
L. Wang et al. (Eds.): WAIM 2011 Workshops, LNCS 7142, pp. 26–39, 2012.
© Springer-Verlag Berlin Heidelberg 2012

HTPR*-Tree: An Efficient Index for Moving Objects
to Support Predictive Query and Partial History Query

Ying Fang, Jiaheng Cao, Junzhou Wang, Yuwei Peng, and Wei Song

School of Computer, Wuhan University, Wuhan, China
{fangying,jhcao,ywpeng,songwei}@whu.edu.cn

Abstract. Developing efficient index structures is an important issue for moving
object database. Currently, most indexing methods of moving objects are focused
on the past position, or on the present and future one. In this paper, we propose a
novel indexing method, called HTPR*-tree (History Time-Parameterized
R-tree), which not only supports predictive queries but also partial history ones
involved from the most recent update instant of each object to the last update
time. Based on the TPR*-tree, our HTPR*-tree adds creation or update time of
moving objects to leaf node entries. This index is the foundation of indexing the
past, present and future positions of moving objects. In order to improve the
update performance, we present a bottom-up update strategy for the HTPR*-tree
by supplementing three auxiliary structures which include hash index, bit vector,
and direct access table. Experimental results show that the update performance
of the HTPR*-tree is better than that of the TD_HTPR*- and TPR*-tree.
Moreover, the HTPR*-tree can support partial history queries compared with
TPR*-tree although the predictive query performance is a bit less.

Keywords: moving object indexing, HTPR*-tree, predictive query, partial
history query, bottom-up update strategy.

1 Introduction

Developing efficient index structures is an important research issue for moving object
database. Traditional spatial index structures are not appropriate for indexing moving
objects because the constantly changing locations of objects requires constant updates
to the index structures and thus greatly degrades their performance.

Some index structures have been proposed for moving objects. They can be
classified into two major categories depending on whether they deal with past infor-
mation retrieval or future prediction. Currently, some indices suitable for history and
future information retrieval of moving objects have also been studied. However, they
are too complicated and could not efficiently handle queries involved from the past to
the future.

In general, indexing about past trajectories of moving objects only stores history
information from some past time until the time of the most recent position sample
(to

mru) of each object o. However, indexing of the current and anticipated future

 HTPR*-Tree: An Efficient Index for Moving Objects 27

positions can only supports the query from the last update time (tlu=max(to
mru|o∈O) to

the future. In other words, the history trajectories of moving objects from the most
recent update instant to the last update time (or the current time CT) are omited. In
order to support the queries involved from the past to the future in moving object
databases, current and future positions indexing structure such as TPR-tree [1] and
TPR*-tree [2] should be extended to support partial history queries.

The TPR*-tree is the most useful indexing method which indices the current and
future position of moving object through Time-Parameterized Rectangles. In the
TPR*-tree, partial history trajectories of moving objects which do not update at the last
update time are implicit, but they couldn’t be queried. In order to query history tra-
jectories in the TPR*-tree, in this paper, we develop a novel index structure which not
only supports predictive queries, but also supports partial history queries involved from
the most recent update instant of each object to the last update time. This novel index
structure is very important to support the queries involved from the past to the future.
In order to support frequent update, bottom-up update strategy is also applied to the
new index structure.

The main contributions of this paper can be summarized as:

1. We present an new index structure, named History Time-Parameterized R-tree
(HTPR*-tree), which takes into account moving object creation time or update time in
the leaf node entry, and supports partial history query.

2. We propose a bottom-up update approach referencing the R-tree update tech-
nique[3] to support frequent update operation of the HTPR*-tree.

3. We prove through extensive experiments that the update performance of the
HTPR*-tree is better than that of the TD_HTPR*- and TPR*-tree.

The organization of this paper is as follows. Section 2 presents related works.
Section 3 shows the basic structure of the HTPR*-tree, the corresponding dynamic
maintenance, and query algorithms. In section 4, we discuss the bottom-up update
algorithm of the HTPR*-tree. Section 5 contains an extensive experimental evaluation,
and section 6 is the conclusion of our work.

