use the following algebraic equivalence to sample �z instead of r:

|= r $← G; �z ← log (r ⊗ x−1) ,{x}
{r,x,z} �z

$← �Z; r← x⊗ �gz

We obtain G4 by additionally removing the assignment to r, which is now dead code.
For the next step in the proof we use the fact that f is a weak encoding and therefore

the distribution of a after a call a ← If (x) conditioned to a �= ⊥ is ε-away from the
uniform distribution. This allows us to resample the value of a after the loop, provided
a �= ⊥, incurring a penalty ε on the statistical distance of the distribution of s between
G4 and G5. To prove this formally, let b be the condition of the loop and c its body. Ob-
serve that the semantics of the loop coincides with the semantics of its (T+1)-unrolling
[while b do c]T+1. We show by induction on T that for any [0, 1]-valued functions f, g
s.t. f ={a′} g,

m1={a,i}m2 ∧ m1(a) = ⊥ =⇒ |�c1�m1 f
′−�c2�m2 g

′| ≤ ε

where
c1 = [while b do c]T+1; if a �= ⊥ then a′ ← a
c2 = [while b do c]T+1; if a �= ⊥ then a′ $← A
f ′(m) = if m(a) �= ⊥ then f(m) else 0
g′(m) = if m(a) �= ⊥ then g(m) else 0

and use this to conclude the ε-approximate equivalence of G4 and G5.
Since G5 and G6 are syntactically equivalent except for code appearing after the flag

bad is set, we apply the corollary of the Fundamental Lemma in Section 3.2 to obtain
the bound

�G5,G6� � Pr [G5 : bad]

Since the probability of failure of If on a uniformly chosen input is upper bounded by
1− α−1, we can show by induction on T that

Pr [G5 : bad] ≤
(
1− α−1

)T+1
,

from which we conclude |= G5 ,∅
{s} G6 �

(
1− α−1

)T+1
.

By coalescing the branches in the conditional at the end of G6 and removing dead
code, we prove that the game is observational equivalent w.r.t a and �z to the game
a $← A; �z $← �Z; s← (a, z), which is trivially equivalent to G7.

By composing the above results, we conclude

|= G1 ,∅
{s} G7 � ε+

(
1− α−1

)T+1
(2)

We must also show that s = ⊥ ∨ F (s) = r is a post-condition of G1. As G1 and G3

are observationally equivalent with respect to s and r, it is sufficient to establish the
validity of the post-condition for G3. We show that a �= ⊥ ⇒ x = f(a) is an invariant
of the loop. When the loop finishes, either a = ⊥ and in this case s = ⊥, or a �= ⊥ and
we have F (s) = f(a)⊗ �gz = x⊗ r ⊗ x−1 = r. $%
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Finally, we show that the composition of an admissible encoding f : S → R and a
random oracle into S is indifferentiable from a random oracle into R.

Theorem 3. Let f : S → R be an ε-admissible encoding with inverter algorithm
If and let h : {0, 1}� → S be a random oracle. Then, f ◦ h is (tS , tD, q1, q2, ε

′)-
indifferentiable from a random oracle into R, where tS = q1 tIf

and ε′ = 2(q1 + q2)ε.

Before moving to the proof of Theorem 3, we prove the following useful result.

Lemma 3. Let f : S → R be an ε-admissible encoding with inverter algorithm If .
Then

|= s $← S; r ← f(s) ,∅
{r,s} r $← R; s← If (r) � 2ε

Proof. Define

ci
def
= s $← S; r← f(s)

cf
def
= r $← R; s← If (r)

c1
def
= ci; if s = ⊥ then r $← R else r ← f(s)

c2
def
= cf ; if s = ⊥ then bad← true; r $← R else r ← f(s)

c3
def
= cf ; if s = ⊥ then bad← true else r← f(s)

Since the first branch of the conditional in c1 is never executed, we have:

|= ci ,∅
{r,s} c1

Due to the second property of Definition 5, the distributions of s after executing ci and
cf are ε-away. Using the rules for approximate observational equivalence, we obtain

|= c1 ,∅
{r,s} c2 � ε

The corollary to the Fundamental Lemma in Section 3.2 implies that
�c2, c3� � Pr [c2 : bad]. Moreover,

Pr [c2 : bad] = 1− Pr [cf : s �= ⊥] = Pr [s $← S : s �= ⊥]− Pr [cf : s �= ⊥] ≤ ε

where the last inequality holds again because of the second property of Definition 5.
Since the final values of r and s in programs c2 and c3 are independent of the initial
memory, we have

|= c2 ,∅
{r,s} c3 � ε

Because If is a partial inverter for f , the else branch of the conditional in c3 has no
effect and can be removed, and thus |= c3 ,∅

{r,s} cf . We conclude by transitivity of
approximate observational equivalence. $%

Proof (of Theorem 3). Let D be a distinguisher against the indifferentiability of f ◦ h
making at most q1 queries to O1 and at most q2 queries to O2. We exhibit a simulator
S that uses a random oracle into R to simulate h and show that D cannot distinguish a
game G where O1 and O2 are implemented by f ◦ h and h respectively from a game
G′ where they are implemented by S and a random oracle into R instead. An overview
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Game G : L ← nil; b ← D( )

Oracle O1(x) :
if x /∈ dom(L1) then
s $← S; L1(x) ← s

return L1(x)

Oracle O2(x) :
if x /∈ dom(L2) then
s ← O1(x); r ← f(s); L2(x) ← r

return L2(x)

Game G′ : L ← nil; b ← D( )

Oracle O1(x) :
if x /∈ dom(L1) then
r ← O2(x); s ← If (r); L1(x) ← s

return L1(x)

Oracle O2(x) :
if x /∈ dom(L2) then
r $← R; L2(x) ← r

return L2(x)

Game G1 : L ← nil; b ← A( )

Oracle O(x) :
if x /∈ dom(L) then
s $← S; r ← f(s); L(x) ← (s, r)

return L(x)

Game G2 : L ← nil; b ← A( )

Oracle O(x) :
if x /∈ dom(L) then
r $← R; r ← If (r); L(x) ← (s, r)

return L(x)

Game Gbad
1 : L ← nil; b ← A( )

Oracle O(x) :
if x /∈ dom(L) then
if |L| < q1 + q2 then
s $← S; r ← f(s)

else bad ← true; s $← S; r ← f(s)
L(x) ← (s, r)

return L(x)

Game Gbad
2 : L ← nil; b ← A( )

Oracle O(x) :
if x /∈ dom(L) then
if |L| < q1 + q2 then

s $← S; r ← f(s)
else bad ← true; r $← R; s ← If (r)
L(x) ← (s, r)

return L(x)

Fig. 4. Games used in the proof of Theorem 3

of the proof, including these two games and the definition of the simulator is shown in
Figure 4.

Our goal is to prove

|Pr [G : b = true]− Pr [G′ : b = true] | ≤ 2(q1 + q2)ε (3)

The crux of the proof is an application of Lemma 1. In order to apply it, we need first
to transform the initial games to replace oraclesO1 andO2 by a single joint oracle that
simultaneously returns the responses of both. Using D, we construct an adversary A
with access to a single joint oracle, such that games G and G′ are equivalent to games
G1 and G2 in the figure. AdversaryA simply calls the distinguisherD and forwards the
value it returns; it simulates O1 and O2 by using its own oracle O.

We assume without loss of generality the equivalence between games G and G1, and
G′ and G2, respectively. This is identical to the assumption in [9] that the distinguisher
always makes the same queries to both its oracles. Games G1 and G2 satisfy the equali-
ties:

Pr [G : b = true] = Pr [G1 : b = true] Pr [G′ : b = true] = Pr [G2 : b = true]
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Furthermore, since D makes at most q1 queries to O1 and q2 queries to oracle O2, A
makes at most q = q1 + q2 queries to its oracle.

We next transform the implementation of oracle O in games G1 and G2 to enforce
the bound q1+ q2 on the total number of queries. After the allotted number of queries is
exhausted, oracle O behaves the same way in the two games. This ensures that further
queries will not make the statistical distance between the two games grow and paves
the way to applying Lemma 1. This transformation preserves observational equivalence
because we know thatAwill not make more queries than allowed. One way of justifying
this is using the syntactic criterion for Lemma 2: we annotate the games with a flag bad
that is set to true at points where the implementations of the oracleO in the games differ
and obtain

Pr
[
Gbad
1 : b = true ∧ ¬bad

]
= Pr

[
Gbad
2 : b = true ∧ ¬bad

]
But since bad =⇒ q < |L| is an invariant and |L| ≤ q is a post-condition of both
games,

Pr
[
Gbad
1 : b = true

]
= Pr

[
Gbad
2 : b = true

]
We can now apply Lemma 1 to the games G2 and Gbad

2 , defining cntr = |L| and
h(i) = if i < q then 2ε else 0. The second hypothesis of the lemma, i.e that a call to
E2(O) cannot decrease |L|, is immediate. We can assume that 2qε < 1 (otherwise the
theorem is trivially true). Then,

�cntr�m′−1∑
i=�cntr�m

h(i) ≤ 2qε < 1, and h̄cntr(m,m′) =

�cntr�m′−1∑
i=�cntr�m

h(i)

We are only left to prove that

�E2(O), Ebad
2 (O)� � λm. �E2(O)� m (λm′. h̄cntr(m,m′))

Doing a case analysis on the conditions x ∈ dom(L) and |L| < q yields four cases;
three of them yield a null distance and are immediate. The remaining case, where x /∈
dom(L) and |L| < q, yields a distance 2ε and follows from Lemma 3. We finally obtain
�G2,G

bad
2 � � 2(q1+q2)ε, which combined with the previous results implies the desired

inequality. $%

6 Application to Elliptic Curves

This section discuss the application of the proof presented in the previous section to
hashing into elliptic curves.

Let Fpm be a finite field of cardinal pm, with p > 3 prime. An elliptic curve over Fpm

is defined by the equation Y 2 = X3 + aX + b where the parameters a, b are elements
of Fpm such that 4a3 + 27b2 �= 0 (the curve must be non-singular). The set of points of
such a curve, which we denote Ea,b, can be construed as a finite abelian group with the
point at infinite O as the identity element. Furthermore, it can be shown that the group
Ea,b is either cyclic or a product of two cyclic groups.
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Hence, applying the results from the previous section, any polynomially invertible
function into a Ea,b can be transformed into a hash function that is indifferentiable from
a random oracle. In particular, this holds for Icart encoding, as we show next.

For pm ≡ 2 (mod 3), Icart function fa,b : Fpm → Ea,b is defined as:

fa,b(u)
def
=

⎧⎨⎩
(x, ux+ v) if u �= 0

((−b) 1
3 , 0) if u = 0 ∧ a = 0

O if u = 0 ∧ a �= 0

(4)

where x =

(
v2 − b− u6

27

) 1
3

+
u2

3
v =

3a− u4

6u

As a side remark, observe that the original definition only deals with the case a �= 0;
the definition for the case a = 0 was suggested to us by Thomas Icart in a private
communication.

The set of pre-images of a point in the curve under Icart function can be computed
efficiently by solving for the roots of polynomials over Fpm of degree at most 4—any
point in the curve has at most 4 pre-images:

f−1
a,b (O) def

=

{
{0} if a �= 0
∅ if a = 0

f−1
a,b (X,Y ) def

=

{
{u|u3 − 6uX + 6Y = 0} if a = 0
{u|u4 − 6u2X + 6uY = 3a} if a �= 0

This can be done using any efficient algorithm for factoring polynomials over finite
fields, e.g. Berlekamp’s algorithm. Thus, Icart encoding is polynomially invertible.

Formalization. To apply our generic proof of indifferentiability to Icart function, we
proceeded as follows:

1. We integrated Théry’s formalization of elliptic curves [30] in our framework, and
showed that the set of points of the elliptic curve Ea,b can be construed as a finite
cyclic group, as defined in SSREFLECT standard library [19];

2. We defined Icart function, and showed that it generates points in the curve Ea,b.
This required showing the existence of cubic roots in the field Fpm (the cubic root
of x ∈ Fpm is the element x(2pm−1)/3);

3. We defined the inverse of Icart function, for which we need to assume an efficient
method for factoring polynomials of degree 4 over the underlying field, as no ex-
isting Coq library readily provides the necessary background;

4. We applied Theorem 1 to show that Icart function is an (α, 0)-weak encoding,
where α = 4N/pm where N is the order of Ea,b;

5. We applied Theorem 2 to show that for any polynomially bounded T , the function
F : Fpm × ZN , defined as F (u, z) = fa,b(u) + gz , where g is a generator of ZN ,
is an ε-admissible encoding, where ε = (1 − α−1)T+1;

6. We finally applied Theorem 3 to show that if F is composed with a random oracle
into Fpm × ZN (equivalently, a random oracle into Fpm and a random oracle into
ZN ), the resulting construction is (tS , tD, q1, q2, 2(q1+ q2)ε)-indifferentiable from
a random oracle into Ea,b, where tS = q1 tIF = q1 (T + 1) tf−1 and tf−1 is an
upper bound on the time needed to compute the pre-image of a point under Icart
function, i.e. to solve a polynomial of degree 4 in Fpm .
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7 Related Work

Weak Equivalences. The impossibility to achieve perfect security has motivated several
proposals for weaker, quantitative, definitions of security. Prominent examples include
notions of confidentiality based on information theory [11, 12, 24, 29]. More recently,
Dwork [14] has suggested differential privacy as an alternative notion that quantifies
the privacy guaranteed by confidential data analysis. All of these definitions can be con-
strued as quantitative hyperproperties [12], and readily extend to relational properties
that are closely related to statistical distance.

Approximate observational equivalence is also closely related to weak notions of
bisimulations [26]. Barthe et al. [6] generalize approximate observational equivalence
to an approximate relational Hoare logic and report on an extension of the CertiCrypt
framework for reasoning about differential privacy. The validity of judgments in this
logic is based on a notion of approximate lifting of a relation that is closely related to
the notion used in [26].

Hashing into Elliptic Curves. A number of highly relevant cryptographic constructions,
including identity based schemes [8] and password based key exchange protocols [7],
require hashing into elliptic curves. Indeed, there have been a number of proposals for
such hash functions, see for instance [17, 21, 27]. Recently, Farashahi et al. [15] devel-
oped powerful techniques to show the indifferentiability of hash function constructions
based on deterministic encodings. Their results improve on [9], in the sense that they
apply to a larger class of encodings, including encodings to hyperelliptic curves, and
that they provide tighter bounds for encodings that are covered by both methods.

Formalization and Verification of Elliptic Curves. To our best knowledge, our work
provides the first machine-checked proof of security for a cryptographic primitive based
on elliptic curves. There are, however, previous works on the formalization of elliptic
curves: Hurd, Gordon and Fox [20] report on the verification in HOL of the group
laws and an application to the functional correctness of ElGamal encryption. Théry and
Hanrot [30] use Coq to formalize the group laws, and show how the formalization of
elliptic curves can be used to build efficient reflective tactics for testing primality.

8 Conclusion

This paper reports on a machine-checked proof of a recent construction to build hash
functions that are indifferentiable from a random oracle into an elliptic curve. The ex-
ample is singular among other examples that have been formalized using CertiCrypt,
because it involves complex reasoning about algebraic geometry and requires the for-
malization of new weak forms of program equivalence.

The formalization establishes the ability of CertiCrypt to integrate smoothly with
existing libraries of complex mathematics. Overall, the formalization consists of over
65,000 lines of Coq (without counting components reused from the standard libraries
of Coq and SSReflect), which break down as follows: 45,000 lines corresponding to
the original CertiCrypt framework, 3,500 lines of extensions to CertiCrypt, 7,000 lines
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written originally for our application to indifferentiability, and 10,000 lines of a slightly
adapted version of Théry [30] elliptic curve library.

Our work paves the way for further developments. We are interested in leveraging our
earlier formalization of zero-knowledge protocols [5] to statistical zero-knowledge, and
to use the result as a back-end for a certifying ZK compiler, in the style of [1]. We also
intend to pursue the machine-checked formalization of indifferentiability proofs, and
in particular to show that the finalists of NIST SHA-3 competition are indifferentiable
from a random oracle. Finally, it would be of interest to enhance EasyCrypt [3], an
automated front-end that generates verifiable security proofs in CertiCrypt, so that it
can manipulate the notions of equivalence considered in this paper (and in [6]).
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Abstract. There is a significant body of empirical work on statisti-
cal de-anonymization attacks against databases containing micro-data
about individuals, e.g., their preferences, movie ratings, or transaction
data. Our goal is to analytically explain why such attacks work. Specif-
ically, we analyze a variant of the Narayanan-Shmatikov algorithm that
was used to effectively de-anonymize the Netflix database of movie rat-
ings. We prove theorems characterizing mathematical properties of the
database and the auxiliary information available to the adversary that
enable two classes of privacy attacks. In the first attack, the adversary
successfully identifies the individual about whom she possesses auxiliary
information (an isolation attack). In the second attack, the adversary
learns additional information about the individual, although she may not
be able to uniquely identify him (an information amplification attack).
We demonstrate the applicability of the analytical results by empirically
verifying that the mathematical properties assumed of the database are
actually true for a significant fraction of the records in the Netflix movie
ratings database, which contains ratings from about 500,000 users.

Keywords: Privacy, database, de-anonymization.

1 Introduction

In recent years, there has been a steady increase in the number of publicly re-
leased databases containing micro-data about individuals, e.g., their preferences,
movie ratings, or transaction data. There are a number of reasons for this phe-
nomena, for example, enabling useful tasks such as improving recommendation
systems [8] and providing transparency about the activities of government agen-
cies, such as the justice system [1].

At the same time, these databases raise privacy concerns because they contain
personal information about individuals that they may not want to share with the
whole world. In order to alleviate these concerns, various techniques have been
proposed to “anonymize” databases before releasing them. These anonymiza-
tion techniques have been developed in response to specific classes of attacks
observed in practice. It is now well known that just removing obvious identi-
fiers, such as names, social security numbers and IP addresses, is not sufficient
for anonymization—an adversary can use auxiliary information acquired from
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other sources to de-anonymize individual data records by computing database
joins. Examples of attacks of this form include de-anonymizing records in a hos-
pital discharge database and AOL search logs [2, 16]. More recently, a class of
statistical de-anonymization attacks have been presented that work on high-
dimensional micro-data and the applicability of the attack has been empirically
demonstrated on the publicly available Netflix movie ratings database; the at-
tacks work even when the released data has been perturbed and the auxiliary
information available to the adversary is noisy [11].

Our goal is to analytically explain why such attacks work. Specifically, we
analyze a variant of the Narayanan-Shmatikov weighted algorithm that was
used to effectively de-anonymize the Netflix database of movie ratings. Roughly,
this algorithm takes as input noisy auxiliary information about an individual
(e.g., movie ratings) and a database, and outputs the record in the database
that has the highest score on the common attributes. The score is a weighted
sum of the similarity of individual attributes where rare attributes are assigned
higher weights. We prove theorems characterizing mathematical properties of
the database and the noisy auxiliary information available to the adversary that
enable two classes of privacy attacks. In the first attack, the adversary success-
fully identifies the individual about whom she possesses auxiliary information
(an isolation attack), i.e., the algorithm outputs the correct record. In the sec-
ond attack, the adversary learns additional information about the individual,
although she may not be able to uniquely identify him (an information amplifi-
cation attack), i.e., the algorithm outputs a record of a ‘similar’ individual. We
empirically verify that the mathematical properties assumed of the database are
actually true for a significant fraction of the records in the Netflix movie rat-
ings database, which contains ratings from about 500,000 users, even when the
auxiliary information is noisy. Thus, our theorems formally explain why these
attacks work on the Netflix database.

The analytical and empirical study led to several insights about the nature
of de-anonymization attacks. First, it provides a technical characterization of
an observation due to Narayanan and Shmatikov [12] that “any information
that distinguishes one person from another can be used to re-identify anony-
mous data”. This intuition is reflected in the weighted scoring algorithm: rare
attributes directly correspond to distinguishing attributes because, by defini-
tion, a record’s non-null value for a rare attribute means that that record is
different from the many records that have null value for the rare attribute. In
addition, the weighted linear combination is combining different distinguishing
attributes into a single metric that distinguishes the records better than the
individual attributes. While the effectiveness of this idea has been empirically
demonstrated [11], to the best of our knowledge our theorem about the isola-
tion attack is the first analytical characterization of this idea. (Note that while
Narayanan and Shmatikov present analytical results about a simpler unweighted
algorithm, they do not analyze the weighted algorithm that was actually used
in the empirical study.)
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Second, we formulate and prove the theorem about the information amplifica-
tion attack under the following assumption: records which agree on distinguishing
(rare) attributes must be similar overall. This assumption is justified by the ob-
servation that people with similar tastes, e.g., in rare movies are likely to also
share similar opinions on other movies. It is important to note that this assump-
tion may not hold for all databases, but our empirical results demonstrate that
it holds for the Netflix database.

Third, in formulating our theorems, a guiding consideration was that the
assumptions should be empirically verifiable on a released database even if we
do not know what distribution the database was drawn from. We conduct ex-
periments to verify the assumptions on the Netflix database. We find that the
assumptions for both the theorems for the weighted algorithm are true for a
significant fraction of the records. In particular, the assumptions required for
the isolation attack hold for 90% of the records when the perturbation in the
auxiliary information is less than 10%. As expected, the percentage of records
for which the assumption holds decreases as the perturbation is increased, and
increases as the number of attributes in the auxiliary information is increased.
For the information amplification attack, we verify that if auxiliary information
auxy about a target record y is not too perturbed (< 10%) and a significant
fraction of the attributes in auxy (> 0.75) are rare, then for a significant frac-
tion of target records (> 0.90), if any record r is similar (similarity value > 0.75)
to auxy, then r is also similar (similarity value > 0.65) to y. Also, as the frac-
tion of rare attributes in auxiliary information increases and the threshold for
similarity between auxiliary information and the output record increases, the
similarity between the target record and the output record increases.

Finally, we comment on the relation of our results to prior work on quasi-
identifers. Observing that de-anonymization attacks are possible even when ob-
viously identifying information (such as names and social security numbers) is
removed from micro-data databases, Samarati and Sweeney [13, 15] introduced
the concept of quasi-identifers—attributes that could be used to re-identify in-
dividuals by linking with another source. An important challenge that this line
of work does not address (see also [9,10,17]) is how to identify quasi-identifiers.
As mentioned earlier, our formalization captures the intuition that any attribute
can be a quasi-identifier—the rarer the attribute, the greater is its contribution
towards distinguishing an individual. Thus, one might view our results as provid-
ing a semantic characterization of database properties and auxiliary information
that provably enable de-anonymization by linking in this more general setting.
Note that in our characterization, the analog of a quasi-identifier (the prop-
erty that enables linking attacks) is not just a property of the database; it also
depends on the adversary’s auxiliary information.

The rest of the paper is organized as follows. Section 2 describes related
work. Section 3 presents preliminary definitions. Section 4 presents an analysis
of the simpler generic (unweighted) algorithm for de-anonymization [11]. Sec-
tion 5 presents the main technical results of the paper—the analysis of isolation
and information amplification attacks using the weighted algorithm. Section 6



232 A. Datta, D. Sharma, and A. Sinha

presents empirical results demonstrating that the analytical results apply to
the Netflix database. Finally, Section 7 presents conclusions and directions for
future work.

2 Related Work

Dwork and Naor [5] prove a fundamental tradeoff between utility and a strong
form of privacy property (due to Dalenius [4]) capturing the intuition that noth-
ing about an individual should be learnable from the database that cannot be
learned without access to the database. They prove that it is not possible to
satisfy this definition if the database is to have any utility assuming that the
adversary has arbitrary auxiliary information. In contrast, in our work we seek
to characterize a restricted class of auxiliary information (which adversaries may
realistically possess) and database perturbation techniques (employed in practice
to release micro-data) for which de-anonymization attacks provably work. The
starting point of our analysis is the formal model proposed by Narayanan and
Shmatikov, which they used to analyze a simpler algorithm [11] (see also [3]). In
the original paper by Narayanan and Shmatikov [11], two algorithms have been
proposed- generic and weighted scoring algorithms. The first algorithm (generic
scoring algorithm) is analyzed, however, it is not used in the actual attack. In
our work, we analyze a minor variant of the weighted scoring algorithm, used
in the attack on Netflix database by Narayanan and Shmatikov. We present
an alternative definition of the similarity metric (as mentioned in Section 3),
a different notion of “eccentricity” (as described in Section 5) and prove the-
orems characterizing both the isolation and information amplification attacks
using the weighted algorithm that was only empirically evaluated in their paper.
In addition, we empirically validate that the assumptions hold on the Netflix
database.

Boreale et al [3] present an alternative approach to analyzing de-anonymization
attacks. Specifically, the authors model the process of de-anonymization of a
database using an Information Hiding System (IHS) whose input includes identi-
fied records, output includes observable information (e.g., perturbed attributes),
and the conditional probability matrix models the process of acquiring auxil-
iary information. They prove theorems characterizing information leakage using
a sparsity assumption about rows in the database (which roughly captures the
idea that no two records in the database are similar except with low probability)
and assuming that the auxiliary information includes attributes sampled uni-
formly at random. In contrast, we use an assumption about sparsity of columns
(rare attributes) and leverage knowledge of rare attributes in the auxiliary in-
formation to provide an analysis of the weighted algorithm of Narayanan and
Shmatikov, which as also remarked by Boreale et al., allows more effective de-
anonymization.

In a separate attack, ratings from an “anonymized” database released by an-
other recommender service, Movielens, were linked to individuals by using movies
publicly mentioned by users online [7]. We use a similar scoring methodology as
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was proposed by Narayanan and Shmatikov [11] and Frankowski et al [7], how-
ever the algorithms we analyze allow for information to be perturbed, unlike the
attack on the MovieLens database.

Differential privacy is useful for releasing privacy-preserving statistics [5, 6].
However, the focus of this work is on databases containing microdata.

3 Definitions

In this section, we describe notation used throughout the paper and present defi-
nitions of the asymmetric similarity metric and perturbed auxiliary information.

Let D0 denote the original database containing individuals’ records (which
have not been anonymized). An ‘anonymized’ version of this database is released
as D with n rows and c columns. D is obtained by running an anonymization
algorithm on the original database D0. Each row in the database corresponds to
a different individual’s record and each column corresponds to an attribute. Let
r(i) denote the value of ith column for the row corresponding to record r ∈ D.
The target record (i.e., the record the adversary is looking for), denoted by y,
is assumed to be always present in the released database D. The set of non-null
values of any record r is denoted by supp(r); similarly, the set of non-null values
in any column i is denoted by supp(i).

In order to compare the values of any two records in the database, we define
a similarity metric S.

Definition 1 (Asymmetric Similarity Metric). Similarity of record r when
compared against record y is defined as:

S(y, r) �
∑

i∈supp(y)

T (y(i), r(i))

|supp(y)| (1)

where

T (y(i), r(i)) � 1− |y(i)− r(i)|
p

(2)

and p is the maximum possible difference between values of the column i.

Here, T (y(i), r(i)) is defined as a scaled measure of difference between two records
y and r when compared on the ith attribute. The value of each column is scaled
by p (the range of values for the column), so that the value for T (., .) lies in the
interval [0, 1].

In contrast, Narayanan and Shmatikov use a symmetric similarity measure
Sim that compares two records on the union of the non-null attributes in the
two records [11]. Observe that when S(y, r) is high, r reveals information about
the attributes of y. However, even if S(y, r) is high, Sim(y, r) could be low if r
has a large number of a non-null attributes that do not overlap with non-null
attributes in y. Thus, we believe that S is a better measure to use in the design
and analysis of de-anonymization attacks than Sim.
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Definition 2 ((m, γ)-perturbed auxiliary information). Auxiliary infor-
mation about record y ∈ D, denoted by auxy, contains perturbed values of m
non-null attributes sampled from attributes in record y. auxy is defined to be
(m, γ)-perturbed if ∀i ∈ supp(auxy).T (y(i), auxy(i)) ≥ 1− γ where 0 ≤ γ ≤ 1.

Note that the definition above abstracts away from whether the perturbation
is in the released database or in the auxiliary information by noting that the
relevant property is a lower bound on the attribute-wise similarity between the
auxiliary information and the target record. The structure of auxy is similar to
that of a record in the database, with m columns (|supp(auxy)| = m).

4 Analysis of Generic Scoring Algorithm

In this section, we analyze and obtain provable bounds for the generic scor-
ing algorithm proposed by Narayanan and Shmatikov. The generic algorithm
considers all the attributes in the auxiliary information as equally important
for re-identification. Our theorem uses the asymmetric similarity metric defined
in Section 3 and gives a lower bound on the similarity of the record output
by the algorithm with the target record y. However, this algorithm might not
de-anonymize records effectively as the effect of perturbation in even a single
attribute of the auxiliary information would lower the overall score [11]. We
include this analysis for completeness.

The scoring function used by the generic scoring algorithm is defined below.

Definition 3 (Scoreg). Scoreg(auxy, r) of a record r ∈ D w.r.t. auxiliary in-
formation auxy about target record y is defined as:

Scoreg(auxy, r) = mini∈supp(auxy)T (auxy(i), r(i)) (3)

The Narayanan-Shmatikov generic scoring algorithm is described in Algorithm 1.

Algorithm 1. Generic Scoring Algorithm

– Fix a target record y
– auxy is (m,γ)-perturbed auxiliary information about target record y
– Compute Scoreg(auxy, r) for every record r in the dataset
– Form a matching set of records that satisfy:

M = {r ∈ D : Scoreg(auxy, r) ≥ 1− γ} (4)

– Output a randomly chosen record from the matching set.

We prove a lower bound on the similarity of the record output by the algo-
rithm with the target record, assuming that the auxiliary information is (m, γ)
perturbed. The full proof is included in the appendix.



Provable De-anonymization of Large Datasets with Sparse Dimensions 235

Theorem 1. Let y denote the target record from given database D. Let auxy

denote (m, γ)-perturbed auxiliary information, uniformly sampled from the at-
tributes in record y. Let ε > 0. Then with probability ≥ 1 − g, a record o can
be found in the dataset such that the value of S(y, o) is greater than 1− 2γ − ε,

where g = e−2∗ε2∗m.

5 Analysis of Weighted Scoring Algorithm

In this section, we analyze a variant of the weighted scoring algorithm pro-
posed by Narayanan and Shmatikov. The weighted scoring algorithm gives higher
weight to ‘rare’ attributes in the auxiliary information. We present the algorithm
and two theorems characterizing the effectiveness of the algorithm for isolation
and information amplification attacks. Specifically, we prove that if the score of
a record is significantly higher than the scores of other records, then the record
can be isolated using the weighted scoring algorithm. We also prove a theorem
that quantifies the probability and degree of an information amplification attack
assuming that (a) a fraction of the attributes in perturbed auxiliary informa-
tion is rare; and (b) if people agree on several rare attributes, then with high
probability they are also similar on other attributes.

We begin by presenting definitions that are used in the description of the
algorithm and its analysis.

Definition 4 (Weight of an attribute). The weight of an attribute i is de-
noted by wi and is defined as wi =

1
log2 |supp(i)|

1.

We denote the scaled sum of weights of attributes in auxy byM =

∑
i∈supp(auxy) wi

|supp(auxy)|
where auxy refers to the perturbed auxiliary information corresponding to the
target record y. Next, we formalize the notion of rarity of an attribute.

Definition 5 (t-rare attribute). An attribute is said to be t-rare if wi =
1

log2 |supp(i)| ≥ t where t is a threshold value and 0 < t ≤ 1.

Definition 6 ((δ, t)-rare auxiliary information). Auxiliary information
about record y ∈ D, denoted by auxy, is said to be (δ, t)-rare if the fraction of
t-rare attributes in auxiliary information auxy, denoted by δauxy equals δ where
0 < δ, t ≤ 1.

Definition 7 (Scorew). Scorew(auxy, r) of a record r ∈ D w.r.t. auxiliary in-
formation auxy about target record y is defined as:

Scorew(auxy, r) =
∑

i∈supp(auxy)

wi ∗ T (auxy(i), r(i))

m
(5)

1 We assume that |supp(i)| > 2; for the Netflix dataset we have mini |supp(i)| = 3.
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Definition 8 (Eccentricity). We define eccentricity e as

e(auxy, D) = max
r∈D

(Scorew(auxy, r)) − max
2,r∈D

(Scorew(auxy, r)) (6)

where r ∈ D, y is the target record and auxy refers to the perturbed auxil-
iary information obtained from target record y. maxr∈D(Scorew(auxy, r)) and
max2,r∈D(Scorew(auxy, r)) refer to the highest and second highest value, respec-
tively, of Scorew(auxy, r) taken over the scores of all the records r in D.

Eccentricity is a measure of how far apart the highest scoring record is from
the second highest score when a scoring algorithm is employed. The eccentricity
measure would be useful in eliminating false positives in the result output by
the algorithm, as described in Algorithm 2.

Algorithm 2. Weighted Scoring Algorithm

– Fix a target record y
– auxy is (m,γ)-perturbed auxiliary information about target record y
– Compute Scorew(aux, r) for every record r in the dataset
– Output the record with the highest score if e(auxy, D) > T , where T is a preset

threshold2, else output NULL. Let o denote the record output by the algorithm.

Isolation Attack. In the first attack, an adversary with some auxiliary infor-
mation successfully isolates an individual from a database. We prove that for a
given target record y, if auxiliary information auxy is (m, γ)-perturbed and if
the score of the record o output by the algorithm differs from the second-highest
score by a certain threshold, then o = y. The intuition behind the assumption
in this theorem is that if a record is significantly different from other records on
attributes present in auxiliary information, then the record can be isolated using
the weighted scoring algorithm.

The proof proceeds as follows: by using the assumption that auxy is (m, γ)-
perturbed, we derive a lower bound for the score of target record y when com-
pared with auxy. We prove the main result in the theorem by contradiction. We
assume that the maximum possible value of the scoring function when computed
over all records in the database is not equal to the score of the target record y.
We show that this assumption leads to the conclusion that the maximum pos-
sible score is greater than M , which is not possible since M equals the value of
the scoring function assuming that every attribute in auxy matches completely
with the attributes in the record being compared against.

Theorem 2. Let y denote the target record from given database D. Let auxy

denote (m, γ)-perturbed auxiliary information about record y. If the eccentricity

measure e(auxy, D) > γM where M =

∑
i∈supp(auxy) wi

|supp(auxy)| is the scaled sum of

weights of attributes in auxy, then



Provable De-anonymization of Large Datasets with Sparse Dimensions 237

1. maxr∈D(Scorew(auxy, r)) = Scorew(auxy, y).
2. Additionally, if only one record has maximum score value = Scorew(auxy, y),

then the record returned by the algorithm o is the same as target record y.

Proof. By definition of Similarity metric S(., .), for any record r ∈ D and given

target record y, S(y, r) =
∑

i∈supp(y)
T (y(i),r(i))

k , where k = |supp(y)|.
Also, by definition of Scorew(., .),

Scorew(auxy, r) =

∑
i∈supp(auxy)

wi ∗ T (auxy(i), r(i))

m
(7)

where wi =
1

log2 |supp(i)| . Given the assumption ∀i ∈ supp(auxy).T (y(i), auxy(i))

≥ 1− γ, we can use equation 7, to conclude that

Scorew(auxy, y) =

∑
i∈supp(auxy)

wi ∗ T (auxy(i), y(i))

m

=

∑
i∈supp(auxy)

wi ∗ T (y(i), auxy(i))

m

≥
∑

i∈supp(auxy)
(1− γ)wi

m
≥ (1− γ) ∗

∑
i wi

m
= (1 − γ) ∗M

since T (y(i), auxy(i)) = T (auxy(i), y(i)) by definition.
We prove the result in our theorem by contradiction. We assume that

max
r∈D

(Scorew(auxy, r)) �= Scorew(auxy, y) (8)

Observe that

max
r∈D

(Scorew(auxy, r)) > Scorew(auxy, y) (from equation 8) (9)

If maxr∈D(Scorew(auxy, r)), is greater than Scorew(auxy, y) then

max
2,r∈D

(Scorew(auxy, r)) ≥ Scorew(auxy, y) (10)

since max2,r∈D(Scorew(auxy , r)) is the second highest value of all scores.
Further, it is assumed that e(auxy, D) > γM , therefore,

max
r∈D

(Scorew(auxy, r)) > γM + max
2,r∈D

(Scorew(auxy, r))

> γM + Scorew(auxy, y) > γM + (1− γ) ∗M = M

which is not possible since M is the maximum possible score for any record r in
the database as shown below

Scorew(auxy, r) =

∑
i∈supp(auxy)

wi

m
∗ T (auxy(i), r(i))

max
r∈D

(Scorew(auxy, r)) ≤
∑

i∈supp(auxy)
wi

m
≤M

since max(T (., .)) = 1.
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Therefore, our assumption is wrong and we conclude that

max
r∈D

(Scorew(auxy, r)) = Scorew(auxy, y)

Also, since we assumed that target record y is always part of the released
database D, therefore, if there is only one record with the maximum score and
Scorew(auxy, y) is same as the maximum score then the the record with maxi-
mum score has to be y, which is returned by the algorithm. Hence proved.

Information Amplification Attack. In the second attack, although an adversary
may not be able to uniquely isolate a record, she can still obtain additional in-
formation about the randomly chosen target record y under certain assumptions
about the database. The intuition that if people agree on several rare attributes,
then with high probability they are similar on other attributes, guided us to de-
fine a function fD for database D. We use fD to measure the overall similarity
of the target record y and r by an indirect comparison of the rare attributes of
y and the record r. The comparison is indirect because we use auxy as a proxy
for y and compare the rare attributes of auxy with r. To capture the intuition
that the agreement must happen on rare attributes the function fD depends on
the fraction of rare attributes in auxy (η1). To capture the intuition that there
should be agreement on the rare attributes, fD also depends on a lower bound
(η2) for S(auxy, r). In addition, to capture the fraction of target records (η3)
for which the overall similarity of the target record y and r is given by fD we
also include η3 as a parameter for fD. We define two parameterized sets before
formalizing this intuition in Property 1.

Definition 9 (Dm,η1). Dm,η1 is the subset of the records of a database D that
have no less than m non-null attributes and at least η1 of those attributes are
t-rare.

We denote the above set as Dm,η1 , ignoring the parameter t for notational ease.

Definition 10 (Auxy,m,η1). Auxy,m,η1 is the set of all (m, γ)-perturbed and
(η1, t)-rare sets of auxiliary information about record y.

Again, we ignore some parameters in Auxy,m,η1 for the sake of notational ease.
We assume that for the given database D there exists a function fD with
Range(fD) ⊆ [0, 1] and the following property:

Property 1. Choose any m and η1. Let y be chosen uniformly at random from
Dm,η1 . Let auxy be chosen uniformly at random from Auxy,m,η1 . Then

∀η2, η3, r. (S(auxy, r) ≥ η2)→ Pr[S(y, r) ≥ fD(η1, η2, η3)] ≥ η3

where r ∈ D. The probability is over the random choices made in choosing y.

We state the theorem below.
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Theorem 3. Let t and γ be in (0, 1). Fix any l1 ∈ (0, 1). Let y denote the
target record chosen uniformly at random from Dm,l1 . Let auxy denote a (m, γ)-
perturbed and (l1, t)-rare auxiliary information about record y chosen uniformly
at random from Auxy,m,l1 . Additionally, we assume the existence of function
fD(., ., .) that satisfies Property 1. Then Pr[S(y, o) ≥ fD(l1, l2, η3)] > η3, where

l2 =
(
∑

i∈supp(auxy) wi)
2

∑
i∈supp(auxy) (wi)2

(1−γ)2

m , o is the record output by the Weighted Algorithm

and the probability is taken over the random choices made in choosing y.

The proof proceeds as follows:

1. We derive a relationship between S(auxy, r) and Scorew(auxy, r) by using
the Cauchy-Schwarz inequality [14] for any record r.

2. By using the assumption that auxy is (m, γ)-perturbed, we derive a lower
bound for Scorew(auxy, o). Using this and the last step we obtain a lower
bound for S(auxy, o).

3. By using this bound in conjunction with the function fD stated above, we
give a probabilistic guarantee about S(y, o).

Proof. Let xi(y, r) = T (y(i), r(i)) for any record r ∈ D . Therefore, S(y, r) =∑
i
xi(y,r)

k , where k = |supp(y)|. Also,

Scorew(auxy, r) =

∑
i∈supp(auxy)

wi ∗ T (auxy(i), r(i))

m

=

∑
i∈supp(auxy)

wi ∗ xi(auxy, r)

m

We prove the first part of the proof by Cauchy Schwarz inequality,(∑
i

AiBi

)2

<
∑
i

A2
i

∑
i

B2
i

Therefore⎛⎝ ∑
i∈supp(auxy)

wi ∗ xi(auxy, r)

⎞⎠2

<

⎛⎝ ∑
i∈supp(auxy)

w2
i

⎞⎠⎛⎝ ∑
i∈supp(auxy)

xi(auxy, r)
2

⎞⎠
Since 0 ≤ T (auxy(i), r(i)) ≤ 1⎛⎝ ∑

i∈supp(auxy)

xi(auxy, r)
2

⎞⎠ ≤

⎛⎝ ∑
i∈supp(auxy)

xi(auxy, r)

⎞⎠
Therefore,⎛⎝ ∑

i∈supp(auxy)

wi ∗ xi(auxy, r)

⎞⎠2

<

⎛⎝ ∑
i∈supp(auxy)

(wi)
2

⎞⎠⎛⎝ ∑
i∈supp(auxy)

xi(auxy, r)

⎞⎠
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By definition of Scorew(auxy, r) and S(auxy, r) we get

(m ∗ Scorew(auxy, r))
2 < (

∑
i∈supp(auxy)

(wi)
2)S(auxy, r)m

S(auxy, r) >
(m ∗ Scorew(auxy, r))

2

m
(∑

i∈supp(auxy)
(wi)2

) =
m ∗ (Scorew(auxy, r))

2∑
i∈supp(auxy)

(wi)2

For the second step of the proof we use the assumption ∀i ∈ supp(auxy).T (y(i),
auxy(i)) ≥ 1 − γ. We can use the definition of Scorew(., .) (equation 7), to
conclude that

Scorew(auxy, y) =

∑
i∈supp(auxy)

wi ∗ T (auxy(i), y(i))

m

=

∑
i∈supp(auxy)

wi ∗ T (y(i), auxy(i))

m

≥
∑

i∈supp(auxy)
(1 − γ)wi

m

≥ (1− γ) ∗
∑

iwi

m
≥ (1− γ) ∗M

since T (y(i), auxy(i)) = T (auxy(i), y(i)) by definition.
Also since o has the max score Scorew(auxy, o) ≥ Scorew(auxy, y) and hence

Scorew(auxy, o) ≥
∑

i∈supp(auxy)
wi ∗ T (auxy(i), y(i))

m

≥ (1− γ)

∑
i∈supp(auxy)

wi

m
≥ (1 − γ)M

Substituting in equation derived for S(auxy, o) above,

S(auxy, o)>
m(Scorew(auxy, o))

2

(
∑

i∈supp(auxy)
w2

i )
>

m((1− γ)M)2

(
∑

i∈supp(auxy)
w2

i )
>

(
∑

i∈supp(auxy)
wi)

2

∑
i∈supp(auxy)

(wi)2
(1− γ)2

m

Thus, S(auxy, o) > l2.
Finally for the last part of the proof, we use the assumption that y was chosen

uniformly at random from Dm,l1 , auxy was chosen uniformly at random from
Auxy,m,li and the result above that S(auxy, o) > l2 to invoke Property 1 and
claim the following:

Pr[S(y, o) ≥ fD(l1, l2, η3)] ≥ η3

To summarize, we use a function fD parametrized by a database D in formu-
lating and proving the theorem about the information amplification attack. The
idea here is that the theorem provides bounds on the information amplification
attack for ‘any’ database D for which there exists an fD such that the assump-
tions in the above stated theorem holds. Note that the bounds will be good
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(i.e., the information amplification attack is effective) if η3 is close to 1 (i.e., the
attack succeeds with high probability) and the value of fD is also close to 1 (i.e.,
the target record is very similar to the record output by the algorithm) given
(a) the fraction of rare attributes in the auxiliary information (l1) and (b) the
similarity between the auxiliary information and the record output by the algo-
rithm (l2). We demonstrate in the next section that the function fD computed
for the Netflix database enables us to claim that with high probability, the out-
put of the Weighted Algorithm run on the Netflix database will be similar to the
target record.

6 Empirical Results

For empirically testing the assumptions in our theorems, we use the ‘anonymized’
Netflix database with 480, 189 users and 17, 770 movies, also used by Narayanan
and Shmatikov. We run the modified Narayanan-Shmatikov weighted scoring
algorithm as described in Section 5. Note that when we use m attributes in
auxiliary information, we filter out records that have less than m attributes.
Additionally, when we have the condition that δauxy is a fixed fraction, this leads
to more records being filtered out as the criteria is not met for these records.
The percentage values claimed in all our results are percentage of records that
are not filtered out. The following table shows the fraction of records that get
filtered out for different values of m and t.

Table 1. Percentage of records that get filtered out, when t= 0.07, 0.075

m t Percentage of records m t Percentage of records

8 0.07 28.4 8 0.075 38.4

10 0.07 31.3 10 0.075 41.4

20 0.07 46.6 20 0.075 56.9

We list some of our key findings and explain these in detail.

1. Isolation Attack

– We verify the percentage of records in the database for which both the
assumptions in Theorem 2 presented in Section 5 hold true, over the
Netflix database. Our empirical analysis verifies that the assumptions
hold true for majority of records.

– We also test the assumptions for varying levels of perturbation in auxy.
– Additionally we compute the percentage of records for which the ec-

centricity assumption holds when we vary threshold for rarity of an at-
tribute, t and number of attributes in auxy, m.

– As compared to the attack demonstrated by Narayanan and Shmatikov
[11], we do not use dates for analysis. However, we consider perturbation
in ratings in auxy, as opposed to exact ratings being present in auxy.
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2. Information Amplification Attack

– We develop an algorithm that computes the value of fD for different
values of the parameters γ, η1, η2 and η3 for any database D and auxiliary
information auxy.

– Our results show that for the Netflix database the function fD is mono-
tonically increasing in η1, η2 and tends to 1 as η1, η2 increases. Then the
weighted scoring algorithm output will be quite similar to the target
record for Netflix database, hence the Narayanan-Shmatikov weighted
scoring algorithm was successful in finding attacks.

6.1 Isolation Attack

Verifying assumptions for varying levels of perturbation in auxy. For
the first result based on the isolation attack, we plot the fraction of records for
which the eccentricity assumption holds, against the value of perturbation in
auxiliary information auxy, where fraction of rare attributes in auxy (δauxy ) =
0.75. These results have been obtained by averaging the results from a sample of
10, 000 records randomly chosen with replacement. We obtain results for varying
levels of perturbation in auxiliary information, γ = 0.07, 0.1, 0.15, 0.2. The results
are shown and plotted in Figure 1. In this figure, we consider an attribute as rare
if the column corresponding to the movie has weight ≥ 0.07 (t = 0.07) which
implies that any column with less than ∼ 19, 972 entries will be defined as rare.

We conclude that when perturbation in auxy is less than 10%, then the score
of the best-match record exceeds the second-best score by a value greater than
our theoretic threshold (= γ∗M) for a significant fraction of the records (> 0.90),
which implies that > 90% of the records can be successfully isolated. Also, we
observe that as perturbation in auxiliary information (γ) increases, the number
of records for which the assumption holds decreases. One factor causing this
decrease could be that an increase in γM implies that the best match record
would need to be different from the second highest score by a much higher value
than when γ is lower, which may not always be true. However, we note that even
with 20% perturbation, the assumption holds for > 10% of the records when the
auxiliary information set contains 10 attributes. There are approximately 500000
users in the database; without considering the records that get filtered out, the
attack still affects more than 34,000 users, which is quite significant.

Additionally in Figure 1, we also vary the number of attributes m in the
auxiliary information auxy; specifically we run the algorithm for m = 10, 20. We
observe that as the number of attributes in auxiliary information set increases,
the fraction of target records for which the eccentricity assumption holds and
thus fraction of target records which can be isolated from a database, increases.

Verifying assumptions for unperturbed auxy. We compute the fraction of
records that are isolated for m = 8, γ = 0, δauxy = 0.75. Since the perturbation γ
in auxy is 0, the score of the best-match record exceeds the second-best score by
γM trivially. So for > 99% of the records that have greater than 8 attributes and
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m γ % of records m γ % of records

10 0.07 92.45 20 0.07 99.18

10 0.1 77.73 20 0.1 95.54

10 0.15 39.29 20 0.15 66.73

10 0.2 10.97 20 0.2 22.88

Fig. 1. Percentage of records for which eccentricity assumption holds when t = 0.07

more than 6 rare attributes and 2 non-rare attributes, there is only one record
with the highest score and all these target records can be isolated. However, if
we do not filter out records that have less than 8 attributes we get the result that
72% of all the records can be isolated when threshold for rarity of an attribute,
t = 0.07 and 61% of all the records can be isolated when t = 0.075. This
conclusion is not as good as the results obtained by Narayanan and Shmatikov,
as they de-identified 84% of the records in the database with exact ratings and
no dates at all. However, our results are computed using the generalized variant
of the weighted scoring algorithm and not the heuristically tuned algorithm
that Narayanan and Shmatikov actually use in the experiments. Our guarantees
are supported by the theorems in Section 5, however as the authors themselves
point out, the specifically tuned parameters in their algorithm might not work
for another database.

Additionally in Figure 2, we plot the fraction of records for which eccentricity
assumption holds when we consider an attribute as rare if the weight of the
column i corresponding to the attribute has wi ≥ 0.075 (t = 0.075) which
implies that any column with less than ∼ 10, 000 entries will be defined as rare.
We plot the results for m = 20. In Figure 2, overall less attributes are considered
as rare as compared to Figure 1.

6.2 Information Amplification Attack

Computing fD(η1, η2, η3). We compute fD(., ., .) using the routine shown
in Algorithm 3. In the given code we would ideally want to take n as large as
possible, but, that is not feasible. Hence we take n as 50 and then run the code
60 times and take the average value of fD over the 60 runs as the final computed
value. This is not the exact value of fD, but is a good estimate.
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m γ % of records

20 0.07 99.22

20 0.1 96.49

20 0.15 74

20 0.2 29.84

Fig. 2. Percentage of records for which eccentricity assumption holds when t= 0.075

Algorithm 3. Calculation of fD
Require: m, t, γ

for η1 : {0.7, 0.8, .., 1.0} do
for η2 : {0.5, 0.6, .., 1.0} do

for i : {1, 2, .., n} do
Choose y uniformly at random from Dm,η1

Choose auxy uniformly at random from Auxy,m,η1

ki = minr | S(auxy,r)≥η2 S(y, r)
end for
fD(η1, η2, η3) = η3 percentile of k1, .., kn

end for
end for

Value of fD(η1, η2, η3) for varying levels of perturbation in auxy and
η3. We plot the value of fD(η1, η2, η3) by varying values of η3, i.e. the prob-
ability of a record y having greater than fD(η1, η2, η3) similarity with r given
δauxy = η1 and S(auxy, r) ≥ η2. We obtain results for varying levels of pertur-
bation in auxiliary information, γ = 0.07, 0.1, keeping the number of attributes
in auxy, m = 10. The results are plotted in Figures 3, 4. In each of these
figures, we plot the value of fD(η1, η2, η3) when η1 = {0.7, 0.8, 0.9, 1.0} and
η2 = {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. Figures 3, 4 show the value of fD(η1, η2, η3) when
(η3 = 0.9, γ = 0.07) and (η3 = 0.9, γ = 0.1) respectively. We conclude that, keep-
ing γ, η1, η2 constant, the value of fD(η1, η2, η3) decreases as η3 increases, which
reinforces the intuition that a higher probability of a record y having greater
than fD(η1, η2, η3) similarity with r, given δauxy = η1 and S(auxy, r) ≥ η2, is
accompanied by a lower guarantee fD(η1, η2, η3) of similarity.

Additionally, we observe that, for a constant value of η3, the value of
fD(η1, η2, η3) increases as γ increases, but the value of γ is still small, and the
function also becomes smooth with increasing γ, which implies that small pertur-
bation of rare attributes does not decrease the knowledge of similarity between
y and r that is gained from the knowledge of auxy.
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Fig. 3. Value of f(η1, η2, η3) when η3 =
0.9 and γ = 0.07

Fig. 4. Value of f(η1, η2, η3) when η3 =
0.9 and γ = 0.1

fD(η1, η2, η3) for unperturbed auxy. We also compute the value of fD(η1,
η2, η3) when γ = 0, which implies that the auxiliary information has no noise.
The results are plotted in Figures 5, 6 for m = 20. Figures 5, 6 show the value
of fD(η1, η2, η3) when (η3 = 0.75, γ = 0.0) and (η3 = 0.9, γ = 0.0) respectively.
All these graphs show that fD(η1, η2, η3) is monotonically increasing in η1 and
η2, and also tends to 1 as η1, η2 increase.
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Fig. 5. Value of f(η1, η2, η3) when η3 =
0.75 and γ = 0

Fig. 6. Value of f(η1, η2, η3) when η3 =
0.9 and γ = 0

7 Conclusion

We have presented a mathematical analysis of the effectiveness of the Narayanan-
Shmatikov weighted algorithm in isolating individuals and carrying out informa-
tion amplification attacks. Our empirical study of the Netflix database of movie
ratings demonstrates that the assumptions about the database used in proving
the theorems hold for a substantial fraction of records in the database. Thus,
our theorems formally explain why these attacks work on the Netflix database.
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Indeed enabling this form of empirical validation without requiring knowledge
of the distribution from which the database was drawn was a desideratum for
our approach.

Our empirical results for the isolation attack are not as strong as those re-
ported by Narayanan and Shmatikov (72% vs. 84% for parameter settings where
a head-to-head comparison was possible). The difference could be caused by the
generality of our assumptions. At a technical level, it would be interesting to
understand if it is possible to prove an isolation theorem with stronger bounds
using different assumptions about the dataset.

The technical result about the information amplification attack is formulated
in terms of an abstract function fD that depends on the database D. Our em-
pirical results demonstrate that for the Netflix database fD(η1, η2, η3) is mono-
tonically increasing in η1 and η2, and also tends to 1 as η1, η2 increase. Our
theorem predicts that this behavior of fD implies that the Netflix database is
de-anonymizable by the weighted scoring algorithm. It would be interesting to
identify a class of distributions from which if databases are drawn they would
satisfy this property.

Acknowledgments. We thank Anupam Gupta for suggesting the asymmetric
similarity metric. We also thank Arvind Narayanan for useful discussions during
the course of this work.

References

1. PACER- Public Access to Court Electronic Records, http://www.pacer.gov (last
accessed December 16, 2011)

2. Barbaro, M., Zeller, T.: A Face Is Exposed for AOL Searcher No. 4417749. New
York Times (August 09, 2006),
http://www.nytimes.com/2006/08/09/technology/09aol.html?pagewanted=all

3. Boreale, M., Pampaloni, F., Paolini, M.: Quantitative Information Flow, with a
View. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 588–
606. Springer, Heidelberg (2011)

4. Dalenius, T.: Towards a methodology for statistical disclosure control. Statistics
Tidskrift 15, 429–444 (1977)

5. Dwork, C.: Differential Privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)

6. Dwork, C.: Differential Privacy: A Survey of Results. In: Agrawal, M., Du, D.-Z.,
Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg
(2008), http://dl.acm.org/citation.cfm?id=1791834.1791836

7. Frankowski, D., Cosley, D., Sen, S., Terveen, L., Riedl, J.: You are What
You Say: Privacy Risks of Public Mentions. In: Proceedings of the 29th An-
nual International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR 2006, pp. 565–572. ACM, New York (2006),
http://doi.acm.org/10.1145/1148170.1148267

8. Hafner, K.: And if You Liked the Movie, a Netflix Contest May Reward You Hand-
somely. New York Times (October 02, 2006),
http://www.nytimes.com/2006/10/02/technology/02netflix.html

http://www.pacer.gov
http://www.nytimes.com/2006/08/09/technology/09aol.html?pagewanted=all
http://dl.acm.org/citation.cfm?id=1791834.1791836
http://doi.acm.org/10.1145/1148170.1148267
http://www.nytimes.com/2006/10/02/technology/02netflix.html


Provable De-anonymization of Large Datasets with Sparse Dimensions 247

9. Li, N., Li, T., Venkatasubramanian, S.: t-closeness: Privacy beyond k-anonymity
and l-diversity. In: IEEE 23rd International Conference on Data Engineering, ICDE
2007, pp. 106–115 (April 2007)

10. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity:
Privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1 (March 2007),
http://doi.acm.org/10.1145/1217299.1217302

11. Narayanan, A., Shmatikov, V.: Robust De-anonymization of Large Sparse
Datasets. In: Proceedings of the 2008 IEEE Symposium on Security and
Privacy, pp. 111–125. IEEE Computer Society, Washington, DC (2008),
http://dl.acm.org/citation.cfm?id=1397759.1398064

12. Narayanan, A., Shmatikov, V.: Myths and fallacies of personally identifiable infor-
mation. Communications of the ACM 53, 24–26 (2010)

13. Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Trans.
on Knowl. and Data Eng. 13, 1010–1027 (2001),
http://dl.acm.org/citation.cfm?id=627337.628183

14. Schwarz, H.A.: ber ein Flchen kleinsten Flcheninhalts betreffendes Problem der
Variationsrechnung. Acta Societatis Scientiarum Fennicae XV, 318 (1888)

15. Sweeney, L.: Achieving k-anonymity privacy protection using generalization and
suppression. Int. J. Uncertainty, Fuzziness and Knowledge-Based System 10, 571–
588 (2002), http://dl.acm.org/citation.cfm?id=774544.774553

16. Sweeney, L.: k-anonymity: a Model for Protecting Privacy. Int. J. Uncertain. Fuzzi-
ness Knowl.-Based Syst. 10, 557–570 (2002),
http://dl.acm.org/citation.cfm?id=774544.774552

17. Xiao, X., Tao, Y.: M-invariance: towards privacy preserving re-publication of dy-
namic datasets. In: Proceedings of the 2007 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD 2007, pp. 689–700. ACM, New York
(2007), http://doi.acm.org/10.1145/1247480.1247556

Appendix

Theorem 1. Let y denote the target record from given database D. Let auxy

denote (m, γ)-perturbed auxiliary information, uniformly sampled from the at-
tributes in record y. Let ε > 0. Then with probability ≥ 1 − g, a record o can
be found in the dataset such that the value of S(y, o) is greater than 1− 2γ − ε,

where g = e−2∗ε2∗m.

Proof. Let xi(y, r) = T (y(i), r(i)) for any record r . Therefore, S(y, r) =
∑

i
xi(y,r)

k ,
where k = |supp(y)|.

Let Y1, Y2,..Ym be m random variables which take a value equal to any of
the xj ’s and are chosen independently. Z is another random variable defined as

Z =
∑

i Yi

m where i ∈ {1, ...,m}.
We form the matching set M such that,

M = {r ∈ D : Scoreg(auxy, r) ≥ 1− γ}
Using definition of Scoreg(auxy, r)

M = {r ∈ D : mini∈supp(auxy)T (auxy(i), r(i)) ≥ 1− γ}
M = {r ∈ D : ∀i ∈ supp(auxy).T (auxy(i), r(i)) ≥ 1− γ}
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Also, given ∀i ∈ supp(auxy).T (y(i), auxy(i)) ≥ 1 − γ, we calculate T (y(i), r(i))
for any record r in the matching set, and ∀i ∈ supp(auxy).

T (y(i), r(i)) � 1− |y(i)− r(i)|
p

|y(i)− r(i)| ≤ |y(i)− auxy(i)|+ |auxy(i)− r(i)|
|y(i)− r(i)| ≤ 1− (1− p ∗ γ) + 1− (1− p ∗ γ) = 2 ∗ p ∗ γ

Thus, for any record r in the matching set

∀i ∈ supp(auxy).T (y(i), r(i)) ≥ 1− 2γ

Also, since Yi has an uniform distribution

E[Yi] = x1(y, r) ∗
1

k
+ x2(y, r) ∗

1

k
+ · · ·+ xk(y, r) ∗

1

k
= S(y, r)

We show that expectation of Z is also S(y, r)

E[Z] =

∑
i E[Yi]

m
=

m ∗ E[Y1]

m
=

mS(y, r)

m
= S(y, r)

One-sided Hoeffding bound states that given n independent random variables
X1,X2, . . . ,Xn where Pr(Xi ∈ [ai, bi]) = 1 and X̄ = X1+X2+···+Xn

n , the follow-

ing inequality holds: Pr[X̄ − E[X̄] ≥ ε] ≤ exp
(

−2∗ε2∗n2
∑n

i=1(bi−ai)2

)
. Using Hoeffding

bound for Z with the observation that Z takes values in [0, 1] we get

Pr[Z− E[Z] ≥ ε] ≤ exp

(
−2 ∗ ε2 ∗m2∑m

i=1(1− 0)2

)
= exp(−2 ∗ ε2 ∗m)

We can consider the complementary event and get

Pr[Z − E[Z] ≤ ε] ≥ 1− exp(−2 ∗ ε2 ∗m)

Let g = e−2∗ε2∗m. Therefore, with probability ≥ 1 − g, zi (realized value of Z)
≤ E[Z]+ε. Thus, with probability ≥ 1−g, E[Z] ≥ zi−ε, and by substituting the
value of E[Z] we get that with probability ≥ 1−g, S(y, r) ≥ zi− ε. Additionally,
we have shown that for r ∈M , zi ≥ 1− 2γ and hence for r ∈M , S(y, r) ≥ (1−
2γ − ε). This implies that the record output by the generic algorithm described
above, is guaranteed to have similarity greater than 1 − 2γ − ε with the target
record y, with probability ≥ 1− g.
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Abstract. Several works have utilized network models to study peer-
to-peer botnets, particularly in evaluating the effectiveness of strategies
aimed at taking down a botnet. We observe that previous works fail to
consider an important structural characteristic of networks — assortativ-
ity. This property quantifies the tendency for “similar” nodes to connect
to each other, where the notion of “similarity” is examined in terms of
node degree. Empirical measurements on networks simulated according
to the Waledac botnet protocol, and on network traces of bots from a
honeynet running in the wild, suggest that real-world botnets can be sig-
nificantly assortative, even more so than social networks. By adjusting
the level of assortativity in simulated networks, we show that high assor-
tativity allows networks to be more resilient to takedown strategies than
predicted by previous works, and can allow a network to “heal” itself
effectively after a fraction of its nodes are removed. We also identify al-
ternative takedown strategies that are more effective, and more difficult
for the network to recover from, than those explored in previous works.

