

Lecture Notes in Computer Science 7142
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Liwei Wang Jingjue Jiang Jiaheng Lu
Liang Hong Bin Liu (Eds.)

Web-Age
Information Management

WAIM 2011 International Workshops:
WGIM 2011, XMLDM 2011, SNA 2011
Wuhan, China, September 14-16, 2011
Revised Selected Papers

13

Volume Editors

Liwei Wang
Wuhan University, Hubei 430072, China
E-mail: liwei.wang@whu.edu.cn

Jingjue Jiang
Wuhan University, Hubei 430072, China
E-mail: whujiang@whu.edu.cn

Jiaheng Lu
Renmin University of China, Beijing 100872, China
E-mail: jiahenglu@ruc.edu.cn

Liang Hong
Wuhan University, Hubei 430072, China
E-mail: hong@whu.edu.cn

Bin Liu
Wuhan University, Hubei 430072, China
E-mail: binliu@whu.edu.cn

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-28634-6 e-ISBN 978-3-642-28635-3
DOI 10.1007/978-3-642-28635-3
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012932414

CR Subject Classification (1998): H.4, H.3, I.2, C.2, H.5, H.2.8, H.2

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

WAIM 2011 Workshop Chairs’ Message

WAIM is a leading international conference for researchers, practitioners, devel-
opers and users to share and exchange cutting-edge ideas, results, experience,
techniques and tools in connection with all aspects of Web data management.
The conference invites original research and industrial papers on the theory, de-
sign and implementation of Web-based information systems, as well as propos-
als for demonstrations, tutorials and panels. Previous WAIM conferences were
held in Shanghai (2000), Xian (2001), Beijing (2002), Chengdu (2003), Dalian
(2004), Hangzhou (2005), Hong Kong (2006), Huangshan (2007), Zhangjiajie
(2008), Suzhou (2009) and Jiuzhaigou (2010). Along with the main conference,
WAIM workshops are intended to provide an international group of researchers
with a forum for the discussion and exchange of research results related to the
conference topics. This WAIM 2011 workshop volume comprises papers from
three workshops, which were:

1. The First International Workshop on Web-Based Geographic Information
Management (WGIM 2011)

2. The Third International Workshop on XML Data Management
(XMLDM 2011)

3. The First International Workshop on Social Network Analysis (SNA 2011)

The contents of these three workshops were selected from a public call-for-
proposals process. The workshop organizers put a tremendous amount of effort
into soliciting and selecting research papers with a balance of high quality and
new ideas and new applications. They also followed a vigorous review process.
A total of about 20 papers were accepted. We are very grateful to the main
conference organizers. We would also like to take this opportunity to thank all
workshop organizers and Program Committee members for their great effort in
putting together the workshop program of WAIM 2011.

September 2011 Chengfei Liu
Liwei Wang

The First International Workshop on Web-Based

Geographic Information Management
(WGIM 2011) Chairs’ Message

The rapid development of geographic information infrastructure and increased
demand for sharing useful geographic data and information through the Web,
has led to a new research focus on how to manage and share geographic infor-
mation on the Web efficiently and securely. New strategies, tools and systems
are required to significantly improve the information sharing and guarantee an
easier and quicker access of data from a variety of sources without undermining
the ownership of the information. The First International Workshop on Web-
Based Geographic Information Management 2011 invited developers, users and
expert scientists working in this field all over the world to present their innovative
research and development contributions.

We thank the WAIM 2011 organizers for their generous support. The great
success of the workshop is indebted to the hard work of all Program Committee
members. We also thank all the authors for their contributions.

September 2011 Xiaofang Zhou
Jingjue Jiang

The Third International Workshop on XML

Data Management (XMLDM 2011) Chairs’
Message

It is our great pleasure to welcome you to the proceedings of the Third Interna-
tional Workshop on XML Data Management (XMLDM 2011).

XML has gained lot of attention from database and Web researchers who
are actively working in one or more of the emerging XML areas. XML data are
self-describing, and provide a platform-independent means to describe data and
therefore can transport data from one platform to another. XML documents
can be mapped to one more of the existing data models such as relational and
object-relational models, and XML views can be produced dynamically from
the pre-existing data models. XML queries can be mapped to the queries of the
underlying models and can use their optimization features. XML data integra-
tion is useful for e-commerce applications such as comparison-shopping, which
requires further study in the domain of data, schema and query-based integra-
tion. XML change management is another important area that has attracted
attention in the context of Web warehouses. XML has been in use in upcoming
areas such as Web services, sensor and biological data management. The Third
International Workshop on XML Data Management focused on the convergence
of database technology with XML technology, and brought together academics,
practitioners, users and vendors to discuss the use and synergy between these
technologies.

XMLDM 2011 accepted six full papers from Asia, Europe, and Australia.
These papers cover a variety of topics, including XML views, XML query, simi-
larity join, XML database and so on. We hope that they will serve as a valuable
starting point for many brilliant projects in XML data management.

The paper “Multidimensional Implementation of Stream AD” introduces a
multidimensional implementation of the stream for path-labeling schemes. The
authors show that this implementation can be extended in such a way that
it supports fast searching of nodes with a content, and it is also necessary to
combine two variants of the R-tree (Ordered R-tree and Signature R-tree) for
an efficient implementation of the stream ADT.

The paper “Measuring XML Structured-ness with Entropy” proposes and
evaluates entropy-based metrics for XML structured-ness which could measure
the structural uniformity of path and subtrees, respectively. Furthermore, the
authors also study the correlation of these metrics with real and synthetic data
sets.

In their paper “Similarity Join on XML Based on k-Generation Set Dis-
tance,” Wang et al. put forward two new edit operations (reversing and mapping)
together with related algorithms concerning similarity join based on the new

VIII XMLDM 2011

defined measure and the method of using k-generation set distance instead of
edit distance when comparing similarity between trees.

In the next paper “XML Query Answering Using View,” Yao et al. study
query answering using the views problem for tree pattern queries (QAV) and
deal with this problem by finding an equivalent rewriting of tree pattern queries.

The paper “XIO-SLCA: Optimize SLCA for Effective Keyword Search in
XML Documents” studies the problem of effective keyword search over XML
documents and proposes that keyword search returns the set of smallest trees,
where a tree is designated as smallest if it contains no sub-tree that also contains
all keywords. After an in-depth analysis of the Indexed Lookup Eager algorithm
(IL), they proposes an optimized method called XIO-SLCA to improve keyword
search quality which could achieve both a higher recall and precision when com-
pared with the existing SLCA.

In “TheDevelopment ofXML-StoredProcedures inXML-EnabledDatabases,”
Fahad Alahmari and Eric Pardede investigate how SQL-stored procedures can be
developed to effectively conduct various XQuery and XPath against XML data
within the enabled databases.

Making XMLDM possible has been a team effort. First of all, we would like
to thank the authors and panelists for providing the content of the program.
We would like to express our gratitude to the Program Committee and external
reviewers, who worked very hard in reviewing papers and providing suggestions
for their improvements. In particular we extend our special thanks to Linlin
Zhang for maintaining the XMLDM website and for his effort in organizing the
workshop.

Wehope that youwill find these proceedings interesting and thought-provoking.

September 2011 Jiaheng Lu
Tok Wang Ling

Ge Yu

The First International Workshop on Social

Network Analysis (SNA 2011) Chairs’ Message

In recent years, social network research has attracted more and more scientist
and researchers, thanks to the explosion of the Web which has created and is cre-
ating social interactions. Analyzing the information underneath the social inter-
actions, such as community detection, opinion mining, link prediction, product
recommendation, expert finding, social ranking, information visualization, will
benefit both information providers and information consumers in the application
areas of social sciences, economics, psychology and computer sciences.

SNA 2011 aimed at bringing together researchers and practitioners interested
in this area to share their perspectives, identify the challenges and opportunities,
and discuss future research/application directions. The workshop provided oral
presentations where researchers and practitioners could share and exchange their
knowledge and experience.

September 2011 Jaideep Srivastava
Bin Liu

The First International Workshop on Web-Based

Geographic Information Management
(WGIM 2011)

Program Co-chairs

Xiaofang Zhou University of Queensland, Australia
Jingjue Jiang Wuhan University, China

Program Committee

Hoyoung Jeung EPFL, Switzerland
Jiaheng Lu Renmin Univeristy of China
Ke Deng University of Queensland, Australia
Mohamed Mokbel University of Minnesota, USA
Shuliang Wang Wuhan University, China
Wen-Chih Peng National Chiao Tung University, Taiwan
Xing Xie Microsoft Research Asia, China
Yang Yue Wuhan University, China
Zhiming Ding Chinese Academy of Sciences Software

Institute, China

The Third International Workshop on XML

Data Management (XMLDM 2011)

Program Co-chairs

Jiaheng Lu Renmin University of China, China
Tok Wang Ling National University of Singpaore, Singapore
Ge Yu NorthEast University, China

Program Committee

Zhifeng Bao National University of Singapore, Singapore
Stephane Bressan National University of Singapore, Singapore
Peter Boncz Centrum Wiskunde&Informatica,

The Netherlands
Chee Yong Chan National University of Singapore, Singapore
Xiaoyong Du Renmin University of China, China
Jianhua Feng Tsignhua University, China
Jun Gao Peking University, China
Masaru Kitsuregawa Tokyo University, Japan
Jianzhong Li Harbin Institute of Technology, China
Guoliang Li Tsinghua University, China
Xuemin Lin University of New South Wales, Australia
Xiaofeng Meng Renmin University of China, China
Xiaochun Yang North-East University, China
Liang Xu National University of Singapore, Singapore
Jeffrey Xu Yu The Chinese University of Hong Kong, China
Zografoula Vagena Microsoft Research, USA
XiaoLing Wang Fudan University, China
Hongzhi Wang Harbin Institute of Technology, China
Peter Wood University of London, UK
Aoying Zhou East China Normal University, China
Yongluan Zhou University of Southern Denmark, Denmark
Xiafeng Li Texas A&M University, USA

The First International Workshop on Social

Network Analysis (SNA 2011)

Program Co-chairs

Jaideep Srivastava University of Minnesota, USA
Bin Liu Wuhan University, China

Program Committee

Lei Tang Yahoo! Labs, USA
Zenglin Xu Purdue University, USA
Bin Cui Beijing University, China
Wei Wang The University of New South Wales, Australia
Xifeng Yan University of California at Santa Barbara, USA
Lifeng Sun Tsinghua University, China
Ee-Peng Lim Singapore Management University, Singapore
Kuo-Wei Hsu National Chengchi University, Taiwan

Table of Contents

The First International Workshop on Web-Based
Geographic Information Management (WGIM 2011)

Enhancing the Quality of Place Resources in Geo-folksonomies 1
Ehab ElGindy and Alia Abdelmoty

Generating Semantic-Based Trajectories for Indoor Moving Objects 13
Huaishuai Wang, Peiquan Jin, Lei Zhao, Lanlan Zhang, and
Lihua Yue

HTPR*-Tree: An Efficient Index for Moving Objects to Support
Predictive Query and Partial History Query . 26

Ying Fang, Jiaheng Cao, Junzhou Wang, Yuwei Peng, and Wei Song

Developing Rich Web GIS Applications for Visual Analytics 40
Michael Meyers and Bruce A. Ralston

Single-Source Multi-Target A* Algorithm for POI Queries on Road
Network . 51

Htoo Htoo, Yutaka Ohsawa, and Noboru Sonehara

Combining Top-k Query in Road Networks . 63
Weimo Liu, Yinan Jing, Kunjie Chen, and Weiwei Sun

Extracting Focused Locations for Web Pages . 76
Qingqing Zhang, Peiquan Jin, Sheng Lin, and Lihua Yue

Searching Similar Trajectories in Real Time: An Effectiveness and
Efficiency Study . 90

Yuchi Ma, Chunyan Qu, Tingting Liu, Ning Yang, and
Changjie Tang

The Third International Workshop on XML Data
Management (XMLDM 2011)

Multidimensional Implementation of Stream ADT . 103
Filip Křǐzka, Michal Krátký, Radim Bača, and Peter Chovanec

Measuring XML Structured-ness with Entropy . 113
Ruiming Tang, Huayu Wu, and Stéphane Bressan

Similarity Join on XML Based on k -Generation Set Distance 124
Yue Wang, Hongzhi Wang, Yang Wang, and Hong Gao

XIV Table of Contents

XML Query Processing Using Views . 136
Caiyun Yao, Jiaheng Lu, Wei Wang, and Xiaofang Zhou

XIO-SLCA: Optimize SLCA for Effective Keyword Search in XML
Documents . 140

Xia Li, Zhanhuai Li, PeiYing Wang, Qun Chen, Lijun Zhang, and
Ning Li

The Development of XML Stored Procedures in XML Enabled
Databases . 150

Fahad Alahmari and Eric Pardede

The First International Workshop on Social Network
Analysis (SNA 2011)

A Slope One Collaborative Filtering Recommendation Algorithm Using
Uncertain Neighbors Optimizing . 160

Jingjiao Li, Limei Sun, and Jiao Wang

A Social Reputation Management for Web Communities 167
Di He, Zhiyong Peng, Liang Hong, and Yu Zhang

A Collaborative Filtering Recommendation System by Unifying User
Similarity and Item Similarity . 175

Dongzhan Zhang and Chao Xu

Supporting Query over Dynamic Combination of Data Sources for
Social Media . 185

Rongrong Li, Weixiang Zhai, and Zhiyong Peng

Detecting Opinion Leader Dynamically in Chinese News Comments 197
Kaisong Song, Daling Wang, Shi Feng, and Ge Yu

An Approach of Semi-automatic Public Sentiment Analysis for Opinion
and District . 210

Daling Wang, Shi Feng, Chao Yan, and Ge Yu

Author Index . 223

Enhancing the Quality of Place Resources

in Geo-folksonomies

Ehab ElGindy and Alia Abdelmoty

School of Computer Science and Informatics
Cardiff University, Wales, UK

{ehab.elgindy,a.i.abdelmoty}@cs.cardiff.ac.uk

Abstract. Users’ interaction and collaboration on Web 2.0 via social
bookmarking applications have resulted in creating a new structure of
user-generated data, denoted folksonomies, where users, Web resources
and tags generated by users are linked together. Some of those appli-
cations focus on geographic maps. They allow users to create and an-
notate geographic places and as such generate geo-folksonomies with
geographically referenced resources. Geo-folksonomies suffer from redun-
dancy problem, where users create and tag multiple place resources
that reference the same geographic place on the ground. These multiple
disjointed references result in fragmented tag collections and limited op-
portunities for effective analysis and integration of data sets. This pa-
per, (1) defines the quality problem of resources in a geo-folksonomy
(2) describes methods for identifying and merging redundant place re-
sources and hence reducing the uncertainty in a geo-folksonomy, and (3)
describes the evaluation of the methods proposed on a realistic sam-
ple data set. The evaluation results demonstrate the potential value of
the approach.

Keywords: Web 2.0, Folksonomy, Geographical Similarity, Social
Bookmarking, Tagging, Geo-Tagging.

1 Introduction

Web 2.0 has created a new type of Web-based interaction among Internet users
by introducing social bookmarking applications, where users can publish con-
tents to share it with others. The published contents are Web documents such
as Web pages, images or PDF documents. In addition, users can provide key-
words (tags) to categorize the contents/resources they publish, thus resulting in
new structures of information – called folksonomies – that links users, tags and
resources together.

Folksonomies directly reflects the vocabulary of users [12], enabling match-
ing of users’ real needs and language. Although folksonomies are semantically
rich, they are un-controlled, unstructured, sometimes ambiguous and inconsis-
tent. Ongoing research efforts consider the extraction of certain semantics from

L. Wang et al. (Eds.): WAIM 2011 Workshops, LNCS 7142, pp. 1–12, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 E. ElGindy and A. Abdelmoty

folksonomies. For example, Rattenbury et al. [14] extract place and event se-
mantics from Flickr1 tags using the usage distribution of each tag.

Some social bookmarking applications, such as Tagzania2, are specialized in
tagging geographic places using a map-based Web interface. These applications
generate a special kind of folksonomy, denoted geo-folksonomy in this work.
The tagging behaviour - which generates folksonomies - allows users to choose
keywords to describe/index the information in a specific web resource such as a
web page. For example, a user can tag an article he read about a good cooking
recipe as (”best”, ”recipe”, ”for”, ”making”, ”fajita”). However, when it comes
to tag a place, users create a place resource using a map-based interface which
represents a place in reality, and then tags are provided to describe the place in
reality although they are attached to the place resource. For example, a user can
create a place resource named ”Cardiff university” and set its spatial location
using a map interface such as Google maps, and then the user can attach relevant
tags such as (”University”, ”Study”, ”Research”).

Place resources in geo-folksonomies have some characteristics which do not
exist in normal web resources:

1. Place resources are created by the social bookmarking applications to ref-
erence places in the real world, while normal web resources already exist in
the web space and they are just referenced using unique URLs.

2. Although it is possible to assign a unique URI for any resource (including
place resources [2]), URIs are not used to locate places as people always refer
to places by spatial and thematic attributes such as location and place name
respectively.

3. The values of spatial attributes - such as longitude and latitude - are acquired
using a map-based applet. This method of acquiring data can be imprecise
and is dependent on the user being able to identify and digitize a precise
location on a map offered on the user interface of these applications. The
accuracy is also related to the map scales offered to users and the difficulty
in matching the precise location across map scales.

4. The values of thematic attributes - such as place names - are acquired using a
free-text input. Although they add valuable semantics to the place resources,
they are associated complexity, where people use non-standard, vernacular,
place names [5] and abbreviations.

Most of the applications that generate geo-folksonomies aim to collect as much
information as possible about places, which can be one of the reasons why such
applications do not allow users to share place resources and why they require a
new place resource to be created each time a user wants to tag a place. Such
design can result in having multiple place resources that reference the same place
in real world. We argue that, such redundancy in the geo-folksonomy structure
can produce inaccurate results when using folksonomy analysis techniques such
as tag-similarity methods.

1 http://www.flickr.com
2 http://www.tagzania.com

http://www.flickr.com
http://www.tagzania.com

Enhancing the Quality of Place Resources in Geo-folksonomies 3

The combination of inaccuracies in place location and fuzziness in naming
place entities complicates the task of uniquely identifying place resources and
can hence lead to the presence of redundant resources in the geo-folksonomy,
degrading its quality. Hence, identifying and relating those place resources can
lead to more consistent and useful analysis of geo-folksonomies and support
integrating place resources from different data sources.

The work presented in this paper defines and formulates a quality problem in
geo-folksonomy resources. Methods are proposed for addressing this problem and
for creating an enriched geo-folksonomy. The solution involves using online Web
resources to first qualify place instances with identifiers that can then be used
in a process of clustering and aggregation to uniquely identify related resources.

The enriched geo-folksonomy contains more certain information, as the method
takes into consideration the user votes and agreements.

The rest of this paper is organized as follows. Related work is discussed in
section 2. The research problem is described in section 3, followed by the proposed
methods in section 4. Experimental results and evaluation are given in section 5
and the paper concludes by some discussion and outlook on future work 6.

2 Related Work

Folksonomies are user-generated data created by users’ interaction and collab-
oration using social bookmarking applications. Typically, such applications are
designed to acquire the input from users in free-text format to simplify the user
interface. As a result, the generated folksonomies contain uncontrolled vocabu-
lary of keywords (tags) with several problems such as polysemy (a word which has
multiple related meanings) and synonymy (different words that have identical or
very similar meanings) [6]. On the other hand, folksonomies can be considered
as a rich data source that contain embedded semantics. As such, many research
works targeted the problem of extracting semantics from folksonomies including
the problems mentioned above [20,15,8,13,18,1,17,3]. The extracted semantics
are usually represented by a simple lightweight ontology, which is a simple tree
hierarchy of terms where parent terms are semantically general/broader than
their children.

Folksonomies are typically modeled by a tripartite graph with hyper edges
[13]. Vertices are partitioned into three disjoint sets of tags, resources and users
and each edge connect three vertices (a vertex from each set). A fundamental
step in extracting semantics from folksonomies is to transform the tripartite
graph into a bi-graph of tags and resources to reveal their inter-relationships.

Map-based and geo-enabled collaborative applications on Web 2.0 gener-
ate geo-folksonomies - folksonomies with a geographical dimension - using ge-
ographic places as resources. Applications such as Google Maps3, Tagzaina4,
Openstreetmap5 and Geonames6 allow users to create place resources and give

3 http://maps.google.com
4 http://www.tagzania.com
5 http://www.openstreetmap.org
6 http://www.geonames.org

http://maps.google.com
http://www.tagzania.com
http://www.openstreetmap.org
http://www.geonames.org

4 E. ElGindy and A. Abdelmoty

them spatial (such as longitude and latitude) and thematic attributes (such as
place name and description). These applications are becoming increasingly pop-
ular and currently store millions of references to geographical places. On the
other hand, geo-enabled applications such as Flickr7 and Wikipedia8 allow users
to create Web resources - images in Flickr and Web pages in Wikipedia - and
”geo-tag” those resources by assigning them a spatial location or place reference.

Pre-processing folksonomies to enhance the results of folksonomy analysis
methods [15,14,9] has been tackled in the literature on different scales. One scale
was to process the tags by removing the stop words and stemming the tags such in
[18]. Another scale of pre-processing was to enhance the structure of the folkson-
omy such in [11], which introduced four different aggregation methods to enrich
the folksonomy structure, by adding weights that represent the level of users agree-
ment on resource-tag pairs. All the above work targets the general folksonomies,
which can be used in geo-folksonomies as well. However, up to our knowledge,
there is no research work covers the problem of pre-processing the resources in
geo-folksonomies, which is the problem covered by this research work.

3 Problem Definition

The term ’folksonomy’ (from folk and taxonomy) was coined by Vander Wal
in 2004 [19]. Folksonomy can be seen as a user generated index to classify and
organize the Web resources. In social bookmarking applications, a folksonomy
tuple, also called tag application [4], is created every time a user tags a Web
resource. It can be formalized as follows:

F = {S,U,R, T, π} (1)

Where S is the social bookmarking application that hosts the folksonomy tuple,
U is a User, R is a Resource, T is a Tag and π is the time stamp of the creation
of the tuple.

Users are usually identified by IDs. A user ID is always represented by a unique
user name chosen by the user. Resources are Web documents such as Web pages,
images or PDF files. Each resource can be located using a unique URI. Tags are
single keywords supplied by users to describe and index the resources. The social
bookmarking applications store the creation date of the folksonomy tuples which
can be used later for temporal analysis. For simplicity, the folksonomy tuple can
be redefined as:

F = {U,R, T } (2)

where multiple resources and temporal analysis are not considered in this work.
Each tuple in the folksonomy represents a relation between a user, a resource

and a tag. A simple query on such data can answer questions such as: what
are the most used tags for annotating resources, or, who is the most active

7 http://www.flickr.com
8 http://www.wikipedia.org

http://www.flickr.com
http://www.wikipedia.org

Enhancing the Quality of Place Resources in Geo-folksonomies 5

user. These are typical data retrieval questions that can be answered by simple
database queries. However, questions such as, what are the most related tags to
the tag ’Cardiff’, are more complicated where the answer requires co-occurrence
analysis of tags to calculate tag similarity.

Web resources, e.g. documents, can be easily located and identified using
URIs9, where each document has a unique address on the World Wide Web.
In social bookmarking applications, two users are considered to be tagging the
same Web resource only if the resources they are tagging have the same URI.

Unlike Web resources, place resources in geo-social bookmarking applications
can’t be easily identified and located on the World Wide Web, as such resources
are not represented as Web documents and consequently don’t have URIs. Typ-
ically, place resources are associated with spatial attributes for representing the
place location and thematic attributes, e.g. a place name and a place type, en-
coded as free text. Hence, two users can be considered to be tagging the same
place resource only if the resources they are tagging are ’spatially close’ and have
similar names.

The spatial location of place resources is acquired via a map-based user in-
terface. Users click on the location of the place they want to tag and the mouse
location on the applet is translated to the corresponding longitude and latitude.
While tagging a new place, the map interface does not reveal any places created
by other users in the same area and thus a place resource can be created and
tagged a multiple of times by different users. The same place may be given dif-
ferent names. For example, both ”Cardiff University” and ”Cardiff uni.” is used
to refer to the same place by different users. Also, both instances may not be
digitized at the exact same spatial location.

Fig. 1. User interface for creating a new place resource in Tagzania

Figure 1 shows the map-based user interface of Tagzania.com used for tagging
new place resources. The map-based interface allows the current user to click on
the map to locate the place and add required attributes such as the place name,
tags and description in free-text from.

As discussed above, a real-world place entity can be referred to using more
than one place resource/instance in the geo-folksonomy. These redundant place

9 Unique Resource Identifier.

6 E. ElGindy and A. Abdelmoty

resources are not linked and can thus lead to an increased uncertainty in the
information content of the folksonomy and will adversely affect the result of any
co-occurrence analysis applied on it.

4 Identifying Redundant Place Resources

Generally, two place instances r1 and r2 refer to the same real world place entity
if (1) they have the same spatial location and (2) they have the same place name.
In this work, exact matching methods are not appropriate and fuzzy similarity
matching is used. To identify the redundant place resources in a folksonomy, two
stages of analysis should be used:

– Spatially cluster places that are in close proximity to each other.
– In each cluster, identify resources that have similar place names.

4.1 Spatial Clustering

The main objective of using a spatial similarity measure is to find place instances
that are in close proximity to each other. This can be achieved by using cluster
analysis algorithm or by consulting external reverse geo-coders to assign a unique
area code for each place resource, and then area codes can be used as clusters
identifiers.

Cluster analysis methods are unsupervised learning methods which aim to
group a set of observations into subsets if they are similar in some sense. The
feasibility of using cluster analysis is tested in this work by testing Quality
Threshold (QT) Clustering [7] on a subset of the folksonomy data. QT is seen
as the best candidate algorithm for this work as it does not require the number
of clusters to be priori defined.

The Yahoo Where on Earth ID (WOEID) and postcode reverse geo-coders
are the external data sources considered here to cluster the place resources. The
WEOID web service provides a unique identifier, by reverse geo-coding APIs,
for every location on earth. It represents the closest street to any given spatial
coordinate. Hence, place instances with the same WOEID are spatially close as
they are close to the same street.

Table 1 shows the details of a subset of place resources that represent the place
”Big Ben” in London. Each resource is shown with its WOEID, postcode and
the calculated QT cluster ID. As shown in the table, all the ”Big Ben” instances
are grouped into one WOEID while the postcode divides the resources into two
groups. Postcode failed as each postcode value represents a very tight area of
buildings while the resources in the dataset are not that close. The table also
shows the place resources are grouped into one group by using the district level
of the postcodes. Also, it shows that QT clustering algorithm could successfully
cluster the place resources in this dataset.

Although using district level of postcodes and WOEIDs can produce the same
results, the usage of postcodes is only limited to UK. In addition, although the

Enhancing the Quality of Place Resources in Geo-folksonomies 7

Table 1. Postcodes and WOEIDs of Big Ben place resources

ID WOEID Postcode District Level PC QT cluster ID

31758 44417 SW1A 0AA SW1A ID0
31759 44417 SW1A 0AA SW1A ID0
31760 44417 SW1A 2JR SW1A ID0
31761 44417 SW1A 2JR SW1A ID0
31762 44417 SW1A 0AA SW1A ID0
49775 44417 SW1A 2JR SW1A ID0
49776 44417 SW1A 0AA SW1A ID0
49777 44417 SW1A 0AA SW1A ID0

QT clustering algorithm also can produce the same results of WOEID, the time
complexity of running this algorithm limits using it on large datasets. Thus,
WOEIDs were found to be more suitable in the scope of this work as the geo-
folksonomy dataset used for the experiments is not limited to UK.

4.2 Textual Clustering

After grouping place instances that are spatially similar, a further similarity
check can be applied to find place instances with similar names within that
group. A simple text similarity method based on ”Levenshtein Distance” [10] is
used here to find similar place names. The Levenshtein Distance between two
strings is the minimum number of edits (insertion, deletion, or substitution)
needed to transform the first string to the second string. The text similarity
method can be defined by the following equation:

σt(n(r1), n(r2)) = 1− LD(n(r1), n(r2))

Max((n(r1), n(r2)))
(3)

where LD is the Levenshtein Distance function andMax is the maximum length
of the names of the two place instances.

4.3 Clustering Place Resources

Figures 2 and 3 show two views of an area around ”Big Ben” in London. Figure
2 shows the place resources, grouped in colour-coded clusters, after applying the
spatial clustering method. Figure 3 shows the same place resources, in different
clusters, after identifying similar resources using both the spatial and textual
clustering methods. The box in Figure 2 bounds the place resources with a
unique WOEID including the place Big Ben in the first view. In Figure 3 the
smaller box identifies the place resources which all refer to the place Big Ben.
The first box spans an area of 750 m. across its diagonal, where as in second box
the area shrinks to around a 1/3 of this size. This demonstrates the quality and
accuracy of the location of these place resources.

By identifying redundant place resources, resources that references the same
place in the real world are grouped into place clusters and the enriched

8 E. ElGindy and A. Abdelmoty

Fig. 2. place resources spatially clustered using WOEID

geo-folksonomy tuples can be defined as Geo− F = {U,R, PC, T } where PC is
a cluster of similar place resources, of which R is one.

The spatial and thematic attributes for the place clusters can be defined using
the instances in those clusters. Different methods can be applied. For example,
the spatial location of a place cluster can be computed as either the location
of the most central place instance in the cluster, or the centroid of the polygon
enclosing the set of place instances in the cluster. Similarly, the place name
associated with the cluster can be chosen as the most commonly used name in
the cluster, etc.

5 Experiment and Evaluation

5.1 Experiment

The dataset used for evaluation is a geo-folksonomy collected using a crawler
software - developed for this work - designed to scan pages on Web 2.0 mapping
sites and to index the geo-folksonomies stored on those pages. In this experiment,
the crawler was set to process the site: www.tagzania.com. The collected geo-
folksonomy dataset includes 22,126 place instances in the UK and USA, 2,930
users and 11,696 distinct tags. The number of geo-folksonomy tuples collected
is 65,893. In addition, 10,119 unique WOEID values - cover the entire place
instances in the dataset - were obtained by calling Yahoo’s reverse geocoding
APIs which are exposed via Flickr’s Web service.

The method proposed in section 4.3 was used to enrich the collected geo-
folksonomy. The text similarity threshold β was set to 0.8 (this was found to be
sufficient for this experiment). After applying the method, the number of clusters
(unique places) decreased to 19,614. Hence, the method resulted in merging 2,512
place instances (around 11% of the total number of place resources).

Enhancing the Quality of Place Resources in Geo-folksonomies 9

Fig. 3. place clusters after applying spatial and textual clustering

5.2 Measuring the Uncertainty

In order to measure the uncertainty of the Folksonomy Shannon’s information
gain [16] is used as follows:

I (t) = −
m∑

i=1

log2 p (xi) (4)

Where t is any given tag. m is the number of places annotated by the tag t and
p (xi) defined by:

P (x) =
wt,x∑m

j=1 wt,xj

(5)

Where w is equal to the weight of the link between t and place x. The value
of p (x) will increase if the number of user votes increases and vice versa, high
values of p (x) indicates a high degree of certainty (lower information gain) of
using tag t with place x.

5.3 Evaluation Results

To understand the density of the spatial groups (considering WOEID as group)
it is worth seeing how the place instances are distributed over the WOEIDs.
Figure 4 shows the histogram of the number of place instances over WOEIDs;
the WOEIDs that group only 2 place instance are 1653 groups, this number
drops to 627 (less than half) for the WOEIDs that group only 3 place instance.
Again, this number drops to 350 (around half) for the WOEIDs that group only
4 places and so on.

10 E. ElGindy and A. Abdelmoty

Fig. 4. Histogram of the number of places groupd by WOEIDs

To evaluate the effect of identifying the place instances of the same place
concept and build a richer geo-folksonomy that includes user, the information
gain is calculated for the Geo-Folksonomy before and after using the proposed
method. The results show that the information gain before is 4011.54 and after
is 3442.716 which is around 14% reduction in the uncertainty.

The uncertainty reduction is caused by the regions that have increased place
annotation activities, in which it is likely to have multiple users annotating the
same place using similar names. Table 2 shows a sample of WOEID regions, the
number of places in each region and the information content before and after
using the proposed method.

Table 2. Information content (Uncertainty) sample

WOEID Instances (I) Before (I) After Reduction %

2441564 106 126 115 8.7%
2491521 86 11.7 6.9 41%
2352127 83 129 119 7.8%
2377112 80 23.6 18.8 20.3%
2480201 68 24.6 21.6 12.2%

6 Discussion and Future Work

The geo-folksonomy generated in Web 2.0 mapping-based social bookmarking
application has introduced a different type of resource on the Web, namely, ge-
ographic places. However, these resources cannot be uniquely identified even
within the same social bookmarking application. Technically, the cause of this
problem is the user interface used to annotate the places. Exposing existing

Enhancing the Quality of Place Resources in Geo-folksonomies 11

places resources already annotated by users to new users might address this
problem. However, this is controversial and is not adopted by current applica-
tions, as this may influence the tagging behaviour of those new users.

An alternative solution is to create a centralized Web service that is responsi-
ble for creating and maintaining unique identifiers for place entities. Whenever
any social bookmarking application needs to create a new place instance, it can
query the centralized service with attributes such as name and location and get
a unique identifier for this place. Yahoo’s WOEID Web service is an example of
this centralized service. However, Yahoo’s WOEIDWeb service generates unique
IDs for collection of places up to street level and not to the level of individual
places.

Despite creating an overhead, where social bookmarking applications need to
integrate with the centralised service to maintain the unique IDs, this solution
will support standardised reference to place instances across different applica-
tions and therefore can allow the linking and integration of multiple resources.

The methods used for identification and clustering place instances in this work
were shown to be successful in removing a significant percentage of redundant
place instances. Moreover, the number of links between tags and place resources
was dropped from 65,893 to 62,759 where each link is weighted by the number
of users who agreed to use the tag-resource pair it connects.

References

1. Almeida, A., Sotomayor, B., Abaitua, J., López-de-Ipiña, D.: folk2onto: Bridging
the gap between social tags and ontologies. In: 1st International Workshop on
Knowledge Reuse and Reengineering Over the Semantic Web (2008)

2. Auer, S., Lehmann, J., Hellmann, S.: LinkedGeoData: Adding a Spatial Dimension
to the Web of Data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L.,
Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823,
pp. 731–746. Springer, Heidelberg (2009)

3. Hao Chen, W., Cai, Y., Fung Leung, H., Li, Q.: Generating ontologies with basic
level concepts from folksonomies. ICCS 2010 1(1), 573–581 (2010)

4. Farooq, U., Kannampallil, T., Song, Y., Ganoe, C., Carroll, J., Giles, L.: Evaluating
tagging behavior in social bookmarking systems: metrics and design heuristics.
In: Proceedings of the 2007 International ACM Conference on Supporting Group
Work, pp. 351–360. ACM (2007)

5. Twaroch, F.A., Jones, C., Abdelmoty, A.: Acquisition of Vernacular Place Foot-
prints from Web Sources. In: Baeza-Yates, R., King, I. (eds.) Weaving Services and
People on the World Wide Web, pp. 195–214. Springer, Heidelberg (2009)

6. Golder, S.A., Huberman, B.A.: Usage patterns of collaborative tagging systems.
Journal of Information Science 32(2), 198–208 (2006)

7. Heyer, L., Kruglyak, S., Yooseph, S.: Exploring expression data: identification and
analysis of coexpressed genes. Genome Research 9(11), 1106 (1999)

8. Heymann, P., Garcia-Molina, H.: Collaborative creation of communal hierarchical
taxonomies in social tagging systems. Technical Report 2006-10, Stanford InfoLab
(April 2006)

12 E. ElGindy and A. Abdelmoty

9. Lee, S., Won, D., McLeod, D.: Tag-geotag correlation in social networks. In: Pro-
ceeding of the 2008 ACM Workshop on Search in Social Media, pp. 59–66. ACM
(2008)

10. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and re-
versals. Soviet Physics Doklady 10, 707–710 (1966)

11. Markines, B., Cattuto, C., Menczer, F., Benz, D., Hotho, A., Stumme, G.: Evalu-
ating similarity measures for emergent semantics of social tagging. In: Proceedings
of the 18th International Conference on World Wide Web, pp. 641–650. ACM, New
York (2009)

12. Mathes, A.: Folksonomies-cooperative classification and communication through
shared metadata. In: Computer Mediated Communication, LIS590CMC (Doctoral
Seminar), Graduate School of Library and Information Science. University of Illi-
nois Urbana-Champaign (2004)

13. Mika, P.: Ontologies are us: A unified model of social networks and semantics.
In: Web Semantics: Science, Services and Agents on the World Wide Web, vol. 5
(2007)

14. Rattenbury, T., Good, N., Naaman, M.: Towards automatic extraction of event and
place semantics from flickr tags. In: Proceedings of the 30th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval,
pp. 103–110. ACM, New York (2007)

15. Schmitz, P.: Inducing ontology from flickr tags. In: Collaborative Web Tagging
Workshop at World Wide Web, Edinburgh, Scotland (2006)

16. Shannon, C.: A mathematical theory of communication. ACM SIGMOBILEMobile
Computing and Communications Review 5(1), 55 (2001)

17. Tsui, E., Wang, W.M., Cheung, C.F., Lau, A.S.M.: A concept-relationship acquisi-
tion and inference approach for hierarchical taxonomy construction from tags. Inf.
Process. Manage. 46(1), 44–57 (2010)

18. Van Damme, C., Hepp, M., Siorpaes, K.: Folksontology: An integrated approach
for turning folksonomies into ontologies. Bridging the Gap between Semantic Web
and Web 2, 57–70 (2007)

19. Wal, T.V.: Folksonomy (2007), http://www.vanderwal.net/folksonomy.html
20. Wu, H., Zubair, M., Maly, K.: Harvesting social knowledge from folksonomies. In:

Proceedings of the Seventeenth Conference on Hypertext and Hypermedia, p. 114.
ACM (2006)

http://www.vanderwal.net/folksonomy.html

L. Wang et al. (Eds.): WAIM 2011 Workshops, LNCS 7142, pp. 13–25, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Generating Semantic-Based Trajectories
for Indoor Moving Objects

Huaishuai Wang, Peiquan Jin, Lei Zhao, Lanlan Zhang, and Lihua Yue

School of Computer Science and Technology, University of Science and Technology of China
jpq@ustc.edu.cn

Abstract. This paper presents a novel method to generate semantic-based
trajectories for indoor moving objects. Indoor moving objects management has
been a research focus in recent years. In order to get the trajectory data of
indoor moving objects, we have to deply numerous positioning equipments,
such as RFID readers and tags. In addition, it is a very complex and costly
process to construct different environment settings for various indoor
applications. To solve those problems, we propose to use virtual positioning
equipments, e.g. RFID readers and tags, to simulate indoor environment.
Furthermore, we present a semantic-based approach to generating trajectories
for indoor moving objects, which takes into account the type of moving objects,
the relationship between moving objects and locations, and the distribution of
the trajectories. Compared with previous approaches, our method is more
realistic for the simulation of indoor scenarios, and can provide useful trajectory
data for further indoor data management analysis. Finally, we design and
implement a tool for the generation of semantic-based trajectories for indoor
moving objects, and conduct a case study to demonstrate its effectiveness. The
results show that it can generate semantic-based trajectories for indoor moving
objects according to different parameters and semantic settings.

Keywords: indoor space, trajectory data, moving objects, simulation.

1 Introduction

Indoor space has been a new research hot topic, as many people work and live in
indoor environment in most of their lives. Analyzing the moving patterns of indoor
moving objects is very useful to realize personalized customer relationship
management, hot indoor locations determination, as well as monitoring indoor
moving objects. However, it is very hard to perform studies towards indoor moving
objects data management, due to the lack of experimental data. In order to get the
trajectory data of indoor moving objects, we have to deply numerous positioning
equipments, such as RFID readers and tags, which takes lots of money, time, and
human recourses. In addition, it is a very complex and costly process to construct
different environment settings for various indoor applications.

14 H. Wang et al.

Therefore, in this paper we aim at providing simulated data for indoor moving
objects management and particularly focus on the simulation of trajectory data for
indoor moving objects. Previous simulation approaches for indoor moving objects are
lack of the consideration on moving semantics. On the other side, most indoor moving
objects show some specific patterns when they move in indoor space. For example,
for most employees, when they enter into the working building, they usually directly
move to their office, and then they may go to the rest room after working for some
time or go to the boss office for discussion. This implies that moving objects usually
have their own moving patterns in indoor space, which should be emphasized when
we simulate the trajectory data for indoor moving objects.

In this paper, we use virtual positioning equipments, namely virtual RFID readers
and tags, to construct the virtual indoor environment, and then generate semantic-
based trajectories for indoor moving objects according to some specific rules that are
used to control the moving patterns of moving objects. The main contributions of the
paper can be summarized as follows:

(1) We propose a semantic-based method to generate trajectories for indoor moving
objects.Compared with previous works, our approach is able to generate realistic
moving patterns for indoor objects (Section 3).

(2) We introduce three types of semantics into the generation of indoor trajectories,
which are the type of moving objects, the relationship between moving objects and
locations, and the distribution of trajectories (Section 4).