2 Related Works

A number of index structures have been proposed for moving object database. Most of
these index structures are classified into two categories; one of them is to handle past
positions or trajectories [4-6], and the other is to handle current and future positions
[1,2,7-12]. In addition, some indices suitable for history and future queries of moving
objects have also been studied [13,14].

History trajectories indices such as STR-tree and TB-tree [4] are used to index po-
sitions for an object only up to the time of the most recent sample. They can play an
important role in supporting the queries involved from the past to the future.

28 Y. Fang et al.

The search of indexing methods for current and future positions of moving objects
are very challenging. In general, there are three approaches to study the indices for
predictive queries. One is indexing the future trajectories of objects moved in
d-dimensional space as lines in (d+1)-dimensional space [7]. Another is mapping the
trajectories to points in a higher-dimensional space which are then indexed [8]. The
third is to index the original time-space with parametric rectangles [1,2,9].

By introducing parametric bounding rectangles in R-tree, the TPR-tree provides the
capability to answer the queries about current positions and future positions. The
TPR*-Tree improved upon the TPR-Tree by introducing a new set of penalty functions
based on a revised query cost model. In recent years, based on the B+-tree, indices for
moving objects not only supporting queries efficiently but also supporting frequent
updates are proposed. Jensen et al. proposed the Bx-tree [10], which employs space
partitioning and data/query transformations to index object positions and has good
update performance. Chen et al. also proposed the ST2B-tree[11], a Self-Tunable Spa-
tio-Temporal B+-Tree index for moving object database, which is amenable to tuning.

Pelanis et al. proposed RPPF-tree [13] to support both the past and the future
movement of the objects. The implemented query types are only timestamp ones.
Raptopoulou [14] et al. extended the XBR-tree to deal with future prediction as well.
But it only can support timestamp queries involved from the past to the future and
history window queries.

Our work aims to extend the current and future positions indexing structure to
support partial history queries. This new index structure is the foundation of indexing
the past, present and future positions of moving objects. In addition, bottom-up update
strategy is applied to the new index structure in order to support frequent update.

3 The HTPR*-Tree

In this section, we will discuss a novel index structure called History TPR*-tree
(HTPR*-tree). First, we describe the basic structure of the HTPR*-tree. Then, the
insertion and deletion algorithms are shown. The query algorithm is given at the end.

3.1 Index Structure

The HTPR*-tree is a height-balanced tree similar to a R-tree. Leaf nodes of the
HTPR*-Tree contain entries of the form (oid, MBR, VBR, st). Here oid is the identifier
of the moving object, and st is creation or update time of object. MBR denotes object
extent at time st, and VBR denotes velocity bounding rectangle of object at time st.

For example, a two-dimensional moving object is represented with MBR oR={oR1-,
oR1+,oR2-,oR2+} where oRi- (oRi+) describes the lower (upper) boundary of oR along the
i-th dimension (1≤i≤2), and VBR oV={oV1-,oV1+,oV2-,oV2+} where oVi- (oVi+) describes the
velocity of the lower (upper) boundary of oR along the i-th dimension (1≤i≤2). Figure 1
shows the MBRs and VBRs of 4 objects a,b,c,d. The arrows (numbers) denote the
directions (values) of their velocities. The MBR and VBR of b are bR={3,4,4,5} and
bV={1,1,1,1}, respectively.

 HTPR*-Tree: An Efficient Index for Moving Objects 29

The structure of each non-leaf node entry of Rs is in the form of (ptr, MBR, VBR, st1,
st2). Here ptr is a pointer that points to the child node. St1 is the minimal creation or
update time of moving objects included in the child node pointed by ptr, and st2 is the
maximum value compare to st1. MBR is the minimum bounding rectangle at st1, and
VBR is the velocity bounding rectangle at st1. Figure 2 shows a leaf node e including
four point objects {o1,o2,o3,o4} in one-dimensional HTPR*-Tree. So, in parent node of
e, the corresponding entry includes MBR, VBR, st1, st2 and ptr that points to node e.
Here MBR={3,4}, VBR={-0.2, 0.3}, st1=2 and st2=4.

3.2 Insertion and Deletion

1. Insertion
Because the creation or update time of moving objects is included in leaf node entries
of HTPR*-Tree, and non-leaf node entry is different from leaf node entry, the insertion
algorithm of HTPR*-Tree is a bit more complicated than that of TPR*-Tree.