1 Introduction

Graph models from network theory have been applied to study properties of real-
world networks, including social, biological, and computer networks. Erdös-Rényi
random graphs [13] model networks where the edges are created with uniform
probability between every pair of nodes. Watts-Strogatz small-world graphs [38]
model networks where the diameter of the network is small, i.e., increasing log-
arithmically with the size of the network. Barabási-Albert scale-free graphs [2]
model networks with a few highly connected “hub” nodes and many leaf nodes.
These models can be used to analyze the spread of information (or infection)
within a network [30,38] and its resilience to node and edge failures [1,9,15], for
example.

Recently, several works have also applied graph models from network theory
to study peer-to-peer (P2P) botnets [10,11,41,19]. Each node in the network
represents an infected host, and edges reflect communications between the hosts.
Properties of the graph can quantify the botnet’s “usefulness”. For instance, the
diameter of the network measures the efficiency of bot communications, and
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the size of the largest connected component is the number of bots that are
reachable by the attacker and can carry out her instructions. Assuming that
P2P botnets are structured according to known models, these works aim to assess
the effectiveness of strategies to take down a botnet, i.e., decreasing the botnet’s
“usefulness”. For example, one strategy that was found to be effective for some
network topologies is to target nodes with high degree, i.e., that communicate
with many hosts [10,11,41].

We observe that previous works applying graph models to P2P botnets do not
consider an important property of networks — assortative mixing [25]. Assorta-
tivity refers to the tendency for a node to attach to other “similar” nodes, and
is commonly examined in terms of a node’s degree, i.e., high-degree nodes are
likely to be neighbors of other high-degree nodes. This property is also referred
to as degree correlation. The existence of this correlation between neighboring
nodes has been observed in many real-world networks [29,27,25]. More impor-
tantly, it has been found to be a property of growing networks [5,18], where the
network increases in size as nodes join over time, as is true in a botnet as more
hosts become infected.

In this work, we show that assortativity plays an important role in network
structure, such that neglecting it can lead to an over-estimation of the effective-
ness of botnet takedown strategies. By generating networks with varying levels
of degree correlation, we demonstrate that a higher level of assortativity allows
the network to be more resilient to certain takedown strategies, including those
found to be effective by previous works. Moreover, we note that bots are dy-
namic entities that can react and adapt to changes in the network, and so the
botnet can potentially “heal” itself after a fraction of its nodes are removed.
We specifically explore cases where nodes can compensate for lost neighbors
by creating edges to other nearby nodes, e.g., that are within h hops. This is
similar to the behavior of a P2P bot contacting known hosts on its peer-list,
which the bot maintains by constant exchanges with its neighbors [4,6,31,16,36].
Our simulations show that the graph can recover significantly after takedown
attempts, even when h is small, and that higher levels of assortativity can allow
the network to recover more effectively.

Another contribution of this work is in identifying alternative takedown strate-
gies that are more effective than those explored by previous works. Specifically,
we show that targeting nodes with both high degree and low clustering coeffi-
cient will decrease the connectivity and communication efficiency of the network
significantly, and also makes it considerably more difficult for the network to
recover from the takedown attempt. We further examine the effectiveness of ap-
plying this strategy “locally” where only a subset of nodes and edges is visible,
such as when traffic from only a single subnet can be observed.

The rest of this paper is organized as follows. Section 2 describes related work.
Section 3 defines assortativity, studies this value in botnets, and describes our
algorithm for generating networks with varying levels of assortativity. The effect
of assortativity on network resilience and “healing” ability is investigated in
Sections 4 and 5. Discussion and conclusions are presented in Sections 6 and 7.
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2 Related Work

Botnet models. Several previous works have studied botnets using network
models. Cooke et al. [8] described three potential botnet topologies: centralized,
P2P, and random, and qualitatively discussed their design complexity, detectabil-
ity, message latency, and survivability. Other works [19,10] applied theoretical
network models to botnets, including Erdös-Rényi random graphs [13], Watts-
Strogatz small world graphs [38], and Barabási-Albert scale-free graphs [2]. This
allows the effectiveness of takedown strategies to be quantitatively evaluated us-
ing graph properties, such as the network diameter, the average shortest distance
between pairs of nodes, and the size of the largest connected component. Davis
et al. [11] compared Overnet, which is utilized by the Storm botnet [31,16], with
random and scale-free networks to justify the choice of structured P2P networks
made by bot-masters. They simulated takedown efforts on the networks by re-
moving nodes at random, in descending order of node degree, or in a “tree-like”
fashion by identifying nodes reachable from an initial node, and found Overnet
to be more resilient than other graph models.

To our knowledge, no previous work on botnet modeling has considered the
effect of degree assortativity in networks. This property, defined as the correlation
coefficient between the degrees of neighboring nodes [25], has been found to
be high in many real-world social, biological, and computer networks [26,29].
It has been studied analytically in the statistical physics literature, and found
to be an inherent property of growing networks where nodes join and edges
are created over time [5,18], since older nodes are likely to have higher degree
and tend to connect to each other. Studies in the statistical physics domain
focus on understanding the underlying interactions between nodes that would
result in a network that matches one empirically measured in the real world.
By contrast, a network of bots is elusive and difficult to quantify in practice.
Making assumptions about the graph structure or node correlation (e.g., that
there is none) is thus unfounded.

Network takedown strategies. The resilience of networks to attacks or fail-
ures have been explored in the physics branch of complex networks [1,15,9]. A
scale-free network, which consists of a few highly-connected “hub” nodes and
many “leaf” nodes, has been found to be particularly vulnerable to attacks
where high-degree nodes are removed first. A takedown strategy that targets
high-degree nodes is also recommended by previous works that studied botnet
models [10,11,41], particularly for unstructured P2P networks where there are
“super-peers” present.

Other types of takedown efforts on networks have also been explored in the
complex networks literature, such as cascaded node removals [37], removing
nodes according to their betweenness centrality, or removing edges instead of
nodes [15]. These works focus on the resilience of different network topolo-
gies, and do not take assortativity into account. Newman et al. [26] studied
the prevalence of assortativity in real-world networks. Even though their focus
is on measuring and generating assortative networks, they also showed, through
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simulation, that higher assortativity allows a network to have a larger connected
component after a small fraction of high-degree nodes are removed. However,
they did not explore other takedown strategies, the effect on other graph prop-
erties, or the network’s ability to “heal” itself. In this work, we explicitly study
the effect of assortativity on network resilience and the ability of dynamic net-
works (such as P2P botnets) to recover from takedown attempts.

3 Constructing and Measuring Assortative Networks

We first define degree assortativity, following the definition by Newman et al. [25],
and perform empirical analyses on the assortativity of real botnets by simulating
networks according to the Waledac botnet protocol [6] and examining a portion
of the Storm botnet [31,16,36]. We then describe our algorithm for adjusting
the level of assortativity in simulated networks, and the metrics we use to quan-
tify the “usefulness” of a network. The metrics are aimed at capturing notions
of communication efficiency between nodes and the number of reachable bots,
which are likely to be of importance to the bot-master.

3.1 Degree Assortativity

Degree assortativity, defined as the correlation coefficient between the degrees of
neighboring nodes, measures the tendency for nodes to be connected to others
who are “similar” in terms of their degree. For example, this property is especially
significant in social networks, where gregarious people are likely to be friends
with each other [27,17]. It is also found to be a property of growing networks,
where the network size increases as new nodes join and edges are created [5,18],
as is true for botnets as vulnerable nodes become infected.

We define assortativity following the definition of Newman et al. [25]. Let the
fraction of nodes in a network graph with degree k be denoted pk. If we choose an
edge from the graph at random, and follow it to one of its ends, the probability
that the node at which we arrive has a degree of k is proportional to k. This
is because we are more likely to end up at a node with high degree, which has
more edges connected to it. To account for the edge from which we arrived, the
remaining degree of the node is its degree minus one. The probability qk that we
arrive at a node with remaining degree k is then

qk =
(k + 1)pk+1∑∞

j=0 jpj
(1)

Let ej,k be the probability that a randomly selected edge connects nodes of re-
maining degree j and k, where

∑
j,k ej,k = 1. The assortativity γ of the network,

being the correlation coefficient between the degrees of neighboring nodes, is

γ =
1

σ2
q

∑
j,k

jk(ej,k − qjqk) (2)
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where σ2
q is the variance of the distribution of qk, i.e., σ

2
q =

∑
k k

2qk− [
∑

k kqk]
2.

A higher value of γ indicates that there is higher correlation between the degrees
of two neighboring nodes. In a random graph, where every pair of nodes is
connected with uniform probability, no correlation exists and γ = 0.

3.2 Degree Assortativity in Botnets

Even though high assortativity is found in many real-world networks, measuring
it in practice can be challenging due to difficulties in observing all interactions
between nodes in a large network. This is especially true for P2P botnets, since
infected hosts cannot always be identified, and obtaining a comprehensive view
of those hosts’ communications may require multiple administrative entities to
share sensitive information. While researchers have studied P2P botnets via
infiltration (e.g., [16]), this provides a limited view of only a subset of the botnet.

We expect that real P2P botnets are likely to be assortative. This is not only
because assortativity has been found to be a property of growing networks that
increase in size over time (e.g., when vulnerable hosts become infected and join
the botnet), but also due to the constant peer-list exchanges that occur between
neighboring bots, which makes the “edges” in a botnet far from being random.

We perform two experiments to estimate the level of assortativity in P2P
botnets. In the first, we simulate networks where nodes create and delete edges
according to the algorithm performed by Waledac bots, as described in previous
work that reverse-engineered the Waledac bot binary [4,6]. In the second, we
examine network traffic from Storm bots in a honeynet running in the wild.

Waledac botnet simulations. Waledac is a P2P botnet that communicates
over the HTTP protocol [4,6,35]. Similar to other P2P bots, each bot maintains
a fixed-length list of known peers with which it communicates in order to stay
connected to the botnet (and hence to the bot-master). A bot periodically ex-
changes peer-lists with other peers known to it, i.e., by randomly selecting hosts
from its peer-list. This allows the bot to learn about other hosts in the botnet
and to remove inactive nodes from its peer-list. As documented by Calvet et
al. [6], the Waledac binary comes with a hard-coded list of 200 boot-strapping
hosts. As the bot learns about other existing peers, its peer-list grows to a max-
imum of 500 entries, where each entry includes the IP address of the peer, as
well as the time at which activities from that peer was last observed. If the num-
ber of known peers exceeds 500, the bot only keeps track of 500 most recently
active hosts. During each peer-list exchange, each bot extracts 99 entries from
its peer-list, appends its own IP address and the current time to this shortened
list, and sends it to a host selected at random from its peer-list. In return, the
receiving host also responds with a list of hosts extracted from its own peer-list.

We simulated networks where nodes join and depart over time (e.g., due to
hosts becoming infected or patched), creating or deleting edges between each
other following the Waledac protocol as described above. Assuming a constant
rate of nodes joining the network in each round, we drew each node’s lifetime
from an exponential distribution [28,21], after which the node was removed from
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the network. Each simulated network was allowed to evolve this way until the
number of online nodes reached 5,000. This number represents a small botnet,
and follows the simulation settings in previous work on modeling botnets [10].

From this experiment, we found the assortativity of such networks to be quite
high. Over a total of 50 simulation runs, the average assortativity was 0.39 (with
a standard deviation of 0.036), which is higher than that of social networks [26].
This suggests that a botnet may be significantly assortative, and highlights the
importance of this property in considering botnet models.

Traffic from Storm bots in a honeynet. In addition to our simulations,
we also obtained network traffic from a honeynet running in the wild in late
2007 [14]. This dataset consists of a consecutive 24-hour trace from 13 hosts
participating in the Storm botnet [31,16,36].
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Fig. 1. The assortativity for 13 Storm bots
in a honeynet running in the wild

Figure 1 shows the assortativity
measured among the 13 Storm bots,
where snapshots of their communica-
tions were taken on an hourly basis.
The “degree” of a bot is represented
by 1) the number of distinct source
IP addresses from which it receives
packets (the in-degree), 2) the number
of distinct destination IPs to which it
sends packets (the out-degree), or 3)
the total number of distinct IPs with
which it interacts. Since the rest of the
Storm botnet is not directly observ-
able, we calculated the assortativity of
the sub-graph that consisted of the 13
Storm bots, i.e., by considering traffic
between only the 13 Storm bots. As shown in Figure 1, this value is quite high,
ranging from 0.48 to 0.84.

That said, we acknowledge that this limited dataset may not be representative
of the actual Storm botnet. For example, the high level of assortativity may be
due to certain aspects of the honeynet setup; e.g., the observable bots were placed
in the same local network and so may have been more likely to communicate
with each other. (Such localized measurements may be all that is available in
practice to a network administrator who can observe traffic from only a single
network. We will discuss the effectiveness of botnet takedown strategies using
only local information in Section 6.)

While we recognize the limitations of the above efforts to evaluate assortativity
in today’s botnets, the results of our analysis in Sections 4 and 5 suggest that
a botnet designer would want his botnet to be assortative for added resilience
and recoverability, further buttressing our belief that future botnets will leverage
this naturally occurring property.
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3.3 Generating Assortative Networks

To study the effect of assortativity on networks, we need to be able to generate
networks with varying levels of assortativity. One method for this is to rewire
edges in a given network [40]: At each step, select two edges at random, and shuf-
fle them so that the two nodes with larger remaining degrees are connected, and
the two nodes with smaller remaining degrees are connected. Repeating this step
will result in the network becoming increasingly assortative. However, rewiring
causes the shortest path length between nodes to increase rapidly [40], which
may bias the comparison between networks with different levels of assortativity.

We apply another method for constructing assortative networks, similar to
Newman et al. [26]. This method takes as input the number of nodes in the net-
work, the desired degree distribution pk, and the edge probabilities ej,k. Each
node in the network is assigned a degree drawn from pk. The remaining de-
gree distribution qk can then be calculated from pk, and edges are added by
connecting each pair of nodes of remaining degrees j and k with probability ej,k.
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Fig. 2. Edge probabilities ej,k as a normal
distribution centered at j with different val-
ues for the standard deviation σ

To control the level of assortativ-
ity in the resulting network, we spec-
ify ej,k as follows. For a fixed value
j, assume that ej,k follows a normal
distribution centered at j, where the
standard deviation σ is the adjustable
knob for tuning the level of assortativ-
ity. Figure 2 illustrates ej,k centered
at j. A smaller σ causes the normal
distribution to become more peaked,
where nodes with remaining degree j
have a higher probability of sharing
edges with other nodes of remaining
degree close to j, resulting in a more
assortative network.

In our simulations, pk is chosen so
that the resulting network is scale-
free, specifically, pk ∼ k−3. We focus on scale-free networks because it is represen-
tative of many real-world networks, including unstructured P2P networks [22].
Empirical analysis by Dagon et al. [10] also suggest that the Nugache P2P bot-
net [36] has a scale-free structure. We set the number of nodes to 5,000 to
represent a small botnet, following the simulation settings in previous work [10].
All of the edges are assumed to be undirected.

3.4 Metrics

We utilize the following two graph properties to quantify the “usefulness” of
a botnet: 1) the size of the largest connected component, and 2) the inverse
geodesic length. These metrics have been used by Dagon et al. [10] to compare
the utility of different botnet topologies, and were also used in analyzing the
resilience of various networks in the physics literature [15].
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The fraction S of nodes in the largest connected component is an upper bound
on the number of bots that are directly under the control of the attacker (as-
suming that she is part of one of the connected components). The more hosts
that can carry out the attacker’s commands, the larger the scale of the attack
that can be launched, e.g., denial-of-service attacks or spamming.

In addition to controlling many infected hosts, another property that is likely
to be of importance to the attacker is the efficiency of communication, i.e., how
long it takes for messages to be relayed through the botnet. We measure the
number of hops between pairs of nodes for this purpose. Specifically, let N be
the total number of nodes, V be the set of nodes, |V | = N , and d(u, v) be the
length of the shortest path between node u and node v. The average inverse
geodesic length [15] is defined as

L−1 =
1

N(N − 1)

∑
u∈V

∑
v �=u,v∈V

1

d(u, v)
(3)

Measuring the average inverse geodesic length is particularly useful in cases
where the graph may be disconnected, since the distance d(u, v) between two
nodes u and v that belong to separate connected components would be infi-
nite (and so its contribution to L−1 is zero). The larger L−1 is, the shorter the
distances between nodes, and hence more efficient their communication. In eval-
uating the effectiveness of network takedown attempts, we are more interested
in measuring the normalized average inverse geodesic length, which is defined as

L̂−1 =

∑
u∈V

∑
v �=u,v∈V

1
d′(u,v)∑

u∈V

∑
v �=u,v∈V

1
d(u,v)

(4)

where d′(u, v) is the modified length of the shortest path between nodes u and
v, that is, after takedown efforts or after the network tries to heal itself. Note
that both the numerator and denominator in L̂−1 are summed over the original
set of nodes, V . Nodes that are removed have infinite distance to the rest of the
network, the inverse of which is zero, and so do not contribute to the sum in
Eqn. 4. The value that L̂−1 takes ranges from 0 to 1. A smaller value indicates
more disruption to network communication and lower communication efficiency.

We measure L̂−1 and S of a network before and after takedown to evaluate
the effectiveness of the takedown strategy (Section 4), and also measure them
after the network attempts to “heal” itself to assess the effectiveness of recovery
mechanisms (Section 5).

4 Network Resilience

In attempts to take down a P2P botnet, network administrators may wish to
prioritize their efforts to focus on the more “important” nodes first, i.e., nodes
whose removal will cause the most disruption to botnet operation. Using the two
metrics described in Section 3.4, we investigate the effectiveness of botnet take-
down strategies, and how they are sensitive to the assortativity of the network.
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4.1 Uniform and Degree-Based Takedown Strategies

We first focus on strategies explored in previous works that study botnet mod-
els [10,11,41,19]:

– Uniform takedown: removing nodes from the network by selecting them
uniformly at random.

– Degree-based takedown: removing nodes from the network in descending
order of node degree, that is, targeting high-degree nodes first.

Uniform takedown is similar to the process in which users and network admin-
istrators patch infected hosts as they are discovered, without coordinating bot
discoveries or patching activities. It has also been used to study random failures
in the context of communication networks or biological networks [1]. While most
networks are found to be resilient to uniform takedown, many are vulnerable to
a degree-based strategy. This targeted takedown strategy is especially effective
against scale-free networks, since the few highly-connected “hub” nodes respon-
sible for maintaining the connectivity of the network are removed first, e.g., the
“super-peers” that are found in unstructured P2P networks. The degree of a
node, interpreted as the number of hosts with which it communicates, has also
been used as an indicator of anomalies in network intrusion detection systems
(e.g., [23,33,34]). In practice, these takedown strategies do not necessarily re-
quire access to the entire network communication graph, but can be applied to
takedown efforts within a sub-graph as well, e.g., within a local network. We
further discuss implementation challenges in Section 6.
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(a) Uniform takedown.
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(b) Degree-based takedown.

Fig. 3. The normalized average inverse geodesic length L̂−1 after uniform or degree-
based takedown strategies

As described in Section 3.3, we adjust the standard deviation σ of the edge
probability distribution ej,k to generate networks of varying assortativity. For
a scale-free network with 5,000 nodes, we set σ to 1, 5, 10, and 15 to obtain
networks covering a range of assortativity from 0.04 to 0.87. Figures 3 and 4
show how networks with varying levels of assortativity respond to uniform and
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(b) Degree-based takedown.

Fig. 4. The average fraction S of nodes in the largest connected component after
uniform or degree-based takedown strategies

degree-based takedown, when 2%, 4%, 6%, 8%, or 10% of nodes were removed
according to each strategy. The numbers are an average of 50 networks generated
for each value of σ. We omit the standard deviations from the plots since they
were generally small, that is, within 0.007 for both L̂−1 and S.

We find the degree-based strategy to be much more effective at taking down
a network compared to uniform takedown, in agreement with previous works.
However, as shown in Figure 3(b), the effectiveness of the degree-based strategy
is highly dependent on the level of assortativity of the network. A lower assorta-
tivity, e.g., toward the left of Figure 3(b), results in the network experiencing a
larger decrease in L̂−1 after takedown attempts. The difference between the de-
crease in L̂−1 for assortative and non-assortative networks grows as more nodes
are removed. A similar phenomenon can be observed in Figure 4(b) for the frac-
tion S of nodes in the largest connected component. With the exception of highly
assortative networks (e.g., greater than 0.6), the fraction of nodes retained in the
largest connected component increases with the level of assortativity. That is,
more bots remain reachable to the attacker in moderately assortative networks.

The higher resilience in assortative networks can be attributed to nodes of
similar degree “clustering” together. When the high-degree nodes are removed
due to the degree-based strategy, only a connected subset of neighboring nodes
are lost in effect. Moreover, since high-degree nodes tend to connect to each other,
fewer of their edges are attached to nodes of low degree — who would be prone
to isolation if their neighbors were removed. However, this also means that there
are fewer high-degree nodes that can act as “bridges” between clusters of nodes
with varying degrees. As more high-degree nodes are removed, the loss of those
“bridging” nodes eventually cancels out other factors contributing to resilience,
and the network can disintegrate, as shown on the far right of Figure 4(b).
These discrepancies in how networks are affected by the same takedown strategy
underline the importance of taking assortativity into account, both in evaluating
takedown strategies and in considering botnet network models.



Revisiting Botnet Models and Their Implications for Takedown Strategies 259

4.2 Other Takedown Strategies

While the degree-based strategy is much more effective than the uniform strat-
egy, the former is sensitive to the level of assortativity in the network, as shown
in Figures 3 and 4. In the search for a takedown strategy that would be effective
even for assortative networks, we explore alternative approaches based on other
graph properties, described below.

– Neighborhood connected components: We define the local neighbor-
hood of a node u to be those nodes reachable within h hops from it. Fig-
ure 5(a) shows an example of the neighborhood of node u within three hops,
where the edge labels indicate distances to u. If we were to remove u from
the network, its local neighborhood would be split into separate “connected
components”, as shown in Figure 5(b). The number of “connected compo-
nents” that remains in the neighborhood of a node can be an approximation
of its local importance, since communication between components may have
to be routed through u. Hence, as an alternative takedown strategy, we re-
move nodes in descending order of the number of connected components
in their local neighborhood. A similar metric has also been used to detect
hit-list worms [7].

– Closeness centrality: Closeness centrality for a node u is defined as the
sum of the inverse geodesic distance from u to all other nodes in the network.
A larger value indicates that the node is at a more “centered” location, and
has more influence over the spread of information within the network. In this
strategy, we remove nodes in descending order of their closeness centrality.

– Clustering coefficient with degree: The clustering coefficient measures
how dense the connections are between the neighbors of a node. For a node
u, it is defined as the number of edges that exist between u’s neighbors,
divided by the number of possible edges between u’s neighbors. In Figure 6,
this value for u is 4/10, while that for all other nodes is 1. A smaller value
means that the neighbors of umay be disconnected without u. Ignoring nodes
with the smallest degrees — in our tests, nodes with degree less than one-
fifth of the maximum degree — we remove nodes in increasing order of their
clustering coefficient, and among those with the same clustering coefficient,
in decreasing order of degree.

Figures 7 and 8 show the normalized average inverse geodesic length L̂−1 and
the fraction S of nodes in the largest connected component after each of the
above takedown strategies, for networks of different levels of assortativity. The
results are plotted after removing 2% or 10% of the nodes, and averaged over 50
networks generated for each level of assortativity. The standard deviations are all
within 0.02 for both L̂−1 and S. Compared with the uniform and degree-based
strategies discussed earlier, the clustering coefficient strategy is more effective at
decreasing the network communication efficiency, as shown in Figure 7, while the
connected components strategy seems more effective at lowering the connectivity
of the network, as shown in Figure 8. In both of these cases, the alternative
takedown strategy out-performs the degree-based strategy that previous works
found to be effective [10,11,41].
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(a)
Before removing node u.

(b)
After removing node u.

Fig. 5. An example of the connected components within the neighborhood of node u.
The edge labels indicate number of hops to u.

Fig. 6. An example of edges
between neighbors of node u

One of the reasons that the clustering coeffi-
cient strategy works well is because nodes that
“cluster” together in assortative networks are
likely to have higher clustering coefficient as well,
since their neighbors also have similar degree.
However, while the nodes at the center of a “clus-
ter” may have a clustering coefficient close to 1,
this value is likely to be much smaller for those

connecting the “cluster” to the rest of the network. For example, all nodes in
Figure 6 have a clustering coefficient of 1 except for node u, who turns out to
be the “bridge” between the two clusters of degree two and three nodes. The
removal of nodes with small clustering coefficient in this strategy is hence likely
to lower the communication efficiency within the network.
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(a) After removing 2% of the nodes.
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(b) After removing 10% of the nodes.

Fig. 7. The normalized average inverse geodesic length L̂−1 after removing 2% or 10%
of the nodes according to each takedown strategy
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(a) After removing 2% of the nodes.
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Fig. 8. The average fraction S of nodes in the largest connected component after
removing 2% or 10% of the nodes according to each takedown strategy

5 Network Recovery

The dynamism inherent in P2P networks means that each individual bot is re-
quired to adapt to changes in its surroundings, for example, due to newly infected
hosts joining the network or current peers going offline, even without takedowns
taking place. Such mechanisms would hence also provide opportunities for the
network to recover itself, i.e., restoring connectivity or reconstructing shortest
paths between nodes, in the face of takedown attempts.

While previous works tend to regard a botnet as a static entity, and eval-
uate changes to the network immediately after takedown efforts as a measure
of their effectiveness, we explicitly consider the ability of dynamic networks to
heal themselves. Specifically, we model a recovery process where nodes can “look
out” to a distance h and find peers that are within h hops. When a node loses a
neighbor, e.g., due to takedown, it compensates for that lost neighbor by creating
a new edge to a randomly selected node within distance h from it. This models
the edge creation process in a P2P botnet, where nodes discover others that are
“close” to it through peer-list exchanges with its neighbors [4,6,31,16,36,35]. The
h-neighborhood of a node u hence represents hosts on u’s peer-list, to which u
looks for maintaining connectivity with the rest of the botnet.

5.1 Recovering from Uniform and Degree-Based Strategies

We first consider the ability of botnets to recover after takedown attempts em-
ploying the uniform or degree-based strategies described in Section 4.1. We focus
on the L̂−1 metric, since it better illustrates the difference between networks of
varying levels of assortativity. Figure 9 shows the normalized average inverse
geodesic distance L̂−1 for networks after they attempt to recover from uniform
or degree-based takedown strategies, when 2% or 10% of the nodes are removed.
The numbers are averaged over 50 runs for each network, where the standard
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(a) Recovery after uniform takedown by
removing 2% nodes.
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(b) Recovery by degree-based takedown
by removing 2% nodes.
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(c) Recovery after uniform takedown by
removing 10% nodes.
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(d) Recovery after degree-based take-
down by removing 10% nodes.

Fig. 9. The normalized average inverse geodesic length after recovering from uniform
or degree-based takedown, when 2% or 10% of the nodes are removed, for various values
of the look-out distance h

deviations are all below 0.006. The look-out distance h was set to 2, 5, 7, and
10. As h increases, L̂−1 increases as well, even reaching above 1 in Figure 9(a),
i.e., the shortest distance between nodes becomes even shorter than before the
takedown! However, while the increase in L̂−1 for networks with lower assorta-
tivity falls flat after a small h (even decreasing slightly, as in Figure 9(d)), the
increase for networks with higher assortativity continues.

One reason for the continued recovery benefit enjoyed by assortative networks
is high-degree nodes “clustering” together, since nodes tend to connect to oth-
ers of similar degree. A node that is able to reach a high-degree node upon
“looking out” is likely to be able to reach other high-degree nodes as well at
a similar distance. This increases the probability that a compensation edge at-
taches to a high-degree node, hence shortening path lengths within the network
and resulting in a higher L̂−1. This phenomenon is more pronounced in net-
works recovering from uniform takedown (see Figures 9(a) and 9(c)), since fewer
high-degree nodes remain after the degree-based strategy.
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5.2 Recovering from Other Takedown Strategies

Figures 10 and 11 show how networks of high and low assortativity recover from
those alternative takedown strategies described in Section 4.2, when 2% or 10%
of the nodes were removed. The results are an average of 50 networks. The stan-
dard deviations are all within 0.009. We observe a trend similar to the recovery
from uniform and degree-based strategies, where networks with higher levels of
assortativity experience continued recovery benefits with the look-out distance
h (Figure 10(a) and 11(a)). Less assortative networks, on the other hand, do not
benefit much after a look-out distance of 2 or 3 (Figure 10(b) and 11(b)). Regard-
less of the takedown strategy, assortative networks have higher communication
efficiency after recovery, in terms of L̂−1, than less assortative networks.
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(a) Networks with assortativity at 0.87.
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(b) Networks with assortativity at 0.04.

Fig. 10. Recovery for networks of high and low assortativity when 2% of the nodes
were removed according to each strategy
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(a) Networks with assortativity at 0.87.
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Fig. 11. Recovery for networks of high and low assortativity when 10% of the nodes
were removed according to each strategy

In addition to being one of the most effective strategies (see Section 4.2), we
also find takedown attempts based on clustering coefficient with degree to be the
most difficult one for a network to recover from, as shown by low values of L̂−1
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in Figures 10 and 11. In fact, when 10% of the nodes were removed from the
same network, the L̂−1 after recovering from the degree-based and the clustering
coefficient strategies can differ by 0.2. This shows that the clustering coefficient
strategy can be a better alternative to one based solely on degree.

Besides creating compensation edges, a botnet may try to recover from take-
downs by re-structuring itself into alternative topologies that are more resilient.
Exploring how bots can perform this effectively in practice is part of future work.

6 Discussion

Applying takedown strategies in practice. Perhaps one of the reasons for
the widespread study of the degree-based strategy is that it can be applied easily
in practice. For example, if the degree of a node is interpreted as the number of
hosts with which it communicates in some time interval, then identifying a node’s
degree can be performed on the basis of flow records (e.g., Cisco Netflows) that
are collected from a router (or routers) that its traffic traverses. Notably, a node’s
degree can be determined solely by observing traffic to and from it, without
requiring knowledge about the entity at the other end of the communication.

Other graph properties, however, may not be so straightforward to measure.
For instance, takedown strategies based on clustering coefficient or neighborhood
connected components depend on observing communications between the neigh-
bors of a node, and may require collaboration between multiple administrative
domains. This can be performed using a method similar to that proposed by
Xie et al. to trace the origin of worm propagations [39]. Another approach is
to examine the peer-lists an infected host receives from its neighbors, assuming
that such data can be captured (i.e., it is not sent encrypted, and full packet
capture is enabled on the network). If a node u has two neighbors communicat-
ing with each other, those nodes should be listed on each other’s peer-lists, and
so the fact that they communicate with each other can be inferred by identifying
overlaps between u’s neighbors and peer-lists sent to u. Of course, in cases where
communications between some neighbors of an infected node are visible neither
directly nor by inference, takedown strategies requiring this information can be
applied considering only those neighbors for which communications are visible.

To examine the effect of applying takedown strategies locally, we generated
networks according to the method described in Section 3.3, and partitioned the
network randomly into k equal-sized portions. The clustering coefficient with
degree strategy (which we find to be the most effective, see Section 4.2) was then
applied separately in each partition, i.e., based on only those edges attached
to nodes in each partition. Figure 12 shows the normalized average geodesic
length L̂−1 and the fraction S of nodes in the largest connected component for
varying values of k, when 10% of all nodes are removed this way. The numbers
were averaged over 50 runs of this experiment. The standard deviations were
all within 0.027 for L̂−1 and 0.013 for S. As shown in the figure, the takedown
strategy becomes less effective as the number of network partitions increases,
though the difference is small. For example, splitting highly assortative networks
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(assortativity at 0.87) into 200 partitions only increases S by 5% compared to
the case when the network is not partitioned (i.e., k =1). We hence believe that
our suggested takedown strategies can be applied with reasonable effectiveness
in practice.
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Fig. 12. The fraction S of nodes in the largest connected component and the normal-
ized average inverse geodesic length L̂−1 after applying the clustering coefficient with
degree takedown strategy locally in each of the k network partitions and removing 10%
of the nodes

Modeling networks analytically. Rather than assuming a particular network
topology, e.g., random, scale-free, or small-world, or a specific level of assorta-
tivity, another approach to modeling networks is to specify a set of actions
governing the behavior of nodes at each step in time, and analytically determine
properties of the resulting network. This type of growing network models have
been used extensively in the physics domain of complex networks [3,24,32,18,12].
Given knowledge of individual bot behaviors and how they interact with each
other from P2P bot studies [4,6,31,16,36], it seems likely that analytical network
models from the physics literature can be adapted to characterize P2P botnets.
In fact, a recent work by Li et al. [20] used this approach to derive the degree
distribution of a botnet where new nodes joins the network by “copying” the
edges of an existing node that it chooses at random.

However, these analytical approaches do make other assumptions about the
underlying network that they attempt to model in order to simplify calculations.
Specifically, by assuming that both the age of the network t and the network
size N is large, t → ∞, N 4 1, all actions experienced by a node are approx-
imated by the expected action, e.g., when a node creates one edge at random,
the degree of all other nodes increases by 1/N , where the denominator N is also
replaced by the expected value. These assumptions may not be applicable to
botnets in practice, since 1) network administrators will be equally, if not more,
concerned about infections in the early stages of a botnet when t is small; 2)
botnets have been found to consist of a few hundred or thousand nodes only,
and are commonly rented out in small numbers, e.g., for sending spam; 3) to
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a network administrator managing a local network, N certainly does not grow
indefinitely; and 4) approximating aspects of network growth using expected
values introduces error that could potentially be magnified by a bot designed
counter to assumptions that these approximations imply.
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Fig. 13. The expected assortativity, shown
in the dashed line, versus the actual average
value from simulations, with one standard
deviation shown with error bars

As a simple demonstration of the
separation between analytical models
and actual network growth, we exam-
ine a derivation by Callaway et al. [5]
of the assortativity of a simple net-
work growth model. In each time step,
the model assumes that one node joins
the network, and with probability δ
an edge forms between two nodes se-
lected at random. Their derivation of
the assortativity is based on a rate
equation specifying the expected in-
crease in the number of edges that
connect nodes of remaining degree j
and k at each time step, and makes
the same assumptions as described
above. Figure 13 shows the expected
assortativity of the network as ap-

proximated by Callaway et al. for various values of δ. The actual average values
from simulations are also plotted in the figure, with one standard deviation
shown as error bars. To generate these values, we generated 50 networks for
each value of δ, and set the number of time steps (i.e., number of nodes) to
1,000. Figure 13 shows that the expected assortativity as predicted by Callaway
et al. can differ from the actual average assortativity by an amount that ap-
proaches or, in some cases, exceeds one standard deviation. This suggests that
the simplifying assumptions typically employed in analytical models may cause
nontrivial deviations from practice.

7 Conclusion

Peer-to-peer (P2P) botnets, in contrast to their centralized counterparts, do not
have a single point-of-failure and are difficult to take down. Identifying and re-
moving those nodes that are “important” to the connectivity or communication
efficiency of a botnet is hence critical to disrupting its operation. Toward this
goal, several previous works have modeled P2P botnets using theoretical net-
work models [19,10,11]. These works compare the resilience of various network
topologies to uniform or degree-based node removals, and quantify the effective-
ness of these takedown strategies using graph properties, including the inverse
geodesic length or the fraction of nodes in the largest connected component.

We observe that previous works do not consider an important structural prop-
erty of networks, namely assortativity. Empirical measurements on networks sim-
ulated according to the Waledac botnet protocol and on network traffic from a
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portion of the Storm botnet suggest that this property can be quite high for bot-
nets in practice. We show that in omitting the presence of assortativity in botnet
models, and without considering the effect of dynamic networks actively recover-
ing from node failures, previous works may have over-estimated the effectiveness
of recommended takedown strategies. In addition, we identify alternative strate-
gies that are more effective than those in previous works for botnets with high
assortativity, and study the application of these strategies in a “local” setting
when only a subset of the network is visible.
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Abstract. Anonymity systems are of paramount and growing importance in com-
munication networks. They rely on users to cooperate to the realisation of an
effective anonymity service. Yet, existing systems are marred by the action of
‘selfish’ free-loaders, so that several cooperation incentives are being proposed.

We propose a game-theoretic model of incentives in anonymity networks based
on parametric utility functions, which make it flexible, adaptable and realistic. We
then use the framework to analyse the cost of cooperation and the performance
of the gold-star incentive scheme in the Crowds protocol.

1 Introduction

Anonymity of electronic communication is rapidly becoming an essential requirement
of today’s society, in particular as far as tracking web browsing and handheld, mobile
devices is concerned. Its importance is increasingly recognised as crucial in many fields
of computer-supported human activities, such as e-commerce, web surfing, consumer
profiling, personalised advertising. Anonymity is needed both by individuals and or-
ganisations who want to keep their identities, interests and activities confidential. Cryp-
tographic techniques, firewalls, VPNs, and similar, can only provide partial protection;
indeed, they can only protect the contents of a communication, not its origin, destination
and occurrence. This constitutes a problem because in general a lot of potentially sen-
sitive information can be inferred by the mere presence of a communication between
two parties. To address this issue, many anonymity systems and protocols have been
proposed in the literature. Their purpose is to support anonymous communications, at
least to some extent [6,22,11,21]. Since public visibility is the default condition on to-
day’s main networks, most notably the Internet, anonymity cannot be enforced by either
senders of receivers, but must be created by using messages to hide messages. In fact,
the consumers of the anonymity service are at the same time its providers, as they co-
operate to generate the network activity that grants anonymity to the system as a whole.
Typically, cooperation entails relaying other users’ messages in order to create sufficient
‘doubt’ as to whom the real message originator actually is.

Anonymity systems have a broad range of users, ranging from ordinary citizens who
want to avoid being profiled for targeted advertisements, to companies trying to hide in-
formation from their competitors, to entities requiring untraceable communication over
the Internet. With these many potential users, it would seem that anonymity services
based on consumer/provider users will naturally be well-resourced and able to operate
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efficiently. However, cooperation cannot be taken for granted. Just because function-
ing as a relay may cost a significant amount of processing power and bandwidth, not
all the users are going to be cooperative. Some will indeed act selfishly, and only use
the system to send their messages whilst ignoring the requests to forward others’ mes-
sages. Obviously, with not enough cooperative users, the systems will hardly operate
at all, and will certainly not be able to afford adequate anonymity guarantees. Observe
that this is not a trivial problem as it may appear superficially. In fact, as part of the
anonymity requirements which lay at their very core, these systems do not monitor their
users’ behaviours nor their identities, making it virtually impossible to detect selfish
users. In other words, even without considering the several documented attacks against
anonymity networks (cf. e.g., [15,19,20]), inducing users to cooperate to the anonymity
mechanisms is among the most critical aspects of maintaining the security and viability
of the network. Due to the demand for strong anonymity from large numbers of co-
operative users, it is therefore vital that these systems are able to deploy ‘incentives’
to encourage users’ cooperation and so make the anonymity provision effective. Some
interesting approaches to achieve that have been proposed, such as make running relays
easier and provide better forwarding performance [23].

To evaluate whether these approaches are effective, we need a framework which em-
powers us to analyse them, as well as provide guidelines and some mechanism design
principles for incentive schemes. This much we provide in the present paper, exploiting
notions and techniques from Game Theory.

Game theory [12] concerns strategic decision-making by rational entities – referred
to as players – who behave according to a given set of rules – the game – with the
explicit purpose of maximising their own benefit. Benefits are expressed by utility func-
tions, whose value is determined by the players’ actions and, ultimately, by their deci-
sions. The ‘rationality’ hypothesis is very significant, meaning that players are always
capable to choose their actions exactly as required to maximise their utilities. Game
theory is an excellent tool to model anonymity networks. In such systems users com-
pete for anonymity services in the way prescribed by specific protocols and, in doing
so, they invest their own resources. At the core of their participation in the system is
therefore a need to balance their gain in terms of security (viz., the level of anonymity
guaranteed to them) and/or performance (viz., the speed at which their transactions are
processed) against their costs (e.g., in terms of bandwidth, software, etc). Rationality
here is reflected in the micro-economic mechanisms which underpin such cost/benefit
decisions.

In this paper we build a game-theoretic framework to study incentive mechanisms
in anonymity systems. We model user behaviours (viz., cooperative or selfish) as a
non-cooperative game, and compute the equilibrium strategies for the users involved
in the game. As games model systems, we rely on game-theoretic principles to predict
whether the users will or will not be cooperative, i.e., under exactly what conditions
they will participate in the system or just exploit it. We also use the game theoretic
notion of Nash Equilibrium and Dominant Equilibrium to analyse the strategic choices
made by different users. Our objective is achieved by considering a rich and flexible set
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of parameters for users’ payoffs, including aspects such as anonymity, cost and perfor-
mance. In general, a user’s utility function Ui( ) in our framework is a sum of factor
functions Φk( ), each representing on a given payoff relevant to the analysis at hand.
Furthermore, such functions can be weighed differently for each individual user, so as
to afford great flexibility to the model.

In the paper we apply this framework to a relative simple anonymity scenario: the
Crowds protocol. We show that, if we consider anonymity as the only parameter of
importance, then there is exactly one Nash (dominant) equilibrium, whose equilibrium
strategy is to behave cooperatively. Whilst this may explain why in standard Crowds
there are no incentives to cooperation, it fails to match the real-world experience that
users can indeed behave uncooperatively. In fact, the picture changes radically as soon
as we consider the cost of communication as a parameter: as cost is a potent dissuader,
users will soon start to contemplate the opportunities of selfishness. We observe that
users who constantly behave selfishly enjoy no anonymity at all: as they only forward
their own messages, there can be no ambiguity whatsoever as to the origin of a mes-
sage intercepted from one of them. Strategic users will therefore engineer complex
strategies whereby cooperative and selfish phases alternate. This leads us straight to our
framework of mixed-strategy games, in which we study – both through analysis and
simulations – the collective equilibrium behaviour of strategic users. We furthermore
focus on the impact on equilibria of environmental parameters such as the number of
attackers, the volume of network traffic, etc, and investigate the mechanics they induce
on the equilibrium points.

We anticipate that the full power of our model only comes to the forefront when
incentive mechanisms are involved: the ability to analyse the dynamics of the users’
chosen behaviours – viz., the equilibrium strategies – as contextual parameters vary,
make the model suitable to design and analyse incentive mechanisms. To exemplify
this, we focus on the gold-star incentive mechanism [23], whereby cooperative users are
rewarded for their behaviour by enhanced performance, in the form of quicker delivery
time for their anonymous messages. Precisely, messages carrying a gold-star are routed
with priority over other messages. Users gain ‘gold-star’ status, i.e., the ability to send
gold-star messages, according to whether they “achieved a satisfactory performance for
at least R times out of the last V measurements.” We conduct for gold-star-incentivised
Crowds the same set of analyses we carried out for Crowds. In particular, we study
the equilibrium strategies as typical parameters vary, and illustrate how at equilibrium a
strategic user will be selfish at most with frequency 1− R/V . In other terms, our results
confirm the effectiveness of the gold-star mechanism as an incentive to cooperation.

To the best of our knowledge, ours is the first application of game-theory to yield
an applicable framework to model incentives in anonymity systems. We compare our
approach with the existing literature in §6 and assess it in the concluding section §7.

Structure of the paper: §2 and §3 introduce the framework from its game-theoretic
foundations. In §4 we present our analysis of Crowds, and in §5 that of Crowds ex-
tended with the gold-star mechanism. The appendices contain most of the proofs and
some of the figures that could not find space in this exposition.
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2 Game-Theoretic Incentive Framework

2.1 Strategies and Equilibriums

In anonymity networks, honest users compete for anonymity services with limited re-
sources, such as bandwidth from servers. We model honest users’ behaviours in such
networks as a non-cooperative game. Each player (user) is a rational agent trying to
maximise her own utility and choosing her actions (e.g., cooperative, selfish, etc) strate-
gically. The actions she chooses are so-called strategies; the players’ chosen strategies
are drawn from a (finite) set of actions, and determine their utilities. A dominant strat-
egy for a player is a strategy which guarantees her an optimal utility irrespective of the
strategies chosen by the other players. It is thus natural for a player to adopt a dominant
strategy, if any such strategy exists. A game reaches a dominant-strategy equilibrium if
each player has a dominant strategy. However this may not be possible, since in gen-
eral a user’s utility depends not only on her own strategy, but may be affected by other
players’ strategies. In such cases, one typically considers a weaker property called Nash
Equilibrium (NE), which represents a strategy profile in which each player’s utility is
optimal, given that the other players also play their optimal strategies. We remark that
if a dominant strategy equilibrium exists, then at least one Nash Equilibrium does.

2.2 The General Model in Anonymity Systems

We consider an anonymity system of n members {1, . . . , n} where nh users are honest
and the other nm (= n − nh) are malicious. Each honest member i has a finite set of
strategic actions Acti and we write S i and Ui for respectively user i’s strategies and
utilities. Here the Ui depends on several factors which we discuss below. Typically, the
set of strategic actions for user i include actions C and S, respectively for cooperative
and selfish. In this paper, we are only interested in these two actions, thus the set Acti

is independent of i. For every user, we then denote Acti simply as Act = {C, S}. Here
we define C as the behaviour of forwarding messages for any requests and S as the
behaviour of always refusing others’ requests but only forwarding one’s own messages.
User i will be called cooperative or selfish user according to whether S i = C or S i = S.
Note that cooperative and selfish actions refer to the behaviour of honest users: in the
paper, we make the standard assumption that malicious users always act cooperatively
in order to be chosen on the honest users’ paths and, so, to de-anonymise the system.
We leave to future work the investigation of the case where attackers may act selfishly.

Definition 1. A game Γ with nh players over anonymity systems of n members consists
of a set of utility functions U1, . . . ,Unh , where Ui;Actnh → R, the set of real numbers.

For each i ∈ {1, . . . , nh}, the utility function Ui(S 1, · · · , S nh) describes the payoff
to user i under each combination of strategies. We assume that the utility functions
take the form of a linear combination of factor functions Φk( ), each accounting for a
parameter k relevant to the specific application. That is, using ρik ≥ 0 to indicate the
(relative) weight that user i attributes to parameter k, then

∑
k ρik = 1 and

Ui( ) =
∑

k

ρik · Φk( ) (1)
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In the paper we will only use the factors of anonymity, performance and cost. The for-
mer quantifies the value a user attaches to their anonymity, whilst the second to the
speed of their network activity. These parameters often need to be traded off against
each other, as a higher anonymity level often requires more complex protocols which, as
a side effect, reflect in longer delivery times. The ability to give them different weights
in the same utility function allows i to select their individual strategy to finely balance
their payoffs. Similarly, the ‘cost’ factor measures the importance that i attaches to any
payments she incurs for using the anonymity network. We believe these three factors
are the most important ones, and as such are sufficient to cover several significant ap-
plications, as in this paper; yet, additional factors can easily be included as required.

As honest users will in general vary their behaviour, and not always act according
to a fixed strategy S i, we shall use probabilities to describe the likelihood of i choosing
each possible strategy. More precisely, in our context we assume that with probability
xi (resp. 1 − xi), user i will act cooperatively (resp. selfishly). Such randomness yields
a so called mixed strategy. A mixed strategy is said pure if xi = 0 or xi = 1, i.e., when i
in fact never varies her strategy.

Let X = [0, 1]nh be the set of all possible combinations of nh honest users’ mixed
strategies. Given a combination of mixed strategies x = (x1, · · · , xnh ) ∈ X, we denote by
x−i the combination (x1, x2, · · · , xi−1, xi+1, · · · , xnh) of nh − 1 mixed strategies obtained
from it by removing i’s, and, for a mixed strategy y, we let define

(x−i; y) � (x1, x2, · · · , xi−1, y, xi+1, · · · , xnh ),

which differs from x as user i switches from strategy xi to y.
Since a user action is determined by its mixed strategy xi, we rewrite his utility Ui as

a function from X to R and define the notion of equilibrium as follows.

Definition 2. For Γ a game, a mixed strategy z is a ‘best response’ for user i to x−i if

Ui(x−i; z) ≥ Ui(x−i; y) for all mixed strategies y.

A combination of strategies x = (x1, · · · , xnh ) ∈ X is a mixed Nash equilibrium if xi is a
best response to x−i, for i = 1, . . . , nh; the equilibrium is called a pure Nash Equilibrium
if every xi in x is a pure strategy.

Observe that definition above the just formalises the idea that no user can improve their
own utility by unilaterally deviating from the mixed strategy combination x.

Following [12], we compute the Nash equilibrium by studying the players’ best-
response correspondences. From Definition 2, i’s utility maximisation problem is

max
xi∈[0,1]

Ui(x−i; xi).

3 Crowds

For the reader’s convenience, we report a detailed description of the Crowds pro-
tocol [24]. In this section, we succinctly recall the fundamental mechanism of the
protocol, and the related notion of probable innocence. We opt for the algorithmic de-
scription below, where aSend(M,D) represents the anonymous send of a message M to
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a destination D provided by Crowds, M −→ D a standard communication, and {M}κ a
link-encryption via a shared symmetric key κ, of which there exists one for each pair of
participants in the protocol. The forwarding probability p f is (together with n) the key
parameter, as it determines the average length of the forwarding paths.

function aSend(M,D)
begin

j:= Random Pick({1, . . . , n})
{ Relay(M,D)}κ j −→ j
end

function Relay(M,D)
begin
if(Flip biased coin(p f))

M −→ D
else

j:= Random Pick({1, . . . , n})
{ Relay(M,D)}κ j −→ j
endif
end

Replies, if any, travel the path in reverse to reach the initiator. This is realised in the obvious way,
whereby j sends any reply back to the user she received the corresponding Relay message from.

Reiter and Rubin have proposed in [24] a hierarchy of anonymity notions in the
context of Crowds. These range from ‘absolute privacy,’ where the attacker cannot
perceive the presence of an actual communication, to ‘provably exposed,’ where the at-
tacker can prove a sender-and-receiver relationship. Clearly, as most protocols used in
practice, Crowds cannot ensure absolute privacy in presence of attackers or corrupted
users, but can only provide weaker notions of anonymity. In particular, in [24] the au-
thors propose an anonymity notion called probable innocence and prove that, under
some conditions on the protocol parameters, Crowds ensures the probable innocence
property to the originator. Informally, they define it as follows:

A sender is probably innocent if, from the attacker’s point of view, she
appears no more likely to be the originator than to not be the originator.

(2)

Since anonymity only makes sense for honest users, we define the set of anonymous
events as A = {a1, a2, . . . , anh}, where ai indicates that user i is the initiator of the
message.

We assume that attackers will always deliver a request to forward immediately to
the end server, since forwarding it any further cannot help them learn anything more
about the identity of the originator. Thus in any given path, there is at most one detected
user: the first honest member to forward the message to a corrupt user. Therefore we
define the set of observable events as O = {o1, o2, . . . , onh}, where o j indicates that user
j forwarded a message to a corrupt user. In this case we also say that j is detected by
the attacker. Halpern and O’Neill in [13] formalised condition (2) mathematically as:

P(ai | o j) ≤ 1
2

for all i, j. (3)

Also, it was proved in [24] as one of the fundamental properties of the framework that,
under the assumption that each honest user is equally likely to initiate a transaction
(which we adopt in this paper too), probable innocence (2) holds if and only if
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n ≥ p f

p f − 1/2
(
nm + 1

)
and p f ≥ 1

2
(4)

We remark that the concept of probable innocence was recently generalised in [14] to
encompass the frequent situations where attackers have extra knowledge on users. The
idea formalised in [14] is that the gain obtained by the attacker by observing an event
must be relative to the knowledge that the attacker has of the users independently of that
acquired through the protocol (whence the attribute ‘extra’). The authors express the ex-
tra information in terms of a random variable S with observable values s1 . . . s�, and the
conditional probabilities p(sk | ai). Probable innocence in presence of extra information
can then be expressed by the condition:

P(ai | o j, sk) ≤ 1
2

for all i, j, k. (5)

4 Cooperation Analysis in Crowds

We now specialise our general game model to the setting of Crowds. Our assumptions
identify a tractable yet realistic case for us to analyse how different utility factors affect
the users’ cooperation behaviour.

Honest users. In Crowds, paths are static, and each user creates only one path per time
period. At the end of the period, all existing paths are destroyed, and a new session
starts where each user creates a new path for her anonymous communications. The
reason for that is that dynamic paths tend to decrease the overall system anonymity.
Therefore, we assume that honest users play the following mixed strategies game: (1)
at the beginning of each session, each player i chooses her strategy by flipping a coin
governed by her mixed strategy xi, and then acts accordingly for the entire session;1

(2) selfish users will only cooperate to route their own messages. Observe that this is
a reasonable assumption in Crowds, since messages are received in cleartext, and can
therefore be recognised by their originators.

Attackers. As stated earlier, attackers will always cooperate. Moreover, we assume they
do not originate messages, as they focus on de-anonymising the system.2 Finally, we
assume that in their attempt to guess the identity of the initiator, the attackers always
bet on the previous user on the path, the so-called detected user, because the latter is the
most likely initiator (cf. Proposition 4). That is why we measure the anonymity degree
of i against such attackers via the popular metric P(ai | oi), as expressed in (3) above.

4.1 The Anonymity Analysis

Since the purpose of joining an anonymity system is to enjoy anonymous communica-
tions, the anonymity payoff is typically a very important factor for honest users. Each

1 We plan to investigate in future work the case when users may flip their behaviour at each
interaction, by resorting to more advanced notions from game theory.

2 We leave to future work the case where attackers may flood part of the network to break some
users’ anonymity or to perform DOS attacks; for recent work related see, e.g., [10,4,25].
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cooperative user contributes to provide anonymity to all users, including herself. We
first focus on how cooperation affects the overall anonymity of the system, and then
investigate the anonymity payoffs of individual users.

During the creation of a path initiated by user i, both i and the malicious users will
forward i’s message with probability 1, while a generic honest user j will do so with
probability x j. Thus, i has on average ηi users to pick from for a path, where

ηi = 1 +
∑

j�i

x j + nm,

and ζi = ηi−nm of these are honest. We can then prove that Reiter and Rubin’s condition
(3) to ensure probable innocence to the initiator i becomes as follows.

Proposition 1. Let xi be the average cooperation probability of users other than i, viz.,
(
∑

j�i x j)/(nh − 1), and assume p f > 1/2 and that i is cooperative, i.e., xi = 1. Then, i
has probable innocence against nm malicious users if and only if

n ≥ p f + (1 − xi)/2xi

p f − 1/2
(nm + 1).

Proposition 1 can be proved similarly to condition (4), with respect to which it expresses
a more stringent constraint on n: indeed, as the honest users may behave less cooper-
atively, there more users are required in the system altogether to guarantee probable
innocence against the same number of malicious users.

4.2 Measuring Anonymity Payoffs

Let Ai( ) denote i’s anonymity payoff function, whose value can be computed using the
anonymity degree metric P(ai | o j), as a function of the honest users’ mixed strategies.
Since the lower the anonymity degree, the better the anonymity guaranteed, we define
Ai( ) to be

(
1 − P(ai | o j)

)
a, where the parameter a can be used to normalise the value

of a ‘unit’ of anonymity and a ≥ 0. Let us start by evaluating the probability P(o j | ai),
for which we obtain the following result.3

Proposition 2. P
(
o j | ai

)
=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

nm
ηi
+

nm p f

ηi(ηi − ζi p f )
i = j

nm p f

ηi(ηi − ζi p f )
x j i � j

Note that P
(
o j | ai

)
does not depend on xi, that when i is the initiator, the probability

of detecting user j is not influenced by i’s strategy. This is because that no matter what
strategy i chooses, she will forward her own messages with probability 1.

Now, let us compute the probability of detecting a user P(o j). Assuming a uniform
distribution for anonymous events ai, the following results hold.

Proposition 3. P(o j) = 1
nh

(
nm
η j
+

nm p f

η j(η j − ζ j p f )
+

∑
k� j

nmx j p f

ηk(ηk − ζk p f )

)

.

3 Due to space limitations, the proofs of Prop. 2 and 3 are omitted. We refer the reader to [28].
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Proposition 4. P
(
ai | o j

)
can be expressed as P

(
o j | ai

)
P
(
ai
)
/P

(
o j

)
from Proposition 2

and 3.

It is easy to show that P
(
ai | oi

)
is a decreasing function of xi and that, in particular,

P
(
ai | oi

)
= 1 when xi = 0. Therefore, a fully selfish user has zero anonymity degree.

Corollary 1.
∂P

(
ai | oi

)

∂xi
≤ 0.

Since Ai( ) is a decreasing function of P
(
ai | oi

)
, we have ∂Ai(x)

∂xi
≥ 0 . Therefore, when

anonymity is the sole value taken into account, cooperation is the dominant strategy
in Crowds. Why is then the case that in the real world users often opt for the self-
ish behaviour? In the following sections, we shall explain this apparent mismatch by
investigating the impact on users’ behaviour of cost factor.

4.3 The Cost Analysis

To fulfill the forwarding demands of Crowds, user i incurs a cost Ci( ) and which can
be evaluated as

Ci( ) = Ci0 +
∑

j≤nh

Ci j,

where Ci0 is a fixed cost. i.e., incurred whether or not i is involved in any communica-
tion, and Ci j is the cost incurred for forwarding messages from j.

In the Crowds protocol, the expected length of a path is

E(L) =
p f

1 − p f
+ 2.

Each path starts with the initiator while the last node is occupied either by a honest user
or by an attacker. The path’s internal nodes can only be honest users, because once a
malicious user is encountered, the previous user is detected and the path terminated.
The expected number of internal nodes is E(L) − 2. We can then evaluate the average
number of times i appears on her own paths as

1 +
E(L) − 2
ζi

+
1
ηi
= 1 +

p f /(1 − p f )

ζi
+

1
ηi
. (6)

Similarly, the average number of times i appears on other users’ paths is:

p f · xi/(1 − p f )

ζ j
+

1 · xi

η j
.

Let us now define τi as i’s network traffic, i.e., the number of the messages sent by i,
and c as the cost of forwarding each single one of them. Assuming that all users will
incur the same cost c, we can compute the cost of forwarding by summing up the two
cost components above and Ci0.

Proposition 5. Ci(x) = Ci0 +

(

1 + pf /(1−pf )
ζi

+ 1
ηi

)

τic +
∑

j�i

(
pf ·xi/(1−pf )

ζ j
+ 1·xi
η j

)

τ jc
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An immediate consequence is that the xi derivative of cost is greater than zero.

Corollary 2. ∂Ci(x)
∂xi

=
∑

j�i

( p f
1−p f

(1+
∑

k�i, j xk)

ζ j
2 +

1+nm+
∑

k�i, j xk

η j
2

)

τ jc ≥ 0 .

Clearly, an increase in cooperation level will result in an increase in cost. Thus, if only
the cost factor is considered, the dominant strategy in Crowds is to behave selfishly.

4.4 Balancing between Cost and Anonymity in Crowds

In this section, we apply our game-theoretic model to the Crowds protocol when users
considers both cost and anonymity factors at the same time. We substitute the cost
and anonymity from Propositions 4 and 5 in our utility function, and assume that the
normalisation factor a and c are such to put both utility factors on a same scale.

Ui( ) = −ρiC

[

Ci0 +

(

1 +
p f /(1 − p f )

ζi
+

1
ηi

)

τic +
∑

j�i

( p f · xi/(1 − p f )

ζ j
+

xi

η j

)

τ jc

]

+ρiA

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −

nm

ηi
+

nm p f

ηi(ηi − ζi p f )

nm

ηi
+

nm p f

ηi(ηi − ζi p f )
+

∑

k�i

nmxi p f

ηk(ηk − ζk p f )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

a .

(7)

Differently from the cases of the anonymity and cost utilities, to find the equilibrium
points for Ui( ) appears to be hard, although we know that there always exists in mixed
strategies games. Therefore, in order to illustrate the effect on a user’s utility of the
combination of the two factors, we resort to simulation techniques, focussing on rele-
vant parameters such as, the user strategy xi, her choice of factor weights ρiC , and the
number of the attackers in the system. The results are illustrated and discussed below.

In the following simulation, we consider nh = 100, p f = 0.8, c = 0.1, Ci0 = 5
and a = 100. We assume that the cooperation level for users other than i is uniformly
distributed and in the range of [0, 1].
Factors’ weights. We first show how the weights of the anonymity and cost factors
influence i’s strategies. Figure 1 shows Ui( ) as a function of i’ strategy xi, when the
weight attributed to cost varies from 0 to 1. Figure 1b represents the projection of Fig-
ure 1a’s surface onto the xi axis, for eleven selected values of ρiC (from 0 to 1 in 1/10
steps); for each such projection π, Figure 1c plots the value of xi which maximises π,
which attempts to visualise the process of choosing the strategy for i.