(3) We implement a tool called IndoorSTG to generate the semantic-based
trajectories for indoor moving objects, and perform a case study to demonstrate its
effectiveness (Section 5).

2 Related Work

Indoor space has received much attention in recent years. Previous work related with
indoor space focused on the modeling of indoor space. The indoor space models can
be divided into three categories according to the different ways to describe indoor
objects, which are the object feature model, the geometric model and the symbolic
model. Among them, the object feature model mainly expresses the properties of
indoor space and the relationship between operations and types. In the literature [6],
the authors used the UML-based class model, CityUML/IndoorML, to describe the
relationship among objects in indoor space. In [7], an ontology-based model named
ONALIN was proposed for the navigation in the indoor space. The geometry model
concerns about the geometric representation of indoor space, which is mainly used to
visualize the indoor space. The 2D-3D hybrid model proposed in [8] supports the
visualization of indoor space and the navigation in indoor space. The prismatic model

 Generating Semantic-Based Trajectories for Indoor Moving Objects 15

in [9] can well analyze the topology of indoor space. A topology-based semantic
model was presented in [10], in which the indoor space is represented as a single set
of objects for the analysis of indoor space. The lattice-based semantic model [11]
used lattice structure to represent the indoor space, which is mainly used for the
navigation in indoor space.

There are some related works on data generation for indoor space [1-5]. In [1], the
authors proposed some principles of how to simulate the indoor environment and
some evaluation rules to be used to evaluate the model functions. The simulated
experimental data used by [4, 5] is randomly generated. They did not consider the
moving patterns of indoor moving objects so that the data set has limited use in indoor
space analysis. In [2, 3], a simulation tool for generating RFID streaming data was
introduced. Although they take into account the distribution of the trajectories, this
approach used constant probabilty for each edge in a trajectory. This is not realistic,
because indoor moving objects have different moving patterns (or potential locations)
when thet are in different locations. Additionaly, the correlation between objects and
locations is neglected in previous work. Usually, the objects are of certain relationship
with some interested locations, such as PhD students and their laboratories, professors
and their offices. Thus that relationship should be taken into consideration when
generating trajectories for indoor moving objects.

3 Overview of IndoorSTG

3.1 Design Considerations of IndoorSTG

In order to define realistic moving patterns and generate various trajectories for
different indoor moving objects, we need to make the data generation process more
adaptive and flexible. For this purpose, we introduce some parameters in this paper to
well define the generation actions. The parameters are defined in Table 1. The symbol
NR represents the number of RFID readers deployed in the indoor environment, whose
domain is between one and a maximum value that can be set according to your
requirements. The symbol Loc represents the <X, Y> location of a RFID reader, where
the value of X or Y is set according to the screen coordinate system. The notion RR
represents the coverage of the reader, i.e., the sensing radius of the reader, whose
value can be ranged from 25cm to 50cm, or even a larger one. The notion NM
represents the number of moving objects. Sp represents the speed of moving objects
that move in the virtual environment, which can be a fixed value or a randomly-
selected value from a given range. The notion TTra represents the travel time that the
moving objects move from one reader to another reader, which is calculated by Dis/Sp

(Dis is the distance between those two readers). The notion Tsta represents the stay
time period of the moving objects that stay within the coverage range of the reader,
which is set according to the current location described in Table 2. Moreover, we can

16 H. Wang et al.

also define other parameters. Taking the sampling period of the reader as an example,
although this feature can well simulate the functionality of a RFID reader, it will
result in many redundant data which have to be filtered when used in applications.

As different objects have different moving patterns, in this paper we divide moving
objects into several types, such as teachers, students and visitors. Besides, in a typical
indoor environment, a moving object is usually associated with some specific
locations. For instance, a student in a lab building is associated with his or her
laboratory room and supervisor’s office. Hence, when a moving object enters into the
indoor environment, we assume that it will stay for a long period at its associated
locations and stay for a little time at other locations. Meanwhile, we assume that
moving objects tend to moving among their associated locations. As a result, the
locations are classified into the types listed in Table 2. Here, the primary locations
represent the focused locations of a moving object, such as working room, where the
moving object may stay for a long time, and has a larger probability to firstly arrive at
this location. The secondary locations represent the locations that are related with
the moving object. For example, for students, the secondary locations may include the
supervisor’s office, while for teachers the secondary locations may include the
laboratory that his or her students stay in. Because of this relationship, the students
(teachers) have a larger probability to arrive teacher’s office (laboratory). The thirdly
locations can be also named service locations, such as ATM, rest room, and so on,
which may have a small probability to reach during the travel of a moving object..
Taking the rest room as an example, you rarely directly move into the rest room when
you firstly enter into the office building. The types from 0 to 2 can be called
interested locations. The negligible locations are the rooms that are not included in
the above three type of locations, which have a smallest probability during the
journey of a moving object.

Table 1. Parameters to configure the virtual indoor environment

Parameter Description

NR The number of readers for testing

Loc The location of the RFID

RR The coverage of the reader

NM The number of Moving object

TTra The travel time between two readers

TSta
The stay time at the cover range of the
reader

Sp The speed of moving object

 Generating Semantic-Based Trajectories for Indoor Moving Objects 17

Table 2. Locations Classification

Type Description Probability

0 Primary Locations [0--1]

1 Secondary Locations [0--1]

2 Thirdly Locations [0--1]

3 Negligible Locations [0--1]

3.2 Architecture of IndoorSTG

In this section, we discuss about the architecture of IndoorSTG which is shown in
Fig.1. The architecture is designed based on above explained requirements and
functions.

In order to generate the trajectory data of moving objects in indoor environment,
positioning sensors such as RFID readers and WLAN adapters should be first
deployed. In our system, we use the RFID readers as the basic sensors, as at present
RFID sensors are very popular in indoor positioning. While the RFID readers are
deployed in the indoor environment, we attach a RFID tag to each moving object so
that they can be captured when passing by the RFID readers. Therefore, we use two
virtual devices, namely Virtual RFID Controller and Virtual Tag Controller, to
simulate RFID readers and moving objects respectively. When a moving object
identified by a unique virtual tag enters into the range covered by some RIFD reader,
we generate a record formed <ID, tag_ID, reader_ID, enter_time, leave_time,
move_time> to record the movement. In addition to the Virtual RFID Controller and
the Virtual Tag Controller, the virtual environment also contains a Virtual Location
Controller, which is used to maintain the information about the interested locations
listed in Table 2. The T-L Relation Controller in Fig.1 is designed to define the

Fig. 1. Architecture of IndoorSTG

18 H. Wang et al.

relationships between moving objects (i.e., virtual tags) and interested locations. The
last component of IndoorSTG, the Data Processing Controller, is the user interface to
generate semantic-based trajectories, which also offers flexible configuration on the
parameters that are necessary to run IndoorSTG. The final trajectory data generated is
placed in a file and can be used for further analysis, such as moving pattern
classification, hot trajectory determination, and moving objects clustering.

4 Introducing Semantics in IndoorSTG

4.1 Correlation between Objects and Locations

Indoor moving objects usually have different moving patterns; therefore it is
important to first make a classification on those moving objects. First, we divide
moving objects into several types. Taking the office building of our department as an
example, the moving objects can be divided into three types, such as teachers,
students, and visitors. Since IndoorSTG aims at simulating the moving patterns of
indoor moving objects, we simply divide all the moving objects (virtual tags) into
three sub-sets, with each sub-set contains a certain number of moving objects. For
instance, suppose that there are n moving objects, then each sub-set will contain α*n,
β*n, and γ*n moving objects respectively, where α+β+γ =1.

Secondly, we introduce semantics into locations and divide all the locations into
four types, namely primary location, secondary locations, thirdly locations, and
negligible locations, as mentioned in Table 2.

Finally, we use the algorithm OLCorrelation (shown in Fig.2) to construct the
relationships between moving objects and locations. First, we assume that each object
is associated with some locations among the whole four types of ones (Line 1 to 18).
It means each object has a set of primary locations, a set of secondary locations, and
so on. In Fig.2, for simplification we assume that all the moving objects are classified
into three types, i.e., students, teachers, and visitors. However, those types can be
adjusted according to the specific scenario of the simulated indoor environment. Line
3 to 6 is used to set the locations for students and Line 8 to 11 is for the locations of
teachers. For visitors, we set his or her primary and secondary location as NULL
(Line 13 to 14), which means his or her moving pattern is random. For students and
teachers, we set the service rooms associated with them, such as ATM and rest room.
In Line 19 to 31, we set the location probabilities that the moving objects move
towards it. At this time, we must consider the type of moving objects, because they
have different probabilities to move towards different types of associated locations.
Generally, the probability for primary location is much bigger than the probability for
other type.

 Generating Semantic-Based Trajectories for Indoor Moving Objects 19

Algorithm OLCorrelation /*the Correlation between Objects and Locations*/
Input: The set of moving objects P = {P1, P2,…, Pn}, where the type of each Pi has

been annotated. The set of location L = {L1, L2, …, Ln}, where L has been
divided into four types.

Output: The revised set of moving objects P = {P1, P2,…, Pn}, where each Pi has
been associated with some locations.

Preliminary: The indoor environment is a six-floored building. All the moving
objects are classified into students, teachers, and visitors. However, those
types can be adjusted when running IndoorSTG.

1: for each Pi ∈ P { // associate rooms with objects
2: if Pi is student then{
3: room ← randomly select a room locating in 1-5th floor;
4: Pi.setPrimaryLocation (room);
5: room ← randomly select a room locating in 6th floor
6: Pi.setSecondaryLocation(room); }
7: else if Pi .getType is teacher then {
8: room ← randomly select a room locating in 6th floor
9: Pi.setPrimaryLocation(room);
10: room ← randomly select a room locating in 1-5th floor;
11: Pi.setSecondaryLocation(room);
12: else { // the type of moving object is visitor
13: Pi.set PrimaryLocation(NULL);
14: Pi.setSecondaryLocation(NULL);
15: }
16: Pi.setThirdlyLocation(); // set service rooms for each type of objects

17: if Pi is not visitor then Pi.setNegligibleLocation();
18: }
19: for each Pi ∈ P {
20: if Pi .getType is student then {//probabilities for each associated location
21: Pi.setPrimayLocProb(PROB_STU); // for primary locations
22: Pi.setSecondaryLocProb((1- PROB_STU)*0.8); /
23: Pi.setThirdlyLocProb((1- PROB_STU)*0.15);
24: Pi.setNegligibleLocProb((1- PROB_STU)*0.05);
25: }
26: if Pi .getType is teacher then {
27: Pi.setPrimayLocProb(PROB_TEA);
28: Pi.setSecondaryLocProb((1- PROB_TEA)*0.8);
29: Pi.setThirdlyLocProb((1- PROB_TEA)*0.15);
30: Pi.setNegligibleLocProb((1- PROB_TEA)*0.05);
31: }
32: }

Fig. 2. The OLCorrelation Algorithm

4.1 Clustering of Movements
In this section, we define the algorithm GenTrajectory to generate trajectories for
indoor moving objects (as shown in Fig.3).

20 H. Wang et al.

Algorithm GenTrajectory
Input: The set of moving objects P = {P1, P2,…, Pn}, where each Pi has been

associated with interested locations. Graph G=<N, E>, where N = {N1, N2 ,…,
Nn}, Ni represents a RFID reader, E ={E1, E2, …, En} is a set of edges and Ei
= <Ni, Nj> means that the object can move from Ni to Nj.

Output: The trajectory record <ID, tag_ID, reader_ID, enter_time, leave_time,
move_time> of moving object.

1: for each Pi ∈ P {
2: while (n > 0) { // for each object, we generate n trajectory records
3: if Pi is a student or a teacher then {
4: if now is the working time then { // now is a self-defined time
5: get the probabilities for Pi to move to the locations associated;
 /* get the Dijkstra min path and return the count of hops
6: desLoc←Pi.getDesLocation(); // pick up a destination
7: count←Dijkstra(Pi.curLoc, desLoc);

/* get the weight of the edge; PROB is the probability that the moving
object directly move from current location to destination location. */

8: Prob(weight) = pow(PROB, count-1);
9: set the weights of the directly-connected edges of the current location;
10: Pi.curLoc←find the next location for Pi according to the weights;
11: if Pi.curLoc is not the destination location then {
12: generate a trajectory record and write it out;
13: Goto Line 6; // continue to move towards the destination
14: }
15: else { // arrive at the destination
16: generate a trajectory record and write it out;
17: Goto Line 5; // continue to find another destination location
18: }
19: else{ // time to leave the building, i.e., [11:30, 12:00] or after 18:00
20: count←Dijkstra(Pi.curLoc, entrance); // moving to the entrance
21: generate trajectory records using the procedures from Line 9 to 16;
22: n ← n − 1;
23: if now ∈ [11:30 AM, 12:00 AM] then // tentative leaving
24: wait until the working time and go to Line 2; // re-enter
25: else // re-enter in the 7:00 AM of the next day
26: wait until 7:00 AM in the next day and go to Line 2;
27: }
27: else {//visitors
28: set the weights of the directly-connected edges of the current location;
29: Pi.curLoc←find the next location for Pi according to the weights;
30: generate a trajectory record and write it out;
31: n ← n − 1;}
32: }
33: }

Fig. 3. The GenTrajectory Algorithm

 Generating Semantic-Based Trajectories for Indoor Moving Objects 21

First, we check whether at present the moving object that should leave the building
(perhaps because of work off or diner time). If yes then the object must leave the
building at its current location, otherwise we pick up a destination location with
respect to the object type, and use the Dijkstra algorithm to get the minimum path
from the current location to the destination location. Based on this result, we set the
weight of each edge in the path connecting the current location with the destination,
and generate a probability to determine the next location until arrive at the
destination. At last, we calculate the probabilities of other types of locations in order
to get the next destination location, and repeat the above work.

5 Implementation and a Case Study

In this section, we will discuss the implementation of IndoorSTG while the indoor
environment is set as the department building of the School of Computer Science and
Technology at University of Science and Technology of China. The building has six
floors. The teachers’ offices are located at the sixth floor, and the students’
laboratories are at the other floors. We will explain how to set the parameters for
simulating the real indoor environment and how to associate the locations with the
objects, and then generating trajectory data. Finally, we present a case study to show
the process of generating trajectory data.

5.1 Implementation of IndoorSTG

We deploy 95 RFID readers in the building and the readers are deployed on the room,
lift, floor, and passage way. The data structure to describe RFID readers is shown in
Table 3. We classify the moving objects into three types, namely teachers, students
and visitors. Each object will record the information of locations that associate with it.
The data structure of moving objects is shown in Table 4. In order to generate
semantic-based trajectory data, we divide the locations into four types, and use the
data structure shown in Table 5 to maintain the location information. For the purpose
of reducing the complexity of the indoor environment, we assume that objects are
moving on the graph which is composed of RFID readers. The data structure of graph
is shown in Table 6.

After the above settings, we use the algorithm GenTrajectory to generate the
trajectory of moving objects. The format of output data is <ID, tag_id, reader_id,
enter_time, leave_time, move_time>, which means the tag_id is detected by the
reader_id at enter_time and leave the sensing range at leave_time, and the move_time
represents the travel time from the prior location to the current location. Table 7
shows an example, in which the object stays a long time period in the location 59 as
this is the primary location, and stay 30 seconds at other locations. At the location 59,
the object will stay a random time between 30 minutes and 1 hour, while at the other
locations, the object has a probability of 5% to stay a random time period between 1
minute and 5 minutes. In other cases, the object directly passes through the RFID
reader, and the spent time is determined by the coverage radius and the moving speed
of the object.

22 H. Wang et al.

Table 3. Data structure to describe RFID readers

Data Item Description

RID The number of RFID

<X,Y> The location of RFID, using screen coordinates

range The detection range of RFID reader

floorID The floor number that the RFID locates

Table 4. Data structure to describe moving objects

Data Item Description

tagID The number of moving object

roomID The number of primary location

type The type of moving object

assRoomID The number of secondary location

location[]
The structure that stores the information of interesting locations
and the probability that the object move to it when the object
arrives at one destination location.

Table 5. Data structure to describe locations

Data Item Description

type The type of location

locID The number of location

Prob
The probability that the object move to the locID when
the object arrives at one destination location.

Table 6. Data structure to describe graph

Data Item Description

RFID[] The information of the location of RFID readers

Edge1[][] The weight of two nodes in first floor

Edge2[][] The weight of two nodes in other floors

edgeLift[][] The weight of two nodes at the location of lift

edgeFloor[][] The weight of two nodes at the location of corridor

Table 7. An example of trajectory data generated

ID tag_id reader_id enter_time leave_time move_time

1 1 50 2011-01-02 16:40:22 2011-01-02 16:40:52 120s

2 1 54 2011-01-02 16:41:08 2011-01-02 16:41:38 16s

3 1 62 2011-01-02 16:43:38 2011-01-02 16:44:08 120s

4 1 59 2011-01-02 16:44:36 2011-01-02 17:17:36 28s

 Generating Semantic-Based Trajectories for Indoor Moving Objects 23

5.2 A Case Study

5.2.1 Scenario of Indoor Space
In this section, we will give the deployment of the first floor, which is shown in Fig.4.
The numbers in circles represent RFID readers, and the circles represent the coverage
areas of the RFID readers. The RFID readers identify the locations in the building.
For example, And the No.1 reader represents the entrance of the building, and the
No.2 represents the location of ATM. The symbols like “1-101” represent rooms, and
we deploy a RFID reader at the door of each room.

Fig. 4. The deployment of the first floor

5.2.2 Generating Trajectories
In this section, we will discuss about the process of generating trajectory data of one
object. First, we define the probability settings for the locations (as shown in Table 8).
Because the object may have different moving patterns from the entrance to the
destination room at different time, we assign different probabilities to the interested
locations of the object. Particularly, we assume that moving objects just entering into
the building have different locations preferences from those that are already in the
building. For instance, when a student just enters into the department building, his or
her first destination location is usually the laboratory. However, when he or she leaves
the laboratory, the first destination location is surely not the laboratory itself. Hence,
we differ those two cases and use different probabilities for them. Those two
probabilities are shown in the right column of Table 8, in which the left is the
probability of the location when the object just enters into the building, and the right is
the probability of the location when the object has been in a certain room of the

24 H. Wang et al.

building. Secondly, given that one object just enters into the building from location 1,
we first pick up the destination of the object according to the predefined probabilities.
Suppose that the destination is location 19, which is the primary location for the object,
then we will use the algorithm Dijkstra to get the edge count from location 1 to
location 19, which is 3, and set the probability (pow(0.9,1/3)) of those edges. The
current location is 1, and we will set the probability of edges that connect with location
1, which are [1,2,(1-prob)/3], [1,3, (1-prob)/3],[1,4, (1-prob)/3],[1,5,prob] respectively.
The object will stay at current location for a random time period ranging from 1 minute
to 3 minutes because it is an interested location of the object. Then we randomly select
the next location and repeat the above steps until the object arrives at location 19.
When the object arrives at location 19, we set the probability of other types of locations
with respect to the rules in Table 8. After that, we generate the next destination, and
repeat the above processes. Moreover, when the current time is between 11:30 AM and
12:00 AM or after 18:00 PM, the object will leave the building (i.e., moving from its
current location to location 1). The partial result is shown in Table 7.

Table 8. The probability setting for locations

Type Location Probability

0 roomID 0.9 / 0.8

1 assRoomID (1-getProb(0))*0.8

2 ATM_ID (1-getProb(0))*0.05

2 RestRoom_ID (1-getProb(0))*0.025 / (1-getProb(0))*0.125

2 MessageBox_ID (1-getProb(0))*0.125 / (1-getProb(0))*0.025

3 NegLoc_ID (1-getProb(0))*0.05

5.2.3 Discussion
In the process of generating the trajectory data, we use the destination location to
determine the overall trajectory of the moving object. By using this method, we can
easily express the typical movements in indoor environment. For instance, a student
arrives at laboratory now, and then he goes to teacher’s office for discussion after some
times, and then goes to laboratory again or go to the rest room for a rest. Besides, all
the semantic rules in our system can be defined by users, including the types of objects,
the relationships between objects and locations, as well as the probabilities of
locations. Thus it can generate trajectory data for different application scenarios.

6 Conclusions

Indoor moving objects management will be a new research focus with the
development of indoor positioning sensors and the Internet of Things (IoT). We need
much experimental data to perform algorithm study for indoor data modeling,
indexing, query processing, and data mining. However, at present it is not possible to
obtain real data set especially those with specific moving patterns. Therefore,
to develop a simulation tool and generate semantic-based moving objects data is a
feasible solution in current research on indoor moving objects.

 Generating Semantic-Based Trajectories for Indoor Moving Objects 25

In this paper, we propose a semantic-based method to generate trajectories for
indoor moving objects. This method takes into account a lot of semantic rules that are
typically implied in indoor enviroment, including the type of moving objects, the
relationship between moving objects and locations, and the distribution of the
trajectories. We built a simulation tool called IndoorSTG to generate trajectory data
for indoor moving objects, and introduce those semantics into the generation process.
Furthermore, all the semantic factors are defined by some specfic parameters, which
can be adjusted according to the characteristics of different indoor applications.

There are alot of future works that are valuable to be explored, such as to make the
simulation tool more realistic, to integrate with out-door environment, and to suit for
different types of indoor space including subway and airports.

Acknowledgements. This work is supported by the National High Technology
Research and Development Program ("863" Program) of China (No. 2009AA12
Z204), and the USTC Youth Innovation Foundation.

References

1. Park, C., Ryu, W., Hong, B.: RFID Middleware Evaluation Toolkit Based on a Virtual
Reader Emulator. In: Proc. of the First International Conference on Emerging Databases,
pp. 154–157 (2009)

2. Zhang, H.P., Ryu, W.S., Hong, B.H.: A Test Data Generation Tool for Testing RFID
Middleware. In: International Conference on Computers and Industrial Engineering (CIE),
Awaji, Japan (2010)

3. Zhang, H.P., Ryu, W.S., Hong, B.H.: A Graph Model Based Simulation Tool for
Generating RFID Streaming Data. In: Du, X., Fan, W., Wang, J., Peng, Z., Sharaf, M.A.
(eds.) APWeb 2011. LNCS, vol. 6612, pp. 290–300. Springer, Heidelberg (2011)

4. Jensen, C.S., Lu, H., Yang, B.: Indexing the Trajectories of Moving Objects in Symbolic
Indoor Space. In: Mamoulis, N., Seidl, T., Pedersen, T.B., Torp, K., Assent, I. (eds.) SSTD
2009. LNCS, vol. 5644, pp. 208–227. Springer, Heidelberg (2009)

5. Jensen, C.S., Lu, H., Yang, B.: Graph Model Based Indoor Tracking. In: Proc. of MDM,
pp. 122–131 (2009)

6. Kolbe, T., Goger, G., Plumer, L.: CityGML: Interoperable Access to 3D City Models. In:
Proc. of the First Int. Symposium on Geo-information for Disaster Management, pp. 883–
899 (2005)

7. Dudas, P., Ghafourian, M., Karimi, H.A.: ONALIN: Ontology and Algorithm for Indoor
Routing. In: Proc. of MDM, pp. 720–725 (2009)

8. Kim, H., Jun, C., Yi, H.: A SDBMS-based 2D-3D Hybrid Model for Indoor Routing. In:
Proc. of MDM, pp. 726–730 (2009)

9. Kim, J.-S., Kang, H.-Y., Lee, T.-H., Li, K.-J.: Topology of the Prism Model for 3D Indoor
Spatial Objects. In: Proc. of MDM, pp. 698–703 (2009)

10. Li, D., Lee, D.L.: A Topology-based Semantic Location Model for Indoor Applications.
In: Proc. of ACM GIS, Article No. 6 (2008)

11. Li, D., Lee, D.L.: A Lattice-Based Semantic Location Model for Indoor Navigation. In:
Proc. of MDM, Beijing, China, pp. 17–24 (2008)

12. EPC Tag Data Standard, http://www.gs1.org/sites/default/files/docs/
tds/tds_1_5-standard-20100818.pdf (accessed in May 2011)

13. Rifidi Tag Streamer, http://wiki.rifidi.org/index.php/Tag_Streamer_
User%27s_Guide_1.1 (accessed in May 2011)

L. Wang et al. (Eds.): WAIM 2011 Workshops, LNCS 7142, pp. 26–39, 2012.
© Springer-Verlag Berlin Heidelberg 2012

HTPR*-Tree: An Efficient Index for Moving Objects
to Support Predictive Query and Partial History Query

Ying Fang, Jiaheng Cao, Junzhou Wang, Yuwei Peng, and Wei Song

School of Computer, Wuhan University, Wuhan, China
{fangying,jhcao,ywpeng,songwei}@whu.edu.cn

Abstract. Developing efficient index structures is an important issue for moving
object database. Currently, most indexing methods of moving objects are focused
on the past position, or on the present and future one. In this paper, we propose a
novel indexing method, called HTPR*-tree (History Time-Parameterized
R-tree), which not only supports predictive queries but also partial history ones
involved from the most recent update instant of each object to the last update
time. Based on the TPR*-tree, our HTPR*-tree adds creation or update time of
moving objects to leaf node entries. This index is the foundation of indexing the
past, present and future positions of moving objects. In order to improve the
update performance, we present a bottom-up update strategy for the HTPR*-tree
by supplementing three auxiliary structures which include hash index, bit vector,
and direct access table. Experimental results show that the update performance
of the HTPR*-tree is better than that of the TD_HTPR*- and TPR*-tree.
Moreover, the HTPR*-tree can support partial history queries compared with
TPR*-tree although the predictive query performance is a bit less.

Keywords: moving object indexing, HTPR*-tree, predictive query, partial
history query, bottom-up update strategy.

1 Introduction

Developing efficient index structures is an important research issue for moving object
database. Traditional spatial index structures are not appropriate for indexing moving
objects because the constantly changing locations of objects requires constant updates
to the index structures and thus greatly degrades their performance.

Some index structures have been proposed for moving objects. They can be
classified into two major categories depending on whether they deal with past infor-
mation retrieval or future prediction. Currently, some indices suitable for history and
future information retrieval of moving objects have also been studied. However, they
are too complicated and could not efficiently handle queries involved from the past to
the future.

In general, indexing about past trajectories of moving objects only stores history
information from some past time until the time of the most recent position sample
(to

mru) of each object o. However, indexing of the current and anticipated future

 HTPR*-Tree: An Efficient Index for Moving Objects 27

positions can only supports the query from the last update time (tlu=max(to
mru|o∈O) to

the future. In other words, the history trajectories of moving objects from the most
recent update instant to the last update time (or the current time CT) are omited. In
order to support the queries involved from the past to the future in moving object
databases, current and future positions indexing structure such as TPR-tree [1] and
TPR*-tree [2] should be extended to support partial history queries.

The TPR*-tree is the most useful indexing method which indices the current and
future position of moving object through Time-Parameterized Rectangles. In the
TPR*-tree, partial history trajectories of moving objects which do not update at the last
update time are implicit, but they couldn’t be queried. In order to query history tra-
jectories in the TPR*-tree, in this paper, we develop a novel index structure which not
only supports predictive queries, but also supports partial history queries involved from
the most recent update instant of each object to the last update time. This novel index
structure is very important to support the queries involved from the past to the future.
In order to support frequent update, bottom-up update strategy is also applied to the
new index structure.

The main contributions of this paper can be summarized as:

1. We present an new index structure, named History Time-Parameterized R-tree
(HTPR*-tree), which takes into account moving object creation time or update time in
the leaf node entry, and supports partial history query.

2. We propose a bottom-up update approach referencing the R-tree update tech-
nique[3] to support frequent update operation of the HTPR*-tree.

3. We prove through extensive experiments that the update performance of the
HTPR*-tree is better than that of the TD_HTPR*- and TPR*-tree.

The organization of this paper is as follows. Section 2 presents related works.
Section 3 shows the basic structure of the HTPR*-tree, the corresponding dynamic
maintenance, and query algorithms. In section 4, we discuss the bottom-up update
algorithm of the HTPR*-tree. Section 5 contains an extensive experimental evaluation,
and section 6 is the conclusion of our work.

2 Related Works

A number of index structures have been proposed for moving object database. Most of
these index structures are classified into two categories; one of them is to handle past
positions or trajectories [4-6], and the other is to handle current and future positions
[1,2,7-12]. In addition, some indices suitable for history and future queries of moving
objects have also been studied [13,14].

History trajectories indices such as STR-tree and TB-tree [4] are used to index po-
sitions for an object only up to the time of the most recent sample. They can play an
important role in supporting the queries involved from the past to the future.

28 Y. Fang et al.

The search of indexing methods for current and future positions of moving objects
are very challenging. In general, there are three approaches to study the indices for
predictive queries. One is indexing the future trajectories of objects moved in
d-dimensional space as lines in (d+1)-dimensional space [7]. Another is mapping the
trajectories to points in a higher-dimensional space which are then indexed [8]. The
third is to index the original time-space with parametric rectangles [1,2,9].

By introducing parametric bounding rectangles in R-tree, the TPR-tree provides the
capability to answer the queries about current positions and future positions. The
TPR*-Tree improved upon the TPR-Tree by introducing a new set of penalty functions
based on a revised query cost model. In recent years, based on the B+-tree, indices for
moving objects not only supporting queries efficiently but also supporting frequent
updates are proposed. Jensen et al. proposed the Bx-tree [10], which employs space
partitioning and data/query transformations to index object positions and has good
update performance. Chen et al. also proposed the ST2B-tree[11], a Self-Tunable Spa-
tio-Temporal B+-Tree index for moving object database, which is amenable to tuning.

Pelanis et al. proposed RPPF-tree [13] to support both the past and the future
movement of the objects. The implemented query types are only timestamp ones.
Raptopoulou [14] et al. extended the XBR-tree to deal with future prediction as well.
But it only can support timestamp queries involved from the past to the future and
history window queries.

Our work aims to extend the current and future positions indexing structure to
support partial history queries. This new index structure is the foundation of indexing
the past, present and future positions of moving objects. In addition, bottom-up update
strategy is applied to the new index structure in order to support frequent update.

3 The HTPR*-Tree

In this section, we will discuss a novel index structure called History TPR*-tree
(HTPR*-tree). First, we describe the basic structure of the HTPR*-tree. Then, the
insertion and deletion algorithms are shown. The query algorithm is given at the end.

3.1 Index Structure

The HTPR*-tree is a height-balanced tree similar to a R-tree. Leaf nodes of the
HTPR*-Tree contain entries of the form (oid, MBR, VBR, st). Here oid is the identifier
of the moving object, and st is creation or update time of object. MBR denotes object
extent at time st, and VBR denotes velocity bounding rectangle of object at time st.

For example, a two-dimensional moving object is represented with MBR oR={oR1-,
oR1+,oR2-,oR2+} where oRi- (oRi+) describes the lower (upper) boundary of oR along the
i-th dimension (1≤i≤2), and VBR oV={oV1-,oV1+,oV2-,oV2+} where oVi- (oVi+) describes the
velocity of the lower (upper) boundary of oR along the i-th dimension (1≤i≤2). Figure 1
shows the MBRs and VBRs of 4 objects a,b,c,d. The arrows (numbers) denote the
directions (values) of their velocities. The MBR and VBR of b are bR={3,4,4,5} and
bV={1,1,1,1}, respectively.

 HTPR*-Tree: An Efficient Index for Moving Objects 29

The structure of each non-leaf node entry of Rs is in the form of (ptr, MBR, VBR, st1,
st2). Here ptr is a pointer that points to the child node. St1 is the minimal creation or
update time of moving objects included in the child node pointed by ptr, and st2 is the
maximum value compare to st1. MBR is the minimum bounding rectangle at st1, and
VBR is the velocity bounding rectangle at st1. Figure 2 shows a leaf node e including
four point objects {o1,o2,o3,o4} in one-dimensional HTPR*-Tree. So, in parent node of
e, the corresponding entry includes MBR, VBR, st1, st2 and ptr that points to node e.
Here MBR={3,4}, VBR={-0.2, 0.3}, st1=2 and st2=4.

3.2 Insertion and Deletion

1. Insertion
Because the creation or update time of moving objects is included in leaf node entries
of HTPR*-Tree, and non-leaf node entry is different from leaf node entry, the insertion
algorithm of HTPR*-Tree is a bit more complicated than that of TPR*-Tree.

2
0

4 6 8 10

2

4

6

8

10

x axis

y axis

b

c

a

e
d

the (absolute) values

of all velocities are 1

 2 time31 CT4

1

2

3

4

5

6

7

5 6

O1
O2

O4

O3

e

Fig. 1. MBRs and VBRs at reference time Fig. 2. A leaf node e including four point
objects

Algorithm 1 shows the insertion of a moving object in the HTPR*-Tree. First, the
insertion algorithm initializes two empty re-insertion lists Lreinsert1 and Lreinsert2 to ac-
commodate re-insertion moving objects and non-leaf node entries, respectively. Then,
the algorithm calls different functions according to whether the root of HTPR*-tree is a
leaf node or not. Finally, the algorithm inserts each object in Lreinsert1 and each entry in
Lreinsert2 to the HTPR*-tree.

Algorithm 2 describes inserting a moving object to a leaf node. However, algorithm
3 describes inserting a moving object to the HTPR*-tree rooted by a non-leaf node.
Because the insertion of a node entry can cause node split, the insertion algorithm
(algorithm 4) of non-leaf node entry in the HTPR*-Tree is also important.

30 Y. Fang et al.

Algorithm 1. Insert (r, o)
/*Input: o is a moving object with oid, MBR, VBR, st; r is the HTPR*-tree */
1. root=Root(r) /*achive the root of the HTPR*-tree
2. re-insertedi=false for all levels 1≤i≤h−1 (h is the tree height)
3. initialize two empty re-insertion list Lreinsert1 and Lreinsert2

4. if root is leaf node invoke Leaf Node Insert (root, o)
5. else invoke Non-Leaf Node Insert (root, o)
6. for each data o' in the Lreinsert1
7. if root is leaf node invoke Leaf Node Insert (root, o’)
8. else invoke Non-Leaf Node Insert (root, o’)
9. for each entry e in the Lreinsert2

10. invoke Non-Leaf Node Insert_e (root, e)
End Insert

Algorithm 2. Leaf Node Insert (N, o)
/* Input: N is the leaf node where object o is inserted */
1. enter the information of o
2. if N overflows
3. if re-inserted0=false //no re-insertion at leaf level yet
4. invoke Pick Data Worst to select a set Sworst of objects
5. remove objects in Sworst from N; add them to Lreinsert1
6. re-inserted0=true
7. else
8. invoke Leaf Node Split to split N into itself and N'
9. obtain entry e describe node N’
10. invoke Non-Leaf Node Insert_e (P,e) /*P be the parent of N*/
11. adjust the MBR/VBR/st1/st2 of the node N
End Leaf Node Insert (N, o)

Algorithm 3. Non-Leaf Node Insert (N, o)
/* Input: N is the root node of tree rooted by N */
1. obtain the son node N’ of N to insert o through the path achieve by Choose Data

Path
2. if N’ is the leaf node invoke Leaf Node Insert (N’, o)
3. else invoke Non-Leaf Node Insert (N’, o)
4. adjust the MBR/VBR/st1/st2 of the node N
End Non-Leaf Node Insert(N, o)

Algorithm 4. Non-Leaf Node Insert_e (N, e)
/* Input: e is non-leaf node entry
1. if e.level=N.level
2. enter e to N
3. if N overflows
4. if re-insertedi=false //no re-insertion at i level (e.level)yet

 HTPR*-Tree: An Efficient Index for Moving Objects 31

5. invoke Pick Entry Worst to select a set Sworst of entrys
6. remove entrys in Sworst from N; add them to Lreinsert2
7. re-insertedi=true
8. else
9. invoke Non-Leaf Node Split to split N into itself and N'
10. obtain entry e describe node N’
11. invoke Non-Leaf Node Insert_e (P, e) /*P be the parent of N*/
12. else
13. obtain the son node N’ of N through the path achieve by Choose Entry Path
14. invoke Non-Leaf Node Insert_e (N’, e)
15. adjust the MBR/VBR/st1/st2 of the node N
End Non-Leaf Node Insert_e(N, e)

Similiar to that in the TPR*-tree, algorithm Choose Path in the HTPR*-tree aims at
finding the best insertion path globally with a minimum cost increment (minimal
increase in equation 1). If a moving object is inserted, Choose Path is instantiated by
Choose Data Path, and non-leaf node entry inserting calls Choose Entry Path. Because
the creation or update time of moving objects is included in leaf node entries, the
enlarge of entry (caused by inserting a moving object in HTPR*-tree node) involves
history information, and the enlarged entry can support history query. This is the major
difference between HTPR*-tree and TPR*-tree. Of course, the predictive query per-
formance is somehow less than that of TPR*-tree.

The query cost model of the HTPR*-tree is the average number of node accesses for
answering query q:

Cost(q)=∑every node N ASR(N′, qT) (1)

where N is the moving rectangle (interval as for one-dimensional object) representing a
node, N′ is the transformed rectangle (interval as for one-dimensional object) of N with
respect to q, and ASR(N′,qT) is the extent of region swept by N′ during qT.

Figure 3 shows two leaf nodes e1 and e2 that are sons of the root e0. Here the entry
corresponding to e1 is {pt1,{3.2,4},{-0.2,0.3},2,3}, and the entry to e2 is
{pt2,{5,6},{0,0.4},3,4}. Consider the insertion of point object O6={ O6,4.6,0.5,7} at
current time 7. Choose Data Path returns the insertion path with the minimum incre-
ment in equation 1. The cost increment is 1.2 and 0.9 when o6 is inserted to e1 and e2,
respectively. Figure 4 describes insertion o6 to e2, which is the best insertion node.

Insertion to a full node N generates an overflow, in which the HTPR*-tree uses Pick
Worst algorithm that selects a fraction of the entries from the node N and re-inserts
them. Node Split algorithm splits a full node N into N1 and N2. The split algorithm
selects split axis and split position minimizing equation 2:

∆ASR=ASR(N1′,qT)+ASR(N2′,qT)−ASR (N′,qT) (2)

Another important difference between the insertion of HTPR*-tree and that of
TPR*-tree is that the MBR, VBR, st1 and st2 of node N after inserting have to be
modified.

32 Y. Fang et al.

X

time321 CT4

1

2

3

4

5

6

7

5 6

O1
O3

O2

e1

e2

O5

O4

O6
e0

X

time321 CT4

1

2

3

4

5

6

7

5 6

O1
O3

O2
e1

e2

O5

O4

O6e0

Fig. 3. Insert a moving point object o6 Fig. 4. Insert o6 to node e2

2. Deletion
Algorithm 5 describes deleting a moving object in HTPR*-Tree. To remove an object
o, the deletion algorithm first identifies the leaf node that contains o. In algorithm 5,
two empty re-insertion lists Lreinsert3 and Lreinsert4 are initialized to accommodate
re-insertion leaf node entries (moving objects) and non-leaf node entries, respectively.

Algorithm 5. Delete (r, o)

/*Input: o is a moving object with oid, MBR, VBR, st; r is the HTPR*-tree */
1. root=Root(r) /*achive the root of the HTPR*-tree
2. initialize an empty re-insertion list Lreinsert3 and Lreinsert4
3. if root is leaf node invoke Leaf Node Delete (root, o)
4. else invoke Non-Leaf Node Delete (root, o)
5. for each data o' in the Lreinsert3

6. invoke Non-Leaf Node Insert (root, o’)
7. for each entry e in the Lreinsert4

8. invoke Non-Leaf Node Insert_e (root, e)
End Delete (r, o)

Deletion of moving object in leaf node N may generate an underflow, in which case
the HTPR*-tree removes all objects in node N to Lreinsert3, and deletes entry e describes
N in parent node N’. If moving object o is deleted in the HTPR*-tree root by non-leaf
node N, the deletion algorithm calls Leaf Node Delete or Non-Leaf Node Delete in all
son node N’ of N until o is deleted. In algorithm Leaf Node Delete or Non-Leaf Node
Delete, if deletion of moving object o in the HTPR*-tree root by node N changes node
N, adjustment is needed from parent node N’ of N to root.

 HTPR*-Tree: An Efficient Index for Moving Objects 33

3.3 Search Procedure

The HTPR*-tree supports three kinds of predictive queries: timeslice query Q=(R, t),
window query Q=(R, t1, t2), and moving query Q=(R1, R2, t1, t2). At the same time, the
HTPR*-tree supports partial history query. Figure 5 describes timeslice query and
spatio-temporal range query of moving objects. The dashed parts of objects trajectories
are stored in the HTPR*-tree, and support predictive queries and partial history queries.

timetmru CT

1

2

3

4

5

6

7

Q3Q4

Q2

Q1

O3

O2

O1

X

tlu

Fig. 5. Querying the Positions of Moving Objects

For example, query Q1 is predictive timeslice query, and gets object O1 and O2.
Query Q2, Q3, and Q4 are history queries. Query Q2 intersects with partial history
trajectories after the most recent update instant (to

mru) of objects O1 and O2 stored in
HTPR*-tree. However, HTPR*-tree couldn’t realize query Q2 completely because the
query time is earlier than the last update time (tlu). In order to realize the queries in-
volved from the past to the future, HTPR*-tree should be combined with some indices
for describing history trajectories such as TB-tree.