2
0

4 6 8 10

2

4

6

8

10

x axis

y axis

b

c

a

e
d

the (absolute) values

of all velocities are 1

 2 time31 CT4

1

2

3

4

5

6

7

5 6

O1
O2

O4

O3

e

Fig. 1. MBRs and VBRs at reference time Fig. 2. A leaf node e including four point
objects

Algorithm 1 shows the insertion of a moving object in the HTPR*-Tree. First, the
insertion algorithm initializes two empty re-insertion lists Lreinsert1 and Lreinsert2 to ac-
commodate re-insertion moving objects and non-leaf node entries, respectively. Then,
the algorithm calls different functions according to whether the root of HTPR*-tree is a
leaf node or not. Finally, the algorithm inserts each object in Lreinsert1 and each entry in
Lreinsert2 to the HTPR*-tree.

Algorithm 2 describes inserting a moving object to a leaf node. However, algorithm
3 describes inserting a moving object to the HTPR*-tree rooted by a non-leaf node.
Because the insertion of a node entry can cause node split, the insertion algorithm
(algorithm 4) of non-leaf node entry in the HTPR*-Tree is also important.

30 Y. Fang et al.

Algorithm 1. Insert (r, o)
/*Input: o is a moving object with oid, MBR, VBR, st; r is the HTPR*-tree */
1. root=Root(r) /*achive the root of the HTPR*-tree
2. re-insertedi=false for all levels 1≤i≤h−1 (h is the tree height)
3. initialize two empty re-insertion list Lreinsert1 and Lreinsert2

4. if root is leaf node invoke Leaf Node Insert (root, o)
5. else invoke Non-Leaf Node Insert (root, o)
6. for each data o' in the Lreinsert1
7. if root is leaf node invoke Leaf Node Insert (root, o’)
8. else invoke Non-Leaf Node Insert (root, o’)
9. for each entry e in the Lreinsert2

10. invoke Non-Leaf Node Insert_e (root, e)
End Insert

Algorithm 2. Leaf Node Insert (N, o)
/* Input: N is the leaf node where object o is inserted */
1. enter the information of o
2. if N overflows
3. if re-inserted0=false //no re-insertion at leaf level yet
4. invoke Pick Data Worst to select a set Sworst of objects
5. remove objects in Sworst from N; add them to Lreinsert1
6. re-inserted0=true
7. else
8. invoke Leaf Node Split to split N into itself and N'
9. obtain entry e describe node N’
10. invoke Non-Leaf Node Insert_e (P,e) /*P be the parent of N*/
11. adjust the MBR/VBR/st1/st2 of the node N
End Leaf Node Insert (N, o)

Algorithm 3. Non-Leaf Node Insert (N, o)
/* Input: N is the root node of tree rooted by N */
1. obtain the son node N’ of N to insert o through the path achieve by Choose Data

Path
2. if N’ is the leaf node invoke Leaf Node Insert (N’, o)
3. else invoke Non-Leaf Node Insert (N’, o)
4. adjust the MBR/VBR/st1/st2 of the node N
End Non-Leaf Node Insert(N, o)

Algorithm 4. Non-Leaf Node Insert_e (N, e)
/* Input: e is non-leaf node entry
1. if e.level=N.level
2. enter e to N
3. if N overflows
4. if re-insertedi=false //no re-insertion at i level (e.level)yet

 HTPR*-Tree: An Efficient Index for Moving Objects 31

5. invoke Pick Entry Worst to select a set Sworst of entrys
6. remove entrys in Sworst from N; add them to Lreinsert2
7. re-insertedi=true
8. else
9. invoke Non-Leaf Node Split to split N into itself and N'
10. obtain entry e describe node N’
11. invoke Non-Leaf Node Insert_e (P, e) /*P be the parent of N*/
12. else
13. obtain the son node N’ of N through the path achieve by Choose Entry Path
14. invoke Non-Leaf Node Insert_e (N’, e)
15. adjust the MBR/VBR/st1/st2 of the node N
End Non-Leaf Node Insert_e(N, e)

Similiar to that in the TPR*-tree, algorithm Choose Path in the HTPR*-tree aims at
finding the best insertion path globally with a minimum cost increment (minimal
increase in equation 1). If a moving object is inserted, Choose Path is instantiated by
Choose Data Path, and non-leaf node entry inserting calls Choose Entry Path. Because
the creation or update time of moving objects is included in leaf node entries, the
enlarge of entry (caused by inserting a moving object in HTPR*-tree node) involves
history information, and the enlarged entry can support history query. This is the major
difference between HTPR*-tree and TPR*-tree. Of course, the predictive query per-
formance is somehow less than that of TPR*-tree.