Observe that as ρiC increases from 0 to 1, the equilibrium points xi decreases: a bias
towards anonymity leads to a higher cooperation level for user i.

Number of malicious users. We perform a similar analysis as above (but due to lack of
space, in the rest of the paper we omit the figures). This confirms that more malicious
users result in smaller utilities for i, as i’s anonymity payoffs decrease substantially. In
particular, when nm is equal to 10 and 40 respectively, the maximum utility occurs at
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(a) i’s utilities when xi varies. (b) Detailed figure of Fig. 1a. (c) i’s equilibrium points: xi.

Fig. 1. Ui( ) as xi and ρiC vary; (nm = 10, τ = 50)

xi = 0.5, and xi = 0.68 respectively. The values of xi on equilibrium points are in the
range of [0.4, 0.7]. Thus the number of malicious users in the system has a minor impact
in encouraging or dissuading honest users to behave cooperatively.

Light traffic vs heavy traffic. Regarding the influence of network traffic, in our simu-
lations as the number τ of messages increases from 5 to 80, the utility Ui( ) decreases
considerably, as i incurs a heftier cost. The impact on the value of xi at the equilibrium
points is also significant, covering the interval [0.35, 1]. Thus, light traffic encourages
the honest users to behave cooperatively more often, whilst heavy traffic pushes them
towards selfishness.

Cooperation levels of the honest users other than user i. Here we let xi, the average
cooperation level of the users other than i, vary from 0 to 1. We find that when the
average xi is small, i will tend to behave selfishly to gain more payoff. When instead
xi increases, the values of xi on equilibrium points increase as well. Thus cooperative
behaviour of the honest users encourages more cooperative behaviour.

In conclusion, we see that when a user, interested in both anonymity and cost, wants to
optimise her utility, she needs to adapt her level of cooperation constantly, as the net-
work topology (e.g., the number of cooperating users and attackers), the traffic level and
her own choice of weight factor vary. As cost tend to be a very tangible a value, we can
reasonably conclude that it will be a prominent factor for most users. It is therefore very
important for anonymity systems to contemplate incentives mechanisms designed to of-
fer tangible benefits to cooperative users. The next section is dedicated to the analysis
of the effectiveness of one such mechanism.

5 Adding Incentives: The Analysis of Gold-Star Mechanism

The gold-star mechanism was introduced in Tor [23] to encourage users to act as coop-
erative relays, and thus enhance the service performance for well-behaved forwarders.
We now turn to the gold-star incentive mechanism [23] in Crowds. A request from a
user carrying a ‘gold star’ is given higher priority by other users, i.e., it is always relayed
ahead of other traffic. The assignment of gold-star status, in the context of Crowds, is
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ruled by the policy “to have satisfactory cooperation for R times out of the last V mea-
surements.” In accordance with our game in the setting of Crowds, defined in §4, we
assume a measurement is made in each session, and therefore a user obtain a gold-star
status if and only if she cooperated in R sessions out of the last V sessions. Let r = R/V
be the above ratio. Then a user i will be awarded the gold-star if xi is greater than or
equal to r. We assume that each cooperative user will give priority to gold-star mes-
sages even if she is not a gold-star user. There exist mechanisms in the literature to
allow anonymous users to accurately and securely report their interactions with their
neighbours, whose description in beyond the scope of this paper. Such mechanism will
help enforce the gold-star mechanism. Finally, as in its original proposal [23], we as-
sume that the gold-star status are publicly known.

5.1 The Anonymity Analysis with Gold-Star Mechanism

In presence of gold-star mechanism, attackers have an extra information about the ini-
tiator due the fact that gold-star status are public. Therefore, we use the anonymity
metric encompassing extra knowledge via the conditional probability P(ai | o j, sl), as
expressed in (5). Here sl ∈ {s1, s2}, where l = 1 when the message is a gold-star one,
and l = 2 otherwise.

The correlation between a message status and its initiator, that is the probability
P(sl | ai) is as follows.

P
(
s1 | ai

)
=

⎧
⎪⎪⎨
⎪⎪⎩

1 xi ≥ r,

0 xi < r,
P
(
s2 | ai

)
=

⎧
⎪⎪⎨
⎪⎪⎩

0 xi ≥ r,

1 xi < r,
(8)

Now since for each initiator O and S are independent, from [14], we have

P(ai | o j, sl) = P
(
ai | o j

) P
(
sl | ai

)

P
(
sl | o j

) .

If all honest users are equally likely to initiate a transaction, the probability P(ai | o j, sl)
can be rewritten as follows.

Proposition 6

P(ai | o j, s1) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

P
(
o j | ai

)

∑
xk≥r P

(
o j | ak

) xi ≥ r,

0 xi < r,

P(ai | o j, s2) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 xi ≥ r,

P
(
o j | ai

)

∑
xk<r P

(
o j | ak

) xi < r,

Now we can prove that the presence of gold-star mechanism reduces the anonymity
level of the network. The following indeed holds.

Corollary 3. P(ai | o j, sl) ≥ P(ai | o j).

We define GS as the set of users j who have gold-star, i.e., x j ≥ r, and GS c as the
complement set of those who do not, x j < r. If user i is the only element in either set,
then there is no anonymity guaranteed for i, given malicious users are on the path.
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We again define the anonymity payoffs as Ai( ) =
(
1 − P(ai | oi, sl)

)
a, the anonymity

payoffs for unincentivised Crowds and gold-star Crowds are respectively evaluated as

Proposition 7. – Unincentivised Crowds (cf. Proposition 4):

Ai( ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −

nm

ηi
+

nm p f

ηi(ηi − ζi p f )

nm

ηi
+

nm p f

ηi(ηi − ζi p f )
+

∑

k�i

nmxi p f

ηk(ηk − ζk p f )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

a

– Gold-star Crowds:

Ai( ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −

nm

ηi
+

nm p f

ηi(ηi − ζi p f )

nm

ηi
+

nm p f

ηi(ηi − ζi p f )
+

∑

k�i,k∈φ(i)

nmxi p f

ηk(ηk − ζk p f )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

a

where φ(i) = GS if i ∈ GS, φ(i) = GS c otherwise.

For the unincentivised Crowds, since
∂Ai( )
∂xi

≥ 0, behaving cooperatively will bring i

maximum anonymity payoffs. However in gold-star Crowds, Ai( ) also depends on the
number of users in the set which i belongs to. More users in such set leads to better
anonymity provided for i. When Crowds starts out with a small number of gold star
relays, i has to behave selfishly more often in order not to be rewarded gold-star, and
hence gains more anonymity payoffs.

Ai( ) is an increasing function depending on xi in the following two ranges:

– if 0 ≤ xi < r, then
∂Ai( )
∂xi

≥ 0;

– if r ≤ xi ≤ 1, then
∂Ai( )
∂xi

≥ 0.

We observe that Ai( ) is a discontinuous function, with a discontinuity at xi = r. Thus
maximum points in the two ranges above occur at the extremes, xi = r, and xi = 1,
respectively, and the equilibrium behaviour of i will ultimately depend on which of
these is larger. If Ai(x−i; r) ≥ Ai(x−i; 1), then i will behave according to xi = r to
reach the tipping point and gain the gold-star. If instead Ai(x−i; r) ≤ Ai(x−i; 1), then
the dominant strategy for i is cooperative.

5.2 The Performance Analysis

We will use Pi(x−i; 1) and Pi(x−i; 0) to denote i’s performance payoffs when she behaves
cooperative or selfish, respectively. Thus, the expected performance payoff for i can be
evaluated as

Pi( ) = Pi(x−i; xi) = xiPi(x−i; 1) + (1 − xi)Pi(x−i; 0) (9)
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Following [23], the factor Pi here is interpreted as forwarding time Ti: the shorter the
forwarding time, the better the system performance. Thus we assume Pi( ) =

(−Ti
)
p

where p represents the benefit of each unit of performance.
For the reader’s convenience, we summarise here the notation and names we shall be

using in the analysis in the rest of the section.

b: the size of messages sent by initiators;
f C

j : the number of messages waiting at position j in the forwarding path, when the
forwarder at j has strategy cooperative ;

f C−S
j : as above, but excepting the messages sent by selfish users;

nri: the number of forwarders on the path i initiated;
Q: the bandwidth of each user. Here we assume each user has the same bandwidth.

The total forwarding time Ti for user i is equal to the sum of the forwarding times of all
nri + 1 nodes in user i’s path. We start by evaluating the expected forwarding time for
cooperative users. The first relay is i herself and the forwarding time t1 is

t1 =
b( fC1 + 1)

Q
. (10)

The forwarding time of cooperative users at position jth can be computed the same as
Eq. 10. The cooperative users appear in the path with the probability p( j,C) = 1 in that
selfish users will not forward the messages initiated by the users other than themselves,
thus

t j = t j(C) p( j,C) =
b( fCj + 1)

Q
× 1.

Given that the total forwarding time Ti is equal to t1 +
∑nri+1

j=2 t j, we can express the
performance payoffs of cooperative users as follows, where we denote by ∅ the ‘no-
incentive’ mechanism

P∅i(x−i; 1) = −
(
t1 +

nri+1∑

j=2

t j

)
· p = −

[
b( fC1 + 1)

Q
+

nri+1∑

j=2

b( fCj + 1)

Q

]

p (11)

The payoff function of the selfish user strategy can be evaluated along similar lines; the
resulting formula is shown in (12).

P∅i(x−i; 0) = −
( b

Q
+

nri∑

j=2

(ζi − 1
ζi

b( fCj + 1)

Q
+

1
ζi

b
Q

)
+
ηi − 1
ηi

b( fCj + 1)

Q
+

1
ηi

b
Q

)
p(12)

We now turn to the gold-star incentive mechanism [23] in Crowds. The development
is similar to that in the above computations. The messages marked with a gold star,
sent by cooperative users, have higher priority. There are then b fC−Sj KB rather than

b fCj KB before i’s requests at the jth position of the path. Let  denote the gold-star
mechanism, we then evaluate Pi(x−i; 1) as

Pi(x−i; 1) = −
(
t1 +

nri+1∑

j=2

t j

)
p = −

nri+1∑

j=1

b( fC−Sj + 1)

Q
p (13)
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The performance payoff of selfish strategy is shown below in Eq. (14).

Pi(x−i; 0) = −
(

b
Q
+

nri∑

j=2

(
ζi − 1
ζi

b fCj + b

Q
+

1
ζi

b
Q

)

+
ηi − 1
ηi

b fCj + b

Q
+

1
ηi

b
Q

)

p (14)

Since the utility Pi( ) of a fixed user depends on factors that may change very often
at different forwarding paths, we instead consider the average payoffs Pi(x−i; 1) and
Pi(x−i; 0) of cooperative and selfish users, respectively for each forwarding path. We
define fC (resp. fC−S) as the average number of messages (resp. gold-star messages)
waiting for a cooperative user. We also define the average nri as nr.

According to Eq. (9), we have the performance payoffs for i in unincentivised Crowds
and gold-star Crowds as

Proposition 8

P∅i(x−i; xi) = −bp fCxi

Q

(

nr(1 − ζi − 1
ζi

) +
ζi − 1
ζi
+

1
ηi

)

−bp
Q

(

nr + 1 + fC
( (nr − 1)(ζi − 1)

ζi
+
ηi − 1
ηi

))

Pi(x−i; xi) =
bpxi

Q

(

fC
( (nr − 1)(ζi − 1)

ζi
+
ηi − 1
ηi

)
− fC−S(nr + 1)

)

−bp
Q

(

nr + 1 + fC
( (nr − 1)(ζi − 1)

ζi
+
ηi − 1
ηi

))

Let α define the ratio fC−S/ fC. It actually represents the percentage of users who have
gold star among the all honest users, 0 ≤ α ≤ 1 in that if α is relatively small, then it
reflects not many users are rewarded the gold-star. Then we study the xi derivative of
the performance payoffs, we have

Proposition 9. – Unincentivised Crowds

∂P∅i(x−i; xi)
∂xi

≤ 0

– Gold-star Crowds: if α ≤ nr − 1
nr + 1

ζi − 1
ζi
+

1
nr + 1

ηi − 1
ηi

holds, then

∂Pi(x−i; xi)
∂xi

≥ 0 .

5.3 Balancing between Performance and Anonymity

By applying our game-theoretic model to the gold-star Crowds, we consider anonymity
and performance factors in this section. We substitute the anonymity and performance
payoff equations Proposition 7 and 8 to our utility function, we obtain:



284 M. Yang, V. Sassone, and S. Hamadou

– Unincentivised Crowds:

Ui( ) = ρiA

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −

nm

ηi
+

nm p f

ηi(ηi − ζi p f )

nm

ηi
+

nm p f

ηi(ηi − ζi p f )
+

∑

k�i

nmxi p f

ηk(ηk − ζk p f )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

a

+ρiP

(

−bp fCxi

Q

(

nr(1 − ζi − 1
ζi

) +
ζi − 1
ζi
+

1
ηi

)

−bp
Q

(

nr + 1 + fC
( (nr − 1)(ζi − 1)

ζi
+
ηi − 1
ηi

))
)

– Gold-star Crowds:

Ui( ) = ρiA

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −

nm

ηi
+

nm p f

ηi(ηi − ζi p f )

nm

ηi
+

nm p f

ηi(ηi − ζi p f )
+

∑

k�i,k∈φ

nmxi p f

ηk(ηk − ζk p f )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

a

+ρiP

(
bpxi

Q

(

fC
( (nr − 1)(ζi − 1)

ζi
+
ηi − 1
ηi

)
− fC−S(nr + 1)

)

−bp
Q

(

nr + 1 + fC
( (nr − 1)(ζi − 1)

ζi
+
ηi − 1
ηi

))
)

where φ(i) = GS if i ∈ GS, φ(i) = GS c otherwise.

From the above equations, we derive the following proposition.

Proposition 10. In gold-star Crowds, if α ≤ nr − 1
nr + 1

ζi − 1
ζi
+

1
nr + 1

ηi − 1
ηi

holds, then

∂Ui( )
∂xi

≥ 0 when xi ∈ [0, r);
∂Ui( )
∂xi

≥ 0 when xi ∈ [r, 1],

and function Ui( ) is discontinuous at the point xi = r.

We run simulations to illustrate the equilibrium points of i strategies in different situa-
tions. We consider nh = 100, nr = 3, b = 100, Q = 500, a = 100 and p = 1. We assume
the cooperation level for users j other than i is uniformly distributed and in the range of
[0, 1]. We start with the case of unincentivised Crowds.

Factors’ weights. As we did in §4.4, we first show how the weights of the anonymity
and performance factors influence i’s strategies. In our simulations, as the weight at-
tributed to performance varies from 0 to 1, Ui( ) varies as a function of i’s strategy xi.
As ρiP keeps increasing from 0 to 1, the equilibrium points xi decrease. Higher weight
towards anonymity factor leads to higher cooperation level of user i.
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Number of malicious users. More malicious users result in smaller anonymity but
greater performance payoffs for i. In particular, when nm varies from 2 and 80, the values
of xi on equilibrium points are in the range of [0.2, 0.43]. Thus the number of malicious
users has a minor impact in encouraging or dissuading cooperation behaviours of honest
users.

Light traffic vs heavy traffic. In our simulations, as the average number fC of messages
waiting at the forwarders increases from 0 to 10, the utility Ui( ) decreases, so that
i incurs more delivery time. The values of xi on equilibrium points decrease as well,
from 1 to 0.18. Thus, like before, light traffic encourages more frequent cooperation by
honest users, while heavy traffic suggests them selfishness.

Cooperation levels of the honest users other than user i. Regarding the influence of
users’ behaviours, we find that when the average x j is small, i will be willing to behave
cooperatively more often to gain more payoff. When x j increases, the values of xi on
equilibrium points decrease until 0.37. Thus, cooperative behaviours of the honest users
other than i do not encourage more cooperative behaviours of i.

Moving to analyse Gold-star Crowds, we consider the following parameter settings:
ρiP = 0.5, nm = 10, fC = 3, fC−S = (1 − r) fC in our simulations. When r varies as 0.8,
0.7 and 0.6 respectively, the equilibrium points for i are xi = 0.8, xi = 0.7 and x = 1,
respectively. They are better than those in unincentivised Crowds.

Note that the first two xi of equilibrium points are exactly the values of rule r. We find
that before xi increases to r, both the anonymity and performance payoffs increase as
xi increases. Then, when xi exceeds r, the performance payoff increases further, whilst
the anonymity payoff depends on the number of gold-star users. In this simulation,
when i gets the gold-star, the anonymity payoff of i is smaller than that when i has not.
This is because, since x j is uniformly distributed and r = 0.8, the number of gold-star
users is smaller than the number of users without gold-star. Thus by balancing with
performance payoffs, i chooses her strategy as xi = r. The third xi is 1, because from r
to 1 the performance payoff keeps increasing while the the anonymity payoff increases
as well. On the point xi = 1, the balanced payoffs (Ui = 38.9139) of performance
and anonymity have exceed the previous maximum payoffs (Ui( ) = 34.6699) where
xi = 0.6.

We do simulations by varying nm, fC, and find the shapes of the lines are the same as
those of the above simulations. Therefore, as we proved in Proposition 10, i’s strategy
depends on the comparison of Ui( ) on xi = r and xi = 1.

6 Related Work

The anonymity systems and protocols are typically based on a suitable infrastructure
for forwarding messages. For instance, the Crowds protocol [24] requires a set of users
or peers willing to route each others’ requests. In other cases where they do not directly
require ‘forwarders’ – as e.g. for single-hop web proxies like the Anonymizer proto-
col [3] – they rely on the obfuscation of network traffic provided by the activity of a
(large) set of users. The number of users who forward requests or join in the infras-
tructure determines the anonymity degree of the systems. A point in case is the Tor
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protocol [9]. Although Tor has built a significant community of volunteer forwarders,
if at any time the user-to-relay ratio becomes too small, then all users will be affected,
and will receive a lower-security service [23].

To address these problems, researchers in anonymity networks have considered
mechanisms to incentivise cooperation [23,16]. The ‘gold star’ mechanism in Tor [23]
encourages users to act as cooperative relays, by enhancing the service performance for
well-behaved forwarders. Indeed, relays which provide a good service to other users
get the gold-star reward, and messages sent by gold-star holders are given higher relay
priority, i.e. they are always relayed ahead of other traffic. Tor’s management algo-
rithms routinely scans existing directory authorities to actively measure each user’ per-
formance, and only grant the gold star where appropriate. Users of BRAIDS [16] anony-
mously ‘pay’ Tor relays with generic tickets according to the three hierarchical service
classes. This allows the users to earn credits which they can redeem against improved
traffic performance in Tor. Some mechanisms were proposed to encourage peers to
act cooperatively in P2P systems. These include, e.g., payment schemes, which charge
for anonymity services and/or reward good user behaviour; and reputation schemes,
where users with higher reputation get higher-quality service. PAR [2] and XPay [7]
are payment mechanisms: they produce monetary incentives by using e-cash and an on-
line bank. Reputation schemes [8,27,29] use interaction histories to develop trust levels
for members in the systems; this encourages trustworthy behaviour and incentives fu-
ture cooperative behaviours. Some reputation schemes are however incompatible with
anonymity systems, as relays cannot always link interactions to users.

In this paper we model user behaviours in the anonymity systems as non-cooperative
games. In the context of network security, game-theoretic models have primarily been
used to address problems related to free-riding in P2P systems [18] and distributed in-
trusion detection [5,17,26]. In [18], game theory has been used to characterise peer
selfishness and provide incentives for peers to contribute their upload capacities. The
work closest to ours is [1], where the authors study incentive systems for four types
of users and in doing so lay the foundations for a game-theory approach to modelling
anonymity infrastructures. Their model is based on mix-nets [6]. Although quite gen-
eral, such model cannot accommodate the evaluation of specialised utility functions in
the context of specific anonymity protocols. Each player in loc. cit. belongs to one of
only four types (viz., user, honest node, dishonest node and sender), and in each type all
players behave uniformly. Finally, [1] assume that traffic is distributed uniformly across
nodes, which clearly may not be a realistic assumption: e.g., in reputation-based net-
works users are obviously more likely to ask relays with high reputation as forwarders
for the messages. In such cases, the anonymity degree differ for each user [25].

7 Conclusion

The effectiveness of anonymity networks depends heavily on the number of coopera-
tive users. In this paper, we investigated the incentives for users to behave cooperative
or selfish in such networks. We proposed a game theoretic framework and used it to
analyse users’ behaviours and also predict what strategies users will choose under dif-
ferent circumstances and according to their exact balance of preferences among factors
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such as anonymity, performance (message delivery time) and cost. To allow to trade-
off against each others quantities as different as cost (measured in, say, dollars) and
anonymity (measured in the interval [0,1]), the model uses multiplicative parameters
(viz., a and c) to map them to a common or standard scale. Significantly, we also used
the model to assess the effectiveness of the gold-star incentive mechanism.

We studied the phenomenon that in the original Crowds protocol users have little
incentive to act cooperatively beyond the minimum required to remain probabilistically
anonymous, as cooperation incurs a cost which reflects in the user suffering a utility
loss. We then investigated the effectiveness of gold-star mechanism when implemented
in Crowds. We showed that the gold-star mechanism does create incentives for users to
cooperate exactly when the performance incentives cover the cost of forwarding other
users’ messages. Depending on the amount of performance incentives, users will be
willing to be cooperative all the time, or they will choose the Nash equilibrium mixed
strategy, which gains them maximum utility. We observed that the mechanism can be-
come de-anonymising when there are not enough gold-star users, as gold-star messages
then carry a strong clue about their originators. To factor this in, our analysis used an
anonymity measure which takes into account the attackers’ extra knowledge, i.e., the
a priori knowledge they may acquire besides the protocol. In order for the mechanism
to remain effective, the system must therefore enforce a minimum number of gold-star
users in the system, and relax the condition for obtaining gold-star status when the
threshold is not met. Observe that although the gold-star mechanism was conceived for
Tor, in order to keep the paper self-contained, here we have formulated its concepts and
mechanisms on Crowds. We expect no major difficulties to translate the present results
back to Tor, by applying our game model to the relays, which in fact are the entities the
gold-star mechanism was designed for. Also, he plan to validate our model of Tor by
comparing the predictions made through it with existing results in the literature (viz.,
the simulations in the original gold-star paper [23]). We believe that by restricting to re-
lays, we can apply the game-theoretic framework to Tor, and the performance analysis
can be translated back. We are currently working on mixed anonymity/performance/cost
utilities in Tor, which appears to be more complex.

A cost model alternative to bandwidth is a relay’s liability for the traffic emerging
from it. This generates interesting issues. For instance it may create a deficit of exit
nodes, as relay do not drop messages to save bandwidth, but keep relaying them to avoid
liability for their delivery. This is tantamount to a user fiddling with the forwarding
parameter p f , and goes beyond the cooperative vs selfish choice. Our investigation in
this paper focused on the cooperative/selfish forwarding behaviours in Crowds, where
p f is fixed and equal for all users. We leave the study of the important liability payoff
for future work.

Modelling performance payoffs is useful in real-world scenarios, in that it allows
researchers to make good and useable predictions with no or only minor resort to sim-
ulations. We believe that this is a significant contribution, as simulations can be taxing
in terms of computational power as well as time.

Differently from previous work, our utility functions are not limited to anonymity as-
pects, but are composed of independently-configurable factors which allow us to model
different types of users as well as adapt the model to specific applications. This adds
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a good deal of flexibility to our game model. In particular, it makes the model more
suitable for asymmetric anonymity systems, i.e., systems where users differ from each
other by means of different payoffs and utility functions. Also, we employ our model
to study the Nash strategies and dominant strategies for users in the game. We are not
aware of previous work in this line.

In future work, we plan to refine the model and, more specifically, adapt the tech-
niques presented here to cooperative games in the presence of irrational players and
more complex utilities. This will allow us to take into account more kinds of attack,
and model the fact that attacks targeted to specific users may definitely affect their util-
ities. For instance, a ‘denial-of-service’ attack will impact adversely the effectiveness
of reputation-based incentive mechanisms, whilst the gold-star scheme will suffer from
‘intersection attacks’ on anonymity. We also plan to compare different anonymity sys-
tems, such as, Crowds, onion routing, Mix-net in our model, to study which incentive
schemes are better suited to each of them.
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Abstract. This paper considers declassification, as effected by down-
grading actions D, in the context of intransitive non-interference en-
countered in systems that consist of high-level (secret) actions H and
low-level (public) actions L. In a previous paper, we have shown the de-
cidability of a strong form of declassification, by which D contains only a
single action d ∈ D declassifying all H actions at once. The present paper
continues this study by considering selective declassification, where each
transition d ∈ D can declassify a subset H(d) of H . The decidability of
this more flexible, application-prone declassification framework is proved
in the context of (possibly unbounded) Petri nets with possibly infinite
state spaces.

1 Introduction

This work has been inspired by papers by Gorrieri et al., especially [2,5], which
contain structurally defined security properties for Petri nets describing systems
with high-level (secret) and low-level (public) transitions. In particular, the NDC
property (non-distinguishability with respect to composition [2]) defines security
in terms of parallel compositions with (almost) arbitrary other systems. While
this is an intuitively appealing concept, it is desirable, for formally handling it,
to obtain a characterisation based on transition systems. In [1], we provided such
a characterisation and we used it in order to prove the decidability of NDC for
(possibly unbounded) Petri nets. Moreover, we extended this investigation to
the property INI (intransitive non-interference) defined in [5], which generalises
the NDC property to systems exhibiting downgrading actions in addition to
secret and public ones. The idea is that downgrading actions declassify (i.e.,
turn public) previously executed secret activity. In [1], the decidability of such
a property was obtained as well.

The downgrading technique defined in [5,1] appears to be quite coarse, how-
ever, in the sense that a single downgrading action declassifies the entire set of
secret actions. As suggested e.g. in [5], selective downgrading is more likely to be
of practical interest. In this approach, declassification can be targeted selectively
towards subsets of high-level actions (not necessarily the whole set). Thus, a sub-
set of high-level actions may be associated with every downgrading action, and
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those subsets may differ from one downgrading action to the next. [1] contains
neither a definition of such systems, nor any investigation of their decidability.
These gaps are closed in the present paper.

2 Basic Definitions and Decidability Results

A PT-net is a triple N = (P, T, F ), where P and T are finite disjoint sets of
vertices, called places and transitions, respectively, and F : (P×T )∪(T×P ) → N

is a set of directed edges with non-negative integer weights. A place p is said to
be in ordinary self-loop with a transition t if F (p, t) = 1 and F (t, p) = 1.

A marking of N is a map M : P → N. A transition t ∈ T is enabled at a
marking M (notation: M [t〉) if M(p) ≥ F (p, t) for all places p ∈ P . If t is enabled
at M , then it can be fired, leading to the new marking M ′ (notation: M [t〉M ′)
defined by M ′(p) = M(p) + F (t, p)−F (p, t) for all p ∈ P . These definitions are
extended inductively to transition sequences σ ∈ T ∗: for the empty sequence
ε, M [ε〉 and M [ε〉M are always true; for a non-empty sequence σt with t ∈ T ,
M [σt〉 (or M [σt〉M ′) iff M [σ〉M ′′ and M ′′[t〉 (or M ′′[t〉M ′, respectively) for some
M ′′. A marking M ′ is reachable from a marking M if M [σ〉M ′ for some σ ∈ T ∗.
The set of markings reachable from M is denoted by [M〉.

Let V be any alphabet. For words w, v ∈ V ∗ and a set of letters U ⊆ V ,
let w ∼U v denote the fact that the projection of w onto letters of U equals
the projection of v onto letters of U . A (transition-) labelling of a net (P, T, F )
is a function λ : T → V •∪{ε}. Transitions t with λ(t) ∈ V are called visible,
while those with λ(t) = ε are called invisible. The function λ can be extended to
λ : T ∗ → V ∗ as follows: λ(ε) = ε and λ(σt) = λ(σ)λ(t). The label ε here plays
the role of the empty word in V ∗.

In later parts of the paper, several behavioral notions will be investigated. Such
notions usually depend both on some marking and on the labelling of a net. As it
is normally clear from the context which marking and which labelling are meant,
we will often take the liberty of denoting by N variously some net (P, T, F ) or
some marked net (P, T, F, M0) or some marked labelled net (P, T, F, M0, λ).

Let N denote a net with initial marking M0 and labelling λ. The (prefix)
language of N is the set of words

L(N) = {w ∈ V ∗ | ∃ firing sequence M0[σ〉 such that λ(σ) = w}.

Two (initially marked and labelled) nets N1, N2 are called language-equivalent
iff L(N1) = L(N2). A labelling λ is called plain if λ(t) ∈ V for all t, i.e., all
transitions are visible. A labelling λ is called injective if λ(t1) = λ(t2) ∈ V implies
t1 = t2. In an injectively labelled net, the labels of the visible transitions can
be identified with these transitions, and the rest of the transitions are invisible.
In the main part of this paper, we will be concerned exclusively with injective
labellings, so that it will be sufficient to designate the subset of transitions that
are to be considered as visible. In particular, we can then just use the terminology
“N1 and N2 are language-equivalent with respect to some set of transitions V ”.
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We shall need the following known decidability results. Their proofs and orig-
inal sources can be found in [11].

1. Given a net N and a place s. It is decidable whether there exists a reachable
marking M with M(s) > 0.

2. Given two labelled nets N1 and N2 where N2 is plainly and injectively la-
belled. It is decidable whether L(N1) ⊆ L(N2). A stronger statement is the
following:

3. Given two labelled nets N1 and N2 where N2 is plainly and injectively la-
belled, and a regular language K. It is decidable whether (L(N1) ∩ K) ⊆
L(N2).

3 Noninterference Properties, and Previous Results

An (injectively labelled) net is called HL if its set of transitions T is partitioned
as T = H •∪L where transitions in H are invisible (i.e., ε-labelled) and are
called high-level transitions, while transitions in L are visible (i.e., every t ∈ L
is labelled by t, its own name) and are called low-level transitions. An HL-net is
called H-net (L-net) if it only has high-level (low-level, respectively) transitions,
i.e., if T = H (respectively, T = L). Let U ⊆ T be a set of transitions of N .
Then N \ U is the net obtained from N by erasing all transitions U and their
surrounding arrows. Suppose that N and N ′ have disjoint sets of places, but not
necessarily disjoint sets of transitions. Then N |N ′ is the net obtained from N
and N ′ by identifying (or “merging”) their common transitions.

The next definition originates from [2], and it was the starting point of our
investigations.

Definition 1. Non-deducibility on compositions (NDC)

Let N be an (initially marked) HL-net with T = H •∪L. N has property NDC iff
N \ H and (N |N ′) \ (H \ H ′) are language-equivalent, for any H-net N ′ whose
place set is disjoint from that of N and whose set of transitions T ′ = H ′ is
disjoint from L.

In [1], the NDC property was characterised as follows:

Theorem 1. Characterisation of the NDC property

A net N is NDC if and only if N and N \H are language-equivalent (with respect
to the set L of visible transitions).

An (injectively labelled) net is called HLD if its set of transitions T is partitioned
as T = H •∪L •∪D, where H and L denote the set of high-level and low-level
transitions, respectively, and D denotes the set of downgrading (or declassifying)
transitions. Transitions in H are considered invisible while transitions in L ∪ D
are considered visible.

The next definition stems from [5].
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Definition 2. Intransitive non-interference (INI)

Let N be an HLD-net with T = H •∪L •∪D and with initial marking M0. N
has property INI iff (N \ D, M) has the property NDC for M = M0 and for
any marking M such that M0[vd〉M in N for some sequence v ∈ T ∗ and some
downgrading transition d ∈ D.

This captures the idea that as soon as some d occurs, all the previously invisible
(secret) H actions become visible (i.e., no longer secret). In [1], the following
facts were proved about Property INI. (Actually, Theorem 2 follows directly
from Theorem 1.)

Theorem 2. Characterisation of the INI property

An HLD-net (N, M0) is INI if and only if (N \D, M) and ((N \(H∪D), M) are
language-equivalent for M = M0 and for any marking M such that M0[vd〉M in
N for some sequence v ∈ T ∗ and some downgrading transition d ∈ D.

Theorem 3. Decidability of the INI property

Given an HLD-net N , it is decidable whether N has Property INI.

4 Selective Non-interference

Next, Definition 2 will be refined in order to account for selective declassifica-
tion. Assume, to that end, that every transition d ∈ D has some associated set
of high-level transitions H(d) ⊆ H , and denote such nets as sd (for selective
declassification). The idea is that an occurrence of d declassifies all previously
executed transitions in H(d), but no other high-level transitions.

Definition 3. INI with selective declassification (INISD)

An sd -HLD-net N with T = H •∪L •∪D and with initial marking M0 has prop-
erty INISD iff for any firing sequence of the form:

M0[w0d1w1d2 . . . dn−1wn−1dnwn〉,
where d1, . . . , dn ∈ D;
for all j ∈ {1, . . . , n}, dj does not occur in wjdj+1 . . . dnwn;
and{d1, . . . , dn} is the set of all declassifying

actions occurring in the sequence

(1)

there exists a corresponding firing sequence of the form

M0[v0d1v1d2 . . . dn−1vn−1dnvn〉 (2)

with similar properties, such that for every i ∈ {0, . . . , n}:

vi ∈ L∗
i and wi ∼Li vi , where Li = L ∪ D ∪ (

⋃
i<k≤n

H(dk)).
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According to the conditions in (1), the last occurrence of any declassifying action
dk inside the sequence

w = w0d1w1d2 . . . dn−1wn−1dnwn

is singled out as being critical. Before that last occurrence, all occurrences of
transitions in H(dk) are declassified by this dk. After that last occurrence, they
may either be declassified by some other d action, or still be secret. For this
reason, H(dk) is included in Li, for every i < k. The definition stipulates that
the sequences vi required to exist by (2) must be the projections of wi onto Li.
Transitions left out of these projections are just those H-transitions which are
not declassified later in w. In order to understand this definition better, it is
perhaps helpful to scan w mentally from right to left; once dk occurs in such a
scan, no previously occurring H(dk)-transition is to be considered as secret.

h1

h2

d1

H = {h1, h2}
L = ∅
D = {d1}
H(d1) = {h1}

Fig. 1. An sd -HLD-Petri net which is not INISD

For the sake of illustration, consider the net shown in Figure 1 and the se-
quence

M0[h1h2h1︸ ︷︷ ︸
w0

d1〉.

We have L0 = {d1, h1} and L1 = {d1}. If we wanted to prove the INISD property,
we would need to find a sequence M0[v0d1〉 such that v0 ∈ L∗

0 and w0 ∼L0 v0.
As the projection of w0 onto L0 is h1h1, we would thus need to check whether
h1h1d1 is firable. However, since this is not the case, the net does not have the
INISD property. Informally, by “seeing h1h1d1”, an observer can sense something
secret, namely that some non-declassified high-level action (in this case, h2) must
have occurred.

Consider Figure 2 for a slightly more involved example. Some government
(place “gov”) is engaged in two types of diplomatic activity, secret ones (transi-
tions h1, h

′
1) and top secret ones (transitions h2, h

′
2), producing an unknown (and

unlimited) amount of documents on the corresponding places. At any point, it
may be decided to declassify some information. This is done either by declassi-
fying only secret information, without also declassifying top secret information
(transition d1), or by declassifying all informations, be they top secret or just
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d1

d2

l1

l2

h1h′
1

h2h′
2

2

2
2

gov

top
secret

secret

H(d2) = {h1, h
′
1, h2, h

′
2} and H(d1) = {h1, h

′
1}

Fig. 2. Another non-INISD Petri net

secret (transition d2). After d1-declassification, visible secret-reading activity
(transition l1) may be started, or, alternatively, secret activity may be restarted
by h′

1, which at the same time disables l1. After d2-declassification, both types of
reading (l1 and l2) may be started, or, alternatively, disabled by their correspond-
ing h′

1 or h′
2 actions (i.e.: restart of secret and top secret activity, respectively).

Note that more h1-secrets may only be produced if both restart actions h′
1 and

h′
2 have occurred.
A sequence not disproving the INISD property. Consider the first line of (3):

w = h1h1h2d1h2l1h
′
1h1︸ ︷︷ ︸

w0

d2 l2h
′
2l1h

′
1h2︸ ︷︷ ︸

w1

d1 l1︸︷︷︸
w2

v = h1h1h2d1h2l1h
′
1h1︸ ︷︷ ︸

v0

d2 l2l1h
′
1︸ ︷︷ ︸

v1

d1 l1︸︷︷︸
v2

(3)

Then w is of the form (1), and we compute L0 = {l1, l2, d1, d2, h1, h
′
1, h2, h

′
2},

L1 = {l1, l2, d1, d2, h1, h
′
1}, and L2 = {l1, l2, d1, d2}. A corresponding v of the

form (2), which is firable, is shown in the second line of (3). Note that the de-
classifying transition d1 may be fired twice in a row, in which case the transition
h′

1 needs to be fired also twice in a row to actually let secret activity be restarted.
A sequence disproving the INISD property. Consider w′ = d2h

′
2d1. We compute

the same sets L0, L1, L2 as for w. If the net were INISD, there would exist a
firable sequence v′ = v′0d2v

′
1d1v

′
2 satisfying (2) of Definition 3, where v′1 is the

projection of h′
2 onto L1, that is, v′1 = ε. However, such a sequence does not

exist. Hence, the net does not satisfy the INISD property. This problem hinges
on the fact that some “visible” lower level activity (d1-declassification) is made
partially dependent on some top secret activity (the h′

2 event), and therefore,
the latter is detectable when it should not be.

Definition 3 has been adopted as an unostentatious extension of Definition
2. In particular, there are the following special cases. If D = ∅, then in view of



296 E. Best and P. Darondeau

Theorem 1, Definition 3 amounts to Definition 1. If H(d) = H for every d ∈ D,
then Definition 3 reduces to Definition 2. When comparing the INISD property
to other properties of information control flow, we did not find any equivalent
one, but several related ones. This will be discussed in more detail in Section 8.

5 Decidability of the INISD Property

As properties of systems described by sd -HLD Petri nets seem to be quite sen-
sitive to design decisions, it would be nice if one could use an algorithm to check
automatically whether a system satisfies the INISD property or not. Next, it will
be shown that such an algorithm exists.

d1 d2 dn

d1 dn· · · d2 dn· · · dn

Fig. 3. The net N [d1 . . . dn]

Theorem 4. Property INISD is decidable

Given an sd-HDL-net N , it is decidable whether N has Property INISD.

Proof: First note that the d1, . . . , dn in Definition 3 are mutually distinct, be-
cause every one of them is the last of its kind in the firing sequence considered
in (1). Therefore, the set Σ of sequences d1 . . . dn ∈ D∗ such that some firing se-
quence M0[w0d1w1d2 . . . dnwn〉 exists and satisfies the conditions stated in (1) is
finite, since D is finite and there are only finitely many repetition-free sequences
over D. For repetition-free sequences d1 . . . dn, membership in Σ can be decided
effectively by the following algorithm:

• Let d1 . . . dn ∈ D∗ with ∀1 ≤ i, j ≤ n : i �= j ⇒ di �= dj be given.
• Consider the net N [d1 . . . dn] depicted in Figure 3.
• For each di ∈ {d1, . . . , dn}, replicate the unique transition di of N as many

times as needed to obtain the same number of transitions di in N and in
N [d1 . . . dn] (all replicas have similar flow relations).

• For each di ∈ {d1, . . . , dn}, glue the di-transitions of N and N [d1 . . . dn]
pairwise.

• If a marking can be reached such that the final place of N [d1 . . . dn] carries
a token, then d1 . . . dn belongs to Σ, otherwise it does not.

This implies by the results recalled in section 2 that the finite set Σ can be
effectively constructed. Note the special case n = 0 (hence d1 . . . dn = ε). The
final place in N [ε] equals the initial place, which is marked initially. Hence the
empty sequence is trivially checked by the above algorithm as belonging to Σ
(as indeed it should, by the definition of Σ).
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Next, consider some fixed sequence d1 . . . dn ∈ Σ. We will define two Petri
nets, N1[d1 . . . dn] and N2[d1 . . . dn]. Both nets are derivatives from N , the given
HDL-net. We shall use these pairs of nets (one pair for each sequence d1 . . . dn ∈
Σ) in order to reduce the INISD property to Petri net language inclusion.

The idea of this construction is as follows. L-actions, which are visible, will
simply always be left intact. D-actions d will be duplicated into a tilde-adorned
variant d̃, which will denote the last occurrence of d, and plain d, which will
denote all other occurrences. Also, H-actions h will be duplicated into h̃ and
plain h. The latter are invisible as before, while the former will denote declassified
actions, which are made visible by being declassified.

h1

h̃1

h2

h̃2

d1

d̃1

Fig. 4. N1[d1], for the net shown in Figure 1

Definition of N1[d1 . . . dn]:

1. Copy all the places of N into N1[d1 . . . dn].
2. Copy all L-transitions (with the same flow relations) from N to N1[d1 . . . dn].
3. Copy all H-transitions (with the same flow relations) from N to N1[d1 . . . dn].

From each h ∈ H , make a copy h̃ with the same flow relations as h.
4. Copy all transitions {d1, . . . , dn} ⊆ D from N to N1[d1 . . . dn] and for every

dj (1 ≤ j ≤ n), make a copy d̃j with the same flow relations as dj .
5. For every h and h̃, add control places ph and ph̃ in ordinary self-loop with

h and h̃, respectively. Put one token on ph iff h /∈
⋃

1≤j≤n H(dj), and one
token on ph̃ iff h ∈

⋃
1≤j≤n H(dj).

6. For every dj , add a one-token control place qj in ordinary self-loop with dj .
7. Add flow relations with the following effect: d̃j disables dj by emptying

qj ; furthermore, if h is in the set H(dj) \
⋃

j<k≤n H(dk) then d̃j disables
transition h̃ by emptying ph̃ and enables transition h by filling ph.

8. Synchronise this net (by the | operation defined above) with the net Ñ [d1 . . .

dn] as follows: d̃1 d̃2 d̃n· · ·
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The set of visible transitions of N1[d1 . . . dn] are defined as
X = L ∪ {d1, . . . , dn} ∪ {d̃1, . . . , d̃n} ∪ {h̃ | h ∈ H},

i.e., all transitions except those in H . The result of this construction, applied to
the net shown in Figure 1 and with the sequence d1, is shown in Figure 4.

Definition of N2[d1 . . . dn]:

1. Create N1[d1 . . . dn].
2. Delete all transitions h and all places ph for h ∈ H , as well as their sur-

rounding arcs.

All transitions of N2[d1 . . . dn] are defined to be visible. (This set of transitions
happens to be the same set X as above.) The result of this construction, applied
to the net shown in Figure 1 and with the sequence d1, is shown in Figure 5.

h̃1

h̃2

d1

d̃1

Fig. 5. N2[d1], for the net shown in Figure 1

Note that because of the requirements formulated in Definition 3, in (1), there
can be no D-action whatsoever in wn, at most action dn in wn−1, at most actions
dn and dn−1 in wn−2, and so on, until in w0 there could be any number of actions
from {d1, . . . , dn} but no other D-actions. It is with a view to this that, in both
nets N1[d1 . . . dn] and N2[d1 . . . dn], d̃j disables dj and actions in D\{d1, . . . , dn}
do not appear.

To finish the proof, we show that the following two statements are equivalent:

A : N has the INISD property.

B : L(N1[ε]) ⊆ L(N2[ε]),

and for every σ = d1 . . . dn ∈ Σ with n ≥ 1 :

L(N1[d1 . . . dn]) ∩ (X∗d̃nL∗) ⊆ L(N2[d1 . . . dn])
where X is the set of visible transitions of N1[d1 . . . dn].

The claim of the theorem follows, because B can be checked effectively by the
results recalled in section 2. Note, to this end, that X∗d̃nL∗ is a regular language.

(A ⇒ B): Assume that N is INISD. Let σ = d1 . . . dn be any sequence from
Σ. We distinguish two cases, n = 0 and n ≥ 1.
Case n = 0: We prove L(N1[ε]) ⊆ L(N2[ε]).

Let x ∈ L(N1[ε]). Then there is some sequence τ , firable in N1[ε], such that x is
the projection of τ on X∗, with X = L ∪ {h̃ |h ∈ H}. In particular, x does not
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contain any downgrading transitions. By the construction of N1[ε], τ does not
contain any transition d or d̃ with d ∈ D, nor any h̃-transitions. So, the sequence
τ is also firable in N , and moreover, x ∈ L∗. Setting w = w0 = wn = τ , w is of
the form (1). By the INISD property, there exists some v = v0, firable in N , such
that v0 is the projection of w0 onto L ∪ D, hence onto L. By the construction
of N2[ε], v0 is firable in N2[ε] as well. But v0 = x, because both x and v0 are
the projection on L∗ of w0 = τ ∈ (H ∪ L)∗. Since v0 is firable in N2[ε], so is
x. This implies that x ∈ L(N2[ε]), and since x was arbitrary, we get a proof of
L(N1[ε]) ⊆ L(N2[ε]).

Case n ≥ 1: We prove L(N1[d1 . . . dn]) ∩ (X∗d̃nL∗) ⊆ L(N2[d1 . . . dn]).

Let x ∈ L(N1[d1 . . . dn]) ∩ (X∗d̃nL∗). Then there is some sequence τ , firable
in L(N1[d1 . . . dn]), such that x is the projection of τ on X∗, and moreover, x

contains d̃n at some point and only transitions from L after the last d̃n. By
the construction of N1[d1 . . . dn] (more precisely, item 8. in that construction),
τ contains all of d̃1, . . . , d̃n, in that order, and each d̃i exactly once. Therefore,
τ can be split as follows:

τ = τ0d̃1τ1d̃2 . . . d̃n−1τn−1d̃nτn

such that τn contains no d nor any d̃ with d ∈ D, τn−1 contains at most some
dn transitions, and so on, thus providing a sequence of the form (1).

In going from τ to x by projecting τ on X∗, at most some high-level transitions
h without tilde are erased. By item 7. of the construction of N1[d1 . . . dn], such
high-level transitions h may occur only after the last declassifying d̃j for which
h ∈ H(dj) holds. Before such a d̃j , high-level transitions h ∈ H(dj) can only
occur (if at all) in the form h̃. Let w = plain(τ) be the sequence obtained from
τ by removing the tildes from all actions h̃ and d̃, but leaving the sequence
unchanged otherwise. Then by the construction of N1[d1 . . . dn] (as it essentially
- disregarding the tildes - does not add any behaviour to N), w is firable in N .
Taking account of the splitting of τ , let wi = plain(τi), for 0 ≤ i ≤ n, and hence

w = w0d1w1d2 . . . dn−1wn−1dnwn.

By the properties just explained, w conforms to the requirements associated with
(1). Therefore, by the INISD property, a sequence v conforming to (2) exists.
More precisely, there exists

v = v0d1v1d2 . . . dn−1vn−1dnvn

such that v is firable in N and every vi arises from wi by erasing (only) those high-
level transitions h that do not belong to

⋃
i<k≤n H(dk). Let τ ′ be the sequence

obtained from v by putting back tildes on all remaining high-level transitions
and on the last occurrence of each declassifying action d ∈ D. Then τ ′ is firable
in N2[d1 . . . dn], because the firing in N of any high-level transition h occurring
in vi is faithfully simulated by the firing of the corresponding h̃ in N2[d1 . . . dn].
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This is so because, for any such high-level transition h, necessarily, h ∈ H(dj)
for some j > i, and by item 8. in the construction of N2[d1 . . . dn], the transition
d̃j cannot have been fired earlier.

Now by the above construction, τ ′ is the same as x. This shows that x is
firable in N2[d1 . . . dn], ending the proof of (A ⇒ B).

(B ⇒ A): In order to prove the INISD property from (B), let

w = w0d1w1d2 . . . dn−1wn−1dnwn

be any sequence, firable in N and satisfying the conditions stated in (1). We show
that a related sequence v = v0d1v1d2 . . . dn−1vn−1dnvn satisfying (2) exists such
that vi ∈ L∗

i and wi ∼Li vi for all i. Again, we distinguish the cases n = 0 and
n ≥ 1.
Case n = 0: Then w = w0 = wn, and no D action occurs in w. By construction
of N1[ε], w is firable in N1[ε]. (Note that in N1[ε], a token is on ph but not on
ph̃.) Let v be the projection of w onto X (which by the above, is the same as the
projection of w onto L). By L(N1[ε]) ⊆ L(N2[ε]), coming from (B), and since
all transitions of N2[ε] are visible, v is firable in N2[ε]. But since the L-firing
sequences of N2[ε] agree with those of N , v is also firable in N . So, (2) is satisfied
with v0 = v.
Case n ≥ 1: By the construction of N1[d1 . . . dn], and because w is firable in N ,
the sequence

w̃0d̃1w̃1d̃2 . . . d̃nw̃n

is firable in N1[d1 . . . dn], where for 0 ≤ i ≤ n, w̃i is as wi, except that every
h ∈

⋃
i<k≤n H(dk) (in wi) is replaced by h̃.

For every 0 ≤ i ≤ n, let ṽi be the projection of w̃i onto X . By (B),

ṽ = ṽ0d̃1ṽ1d̃2 . . . d̃nṽn

is firable in N2[d1 . . . dn]. Let vi be the same as ṽi, where each h̃ is replaced by
h. By the constructions of N1[d1 . . . dn], ṽi and vi, no h ∈ H(di) occurs in the
sequence vidi+1 . . . dnvn. Hence, by the construction of N2[d1 . . . dn],

v = v0d1v1d2 . . . dnvn

which is a firing sequence of N , satisfies the requirements of (2).
As an illustration of this theorem, let us apply (B) to prove that the net shown
in Figure 1 is not INISD. Consider

τ = h̃1h2h̃1d̃1 in N1[d1] (see Figure 4).

The projection of τ on X∗ is σ = h̃1h̃1d̃1. By comparing Figures 4 and 5, one
can see that σ is in L(N1[d1]) ∩ (X∗d̃1L

∗) but not in L(N2[d1]). This captures
net-theoretically the fact that for w = h1h2h1d1, firable in N and satisfying
(1), no corresponding v = v0d1, firable in N and satisfying (2), exists such that
v0 ∈ L∗

0 and v0 ∼L0 h1h2h1, where L0 = L ∪ D ∪ H(d1) = {d1, h1}.



Deciding Selective Declassification of Petri Nets 301

6 Undecidability for Non-plain or Non-injective
Labellings

One might consider extensions of this work in several directions. One possibility
is to relax the assumption of injectivity of net labelling maps. A second pos-
sibility is to replace downgrading actions D by (completely) invisible actions
I which are neutral with respect to non-interference, thus considering HLI -net
with T = H •∪L •∪I. By neutral, we mean that on the one hand, such actions
have no downgrading effect, and on the other hand, it is not required from low
actions not to reveal the firing of these invisible actions. Alternatively, one may
add neutral actions I as a fourth class of actions, i.e., consider HLDI -net with
T = H •∪L •∪D •∪I. The former extension would make a kind of bridge with
language based security. The latter extensions would be ideal for considering
non-interference in multi-agent systems, where the global alphabet of the sys-
tem is partitioned to T = Ha •∪La •∪Da •∪Ia in as many ways as there are agents
a in the system (neutral actions I play essentially the same role as N-events in
Mantel’s taxonomies [7,8,9]).

Unfortunately, in all cases considered, we obtain undecidability instead of de-
cidability results. The underlying net-theoretic reason is that a statement quoted
in section 2, namely

For two labelled nets N1 and N2 where N2 is plainly and injectively
labelled, it is decidable whether L(N1) ⊆ L(N2),

changes into
For two labelled nets N1 and N2, it is undecidable whether L(N1) ⊆
L(N2) even if N2 is assumed to be plainly or injectively labelled,

i.e., as soon as the precondition of N2 being plainly and injectively labelled is
omitted.

Before proceeding to prove these negative results, we propose an extended
definition of NDC which, for the sake of simplicity, is based on Theorem 1 instead
of Definition 1. Similar extensions could be proposed for INI or INISD, but this
is not necessary since the undecidability of NDC for PT-nets with non-plain or
non-injective labelling entails similar results for INI or INISD.

Definition 4. Non-deducibility on compositions for labelled nets

Let N = (P, T, F ) be a PT-net with initial marking M0 and labelling map
λ : T → H •∪L •∪{ε}. N has property NDC iff N and N \ λ−1(H) are language-
equivalent with respect to the set of labels L.

In the above definition, I = λ−1({ε}) is the set of completely invisible transitions.
We will prove first the undecidability of NDC for PT-nets with plain but non-
injective labelling, i.e., such that λ(t) �= ε for all t ∈ T but possibly λ(t) = λ(t′)
for t �= t′.

Theorem 5
Given a PT-net N with a plain but non-injective labelling λ : T → H •∪L •∪{ε},
it is undecidable whether N has Property NDC.



302 E. Best and P. Darondeau

Proof: Let N1 = (P1, T1, F1) and N2 = (P2, T2, F2) be two plainly labelled
PT-nets with initial markings M0,1, M0,2 and labelling maps λ1 : T1 → L and
λ2 : T2 → L. Without loss of generality, assume that P1, T1, P2, T2 are pairwise
disjoint. Let {M0,2[ti〉Mi,2 | i = 1 . . . n} be the set of possible firings from the
initial marking of N2. Embed N1 and N2 in a larger net N with two new places
p0, p

′
0 and n+1 new transitions t0 and t′1, . . . , t

′
n as follows. Initially, p0 contains

one token, places p ∈ P1 contain M0,1(p) tokens, and all other places are empty.
All transitions of N1 are set in ordinary self-loops with the place p′0, hence they
cannot be fired from the initial marking of N . The transition t0, labelled with
λ(t0) = h ∈ H , transfers the missing token from p0 to p′0, thus enabling N1

to execute. On the other hand, for each transition M0,2[ti〉Mi,2 of N2, N has
a corresponding transition t′i, labelled with λ(t′i) = λ2(ti), that takes the token
from p0 and loads the marking Mi,2 in the places of N2. Clearly, the initial
transition in a run of N determines whether this run simulates a run of N1 or a
run of N2, and such simulations cannot interfere. Now let λ(t) = λ1(t) for t ∈ T1,
and λ(t) = λ2(t) for t ∈ T2. Then, by definition, N has the property NDC if and
only if L(N1) ⊆ L(N2), and this is undecidable.
We next show that NDC is undecidable for HLI-nets.

Theorem 6

Given a PT-net N with an injective but non-plain labelling map λ : T → H •∪L •∪
{ε}, it is undecidable whether N has Property NDC.

Proof: Let N1 = (P1, T1, F1) and N2 = (P2, T2, F2) be two PT-nets with initial
markings M1, M2 and injective labelling maps λ1 : T1 → L •∪{ε} and λ2 : T2 →
L •∪{ε}. W.l.o.g., assume that L is included in the ranges of λ1 and λ2, and let
I1 = λ−1

1 (ε) and I2 = λ−1
2 (ε). W.l.o.g., assume also that P1 and P2 are disjoint.

Construct from N1 and N2 a new PT-net N as follows. First, one makes
the fusion, for each l ∈ L of the two transitions of N1 and N2 labelled with l,
respectively. Let L denote the resulting set of transitions of N . Second, one adds
four places p00, p0, p1, p2 and four transitions i0, h, i1, i2, yielding a global set of
transitions H∪I∪L with H = {h} and I = I1∪I2∪{i0, i1, i2}. The initial marking
of N is the joint extension M of M1 and M2 defined with M(p00) = 1 and
M(p0), M(p1), M(p2) = 0. The net N inherits all flow relations from N1 and N2.
The other flow relations are as follows (see Figure 6). First, one sets F (p00, i0) =
F (i0, p0) = F (i0, p1) = 1 and F (p00, h) = F (h, p0) = F (h, p2) = 1. Second,
one sets F (p1, i1) = F (i1, p1) = 1, F (p2, i2) = F (i2, p2) = 1, and F (p0, t) =
F (t, p0) = 1 for every transition t ∈ L∪ I1 ∪ I2. Finally, one sets F (i1, p) = 1 for
every place p originated from N1 (but not from N2) and F (i2, p) = 1 for every
place p originated from N2 (but not from N1).

At the start, only i0 or h can be fired. After i0 has fired, i1 may be fired at any
time and as often as desired, hence the language generated by N after firing i0
is equal to the language of N2 (recall that only the transitions in L are visible).
After h has fired, i2 may be fired at any time and as often as desired, hence the
language generated by N after firing h is equal to the language of N1.
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Now, the language of N \H (or N \{h}) is clearly equal to the language of N2.
Therefore, N is NDC if and only if L(N1)∪L(N2) = L(N2), i.e., L(N1) ⊆ L(N2),
and this cannot be decided.

i1 i2

i0 h

tP1 P2

p00

p1 p0 p2

Fig. 6. The construction of N in the proof of Theorem 6

7 Another Example

Consider the HDI-net shown in Fig. 7, where H(di) = {hi} for i = 1 . . . 3. The
outer circuit comprised of places p1, p2, p3 and low transitions l1, l2, l3 is followed
clockwise by sheep, that cannot move from pi to p(i+1) mod 3 (low transition
l(i+1) mod 3) unless the place r(i+1) mod 3 is marked (this place controls a gate
and it is marked when the gate is open). Initially, there are two sheep in place
p2, and the gates r3 and r1 are open. Sheep may reproduce in place p2. The
central place is occupied by a number of wolves (in the system shown in the
figure, there is only one of them). Each wolf may use one of high transitions hi

to hide in the corresponding place qi and wait there for catching sheep in place
pi. In order to (perhaps) increase chances of success, when using transition hi, a
wolf opens the gate ri if not already open (so that prey can come in), and tries
to close the gate r(i+1) mod 3 (so that prey cannot escape). When a wolf hides
in qi and there is sheep in pi, the wolf can catch prey and come back to the
central place.

The question is to decide whether this net has the INISD property, meaning
that the sheep can oppose no strategy to the wolves and cannot ever know that
they will be caught until this actually happens. The answer is that the net is
not INISD, as l3l1h2l2 is friable but l3l1l2 is not.

The example may be modified in various ways as follows. If there are two or
more wolves, then the net is still not INISD, for the same reason. If there are
three open gates initially, then the net is not INISD, since l3l1h1d1l3l1h2l2 can
be executed, but l3l1h1d1l3l1l2 cannot. If only one gate is open initially, three
cases can be distinguished. With gate 3 open, l3h2d2h1l1 can be executed and
l3h2d2l1 cannot be executed; hence the net is not INISD. With gate 2 open,
gate 3 gets closed forever and no low action can take place (only h1 can fire);
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hence the net is INISD. With gate 1 open, h3l3 can be executed but l3 cannot be
executed; hence the net is not INISD. If all gates are deconstructed (i.e.: places
r1, r2, r3 and all their surrounding arrows are deleted), then the net becomes
INISD. Finally, if transition + is deleted, the same reasonings continue to apply.

p1

p2

p3

q1

q2

q3

r1 r2

r3

l1 l2

l3

h1

h2

h3

d1

d2d3

+

2
3

Fig. 7. An HDI-net

8 INISD and Information Flow Security

In this section, the connection between INISD (Definition 3 in section 4) and
information flow control will be examined. In particular, Definition 3 will be
compared with the definitions of intransitive noninterference studied in [9] and in
[10], respectively. First, we show that Definition 3 may be explained alternatively
in terms of security domains and the intransitive purge function introduced by
Haigh and Young [6] and reformulated by van der Meyden [10].

8.1 Equivalent Reformulation of Definition 3

Let N be an sd -HLD-net with T = H •∪L •∪D as in section 4. For d ∈ D, let
H(d) denote the set of high-level actions declassified by d. Let ≡D and ≡H be
the equivalence relations on D and H defined by

d ≡D d′ iff H(d) = H(d′)
and h ≡H h′ iff ∀d ∈ D : h ∈ H(d) ⇐⇒ h′ ∈ H(d).

For t ∈ T , let the security domain dom(t) of t be defined by dom(t) = L if
t ∈ L, dom(t) = [t]≡D if t ∈ D, and dom(t) = [t]≡H if t ∈ H . Let D be the set of
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security domains L or [d]≡D or [h]≡H . Consider the intransitive security policy
�⊆ D ×D defined by

x � x for all x ∈ D
[d]≡D � L for all d ∈ D

[h]≡H � [d]≡D for all d ∈ D and h ∈ H(d).

For two security domains x and x′, x � x′ means that information may legally
flow from x to x′. Finally, consider van der Meyden’s ipurge function defined as
follows for w ∈ T ∗, t ∈ T , and for any subset X of security domains:

ipurgeX(w t) = if (∃x ∈ X : dom(t) � x) then (ipurgeX∪{dom(t)}(w)) t

else ipurgeX(w)

Letting Tr = {w ∈ T ∗ |M0[w〉} be the set of firing sequences of N , condition
INISD may be reformulated equivalently as follows:

∀w ∈ Tr , v ∈ (L ∪ H)∗ : wv ∈ Tr ⇒
∃w′ ∈ Tr , v′ ∈ L∗ : w′v′ ∈ Tr ∧ (ipurge{L}(w)=ipurge{L}(w′)) ∧ v ∼L v′.

8.2 Mantel’s Framework [9]

According to Mantel’s definition of (possibly intransitive) flow policies given in
[9], the above defined structure (D, �) may be interpreted as (D, �V , �N , ��)
where for all x, x′ ∈ D:

x �V x′ if x � x′

x �� x′ if x = [h]≡H and (x′ = L or (x′ = [d]≡D and h /∈ H(d)))
x �N x′ if neither x �V x′ nor x �� x′.

The relation x �N x′ means that it is not considered important whether infor-
mation flows or does not flow from x to x′.