Algorithm 6 is an illustration of spatio-temporal range query in the HTPR*-Tree. In
algorithm RQuery(r, w, T1, T2), if st1 of root is larger than T2, query is unsuccessful.
Else query calls algorithm LeafNodeRQuery (root is leaf node) or nonLeafNodeRQuery
(root is non-leaf node). If T1 is larger than st2 of root and T2 is small than or equal to the
current time, algorithm RQuery can realize history range query completely, which is
very similar to that find in predictive range query. Algorithm IN(o, w, T1, T2) deter-
mines whether object o is located in range w from time T1 to T2.

Algorithm 6. RQuery(r, w, T1, T2)
1. root=Root(r) /*achive the root of the HTPR*-tree
2. get st1 and st2 of root
3. if T2<st1 return null
4. else if root is leaf node invoke LeafNodeRQuery (root, w, T1, T2)
5. else invoke nonLeafNodeRQuery (root, w, T1, T2)

ENDRQuery

34 Y. Fang et al.

Algorithm 7. Leaf NodeRQuery (N, w, T1, T2)
1. for each o of N
2. if IN(o, w, T1, T2) return o
ENDLeaf Node RQuery

Algorithm 8. nonLeafNodeRQuery (N, w, T1, T2)
1. for each son node N’ of N
2. if N’ is leafnode Leaf NodeRQuery (N’, w, T1, T2)
3. else nonLeafNodeRQuery (N’, w, T1, T2)
ENDnonLeaf Node RQuery

4 Bottom-Up Update

It is well known that the update efficiency of TPR*-tree is not very high since it is
worked in a top-down manner. This is also the case for the top-down update
HTPR*-tree. In order to support frequent update, bottom-up update strategy is adopted
by the HTPR*-tree.

To support bottom-up update strategy, the HTPR*-Tree supplements auxiliary
structures which include hash table, and compact main memory summary structures
such as bit vector and direct access table. Figure 6 shows auxiliary structures for
HTPR*-Tree.

leaf

R3 R4

O1 O2 O3 O4 O5 O6

R5 R6

O70 O8 O96 O10

Root

O1

O2

O9

O10

Level MBR VBR st1 st2 parent

2 R V Null

1 R1 V1

1 R2 V2

R1 R2

R1

R1

R2

R2

1

1

0

0

Hash Table

Direct Access Table

Bit Vector

Root

Root

Fig. 6. Auxiliary structures for the HTPR*-Tree to support bottom-up update

Hash table allows us to locate the leaf node where the updated object o resides in
one disk I/O instead of doing the expensive query on the tree.

Direct access table facilitates quick access to a node’s parent in the HTPR*-Tree.
An entry of the direct access table corresponds to a non-leaf node of the HTPR*-Tree,

 HTPR*-Tree: An Efficient Index for Moving Objects 35

and all the entries are organized according to the levels of the internal nodes they
correspond to. An entry in the direct access table is a 7 tuple of the form < Level,
MBR, VBR, st1, st2, parentptr, ptr>, where Level is the level of the node, MBR
and VBR is the bounding box and the velocity bounding rectangle of the node at time
st, respectively, parentptr is a pointer to the node’ parent, ptr is a pointer to the
node itself, st1 is the minimal creation or update time of moving objects included in
node, and st2 is the maximum value compare to st1. Bit vector on the leaf nodes indi-
cates whether they are full or not, which avoids additional disk accesses to find a
suitable sibling.

The maintenance cost for the main-memory summary structure is relatively inex-
pensive. Since most of the node splits occur in the leaf level due to the high node
fan-out, inserting a new entry into the direct access table will be very infrequent.
Meanwhile, only when the leaf node is split or deleted, a new entry need be inserted
into bit vector or be deleted.

The size of each entry in the direct access table is a small fraction of the size of the
corresponding HTPR*-Tree node. And the size of bit vector is much smaller than that
of direct access table, and even neglectable. Overall, the space consumption of the
main-memory summary structure is very low relative to HTPR*-Tree.

The bottom-up strategy aims to offer a comprehensive solution to support frequent
updates in the HTPR*-Tree. The main idea of bottom-up update algorithm is de-
scribed as follows: when an object issues an update request, the algorithm adopts
different update method according to object position and velocity after updating, and
update time. The detailed update method is as follows:

1. If new position lies outside MBR of root or new velocity lies outside VBR of root,
the algorithm issues a top-down update.

2. If new position and velocity of moving object lie in the MBR and VBR of cur-
rent leaf node, the algorithm modifies the object entry in leaf node directly. At the
same time, the algorithm constructs update path from leaf to root using the direct
access table and tightens all nodes on that path.

3. If new position and velocity of moving object lie outside the MBR and VBR of
current leaf node, and the removal of moving object causes leaf node to underflow, the
algorithm issues a top-down update.

4. If new position and velocity of moving object lie in the MBR and VBR of
non-null sibling node, and the removal of moving object couldn’t cause leaf node to
underflow, the algorithm deletes old entry and inserts new entry in right sibling node.
At the same time, the algorithm constructs update path from leaf to root using the direct
access table and tightens all nodes on that path.

5. If the new position and velocity of moving object lie in the MBR and VBR of a
subtree (intermediate node), the algorithm ascends the HTPR*-tree branches to find a
local subtree and performs a standard top-down update.

Algorithm 9 describes bottom-up strategy of the HTPR*-Tree.

36 Y. Fang et al.

Algorithm 9. Update (o, o’,r,DAT,BV,H)

1. entry=DAT[0]
2. if o’.MBR⊄ entry.MBR or o’.VBR⊄ entry.VBR
3. TD_Update(o, o’,r,DAT,BV,H)
4. return
5. leaf=H.getLeafNode(o)
6. if o’.MBR⊂ leaf.MBR and o’.VBR⊂ leaf.VBR
7. write out leaf
8. non-leaf=getParent(leaf)
9. if non-leaf is not tigten
10. tigten non-leaf
11. non-leaf’=DAT.GetParent(non-leaf)
12. while (non-leaf’ is not tigten and non-leaf’ is not null)
13. tigten non-leaf’ , non-leaf =non-leaf’
14. non-leaf’=DAT.GetParent(non-leaf)
15. return
16. if leaf.numEntry=m TD_Update(o, o’,r,DAT,BV,H)
17. return
18. leaf.delete(o)
19. construct update-path from leaf to root using the DAT, and tighten all nodes on
 that path similar to lines 8-14
20. {siblings}=BV.getsiblings(leaf)
21. for Si∈{siblings}

22. if o’.MBR⊂ Si.MBR and o’.VBR⊂ Si.VBR and BV.notFull(Si)
23. if o’.st> Si.st2
24. si.insert(o’)
25. construct update-path from si to root using the DAT, and change st2 of
 all nodes on that path into st similar to lines 8-14
26. else si.insert(o’)
27. return
28. non-leaf =getParent(leaf)
29. while (o’.MBR⊄non-leaf.MBR or o’.VBR⊄ non-leaf.VBR)
30. non-leaf =DAT. GetParent(non-leaf)
31. TD_Update(o, o’, non-leaf, DAT,BV,H)
32. construct update-path from non-leaf to root using the DAT, and tighten all
 nodes on that path similar to lines 8-14
33. return
END Update

5 Performance Study

5.1 Experimental Setting and Details

In this section, we evaluate the query and update performance of the HTPR*-tree with
the TPR*- and TD_HTPR*-tree (top-down update strategy). Due to the lack of real

 HTPR*-Tree: An Efficient Index for Moving Objects 37

datasets, we use synthetic data simulating moving aircrafts like[2]. First 5000 rectan-
gles are sampled from a real spatial dataset (LA/LB)[15] and their centroids serve as the
“airports”. At timestamp 0, 100k aircrafts (point objects) are generated such that for
each aircraft o, (i) its location is at one (random) airport, (ii) it (randomly) chooses a
destination airport, and (iii) its velocity value o.Vel uniformly distributes in [20,50],
and (iv) the velocity direction is decided by the source and destination airports. For
each dataset, we construct a HTPR*- and TPR*-tree, whose horizons are fixed to 50, by
first inserting 100k aircrafts at timestamp 0.

Since the HTPR*-tree only stores history trajectories after the most recent update of
each object, and history trajectories index such as TB-tree only store trajectories before
the most recent update instant, it is improper to compare the history query performance
of HTPR*-tree with that of history trajectories index. In our experiments, we only
study the predictive queries. However, HTPR*-tree can be combined with history
trajectories index to support the queries involved from the past to the future. This will
be our future work.

5.2 Performance Analysis

In order to study the deterioration of the indices with time, we measure the performance
of the HTPR*-, TPR*- and TD_HTPR*-tree, using the same query workload, after
every 10k updates.

● Update Cost Comparison

Figure 7 compares the average update cost (for datasets generated from LA and LB as
mentioned above) as a function of the number of updates. The HTPR*- and TPR*-tree
have nearly constant update cost. However the node accesses needed in the
HTPR*-tree update operation are much less than the TPR*- and TD_HTPR*-tree.
This is due to the fact that the HTPR*-tree adopts bottom-up update strategy to avoid
the excessive node accesses for top-down deletion search and insertion search, and the
TPR*- and TD_HTPR*-tree process update in top-down manner. Since node overlap
in the TD_HTPR*-tree is larger than that in the TPR*-tree, the query cost increasing
with the number of updates improves the update cost of TD_HTPR*-tree.

0k 20k 40k 60k 80k 100k
0

20

40

60

80

100

120

(a) LA

 TPR*-tree
 TD_HTPR*-tree
 HTPR*-tree

no
de

 a
cc

es
se

s

number of updates
0k 20k 40k 60k 80k 100k

0

20

40

60

80

100

120

(b) LB

 TPR*-tree
 TD_HTPR*-tree
 HTPR*-tree

no
de

 a
cc

es
se

s

number of updates

Fig. 7. Update cost comparison

38 Y. Fang et al.

● Query Cost Comparison

The query cost is measured again as the average number of node accesses in executing
200 predicted window queries with the same parameters qRlen, qVlen, qTlen.

In Figure 8, we plot the query cost as a function of the number of updates, using
workloads with different parameter: for Figure 8 (a) we fix parameters qTlen=50,
qRlen=400 and qVlen=10, while the parameters qTlen=50, qRlen=1000 and qVlen=10
are fixed in Figure 8 (b).

(a) LA
qRlen=400 qVlen=10 qTlen=50

(b) LB
qRlen=400 qVlen=0 qTlen=50

0k 20k 40k 60k 80k 100k
0.00k

0.45k

0.90k

1.35k

1.80k

2.25k

TPR*-tree
TD_HTPR*-tree
HTPR*-tree

no
de

 a
cc

es
se

s

number of updates
0k 20k 40k 60k 80k 100k

0.0k

0.5k

1.0k

1.5k

2.0k

2.5k

TPR*-tree
TD_HTPR*-tree
HTPR*-tree

no
de

 a
cc

es
se

s

number of updates

Fig. 8. Query cost comparison

It is clear that the query cost increases with the number of updates. The query cost
of the HTPR*-tree is less than that of the TD_HTPR*-tree. Since the node overlap in
the HTPR*-tree is larger than that in the TPR*-tree, the query cost of the HTPR*-tree
is a bit higher than that of the TPR*-tree. Despite this, the important fact is that
HTPR*-tree can support history query.

6 Conclusion

In this paper, we develop a novel index structure named the HTPR*-tree which not only
supports predictive queries but also partial history ones. At the same time, we propose a
bottom-up update approach to support frequent update operation of the HTPR*-tree.
Extensive experiments prove that the update performance of the HTPR*-tree is better
than that of the TD_HTPR*- and TPR*-tree. Moreover, the HTPR*-tree can support
history query compared with TPR*-tree although the predictive query performance is a
bit less.

For the future work, we will combine the HTPR*-tree with history trajectory indices
such as TB-tree to implement historical and future information retrieval.

 HTPR*-Tree: An Efficient Index for Moving Objects 39

Acknowledgments. This work is supported by the National Natural Science Founda-
tion of China (Grant No.90718027) and the Natural Science Foundation of Hubei
Province (Grant No.2008CDA007).

References

[1] Saltenis, S., Jensen, C.S., Leutenegger, S.T., Lopez, M.A.: Indexing the Positions of
Continuously Moving Objects. In: ACM SIGMOD, pp. 331–342 (2000)

[2] Tao, Y., Papadias, D., Sun, J.: The TPR*-Tree: An Optimized spatiotemporal Access
Method for Predictive Queries. In: VLDB, pp. 790–801 (2003)

[3] Lee, M., Hsu, W., Jensen, C., et al.: Supporting Frequent Updates in R-Trees: A Bot-
tom-Up Approach. In: VLDB, pp. 608–619 (2003)

[4] Pfoser, D., Jensen, C.S., Theodoridis, Y.: Novel Approaches to the Indexing of Moving
Object Trajectories. In: VLDB, pp. 395–406 (2000)

[5] Theodoridis, Y., Vazirgiannis, M., Sellis, T.: Spatio-temporal Indexing for Large Multi-
media Applications. In: Conf. on Multimedia Computing and Systems, pp. 441–448
(1996)

[6] Nascimento, M.A., Silva, J.R.O.: Towards Historical R-trees. In: Proc. of the ACM
Symposium on Applied Computing, pp. 235–240 (1998)

[7] Tayeb, J., Ulusoy, O., Wolfson, O.: A Quadtree-Based Dynamic Attribute Indexing Me-
thod. The Computer Journal 41(3), 185–200 (1998)

[8] Jignesh, M., Yun, P., Chen, V., Chakka, P.: TRIPES: An Efficient Index for Predicted
Trajectories. In: ACM SIGMOD, pp. 637–646 (2004)

[9] Liao, W., Tang, G.F., Jing, N., Zhong, Z.-N.: Hybrid Indexing of Moving Objects Based
on Velocity Distribution. Chinese Journal of Computers 30(4), 661–671 (2007)

[10] Jensen, C.S., Lin, D., Ooi, B.C.: Query and Update Efficient B+-Tree Based Indexing of
Moving Objects. In: VLDB, pp. 768–779 (2004)

[11] Chen, S., Ooi, B.C., Tan, K.L., et al.: ST2B-tree: A Self-Tunable Spatio-Temporal B+-tree
Index for Moving Objects. In: ACM SIGMOD, pp. 29–42 (2008)

[12] Chen, N., Shou, L.D., Chen, G., et al.: Bs-tree: A Self-tuning Index of Moving Objects. In:
Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 5982,
pp. 1–16. Springer, Heidelberg (2010)

[13] Pelanis, M., Saltenis, S., Jensen, C.S.: Indexing the Past, Present and Anticipated Future
Positions of Moving Objects. In: ACM TODS, pp. 255–298 (2006)

[14] Raptopoulou, K., Vassilakopoulos, M., Manolopoulos, Y.: Efficient processing of
past-future spatiotemporal queries. In: Proc. of the ACM Symposium on Applied Com-
puting, pp. 68–72 (2006)

[15] http://www.census.gov/geo/www/tigers

L. Wang et al. (Eds.): WAIM 2011 Workshops, LNCS 7142, pp. 40–50, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Developing Rich Web GIS Applications
for Visual Analytics

Michael Meyers1 and Bruce A. Ralston2

1 County Technical Assistance Service, Knoxville, TN 37996-0213 USA
mmeyers@tennessee.edu

2 Department of Geography, University of Tennessee, Knoxville, TN 37996-0925 USA
bralston@utk.edu

Abstract. The development of Rich Internet Application tools and web
mapping services, coupled with the dissemination of detailed, up-to-date
socioeconomic data, present an opportunity to develop intuitive geospatial
visual analytic tools. This paper presents our efforts at developing such tools
that combine Google Maps, Flex, and data from the American Community
Survey.

Keywords: Rich Internet Applications, Visual Analytics, American
Community Survey, Google, Flex, KML.

1 Introduction

The world of internet GIS continues to evolve at an almost dizzying pace. Advances
continue to be made in areas of development environments, web mapping services,
and data availability. Indeed, data sources now include real time data from sensor
networks [1], volunteered data, e.g., [2], and increasingly timely government data,
such as the American Community Survey [3]. These tools and data advances give us
the opportunity to develop new approaches for providing data analysis capabilities to
literally anyone with internet access. Whether this is referred to as Web GIS or
Geospatial Visual Analytics [4] these approaches allow us to develop web
applications that let users retrieve data, visualize them in graphic, cartographic, and
tabular formats, and interact with those formats in linked and synchronized ways.
We now have the ability to develop Web GIS applications, some of which may
employ statistical analysis methods, that support Exploratory Data Analysis as
championed by Tukey [5]. Such applications allow users to draw inferences based on
their ability to construct multiple data visualizations and interact with those
visualizations in an intuitive manner. Such applications allow “…the human to
directly interact with the underpinning data to gain insight, draw conclusions, and
ultimately make better decisions” [4]. In short, we seek to build web applications that
facilitate the user interaction with the data without the software getting in the way [6].

 Developing Rich Web GIS Applications for Visual Analytics 41

This paper presents our efforts to develop such tools for exploring data made
available by the United States Census Bureau. This is particularly timely because the
Census Bureau has begun releasing detailed data from American Community Survey
(ACS), a data series that will supply yearly updates of socioeconomic and
demographic data for communities across the United States. This marks “…the
beginning of annual estimates for small communities and neighborhoods throughout
the country” [7]. Prior to the development of the ACS, detailed socioeconomic data
for the United States was only collected once per decade. Not only will the
information released be more current, after a few years there will be time series data
for a host of social and economic information for those communities. While these
data are now coming online, the tools for exploring are waiting to be developed by the
academic community, state and local government organizations, and the private
sector. Such tools will give various user communities the ability to explore this more
up-to-date information for making policy decisions.

2 Development Considerations

There are several decisions to be made when developing geospatial visual analytic
tools. For example, what types of data representation should be developed? What
underlying mapping service should be used? What types of data interaction should be
supported? How much control should the user have in determining how the data are
retrieved and presented? How much processing should be done on client and how
much on the server?

In addition to these basic design questions, decisions on which development tools
to use must be made. There is no one best set of tools, and choices often reflect the
developer’s experience and preferences. Current rich internet application (RIA)
development is dominated by frameworks available in Flex, Silverlight, and to a
lesser extent, JavaFX. Despite its capability, RIA drives few complex web
applications compared to those developed with HTML, CSS, Javascript/AJAX, and,
often, Flash or Silverlight plugins for video or simple animation. HTML5 extends
standard HTML to provide a compliance standard for web graphics and video.
Because it promises to be accessible in all major browsers and mobile hardware
platforms, it is an important challenge to solutions using plugins and that consume
higher client resources. The HTML5 video element is in full scale trial across the
Internet, including as an opt-in trial on Google’s YouTube. The less prevalent
HTML5 canvas element provides rendering of 2d shapes and bitmaps
(http://www.w3.org/TR/html5/the-canvas-element.html#the-canvas-element). MIT
has developed an open source dynamic vector mapping framework [8] that includes
an extension of CSS called geographic style sheeting (GSS). Performance is slow
on the current implementation of the canvas element, and HTML5, even in its final
specification, will not provide the rich set of user interface tools in the form of data
grids, charting, and navigation that currently are available in Flex and Silverlight.
Therefore the adoption of HTML5 for high performance geospatial visualization is
probably some years in the future.

42 M. Meyers and B.A. Ralston

For our projects we are using Google’s mapping service API for Adobe’s Flex 4
development environment to develop the web tools presented to the user. Flex 4 is a
RIA development environment that utilizes a sandbox in which to run powerful
applications on client machines. By using an RIA, the tools developed can have many
of the characteristics of desktop applications. Another advantage of RIA is that
processing formerly done on the server can now be done on the client. An earlier
effort at thematic map web mashups depended on server side construction of on-the-
fly thematic overlays [9]. This required a round trip between the client and the server
every time a new map option was selected. By using an RIA the need for round-
tripping for each new client request, such as choosing a new mapping variable, is
eliminated. This lessens server load and speeds response time. It does, however, use
more of the client’s resources so there is a tradeoff.

There are also design decisions concerning server side operations and data
preparation. Microsoft SQL Server is the database used for processing user queries,
and in-house tools convert and format spatial data for Web GIS. For report
generation, an open source PDF library is used.

Developing data exploration tools for public use requires a sense of one’s
audience. Expert GIS users are rare, but even the average Internet user has experience
using web mapping tools for driving directions, real estate search, and location based
services using mashups based on Google Maps and similar products. In addition, RIA
leverages the familiar vocabulary of dropdown menus, scrollbars, and other desktop
interactions. The average user thus arrives at a website featuring Web GIS and
associated visualization tools with the expectation that its functionality is intuitively
apparent, or by a process of discovery lasting no more than a few mouse clicks.

2.1 Visualization Components

The Web GIS projects we have developed contain at least three data visualization
components that combine and extend the concepts of enterprise dashboard mashups
and data portal. In addition, there are controls that allow the user to select which data
sets to explore. The data visualization components consist of a map view, a table
view, and a chart view [Fig 1]. These visualization portals and their interactions are
described below.

The map view consists of a Google Map service with custom data overlays that are
generated on-the-fly in response to user choices. Within the map view are buttons
for displaying a legend box and a mapping options box. The mapping options box
allows the user to choose the method of classification, set the number of classes,
specify the color ramp to use, and adjust the overlay transparency [Fig. 2]. The user
can also choose to change the variable being mapped. The overlays are generated by
creating polygon options for area features stored in “vanilla” KML format. The
KMLs are passed from the server to the client as XML lists. By using an RIA, the
functions required for thematic mapping changes are performed locally.

 Developing Rich Web GIS Applications for Visual Analytics 43

Fig. 1. A web page with the table (top left), chart (top right), and thematic map (bottom)
visualization components

Fig. 2. The mapping options box (center) allows users to set the classification method, number
of groups, color ramp and transparency

The table view of the data is accomplished using a standard data grid control.
Standard table functions such as selecting and sorting are built into Flex data grids.
The biggest challenge in using data grids in our applications is dynamic management
of grids. Because we allow the user to change the data queries, the types and
numbers of columns in a grid are not known until run time. This requires clearing
the columns of any existing grid from memory and creating a new grid every time a
new data query is made.

The final data portal in our applications is a charting view. In this type of view
data can be presented in various forms, such as bar charts, pie charts, and plot charts.
Since the data are loaded locally into the RIA sandbox, incorporating statistical
functions into the application is possible. Fig.3 shows a plot chart that includes a
regression line and its standard statistical measures (i.e., slope, intercept, and r2).

44 M. Meyers and B.A. Ralston

For this example, the graph shows the relationship between education and income in
Knox County, Tennessee. As in Figure 1, this chart will be accompanied by the
corresponding map and data grid views.

Fig. 3. An application that contains a regression analysis chart that shows the relationship
between education and income in Knox County, Tennessee

2.2 Component Behavior

As well as providing multiple views of the same data, these components must respond
to user interactions. The responses can be classified into two types: those that affect
only the current component and those that require responses from all components
simultaneously. The first type responses are the usual point-and-click responses.
For example, pointing at an element in a chart will display data of the associated
spatial unit. Similarly, clicking on a map feature will bring up the data corresponding
to that feature. The second type of response requires that dynamic links be maintained
between all three data views. For example, if a user rolls over an element in a one
representation of the data, then the corresponding elements in the other
representations should be highlighted. Care must be taken as the relationship between
entities in the components is not always one-to-one. In a plot chart, for example, one
point may correspond to several spatial features, or a mouse roll over may select more
than one point, as in Figure 3.

This is useful for exploring relationships in a spatial and aspatial manner
simultaneously. For example, there are two outliers in the lower right of the plot chart
in Fig. 3. These are two areas that have high education levels but much lower than
expected income levels. When these points are rolled over, the corresponding areas
on the map are highlighted. These are neighborhoods with a high concentration of
graduate student housing.

 Developing Rich Web GIS Applications for Visual Analytics 45

Another useful form of dynamic linking is to use the results in one data view to
alter what is shown in the other views, such as filtering or re-ordering elements.
Figure 4, for example, shows how rolling over a group entry in the map legend can
filter all three windows to only show cases within that group. Similarly, sorting
elements in the data grid will change the order in which values are presented in a
chart. In Figure 1, for example, the elements in the data grid are sorted from highest to
lowest on the same variable on which the chart is based. Thus, the chart displays
values from highest to lowest. Other forms of filtering can include those based on
spatial contiguity and areas within the same administrative districts or subject to the
same policy rules.

Fig. 4. Filtering data in all three views by choosing to view only the third group in the thematic
map

While the default mode of operation is for all components to display one or more
fields of the same topic, each view can be decoupled to show other data elements for
additional analytic capability. Civilian unemployment percentages could be charted,
for example, while housing values are mapped. However, the linked display of the
spatial unit selected in any component continues to operate in the same way.

2.3 Component Layout

One task in designing web applications that present multiple views of information is
management of the screen real estate. This is particularly challenging when the
number of variables to be downloaded, the shape of areas to be rendered, and the

46 M. Meyers and B.A. Ralston

number of features to charted is not known until run time. We have considered a few
approaches to dealing with these issues.

The most common approach is to use scrollbars. In this approach each data view
container acts as a window that displays all or part of the information. A second
approach is to allow the user to resize the data portal windows, often with scrollbars.
This is what is shown in Figure 1. A third approach is to limit the number of features
that are added to a component, e.g., only charting the top 5 and bottom 5 cases for a
variable. It is also possible to swap the contents of the data portals to allow the user to
give the most screen real estate to the data portal he chooses. By using transitions the
movement of contents between windows can appear as smooth animation. A fourth
approach is to support zooming and panning of the various data views. Zooming and
panning of maps are quite common, but it is also possible to zoom and pan certain
types of charts by extending Flex classes [10]. One could also change the layout
dynamically based on the map extent of the area being studied or let the user choose
from a set of layout templates at run time.

2.4 Reporting

If a Web GIS application is useful, then users will eventually want to generate reports.
Our approach is to generate reports as PDF files. This is accomplished using
AlivePDF, a free and open source library for creating PDFs from Flex websites [11].
Flex has an “addImage” method that will simply add the screen shot of a data portal
to the report. However, this is unacceptable for the data grid and map. In the case of
the grid, columns not on the screen are not reported. Further, the table is an image,
not text. In the case of the map, Google Maps will not allow the image to be
captured with this method. That is, using the addImage function on a portion of the
screen that contains a Google map will result in a security violation.

To overcome the first of these problems we use the following strategy. Since the
number of variables and features is not known until run time, the size of table to be
reported must be calculated on the fly. By knowing the number of columns in the
table it is possible to generate page breaks where necessary and to repeat
identification fields on each page. An AlivePDF grid object is then added to each
page. This prevents clipping of the table or compacting of fields so that they are
unreadable. It also ensures that the identification field appears on each page. The code
for accomplishing this is available at [12].

Trying to capture the map with the standard Flex AddImage function will result in
a sandbox security error. The Google API function “getPrintableBitmap” must be
used. However, this captures the map and its overlays. It does not capture any Flex
generated controls in the map view portal, such as the legend. This results in the
legend being printed separately from the map—not an ideal situation.

 Developing Rich Web GIS Applications for Visual Analytics 47

3 Data Preparation

The Census Bureau does not release information in ready-to-use GIS formats. In
particular, the information on the geography of enumeration areas (e.g, counties,
tracts, and metropolitan areas) is released in TIGER files. Developed by the
Geography Division of the Census, these files do not contain socioeconomic
information that one normally associates with the census. That information is released
by other divisions through products like the 2010 Census of Population and Housing
and the ACS. In order to support Web GIS of census related data, information from
both these sources must be preprocessed and stored on the server.

3.1 Attribute Data Preparation

ACS data present a two significant challenges to the development of a visualization
system. First, the number of variables is very large and values are updated annually,
so we are building batch processing utilities that automate the tedious process of
download and update. User demand and legislative issues are expected to drive which
variables are selected for exploration. Second, the ACS data frequently must be recast
to create meaningful demographic relationships that can be visually displayed. The
Census Bureau tends to report counts of people and households. However,
percentages or proportions of the population are often more useful. For example, the
number of people below the poverty level in areas tends to reflect the total population
size of an area. To get a measure of the concentration of poverty, the percentage of
persons below the poverty level is a more useful measure. We have created tables
based on the 2009 ACS five-year sample that contain socioeconomic measures that
have been normalized by the appropriate universe variables. For example, the
percentage of households that are owner occupied is derived from the number who are
owner occupied scaled by the total number of households.

It is possible to simply store the count information in a database and create
calculated fields on demand. Indeed, users could create variables through an on screen
calculator dialog. The resulting variable could then be returned from the server as a
calculated field or calculated on the client. This may be a reasonable strategy for
sophisticated users. We believe that the standard public user prefers not to be
burdened with specifying the details of variable creation. Creating commonly used
variables ahead of time and storing them on the server removes this burden from the
user and speeds the response to client side queries.

3.2 Geographic Data Preparation

Separating attribute information from geographic information has a long history,
dating back to the GBF/DIME files of the 1970s. In 1988 the first of several versions
of TIGER files were made available by the Census Bureau. With each release of

48 M. Meyers and B.A. Ralston

TIGER, the format of the files changed and one had to use translators. The second
author developed such a translator application for converting TIGER files to KML
format,the source code of which is available at [13].

With TIGER 2007, which was released in 2008, the Census Bureau started
releasing TIGER in a widely used, open format: ESRI Shapefiles. In order to use
these files with attribute data available from the American FactFinder, the Census
Bureau’s searchable database of population and economic data, in Google Earth and
Google Maps, another application was developed. The current RIA projects described
in this paper are outgrowths of these previous efforts. That is, in order to use Google
Maps as the underlying mapping service, we have developed code to transform the
TIGER shape files to Google KML files. These KMLs provide geometry for
dynamic thematic mapping of data at every level of geography for which the Census
tabulates data.

4 Server Side Functions

Flex cannot connect directly to SQL Server like ASP.NET or other server side
languages. We developed a web service that provides the Flex client a secure
connection to the ACS tables and other US Census data stored on our host. In
addition, the web service constructs SQL queries dynamically based on user events in
the Flex client. Query functions on the web service are necessarily general to
accommodate all user events that filter the location, time period, or topic of interest
by map, chart or table selections or menu tool interactions.

Data dictionaries including data types and field name aliases are maintained on the
SQL Server. The web service returns data tables or datasets in a Web Services
Description Language (WDSL) document, which includes data type information for
each field in the dataset embedded in an XML Schema element [14]. While the
WDSL document is heavier than a simple XML document, it is simpler to develop
client side routines for representation when the data type is known.

A KML document providing the polygon geometry of the selected geographic area
is also returned from server archives. The returned WDSL document is parsed in
different ways to create interactive chart elements, map thematic overlays and table
structure that may differ in design based on the topic of analysis or the number of
records returned. Thus, data filtering tasks are split between the server and client, with
the server providing data typing and the minimum-sized document required to supply
client rendering processes for all graphic components related to a chosen topic in a
single request.

The primary purpose of this architecture, which is illustrated in Figure 5, is to
reduce server requests and provide fast client-side performance while the user
manipulates thematic mapping breaks and color ramps, sorts tables and chart arrays,
and resizes component windows. The speed of this interaction and its visual richness
is essential to the intuitive quality of GIS and spatial exploration.

 Developing Rich Web GIS Applications for Visual Analytics 49

Fig. 5. After KML geometry and ACS data are retrieved from the server, they are processed for
visualization components on the client machine in the SWF

5 Final Comments and Looking Ahead

There are many challenges remaining in developing rich internet GIS applications
based on US Census Bureau products. These lie in at least three areas: working with
time series of sample based data, the trade-off between simplicity and power, and the
role of RIA on different hardware platforms.

The ACS is different from past Census products, not only in the timeliness of the
data, but also in the sampling methodology. In particular, the ACS is based on smaller
samples (1 in 40 households for the ACS compared to 1 in 6 for the previous “long
form” results) that overlap in time. The sample size difference means that confidence
limits will be wider under the ACS and great care must be taken when performing
statistical tests. Because of the overlapping time windows (the recently released 2009
five year estimates are based on samples over the years 2005 to 2009) standard
statistical tests between releases of the ACS whose sampling years overlap are not
valid [15]. What is important is to get a sense of variability over time and to view
trends in the time series data. There are many interesting, intuitive ways of viewing
time series information, many of which employ animation techniques.

The trade-off between power and usability is a constant source of concern.
Professional researchers often want powerful tools over which they have a great deal
of decision making options. Decision makers and the general public may find such

50 M. Meyers and B.A. Ralston

tools and options overwhelming. Indeed, some find even simple statistics too
technical for their liking. As stated previously the goal of visual analytics is to be
intuitive and not have the software get in the way. Nonetheless, the increasing
complexity of the information being processed (such as time series data, statistical
variability, and the need for model building) often demands more complex tools. It
is likely that we will develop a suite of web sites, each geared to a different level of
user sophistication.

The growing use of RIAs coupled with REST services, such as Google Maps, Bing
Maps, and ArcGISServer, has greatly improved the ease of application development
and the response to user inputs. This change has taken place in only the past few
years. Yet, the future of tools such as Flex and Silverlight is not clear. The rise of
mobile computing platforms, such as smart phones and lightweight tablets, argues
against pushing data and processing from the server to the client. It is likely that for
these platforms the best place for manipulating data and performing analysis is on a
cloud based server. Nonetheless, we believe RIAs running on the client have an
important role to play, at least for the next few years.

Acknowledgments. The authors acknowledge the work of Jiuyuan Liu in data
preparation. The support of the Tennessee Institute for Public Service is also
acknowledged.

References

1. Culler, D., Estrin, D., Srivastava, M.: Overview of Sensor Networks. IEEE
Computer 37(8), 41–49 (2004)

2. Open Street Map, http://www.openstreetmap.org/
3. United States Census Bureau, http://www.census.gov/acs/
4. Boulos, K., et al.: Web GIS in practice IX: a demonstration of geospatial visual analytics

using Microsoft Live Labs Pivot technology and WHO mortality data. International
Journal of Health Geographics 10, 19 (2011)

5. Tukey, J.W.: Exploratory Data Analysis. Addison-Wesley, Reading (1977)
6. Livnat Y., Samore M.: Visual Analytics in Surveillance and Epidemiology:Challenges and

Opportunities (2010),
http://www.cdc.gov/osels/ph_informatics_technology

7. Groves, R. M.: A Coming of Age for Local Social and Economic Statistical Information
(2011), http://www.commerce.gov/blog/2011/04/21/coming-age-
event-local-social-and-economic-statistical-information

8. Cartagen, http://cartagen.org/
9. Ralston, B., Streufert, J.: Efficient Generation of Area Thematic Maps in KML. In: 16th

ACM SIGSPATIAL International Conference on Advances in Geographic Information
Systems

10. Scrolling Flex Charts,
http://www.connectedpixel.com/blog/scrollingcharts/

11. AlivePDF, http://alivepdf.bytearray.org/
12. Ralston, B.: Flex-Google Census Mapping Tutorial,

http://tnatlas2.geog.utk.edu/tutorhome/
13. Ralston, B: TGR2KML,

http://tnatlas.geog.utk.edu/tea/downloadfree.htm/
14. United States Census Bureau: Brave New World-Using the American Community Survey,

http://www.lib.ncsu.edu/data/ACS.ppt/
15. Web Services Description Language, http://www.w3.org/TR/wsdl/

Single-Source Multi-Target A* Algorithm

for POI Queries on Road Network

Htoo Htoo1, Yutaka Ohsawa1, and Noboru Sonehara2

1 Graduate School of Science and Engineering, Saitama University
2 National Institute of Informatics

Abstract. Searching for the shortest paths from a starting point to sev-
eral target points on a road network is an essential operation for several
kinds of queries in location based services. This search can be easily done
using Dijkstra’s algorithm. Although an A* algorithm is faster for find-
ing the shortest path between two points, it is not so quick when several
target points are given, because it must iterate pairwise searches. As
the number of target points increases, the number of duplicated calcu-
lations for road network nodes also increases. This duplication degrades
efficiency. A single-source multi-target A* (SSMTA*) algorithm is pro-
posed to cope with this problem. It requires only one calculation per node
and considerably outperforms Dijkstra’s algorithm, especially when the
target points are distributed with bias. An application with this algo-
rithm for aggregate nearest neighbor search demonstrated its efficiency,
especially when the number of target points is large.

1 Introduction

Route searching on a road network is an essential operation in location based
services. A search for the shortest path between two points on the network is
also necessary for various spatial query applications. Dijkstra’s algorithm [1]
and the A* algorithm [2] are representative algorithms used for such searches.
Another frequent search is to find the shortest paths between starting point q
and multiple target points p(∈ P). Such searches are needed, for example, in
ANN (aggregate nearest neighbor) queries [3], skyline queries [4], k-NN queries
[5], and several kinds of trip planning queries [6][7].

While Dijkstra’s algorithm can be directly applied to these queries, its per-
formance is considerably degraded when the target points are distributed with
bias or when some are distant from the starting point (see Figure 1(a)). A* algo-
rithms can also solve these queries by iterating each pair-wise query |P | times.
Its performance is also degraded when |P | is large, because neighboring road
network paths to q are repeatedly processed (see Figure 1(b)). The inefficiency
of this method increases with the size of |P |.

In this paper, we describe an algorithm that can efficiently find the individ-
ual distances from a single source to several target points. This single-source
multi-target A* (SSMTA*) can find the shortest paths in ascending order of
the distance from q, and it remains efficient even for very distant target points.

L. Wang et al. (Eds.): WAIM 2011 Workshops, LNCS 7142, pp. 51–62, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

52 H. Htoo, Y. Ohsawa, and N. Sonehara

The basic operation in the shortest path search is to find neighboring nodes by
using an adjacency list and to calculate the cost in terms of distance or time at
each node. This operation is called node expansion. We explain node expansion
detail in Section 3.2. SSMTA* expands a road network node at most once, the
same as with Dijkstra’s algorithm and in contrast to the conventional A* algo-
rithm. Figure 1 shows the expanded node area for (a) Dijkstra’s algorithm, (b)
the A* algorithm, and (c) our SSMTA* algorithm.

The contributions of this paper are the followings.

– This is the first attempt of the A* algorithm to single-source multi-target
situation.

– The SSMTA* algorithm was applied to an ANN query as an example. It can
be adapted well to a wide range of location based service queries.

– Its efficiency was demonstrated experimentally.

q q q

(a) Dijkstra’ s (b) A* (c) SSMTA*

Fig. 1. Comparison among shortest path algorithms

The rest of the paper is organized as follows. Section 2 describes related
work, and Section 3 describes the SSMTA* algorithm. Section 4 explains its
application to ANN queries. Section 5 describes its experimental evaluation.
Finally, Section 6 summarizes the key points and mentions future work.

2 Related Work

Compared with calculating the Euclidean distance, calculating the road network
distance is computationally heavier. The calculation time for the shortest path
between two points increases with the path length. As a result, there has been
much research on finding shortest path query methods more efficient and reduc-
ing the computation times for road networks. The methods developed have gener-
ally taken one of two approaches: hypothesis verification or pre-processing. This
section summarizes these methods. Related work on ANN queries is described in
Section 4.

SSMTA* Algorithm for POI Queries on Road Network 53

Papadias et al. [5] proposed two approaches to apply to several kinds of
queries, including k-NN queries on a road network distance. They are incre-
mental node expansion (INE) and incremental Euclidean restriction (IER). In
the former, Dijkstra’s method is simply used to search k-nearest neighbor points
of interest (POIs). In the latter, the hypothesis verification is used. IER method
finds k-NN points on the basis of the Euclidean distance before verifying the
distance on the road network by using Dijkstra’s algorithm. As described in
Section 4, Yiu et al. adapted this approach to ANN queries [3].

In addition to pre-processing on a road network, several other types of meth-
ods have been proposed. Hu et al. [8] proposed a distance signature method
which is a kind of materialization method on the road network distance. For
a k-NN query, node information is added to an adjacency list which indicates
the neighboring node leading to each POI. The shortest path from any node
to a target POI on the road network can be found by simply tracing the path
from one node to the next until the target POI is reached. Though, this method
requires a data amount of O(nm), where the n is number of nodes on the road
network and the m is the number of POIs, it works very efficiently for finding the
shortest path from a node to a POI. However, if points are added to or removed
from the set of POIs, the re-construction to overall elements in the adjacency
list is necessary.

Samet et al. [9] generalized this method into one for finding k-NN points in
a best-first manner. This method is based on precomputation of the shortest
paths between all possible nodes on the road network. The information for the
next visited node is compressed using shortest path quadtree, resulting in O(n1.5)
storage cost.

Kolahdouzan et al. [10] proposed Voronoi based network nearest neighbor
(VN3) algorithm that searches for k-NN points using a network Voronoi diagram.
While this method works well for bi-directional road networks, it can provide
only an approximate shortest route if uni-directional roads are included. Zhu
et al. [11] used the network Voronoi diagram for ANN queries.

Another precomputation method was proposed by Shaw et al. [12]. It uses
an M-tree [13], a general-purpose data structure for metric space, like an R-tree
for Euclidean space. This structure needs the calculated distance between two
points during query processing, and this calculation can become very heavy for
a road network because the shortest path calculation cost increases with the
distance between two points. To overcome this problem, Zhu et al. proposed an
approximation query method. Ioup et al. [14] used an M-tree for ANN queries
in metric space.

3 Single-Source Multi-Target A* Algorithm

3.1 Preliminaries

In location based services, several types of POIs can be query targets. They can
include nearby gas stations, hotels, and restaurants. Such facilities are POIs.
Although a POI may not reside on a node in the road network, in the following

54 H. Htoo, Y. Ohsawa, and N. Sonehara

we assume that every POI is on a road network node. To resolve this restriction
is straightforward [3].