The query cost model of the HTPR*-tree is the average number of node accesses for
answering query q:

Cost(q)=∑every node N ASR(N′, qT) (1)

where N is the moving rectangle (interval as for one-dimensional object) representing a
node, N′ is the transformed rectangle (interval as for one-dimensional object) of N with
respect to q, and ASR(N′,qT) is the extent of region swept by N′ during qT.

Figure 3 shows two leaf nodes e1 and e2 that are sons of the root e0. Here the entry
corresponding to e1 is {pt1,{3.2,4},{-0.2,0.3},2,3}, and the entry to e2 is
{pt2,{5,6},{0,0.4},3,4}. Consider the insertion of point object O6={ O6,4.6,0.5,7} at
current time 7. Choose Data Path returns the insertion path with the minimum incre-
ment in equation 1. The cost increment is 1.2 and 0.9 when o6 is inserted to e1 and e2,
respectively. Figure 4 describes insertion o6 to e2, which is the best insertion node.

Insertion to a full node N generates an overflow, in which the HTPR*-tree uses Pick
Worst algorithm that selects a fraction of the entries from the node N and re-inserts
them. Node Split algorithm splits a full node N into N1 and N2. The split algorithm
selects split axis and split position minimizing equation 2:

∆ASR=ASR(N1′,qT)+ASR(N2′,qT)−ASR (N′,qT) (2)

Another important difference between the insertion of HTPR*-tree and that of
TPR*-tree is that the MBR, VBR, st1 and st2 of node N after inserting have to be
modified.

32 Y. Fang et al.

X

time321 CT4

1

2

3

4

5

6

7

5 6

O1
O3

O2

e1

e2

O5

O4

O6
e0

X

time321 CT4

1

2

3

4

5

6

7

5 6

O1
O3

O2
e1

e2

O5

O4

O6e0

Fig. 3. Insert a moving point object o6 Fig. 4. Insert o6 to node e2

2. Deletion
Algorithm 5 describes deleting a moving object in HTPR*-Tree. To remove an object
o, the deletion algorithm first identifies the leaf node that contains o. In algorithm 5,
two empty re-insertion lists Lreinsert3 and Lreinsert4 are initialized to accommodate
re-insertion leaf node entries (moving objects) and non-leaf node entries, respectively.

Algorithm 5. Delete (r, o)

/*Input: o is a moving object with oid, MBR, VBR, st; r is the HTPR*-tree */
1. root=Root(r) /*achive the root of the HTPR*-tree
2. initialize an empty re-insertion list Lreinsert3 and Lreinsert4
3. if root is leaf node invoke Leaf Node Delete (root, o)
4. else invoke Non-Leaf Node Delete (root, o)
5. for each data o' in the Lreinsert3

6. invoke Non-Leaf Node Insert (root, o’)
7. for each entry e in the Lreinsert4

8. invoke Non-Leaf Node Insert_e (root, e)
End Delete (r, o)

Deletion of moving object in leaf node N may generate an underflow, in which case
the HTPR*-tree removes all objects in node N to Lreinsert3, and deletes entry e describes
N in parent node N’. If moving object o is deleted in the HTPR*-tree root by non-leaf
node N, the deletion algorithm calls Leaf Node Delete or Non-Leaf Node Delete in all
son node N’ of N until o is deleted. In algorithm Leaf Node Delete or Non-Leaf Node
Delete, if deletion of moving object o in the HTPR*-tree root by node N changes node
N, adjustment is needed from parent node N’ of N to root.