In this alternative framework, Mantel proposes two basic security properties:
IBSD (Intransitive Backwards Strict Deletion of confidential events) and IBSIA
(Intransitive Backwards Strict Insertion of confidential events), parametric on
a subset of security domains D′ ⊆ D, and applicable to a set of traces Tr . (In
our case, Tr would simply again be the set of firing sequences.) We sketch below
(without completely defining IBSD) an explanation why the property INISD
studied in this paper has only a relatively loose relationship with IBSD, or more
precisely, with the conjunction of IBSDD′ for all subsets D′ of D containing L
and not containing [h]≡H for any h ∈ H . The reader is referred to [9] for the full
definition of IBSD.

Given a fixed D′ ⊆ D, for any transition t ∈ T , let t ∈ V (“t is visible”) if ∃x′ ∈
D′ : dom(t) �V x′, and t ∈ C (“t is confidential”) if ∀x′ ∈ D′ : dom(t) �� x′.
The property IBSDD′(Tr) may then be expressed in the following form (where
the crucial predicate ϕ is left unspecified):

∀wtv ∈ Tr : t ∈ C ∧ ϕ(v) ⇒ ∃v′ ∈ T ∗ : wv′ ∈ Tr ∧ ϕ(v′) ∧ v ∼V v′.
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IBSD serves here to check that there is no illegal information flow inside the net
N , even though such flows of information cannot be detected by any external
observer. Indeed, for a fixed D′ ⊆ D, the prefix w of wtv in the expression of
IBSD is in general different from ipurgeD′(w), i.e., it cannot be observed from
outside. In our definition of INISD, we have taken the opposite stance which, for
IBSD, would consist of requiring instead:

∀wtv ∈ Tr : t ∈ C ∧ ϕ(v) ⇒
∃w′v′ ∈ T ∗ : w′v′ ∈ Tr ∧ (ipurgeD′(w)=ipurgeD′(w′)) ∧ ϕ(v′) ∧ v ∼V v′.

8.3 Van der Meyden’s Framework [10]

IP-security (short for intransitive purge security) [6,10] is closer to the intran-
sitive noninterference (INISD) model which we have presented in this paper.
IP-security may be expressed as the conjunction for all security domains x ∈ D
of the property

∀w, w′ ∈ Tr : ipurge{x}(w) = ipurge{x}(w′) ⇒ obsx(w) = obsx(w′)

where obsx is a fixed family of observation functions parametric on security
domains. However, INISD does not coincide with IP-security. Even though IP-
security stipulates that observing an existing trace w cannot afford more infor-
mation than ipurge{x}(w), which is the maximal legal information, more infor-
mation can be inferred without effective information flow. Indeed, IP-security
does not stipulate, for a given trace w, that there exist other traces w′ such
that ipurge{x}(w) = ipurge{x}(w′). In the extreme case where w is alone in its
equivalence class with respect to the purge function, obsx(w) reveals all of w. In
our definition of INISD, like in IBSD, we have taken a different stance which,
instead of IP-security, would consist of requiring:

∀w ∈ Tr : ipurge{L}(w) ∈ Tr ,

Like IP-security, INISD suffers from a limitation pointed out and overcome by
van der Meyden who proposed for this purpose two other security properties
called TA-security and TO-security in [10]. The considered limitation lays in
that, in case h1 ∈ H(d1) and h2 ∈ H(d2), if h1 and d1 are concurrent with
h2 and d2 in the net N , the order in which the transitions h1 and h2 have
been executed may nevertheless be revealed by a firing sequence of the form
. . . h1 . . . h2 . . . d1 . . . d2. The proof techniques that we have developed for decid-
ing INISD rely on the use of the sequential firing rule of Petri nets, and they do
not address this limitation. Different techniques should be discovered for mod-
ifying INISD accordingly in a truly concurrent framework. We feel that Petri
nets, being a privileged model for true concurrency, are well equipped for this
future (and possibly quite exciting) task.

9 Conclusion

The only other decidability results of trace-based security properties for infinite-
state systems we know about are described in [1,3,4]. Of these papers, [1] is a
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direct predecessor of the present one. The result of [3] and its relation to [1] (and
therefore also to the present paper) has already been discussed in [1]. The main
results of the paper [4], which came to our attention only after [1] had been pub-
lished, concern the undecidability of several of the security properties described
in [8] for pushdown systems. These sets of results are not directly comparable,
since pushdown languages and Petri net languages are not comparable either.
At the end of [4], we also find a decidability result. This result pertains to a very
restricted system model. More precisely, it is shown there that a property called
“weak non-inference”, which falls neither into Mantel’s framework [7,8] nor into
the NDC/INI/INISD framework of the present paper, and which is undecidable
even for finite-state systems, becomes decidable for pushdown systems if one
limits both the set of visible actions and the set of secret actions to cardinal-
ity 1. Nevertheless, the approaches in the present paper and in [4] lead to the
question (which is so far open, to our knowledge), as to which – if any – of the
many trace-based transitive security properties of [7,8] are actually decidable
for unbounded Petri nets, and to a similar question for the intransitive security
policies discussed in section 8.

Acknowledgements. The authors would like to thank several anonymous re-
viewers for their comments, and in particular, one of them for detecting a techni-
cal mistake in Figure 2. A remark of this reviewer also prompted the discussion
contained in section 8.
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Abstract. We revisit Schneider’s work on policy enforcement by ex-
ecution monitoring. We overcome limitations of Schneider’s setting by
distinguishing between system actions that are controllable by an en-
forcement mechanism and those actions that are only observable, that
is, the enforcement mechanism cannot prevent their execution. For this
refined setting, we give necessary and sufficient conditions on when a se-
curity policy is enforceable. To state these conditions, we generalize the
standard notion of safety properties. Our classification of system actions
also allows one, for example, to reason about the enforceability of policies
that involve timing constraints. Furthermore, for different specification
languages, we investigate the decision problem of whether a given policy
is enforceable. We provide complexity results and show how to synthesize
an enforcement mechanism from an enforceable policy.

1 Introduction

Security policies come in all shapes and sizes, ranging from simple access-control
policies to complex data-usage policies governed by laws and regulations. Given
their diversity and their omnipresence in regulating processes and data usage in
modern IT systems, it is important to have a firm understanding of what kinds
of policies can be enforced and to have general tools for their enforcement.

Most conventional enforcement mechanisms are based on some form of execu-
tion monitoring. Schneider [29] began the investigation of which kinds of security
policies can be enforced this way. In Schneider’s setting, an execution monitor
runs in parallel with the target system and observes the system’s actions just
before they are carried out. In case an action leads to a policy violation, the
enforcement mechanism terminates the system. Schneider’s results on the en-
forceability of security policies has spurred various research, both practical and
theoretical, on developing and analyzing runtime enforcement mechanisms. For
instance, Erlingsson and Schneider [12,13] implement and evaluate enforcement
mechanisms based on monitoring. Ligatti and others [24–26] propose more pow-
erful models for enforcement, which can not only terminate a system but also
insert and suppress system actions, and they analyze the classes of properties
that can be described by such models.

In this paper, we refine Schneider’s setting, thereby overcoming several limita-
tions. To explain the limitations, we first summarize Schneider’s findings. Schnei-
der [29] shows that only those security policies that can be described by a safety
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property [1, 23, 27] on traces are enforceable by execution monitoring. Roughly
speaking, (1) inspecting the sequence of system actions is sufficient to determine
whether it is policy compliant and (2) nothing bad ever happens on a prefix of a
satisfying trace.1 History-based access-control policies, for example, fall into this
class of properties. Furthermore, Schneider defines so-called security automata
that recognize the class of safety properties and that “can serve as the basis for
an enforcement mechanism” [29, Page 40]. However, Schneider’s conditions for
enforceability are necessary but not sufficient. In fact, there are safety properties
that are not enforceable. This is already pointed out by Schneider [29, Page 41].

We provide a formalization of enforceability for mechanisms similar to Schnei-
der’s [29], i.e., monitors that observe system actions and that terminate systems
in case of a policy violation. A key aspect of our formalization is that we distin-
guish between actions that are only observable and those that are also control-
lable: An enforcement mechanism cannot terminate the system when observing
an only-observable action. In contrast, it can prevent the execution of a con-
trollable action by terminating the system. An example of an observable but
not controllable action is a clock tick, since one cannot prevent the progres-
sion of time. With this classification of system actions, we can derive that, e.g.,
availability policies with hard deadlines, which require that requests are pro-
cessed within a given time limit, are not enforceable although they are safety
properties. Another example is administrative actions like assigning roles or per-
missions to users. Such actions change the system state and can be observed but
not controlled by most (sub)systems and enforcement mechanisms. However, a
subsystem might permit or deny other actions, which it controls, based on the
system’s current state. Therefore the enforceability of a policy for the subsystem
usually depends on this distinction.

In contrast to Schneider, we give also sufficient conditions for the existence of
an enforcement mechanism in our setting with respect to a given trace property.
This requires that we first generalize the standard notion of safety [1] to account
for the distinction between observable and controllable actions. Our necessary
and sufficient conditions provide a precise characterization of enforceability that
we use for exploring the realizability of enforcement mechanisms for security poli-
cies. For different specification languages, we present decidability results for the
decision problem that asks whether a given security policy is enforceable. In case
of decidability, we also show how to synthesize an enforcement mechanism for
the given policy. In particular, we prove that the decision problem is undecidable
for context-free languages and PSPACE-complete for regular languages. More-
over, we extend our decidability result by giving a solution to the realizability
problem where policies are specified in a temporal logic with metric constraints.

Summarizing, we see our contributions as follows. We overcome limitations of
Schneider’s setting on policy enforcement based on execution monitoring [29].
First, we distinguish between controllable and observable system actions when
monitoring executions. Second, we give conditions for policy enforcement based

1 Note that a trace property must also be a decidable set to be enforceable, as remarked
later by Viswanathan [32] and Hamlen et al. [18].
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on execution monitoring that are necessary and also sufficient. These two refine-
ments of Schneider’s work allow us to reason about the enforceability of policies
that, for instance, involve timing constraints. We also provide results on the de-
cidability of the decision problem of whether a policy is enforceable with respect
to different specification languages.

We proceed as follows. In Section 2, we define our notion of enforceability. In
Section 3, we relate it to a generalized notion of safety. In Section 4, we analyze
the realizability problem for different specification languages. In Sections 5 and 6,
we discuss related work and draw conclusions.

2 Enforceability

In this section, we first describe abstractly how enforcement mechanisms mon-
itor systems and prevent policy violations. Afterwards, we define our notion of
enforceability.

2.1 Policy Enforcement Based on Execution Monitoring

We take an abstract view of systems and their behaviors similar to Schnei-
der [29] and others [24–26], where executions are finite or infinite sequences over
an alphabet Σ. We assume that a system execution generates such a sequence
incrementally, starting from the empty sequence ε. In the following, we also call
these sequences traces. Possible interpretations of the elements in Σ are system
actions, system states, or state-action pairs. Their actual meaning is irrelevant
for us. However, what is important is that each of these elements is finitely
represented and visible to a system observer, and that policies are described in
terms of these elements. For convenience, we call the elements in Σ actions. Fur-
thermore, we assume that the actions are classified as being either controllable
actions C ⊆ Σ or only observable actions O ⊆ Σ, with O = Σ \ C.

Our abstract system architecture for equipping a system S with an enforce-
ment mechanism E is as follows. Before S executes an action a ∈ Σ, E intercepts
it and checks whether a’s execution violates the given policy P . If the execution
of a leads to a policy violation and a is controllable, E terminates S. Otherwise,
E does not intervene and S successfully executes a. Note that if the execution of
a leads to a policy violation but a is only observable, E detects the violation but
cannot prevent it. Hence, in this interaction between S and E, we extend Schnei-
der’s setting [29] by distinguishing between controllable and observable actions.

We conclude the description of this system architecture with the following
remarks. First, in process algebras like CSP and CCS, S and E are modeled by
processes over the action set Σ, and their interaction is the synchronous compo-
sition of processes. See, for example, [6], where it is assumed that all actions are
controllable. The composed system deadlocks in case of policy violation. Since
we distinguish between controllable and observable actions, the process modeling
E must always be able to engage in actions in O. Second, instead of assuming
that system actions are solely generated by the system S, the enforcement mech-
anism E can generate observable actions, which are internal and invisible to S.
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For instance, the enforcement mechanism can have its own internal clock, which
generates clock ticks. Third, instead of action interception and system termina-
tion, we could require that S sends a query to E whether executing an action
a ∈ C is authorized. E sends then a permit-or-deny message back to S who pro-
ceeds according to E’s answer: in case of permit, S executes the action and in case
of deny, S continues with an alternative action for which S might need to send a
request to E prior to executing it. When executing an action in O, S notifies E
of its execution. With this kind of interaction, E’s function is similar to a policy
decision point (PDP) in standard access-control architectures like XACML.

As pointed out by Schneider [29], a necessary condition for enforcing a policy
by execution monitoring is that policy compliance is determined by the observed
trace. We therefore require that a policy P is a property of traces, i.e., P ⊆
Σ∗ ∪ Σω, where Σ∗ is the set of finite sequences over Σ and Σω is the set of
infinite sequences overΣ. We also writeΣ∞ for Σ∗∪Σω. Since systems might not
terminate—in fact, they often should not terminate—we also consider infinite
traces, which describe system behaviors in the limit.

Another necessary condition for enforceability is that the decision of whether
the enforcement mechanism E terminates the system S cannot depend on possi-
ble future actions [29]. This point is reflected in how and when E checks policy
compliance in its interaction with S: E’s decision depends on whether τa is in
P , where a is the intercepted action and τ is the trace of the previously executed
actions.

Additionally, although implicit in Schneider’s work [29], there are soundness
and transparency requirements for an enforcement mechanism [11, 18, 24, 25].
Soundness means that the enforcement mechanism must prevent system execu-
tions that are not policy compliant. Transparency means that the enforcement
mechanism must not terminate system executions that are policy compliant.
These requirements clearly restrict the class of trace properties that can be en-
forced by the interaction described above between S and E.

2.2 Formalization

Checking whether the execution of an action is policy compliant is at the core
of any enforcement mechanism. The maximum information available to check is
the intercepted action a together with the already executed trace τ . Our formal-
ization of enforceability requires the existence of a Turing machine that carries
out these checks. In particular, for every check, the Turing machine must ter-
minate, either accepting or rejecting the input τa. Accepting the input means
that executing a is policy compliant whereas rejecting τa means that a’s execu-
tion leads to a policy violation. We do not formalize the interaction between the
enforcement mechanism and the system and how actions are intercepted.

Prior to formalizing enforceability, we first introduce the following definitions.
For a sequence σ ∈ Σ∞, we denote the set of its prefixes by pre(σ) and the set
of its finite prefixes by pre∗(σ), i.e., pre∗(σ) := pre(σ) ∩ Σ∗. The truncation
of L ⊆ Σ∗ is trunc(L) := {σ ∈ Σ∗ | pre(σ) ⊆ L} and its limit closure is
cl(L) := L ∪ {σ ∈ Σω | pre∗(σ) ⊆ L}. Note that trunc(L) is the largest subset
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of L that is prefix-closed and cl(L) contains, in addition to the sequences in L,
the infinite sequences whose finite prefixes are all elements of L. Furthermore,
for L ⊆ Σ∗ and K ⊆ Σ∞, we define L ·K := {στ ∈ Σ∞ | σ ∈ L and τ ∈ K}.
For generality, we formalize enforceability relative to a trace universe U , which
is a nonempty prefix-closed subset of Σ∞.

Definition 1. Let Σ be a set of actions. The property of traces P ⊆ Σ∞ is
enforceable in the trace universe U ⊆ Σ∞ with the observable actions in O ⊆ Σ,
(U,O)-enforceable for short, if there is a deterministic Turing machine M with
the following properties, where A ⊆ Σ∗ is the set of inputs accepted by M:
(i) M halts on the inputs in (trunc(A) ·Σ) ∩ U .
(ii) M accepts the inputs in (trunc(A) · O) ∩ U .
(iii) cl(trunc(A)) ∩ U = P ∩ U .
(iv) ε ∈ A.

Intuitively, with property (i) we ensure that whenever the enforcement mecha-
nism E checks whether τa is policy compliant by using the Turing machine M

(when intercepting the action a ∈ Σ), then E obtains an answer from M. Note
that we require that the trace τ produced so far by the system S is in trunc(A)
and not in A, since if there is a prefix of τ that is not accepted by M, then E
would have terminated S earlier. Furthermore, we are only interested in traces
in the universe U . Property (ii) states that A ⊇ (trunc(A) ·O)∩U and we guar-
antee with it that a finite trace τa with a ∈ O is policy compliant provided that
τa ∈ U and τ is policy compliant. Property (iii) relates the policy P with the
inputs accepted by M. Note that cl(trunc(A))∩U ⊆ P ∩U formalizes the sound-
ness requirement for an enforcement mechanism and cl(trunc(A)) ∩ U ⊇ P ∩ U
formalizes the transparency requirement. With property (iv) we ensure that the
system S is initially policy compliant.

We illustrate Definition 1 by determining whether the following two policies
are enforceable.

Example 2. The policy P1 requires that whenever there is a fail action then
there must not be a login action for at least 3 time units. The policy P2 requires
that every occurrence of a request action must be followed by a deliver action
within 3 time units provided the system does not stop in the meanwhile. We
give their trace sets below. We assume, for the ease of exposition, that actions
do not happen simultaneously and whenever time progresses by one time unit,
the system sends a tick action to the enforcement mechanism. However, more
than one action can be executed in a single time unit.

Let Σ be the action set {tick , fail , login , request , deliver}. The trace universe
U ⊆ Σ∞ consists of all infinite traces containing infinitely many tick actions
and their finite prefixes. This models that time does not stop. We define P1 as
the complement with respect to U of the limit closure of{

a1 . . . an ∈ Σ∗ ∣∣ there are i, j∈{1, . . . , n} with i<j such that ai= fail ,
aj= login , and ai+1 . . . aj−1 contains 3 or fewer tick actions

}
and P2 as the complement with respect to U of the limit closure of



314 D. Basin et al.

{
a1 . . . an ∈ Σ∗ ∣∣ there are i, j∈{1, . . . , n} with i<j such that ai=request and

ai+1 . . . aj contains no deliver action and more than 3 tick s
}
.

A tick action is only observable by an enforcement mechanism since the enforce-
ment mechanism cannot prevent the progression of time. It is also reasonable
to assume that fail actions are only observable since otherwise an enforcement
mechanism could prevent the failure from happening in the first place. Hence we
define O := {tick , fail}.

It is straightforward to define a Turing machine M as required in Defini-
tion 1, showing that P1 is (U,O)-enforceable. Intuitively, whenever the enforce-
ment mechanism observes a fail action, it prevents all login actions until it
has observed sufficiently many tick actions. This requires that login actions are
controllable, whereas the actions tick and fail need only be observed by the
enforcement mechanism.

The set of traces P2 is not (U,O)-enforceable. The reason is that when-
ever an enforcement mechanism observes a request action, it cannot terminate
the system in time to prevent a policy violation when no deliver action oc-
curs within the given time bound. This is because the enforcement mechanism
cannot prevent the progression of time. More precisely, assume that there ex-
ists a Turing machine M required in Definition 1, which must accept the trace
request tick3 ∈ P2 ∩ U . But then, by condition (ii) of Definition 1, it also must
accept the trace request tick4 �∈ P2 ∩ U .

Natural questions that arise from Definition 1 are (1) for which class of trace
properties does such a Turing machine M exist, (2) for which specification lan-
guages can we decide whether such a Turing machine M exists, and (3) when a
policy is enforceable, can we synthesize from its given description an enforcement
mechanism? We investigate these questions in the next two sections.

3 Relation between Enforceability and Safety

In this section, we characterize the class of trace properties that are enforceable
with respect to Definition 1. To provide this characterization, we first generalize
the standard notions of safety properties [1, 19].

3.1 Generalizing Safety

According to Lamport [23], a safety property intuitively states that nothing bad
ever happens. A widely accepted formalization of this intuition, from Alpern and
Schneider [1], is as follows: the set P ⊆ Σω is ω-safety if

∀σ ∈ Σω. σ �∈ P → ∃i ∈ N. ∀τ ∈ Σω. σ<iτ �∈ P ,

where σ<i denotes the prefix of σ of length i. In particular, σ<0 is the empty
sequence ε. Alpern and Schneider’s definition takes only infinite sequences into
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account. Their definition, however, straightforwardly generalizes to finite and
infinite sequences: the set P ⊆ Σ∞ is ∞-safety if

∀σ ∈ Σ∞. σ �∈ P → ∃i ∈ N. ∀τ ∈ Σ∞. σ<iτ �∈ P ,

where σ<i = σ if σ is finite and i ∈ N is greater than or equal to σ’s length.
Note that ω-safety is not directly related to enforceability, since an enforce-

ment mechanism monitors finite traces and ω-safety restricts the infinite traces
in a set of traces. Moreover, note that ω-safety and ∞-safety differ even on sets
of infinite sequences. For instance, the set {a} · Σω is ω-safety, since for every
infinite sequence σ that does not start with a, no extension of σ<1 is in {a} ·Σω.
However, {a} · Σω is not ∞-safety, since we can extend the empty sequence,
which is not in {a} ·Σω, by an infinite sequence τ that starts with the letter a.
In general, whenever a policy P ⊆ Σ∞ is ∞-safety, the set P ∩Σω of its infinite
traces is ω-safety, whereas the converse is invalid.

In Definition 3 below, we give our generalized notion of safety, which is para-
metric in the universe U . The sets Σω and Σ∞ used in the definitions for ω-
safety and ∞-safety are just two instances for U . This generalization is similar
to Henzinger’s [19] definitions of safety and liveness, which extends the classical
safety-liveness classification for properties of untimed systems [1] to real-time
settings. Furthermore, our definition is parametric in the set O ⊆ Σ. Intuitively,
if a trace σ ∈ U violates P , then this violation must be caused by a finite prefix
of σ not ending with an element in O.

Definition 3. Let U ⊆ Σ∞ and O ⊆ Σ. The set P ⊆ Σ∞ is (U,O)-safety if

∀σ ∈ U. σ �∈ P → ∃i ∈ N. σ<i �∈ Σ∗ ·O ∧ ∀τ ∈ Σ∞. σ<iτ �∈ P ∩ U .

In the following examples, we illustrate this generalized notion of safety.

Example 4. Both the policies P1 and P2 from Example 2 are∞-safety. If a trace
τ violates P1 then the violation can be pinpointed to a position where a login
action is executed, i.e., there is some i ≥ 1 with τ<i−1 ∈ P1, τ

<i �∈ P1, and
τ<i ends with a login action. No matter how we extend τ<i, the extension still
violates P1. Analogously for P2, policy violations are caused by tick actions
instead of login actions.

However, P1 is (U,O)-safety and P2 is not (U,O)-safety, where U and O are as
in Example 2. A violation of P1 is caused by executing a login action, i.e., τ ∈ P1

and τ login �∈ P1. We cannot extend such an execution so that the resulting
extended trace is policy compliant. For P2, a violation is caused by a tick . Here,
the prefix excluding this tick action can be extended to a trace that is in P2.
Namely, we discharge the request action in the prefix by adding a deliver action.

Example 5. Recall the trace universe U ⊆ Σ∞ from Example 2, where Σ =
{tick , fail , login , request , deliver}. It consists of the infinite traces with infinitely
many tick actions and their finite prefixes. The trace property “always eventually
a tick action,” formalized as follows, is not safety:

P := {ε} ∪ {a0 . . . an ∈ Σ∗ | n ∈ N and an = tick}∪
{a0a1 · · · ∈Σω | for all i∈N, there is some j∈N with j≥ i and aj= tick} .
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When considering only the infinite traces, the trace property P ∩ Σω is not
ω-safety. In fact, according to Alpern and Schneider [1], P ∩ Σω is a liveness
property.

P is also not (U, ∅)-safety since any nonempty trace a0 . . . an with an �= tick
is in U \ P and can be extended to the trace a0 . . . an tick , which is in P ∩ U .
However, when we exclude finite traces from U , then P is (U ∩ Σω, ∅)-safety,
since P ∩Σω = U ∩Σω.

Lemma 6 below characterizes (U,O)-safety in terms of prefix sets and limit
closures. For a set of sequences L ⊆ Σ∞, we abbreviate

⋃
σ∈L pre(σ) by pre(L)

and
⋃

σ∈L pre∗(σ) by pre∗(L).

Lemma 6. Let U ⊆ Σ∞ be a trace universe and O ⊆ Σ. The set P ⊆ Σ∞ is
(U,O)-safety iff cl(pre∗(P ∩ U) ·O∗) ∩ U ⊆ P .

Proof. We rephrase Definition 3 in terms of set containment, from which we
conclude the stated equivalence.

We first show that the set P ⊆ Σ∞ is (U,O)-safety iff ∀σ ∈ U. σ /∈ P →
pre∗(σ) �⊆ pre∗(P ∩U) ·O∗. We start with the left to right implication. Suppose
that P is (U,O)-safety and let σ ∈ U . Assume that σ /∈ P . Then there is an
index i ∈ N such that (1) σ<i /∈ Σ∗ · O and (2) σ<iτ /∈ P ∩ U , for all τ ∈ Σ∞.
(2) establishes that σ<i /∈ pre∗(P∩U) and, together with (1), that σ<i /∈ pre∗(P∩
U) · O∗. As σ<i ∈ pre∗(σ), we obtain that pre∗(σ) �⊆ pre∗(P ∩ U) · O∗. We now
prove the right to left implication. Let σ ∈ U\P . Then pre∗(σ) �⊆ pre∗(P∩U)·O∗,
and thus there is an index i ∈ N such that σ<i /∈ pre∗(P∩U)·O∗ . Let σ1, σ2 ∈ Σ∗

be such that σ<i = σ1σ2, σ1 /∈ Σ∗ · O, and σ2 ∈ O∗. Hence σ1 /∈ pre∗(P ∩ U),
that is σ1τ /∈ P ∩ U , for all τ ∈ Σ∞. It follows that P is (U,O)-safety.

The statement ∀σ ∈ U. σ /∈ P → pre∗(σ) �⊆ pre∗(P ∩ U) · O∗ is equivalent
to ∀σ ∈ U. σ ∈ P ← pre∗(σ) ⊆ pre∗(P ∩ U) · O∗. Since pre∗(P ∩ U) · O∗ is
prefix-closed, it is also equivalent to ∀σ ∈ U. σ ∈ P ← σ ∈ cl(pre∗(P ∩ U) ·O∗),
i.e., cl(pre∗(P ∩ U) · O∗) ∩ U ⊆ P . $%

Note that P ∩U ⊆ cl(pre∗(P ∩U) ·O∗)∩U , for any sets P,U ⊆ Σ∞ and O ⊆ Σ.
Therefore, P ⊆ Σ∞ is (U,O)-safety iff cl(pre∗(P ∩ U) · O∗) ∩ U = P ∩ U .

3.2 Characterizing Enforceability

In the following, we generalize Schneider’s [29] statement that∞-safety is a nec-
essary condition for a security policy to be enforceable by execution monitoring.
First, we distinguish between controllable actions C and observable actions O.
Second, we take a trace universe U into account. In Schneider’s setting, U = Σ∞

and O = ∅. Third, we show that a policy P ⊆ Σ∞ must satisfy additional con-
ditions to be enforceable. Finally, we show that our conditions are not only
necessary, but also sufficient.

Theorem 7. Let U ⊆ Σ∞ be a trace universe such that U∩Σ∗ is a decidable set
and let O ⊆ Σ. The set P ⊆ Σ∞ is (U,O)-enforceable iff the following conditions
are satisfied:
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(1) P is (U,O)-safety,
(2) pre∗(P ∩ U) is a decidable set, and
(3) ε ∈ P .

Proof. We start with the implication from left to right. Assume that P ⊆ Σ∞

is (U,O)-enforceable. Let A ⊆ Σ∗ be the set of inputs accepted by a Turing ma-
chine M determined by Definition 1. The set A satisfies the following properties:
(a) (trunc(A) · O) ∩ U ⊆ A, (b) cl(trunc(A)) ∩ U = P ∩ U , and (c) ε ∈ A.

First, we prove that P is (U,O)-safety. Let σ ∈ U be a trace such that σ �∈ P .
Then, from (b), we have that σ �∈ cl(trunc(A)). Hence there is an index i ∈ N

such that σ<i �∈ A. Let i be the minimal index with this property. Then i > 0
and all proper prefixes of σ<i are in A, and hence σ<i−1 is in trunc(A). Let
a ∈ Σ be such that σ<i = σ<i−1a. We have that a �∈ O, as otherwise, from (a),
σ<i ∈ A, which is a contradiction. Hence σ<i �∈ Σ∗ · O. Moreover, as σ<i �∈ A,
for any trace τ ∈ Σ∞, we have that σ<iτ �∈ cl(trunc(A)), that is, σ<iτ �∈ P .
This shows that σ satisfies the right hand side of the implication in Definition 3.
Hence P is (U,O)-safety.

Second, note that A is not necessarily decidable, as M need not halt on all
inputs in Σ∗. Since U ∩ Σ∗ is decidable by assumption, there is a Turing ma-
chine MU that terminates on Σ∗ and that accepts U ∩ Σ∗. Let Mtrunc be the
following Turing machine. For an input σ ∈ Σ∗, Mtrunc executes steps 1 to 5
until it either accepts or rejects σ:

1. if MU rejects σ, then Mtrunc rejects σ;
2. if σ = ε, then Mtrunc accepts σ;
3. if n is the length of σ and Mtrunc rejects σ<n−1, then Mtrunc rejects σ;
4. if M accepts σ, then Mtrunc accepts σ;
5. otherwise, Mtrunc rejects σ.

It follows by induction over the length of σ that Mtrunc halts on σ and that
Mtrunc accepts σ iff σ ∈ trunc(A)∩U . Therefore, trunc(A)∩U is decidable. We
have pre∗(P ∩ U) = pre∗(cl(trunc(A)) ∩U) = trunc(A) ∩ U ∩Σ∗. Because both
trunc(A) ∩ U and U ∩Σ∗ are decidable, so is pre∗(P ∩ U).

Third, as ε ∈ A and ε ∈ U , we have ε ∈ cl(trunc(A)) ∩ U = P ∩ U ⊆ P .

We now prove the implication from right to left. Assume that P is (U,O)-
safety, pre∗(P ∩U) is a decidable set, and ε ∈ P . We prove properties (i)–(iv) of
Definition 1. As pre∗(P ∩ U) is decidable, there is a Turing machine that halts
on all inputs in Σ∗ and accepts the set A := pre∗(P ∩ U). Property (i) follows
trivially. Property (iv) is also immediate as ε ∈ P ∩ U . As A = pre∗(P ∩ U)
is prefix-closed, trunc(A) = A = pre∗(P ∩ U). It remains to be shown that (ii)
(pre∗(P ∩ U) ·O) ∩ U ⊆ pre∗(P ∩ U) and (iii) cl(pre∗(P ∩U)) ∩U = P ∩U . By
Lemma 6, and since P is (U,O)-safety, we have:

– (pre∗(P∩U)·O)∩U ⊆ cl(pre∗(P∩U)·O∗)∩U∩Σ∗ = P∩U∩Σ∗ ⊆ pre∗(P∩U);
– P ∩ U ⊆ cl(pre∗(P ∩ U)) ∩ U ⊆ cl(pre∗(P ∩ U) ·O∗) ∩ U = P ∩ U .

Therefore, P is (U,O)-enforceable. $%
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4 Realizability

In this section, we investigate the realizability problem for enforcement mecha-
nisms for security policies. We examine this problem for two policy specification
formalisms, based on automata and temporal logic.

4.1 Automata-Based Specification Languages

Automata may be used to give direct, operational specifications of security poli-
cies [24, 25, 29]. For instance, Schneider [29] introduces security automata as a
formalism for specifying and implementing the decision making of enforcement
mechanisms. Given a deterministic security automatonA, the enforcement mech-
anism E stores A’s current state and whenever E intercepts an action, it updates
the stored state using A’s transition function. If there is no outgoing transition
and the action is controllable, then E terminates the system. Nondeterministic
security automata are handled analogously by storing and updating finite sets of
states. In this case, E terminates the system if the set of states becomes empty
during an update.

Roughly speaking, if all actions are controllable then the existence of a secu-
rity automaton specifying a policy implies that the policy is enforceable. This
is because security automata characterize the class of trace properties that are
∞-safety. However, if there are actions that are only observable, the existence
of a security automaton is insufficient to conclude that the policy is enforce-
able. Additional checks are needed. We show that these checks can be carried
out algorithmically for policies described by finite-state automata. In contrast
to security automata, a finite-state automaton has a finite set of states and a
finite alphabet, and not all its states are accepting. Furthermore, we delimit
the boundary between decidability and undecidability by showing that for a
more expressive automata model, namely, pushdown automata, the realizability
problem is undecidable.

We start by defining pushdown and finite-state automata. Since trace proper-
ties are sets of finite and infinite sequences, we equip the automata with two sets
of accepting states, one for finite sequences and the other for infinite sequences.

A pushdown automaton (PDA) A is a tuple (Q,Σ, Γ, δ, qI, F,B), where (1) Q
is a finite set of states, (2) Σ is a finite nonempty alphabet, (3) Γ is a finite stack
alphabet with # ∈ Γ , (4) δ : Q × Σ × Γ → 2Q×Γ∗

is the transition function,
where δ(q, a, b) is a finite set, for all q ∈ Q, a ∈ Σ, and b ∈ Γ , (5) qI ∈ Q is the
initial state, (6) F ⊆ Q is the set of accepting states for finite sequences, and
(7) B ⊆ Q is the set of accepting states for infinite sequences. The size of A,
denoted by ‖A‖, is the cardinality of Q.

A configuration of A is a pair (q, u) with q ∈ Q and u ∈ Γ ∗. A run of A
on the finite sequence a0 . . . an−1 ∈ Σ∗ is a sequence of configurations (q0, u0)
(q1, u1) . . . (qn, un) with (q0, u0) = (qI,#) and for all i ∈ N with i < n, it holds
that ui = vb, (qi+1, w) ∈ δ(qi, ai, b), and ui+1 = vw, for some v, w ∈ Γ ∗ and
b ∈ Γ . The run is accepting if qn ∈ F . Runs over infinite sequences are defined
analogously. The infinite sequence (q0, u0)(q1, u1) · · · ∈ (Q × Γ ∗)ω is a run on
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c /push c

fail

top=# ∧ c /push c

top=c ∧ c−1 / pop c

top=# ∧ fail

Fig. 1. Pushdown automaton, where c ranges over the elements in C

the infinite sequence a0a1 · · · ∈ Σω if (q0, u0) = (qI,#) and for all i ∈ N, it holds
that ui = vb, (qi+1, w) ∈ δ(qi, ai, b), and ui+1 = vw, for some v, w ∈ Γ ∗ and
b ∈ Γ . The run is accepting if it fulfills the Büchi acceptance condition, i.e., for
every i ∈ N, there is some j ∈ N with j ≥ i and qj ∈ B. In other words, the run
visits a state in B infinitely often. We define L(A) := L∗(A) ∪ Lω(A), where

L◦(A) := {σ ∈ Σ◦ | there is an accepting run of A on σ} ,

for ◦ ∈ {∗, ω}.
We say that A is a finite-state automaton (FSA) if its transitions do not

depend on the stack content, i.e., δ(q, a, b) = δ(q, a, b′), for all q ∈ Q, a ∈ Σ, and
b, b′ ∈ Γ . In this case, we may omit the stack alphabet Γ and assume that δ is
of type Q × Σ → 2Q. Runs over finite and infinite sequences simplify then to
sequences in Q∗ and Qω, respectively.

PDAs are more expressive than FSAs, as illustrated by the following example.

Example 8. Let C and C−1 be finite nonempty sets of actions with C−1 =
{c−1 | c ∈ C}. That is, every action c ∈ C has a corresponding “undo” action
c−1 ∈ C−1. Consider the policy stating that whenever a fail action is executed
the system must backtrack before continuing. That is, consider the language
L := pre(F ∗ · Cω) ∪ Fω over the alphabet Σ := C ∪ C−1 ∪ {fail}, with F :=
{c1 . . . cn fail c−1

n . . . c−1
1 | n ∈ N and c1, . . . , cn ∈ C}, where the superscripts ∗

and ω denote here the finite and infinite concatenation of languages, respectively.
The PDA in Figure 1, where both states are accepting for both finite and infinite
sequences, recognizes this language. However, no FSA accepts this language.

Observe that this policy is (Σ∞, ∅)-enforceable. Indeed, the conditions in
Theorem 7 are satisfied: (1) L contains the empty sequence, (2) pre∗(L) =
F ∗ ·(C∗∪C∗·F ) is decidable, and (3) cl(pre∗(L)) = Fω∪F ∗ ·(C∞∪C∗·F ) = L is
(Σ∞, ∅)-safety. The policy is not (Σ∞, {fail})-enforceable, since an enforcement
mechanism must terminate the system when intercepting the second fail action
in the trace c1c2 fail c

−1
2 fail c−1

1 .

We now turn to the decision problem of checking whether a policy given as a
PDA or FSA is enforceable. In each case, we first analyze the related decision
problem of checking whether a policy is a safety property.

Theorem 9. Let Σ be the alphabet {0, 1}. It is undecidable to determine for a
PDA A with alphabet Σ whether L(A) is (Σ∞, ∅)-safety.

Proof. Recall that the universality problem for context-free grammars is unde-
cidable [20]. That means, we cannot decide if L∗(A) = Σ∗, for a given PDA A.
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¬request
¬deliver∧
¬tick

¬deliver∧
¬tick

¬deliver∧
¬tick

¬deliver∧
¬tick

request tick tick tick

deliver deliver deliver deliver

Fig. 2. Finite-state automaton

Given a PDA A, we build a PDA A′ with L(A′) = L(A)∪Σω. Thus we have
that L(A′) = L∗(A) ∪ Σω and cl(pre∗(L(A

′))) = Σ∞. Then, from Lemma 6,
L(A′) is (Σ∞, ∅)-safety iff L∗(A) = Σ∗. $%

Theorem 10. Let Σ be the alphabet {0, 1}. It is undecidable to determine for
a PDA A with alphabet Σ whether L(A) is (Σ∞, ∅)-enforceable.

Proof. From A we build a PDA A′ with L(A′) = L(A) ∪ Σω ∪ {ε}. Note that
pre∗(L(A

′)) = Σ∗ is decidable and that ε ∈ L(A). Moreover, one can decide
whether ε ∈ L∗(A) but not whether L∗(A) = Σ∗. Hence one cannot decide
whether Σ∗ = L∗(A) ∪ {ε}. By Theorem 7, the language L(A′) is (Σ∞, ∅)-
enforceable iff L(A′) is (Σ∞, ∅)-safety iff Σ∗ = L∗(A) ∪ {ε}. $%

It is straightforward to define FSAs that recognize the languages P1 and P2

from Example 2. For instance, the FSA depicted in Figure 2 recognizes P2.
Since this FSA is deterministic, it is easy to check that the recognized language
is not (U,O)-safety and therefore also not (U,O)-enforceable, where U and O
are as in Example 2. There is a state from which the observable tick action leads
to nonacceptance of the input sequence. In general, the problem is PSPACE-
complete as shown in Corollary 12 below.

Theorem 11. Let U be an FSA over the alphabet Σ such that L(U) is a trace
universe and let O ⊆ Σ. The decision problem of determining, for an FSA A

over Σ, whether L(A) is (L(U), O)-safety, is PSPACE-complete.

Proof. Recall that the universality problem for FSAs, that is, deciding whether
L∗(A) = Σ∗ for a given FSA A, is PSPACE-complete [20].

Given an FSA A, we build an FSA A′ with L(A′) = L(A) ∪ Σω. As in the
proof of Theorem 9, L(A′) is (Σ∞, ∅)-safety iff L∗(A) = Σ∗. This proves that
checking whether L(A′) is (L(U), O)-safety is PSPACE-hard.

To establish membership in PSPACE, we first show how to build, for a given
FSA X = (Q,Σ, δ, qI, F,B), two FSAs Y and Z such that L(Y) = pre∗(L(X))
and, if L(X) ∩Σ∗ = pre∗(L(X)) then L(Z) = cl(L(X) ∩Σ∗):

– Let B′ be the set of states q ∈ B that are on a cycle in X. Let FY be the
set of states q ∈ Q for which there is a path in X starting in q and ending
in a state of F ∪ B′. The FSA Y := (Q,Σ, δ, qI, FY, ∅) accepts the language
L(Y) = pre∗(L(X)).

– If pre∗(L(X)) = L(X) ∩ Σ∗, the FSA Z := (Q,Σ, δ, qI, F, F ) accepts the
language L(Z) = cl(L(X) ∩Σ∗).
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Consider an FSA A. Using the two previous constructions, we build an FSA A′

whose size is polynomial in ‖A‖, such that L(A′) = cl(pre∗(L(A)∩L(U)) ·O∗)∩
L(U). Note that ‖U‖ is a constant, as U is fixed. By Lemma 6 L(A) is (L(U), O)-
safety iff L(A′) ⊆ L(A). Since the inclusion problem for FSAs is in PSPACE [16],
our problem is therefore also in PSPACE. $%

Corollary 12. Let U be an FSA over the alphabet Σ such that L(U) is a trace
universe and let O ⊆ Σ. The decision problem of determining, for an FSA A

over Σ, whether L(A) is (L(U), O)-enforceable, is PSPACE-complete.

Proof. The proof is similar to that of Theorem 10, the statement being an easy
consequence of Theorems 7 and 11. $%

4.2 Logic-Based Specification Languages

Temporal logics are prominent specification languages for expressing properties
on traces [28]. In the following, we consider a linear-time temporal logic with
future and past operators, and metric constraints [2, 22].

We fix a finite set P of propositions, where we assume that they are classified
into observable propositions O ⊆ P and controllable propositions P \ O. The
syntax of the metric linear-time temporal logic MLTL is given by the grammar

ϕ ::= true | p | ¬ϕ |ϕ ∨ ϕ | �I ϕ | �I ϕ |ϕ SI ϕ |ϕ UI ϕ ,

where p ranges over the propositions in P and I ranges over the nonempty
intervals over N, i.e., subsets of the form {n, n + 1, . . . ,m} and {n, n + 1, . . . }
with n,m ∈ N and n ≤ m. The size of a formula ϕ, denoted by ‖ϕ‖, is the
number of ϕ’s subformulas plus the sum of the representation sizes of the interval
bounds occurring in ϕ, which are �log(1 + max I)� for a finite interval I, and
�log(1 + min I)� for an infinite interval I.

We use standard syntactic sugar. For instance, ϕ∧ψ abbreviates ¬(¬ϕ∨¬ψ),
�I ϕ abbreviates trueUIϕ, and �I ϕ abbreviates ¬ �I(¬ϕ). We drop the interval
attached to a temporal operator if it is N and we use constraints like ≤ n and ≥ n
to describe intervals of the form {0, 1, . . . , n} and {n, n + 1, . . . }, respectively.
Furthermore, we use standard conventions concerning the binding strength of
operators to omit parentheses. For instance, ¬ binds stronger than ∧, which in
turn binds stronger than ∨. Boolean operators bind stronger than temporal ones.

The truth value of a formula ϕ is defined over timestamped sequences, where
time is monotonically increasing and progressing. To formalize this, we introduce
the following notation. We denote the length of a sequence σ by |σ| and the letter
at the (i+1)st position in σ by σi, where i ∈ N with i < |σ|. We define T as the
set that consists of the sequences t ∈ N∞ with the following properties:

(i) For each i, j ∈ N with i ≤ j < |t|, ti ≤ tj .
(ii) If t is infinite then for each k ∈ N, there is an integer i ∈ N with ti ≥ k.

Furthermore, for sequences σ ∈ (2P)∞ and t ∈ T with |σ| = |t|, we define σ ⊗ t
as the sequence of length |σ| with (σ ⊗ t)i := (σi, ti), for i ∈ N with i < |σ|. For
L ⊆ (2P)∞, we define L⊗ T := {σ ⊗ t | σ ∈ L, t ∈ T , and |σ| = |t|}.
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For σ ∈ (2P)∞, t ∈ T , and i ∈ N with |σ| = |t| and i < |σ|, we define the
relation |= inductively over the formula structure:

σ, t, i |= true
σ, t, i |= p iff p ∈ σi

σ, t, i |= ¬ϕ iff σ, t, i �|= ϕ
σ, t, i |= ϕ ∨ ψ iff σ, t, i |= ϕ or σ, t, i |= ψ
σ, t, i |= �I ϕ iff i > 0 and ti − ti−1 ∈ I and σ, t, i − 1 |= ϕ
σ, t, i |= �I ϕ iff i < |σ| − 1 and ti+1 − ti ∈ I and σ, t, i + 1 |= ϕ

σ, t, i |= ϕ SI ψ iff there is an integer j ∈ N with j ≤ i such that
ti − tj ∈ I and σ, t, j |= ψ and
σ, t, k |= ϕ, for all k ∈ N with j < k ≤ i

σ, t, i |= ϕ UI ψ iff there is an integer j ∈ N with i ≤ j < |σ| such that
tj − ti ∈ I and σ, t, j |= ψ and
σ, t, k |= ϕ, for all k ∈ N with i ≤ k < j

Finally, for a formula ϕ, we define L(ϕ) := {ε}∪{σ⊗t ∈ (2P)∞⊗T | σ, t, 0 |= ϕ}.
We also define Lω(ϕ) and L∗(ϕ) that consist of the infinite and finite sequences
in L(ϕ), respectively. Note that different semantics exist for linear-time temporal
logics over finite traces [10], each with their own artifacts. Since our semantics
is not defined for the empty sequence, we include it in L(ϕ).

The time model over which MLTL’s semantics is defined is discrete and point-
based. See Alur and Henzinger’s survey [2] for an overview of alternative time
models and their relationships. We briefly justify our chosen time model. The
use of the discrete time domain N instead of a dense time domain like Q≥0 or
even R≥0 is justified by the fact that clocks with arbitrarily fine precision do
not exist in practice. The choice of a point-based time model is justified by our
action-based view of system executions, where an action happens at some point
in time. Furthermore, an enforcement mechanism does not continuously monitor
the system but only at specific points in time.

Example 13. We return to the policies from Example 2. Let P be the proposition
set {fail , login , request , deliver}. The formula

ϕ1 := � fail → �≤3 ¬login

formalizes the first policy and the second policy is formalized by the formula

ϕ2 := � request → �≤3(deliver ∨ ¬� true) .

The trace properties described by ϕ1 and ϕ2 differ from the trace properties P1

and P2 from Example 2 in the following respects. First, the progression of time
in P1 and P2 was explicitly modeled by tick actions. In L(ϕ1) and L(ϕ2) time is
modeled by timestamping the letters in the sequences in (2P)∞. We only consider
timestamped sequences that adequately model time, i.e., the sequences in the
trace universe (2P)∞ ⊗ T , which is a subset of (2P ×N)∞. Second, the traces in
Example 2 contained only one system action at a time. Here, we consider traces
in which multiple system actions can happen at the same point in time. Instead
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of using the trace universe (2P)∞⊗T , we can alternatively use the trace universe
P∞ ⊗ T by filtering out the traces where a letter (a, t) ∈ 2P ×N occurs and a is
not a singleton. However, the trace universe P∞ ⊗ T is more restrictive.

The trace properties described by ϕ1 and ϕ2 match the trace properties P1

and P2 from Example 2 with respect to enforceability. Here O = {fail} and a
letter (a, t) ∈ 2P × N is only observable iff a does not contain any controllable
actions, that is, iff a = ∅ or a = {fail}. To see, for instance, that L(ϕ2) is not
enforceable, consider the trace σ = ({request}, 0) and the letter a = (∅, 4). Then
σ ∈ L(ϕ2) and σa �∈ L(ϕ2), while a is only observable.

In general, we assume that a ∈ 2P is observable if a ⊆ O. In other words, a ∈ 2P

is controllable if it contains at least one controllable proposition. In particular,
the empty set is not controllable. We define Ô := {a ∈ 2P | a ⊆ O}.

In the remainder of this section, we analyze the complexity of two related
realizability problems where policies are specified in MLTL. We start with the
realizability problem for the untimed fragment of MLTL, which we call LTL. The
interval attached to a temporal operator occurring in a formula of this fragment
is N. Hence, an LTL formula does not specify any timing constraints and, instead
of (2P)∞ ⊗ T , we consider trace universes that are subsets of (2P)∞.

Lemma 14. Let O ⊆ P and let U be an FSA such that L(U) ⊆ (2P)∞ is a trace
universe. The decision problem of checking for an LTL formula ϕ whether L(ϕ)
is (L(U), Ô)-enforceable is PSPACE-complete.

Proof. By Theorem 7 we have that L(ϕ) is (L(U), Ô)-enforceable iff L(ϕ) is
(L(U), Ô)-safety: note that ε ∈ L(ϕ) by definition and pre∗(L(ϕ) ∩ L(U)) is
regular, hence decidable. Hence it suffices to show that determining whether
L(ϕ) is (L(U), Ô)-safety is PSPACE-complete.

We first prove that the problem is PSPACE-hard. Recall that the satisfiability
problem for LTL over infinite sequences is PSPACE-complete [30]. Given an LTL
formula ϕ, we define ϕ′ := ϕ∨ �¬� true. Then L(ϕ′) = L(ϕ)∪(2P)∗. Moreover,
using Lemma 6, we have that L(ϕ′) is ((2P)∞, ∅)-safety iff Lω(ϕ) = (2P)ω iff
Lω(¬ϕ) = ∅. Hence determining if L(ϕ) is ((2P)∞, ∅)-safety is PSPACE-hard.

To show membership in PSPACE, let ϕ be an LTL formula of size n ∈ N. There
exist FSAs A and A′ with L(A) = L(ϕ), L(A′) = L(¬ϕ), and ‖A‖, ‖A′‖ ∈ 2O(n).
These two FSAs can be obtained by straightforwardly extending the translations
of LTL over infinite sequences into nondeterministic Büchi automata [8, 31].
Using standard automata constructions and the constructions from the proof
of Theorem 11, we build an FSA B with ‖B‖ ∈ 2O(n) and L(B) = L(A′) ∩
L(U) ∩ cl(pre∗(L(A) ∩L(U)) · Ô∗) \ {ε}. It follows that L(ϕ) is (L(U), Ô)-safety
iff cl(pre∗(L(ϕ) ∩ L(U)) · Ô∗) ∩ L(U) ⊆ L(ϕ) iff L(B) = ∅. Since the emptiness
problem for FSAs is in NLOGSPACE [21] and since we can construct B on the
fly, our problem is in PSPACE. $%

If L(ϕ) is (L(U), Ô)-enforceable, we can use the FSA U and the FSA A con-
structed in the proof of Lemma 14 to obtain an enforcement mechanism for
L(ϕ). Namely, we construct the product automaton C of U and A that accepts
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the intersection of L(U) and L(A). The enforcement mechanism E initially stores
the singleton set consisting of C’s initial state. Whenever E intercepts a system
action a ∈ 2P, it updates this set by determining the successor states of the
stored states using C’s transition function. We remove from the updated set the
states from which we do not accept any sequence. E terminates the system if
the set becomes empty provided that the intercepted action a is controllable.
Otherwise, it continues by intercepting the next system action.

Theorem 15. Let O ⊆ P and let U be an FSA such that L(U) ⊆ (2P)∞ is a
trace universe. The decision problem of checking for an MLTL formula ϕ whether
L(ϕ) is (L(U)⊗ T, Ô × N)-enforceable is EXPSPACE-complete.

Proof. Let tick �∈ P be a new proposition modeling clock ticks. Let Σ := 2P,
Σ := 2P∪{tick}, UT := L(U) ⊗ T , and T := Σ∞ ⊗ T . We first map each MLTL
formula ϕ to an LTL formula ϕ, each FSA A to an FSA A, and each trace τ in
T to a trace τ in Σ

ω
such that

– τ ∈ L(ϕ) iff τ ∈ L(ϕ) and
– τ ∈ L(A) iff τ ∈ L(A).
For a trace τ = σ ⊗ t in T , we define the trace τ in Σ

∞
as follows:

– if τ is infinite, then τ := {tick}t0σ0{tick}d1σ1{tick}d2σ2 . . . ,
– if τ = ε, then τ := {tick}ω, and
– if τ �= ε is finite, then τ := {tick}t0σ0{tick}d1σ1{tick}d2σ2 . . . σ|τ |−1{tick}ω,

where di := ti − ti−1, {tick}i is the sequence {tick} . . . {tick} of length i and
{tick}ω is the infinite sequence {tick}{tick} . . . . For a set of traces L ⊆ T , we
abbreviate by L the set {τ ∈ Σ

∞ | τ ∈ L}. Note that this mapping is one-to-one,
so that it induces a bijection from L to L.

For an MLTL formula ϕ, we define the formulas �ϕ� and ϕ as follows:

– �true� := true,
– �p� := p if p ∈ P,
– �¬ϕ� := ¬�ϕ�,
– �ϕ ∨ ψ� := �ϕ� ∨ �ψ�,
– ��I ϕ� := ��I true� ∧ ��ϕ� if I �= N and ϕ �= true,
– ��I true� := �(tick ∧ ��I−1 true�) if 0 /∈ I, where I − 1 := {t− 1 | t ∈ I},
– ��[0,a] true� := �(¬tick ∨ ��[0,a−1] true�) if a ≥ 1,
– ��[0,0] true� := �¬tick ,
– ��ϕ� := �(tick U (¬tick ∧ �ϕ�)),
– �ϕ UI ψ� := (¬tick ∧ �ϕ�) U (tick ∧�(�ϕ UI−1 ψ�)) if 0 /∈ I,
– �ϕU[0,a]ψ� := (¬tick ∧�ϕ�)U ((¬tick ∧�ψ�)∨(tick ∧�(�ϕU[0,a−1]ψ�))) if a≥1,
– �ϕ U[0,0] ψ� := (¬tick ∧ �ϕ�) U (¬tick ∧ �ψ�),
– �ϕ U ψ� := (tick ∨ �ϕ�) U (¬tick ∧ �ψ�),
– ��I ϕ� and �ϕ SI ψ� are defined analogously to ��I ϕ� and �ϕ UI ψ�,
– ϕ := (� tick) ∨ (tick U (¬tick ∧ �ϕ�)).

For an FSA A = (Q,Σ, δ, qI, F,B), we define the FSA A := (Q,Σ, δ, qI, F ,B)
with Q := Q × {0, 1, 2}, qI := (qI, 0), F := ∅, B := (B × {0}) ∪ (F × {2}), and
for any q ∈ Q, i ∈ {0, 1, 2}, and a ∈ Σ,
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δ((q, i), a) :=

⎧⎪⎪⎨⎪⎪⎩
{(q′, 0) | q′ ∈ δ(q, a)} if a ∈ Σ and i ∈ {0, 1},
{(q, 1), (q, 2)} if a = {tick} and i = 0,
{(q, i)} if a = {tick} and i ∈ {1, 2},
∅ otherwise.

It is easy to check that τ ∈ L(A)⊗T iff τ ∈ L(A)∩T . In addition, by induction
over ϕ, one verifies that σ, t, i |= ϕ iff τ , i+ti |= �ϕ� for all i < |τ |, where τ = σ⊗t.
Therefore, τ ∈ L(ϕ) iff τ ∈ L(ϕ).

Note that T = L(θ) ∩Σ
ω
, where θ := (� � tick ) ∧�(tick →

∧
p∈P ¬p). Then

UT = L(U) ∩ T . Moreover, UT ∩ (Σ × N)∗ is decidable, and a finite trace τ in
UT is in pre∗(L(ϕ)) iff τ<|τ |+t|τ|−1 is in pre∗(L(ϕ) ∩ T ). Since pre∗(L(ϕ)∩ T ) is
decidable, so is pre∗(L(ϕ) ∩ UT ). Thus L(ϕ) is (UT , Ô ×N)-enforceable iff L(ϕ)
is (UT , Ô × N)-safety.

Recall now that the satisfiability problem for MLTL with infinite timed words
is EXPSPACE-hard [3]. Given an MLTL formula ϕ, we define the formula ϕ′ :=
ϕ ∨ �¬� true. We have L(ϕ′) = L(ϕ) ∪ (T ∩ (Σ × N)∗). L(ϕ′) is (UT , Ô × N)-
safety iff Lω(ϕ) = T ∩ (Σ × N)ω iff Lω(¬ϕ) = ∅. This proves that checking
whether L(ϕ) is (UT , Ô × N)-safety is EXPSPACE-hard.

To prove membership in EXPSPACE, consider an MLTL formula ϕ of size
n ∈ N. It is easy to see by induction over ϕ that ‖ϕ‖ ∈ 2O(n). Moreover, note that
T ∩ (Σ × N)ω = L(θ′)∩Σω

, where θ′ := θ∧(� �¬tick ). For convenience, we also
let Ot := O∪{tick} and Sϕ := cl(pre∗(L(ϕ)∩UT ) · (Ô×N)∗)∩UT . We have that

Sϕ is mapped to Sϕ =
(
pre∗(L(ϕ)∩UT )·Ôt

ω∪
(
cl(pre∗(L(ϕ)∩UT ))∩L(θ′)

))
∩UT .

Therefore, L(ϕ) is (UT , Ô × N)-enforceable iff Sϕ ⊆ L(ϕ).

As in the proof of Theorem 11, we build an FSA B of size 22
O(n)

such that
L(B) = Sϕ ∩L(¬ϕ). Then L(ϕ) is (UT , Ô ×N)-enforceable iff L(B) = ∅. As the
emptiness problem for FSAs is in NLOGSPACE [21] and since we can build B

on the fly, checking whether L(ϕ) is (UT , Ô × N)-safety is in EXPSPACE. $%

If L(ϕ) is (L(U) ⊗ T, Ô × N)-enforceable, we can use—similar to the LTL case
—the FSAs U and A from the proof of Theorem 15 to obtain an enforcement
mechanism E. We construct the product automaton C accepting L(U) ∩ L(A).
The enforcement mechanism E initializes the state set to the singleton set con-
sisting of C’s initial state. Additionally, E stores the current timestamp, which
is initially 0. Whenever E intercepts a system action (a, t) ∈ 2P×N, it performs
the following updates on the state set and the current timestamp.

1. E updates the state set with respect the progression of time, i.e., E determines
the states reachable by the sequence tickd, where d is the difference of the
timestamp t and the stored timestamp.

2. E stores t as the current timestamp.
3. E updates the state set with respect to the system action a.
4. E removes the states from the state set from which C does not accept any

sequence.

E terminates the system if the state set becomes empty and the intercepted
action a is controllable. Otherwise, it continues by intercepting the next action.
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5 Related Work

Schneider [29] initiated the study of which security policies are enforceable. He
showed that every security policy enforceable by execution monitoring must be
a property of traces and an ∞-safety property. Furthermore, he introduced an
automata model, called security automata, that recognizes∞-safety properties.
Fong [15] analyzed classes of security policies that can be recognized by shallow-
history automata, a restricted class of security automata. Hamlen et. al [18]
related the policies that can be enforced by program rewriting to those that
can be recognized by security automata. Ligatti et al. [24, 25] introduced edit
automata, which are transducers with infinitely many states. Edit automata can
recognize trace properties that are not ∞-safety. However, it remains unclear
how to use edit automata as enforcement mechanisms, in particular, how an
edit automaton and a system interact with each other in general. Ligatti and
Reddy [26] recently introduced mandatory-result automata for enforcement and
analyzed their expressive power. In contrast to edit automata, mandatory-result
automata have an interface for interacting with a system. Namely, a mandatory-
result automaton obtains requests from the system and sends outputs back to
the system. Before sending output, it can interact with the execution platform.
Falcone et al. [14] study the trace properties that can be recognized by security,
edit, and shallow-history automata in terms of the safety-progress hierarchy [7]
of regular languages and classical finite-state automata models.

All the above works assume that all system actions are controllable. In con-
trast, we distinguish between actions that are controllable and those that are
only observable by an enforcement mechanism. Furthermore, the above works
also do not consider the realizability of an enforcement mechanism from a policy
description and its computational complexity. Note that classifications of system
actions, signals, and states with a flavor similar to ours are common in other
areas like control theory and software testing. However, to the best of our knowl-
edge, this is the first such investigation in the domain of policy enforcement.

Recently, the problem of checking whether system behaviors are compliant
with security policies, regulations, and laws has attracted considerable attention.
This problem is simpler than policy enforcement, since one need only detect and
report policy violations. Monitoring approaches have proved useful here, based
either on offline [17] or online [4] algorithms. See also [5].

Another generalization of the standard definition of safety [1] has been re-
cently given by Ehlers and Finkbeiner [9]. They distinguish between the in-
puts and outputs of a reactive system. The corresponding decision problems are
EXPTIME-complete and 2EXPTIME-complete when the properties are given as
automata and LTL formulas, respectively. Since enforcement mechanisms based
on execution monitoring do not produce outputs, their generalization does not
apply to our setting. However, a combination of their safety generalization and
ours seems promising when considering more powerful enforcement mechanisms
like those based on mandatory-result automata [26].
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6 Conclusion

We have refined Schneider’s setting for policy enforcement based on execution
monitoring by distinguishing between controllable and observable system ac-
tions. This allows us to reason about enforceability in systems where not all
actions can be controlled, for example, the passage of time. Using our charac-
terization, we have provided, for the first time, both necessary and sufficient
conditions for enforceability. We have also examined the problem of determining
whether a specified policy is enforceable, for different specification languages,
and provided results on the complexity of this realizability decision problem.

As future work, we will investigate the realizability problem for more powerful
enforcement mechanisms and for more expressive specification languages, such as
those not limited to finite alphabets. We would also like to provide tool support
for synthesizing enforcement mechanisms from declarative policy specifications.
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Abstract. A hyperproperty is a set of sets of finite or infinite traces over
some fixed alphabet and can be seen as a very generic system specifi-
cation. In this work, we define the notions of holistic and incremental
hyperproperties. Systems specified holistically tend to be more intuitive
but difficult to reason about, whereas incremental specifications have
a straightforward verification approach. Since most interesting security-
related hyperproperties are in the syntactic class of holistic hyperprop-
erties, we introduce the process of incrementalization to convert holistic
specifications into incremental ones. We then present three incremen-
talizable classes of holistic hyperproperties and a respective verification
method.