Let set P contain k POIs, and let a starting point q be given. How to construct
P from a large number of POIs is application dependent. We first consider the
process for finding all paths from q to each p(∈ P) and calculating their distance
on the road network. This can be solved using by Dijkstra’s algorithm starting
from q, or by using the A* algorithm in a repetitive manner between q and
each p. In this section, we describe our more efficient method for doing this, the
single-source multi-target A* (SSMTA*) algorithm.

First of all, we summarize the A* algorithm. The starting point(q) and target
point (t) on the road network must be given in advance. The algorithm starts
the search from q and the cost (c) in terms of distance or time is calculated at
each node n encountered during the search.

c = d(q, n) + h(n, t)

The cost to move from q to n is represented by d(q, n). The heuristics cost to
move from n to t is represented by h(n, t). The heuristics cost should not exceed
the actual cost: i.e. h(n, t) should be less than or equal to d(n, t). When the
distance on the road network is considered, the Euclidean distance between n
and t satisfies this condition, and when the travel time is considered, the travel
time with the fastest speed satisfies this condition.

Hereafter, the Euclidean distance is used as h(n, t) and is denoted by dE(n, t),
and dN (q, n) denotes the distance traveled between q and n on the road network..

3.2 Basic Algorithm

Here, we describe our SSMTA* algorithm searching for the shortest paths from
a specified starting point to several target points on the road network. Table 1
summarizes the symbols used.

Table 1. Symbols

Symbol Meaning

P Target point set selected from POIs
q Starting point, called query point in ANN query
Q Query point set in ANN query
PQ Priority queue
CS Closed set
dE(x, y) Euclidean distance between x and y
dmin
E (x,P) Minimum Euclidean distance between x and a point in P

dN(x, y) Road network distance between x and y
RLink(x, y) Pointer to road segment with edges x and y

SSMTA* Algorithm for POI Queries on Road Network 55

Fig. 2. SSMTA* Algorithm

In Figure 2, q is the starting point, and p1 to p4 are the target POIs in
set P . The purpose of the query is to determine the shortest path from q to
each point in P . Suppose that the path on the road network from q to n has
already been determined, then n is currently noticed as a current node. n has
three directly neighboring nodes (na to nc). We first explain using na. The path
length from q to na via n is dN (q, n) + dN (n, na). Let dmin

E (na, P) denote the
distance between na and the point p(∈ P) that gives the minimum Euclidean
distance. In the figure, p1 is the closest POI to na, so dmin

E (na, P) = dE(na, p1).
Then, Cost = dN (q, n) + dN (n, na) + dmin

E (na, P) is used to determine for the
next expanded node. For each node neighboring n, this cost is calculated and
then inserted into the priority queue (PQ), which controls the search order. We
call this basic operation node expansion.

The records in the priority queue have the following format.

< Cost,NC , NP , dN (q,NC), RLink(NP , NC) > (1)

The NC represents the node of current interest (the current node). The NP is
the previous node of NC on the path from q to NC . The dN (q,NC) is the road
network distance from q to NC , and RLink(NP , NC) is the (pointer for the)
road segment connecting NP to NC . For example, in Figure 2, NC corresponds
to na, NP to n, and dN (q,NC) to dN (q, na).

At the beginning of the SSMTA* algorithm, the record < dmin
E (q, P), q,−, 0,

− > is inserted into the PQ. The ‘−’ of the third item shows the null value,
because q does not have a previous node. In the same way, q does not have a
previous link, so the null value is also assigned to the fifth item.

The steps in the SSMTA* algorithm are similar to those in the conventional
A* algorithm. (1) Get the record having the minimum cost from the PQ; (2)
check the current node (NC) of the record to see whether it has been expanded
(if the record has already been expanded, ignore it); (3) make a new record for
each neighboring node and insert it into the PQ. Repeat (1) to (3) until all POIs
have been visited. For the check in step (2), a once expanded node is inserted
into the closed set (CS). The CS keeps all records that were obtained in step (1)
indexed by the current node NC . If the NC of the record extracted in step (1) is
already in the CS, the node has already been expanded, so the node is ignored.

56 H. Htoo, Y. Ohsawa, and N. Sonehara

Let the record obtained from the PQ be e. If e.NC matches p(∈ P), one POI
has been found. The corresponding node is then removed from P . The number
of points in P is reduced each time a POI is found. The CS is used to retrieve
the route from the found POIs (target points) to q (the starting point) in a
reverse manner by tracing the NP , the previous node. It is the same way as with
Dijkstra’s algorithm or the A* algorithm. First, e.NC is searched in the CS, then
the NP of this record is searched in the CS. This searching is repeated until NP

meets q. When NP meets q, the route can be obtained. Algorithm 1 shows the
pseudo code for the SSMTA* algorithm.

Algorithm 1. SSMTA*

1. R ← ∅
2. dmin ← min(dE(q, pi), pi ∈ P)
3. enqueue(< dmin, q,−, 0,− >)
4. loop
5. e ← deleteMin()
6. if CS.Contain(e.Nc) then
7. CS.renew(e.dN(q, e.NP)); Continue;
8. else
9. CS.add(< e.NC , e.NP , e.dN , e.RLink >)
10. end if
11. if e.NC ∈ P then
12. R ← R∪ < e.NC , getPath(e.NC) >
13. P ← P − e.NC

14. if P = ∅ then
15. return R
16. end if
17. end if
18. for all nn ∈ neighbor(e.NC) do
19. decide p(p ∈ P) which gives dmin

E (nn, P)
20. dN ← dN(q, e.NC) + dN (e.NC , nn)
21. enqueue(< dN + dmin

E (NC , P), nn, e.NC , RLink(Nc, nn) >)
22. end for
23. end loop

In Dijkstra’s algorithm and the conventional A* algorithm, after a record has
been obtained once from the PQ and inserted into the CS, the distance from q
to current node NC in the record is fixed. In contrast, in the SSMTA* algorithm,
the value (dN (q,NC)) can be changed as illustrated in Figure 3. The numbers
in parentheses show the order in which the records were obtained from the PQ.

Now, suppose node m has been obtained from the PQ (1), and that Costa =
dN (q, a) + dE(a, p2) for node a, Costb = dN (q, b) + dE(b, p1) for node b, and
Costn = dN (q, n) + dE(n, p1) for n have been calculated. This means that the
nearest p(∈ P) for b and n is p1, and for a is p2. These three records are created
and inserted into the PQ. If Costa > Costn > Costb, the record for b is obtained
from the PQ first (2). b is expanded and somehow the search path reaches p1,
which is then removed from P . In this situation, P remains only p2 in the
example.

SSMTA* Algorithm for POI Queries on Road Network 57

Next, n is obtained from the PQ (3) and expanded. Through this node expan-
sion, records for a and o are created and n is inserted into the CS. This record
contains the network distance for the q → m → n route.

Suppose a is obtained from PQ (4) next. it is expanded and its record,
dN (q, n) = dN (q, a) + dN (a, n), is inserted into the PQ. Later, the record for
n is obtained from the PQ (5). However, n had already been placed in the CS
with dN (q, n) = dN (q,m)+dN(m,n). Now, suppose that if dN (q, a)+dN (a, n) <
dN (q,m) + dN (m,n), the dN (q, n) in the CS should be replaced with a smaller
value, dN (q, a)+dN (a, n). This is why the distance for a record in the CS needs
to be altered in the SSMTA* algorithm.

Fig. 3. Cost change in CS

3.3 Incremental Query

The SSMTA* algorithm requires that all elements of the POI set (P) be given in
advance of starting the query. If a new POI (r) is added to P after the search has
started, the path found from q to point r is not necessarily granted the shortest
path. A node on the shortest path from q to r may not have been expanded,
because the Cost of a record in the PQ had already been determined when it was
inserted, and thus was not changed even though a new point had been added.

After all the shortest paths to P have been found, each node in the CS has
an exact shortest path distance from q. Then, when a distance q to any point
in the CS is requested to retrieve, the correct distance can be easily obtained
by referring to the dN (q, r). The shortest route from r to q can be obtained by
using the basic algorithm described in 3.2.

Papadias et al.[5] proposed an incremental algorithm for k-NN queries, and
Yiu et al.[3] proposed an incremental algorithm for ANN queries. In these al-
gorithms, a new target point is incrementally added to set P . The SSMTA*
algorithm can handle this situation in one of two ways.

The first way is to simply search for enough POI candidates using a Euclidean
distance query and then to validate the road network distance. This process is
repeated until the necessary number of POIs has been found. This approach,
however, is problematic. The calculation of dmin

E (n, P) becomes heavier as the

58 H. Htoo, Y. Ohsawa, and N. Sonehara

number of points in P increases because the number of Euclidean distance cal-
culations is proportional to the number of points in P . An even bigger problem
is deciding on a sufficient number of points in P before applying the SSMTA*
algorithm. The node expansion must also be considered. However, the increase
in the total number of node expansions is not proportional to the increase in the
number of points in P , because POIs distant from q do not become target until
the node expansion approaches the node.

The second way is to re-calculate the PQ. Suppose that the SSMTA* al-
gorithm has already found all the points in P and that the PQ still contains
several un-extracted records. If a new point (r) is added to P , NewCost =
dN (q,NC) + dE(NC , r) for all PQ entries is calculated, and Cost is replaced
with the NewCost value. In Dijkstra’s algorithm, the number of records in the
PQ is proportional to the distance to the farthest point in P . In the SSMTA*
algorithm, determining the size of the PQ is not so simple. However, the PQ
still contains the nodes surrounding the expanded nodes (i.e. the nodes in the
CS), so the number of records in the PQ should be proportional to the distance
from q to the farthest POI in P . Additionally, the NewCost calculation can
be carried out in main memory, so disk access is not necessary. Moreover, this
calculation does not affect the total calculation time very much. Besides the
number of points to be added is not restricted, so one or more points can be
added simultaneously.

4 Application to ANN Queries

In an ANN query, a set of query points Q is given and k POIs are found in
ascending order by evaluation value, which is based on the distance from a set of
query points Q to p(∈ P). The proposed distance evaluation functions include
sum, max, and min [15]. When sum is used, the total distance from each query
point in Q to p is calculated and used as the evaluation value.

The initial ANN query method proposed by Papadias et al. [16] was dubbed
group nearest neighbor query. Since then, several other ANN query methods [15]
have been proposed. Yiu et al. [3] proposed three methods for road network
distance queries. Experimental evaluation showed that the IER (incremental
Euclidean restriction) method outperformed the rest. The IER method is based
on a three-step paradigm: 1) search for candidate ANN POIs on the basis of
Euclidean distance, 2) evaluate the results on the basis of road network distance,
and 3) repeat both steps until kANN POIs have been found, which can be
efficiently done using a best-first query on the R-tree index.

Figure 4 shows a simple example application of an ANN query method using
the sum function. The ANN query points are q1 and q2. The POIs are p1 to
p4; they are indexed by an R-tree. Initially, the minimum bounding rectangles
(MBRs) in the root node of the R-tree are placed in a priority queue (PQ). In
this example, PQ={< 6, R1 >,< 11, R2 >}. The first item of this record shows
the sum of the supposed minimum distances (MINDISTs) from each query point
to an MBR. For example, the MINDIST from q1 to R1 is 4 and from q2 to R1

SSMTA* Algorithm for POI Queries on Road Network 59

is 2, so R1 has total cost of 6. Therefore, < 6, R1 > is dequeued because its cost
is lesser. Descending the R-tree one level results in two points p1 and p2 in a
leaf node being enqueued so that the PQ={< 10, p1 >,< 11, R2 >,< 15, p2 >}.
The dequeuing of p1 means that one ANN POI has been found. The next step
is verification in which the sum distance on the road network is calculated.
The ANN POIs can thus be found incrementally on the basis of the Euclidean
distance. These generation and verification steps are repeated until the minimum
sum of the road distance fall below the n-th ANN on Euclidean distance. This
algorithm can easily be expanded to handle kANN queries, meaning that it can
be used to search up to the k-th minimum ANN. This algorithm can also be
adapted simply to use the min and max functions [15].

Fig. 4. ANN search on R tree

Yiu et al. [3] proposed evaluating the distance on a road network using an
A* algorithm. They used a pair-wise A* algorithm, so |Q| pairs of calculations
were necessary. The SSMTA* algorithm can be adapted to do the same calcu-
lation and it should be able to do more quickly. Two types of methods using
the SSMTA* algorithm can be used for ANN applications. One type is straight-
forwardly adopting for each candidate of ANN result by Euclidean distance as
starting point, and each in Q as the target. The second type is adapting the
SSMTA* algorithm so that one of the q (∈ Q) is used as the starting point and
the kANN result set is used as the destination.

Given the characteristics of the SSMTA* algorithm, we can say that the first
method outperforms the second when |Q| is large, and the second method is
more suitable when k is large.

5 Performance Evaluation

We experimentally evaluate the efficiency of the two types of SSMTA* algorithm
methods for ANN searches. We used a real road map and generated POIs by
using pseudo-random sequences for a variety of existing probabilities Prob for a

60 H. Htoo, Y. Ohsawa, and N. Sonehara

road segment. For example, Prob = 0.001 means that 1000 road segments have
one POI.

The ANN candidates were obtained using Yiu et al.’s method described above.
The query cost was calculated using three methods. The first one used the con-
ventional A* algorithm as is used in the IER method [3], hereafter called ANN0.
The second method used the SSMTA* algorithm to calculate the distance from
each ANN query result targeting all query points in Q, hereafter called ANN1.
The third calculation method used the SSMTA* algorithm to calculate the dis-
tance from each query point to the result points found in a Euclidean kANN
search, hereafter called ANN2.

In the Dijkstra, A*, and SSMTA* algorithms, four data sets are referred
while searching: PQ, CS, adjacency list, and road segments. The PQ and CS
are usually small enough to reside in memory, so they can be quickly accessed.
In contrast, the adjacency list and road segments are usually large to reside in
memory so they are stored on disk. Node expansion is thus inevitably needed
to access them, meaning that node expansion time dominates processing time.

0

10,000

20,000

30,000

40,000

50,000

60,000

1 3 5 7 10 15 20

ANN0

ANN1

ANN2

(a) |Q| = 3

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

1 3 5 7 10 15 20

Ex
pa

nd
ed

 N
um

be
r

of
 N

od
es

k

ANN0

ANN1

ANN2

(b) |Q| = 7

Fig. 5. Relation between k and expanded node number

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

3 5 7 10 15

ANN1

ANN2

Fig. 6. Relation between |Q| and ex-
panded node number

Fig. 7. Relation between Prob and ex-
panded node number

SSMTA* Algorithm for POI Queries on Road Network 61

We thus evaluated the performance of the methods on the basis of the number
of node expansions.

The first experiment was conducted with |Q| = 3 and |Q| = 7 and with
the number of k in a kANN search variable from 1 to 20. As shown in Fig. 5,
the ANN1 calculation method did not show much improvement compared with
ANN0, especially for Q = 3. In contrast, the ANN2 method showed considerable
improvement compared to the other two methods, especially when k was large.
For example, when k was 20 and |Q| was 3, the expanded node number was
about 20% that of the other methods.

Figure 6 shows the result, when k was fixed at 5 and |Q| was varied. The actual
expanded node number for this query varies with the size of the Q distribution
area on the map. The actual results we obtained experimentally were evaluated
using two methods, each as a ratio to the ANN0 result. The ANN2 ratio was
fairly stable because the searched k was the same for all Q. In contrast, the
ANN1 ratio decreased with an increase in |Q|.

Figure 7 shows the results when Prob (the probability of a POI existing on
each road segment) was varied and |Q| = 3 and k=5. With the ANN0 and ANN1
methods, the number of node expansions increased with the Prob, while, with
the ANN2 method, the number was fairly stable and independent of Prob.

These results show that the two types of methods using the SSMTA* algorithm
have two intrinsic characteristics: the efficiency of the ANN1 method depends on
the number of k in a kANN query while that of the ANN2 method depends on |Q|.
This is because the SSMTA* algorithm works more efficiently when the number
of POIs to be searched for is large. Unlike the conventional A* algorithm, which
suffers heavily from duplicated node expansions especially around the searched
POI, the SSMTA* algorithm avoids duplicate node expansions.

6 Conclusion

We have described an algorithm for efficiently finding the shortest paths from
one starting point to several targets on a road network, and have demonstrated
that it outperforms the conventional A* algorithm when applied to a kANN
query especially when the number of target points is large.

The SSMTA* algorithm can be adapted to several types of spatial queries
based on road network distance including CkNN queries, spatial skyline queries,
and trip planning queries. We plan to apply the SSMTA* algorithm to such
queries as future work.

Acknowledgments. This study was partially supported by the Japanese Min-
istry of Education, Science, Sports and Culture (Grant-in-Aid for Scientific Re-
search (C)), 21500093, and by Transdisciplinary Research Integration Center at
the Research Organization of Information and Sciences, Japan.

62 H. Htoo, Y. Ohsawa, and N. Sonehara

References

1. Dijkstra, E.W.: A note on two problems in connection with graphs. Numeriche
Mathematik 1, 269–271 (1959)

2. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE Transactions of Systems Science and Cybernet-
ics SSC-4(2), 100–107 (1968)

3. Yiu, M.L., Mamoulis, N., Papadias, D.: Aggregate nearest neighbor queries in road
networks. IEEE Transactions on Knowledge and Data Engineeing 17(6), 820–833
(2005)

4. Deng, K., Zhou, X., Shen, H.T.: Multi-source skyline query processing in road net-
works. In: Proceeding of IEEE 23rd International Conference on Data Engineering
(2007)

5. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial network
databases. In: Proc. 29th VLDB, pp. 790–801 (2003)

6. Sharifzadeh, M., Kalahdouzan, M.R., Shahabi, C.: The optimal sequenced route
query. Technical report, Computer Science Department, University of Southern
Calfornia (2005)

7. Li, F., Cheng, D., Hadjieleftheriou, M., Kollios, G., Teng, S.H.: On Trip Planning
Queries in Spatial Databases. In: Anshelevich, E., Egenhofer, M.J., Hwang, J. (eds.)
SSTD 2005. LNCS, vol. 3633, pp. 273–290. Springer, Heidelberg (2005)

8. Hu, H., Lee, D.L., Lee, V.C.: Distance indexing on road networks. In: Poc. 32nd
VLDB, pp. 894–905 (2006)

9. Samet, H., Sankaranarayanan, J., Alborzi, H.: Scalable network distance browsing
in spatial databases. In: Proc. of the ACM SIGMOD Conference, pp. 43–54 (2008)

10. Kolahdouzan, M., Shahabi, C.: Voronoi-based K nearest neighbor search for spatial
network databases. In: Proc. 30th VLDB, pp. 840–851 (2004)

11. Zhu, L., Sun, Y.J.W., Mao, D., Liu, P.: Voronoi-based aggregate nearest neighbor
query processing in road networks. In: ACM GIS 2010 (2010)

12. Shaw, K., Ioup, E., Sample, J., Abdelguerfi, M., Tabone, O.: Efficient approxima-
tion of spatial network queries using the M-tree wirh road network embedding. In:
19th International Conference on Scientific and Statistical Database Management
(2007)

13. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity
search in metric spaces. In: Proceedings of the 23rd VLDB Conference, pp. 426–435
(1997)

14. Ioup, E., Shaw, K., Sample, J., Abdelguerfi, M.: Efficient AKNN spatial network
queries using the M-tree. In: ACM GIS 2007 (2007)

15. Papadias, D., Tao, Y., Mouratidis, K., Hui, C.K.: Aggregate nearest neighbor
queries in spatial databases. ACM Transactions on Database Systems 30(2), 529–
576 (2005)

16. Papadias, D., Shen, Q., Tao, Y., Mouratidis, K.: Group nearest neighbor queries.
In: Proceedings of the 20th International Conference on Data Engineering, pp.
301–312 (2004)

L. Wang et al. (Eds.): WAIM 2011 Workshops, LNCS 7142, pp. 63–75, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Combining Top-k Query in Road Networks

Weimo Liu, Yinan Jing, Kunjie Chen, and Weiwei Sun

School of Computer Science, Fudan University,
Shanghai, China

{liuweimo,jingyn,chenkunjie,wwsun}@fudan.edu.cn

Abstract. In location-based services, every query object usually has multiple
attributes including its location in road networks. However, when making a
decision to choose an object, there is probably no such an object that is best in
every attribute. To have a balance among all the attributes, a monotone
aggregation function can be used, in which every attribute is an independent
variable of the function. To find k objects which have the minimal (maximal)
values of the function is a typical combining top-k problem. In this paper, we
address this problem in road network environment. To answer such a query
more efficiently, we propose a novel algorithm called ATC (Access with
Topology Changed). By making use of road networks’ locality, the algorithm
changes the networks’ topology and reduces the number of data access.
Extensive experiments show that our algorithm can obviously outperform
existing algorithms that solve the combining top-k problem.

Keywords: Top-k Query, Spatial Index, Road Networks, Multi-Objective
Decision.

1 Introduction

As mobile devices become increasingly widely used in recent years, the location
based services develop rapidly. The demand for location based services is becoming
higher and higher. In most of the problems of the former research, most existing
service providers often consider only geographical information. For example, when
receiving a user query for a hotel (Fig. 1(a)), the service provider usually returns the
nearest one to the user, and does not consider other factors. However, there are many
other factors should be taken into account for users in real life. For instance, when
users want to find a hotel, they often consider the distance between the hotel and the
query point, the price, the service quality and so on. When making such a decision,
there are several methods to take these factors into consideration. The first method is
to set a boundary for each attribute. That is users could usually filter their choices by
restricting the value of each attribute within some limits. For example, a user will
consider following conditions of a hotel: (1) its price is less than 1,000 dollars; (2) it
is less than five kilometers away from the query point; (3) its service is not bad. But it
is often difficult to set the boundary. If the boundary is too broad, there will be too
many results. Conversely, there may be not enough results if it is too strict.

64 W. Liu et al.

The second method is to select the best results according to a single attribute. But it is
easy to lose some preferable results in this way, especially when the discrimination of
the selected attribute is not great. For example, we suppose there are two hotels as
shown in Fig. 1(b): hotel j’s price is 550 dollars, and the distance between j and the
query point is 8 kilometers, while hotel f’s price is 560 dollars, and the distance
between f and the query point is 1.4 kilometers. If the user prefers sorting hotels by
their prices and then choose the cheapest one, the user will get the result that j is
better. However, in this case, hotel f is obviously a better answer.

(a) (b)

Fig. 1. Query for a hotel

To have a balance among all of the attributes, a monotone aggregation function f
can be used, in which every attribute is an independent variable of the function. To
find k objects which have the minimal (maximal) values of the function is a typical
combining top-k query problem. In this paper, we address the location-dependent top-
k query in road networks, in which the objects’ location will be taken into account.
For example, when the user selects hotels, two factors are taken into account, i.e. the
price and the distance. Supposing that we use a monotone function f(distance, price)
according to the user’s demand, the hotel with the smallest function value will be the
answer. When a user needs top-k results, the k hotels with the smallest value of f will
be returned. However, due to complex distance computation in road networks, the
traditional solution to this query problem is not efficient enough. In this paper, a novel
algorithm called ATC (Access with Topology Changed), in which we use a strategy
to reduce the number of data access by changing the network structure without losing
critical information, is proposed to improve the query performance. Our contributions
can be summarized as follows:

(1) We address top-k query in road networks to solve one certain query problem
in real life which needs to consider multiple attributes including object’s
location. And to answer this type of query efficiently, we propose a novel
algorithm.

 Combining Top-k Query in Road Networks 65

(2) We also make many extensive experiments to evaluate our algorithm.
Experiment results show that our algorithm significantly outperforms other
algorithms such as NRA [1].

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 formally presents the concept of top-k query in road networks and related
definitions and notations. Section 4 presents algorithms for processing top-k query in
road networks and section 5 evaluate our algorithms by experiments. Finally, we draw
the conclusion for this paper.

2 Related Work

The traditional location based services only consider geographical information.
Nearest Neighbor Query is a common query in spatial database management system
[2][3]. It appears in the scene that a user wants to find the nearest target of a certain
type. For example, when a driver wants to find a gas station, the nearest one is usually
the best choice. Methods to solve this type of problem have been deeply studied. The
most widely used one is Incremental Nearest Neighbor algorithm which is presented
by G. R. Hjaltason and H. Samet [4]. Then, the researchers focus on the road
networks since these kinds of location based services are quite prevalent in the real
world [5]. However, in real life we need to simultaneously consider several factors
including both spatial and non-spatial attributes. To balance the factors, we need a
method that can take several attributes into account at the same time.

Skyline query is to find out a set of points which is not dominated by any other
points [6]. For example, a hotel is a candidate when there is no other hotel that is
cheaper and closer to the beach than it. The skyline query was also applied in spatial
database, namely the spatial skyline query [7][8], which regards the distances from
different query points as multi-attributes. However, when the user needs a hotel which
is cheaper and closer, either the general or spatial skyline query cannot meet the
requirements because the distance between the hotel and the user is dynamic. To
solve this problem, Zheng et al present the Location-Dependent Skyline Query [9].
The skyline query is a good way to solve the multi-objective optimal problem, but it
has two drawbacks: (1) there may be too many results of the skyline query; (2) it
cannot find out which is the second best choice.

Multi-objective decision is to simultaneously optimize several conflicting
objectives subjected to certain constraints. Multi-objective decision appears in various
fields: business, finance, industry, or wherever optimal decisions need to be made to
have a balance among two or more conflicting objectives. Maximizing profit and
minimizing the cost of a transaction; maximizing profit and minimizing the time of a
loan; and minimizing cost of labor and freightage are examples of multi-objective
optimal problems. Constructing a single Aggregate Objective Function (AOF) is the
most widely-used approach to make multi-objective decision. The basic idea is to
combine all the objective functions into a single functional form, called the AOF. A
well-known method to combine the attributes is the weighted linear sum of the
objectives. Each weight is for one objective to be optimized, and then combines all

66 W. Liu et al.

the items into a single function. Obviously, the solution obtained will be determined
by the values of the weights specified. Of course the weighted linear sum is not the
only way to combine all the attributes. Any monotone aggregation function can be
used. To find the k maximal (minimal) value of the AOF is top-k query. The threshold
algorithm to solve this problem is first proposed by Fagin [1]. And he designed
algorithms for the different situations respectively. When objectives are about spatial
information in Euclidean space, it is a top-k spatial preference query [10][11] or
location based top-k query [12]. M. L. Yiu et al. in [10] and H. Jung et al. in [12]
proposed aR-Tree to prune the useless objects. If the spatial information is in form of
road networks, those algorithms will not work.

In this paper, we address the top-k query in road networks to choose k results with
the best value of one AOF. Compared with NN(Nearest Neighbor), it allows users to
consider the non-spatial factors. And the difference from location-dependent skyline
query is users can get several optimal results according to their purpose by the
location dependent top-k query rather than have a large amount of candidates. We
consider the properties of road networks and solve the top-k query in road networks
more efficiently than traditional algorithms.

3 The Model

Assume that there is a set of spatial objects O in the database and each object o∈O has
spatial information and non-spatial attributes. Every non-spatial attribute can be
represented by a scalar quantity. Then it is appropriate to note the ith field of o with xi,
xi∈R. Specify that x1 represents the distance between the query point and o.

A Single Aggregate Objective Function (AOF). Suppose there is a function f(x1,
x2, … , xn). xi is a scalar quantity which represents an attribute of o.

()1 2 1 2(, ,...,) (, ,...,), 0 0n n

i i

f x x x f x x x
i x xx ∂ ∂

∂ ∂∀ ≥ ≤ ,

i.e. f(x1, x2, … , xn) is a monotone function of every attribute. We define such a function
as the single aggregate objective function (AOF).

Top-k Query

Situation 1: Suppose that f(x1, x2, … , xn) is monotone increasing with every
independent variable. If we want an object with a smaller value of xi (i=1, 2, 3, … , n),
the best choice is the object with the minimal value of function.

Situation 2: If the f(x1, x2, … , xn) is monotone decreasing with every independent
variable, the best choice is the maximum instead of minimum.

Situation 3: When f(x1, x2, … , xn) is monotone but the monotonic is not the same
with all the independent variables. In this case, we can change the sign of some
independent variables and convert the function to situation 1 or situation 2.

The top query is to select the best choice in above situations. When we ask a top-k
query, the k objects with the minimal value of function in situation 1 or the maximal
value of function in situation 2 can meet the demand.

 Combining Top-k Query in Road Networks 67

Top-k Query in Road Networks. In top-k query, if xi (i = 1, 2, 3, … , n) , xi is the
distance between the query point and the object o in the road networks, we called the
query Top-k query in road networks.

In this paper, we suppose that a monotone function f(x1, x2, … , xn) is ascending
with xi(i=1, 2, … , n) and, consequently, the minimal value of the f(x1, x2, … , xn) is
the best choice in the problem. If f(x1, x2, … , xn) does not satisfy the conditions,
changing the sign of some xi(i=1, 2, … , n) can help. Specially, we assume that x1 is
the distance from the query point in road networks.

4 Algorithm

4.1 NRA (No Random Accesses) Algorithm

NRA (No Random Accesses) algorithm in this paper is a method to solve top-k query
in road network. It is a variant of the threshold algorithm[1] in the situation that we
can only get the objects’ attribute by sequence of this attribute’s sorted list, because
the cost of computing the distance between two points in road networks is high.

To present the algorithm conveniently, we first define the following functions:

1 2() = { , , ... , } {1, 2, ... , }mS O i i i n⊂ is the known fields of the object O. (When we

have already known the ith field’s value of O, it is a known field.)
WS(O) is the maximal value of the AOF f(x1, x2, … , xn) that can attain for object O.

If f is monotone, f obtains the maximal value when xi =∞, i∈{1, 2, … , n} - S(O). For
example, if S(O) = {1, 2, … , m}, WS(O) = f(x1, x2, … , xm, ∞, … , ∞).

BS(O) is the minimal value of the AOF f(x1, x2, … , xn) that can attain for object O.
If f is monotone, f obtains the minimal value when xi evaluates the bottom value xi’,
i∈{1, 2, … , n} - S(O). For example, if S(O) = {1,2,…,m}, BS(O) =
f(x1,x2,…,xm,xm+1’,…,xn’). The concept of “bottom value” will be explained in the
following algorithm.

The NRA algorithm first sorts the objects in a list Li (i=1, 2, … , n) according to
the value of the ith attribute of the objects. So there are n sorted lists for the n
attributes. Specially, L1’s sorted access is by Dijkstra's algorithm. The next step of
NRA is to traverse the n sorted lists in a way called “sorted access”, that is, retrieving
the dth element in each sorted list in the dth iteration of this step. We use Oid to note the
dth object in the ith sorted list. The bottom value xi’ is evaluated by the value of ith
attribute of Oid in the current iteration. After retrieving the n objects, the S(O) of each
accessed object in this iteration will be updated. Then the Ws(O) and Bs(O) will be
computed again according to the new value of S(O) and the new bottom values.

During the procedure of the sorted access, NRA uses a top k list Tk
(d) to keep track

of the k accessed objects with the smallest W value seen so far. If two objects have the
same W value, the object with a smaller B value will be inserted into the top k list first.
Let M k

(d) be the kth lowest W value in T k
(d). NRA will end when no object outside T k

(d)
has a B value smaller than Mk

(d), that is, when B(O) ≧ M k for all O∉Tk.

68 W. Liu et al.

Fig. 2. The NRA Algorithm

4.2 Access with Topology Changed (ATC) Algorithm.

Index Structure

(1) Index the Data with R-Tree
In Euclidean space, we can compute the distance between point A(x1, y1) and point
B(x2, y2) by the below formula directly

2 2
1 2 1 2() ()d = x - x + y - y

(1)

The distance in Euclidean can be used as the lower bound of that in road networks. So
we first index the data with R-tree [13], in which the query point’s distance from the
MBR (Minimal Bound Rectangle) is the lower bound of the distance from all the
points in the MBR.

NRA()
1 Tk ← NEWPRIORITYQUEUE()

 // Tk is a list which contains top k element of a priority queue sorted by W
in ascending order, if W is the same, ties are broken using B, the lower B
wins.

2 count ← 0
3 for d ← 1 to N do
4 O ← findmin()
5 x1’ ← O.x1
6 Mk ← Tk [k]
7 if (O is distinct) do
8 count++
9 if (count >= k and f(x1’, x2’, … , xn’) >=Mk) do
10 halt
11 else do
12 ENQUEUE (Tk, O, f(O))
13 for i ← 2 to n do
14 O ← Li(d)
15 xi’ ← O.xi
16 Mk ← Tk [k]
17 if (O is distinct) do
18 count++
19 if(count >= k and f(x1’, x2’, … , xn’) >=Mk) do
20 halt
21 else
22 ENQUEUE (Tk, O, f(O))
23 Output(Tk)

 Combining Top-k Query in Road Networks 69

(2) Combing the Attributes with aR-Tree
Now we consider to combine the indexes of different attributes into an integrate one.
Since we already index the objects by R-tree based on their spatial information, the
following step is to store the other attributes in the R-tree’s leaf nodes. Then find out
the minimal values of non-spatial attributes of every non-leaf node’s objects and store
them in the non-leaf nodes. We call the R-tree added the non-spatial attributes aR-
Tree [12]. For the non-leaf node, x1 equals the distance between the query point and
the node’s MBR. Let xi(i=2, … , n) equals the minimum to make the f(x1, x2, … , xn)
get the minimal value. And this minimal value is the non-leaf node’s value of f(x1,
x2, … , xn).

We take the aR-Tree in Fig. 3 as an example. Each object has one non-spatial
attribute in the aR-Tree. R1 is the MBR which include the object A, B, C, D. The non-
spatial attributes of them is 500, 200, 600, 300. So R1’s non-spatial attribute is 200,
the minimum of the non-spatial attributes of its objects. And for the same reason, R’s
non-spatial attribute is 100, the minimum of the non-spatial attributes of R1, R2, R3
and R4.

Fig. 3. The aR-Tree

70 W. Liu et al.

Definition
d (a, b): the network distance between point a and point b.

Inner point: the point which is not connected directly with points in the other disk
pages.

Current page: the page in which the return of the findmin() function is when we
execute the Dijkstra's algorithm.

We propose two methods to change the topology structure of the road networks.

ATC-I. Provided that there is an inner point p in the page, S is a set of the points
which is connected directly with p. Choose any two points a, b in S. If there is no
edge directly connecting a and b, join these two points with a new edge of which the
weight equals the sum of d(p, a) and d(p, b). Otherwise compare the weight of the
edge existed and the sum of d(p, a) and d(p, b). If the sum is smaller, replace the
weight with the sum. Repeat this step to any two points in S. Then delete p and edges
adjacent to p. For example as Fig. 4 shows, add edges AG and DG to (a),
correspondingly d(A, G)=d(A, F)+d(F, G), d(D, G)=d(D, F)+d(F, G), then delete AF,
DF, FG and (a) transforms to (b). Add AC and CD, let d(A, C)=d(A, G)+d(G, C), d(C,
D)=d(D, G)+d(G, C). And (b) transforms to (c).Repeat the above operations with all
inner points in this page.

ATC-II. Provided that there is an inner point in the page, compute all pairs’ minimal
distance in networks and store them in a matrix called Minimum Distance Matrix.
Construct a complete graph corresponding to the Minimum Distance Matrix. Then
replace the points in this page and the edges between them with the complete graph.
Finally, delete the inner points and the edges connect with them. (Fig. 5)

Fig. 4. Change Method I

Fig. 5. Change Method II

 Combining Top-k Query in Road Networks 71

The Algorithm
First sort the objects in a list Li (i=1, 2, … , n) according to the value of the ith
attribute of the objects. So there are n sorted lists for the n attributes. Specially, L1’s
sorted access is by Dijkstra's algorithm. When the current page’s value of f(x1, x2, … ,
xn) is greater than the kth smallest object, we use Method 1 to change the topology
structure in ATC-I while Method 2 is used in ATC-II. The next step of NRA is to
traverse the n sorted lists in a way called “sorted access”, that is, retrieving the dth
element in each sorted list in the dth iteration of this step. We use Oid to note the dth
object in the ith sorted list. The bottom value xi’ is evaluated by the value of ith
attribute of Oid in the current iteration. After retrieving the n objects, the S(O) of each
accessed object in this iteration will be updated. Then the Ws(O) and Bs(O) will be
computed again according the new value of S(O) and the new bottom values. During
the procedure of the sorted access, NRA uses a top k list Tk

(d) to keep track of the k
accessed objects with the smallest W value seen so far. If two objects have the same
W value, the object with a smaller B value will be inserted into the top k list first. Let
M k

(d) be the kth lowest W value in T k
(d). NRA will end when no object outside T k

(d) has
a B value smaller than Mk

(d), that is, when B(O) ≧ Mk for all O∉Tk.

Fig. 6. The ATC Algorithm

ATC()
1 Tk ← NEWPRIORITYQUEUE()

 // Tk is a list which contains top k element of a priority queue sorted by
W , if W is the same, ties are broken using B

2 count ← 0
3 for d ← 1 to N do
4 O ← findmin()
5 x1’ ← O.x1
6 changeTopologyStructure(Method, O.pageId)
7 Mk ← Tk [k]
8 if (O is distinct) do
9 count++
10 if (count >= k and f(x1’, x2’, … , xn’) >=Mk) do
11 halt
12 else do
13 ENQUEUE (Tk, O, f(O))
14 for i ← 2 to n do
15 O ← Li(d)
16 xi’ ← O.xi
17 Mk ← Tk [k]
18 if (O is distinct) do
19 count++
20 if(count >= k and f(x1’, x2’, … , xn’) >=Mk) do
21 halt
22 else
23 ENQUEUE (Tk, O, f(O))
24 Output(Tk)

72 W. Liu et al.

5 Performance Evaluation

5.1 Experiment Settings

The experiment is on two data sets: California (Cal) and North America (NA) [14].
The coordinates of points and the networks are real while the non-spatial attributes are
generated randomly (Table 1).The problem is to find k hotels which are both closer to
the user and cheaper in Cal. For NA, it selects k possible locations for a branch.

To show the relationship of the variables clearly, as an example, we use the simple
linear combination function of two variables as the AOF. Let the function be f(x1, x2)
= x1+λ*x2. x1 notes the distance between the object and the query point while x2
represents the price of the hotel. Considering the price of gasoline and hotel in reality,
λ is of the order of 0.01 in Cal. And for NA, x2 represents daily operating cost and λ is
in order of 10 based on the cost of transportation and daily operating. Of course any
other multivariate monotone function is also valid.

We use R-tree as the basic index data structure [13][15]. [15] is an implementation
of R-Tree. (The algorithms can also be applied to other hierarchy index data
structures.)

Table 1. Summary of the Dataset

Dataset Number of
Points

Number
of Edges

Page
Size(B)

Attribute

California 20148 21693 4096 Coordinate,
Price

North
America

175813 179179 4096 Coordinate,
Cost

5.2 Experiments on the Efficiency

We measure the performance of algorithms in road networks by disk I/O in dataset
California and NA. The query is top-10 and the capacity of aR-tree is 10. Let λ in
f(x1, x2) be distributed over a large extent. The Fig.7 shows that we have a universal
better performance than the NRA algorithm in dataset California. The result is similar
in dataset North America (Fig. 8). The curves indicate the disk I/O increases slowly
with λ, because the non-spatial attributes weights more, the locality of the AOF's
value in the aR-Tree is worse.

In dataset Cal, we computed that λ is about 0.01 based on the price of hotel in
reality. In dataset NA, we get that the λ is 10. So the next step is to make λ in the
order of 0.01 (Fig. 9) in dataset Cal and 10 (Fig. 10) in dataset NA. We can see that
our algorithms perform better than the NRA algorithm all the time. Specially, the ratio
of the ATC-II’s and NRA’s disk I/O is less than 1/2 in dataset California and much
smaller in NA. This depends on capacity of the aR-tree and the character of the
dataset's topological structure and coordinate information. Since the NRA's disk I/O is
always more than twice ATC-II’s. Greater is λ, larger is the difference of disk I/O.

 Combining Top-k Query in Road Networks 73

Let us focus on how the k in query affects the performance of the algorithms. λ is
0.01 in Cal (Fig. 11) and 10 in NA (Fig.12). Since the greater k demands the more
objects to check, the disk I/O is increasing with k. The disk I/O of NRA is also more
than twice ATC-II's in different k. The ratio of NRA's and ATC-II's disk I/O is little
relative to k.

Finally, we compare the performance of algorithms when selecting different aR-
tree's capacity. Since the dataset is the same one and λ is 0.01 in Cal and 10 in NA and
query is top-10, the only difference is aR-tree's capacity. The Fig. 13 and Fig. 14
show that NRA's performances are almost not affected by the change of capacity
while the ATC-I and ATC-II's are improved by increasing the capacity of aR-tree.
This is because the bigger capacity leads to the more inner points. When we could
select the bigger capacity, the ATC-I and ATC-II perform better.