 HTPR*-Tree: An Efficient Index for Moving Objects 33

3.3 Search Procedure

The HTPR*-tree supports three kinds of predictive queries: timeslice query Q=(R, t),
window query Q=(R, t1, t2), and moving query Q=(R1, R2, t1, t2). At the same time, the
HTPR*-tree supports partial history query. Figure 5 describes timeslice query and
spatio-temporal range query of moving objects. The dashed parts of objects trajectories
are stored in the HTPR*-tree, and support predictive queries and partial history queries.

timetmru CT

1

2

3

4

5

6

7

Q3Q4

Q2

Q1

O3

O2

O1

X

tlu

Fig. 5. Querying the Positions of Moving Objects

For example, query Q1 is predictive timeslice query, and gets object O1 and O2.
Query Q2, Q3, and Q4 are history queries. Query Q2 intersects with partial history
trajectories after the most recent update instant (to

mru) of objects O1 and O2 stored in
HTPR*-tree. However, HTPR*-tree couldn’t realize query Q2 completely because the
query time is earlier than the last update time (tlu). In order to realize the queries in-
volved from the past to the future, HTPR*-tree should be combined with some indices
for describing history trajectories such as TB-tree.

Algorithm 6 is an illustration of spatio-temporal range query in the HTPR*-Tree. In
algorithm RQuery(r, w, T1, T2), if st1 of root is larger than T2, query is unsuccessful.
Else query calls algorithm LeafNodeRQuery (root is leaf node) or nonLeafNodeRQuery
(root is non-leaf node). If T1 is larger than st2 of root and T2 is small than or equal to the
current time, algorithm RQuery can realize history range query completely, which is
very similar to that find in predictive range query. Algorithm IN(o, w, T1, T2) deter-
mines whether object o is located in range w from time T1 to T2.

Algorithm 6. RQuery(r, w, T1, T2)
1. root=Root(r) /*achive the root of the HTPR*-tree
2. get st1 and st2 of root
3. if T2<st1 return null
4. else if root is leaf node invoke LeafNodeRQuery (root, w, T1, T2)
5. else invoke nonLeafNodeRQuery (root, w, T1, T2)

ENDRQuery

34 Y. Fang et al.

Algorithm 7. Leaf NodeRQuery (N, w, T1, T2)
1. for each o of N
2. if IN(o, w, T1, T2) return o
ENDLeaf Node RQuery

Algorithm 8. nonLeafNodeRQuery (N, w, T1, T2)
1. for each son node N’ of N
2. if N’ is leafnode Leaf NodeRQuery (N’, w, T1, T2)
3. else nonLeafNodeRQuery (N’, w, T1, T2)
ENDnonLeaf Node RQuery

4 Bottom-Up Update

It is well known that the update efficiency of TPR*-tree is not very high since it is
worked in a top-down manner. This is also the case for the top-down update
HTPR*-tree. In order to support frequent update, bottom-up update strategy is adopted
by the HTPR*-tree.

To support bottom-up update strategy, the HTPR*-Tree supplements auxiliary
structures which include hash table, and compact main memory summary structures
such as bit vector and direct access table. Figure 6 shows auxiliary structures for
HTPR*-Tree.

leaf

R3 R4

O1 O2 O3 O4 O5 O6

R5 R6

O70 O8 O96 O10

Root

O1

O2

O9

O10

Level MBR VBR st1 st2 parent

2 R V Null

1 R1 V1

1 R2 V2

R1 R2

R1

R1

R2

R2

1

1

0

0

Hash Table

Direct Access Table

Bit Vector

Root

Root

Fig. 6. Auxiliary structures for the HTPR*-Tree to support bottom-up update

Hash table allows us to locate the leaf node where the updated object o resides in
one disk I/O instead of doing the expensive query on the tree.

Direct access table facilitates quick access to a node’s parent in the HTPR*-Tree.
An entry of the direct access table corresponds to a non-leaf node of the HTPR*-Tree,

 HTPR*-Tree: An Efficient Index for Moving Objects 35

and all the entries are organized according to the levels of the internal nodes they
correspond to. An entry in the direct access table is a 7 tuple of the form < Level,
MBR, VBR, st1, st2, parentptr, ptr>, where Level is the level of the node, MBR
and VBR is the bounding box and the velocity bounding rectangle of the node at time
st, respectively, parentptr is a pointer to the node’ parent, ptr is a pointer to the
node itself, st1 is the minimal creation or update time of moving objects included in
node, and st2 is the maximum value compare to st1. Bit vector on the leaf nodes indi-
cates whether they are full or not, which avoids additional disk accesses to find a
suitable sibling.