1 Introduction

The problem of verifying that a system adheres to some given security policy has
been an active research area for several decades. Substantial progress has been
made in the verification of security policies that can be expressed as properties—
first-order predicates over system execution traces. Well-known examples of such
progress include the abundance of logics for system specification and the success
story of automata-based model checking [7,8,18]. Unfortunately properties are
not expressive enough to capture a large class of security policies, such as secure
information flow and noninterference.

In an attempt to remedy this and provide a uniform theory of security poli-
cies, Clarkson and Schneider formalized security policies as hyperproperties [9].
A hyperproperty is a second-order predicate over system execution traces, or, in
other words, a set of sets of execution traces. Hyperproperties generalize prop-
erties and are expressive enough to capture not only secure information flow
and noninterference, but also many other interesting policies on systems [9]. In-
tuitively, a hyperproperty is the set of systems permitted by some policy. (In
contrast, a property is the set of runs a system must satisfy.) Although arising
in the context of security, hyperproperties are not necessarily limited to security
policies; they can be seen as very general and expressive system specifications.
Quality of Service (QoS) and Service Level Agreement (SLA) properties can be
expressed as hyperproperties.

Clarkson and Schneider specify a class of security-related hyperproperties as
first-order predicates on sets of traces [9], using universal and existential quanti-
fiers over traces in a candidate set T , as well as relations on those traces. We call
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the hyperproperties in this syntactic class holistic as they talk about whole traces
at once; their specifications tend to be straightforward, but they are difficult to
reason about, exemplified by the fact that no general approach to verifying such
hyperproperties exists, to the best of our knowledge. To address this problem, we
adopt a coalgebraic perspective on systems and hyperproperty specifications and
propose to model systems as coalgebras of the functor GX = 2× (1 +X)A; this
is useful as in their nature, coalgebras and coinductive predicates are “incremen-
tal”. Intuitively, systems correspond to trees, where the initial state of a system
is mapped to the root of the corresponding tree and possible executions build
the branches; incremental hyperproperties reason about such trees. Our contri-
butions are firstly formal definitions of the classes of holistic and incremental
hyperproperties, secondly introduction of the notion of incrementalization and
its application to three classes of holistic hyperproperties, and finally an illus-
tration of the verification approach for incremental hyperproperties.

The rest of the paper is structured as follows. Section 2 provides some back-
ground material. Section 3 introduces and formalizes the notions of holistic and
incremental hyperproperties and Section 4 presents the incrementalization of
three classes of holistic hyperproperties. Section 5 presents a verification method
for incremental hyperproperties. Finally, Sections 6 and 7 are left for the related
work and conclusion. The proofs can be found in the technical report [21].

2 Background

This section provides the necessary background. Fix a finite alphabet A of ab-
stract observations. A string is a finite sequence of elements of A. The set of all
strings over A is denoted A∗. A stream of A’s is an infinite sequence of elements
of A. The set of all streams over A is Aω = {σ | σ : {0, 1, 2, . . .} → A}. A stream
σ can be specified in terms of its first element σ(0) and its stream derivative σ′,
given by σ′(n) = σ(n + 1); these operators are also known as head and tail. A
trace is a finite or infinite sequence of elements of A. The set of all traces over
A is denoted A∞ = A∗ ∪Aω. Let 2 be any two element set, for instance the one
given as 2 = {true, false}. A system is a set of traces. The set of all systems is
Sys = 2A

∞
, the set of infinite systems is Sysω = 2A

ω

.
Clarkson and Schneider present a theory of policies based on properties and

hyperproperties [9]. A property is a set of traces. The set of all properties is
Prop = 2A

∞
. A hyperproperty is a set of sets of traces or equivalently a set of

properties. The set of all hyperproperties is HP = 22
A∞

= 2Prop = 2Sys. Note that
our definition, unlike the original one, does not require all traces to be infinite;
as a result termination-sensitive definitions can be expressed in a more natural
fashion. The satisfaction relation for hyperproperties |= ⊆ Sys× 2Prop is defined
as C |= H =̂ C ∈ H . Although Sys = Prop, we use both names for emphasis.

We now present an example hyperproperty, a variant of noninterference. Let
τ /∈ A represent unobservable elements of a trace. Let Aτ = A∪{τ} and assume
predicates low and high on elements of A such that low is equivalent to ¬high .
Coinductively define function evL : A∞ → A∞

τ to filter out “high” events:



Towards Incrementalization of Holistic Hyperproperties 331

evL(ε) = ε

evL(x) = y high(a)

evL(a · x) = τ · y
evL(x) = y low(a)

evL(a · x) = a · y

Next define weak trace equivalence ≈⊆ A∞
τ ×A∞

τ as:

ε ≈ ε

x ≈ y

τ · x ≈ y

x ≈ y

x ≈ τ · y
x ≈ y

a · x ≈ a · y

Predicate noH : A∞
τ → 2 states that there are no high events in a trace:

noH (ε)

low(a) noH (x)

noH (a · x)

Finally define noninterference as

NI = {T ∈ Sys | ∀t0 ∈ T (∃t1 ∈ T (noH (t1) ∧ evL(t0 ) ≈ t1))}.

For every trace t0 in a candidate set T the definition of NI requires a low-
equivalent modulo weak-bisimulation trace t1 such that noH (t1) is in T . This
definition of noninterference is similar in spirit to strong non-deterministic non-
interference (NNI ), originally proposed by Focardi and Gorrieri [13]. The major
difference is that NI does not distinguish between inputs and outputs; thus it
is in a sense stronger than similar definitions that guard the confidentiality of
high inputs only (NI ensures the confidentiality of high events, which implies
confidentiality of high inputs). Additionally, NNI is defined over elements of 2A

∗
,

whereas NI over elements of Sys; finally, NNI uses string equality whereas NI
uses a form of weak-bisimulation.

Example 1 (Noninterference). Given A = {a, b, c}, where high(a), high(c),
low (b) hold. Consider system C = {σ, γ}, where σ = (abc)ω, γ = bω. Note
that noH (γ) = true, evL(σ) ≈ bω and evL(γ) = bω hold. From these we deduce:

1. for σ there exists t ∈ C s.t. noH (t) ∧ evL(σ) ≈ t, namely t = γ.
2. for γ there exists t ∈ C s.t. noH (t) ∧ evL(γ) ≈ t, namely t = γ.

Hence C |= NI : system C satisfies NI as well as variants of NNI .

The former definition of noninterference is relatively abstract. In order to ad-
ditionally illustrate the practical significance of the proposed approach, we also
work with reactive noninterference [5], a variant of Zdancewic and Myers’s def-
inition of observational determinism [30] for reactive systems. Without loss of
generality, assume that A may be partitioned into Ai and Ao, corresponding to
input and output events. Following the original work [5], assume that systems
are input-total; moreover, assume that every input event produces some finite or
infinite output trace. The model assumes that a system waits for input in some
consumer state; whenever an input event is received, the system produces a finite
or infinite output trace; if the output trace was finite, the system returns to a
consumer state, waiting for further events; otherwise it diverges. For the sake of
illustration, we consider deterministic reactive systems. Formally, a deterministic
reactive system RS can be modeled as the set of traces produced by a function
fRS : A∞

i → A∞. Let fi : Ai → A∞
o be a function, taking one input event and

producing some output trace. Function fRS can be defined coinductively as:
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fRS (ε) = ε

fi(a) = σ σ ∈ A∗ fRS (r) = σm

fRS (a · r) = a · σ · σm

fi(a) = σ σ ∈ Aω

fRS (a · r) = a · σ

Let FRS be the set of deterministic reactive systems that can be characterized
by a functional input-output relation. Let x≈L y denote evL(x) ≈ evL(y), and
≈Li and ≈Lo be analogous definitions for input and output events, respectively;
similarly x≈H y denotes evH(x) ≈ evH(y) and x≈Hi y is the restriction to inputs.

Reactive noninterference [5] can be defined as a hyperproperty as follows:

RN = {Tf ∈ FRS | ∀t0, t1 ∈ Tf (t0≈Li t1 → t0≈L t1)},

where Tf = {t ∈ A∞ | ∃σ ∈ A∞
i (f(σ) = t)}. Note that the relation t0≈L t1 is

on whole traces, not on output traces as it is typically defined. This is because
t0≈L t1 implies t0≈Lo t1, as Lo is a subset of L and the way traces are generated.

Unlike batch-job program models, where all program inputs are available at
the start of execution and all program outputs are available at program ter-
mination, reactive programs receive inputs and send outputs to their environ-
ment during execution. RIMP [5] is a language geared towards writing reactive
systems, allowing agents to interact with the system by sending and receiving
messages. Messages are typically considered secret to certain agents and public
to others. Inputs in RIMP are natural numbers sent over channels and outputs
are natural numbers over channels or a tick (τ), signifying an internal action.
The channels model users or security levels in some security lattice; typically,
L and H model the low and high channel respectively. The detailed syntax and
semantics of RIMP are available in the original paper [5]. The following RIMP
program illustrates reactive noninterference:

1 input chH(x) {i := x;}
2 input chL(x) {if i <= x then output chL(0);
3 else output chL(1);}

Program 1.1. Simple program in RIMP

Let σin = [chi
H(0), chi

L(0)] and γin = [chi
H(1), chi

L(0)] be input strings. Clearly
σin≈Li γin. The traces are σ = [chi

H(0), τ, τ, chi
L(0), τ, ch

o
L(0), τ ] and

γ = [chi
H(1), τ, τ, chi

L(0), τ, ch
o
L(1), τ ]; because they are not weak trace equiv-

alent at L, it follows that P is not secure, i.e. P �|= RN .

2.1 Partial Automata, Coalgebras and Languages à la Rutten [26]

A partial automaton with input alphabet A is defined coalgebraically as a 3-tuple
〈S, o, t〉, where set S is the possibly infinite state space of the automaton, the
observation function o : S → 2 says whether a state is accepting or not, and
the partial function t : S → (1 + S)A gives the transition structure. Notation
SA stands for the set of functions with signature A→ S; 1 + S is notation used
for the set {⊥} ∪ S: whenever the function t(s) is undefined, it is the constant
function mapping every undefined symbol from A to ⊥; if t(s) is defined for
some a ∈ A, then t(s)(a) = s′ gives the next state. The symbol δ /∈ A is used
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to represent deadlock. An automaton is in a deadlock state sδ if for all a ∈ A,
t(sδ)(a) = ⊥ (the transition function is undefined).

Let A∗ · δ = {w · δ | w ∈ A∗} be the set of finitely deadlocked words. The
collection of all languages acceptable by partial automata is A∞

δ = A∗ ∪ (A∗ ·
δ)∪Aω; note that this can also be seen as a set of sequences i.e. a property, but
since any property can be lifted to a hyperproperty [9] there is no inconsistency.
Let the truncation of an infinite word w = a1a2a3 . . . to the first n (n ∈ N)
letters be denoted w[n] = a1 . . . an. For words w ∈ A∗ and sets L ⊆ A∞

δ , define
the w-derivative of L to be Lw = {v ∈ A∞

δ | w · v ∈ L}. Define a set L ⊆ A∞
δ to

be closed if for all words w in Aω , w ∈ L ⇐⇒ ∀n ≥ 1, Lw[n] �= ∅. Define a set
L ⊆ A∞

δ to be consistent if for all words w in A∞
δ , δ ∈ Lw ⇐⇒ Lw = {δ}. The

language of a partial automaton is a non-empty, closed and consistent subset of
A∞

δ . The set of all such languages is

L = {L | L ⊆ A∞
δ , L is non-empty, closed and consistent}.

Any state of a partial automaton accepts some language having three kinds of
words: firstly, all finite words that leave the automaton in an accepting state,
secondly, all infinite words that cause the automaton to run indefinitely and
thirdly, words that lead to a deadlock state. Intuitively, the language of a partial
automaton is the language accepted by the start state.

The set L can be thought of as an automaton L = 〈L, oL, tL〉 [26]:

oL(L) =

{
true if ε ∈ L
false if ε �∈ L

tL(L)(a) =

{
La if La �= ∅
⊥ if La = ∅.

A bisimulation between two automata S1 = 〈S, o, t〉 and S2 = 〈S′, o′, t′〉 is a
relation R ⊆ S × S′ s.t. for all s in S, s′ in S′ and a in A

s R s′ =⇒ o(s) = o′(s′)
∧

t(s)(a) (1 +R) t′(s′)(a).

Condition t(s)(a) (1+R) t′(s′)(a) holds iff either t(s)(a) = ⊥ and t′(s′)(a) = ⊥ or
t(s)(a) R t′(s′)(a). The maximal bisimulation ∼ is the union of all bisimulation
relations.

The automaton L = 〈L, oL, tL〉 satisfies the coinduction proof principle [26].
In other words, for all languages L and K in L we have: L ∼ K ⇐⇒ L = K.

Coalgebras of the polynomial functor G : Set → Set, given by GX = 2 ×
(1 +X)A, will be called G-coalgebras or G-systems. As partial automata are in
one-to-one correspondence with G-coalgebras [26], all the theory presented here
is applicable to G-coalgebras.

2.2 Systems — From Sets of Traces to G-Coalgebras

This section shows that the model of systems as sets of traces can be converted
into a tree/coalgebra/partial automaton model; the latter model is more conve-
nient and well-studied. This is an important prerequisite to incrementalization:
the conversion of system specifications on sets of traces to specifications on trees.
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Let F be an arbitrary functor F : Set → Set. An F -coalgebra is final if
there is a unique homomorphism from any other F -coalgebra to it. A set of
traces can be seen not only as a property or system, but also as a language, and
as a G-coalgebra, which itself can be either seen as a partial automaton or as
a tree. A tree is obtained from a language by continuously taking derivatives
with respect to elements of A. Conversely, the language of a tree is given by
the paths from the root that either end at a marked node or continue forever.
The different perspectives are illustrated in Fig. 1; note that ellipses indicate
infinite repetition of the string that has occurred so far. Combined with Rutten’s
observation [26] that the set of all languages is a final coalgebra, this allows the
use of coalgebra and coinduction for reasoning about hyperproperties. We next
describe the transition from sets of traces to G-coalgebras.

. . .

. . .

⇐⇒ ⇐⇒

a

a

b

b

c

c

a

b

b

c

c

. . .

. . . s0start

s1

s4

s2

s3

s6

s7

s5

a

b

c

b

c

a

b

a

c

Fig. 1. Equivalent representations of M = {(ab)ω, (ac)ω, bc} over A = {a, b, c}: traces,
trees and G-coalgebras. The branches of the tree are labelled with elements of the
alphabet A, its accepting nodes are marked with a circle.

The functor G has the final coalgebra L. The coinductive definition prin-
ciple gives a way to define maps from arbitrary G-coalgebras into the final
G-coalgebra. We use the principle to convert an arbitrary set of traces into
a G-coalgebra. To this end, take the state space to be Sys = 2A

∞
, the set of

all possible sets of traces. Any pair 〈o, t〉 with signatures o : Sys → 2 and
t : Sys → (1 + Sys)A induces a unique homomorphism h : Sys → L that makes
the following diagram commute:

Sys
!h

> L

2× (1 + Sys)A

〈o, t〉∨
G(h)

> 2× (1 + L)A
〈oL, tL〉∨

Thus the homomorphism h would map any set of traces s ∈ Sys to a unique
element in the final coalgebra L. Since the elements of the final coalgebra can
be seen as trees, we say that h maps a set of traces to the root of a unique tree
in L, corresponding precisely to the set of traces.
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We now define a particular pair 〈o, t〉 allowing us to switch perspective from
seeing a system as a set of traces to seeing it as a G-coalgebra. Let C ∈ Sys,
a ∈ A and σ ∈ A∞. Define an auxiliary function test : Sys→ (A→ 2) as follows:

testa(C) =̂ ∃ σ.σ ∈ C ∧ σ(0) = a.

The functions o and t can be readily defined as follows:

o(C) =̂ ε ∈ C t(C)(a) =̂

{
{σ′ | σ(0) = a} if testa(C)
⊥ if ¬testa(C).

This function pair induces a unique element of the final coalgebra L, correspond-
ing to the inclusion of Sys in L. Clearly every set S ∈ Sys is closed and consistent.
As a result we may conclude that Sys ⊆ L.

In summary, any system defined as a set of traces can be uniquely seen as
an element (without deadlock states) of the final G-coalgebra, defining its be-
haviour.

3 Holistic and Incremental Hyperproperties

One of the crucial steps towards verification is finding the class of incremental-
izable holistic hyperproperties. To that end, we need a formalism for reasoning
about holistic and incremental specifications. In this section, we give syntactic
definitions of holistic and incremental hyperproperties. The logical languages
used are based on Least Fixed Point Logic (LFP) [6] — an extension of first or-
der logic by addition of least and greatest fixed point operators. The new logical
languages are holistic hyperproperty logicHL, in which most interesting security
hyperproperties are expressible, and incremental hyperproperty logic IL. The
key difference between the languages is that the former has only coinductive
predicates over streams, whereas the latter has only coinductive predicates over
systems. In both cases hyperproperties are defined over systems.

3.1 Holistic Hyperproperty Logic HL
Clarkson and Schneider specify hyperproperties as first-order predicates on sets
of traces [9], using universal and possibly existential quantification over traces
(∀t ∈ T , ∃t ∈ T ) in a candidate set T , as well as relations on tuples of traces.
The hyperproperty NI (Section 2) is one example. Next, we propose the logical
language HL to formalize hyperproperties specified in this style.

First, we give a grammar for coinductive predicates over streams, a substantial
part of HL. Let x range over a set of variables, a over elements of A, pi over
predicates in some set P and X over predicate variables. To define the logic we
use standard, trace-manipulation primitives: for any σ ∈ A∞, σ(0) gives the first
element (head) of the stream and σ′ gives the stream derivative (tail). As usual,
cons : A × A∞ → A∞ is a constructor for streams. The predicates in P have
signatures: pi : A

ni → 2 and = : A×A→ 2. Terms are given as

t ::= x | ε | cons(a, t) | t(0) | t′
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and coinductive predicates have the following syntax:

φ0 ::= p(t) | X(t) | ⊥ | ¬φ0 | φ0 ∧ φ0,

where X can occur only positively in φ0. As usual 5 = ¬⊥, φ∨ψ = ¬(¬φ∧¬ψ)
and the implication φ→ ψ is ¬φ ∨ ψ.

Second, define holistic hyperproperty logic HL with the following syntax:

φ1 ::= ⊥ | ¬φ1 | φ1 ∧ φ1 | ∃x.φ1 | x ∈ X | νX(x).φ0.

As usual ∀x.φ = ¬(∃x.¬φ) and νX(x).φ0 denotes the greatest fixed point; also
note that x ∈ X iff X(x) = true. It is well-known that each coinductive predicate
in this language corresponds to a final coalgebra in a category of relations [22].
A holistic hyperproperty is a set of sets of traces expressible in HL.

For example, consider defining hyperproperty FLIP , assuring that for every
stream in a candidate set, its element-wise opposite is also in the set. Start by
defining the predicate flip ⊆ Aω × Aω, relating each stream over A = {0, 1} to
its element-wise opposite:

flip =̂ νX(x, y).(¬(y(0) = x(0)) ∧X(x′, y′)).

Then, the simple hyperproperty FLIP can be given in HL as:

FLIP(X) =̂ ∀x0 ∈ X ∃x1 ∈ X.flip(x0, x1).

The proposed logic is fairly general as it captures most security-relevant hyper-
properties from the original hyperproperties paper [9]; the noteworthy exceptions
are service level agreement (SLA) polices such as mean response time (MRT ),
time service factor and percentage uptime. Formal verification of systems with
respect to such policies is an inherently difficult problem [9]: for instance, con-
sider MRT as a property; it is generally not clear how to find the mean of a
sequence of infinite number of response times in a trace because the series might
be diverging; moreover, if MRT is seen as a hyperproperty, an additional prob-
lem arises, namely that the cardinality of the set of traces might be infinite. We
do not address SLA policies in this work.

Next, we present three illustrative examples. First, consider McLean’s formu-
lation of a policy called generalized noninterference [20] for non-deterministic
systems. Informally, the policy states that any high-level behavior is compatible
with any low level view of the system. The definition of GNI in HL is

GNI (X) =̂ ∀x0 ∈ X ∀x1 ∈ X ∃x2 ∈ X.x2≈Hi x0 ∧ x2≈L x1.

Note that ≈Hi and ≈L can be defined coinductively and are based on the coin-
ductively defined functions evH and evL respectively; the latter are not in HL.
However, note that combining evH and evL with ≈ gives coinductive predicates.

Second, consider the definition of termination insensitive observational deter-
minism [30]:

OD(X) =̂ ∀x0 ∈ X ∀x1 ∈ X.(x0(0)=L x1(0)→ x0≈L x1),
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where =L is an indistinguishability relation on initial program states. Note that
the alphabet A is abstract and except events its elements may also be states,
as is the case in this example. Third, note that the former definition of OD
implies a batch-job model, but for the reactive model of computation, we give
the reformulation to RN from Section 2:

RN (X) =̂ ∀x0 ∈ X ∀x1 ∈ X.(x0≈Li x1 → x0≈L x1).

Note that this is one particular definition of termination-insensitive observational
determinism. By modifying the definitions of the relation on traces, other flavors
of the definitions (e.g. termination-sensitive, time-sensitive) can be obtained.

3.2 Incremental Hyperproperty Logic IL
Incremental hyperproperties can be expressed in a fragment of LFP , called IL
logic. Let y range over a set of tree variables, a, b over alphabet elements and I
over predicate variables.

To define the logic, we use the system manipulation primitives o : Sys → 2,
(−)a : Sys→ Sys+1 and testa : Sys→ 2 for each a ∈ A: these are the observation,
transition and auxiliary test function (see Section 2.2) in the final G-coalgebra.
The predicates are pi : A

ni → 2, = : A×A→ 2, o and testa. The terms are

T ::= y | a | Ta.

Formulae in IL have the following syntax:

ψ ::= νI(y).φ φ ::= I(T ) | ⊥ | ¬φ | φ ∧ φ | ∃a.φ | a ∈ A | p(T̄ ),

where I can occur only positively in φ and all occurrences of Ta must be guarded
by testa(T ). As an example, consider the coinductive tree predicate FLIP ′(X,Y ),
giving the incremental version of FLIP defined as:

FLIP ′ =̂

νI(X,Y ).(∀a ∈ A.testa(X)→ (∃b ∈ A.testb(Y ) ∧ ¬(b = a) ∧ I(Xa, Yb))).

Let Sysn be the n-ary Cartesian power of Sys. Define an incremental hyperprop-
erty to be the greatest fixed point of a monotone function over Sysn, express-
ible in IL. In other words, it is a coinductive tree predicate. A hyperproperty
H ∈ HL is incrementalizable iff there exists an H ′ ∈ IL such that for all T ∈ Sys
we have that H ′(T̄ ) ≡ Hk(T̄ ), where Hk(T̄ ) is an equivalent definition of H(T )
on k copies of T . Examples of incrementalizable hyperproperties can be found
in Section 4.

The logic is general enough to capture the incremental hyperproperties we are
aware of. The long term goal of this work is to characterize the class of incre-
mentalizable hyperproperties. As a first step towards this goal, we incrementalize
three classes of hyperproperties.
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4 Incrementalization of Holistic Hyperproperties

In this section, we outline and illustrate a syntactic approach to incrementaliza-
tion for three classes of holistic hyperproperties. We give a detailed explanation
of the process for the first class.

At a high level, incrementalization of a holistic hyperproperty H , based on
trace predicates ci (i ∈ N), amounts to finding a coinductive predicate H ′ and
a functional ΨH′ such that H ′ is the greatest fixed point of ΨH′ (i.e. H ′ =
ΨH′(H ′) = νΨH′ ) and H(X) iff H ′(X, . . . , X) holds. In essence, we lift the fixed
point operator, defining coinductive trace predicates in a holistic specification, to
the outermost level in an incremental specification. The techniques used include
generalizing the definition of H to n parameters, unfolding H and rewriting it
using derivatives, unfolding the coinductive definitions ci, swapping quantifiers,
rearranging expressions and folding the holistic definition. This process results in
an incremental definition equivalent to H . An incremental hyperproperty, based
on a monotone function, corresponds closely to a bisimulation-like notion, from
which a verification methodology immediately suggests itself (see Section 5).

4.1 Incrementalization of PHH

Let c be a pointwise, coinductive predicate [22] defined as follows: for x, y ∈ A∞

and some functional R ⊆ A×A (i.e. R can be seen as a function)

c =̂ νX(x, y).(x = y = ε) ∨ ((x(0) R y(0)) ∧X(x′, y′)).

Let PHH be the class of pointwise, holistic hyperproperties defined in HL:

PHH(X) =̂ ∀x ∈ X ∃y ∈ X.c(x, y).

Generalize PHH to take a pair of systems as a parameter as follows:

PHH2(X,Y ) =̂ ∀x ∈ X ∃y ∈ Y.c(x, y).

Clearly, we have that for all T ∈ Sys, PHH(T ) iff PHH2(T, T ). Each of the
following lemmas is one or more steps of the incrementalization process. First,
unfold the holistic definition of PHH2.

Lemma 1. The predicate PHH2(X,Y ) holds iff

ε ∈ X → ε ∈ Y
∧

(∀a ∈ A ∀w ∈ A∞. aw ∈ X →

∃b ∈ A ∃u ∈ A∞.bu ∈ Y ∧ a R b ∧ c(aw, bu)).

Second, rewrite the definition using derivatives and unfold the coinductive defi-
nition of c once.

Lemma 2. The predicate PHH2(X,Y ) holds iff

o(X) → o(Y )
∧

(∀a ∈ A. testa(X) → (∀w ∈ A∞. w ∈ Xa →

∃b ∈ A. a R b ∧ testb(Y ) ∧ ∃u ∈ A∞. u ∈ Yb ∧ c(w, u))).
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Third, swap the quantifiers ∃b and ∀w; this can be done as b depends only on a.

Lemma 3. The predicate PHH2(X,Y ) holds iff

o(X) → o(Y )
∧

(∀a ∈ A. testa(X) → (∃b ∈ A. a R b ∧ test b(Y ) ∧

(∀w ∈ A∞. w ∈ Xa → ∃u ∈ A∞. u ∈ Yb ∧ c(w, u)))).

Fourth, rearrange the resulting expression and fold the definition of PHH2.

Lemma 4. The predicate PHH2(X,Y ) holds iff

o(X) → o(Y )
∧

(∀a ∈ A. testa(X) → ∃b ∈ A. test b(Y ) ∧ a R b ∧ PHH2(Xa, Yb)).

Finally, define the incremental hyperproperty PIH2 as follows:

PIH2 =̂ νI(X,Y ). (o(X)→ o(Y )∧
(∀a ∈ A. testa(X)→ ∃b ∈ A. testb(Y ) ∧ a R b ∧ I(Xa, Yb))).

Theorem 1 (Incrementalization of PHH2). For all X,Y ∈ Sys, we have that
PHH2(X,Y ) iff PIH2(X,Y ).

Corollary 1. For all T ∈ Sys, we have that PHH(T ) iff PIH2(T, T ).

4.2 Incrementalization of SHH

As illustrated in Section 3.1, a number of security policies can be based on coin-
ductive predicates on traces. We present the incrementalization of SHH — a
class of such security-relevant, holistic hyperproperties defined on infinite sys-
tems in Sysω. This type of definitions claim that a system is secure if the set
of traces is closed under removal of high events (see, for instance, [20]). Let
p : A → 2 be a predicate and f : A → A a function. Define a coinductive
predicate ∼p : Aω ×Aω → 2 as follows:

p(a) p(b) x∼p y b = f(a)

a · x∼p b · y
¬p(a) p(b) x∼p b · y

a · x∼p b · y
p(a) ¬p(b) a · x∼p y

a · x∼p b · y

Define a coinductive predicate ps : A
ω → 2, generalizing noH from Section 2:

p(a) ps(x)

ps(a · x)

Let T,X, Y range over Sysω. Define SHH as follows:

SHH(X) =̂ ∀x ∈ X ∃y ∈ X. ps(y) ∧ x∼p y
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In order to work with only one predicate, combine ps and ∼p into a new coin-
ductive predicate c1:

c1 =̂ νX(x, y).

((p(x(0)) ∧ p(y(0)) ∧ f(x(0)) = y(0) ∧X(x′, y′)) ∨ (¬p(x(0)) ∧X(x′, y)))).

Lemma 5. For all s, t ∈ Aω, we have that (ps(t) ∧ s∼p t)→ c1(s, t).

To define this class, an additional restriction on Sysω is needed. We work only
with systems satisfying the property P�♦ = {t ∈ Aω | t |= �♦p}, based on
temporal logic modalities eventually (♦) and always (�) [23].

Lemma 6. For all s, t ∈ P�♦, we have that c1(s, t)→ (ps(t) ∧ s∼p t).

Now, we will work with an equivalent definition of SHH by Lemmas 5 and 6:

SHH(X) ⇐⇒ ∀x ∈ X ∃y ∈ X. c1(x, y).

Property SHH can be generalized as follows:

SHH2(X,Y ) =̂ ∀x ∈ X ∃y ∈ Y. c1(x, y).

Clearly, for all T ∈ Sysω, it is the case that SHH(T ) iff SHH2(T, T ). Incremen-
talization allows us to derive the following version of SIH2:

SIH2 =̂ νI(X,Y ). (∀a ∈ A. testa(X) ∧ p(a)→ testf(a)(Y ) ∧ I(Xa, Yf(a))∧
∀a ∈ A. testa(X) ∧ ¬p(a)→ I(Xa, Y )).

Theorem 2 (Incrementalization of SHH2). For all X,Y ∈ P�♦, we have
that SHH2(X,Y ) iff SIH2(X,Y ).

Corollary 2. For all T ∈ P�♦, we have that SHH(T ) iff SIH2(T, T ).

Next, we give some intuition about the restriction for systems to be in the class
P�♦ and argue that it is reasonable. First, note that the predicate p : A → 2
could be thought of as denoting the visibility of events to agents at a certain secu-
rity level. Let us call events for which p evaluates to true p-events, dually there are
¬p-events. Intuitively, many security-relevant systems (e.g. reactive systems such
as servers) have infinite traces and can be characterized as follows: each trace has
some p-event appearing eventually, and that happens infinitely often. These are
the type of properties we expect from a server, for instance: each request needs
to be eventually serviced and that should happen infinitely often. The latter is
captured by the property P�♦. P�♦ is a liveness property (informally always
possible and possibly infinite), as defined by Alpern and Schneider [3]: formally,
such a liveness property is given as follows: ∀α ∈ A∗ ∃β ∈ Aω.αβ |= �♦p.

Thus, the restriction on systems to be in the P�♦ class is not severe as it actu-
ally captures a large class of interesting systems. These are indefinitely running
systems in which security is a concern at any point in time.
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4.3 Incrementalization of OHH

There are other security policies (such as timing-sensitive, termination-sensitive
noninterference [2]) based on coinductive predicates on traces. We present the
incrementalization of OHH, a class of security-relevant, holistic hyperproperties
defined on systems in Sys. Recall that p : A→ 2 is a predicate and f : A→ A a
function. Define ∼pt : A

∞ ×A∞ → 2 on finite or infinite streams:

ε∼pt ε

p(a) p(b) x∼pt y b = f(a)

a · x∼pt b · y
¬p(a) ¬p(b) x∼pt y

a · x∼pt b · y

Let ∼pti be the natural restriction of the relation on input elements in Ai. Let
T,X, Y range over Sys. Define OHH as follows:

OHH(X) =̂ ∀x ∈ X ∀y ∈ X. (x∼pti y → x∼pt y).

Again, we can generalize OHH to take a pair of systems as a parameter as follows:

OHH2(X,Y ) =̂ ∀x ∈ X ∀y ∈ Y. (x∼pti y → x∼pt y).

Incrementalization allows to derive the following version of OHH2:

OIH2 =̂ νI(X,Y ). (o(X) ↔ o(Y )∧
∀a ∈ Ai. testa(X) ∧ p(a) ∧ testf(a)(Y ) → I(Xa, Yf(a))∧
∀a ∈ Ao ∀b ∈ Ao. testa(X) ∧ p(a) ∧ test b(Y ) ∧ p(b) →

b = f(a) ∧ I(Xa, Yf(a))∧
∀a ∈ A ∀b ∈ A. testa(X) ∧ ¬p(a) ∧ test b(Y ) ∧ ¬p(b) → I(Xa, Yb)).

Theorem 3 (Incrementalization of OHH2). For all X,Y ∈ Sys, we have that
OHH2(X,Y ) iff OIH2(X,Y ).

Corollary 3. For all T ∈ Sys, we have that OHH(T ) iff OIH2(T, T ).

An interesting, security-related hyperproperty in OHH is weak time-sensitive
noninterference [2]. To formalize it, first define its key ingredient ∼ts:

ε∼ts ε

x∼ts y low(a)

a · x∼ts a · y
x∼ts y high(a) high(b)

a · x∼ts b · y

Note that this definition guarantees that both traces terminate in an equal num-
ber of steps and are low-view indistinguishable, or both diverge and are still low-
view indistinguishable. Thus, the definition is also termination-sensitive. Let ∼tsi

be the same as ∼ts, but restricted to inputs. Finally, define weak time-sensitive
noninterference:

WTSNI (X) =̂ ∀x ∈ X ∀y ∈ X.(x∼tsi y → x∼ts y).
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5 Verification of Incremental Hyperproperties

First, recall some fixed point theory. Let Ψ : P(X1×. . .×Xn)→ P(X1×. . .×Xn)
be a monotone operator over the complete lattice of set-theoretic n-ary relations
on the Cartesian product of sets Xi, i ∈ 1..n, and gfp(Ψ) be the greatest fixed
point of Ψ . For any x = (x1, . . . , xn) ∈ X1 × . . . ×Xn and R ⊆ X1 × . . . ×Xn

the following principle is sound:

R(x) R ⊆ Ψ(R)

gfp(Ψ)(x)

This is the Tarski coinduction principle [17], generalised to an n-ary relation.
Due to the nature of incrementalization, the original holistic definition H be-

comes irrelevant for verification. Instead, the resulting coinductive predicate H ′

has to be verified to show that H holds. One way to do this is via theory estab-
lished by Niqui and Rutten [22]. For a coinductive predicate H ′, they introduce
H ′-simulations which are to coinductive predicates as bisimulations are to equal-
ity. Formally an H ′-simulation is an n-ary relation R such that R ⊆ ΨH′ (R): an
H ′-simulation corresponds closely to a respective monotone operator ΨH′ (see
Section 3.2) whose greatest fixed point is H ′. Thus, finding an H ′-simulation for
the system of interest will be sufficient for showing that H ′ holds.

Verification of an incremental hyperproperty would typically have two steps.
First, find an appropriate notion of H ′-simulation. Second, find a specific H ′-
simulation for the system of interest. Showing that there is no H ′-simulation
implies that the predicate does not hold. The second step can be automatic,
adapting techniques from automata-based model checking. The soundness of this
verification methodology follows directly from Tarski’s coinduction principle [17].

Theorem 4. The predicate H ′(x1, . . . , xk) on G-systems 〈Si, αi, xi〉 for i ∈ 1..k
holds iff there exists some H ′-simulation Q s.t. the k-tuple of the start states
〈x1, . . . , xk〉 ∈ Q.

It should be noted that Theorem 4 is not constructive: it does not give an algo-
rithm for finding H ′-simulations. Nevertheless, automata-based model checking
techniques provide a practical means to compute or approximate the greatest
fixed point of a monotone operator. There are well-known iterative schemata
for computing the greatest fixed points on a complete lattice [29]. Typically, the
bottom and top elements of the lattice are the empty set and the powerset of the
state space S, the partial order relation is set inclusion. When approximating
(or calculating for finite state spaces) the greatest fixed point one starts with S
and iteratively applies the functional Ψ . Formally Ψ0 = id and Ψn+1 = Ψ ◦ Ψn

where id is the identity function and operator ◦ denotes composition. The great-
est fixed point of Ψ can be found as follows: νΨ =

⋂
n≥0 Ψ

n(S). The technique
needs adaptation in order to accommodate our different state space, namely
S1 × . . . × Sk. Finding efficient algorithms for deciding whether concrete coin-
ductive predicates hold has not been explored yet and is left for future work.
Nevertheless, the fact that different notions of bisimilarity can be decided more
efficiently than language equivalence on finite transition systems [1] is promising.
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5.1 Sample Hyperproperties in PHH

Consider the holistic hyperproperty FLIP from Section 3.1, which is in the class
PHH. Therefore, we can instantiate the incremental definition of PIH2 and find
the appropriate notion of FLIP ′-simulation: a relation Q is a FLIP ′-simulation
whenever, if y1 Q y2, then

o(y1)→ o(y2)∧
∀a ∈ A. testa(y1)→ ∃b ∈ A. testb(y2) ∧ b = ¬a ∧ t(y1)(a) Q t(y2)(b).

Note that we rely on the fact that there is a unique map from G-coalgebras
to trees. Now, take the system ζ1 represented by the automaton in Fig. 2a.
Relation Q = {(s0, s0), (s0, s1), (s1, s0)} is the needed FLIP ′-simulation and thus
ζ1 |= FLIP .

s0start s1

s0start s1

1

0

0 1

1

0

0 1

Q Q Q

(a) ζ1 and Q

. . .

. . .

. . .

. . .

c

a

d

c
b

d

c

a

d

c
b

d

(b) ζ3 and Q

Fig. 2. Illustration of FLIP ′-simulation in (a) and NI ′-simulation in (b)

Let ζ2 be the system resulting from the removal of the transition from state s1
to itself (gray transition in Fig. 2a). We show that there is no FLIP ′-simulationQ
such that 〈s0, s0〉 ∈ Q. To that end, assume there were suchQ. By the assumption
and the definition of FLIP ′-simulation we have that the pair 〈t(s1)(1), t(s0)(0)〉
should be in Q (and in every FLIP ′-simulation). This is not the case as t(s1)(1) =
⊥, whereas t(s0)(0) = s0. This is a contradiction and thus there is no Q that is
a FLIP ′-simulation and 〈s0, s0〉 ∈ Q. Thus ζ2 �|= FLIP .

5.2 Sample Hyperproperties in SHH

Consider NI from Section 2 on systems satisfying P�♦, which is in the class
SHH. Hence we can instantiate the definition of SIH2 and get an incremental
definition of NI , called as usual NI ′ and corresponding to an NI ′-simulation: a
relation Q such that if y1 Q y2, then

∀a ∈ A. (testa(X) ∧ low(a)→ testa(Y ) ∧ t(y1)(a) Q t(y2)(a))∧
∀a ∈ A. (testa(X) ∧ high(a)→ t(y1)(a) Q y2).
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Next, consider alphabet A = {a, b, c, d} and define predicate high as high(a),
high(b), ¬high(c), ¬high(d). Take the system ζ3 = {(acbd)ω, (cd)ω} (see Fig. 2b).
Let Q = {(T, T ), (Ta, T ), (Tac, Tc), (Tacb, Tc), (Tacbd, Tcd), (Tc, Tc), (Tcd, Tcd)}. Q
is an NI ′-simulation such that 〈T, T 〉 ∈ Q and thus we conclude that ζ3 |= NI .

5.3 Sample Hyperproperties in OHH

Recall hyperproperty WTSNI from the class OHH. We can get an incremental
definition, corresponding to a WTSNI ′-simulation: a relation Q s.t. if y1 Q y2

o(y1) ↔ o(y2)∧
∀a ∈ Ai. testa(X) ∧ low(a) ∧ testa(Y ) → t(y1)(a) Q t(y2)(a)∧
∀a ∈ Ao ∀b ∈ Ao. testa(X) ∧ low(a) ∧ testb(Y ) ∧ low(b) →

a = b ∧ t(y1)(a) Q t(y2)(a)∧
∀a ∈ A ∀b ∈ A.testa(X) ∧ high(a) ∧ testb(Y ) ∧ high(b) →

t(y1)(a) Q t(y2)(b).
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Fig. 3. Illustration of the lack of WTSNI ′-simulation for Program 1.1

To illustrate the applicability of our abstract notions to programs, consider
the RIMP Program 1.1, also called P . Two copies of the program (P0 and P1)
are presented visually in Fig. 3. We show that there is no WTSNI ′-simulation
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Q such that 〈P0, P1〉 ∈ Q; to that end assume there were such a Q; states
that should be related in any WTSNI ′-simulation are connected by the dashed
line. By the assumption and the definition of WTSNI ′-simulation, it follows
that 〈t(P0)(ch

i
H(1)), t(P1)(ch

i
H(0))〉 ∈ Q. This process continues until the pair

〈s0, s1〉 is reached. The definition requires that cho
L(1) = cho

L(0), by the rule
for low outputs. This is a contradiction, thus there is no Q that is a WTSNI ′-
simulation and 〈P0, P1〉 ∈ Q. Hence P �|= WTSNI . Note that Program 1.1 is also
insecure with respect to other, less strict definitions, such as RN (see Section 2).

To illustrate that this definition is termination-sensitive, consider Program
1.2, also called P2, which is termination-insensitive noninterferent. To see this, let
σin = [chi

H(1)] and γin = [chi
H(0)] be input strings. Clearly, σin≈L γin and the

resultant traces are σ = [chi
H(1), τ, τ, τ, cho

L(0), τ ] and γ = [chi
H(0), τ, τ, τ, . . .].

Since σ≈L γ, and these are all traces, it follows that P2 is secure. The application
of the theory to this example is relatively straightforward and left to the reader.

1 input chH(x) {i:=x; if i = 0 then while 1 do skip};
2 output chL(0);

Program 1.2. Termination-sensitive interferent program in RIMP

6 Related Work

Clarkson and Schneider show that labelled transition systems can be encoded as
sets of traces [10]. They argue that bisimulation-based hyperproperties, notably
Focardi and Gorrieri’s bisimulation nondeducibility on composition (BNDC ), can
be converted into trace sets. This is in effect the opposite to what we suggest. We
propose going from trace sets to state-based systems because the latter are well-
understood and enjoy well-established verification techniques, as well as mature
verification tools. It is arguable, but we believe that such an approach is more
natural and generic enough to work for a large number of applications.

That incrementalization is useful can be seen from recent work on noninter-
ference for reactive systems [5]; Bohannon et al. start with a holistic definition
of reactive noninterference and convert it into a relation on program states that
they call ID-bisimulation; they effectively make the definition incremental. The
authors use that latter incremental definition in order to prove that well-typed
RIMP programs are secure. They also show that an ID-bisimulation implies the
high level, holistic policy.

At first sight, incrementalization is somewhat similar to unwinding [14]. As
Goguen and Meseguer describe it, unwinding is the process of translating a se-
curity policy first into local constraints on the transition system that inductively
guarantee that the policy is satisfied and second in a finite set of lemmas; any
system that satisfies the lemmas is guaranteed to satisfy the policy. The main
difference to our work is that unwinding is still a trace based property, whereas
incrementalization results in coinductive predicates and reasoning on trees. In
addition, incrementalization gives an equivalent definition of the hyperproperty,
whereas unwinding gives only a logically sufficient condition.



346 D. Milushev and D. Clarke

It turns out that incremental hyperproperties are inherently related to Man-
tel’s work on unwinding of possibilistic security properties [19]. He proposes a
modular framework in which most well-known security properties can be com-
posed from a set of basic security properties (BSPs); he also presents unwinding
conditions for most BSPs. His unwinding conditions are specified locally on states
of the system (inspired by Rushby’s work [25]) as opposed to the more traditional
global (trace-based) unwinding conditions. These unwinding conditions can be
seen as simulation relations on system states and in that sense are similar to our
incremental security hyperproperties. A major difference is that Mantel’s traces
are only finite, i.e. his systems are in 2A

∗
. Mantel also shows that the unwinding

conditions for his BSPs are generally sound and only complete for a restricted
class of models, in which any event is either high or low. In summary, Mantel’s
unwinding conditions can be seen as instances of incremental hyperproperties
on finite systems.

Recent work [12] has proposed an automata-theoretic technique for model
checking the possibilistic information flow hyperproperties from Mantel’s frame-
work [19] on finite state systems. To that end the authors show how to model
check Mantel’s BSPs, which are the building blocks of the respective holistic
hyperproperties. This is a nice theoretical result, supporting our thesis that in-
cremental hyperproperties are amenable to model checking. On the negative
side, the authors show that the model checking problem is undecidable for the
class of pushdown systems. Although using unwinding conditions (simulation
relations), the proposed model checking approach is based on deciding set in-
clusion on regular languages. The latter question can be answered by standard
automata-theoretic techniques. Such an approach is not directly applicable to
hyperproperties, because the presence of infinite traces means that the languages
(sets of traces) under consideration are not regular.

Also in recent work, Huisman and Blondeel [16] give a modal μ-calculus char-
acterization of two determinism-based notions of information flow: observational
determinism and eager trace equivalence [24]. Their characterization is based on
a self-composed model [4,11] of the transition system induced by the program of
interest; effectively the program would be executed in parallel with itself. The
major differences to our framework is that we are not restricted to deterministic
systems, thus we can handle more security-relevant hyperproperties.

There has been a substantial amount of work on verifying other specific
hyperproperties, most notably of secure information flow from both the language-
based security [28] and process calculi security [13,27] communities. Language-
based secure information flow has traditionally relied on information flow type
systems, with a recent trend to incorporate program logics or a combination
of both [28,4,11,15]. There have also been attempts to address noninterference
using results from process algebra [27,13]. Common for this line of work is for-
malizing different definitions of security and showing that they all depend on
some notion of equivalence of processes, e.g. strong, weak, power bisimulation.
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7 Conclusion

This work presents a formal classification of hyperproperties into holistic and
incremental ones. It furthermore motivates the shift from a holistic to an in-
cremental approach to hyperproperty specifications, dictated by the fact that
the incremental approach has a clearer verification methodology. We argue that
identifying the class of hyperproperties that are incrementalizable and finding
a generic methodology for incrementalization of holistic hyperproperties are im-
portant problems. We propose a generic framework and techniques to explore
the process of incrementalization and the usefulness of the resulting incremental
hyperproperties. We identify three classes of incrementalizable hyperproperties.
Future work will explore the problems presented here as well as techniques for
model checking incremental hyperproperties.
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Abstract. PKCS#11, is a security API for cryptographic tokens. It is
known to be vulnerable to attacks which can directly extract, as cleart-
ext, the value of sensitive keys. In particular, the API does not impose
any limitation on the different roles a key can assume, and it permits
to perform conflicting operations such as asking the token to wrap a
key with another one and then to decrypt it. Fixes proposed in the lit-
erature, or implemented in real devices, impose policies restricting key
roles and token functionalities. In this paper we define a simple imper-
ative programming language, suitable to code PKCS#11 symmetric key
management, and we develop a type-based analysis to prove that the
secrecy of sensitive keys is preserved under a certain policy. We formally
analyse existing fixes for PKCS#11 and we propose a new one, which is
type-checkable and prevents conflicting roles by deriving different keys
for different roles.

1 Introduction

PKCS#11, also known as Cryptoki, defines a widely adopted API for crypto-
graphic tokens [18]. It provides access to cryptographic functionalities while, in
principle, providing some security properties. More specifically, the value of keys
stored on a PKCS#11 device and tagged as sensitive should never be revealed
outside the token, even when connected to a compromised host. Unfortunately,
PKCS#11 is known to be vulnerable to attacks that break this property [4,8,10].

An application initiates a session with a PKCS#11 compliant device by first
supplying a PIN, and then accessing the functionalities provided by the token.
There may be various objects stored in the token, such as cryptographic keys
and certificates. Objects are referenced via handles to permit, e.g., that a cryp-
tographic key is used without necessarily knowing its value: we can ask a token
to encrypt some data just providing a handle to the encryption key. The value of
a key is one of the attributes of the enclosing object. There are other attributes
to specify the various roles a key can assume: each different API call can, in
fact, require a different role. For example, decryption keys are required to have
attribute CKA DECRYPT set, while key-encrypting keys, i.e., keys used to encrypt
other keys, must have attribute CKA WRAP set.
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The attacks on PKCS#11 we consider in this paper are at the API level
[1,2,3,4,7,8,10,16], i.e., the attacker is assumed to control the host on which the
token is connected and to perform any sequence of (legal) API calls. The crucial
functionalities of PKCS#11 are the ones for exporting and importing sensitive
keys, called C WrapKey and C UnwrapKey. The former performs the encryption
of a key under another one, giving as output the resulting ciphertext, and the
latter performs the corresponding decrypt and import into the token. They allow
for exporting and reimporting keys, in an encrypted form. Note that, having a
wrapping key (CKA WRAP) which can also be used for decryption (CKA DECRYPT)
is dangerous and leads to the following simple ‘wrap-decrypt’ API-level attack:

h_myKey = C_GenerateKey({CKA_DECRYPT, CKA_WRAP});

wrapped = C_WrapKey(h_sensitiveKey, h_myKey);

leak = C_Decrypt(wrapped, h_myKey);

First, we ask the token to generate a new key with attributes CKA DECRYPT,
CKA WRAP set. Then, we use this key to wrap an existing sensitive key referenced
by h sensitiveKey. Finally, we ask the token to decrypt the resulting ciphertext
using again the freshly generated key. Since it is the same key used for wrapping,
we obtain the value of the sensitive key in the clear.

A recent work [4] has shown that the state of the art in PKCS#11 security
tokens is rather poor: many existing commercially available devices are vulner-
able to attacks similar to the above one; the secured ones, instead, prevent the
attacks by completely removing wrapping functionalities. However, it has been
shown that the API can be ‘patched’ without necessarily cutting down so much
on its functionalities [4,10]: this can be done by (i) imposing a policy on the
attributes so that a key cannot be used for conflicting operations; (ii) limiting
the way attributes can be changed so to avoid that conflicting attributes are
set at two different instants; (iii) either adding a wrapping format which binds
attributes to wrapped keys [10] or limiting very carefully the usage of imported
keys to a subset of non-critical functions [4].

In our opinion, formal tools to reason about the security of different imple-
mentations of PKCS#11 APIs, such as Tookan [4], are fundamental to help
developers and hardware producers to detect and better understand the causes
of the bugs affecting the implementations, and they are very important for the
testing of new patches.

Our contribution. In this paper we (i) define a simple imperative programming
language, suitable to code PKCS#11 APIs for symmetric key management; (ii)
formalize a Dolev-Yao attacker and API security in this setting; (iii) present
a type system to statically enforce API security; (iv) propose a new fix for
PKCS#11 based on key-diversification; (v) apply the type system to validate
our new fix and one previously proposed in [4,5]. We only consider functions for
encryption/decryption of data and wrap/unwrap of keys as these are the most
relevant ones for what concerns API-level attacks.

The language is, by itself, an original contribution as PKCS#11 is typi-
cally modelled following a ‘black-box’ approach: each API function takes some
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input values and a (representation of a) device, and returns new values possibly
modifying the device state. This is done in one step, disregarding the internal
single steps (see, e.g., [10]). Our target is to perform a language-based analysis
of the API specification, and this requires that APIs are specified as sequences
of internal commands and lower level calls to the device. The attacker is mod-
elled in a classic Dolev-Yao style: he can perform any cryptographic operation
once he knows the corresponding key. He can also execute any API call passing,
as parameters, values that he knows, and incrementing his knowledge with the
returned value. API security requires that sensitive keys that are not already
known by the attacker, and always-sensitive keys (special sensitive keys that
have been generated inside the token) will never be disclosed to the attacker.

Our type system statically enforces API security by checking that keys can
only be wrapped using trusted keys and every key has a clear, unambiguous
role. Typing is parametrized with respect to a policy dictating the possible at-
tributes that can be simultaneously set on a key and the ones that are set when
unwrapping/importing a new key in a device. We prove that type-checked APIs
are secure against a Dolev-Yao attacker. Using the proposed type system we
analyse the Secure Templates fix proposed in [4,5], and we prove it secure. We
then propose a new patch, based on key-diversification, a standard cryptographic
technique to derive a new key from a known one. Our idea, is to explicitly re-
quire that keys for different roles will always be different. To the best of our
knowledge, key-diversification has previously never been adopted as a system-
atic mechanism to secure key management of cryptographic tokens. We finally
prove that this new patch type-checks.

Related work. The most established work on formal analysis of PKCS#11 is
[10]. In this paper, it is given a model of a fragment of PKCS#11 and a model-
checking procedure to look for possible attack sequences. Interesting abstractions
to reduce state explosion and to analyse unbounded fresh data have been given
in [14]. In [4], the theory has been engineered into Tookan, a tool for the analysis
of real devices. The tool is able to build a formal model of a real token, perform
model-checking and try the theoretical attacks on a real device. Once the model
is extracted from the token, it is also possible to try new fixes are check again
for existing attacks.

Our present contribution extends this line of research by exploring a language-
based, static analysis technique that allows for proving the security of PKCS#11
APIs and their fixes. We in fact intend to integrate this type-based analysis in
Tookan. The contribution is also in the line of other type-based analyses on
different settings: For what concerns Bank APIs in [6] it is studied the security
of PIN managements Hardware Security Modules and it is given a type system
to prove their security; in [11] we have given a type system for the security of
rechargeable disposable RFID tickets.

A recent line of research [12,13] investigates models of PKCS#11 based on
first-order linear time logic extended by past operators. The motivation is, again,
to check the security of the PKCS#11 configuration, but the underlying model



352 M. Centenaro, R. Focardi, and F.L. Luccio

is completely different. A comparison between the two models is for sure an
interesting future issue.

In [15] Keighren, Aspinall, and Steel propose a type system to check informa-
tion flow properties for cryptographic operations in security APIs. There seem
to be many differences with our contribution: (i) the target property is differ-
ent: Here we consider confidentiality of sensitive keys while in [15] the authors
investigate noninterference, a much stronger property. In this sense their result
is more in the line of [6]; (ii) their model is very general and allows for reasoning
on cryptographic operations so that the wrap/decrypt attack is modelled as a
forbidden information flow from secret to public. No language is given to express
internal commands. Our language allows for specifying PKCS#11 key manage-
ment APIs at a fine granularity, and the same attack is prevented by avoiding
conflicting roles for the same key. This is why we can avoid the complex treat-
ment of noninterference and only focus on key confidentiality; (iii) Keighren,
Aspinall, and Steel only considers confidentiality and do not treat integrity (or
trust) that is one of the crucial ingredient of our analysis: only trusted keys
should be used to wrap sensitive keys. A more detailed comparison will be the
subject of future work.

Paper structure. The paper is organized as follows. In section 2 we introduce the
simple imperative language for PKCS#11 key management, the attacker model
and the notion of API security; in section 3 we present the type system statically
enforcing API security; in section 4 we type-check known implementations of
PKCS#11 key management APIs, and we propose our new fix based on key-
diversification, which we prove to be secure. We conclude in section 5.

2 A Language for PKCS#11 Key Management

In this section we first introduce a simple imperative language suitable to specify
PKCS#11 key management APIs. We then formalize the attacker model and
define API security.

Values. We let C and G, with C ∩ G = ∅, respectively be the set of atomic
constant and fresh values. The former is used to model any public data, including
non-sensitive keys; the latter models the generation of new fresh values such as
sensitive keys. We associate to G an extraction operator g ← G, representing
the extraction of the first ‘unused’ value g from G. Extracted values are always
different: two, even non-consecutive, extractions g ← G and g′ ← G are always
such that g �= g′. We let val range over the set of all atomic values C ∪G and we
define values v as follows:

v ::= val | enc(v , v ′) | dec(v , v ′) | kdf(v , v ′)

where enc(v , v ′) and dec(v , v ′) denote value v respectively encrypted and
decrypted under key v ′, and kdf(v , v ′) represents a new key obtained via di-
versification from a value v and another key v ′. Key diversification may be
implemented in many different ways. For example, using the encryption scheme,
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we can directly obtain kdf(v , v ′) as enc(v , v ′). We explicitly represent decrypted
values in order to model situations in which a wrong key is used to decrypt an
encrypted value: for example, the decryption under v ′ of enc(v , v ′) will give, as
expected, value v ; instead, the decryption under v ′ of enc(v , v ′′), with v ′′ �= v ′

will be explicitly represented as dec(enc(v , v ′′), v ′). This allows us to model a
cryptosystem with no integrity check, as the one used in PKCS#11 for symmet-
ric keys: decrypting with a wrong key never gives a failure.

Expressions. Our language is composed of a core set of expressions for manip-
ulating the above values. Expressions are based on a set of variables V ranged
over by x, and have the following syntax:

e ::= x | enc(e, x ) | dec(e, x ) | kdf(val , x )

The explicit tag val will simplify typing for key diversification. A memory M :
x → v is a partial mapping from variables to values and e ↓M v denotes that the
evaluation of the expression e in memory M leads to value v . Let e ↓M v and
M(x ) = v ′. The semantics of expressions follows:

x ↓M M(x) if M(x) is defined

enc(e, x ) ↓M enc(v , v ′)

dec(e, x ) ↓M
{
v ′′ if v = enc(v ′′, v ′)
dec(v , v ′) otherwise

kdf(val , x ) ↓M kdf(val , v ′)

The modeled encryption mechanism does not perform any integrity check on the
messages, so the decryption of a ciphertext under a wrong key gives dec(v , v ′).

Templates. Properties and capabilities of keys are described by templates, ranged
over by T , represented as a set of attributes. When a certain attribute is con-
tained in a template T we will say that the attribute is set, it is unset otherwise.
A key can be sensitive, and a sensitive key can also be always-sensitive if it
has been generated (as a sensitive key) by a secure device. These two properties
are described by the attributes S (sensitive), and A (always-sensitive). Four at-
tributes identify the capabilities of a key: data encryption (E) and decryption
(D), wrap (W ) and unwrap (U), i.e., encryption and decryption of other keys.
Formally, a template T is a subset of {S,A,E,D,W,U} under the constraint
S �∈ T implies A �∈ T , i.e., non-sensitive keys can never be always-sensitive.

APIs and tokens. An API is specified as a set A = {a1, . . . , an} of functions,
each one composed of simple sequences of assignment commands:

a ::= λx1, . . . , xk.c
c ::= x := e | x := f | return e | c1; c2
f ::= getObj(y) | checkTemplate(y, T ) | genKey(T ) | importKey(y,T )
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We will only consider API commands in which return e can only occur as the
last command. Internal functions f represent operations that can be performed
on the underlying devices. Note that these functions are used to implement the
APIs and are not directly available to the users. Intuitively, getObj retrieves the
plaintext value of a key stored in the device, given its handle y; checkTemplate
is similar but it additionally queries the template of the stored key: if the key
template ‘matches’, i.e., is a superset of, the given one T , the key is returned;
genKey generates a key with template T ; finally, importKey imports a new key
with plaintext value y and template T . The first two functions fail (i.e., are stuck)
if the given handle does not exists or refers to a key with a wrong template. A
call to an API a = λx1, . . . , xk.c, written a(v1, . . . , vk), binds x1, . . . , xk to values
v1, . . . , vk, executes c and outputs the value given by return e.

Example 1 (PKCS#11 C WrapKey command). The language introduced is suit-
able to implement PKCS#11 commands. Each API command will be modeled
as a procedure reading inputs from pre-defined variables and returning a value as
output. The following is a possible specification of the wrap command. It takes
the handles of a key to be wrapped and the one pointing to the wrapping key
(whose flags W and S have to be set, as it has to be a sensitive wrapping key)
returning an encrypted byte-stream. For the sake of readability, we will always
write a(x1, . . . , xk) c in place of a = λx1, . . . , xk.c to specify an API function:

C WrapKey(h key, h w)
w := checkTemplate(h w, {S,W});
k := getObj(h key);
return enc(k, w);

Device keys are modelled by the handle-map H : g → (v , T ), a partial mapping
from the atomic (generated) values to pairs of keys and templates. Each key has
a handle to be referred with, and a template. Notice that we do not distinguish
between one or many devices: we consider all keys available to the API as a
unique ‘universal’ PKCS#11 token. This corresponds to a worst-case scenario in
which attackers can simultaneously access all existing tokens. Notice, also, that
this does not limit the multiple presence of the same key value under different
handles or templates, as for example, with H(g) = (v , T ) and H(g′) = (v , T ′).

An API command c working on a memory M and handle-map H is noted as
〈M,H, c〉. Semantics is reported in Table 1, where ε denotes the empty API. We
explain the first rule for assignment x := e: it evaluates expression e on M and
stores the results in variable x , noted M[x → v ]. In case x is not defined in M
the domain of M is extended to include the new variable, otherwise the value
stored in x is overwritten. Other rules are similar in spirit. Notice that genKey
and importKey also modify the handle-map. The last rule is for API calls on an
handle-map H: parameter values are assigned to variables of an empty memory
Mε, i.e., a memory with no variables mapped to values (recall memories are
partial functions); then, the API commands are executed and the return value
is given as a result of the call. This is noted a(v1, . . . , vk) �H,H′

v where H′ is the
resulting handle map. Notice that at this API level we do not observe memories
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Table 1. API Semantics

e ↓M v

〈M,H, x := e〉 → 〈M[x 
→ v ],H, ε〉
H(M(y)) = (v , T )

〈M,H, x := getObj(y)〉 → 〈M[x 
→ v ],H, ε〉

H(M(y)) = (v , T ′) T ⊆ T ′

〈M,H, x := checkTemplate(y, T )〉 → 〈M[x 
→ v ],H, ε〉

g, g′ ← G
〈M,H, x := genKey(T )〉 → 〈M[x 
→ g],H[g 
→ (g′,T )], ε〉

g ← G
〈M,H, x := importKey(y,T )〉 → 〈M[x 
→ g],H[g 
→ (M(y),T )], ε〉

〈M,H, c1〉 → 〈M′,H′, ε〉
〈M,H, c1; c2〉 → 〈M′,H′, c2〉

〈M,H, c1〉 → 〈M′,H′, c′1〉
〈M,H, c1; c2〉 → 〈M′,H′, c′1; c2〉

a = λx1, . . . , xk.c 〈Mε[x1 
→ v1 . . . xk 
→ vk],H, c〉 → 〈M′,H′, return e〉 e ↓M′
v

a(v1, . . . , vk) �H,H′ v

that are, in fact, used internally by the device to execute the function. The only
exchanged data are the input parameters and the return value.