Fig. 7. Disk I/O for λ in large extent(Cal) Fig. 8. Disk I/O for λ in large extent(NA)

 Fig. 9. Disk I/O for λ in order of 0.01(Cal) Fig. 10. Disk I/O for λ in order of 10(NA)

Fig. 11. Disk I/O for k(Cal) Fig. 12. Disk I/O for k(NA)

74 W. Liu et al.

 Fig. 13. Disk I/O for Capacity(Cal) Fig. 14. Disk I/O for Capacity(NA)

6 Conclusion

In this paper, considering the wide applications, we propose a novel efficient
algorithm for the top-k query in road networks In this algorithm, we combine the
traditional R-tree index with the non-spatial attributes and transform the network
topology structure without losing the useful information. Thus those pages in which
there are no possible results can be pruned. Extensive experiment results show that
this new algorithm can achieve better efficiency than the traditional multi-objective
decision algorithm.

Acknowledgment. Thanks to FDUROP (Fudan's Undergraduate Research
Opportunities Program). This research is also supported in part by the National
Natural Science Foundation of China (NSFC) under grant 61073001.

References

1. Fagin, R.: Combining Fuzzy Information: an Overview. ACM SIGMOD Record 31(2),
109–118 (2002)

2. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest Neighbor Queries. ACM SIGMOD
Record (1995)

3. Cheung, K.L., Fu, A.W.: Enhanced Nearest Neighbour Search on the R-tree. ACM
SIGMOD Record 27(3), 16–21 (1998)

4. Hjaltason, G.R., Samet, H.: Distance Browsing in Spatial Databases. TODS 24(2), 265–
318 (1999)

5. Yoo, J.S., Shekhar, S.: In-route nearest neighbor queries. Geoinformatica (2005)
6. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proc. IEEE Conf. on

Data Engineering, Heidelberg, Germany (2001)
7. Sharifzadeh, M., Shahabi, C.: The spatial skyline queries. In: VLDB 2006: Proceedings of

the 32nd International Conference on Very Large Data Bases, pp. 751–762. VLDB
Endowment (2006)

8. Son, W., Lee, M.W., Ahn, H.K., Hwang, S.W.: Spatial Skyline Queries: An Efficient
Geometric Algorithm. In: Mamoulis, N., Seidl, T., Pedersen, T.B., Torp, K., Assent, I.
(eds.) SSTD 2009. LNCS, vol. 5644, pp. 247–264. Springer, Heidelberg (2009)

9. Zheng, B., Lee, K.C.K., Lee, W.C.: Location-Dependent Skyline Query. In: Proc. of
MDM, pp. 148–155 (2008)

 Combining Top-k Query in Road Networks 75

10. Yiu, M.L., Dai, X., Mamoulis, N., Vaitis, M.: Top-k spatial preference queries. In: ICDE
(2007)

11. Rocha-Junior, J.B., Vlachou, A., Doulkeridis, C., Norvag, K.: Efficient processing of top-k
spatial preference queries. In: VLDB (2010)

12. Jung, H., Cho, B., Chung, Y.D., Liu, L.: On processing location based top-k queries in the
wireless broadcasting system. In: ACMSAC (2010)

13. Guttman, A.: R-trees: a Dynamic Index Structure for Spatial Searching. ACM SIGMOD
Record, 47–57 (1984)

14. Real Datasets for Spatial Databases: Road Networks and Points of Interest – California
Road Network and North America Road Network,
http://www.cs.fsu.edu/~lifeifei/SpatialDataset.htm

15. Hadjieleftheriou, M., Hoel, E., Tsotras, V.J.: Sail: A spatial index library for efficient
application integration. Geoinformatica 9(4) (2005)

L. Wang et al. (Eds.): WAIM 2011 Workshops, LNCS 7142, pp. 76–89, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Extracting Focused Locations for Web Pages

Qingqing Zhang, Peiquan Jin, Sheng Lin, and Lihua Yue

University of Science and Technology of China
jpq@ustc.edu.cn

Abstract. Most Web pages contain location information, which can be used to
improve the effectiveness of search engines. In this paper, we concentrate on
the focused locations, which refer to the most appropriate locations associated
with Web pages. Current algorithms suffer from the ambiguities among
locations, as many different locations share the same name (known as
GEO/GEO ambiguity), and some locations have the same name with non-
geographical entities such as person names (known as GEO/NON-GEO
ambiguity). In this paper, we first propose a new algorithm named GeoRank,
which employs a similar idea with PageRank to resolve the GEO/GEO
ambiguity. We also introduce some heuristic rules to eliminate the GEO/NON-
GEO ambiguity. After that, an algorithm with dynamic parameters to determine
the focused locations is presented. We conduct experiments on two real datasets
to evaluate the performance of our approach. The experimental results show
that our algorithm outperforms the state-of-the-art methods in both
disambiguation and focused locations determination.

Keywords: Web Search, Geographical information, GEO/GEO ambiguity,
GEO/NON-GEO ambiguity, Focused locations.

1 Introduction

Web search engines such as Google and Bing have been an important part in people’s
life. However, existing search engines do not pay enough attention to the location
information in Web pages. For example, it is difficult to express queries like “to find
the retailer promotion about Nike in Beijing” in Google. On the other side, location,
or in other words, the spatial dimension, is one of essential characteristics of
information, and most Web pages are associated with certain locations, e.g., news
report, retailer promotion and so on. A recent study in the literature [21] reported that
among 2,500 queries, 18.6% of them contained a geographic predicates and 14.8% of
them included a place name. Therefore, how to extract locations for Web pages and
then use them in Web search process has been a hot and critical issue in current Web
search.

As a Web page usually contains two or more location words, it is necessary to find
the focused locations of the Web page. The focused locations represent the most
appropriate locations associated with contents of a Web page. Generally, we assume
that each Web page has several focused locations. The most difficult issue in
determine focused locations is that there are GEO/GEO and GEO/NON-GEO

 Extracting Focused Locations for Web Pages 77

ambiguities existing in Web pages. The GEO/GEO ambiguity refers that many
locations can share a single place name. For example, Washington can be 41 cities
and communities in the United States and 11 locations outside [5]. The GEO/NON-
GEO ambiguity refers that a location name can be used as other types of names, such
as person names. For example, Washington can be regarded as a person name as
George Washington and as a location name as Washington, D.C. Mark Sanderson's
work [22] shows that 20%-30% extent of error rate in location names disambiguation
was enough to worsen the performance of the information retrieval methods. Due to
those ambiguities in Web pages, previous research failed to reach a satisfied
performance in focused locations extraction.

On the other side, it is hard to resolve the GEO/GEO and GEO/NON-GEO
ambiguities as well as to determine the focused locations of Web pages through the
widely-studied named entity recognition (NER) approaches. Current NER tools in
Web area aim at annotating named entities including place names from Web pages.
However, although some of the GEO/NON-GEO ambiguities can be removed by
NER tools, the GEO/GEO disambiguation is still a problem. Furthermore, NER tools
have no consideration on the extraction of the focused locations of Web pages.
Basically, the NER tools are able to extract place names from Web pages, which can
be further processed to resolve the GEO/GEO ambiguities as well as the GEO/NON-
GEO ones. Thus, in this paper we will not concentrate on the NER approaches but on
the following disambiguation and focused locations determination. Those works
differ a lot from traditional NER approaches.

Gazetteer

1. Extracting Geo-candidates

NER Tools

2. Disambiguating Geo-candidates

Geo-candidates

3. Determining Focused Locations

Determined locations

Focused
Locations

Web Pages

Fig. 1. The general process to extract focused locations from Web pages

Figure 1 shows the general process to extract focused locations from Web pages, in
which we first extract geo-candidates based on Gazetteer and NER (named entity
recognition) techniques. After this procedure, we get a set of geo-candidates. In this
set, the relative order of candidates is the same as that in the text. Here, geo-
candidates are just possible place names, e.g., “Washington”. Then, we run the

78 Q. Zhang et al.

disambiguation procedure to assign a location for each GEO/GEO ambiguous geo-
candidate and remove GEO/NON-GEO ambiguous geo-candidates. Location means a
concrete geographical place in the world, e.g.: USA/ Washington, D.C. As a geo-
candidate may refer to many locations in the world, the GEO/GEO disambiguation
will decide which is the exact location that the geo-candidate refers to and, the
GEO/NON-GEO disambiguation is going to determine whether it is a location or not.
Finally, we present an effective algorithm to determine focused locations among the
resolved locations.

The main contributions of the paper can be summarized as follows:

(1) We propose the GeoRank algorithm to resolve the GEO/GEO ambiguity and a
heuristic approach to remove the GEO/NON-GEO ambiguity (Section 3).
Particularly, the GeoRank algorithm uses a similar way as PageRank but focused on
the determination of the exact location associated with a specific geo-candidate. And
the experimental results demonstrate that GeoRank outperforms previous methods.

(2) We present an effective algorithm to determine focused locations for Web
pages (Section 4), which uses dynamic parameters when computing other locations’
contribution to a given location. Compared with the state-of-the-art algorithms with
static parameters, our algorithm is more reasonable in computing the importance of
locations and has better performance.

(3) We carry out experiments based on real datasets to evaluate the performance of
our disambiguation algorithm as well as the algorithm to determine focused locations .

2 Related Work

Disambiguation is usually implemented by using some information in the text such as
zip code, phone number and so on. Volz et al. [24] proposed a two-step method,
which first used context information to narrow candidates and then ranked the left
candidates primarily based on weights according to concepts. Rauch et al. [28]
proposed a confidence-based approach. Silva et al. [18] used some classification rules
and ontology-based classification such as feature type to disambiguate and with the
help of relationships among different geographical concepts, then they used a
variation of PageRank algorithm to get the focused locations. Place name patterns
were studied in SASEIC [12], in which they first examine possible patterns in the
Web page, and with the help of these patterns and hierarchical structure of places they
get focus of the page. Ding et al. [13] used hyper-links to help decide the page focus.
Markowetz et al. [17] and Sobhana et al. [23] made use of the best one of the biggest
town first methods and co-occurrence models to remove geographical ambiguity.
Andogah et al. [3] proposed a totally different way, with the help of geo-candidate
frequency, place type and other features In MyMoSe [25], a K-partite graph for
disambiguation was proposed, which used a score-based approach to determine
focused locations. There are also other works that employed heuristics in
disambiguation [15, 16].

There are also a lot of related works in locations detection [10, 20, 26, 27]. Web-a-
where is a four-step heuristics algorithm to determine focused locations for Web

 Extracting Focused Locations for Web Pages 79

pages [10], in which all names were assigned a location with a confidence score.
Based on those confidence scores, as well as other information such as frequency,
location relationships and so on, the focused locations of a Web page are extracted.
However, Web-a-where adopts fixed parameters and thresholds, which are not
suitable for different kinds of Web pages. The evidence-based method is an effective
algorithm for geo-candidates disambiguation [26], which makes use of metric
relation, topological relation and typological relation between an ambiguous geo-
candidate and other co-occurring geo-candidates in the context. Those co-occurring
candidates are regarded as the evidences of a geo-candidate, which are fused by the
Dempster-Shafer (D-S) theory. However, both of [10] and [26] did not consider the
changing confidence that a geo-candidate impacts on other ones, which will lead to
bad performance of disambiguation. As shown in our experimental results, the
evidence-based method has a comparable performance with Web-a-where in
resolving place names ambiguity.

3 Geo-Candidates Disambiguation

3.1 The GeoRank Algorithm for Resolving the GEO/GEO Ambiguity

3.1.1 Basic Idea
As Fig.1 shows, we have a set of geo-candidates at present before the disambiguation
procedure. We first assume that all geo-candidates are associated with the locations in
the Web page. Basically, we assume there are n geo-candidates and totally N locations
that n geo-candidates can have in a Web page, the GEO/GEO disambiguation
problem can be formalized as follows: Given a specific geo-candidate G, determining
the most appropriate location among its possible locations.

Fig. 2. PageRank vs. GeoRank

We use a general idea similar to PageRank to resolve the GEO/GEO ambiguity,
which is named GeoRank. The PageRank algorithm introduced an iterated voting
process to determine the ranking of a Web page. We also regard the GEO/GEO
disambiguation in a Web page as a voting process. Figure 2 shows the similar
problem definition between PageRank and our GeoRank algorithm. Specially, in

80 Q. Zhang et al.

GeoRank, nodes are the locations corresponding to geo-candidates and the linkages
are the evidence contributed by the locations each other. The higher score one
location gets, the higher confidence it is the right location that the geo-candidate
refers to.

In detail, as a geo-candidate can give more evidence to the one near to it in a Web
page (text distance) and a location can give more evidence to the one near to it in the
geographic context (geographical distance), we first construct a matrix involving all
locations, whose values are scores of each location of each geo-candidate voted by
other ones that belong to different geo-candidates.

3.1.2 Vote Computation
For simplification, all the possible locations associated with a certain geo-candidate
have totally one vote that can be endowed to locations of other geo-candidates. A vote
does not mean 1 in actual, it has something to do with the total number of geo-
candidates, which we will discuss in section 3.1.3. Initially, all the locations of a geo-
candidate have the same percentage of vote, namely 1/ size (L), L is the set of
locations corresponding to this geo-candidate. For example, if a geo-candidate G has
10 possible locations; size (L) is 10, so their initial percentage of vote is 1/10.

Our GeoRank algorithm uses text distance and geographical distance to compute
the percentage of vote that is contributed by locations of other geo-candidates to a
certain location of a geo-candidate. In particular, the text distance is defined between
two geo-candidates, while the geographical distance is defined between two locations
of two different geo-candidates. The smaller those distances are, the more evidence
they will give to each other.

Differing from traditional text distance that refers to the count of characters
between two words, we use the term relative text distance to define the text distance
between geo-candidates.

Definition 3.1: Relative Text Distance (RTD). Given two geo-candidates Gi and Gj
in a Web page, their relative text distance is defined as RTD (Gi, Gj), which is
determined by the count of sentences in the Web page between Gi and Gj.
Moreover, if two geo-candidates appear in the same sentence, the RTD value will be
set to their distance in the geo-candidates list. It’s reasonable that two geo-candidates
appear in one sentence should have stronger evidence to each other. May be many
geo-candidates appear more than once, we define RTD (Gi, Gj) as the smallest one
among them.

Based on the definition of RTD, we can define the vote percentage of a geo-
candidate to other geo-candidates.

Definition 3.2: Geo-candidate Vote. Given a geo-candidate Gi, and a set of
ambiguous geo-candidates (G1, G2… Gm), Gi’s vote to Gj is defined as GV (Gi, Gj):

∑
≠=

=
m

ikk kiji
ji GGRTDGGRTD

GGGV
,1),(

1
/)

),(

1
(),(■

This formula means that a geo-candidate have fixed percentage of vote, which it gives
to other geo-candidates according to their RTD value. We make a normalization to
assure that all of Gi,’s vote is spread to others.

 Extracting Focused Locations for Web Pages 81

For example, if there are three ambiguous geo-candidates G1, G2 and G3 in a Web
page, with RTD(G1, G2)=1 and RTD(G1, G3)=2, we can get that GV(G1, G2)=2/3 and
GV(G1, G3)=1/3, which means G2 will get 2/3 vote from G1 while G3 will get 1/3 vote.
The definition of geo-candidate vote implies that a certain geo-candidate has more
impact on its neighbors in the text, i.e., those geo-candidates with small RTD values.

As we want to finally compute the location-to-location vote, we need to divide the
geo-candidate vote among the locations associated with the geo-candidate. So we
introduce the geographical distance based method to deal with this issue. Since each
geo-candidate appears in the gazetteer, which can be formally represented as a
taxonomy tree, we can represent a location in the taxonomy tree as a structural
sequence. For example, in the example in Fig.3, the location “Peak Stone” can be
represented as “USA/Massachuse/Peak Stone”. We then have the following
observation that if two locations in the taxonomy tree have the same left prefix they
tend to be located very closely. Therefore, we define the inverse geographical
distance between two locations as follows.

Definition 3.3: Inverse Geographical Distance. Given two locations, loc of geo-
candidate Gi and loc’ of geo-candidate Gj, the geographical distance between loc and
loc’ is defined as GD (loc, loc’), and inverse geographical distance is defined as IGD
(loc, loc’), which refers to the maximal count of the same left prefix between loc and
loc’. A larger IGD value means two locations are nearer. ■

Definition 3.4: Location Vote. Given a location loc of geo-candidate Gi and an
ambiguous geo-candidate Gj, Lj is the set of locations Gj corresponding to, and loc′∈Lj。
the vote of loc to loc′ is defined as LV(loc, loc′):

)),(/),((*),(),(
''

'''' ∑
∈

=
jLloc

ji loclocIGDloclocIGDGGGVloclocLV ■

The location vote in Definition 3.4 indicates that the vote of loc to Gj is divided
among all the possible locations associated with Gj according to their inverse
geographical distances from loc. We use GV(Gi, Gj) instead of each Gi’s location vote,
because each location’s vote will be reflected when the confidence vector multiply the
matrix, which we will discuss in the next section. This formula indicates that locations
with larger the IGD value will get more percentage of vote from loc. In case that all
the inverse geographical distances equal zero, we divide the GV(Gi, Gj) among all the
locations of Gj uniformly, i.e.,

j i j jLV(loc, loc ' L) GV(G ,G) / size(L)∈ = . It indicates that

loc cannot give any evidence to Gj, and we record this, which will be used in
GEO/NON-GEO disambiguation.

3.1.3 The GeoRank Algorithm
GeoRank mainly consists of three stages (as shown in Fig.3):

(1) On the first stage (line 1 to 4), it computes the geo-candidate vote as well as the
location vote, based on the relative text distance and inverse geographical distance
which are defined in Section 3.1.2.

82 Q. Zhang et al.

Algorithm GeoRank
Input: the set of geo-candidates G = {G1, G2… Gn}, the set of location sets L =

{L1, L2, …, Ln}, where Li is the set of all the possible locations associated
with Gi.

Output: the set of locations D = {D1, D2… Dn}, where Di is the disambiguated
location associated with Gi.

Preliminary: n is the count of geo-candidates, and N is the count of all possible
locations associated with n geo-candidates.

/* Computing geo-candidate vote and location vote */

1: for each Gi ∈ G & Gj ∈ {G − Gi} & Gj is ambiguous {
2: compute RTD(Gi, Gj) and then GV(Gi, Gj);}
3: for each Gi ∈ G & Gj ∈ {G − Gi} & Gj is ambiguous & loc∈ Li & loc’∈ Lj {
4: compute GD(loc, loc’) and then LV(loc, loc’);}

/* Initializing the matrix for all the locations and the confidence vector */
5: Initializing an N×N matrix M, with each location occupies one row and one

column. The initial state of M is set by the following rule. {
6: for each location loc and loc’ {
7: if loc = loc’ then M[i, j] ← 0
8: else M[i, j] ← LV(loc, loc’);}}
9: M = (1-α)M + αS; // modify M according to Bryan et al. [29]
10: Constructing the confidence vector V = (v1, v2, …, vN), For each location loci, vi

= 1/(n*count(Gk)), where Gk is the geo-candidate loci is associated with, and
count(Gk) refers to the count of locations associated with Gk.

/* Determining the exact location of geo-candidate */
11: while V does not converge {
12: V = M * V;
13: normalizing V so that ∑ =N

iv
1

1; }

14: Normalizing all the locations’ vector values of each geo-candidate to make
their sum to be 1.

15: for each Gi ∈ G {
16: for each location loc ∈ Li {
17: if the loc’s vector value in V > δ then {

//i.e., δ is a predefined threshold
18: Di ← loc; exit for; }
19: Di ← use the server location and default meaning to help decide;}}
20: return D;
End GeoRank

Fig. 3. The GeoRank Algorithm

(2) On the second stage (line 5 to 10), it initializes the matrix M for all the
locations associated with each geo-candidate, as well as the initial confidence vector
V. Generally, the vector represents each location’s confidence of a geo-candidate. At
first, we assume that each location of a geo-candidate has the same confidence. To
make it adaptive to PageRank, the sum of all elements in V will be 1;

 Extracting Focused Locations for Web Pages 83

(3) Then on the third stage (line 11 to 20), we update the vector literately by
introducing the influence of M into the confidence vector. The iteration process is
similar to PageRank. According to Bryan et al. [29], the vector V will converge after
several iterations, as we modify the matrix as M = (1-α)M + αS, S denotes an N*N
matrix with all entries 1/N, M is column-stochastic and irreducible, according to
Perron–Frobenius theorem, the vector V will finally converge and reach a stable
state, which is not influenced by the initial values of the vector. In the experiment we
set α as 0.1.

In the algorithm, we use a threshold δ , which is 0.6 in the implementation, to
determine whether a location is the most relevant one for the given geo-candidate. A
0.6 threshold means the location has a confidence of 60% to be the location that the
geo-candidate indicates. In case that all the locations associated with the given geo-
candidate have vector values (confidence) less than the threshold, which implies that
no location of the geo-candidate can be determined in the Web page, then we use the
server location of the Web page as a filter and then the default sense to determine the
real meaning of geo-candidates. We use the one that has the largest population as its
default sense.

3.2 The Heuristic Algorithm for Resolving GEO/NON-GEO Ambiguity

Named entity recognition tools usually can remove some types of the GEO/NON-
GEO ambiguities in a Web page. In order to get an improved performance, we
propose two additional heuristics in the paper to further resolve GEO/NON-GEO
ambiguities. Note these rules are based on the GeoRank algorithm we discussed in
Section 3.1.

Rule 1: When constructing the matrix M (see Fig.3), if locations of a geo-candidate
gets score averagely from all locations of other geo-candidates, it is considered not a
location. It is reasonable that none of any possible location of any other geo-candidate
can give evidence to locations of this geo-candidate; it is possibly not a location.

Rule 2: After removing the GEO/GEO ambiguity, if a non-country location does not
have the same country with any other location; it is considered not a location. Here
we get the rule from our observation that a Web page is unlikely to mention a non-
country location that does not share a same country with any other locations.

4 Determining Focused Locations

In this stage, we calculate the scores of all the locations after disambiguation, and
then return the focused ones for the Web page. We consider three aspects when
computing the scores of a location, namely the term frequency, position and the
contributions from locations geographically contained by the location. An example of
the latter aspect is that if there are many states of USA in a Web page, the location
USA will receive contributions from those states, as those states are all geographically
contained in USA and mentioning states explicitly means mentioning USA implicitly.

84 Q. Zhang et al.

As a result, we use an explicit score to represent the term frequency of a location
name, and an implicit score for the geographical containment. The score of a location
is its explicit score plus its implicit score.

For location Di, its explicit score, denoted as ES (Di), is defined as the term
frequency of Di in the Web page.

Then we use the following heuristics to modify ES (Di):

(1) If Di follows on the heels of the other location Dj and Di has some relationship
with Dj, suppose Dj is the son or grandson of Di, then we think the appearance of Di in
the page aims at emphasizing or explaining Dj, so we take 0.5 away from Di and add
it to Dj, i.e., ES(Di) = ES(Di) – 0.5, ES(Dj) = ES(Dj) + 0.5.

(2) If Di appears in the title of a Web page, then we add half of SUM to Di to
emphasize this appearance, where SUM is the sum of all the ES values, as defined in
the formula 4.1.

∑ =
= n

i iDESSUM
1

)((4.1)

For the implicit scores, since many locations appear in one Web page usually have
some geographical relationships, we take this feature when computing the implicit
score of a location. In particular, we add some contributions from those locations
contained by the given location into the score. Suppose a location Di contains n sub-
locations in the gazetteer: S1, S2,…, Sn, and the former m sub-locations appear along
with Di in the Web page, then those m sub-locations will contribute to Di. The implicit
score of Di is defined in the formula 4.2 and 4.3.

diffn

m
SISSESDIS k

m

k ki *
*))()(()(

1
+=∑ =

 (4.2)

),...,,max(

),...,,(

21

21

m

m

SSS

SSSavg
diff = (4.3)

Here, diff refers to the score difference among S1, S2,…, Sm, The average value of S1,
S2,…, Sm must be less than or equal to the maximum value of them, so diff <= 1. If Di

contains no sub-locations, then IS(Di) = 0.
Based on a Gazetteer, we can build a hierarchy geographical tree for locations.

Then we start from the leaf nodes and compute the scores of all locations. Then we
sort all locations according to their scores and partition locations into three groups by
using a native clustering approach. The first group with highest scores is determined
as the focused locations.

The difference between our algorithm and Web-a-where in [10] is that they employ
a fix parameter when measuring the implicit score of a location, namely 0.7, while in
our algorithm we use a dynamic parameter as m/ (n*diff). m/n means the more sub-
locations of a location appear, the more possibly it will be a focused location and diff
means the less difference of sub-locations’ score, the more possibly it will be a
focused location, this means that this Web page does not emphasis any sub-locations.
Thus our algorithm is adaptive to the occurrence of locations that are geographically

 Extracting Focused Locations for Web Pages 85

related with the given location. Our experimental results demonstrate that our method
has benefits by using the dynamic parameter.

5 Experiments

5.1 Datasets

We conduct experiments on real datasets to measure the performance of our algorithm
in geo-candidate disambiguation and focused locations determination. Two real
datasets are used in the experiments, an nj.gov dataset downloaded from
http://www.nj.gov/ and a BBC dataset downloaded from http://www.bbc.co.uk/. For
the geo-candidate disambiguation experiment, we choose Web-a-where [10] and the
evidenced-based method [26] as the competitors of our GeoRank algorithm. For
focused locations determination, we compare the performance between our approach
and Web-a-where [10]. As surveyed in [14], Web-a-where [10] has the best
performance in focused location extraction for Web pages compared with other
competitor methods. Therefore, it is meaningful to conduct comparison experiment
with Web-a-where.

5.2 Pre-processing

5.2.1 Gazetteer Construction
We first construct a gazetteer based on World Gazetteer [8]. Our gazetteer contains
320,707 place names and 56,665 alternate names. We store the following information
about a location in Microsoft SQL Server 2008 database: id, name, population,
latitude, longitude and upper (Here upper means its parent which is also represented
as a taxonomy node).

5.2.2 Geo-Candidates Extraction
For geo-candidates extraction, we employ CCG (Cognitive Computation Group) [1]
as the NER tool. After name entity tagging, we get a set of geo-candidates. Then we
scan the set and check each element if it or its relatives appears in the gazetteer. The
detailed process is as follows (suppose G1 is a geo-candidate):

(1) Check G1 if it appears in the gazetteer, if not found, go to (2);
(2) Remove phrase like “City of” or “City” and repeat the checking in the

gazetteer. If G1 is not found in the gazetteer, we delete it from the list.

5.3 Geo-Candidates Disambiguation

In this procedure, we run our algorithm, Web-a-where [10], and the evidence-based
method [26] to resolve the ambiguity of geo-candidates. We first remove the
unambiguous ones, i.e., those with only one entry in the gazetteer. Then we get 1990
ambiguous geo-candidates for the nj.gov dataset and 2488 for the BBC dataset.

86 Q. Zhang et al.

All the ambiguous geo-candidates are resolved by the three algorithms and the
outputs are classified into three categories:

(1) Right: a geo-candidate is recognized rightly, it is assigned to a right location or
it is not a location.

(2) GEO/GEO error: a geo-candidate with GEO/GEO ambiguity is not correctly
resolved.

(3) GEO/NON-GEO error: a geo-candidate with GEO/NON-GEO ambiguity is not
correctly resolved.

Figure 4 shows the percentages of the three categories of results for each algorithm
(for simplification, GeoRank stands for both GEO/GEO and GEO/NON-GEO
disambiguation), from which our GeoRank algorithm always has the best performance
under two datasets and three metrics. In particular, GeoRank has a very low rate for
the GEO/GEO error and GEO/NON-GEO error. This is because that GeoRank
integrates into the disambiguation the confidence as well as its changing of all the
locations for a geo-candidate. Another reason is due to its consideration on the text
distance among all the geo-candidates appearing in a Web page. Furthermore, the
heuristic rules used to reduce the GEO/NON-GEO ambiguity also contribute on the
good performance.

0

10

20

30

40

50

60

70

80

90

100

Right GEO/GEO error GEO/NON-GEO
error

P
er

ce
n

ta
ge

GeoRank

Web-a-where

Evidence-based

0

10

20

30

40

50

60

70

80

90

100

Right GEO/GEO error GEO/NON-GEO
error

P
e

rc
en

ta
ge

GeoRank

Web-a-where
Evidence-based

 (a) nj.gov (b) BBC

Fig. 4. Disambiguation results of GeoRank, Web-a-where and the evidenced-based method

5.4 Experiments on Determining Focused Locations

The results of focused locations determination are shown in Fig.5. As Fig.5 shows, we
classify the results into four categories, namely right, contain error, more or less
error, and names error. The definitions on those four metrics are as follows:

(1) Right: the focused locations are determined rightly.
(2) Contain error: the determined focused location has a larger or smaller

geographical scope than the right one.

 Extracting Focused Locations for Web Pages 87

(3) More or less error: the number of focused locations is more or less than that of
right ones.

(4) Names error: A wrong focused location is determined. This is mainly because
of the former disambiguation error.

Here we only compare our algorithm with Web-a-where [10], as the evidence-based
method does not have a procedure for focused locations determination. Figure 6
shows that our algorithm has not only better right rate but also lower error rate for all
the three types of errors. According to our experimental results, “names error” is the
most frequent error for Web-a-where [10], because of the error in disambiguation
phrase. Web-a-where [10] also has a large number of “More or less errors”, which are
caused by their fixed parameter and thresholds. Differing from Web-a-where [10], we
use dynamic parameter in our algorithm, which is demonstrated as a feasible approach
to improving the performance of Web-a-where [10]. Another reason for the good
performance of our algorithm is that we consider the positions of geo-candidates
appearing in text into the computation of location scores.

0

10

20

30

40

50

60

70

80

90

100

Right Contain error More or Less
Error

Names error

P
e

rc
en

ta
g

e

Our Method

Web-a-where

0

10

20

30

40

50

60

70

80

90

100

Right Contain error More or Less
Error

Names error

P
er

ce
n

ta
ge

Our Method

Web-a-where

 (a) nj.gov (b) BBC

Fig. 5. Results of focused locations determination

6 Conclusions

In this paper, we concentrated on extracting focused locations from Web pages. In
particular, we studied two issues, namely geo-candidates disambiguation and focused
location extraction. We presented a new algorithm named GeoRank to resolve the
GEO/GEO ambiguity and a framework to extract focused locations from Web pages.
Experiments on different real datasets show that our approach has better performance
than the state-of-the-art algorithms. We plan to make more comparisons by adjusting
the parameter in our method and other approaches.

Acknowledgements. This work is supported by the National Science Foundation of
China (no. 70803001), the Open Projects Program of National Laboratory of Pattern
Recognition (20090029), the Key Laboratory of Advanced Information Science and
Network Technology of Beijing (xdxx1005), and the USTC Youth Innovation
Foundation.

88 Q. Zhang et al.

References

1. Cognitive computation group, http://cogcomp.cs.illinois.edu/page/
software (accessed in April 2011)

2. Gate, http://gate.ac.uk/ (accessed in April 2011)
3. Andogah, G., Bouma, G., Nerbonne, J., Koster, E.: Place name Ambiguity Resolution. In:

Proc. of LREC, Marrakech Morocco, pp. 4–10 (2008)
4. Geonames, http://www.geonames.org (accessed in April 2011)
5. Washington, http://en.wikipedia.org/wiki/washington (accessed in April

2011)
6. United Nations department of economic and social affairs,

http://unstats.un.org/unsd (accessed in April 2011)
7. Usgs geographic names information system (gnis), http://geonames.usgs.gov

(accessed in April 2011)
8. World Gazetteer, http://www.world-gazetteer.com (accessed in April 2011)
9. Lingpipe, http://alias-i.com/lingpipe/ (accessed in April 2011)

10. Amitay, E., Har’El, N., Sivan, R., Soffer, A.: Web-a-where: geotagging Web content. In:
Proc. of SIGIR, Sheffield, United Kingdom, pp. 273–280 (2004)

11. Anastacio, I., Martins, B., Calado, P.: A comparison of different approaches for assigning
geographic scopes to documents. In: Proc. of the INForum 2009 (2009)

12. Chen, M., Lin, X., Zhang, Y., Wang, X., Yu, H.: Assigning geographical focus to
documents. In: Proc. of Geoinformatics, Beijing, China, pp. 1–6 (2010)

13. Ding, J., Gravano, L., Shivakumar, N.: Computing geographical scopes of Web resources.
In: Proc. of VLDB, Cairo, Egypt, pp. 545–556 (2000)

14. Gyle, A., Plaunt, C.: Gipsy: Automated geographic indexing of text documents. Journal of
the American Society of Information Science 45(9), 645–655 (1994)

15. Leidner, J.L.: Toponym resolution in text: Annotation, evaluation and applications of
spatial grounding of place names. PhD dissertation, University of Edinburgh (2007)

16. Leidner, J.L.: An evaluation dataset for the toponym resolution task. Computers
Environment and Urban Systems 30(4), 400–417 (2006)

17. Markowetz, A., Chen, Y., Suel, T.: Design and implementation of a geographic search
engine. In: Proc. of WebDB, Baltimore, Maryland, pp. 19–24 (2005)

18. Silva, M.J., Martins, B.: Adding Geographic Scopes to Web Resources. Computers
Environment and Urban Systems 30(4), 378–399 (2006)

19. Martins, B., Silva, M.J.: A Graph-Ranking Algorithm for Geo-Referencing Documents. In:
Proc. If ICDM, Houston, Texas, pp. 741–744 (2005)

20. Wang, C., Xie, X., Wang, L., Lu, Y., Ma, W.: Detecting Geographic Locations from Web
Resources. In: Proc. of GIR, Bremen, Germany, pp. 17–249

21. Sanderson, M., Kohler, J.: Analyzing geographic queries. In: Proc. of GIR, Sheffield, UK
(2004)

22. Sanderson, M.: Retrieving with good sense. Information Retrieval 2(1), 45–65 (2000)
23. Sobhana, N., Barua, A., Das, M., Mitra, P., Ghosh, S.: Co-occurrence Based Place Name

Disambiguation and its Application to Retrieval of Geological Text. In: Meghanathan, N.,
Boumerdassi, S., Chaki, N., Nagamalai, D. (eds.) NeCoM 2010, Part III. CCIS, vol. 90, pp.
543–552. Springer, Heidelberg (2010)

24. Volz, R., Kleb, J., Mueller, W.: Towards ontology-based disambiguation of geographical
identifiers. In: Proc. of WWW Workshop on Identity, Identifiers, Identifications (I3),
Bandd, Alberta, Canada (2007)

 Extracting Focused Locations for Web Pages 89

25. Zubizarreta, A., de la Fuente, P., Cantera, J.M., Arias, M.: Extracting geographic context
from the Web: georeferencing in mymose. In: Proc. of GIR, pp. 554–561 (2009)

26. Wang, X., Zhang, Y., Chen, M., Lin, X.: An Evidence-based Approach for Toponym
Disambiguation. In: Proc. of Geoinformatics 2010, pp. 1–7 (2010)

27. Wang, L., Wang, C., Xie, X., Forman, J., Lu, Y., Ma, W., Li, Y.: Detecting Dominant
Locations from Search Queries. In: Proc. of SIGIR, Salvador, Brazil, pp. 424–431 (2005)

28. Rauch, E., Bukatin, M., Baker, K.: A confidence-based framework for disambiguating
geographic terms. In: Proc. of HLT-NAACL-GEOREF, pp. 50–54 (2003)

29. Bryan, K., Leise, T.: The $25,000,000,000 Eigenvector: The Linear Algebra Behind
Google. Journal SIAM Review 40(3), 569–581 (2006)

L. Wang et al. (Eds.): WAIM 2011 Workshops, LNCS 7142, pp. 90–102, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Searching Similar Trajectories in Real Time:
An Effectiveness and Efficiency Study*

Yuchi Ma, Chunyan Qu, Tingting Liu, Ning Yang**, and Changjie Tang

College of Computer Science, Sichuan University
610065 Chengdu, China

{crystalyc,quchunyaner}@163.com,
molly.liuting@gmail.com,

{yangning,cjtang}@scu.edu.cn

Abstract. Searching similar trajectories in real time has been a challenging task
in a large variety of location-aware applications. This paper addresses its two key
issues, i.e. evaluating the similarity between two trajectories reasonably and ef-
fectively, and providing efficient algorithms to support queries in real time.
Firstly, a novel similarity measurement, called Global Temporal Similarity
(GTS), is suggested, which is perturbation-free and effective since it takes into
account both the evolution of the similarity over time and the spatial movements.
Secondly, a new index structure with linear updated time, called Real Time
Similar Trajectory Searching-tree (RTSTS-tree), is proposed to support the
search of similar trajectories. Besides, to support k Nearest Neighbor (kNN)
query of trajectories and Top k Similar Pairs query, two algorithms are proposed
based on GTS and RTSTS-tree and are capable of searching similar trajectories
by object and by location with the time complexity of O(n) and O(n2) respec-
tively. Finally, the results of the extensive experiments conducted on real and
synthetic data set validate the effectiveness and the efficiency of the proposed
similarity measurement, index structure and query algorithms.

Keywords: Trajectory similarity, trajectory index, trajectory query, kNN query,
Top k query.

1 Introduction

Nowadays, with the rapid development of location-aware services, tremendous tra-
jectories fill the databases in various applications, such as recommending system for
travel routes, pursuing criminal, video monitoring, etc. The success of these applica-
tions depends on the effectiveness and efficiency of the queries of similar trajectories,
especially the k Nearest Neighbor (kNN) query and the Top k Similar Pairs query.

* Supported by the Central University Fundamental Science Research Foundation of China

under Grant No. 2010SCU11053.
** Corresponding author.

 Searching Similar Trajectories in Real Time: An Effectiveness and Efficiency Study 91

Although extensive works aiming at the problem of query over trajectory data have
been proposed during the past few years, there are still two key issues far from their
mature solutions. The first issue is how to measure the similarity between two trajec-
tories. The existing works often lack for the consideration of the similarity evolving
over time more or less and hence may lead to somewhat time-warped results. For
instance, compare the best friend in 2003 without any communication after that with
the best friend now. Who is the best friend indeed? Similarly, with the time goes by,
may the two trajectories become far from each other, and the similarity also should be
recalculated. The second issue is how to support the real-time query which requires the
underlying index structures to be capable of timely being updated and the query algo-
rithms to capture the time-evolving trajectories.

Aiming at the above two key issues, we first suggest a novel similarity measurement,
referred to as Global Temporal Similarity (shortened as GTS) in this paper, which
ensures the consistency between time and space and can evolves over time. GTS takes
both the evolution of the similarity over time and the spatial movements into consid-
eration, in which the global similarity of two trajectories is evaluated based on a se-
quence of local temporal similarity measures of them. The main superiority of GTS is
perturbation-free. For example, given three trajectories A, B and C, the local similarity
between B and A is occasionally far less than that between C and A (i.e. perturbation),
but most of the time B is more close to A than C is, so intuitively B is the nearer tra-
jectory of A in the whole time.

To support the real-time query, we then propose a new index structure, referred to as
Real Time Similar Trajectory Searching Tree (shortened as RTSTS-tree) in this paper.
RTSTS-tree has a good organization that combines the spatial and temporal features of
the trajectories, and can be updated in linear time. Two query algorithms with capa-
bility of searching similar trajectories by object and by location are further proposed
based on GTS and RTSTS-tree. Meanwhile, the proposed algorithms have the time
complexity of O(n) and O(n2) respectively, and therefore can efficiently support
real-time query which is validated by the results of the extensive experiments.

In short, the contributions of this paper can be summarized as follows:

1) A new measurement of the similarity between two trajectories, GTS, is sug-
gested in this paper, which takes into account both the similarity’s evolution and
the spatial movement.

2) A new trajectory index structure, called RTSTS-tree, is proposed with the up-
dating time complexity of O(n).

3) Two query algorithms with time complexity of O(n) and O(n2) are proposed,
which support searching the similar trajectories by object and by location re-
spectively and can well satisfy the requirement of the real-time query.

The rest of this paper is organized as follows. Section 2 discusses the related
works. Section 3 describes our measurement of the similarity between two trajectories.
Section 4 explains the index structure of the trajectory data. Section 5 presents the
algorithms for two kinds of queries, i.e. kNN query and Top k Similar Pairs query.

92 Y. Ma et al.

Section 6 demonstrates the effectiveness and efficiency of the proposed similarity
measurement, index structure and algorithms through the experiments. Section 7
presents the conclusions of this paper.

2 Related Work

This section reviews two research directions most relevant to our work: similarity
measurement and index structure of trajectories.

Similarity Measurement. Discrete Fourier Transformation (DFT) present by Agrawal
et al. [2], evaluates the similarity of two trajectories by Euclidean distances between
feature points. As a forerunner, DFT measures the similarity in a fuzzy way, and can be
easily computed. DFT, however, does not use all the sequences, which is solved in the
following work of Faloutsos et al. in [3]. Cai et al utilized the Chebyshev polynomials
and Euclidean distances in [4] for approaching and indexing trajectories. Nevertheless,
these methods cannot be applied on the trajectories with different lengths. Berndt and
Clifford [5] brought out a method based on the Dynamic Time Warping (DTW) and
worked that out. Yet, a shortcoming of DTW is that it would match all the points
including noisy ones. This is improved by the Longest Common Sub Sequence (LCSS)
adopted in [6]. To make more robust and overcome the LCSS’s drawbacks, Chen et al.
proposed a new similarity measure based on Edit Distance on Real sequences (EDR) in
[7]. Recently, Pelekis et al. [8] proposed a classification of trajectory distance opera-
tors, which makes a contribution to the analysis of the trajectory databases. The related
works mentioned above, however, often consider the space and time separately when
evaluating the similarity. On the contrary, the GTS proposed in this paper conquers this
problem in a spatial-temporal consistent manner.