The maintenance cost for the main-memory summary structure is relatively inex-
pensive. Since most of the node splits occur in the leaf level due to the high node
fan-out, inserting a new entry into the direct access table will be very infrequent.
Meanwhile, only when the leaf node is split or deleted, a new entry need be inserted
into bit vector or be deleted.

The size of each entry in the direct access table is a small fraction of the size of the
corresponding HTPR*-Tree node. And the size of bit vector is much smaller than that
of direct access table, and even neglectable. Overall, the space consumption of the
main-memory summary structure is very low relative to HTPR*-Tree.

The bottom-up strategy aims to offer a comprehensive solution to support frequent
updates in the HTPR*-Tree. The main idea of bottom-up update algorithm is de-
scribed as follows: when an object issues an update request, the algorithm adopts
different update method according to object position and velocity after updating, and
update time. The detailed update method is as follows:

1. If new position lies outside MBR of root or new velocity lies outside VBR of root,
the algorithm issues a top-down update.

2. If new position and velocity of moving object lie in the MBR and VBR of cur-
rent leaf node, the algorithm modifies the object entry in leaf node directly. At the
same time, the algorithm constructs update path from leaf to root using the direct
access table and tightens all nodes on that path.

3. If new position and velocity of moving object lie outside the MBR and VBR of
current leaf node, and the removal of moving object causes leaf node to underflow, the
algorithm issues a top-down update.

4. If new position and velocity of moving object lie in the MBR and VBR of
non-null sibling node, and the removal of moving object couldn’t cause leaf node to
underflow, the algorithm deletes old entry and inserts new entry in right sibling node.
At the same time, the algorithm constructs update path from leaf to root using the direct
access table and tightens all nodes on that path.

5. If the new position and velocity of moving object lie in the MBR and VBR of a
subtree (intermediate node), the algorithm ascends the HTPR*-tree branches to find a
local subtree and performs a standard top-down update.

Algorithm 9 describes bottom-up strategy of the HTPR*-Tree.

36 Y. Fang et al.

Algorithm 9. Update (o, o’,r,DAT,BV,H)

1. entry=DAT[0]
2. if o’.MBR⊄ entry.MBR or o’.VBR⊄ entry.VBR
3. TD_Update(o, o’,r,DAT,BV,H)
4. return
5. leaf=H.getLeafNode(o)
6. if o’.MBR⊂ leaf.MBR and o’.VBR⊂ leaf.VBR
7. write out leaf
8. non-leaf=getParent(leaf)
9. if non-leaf is not tigten
10. tigten non-leaf
11. non-leaf’=DAT.GetParent(non-leaf)
12. while (non-leaf’ is not tigten and non-leaf’ is not null)
13. tigten non-leaf’ , non-leaf =non-leaf’
14. non-leaf’=DAT.GetParent(non-leaf)
15. return
16. if leaf.numEntry=m TD_Update(o, o’,r,DAT,BV,H)
17. return
18. leaf.delete(o)
19. construct update-path from leaf to root using the DAT, and tighten all nodes on
 that path similar to lines 8-14
20. {siblings}=BV.getsiblings(leaf)
21. for Si∈{siblings}

22. if o’.MBR⊂ Si.MBR and o’.VBR⊂ Si.VBR and BV.notFull(Si)
23. if o’.st> Si.st2
24. si.insert(o’)
25. construct update-path from si to root using the DAT, and change st2 of
 all nodes on that path into st similar to lines 8-14
26. else si.insert(o’)
27. return
28. non-leaf =getParent(leaf)
29. while (o’.MBR⊄non-leaf.MBR or o’.VBR⊄ non-leaf.VBR)
30. non-leaf =DAT. GetParent(non-leaf)
31. TD_Update(o, o’, non-leaf, DAT,BV,H)
32. construct update-path from non-leaf to root using the DAT, and tighten all
 nodes on that path similar to lines 8-14
33. return
END Update