Example 2 (Semantics of C WrapKey). To illustrate the semantics, we now show
the transitions of the C WrapKey command specified above. Suppose that the
device associates the handle g to (v , {A,S,E,D}) and g′ to (v ′, {S,W,U}). We
consider a memory M where all the variables are set to zero except for h key
and h w which store respectively g and g′, i.e., M = Mε[h key → g, h w → g′].
Then it follows,

〈M,H,w := checkTemplate(h w, {S,W}); k := getObj(h key); return enc(k, w)〉
→ 〈M[w → v ′],H, k := getObj(h key); return enc(k, w)〉
→ 〈M[w → v ′, k → v ],H, return enc(k, w)〉

which gives C WrapKey(g, g′) �H,H enc(v , v ′) meaning that the value returned
invoking the wrap command is thus the encryption of v under v ′. Obviously, this
is safe as long as v ′ is not know outside the device, otherwise a user knowing
the raw value of the key used to wrap could retrieve v by simply computing
dec(enc(v , v ′), v ′).

Attacker Model. We now formalize the attacker in a classic Dolev-Yao style.
In particular, the attacker knowledge K(V ) deducible from a set of values V is
defined as the least superset of V such that v , v ′ ∈ K(V ) implies

(1) enc(v , v ′) ∈ K(V );
(2) kdf(v , v ′) ∈ K(V );
(3) if v = enc(v ′′, v ′) then v ′′ ∈ K(V );
(4) if v �= enc(v ′′, v ′) then dec(v , v ′) ∈ K(V ).
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Given a handle map H, representing tokens, and an API A = {a1, . . . , an},
the attacker can invoke any API function giving any of the known values as a
parameter. The returned value is then added to the knowledge. Formally, an
attacker configuration is represented as 〈H, V 〉 and evolves as follows:

a ∈ A v1, . . . , vk ∈ K(V ) a(v1, . . . , vk) �H,H′
v

〈H, V 〉	A 〈H′, V ∪ {v}〉

We assume that the attacker initially knows an arbitrary subset V0 of the con-
stant atomic values C and we consider an initial empty handle map H0. In the
following, we use the standard notation 	∗

A to note multi-step reductions.

API security. The main property required by PKCS #11: “Sensitive keys cannot
be revealed in plaintext off the token” [18, page 30], is modelled by requiring
that sensitive keys, that are not already known by the attacker, should never
be learned by the attacker. Moreover, we formalize the intuitive property that
always-sensitive keys and all keys derived from them, are never known by the
attacker. This will be useful to guarantee that such keys have not been imported
by the attacker and can be trusted.

Formally, sensitive keys are the ones that only appear in the handle map with
the attribute sensitive set. Always-sensitive keys additionally have the always-
sensitive attribute set.

Definition 1 (Sensitive and always-sensitive values). Let val be an atomic
value and H a handle-map. If val is such that H(g) = (val , T ) implies S ∈ T
we say that val is sensitive in H. If we additionally have that H(g) = (val , T )
implies A ∈ T we say that val is always-sensitive in H.

The definition of API security follows.

Definition 2 (API Security). Let A be an API. We say that A is secure if
for all reductions 〈H0, V0〉	∗

A 〈H, V 〉	∗
A 〈H′, V ′〉 and for all atomic values val

we have

1. val �∈ K(V ) and val is sensitive in H imply val �∈ K(V ′);
2. val is always-sensitive in H implies val , kdf(v , val ) �∈ K(V ) ∪ K(V ′).

3 Type System

We enforce the security of an API through a type system requiring that (i) every
key has a clear, unambiguous role, and (ii) keys can only be wrapped using
trusted keys. This latter idea is, in fact, suggested in PKCS#11 v2.20 [18]:
CKA TRUSTED keys are added by the security officer in a protected environment.
Keys with the CKA WRAP WITH TRUSTED attribute (that we do not model here)
set can only be wrapped via such security officer keys. In fact, here it is like we
were assuming that CKA WRAP WITH TRUSTED is always set.

Our type system generalizes this idea of trusted keys by also including the
ones generated by the device (always-sensitive). Even in this case, in fact, we
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Table 2. Typing templates

A �∈ T, S ∈ T ¬data(T ) ∨ wrap(T )

	 T : Any

A �∈ T, S ∈ T data(T ) ¬wrap(T )

	 T : Data

A,S ∈ T data(T ) ¬wrap(T )

	 T : TData

A,S ∈ T ¬data(T ) wrap(T )

	 T : Wrap

A,S ∈ T data(T ) ⇔ wrap(T )

	 T : Seed

A,S �∈ T

	 T : Un

are guaranteed that their value has never appeared as plain-text outside the
device. This will allow us to propose and analyse configurations in which always-
sensitive keys can be exchanged by users. This is not allowed for trusted security
officer keys. In the following we will then use the word trusted to refer to a key
that is guaranteed to be unknown to the attacker. We will use the attribute
always-sensitive to capture this fact, but we could easily extend the analysis
to incorporate the above discussed attribute trusted. We consider the following
types.

ρ ::= Any | Data | TData | Wrap | Seed | Un
τ ::= ρ | Wrap[ρ]

Intuitively, Any is the top type including all possible data and keys; type Data
and TData are, respectively, for secret and trusted keys used to encrypt and
decrypt data; Wrap is for trusted wrapping keys, i.e., keys used to encrypt
other keys, and Seed is for trusted keys used to
derive other keys via diversification; Wrap[ρ] is
for trusted wrapping keys transporting keys of
type ρ, obtained via diversification from some
(trusted) seed; finally, Un represents untrusted
values. Types are related by a subtyping rela-
tion ≤ depicted on the right. Notice that the
level of secrecy can only grow while the level
of trust can only decrease. Promoting a type
via subtyping, in fact, should not compromise
security. This will be proved in lemma 1 below.

Typing keys. We now describe how PKCS#11 key templates are converted to
key types. Key templates represent the ‘types’ of the keys stored in the de-
vices. Attributes describe how keys are supposed to be used and which security
properties the device enforces on them.

First we notice that attribute sensitive (S) indicates that the key should be
regarded as secret. If, additionally, always-sensitive (A) is set we know that the
key is trusted. In fact, the always-sensitive PKCS#11 attribute cannot be set
by a user when generating or unwrapping a key (see [18], Table 15 footnotes
4 and 6). This attribute is meant to be automatically managed by the tamper
resistant token whenever a key is generated as sensitive. Data and wrapping keys
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are instead determined by attributes E,D and W ,U , respectively. We require
that these pairs of attributes cannot coexists on data and wrapping keys, so to
disambiguate key roles. Trusted keys that are neither wrapping not data keys
are considered seeds while sensitive keys with mixed roles, e.g., E plus W , are
given type Any.

We let data(T ) be E ∈ T ∨D ∈ T and wrap(T ) be W ∈ T ∨U ∈ T . Types for
keys are derived through the judgment � T : τ formalized in Table 2. It is easy
to see that any possible template is associated to exactly one type: non-sensitive
keys are typed as Un; sensitive but not always-sensitive keys are typed Data
if they have at least E or D set, and Any otherwise; always-sensitive keys are
typed TData if they have E or D set, otherwise they are typed Wrap or Seed
depending on the presence of W and U . Notice that no wrapping untrusted keys
are allowed, in fact secret non-data keys are typed as Any.

The following lemma states that subtyping does not compromise the security
of keys: non-sensitive keys can be regarded as sensitive and always-sensitive keys
can be regarded as just sensitive ones. Intuitively, it is safe to increase the level
of secrecy and decrease the level of trust.

Lemma 1 (Subtyping preserves security). Let � T : ρ and � T ′ : ρ′ with
ρ ≤ ρ′. Then S ∈ T implies S ∈ T ′ and A ∈ T ′ implies A ∈ T .

Proof. S ∈ T implies that ρ �= Un meaning that ρ′ �= Un. Since Un is the only
type for non-sensitive templates we have the thesis. Let A ∈ T ′. We have ρ′ ∈
{Wrap,TData, Seed} which implies ρ ∈ {Wrap,TData, Seed} giving the thesis.

Security policy. As we have already discussed in the introduction, PKCS#11
security tokens present different flaws, it is thus very important to fix them
by imposing some extra security policies on them. In [4] it has been observed
that real devices often limit the possible templates of keys, in order to have
more control on their usage. It is possible that different operations such as key
generation and key import restrict templates in different ways. At the level of
static analysis, we abstract away the exact point where restrictions happen, and
we consider T the set of all possible templates of keys.

Another very important aspect is to be clear about which keys are wrapped
and unwrapped as the standards do not add any information about the template
when encrypting a key with another one (one solution to this is, in fact, to add
wrapping formats [9], solution which is however out of the standard). Types are
useful here, as we can just establish a default type transported by wrapping keys.
As we will see, thus this is limiting, it is however possible to rise the number of
transported types via key diversification.

A security policy is thus defined as a pair (T, ρ), where T is the set of all
possible templates of keys, and ρ is the default type for wrapped keys.

Expressions. In order to type expressions and commands we introduce a typing
environment Γ : x → τ which maps variables to their respective types. Type
judgment for expressions is noted Γ �ρ e : τ meaning that expression e is of
type τ under Γ and assuming ρ as the default type for wrapped keys.
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Table 3. Typing expressions

[var ]
Γ (x) = τ

Γ 	ρ x : τ
[sub]

Γ 	ρ e : τ ′ τ ′ ≤ τ

Γ 	ρ e : τ
[kdf-w ]

Γ 	ρ x : Seed

Γ 	ρ kdf(wρ′ , x) : Wrap[ρ′]

[kdf-d ]
Γ 	ρ x : Seed

Γ 	ρ kdf(d, x) : Data
[kdf-un ]

Γ 	ρ x : Un v = wρ′ , d

Γ 	ρ kdf(v , x) : Un

[enc]
Γ 	ρ x : Data Γ 	ρ e : Un

Γ 	ρ enc(e, x) : Un
[dec]

Γ 	ρ x : Data Γ 	ρ e : Un

Γ 	ρ dec(e, x) : Un

[wrap]
Γ 	ρ x : Wrap Γ 	ρ e : ρ

Γ 	ρ enc(e, x) : Un
[unwrap]

Γ 	ρ x : Wrap Γ 	ρ e : Un

Γ 	ρ dec(e, x) : ρ

[wrap-div ]
Γ 	ρ x : Wrap[ρ′] Γ 	ρ e : ρ′

Γ 	ρ enc(e, x) : Un
[unwrap-div ]

Γ 	ρ x : Wrap[ρ′] Γ 	ρ e : Un

Γ 	ρ dec(e, x) : ρ′

[enc-any ]
Γ 	ρ x : Any Γ 	ρ e : Un ρ �= Wrap

Γ 	ρ enc(e, x) : Un
[dec-any ]

Γ 	ρ x : Any Γ 	ρ e : Un

Γ 	ρ dec(e, x) : Any

Typing rules are reported in Table 3. Rules [var ] and [sub] are standard and
derives types directly from Γ (for variables) or via subtyping. Rules [kdf-w ] and
[kdf-d ] state that given a seed x we can derive a new wrapping key of type
Wrap[ρ′] as kdf(wρ′ , x ), and a new data key as kdf(d, x ). Notice that we use
values wρ′ and d as tags to diversify keys, we can thus consider them as constant
values established a-priori to this purpose. We do not assume any secrecy on
them: security of this operation is given by the trusted seed x. Rule [kdf-un ]
allows for diversification from untrusted seeds, always generating an untrusted
key. Rules [enc] and [dec] are for data encryption and decryption, and only work
on untrusted values. Rules [wrap] and [unwrap] are more interesting: given a
wrapping key we can wrap/unwrap other keys of type ρ, the default wrapping
type specified in the security policy. Rules [wrap-div ] and [unwrap-div ] are similar
but work on type ρ′ given by the above rule [kdf-w ]: diversification is in fact
useful to obtain keys that can wrap keys of various types, as we will see in the
case studies of section 4. Finally, rules [enc-any] and [dec-any ] are conservative
rules for cryptographic operation using generic keys of type Any. The former
states that it is safe to encrypt with such keys as far as the default import
type is not Wrap, otherwise we would be able to encrypt a broken key and then
unwrap/import it as trusted in the device. The latter allows for decryption if
the resulting value is considered of type Any. In section 4 we will see an example
of application of these extremely conservative rules.

APIs. We now type APIs via the judgment Γ �T,ρ c meaning that c is well-typed
under Γ and the policy T, ρ. The judgment is formalized in Table 4. Rules [assign ]
and [seq] are standard, and they amount to recursively type the expression and
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Table 4. Typing APIs

[API ]
∀a ∈ A Γ 	T,ρ a

Γ 	T,ρ A [assign ]
Γ (x) = τ Γ 	ρ e : τ

Γ 	T,ρ x := e
[seq ]

Γ 	T,ρ c1 Γ 	T,ρ c2
Γ 	T,ρ c1; c2

[getobj ]
Γ (x) = Any Γ 	ρ y : Un

Γ 	T,ρ x := getObj(y)
[checktmp ]

Γ (x) = LUB(T ,T) Γ 	ρ y : Un

Γ 	T,ρ x := checkTemplate(y,T )

[genkey ]
Γ (x) = Un T ∈ T

Γ 	T,ρ x := genKey(T )
[impkey ]

Γ (x) = Un 	 T : τ Γ 	ρ y : τ T ∈ T

Γ 	T,ρ x := importKey(y,T )

[return ]
Γ 	ρ e : Un

Γ 	T,ρ return e
[function]

Γ 	ρ x1 : Un . . . Γ 	ρ xk : Un Γ 	T,ρ c

Γ 	T,ρ λx1, . . . , xk.c

the sequential sub-part of a program, respectively. Rule [getobj ] states that when
getting a key from the token with no template check, we need to be conservative
and assign the result to a variable of type Any. In fact, we cannot deduce any
specific usage or security level for the obtained key; rule [checktmp], instead,
approximates the type of the obtained key by getting the least upper bound of
all types for templates T ′ matching T , i.e., such that T ⊆ T ′:

LUB(T,T) =
⊔
{τ ′ | ∃T ′ ∈ T.T ⊆ T ′∧ � T ′ : τ ′}

Rule [genkey ] checks that the template for the new key is in the set of the admit-
ted template T, while [impkey ] additionally checks that the type of the imported
value is consistent with the given template. Rules [return] and [function] state
that the return value and the parameter of an API call must be untrusted. In
fact they are the interface to the external, possibly malicious users. Finally, by
rule [API ] we have that an API is well-typed if all of its functions are well-typed.

3.1 Type Soundness

We give a notion of value well-formedness in order to track the value integrity at
run-time. The judgment is based on a mapping Θ : val → ρ from atomic values
to types, excluding Wrap[ρ] that is derived for diversified non-atomic keys. Tags
wρ′ and d for key diversification are implicitly assumed to be untrusted, i.e.,
Θ(wρ′ ) = Θ(d) = Un. Rules are given in Table 5 and follow very closely the ones
of Table 3 used for expressions.

Definition 3 (Well-formedness). Γ,Θ �T,ρ M,H if

– Γ,Θ �T,ρ M, i.e., M(x) = v, Γ (x) = τ implies Θ �ρ v : τ ,
– Θ �T,ρ H, i.e., H(v ′) = (v , T ), � T : τ implies Θ �ρ v : τ and T ⊆ T

We now prove that if we only give the attacker untrusted atomic values, all the
values he will be able to derive (according to section 2) will also be untrusted.
Intuitively, having type Un is a necessary condition for a well-formed value to
be deducible by the attacker. The following holds:
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Table 5. Value well-formedness

[atom ]
Θ(val) = ρ′

Θ 	ρ val : ρ′
[sub]

Θ 	ρ v : τ ′ τ ′ ≤ τ

Θ 	ρ v : τ
[kdf-w ]

Θ 	ρ v : Seed

Θ 	ρ kdf(wρ, v) : Wrap[ρ]

[kdf-d ]
Θ 	ρ v : Seed

Θ 	ρ kdf(d, v) : Data
[kdf-un ]

Θ 	ρ v , v ′ : Un

Θ 	ρ kdf(v ′, v) : Un

[enc]
Θ 	ρ v : Data Θ 	ρ v ′ : Un

Θ 	ρ enc(v ′, v) : Un
[dec]

Θ 	ρ v : Data Θ 	ρ v ′ : Un v ′ �= enc(v ′′, v)

Θ 	ρ dec(v ′, v) : Un

[wrap]
Θ 	ρ v : Wrap Θ 	ρ v ′ : ρ

Θ 	ρ enc(v ′, v) : Un
[unwrap]

v ′ �= enc(v ′′, v)
Θ 	ρ v : Wrap Θ 	ρ v ′ : Un

Θ 	ρ dec(v ′, v) : ρ

[wrap-div ]
Θ 	ρ v : Wrap[ρ′] Θ 	ρ v ′ : ρ′

Θ 	ρ enc(v ′, v) : Un
[unwrap-div ]

v ′ �= enc(v ′′, v)
Θ 	ρ v : Wrap[ρ′] Θ 	ρ v ′ : Un

Θ 	ρ dec(v ′, v) : ρ′

[enc-any ]
Θ 	ρ v : Any Θ 	ρ v ′ : Un ρ �= Wrap

Θ 	ρ enc(v ′, v) : Un
[dec-any ]

v ′ �= enc(v ′′, v)
Θ 	ρ v : Any Θ 	ρ v ′ : Un

Θ 	ρ dec(v ′, v) : Any

Proposition 1. Let Θ �T,ρ H and let V be a set of atomic values such that
val ∈ V implies Θ(val ) = Un. Then, v ∈ K(V ) implies Θ �ρ v : Un.

Proof. By an easy induction on the length of the derivation of values in K(V ).
For length 0 we trivially have that v ∈ V which gives the thesis. We assume the
proposition holds for length i and we prove it for length i + 1. We show case
enc(v , v ′) ∈ K(V ) because of v , v ′ ∈ K(V ). The other cases are analogous. By
rule [enc] and observing that Un ≤ Data we obtain the thesis.

Next lemma proves that we can never type a value with two types that are not
related via subtyping. As a consequence, we have that trusted values can never
be typed as untrusted and vice-versa.

Lemma 2. Θ �ρ v : τ and Θ �ρ v : τ ′ implies τ ≤ τ ′ or τ ′ ≤ τ .

Proof. By an easy induction on the (sum of the) length of the derivations of Θ �ρ
v : τ and Θ �ρ v : τ ′. Base case is length 0 and trivially gives τ = τ ′ = Θ(v). We
show once case of the inductive step. Suppose v = kdf(v ′, v ′′). We have three
different rules for typing v : [kdf-w ],[kdf-d ],[kdf-un ]. For example, types Data and
Wrap[τ ] given by the first two rules are unrelated, however the typed values differ
for a tag which excludes the case. More interestingly, Un and Wrap[τ ] are also
unrelated but, by induction, we know that the key v should be typed with two
related types, which is not the case since Seed and Un are not in the subtyping
relation. Other cases follow similarly.

This last lemma states that evaluating an expression of type τ on a well-formed
memory, gives a value of type τ .
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Lemma 3. Let Γ �ρ e : τ and e ↓M v. If Γ,Θ �T,ρ M then it holds Θ �ρ v : τ .

Proof. By induction on the structure of e. Base case is when e is x . Thesis
directly follows by memory well-formedness. For the inductive step, in some
cases we use Lemma 2: for example, when dealing with decryption [dec] we
might have a value encrypted under the right key that we know to type Un. Now
looking at the possible cases in Table 5 we see that the encrypted values can be
obtained in different ways, but the information about the type of the key (Data)
allows us to pick either [enc] or [enc-any], both of which prove the plaintext to
be of type Un as required. Other cases follow analogously.

We now give a subject-reduction result stating that well-typed programs remain
well-typed at run-time and preserve memory and handle-map well-formedness.

Theorem 1. Let Γ,Θ �T,ρ M,H and Γ �T,ρ c . If 〈M,H, c〉 → 〈M′,H′, c′〉 then

(i) if c′ �= ε then Γ �T,ρ c′;
(ii) ∃Θ′ ⊇ Θ such that Γ,Θ′ �T,ρ M′,H′.

Proof. (Sketch.) Proof of item (i) is by trivial induction on the structure of c.
In fact almost all commands reduce to ε. Item (ii) is again by induction on the
structure of c: for expressions we just apply Lemma 3. For genKey and importKey
the returned handle and the new key are fresh names that we add to Θ in order
to type the new memory (this is why we have Θ′ in the thesis). Template T is
checked to be compatible with respect to T, and the type of the imported key
value is checked to be the same as the one derived from the template. getObj
assigns to type Any so there is nothing to prove, while checkTemplate approxi-
mates the type of the key using a least upper bound which guarantees that the
value can be typed the same as the variable x via subtyping.

We can now state the main result of the paper: well-typed APIs are secure,
according to definition 2.

Theorem 2. Let Γ �T,ρ A. Then A is secure.

Proof. We first prove, by induction on the length of reduction 〈H0, V0〉 	∗
A

〈H, V 〉, that there exists Θ such that Θ �T,ρ H and Θ �ρ v : Un for each v ∈ V .
Base case is length 0, meaning that H0 = H and V0 = V . If we take Θ such

that Θ(v) = Un for each v ∈ V0, since H is empty, we easily obtain the thesis.
For the inductive case we have 〈H0, V0〉	∗

A 〈Hn, Vn〉	A 〈H, V 〉. By inductive
hypothesis there exists Θ such that Θ �T,ρ Hn and Θ(v) = Un for each v ∈ Vn.
We consider the last step 〈Hn, Vn〉	A 〈H, V 〉. By definition, this is due to a call
to a function a ∈ A. In particular, we have a(v1, . . . , vk) �Hn,H v with v1, . . . , vk ∈
K(V ) and V = Vn ∪ {v}. This, in turns, happens because a = λx1, . . . , xk.c and
〈Mε[x1 → v1 . . . xk → vk],Hn, c〉 → 〈M′,H, return e〉 with e ↓M′

v . From Γ �T,ρ A
we have Γ �T,ρ a which requires Γ �ρ x1 : Un . . . Γ �ρ xk : Un and Γ �T,ρ c.
Since x1, . . . , xk are the only variables in the domain ofM0 = Mε[x1 → v1 . . . xk →
vk], we easily obtain that Γ,Θ �T,ρ M0. We have proved that Γ,Θ �T,ρ M0,H
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and Γ �T,ρ c, thus by Theorem 1 we obtain Γ �T,ρ return e and ∃Θ′ ⊇ Θ such
that Γ,Θ′ �T,ρ M′,H. Now, Γ �T,ρ return e requires Γ �ρ e : Un, by Lemma 3
we have Θ′ �ρ v : Un which gives the thesis.

We have proved that there exists Θ such that Θ �T,ρ H and Θ �ρ v : Un for
each v ∈ V . For item 1, if Θ �ρ val : Un, meaning that Θ(val ) = Un, since we

have val �∈ K(V ) and val is sensitive, we can change Θ into Θ̃ = Θ[val → Data]
while preserving Θ̃ �T,ρ H and Θ̃ �ρ v : Un for each v ∈ V . In fact, if S appears
in all the templates for value val and val is different from all values in V , we
have that its type is never required to be Un, since none of the templates will be
typed as Un. Notice that Θ̃(val ) = Data implies that Θ̃ ��ρ val : Un. We consider
now 〈H, V 〉 	∗

A 〈H′, V ′〉. By following the same proof scheme as above, we can
prove that Θ′ �T,ρ H′ and Θ′ �ρ v : Un for each v ∈ V ′ with Θ′ ⊇ Θ̃. Thus,
Θ′(val) = Data meaning that Θ′ ��ρ val : Un. From Proposition 1 we obtain that
val �∈ K(V ′) which gives the thesis.

For item 2, we have that that all templates of val are typed with one of
Wrap,TData, Seed. This, by lemma 2, implies Θ ��ρ val : Un which by Proposi-
tion 1 gives val �∈ K(V ). We can now apply item 1 to obtain val �∈ K(V ′). Recall,
in fact, we have assumed that A ∈ T implies S ∈ T .

4 Type-Based Analysis

In this section we consider different implementations of (a subset of) PKCS#11
API and we analyse them using our type-based approach. We only consider the
functions for encryption/decryption of data and wrap/unwrap of keys.

RSA PKCS#11 Standard. We show that an implementation of PKCS#11 that
exactly follows the standard, fails to type-check, as expected, since it is known
to be vulnerable to attacks. This is useful to show how these attacks can be
prevented by statically requiring a precise unambiguous role for each key, as
done by our type system.

The API is defined in the RSA standard, which specifies what are the input
parameters and the result of each function. C Encrypt takes a byte-stream and
a handle to a key having the encrypt (E) flag set, and returns an encrypted
byte-stream. Similarly C Decrypt takes a byte-stream and decrypts it using the
key pointed by the given handle, with the decrypt (D) flag set; it then returns
to the user the decrypted message:

C Encrypt(data, h key)
k := checkTemplate(h key, {E})
return enc(data, k);

C Decrypt(data, h key)
k := checkTemplate(h key, {D});
return dec(data, k);

C WrapKey takes the handle of a key to be wrapped and the one pointing to the
wrapping key, having the wrap (W ) flag set, and returns an encrypted byte-
stream. The unwrap command (C UnwrapKey) reads a byte-stream, decrypts it
using a key having the unwrap (U) flag set, imports the resulting key in the
device and returns a handle to it. The standard allows the user to specify the
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template for the new key. In this example, we assume the key is imported as
sensitive (S).

C WrapKey(h key, h w)
w := checkTemplate(h w, {W})
k := getObj(h key);
return enc(k, w);

C UnwrapKey(data, h w)
w := checkTemplate(h w, {U})
k := dec(data, w);
return importKey(k, {S});

The standard does not impose any rule on the usage of encrypt, decrypt, wrap
and unwrap attributes. Thus the policy is the most permissive one, i.e., T is the
set of all the possible templates T . In section 1 we have seen an attack that exploits
C Decrypt and C WrapKey. We now show that the latter does not type-check, con-
firming that we cannot prove the security of the API. Command return enc(k, w)
requires Γ �ρ return enc(k, w) : Un. Command k := getObj(h key) requires that
Γ �ρ k : Any. Typing w := checkTemplate(h w, {W}) requires w to have type
LUB({W},T) = Any since the permissive policy allows for templates with mixed
roles such as {S,E,D,W,U}. Since there is no rule for typing expressions of type
Any with key of type Any we can never obtain Γ �ρ return enc(k, w) : Un, giving
a contradiction.

Secure Templates. We now analyse and prove the security of a fix proposed in
[4,5]. Note that, it is the first proposed patch that does not require the addition
of any cryptographic mechanisms to the standard. The idea is to limit the set
of admissible attribute combinations for keys in order to avoid that they ever
assume conflicting roles at creation time. This is configurable at the level of
the specific PKCS#11 operation. For example, different secure templates can be
defined for different operations such as key generation and unwrapping.

More precisely, the fix includes three templates for the key generation com-
mand: a wrap and unwrap one for importing/exporting other keys, here mapped
into {A,S,W,U} with type Wrap; an encrypt and decrypt template for crypto-
graphic operations, here encoded as {S,E,D} with type Data and an empty
template, corresponding to {}, i.e., Un. The unwrap command is instead allowed
to set either an empty template or one which has the unwrap and encrypt at-
tributes set and the wrap and decrypt ones unset. This is a mixed-role template
that corresponds to type Any that we pick as the default unwrapping type ρ.

We use the policy T such that T ∈ T and {W} ∈ T implies T = {A,S,W,U},
moreover {D} ∈ T implies T = {S,E,D}, i.e., wrapping and decryption keys
are respectively encoded with the unique templates {A,S,W,U},{S,E,D}. With
such a policy, whenever a checkTemplate expression queries a handle for a de-
cryption key ({D}) then the type returned is Data, since the only matching
template is {S,E,D}. When we query for an encryption key ({E}) then the
type returned is Any since, for example, {S,E, U} ∈ T. When querying for a
wrapping key ({W}) the result will be typed as Wrap since the only template
satisfying the query is {A,S,W,U}. Finally, when querying for an unwrapping
key ({U}) the results is Any since, again, {S,E, U} ∈ T. We now show that
the standard API as defined above type-checks under the above more restrictive
policy. Recall that we let ρ = Any, i.e., the default type for wrapped key is Any.
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C Encrypt(data, h key)
k := checkTemplate(h key, {E}) (Γ (k) = Any)
return enc(data, k); (Γ �ρ enc(data, k) : Un)

C Decrypt(data, h key)
k := checkTemplate(h key, {D}) (Γ (k) = Data)
return dec(data, k); (Γ �ρ dec(data, k) : Un)

C WrapKey(h key, h w)
w := checkTemplate(h w, {W}) (Γ (w) = Wrap)
k := getObj(h key); (Γ (k) = Any)
return enc(k, w); (Γ �ρ enc(k, w) : Un)

C UnwrapKey(data, h w)
w := checkTemplate(h w, {U}) (Γ (w) = Any)
k := dec(data, w); (Γ (k) = Any)
return importKey(k, {S,E, U}); (Γ �ρ importKey(k, {S,E, U}) : Un)

By theorem 2 we have that this fix is secure and never leaks sensitive and always-
sensitive keys. It strongly limits, however, the set of possible templates, and this
could be an issue if an application in use on a given system fails to obey such
requirements. On the other hand, compatibility with other devices is not broken,
since the implementation of the above functions is the same as in the standard.
However, even if interoperability is guaranteed, the usage of an unsafe token
would obviously expose the keys to attacks.

Finally, notice that the patch is presented here in an extended version: origi-
nally it allowed the generation of sensitive keys only, we instead let non-sensitive
keys to be accepted by the policy.

Key Diversification. We present a novel fix to PKCS#11. The idea is to use key
diversification to avoid the same key to be used for conflicting purposes. This
ensures that the same key will never be used for encrypting and decrypting both
data and other keys. The fix is completely transparent to the user as far as all
the devices implement it. It must be noted, in fact, that a key wrapped by a
token implementing this patch cannot be correctly imported by one acting as
described by the standard, i.e., not using key diversification (and vice versa).
The same holds for encrypted data. To the best of our knowledge, this is the
only patch that correctly enforces the security of sensitive keys and, at the same
time, is transparent to existing applications.

We define a policy that allows for templates typed as Seed, Any, Data, Un.
Formally T = {T | � T : ρ and ρ ∈ {Seed,Any,Data,Un} }. We now specify the
fixed functions and the typing for each variable/expression.

C Encrypt(data, h key)
k := checkTemplate(h key, {A,S}) (Γ (k) = Seed)
dk := kdf(d, k); (Γ (dk) = Data)
return enc(data, dk); (Γ �ρ enc(data, dk) : Un)
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C Decrypt(data, h key)
k := checkTemplate(h key, {A,S}) (Γ (k) = Seed)
dk := kdf(d, k); (Γ (dk) = Data)
return dec(data, dk); (Γ �ρ dec(data, dk) : Un)

Notice, in particular, that Γ �ρ checkTemplate(h key, {A,S}) : Seed since
LUB({A,S},T) = Seed. In fact, Seed is the only type in T with A set (we
have excluded from the policy Wrap and TData).

Key diversification allows to choose at run-time the wrapping and unwrapping
of different kind of keys: different instances of each command will be provided,
each of them using a different tag when diversifying the seed retrieved from
the device. Since the code is exactly the same, we just parametrize it on the
tag value wρ. With Tρ′ we identify a template such that LUB(Tρ′ ,T) = ρ′. For
ρ′ = Seed,Any,Data we respectively have Tρ′ = {A,S}, {S}, {S,E,D}. Wrap
and unwrap are specified an typed as follows:

C WrapKeywρ′ (h key, h w)
w := checkTemplate(h w, {A,S}) (Γ (w) = Seed)
k := checkTemplate(h w, Tρ′) (Γ (k) = ρ′)
dk := kdf(wρ′ , w); (Γ (dk) = Wrap[ρ′])
return enc(k, dk); (Γ �ρ enc(k, dk) : Un)

C UnwrapKeywρ′ (data, h w)
w := checkTemplate(h w, {A,S}) (Γ (w) = Seed)
dk := kdf(wρ′ , w); (Γ (dk) = Wrap[ρ′])
k := dec(data, dk); (Γ (k) = ρ′)
return importKey(k, Tρ′); (Γ �ρ importKey(k, Tρ′) : Un)

Since the API type-checks, by theorem 2 we have that it is secure and never leaks
sensitive and always-sensitive keys. Notice that, since it is possible to exchange
seeds we have that new wrapping keys can be easily shared between users. Notice
also that, in practice, the parameter wρ needs to be somehow fixed, in order to
have a single implementation of wrap and unwrap commands. The way this value
is picked is not relevant, since we prove that all these instances are secure even
if they coexist on the device. For example, it might be derived at run-time from
the CKA UNWRAP TEMPLATE attribute which specifies, for each wrapping key, the
template to be assigned to the unwrapped key.

5 Conclusions

We have presented a type system to statically enforce the security of PKCS#11
key management APIs. We believe that a formal tool working at the language-
level might help developers and hardware producers to better understand the
crucial issues and limits affecting the design and implementation of this standard.
For example, we have shown that C Decrypt and C WrapKey commands cannot
be both type-checked if implemented as prescribed by the standard [18]. More
precisely, it has been shown that the requirements on the templates of the keys
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used to perform such operations are not enough restrictive to avoid keys having
conflicting purposes. Thus, failing to type-check corresponds, in this case, to
the intuitive problematic issue, well understood by developers and hardware
producers, of conflicting roles assigned to a single key.

We have also presented a new fix to PKCS#11, based on key diversification:
Intuitively, the token avoids conflicting roles for one key by diversifying it de-
pending on the actual role. We have type-checked both this new fix and the
‘secure templates’ one [4,5], formally proving their security.

Starting from version 2.20, RSA added to the standard the new attribute
CKA WRAP WITH TRUSTED, that could potentially be used to prevent the API-level
attacks discussed in this work. However, a big limitation is that trusted keys, i.e.,
keys whose CKA TRUSTED attribute is set, may be imported into a token only by
a security officer, a special privileged user operating in a protected environment.
Moreover, in order to prevent attacks on a sensitive key, it is required that its
CKA WRAP WITH TRUSTED attribute is set, meaning that it can only be wrapped
under a key imported by the security officer. Here we have generalized this idea
of wrapping keys only under trusted keys. We have used the always-sensitive
attribute, even if the standard does not foresee any special usage for it, in order
to show that what is important is ‘trust’, and not who has imported the key: a
key that has always been sensitive (and has never been known by the attacker)
can be considered trusted the same as one imported by the security officer. So,
intuitively, in our model the always-sensitive and trusted attributes collapse into
the A attribute. This allows for dynamically exchanging new always-sensitive,
trusted keys, wrapped under the one initially imported by the security officer.

Quite surprisingly, in [18] RSA does not discuss any security implication of the
two new attributes and does not provide any guideline about how to correctly
use them to prevent attacks (in fact, attacks are not mentioned even in the
most recent draft of the standard [19]). There are, instead, many problematic
issues that need to be considered. We give a partial list here: (i) trusted keys
should be non-extractable, i.e., not wrappable even under another trusted key.
This is to avoid they are unwrapped with a different template and then leaked;
(ii) a sensitive key with CKA WRAP WITH TRUSTED set might be wrapped under
a trusted key and then unwrapped with CKA WRAP WITH TRUSTED unset, making
it attackable; (iii) trusted keys should not have conflicting roles (such as wrap
and decrypt). While this might be obvious, it is not a good idea to leave the
security officer the freedom of freely configuring such crucial keys. Our type-
based analysis solves all the above issues by enforcing a controlled usage of roles
and templates for keys.

The extension to public-key cryptography and the implementation of the key
diversification fix on a software emulated token are left as a future work. As
already done for the secure template patch [4,5] the starting point for the im-
plementation would be the open-source project openCryptoki [17].
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Abstract. In previous work, we have proposed a compositional framework for
stating and automatically verifying complex conditional information flow poli-
cies using a relational Hoare logic. The framework allows developers and verifiers
to work directly with the source code using source-level code contracts. In this
work, we extend that approach so that the algorithm for verifying code compli-
ance to an information flow contract emits formal certificates of correctness that
are checked in the Coq proof assistant. This framework is implemented in the
context of SPARK – a subset of Ada that has been used in a number of industrial
contexts for implementing certified safety and security critical systems.

1 Introduction

Network and embedded security devices have complex information flow policies that
are crucial to fulfilling device requirements. We have previously explained [1, §1] how
devices (such as “separation kernels”) developed following the MILS (Multiple Inde-
pendent Levels of Security) architecture must be certified to very stringent criteria such
as Common Criteria EAL 6/7 and DCID 6/3, and that many previous information-flow
analyses (based on type systems) are too weak to specify these systems; the notion of
conditional information flow is needed. We have also explained [2] that in these real ap-
plications, one must be able to trace information flow through individual array elements,
rather than “contaminating” the entire array whenever an assignment is done.

SPARK (a safety-critical subset of Ada) is being used by various organizations, in-
cluding Rockwell Collins1 and the US National Security Agency (NSA) [3], to engineer
information assurance systems including cryptographic controllers, network guards,
and key management systems. To guarantee analyzability and conformance to embed-
ded system resource bounds, SPARK does not include pointers and heap-based data.
Thus, SPARK programs use arrays and for-loops to implement complex data structures.
SPARK provides automatically checked procedure annotations that specify information
flows (dependences) between procedure inputs and outputs. In the certification process,
these annotations play a key role in justifying conformance to information flow and

1 See the 2006 press release at http://212.113.201.96/sparkada/pdfs/
praxis rockwell final pr.pdf

P. Degano and J.D. Guttman (Eds.): POST 2012, LNCS 7215, pp. 369–389, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://212.113.201.96/sparkada/pdfs/praxis_rockwell_final_pr.pdf
http://212.113.201.96/sparkada/pdfs/praxis_rockwell_final_pr.pdf
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separation policies relevant to MILS development; however, the standard SPARK an-
notation language is too weak to express the flow policies needed to verify/certify many
real embedded information assurance applications.

Due to the lack of precision in SPARK and other conventional language-based se-
curity frameworks, policy adherence arguments are often reduced to informal claims
substantiated by manual inspections that are time-consuming, tedious, and error-prone.
Some past certification efforts have created models of software code in theorem provers
and proved that the models of code comply with security policies. While this strategy
can provide high degrees of confidence and support very precise policy declarations,
it has the disadvantages of (a) leaving “trust gaps” between source code and models
(their correspondence has in past efforts been only manually verified by inspection), (b)
requiring intensive manual efforts, and (c) inhibiting developers from proceeding with
information flow specification and verification during the development process.

In our previous work [2,1] we extended SPARK’s procedure annotations to condi-
tional information flow and fine-grained treatment of structured data, necessary for the
automatic analysis and verification of many programs, and we developed a composi-
tional framework for stating and automatically verifying complex array-oriented and
conditional information flow policies using a relational Hoare logic. Although our Se-
cure Information Flow Logic (SIFL) is language-neutral, we have chosen to cast our
work as an enhancement to the SPARK information flow framework. Indeed, this work
has been inspired by challenge problems provided by our industrial collaborators at
Rockwell Collins who are using SPARK on several projects.

Here we extend our framework with new functionality to generate machine-
checkable proofs of the information-flow properties that it derives. Our framework
is much more automated than tactical theorem-proving in a proof assistant. In our
framework, engineers work directly with the source code using code contracts to spec-
ify/check with greater precision than in conventional language-based information flow
frameworks. We believe that most units (e.g., procedures) of real embedded applications
can be handled directly by our analysis—and those units that cannot may smoothly be
handed off to verification in a proof assistant; the compositional nature of our system
will eventually allow the whole system to be checked end-to-end in the proof assistant.

Contributions: (a 50+ pages technical report describing the details of the approach, as
well as Coq proofs for evidence soundness, is available at [4].)

– We enhance our previously developed precondition-generation algorithm for SIFL
assertions to emit evidence that program units conform to their (conditional) infor-
mation flow contracts. This evidence can be viewed as an application of rules of a
relational logic for information flow that encodes the algorithm’s reasoning steps.

– We provide an implementation of the evidence-emitting precondition generation
algorithm for SPARK.

– We encode the derived logic in Coq, and prove it sound with respect to an operational
semantics for a core subset of SPARK. We thus have a foundational machine-checked
proof that whenever our evidence-checker accepts evidence about a program, then
that program really does conform to the given information flow policy.

– We evaluate the framework on a collection of methods from embedded applications,
including applications from industrial research projects.
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Fig. 1. Structure of Information Flow Evidence Generation and Checking

2 Background

SPARK is a safety critical subset of Ada developed by Altran Praxis and supported by
AdaCore. SPARK provides (a) an annotation language for writing functional as well
as information-flow software contracts, and (b) automated static analyses and semi-
automated proof assistants for proving absence of run-time exceptions, and confor-
mance of code to contracts. SPARK has been used to build a number of high-assurance
systems; Altran Praxis is currently using it to implement the next generation of the UK
air traffic control system. We are using SPARK due to our strong collaborative ties with
Rockwell Collins, who uses SPARK to develop safety and security critical components
of a number of embedded systems.

Figure 1 illustrates the structure of our SIFL contract checking and evidence gen-
eration framework. An Eclipse-based integrated development environment allows pro-
grammers to develop information-assurance applications in SPARK. Our logic-based
approach allows us to extend the SPARK information-flow contract language to include
support for conditional information flow and quantified flow policies that describe flows
through individual components of arrays. Behind the scenes, the enhanced SPARK infor-
mation flow contracts are represented using relational agreement assertions (explained
below). Our tool framework includes a precondition generation algorithm for agreement
assertions that allows us to infer SIFL contracts or check user-supplied contracts; in the
latter mode, preconditions are inferred from postconditions, and then the tool checks
that the user-supplied preconditions imply the inferred preconditions. The precondition
generation algorithm uses a collection of SMT solvers via the Sireum Topi interface
(www.sireum.org). As the precondition generation executes, it builds evidence, in
the form of a Coq data structure, that relates postconditions to generated preconditions.
This language of evidence is a relational Hoare logic derived from the basic reason-
ing steps in the algorithm. Coq type checking acts as an “evidence checker” confirming
that the evidence emitted by the algorithm is indeed well-formed. The Coq evidence
representation is proved sound in Coq wrt. an operational semantics for an imperative
language representing core features of SPARK. Thus, given a SPARK program and a

www.sireum.org
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procedure MACHINE STEP
−− INFORMATION FLOW CONTRACT ( F igur e 3)
i s D 0 , D 1 : CHARACTER;
begin

i f IN 0 RDY and not OUT 1 RDY then
D 0 := IN 0 DAT ; IN 0 RDY := FALSE ;
OUT 1 DAT := D 0 ; OUT 1 RDY := TRUE;

end i f ;
i f IN 1 RDY and not OUT 0 RDY then

D 1 := IN 1 DAT ; IN 1 RDY := FALSE ;
OUT 0 DAT := D 1 ; OUT 0 RDY := TRUE;

end i f ;
end MACHINE STEP ;

Fig. 2. Simple MLS Guard - mailbox mediates communication between partitions

SIFL contract, if the contract checking algorithm produces evidence that type checks in
Coq, we have a machine-checked proof that the program’s behavior (as defined by the
operational semantics) conforms to the information-flow contract.

Observe that the precondition generator is not part of the trusted code base and hence
in principle might fail to produce well-typed evidence, but we are exploring (cf. the end
of Sect. 4) an implementation of the precondition generator inside Coq. Once verified,
this Gallina implementation cannot fail to produce valid evidence.

Figure 2 illustrates the conceptual information flows in a fragment of a simplistic
MLS (Multiple Levels of Security) component, described in our earlier work [1]. Rock-
well Collins engineers constructed this example to illustrate, to NSA and industry rep-
resentatives, the specification and verification challenges facing the developers of MLS
software. The “Mailbox” component in the center of the diagram mediates communi-
cation between two client processes – each running on its own partition in the separa-
tion kernel. Client 0 writes data to communicate in the memory segment Input 0 that
is shared between Client 0 and the mailbox, then it sets the Input 0 Ready flag. The
mailbox process polls its ready flags; when it finds that, e.g., Input 0 Ready is set and
Output 1 Ready is cleared (indicating that Client 1 has already consumed data deposited
in the Output 1 slot in a previous communication), then it copies the data from Input 0
to Output 1 and clears Input 0 Ready and sets Output 1 Ready. The communication from
Client 1 to Client 0 follows a symmetric set of steps. The actions to be taken in each
execution frame are encoded in SPARK by the MACHINE STEP procedure of Fig. 2.

While upper levels of the MILS architecture require reasoning about lattices of se-
curity levels (e.g., unclassified, secret, top secret), the policies of infrastructure compo-
nents such as separation kernels and guard applications usually focus on data separation
policies (reasoning about flows between components of program state), and we restrict
ourselves to such reasoning in this paper.

Figure 3(a) displays a fragment of an information flow contract for the mailbox ex-
ample written in our contract language that enhances the original SPARK contract lan-
guage with the ability to specify conditional information flows. This specification states
from which input values (and under which conditions) the final values of OUT 0 DAT

and OUT 1 DAT are derived. For example, OUT 0 DAT always derives from IN 1 RDY

and OUT 0 RDY because these ”guarding variables” determine whether or not the body
of the conditional that assigns to OUT 0 DAT is executed, i.e., OUT 0 DAT is control de-
pendent on IN 1 RDY and OUT 0 RDY. In addition, the final value of OUT 0 DAT depends
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−−# d e r i v e s
−−# OUT 0 DAT from
−−# IN 1 DAT when
−−# ( IN 1 RDY and n o t OUT 0 RDY ) ,
−−# OUT 0 DAT when
−−# ( n o t IN 1 RDY or OUT 0 RDY ) ,
−−# OUT 0 RDY , IN 1 RDY &
−−# OUT 1 DAT from
−−# IN 0 DAT when
−−# ( IN 0 RDY and n o t OUT 1 RDY ) ,
−−# OUT 1 DAT when
−−# ( n o t IN 0 RDY or OUT 1 RDY ) ,
−−# OUT 1 RDY , IN 0 RDY

(a)

{IN 1 RDY ∧ ¬OUT 0 RDY ⇒ IN 1 DAT�,
¬IN 1 RDY ∨ OUT 0 RDY ⇒ OUT 0 DAT�,
IN 1 RDY�, OUT 0 RDY�}

1. if IN 1 RDY and not OUT 0 RDY then
{IN 1 DAT�}

2. DATA 1 := IN 1 DAT;
{DATA 1�}

3. IN 1 RDY := false;
{DATA 1�}

4. OUT 0 DAT := DATA 1;
{OUT 0 DAT�}

5. OUT 0 RDY := true;
{OUT 0 DAT�}

6. end if ;
{OUT 0 DAT�}

(b)

Fig. 3. (a) Fragment of conditional information flow contract. (b) Corresponding derivation with
SIFL assertions.

on the initial value of IN 1 DAT when the flag IN 1 RDY is set and the flag OUT 0 RDY

is cleared; otherwise, it depends on the initial value of OUT 0 DAT.
The derives clauses in SPARK, like most formal specification mechanisms for in-

formation flow, are unconditional (e.g., they do not include the when clauses illustrated
in Figure 3). Thus, they cannot distinguish the flag variables as guards nor phrase the
conditions under which the guards allow information to pass or be blocked. This means
that guarding logic, which is central to many security applications including those de-
veloped at Rockwell Collins, is completely absent from the checkable specifications
in SPARK. In general, the lack of ability to express conditional information flow not
only inhibits automatic verification of guarding logic specifications, but also results in
imprecision which cascades and builds throughout the specifications in the application.

To capture conditional information flow as well as other forms of information that
cannot be specified in SPARK, we have been building [1,2] on a reasoning framework
based on conditional agreement assertions, also called 2-assertions, originally intro-
duced by Amtoft and Banerjee [5]. These SIFL assertions are of the form φ ⇒ E�,
where φ is a boolean expression and E is any kind of expression (to be defined in the
next section), which is satisfied by a pair of stores if either at least one of them does not
satisfy φ, or they agree on the value of E:

Definition 1. s1&s2 |= φ⇒ E� iff [[E]]s1 = [[E]]s2 whenever s1 |= φ and s2 |= φ.

We use θ ∈ twoAssn to range over 2-assertions. For θ = (φ ⇒ E�), we call φ
the antecedent of θ and write φ = ant(θ), and we call E the consequent of θ and
write E = con(θ). We use Θ ∈ P(twoAssn) to range over sets of 2-assertions, with
conjunction implicit. Thus, s&s1 |= Θ iff ∀θ ∈ Θ : s&s1 |= θ. We often write E� for
true ⇒ E�, and often write θ for the singleton set {θ}.

Fig. 3(b) illustrates a simple derivation using SIFL assertions that answers the ques-
tion: what is the source of information flowing into variable OUT 0 DAT? The natural
way to read the derivation is from the bottom up (since our algorithm works “back-
wards”). Thus, for OUT 0 DAT� to hold after execution of P , we must have DATA 1�

before line 4 (since data flows from DATA 1 to OUT 0 DAT), IN 1 DAT� before line
2 (since data flows from IN 1 DAT to DATA 1), and before line 1 IN 1 RDY� and



374 T. Amtoft et al.

OUT 0 RDY� (since they control which branch of the condition is taken), along with
conditional assertions. The precondition shows, just as we would expect, that the value
of OUT 0 DAT depends unconditionally on IN 1 RDY and OUT 0 RDY, and conditionally
on IN 1 DAT and OUT 0 DAT.

3 Evidence Representations

One of our primary goals in this paper is to design evidence terms η whose types cor-
respond to triples: if we can establish that η has type {Θ} C {Θ′} then the com-
mand C has information flow property given by precondition Θ and postcondition Θ′

where both are sets of 2-assertions. Intuitively, evidence represents the primary reason-
ing steps taken in the precondition generation algorithm when constructing a derivation
such as the one displayed in Fig. 3(b). We shall need several auxiliary kinds of evidence,
described later but summarized below:

� η : {Θ} C {Θ′} η shows C has information flow pre/post-condition Θ/Θ′

� ν : φ
C⇐ φ′ ν shows φ is NPC for φ′ wrt. C

� ι : φ ⇒1 φ′ ι shows φ logically implies φ′

� τ : Θ ⇒2 Θ′ τ shows the 2-assertions in Θ logically imply Θ′

� μ : C mods only X μ shows C modifies at most X

3.1 Preliminaries

We shall now describe our language, sufficient to represent the primary features of
SPARK. We shall consider only one-dimensional2 arrays, and model such an array as
a total mapping from integers into integers that is zero except for a finite number of
places; we do thus not try to model array bounds which is an orthogonal issue and we
assume that SPARK development tools have been applied to prove that there are no
index range nor arithmetic overflow violations.

Basic Syntax. Commands C are given by the abstract syntax

C ::= skip | C ;C | assert(B) | x := A | h := H | if B then C else C
| while B do C | for q ← 1 to m do C

In for q ← 1 to m do C we require q and m to be different identifiers, neither mod-
ified by C. We use x (and y, z) to range over scalar identifiers, h to range over array
identifiers, and z, w to range over either kind of identifier; we use A to range over arith-
metic expressions, B and φ to range over boolean expressions which are also called
1-assertions, H to range over array expressions, and E to range over any kind of ex-
pression. Those are given by the syntax

A ::= c | x | A opA | H [A]
B ::= A bop A | true | false | B ∧B | B ∨B | ¬B
H ::= h | Z | H{A : A}

2 Multi-dimensional arrays are supported in the complete SPARK language, but they are not yet
supported in our theory nor in our tool implementation.
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where c ranges over constants, op ranges over binary arithmetic operators, bop ranges
over binary comparison operators, and Z denotes the array which is zero everywhere.
Note that an array identifier can be assigned an arbitrary array expression but we will
typically only do a one-place update: we use the standard notation h[A0] := A as a
shorthand for h := h{A0 : A}.

Semantics. A value is just an integer in Int. Thus a store s is a (partial) mapping from
scalar identifiers into values, and from array identifiers into total functions in Int→ Int
where we shall use a to range over members of that function space. Then [[A]]s denotes
the value resulting from evaluating A in store s, [[H ]]s denotes the function resulting
from evaluating H in store s, and [[B]]s denotes the boolean resulting from evaluating B
in store s. We we say that s satisfies φ, written s |= φ, iff [[φ]]s = True. Below, we shall
list the semantic clauses that deal with arrays (the other clauses are straightforward):

[[H [A]]]s = [[H ]]s([[A]]s) [[Z]]s = λn.0

[[H{A0 : A}]]s = [[[H ]]s | [[A0]]s → [[A]]s]

We write s [[C]] s′ if the command C transforms the store s into store s′. For example,
s [[h := H ]] s′ iff for some a we have a = [[H ]]s and s′ = [s | h →a].

Given C and s, there exists at most one s′ such that s [[C]] s′ holds; if C is a while
loop that loops on s or an assert command that fails then no such s′ will exist.

In for loops, we allow zero iterations and let the final value of the counter q be one
above the bound; then one can prove that a for loop can be expressed as a while loop:
for all s and s′, s [[for q ← 1 to m do C]] s′ iff s [[q := 1 ;Cw]] s

′ where Cw is given
by while q ≤m do (C ; q := q + 1).

To analyze for loops, we could thus rely on an analysis for while loops, but we
shall present (Sect. 3.6) a specialized analysis of for loops that often gives more precise
information than analyzing the equivalent while loop would have done.

3.2 Evidence

We shall provide rules, numbered below from (1) to (12), for inferring judgements of
the form � η : {Θ} C {Θ′}. Each rule corresponds to an evidence construct and is
designed so as to enable the following soundness property:

Theorem 2. Assume that � η : {Θ} C {Θ′}. Then |= {Θ} C {Θ′}.

Here |= {Θ} C {Θ′} denotes the desired semantic soundness result: if s1&s2 |= Θ,
and si [[C]] s′i for i = 1, 2, then s′1&s′2 |= Θ′. Also, evidence has unique type: if
� η : {Θi} Ci {Θ′

i} for i = 1, 2 then Θ1 = Θ2, C1 = C2, and Θ′
1 = Θ′

2.

Syntax-Directed Evidence. For each syntactic construct there is a corresponding piece
of evidence. For the most basic constructs, the inference rules are listed in Fig. 4. (For
space reasons, we omit the evidence for while loops, and we postpone for loops un-
til Sect. 3.6.) We let add∧B(Θ) denote the result of conjoining B to the antecedent of
each assertion in Θ: add∧B(Θ) = {add∧B(θ) | θ ∈ Θ} where add∧B((φ ⇒ E�)) =
(φ ∧B)⇒ E�.
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	 SkipE(Θ) : {Θ} skip {Θ} (1)

	 η1 : {Θ1} C1 {Θ} 	 η2 : {Θ} C2 {Θ2}
	 SeqE(η1, η2) : {Θ1} C1 ;C2 {Θ2}

(2)

	 AssignE(Θ, x,A) : {Θ[A/x]} x := A {Θ} (3)

	 HAssignE(Θ, h,H) : {Θ[H/h]} h := H {Θ} (4)

	 AssertE(Θ,B) : {add∧B(Θ)} assert(B) {Θ} (5)

Fig. 4. Simple rules for syntax-directed evidence

Before presenting the rule for conditionals, we need to introduce the notion of “nec-
essary precondition” (NPC). We say that φ is a NPC for φ′ wrt. C if whenever s [[C]] s′

and s′ |= φ′ then s |= φ. It is easy to see that the set of NPCs for given C and φ′ forms
a Moore family (closed under arbitrary conjunction) and hence there exists a smallest
(strongest) NPC, which is equal to wp(C, φ′) with wp denoting “weakest precondition”
(satisfied by a store s if there exists s′ with s [[C]] s′ and s′ |= φ′). It may be infeasible
to compute wp(C, φ′) exactly but then any weaker assertion (and trivially true) can be
used as NPC. We use ν to range over evidence for NPC, described in Sect. 3.3.

The general rule for a conditional C = if B then C1 else C2 is

Θ = {φ⇒ E�} � ηi : {Θi} Ci {Θ} (i = 1, 2) � ν : φ0
C⇐ φ

� CondE(η1, η2, ν, B) : {add∧B(Θ1) ∪ add∧¬B(Θ2) ∪ {φ0 ⇒ B�}} C {Θ}
(6)

which demands the postcondition to be a singleton; if not, we decompose it and then
recombine using the UnionE evidence construct (9). The assertion φ0 ⇒ B� occurring
in the precondition expresses that if two runs must agree on the consequent E then they
must also agree on the test B; this may be too restrictive if E is not modified by either
branch in which case we can instead use the ConseqNotModE evidence construct (11).

We now look back at the derivation in Fig. 3(b). The analysis of the command in line
4 was done using rule (3), with x = OUT 0 DAT and A = DATA 1 and Θ = OUT 0 DAT�,
giving the precondition Θ[A/x] = DATA 1�. The analysis of the conditional in line 1
was done using rule (6), with B = (IN 1 RDY ∧ ¬OUT 0 RDY) and using evidence η1 for
the analysis of C1 (the lines 2–5) and evidence η2 for the analysis of C2 (skip), both
with postcondition Θ = OUT 0 DAT�. From Θ1 = IN 1 DAT� and Θ2 = OUT 0 DAT�, and
from true being a NPC for true, we get the precondition

Θ0 = { (true ∧ (IN 1 RDY ∧ ¬OUT 0 RDY))⇒ IN 1 DAT�,
(true ∧ ¬(IN 1 RDY ∧ ¬OUT 0 RDY))⇒ OUT 0 DAT�,
true ⇒ (IN 1 RDY ∧ ¬OUT 0 RDY)�}

Non-Syntax Directed Evidence. Some additional evidence constructs are given by the
inference rules listed in Fig. 5 which we shall now explain and motivate.

The rules (7,8) allow us to strengthen the precondition or weaken the postcondition;
here τ is evidence (described in Sect. 3.3) for 2-implication: if � τ : Θ ⇒2 Θ′ then
Θ logically implies Θ′ (that is, for all stores s1, s2, if s1&s2 |= Θ then s1&s2 |= Θ′).
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	 η : {Θ′′} C {Θ′} 	 τ : Θ ⇒2 Θ′′

	 PreImplyE(τ, η) : {Θ} C {Θ′} (7)

	 η : {Θ} C {Θ′′} 	 τ : Θ′′ ⇒2 Θ′

	 PostImplyE(η, τ ) : {Θ} C {Θ′} (8)

	 η1 : {Θ1} C {Θ′
1} 	 η2 : {Θ2} C {Θ′

2}
	 UnionE(η1, η2) : {Θ1 ∪Θ2} C {Θ′

1 ∪Θ′
2}

(9)

	 μ : C mods only X fv(Θ) ∩X = ∅
	 NotModE(μ,Θ) : {Θ} C {Θ} (10)

	 μ : C mods only X 	 ν : φ
C⇐ φ′ fv(E) ∩X = ∅

	 ConseqNotModE(μ, ν,E) : {φ ⇒ E�} C {φ′ ⇒ E�} (11)

	 η : {Θ} C {Θ′} 	 ν : φ
C⇐ φ′

	 AntecStrongerE(η, ν) : {add∧φ(Θ)} C {add∧φ′(Θ′)} (12)

Fig. 5. Rules for non-syntax-directed evidence

Two derivations may be combined using (9) which can trivially be generalized to an
evidence construct combining an arbitrary number of elements: UnionE(η1 . . . ηn).

The rule (10) allows a simple treatment of 2-assertions when no identifier is modi-
fied; it uses evidence μ for not-modification: if � μ : C mods only X then all identi-
fiers3 possibly modified by C are included in X . We shall not represent such evidence
explicitly, since not-modification is a syntactic property which can be checked easily
by a simple Gallina function in Coq. Again looking back at the derivation in Fig. 3(b),
we observe that line 5 could have been analyzed using rule (3) but can also be ana-
lyzed using rule (10) which is particularly powerful if applied to a whole block of code.
For example, for the program in Figure 2, the precondition (shown in Figure 3) of the
second conditional does not contain any identifiers that are modified by the first condi-
tional, and hence by a single application of (10) can be shown to be also the precondition
of the whole program.

Another rule (11) addresses the more general case where antecedents, but not con-
sequents, may be modified. We then need to ensure that whenever two post-states are
required to agree on the consequent, also the two pre-states are required to agree on
the consequent. This is expressed using the notion of NPC, which is also used in (12)
to allow us to make pre-and postconditions “more conditional”, by strengthening the
antecedents.