Trajectory Index. The most popular index structures for spatial objects are R-tree and
its variations [12-14]. With the development of the moving objects databases, the index
structures for trajectory data are proposed, such as the TB-tree [15], 3DR-tree [16] and
FNR-tree [11]. These index structures, however, are not suitable for the range query
and the similar query of trajectories. To address this problem, Chang et al. proposed
TMN-tree in [8], which is based on the MON-tree [9]. The index structure proposed by
this paper is based on the TMN-tree and with two significant improvements: the first is
the capability of searching by both object andlocation, which the works mentioned
above have not; The second is with the input tree instead of the table, we make the
updating operation faster, which is suitable for the real time query.

3 Global Temporal Similarity

This section presents our method to measure the similarity between trajectories and
gives two examples to illustrate the method. In the following, we express a trajectory A
as A=(ai), i∈Ts where Ts is the time span and ai is the location of the object at time
instance i. Before we give the definition of the global similarity, we first define the
local temporal similarity of two trajectories.

 Searching Similar Trajectories in Real Time: An Effectiveness and Efficiency Study 93

Definition 1. Given two trajectories A=(ai), B=(bj), i, j∈Ts where Ts is the time span of

A and A is the referring trajectory. For any two time instances i,j at which ai=bj, the

Local Temporal Similarity (shortened as LTS) at i,j between A and B is defined as:

, | | .

Definition 1 gives the similarity when B is compared with A. Note that definition 1
captures the characteristic that the similarity between trajectories declines with the
increase of the relative temporal distance (i.e. |j−i|). In other words, larger the distance
between i and j, smaller the exponent Ts−|j−i|−1, and thereby smaller the LTSi,j, which is
consistent with people's intuition. Based on the LTS, we can define the global temporal
similarity between two trajectories as the following:

Definition 2. Given two trajectories A=(ai), B=(bj), i, j∈Ts where Ts is the time span of

A and A is the referring trajectory. The Global Temporal Similarity (shortend as

GTS) between A and B, denoted by GTS(A,B), is defined as: , ∑ ,, , ,

where

, 2 | | 3 4 2 2 .
In definition 2, Ms is the theoretical maximum of the accumulative local temporal
similarity over the whole time span. So GTS(A,B) is actually a normalized similarity
measurement since taking Ms as the denominator, which makes the measures under
different time spans comparable to each others.

The attactive superiority of GTS is its capability to measure the similarity in the
scenario with perturbations and the scenario of chase. To explain the scenario with
perturbation, suppose there are three trajectories A, B and C, and B is more similar with
A than with C in the most time although A has a sharp deviation from B at some in-
stances which can be regarded as perturbations. The similarity GTS(B, A) will be
greater than GTS(A,C) and GTS(B,C) since GTS is based on the total of LTSs and
normalized by Ms. In the scenario of chase, one object is chasing another one. For
example, considering the trajectory of a camera car and the trajectories of two athletes
who are racing in a marathon. The trajectories of the two athletes have the chasing
relationship, i.e. in a certain time span, one of the three cases is true: (a) A always leads
B, (b) B always leads A, and (c) A and B take turns to lead. In terms of definition 2, we
will find out that GTS(A,B) is greater than GTS(A,C) and GTS(B,C).

4 RTSTS-Tree

This section presents a new index structure, Real Time Similar Trajectory Searching
Tree (shortened as RTSTS-tree), which is depicted in Fig.1.

94 Y. Ma et al.

(a) (b)

Fig. 1. RTSTS-tree

As shown in Fig.1(a), the RTSTR-tree is made up of two parts, one is the spatial
2D-tree and the other is the temporal-tree.

1) Spatial 2D-Tree. The spatial 2D-tree is created to preserve the spatial infor-

mation in the address nodes. In the spatial 2D-tree, the whole 2D space is or-

ganized as a hierarchical structure, in which the area represented by a parent

node covers the areas represented by its child nodes. Each node has the form of

<Address, Parent, ChildPtrList>, where Address is a string that marks a mea-

ningful address of an space area, and Parent refers to the parent node, and

ChildPtrList has different meanings in inner nodes and leaf nodes. In an inner

node, ChildPtrList saves the pointers to its children that correspond to the

subareas, while in a leaf node ChildPtrList saves the pointers to the temporal

nodes because every leaf node of the spatial 2D-tree is exactly the root of a

temporal-tree, and represents an inseparable spatial unit.

2) Temporal-Tree. As shown in Fig.1(b), the temporal-tree has three levels in-

cluding one address node in level 1 (i.e. root), several time nodes in level 2 and

several object nodes in level 3. The address node of a temporal-tree is exactly a

leaf node of the spatial 2D-tree. Each time node has the form of <Time, Parent,

ChildPtrList>, where Time marks the sampling time instance, and Parent refers

to its parent node and ChildPtrList points to the object nodes. An object node

saves the ID of a moving object that appears in the area represented by the root

node and at the time instance marked by the parent of the object node.

Note that the IDs of the moving objects whose trajectories are locally similar with each
others are stored in the same temporal tree. This facilitates the computation of the LTS
and GTS, and hence makes RTSTS-tree suitable for the search of similar trajectories.
The updating process of RTSTS-tree is implemented in the following algorithm.

 Searching Similar Trajectories in Real Time: An Effectiveness and Efficiency Study 95

Algorithm Update_RTSTS (R,D)

input: R the spatial 2D-tree; D the new coming trajectory data

output: the updated RTSTS-tree

begin

1. foreach leaf node n in R

2. Let S={x: x∈D and x falls into the corresponding area of n};

3. Let T be the set of different time instances appeared in S;

4. Add new time nodes according to T to the temporal tree rooted in n;

5. Add new object nodes according to S to the new time nodes;

6. end for;

7. end;

The main work of Update_RTSTS is to update the temporal trees according to the new
trajectory data. Update_RTSTS has the time complexity of linear time, which is con-
firmed by the following proposition 1.

Proposition 1. Let Cu be the time complexity of Update_RTSTS, then Cu = O(N), where

N is the number of points of the new trajectory data.

Proof. At first, the executing time of statement 4 and statement 5 depends on |T| and
|T|×Nmo respectively, where |T| is the number of different time instances in new coming
data and Nmo is the number of moving objects. On the other hand, the number m of
times of the loop in statement 1~6 is constant because it equals to the number of the leaf
nodes of the spatial 2D-tree. So Cu = m(|T|+|T|×Nmo) = O(|T|×Nmo). At the same time, N
= |T|×Nmo, therefore Cu = O(N). □

5 Query Algorithms

This section proposes two query algorithms based on GTS and RTSTS-tree to support
two kinds of the similar trajectories search. One is the kNN query and the other is the
Top k similar pairs query, where the former is the representative of the search by object
and the latter is the representative of search by location.

5.1 kNN Query

The kNN Query is implemented in the following algorithm Search_kNN.

96 Y. Ma et al.

Algorithm Search_kNN(Tr, Oid, R)

input: Tr the given trajectory segment; Oid the given object; R the RTSTS-tree

output: k[] k nearest neighbors of Tr.

begin

1. Ts= the time span of Tr;

2. foreach instance t in Ts {

3. An = the leaf node of the spatial 2D-tree which cover the location of Oid at t;

4. GTS[Oid , *] = 0; // Initial the GTS between Oid and other objects

5. foreach child Nt of An // Nt is a time node pointed by An

6. if the time of Nt is in Ts then

7. foreach child No of Nt // No is an object node pointed by Nt

8. if (No != Oid) then // Compute GTS according to definition 2

9. LTS = 2 | | ;

10. GTS[Oid , No] = GTS[Oid , No] + LTS;

11. endif

12. endfor

13. endif

14. endfor

15. endfor

16. k[] = the Nobject in the first k elements of descending sort on GTS[Oid , *]

Search_kNN outputs the k most similar trajectories of the given segment of the tra-

jectory Tr of the given object Oid. The main work of Search_kNN is to compute the

GTS between Tr and the other trajectories in terms of the definition 2 by traversing

the given RTSTS-tree. In line 3, Search_kNN locates the address node An representing

the area where the given object Oid appears at a specified time instance t. In line 5~12,

Search_kNN traverses all the object nodes No belonging to An, and adds the LTS be-

tween No and Oid to GTS[Oid, No]. In Line 14, Search_kNN gets the k nearest neigh-

bors of the trajectory of Oid from the descending sort of GTS[Oid, *]. The following

proposition confirms the time complexity of Search_kNN is linear with the number of

trajectories.

Proposition 2. Let Ck be the time complexity of Search_kNN, then Ck=O(N), where N is

the number of trajectories.

Proof. Let d be the depth of the spatial 2D-tree, and d is constant since the space is fixed

in advance. Then the executing time of statement 3 depends on d. According to the

 Searching Similar Trajectories in Real Time: An Effectiveness and Efficiency Study 97

algorithms Search_kNN, the loop from statement 2 to 15 will be executed Ts times, and

the loop from statement 5 to 14 will be executed Ts times, and the loop from statement 7

to 12 will be executed N times in the worst case. So the total time of Search_kNN is

 which means Ck=O(N). □

5.2 Top k Similar Pairs Query

The following algorithm implementes the query of the Top k similar pairs query in a
given area and time span.

Algorithm Search_Topk (A, Ts, R)

input: A the given area; Ts the given time span; R the RTSTS-tree

output: the Top k pairs of similar trajectories

begin

1. Na= the address node covering A;

2. foreach leaf node Nc of subtree rooted in A in spatial 2D-tree

3. foreach two childs Np≠Nq of the temporal tree rooted in Nc

4. if Np.Parent.Time and Nq.Parent.Time are in Ts then

5. Compute GTS[Np, Nq] according to definition 2;

6. endif;

7. endfor;

8. endfor;

9. Output the Top k pairs of similar trajectories from descending sorted GTS[*,*];

Note that in statement 4, it is very convenient to examine whether the time instances of
Np and Nq fall into the given time span Ts because each object node in a RTSTS-tree has
saved its parent reference (recall Section 4). The following proposition shows that the
time complexity of Search_Topk is O(N2).

Proposition 3. Let Ct be the time complexity of Search_Topk, then Ct=O(N2), where N

is the number of trajectories.

Proof. The loop times of statement 2 to 8 equals to the number of inseparable areas

which is constant. So the executing time of Search_Topk depends on the loop times of

statement 3 to 7 which is in the worst case. Hence the total complexity of

Search_Topk is O(N2), i.e. Ct=O(N2). □

98 Y. Ma et al.

6 Experiments

In this section, we conduct the experiments on the real and synthetic data sets to vali-
date the effectiveness and efficiency of the proposed similarity measurement, index
structure and query algorithms in this paper. The algorithms are implemented in C# and
executed on a Windows 7 platform with Intel Core 2 CPU (2.50GHz) and 2.0GB
Memory.

6.1 Data Sets

The real and synthetic data sets are described respectively as follows:

Real Data Set. We use Beijing GPS trajectory data set collected by Microsoft GeoLife
Project [17] to validate the effectiveness of the proposed similarity measurement, GTS.
We randomly select 620,659 trajectories over the time span of 200×2 seconds. The
whole space is divided into 38×37 net grids and each trajectory point is quantized with
the coordinates of the grids.

Synthetic Data Set. The synthetic data set consists of 5,000,000 trajectories which are
owned by 10,000 different moving objects respectively and in which the maximum
time span has 500 time units.

6.2 Effectiveness of GTS

In this subsection we show the main superority of GTS, i.e. it is perturbation-free and
can discover the similarity in the chasing scenario.

Table 1. Coordinates of A, B, C

 t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

A (2,6) (3,5) (3,5) (5,5) (5,5) (5,3) (5,3) (1,1) (8,3) (8,3)

B (2,6) (3,5) (3,5) (5,5) (5,5) (5,3) (5,3) (7,6) (8,3) (8,3)

C (3,7) (4,6) (4,6) (6,6) (6,6) (6,4) (6,4) (8,7) (9,4) (9,4)

Table 2. Coordinates of D, E, F

 t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

D (2,6) (3,6) (3,5) (4,5) (5,5) (6,5) (7,4) (8,3) (9,3) (9,2)

E (2,6) (3,5) (3,5) (4,5) (6,5) (8,3) (8,3) (9,3) (9,2) (9,2)

F (3,7) (4,7) (4,6) (5,6) (6,6) (7,6) (8,5) (9,4) (9,4) (9,3)

 Searching Similar Trajectories in Real Time: An Effectiveness and Efficiency Study 99

(a) Purterbation (b) Chase

Fig. 2. The scenarios of perturbation and chase

Perturbation Scenario. The trajectory A, B and C with the time span of t0 to t9 are
depicted in Fig.2(a) and their coordinates are listed in Table 1. It is obvious that B is
more similar with A than with C in the most time although A has a sharp deviation from
B at t7 which can be regarded as a perturbation. Intuitively, the similarity between B and
A is greater than that between B and C in the whole time span. The traditional similarity
measurements based on average distance, however, will derive the nonsense result that
B is more similar with C than with A, because the average suffers the influence of
extremas caused by perturbation. On the contrary, using our GTS, we derived GTS(B,
A)=0.5 > GTS(B, C)=0.01 since GTS is evaluated by summing up the local temporal
similarity measures and is normalized by the theoretical maximum of similarity over
the whole time span which dilutes the effect of perturbation. So this experiment shows
that our GTS is perturbation free.

Chasing Scenario. The trajectory D, E and F with the time span of t0 to t9 are depicted
in Fig.2(b) and their coordinates are listed in Table 2. As shown in Fig.2(b), D and E
take turns to lead and F is concomitant, so the motion pattern of D, E and F is similar to
the pattern of athletes and camera car described in Section 3. Here D and E are the
trajectories of two athletes while C is the trajectory of camera car. Obviously, D and E
are chasing after each others and the similarity between them should be greater intui-
tively. Again, the traditional measurements based on average are unable to handle this
case since they cannot regonize the local temporal similarity at different time instances.
On the contrary, measured by GTS we get the result of GTS(D, E)= 0.26, GTS(D,
F)=0.02 and GTS (E, F)=0.01, which is reasonable and conforms to the expectation.

6.3 Updating Time of RTSTS-Tree

To examine the updating time of RTSTS-tree, the algorithm Update_RTSTS is ex-
ecuted on the RTSTS-tree indexing the trajectories in the real data set. The results are
shown in Fig.3.

Spatial 2D

t

E

D
F

Spatial 2D

t

A

B

C

100 Y. Ma et al.

Fig. 3. Updating time in different situations

Fig.3(a) and (b) indicate that the executing time increases linearly with the increase
of the number of inseparable areas and with the increase of the number of the indexed
trajectories respectively. This results show it is true that RTSTS-tree can be updated in
linear time which is stated in Proposition 1.

6.4 Performance of Search_kNN

The algorithm Search_kNN is executed on the real data set and the query time is shown
in Fig.4. Fig.4(a) shows that the query time almost keeps constant when the value of k
increasing and Fig.4(b) shows that the query time linearly increases with the increase of
the number of trajectories. As the analysis in Subsection 5.1, the reason is that the
executing time of Search_kNN mainly depends on the scale of the trajectory data not
the value of k.

Fig. 4. Performance of Search_kNN

6.5 Performance of Search_Topk

The algorithm Search_Topk is executed on the real data set and the query time is shown
in Fig.5.

(a) (b)

/
/
/
/
/

tim
e(

se
c)

number of areas (K)

/
/
/
/
/
/

tim
e(

se
c)

number of trajectories (K)

(a) (b)

/
/
/
/
/

/ / / / / / / / / /

Q
ue

ry
 ti

m
e(

se
c)

value of k (K)

/
/
/
/

/ / / / / / / / / / /

Q
ue

ry
 ti

m
e(

se
c)

number of trajectories (K)

 Searching Similar Trajectories in Real Time: An Effectiveness and Efficiency Study 101

Fig. 5. Performance of Search_Topk

As shown in the Fig.5(a) and (b), the curve of query time of Search_Topk is linear
with the value of k and the number of trajectories, although Proposition 3 states that
Search_Topk has the time complexity of O(N2). This is because in practice, once the
search area is given, Search_Topk will compute the result restricted in only one or few
leaf nodes of spatial 2D-tree under which the number of object nodes is far smaller than
the total scale N. So the results show that Search_Topk performs well in practice al-
though it is polynomial in the worst case.

7 Conclusion

This paper studies the problem of searching similar trajectories in real time. First, we
propose a novel similarity measurement, GTS, to measure the time-evolving similarity
between two trajectories, and we show from the theoretical and practical aspects that
GTS is able to handle the scenarios with perturbation and chase. Second, we present a
new index structure RTSTS-tree with the updating time of O(n) for the fast evaluation
of GTS. Based on GTS and RTSTS-tree, we further propose two algorithms for search
by object and by location, i.e. the kNN query and the Top k similar pairs query, with the
time complexity of O(n) and O(n2) respectively. At last, the extensive experiments
show that the proposed similarity measure is effective and reasonable and the proposed
query algorithms are suitable for the real time queries in practice.

References

1. Frentzos, E., Gratsias, K., Theodoridis, Y.: Index-based Most Similar Trajectory Search. In:
23th IEEE International Conference on Data Engineering, ICDE (2007)

2. Agrawal, R., Faloutsos, C., Swami, A.: Efficient Similarity Search in Sequence Databases.
In: Lomet, D.B. (ed.) FODO 1993. LNCS, vol. 730, pp. 69–84. Springer, Heidelberg (1993)

3. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching in
time-series databases. In: Proceedings of SIGMOD 1994, pp. 419–429 (1994)

(a) (b)

/
/
/
/
/
/

Q
ue

ry
 ti

m
e(

se
c)

number of k

/

/

/

/

/

/

/ / / / / / /

Q
ue

ry
 ti

m
e(

se
c)

number of trajectories (K)

102 Y. Ma et al.

4. Cai, Y., Ng, R.: Indexing spatio-temporaltrajectories with chebyshev polynomials. In:
Proceedings of SIGMOD 2005, pp. 599–610 (2004)

5. Berndt, J., Clifford, J.: Finding patterns in time series: Adynamic programming approach.
In: Advances in Knowledge Discovery and Data Mining, pp. 229–248. AAAI/MIT Press,
Menlo Park, CA (1996)

6. Bollobas, B., Das, G., Gunopulos, D., Mannila, H.: Time-Series Similarity Problems and
Well-Separated Geometric Sets. Nordic Journal of Computing (2001)

7. Chen, L., Özsu Tamer, M., Oria, V.: Robust and Fast Similarity Search for Moving Object
Trajectories. In: Proceedings of SIGMOD 2005 (2005)

8. Chang, J., Song, M., Um, J.: TMN-tree - New Trajectory Index Structure for Moving Ob-
jects in Spatial Networks. In: 10th IEEE International Conference on Computer and In-
formation Technology, CIT 2010 (2010)

9. Almeida, V., Güting, R.: Indexing the Trajectories of Moving Objects in Networks. Pro-
ceedings of GeoInformatica 9(1), 33–60 (2005)

10. Yu, C., Ooi, B., Tan, K., Jagadish, H.: Indexing the Distance: AnEfficient Method to KNN
Processing. In: Proceedings of VLDB 2001, pp. 421–430 (September 2001)

11. Frentzos, E.: Indexing Objects Moving on Fixed Networks. In: Hadzilacos, T., Manolo-
poulos, Y., Roddick, J., Theodoridis, Y. (eds.) SSTD 2003. LNCS, vol. 2750, pp. 289–305.
Springer, Heidelberg (2003)

12. Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching. In: Proceedings of
ACM SIGMOD, pp. 47–57 (1984)

13. Sellis, T., Roussopoulos, N., Faloutsos, C.: The R 

+
 -Tree: A Dynamic Index for

Multi-Dimensional Objects. In: Proceedings of VLDB 1987, pp. 507–518 (1987)
14. Beckmann, N., Kriegel, H., Schneider, R.: The R*-tree: an efficient and robust access me-

thod for points and rectangles. In: SIGMOD 1999, pp. 322–331 (1999)
15. Pfoser, D., Jensen, C., Theodoridis, Y.: Novel Approach to theIndexing of Moving Object

Trajectories. In: Proceedings of VLDB 2000, pp. 395–406 (2000)
16. Vazirgiannis, M., Theodoridis, Y., Sellis, T.: Spatio-temporal Indexing for Large Multi-

media Applications. In: Proceedings of the IEEE Conference on Multimedia Computing and
Systems, vol. 6(4), pp. 284–298 (1998)

17. http://research.microsoft.com/en-us/projects/geolife/

Multidimensional Implementation

of Stream ADT�

Filip Křižka, Michal Krátký, Radim Bača, and Peter Chovanec

Department of Computer Science
VšB-Technical University of Ostrava, Czech Republic

{filip.krizka,michal.kratky,radim.baca,peter.chovanec}@vsb.cz

Abstract. Holistic approaches are considered as the most robust so-
lution for processing of twig pattern queries requiring no complicated
query optimization. Holistic approaches use an abstract data type called
a stream which is an ordered set of XML nodes with the same schema
node. A straightforward implementation of a stream is a paged array.
In this article, we introduce a multidimensional implementation of the
stream for path labeling schemes. We also show that this implementation
can be extended in such a way that it supports fast searching of nodes
with a content. Although many multidimensional data structures have
been introduced in recent years, we show that it is necessary to combine
two variants of the R-tree (Ordered R-tree and Signature R-tree) for an
efficient implementation the stream ADT.

Keywords: Indexing XML data, stream, stream ADT, path labeling
scheme, R-tree, R�-tree, Ordered R-tree, Signature R-tree.

1 Introduction

Twig pattern query (TPQ) is considered as a core operation of query languages,
such as XPath or XQuery [27] which are de facto standards among XML query
languages.

The TPQ processing have been studied extensively and works such as [28,1,26]
have outlined basic principles of structural joins. The main disadvantage of the
structural join is that the intermediate result can be significantly larger than
the result. In works [4,12,5], we can find approaches based on holistic joins.
Contrary to the structural join, the intermediate results are comparable with
the final result size. In [23], we can find a comparison of different approaches to
TPQ processing based on structural joins, holistic joins, and sequence searching.
Holistic approaches were considered as the most robust solution requiring no
complicated query optimization.

Holistic approaches use an abstract data type called a stream which is an
ordered set of XML nodes with the same schema node, e.g. tag, tag+level or

� Work is partially supported by Grants of GACR No. GAP202/10/0573 and
GA201/09/0990.

L. Wang et al. (Eds.): WAIM 2011 Workshops, LNCS 7142, pp. 103–112, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

104 F. Křižka et al.

labeled path [6]. A cursor pointing to the first XML node is assigned to each
required stream at the beginning of the query processing. Given a stream T,
let us define the following operations: (1) head(T) which returns the node label
at the cursor’s position, (2) eof(T) which returns true if the cursor is at the
end of T, and (3) advance(T) which moves the cursor to the next node label
in T. The most simple implementation of the stream ADT is an inverted list or
a simple array.

The input streams can contain many XML nodes. For example, the average
length of streams of the XMARK collection1 with scaling factor 45 is 168,977.2 if
the prefix path streaming scheme is utilized [6]. When we consider the page size
2,048B and approximately 50 labels per a page then a stream includes 3,379.5
pages in average. Sequential reading and comparing of the XML nodes from the
stream can take significant amount of time. This time can be reduced especially
when the input stream contains a lot of XML nodes which are not a part of the
result (unnecessary XML nodes). Holistic algorithms can be extended in order to
use additional two stream’s operations: (1) fwdToAncOf(T, n) which forwards a
stream cursor on the first label which does not precede the XML node n [12], (2)
fwdToDescOf(T, n) which forwards a stream cursor on the first label which has
a higher document order then the XML node n [9]. If we index the stream using
the XB-tree [4] or XR-tree [12] we can skip many unnecessary nodes when these
forward methods are invoked and, as a result, speed up the query processing.

(a) (b)

Fig. 1. (a) XML tree (b) TPQ Q1

For example, let us have the XML tree in Figure 1(a) and the TPQ Q1 in
the Figure 1(b). We work with three streams Tb, Te, and Tc (a tag streaming
scheme is used) where head(Tb) = b1, head(Te) = e1, and head(Tc) = c1 at the
beginning of query processing. The head(Tb) should be an ancestor of head(Te)
and head(Tc); therefore, an algorithm calls the fwdToAncOf(Tb, e1) method
forwarding the cursor of Tb on b20. In the next step, the algorithm calls the
fwdToDescOf(Tc, b20) method since the head(Tc) can not precede its ancestor
query node. As a result, the Tc’s cursor is forwarded on c10 and the cursors form
one occurrence of the Q1 in the XML tree. Consequently, we do not have to

1 http://monetdb.cwi.nl/xml/

http://monetdb.cwi.nl/xml/

Multidimensional Implementation of Stream ADT 105

access the XML nodes between b1 and b20 and c1 and c10 and all useless nodes
are skip in this way.

An XML node is represented by a label which allows us to resolve basic XPath
relationships such as parent-child, ancestor-descendant, or preceding-following.
There are two types of labeling schemes which assign a label to an XML node:
(1) element labeling scheme (e.g., containment labeling scheme [28] or Dietz’s
labeling scheme [8]) and (2) path labeling scheme (e.g., Dewey Order [26] or Or-
dPath [24]). Both above depicted stream indexing techniques (XB-tree and XR-
tree) are designed for the element labeling schemes, which makes them unusable
when we want to use the holistic algorithms such as TJFast [21] or TreeMatch [22]
which utilizes the path labeling scheme.

In this article, we introduce a multidimensional implementation of the stream
ADT for path labeling schemes. Multidimensional indices have been utilized to
indexing XML data in works [10,15,2,14], however there was no a relation to
holistic joins. In this article, we introduce the utilization of multidimensional
indices in a relation with holistic joins. We show that the stream index can be
extended in such a way that it supports fast searching of nodes with a content
which is important for an efficient query processing of XPath queries contain-
ing a value condition. Since the R-tree is a well-known multidimensional data
structure, in this article, we utilize this data structure and its variants. A com-
prehensive description of multi-dimensional data structures is given in [25].

The outline of the paper is as follows: In Section 2, we describe why it is
appropriate to implement a stream using a multidimensional data structure. In
Section 3, R�-tree, Ordered R-tree, and Signature R-tree are briefly described
and we explain why it is necessary to combine the Ordered and Signature R-trees
for this purpose. In Section 4, we put forward preliminary experimental results.
Finally, we outline possible areas of our future work and conclude the paper.

2 Why Multidimensional Implementation?

Let us consider the following node from the XMARK collection labeled by Dewey
order: 0,3,126807,4,3. When a labeled path streaming scheme is used [6], this
label is included in a stream with id 493. It means, the labeled path related to
the node has id 493. This node contains a content; a string with id 7475. Let us
suppose the following tuple: (lpid, label, termid). Consequently, the tuple for the
proposed label is: (493, 0, 3, 126807, 4, 3, 7475).

Whereas a range query of the B-tree returns all tuples of a range defined by a
prefix, the multidimensional range query returns all tuples of a multidimensional
space Ω = D1 ×D2 × . . .Dn in a query rectangle defined by two tuples QL and
QH [11,25]. In this article, we use a notation of the range query (493,*,...*,475)
instead of QL = (493,min, ...,min, 475) : QH = (493,max, ...,max, 475), where
min and max are minimal and maximal values of the domain D. An example
of the B-tree range query is 493*, it means that all tuples starting by the value
493 are retrieved.

106 F. Křižka et al.

Now, we consider various types of queries and we analyze if we need a multi-
dimensional index or we can use the common B-tree index with the compound
key.

1. Query: ”Get all labels of the stream 493”:
This query is processed by the following queries in the data structures, we
suppose only queries with at least logarithmic complexity of finding the first
item, since in the case of a sequence scan in a complete data structure, we
rather use an array implementation of the stream:

– B-tree, Range Query: 493*
– Multidimensional Index, Range Query: (493,*,. . . ,*)

This query is not utilized in the case of holistic joins, we use it in the case
of structural joins. However, this query can return only the first item and a
context record which enables us to continue with the next label during the
scan of a stream. We suppose this technique for the following cases as well.

2. Query: ”Get all labels with the term id 475 of the stream 493”:

– B-tree: It is not possible to define a query, since the label is not defined,
in other words the second part of the query tuple is not defined. It means,
the sequential scan in all nodes related to the stream 493 is processed. If
we want to scan only nodes for the stream and the term, we can switch
termid and label of the tuple. Since we need tuples ordered according to
the label, it is not possible to make this switch.

– Multidimensional Index, Range Query: (493,*,...*,475)

3. Query: ”Get all labels which do not precede the label 0,3,126807,4,3 of the
stream 493”
This query represents the operation fwdToAncOf() described in the first
section. Range Queries:

– B-tree: Range Query: 493|0|3|126807|4|4*
– Multidimensional Index, Range Query: (493, 0, 3, 126807, 4, 4, ∗):(493,

max, max, ...,max, ∗) with respect to the length of the labeled path
493.

We must note that | means a concatenation of two binary (often 32bit)
numbers to a longer (64bit) number.

4. Query: ”Get all labels of the stream 493 matching the label 0,3,126807,*,...”

– B-tree, Range Query: 493|0|3|126807*
– Multidimensional Index, Range Query: (493,0,3,126807,*,...,*)

The multidimensional implementation is appropriate in the case when the com-
plete label is not defined and a content filter is defined. We see that the multidi-
mensional implementation of a stream is more general than the B-tree, however
we require the additional properties of a multidimensional data structure used:

– Nodes must be ordered according to labels.
– The data structure must support a special type of range queries: the narrow

range query [17]. The narrow range query includes the same values for some
identical dimensions in both tuples defining the query rectangle.

Multidimensional Implementation of Stream ADT 107

3 Multidimensional Index for XML

In this section, we describe the multidimensional data structure fitting the above
described properties; it is a combination of Ordered and Signature R-trees.
In [19,18], we introduced an R-tree variant to indexing of multidimensional or-
dered data called Ordered R-tree. In [17], a signature extension of the R-tree for
processing narrow range queries has been introduced.

In the R-tree [11], tuples are clustered in tree’s pages when MBRs (Minimal
Bounding Rectangles) are built. R-tree supports various types of queries, e.g.
point and range queries. A general structure of the R-tree is shown in Figure 2.

R1 R2

R3 R4 R5 R6

p2 p4 p10 p6 p9 p1 p7 p3p8 p5 p11

R1

R2

R3

R4

R5

R6

p2

p4

p8

p10

p6

p9

p1

p5

p7

p3

p11

Fig. 2. A general structure of the R-tree

It is a hierarchical data structure representing spatial data by the set of nested
n-dimensional minimum bounding rectangles (MBR). Each MBR is defined by
two tuples QL and QH , where QLi ≤ QHi, 1 ≤ i ≤ n. If N is an inner node, it
contains pairs (Ri, Pi), where Pi is a pointer to a child of the node N . If R is the
inner node MBR, then the boxes Ri corresponding to the children Ni of N are
contained in R. Boxes at the same tree level may overlap. If N is a leaf node,
it contains pairs (Ri, Oi), so called index records, where Ri contains a spatial
object Oi. Each node of the R-tree contains between m and M entries unless it
is the root and corresponds to a disk page.

A range query is processed by a depth-first search algorithm. If the query
rectangle intersects an MBR then the node related to the MBR is retrieved and
searched. In general, there is no order; therefore, tuples of a result set are sorted
in the same order in which these tuples were inserted in leaf nodes and new
MBRs have been inserted in inner nodes.

There are many variants of the R-tree, the following data structures utilize
the R�-tree [3]. In [19,18], Ordered R-tree allowing to index ordered multidi-
mensional tuples has been introduced. A new concept, the First Tuple (FT), to
each MBR was introduced to support the ordering of tuples in the R-tree. All
nodes are then ordered according to their FTs which are utilized during the tree
building. In [17], Signature R-tree was introduced for more efficient processing of

108 F. Křižka et al.

narrow range queries. Signature R-tree is a variant of the R-tree including mul-
tidimensional signatures for a more efficient filtration of irrelevant tree nodes. In
this case, the irrelevant node does not contain any tuple of the query rectangle.
The multidimensional signature contains a signature of tuples in one node for
each dimension.

Evidently, we need a combination of the Ordered and Signature R-trees for a
multidimensional implementation of the Stream ADT. In our preliminary results,
we show the performance of this data structure.

4 Preliminary Results

In our experiments2, we used the XMARK collection3 of scaling factor 45 with
92mil. nodes and 547 streams using the prefix path streaming scheme and Dewey
Order labeling scheme. Basic characteristics of streams are shown in Table 1. The
page size is 2kB for all data structures used. If we consider 40B per one label
in average and the 50% page utilization, the average number of labels in one
page is 25. Consequently, the average count of pages of one stream is 6,759.1.
Although we can increase the page utilization by a bulk-load algorithm up-to
100% [13], the average count of pages in one stream is high again (approximately
3,379.5 in this case). It is clear that reading and searching in the long streams
is a time consuming operation.

Table 1. Stream Statistics of XMARK

All Labels Label Length
1–7 8–14

XML file size [GB] 5.0 – –

#Labels 92,430,540 59,374,127 33,056,414

#Streams 547 148 399

Minimum count of labels in one stream 1 1 1

Maximum count of labels in one stream 2,695,696 2,695,696 2,695,696

Average count of labels in one stream 168,977.2 401,176.5 82,848.2

This collection has been indexed by the R�-tree, Ordered R�-tree, and the
combination of Ordered R�-tree and Signature R�-tree introduced in the previous
section. In Table 2, we see properties of the created R-trees4. We see that the
page utilization is by 7% higher in the case of the R�-tree than in the case of the
ordered variants. This is caused by inserting of labels exported from the streams.
It means, all labels of one stream were inserted before all labels of another stream.
In the case of the ordered variants, labels are always inserted into the last leaf

2 The experiments were executed on an Intel Xeon X5670 2.93Ghz, 12.0 MB L2 cache;
4GB of DDR333; RAID5, SATA, 7200RPM, 1TB; Windows Server 2008 R2.

3 http://monetdb.cwi.nl/xml/
4 All data structures have been implemented in C++.

http://monetdb.cwi.nl/xml/

Multidimensional Implementation of Stream ADT 109

node, therefore the page utlization is 50%. Evidenly, if labels are inserted as an
XML document is read or a rebuild algorithm is used, the utilization will be
higher. The lower size of the R�-tree is given by the utilization. As we see, the
overhead of the Ordered R�-tree compared to the R-tree is only 1.5%; the size of
the First Tuple array is 0.05GB. The overhead of the Signature R�-tree is higher:
the size of arrays with multidimensional signatures for two lowest levels of the
tree is 2 × 0.59GB. It means, the overhead is 31.3% compared to the R�-tree
and Ordered R�-tree, however the results show that the Signature R�-tree is the
most efficient from the query processing time point of view. In this case, we used
the following configuration of multidimensional signatures (for detail see [17]):
the signature length for the leaf nodes and super-leaf nodes was 128 and 2048
for each dimension, respectively, the number of hashing functions was 3, and one
bit was set for each tuple value.

Table 2. R�-trees Statistics

R�-tree Ord. R�-tree Ord-Sig. R�-tree

Dimension 7

Paged Size [B] 2,048

Leaf Node Capacity [items] 63

#Leaf Nodes 1,624,012 1,855,441 1,855,441

#Inner Nodes 96,350 109,142 109,142

#Tuples 59,374,127

Avg. #Tuples in Leaf Nodes 36.56 32 32

Page Utilization [%] 57.9 50.9 50.9

Total Tree Size [GB] 3.28 3.36 4.94

R-tree Size [GB] 3.28 3.31 3.75

First Tuple Array [GB] – 0.05 0.05

Signatures level 0 [GB] – – 0.59

Signatures level 1 [GB] – – 0.59

Avg. count of pages of one stream 10,973.1 12,536.8 12,536.8

Labels are variable-length tuples with the maximal length for an XML collec-
tion. The maximal length is 14 for this collection. We used an approach intro-
duced in paper [16] where the multidimensional forest indexing variable-length
tuples has been introduced. In this case, two multidimensional spaces have been
created: the first one includes labels of the length 1–7 and the second one in-
cludes labels of the length 8–14. Since our queries retrieved only labels up-to the
length 7, we used only the first multidimensional space in our experiments (and
in Tables 2–4). In Table 1, we see statistics of streams for labels of the length 1–7
as well. This tree includes 59 mil. labels (see also Table 2) and the average count
of labels in one stream is higher than in the whole collection (401,176.5 labels).

In our experiments, we tested three groups of queries covering queries over a
stream depicted in Section 2. The first group includes queries of the type 1, for
example (292, ∗, ∗, ∗, ∗, ∗, ∗) or (18, ∗, ∗, ∗, ∗, ∗,max). The second group includes
queries of the type 2, for example (297, ∗, ∗, ∗, ∗, ∗, 860099805) or (18, ∗, ∗, ∗, ∗,

110 F. Křižka et al.

1718073587,max). The third group includes queries of the type 4, for exam-
ple (295, 0, 5, 2462, ∗, ∗, 860712262) or (18, 0, 4, 134143, ∗, 1718073587,max). The
DAC (Disk Access Cost) [20] for these queries is shown in Table 3. We used cQ
(so called relevance) introduced in [17] as a quality ratio of range query pro-
cessing: cQ = Nr/Np, where Nr is the number of relevant leaf nodes, it means
nodes including tuples in the query rectangle, Np is the number of all accessed
leaf nodes. Evidently, if only relevant nodes are accessed during a range query
then cQ = 1.

Table 3. cQ and DAC for Tested Queries

Query Result R�-tree Ordered R�-tree Ord-Sig. R�-tree
Group Size cQ DAC cQ DAC cQ DAC

1 630,366.8 0.85 71,182.5 1.00 20,863.5 1.00 20,863.5
2 7.3 0.03 58,951.8 0.25 11,157.5 0.83 69.0
3 1 1.00 8.5 0.75 7.5 1.00 7.5

We see that for the Query Group 2, cQ is rather low for the R�-tree. In the
case of the Ordered R�-tree, cQ is higher (0.25), but it is close to 0 for the most
of queries. Whereas cQ is low for some query groups in the case of the R�-tree
and Ordered R�-tree, cQ is 1 or close to 1 for the Ordered-Signature R�-tree.
In Table 4, we see the query processing time for tested queries. We must note
that we read all pages from the disk and we did not use any method to efficient
reading of pages during the range query processing (see [7]), since, in the case
of real XML query processing, pages are not read together.

Table 4. Query Processing Time for Tested Queries [s]

Query Group Result Size R�-tree Ordered R�-tree Ord-Sig. R�-tree

1 630,366.8 16.44 4.99 4.99
2 7.3 8.43 1.79 0.03
3 1 0.00 0.00 0.00

We must note that the result of a range query is not sorted in the case of the
R�-tree, therefore labels of the result must be sorted and it means an additional
overhead. Another problem of the R�-tree is that leaf nodes include labels of
various streams, whereas ordered variants include labels of one stream in the
same leaf nodes. Consequently, it is necessary to consider the combination of
Ordered and Signature R�-trees to indexing XML data. Moreover, we see that
the average count of pages accessed (measured by DAC) << the average count of
pages of one stream (12,536.8 in this case) for query groups 2 and 3. In the case
of the Query group 1, we read all labels in a stream and DAC is approximately
equal to the count of pages in the streams.

Multidimensional Implementation of Stream ADT 111

5 Conclusion

In this article, we introduced a multidimensional implementation of the stream
index for the path labeling schemes related to holistic join approaches. We also
show that this stream index can be extended in such a way that it supports fast
searching in XML nodes with a content. Our preliminary results showed that
it is necessary to combine two variants of the R�-tree: Ordered and Signature
R�-trees. In our future work, we should compare the performance of our solution
with other stream implementations for real XML queries. We must also solve the
storage of variable-length labels since the solution using the multidimensional
forest is not optimal.