5 Performance Study

5.1 Experimental Setting and Details

In this section, we evaluate the query and update performance of the HTPR*-tree with
the TPR*- and TD_HTPR*-tree (top-down update strategy). Due to the lack of real

 HTPR*-Tree: An Efficient Index for Moving Objects 37

datasets, we use synthetic data simulating moving aircrafts like[2]. First 5000 rectan-
gles are sampled from a real spatial dataset (LA/LB)[15] and their centroids serve as the
“airports”. At timestamp 0, 100k aircrafts (point objects) are generated such that for
each aircraft o, (i) its location is at one (random) airport, (ii) it (randomly) chooses a
destination airport, and (iii) its velocity value o.Vel uniformly distributes in [20,50],
and (iv) the velocity direction is decided by the source and destination airports. For
each dataset, we construct a HTPR*- and TPR*-tree, whose horizons are fixed to 50, by
first inserting 100k aircrafts at timestamp 0.

Since the HTPR*-tree only stores history trajectories after the most recent update of
each object, and history trajectories index such as TB-tree only store trajectories before
the most recent update instant, it is improper to compare the history query performance
of HTPR*-tree with that of history trajectories index. In our experiments, we only
study the predictive queries. However, HTPR*-tree can be combined with history
trajectories index to support the queries involved from the past to the future. This will
be our future work.

5.2 Performance Analysis

In order to study the deterioration of the indices with time, we measure the performance
of the HTPR*-, TPR*- and TD_HTPR*-tree, using the same query workload, after
every 10k updates.

● Update Cost Comparison

Figure 7 compares the average update cost (for datasets generated from LA and LB as
mentioned above) as a function of the number of updates. The HTPR*- and TPR*-tree
have nearly constant update cost. However the node accesses needed in the
HTPR*-tree update operation are much less than the TPR*- and TD_HTPR*-tree.
This is due to the fact that the HTPR*-tree adopts bottom-up update strategy to avoid
the excessive node accesses for top-down deletion search and insertion search, and the
TPR*- and TD_HTPR*-tree process update in top-down manner. Since node overlap
in the TD_HTPR*-tree is larger than that in the TPR*-tree, the query cost increasing
with the number of updates improves the update cost of TD_HTPR*-tree.

0k 20k 40k 60k 80k 100k
0

20

40

60

80

100

120

(a) LA

 TPR*-tree
 TD_HTPR*-tree
 HTPR*-tree

no
de

 a
cc

es
se

s

number of updates
0k 20k 40k 60k 80k 100k

0

20

40

60

80

100

120

(b) LB

 TPR*-tree
 TD_HTPR*-tree
 HTPR*-tree

no
de

 a
cc

es
se

s

number of updates

Fig. 7. Update cost comparison

38 Y. Fang et al.

● Query Cost Comparison

The query cost is measured again as the average number of node accesses in executing
200 predicted window queries with the same parameters qRlen, qVlen, qTlen.

In Figure 8, we plot the query cost as a function of the number of updates, using
workloads with different parameter: for Figure 8 (a) we fix parameters qTlen=50,
qRlen=400 and qVlen=10, while the parameters qTlen=50, qRlen=1000 and qVlen=10
are fixed in Figure 8 (b).

(a) LA
qRlen=400 qVlen=10 qTlen=50

(b) LB
qRlen=400 qVlen=0 qTlen=50

0k 20k 40k 60k 80k 100k
0.00k

0.45k

0.90k

1.35k

1.80k

2.25k

TPR*-tree
TD_HTPR*-tree
HTPR*-tree

no
de

 a
cc

es
se

s

number of updates
0k 20k 40k 60k 80k 100k

0.0k

0.5k

1.0k

1.5k

2.0k

2.5k

TPR*-tree
TD_HTPR*-tree
HTPR*-tree

no
de

 a
cc

es
se

s

number of updates

Fig. 8. Query cost comparison

It is clear that the query cost increases with the number of updates. The query cost
of the HTPR*-tree is less than that of the TD_HTPR*-tree. Since the node overlap in
the HTPR*-tree is larger than that in the TPR*-tree, the query cost of the HTPR*-tree
is a bit higher than that of the TPR*-tree. Despite this, the important fact is that
HTPR*-tree can support history query.