3.3 Auxiliary Evidence

Evidence for 2-Implication. In order to justify the simplication of assertions, or showing
that a user-supplied precondition is correct in that it implies the precondition generated

3 If C modifies just one entry of h then h has to be included in X . This may seem very imprecise,
but we shall present (in Sect. 3.6) an analysis that in many cases does allow us to get precise
information about how individual array elements are affected by for loops.
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Θ ⊇ Θ0

	 Superset2I(Θ,Θ0) : Θ ⇒2 Θ0
(13)

for all φ ⇒ E� ∈ Θ, there exists no s with s |= φ

	 Vacuous2I(Θ) : ∅ ⇒2 Θ
(14)

fv(E) = ∅
	 Const2I(E, φ) : ∅ ⇒2 (φ ⇒ E�)

(15)

	 τ1 : Θ1 ⇒2 Θ′
1 	 τ2 : Θ2 ⇒2 Θ′

2

	 Union2I(τ1, τ2) : Θ1 ∪Θ2 ⇒2 Θ′
1 ∪Θ′

2

(16)

	 τ1 : Θ1 ⇒2 Θ′
1 	 τ2 : Θ2 ⇒2 Θ′ Θ = (Θ2 \Θ′

1) ∪ Θ1

	 Trans2I(τ1, τ2) : Θ ⇒2 Θ′ (17)

	 ι : φ ⇒1 φ′

	 Contravar2I(ι, E) : {φ′ ⇒ E�} ⇒2 {φ ⇒ E�} (18)

E is of the form E1 op E2 or E1 bopE2 or E1 ∧ E2 or E1 ∨ E2 or ¬E1

	 BinOp2I(E, φ) : {φ ⇒ E1�, φ ⇒ E2�} ⇒2 {φ ⇒ E�} (19)

Fig. 6. Rules for 2-implication evidence

by our inference algorithm, we need evidence that a given assertion set logically implies
another assertion set. Such evidence can be built using a number of constructs (more
might be added) whose inference rules are listed in Fig. 6.

Here (13) says that any set of 2-assertions logically implies a smaller set, while (14)
allows us to discard (replace by the empty set) 2-assertions that are vacuously true, and
(15) allows us to discard 2-assertions whose consequent are constants.

Derivations can be combined “horizontally” by (16) which easily can be generalized
to take an arbitrary number of arguments, and “vertically” by (17) which as a special
case (when Θ′

1 = Θ2) has the “standard” transitivity rule.
The rule (18) allows us to lift simplications on antecedents to simplifications on 2-

assertions, and expresses that 2-implication is contravariant in the antecedent; here ι
ranges over evidence (described later) for logical implication: if � ι : φ ⇒1 φ′ then
φ logically implies φ′ (that is, whenever s |= φ then also s |= φ′). For example, for the
precondition Θ0 computed above, one can easily verify that

true ∧ (IN 1 RDY ∧ ¬OUT 0 RDY)⇒ IN 1 RDY ∧ ¬OUT 0 RDY

true ∧ ¬(IN 1 RDY ∧ ¬OUT 0 RDY)⇒ ¬(IN 1 RDY ∧ ¬OUT 0 RDY)

and hence rule (18), together with rule (16), allows us to simplify Θ0 to

Θ′
0 = { (IN 1 RDY ∧ ¬OUT 0 RDY)⇒ IN 1 DAT�,¬(IN 1 RDY ∧ ¬OUT 0 RDY)⇒ OUT 0 DAT�,

(IN 1 RDY ∧ ¬OUT 0 RDY)�}.

Complex consequents can be decomposed using (19). For example, we can split the last
consequent of Θ′

0 to reach the final precondition of the code segment:

Θ′′
0 = { (IN 1 RDY ∧ ¬OUT 0 RDY)⇒ IN 1 DAT�,¬(IN 1 RDY ∧ ¬OUT 0 RDY)⇒ OUT 0 DAT�,

IN 1 RDY�, OUT 0 RDY�}.
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Evidence for Necessary Precondition. Recall that we need, for the rules (6) and (11) and

(12), evidence ν such that if � ν : φ
C⇐ φ′ then whenever s [[C]] s′ and s′ |= φ′ then

also s |= φ. To build such evidence, we use one construct for each language construct,
with one extra to make a shortcut when the command does not modify the 1-assertion.
Two typical rules are listed below:

� ν1 : φ1
C1⇐ φ � ν2 : φ2

C2⇐ φ

� CondNPC(ν1, ν2, B) : (φ1 ∧B) ∨ (φ2 ∧ ¬B)
if B then C1 else C2⇐ φ

(20)

� ν : φ0
C⇐ φ � ι0 : φ0 ∧B ⇒1 φ � ι1 : φ′ ∧ ¬B ⇒1 φ

� WhileNPC(ν, ι0, ι1) : φ
while B do C⇐ φ′

(21)

Evidence for Logical Implication. We have two kinds of evidence:
1. rules that resemble axiomatization of propositional logic;
2. the evidence CheckLI(φ, φ′) which says that “a decision procedure has verified that

φ logically implies φ′”.

3.4 Manipulating 2-Assertions

It is often useful to transform a set of 2-assertions into a set which is “simpler” and
which satisfies certain properties; for example, to analyze a while loop (or a method
call), all (modified) consequents in the postcondition must be identifiers. Ideally, we
would like the result to be equivalent to the original (like Θ′

0 to Θ0 in the previous
example), but often it will be strictly stronger (as is Θ′′

0 when (E1 ∧ ¬E2)� is decom-
posed into E1� and E2�). Hence4 our overall approach does in general not calculate
the weakest precondition.

We have written an algorithm that transforms a set of 2-assertions Θ′ into a more
manageable form, as may be required by the command C for which Θ′ is the post-
condition, while producing evidence that the result is at least as strong as the original.
The algorithm as input also takes a set X , to be thought of as the identifiers that are
modified by C. The algorithm returns τ , and also Θu (assertions whose consequents
are unmodified) and Θn, such that � τ : Θn ∪Θu ⇒2 Θ′ and

– all array expressions inside Θn and Θu are identifiers; thus there are no occurrences
of Z or H{A0 : A} which may be introduced by rule (4) but hamper readability;

– all assertions in Θn are of the form φ ⇒ w� or of the form φ ⇒ h[A]�, as is
required if C is a while or for loop;

– if φ⇒ E� ∈ Θu then fv(E) ∩X = ∅;
– if φ⇒ h[A]� ∈ Θn then fv(A) ∩X = ∅;
– if φ1 ⇒ E� ∈ Θn and φ2 ⇒ E� ∈ Θn then φ1 = φ2.

3.5 Generating Evidence

For any command and postcondition, it is possible to compute a precondition, together
with evidence that the resulting triple is indeed semantically sound. To help with that,

4 Another reason is the approximation needed to efficiently handle loops.
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we need an algorithm NpcEvdGen generating evidence for necessary precondition.
For the nonlooping constructs, such an algorithm is straightforward to write, but for a
while loop a precise analysis involves guessing an invariant; we expect that we might
be able to use some of the emerging tools for finding loop invariants even though our
perspective is dual.

We shall first present a nondeterministic algorithm EvdGen such that for all com-
mands C (without while and for) and postconditions Θ, a call EvdGen(C,Θ) re-
turns evidence η such that � η : {Θ0} C {Θ} for some Θ0. Below we list the possible
actions of EvdGen, the applicability of which depend on the form of C and/or Θ.

Decompose Postcondition. The enabling condition is that Θ has at least two elements.
Let Θ′

1, Θ
′
2 be nonempty disjoint sets such that Θ = Θ′

1 ∪ Θ′
2. For each i ∈ {1..2},

recursively call EvdGen(C,Θ′
i) to produce ηi such that � ηi : {Θi} C {Θ′

i} for
some Θi. Define η = UnionE(η1, η2); we thus have � η : {Θ1 ∪Θ2} C {Θ}.

Push Through Postcondition. The enabling condition is that fv(Θ)∩X = ∅where X is
such that � μ : C mods only X for some μ. Then we can define η = NotModE(μ,Θ)
and achieve � η : {Θ} C {Θ}.

Push Through Consequent of Postcondition. The enabling condition is that Θ is a sin-
gleton {φ′ ⇒ E�}, and that fv(E) ∩X = ∅ with X such that � μ : C mods only X

for some μ. Let ν = NpcEvdGen(C, φ′). There thus exists φ with � ν : φ
C⇐ φ′.

Now define η = ConseqNotModE(μ, ν, E) and get � η : {φ⇒ E�} C {Θ}.

Syntax-Directed Actions. Two typical cases are as follows:
If C = x := A then EvdGen(C,Θ) returns AssignE(Θ, x,A).
If C = if B then C1 else C2, and Θ is a singleton {φ′ ⇒ E�}, we for each i ∈

{1, 2} recursively call EvdGen(Ci, Θ) to produce ηi such that � ηi : {Θi} Ci {Θ}
for some Θi, and call NpcEvdGen(C, φ′) to compute ν such that for some φ we have

� ν : φ
C⇐ φ′. We then return η = CondE(η1, η2, ν, B) which by the typing rules

satisfies the desired � η : {Θ0} C {Θ} for some Θ0.

Properties of EvdGen. The precondition Θ0 for an assignment statement x := A
depends only on the postcondition Θ, but not on the kind of evidence that was chosen;
we will always have Θ0 = Θ[A/x]. However, we do not have a similar result for
conditionals C = if B then C1 else C2: for example, if E is not modified by C then
EvdGen(C,Θ) may either produce evidence of the form CondE(η1, η2, ν, B) whose
type has a precondition containing an assertion with B as consequent, or evidence of
the form ConseqNotModE(μ, ν, E) whose type does not have that property.

We thus need to restrict the non-determinism present in the definition of EvdGen.
For conditionals, syntax-directed evidence CondE should only be generated when the
postcondition is a singleton whose consequent has been modified. For other constructs,
we may be free either to split the postcondition or to apply the syntax-directed rules
directly. The advantage of the former is that then the evidence provides fine-grained in-
formation about which preconditions come from which postconditions. The advantage
of the latter is that then the evidence becomes more compact.
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3.6 For Loops

We shall introduce 3 extra evidence constructs:

η ::= . . . | ForAsWhileE(η, μ) | ForPolyE(. . .) | InstantiateE(η, μ,A)

Here ForAsWhileE just analyzes a for loop as a while loop; this involves splitting an
assertion φ ⇒ h[A]� into φ ⇒ h� and φ ⇒ A� and thus we lose any information
about individual array elements.

We shall now present a method, first given in [2] which contains further motivation
and examples, that in certain cases allows us to reason about individual array elements.
To do so in a finite way, we need the concept of polymorphic identifiers. Those may
occur in pre/post conditions but never in commands; we shall use u to range over them.
We shall extend |= {Θ} C {Θ′} to cover the case where Θ and/or Θ′ contains a
polymorphic identifier u: then |= {Θ} C {Θ′} holds iff |= {Θ[c/u]} C {Θ′[c/u]}
holds for all constants c. We have the inference rule

� η : {Θ} C {Θ′} � μ : C mods only X fv(A) ∩X = ∅
� InstantiateE(η, μ,A) : {{A�} ∪Θ[A/u]} C {Θ′[A/u]}

which is applicable not just when C is a for-loop. We shall design ForPolyE such that

� ForPolyE(. . .) : {Θ} for q ← 1 to m do C {h[u]}

if certain requirements, to be motivated and detailed below, are fulfilled. Let μ with
� μ : C mods only X where q,m /∈ X , and a polymorphic identifier u, be given.

Index Sets. There must exist a set of arithmetic expressions, {Aj | j ∈ J}with fv(Aj)∩
X = ∅, such that for all array assignments h := H in C there exists j and A such that
H = h{Aj : A} (and thus the assignment may be written h[Aj ] := A).

Linearity. We shall assume, as is very often the case for practical applications, that each
Aj is a linear function in q. That is, there exists integer constants (or identifiers not in
X) bj �= 0 and kj such that Aj is given by bjq + kj . Then for each j ∈ J , we define

A′
j =

u− kj
bj

φj = (u − kj) mod bj = 0 ∧ u− kj ≥ bj ∧ u− kj ≤ mbj

with the intention that whereas Aj computes an index value from the iteration number,
A′

j computes the iteration number from the index value while φj denotes the set of
index values, as formalized by the following properties (to be suitably quantified):

1. if c = [[Aj ]][s|q�→i] for i ∈ {1 . . . s(m)} then [[A′
j [c/u]]]s = i.

2. s |= φj [c/u] iff c ∈ {[[Aj ]][s|q�→i] | i ∈ {1 . . . s(m)}}.
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Local Preconditions. For all j ∈ J , there must exists ηj and Θj such that

1. � ηj : {Θj} C {h[Aj ]�} with u �= fv(Θj)
2. fv(Θj) ∩X ⊆ {h}
3. if h occurs in Θj it is in a context of the form h[A] where for all j′ ∈ J , all

i, i′ ∈ {1 . . . s(m)}, all stores s: if [[A]][s|q�→i] = [[Aj′ ]][s|q�→i′] then i ≤ i′.

Requirement 2 excludes loop-carried dependencies in the body such as h[q] := x;x := y
in which case h[1] depends on the initial value of x while h[2], h[3],. . . depends on
the initial value of y. Requirement 3 is designed to exclude loop-carried dependencies
within the array h; it is possible to list some cases that are easily checkable and which
each is a sufficient condition for this requirement to hold:

1. when J is a singleton {j}, and the only occurrence of h in Θj is in the context
h[bq + k] where b ≥ bj and b ≥ 1 and k ≥ kj ;

2. when bj = 1 for all j ∈ J , and if h occurs in some Θj it is in a context of the form
h[A] with A of the form q + c where c satisfies:

∀j ∈ J : c ≥ kj or c ≤ kj −m.

Both conditions will accept a loop body containing (only) h[q] := h[q + 1] and reject a
loop body containing h[q] := h[q − 1].

We are now ready to construct the precondition Θ, as the union of

BOUND {true ⇒ m�}
INDEX {true ⇒ w� | w ∈ ∪j∈J fv(Aj) \ {q}}
OUTSIDE {

∧
j∈J ¬φj ⇒ h[u]�}

UPDATED for each j ∈ J , the set add∧φj
(Θj [A

′
j/q]).

Here BOUND ensures that the two runs agree on the number of iterations, while IN-
DEX ensures that the two runs agree on which indices are updated. For an index that
might not be updated, the two runs must agree on the original value, as expressed by
OUTSIDE. But for an index that may be updated, we apply the computed preconditions,
as expressed by UPDATED.

Example. As in [2], we can analyze a for loop whose body swaps5 h[q] and h[q +m]
and where we therefore have J = {1, 2}, A1 = q, A2 = q +m, b1 = b2 = 1, k1 = 0,
and k2 = m. We compute φ1 = u ≥ 1 ∧ u ≤ m, φ2 = u −m ≥ 1 ∧ u −m ≤ m,
A′

1 = u, and A′
2 = u −m; we also get Θ1 = {h[q +m]�} and Θ2 = {h[q]�}. The

abovementioned sufficient condition 2 amounts to the 4 claims

0 ≥ 0 or 0 ≤ 0−m 0 ≥ m or 0 ≤ m−m

m ≥ 0 or m ≤ 0−m m ≥ m or m ≤ m−m

which are all easily verified. Hence we may generate the expected precondition

{ m�, (u < 1 ∨ u > 2m)⇒ h[u]�,

1 ≤ u ≤ m⇒ h[u+m]�, m+ 1 ≤ u ≤ 2m⇒ h[u−m]� }.
5 Since each position participates in at most one swap there is no loop-carried dependency.
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4 Machine-Checked Evidence and Soundness Overview

We now discuss how the evidence constructors of the previous section are represented
and proven sound in Coq. Our technical report [4] provides detailed correctness proofs
for all the evidence constructors. At the time of writing, we have completed the cor-
responding formalization of the proofs in Coq for assignments, conditionals, arrays,
polymorphic tuples and almost all of the for loop, and we do not anticipate problems
completing the remaining soundness proofs (remainder of for plus while).

4.1 Representation of Evidence

Our representation of evidence is based on deep embeddings of the language and the
logic in Coq, using type-respecting categories of variables (e.g. SkalVar), expressions
Expr (separated into arithmetic, boolean and array expressions AExpr, BExpr, HExpr),
and Commands. Based on these definitions, we define expression evaluation and the
operational semantics in direct correspondence to the definitions in Section 3; for ex-
ample, Opsem s C t means that command C transforms state s into state t.

A 2-assertion is made up of a BExpr and an Expr:

Definition TwoAssn :=prod BExpr Expr.

Abbreviating the type of lists of 2-assertions as TwoAssns, we introduce the inductive
type of pre/postconditions as

Inductive assns :=
| Assns : TwoAssns → TwoAssns → assns
| APoly : (AExpr → assns)→ assns.

Here, the first constructor carries a precondition/postcondition pair and will be used for
standard triples. The second constructor allows the assertions to be parametrized by a
shared variable, and will be required for implementing for-loops.

Evidence takes the form of an inductive proposition with constructors corresponding
to the rules in Figures 4 and 5.

Inductive TEvid (X: list SkalVar) : Command → assns → Prop :=
| TSkipE ... | TAAssignE ... | TCondE ...
...

For example, the constructor for TAAssignE,

| TAAssignE : ∀Θ x A, TEvid X (Assign x (AExp A)) (Assns(TwoAssnsSubstA Θ x A) Θ)

is a direct translation of rule (3), where TwoAssnsSubstA Θ x A represents the substitu-
tion (code omitted) of arithmetic expression A for x in the 2-assertion Θ.

Evidence for conditionals (rule 6) is translated similarly; the rule takes three explicit
arguments of evidence type, one for each possible outcome of the branch, and one for
the necessary precondition.

| TCondEN: ∀ {Θ1 φ E Θ2 Θ′ C1 C2 φ0}
(η1: TEvid X C1 (Assns Θ1 [(φ, E)])) (η2: TEvid X C2 (Assns Θ2 [(φ, E)]))
B (ν : NPCEvid X φ0 (Cond B C1 C2) φ),
andIntoTheta Θ1 B ++ andIntoTheta Θ2 (NotExpr B) ++ [(φ0, BExp B)] = Θ′ →
allVarsIn (BFv φ0) X =true → TEvid X (Cond B C1 C2) (Assns Θ′ [(φ, E)])
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We have evidence forms declared for all syntax but while and for loops, and we have
also declared constructors for all the rules mentioned in Fig. 5. There are similar induc-
tive types and accompanying soundness proofs for NPC, 1-implication, 2-implication
and expression equivalence. Rules representing decision-procedure-validated evidence
such as CheckLI are currently axiomatically admitted, although future work will aim to
verify the output of decision procedures using methods similar to [6].

4.2 Soundness

The soundness of constructed evidence terms rests on the interpretation of 2-assertions

Definition twoSatisfies(s1 s2:State) (asn: TwoAssn) := let (φ, E) = asn in
BEval φ s1 = Some true → BEval φ s2 = Some true → (Eval E s1 = Eval E s2)

which corresponds to the informal definition given earlier in the paper.6 The interpreta-
tion is naturally extended to lists of 2-assertions (where Forall is the universal quantifi-
cation over list elements, taken from the Coq library):

Definition twoAssnsInterpretation (s1 s2: State) (a:TwoAssns) : Prop :=
Forall (twoSatisfies s1 s2) a.

We are now ready to model the definition (Sect. 3.2) of the predicate |= {Θ} C {Θ′}.
Definition validHoareTriple (X: list SkalVar) C (asns: assns): Prop :=
match asns with
| Assns pre post ⇒ ∀ s s’ t t’,

(∀ x, In x X → ∃ v1, lookup s x = Some v1 ∧ ∃ v2, lookup s’ x = Some v2) →
Opsem s C t → Opsem s’ C t’ →
twoAssnsInterpretation s s’ pre → twoAssnsInterpretation t t’ post

| ...
end.

Our soundness statement (Theorem 2 in Sect. 3) is formulated as follows.

Theorem soundness : ∀X C asns, TEvid X C asns → (validHoareTriple X C asns).

Whenever we apply this soundness result to a defined concrete piece of evidence, the
type of the resulting construction explicitly witnesses the validity of the triple. For ex-
ample, applying the soundness result to a piece of evidence named assignEvid

Definition evidSound := soundness assignEvid.

guarantees our intended security property in that it yields a term of type

validHoareTriple X cmd (Assns pre post).

Performing the proof of the soundness theorem constitutes a major engineering task
even once all the definitions are set up correctly. As an indication of the effort, the Coq
code has around 2300 lines of soundness proof and only 590 lines of trusted definitions;
it formalizes a manual correctness proof in [4] which is about 5.5 pages from about 610
lines of LATEX source.

6 This direct correspondence between informal and formal definitions is crucial, as the formal
definitions introduced here form part of the trusted code base of our system.
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In order to address the concern that certificates may be unacceptably large, we have
also explored an implementation of the precondition generator inside Coq, in the style
of proof-by-reflection. Our precondition generator consists of a Gallina function

Fixpoint generatePrecondition (c:Command) (post:TwoAssns)
(X: list SkalVar): (TwoAssns ∗ list SkalVar) := ...

with defining clauses that closely resemble Figures 4 and 5. The soundness theorem

Theorem generatePreconditionEvidence: ∀C Y X Z post pre, allVarsIn X Y = true→
(pre, X) = generatePrecondition C post Z → TEvid Y C (Assns pre post).

expresses that any result (pre, X) from a call to generatePrecondition yields evidence for
the triple made up from the inferred precondition and the supplied command and post-
condition. Thus, evidence terms need not be explicitly constructed, as valid evidence
can be constructed automatically for any command and postcondition.

5 Evaluation

We summarize our initial experience in applying our SIFL deduction engine for evi-
dence generation. The SIFL precondition generation algorithm supports assignments,
conditionals, arrays, for and while loops, polymorphic flow contracts, and procedure
calls. We tested this implementation on procedures from a collection of embedded ap-
plications (an Autopilot, a Minepump, a Water Boiler monitor, and a Missile Guidance
system – all developed outside of our research group), and a collection of small pro-
grams that we developed ourselves to highlight common array idioms that we discov-
ered in information assurance applications. Approximately 6-15 procedures from each
of these examples were selected due to having the richest control flow and loop struc-
tures. The security-critical sections to be certified from code bases in this domain are
often relatively small, e.g., roughly 1000 LOC (non-comment lines of code) for a Rock-
well Collins high assurance guard and 3000 LOC for an (undisclosed) device certified
by Naval Research Labs researchers [7]. The average LOC per procedure in our ex-
amples is 22. In this evaluation, we focused on running the tool in a mode that infers
information flow contracts. For each procedureP , and each output variable w, the algo-
rithm analyzes the body wrt. post-condition w�. All experiments were run under JDK
1.6 on a 2x2.6 GHz Quad Core Intel Xeon Mac Pro with 32 GB of RAM.

We were most interested in evaluating (a) the size of the generated evidence, (b)
the number and structure of assertions in the inferred precondition (for the purpose
of minimizing its size), (c) the time required for the algorithm to infer a contract and
generate evidence, and (d) the time required for Coq to type-check (i.e., establish the
correctness) of the evidence. In the subsequent paragraphs, we shall summarize the
outcomes for the first 3 measures (see [4] for detailed data and evidence outputs for all
examples we considered); for (d), no procedure required more than 3 seconds.

In contrast to other proof-carrying code applications such as mobile code, contract
size is not as significant an issue in our context since contracts are not being trans-
mitted or checked at run-time. Instead, the focus is on leveraging contracts for greater
assurance in the certification process. We consider three different metrics for the size of
evidence: the number of evidence constructors, the total number of Coq abstract syntax
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tree (AST) nodes (which captures the size of assertion expressions and program ASTs
in the evidence), and the number of bytes in the text file holding the evidence. For the
full version of the mailbox example of Section 2 which has 24 LOC, the generated ev-
idence includes 318 evidence constructors, 3729 Coq AST nodes, and 89 KB of text.
For a slightly longer example (30 LOC) from the autopilot codebase that has one of
the longest analysis run-times, the presence of four conditions leads to larger generated
evidence due to more conditional preconditions: 326 evidence constructors, 19461 Coq
AST nodes, and 211 KB of text. Our current contract representation includes the syntax
tree of the program as well as the 2-assertions generated between each command. Thus,
many program expressions are repeated numerous times across the evidence structure
for a procedure. There is significant opportunity to optimize the size by, e.g., common
subexpression elimination.

Initial examination of the generated preconditions identified a number of minimiza-
tion opportunities (e.g., simplifying assertions of the form true ∧ φ⇒ E� to φ⇒ E�

or removing a 2-assertion when it is implied by another within the precondition). In the
mailbox example, there are 52 AST nodes in the precondition for OUT 0 DAT without
minimization and 28 when minimization applied. Our current strategy for expressing
minimization includes many fine-grained reasoning steps using the rules of Figure 6.
Thus, the number of evidence constructors in the OUT 0 DAT derivation actually in-
creases from 25 to 83. Potentially, this can be reduced by making the Coq checker
“smarter” by having it do more manipulation of logical expressions without direct in-
struction from the evidence generator.

The time required for processing a procedure ranged from 3 to 140 secs. As previ-
ously discussed, the correctness of minimization of assertions was validated with calls
to SMT solvers. The repeated calls to the SMT solvers were the dominating factor in the
time required to infer contracts, and we have not yet devoted any effort to optimize this.
Many of the minimization steps can be implemented using simple syntactic checks,
and we are in the process of implementing and proving correct a minimizer in Coq
that will allow us to dramatically reduce the number of SMT solver calls. Experimental
results from our earlier work [1] in which we used only syntactic scans to minimize
showed that inference for almost all the procedures could be completed in less than a
second. Our approach is compositional which greatly aids scalability when considering
the overall time requirements for a complete application.

6 Related Work

Bergeretti and Carré [8] present a compositional method for inferring and checking
dependencies among variables in SPARK programs. That approach is flow-sensitive,
unlike most security type systems [9] that rely on assigning a security level (“high”
or “low”) to each variable. Chapman and Hilton [10] present an approach, now imple-
mented in the latest SPARK release, for extending SPARK information flow contracts
with lattices of security levels and enhancing the SPARK Examiner accordingly.

Agreement assertions (inherently flow-sensitive) were introduced in [11] and later
extended in [5] to introduce conditional agreement assertions (for a heap-manipulating
language). In [1] that approach was applied to the (heap-free) SPARK setting and
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worked out extensively, with an algorithm for computing loop invariants and with re-
ports from an implementation; then arrays were handled in subsequent work [2].

Our evidence-checker is an example of the proof-carrying code paradigm [12]; it is
foundational [13] in that the rules used by the evidence checker are themselves proved
sound with a machine-checked proof. Although the original PCC generated proofs
mainly via type-checking, more recently the PCC paradigm has been extended to poli-
cies of mobile code concerning resource consumption and information flow [14,15].
Certificate generation for such systems was obtained by formalizing static analyses (re-
fined type systems or abstract interpretation frameworks) either directly at the level of
virtual machine code, or by providing compiler-mediated interpretations of appropriate
high-level analyses [16,17,18]. Wildmoser and Nipkow developed verified VCGens for
bytecode for a deeply embedded assertion language for bytecode [19]. In the context of
abstract-interpretation-based PCC, Besson et al. [20] employed certificates in the form
of strategies for (re-)recomputing fixed points at the consumer side.

Techniques for reducing the size of evidence representations using oracles [21] and
small witnesses [22] developed into reflective PCC [15] where the evidence checker (or
even a partial evidence reconstruction algorithm) is implemented in the tactic language
of the proof assistant, and proved sound by the principle of reflection. We have found
(cf. Section 4) that our current evidence checker permits this approach.

In addition to direct justification of static analyses wrt. operational semantics, sev-
eral of the above-mentioned formalizations employ program logics and/or VCGen’s as
intermediate representations. In order to employ these for the verification of informa-
tion flow, the relational nature of information flow security must be taken into account,
either by direct use of relational program logics [23], or by suitable encodings [24,25]
in nonrelational logics based on the idea of self-composition [26,27].

In contrast to (typically not foundationally validated) efforts to relax baseline secu-
rity policies to more permissive notions (e.g. declassification), our conditional informa-
tion flow analysis aims to improve the precision and trustworthiness of static analysis
results for the baseline policy, in the setting of an existing domain-specific tool flow
methodology. Dufay, Felty, and Matwin [28] and Terauchi and Aiken [29] provide tool
support for the verification of noninterference based on self-composition. In [28], the
Krakatoa/Why verification framework is extended by variable-agreement assertions and
corresponding loop annotations, and emits verification conditions in Coq that are typi-
cally interactively discharged by the user. In [29], information inherent in type systems
for noninterference is exploited to limit the application of the program-duplication to
smaller subphrases, obtaining self-composed programs that are better amenable to fully
automated state-space-exploring techniques. Neither system produces foundationally
validated and independently checkable artefacts of evidence relating the source pro-
gram to user-level specifications, and it is at present unclear whether either could be
extended to support conditional information flow policies.

7 Conclusions and Future Work

By implementing an evidence emitting algorithm and an associated evidence check-
ing framework in Coq, we have provided a solution that allows developers to work
at source level to specify/check rich information flow contracts while still enabling
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machine-checked proofs that source code implementations conform to contracts. This
work puts in place a crucial element of our larger vision for end-to-end security assur-
ance – namely, the ability eventually to leverage our other work on formally verified
compilers [30] to provide a tool chain that enables us to prove that deployed executable
code conforms to complex information flow policies stated as source-level contracts.
Our next steps include adding a higher-level information flow policy specification lan-
guage on top of our framework, enlarging the subset of SPARK that our tools can han-
dle, and engineering a connection to the CompCert verified compiler stack [31]. We are
also working with our industrial partners to evaluate our tools on additional examples.
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8. Bergeretti, J.F., Carré, B.A.: Information-flow and data-flow analysis of while-programs.
ACM Transactions on Programming Languages and Systems 7, 37–61 (1985)

9. Volpano, D.M., Smith, G.: A Type-Based Approach to Program Security. In: Bidoit, M.,
Dauchet, M. (eds.) CAAP 1997, FASE 1997, and TAPSOFT 1997. LNCS, vol. 1214, pp.
607–621. Springer, Heidelberg (1997)

10. Chapman, R., Hilton, A.: Enforcing security and safety models with an information flow
analysis tool. ACM SIGAda Ada Letters XXIV, 39–46 (2004)

11. Amtoft, T., Banerjee, A.: Information Flow Analysis in Logical Form. In: Giacobazzi, R.
(ed.) SAS 2004. LNCS, vol. 3148, pp. 100–115. Springer, Heidelberg (2004)

http://santos.cis.ksu.edu/papers/Amtoft-al-POST12/


A Certificate Infrastructure for Machine-Checked Proofs 389

12. Necula, G.C.: Proof-carrying code. In: POPL 1997, pp. 106–119. ACM Press (1997)
13. Appel, A.W.: Foundational proof-carrying code. In: LICS 2001. IEEE Computer Society

(2001)
14. Sannella, D., Hofmann, M., Aspinall, D., Gilmore, S., Stark, I., Beringer, L., Loidl, H.W.,

MacKenzie, K., Momigliano, A., Shkaravska, O.: Mobile resource guarantees. In: van Eeke-
len, M.C.J.D. (ed.) Revised Selected Papers from the Sixth Symposium on Trends in Func-
tional Programming (TFP 2005), Intellect, pp. 211–226 (2007)
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Abstract. Many languages and algebras have been proposed in recent
years for the specification of authorization policies. For some proposals,
such as XACML, the main motivation is to address real-world require-
ments, typically by providing a complex policy language with somewhat
informal evaluation methods; others try to provide a greater degree of
formality – particularly with respect to policy evaluation – but support
far fewer features. In short, there are very few proposals that combine
a rich set of language features with a well-defined semantics, and even
fewer that do this for authorization policies for attribute-based access
control in open environments. In this paper, we decompose the problem
of policy specification into two distinct sub-languages: the policy target
language (PTL) for target specification, which determines when a pol-
icy should be evaluated; and the policy composition language (PCL) for
building more complex policies from existing ones. We define syntax and
semantics for two such languages and demonstrate that they can be both
simple and expressive. PTaCL, the language obtained by combining the
features of these two sub-languages, supports the specification of a wide
range of policies. However, the power of PTaCL means that it is possi-
ble to define policies that could produce unexpected results. We provide
an analysis of how PTL should be restricted and how policies written
in PCL should be evaluated to minimize the likelihood of undesirable
results.
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1 Introduction

One of the fundamental security services in computer systems is access control,
a mechanism for constraining the interaction between (authenticated) users and
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protected resources. Generally, access control is implemented by an authorization
service, which includes an authorization decision function (ADF) for deciding
whether a user request to access a resource (an “access request”) should be
permitted or not. In its simplest form an authorization decision function either
returns an allow or a deny decision.

Many access control models and systems are policy-based, in the sense that
a request for access to protected resources is evaluated with respect to a policy
that defines which requests are authorized. Many languages have been proposed
for the specification of authorization policies, perhaps the best known being
XACML [3,8,14]. However, it is generally acknowledged that XACML suffers
from having poorly defined and counterintuitive semantics [12,13]. More formal
approaches have provided well-defined semantics and typically use “policy oper-
ators” to construct complex policies from simpler sub-policies [1,4,17]. However,
such approaches tend to support fewer “features” than XACML.

In a “closed” information system – one in which all authorized users are known
to the system – it is possible to authenticate users of the system and to ascribe an
identity to processes associated with those users. Hence, access control decisions
and the policies that inform those decisions can be based on user identifiers.

Increasingly, it is necessary to define authorization policies for “open” sys-
tems, where we must make access control decisions based on user attributes,
rather than identities. Hence, access request formats need to change from the
user-centric subject-object-action triples of classical access control models [2,9],
although such request formats are still widely used in the specification of access
control models and authorization policy languages [3,4,8,14,17].

An authorization policy is typically defined by a target, a set of child policies
and a decision-combining algorithm. The target, either implicitly or explicitly,
identifies a set of requests. The policy is said to be “applicable” if the access
request belongs to (or “matches”) the target. If a policy is applicable, then its
child policies are evaluated and the results returned by those child policies are
combined using the decision-combining algorithm.

Informally, a policy may be regarded as a tree, in which the leaf nodes return
a “conclusive” decision (allow or deny). If a request does not match the target
of a leaf policy then the evaluation of that policy returns a “not applicable”
decision. Hence, the set of possible decisions is 3-valued.

However, it may be the case that it is not possible to evaluate request ap-
plicability: perhaps the simplest case arises when the request is malformed. But
once the request format is extended to accommodate attribute-based access con-
trol, the problem of evaluating the applicability of a request becomes even more
acute. In other words, the result of request applicability is not necessarily bi-
nary: in particular, we must include a value that represents that some error has
occurred while trying to evaluate request applicability. Naturally, extending the
set of results that can be returned when evaluating request applicability means
that we need to reconsider policy evaluation.
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We believe that existing proposals for authorization policy languages suffer
from at least one of the following problems:

– no support for attribute-based requests (and hence attribute-based autho-
rization policies);

– a lack of formality in the definition of target and policy evaluation, leading
to ambiguity about the meaning of policies;

– a poor understanding of the way in which attribute-based requests, targets
and policies interact.

Our main objective is to define a policy language that addresses the same prob-
lem space as XACML 3.0 [15] while retaining the formality of recent work on pol-
icy algebras [1,4,5,6,17]. XACML (eXtensible access control markup language)
is a standardized language: XACML 2.0 was ratified in 2005; XACML 3.0 will
add support for attribute-based access control and policy administration. More
specifically, our objectives are:

– to define a request format that is appropriate for attribute-based authoriza-
tion policies;

– to define a syntax for specifying policy targets;
– to formally define an evaluation method for those targets that is sufficiently

robust to withstand deliberate attempts to exploit the greater freedom pro-
vided by our request format;

– to define a syntax for policies, which makes use of the policy target language;
– to formally define an evaluation method for those policies that is able to

handle errors in target evaluation gracefully and securely.

In this paper, we develop two distinct languages for completely defining autho-
rization policies. Roughly speaking, our goals are to combine support for the
wide variety of policies that can be defined in more informal approaches such
as XACML with the more formal semantics with which policy algebras are fur-
nished. Our policy target language (PTL) provides a syntax for specifying policy
targets, while our policy composition language (PCL), provides a language for
combining policies (that is, constructing policy trees). Together, we call this
PTaCL, read “p-tackle”, to denote policy target and composition language. We
also provide “authorization policy semantics”, which enable us to ascribe a mean-
ing to a policy for a given request. That meaning is determined by the target
semantics and the composition semantics.

The main contribution of this work is therefore the definition of PTaCL, which,
although far simpler syntactically than XACML 2.0 and 3.0, can express any
desired target or policy, thanks to the functional completeness of PTL and PCL.
We specify precisely how to evaluate any target and policy expressed in PTaCL,
thus providing the basis for a low-level language into which XACML policies, for
example, could be compiled and evaluated. Moreover, we identify the problem of
attribute-hiding attacks, where a user deliberately suppresses attributes in order
to gain favorable authorization decisions, and we propose different restrictions on
the definition of a target in order to avoid such attacks. We note that such attacks
are not peculiar to PTaCL; they are a potential problem for any attribute-based
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access control mechanism. We believe we are the first to identify and, therefore,
propose mitigation strategies for, this type of attack.

In the next section, we define our request format and illustrate some of the
challenges introduced by attribute-based access control. Then, in Section 3, we
define the syntax and evaluation method for targets. In Section 4, we define
policy syntax and evaluation. In this section, we reflect on the problems that
might arise because of the more flexible request format we use and explain how
those problems inform the development of PTaCL. We also explain how PTL
can be restricted to provide certain guarantees about the decisions returned by
policy evaluation, thereby addressing the problem of attribute-hiding attacks.
We conclude the paper with a discussion of related work and some ideas for
future work.

2 Attribute-Based Requests

The simplest authorization policy languages assume that an access request com-
prises three identifiers: the requester, the resource to which access is requested,
and the type of the requested interaction (such as read, write, etc), often known
as subject, object and action, respectively. The authorization decision function
(ADF) associated with a given language will take that request and an autho-
rization policy as input and return a decision. For more complex languages, the
ADF may require additional information, such as the roles or security groups
associated with a user, in order to make a decision. These attributes may be
“pushed” with the request or “pulled” from authoritative information sources
(such as the policy information points in the XACML architecture). The increas-
ingly “open” nature of distributed computer systems, where the user population
is not known in advance, requires authorization languages that are not based
on user identities. For this reason, attribute-based access control (ABAC) and
languages that support ABAC are expected to become increasingly important.

PTaCL comprises two sub-languages: PTL for target specification and PCL
for policy specification. Policies written in PTaCL are used to evaluate access
requests that may contain arbitrary attributes associated with users, resources
and actions.

We model a request as a set of name-value pairs, where each name specifies
an attribute and each value specifies a value for the corresponding attribute.
In the simplest situation, for example, we might have attribute names such as
subject, object and action, and a request might have the form

{(subject, alice), (object, test .txt), (action, read)} .

The above request is no different from the usual view of an access request as a
subject-object-action triple. However, the request format described above is not
limited to requests of this form and can be used to represent requests that do
not contain identifiers for subjects, objects and actions. We could, for example,
have a request of the form

{(role, nurse), (object, test .txt), (action, read)} .
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An attribute name may appear multiple times in the request; the above request
could include multiple role identifiers, for example. The use of some set of name-
value pairs, rather than the fixed format subject-object-action triples (as used
in XACML 2.0 [14] and most other policy languages), means that we can specify
targets and requests with greater freedom than is usually the case. However, the
greater freedom with which requests can be specified also means that we have
to take greater care in the specification of policies.

As an example, we consider a simplified instance of the Chinese Wall policy,
where a company A defines a policy to protect a set of confidential resources.
Informally, this policy states that if a user is working for A, then she can ac-
cess the (confidential) resource o, unless she is also working for B, the direct
competitor of A, in which case the access is denied. We consider the following
requests:

r1 = {(employer, A), (confidential, true)} ;
r2 = {(employer, A), (employer, B), (confidential, true)} ;
r3 = {(confidential, false)} ;
r4 = {(confidential, true)} .

Informally, an ABAC policy defines a set of atomic policies (or rules), where
each atomic policy describes the subset of requests to which it applies – the
policy’s target – and the decision to take when it is applicable. When a request
does not belong to the policy’s target, then this policy is non-applicable, which
has a different meaning from saying that the request is denied. The decisions
returned by the evaluation of the atomic policies are then combined together
using decision combination operators.

For instance, the policy enforced by the company A should comprise two
rules, the second of which is applicable to all requests and returns allow. The
first rule is applicable if the request contains (confidential, true), and in this
case, if the user works for A, then it is allowed, unless she also works for B,
in which case it is denied. The two rules are combined using a deny-overrides
combination operator. The first rule would not be applicable to request r3 and
hence the request would be allowed. The first rule would be applicable to the
remaining requests. Therefore, the evaluation of r1 would return allow, while the
evaluation of request r2 would return deny.

Note that if the user is able to suppress the element (employer, B) in r2,
then the resulting request would be allowed. We call such a situation a partial
attribute hiding attack, where, by hiding some of her attributes, a user is able
to obtain a more favorable authorization decision. A second possibility is for the
user to suppress all the employer attributes. Hence, we might wish to insist that
if the resource is confidential, then the request must contain information about
the employer(s) of the requesting user, otherwise the evaluation of the request
should fail. In particular, r4 must not be allowed, returning either deny or some
appropriate evaluation-error decision.

We now describe PTaCL, which provides mechanisms to tackle the issues
raised by this simple example, in particular by considering attribute requests
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instead of subject-object-action requests; by distinguishing between optional and
mandatory attributes; and by stating two properties of monotonicity, thus al-
lowing the detection of policies vulnerable to partial attribute hiding attacks.

3 Targets

We first define a syntax for targets. Then, in Section 3.1, we will define how
to evaluate a target with respect to a request. We define three types of atomic
target :

– nullT is a target;
– n is a target, where n is an attribute name;
– (n, v, f) is a target, where n is an attribute name, v is an attribute value

and f is a binary predicate.

The most usual predicate is likely to be a test for (string) equality, but other
predicates, such as 
, <,� and>, are possible. For ease of exposition, we assume
throughout that all attributes are of type string and that f is string equality;
henceforth we omit f from the definition of an atomic target.

We build more complex targets by defining two binary target operators, andT
and orT, and two unary target operators, optT and notT. Let t, t1 and t2 be
targets. Then the following terms are also targets:

optT t, notT t, (t1 andT t2) and (t1 orT t2).

The operators optT and notT bind more tightly than andT and orT: optT t andT t′,
for example, is interpreted as (optT t) andT t′, rather than optT(t andT t′). As we
will see in Section 3.1, the semantics of orT and andT are provided by associative,
commutative binary operators on the set of target evaluation decisions, so we
can (and will) omit brackets from expressions of the form (t1orT(t2orT . . .orT tk))
and (t1 andT (t2 andT . . . andT tk)).

In Section 4, we will define similar operators for policies and use a subscript
P to distinguish them from target operators. When no ambiguity can occur we
will omit the subscripts T and P.

3.1 Evaluation

A target is evaluated with respect to a request, represented as a set of name-
value pairs (as described in Section 2). Informally, a request is said to “match”
an atomic target if the name of one of the attribute pairs in the request is the
same as the name defined in the atomic target and the predicate f evaluated at
v and the corresponding value in the request is true. If no such pair exists in the
request, then the request does not match the target.

The “universal” target null is matched by all requests; the target n is matched
by all requests that include an attribute pair (n, v) for any value v; the target
(n, v) is matched by any request that includes the specific attribute pair (n, v).
The target employer, for example, is matched by requests r1 and r2 defined in
Section 2 but not by the requests r3 and r4.
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$ 1T 0T ⊥T

1T 1T 0T ⊥T

0T 0T 0T ⊥T

⊥T ⊥T ⊥T ⊥T

(a)

% 1T 0T ⊥T

1T 1T 1T ⊥T

0T 1T 0T ⊥T

⊥T ⊥T ⊥T ⊥T

(b)

$̃ 1T 0T ⊥T

1T 1T 0T ⊥T

0T 0T 0T 0T

⊥T ⊥T 0T ⊥T

(c)

%̃ 1T 0T ⊥T

1T 1T 1T 1T

0T 1T 0T ⊥T

⊥T 1T ⊥T ⊥T

(d)

X ¬X ∼X

1T 0T 1T

0T 1T 0T

⊥T ⊥T 0T

(e)

Fig. 1. Binary and unary operators on the target decision set {1T, 0T,⊥T}

In addition, we may wish to distinguish the case where the request does not in-
clude the attribute name at all from the case where the attribute name was found,
but with a value that does not match. Consider the atomic target (employer, B):
then request r1 has a matching attribute name (employer), but A �= B; in con-
trast, requests r3 and r4 do not include any matching attribute.

Informally, a request must match both t1 and t2 for it to match target (t1 and
t2), while a request is only required to match one of t1 and t2 for it to match
target (t1 or t2). By default, a request is required to match a target t; we can
relax this requirement, while retaining the possibility of matching t, by writing
opt t.

More formally, we define the set of target evaluation decisions DecT to be
{1T, 0T,⊥T}, where ⊥T denotes that a request does not include the attribute
name, 1T denotes that a request matches an atomic target, and 0T denotes that
a request includes the attribute name but the predicate doesn’t hold.1

We define the binary operators $, %, $̃ and %̃ on {1T, 0T,⊥T} in Fig. 1. These
operators correspond to the weak and strong Kleene operators [11], respectively.
We also define two unary operators ¬ and ∼ in Fig. 1. Finally, we define the
total order 1T > 0T > ⊥T on DecT and let %̇ denote the least upper bound
operator on this ordered set.

Given a request q, we write �t�T(q) to denote the evaluation of t with respect
to q. That is, �t�T(q) ∈ DecT. As for target operators, we will omit the subscript
T where no ambiguity can arise. First, we define, for all requests q and for all
attributes n and all values v,

�null�(q) = 1T and �n�(∅) = �(n, v)�(∅) = ⊥T.

We then define the evaluation of targets n and (n, v) recursively.

�n�({(n′, v′)} ∪ q) =

⎧⎨⎩1T if n = n′

�n�(q \ {(n′, v′)}) otherwise.

1 We will use analogous notation for policy-evaluation decisions, where 1P will denote
an “allow” decision and 0P will denote a “deny” decision. The symbol ⊥ will be used
to denote an evaluation error condition in the context of targets and “not-applicable”
in the context of policies.
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�(n, v)�({(n′, v′)} ∪ q) =

⎧⎪⎪⎨⎪⎪⎩
1T if n = n′, v = v′

0T %̇ �(n, v)�(q) if n = n′, v �= v′

�(n, v)�(q \ {(n′, v′)}) otherwise.

Note that, for all q, �n�(q) is either 1T or ⊥T. In evaluating (n, v), we compare
each element of the request with the atomic target and do one of the following:
we return 1T if a match is found; if the attribute name matches but the predi-
cate doesn’t hold then we record the fact that the attribute name matched and
continue processing; otherwise, we simply continue processing.

Since %̇ is a supremum operator, it is commutative and associative and hence
can be applied to any non-empty subset of DecT without ambiguity. Hence, for
a non-empty request q = {(n1, v1), . . . (nk, vk)}, it is easy to see that we have

�n�(q) = %̇ {�n�({(ni, vi)}) : 1 
 i 
 k} ;
�(n, v)�(q) = %̇ {�(n, v)�({(ni, vi)}) : 1 
 i 
 k} .

In other words, we can evaluate the applicability of a request with respect to
a target by splitting the request into single name-value pairs and evaluating
each of these requests separately. This, in turn, suggests that the evaluation of
requests can be parallelized, with different target evaluation functions (TEFs)
specialized for the evaluation of requests for particular attribute names.

We then define the semantics of not t, opt t, t1 and t2 and t2 or t2 as follows:

�not t�(q) = ¬�t�(q) �t1 and t2�(q) = �t1�(q) $ �t2�(q)

�opt t�(q) = ∼�t�(q) �t1 or t2�(q) = �t1�(q) %̃ �t2�(q)

Here we see that opt modifies the target t by converting a ⊥T decision (missing
attribute) into a 0T decision (attribute not matched). The target optrole, for
example, evaluates to 1T if a request contains a role attribute pair and evaluates
to 0T (rather than ⊥T) if no such pair is present in the request.

It is important to note that the semantics for the and operator are provided by
weak conjunction $, not by $̃. The point here is that a target is specified as part of
a policy and it should not be possible to force target evaluation to return 0T when
the target is a conjunction and at least one of the conjuncts is mandatory. (Had
we combined targets using $̃, if t1 were to evaluate to 0T and t2 were to evaluate
to ⊥T, then t1 $̃ t2 would evaluate to 0T, not the desired ⊥T.)

3.2 Interface Targets

An atomic target of the form (n, v) requires that a particular attribute value
must appear in a request (to obtain a match). Such targets are little different
conceptually from those defined in XACML 2.0 and other authorization lan-
guages and are, therefore, of limited novelty or interest here.2

2 Targets in XACML 2.0 only consider subjects, objects and actions; targets in the
draft XACML 3.0 do consider other types of attributes.
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In contrast, targets of the form n, have not previously been seen in the lit-
erature on authorization languages (to the best of our knowledge). A target of
the form n can be used to define a target that enforces a “request interface”: a
target of the form

opt(n1 and n2 and . . . and nk),

for example, only matches a request that contains particular named attributes
(corresponding to n1, . . . , nk); the evaluation of a request that doesn’t contain all
the required attributes will evaluate to 0T (because of the opt). In this way, we
can construct a target that “guards” conventional subject-object-action policies
and others that can respond to requests containing other types of attributes.

More complex “mixed” interfaces can also be constructed. An access control
list is a type of access control data structure that is widely used in operating
systems. The target for a policy used to represent an access control list for object
test .txt would have the form

opt((object, test .txt) and subject and action),

so that only requests that specify the desired object as well as including some
subject and action would match.

3.3 On Functional Completeness

By way of motivation, we first observe that it might be useful to be able to define
“conditional” interface targets, where the presence of one attribute in a request
requires the presence of some other attribute. Suppose, for example, we have
two attribute names n1 and n2. If a request doesn’t contain attribute n1 then
the evaluation of the target should be 0T. If, however, a request does contain n1

then it must contain n2. In other words, we have the following “match table”,
where the row headers indicate the values taken by the evaluation of n1 and the
column headers indicate the values taken by n2.

1T ⊥T

1T 1T ⊥T

⊥T 0T 0T

By inspection of the match tables in Fig. 1, we see that the above table could
be represented by the target ∼x $̃ y, where x and y denote the evaluation of n1

and n2, respectively. However, the semantics of and are given by the operator
$. Hence, it would be useful to demonstrate that our chosen target operators
opt, not, or and and are functionally complete. In particular, we would prefer to
define the interface target described above in terms of our existing operators,
rather than having to introduce another type of target conjunction.

We now prove that for all n and any function f : DecnT → DecT, f can be
constructed using the constants 1T, 0T and ⊥T and the operators opt, not and or.
We obtain this property by proving that the three-valued logic expressed over
the set {0T, 1T,⊥T} and defined by the operators %̃, ¬ and ∼ is functionally
complete, re-using a result of Jobe [10], stated below.
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• 3 2 1 E1 E2

3 3 2 1 3 1

2 2 2 1 1 2

1 1 1 1 2 3

(a) Over the set {3, 2, 1}

• 1T ⊥T 0T E1 E2

1T 1T ⊥T 0T 1T 0T

⊥T ⊥T ⊥T 0T 0T ⊥T

0T 0T 0T 0T ⊥T 1T

(b) Over the set {1T,⊥T, 0T}

Fig. 2. Jobe’s 3-valued logic

Theorem 1 (Jobe 1962). The three-valued logic E expressed over the set
{1, 2, 3} and defined by the operators •, E1 and E2, given in Fig. 2(a), is func-
tionally complete.

Corollary 1. The three-valued logic expressed over the set {0T, 1T,⊥T} and
defined by the operators %̃, ¬ and ∼ is functionally complete.

Proof. We first define the operator $̃ from %̃ and ¬: for any X1, X2 ∈ DecT,
(X1 $̃X2) = ¬(¬X1 %̃ ¬X2)

3.
We can clearly see from Fig. 2(b), that the operator $̃ is identical to • and

¬ is identical to E1. Therefore, we only need to define a unary operator that
swaps the values of 0T and ⊥T while leaving 1T unchanged. We write 6 to
denote such an operator. The table below demonstrates that 6X is equivalent
to (X %̃ ⊥T) $̃ (∼(X %̃ ¬X)).

X X %̃ ⊥T ¬X X %̃ ¬X ∼(X %̃ ¬X) 6X
1T 1T 0T 1T 1T 1T

0T ⊥T 1T 1T 1T ⊥T

⊥T ⊥T ⊥T ⊥T 0T 0T

We can therefore conclude that the logic defined over the set {0T, 1T,⊥T} by
the operators %̃,¬ and ∼ is functionally complete.

For instance, the operator and can be built directly from or and not, since we
can define the operator $ from %̃ and ¬. Indeed, for any x, y ∈ DecT, we have
the following equivalences:

x $ y = (x $̃ y) %̃ ((x $̃ ¬x) %̃ (y $̃ ¬y))
x % y = (x %̃ y) $̃ ((x %̃ ¬x) $̃ (y %̃ ¬y))

We also have x %̇y = (x %̃ (∼ y)) $̃ ((∼ x) %̃y), where %̇ is the supremum operator
used to define the evaluation of an atomic target.

3 Note that we also have the expected equivalence (X1 %̃X2) = ¬(¬X1 $̃ ¬X2).
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4 Policies

PTaCL policies are defined inductively. Let d ∈ {1P, 0P}, and let p, p1 and p2
be policies. Then

– d is a policy;
– notP p – the negation of policy p – is a policy, which returns 1P if p returns

0P and vice versa;
– dbdP p – the deny-by-default of policy p – is a policy, which returns 1P if p

returns 1P and returns 0P otherwise;
– p1 andP p2 – the conjunction of two policies p1 and p2 – is a policy;
– (t, p) – the restriction of policy p to a target t – is a policy.

We discuss policy evaluation in detail in Section 4.1.
A policy tree is a convenient way of visualizing a policy and can be constructed

recursively from a policy. The policy d is represented as a tree comprising a
single node. The policy p1 andP p2 is represented as a tree comprising a root
node labelled andP and two child sub-trees representing p1 and p2. Policies of
the form (t, p), dbdP p and notP p are represented as trees comprising a root node
labelled t, dbdP and notP, respectively, a single child sub-tree representing p. An
illustrative policy tree representing the policy

dbdP(t5, notP(t3, (t1, 1P) andP (t2, 0P)) andP (t4, 1P))

is shown in Fig. 3(a) (on page 402). To save space, we have “absorbed” the nodes
labelled andP into their respective parents (t3 and t5).

4.1 Policy Evaluation

The evaluation of a policy with respect to a request q returns ⊥P if the policy is
not applicable to the request: that is, the evaluation of the policy’s target with
respect to q returned 0T. However, it may be the case that the evaluation of a
target returns neither 1T nor 0T, instead returning ⊥T. The possibility of target
evaluation failing is considered in XACML [14] and in the work of Li et al. [12]
and of Crampton and Huth [6]. The methods used to handle such failures assume
that target evaluation failures arise because of unexpected failures in hardware,
software or network connectivity and, accordingly, make a best effort to construct
a conclusive decision for the request.

Our target language is expressly designed to support flexible request formats
for open environments. As a result, our language explicitly includes the possi-
bility that target evaluation may not be possible (if, for example, attributes are
missing). Hence, target evaluation may fail, not because of “benign” failures, but
because a user may withhold attributes in an attempt to force an error in target
evaluation and thereby circumvent policy evaluation. Therefore, we must ensure
that no advantage is gained by a malicious user who deliberately suppresses
information when making an access request.4

4 We also note the possibility that the user may not wish to divulge certain attributes
when making an application request.
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Our approach is to consider all possible decisions that might have arisen had
target evaluation not failed. In other words, policy evaluation may return a
set of decisions. We shall see that imposing appropriate restrictions on targets
and using a “conservative” method of deriving a single decision from a set of
decisions, will enable us to guarantee that a malicious user obtains no advantage
by withholding attribute information.

We recall the operators ¬, ∼ and $̃ on DecT (as shown in Fig. 1) and define
the same operators on DecP = {1P, 0P,⊥P}. We extend the unary operators to
X ⊆ DecP, writing ¬X to denote the set {¬x : x ∈ X} and ∼X to denote the
set {∼x : x ∈ X}; and we extend $̃ on DecP to sets X,Y ⊆ DecP, writing X $̃Y
to denote the set {x $̃ y : x ∈ X, y ∈ Y }.

Informally, the evaluation of targeted policy (t, p) for a request q proceeds in
the following way.
1. If t evaluates to 1T, we then inductively evaluate p (see below)
2. If t evaluates to 0T, we return {⊥P}
3. Otherwise, we evaluate p and take the union of the resulting set of decisions

with {⊥P}5
We write �p�P(q) to denote the evaluation of policy p with respect to a request
q, where

�d�P(q) = {d} ;
�notP p�P(q) = ¬(�p�P(q));
�dbdP p�P(q) = ∼(�p�P(q))
�(p1 andP p2)�P(q) = �p1�P(q) $̃ �p2�P(q);

�(t, p)�P(q) =

⎧⎪⎪⎨⎪⎪⎩
�p�P(q) if �t�T(q) = 1T,

{⊥P} if �t�T(q) = 0T,

{⊥P} ∪ �p�P(q) otherwise.

Consider the policy depicted in Fig. 3(a) and suppose that �t1�(q) = �t4�(q) =
�t5�(q) = 1T, �t2�(q) = 0T and �t3�(q) = ⊥T. The evaluation of this policy is
shown in Fig. 3(c). Note that the evaluation of the sub-tree with root t3 considers
the union of two sets of decisions because �t3�(q) = ⊥T. Note also that the strong
conjunction $̃ has the effect of preferring the ⊥P decision to the 1P decision. For
those familiar with previous related work, this may seem an unusual way in
which to combine policy decisions. We discuss this in more detail in the next
section and, in Section 4.3, we will discuss ways in which more familiar decision-
combining operators can be defined. Finally, note that the policy does evaluate
to a single decision (0P) for this request, although there is no reason in general
for this to occur. However, it is easy to establish the following result.

Lemma 2. Let p be a policy whose policy tree contains targets t1, . . . , tk and let
q be a request. If �ti�(q) �= ⊥T for all i, then �p�(q) = {x} for some x ∈ DecP.

5 In other words, the evaluation of p in this case considers the decisions that would
have been returned if the request had been applicable and if the request had not
been applicable.
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(a) Policy tree
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(c) Policy evaluation

Fig. 3. Evaluating a PTaCL policy

In other words, if the applicability of all targets referenced by a policy can
be determined for a request q, our evaluation semantics will return a unique
authorization decision. The proof is a straightforward induction on the depth of
the policy tree.

Finally, we note that the functional completeness for the target language also
holds for our policy language, because optT and dbdP have identical properties, as
do notT and notP. However, it is also important to realize that the interpretation
of ⊥T and ⊥P are quite different: the former indicates that the request supplied
insufficient information to evaluate target applicability, whereas ⊥P indicates
that a policy is irrelevant to the evaluation of a request. Henceforth, we will
omit the subscript from �·�P and the PTL operators, although, for clarity, we
will retain the subscripts on decisions.

4.2 On the Non-monotonicity of Targets

The language we use for targets and the way in which targets are evaluated
means that, for some target t, there may exist requests q and q′ such that q′ ⊆ q,
�t�(q′) = 0T and �t�(q) = 1T. This feature of the language means that withhold-
ing attributes may provide some advantage to a malicious user: if we have a
policy p = (t, p′) such that �p′�(q) = 0P, and �t�(q) = 1T, then �p�(q) = 0P; if,
however, �t�(q) = 0T, then �p�(q) = ⊥P. In other words, it might be possible
for a malicious user to turn a 0P decision into a ⊥P decision by suppressing
certain attributes. For brevity, we refer to this as the non-monotonicity of tar-
gets. Hence, we might reasonably regard ⊥P as a potentially dangerous policy
decision. (This view of ⊥P is quite different from the interpretation used by
other policy languages and algebras.) It is this view that informs our use of $̃ to
combine policy decisions, which means that ⊥P $̃ 1P is defined to be ⊥P rather
than 1P.

Similarly, a user can force a target to evaluate to ⊥T (rather than 0T or 1T)
by withholding attributes. It is for this reason, that policy evaluation considers
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the possibility that a target might have been matched or not matched when
target evaluation returns ⊥T.

Following from the above discussion, we would like to prove a result of the
form: Let p be a policy whose policy tree contains targets t1, . . . , tk and let q be a
request. Then for any q′ ⊆ q, �p�(q) ⊆ �p�(q′). Informally, this result states that
if a request contains less information, then the result of evaluating the policy is
more uncertain. Then the authorization decision point can have a decision-set
“resolution strategy” that returns a single final decision. Such a strategy should
be “conservative” in the sense that the larger decision sets should be treated
with more caution. The obvious strategy of this nature is: for X ⊆ DecP, we
return 1P if X = {1P} and 0P otherwise.

However, it is easy to see that the above result does not hold, because of the
functional completeness of our target language. In particular, we can create an
operator ⊕ such that ⊥T ⊕ ⊥T = 1T and 1T ⊕ ⊥T = ⊥T. Now consider the
target t = (n1, v1)⊕ (n2, v2), and the requests q1 = {(n1, v1)} and q2 = {}. Then

�t�(q1) = 1T ⊕⊥T = ⊥T and �t�(q2) = ⊥T ⊕⊥T = 1T.

Now consider the policy p = (t, 1P): we have �p�(q1) = {⊥P, 1P} and �p�(q2) =
{1P}, providing a counter-example to the desired result. In other words, there
are good reasons to restrict our target language so that only “well-behaved”
targets can be defined. Specifically, we would like to restrict our target language
so that all targets have the following property:

Definition 3. A target t is monotonic if for all requests q and for every q′ ⊆ q,
�t�(q′) ∈ {⊥T, �t�(q)}.

Then we have the following result (all the proofs of this paper are given in [7]
and have been encoded in the proof assistant Isabelle/Isar6).

Theorem 4. Let p be a policy whose policy tree contains monotonic targets
t1, . . . , tk and let q be a request. Then for any q′ ⊆ q, �p�(q) ⊆ �p�(q′).

Theobvious questions to asknoware:Whichof our target operators aremonotonic?
And does composition of monotonic target operators preserve monotonicity?