References

1. Al-Khalifa, S., Jagadish, H.V., Koudas, N.: Structural Joins: A Primitive for Ef-
ficient XML Query Pattern Matching. In: Proceedings of the 18th International
Conference on Data Engineering, ICDE 2002 (2002)

2. Bauer, M.G., Ramsak, F., Bayer, R.: Multidimensional mapping and indexing of
xml. In: BTW. LNI, vol. 26, pp. 305–323. GI (2003)

3. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R∗-tree: An Efficient
and Robust Access Method for Points and Rectangles. In: Proceedings of the 9th
ACM International Conference on Management of Data (SIGMOD 1990) (1990)

4. Bruno, N., Srivastava, D., Koudas, N.: Holistic Twig Joins: Optimal XML Pattern
Matching. In: Proceedings of SIGMOD 2002, pp. 310–321. ACM (2002)

5. Chen, S., Li, H.-G., Tatemura, J., Hsiung, W.-P., Agrawal, D., Candan, K.S.:
Twig2stack: bottom-up processing of generalized-tree-pattern queries over xml doc-
uments. In: Proceedings of VLDB 2006, pp. 283–294. VLDB Endowment (2006)

6. Chen, T., Lu, J., Ling, T.W.: On Boosting Holism in XML Twig Pattern Matching
Using Structural Indexing Techniques. In: Proceedings of SIGMOD 2005, pp. 455–
466. ACM Press (2005)

7. Chovanec, P., Krátký, M., Bača, R.: Optimization of Disk Accesses for Multidi-
mensional Range Queries. In: Bringas, P.G., Hameurlain, A., Quirchmayr, G. (eds.)
DEXA 2010. LNCS, vol. 6261, pp. 358–367. Springer, Heidelberg (2010)

8. Dietz, P.F.: Maintaining Order in a Linked List. In: Proceedings of 14th Annual
ACM Symposium on Theory of Computing (STOC 1982), pp. 122–127 (1982)

9. Grimsmo, N., Bjorklund, T.A., Hetland, M.L.: Fast Optimal Twig Joins. In: Pro-
ceedings of VLDB 2010. VLDB Endowment (2010)

10. Grüst, T.: Accelerating XPath Location Steps. In: Proceedings of SIGMOD 2002,
pp. 109–120. ACM Press (2002)

11. Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching. In: Pro-
ceedings SIGMOD 1984, pp. 47–57. ACM Press (1984)

12. Jiang, H., Lu, H., Wang, W., Ooi, B.: XR-Tree: Indexing XML Data for Efficient
Structural Join. In: Proceedings of ICDE 2003. IEEE, India (2003)

13. Kamel, I., Faloutsos, C.: On packing R-trees. In: Proceedings of the Second Inter-
national Conference on Information and Knowledge Management (CIKM 1993),
pp. 490–499. ACM Press (1993)

14. Krátký, M., Bača, R., Snášel, V.: On the Efficient Processing Regular Path Expres-
sions of an Enormous Volume of XML Data. In: Wagner, R., Revell, N., Pernul,
G. (eds.) DEXA 2007. LNCS, vol. 4653, pp. 1–12. Springer, Heidelberg (2007)

112 F. Křižka et al.

15. Krátký, M., Pokorný, J., Snášel, V.: Implementation of XPath Axes in the Multi-
dimensional Approach to Indexing XML Data. In: Lindner, W., Fischer, F., Türker,
C., Tzitzikas, Y., Vakali, A.I. (eds.) EDBT 2004. LNCS, vol. 3268, pp. 219–229.
Springer, Heidelberg (2004)

16. Krátký, M., Skopal, T., Snášel, V.: Multidimensional Term Indexing for Efficient
Processing of Complex Queries. Kybernetika Journal 40(3), 381–396 (2004)

17. Krátký, M., Snášel, V., Zezula, P., Pokorný, J.: Efficient Processing of Narrow
Range Queries in the R-Tree. In: Proceedings of the 10th International Database
Engineering and Applications Symposium (IDEAS 2006), pp. 69–79. IEEE (2006)

18. Křižka, F., Krátký, M.: On the Efficient Indexing of Ordered Multidimensional Tu-
ples. In: 5th International Conference for Internet Technology and Secured Trans-
actions (ICITST 2010). IEEE, London (2010)

19. Křižka, F., Krátký, M., Bača, R.: On Support of Ordering in Multidimensional
Data Structures. In: Catania, B., Ivanović, M., Thalheim, B. (eds.) ADBIS 2010.
LNCS, vol. 6295, pp. 575–578. Springer, Heidelberg (2010)

20. Lightstone, S.S., Teorey, T.J., Nadeau, T.: Physical Database Design: the Database
Professional’s Guide. Morgan Kaufmann (2007)

21. Lu, J., Ling, T.W., Chan, C.Y., Chen, T.: From Region Encoding to Extended
Dewey: on Efficient Processing of XML Twig Pattern Matching. In: Proceedings
of VLDB 2005, pp. 193–204 (2005)

22. Lu, J., Ling, T.W., Bao, Z., Wang, C.: Extended XML Tree Pattern Matching:
Theories and Algorithms. IEEE Transactions on Knowledge and Data Engineering
(TKDE) 23 (2011)

23. Moro, M.M., Vagena, Z., Tsotras, V.J.: Tree-pattern Queries on a Lightweight
XML Processor. In: Proceedings of VLDB 2005, pp. 205–216 (2005)

24. O’Neil, P., O’Neil, E., Pal, S., Cseri, I., Schaller, G., Westbury, N.: ORDPATHs:
Insert-friendly XML Node Labels. In: Proceedings of SIGMOD 2004 (2004)

25. Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan
Kaufmann (2006)

26. Tatarinov, I., et al.: Storing and Querying Ordered XML Using a Relational
Database System. In: Proceedings of SIGMOD 2002, pp. 204–215. ACM Press,
New York (2002)

27. W3 Consortium. XQuery 1.0: An XML Query Language, W3C Working Draft
(November 12, 2003), http://www.w3.org/TR/xquery/

28. Zhang, C., Naughton, J., DeWitt, D., Luo, Q., Lohman, G.: On Supporting Con-
tainment Queries in Relational Database Management Systems. In: Proceedings of
SIGMOD 2001, pp. 425–436. ACM Press, New York (2001)

http://www.w3.org/TR/xquery/

Measuring XML Structured-ness with Entropy

Ruiming Tang1, Huayu Wu1, and Stéphane Bressan2

1School of Computing, National University of Singapore
{tangruiming,wuhuayu}@comp.nus.edu.sg

2Center for Maritime Studies
steph@nus.edu.sg

Abstract. XML is semi-structured. It can be used to annotate unstruc-
tured data, to represent structured data and almost anything in-between.
Yet, it is unclear how to formally characterize, yet to quantify, structured-
ness of XML. In this paper we propose and evaluate entropy-based
metrics for XML structured-ness. The metrics measure the structural
uniformity of path and subtrees, respectively. We empirically study the
correlation of these metrics with real and synthetic data sets.

1 Introduction

XML is commonly qualified as a semi-structured data model. Indeed, the hier-
archical and optional nature of element organization in XML make it a good
choice for representing data ranging from annotated unstructured text to rela-
tional tables with fixed and prescribed schemata.

Being able to characterize and possibly quantify the absolute or relative
“structured-ness” of an XML document or collection can be critical in many
applications and at various stages of their life cycle (from design to tuning). For
the sake of conciseness let us illustrate the potential benefits of a characteriza-
tion of XML structured-ness with two example cases among numerous possible
ones.

Case 1: There are two types of XML databases, i.e., XML-enabled relational
databases and native XML databases. It has been studied that the efficiency
of managing and querying XML data using the two types of XML databases
highly depend on how structured an XML document is [13]. Generally, the more
structured an XML document is, the more efficiently it can be managed and
queried with an XML-enabled relational database; while the more irregular a
document is, the more advantages emerged for a native XML database. Measur-
ing the structured-ness of an XML document can help to determine which types
of database should be used to store the document.

Case 2: Measuring similarity between XML documents is an essential building
block for XML comparison, alignment, clustering and classification. However,
computing the similarity among a set of XML documents is normally expensive.
Using the degree of the structured-ness of each document, we can easily tell
one document is far different from another, and thus avoid a lot of unnecessary
similarity computations in many applications.

L. Wang et al. (Eds.): WAIM 2011 Workshops, LNCS 7142, pp. 113–123, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

114 R. Tang, H. Wu, and S. Bressan

Surprisingly, the early enthusiasm for the promises brought by XML as a can-
didate standard for data management and interchange has not encouraged at-
tempts to formally and quantitatively define structured-ness. [11] and [2] address
the issue in specific contexts for XML collections and DTDs, respectively.

In this paper we understand structured-ness as uniformity of the data repre-
sentation (schema). Information theoretic entropy suggests itself as a measure of
such uniformity, We devise, implement and compare two candidate categories of
metrics evaluating uniformity of paths and uniformity of subtrees, respectively,
and their variants. We empirically study the correlation of these metrics with
the real and synthetic data sets. The structured-ness of the real data sets is
manually annotated. The structured-ness of the synthetic data sets is given by
construction.

The remainder of this paper is organized as follows: Section 2 presents the
background and reviews related work. Section 3 develops our algorithms. Section
4 sets up the experiments to evaluate our algorithms. Section 5 concludes this
paper.

2 Background and Related Work

2.1 Background

XML Data Model. An XML document can be modeled as an ordered labeled
tree, without considering the ID references. In an XML document tree, each
node represents an element, an attribute or a value in the corresponding XML
document, and its label is the corresponding tag name, attribute name or value
text. Each edge of an XML document tree represents a hierarchical relationship
between the element and sub-element, element and attribute, element and value
or attribute and value. Since in this paper we are only interested in the structure
of an XML document, we ignore the value nodes which appear as leave of the
document tree.

Structured-ness of XML Data. XML is a semi-structured data format, which
contains both structured components that can be defined by schemas, and the
flexibility to freely organize structured components and unstructured compo-
nents in a hierarchy. The structured-ness of an XML document measures how
flexible the document is, i.e., whether the document is regular with many struc-
tured components or irregular with a large amount of unstructured tags. The
importance of knowing the structured-ness of an XML document is illustrated
by the two examples in Section 1.

Shannon Entropy. In the year of 1948, Claude E.Shannon introduced entropy
to solve the problem of quantifying information. Shannon entropy is used to
quantify the information contained in a random variable; in other words, it is a
measure of information we lose if we do not know the value of the random vari-
able. Assume there is a discrete random variable X that can take on possible val-
ues x1, x2, ..., xn and the Shannon entropy is: H(X) = −∑n

i=1 p(xi) log2 p(xi),

Measuring XML Structured-ness with Entropy 115

where I(X) is the information content of X, and p(xi) = Pr(X = xi) is the
probability mass function of X.

There are two views of entropy. The first one is that entropy captures uncer-
tainty in data, i.e., higher entropy indicates more unpredictability. The second
view is that entropy captures information content, i.e., higher entropy indicates
more information. Thus we can conclude that given two distributions, the one
that is closer to the uniform distribution has a higher entropy; if two distribu-
tions are both uniform distributions, the one that is more diverse has a higher
entropy.

2.2 Related Work

We have not identified any existing work on measuring the structured-ness of
XML data. Theoretically, the lot of algorithms measuring similarity between
XML documents can be extended for structured-ness measurement. In particu-
lar, an XML tree becomes a forest of trees if the root node and the edges between
the root node and its children are removed. Then if all trees in the forest are
quite similar to each other, the original XML document is considered with a high
degree of structured-ness. Hereby, we review the existing work in XML similarity
measurement in this section.

[10,5,12] measure the structural similarity between XML documents or XML
document/DTD using tree edit distance. [10] aims to partition the XML docu-
ment collection into several sets based on tree edit distance. [5] detects changes
between several versions of an original XML document using tree edit distance.
[5] matches XML documents and XML grammars for document classification
using tree edit distance. [6,7] measure the similarity between an XML document
and an XML query using IR techniques. Traditional information retrieval(TF-
IDF) deals with flat textual data. These works add some more information and
modify the data structures in order to handle XML data which is in hierarchy.
[3,8]uses other techniques to measure similarity between XML documents. For
instance, the authors of [3] describe the structure of an XML document as a
set of paths, and in [8], they view the structure of an XML document as edges.
Moreover, there exist some works which measures similarity using entropy. [11]
measures the heterogeneity of XML collections using entropy while [2] proposes
an entropy metric to measure the similarity between DTDs.

Our work focuses on measuring the structured-ness of a given XML document
as a whole, instead of decomposing it into sub-documents and computing the
similarity between these sub-documents.

3 Structured-ness Measurement

We use entropy to measure the structured-ness of an XML document. If the
XML document is more structured, it has a low entropy value; otherwise, a
high entropy value should be assign to the document. We propose two types of
entropy for structured-ness measurement: path-based entropy and subtree-based
entropy.

116 R. Tang, H. Wu, and S. Bressan

3.1 Path-Based Entropy

The distribution of paths will affect the degree of structured-ness of an XML
document. In particular, the more diverse the paths are, the less structured the
document is. We define path entropy to measure the diversity of paths. When
all the paths1 in an XML document are identical, i.e., the document is very
structured, then the path diversity is of the lowest value, and so does the path
entropy. When all the paths in the document are different, the diversity and the
path entropy are in the highest values.

books booksbooks

book book picturebook book bookbookbookbook

name name refname name namename name

a. Tree 1 b. Tree 2 c. Tree 3

Fig. 1. Samples of three XML documents

The formula is given in Equation 1.

Path entropy = −
n∑

i=1

p(X = xi) log2 p(X = xi) (1)

where n represents the number of unique paths. p(X = xi) = n(X=xi)
N , where N

is the number of paths in the document, and n(X = xi) is the number of paths
which are the same as the unique path xi. For instance, in Tree 1 in Fig. 1.a, there
are three paths and only two unique paths. In this example, p(X = x1) = 2

3 ,
p(X = x2) = 1

3 , hence the path entropy of Tree 1 is 2
3 ∗ log2

3
2 + 1

3 ∗ log2
3
1=0.92.

Similarly, we can get the path entropy of Tree 2 in Figure 1.b is 0, and the path
entropy of Tree 3 in Fig. 1.c has the same value as Tree 1.

3.2 Subtree-Based Entropy

In Fig. 2, we can see some drawbacks of the path entropy. For instance, the
document in Fig. 2.a is more structured than the one in Fig. 2.b, so we expect
that the path entropy of the document in Fig. 2.a is lower. Unfortunately it is
higher.

The reason for the contradictions is that path-based entropy is only suitable
for the case that each structured component is a path, instead of a subtree
under the document root. However, this case is rare in practice. In this section,
we propose to use subtree-based entropy to handle general cases.

1 This paper focuses on the structure of XML data, so when we mention path or
substree the leaf values are not considered.

Measuring XML Structured-ness with Entropy 117

students

studentstudent student

namesexname sex name sex

a

students

studentstudent student

namesexname sex name

bb

Fig. 2. Samples of two XML documents

Exact Subtrees Entropy. The exact subtrees entropy measures the diversity
of subtrees in the document. The basic idea is that the less diverse the subtrees
are, the more structured the document is. We need to extract all the subtrees,
and then compute the entropy based on their distribution. The formula is given
in Equation 2.

exact subtrees entropy = −
n∑

i=1

p(i) log2 p(i) (2)

where n represents the number of categories. p(i) = Ni

N , where Ni is the number
of subtreei appearing in the document, N is the total number of subtrees. In Fig.
2.a, there are 4 different kinds of subtrees in total while there are 5 in Figure 2.b.
For the document in Figure 2.a, p(1) = 0.3, p(2) = 0.3, p(3) = 0.3, p(4) = 0.1,
and entropy=3 ∗ 0.3 ∗ log2

10
3 + 0.1 ∗ log2

10
1 =1.89546. For the document in 2.b,

p(1) = 1
3 , p(2) = 2

9 , p(3) = 2
9 , p(4) = 1

9 , p(5) = 1
9 , and entropy=2.1964. This

result reflects the fact that the document in Fig. 2.a is more structured than the
one in Fig. 2.b.

Unfortunately, exact subtree entropy also has its drawbacks. This kind of
entropy can only tell that these two subtrees are different, but cannot tell how
much different they are.

Similar Subtrees Entropy. The basic idea of similar subtrees entropy is that
the difference between subtrees is better modeled as a numerical value rather
than a Boolean value (yes/no). We use tree edit distance to measure this differ-
ence, after which we partition the subtrees into clusters based on their tree edit
distances. We get the number of clusters and the size of each cluster. Finally, we
compute similar subtrees entropy as the entropy of clusters

Consider an XML document with n substrees. These subtrees are clustered
into k clusters, i.e., T={t1, t2, ..., tk}. Assume the cluster ti contains ni subtrees,
and pi = ni

n denotes the ratio of the size of ti over the total size of the document,

118 R. Tang, H. Wu, and S. Bressan

in terms of number of subtrees. Then the entropy of T is the entropy of the
cluster size distribution. The formula is given in Equation 3.

Similar subtrees entropy = −
n∑

i=1

p(i) log2 p(i) (3)

In the similar subtree entropy, there is one important concept, tree edit distance.
In our similar subtrees entropy, we choose two different kinds of tree edit dis-
tances: the first one is from [14], the second one is from [4]. In [14], for the first
time, they introduce a non-exponential algorithm to compute the edit distance
between ordered labeled trees, allowing insertion, deletion and updating of in-
ternal/leaf nodes. In [4], the authors restrict insertion and deletion to leaf nodes,
and allow updating of nodes anywhere (in our version, we replace updating by
one deletion and one insertion).

Clustering is a method to partition objects into groups to maximize the sim-
ilarity within groups and the dissimilarity between groups. We choose the ag-
glomerative clustering algorithm which is a bottom-up hierarchical clustering
algorithm in [9].

There are three different metrics for measuring the distance between two
clusters A and B: (1) max {d(x,y):x ∈ A, y ∈ B}; (2) min {d(x,y):x ∈ A, y ∈ B};
(3) 1

|A||B|
∑

x∈A

∑
y∈B d(x, y). We will use all of them for comparison.

The complete algorithm of similar subtree entropy is given in Algorithm 1.

Algorithm 1: similar subtree entropy Algorithm
Data: file : an XML document
Result: The entropy for the document E

Parse file, and get all the subtrees;1

N ← the number of subtrees;2

for i = 1; i <= N ; i + + do3

for j = 1; j <= N ; j + + do4

compute tree editing distance between subtreei and subtreej, and store it5

in the distance matrix
end6

end7

min← minimum value in the distance matrix;8

while min <= threshold do9

merge two closest clusters into one;10

update the distance matrix ;11

min← minimum value in the distance matrix;12

end13

compute entropy based on distribution of fraction of objects in each cluster14

Measuring XML Structured-ness with Entropy 119

4 Performance Experiment

4.1 Experiment Setup

We generate our synthetic data sets using ToXGene([1]). During synthetic data
generation, we use “?” in DTDs to control the structured-ness of each XML
document. “?” in the DTDs means that this element either appears once or
does not appear. In the same depth, the XML generated by this DTD will be
more structured-ness if there are less “?”. It will affect the structured-ness of
the document more seriously if “?” is in the level closer to the root. Based on
the observations above, we can design several DTDs which can guarantee that
the XML documents generated by them are ranked from the most structured
to least structured. The DTDs are presented in Fig. 3. We can see that Fig.
3.a is the most structured case, while Fig. 3.j is the least structured case. From
Fig. 3.a to Figure 3.j, the structured-ness of each document decreases. The “*”
beside the element “student” means that the number of students can be changed.

students

student

birthdayprofessorname address grade

*
students

student

birthdayprofessorname address grade

*

a DTD1 b DTD2

blockstreetlastfirstlastfirst

birthdayprofessorname address grade

blockstreetlastfirstlast

birthdayprofessorname address grade

first

* *
students students

?
d DTD4c DTD3

student

blockstreetlastfirstlastfirst

birthdayprofessorname address grade

* student

blockstreetlastfirstlastfirst

birthdayprofessorname address grade

*

??

student *
students

student *
students

???? ?
e DTD5 f DTD6

blockstreetlastfirstlastfirst

birthdayprofessorname address grade

students

blockstreetlastfirstlastfirst

birthdayprofessorname address grade

students

?
??? ?

????
g DTD7 h DTD8

student

bl klfilfi

birthdayprofessorname address grade

* student

bl klfilfi

birthdayprofessorname address grade

*
?

blockstreetlastfirstlastfirst

student *
students

blockstreetlastfirstlastfirst
???? ????

??

????

student *
students

?? ?

j DTD10i DTD9

blockstreetlastfirstlastfirst

birthdayprofessorname address grade
??

??????
blockstreetlastfirstlastfirst

birthdayprofessorname address grade
??

?????

?

?

Fig. 3. DTDs used for generating synthetic data

From our manual judgment, the entropy of each group of documents generated
by DTDs in Fig. 3 should keep increasing from Fig. 3.a to Fig. 3.j due to the
increase of the number of “?” in these DTDs. We calculate all these kinds of
entropy when the number of students is 50.

120 R. Tang, H. Wu, and S. Bressan

4.2 Experimental Evaluation on Synthetic Data

The experimental evaluation results are presented in Fig. 4 and 5. The x axis
represents the corresponding DTD ID according to Fig. 3, the y axis is for the
average entropy value. Each point in Fig. 4 and Fig. 5 is average entropy value of
1000 documents generated by the corresponding DTD. Fig. 4.a and Fig. 4.b are
path entropy and exact subtree entropy when fixing the number of students to 50
and varying DTDs respectively. Fig. 5 is the similar subtree entropy. Fig. 5.a to
Fig. 5.c are results for using the first kind of tree edit distance in similar subtree
entropy, and Fig. 5.d to Fig. 5.f are results for using the second kind of tree
edit distance(these two kinds of tree edit distance are introduced in the section
of “similar subtree entropy”). In Fig. 5.a to Fig. 5.c, they are three different
metrics we use(minimum value, mean value and maximum value) when we do
the clustering(mentioned in the section“similar subtree entropy”), and in Fig.
5.d to Fig. 5.f, the situation is the same.

2.8

2.9

3

3.1

3.2

3.3

3.4

1 2 3 4 5 6 7 8 9 10

pa
th

en
tr
op

y

DTD id according to Figure 3

(a) path entropy

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8 9 10

ex
ac
ts
ub

tr
ee

en
tr
op

y

DTD id according to Figure 3

(b) exact subtree entropy

Fig. 4. Path-based entropy and exact subtree entropy

From Fig. 4.a, we can see that the path entropy does not work well. The
key reason is that path entropy defines structured based on paths, but now
the synthetic documents are ranked from structured to unstructured based on
subtrees. In Fig. 4.b and Figure 5, we can see that the kinds of subtree-based
entropy works better, except for the two cases that use “minimum distance”
as clustering parameter. In 5.a and 5.d, the entropy value suddenly goes down
when there comes the most unstructured documents. The reason is that when we
construct synthetic documents, we put more and more “?” in DTDs which causes
the nodes of unstructured documents less than structured ones. Thus in the more
unstructured case, the tree edit distance between subtrees becomes smaller since
the size of subtrees shrinks. To make things worse, the “minimum distance” is
more likely to merge different groups compared to “maximum distance” and
“mean distance”. In this case, the algorithm will generate less clusters than it
is supposed to do. However, the exact subtree entropy and other cases of the
similar subtree entropy works acceptable since they almost fit to our manual
judgement.

Measuring XML Structured-ness with Entropy 121

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10

in
se
rt
/d
el
et
e
le
af

m
in
im

um
en

tr
op

y

DTD id according to Figure 3

(a) insert/delete leaf-
minimum entropy

0.4

0.45

0.5

0.55

0.6

0.65

0.7

1 2 3 4 5 6 7 8 9 10

in
se
rt
/d
el
et
e
le
af

m
ea
n
en

tr
op

y

DTD id according to Figure 3

(b) insert/delete leaf-
mean entropy

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6 7 8 9 10

in
se
rt
/d
el
et
e
le
af

m
ax
im

um
en

tr
op

y

DTD id according to Figure 3

(c) insert/delete leaf-
maximum entropy

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10

in
se
rt
/d
el
et
e/
up

da
te

m
in
im

um
en

tr
op

y

DTD id according to Figure 3

(d) insert/delete/update-
minimum entropy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10

in
se
rt
/d
el
et
e/
up

da
te

m
ea
n
en

tr
op

y

DTD id according to Figure 3

(e) insert/delete/update-
mean entropy

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

in
se
rt
/d
el
et
e/
up

da
te

m
ax
m
um

en
tr
op

y

DTD id according to Figure 3

(f) insert/delete/update-
maximum entropy

Fig. 5. Similar subtree entropy

We also do the experiments varying the number of students from 10 to 100.
We find that the results are almost the same as the case of 50. Thus we will not
show the results due to the space limitation.

4.3 Experiment Evaluation on Real Data

We get ten different XML documents from INEX and XML repository,
whose sizes are from 1K to 334K. INEX: 427.xml(334K), 536.xml(166K),
2008-topics.xml(142K); XML repository: 321gone.xml(24K), ebay.xml(35K),
nation.xml(5K), region.xml(1K), supplier.xml(29K), ubid.xml(20K), ya-
hoo.xml(25K). We measure Pearson correlation coefficient within kinds of
subtree-based entropy. Table 1 is the Pearson correlation coefficient within
subtree based entropy.

As shown in Table 1, the Pearson’s correlation coefficient is almost 1 between
any two kinds of entropy within the same tree edit distance method(one is in-
sert/delete/update, the other one is insert/delete leaf). When looking into the
entropy values, we can see the entropy values of insert/delete/update-minimum,
maximum, and mean are almost the same for most of the documents. The same
thing happens for entropy of insert/delete leaf. We can conclude that, sometimes
when computing entropy for real XML data, it does not matter choosing which
parameter to do the clustering(minimum distance, maximum distance, or mean
distance).

122 R. Tang, H. Wu, and S. Bressan

Table 1. correlation coefficient between subtree-based entropy for real data

entropy x entropy y Pearson’s correlation

exact subtree insert/delete/update-minimum 0.217305

exact subtree insert/delete/update-maximum 0.185191

exact subtree insert/delete/update-mean 0.192933

exact subtree insert/delete leaf-minimum -0.045959

exact subtree insert/delete leaf-maximum 0.309342

exact subtree insert/delete leaf-mean -0.066557

insert/delete/update-minimum insert/delete/update-maximum 0.998775

insert/delete/update-minimum insert/delete/update-mean 0.999257

insert/delete/update-minimum insert/delete leaf-minimum 0.498007

insert/delete/update-minimum insert/delete leaf-maximum 0.491377

insert/delete/update-minimum insert/delete leaf-mean 0.487187

insert/delete/update-maximum insert/delete/update-mean 0.999936

insert/delete/update-maximum insert/delete leaf-minimum 0.476003

insert/delete/update-maximum insert/delete leaf-maximum 0.458947

insert/delete/update-maximum insert/delete leaf-mean 0.465916

insert/delete/update-mean insert/delete leaf-minimum 0.481393

insert/delete/update-mean insert/delete leaf-maximum 0.466889

insert/delete/update-mean insert/delete leaf-mean 0.471148

insert/delete leaf-minimum insert/delete leaf-maximum 0.929183

insert/delete leaf-minimum insert/delete leaf-mean 0.999720

insert/delete leaf-maximum insert/delete leaf-mean 0.922643

5 Conclusion and Future Work

In this paper, we introduce a method measuring XML structured-ness within
a single XML document using entropy. To the best of our knowledge, this is
the first work on measuring the structured-ness of XML data. We propose two
different groups of entropy, i.e., the path-based entropy and the subtree-based
entropy. The experiment results show that the subtree-based entropy work better
than path entropy for more general XML data.

As we know, computing tree edit distance is a very expensive operation. In our
future work, we will try to find another metric to measure the distance between
subtrees instead of tree edit distance.

References

1. Barbosa, D., Mendelzon, A.O., Keenleyside, J., Lyons, K.A.: ToXgene: An Exten-
sible Template-Based Data Generator for XML. In: WebDB (2002)

2. Basci, D., Misra, S.: Entropy metric for xml dtd documents. ACM SIGSOFT Soft-
ware Engineering Notes 33(4) (2008)

3. Buttler, D.: A Short Survey of Document Structure Similarity Algorithms. In:
International Conference on Internet Computing, pp. 3–9 (2004)

4. Chawathe, S.S.: Comparing Hierarchical Data in External Memory. In: VLDB
(1999)

Measuring XML Structured-ness with Entropy 123

5. Cobena, G., Abiteboul, S., Marian, A.: Detecting changes in xml documents. In:
ICDE, pp. 41–52 (2002)

6. Fuhr, N., Großjohann, K.: XIRQL: An XML Query Language Based on Information
Retrieval Concepts. ACM Trans. Inf. Syst. 22(2), 313–356 (2004)

7. Grabs, T., Schek, H.-J.: Generating Vector Spaces On-the-fly for Flexible XML
Retrieval. In: XML and Information Retrieval Workshop at SIGIR (2002)

8. Kriegel, H.-P., Schönauer, S.: Similarity Search in Structured Data. In: Kam-
bayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2003. LNCS, vol. 2737, pp.
309–319. Springer, Heidelberg (2003)

9. Kurita, T.: An efficient agglomerative clustering algorithm using a heap. Pattern
Recognition 24(3), 205–209 (1991)

10. Nierman, A., Jagadish, H.V.: Evaluating structural similarity in xml documents.
In: WebDB, pp. 61–66 (2002)

11. Sanz, I., Mesiti, M., Guerrini, G., Llavori, R.B.: An Entropy-Based Characteriza-
tion of the Heterogeneity of XML Collections. In: DEXA Workshops (2008)

12. Tekli, J., Chbeir, R., Yétongnon, K.: Structural Similarity Evaluation between
XML Documents and Dtds. In: Benatallah, B., Casati, F., Georgakopoulos, D.,
Bartolini, C., Sadiq, W., Godart, C. (eds.) WISE 2007. LNCS, vol. 4831, pp. 196–
211. Springer, Heidelberg (2007)

13. Wu, H., Ling, T.W., Chen, B., Xu, L.: Twigtable: Using Semantics in XML Twig
Pattern Query Processing. In: Spaccapietra, S. (ed.) Journal on Data Semantics
XV. LNCS, vol. 6720, pp. 102–129. Springer, Heidelberg (2011)

14. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between
trees and related problems. SIAM J. Comput. 18(6), 1245–1262 (1989)

L. Wang et al. (Eds.): WAIM 2011 Workshops, LNCS 7142, pp. 124–135, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Similarity Join on XML Based
on k-Generation Set Distance*

Yue Wang, Hongzhi Wang, Yang Wang, and Hong Gao

The School of Computer Science and Technology, Harbin Institute of Technology
{hitwangyue,magicpaul007}@gmail.com, {wangzh,honggao}@hit.edu.cn

Abstract. Similarity join is applied very widely nowadays since data items
representing the same real-world objects may be different due to various con-
ventions. Another reason for similarity join is that the efficiency of traditional
methods is really low. Therefore, a method with both high efficiency and high
join quality is in need. In the paper, we put forward two new edit operations
(reversing and mapping) together with related algorithms concerning similarity
join based on the new defined measure. In our method, computing tree edit dis-
tance is replaced by computing k-generation set distance between trees. The
join process is simplified largely by applying the new method. The time com-
plexity of our method is O(n2), where n is the tree size. We have proved that our
method owns some advantages over others. And it can be scaled to large data
sets as well.

Keywords: Similarity join, XML, new edit operations, k-generation set distance.

1 Introduction

XML documents are widely used in data storage on the web due to the ability to
represent data from various sources. Integrating XML documents from autonomous
databases has become common practice. One of the most universal methods to evaluate
the similarity between different XML documents is computing tree edit distance [2].

We focus on hierarchical data, where certain relationship exists between adjacent
levels of data items. Hierarchical data can be described as ordered labeled rooted
trees. Then data can be matched based on similarities of their corresponding trees [1].
To date, the fastest algorithm to compute tree edit distance still costs O(n3) run-time,
where n denotes the number of nodes. This illustrates that current operations are li-
mited and can merely be applied to traditional edit distance.

Therefore, more edit operations are essential in practical use. Under this circums-
tance, we put forward two new edit operations: reversing and mapping. And extended
tree edit distance is defined on the new edit operations in our work. In this paper, we

* This research is partially supported by National Science Foundation of China under Grant

No. 61003046，No. 60831160525，No. 61111130189. Key Program of the National Natural
Science Foundation of China under Grant No. 60933001, National Postdoctoral Foundation
of China under Grant No. 20090450126, No. 201003447, Doctoral Fund of Ministry of Edu-
cation of China under Grant No. 20102302120054.

 Similarity Join on XML Based on k-Generation Set Distance 125

came up with an idea called k-generation set distance algorithm. Trees are trans-
formed into k-generation sets from each node and the distance between corresponding
k-generation sets of two trees is utilized as an approximation of distance between
them. This technique is very suitable for hierarchical data structures.

To sum up, the following goals have been achieved in the paper:

—New edit operations are applied in the process of similarity joins. And extended
tree edit distance is defined correspondingly.
—We propose the idea of k-generation set distance based on the new defined meas-
ure. k-generation set distance is used to evaluate the distance between trees.
—Experiments based on both real and synthetic data confirm our analytical results.
Our method is sensitive to structural changes, which is really indispensable in match-
ing hierarchical data.

The rest of the paper is arranged as follows. In section 2, related work is discussed
and analyzed. In section 3, we introduce some preliminary information. We propose
the k-generation set distance method and detailed information in section 4. Section 5
is about performance experiments. In section 6, the conclusion is displayed together
with future works.

2 Related Work

In the area of computing tree edit distance, the performances are really affluent. The
first algorithm was created by Tai and it held a run-time of O(n6). Zhang and Shasha
improved the results and gained a run-time of O(n4). Then Klein further improved the
algorithm and finished the matching process in O(n3logn) run-time. After that, De-
maine contributed to improve the algorithm with a O(n3) run-time in the worst case.

Other previous works try to transform trees into other data structures to simplify
the computation process. In the method of pq-gram, trees are extended and then trans-
formed into a series of specific sub-trees called pq-grams [1]. Later, improvements
have been applied to pq-gram and the theory of pq-hash came into being [3]. Another
transformation was using g-string distance as an alternative of distance between two
trees [4].

To make the matching process of hierarchical data more flexible and effective, ad-
ditional edit operations including reversing two nodes and mapping a path to an edge
are applied and the notion of extended tree edit distance is raised. The edit distance
defined on the new operation collection is called extended tree edit distance. Although
the matching process of XML data items has been improved by extended tree edit
distance, we can still put forward the idea of k-generation set distance to further im-
prove the efficiency and time complexity.

3 Preliminary

In this section, some preliminary information and notations that will be used through-
out the paper are introduced.

126 Y. Wang et al.

3.1 New Edit Operations and Extended Tree Edit Distance

Trees are hierarchical data structures, which contain two kinds of information: label
information and structure information [4]. Traditional edit operations are too limited
for join since they neglect the relationship between adjacent levels. In order to place
more emphasis on hierarchical structure, two new edit operations are proposed.

Reverse. Reverse two nodes that are one non-root node and its parent node. That is,
these two nodes are exchanged with each other while all the other nodes stay
unchanged.

Map. Map a path to an edge. Regard a path with more than two nodes as an edge that
consists of only the first and last node of the path.

Extended Tree Edit Distance. Given two trees T1 and T2, a series of edit operations
are applied to transform T1 into T2. The operations include inserting, deleting,
relabeling, reversing and mapping. The minimum total cost is extended tree edit
distance, denoted by , .

Example 1. In Figure1, Fig. 1 (a) is the original tree while Fig. 1 (b) and Fig. 1(c) are
modified trees after applying the two new edit operations respectively.

(a) (b) (c)

Fig. 1. Two new edit operations (a) Original tree (b) Reverse the two nodes b and d. (c) Map
the path a-b-d to an edge of a-d (shown as the dotted line).

3.2 Similarity Join on XML

Definition 1 (Similarity Join on XML). Given two XML documents F1 and F2, the
similarity join on XML between F1 and F2 is the set {(,)|(, j)∈ F1 F2 and , } [4], where , is computed by pre-defined measure and is a
pre-defined threshold.

Example 2. Figure 2 shows an example of similarity join on two XML documents
F1and F2. Let = 2. , 1 and , 3 . So the join result is
{(, }.

b c

a

d e

d c

a

b e

b

d

c

a

e

 Similarity Join on XML Based on k-Generation Set Distance 127

(a)T1 (b) T2 and T3

Fig. 2. (a) XML document F1 (b) XML document F2

4 Similarity Join Based on k-Generation Set

A similarity join returns all pairs of objects (from each set respectively) from two sets
of objects based on a similarity function such that their similarity value satisfies a
given criterion.

4.1 k-Generation Set and k-Generation Set Distance

In the paper, trees are divided into sub-trees from each node according to certain
rules. Each sub-tree relates to a k-generation set. k-generation set distance between
two trees is computed as a criterion for similarity join.

Definition 2 (k-generation sub-tree). Let V(T) be the set of the nodes of tree T.
v∈V(T), the k-generation sub-tree rooted at v is defined as follows: Node v is the root
of the sub-tree. Each time take one node from the path of tree T which begins at v and
ends at a leaf node until the total number reaches k (including v). If the number of
nodes along the path is less than k, then some dummy nodes (*) are added to
complement the vacancy. The sub-tree rooted at v along with k-1 other nodes is a k-
generation sub-tree of T, denoted by .

Fig. 3. 3-generation sub-trees of T’s nodes, T is shown is Fig. 2.(a)

a

b

d

a

b

e

b

d

*

b

e

*

a

c

*

d

*

*

e

*

*

c

*

*

b

d

c

a

e

n
c

a

m

f

e

c

a

b

d

128 Y. Wang et al.

Definition 3 (k-generation string). Let V(T) be the set of the nodes of tree T.
v ∈ V(T), the -generation string of is the collection of these nodes that are
possessed by . For each node v, there may be more than one k-generation sub-
tree rooted at v. We mark all the k-generation string of v as .

Example 3. Figure 2(a) shows a tree T of three levels. The sequence of pre-order
traversal of T is a, b, d, e, c. The 3-generation sub-trees of these nodes are showed
below in Figure 3. Accordingly, the 3-generation string of node a is {(a, b, d), (a, b,
e), (a, c, *)}.

Definition 4 (k-generation set). Given a tree T, is the set of the non-leaf nodes
of T. For each node v∈ , the set of is called the k-generation set of T,
denoted by .

Non-leaf nodes always have more impact in the join process than leaf nodes [8]. In
[8], the notion of influence degree is introduced. Through calculation, we can confirm
that the influence degree of non-leaf nodes is higher than that of leaf nodes. Since the
impact of internal nodes is more evident, we decide to emphasize more on internal
nodes during the search. Consequently, when we define k-generation set of a tree, leaf
nodes are not taken into consideration. This method makes the join process less com-
plicated and more effective.

In addition, we’d like to choose the value of k as 3 on account of adapting to the
new edit operations. Mapping involves more than two levels of a tree, so k should be
larger than 2. However, a much bigger k also brings side effects to the join process.
This overlooks the local structure information of the trees, which leads to poor join
quality. To compromise between the two conditions, we recommend that k is chosen
as 3 generally.

Theorem 1. Given an ordered labeled tree T with root v. k-2 dummy nodes are added
to each leaf nodes of T respectively when computing k-generation set. The number of
k-generation sub-trees of node v is no less than that of all the other nodes.

Definition 5 (k-string distance). Given two tuples with k elements in each of them,
the elements in the tuples are not ordered. Suppose u pairs of elements match with
each other in the tuples, then k-string distance between the two tuples is k-u.
Particularly, dummy node matches with any element and dummy node matching with
dummy node owns priority.

Example 4. Let (a, b, d) and (a, e, b) be two tuples. Since the two nodes with label a
and label b match respectively, 3-string distance between them is 1.

When computing k-string distance, we don’t consider the order of the elements in
each tuple. At the same time, dummy nodes are added to complement vacancy. These
ideas are adopted in order to meet the needs of the two new edit operations. If we
neglect the order of the elements, then reversing operation is simulated. We use
dummy nodes, which imitates the method of mapping operation since dummy node
matches with any element.

 Similarity Join on XML Based on k-Generation Set Distance 129

Definition 6 (k-generation set distance). Let T1 and T2 be two labeled trees. For k >
1, the k-generation set distance ∆ , between the two trees is defined as
follows: For each tuple in , find a tuple in to reach the minimal k-
string distance. The sum of these k-string distances is marked as Dist(T1,T2). Then ∆ T , T D T ,T| T | | T | . (1)

 (a)

Fig. 4. (a) Two representations of hierarchical data items (b) 3-generation set of T1 and T2

Example 5. Two trees concerning hierarchical data items are shown in Figure 4. They
are used to store information about students. The labels of the nodes from adjacent
levels have close relationship, as we can see in the figure. If we match in

, then Dist(T1,T2)=6. ∆ , =6/(16+12)=0.214. If we match in
, then Dist(T2,T1)=4. ∆ , =4/(16+12)=0.143.

Theorem 2. Generally speaking, if , , , then ∆ ,∆ , and vice versa.

Proof. The method of k-generation set distance is proposed on the basis of extended
tree edit operations. The order of the elements in a set is neglected to adapt to the

:(country,state1,city1), (country,state1,city2), (country,state2,city3),
(country,state2,city4), (state1,city1,*,) (state1,city2,school1), (state1,city2,school2),
(city2,school1,student1),(city2,school1,student2),(city2,school2,*),(school1,student1
,ID1), (school1,student2,ID2), (student1,ID1,*), (student2,ID2,*), (state2,city3,*),
(state2,city4,*) :(country,city1,*),(country,city2,school1),(country,city2,school
2),(country,city3,*), (country,city4,*), (city2,shool1,ID1), (city2,school1,ID2),
(city2,school2,*), (school1,ID1,student1), (school1,ID2,student2),
(ID1,student1,*), (ID2,student2,*) (b)

City3

School1

City2

ID2 ID1

Student1

Country

State1 State2

City1 City4

School2

Student2

City1

ID2

City3 City2 City4

Country

School1

ID1

Student1 Student2

School2

130 Y. Wang et al.

operation of reversing. Complementing dummy nodes is applied to adapt to the opera-
tion of mapping. Therefore, extended tree edit distance indicated by tree edit opera-
tions associates with k-generation set distance. Less operations to unify two trees
means small extended tree edit distance as well as less structure diversity. Less struc-
ture diversity denotes small k-generation set distance. That is to say, extended tree
edit distance and k-generation set distance are consistent to compare two tree struc-
tures. One example can be given here. In Fig. 2, , 1 and , =3. ∆ , =0.182 and ∆ , =0.25. Obviously, , , and ∆ , ∆ , .