6 Conclusion

In this paper, we develop a novel index structure named the HTPR*-tree which not only
supports predictive queries but also partial history ones. At the same time, we propose a
bottom-up update approach to support frequent update operation of the HTPR*-tree.
Extensive experiments prove that the update performance of the HTPR*-tree is better
than that of the TD_HTPR*- and TPR*-tree. Moreover, the HTPR*-tree can support
history query compared with TPR*-tree although the predictive query performance is a
bit less.

For the future work, we will combine the HTPR*-tree with history trajectory indices
such as TB-tree to implement historical and future information retrieval.

 HTPR*-Tree: An Efficient Index for Moving Objects 39

Acknowledgments. This work is supported by the National Natural Science Founda-
tion of China (Grant No.90718027) and the Natural Science Foundation of Hubei
Province (Grant No.2008CDA007).

References

[1] Saltenis, S., Jensen, C.S., Leutenegger, S.T., Lopez, M.A.: Indexing the Positions of
Continuously Moving Objects. In: ACM SIGMOD, pp. 331–342 (2000)

[2] Tao, Y., Papadias, D., Sun, J.: The TPR*-Tree: An Optimized spatiotemporal Access
Method for Predictive Queries. In: VLDB, pp. 790–801 (2003)

[3] Lee, M., Hsu, W., Jensen, C., et al.: Supporting Frequent Updates in R-Trees: A Bot-
tom-Up Approach. In: VLDB, pp. 608–619 (2003)

[4] Pfoser, D., Jensen, C.S., Theodoridis, Y.: Novel Approaches to the Indexing of Moving
Object Trajectories. In: VLDB, pp. 395–406 (2000)

[5] Theodoridis, Y., Vazirgiannis, M., Sellis, T.: Spatio-temporal Indexing for Large Multi-
media Applications. In: Conf. on Multimedia Computing and Systems, pp. 441–448
(1996)

[6] Nascimento, M.A., Silva, J.R.O.: Towards Historical R-trees. In: Proc. of the ACM
Symposium on Applied Computing, pp. 235–240 (1998)

[7] Tayeb, J., Ulusoy, O., Wolfson, O.: A Quadtree-Based Dynamic Attribute Indexing Me-
thod. The Computer Journal 41(3), 185–200 (1998)

[8] Jignesh, M., Yun, P., Chen, V., Chakka, P.: TRIPES: An Efficient Index for Predicted
Trajectories. In: ACM SIGMOD, pp. 637–646 (2004)

[9] Liao, W., Tang, G.F., Jing, N., Zhong, Z.-N.: Hybrid Indexing of Moving Objects Based
on Velocity Distribution. Chinese Journal of Computers 30(4), 661–671 (2007)

[10] Jensen, C.S., Lin, D., Ooi, B.C.: Query and Update Efficient B+-Tree Based Indexing of
Moving Objects. In: VLDB, pp. 768–779 (2004)

[11] Chen, S., Ooi, B.C., Tan, K.L., et al.: ST2B-tree: A Self-Tunable Spatio-Temporal B+-tree
Index for Moving Objects. In: ACM SIGMOD, pp. 29–42 (2008)

[12] Chen, N., Shou, L.D., Chen, G., et al.: Bs-tree: A Self-tuning Index of Moving Objects. In:
Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 5982,
pp. 1–16. Springer, Heidelberg (2010)

[13] Pelanis, M., Saltenis, S., Jensen, C.S.: Indexing the Past, Present and Anticipated Future
Positions of Moving Objects. In: ACM TODS, pp. 255–298 (2006)

[14] Raptopoulou, K., Vassilakopoulos, M., Manolopoulos, Y.: Efficient processing of
past-future spatiotemporal queries. In: Proc. of the ACM Symposium on Applied Com-
puting, pp. 68–72 (2006)

[15] http://www.census.gov/geo/www/tigers

	HTPR*-Tree: An Efficient Index for Moving Objects to Support Predictive Query and Partial History Query
	Introduction
	Related Works
	The HTPR*-Tree
	Index Structure
	Insertion and Deletion
	Search Procedure

	Bottom-Up Update
	Performance Study
	Experimental Setting and Details
	Performance Analysis

	Conclusion
	References