We say that an operator is monotonic if, given monotonic targets as inputs,
it returns a monotonic target. We prove in [7] that the operators not, and and or
are monotonic, as well as the operators corresponding to $̃ and %. However, the
operator opt is not monotonic, since it can transform a ⊥T into a 0T.

Unfortunately (and somewhat unexpectedly), an atomic target is not, in gen-
eral, monotonic. To see this, note that a request can contain several pairs with
the same attribute name. (A request might, for example, enumerate all the roles
with which the requester is associated.) Removing one occurrence from this set
of pairs can change the evaluation of the request from 1T to 0T. This situation
corresponds to a partial hiding of attribute values: that is, the ability for a user or
an attribute server to remove only some values for a given attribute. In practice,

6 http://isg.rhul.ac.uk/~jason/isabelle/ptacl.thy

http://isg.rhul.ac.uk/~jason/isabelle/ptacl.thy
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such a situation is quite hard to detect and to prevent. However, let us assume
that an attribute server works in an “all-or-nothing mode”: that is, either it
returns all the values for a given attribute, or none. With this assumption, for
two requests q and q′ such that q′ ⊆ q and for any attribute name n such that
(n, v) ∈ q′ and (n, v′) ∈ q, then (n, v′) ∈ q′. With such an assumption, it is easy
to see that any atomic target is monotonic, and it follows that any target built
using the operators and, or and not is monotonic.

Such an assumption might not always hold, in particular when there is little
control over the attribute servers. Therefore, we now consider an alternative,
weaker notion of monotonicity, defined below.

Definition 5. A target t is weakly monotonic if for all requests q and for every
q′ ⊆ q, �t�(q′) � �t�(q), where we define ⊥T ≺ 0T ≺ 1T.

The operators ∼,$,% and %̃ preserve the weak monotonicity, as proven in [7],
but the operators ¬ and $̃ do not. Moreover, since any atomic target is clearly
weakly monotonic, any target built using any combination from the operators
∼,$,% and %̃ is also weakly monotonic. Although we cannot prove a result as
strong as Theorem 4, we can prove the following result (the proof of which can
be found in [7]).

Theorem 6. Let p be a policy whose policy tree contains weakly monotonic
targets t1, . . . , tk and let q be a request.
1. If p is constructed from the operators not and and, then for any q′ ⊆ q, if

�p�(q′) = {d}, with d ∈ {1P, 0P}, then �p�(q) = �p�(q′).
2. If p is constructed from the operators dbd and and, then for any q′ ⊆ q, if

�p�(q′) = {1P}, then �p�(q) = {1P}.

One consequence of Theorem 6 is that if a partial request is allowed, then the full
request would have been allowed too, and therefore an attacker has no advantage
in hiding some attribute values. However, this result requires a “conservative”
resolution strategy: that is, request q is only allowed if and only if �p�(q) = {1P}.

4.3 Decision Operators

We now discuss other ways in which decisions from sub-policies might be com-
bined. Following Crampton and Huth [6], we restrict attention to idempotent
and well-behaved decision operators.

Definition 7. Let ⊕ : DecP × DecP → DecP be a decision operator.

– If x⊕ x = x for all x ∈ DecP, then we say ⊕ is idempotent.
– If x⊕⊥P = x = ⊥P ⊕ x for all x ∈ DecP, then we say ⊕ is a ∪-operator.
– If x⊕⊥P = ⊥P = ⊥P⊕x for all x ∈ DecP, then we say ⊕ is an ∩-operator.
– We say ⊕ is well-behaved if it is either a ∪- or an ∩-operator.
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Informally, a ∪-operator ignores policies that evaluate to ⊥P by returning a
conclusive decision (that is, a decision that belongs to {1P, 0P}) if either operand
returns a conclusive decision. XACML, for example, assumes that all operators
are ∪-operators. In contrast, a ∩-operator only returns a conclusive decision if
both arguments are conclusive decisions. An operator of this nature is used by
Bonatti et al. in their policy algebra [4].

Intuitively, it seems reasonable to assume that a policy decision operator is
idempotent: if two policies return the same decision d, then we would expect
that the composition of those policies would also return d. An idempotent, well-
behaved decision operator is uniquely defined by the choices of x⊕⊥P, 1P ⊕ 0P
and 0P ⊕ 1P: the remaining values are fixed because the operator is idempotent
and well-behaved (as shown in Fig. 4 for an idempotent ∪-operator ⊕).

If we assume that ⊕ is commutative, then there are only three choices for an
idempotent ∪-operator (and three choices for an idempotent ∩-operator). And
if we assume that 1P ⊕ 0P ∈ {1P, 0P}, then there are only two choices for a
commutative, idempotent ∪-operator; both these operators are shown in Fig. 4,
labeled as and∪ and or∪. Analogous operators and∩ and or∩ can be defined by
making the obvious adjustments to the bottom row and rightmost column of the
tables for and∪ and or∪, respectively.

The operators and∪ and and∩ are rather similar to logical conjunction, while
or∪ and or∩ are rather similar to logical disjunction, respectively. Our deci-
sion operators play a similar role to the conflict resolution strategies or policy-
combining algorithms used in policy algebras and XACML. Such strategies are
used to resolve discrepancies in the results returned by different sub-policies. In
particular, and∪ has the same effect as the “deny-overrides” conflict resolution
strategy: namely, if one sub-policy returns 0P, then the combined decision is 0P.
Similarly, or∪ has the same effect as the “allow-overrides” strategy.

The most widely used non-commutative conflict resolution strategy is “first-
applicable”, which we denote by �. The operator � is defined in Fig. 4(d):
note, in particular, 1P � 0P = 1P and 0P � 1P = 0P.

7 The first-applicable
operator is commonly used in firewall rulesets as well as in policy algebras and
XACML. The other idempotent, well-behaved, non-commutative operator such
that 1P ⊕ 0P ∈ {1P, 0P} and 0P ⊕ 1P ∈ {1P, 0P} is what might be called “last-
applicable”, denoted by �, where x � y = y if y ∈ {1P, 0P} and is equal to x
otherwise. This operator does not appear to be widely supported or used.

We now show how to define the operators or∩, and∩, or∪, and∪ and � from
the PTL operators not, dbd and and. Since the logic ({1P, 0P,⊥P} , not, dbd, and)
is functionally complete, we can directly reuse the definitions of the operators
given in Fig. 1. Clearly, or∩ and and∩ are directly given by % and $, respectively.
Moreover, the operator or∪ corresponds to the supremum operator over the total
order 1P > 0P > ⊥P, so we can re-use the operator %̇ defined in Section 3.3. The
operator and∪ is defined as follows:

x and∪ y = not((notx) or∪ (not y))

7 Note that a first-applicable ∩-operator is vacuous, as it would be equivalent to a
unary, identity operator.
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⊕ 1P 0P ⊥P

1P 1P x 1P

0P y 0P 0P

⊥P 1P 0P ⊥P

(a) Idempotent

and∪ 1P 0P ⊥P

1P 1P 0P 1P

0P 0P 0P 0P

⊥P 1P 0P ⊥P

(b) Conjunction

or∪ 1P 0P ⊥P

1P 1P 1P 1P

0P 1P 0P 0P

⊥P 1P 0P ⊥P

(c) Disjunction

� 1P 0P ⊥P

1P 1P 1P 1P

0P 0P 0P 0P

⊥P 1P 0P ⊥P

(d) First-applicable

Fig. 4. Decision tables for idempotent ∪-operators on {1P, 0P,⊥P}

In order to define the operator �, we first introduce the operator abd
(“allow-by-default”), which transforms ⊥P into 1P, and is defined by abdx =
not(dbd(notx)). The definition of � is then given by:

x� y = (abd(x %̃ (notx))) $̃ (x or∪ y)

Finally, x�y is equivalent to y�x. Henceforth, we will use the operators defined
above as syntactic sugar. Notice that our definitions of or∪, and∪ and� all require
the three PTL operators for their construction. Hence, a policy containing the
standard XACML operators does not satisfy the requirements of Theorem 6, so
we need to rely on the all-or-nothing assumption.

Finally, we note that the operators and, and∪ and and∩ can be regarded as
defining a greatest lower bound operator for suitable choices of ordering on DecP;
similarly or∪ and or∩ define least upper bound operators. These orderings are
summarized in Table 1.

Table 1. Decision operators and orderings on DecP

Operator Ordering

and 0P < ⊥P < 1P

and∪ 0P < 1P < ⊥P

and∩ ⊥P < 0P < 1P

or∪ ⊥P < 0P < 1P

or∩ 0P < 1P < ⊥P

The fact that each of the orderings is a total order means that and, and∪ and
and∩ take the minimum of their operands, while or∪ and or∩ take the maximum
of their operands. This, in turn, means that all four operators can be extended
to n-ary operators (for any natural number n > 1).

5 Related Work

It is important to note that PTaCL is neither intended to fix XACML nor to
provide formal semantics for XACML policy evaluation. Rather, PTaCL is a
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language that seeks to provide rigorous, alternative solutions to the same prob-
lems that motivated the development of XACML. Our work is also influenced
by the work of Li et al. [12] and of Crampton and Huth [6] on using a set of
decisions, rather than a single decision, to define the result of policy evaluation.

Although there is a substantial body ofwork onpolicy specification [1,4,5,13,17],
this prior work assumes a very restricted format for access requests and targets. To
the best of our knowledge, there is no previous work on a formal language for tar-
get specification and evaluation, let alone the consideration of missing attributes
names. Both the ratified standard XACML 2.0 [14] and the draft XACML 3.0 [15],
acknowledge that attributes may be missing from a request. However, the treat-
ment of target evaluation in such circumstances is, like much of the XACML stan-
dard, rather informal. Moreover, the XACML target syntax is unnecessarily com-
plicated and does not support interface targets. Finally, the XACML target syntax
only provides operators that are equivalent to the strong conjunction and strong
disjunction (in the 3-value Kleene logic), thereby limiting the expressive power of
XACML. On the other hand, the functional completeness of PTL means that any
XACML target can be represented in PTL.

The work on policy algebras varies in the operators that are supported, the
set of decisions that can arise as a result of policy evaluation, and the extent
to which policy evaluation can cope with failures in target evaluation. Ni et
al., for example, provide a functional complete policy algebra [13], where policy
evaluation returns a single decision from the set {1P, 0P,⊥P}. The functional
completeness of PCL means that we can express any operators that we might
wish to. In particular, we can express all XACML policy-combining algorithms.
Structurally, our atomic policies correspond to rules in XACML, while our policy
trees correspond to policies and policy sets. Crampton and Huth [6] extend
the work of Li et al. on policy evaluation in the presence of target evaluation
failure [12], where policy evaluation returns a set of decisions. Our treatment
of policy evaluation is rather similar to this earlier work, although the way in
which we resolve a set of decisions to a single decision that is enforced by the
AEF is completely different, due to the suspicion with which we choose to treat
the ⊥P decision.

An important contribution of this paper is the recognition that providing sup-
port for attribute-based access control and greater freedom for request formats
leads to the potential for attribute hiding by malicious users. By manipulating
requests in this way, it may be possible to circumvent the expected or intended
policy semantics. Existing work that supports attribute-based access control,
such as XACML 3.0 and that of Rao et al. [16], does not consider such pos-
sibilities and hence may be vulnerable to “attribute-hiding attacks”. Consider,
for example, the PTL policy p = (1P and∪ ((n, v), 0P)) – which corresponds to
an XACML policy with two rules combined using the deny-overrides operator –
and two requests q = {(n, v), (n, v′)} and q′ = {(n, v′)}. Then �p�(q) = 0P while
�p�(q′) = 1P: that is, by hiding some information, a more favorable answer is
obtained. Theorem 6 suggests that such behavior is to be expected because we
require all three PTL operators to represent and∪.
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6 Concluding Remarks

Attribute-based access control, rather than the traditional identity-based access
control that is deployed extensively in closed systems, is likely to become in-
creasingly important in loosely coupled and open computing environments. This
paper introduces PTaCL, an expressive language for the definition of attribute-
based authorization policies. PTaCL can represent all commonly used policy
composition operators (indeed it can represent any desired operator) and, to the
best of our knowledge, PTaCL is the first language with a concise syntax for
policy targets and a precise semantics for their evaluation.

Nevertheless, PTaCL is rather simple syntactically, which enables us to iden-
tify and propose solutions to the problem of attribute hiding. Such an issue
is problematic in the context of open and distributed systems, and is not ad-
dressed in the literature, which define composition operators to favor conclusive
decisions over a not-applicable decision. Having identified the problem, we pro-
pose two approaches to address this issue, formally justifying each of them: either
forbidding optional targets, assuming the attribute servers to work in an “all-
or-nothing mode” and adopting a conservative evaluation; or constraining more
strictly the definition of the targets and the definition of the policies. The sec-
ond approach does not make any assumption about the behavior of the attribute
servers, but the standard policy composition operators can no longer be used.
We propose other operators that are resilient to attribute hiding and differ from
the standard ones in the way in which they handle the not-applicable decision.
These “new” operators actually correspond to the strong conjunction and strong
disjunction defined in the original Kleene three-valued logic.

There are many opportunities for future work. Clearly, when the evaluation
of a request returns more than one decision, it implies that some attributes are
missing in the request, and PTaCL should be extended in order for the set of
the decisions to also indicate which attributes are missing. Hence, the entity
in charge of collecting the attributes, for instance the Context Handler in the
XACML architecture. Hence, a useful extension to the operational semantics of
PTaCL would be to extend the return type of PCL so that the response includes
a list of missing attribute names. PCL can be similarly extended in order to
support obligations, that can be returned in addition to a set of decisions (as in
XACML).

These extensions naturally lead to the problem of understanding and formal-
izing the complete access control architecture, and in particular to the question
of attribute privacy. Indeed, in practice, a reason for a missing attribute can be
because the source responsible for providing its value considered that this value
was too sensitive to be shared. In such a case, the evaluation of the policy, or part
of it, needs to be delegated to the attribute source. However, the possible pres-
ence of multiple, sensitive and conflicting sources makes it a non-trivial problem
to solve. We believe that by completely formalizing the notion of attribute and
its treatment by the policy decision point, PTaCL paves the way to address the
problem of attribute privacy.
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Abstract. Provenance is an increasing concern due to the revolution in sharing
and processing scientific data on the Web and in other computer systems. It is
proposed that many computer systems will need to become provenance-aware in
order to provide satisfactory accountability, reproducibility, and trust for scien-
tific or other high-value data. To date, there is not a consensus concerning ap-
propriate formal models or security properties for provenance. In previous work,
we introduced a formal framework for provenance security and proposed formal
definitions of properties called disclosure and obfuscation.

This paper develops a core calculus for provenance in programming languages.
Whereas previous models of provenance have focused on special-purpose
languages such as workflows and database queries, we consider a higher-order,
functional language with sums, products, and recursive types and functions. We
explore the ramifications of using traces based on operational derivations for the
purpose of comparing other forms of provenance. We design a rich class of prove-
nance views over traces. Finally, we prove relationships among provenance views
and develop some solutions to the disclosure and obfuscation problems.

1 Introduction

Provenance, or meta-information about the origin, history, or derivation of an object,
is now recognized as a central challenge in establishing trust and providing security
in computer systems, particularly on the Web. Essentially, provenance management in-
volves instrumenting a system with detailed monitoring or logging of auditable records
that help explain how results depend on inputs or other (sometimes untrustworthy)
sources. The security and privacy ramifications of provenance must be understood in
order to safely meet the needs of users that desire provenance without introducing new
security vulnerabilities or compromising the confidentiality of other users.

The lack of adequate provenance information can cause (and has caused) major prob-
lems, which we call provenance failures [11]. Essentially, a provenance failure can arise
either from failure to disclose some key provenance information to users (for exam-
ple, if a years-out-of-date story causes investors to panic about a company’s financial
stability [7]), or from failure to obfuscate some sensitive provenance information (for
example, if a Word document is published with supposedly secret contributors’ identi-
ties logged in its change history [27]). To address these problems, a number of forms
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of provenance have been proposed for different computational models, including why
and where provenance [6], dependency provenance [9], and a variety of other ad hoc
techniques [3,24].

Prior work on provenance and security. Our previous work [9] appears to have been
the first to explicitly relate information-flow security to a form of provenance, called
dependency provenance. Provenance has been studied in language-based security by
Cirillo et al. [13] and by Swamy et al. [26,25]. Both focus on specifying and enforcing
security policies involving provenance tracking alongside many other concerns, and
not on defining provenance semantics or extraction techniques. Work on secure au-
diting [21,19] and expressive programming languages for security is also related, but
this work focuses on explicitly manipulating proofs of authorization or evidence about
protocol or program runs rather than automatically deriving or securing provenance
information.

There is also some work directly addressing security for provenance [12,8,15]. Chong
[12] gave candidate definitions of data security and provenance security using a trace
semantics, based in part on an earlier version of our trace model. Davidson et al. [15]
studied privacy for provenance in scientific workflows, focusing on complexity lower
bounds. Cheney [8] gave an abstract framework for provenance, proposed definitions of
properties called obfuscation and disclosure, and discussed algorithms and complexity
results for instances of this framework including finite automata, workflows, and the
semiring model of database provenance [18].

In this paper, we build on prior work on provenance security by studying the dis-
closure and obfuscation properties of different forms of provenance in the context of a
higher-order, pure, functional language. To illustrate what we mean by provenance, we
present examples of programming with three different forms of provenance in Trans-
parent ML (TML), a prototype implementation of the ideas of this paper.

1.1 Examples

Where-provenance. Where-provenance [6,5] identifies at most one source location from
which a part of the output was copied. For example, consider the following TML ses-
sion:

- f [(1,2), (4,3), (5,6)];
val it = [(5,6), (3,4), (1,2)]

Without access to the source code, one can guess that f is doing something like

reverse ◦ (map (λ(x, y).if x < y then (x, y) else (y, x)))

However, by providing where-provenance information, the system can explain whether
the numbers in the result were copied from the input or constructed in some other way:

- trace (f [(1@L1,2@L2),(4@L3,3@L4),(5@L5,6@L6)]);
it = <trace> : ({L1:int,...}, (int*int) list) trace
- where it;
val it = [(5@L5,6), (3@L4,4), (1@L1,2)]
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This shows that f contrives to copy the first elements of the returned pairs but construct
the second components.

Dependency provenance. Dependency provenance [9] is an approach that tracks a set
of all source locations on which a result depends. For example, if we have:

- g [(1,2,3), (4,5,6)];
val it = [6,6] : int list

we again cannot tell much about what g does. By tracing and asking for dependency
provenance, we can see:

- trace (g [(1@L1,2@L2,3@L3),(4@L4,5@L5,6@L6)]);
val it = <trace> : ({L1:int,...}, int list) trace
- dependency it;
val it = [6@{L1,L2,L3}, 6@{L1,L2,L3}]

This suggests that g is simply summing the first triple and returning the result twice,
without examining the rest of the list. We can confirm this as follows:

- trace (g ((1@L1,2@L2,3@L3)::[]@L));
val it = <trace> : ({L1:int,...}, int list) trace
- dependency it;
val it = [6@{L1,L2,L3}]

The fact that L does not appear in the output confirms that g does not look further into
the list.

Expression provenance. A third common form of provenance is an expression graph
or tree that shows how a value was computed by primitive operations. For example,
consider:

- (h 3, h 4, h 5)
val it = (6,24,120);

We might conjecture that h is actually the factorial function. By tracing h and extracting
expression provenance, we can confirm this guess (at least for the given inputs):

- trace (h (4@L));
val it = <trace> : ({L:int}, int) trace
- expression it;
val it = 24@{L * (L-1) * (L-2) * (L-3) * 1}

In this case where-provenance and dependency provenance would be uninformative
since the result is not copied from, and obviously depends on, the input.

This kind of provenance is used extensively in workflow systems often used in e-
science [20], where the main program is a high-level process coordinating a number of
external (and often concurrent) program or RPC calls, for example, image-processing
steps or bulk data transformations, which we could model by adding primitive image-
processing operations and types to our language. Thus, even though the above exam-
ples use fine-grained primitive operations, this model is also useful for coarse-grained
provenance-tracking.
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Provenance security. The three models of provenance above represent useful forms
of provenance that might increase users’ trust or confidence that they understand the
results of a program. However, if the underlying data, or the structure of the com-
putation, is sensitive, then making this information available may lead to inadvertent
vulnerabilities, by making it possible for users to infer information they cannot ob-
serve directly. This is a particular problem if we wish to disclose part of the result of
a program, and provenance that justifies part of the result, while keeping other parts of
the program’s execution, input, or output confidential. As a simple example, consider
a program if x �= 1 then (y, y) else (z, w). If x is sensitive, but z and w happen to
both equal 42, then it is safe to reveal the result (42, 42). However, any of the above
forms of provenance make it possible to distinguish which branch was taken because
the two different copies of 42 in z and w will have different provenance. Thus, if the
provenance information is released then a principal can infer that the second branch was
taken, and hence, x = 1. In technical terms, we cannot disclose any of the above forms
of provenance for the result while obfuscating the fact that x = 1.

1.2 Summary

Contributions. In this paper, we build on, and refine, the provenance security frame-
work previously introduced by Cheney [8]. We introduce a core language with re-
playable execution traces for a call-by-value, higher-order functional language, and
make the following technical contributions:

– Refined definitions of obfuscation and disclosure (Sec. 2).
– A core calculus defining traced execution for a pure functional programming lan-

guage (Sec. 3).
– A generic provenance extraction framework that includes several previously-studied

forms of provenance as instances (Sec. 4).
– An analysis of disclosure and obfuscation guarantees provided by different forms

of provenance, including techniques based on slicing execution traces (Sec. 5).

Outline. Section 2 briefly recapitulates the framework introduced by Cheney [8] and
refines some definitions. We present the (standard) syntax and tracing semantics of
TML in Section 3. In Section 4 we introduce a framework for querying and extracting
provenance views from traces, including the three models discussed above. Section 5
presents our main results about disclosure, obfuscation, and trace slicing. Section 6
presents related work and Section 7 concludes.

2 Background

We recapitulate the main components of the provenance security framework of Ch-
eney [8]. The framework assumes a given set of traces T , together with a collection
Q of possible trace queries Q : T → B. These represent properties of traces that the
system designer may want to protect or that legitimate users or attackers of the system
may want to learn. In the previous paper, we considered refinements to take into account
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the knowledge of the principals about the possible system behaviors. In this paper, we
assume that all traces T are considered possible by all principals, for simplicity.

For each principal A, fix a set ΩA of the possible provenance views offered to A, and
a function PA : T → ΩA mapping each trace to A’s provenance view of the trace. For
the purposes of this paper, we do not consider interactions among multiple principals,
so we typically consider only one principal and omit the A subscripts. We may write
(Ω,P : T → Ω) or just (Ω,P ) for a provenance view. Also, we sometimes write
Q : Ω → B for a provenance query, that is, a query on a provenance view.

Given this framework, we proposed the following definitions:

Definition 1 (Disclosure). A query Q is disclosed by a provenance view (Ω,P ) if for
every t, t′ ∈ T , if P (t) = P (t′) then Q(t) = Q(t′).

In other words, disclosure means that there can be no traces t, t′ that have the same
provenance view but where one satisfies the query and the other does not.

Definition 2 (Obfuscation). A query Q is obfuscated by a provenance view (Ω,P ) if
for every t in T , there exists t′ ∈ T such that P (t) = P (t′) and Q(t) �= Q(t′).

Thus, obfuscation is not exactly the opposite of disclosure; instead, it means that for
every trace there is another trace with the same provenance view but different Q-value.
This means that a principal that has access to the provenance view but not the trace
cannot be certain that Q is satisfied or not satisfied by the underlying trace.

The definitions above turn out to be too strong; in this paper we will also consider
some weaker versions of disclosure and obfuscation.

Definition 3. We say that P : T → Ω positively discloses Q : T → B via query
Q′ : Ω → B if for every t, if Q′(P (t)) then Q(t).

In other words, positive disclosure means that there is a query Q′ on the provenance
that safely overapproximates Q on the underlying trace. If Q′(P (t)) holds then we
know Q(t) holds but otherwise we may not learn anything about t.

Definition 4. We say that P positively obfuscates Q : T → B if for every t satisfying
Q there exists a trace t′ falsifying Q such that P (t) = P (t′).

In other words, positive obfuscation means that the provenance never reveals that Q
holds of the trace, but it may reveal that Q fails. This weaker notion is useful for assert-
ing that sensitive data is protected: if the sensitive data is not present in the trace then it
is harmless to reveal this, but if the sensitive data is present then the provenance should
hide enough information to make its presence uncertain.

Dual notions of negative disclosure and obfuscation can be defined as positive dis-
clossure or obfuscation of ¬Q respectively.

Proposition 1. If P both positively discloses and negatively discloses Q via Q′, then
P discloses Q. Similarly, if P both positively and negatively obfuscates Q then P ob-
fuscates Q.

In the previous paper, we gave several examples of instances of this framework. Here,
for illustration, we just review one such instance, given by finite automata.
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Types τ ::= b | τ1 × τ2 | τ1 + τ2 | τ1 → τ2 | μα.τ | α
Type contexts Γ ::= [x1 : τ1, . . . , xn : τn]

Code pointers κ ::= f(x).e

Matches m ::= {inl(x1).e1; inr(x2).e2}
Values v ::= c | (v1, v2) | inl(v) | inr(v) | roll(v) | 〈κ, γ〉
Expressions e ::= c | x | ⊕(e) | let x = e1 in e2

| (e1, e2) | fst(e) | snd(e) | inl(e) | inr(e)
| roll(e) | unroll(e) | fun κ | case e ofm | (e e′)

Traces T ::= c | x | ⊕(T ) | let x = T1 in T2

| (T1, T2) | fst(T ) | snd(T ) | inl(T ) | inr(T )
| roll(T ) | unroll(T ) | fun κ

| case T �inl x.T1 | case T �inr x.T2 | (T1 T2) �κ f(x).T

Environments γ ::= [x1 
→ v1, . . . , xn 
→ vn]

Fig. 1. Abstract syntax of Core TML

Example 1 (Automata provenance framework). The set of traces TM of an automaton
M = (Σ,Q, q0, δ, F ) is the set Q(ΣQ)∗ of alternating sequences of states and alphabet
letters. The queries are simply regular subsets of TM . The provenance views are given
by finite-state transducers. We showed that disclosure is decidable for all queries and
views and that obfuscation is decidable for all queries and views whose range is finite.
It is unknown whether obfuscation is decidable in the general case.

We now proceed to instantiate the framework with traces generated by a much richer
language, with corresponding notions of trace query and provenance view.

3 Core Language

We will develop a core language for provenance based on a standard, typed, call-by-
value, pure language, called Transparent ML, or TML. The syntax of TML types, ex-
pressions, traces, and other syntactic classes is shown in Figure 1. We include standard
constructs for dealing with binary pairs, binary sums, recursive types, and recursive
functions; more general constructs such as records, datatypes, or simultaneous recur-
sive functions can of course be handled without difficulty. In f(x).e, both f and x are
variable names; f is the name of the recursively defined function while x is the name
of the argument.

We abbreviate functional terms of the form f(x).e using the letter κ, when conve-
nient; similarly, we often abbreviate the expression {inl(x1).e1; inr(x2).e2} as m. We
sometimes refer to κ or m as a code pointer or match pointer respectively; in a fixed
program, there are a fixed finite number of such terms and so we can share them instead
of explicitly copying them when used in traces.
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γ, e ⇓ v, T

γ, x ⇓ γ(x), x γ, c ⇓ c, c γ, fun κ ⇓ 〈κ, γ〉, fun κ

γ, e ⇓ v, T

γ,⊕(e) ⇓ ⊕̂(v),⊕(T )

γ, e1 ⇓ v1, T1 γ, e2 ⇓ v2, T2

γ, (e1, e2) ⇓ (v1, v2), (T1, T2)

γ, e ⇓ (v1, v2), T

γ, fst(e) ⇓ v1, fst(T )

γ, e ⇓ v, T

γ, inl(e) ⇓ inl(v), inl(T )

γ, e1 ⇓ v1, T1 γ[x 
→ v1], e2 ⇓ v2, T2

γ, let x = e1 in e2 ⇓ v2, let x = T1 in T2

γ, e ⇓ v, T

γ, roll(e) ⇓ roll(v), roll(T )

γ, e ⇓ roll(v), T

γ, unroll(e) ⇓ v, unroll(T )

(inl(x1).e1 ∈ m) γ, e ⇓ inl(v), T γ[x1 
→ v], e1 ⇓ v1, T1

γ, case e ofm ⇓ v1, case T �inl x1.T1

(inr(x2).e2 ∈ m) γ, e ⇓ inr(v), T γ[x2 
→ v], e2 ⇓ v2, T2

γ, case e ofm ⇓ v2, case T �inr x2.T2

γ, e1 ⇓ 〈κ, γ′〉, T1

(κ = f(x).e) γ, e2 ⇓ v2, T2 γ′[f 
→ 〈κ, γ′〉, x 
→ v2], e ⇓ v, T

γ, (e1 e2) ⇓ v, (T1 T2) �κ f(x).T

Fig. 2. Dynamic semantics of Core TML: selected rules for expression evaluation

3.1 Dynamic Semantics

We augment a standard large-step operational semantics for TML by adding a parameter
T , which records a trace of the evaluation of the expression. The judgment γ, e ⇓ v, T
says that in environment γ, expression e evaluates to value v with trace T . (Traces were
defined in Figure 1.) Many of the trace forms are isomorphic to the corresponding ex-
pression forms. The exceptions are the case and application evaluation rules. In either
case, the first argument is evaluated to determine what expression to evaluate to obtain
the final result. For case traces, we record the trace of the case scrutinee and the taken
branch. Traces can contain free variables and so we re-bind the variable in the trace
of the taken branch. Similarly for an application we record the traces of the function
subexpression and the argument subexpression, and also record the trace of the evalua-
tion of the body of the function. Again, since the body trace can mention the function
and argument names as free variables, we re-bind these variables.

We want to emphasize at this point that we do not necessarily expect that implemen-
tations routinely construct fully detailed traces along the above lines. Rather, the trace
semantics is proposed here as a candidate for the most detailed form of provenance we
will consider. Recording and compressing or filtering relevant information from traces
in an efficient way is beyond the scope of this paper.

Trace Replay. We equip traces with a semantics that relates them to expressions. We
write γ, T � v for the replay relation that reruns a trace on an environment (possibly
different from the one originally used to construct T ). The rules for most trace forms
are the same as the standard rules for evaluating the corresponding expression forms.
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γ, T � v

γ, T � inl(v) γ[x1 
→ v], T1 � v1

γ, case T �inl x1.T1 � v1

γ, T � inr(v) γ[x2 
→ v], T2 � v2

γ, case T �inr x2.T2 � v2

γ, T1 � 〈κ, γ′〉 γ, T2 � v2, T
′
2 γ′[f 
→ 〈κ, γ′〉, x 
→ v2], T � v

γ, (T1 T2) �κ f(x).T � v

Fig. 3. Dynamic semantics of Core TML: selected rules for trace replay

Figure 3 shows the rules for replaying case and application traces. Essentially, these
rules require that the same control flow branches are taken as in the original run. If
the input environment is different enough that the same branches cannot be taken, then
replay fails.

3.2 Basic Properties of Traces

In this section, we identify key properties of traces, including type safety, and the con-
sistency and fidelity properties that characterize how traces record the evaluation of an
expression.

Determinacy and Type Safety. We employ a standard type system for expressions, with
straightforward extensions to handle traces. Determinacy of typechecking and type-
safety can be established for expression evaluation and trace replay. Types do not play
a significant role in the main technical results, however, so we elide the details.

Consistency and Fidelity. We say that a trace T is consistent with an environment γ if
there exists v such that γ, T � v. Evaluation produces consistent traces, and replaying
a trace on the same input yields the same value:

Theorem 1 (Consistency). If γ, e ⇓ v, T then γ, T � v.

Furthermore, the trace produced by evaluation is faithful to the original expression, in
the sense that whenever the trace can be successfully replayed on a different input, the
result (and its trace) is the same as what we would obtain by rerunning e from scratch,
and the resulting trace is the same as well. We call this property fidelity.

Theorem 2 (Fidelity). If γ, e ⇓ v, T and γ′, T � v′ then γ′, e ⇓ v′, T .

4 Provenance Views and Trace Queries

4.1 Provenance Extraction

Many previous approaches to provenance can be viewed as performing a form of anno-
tation propagation. The idea is to decorate the input with annotations (often, initially,
unique identifiers) and propagate the annotations through the evaluation. For example,
in where-provenance, annotations are optional tags that can be thought of as pointers
showing where output data was copied from in the source [6,5]. Other techniques, such
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F(x, γ̂) = γ̂(x)

F(let x = T1 in T2, γ̂) = F(T2, γ̂[x 
→F(T1, γ̂)])

F(c, γ̂) = cFc

F(⊕(T1, . . . , Tn), γ̂) = (⊕̂(v1, . . . , vn))
F⊕(a1,...,an)

where vai
i = F(Ti, γ̂)

F((T1, T2), γ̂) = (F(T1, γ̂),F(T2, γ̂))
⊥

F(fst(T ), γ̂) = v
F1(a,b)
1

where (vb1, v̂2)
a = F(T, γ̂)

F(inl(T ), γ̂) = inl(F(T, γ̂))⊥

F((case T ) �inl x.T1, γ̂) = vFL(a,b)

where inl(v̂)a = F(T, γ̂)
and vb = F(T1, γ̂[y 
→v̂])

F(fun κ, γ̂) = 〈κ, γ̂〉Fκ
F((T1 T2) �κ f(x).T, γ̂) = vFapp(a,b)

where 〈κ, γ̂′〉a = F(T1, γ̂)
and v̂2 = F(T2, γ̂)

and vb = F(T, γ̂′[f 
→〈κ, γ̂′〉a, x 
→v̂2]))

Fig. 4. Generic extraction (selected rules)

as why-, how-, dependency, and workflow provenance, can also be defined in terms of
annotation propagation [18,17,4,10].

Based on this observation, we define a provenance extraction framework in which
values are decorated with annotations and extraction functions take traces and return
annotated values that can be interpreted as useful provenance information. We apply
this framework to specify several concrete annotation schemes and extraction functions.

Extraction framework. Let A be an arbitrary set of annotations a, which we usually
assume includes a blank annotation⊥ and a countably infinite set of identifiers � ∈ Loc,
called locations. We define A-annotated values v̂ (or just annotated values, when A is
clear) using the following grammar:

v̂ ::= va γ̂ ::= [x1 → v̂1, . . . , xn → v̂n]

v ::= c | (v̂1, v̂2) | inl(v̂) | inr(v̂) | 〈κ, γ̂〉 | roll(v̂)

We write γ̂ for annotated environments mapping variables to annotated values. We de-
fine an erasure function |v̂| that maps each annotated value to an ordinary value by
erasing the annotations. Similarly, |γ̂| is the ordinary environment obtained by erasing
the annotations from the values of γ̂.

We will define a family of provenance extraction functions F(T, γ̂) that take a trace
T and an environment γ̂ and return an annotated value. Each such F can be specified by
giving the following annotation-propagation functions:

Fc,Fκ : A

F1,F2,FL,FR,Fapp,Funroll : A×A→ A

F⊕ : A× · · · ×A→ A
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Each function shows how the annotations involved in the corresponding computational
step propagate to the result. For example, F1(a, b) gives the annotation on the result of
a fst-projection, where a is the annotation on the pair and b is the annotation of the
first element. Figure 4 shows how to propagate annotations through a trace given basic
annotation-propagation functions.

Remark 1. The extraction framework hard-wires the behavior of certain operations
such as let, inl(), inr(), and application. It would also be possible to extend the
framework to provide to customize their behavior; however, this functionality is not
needed by any of the forms of provenance in this paper, and it is not clear whether there
are natural provenance models that require them.

Theorem 3. Every generic provenance extraction function is compatible with replay:
that is, for any γ̂, T, v, if |γ̂|, T � v then |F(T, γ̂)| = v.

Where-provenance. Where-provenance can be defined via an annotation-propagating
semantics where annotations are either labels � or the blank annotation ⊥. We define
the where-provenance semantics W(T, γ̂) using the following annotation-propagation
functions:

Wc,Wκ = ⊥
W1,W2,WL,WR,Wapp,Wunroll = λ(x, y).y

W⊕ = λ(a1, . . . , an).⊥

Essentially, these functions preserve the annotations of data that are copied, and anno-
tate computed or constructed data with ⊥. This semantics is similar to that in Buneman
et al. [5] and previous treatments of where-provenance in databases, adapted to TML.

Theorem 4. Suppose |γ̂|, e ⇓ v′, T . If an annotated value va appears in W(T, γ̂) with
annotation a �= ⊥, then va is an exact copy (including any nested annotations) of a
part of γ̂.

Expression provenance. To model expression provenance, we consider expression an-
notations t consisting of labels �, blanks ⊥, constants c, or primitive function applica-
tions ⊕(t1, . . . , tn). We define expression-provenance extraction E(T, γ̂) in much the
same way as W, with the following differences:

Ec = c E⊕(t1, . . . , tn) = ⊕(t1, . . . , tn)

It would also be straightforward to define a translation from traces to provenance graphs
(for example, Open Provenance Model graphs [23]).

The correctness property for expression provenance states that the expression anno-
tation correctly recomputes the value it annotates.

Theorem 5. Suppose |γ̂|, e ⇓ v′, T , where each subvalue in γ̂ is annotated with a copy
of itself. If an annotated value ve appears in E(T, γ̂) with e �= ⊥, then e is a closed
expression evaluating to |v|.
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Dependency provenance. To extract dependency provenance, we will use annotations
φ that are sets of source locations {�1, . . . , �n}. Initial annotations consist of distinct
singleton sets {�}. We define D(T, γ̂) using the following propagation functions:

Dc,Dκ = ∅
D1,D2,DL,DR,Dapp,Dunroll = λ(x, y).x ∪ y

D⊕ = λ(a1, . . . , an).a1 ∪ · · · ∪ an

This semantics is based on the dynamic provenance tracking semantics given by Ch-
eney et al. [9], generalized to TML.

This definition satisfies the dependency-correctness property introduced in [9]. This
property requires an auxiliary relation ≈� that says that two annotated values are equal
except possibly at parts labeled by �, whose straightforward definition we omit. Then
we can show:

Theorem 6. Suppose |γ̂|, e ⇓ v, T and γ̂′ ≈� γ̂ and |γ̂′|, e ⇓ v′, T ′. Then we have
D(T, γ̂) ≈� D(T

′, γ̂′).

This says that the label of a value in the input propagates to all parts of the output where
changing the value can have an impact on the result.

Path annotations. For annotations to be useful when the full input is unavailable, we
consider annotations where the locations � are paths that uniquely address parts of
the input environment. We write path(γ) for the environment γ with each compo-
nent annotated with the path to that component. More generally, we define pathp(γ)
as [x1 := pathp.x(γ(x1)), . . . , xn := pathp.xn

(γ(xn))] where pathp(v) is defined as
follows:

pathp(c) = cp

pathp((v1, v2)) = (pathp.1(v1), pathp.2(v2))
p

pathp(inl(v)) = inl(pathp.1(v))
p

pathp(inr(v)) = inr(pathp.1(v))
p

pathp(〈κ, γ〉) = 〈κ, pathp(γ)〉p

For example, path([x = (1, 2), y = inl(4)]) = [x = (1x.1, 2x.2)x, y = inl(4y.inl)y].

4.2 Patterns, Partial Traces, and Trace Queries

We introduce patterns for values, environments and traces. The syntax of patterns (pat-
tern environments) is similar to that of values (respectively environments), extended
with special holes:

p ::= c | (p1, p2) | inl(p) | inr(p) | roll(p) | 〈κ, ρ〉 | ♦ | �
ρ ::= [x1 → p1, . . . , xn → pn]

Patterns actually denote binary relations on values. The hole symbol � denotes the total
relation, while the exact-match symbol ♦ denotes the identity relation. (The ♦ pattern
is used in backward disclosure slicing.)



A Core Calculus for Provenance 421

v ≈p v

v ≈� v′ v ≈♦ v c ≈c c

v1 ≈p1 v′1 v2 ≈p2 v′2

(v1, v2) ≈(p1,p2) (v
′
1, v

′
2)

v ≈p v′ C ∈ {inl, inr, roll}
C(v) ≈C(p) C(v′)

γ ≈ρ γ′

〈κ, γ〉 ≈〈κ,ρ〉 〈κ, γ′〉

γ ≈ρ γ′ ⇐⇒ ∀x ∈ dom(ρ). γ(x) ≈ρ(x) γ
′(x)

Fig. 5. Equality modulo patterns

� % p = p %� = p ♦ % p = p % ♦ = p[♦/�]

(p1, p2) % (p′1, p
′
2) = (p1 % p′1, p2 % p′2) c % c = c

C(p) % C(p′) = C(p % p′) C ∈ {inl, inr, roll}
〈κ, ρ〉 % 〈κ, ρ′〉 = 〈κ, ρ % ρ′〉

(ρ % ρ′)(x) =

⎧⎨
⎩

ρ(x) % ρ′(x) x ∈ dom(ρ) ∪ dom(ρ′)
ρ(x) x ∈ dom(ρ)\dom(ρ′)
ρ′(x) x ∈ dom(ρ′)\dom(ρ)

Fig. 6. Least upper bounds of patterns and environments

We say that v matches v′ modulo p (written v ≈p v′) if v and v′ match the structure
of p, and are equal at corresponding positions denoted by ♦. Moreover, we say p / v
if v ≈p v, and we write p % p′ for the least upper bound (join) of two patterns. Rules
defining ≈p and % are given in Figures 5 and 6.

When p / v, we write v|p for the pattern obtained by replacing all of the ♦-holes in
p with the corresponding values in v. For example, (1, 2)|(♦,�) = (1,�). Similarly, we
write γ|ρ for [x1 = γ(x1)|ρ(x1), . . . , xn = γ(xn)|ρ(xn)].

We also consider partial traces, usually written S, which are trace expressions where
some subexpressions have been replaced with �:

S ::= · · · | �

As with patterns, we write S / T to indicate that T matches S, that is, S can be made
equal to T by filling in some holes.

For the purpose of disclosure and obfuscation analysis, we will consider the “traces”
to be triples (γ, T, v) where T is consistent with γ and v, that is, γ, T � v. We refer to
such a triple as a consistent triple. Furthermore, to analyze forms of provenance based
on annotation we will consider consistent annotated triples (γ̂, T, v̂) where v̂ = F(T, γ̂).
We consider trace or provenance queries built out of partial values and partial traces.
We will later also consider queries derived from different forms of provenance, based
on annotated triples.

Definition 5. 1. Let φ(γ) be a predicate on input environments. An input query
INγ.φ(γ) is defined as {(γ, T, v) | γ, T � v and φ(γ)}. As a special case, we
write INρ for INγ.(ρ / γ).
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2. Let φ(v) be a predicate on output values. An output query OUTv.φ(v) is de-
fined as {(γ, T, v) | γ, T � v and φ(v)}. As a special case, we write OUTp =
OUTv.(p / v).

5 Disclosure and Obfuscation Analysis

5.1 Disclosure

We first consider properties disclosed by various forms of provenance considered above.
Both where-provenance and expression provenance disclose useful information about
the input. Dependency provenance does not disclose input information in an easy-to-
analyze way, but is useful for obfuscation, as discussed later.

For where-provenance, we consider input queries Qv0,� = INγ. (γ.� = v0) and out-
put queries Q′

v0,�
= OUTv. (v.� = v0), where � is a path and v0 is a value. Such a

query tests whether the value at a given path in γ or v matches the provided value.

Theorem 7. The provenance view (γ, T, v) →W(T, path(γ)) positively disclosesQv0,�

via Q′
v0,�

.

For expression-provenance, let γ(t) be the result of evaluating t in γ with all paths � re-
placed by their valuesγ.� in γ. We consider queriesQt,v0 = INγ. (γ(t) = v0), where t is
an expression provenance annotation and v0 is a value. Such a query tests whether evalu-
ating an expression e over γ yields the specified value. For example, INγ. x.1 + y.2 = 4
holds for γ = [x = (1, 2), y = (2, 3)], because γ(x.1) + γ(y.2) = 1 + 3 = 4. We also
consider output queries Q′

t,v0 = OUTv. (v̂1
t appears in v and |v̂1| = v0), that simply

test whether an annotated copy of v0 appears in the output with annotation t.

Theorem 8. The provenance view (γ, T, v) → E(T, path(γ)) positively disclosesQt,v0

via Q′
t,v0 .

Expression provenance and where-provenance are also related in the following sense:

Theorem 9. Where-provenance is computable from expression-provenance.

Proof. Where-provenance annotations can be extracted from expression-provenance
annotations by mapping locations � to themselves and all other expressions to ⊥.

Note that this implies that for a function like “factorial”, the where-provenance of the
output is always ⊥. Hence, any query disclosed by where-provenance is disclosed by
expression-provenance, and any query obfuscated by expression-provenance is also ob-
fuscated by where-provenance.

We now consider a form of trace slicing that takes a partial output value and removes
information from the input and trace that is not needed to disclose the output. We show
that such disclosure slices also disclose generic provenance views (Theorem 11). Thus,
disclosure slices form a quite general form of provenance in their own right.

Definition 6. Let γ, T ⇓ v, and suppose S / T and ρ / γ. We say (ρ, S) is a dis-
closure slice with respect to partial value p if for all γ′  ρ and T ′  S such that if
γ′, T ′ � v′, we have p / v iff p / v′.
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p, T
disc−→ S, ρ

�, T
disc−→ �, [] p, x

disc−→ x, [x 
→ p] p, c
disc−→ c, [] 〈κ, ρ〉, fun κ

disc−→ fun κ, ρ

〈κ′, ρ〉,fun κ
disc−→ fun κ′,�

p2, T2
disc−→ S2, ρ2[x 
→ p1] p1, T1

disc−→ S1, ρ1

p2, let x = T1 in T2
disc−→ let x = S1 in S2, ρ1 % ρ2

♦, T1
disc−→ S1, ρ1 · · · ♦, Tn

disc−→ Sn, ρn

p,⊕(T1, . . . , Tn)
disc−→ ⊕(S1, . . . , Sn), ρ1 % · · · % ρn

p1, T1
disc−→ S1, ρ1 p2, T2

disc−→ S2, ρ2

(p1, p2), (T1, T2)
disc−→ (S1, S2), ρ1 % ρ2

(p,�), T
disc−→ S, ρ

p, fst(T )
disc−→ fst(S), ρ

p, T
disc−→ S, ρ

inl(p),inl(T )
disc−→ inl(S), ρ

p, T
disc−→ S, ρ

inl(p),inr(T )
disc−→ inr(�), []

p, T
disc−→ S, ρ

roll(p),roll(T )
disc−→ roll(S), ρ

roll(p), T
disc−→ S, ρ

p, unroll(T )
disc−→ unroll(S), ρ

p1, T1
disc−→ S1, ρ1[x1 
→ p] inl(p), T

disc−→ S, ρ

p1, case T �inl x1.T1
disc−→ case S �inl x1.S1, ρ % ρ1

p, T
disc−→ S, ρ[f 
→ p1, x 
→ p2] p1 % 〈κ, ρ〉, T1

disc−→ S1, ρ1 p2, T2
disc−→ S2, ρ2

p, (T1 T2) �κ f(x).T
disc−→ (S1 S2) �κ f(x).S, ρ1 % ρ2

fvs(κ) = {x1, . . . , xn}

♦, fun κ
disc−→ fun κ, [x1 
→ ♦, . . . , xn 
→ ♦]

♦, T1
disc−→ S1, ρ1 ♦, T2

disc−→ S2, ρ2

♦, (T1, T2)
disc−→ (S1, S2), ρ1 % ρ2

♦, T disc−→ S, ρ

♦, inl(T ) disc−→ inl(S), ρ

♦, T disc−→ S, ρ

♦, inr(T ) disc−→ inr(S), ρ

♦, T disc−→ S, ρ

♦, roll(T ) disc−→ roll(S), ρ

Fig. 7. Disclosure slicing (selected rules)

Note that by this definition, minimal disclosure slices exist (since there are finitely many
slices) but need not be unique. For example, both �∨true and true∨� are disclosure
slices showing that true∨ true evaluates to true, but �∨� is not a disclosure slice.

Figure 7 shows selected rules defining a disclosure slicing judgment p, T
disc−→ ρ, S.

Basically, the idea is to push a partial value backwards through a trace to obtain a partial
input environment and trace slice. The partial input environment is needed to handle
local variables in traces; for example, in the rule for let, we first slice through the
body of the let, then identify the partial value showing the needed parts of the let-bound
value, and use that to slice backwards through the first subtrace. Slicing for application
traces is similar, but more complex due to the closure environments. Note also that the
special ♦ patterns are used to slice backwards through primitive operations even when
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we do not know the values of the inputs or results. (Another possibility is to annotate
the traces of primitive operations with these values.)

Lemma 1. If γ, T � v then for any p / v there exists S / T and ρ / γ such that

p, T
disc−→ S, ρ. Moreover, there is a unique least such S and ρ.

We choose a functionDiscp(γ, T, v) on consistent triples (γ, T, v)whose value is (γ|ρ, S)
where p, T

disc−→ S, ρ and S, ρ are the least slices (obtained by determinizing the slicing
algorithm by applying the first, hole-propagating rule greedily before any other rule).
The idea is that we slice using the rules in Figure 7 and then transform ρ by filling in all
♦-holes with the corresponding values in γ. Note that the v parameter is irrelevant and
is included only so that Discp is a uniform function from consistent triples to slices.

To prove the correctness of this disclosure slicing algorithm, we need a stronger
notion of equivalence. Recall the definition of v ≈p v′ as shown in Figure 5. Using this
relation, we can prove the correctness of the slicing relation as follows:

Lemma 2. Assume γ, T � v and p, T
disc−→ S, ρ.

1. If p / v then for all γ′ ≈ρ γ and T ′  S, if γ′, T ′ ⇓ v′ then v′ ≈p v.
2. If p �/ v then for all γ′ ≈ρ γ and T ′  S, if γ′, T ′ ⇓ v′ then p �/ v′.

Proof. Both parts follow by induction on the structure of slicing derivations.

Correctness follows as a consequence of the above two properties.

Theorem 10. Discp discloses OUTp.

Proof. Suppose Discp(γ, T, v) = Discp(γ
′, T ′, v′). Then (γ|ρ, S) = (γ′|ρ′ , S′) where

p, T
disc−→ S, ρ and p, T ′ disc−→ S′, ρ′. Hence, S = S′ and γ|ρ = γ′|ρ′ , which in turn im-

plies γ ≈ρ γ′. Suppose that OUTp(γ, T, v) holds; that is, p / v. Then by Lemma 2(1),
v′ ≈p v so p / v′. Conversely, suppose p �/ v. Then by Lemma 2(2), we have p �/ v′.

Disclosure from slices. Finally, we link disclosure for value patterns to disclosure for
generic provenance views. Essentially, we show that for any F, the disclosure slice for p
positively discloses the F-provenance annotations of values matching p. Informally, this
means that disclosure slices provide a highly general form of provenance specialized to
a part of the output: one can compute and reveal the disclosure slice and others can then
compute any generic provenance view from the slice, without rerunning the original
computation or consulting input data or subtraces that are dropped in the slice.

Theorem 11. Assume |γ̂|, T � v and p / v. Suppose p, T
disc−→ S, ρ. Suppose that F

is a generic extraction function. Then the annotations associated with p in F(T, γ̂) can
be correctly extracted from S using only input parts needed by ρ. That is, suppose we
have γ̂ ≈ρ γ̂′ (lifting ≈− to annotated values in the obvious way) and T ′  S, where
|γ̂′|, T ′ � v′. Then we have F(T, γ̂) ≈p F(T ′, γ̂′).
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5.2 Obfuscation

We now consider obfuscating properties of traces. We first consider what can be ob-
fuscated by the standard provenance views. Where-provenance, essentially, obfuscates
anything that can never be copied to the output or affect the control flow of something
that is copied to the output. Similarly, expression provenance obfuscates any part of
the input that never participates in expression annotations. In both cases, we can poten-
tially learn about parts of the input that affected control flow, however. For example,
if x = 1 then 1 else y does not obfuscate the value of x in either model, provided
y comes from the input, since we can inspect the annotation of the result to determine
that x = 1 or x �= 1.

Given that we want to ensure obfuscation, we consider conservative techniques that
accept (or construct) only provenance views that successfully obfuscate, but may reject
some views or construct views that are unnecessarily opaque.

There are several ways to erase information from traces (or other provenance views)
to ensure obfuscation of input properties. One way is to re-use the static analysis of
dependency provenance (in [9], for example) to identify parts of the output that suf-
fice to make it impossible to guess sensitive parts of the input. Alternatively we can
use dynamic dependency provenance to increase precision, by propagating dependency
tracking information from the input to the output.

This is similar to using static analysis or dynamic labels for information flow secu-
rity; the difference is one of emphasis. In information flow security, we usually identify
high- or low-security locations and try to certify that high-security data does not affect
the computation of low-security data; here, instead, we identify a high-security prop-
erty of the trace (e.g. that the input satisfies a certain formula) and try to determine what
parts of the output do not depend on sensitive inputs, and hence can be safely included
in the provenance view. However, these techniques do not provide guidance about what
parts of the trace can be safely included in the provenance view.

Here, we develop an alternative approach based on traces. Consider a pattern ρ / γ
that erases all information that is considered sensitive. We construct an obfuscation slice
by re-evaluating T on ρ as much as possible, to compute a sliced trace S and partial
value p. We erase parts of T and of the original output value that depend on the erased
parts of ρ. Thus, any part of the trace or output value that remains in the obfuscation
slice is irrelevant to the sensitive part of the input, and cannot be used to guess it.

Figure 8 shows a syntactic algorithm for computing obfuscation slices as described
above. Many rules are essentially generalizations of the rules for evaluation to allow for
partial inputs, outputs and traces. The rules of interest, near the bottom of the figure,
show how to handle attempts to compute that encounter holes in places where a value
constructor is expected. When this happens, we essentially propagate the hole result
and return a hole trace. This may be unnecessarily aggressive for some cases, but is
necessary for the case and application traces where the trace form gives clues about the
control flow.

We define Obfρ(γ, T, v) as (p, S) where ρ, T
obf−→ p, S. We can show that this is

total for well-formed, ♦-free traces and input environments.

Lemma 3. If γ, T � v and ρ / γ and ρ, T
obf−→ p, S then p / v and S / T .
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ρ, T
obf−→ p, S

ρ, x
obf−→ ρ(x), x ρ, c

obf−→ ρ(x), c ρ, fun κ
obf−→ 〈κ, ρ〉,fun κ

ρ, T1
obf−→ p1, S1 ρ[x 
→ p1], T2

obf−→ p2, S2

ρ, let x = T1 in T2
obf−→ p2, let x = S1 in S2

ρ, T1
obf−→ v1, S1 · · · ρ, Tn

obf−→ vn, Sn

ρ,⊕(T1, . . . , Tn)
obf−→ ⊕(v1, . . . , vn),⊕(S1, . . . , Sn)

ρ, T1
obf−→ p1, S1 ρ, T2

obf−→ p2, S2

ρ, (T1, T2)
obf−→ (p1, p2), (S1, S2)

ρ, T
obf−→ (p1, p2), S

ρ, fst(T )
obf−→ p1, fst(S)

ρ, T
obf−→ p, S

ρ, inl(T )
obf−→ inl(p),inl(S)

ρ, T
obf−→ inl(p), S ρ[x1 
→ p], T1

obf−→ p1, S1

ρ, case T �inl x1.T1
obf−→ p1, case S �inl x1.S1

ρ, T
obf−→ p, S

ρ,roll(T )
obf−→ roll(p),roll(S)

ρ, T
obf−→ roll(p), S

ρ, unroll(T )
obf−→ p, unroll(S)

ρ, T1
obf−→ 〈κ, ρ0〉, S1 ρ, T2

obf−→ p2, S2 ρ[f 
→ 〈κ, ρ0〉, x 
→ p2], T
obf−→ p, S

ρ, (T1 T2) �κ f(x).T
obf−→ p, (S1 S2) �κ f(x).S

ρ, Ti
obf−→ �, Si

ρ,⊕(T1, . . . , Tn)
obf−→ �,�

ρ, T
obf−→ �, S

ρ,fst(T )
obf−→ �,�

ρ, T
obf−→ �, S

ρ, unroll(T )
obf−→ �,�

ρ, T
obf−→ �, S

ρ,case T �inl x1.T1
obf−→ �,�

ρ, T1
obf−→ �, S1

ρ, (T1 T2) �κ f(x).T
obf−→ �,�

Fig. 8. Obfuscation slicing (selected rules)

Lemma 4. If γ, e ⇓ v, T and ρ / γ and ρ, T
obf−→ p, S then for all γ′  ρ, if γ′, e ⇓

v′, T ′ then ρ, T ′ obf−→ p, S.

Theorem 12. For traces generated by terminating expressions, and ρ with holes of
nonsingular types, and ρ′  ρ, we have Obfρ positively obfuscates INρ′ .

Proof. Suppose INρ′ holds of (γ, T, v) where ρ′  ρ. Then ρ � ρ′ / γ. Moreover,
since the inclusion is strict, ρ must contain holes that can be replaced with different
values, so there exists another γ′  ρ that differs from ρ′. Since T was generated by a
terminating expression, we know that γ′, e ⇓ v′, T ′ can be derived for some v′, T ′. By

Lemma 4 (and the easily-verified determinacy of
obf−→) we know that ρ, T ′ obf−→ p, S,

hence Obfρ(γ′, T ′, v′) = (p, S) = Obfρ(γ, T, v), as required.

5.3 Discussion

The analysis in section 5.1 gives novel characterizations of what information is dis-
closed by where-provenanceand expression provenance. Essentially, where-provenance
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discloses information about what parts of the input are copied to the output, while ex-
pression provenance additionally discloses information about how parts of the input can
be combined to compute parts of the output. The analysis in section 5.1 also shows (in
a formal sense) that where-provenance and expression provenance are closely related:
one can obtain where-provenance from expressions simply by erasure. Moreover, we
can obtain a number of intermediate provenance models based on transductions over
expression-provenance annotations.

The disclosure slicing algorithm is based on an interesting insight (which we are
exploring in concurrent work on slicing): at a technical level, the information we need
for program comprehension via slicing (to understand how a program has evaluated its
inputs to produce outputs) is quite similar to what we need for provenance. Although we
have identified connections between provenance and slicing before [9], our disclosure
and obfuscation slicing algorithms provide further evidence of this close connection.

6 Related Work

There is a huge, and growing, literature on provenance [3,10,24,22], but there is little
work on formal models of provenance and none on provenance in a general-purpose
higher-order language. Due to space limits, we confine our comparison to closely re-
lated work on formal techniques for provenance, and on related ideas in programming
languages and language-based security. We refer the interested reader to the aforemen-
tioned surveys for more information on provenance in workflows and databases, and
to [11,8] for further discussion of prior work on provenance security.

Provenance. This work differs from previous work on provenance in databases in
several important ways. First, we consider a general purpose, higher-order language,
whereas previous work considers database query languages of limited expressiveness
(e.g., monotone query languages), which include unordered collection types with
monadic iteration operations but not sum types, recursive types or first-class functions.
Second, we aim to record traces adequate to answer a wide range of provenance queries
in this general setting, whereas previous work has focused on particular kinds of queries
(e.g., where-provenance [6,5], why-provenance [6], how-provenance [18,17]).

Provenance has also been studied extensively for scientific workflow systems
[3,24,14]. Most work in this area describes the provenance tracking behavior of a sys-
tem through examples and does not give a formal semantics that could be used to prove
correctness properties. An exception is Hidders et al. [20], which is the closest workflow
provenance work to ours. They model workflows using a core database query language
extended with nondeterministic, external function calls, and partially formalize a se-
mantics of runs, or sets of triples (γ, e, v) labeling an operational derivation tree.

Other related topics. Our trace model is partly inspired by previous work on self-
adjusting computation [1], where execution traces are used to efficiently recompute
functional programs under arbitrary modifications to their inputs. Provenance-like ideas
have also appeared in the context of bidirectional computation [2]. Dimoulas et al. study
correctness properties for blame in contracts based on semantic properties that, they
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suggest, may be related to provenance [16]. However, to our knowledge no formal re-
lationships between provenance and self-adjusting computation, bidirectional compu-
tation, or blame have been developed.

7 Conclusions

While the importance of understanding provenance and its security characteristics has
been widely documented, to date there has been little work on formal modeling of ei-
ther provenance or provenance security. In this paper, we elaborate upon the ideas intro-
duced in previous work [8], by instantiating the formal framework proposed there with
a general-purpose functional programming language and a natural notion of execution
traces. We showed how more conventional forms of provenance can be extracted from
such traces via a generic provenance extraction mechanism. Furthermore, we studied
the key notions of disclosure and obfuscation in this context. In the process we identi-
fied weaker positive and negative variants of disclosure and obfuscation, based on the
observation that the original definitions seem too strong to be satisfied often in prac-
tice. Our main results include algorithms for disclosure slicing, which traverses a trace
backwards to retain information needed to certify how an output was produced, and
obfuscation slicing, which reruns a trace on partial input (excluding sensitive parts of
the input), yielding a partial trace and partial output that excludes all information that
could help a principal learn sensitive data.

To summarize, our main contribution is the development of a general model of prove-
nance in the form of a core calculus that instruments runs of programs with detailed
execution traces. We validated the design of this calculus by showing that traces gener-
alize other known forms of provenance and by studying their disclosure and obfuscation
properties. There are many possible avenues for future work, including:

– identifying richer languages for defining trace queries or provenance views
– developing and implementing effective algorithms for trace slicing, and relating

these to program slicing
– extending trace and provenance models to handle references, exceptions, input/

output, concurrency, nondeterminism, communication, etc.
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