4.2 Algorithms Concerning the k-Generation Set Distance

We show the main algorithms concerning the k-generation set distance here. A thre-
shold is pre-defined to adapt to certain data items. If the data items for similarity
join share many common elements and they look identical in structure, a small is
suggested. On the contrary, a slightly bigger τ should be selected. In example 5, let
=0.25. Since ∆ , =0.143<0.25, thus they can be joined with each other.

Algorithm 1. Pre-order Traversal.

Input: T, root(T); Output: a sequence of T’s nodes de-
noted by P(T)
r= root(T)
if T= , then

return
else

add r to the sequence P(T)
if r is a non-leaf node then

for all children c (from left to right) of r do
P(T)=Pre-order Traversal(sub-tree of T, c)

return P(T)

Algorithm 2. Generate k-Generation Set.

Input: T, k, P(T); Output: π T
for each node v∈P(T) do
 if v is a non-leaf node then

add S v to π T
return π T

Algorithm 3. Compute k-Generation Set Distance.

Input: T1, π T , T2, π T , k; Output: ∆ T , T
if |π T | |π T | then
 exchange T1 with T2

 Similarity Join on XML Based on k-Generation Set Distance 131

for each tuple (i) in π T do
 suppose that the k-string distance between tuple i

in π T and tuple 0 in π T is minimum
 for each tuple (j) in π T do
 if that distance between tuple i in π T and

tuple j in π T is smaller than previous one then
 use tuple j instead
 record the minimal k-string distance dist
 Dist(T1,T2)= Dist(T1,T2)+dist ∆ T , T Dist T , T |π T | |π T |⁄
return ∆ T , T

Algorithm 4. Similarity Join Based on k-Generation Set Distance.

Input: F1, F2, k, τ; Output: join_result
for all trees Ti in Fj do

P(Ti)=Pre-order Traversal(Ti, root(Ti))
 π T =Generation k-generation set(Ti, k, P(Ti))
 countji=|π T | where j denotes the sign of a forest
for all countji do
 if |count1m-count2n|<(count1m+count2n)/k then
 tree_num1 the tree corresponds to π T in F
 tree_num2 the tree corresponds to π T in F

Couple=Couple (tree_num1,tree_num2)
for each tree pairs in Couple do

Compute k-generation set distance ∆ tree_num1, tree_num2
if ∆ tree , tree τ then
 join_result=join_result (tree_num1,tree_num2)

return join_result

After providing the algorithms, a detailed join process is given in Table 1.

132 Y. Wang et al.

Table 1. 3-generation set of , 3-generation set of and the join process of them

3-generation set of T1 3-generation set of T2
1.(country,state1,city1) a.(country,city1,*)
2.(country,state1,city2) b.(country,city2,school1)
3.(country,state2,city3) c.(country,city2,school2)
4.(country,state2,city4) d.(country,city3,*)
5.(state1,city1,*) e.(country,city4,*)
6.(state1,city2,school1) f.(city2,shool1,ID1)

7.(state1,city2,school2) g.(city2,school1,ID2)
8.(city2,school1,student1) h.(city2,school2,*)
9.(city2,school1,student2) i.(school1,ID1,student1)
10.(city2,school2,*) j.(school1,ID2,student2)
11.(school1,student1,ID1) k.(ID1,student1,*)
12.(school1,student2,ID2) l.(ID2,student2,*)

13.(student1,ID1,*)
14.(student2,ID2,*)
15.(state2,city3,*)
16.(state2,city4,*)

T2 T1 dist
a 1 0
b 6 1
c 7 1
d 3 0
e 4 0
f 8 1

g 9 1
h 10 0
i 11 0
j 12 0
k 13 0
l 14 0

In the table, T1 and T2 are from example 5. 3-generation sets of T1 and T2 are given
respectively in the first chart. Since |T1|>|T2|, so 3-generation set distance between T1
and T2 is ∆ , . The second chart in Table 1 shows the relevant tuples and their
distances. Consequently, ∆ , =4/(16+12)=0.143.

4.3 Characteristics of k-Generation Set Distance

k-generation set distance emphasizes more on structure, which surpasses other me-
thods when dealing with hierarchical data. Our method is sensitive to local structure
information of trees, meanwhile the label information of trees is not overemphasized
too much [4].

Fig. 5. T0 is the original tree. T1 is generated by deleting a leaf node and relabeling a leaf node
while T2 is generated by deleting a non-leaf node and relabeling a non-leaf node.

c h

a

b

f g

c d

a

b

f g e

f g d

a

k

e

 Similarity Join on XML Based on k-Generation Set Distance 133

Example 6. Figure 5 shows a tree T0 and two modified trees by applying deleting and
relabeling operations. , , 2 . However, T0 and T1 seem more
similar. ∆ , =0.077 and ∆ , =0.15. Obviously, ∆ , ∆ , .
It illustrates that T0 and T1 share more similarity than T0 and T2, which is consistent
with the facts.

4.4 Time Complexity Analysis

We summarize the procedure of our method into the following steps. Suppose the two
trees to be matched are T1 and T2 (|T1|=m and |T2|=n, m<n). (1).Pre-order traversal of
T1 and T2 respectively; (2).k-generation sub-trees of each tree are generated. Then we
obtain k-generation strings from the sub-trees. The aggregation of these strings (the k-
generation string of the leaf nodes are excluded) is k-generation set; (3).Find the mi-
nimal k-string distance for each tuple in the k-generation set of T1 recursively. The
sum of the distances is recorded. Divide it by a figure we obtain ∆ , ;
(4).Compare ∆ , with the pre-defined threshold τ. If ∆ , , then T1
matches with T2; Otherwise, similarity join fails. Finally, output the results.

In (1), pre-order traversal can be finished in O(n) time, where n is the number of
nodes. In (2), generating k-generation sub-trees can be finished in O(n) time for a tree
with size n. In (3), the outer loop is implemented O(m) times while the inner loop is
implemented O(n) times. Step (3) will cost O(mn) time in the best case. When the
sizes of the two trees are comparable, it costs O(n2) time. Step (4) takes O(1) running
time. Therefore, the overall time complexity is 2(O(m)+O(n))+O(n2)+ O(1)= O(n2) in
the worst case.

5 Performance Experiments

In this section, we will give detailed analysis on performance experiments of our al-
gorithms. Our experiments were performed on a PC with Intel Core Duo 2GHz, 2G
main memory and 250G hard disk. The operating system is Ubuntu. The IDE is Co-
deBlocks.

5.1 Efficiency of Our Method

Compared with tree edit distance and extended tree edit distance, our method seems
more efficient. We mentioned that our method cost O(n2) run-time while the fastest
algorithms for the other two methods still need O(n3) run-time.

Experiments are carried out to make a comparison among related distances. In our
experiments, an adequate number of trees are randomly created with the number of
nodes ranging from 10 to 15000. And all the label information is chosen from a pre-
defined alphabet. The result is shown in Fig. 6.(a). We can see the run-time of tree
edit distance and extended tree edit distance grow more rapidly than k-generation set
distance, which convinces that our method owns high efficiency.

134 Y. Wang et al.

5.2 Influence of Related Parameter

In order to test the influence of parameter k on the join quality of our method, we
generated trees as Section 5.1. One discrepancy is that the trees are generated in pairs.
The result of the experiment is shown in Fig. 6.(b).

Experiments concerning the number of XML fragments in each document are also
tested. In this experiment, each tree contains about 200 to 300 nodes. And the trees
are generated with label information chosen from a pre-defined alphabet. The height
of the trees is logarithmic. The number of XML fragments in each document ranges
from 10 to 100. The run-time is shown in Fig. 6.(c).

(a) (b) (c)

Fig. 6. (a) Comparison among different distances (b) Influence of k on our method (c) Experi-
ments concerning the XML document size

(a) Swissprot (b) Treebank (c) DBLP

Fig. 7. k-generation set distance applied to large databases

5.3 Scalability and Flexibility

It is demonstrated that our method seems flexible in similarity join since two
additional edit operations are added. When dealing with hierarchical data items, the
convenience and strength of our algorithms are evident. Besides, our method can be
scaled to large data sets. Experiments concerning various XML databases including
Treebank, Swissprot and DBLP [4] are performed. The three databases vary in struc-
ture. Run-time of computing 3-generation set distance is shown in Fig. 7.

 Similarity Join on XML Based on k-Generation Set Distance 135

6 Conclusions

XML documents are often stored as ordered labeled trees with certain roots. When
integrating these data items, approximate join is usually applied. In the paper, we put
forward two new edit operations: reverse and map. They contribute to more flexibility
and effectiveness in the matching process. Thus, similarity join on XML based on the
new defined measure is necessary. k-generation set distance is created to meet the
needs. In our method, pre-order traversal is carried out first. Then k-generation sub-
trees are generated, which leads to the creation of k-generation set. Finally, matching
between two k-generation sets is applied and k-generation set distance is acquired.
Both theoretical analysis and performance experiments have proved the efficiency,
scalability and other properties of our algorithms.

Future work will concern more about improving the join quality further. Besides,
the stability of our method will be taken into consideration as well.

References

1. Augsten, N., Bohlen, M., Gamper, J.: Approximate matching of hierarchical data using pq-
grams. In: Proc. of the 31st VLDB Conferences, Trondheim, Norway, pp. 301–312 (2005)

2. Bille, P.: A survey on tree edit distance and related problems. Theor. Comput. Sci. 337
(1-3), 217–239 (2005)

3. Li, F., Wang, H., Hao, L., Li, J., Gao, H.: pq-hash: An Efficient Method for Approximate
XML Joins. In: Shen, H.T., Pei, J., Özsu, M.T., Zou, L., Lu, J., Ling, T.-W., Yu, G.,
Zhuang, Y., Shao, J. (eds.) WAIM 2010. LNCS, vol. 6185, pp. 125–134. Springer, Heidel-
berg (2010)

4. Li, F., Wang, H., Zhang, C., Hao, L., Li, J., Gao, H.: Approximate Joins for XML Using g-
String. In: Lee, M.L., Yu, J.X., Bellahsène, Z., Unland, R. (eds.) XSym 2010. LNCS,
vol. 6309, pp. 3–17. Springer, Heidelberg (2010)

5. Augsten, N., Bohlen, M.H., Gamper, J.: The pq-gram distance between ordered labeled
trees. ACM Trans. Database Syst. 35(1) (2010)

6. Tatikonda, S., Parthasarathy, S.: Hashing Tree-Structured Data: Methods and Applications.
In: ICDE (2010) (to appear)

7. Dulucq, S., Touzet, H.: Analysis of Tree Edit Distance Algorithms. In: Baeza-Yates,
R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 83–95. Springer,
Heidelberg (2003)

8. Han, Z., Wang, H., Gao, H., Li, J., Luo, J.: Clustering-Based Approximate Join Method on
XML Documents. Journal of Computer Research and Development (suppl.),
81–86 (2009); ISSN:1000-1239/CN 11-1177/TP46

9. Guha, S., Jagadish, H.V., Koudas, N., Srivastava, D., Yu, T.: Approximate XML Joins.
ACM SIGMOD (June 4-6, 2002)

10. Guha, S., Jagadish, H.V., Koudas, N., Srivastava, D., Yu, T.: Integrating XML Data
Sources Using Approximate Joins. ACM Transactions on Database Systems 31(1),
161–207 (2006)

L. Wang et al. (Eds.): WAIM 2011 Workshops, LNCS 7142, pp. 136–139, 2012.
© Springer-Verlag Berlin Heidelberg 2012

XML Query Processing Using Views

 Caiyun Yao1, Jiaheng Lu1, Wei Wang2, and Xiaofang Zhou1,3

1 School of Information, Renmin University of China
2 School of Computer Science and Engineering, University of New South Wales

3 School of Information Technology and Electrical Engineering, University of Queensland
ceylon0614@msn.com, jiahenglu@gmai.com, weiw@cse.unsw.edu.au,

zxf@uq.edu.au

Abstract. A fundamental problem in XML query processing is tree pattern
query (TPQ) matching which computes all data instances in an XML database
that match an input TPQ. More recently, there is growing attention on applying
materialized views, which is an established and effective optimization
technique in relational database systems, to TPQ matching. We study the query
answering using views problem for tree pattern queries (QAV). The QAV
problem is traditionally formulated in two ways: (i) find a maximal result, or
(ii) find an equivalent result. For the former, there exists an idea of searching
for a maximal contained rewriting, by applying some compensation to the result
of view. Because not all the answers will be returned, some useful answers may
be missing. Motivated by this, we study the latter one—finding an equivalent
rewriting of tree pattern queries. We mainly focus on path query.

Keywords: Extended Dewey Encoding, Path Query Matching, XML View.

1 Introduction

A fundamental problem in XML query processing is tree pattern query (TPQ)
matching [1] which computes all data instances in an XML database that match an
input TPQ. More recently, there is growing attention on applying materialized views,
which is an established and effective optimization technique in relational database
systems [3], to TPQ matching. We study the query answering using views problem
for tree pattern queries (QAV). The QAV problem is traditionally formulated in two
ways: (i) find a maximal result, or (ii) find an equivalent result. For the former, there
exists an idea of searching for a maximal contained rewriting, which is got by
applying some compensation to the result of view [6]. Because not all the answers
will be returned, some useful answers may be missing. Motivated by this, we study
the latter one --- finding an equivalent rewriting of tree pattern queries. We illustrate
the problem next.

1.1 Equivalent Result

Fig. 1(b) shows a materialized view computed by the expression V, “//Report//Course” on
some database containing students reports which involve the information of courses the

 XML Query Processing Using Views 137

students took and the score they got if they had pass the final exams. Fig. 1(a) shows
one possible database D the V’s result might have come from. We encode the nodes
for easy reference.

Consider the query Q, “//Compulsory//Course” in the document D in Fig. 1(a),
Course (2) and Course (5) meet the demand. Therefore, the result of applying Q on D
is Course elements (2, 5). Suppose only the materialized result of V in Fig. 1(b) is
available (as a data source). When applying Q on V, if the result got by applying Q on
V is the same as the one got by applying Q on D, we call it an equivalent result.

Fig. 1. Report Document 1

Fig. 2. An XML tree with extended Dewey code

1.2 Encoding Scheme

Encoding schemes (e.g. [2, 11]) are widely used in XML query processing to identity
the relationship between XML tree nodes, We use extended Dewey code [11] in this
paper, and the encoding of each node, in Fig. 2(a) is shown beside the label. The
extended Dewey code of each node can be converted into a label-path, i.e., a sequence
of node labels from root to a particular node, using a finite state transducer (FST). The
finite state transducer of XML tree in Fig. 2(a) is given in Fig. 2(b).

138 C. Yao et al.

Consider the encoding 0.0.2 in Fig. 2(a) (for c). The first label a can be derived,
since the first number 0 in 0.0.2 satisfies 0 mod 1 = 0 from the input of FST in Fig.
2(b). The second label a will be derived, since the second number 0 satisfies 0 mod 4
= 0 on node a in FST. Finally, we derive label c, since the last number 2 has 2 mod 4
= 2 on node a. The label-path of c is derived as “/a/a/c”.

2 Preliminary Research

Based on the work done before, we call extended Dewey schemes to solve QAV
problem. A distinguished node of a query Q (resp. view V) corresponds to the answer
element, denoted as DQ (resp. DV).

Fig. 3. Report Document 2

We encode the nodes in D in Fig 3(a) using extended Dewey. Consider the query
Q, “//Compulsory//Course” in V. Extended Dewey encoding scheme offers
information of path through root to the node itself in D, i.e., it can be derived that
Course elements (0.0.0, 0.0.2) come from “/Report/Compulsory/Course”, while
Course element (0.1.0) comes from “/Report/Optional/Course”. So the result got by
applying Q on V is Course elements (0.0.0, 0.0.2). We already know that by applying
Q on D, Course elements (0.0.0, 0.0.2) will be returned, so Course elements (0.0.0,
0.0.2) is an equivalent result.

Lemma 1. Let V be tree patterns and Q be path query. Suppose the original database
D that V comes from is encoded using extended Dewey. There exists an equivalent
result.

Proof. D is encoded using extended Dewey encoding scheme, hence from the codes
of nodes, information of path through root to itself in D can be derived. If query Q is a
path query, Q possesses only one path. It is clear whether there is DQ-element in V
corresponded to Q. Because if there exists, Q must be contained by the path derived.

3 Future Work

Most query language of XML can be regarded as the combination of pattern
languages and structural expression, which are the generation of tree pattern query.

 XML Query Processing Using Views 139

How much encoding scheme can help to get the equivalent result got by applying tree
pattern query on view is a core problem. It still takes time to make sure the ability of
encoding scheme according to the query. We may ask indexes to solve the problem
remained by encoding scheme.

Acknowledgments. Jiaheng Lu was sponsored partially by the NSF China

(60903056)， Beijing Municipal Natural Science Foundation (4112030) and Program

for New Century Excellent Talents in University.

References

1. XML Path Language (XPath) 2.0, http://www.w3.org/TR/xpath20/
2. Al-Khalifa, S., Jagadish, H.V., Koudas, N., Patel, J.M., Srivastava, D., Wu, Y.: Structure

join: A primitive for efficient XML query pattern matching. In: ICDE (2002)
3. Amer-Yahia, S., Cho, S., Lakshmanan, L.V.S., Srivastava, D.: Minimization of tree pattern

queries. ACM SIGMOD (2001)
4. Bruno, N., Koudas, N., Srivastava, D.: Holistic twig joins: Optimal XML pattern

matching. SIGMOD (2002)
5. Chen, D., Chan, C.-Y.: Viewjoin: Efficient view-based evaluation of tree pattern queries.

In: ICDE (2010)
6. Fiebig, T., Helmer, S., Kanne, C.-C., Moerkotte, G., Neumann, J., Schiele, R., Westmann,

T.: Anatomy of a Native XML Base Management System 11(4) (2002)
7. Halevy, A.: Answering queries using views: A survey. VLDB Journal 10(4) (2001)
8. Kaushik, R., Bohannon, P., Naughton, J.F., Korth, H.F.: Covering indexes for branching

path queries. In: ACM SIGMOD (2002)
9. Kaushik, R., Shenoy, P., Bohannon, P., Gudes, E.: Exploiting local similarity for indexing

paths in graph-structured data. In: ICDE (2002)
10. Lakmannan, L.V.S., Wang, H., Zhao, Z.: Answering tree pattern queries using views. In:

VLDB (2006)
11. Lu, J., Ling, T.W., Chan, C.-Y., Chen, T.: From region encoding to extended Dewey: On

efficient processing of XML twig pattern matching. In: VLDB (2005)
12. Tang, N., Yu, J.X., Ozsu, M.T., Choi, B., Wong, K.-F.: Multiple materialzed view

selection for XPath query rewriting. In: ICDE (2008)
13. Xu, W., Ozsoyoglu, Z.M.: Rewriting XPath queries using materialized views. In: VLDB

(2005)

XIO-SLCA: Optimize SLCA for Effective

Keyword Search in XML Documents

Xia Li1, Zhanhuai Li1, PeiYing Wang2, Qun Chen1,
Lijun Zhang1, and Ning Li1

1 School of Computer Science and Technology,
Northwestern Polytechnical University,

Xi’an 710129, China
2 China Aeronautics Computing Technique Research Institute

Xi’an 710068, China
{lixia,lizhh,chenbenben,Zhanglijun,lining}@nwpu.edu.cn

ljping1000@sina.com

Abstract. Keyword search has attracted a great deal of attention for
retrieving XML data because it is a user-friendly mechanism. In this
paper, we study the problem of effective keyword search over XML doc-
uments. The paper SLCA proposed that keyword search returns the set
of smallest trees, where a tree is designated as smallest if it contains no
sub-tree that also contains all keywords. The paper SLCA also provided
detail description of the Indexed Lookup Eager algorithm (IL) to calcu-
late SLCA. We analyzed and experimental studied the IL algorithm of
SLCA deeply, find that there are 3 bugs which should not be disregarded.
This paper investigates the problems to correct the existent 3 bugs of
the algorithm IL, and proposes an optimize method called XIO-SLCA
to improve keyword search quality. We have conducted an extensive ex-
perimental study and the experimental results show that our proposed
approach XIO-SLCA achieves both higher recall and precise when com-
pared with the existing proposal SLCA.

Keywords: Keyword Search, XML, IR, SLCA, XIO-SLCA.

1 Introduction

The Extensible Markup Language(XML) is becoming the dominant standard for
exchanging data over the World Wide Web. As XML becomes the standard for
representing web data, how to perform effective information retrieval on XML
data has attracted much research interests in recent years[1,2,3]. The INitative
for the Evaluation of XML Retrieval (INEX)1, for example, was established
in April, 2002 and has prompted XML researchers worldwide to promote the
evaluation of effective XML retrieval.

1 http://www.inex.otago.ac.nz/

L. Wang et al. (Eds.): WAIM 2011 Workshops, LNCS 7142, pp. 140–149, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.inex.otago.ac.nz/

XIO-SLCA: Optimize SLCA for Effective Keyword Search 141

1.1 Our Contributions

Existing studies mainly focus on efficiency of keyword search on XML
databases[4,5], and accordingly, how to reduce unrelated results of a keyword
query so as to improve the precision is urgent to investigate. We emphasize the
quality of keyword search on XML databases in this paper, which is at least as
important as efficiency.

To achieve our goal, we first introduce a concept, called XIO(XML Information
Object)[6], which is a smallest meaningful XML twig as an information object
result. Then we introduce the algorithm to score the XIO similarity between
two XIOs. Finally, we investigates the problems to correct the existent 3 bugs of
the algorithm IL in the paper SLCA[4], and proposes an optimize method called
XIO-SLCA to improve the performance of keyword search. To summarize, the
contributions of our work include:

1. We introduce the notion of XIO, which is smallest meaningful information
object as a twig of XML data, and propose the algorithm to score similarity
of two XIO, which can dispose off the unrelated result.

2. We correct the bug of the algorithm IL of SLCA[4] which may return the
root node as a result of some query.

3. We correct the bug of the algorithm IL of SLCA which may omit some real
result.

4. We propose the method to judge a SLCA result whether is a XIO to avoid
unmeaningful result.

5. We conduct a performance study using real datasets with various character-
istics. The results show that XIO-SLCA corrects the bugs, and outperforms
the existing SLCA in terms of precision and recall.

1.2 Paper Organization

The remainder of this paper is organized as follows. We discuss the related work
and our motivation in Section 2. Section 3 introduces the notion of XIO, and
the algorithm to compute XIO similarity. We give an effective algorithm called
XIO-SLCA to correct the bugs of the algorithm IL of SLCA as a total solution
in Section 4. Experimental evaluations are provided in Section 5. Finally we
conclude the paper in Section 6.

2 Related Work and Our Motivation

2.1 Related Work

Keyword search is a proven and widely accepted mechanism for querying in
document systems and World Wide Web. It is a user-friendly way of querying
XML data, and it allows users to search the information they are interested
in without learning a complex query language or knowing the XML structure.
However, there are many unrelated results of a keyword query due to the lack

142 X. Li et al.

of clear semantic relationships among keywords. In particular, an incompletely
specified query may return too many results. Recently, keyword search has been
investigated extensively in XML databases. Given a keyword query and an XML
data source, most of related work [3,7] first retrieve the relevant nodes matching
with every single keyword from the data source and then compute LCA or SLCA
[4] of the nodes as the results to be returned. XRANK [8] and Schema-Free
XQuery[7] develop stack-based algorithms to compute LCAs as the results. The
paper[3] focus on the discussions how to infer return clauses for keyword queries
XML data. The paper[9] takes the valuable LCA as results by avoiding the false
positive and false negative of LCA. The paper SLCA[4] proposed the notion of
SLCA and two efficient algorithms IL and Scan Eager which can produce part
of the answers quickly so that users do not have to wait long to see the first
few answers. The production of SLCA has been recognized widely. This paper
objective is to improve the result quality based on SLCA, so that we will briefly
describe the SLCA as 2.2.

2.2 Algorithms about SLCA

The paper SLCA[4] proposed keyword search returns the set of smallest trees
containing all keywords, where a tree is designated as smallest if it contains no
tree that also contains all keywords. The core contribution of the paper SLCA[4]
is the Indexed Lookup Eager algorithm, exploits key properties of smallest trees
in order to outperform prior algorithms by orders of magnitude when the query
contains keywords with significantly different frequencies.

The notation about SLCA has been proposed in the paper SLCA[4], so that
we will not describe them in this paper again. The paper SLCA[4] proposed the
IL algorithm detailed, so that we do not describe it again.

2.3 Our Motivation

We analytically and experimentally evaluate the IL algorithm of SLCA, find
that there are some bugs which can not be disregarded. This paper investigates
the problems to correct the existent 3 bugs of the algorithm IL, and propose an
algorithm called XIO-SLCA to correct the bugs of SLCA. XIO-SLCA optimize
the existing algorithm IL of SLCA to avoid the meaningless result be returned
and to avoid meaningful result be omitted. Our objective is to improve keyword
search quality.

3 XML Information Object and XIO Similarity Score
Algorithm

3.1 XIO: XML Information Object[6]

In many applications, the goal is to find xml information objects related to xml
data set that best match a set of keywords. For example, as shown in Fig.1, one
might want to find the article which author is Tom, the node article(15) and

XIO-SLCA: Optimize SLCA for Effective Keyword Search 143

issues

(0)

issue

(1)
issue

(30)

volume

(2)

article

(5)

title

(6)

pages

(8)

authors

(10)

author

(11)

author

(13)

articles

(4)

John

(12)

Alice

(14)

RFID

(7)
12

(9)

article

(15)

journal

(23)

title

(16)

pages

(18)

authors

(20)

author

(21)

Tom

(22)

java

(17)

9

(19)

title

(24)

pages

(26)

author

(28)

Tom

(29)

XML

(25)

13

(27)

number

(3)

Fig. 1. An example of XML document tree

the node journal(23) will be return as xml information object. When user input
the keyword query Q = {author Tom}, we can infer user want to find a XIO
named article or journal rather than to find the attribute node author(21) or
the node author(28) which is an attribute of the XIO(article). Actually, each
xml document can be regarded as an xml information object, the root node is
the summarization of the XML contents, and each XML can be regarded as a
big XIO which contains many types of small XIO. The detailed definitions are
shown as following.

Definition 1. (XIO[6]) Which is a smallest meaningful XML twig as an infor-
mation object result. Given a set of labels li|1 ≤ i ≤ n and an XML schema tree
T, a XIO is defined as the root node of the subtree Tsub of T, such that Tsub

contains at least one schema node labeled as l1, ..., ln.

Definition 2. (Alias XIO[6]) In T = (N,E, r), there are XIO1 and XIO2 are
Tsub of T, the XIO1 and XIO2 is alias XIO, if all the following conditions hold:

1. Root(XIO1) �= Root(XIO2)
2. SIM(XIO1, XIO2) ≥ ∅ Here ∅ is the similarity threshold.

The Root(XIO) is the root node label of XIO. SIM(XIO1, XIO2) is the simi-
larity score of the two XIOs, detail in equation 1.

3.2 XIO Similarity Score Algorithm[6]

Because the root node label of XIO is different or the expression of certain
properties in different ways, we may mistakenly infer the same type XIO as
different type XIO. Typical example is the existence of an alias object. For
example, as shown in Fig. 1, the node article(15) and the node journal(23) should
be regarded as the same type of XIO. In order to avoid mistakenly judged the

144 X. Li et al.

same type of XIO into different type XIO, we provide an algorithm to computing
the similarity score between two XIO, as equation1.

The structure of same type XIO should be similar. Therefore, we consider two
factors to compute the XIO similarity, the semantic and the structural informa-
tion of XIO. That is, taking into account XIO contains the node information,
and to consider XIO contains hierarchy of node. The similarity score algorithm
of two XIOs as follows:

SIM(O1, O2) = SIM N(O1, O2) ∗ SIM L(O1, O2) (1)

In equation1, O1 and O2 are two twigs of T, SIM(O1, O2) is the similarity of
XIO1 and XIO2 SIM N(O1, O2) is the node similarity of XIO1 and XIO2 ,
detail in equation2). SIM L(O1, O2) is the node-level similarity of O1 andO2.

SIM N(O1, O2) =
|label(O1) ∩ label(O2)|
|label(O1) ∪ label(O2)| (2)

In equation2, label(O1) is the label of the node which is contained by O1. When
the number of two XIO contains the same node is more, the result value is
greater. If all nodes of the two XIO are same, the node similarity score is 1.
Thus, 0 ≤ SIM N(O1, O2) ≤ 1.

SIM L(O1, O2) =

n∑

i=1,j=1

Min(O1Lni,nj
, O2Lni,nj

)

Max(O1Lni,nj , O2Lni,nj)
(3)

In equation 3, O1Lni,nj
is the path number between node ni and node nj in

XIO1. When the count of two XIO contains the same path is more, the result
value is greater. If all paths of the two XIO are same, the node-level similarity
score is 1. Thus, 0 ≤ SIM L(O1, O2) ≤ 1. Apparently, 0 ≤ SIM(O1, O2) ≤ 1.

3.3 Meaningless XIO[6]

The XIO similarity algorithm can avoid return unrelated result. For example,
let a query Q(author, Tom, XML) be a query over the XML document in Fig. 1.
We can obtain that the XIO is the node journal (23). Since it contains the node
labeled as author and title respectively. In SLCA[4] or other keywords search en-
gine, the node articles(4) and the node journal (23) will be return, intuitively, the
node articles(4) should not be regarded as a result for the Q. In XIO-SLCA the
node articles(4) will be disposed because it contains two child nodes: article(15)
and the journal (23), and the two nodes are similarity according to equation1, so
that we consider the article(15) and the journal (23) as the same type XIO, their
parent node articles(4) is an aggregative node, it can’t as a result node because
it no independent meaningful. We define the meaningless XIO as follow.

Definition 3. (Meaningless XIO) In T = (N, E, r), there are many XIO which
are Tsub of T, the XIO is meaningless, if one of the following conditions hold.
Denoted the root node of XIO by u.

XIO-SLCA: Optimize SLCA for Effective Keyword Search 145

1. u ∈ NV
2. ∀v ∈ N, parent(u, v) = true →

(Label(vi) = Label(vj)) or ∀v ∈ N, (SIM(XIOi, XIOj) ≤ ∅
note, here ∅ is the similarity threshold.

For example, as shown in Fig. 1, the node articles(4) and the node authors(10)
are meaningless XIO.

4 XIO-SLCA Algorithm

According to the following bugs of IL algorithm, We analyse the cause of each
bug and give the correct method, then we propose the XIO-SLCA Algorithm as
algorithm1.

bug1: may return the root node as a SLCA result.
bug2: may discard some useful result because of the algorithm error.
bug3: may return some results which are meaningless for user.

4.1 Root Node as SLCA Result

In SLCA[4] may return the root node as a result. Obviously, the root node should
not be a result.

In the condition that if the last node of the result set which obtained from
the former iteration of the loop is the same with the first node of the result
set which obtained form the current iteration of the loop, because that the
v �= null && v ⊀ getF irstNode(B) is true in the current iteration of the loop
at line 10, so the node v as the result be returned, but the node v may be
regard as the incorrectness to discard in the latter iteration of the loop.

For example,detach the set S1 to three parts, suppose the former two parts
are small. In the first iteration of the loop at line 5-6, has B = (0) , and v = 0
into the secord iteration. In the secord iteration of the loop at line 5-6, because
of 0 ⊀ 0 , so B = (0) , at line 7, (v �= null && getF irstNode(B) ≺ v) is
false, but at line 10, (v �= null && v ⊀ getF irstNode(B)) is ture, so at line 11,
the root node v = 0 will be return. Obviously, it is a bug that should not be
ignored.

The correct method is to change the program of the IL algorithm, correct
the line 10, v �= null && v ⊀ getF irstNode(B) to v �= null && v �

getF irstNode(B) . In this way, when the node v is the same as the first
node of the set B , in the current iteration loop, don’t return the node v , when
perform the next iteration of the loop, return the set B .

4.2 Discard the Useful Result

In SLCA[4] may discard some useful result because of the algorithm error. Ob-
viously, it is the bug should not be omitted also.

For example, as the fig.2. Given a query Q1 = {XML Search author},
meaning to find the the author related with XML Search. In the fig.2, we know

146 X. Li et al.

Fig. 2. An example of XML document tree for describe the bugs of IL

that the node 0 : paper and 3 : reference should be results. The node
0 : paper contains all information of the paper which reference the paper denoted
by the node 3 : reference , it is a meaningful result. But as the SLCA algrithm,
the node 0 : paper should be discarded because there is parent(0, 3) = ture.

The correct method is that when compute a SLCA, delete the node from
the set S1, S2, ..., Sk which is produce the SLCA, avoid to disturb the sub-
sequence compute. For the same example as front, in the fig.2, if educe the
result node 3 : reference firstly, then to delete the node 2 : author and
XML Structure Search. The subsequence compute will get the node 0 : paper
from the node 1 : author and XML Keyword Search. Vice versa, if educe
the result node 0 : paper firstly, then to delete the node 1 : author and
XML Keyword Search. It will not disturb the subsequence compute also.

4.3 Return Meaningless SLCA Result

The method in the paper SLCA[4] may return meaningless result to user. The
main cause is not to consider the semantic information of XML. It is the bug
should not be omitted also.

In the XML document, one node should contains many information. For ex-
ample, a node contains a paragraph of a paper, when user want to get the
information about the paper, such as author, year ,title, etc. throuth a query
keywords which are just in the same paragraph, as the SLCA algorithm, the
node of the paragraph which contains the all keywords will be returned. Obvi-
ously, the result can not satisfy user’s need. The aim of a query is to get more
information than user known, if the result information just matching the query
keywords, the query is no meaning for user. In other words, the return node
is no independence meaning, should not as a result. How to judge a node is
independence meaning or not?

We propose a method to judge the node is meaningless or not, in the Section3.3
The node is meaning exception the NV node and the collection node. The method
to judge the collection node as the following.

(1) parent(u, v) = true
(2) ∀v ∈ N label(vi) = label(vj)‖AIO(vi, vj) = true

If a result node v is meaningless then we achieve its parent node u through the
function parent(u, v) = true , then to judge whether the node u is meaningless

XIO-SLCA: Optimize SLCA for Effective Keyword Search 147

or not, if not, continue, until the node u is an independence meaning node. For
example in fig.2 , for a query Q2 = {XML, Search}. the result nodes of SLCA
should be: 1 and 4 , but they are useless for user. In XIO-SLCA, the nodes:
1 and 4 should be judged as meaningless node, they can not be as results,
so to get their parent nodes 0 and 3 . The nodes 0 and 3 contain more
information than the query Q2, so they are useful for user.

We propose the XIO-SLCA algorithm to correct the IL algorithm, as
algorithm 1.

Algorithm 1: XIO-SLCA Algorithm

Input: a node set S
Output: the result SLCAs
begin1

v = null;2

while (there are mores in S1) do3
Read P nodes of S1 into buffer B;4

foreach (i = 2 → k) do5

B = get slca(B,Si);6

if (v �= null && getF irstNode(B) ≺ v) then7

removeF irstNode(B);8

endif9

if (v �= null && v � getF irstNode(B)) then10

if (v is a XIO) then11

Output(v);12

else13

u = parent(v);14

Output(u);15

endif16

endif17

v = removeLastNode(B);18

Output(B);19

B = { };20

endfch21

endw22

Output(v);23

end24

5 Experiments

We empirically compared the performance of our XIO-SLCA with the SLCA[4]
on the real-life data sets Sigmod2 and Mondial3. We implemented both the
SLCA and XIO-SLCA in Java. The test cases and the experimental results in Ta-
ble1. There are 16 test cases from two data sets, QS1-QS8 is the test case based
on Sigmod2, QM1-QM8 based on Mondial3. Here,precision =| Rq ∩ Rs | /Rq,
recall =| Rq ∩ Rs | /Rs, Rq is the real result of Query, the Rs is the
standard result. Fig.3 illustrates the experimental results compared the per-
formance of XIO-SLCA and SLCA. We observe that our algorithm achieves
better search performance than the methods SLCA. The recall rate and precision

2 http://www.cs.washington.edu/research/xmldatasets/
3 http://www.dbis.informatik.uni-goettingen.de/Mondial/

http://www.cs.washington.edu/research/xmldatasets/
http://www.dbis.informatik.uni-goettingen.de/Mondial/

148 X. Li et al.

Table 1. Test Case Queries on File: SigmodRecord and Mondial

NO. Test Case XIO-SLCA SLCA

QS1 Hatfield 5 5

QS2 author Hatfield title 5 5

QS3 title Description 15 15

QS4 Exploiting Parallelism 2 3

QS5 articlesTuple Exploiting authors 6 6

QS6 Description Independence William 1 1

QS7 author Gibson 2 3

QS8 title Description author Gibson 2 3

QM1 Organization 168 168

QM2 abbrev AfDB 1 1

QM3 country asia 54 54

QM4 country asia Chinese 13 13

QM5 country Chinese population 26 26

QM6 europe republic 23 23

QM7 monarchy asia 11 11

QM8 capital name MOC 11 17

Fig. 3. The recall and precise of the 16 test cases

rate are 100% on XIO-SLCA. Although the recall rate of SLCA are 100%,
but there are many results can not satisfy the user query, such as the test
case QS1,QS3,QS7,QM1,QM2,QM3, which just return the NV node. But the
precision rate, XIO-SLCA outperform over SLCA, because XIO-SLCA firstly
judge a SLCA is meaningful or not before return as a result, otherwise, XIO-
SLCA will discard the meaningless result node and return its parent node which
is meaningful through judge the result is XIO or not, such as the test case
QS1,QS3,QS7,QM1,QM2,QM3. The precision rate of XIOF methods and SLCA
method is differences because unmeaningful results are returned in SLCA, while
XIO-SLCA discard the meaningless result, such as the test caseQS4,QS7. Hence,
our method leads to an improvement over the existing approache.

XIO-SLCA: Optimize SLCA for Effective Keyword Search 149

6 Conclusion

In this paper, we study the thinking of SLCA and analyse the IL algorithm
deeply. We find there are three bugs which should not be ignored. We propose
the notion of XIO and related algorithms. We analyse each bug, and propose
the algorithm XIO-SLCA to correct the bugs of the IL based on the notion of
XIO. Then we have conducted an experimental study on real-life XML data sets.
The experimental results show that XIO-SLCA achieves both higher recall and
precise when compared with existing proposal SLCA.

Acknowledgments. This work is supported by the National Natural Sci-
ence Foundation of China under Grant No.6080303 and No.JC20110225, the
University Innovation Research and Training Program No.XJ1044, and the
National High-Tech Research and Development Plan of China under Grant
No.2009AA1Z134(863 Program).

References

1. Bao, Z., Ling, T.W., Chen, B., Lu, J.: Effective xml keyword search with relevance
oriented ranking. In: Proceedings of the 2009 IEEE International Conference on
Data Engineering, pp. 517–528 (2009)

2. Chen, Y., Wang, W., Liu, Z., Lin, X.: Keyword search on structured and semi-
structured data. In: Proceedings of the 2009 ACM SIGMOD International Confer-
ence on Management of Data, pp. 1005–1010 (2009)

3. Liu, Z., Chen, Y.: Identifying meaningful return information for xml keyword
search. In: Proceedings of the 2007 ACM SIGMOD International Conference on
Management of Data, pp. 329–340 (2007)

4. Yu, X., Papakonstantinou, Y.: Efficient keyword search for smallest lcas in xml
databases. In: Proceedings of the 2005 ACM SIGMOD International Conference
on Management of Data, pp. 527–538. ACM (2005)

5. Shao, F., Guo, L., Botev, C., Bhaskar, A., et al.: Efficient keyword search over
virtual xml views. The VLDB Journal 18(2), 543–570 (2009)

6. Li, X., Li, Z., Wang, P., Chen, Q.: Xiof:finding xio for effective keyword search
in xml documents. In: Proceedings of 2nd International Workshop on Intelligent
Systems and Applications, pp. 99–104 (2010)

7. Li, Y., Yu, C., Jagadish, H.V.: Schema-free xquery. In: Proceedings of the Thirtieth
International Conference on Very Large Data Bases, vol. 30, pp. 72–83 (2004)

8. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: Xrank: ranked keyword
search over xml documents. In: Proceedings of the 2003 ACM SIGMOD Inter-
national Conference on Management of Data, pp. 16–27 (2003)

9. Li, G., Feng, J., Wang, J., Zhou, L.: Effective keyword search for valuable lcas over
xml documents. In: Proceedings of the Sixteenth ACM Conference on Conference
on Information and Knowledge Management, pp. 31–40 (2007)

L. Wang et al. (Eds.): WAIM 2011 Workshops, LNCS 7142, pp. 150–159, 2012.
© Springer-Verlag Berlin Heidelberg 2012

The Development of XML Stored Procedures
in XML Enabled Databases

Fahad Alahmari1 and Eric Pardede2

1 Department of Computer Science & Information Technology
RMIT University, Melbourne, VIC 3000
fahad.alahmari@rmit.edu.au

2 Department of Computer Science and Computer Engineering
La Trobe University, Melbourne VIC 3086

E.Pardede@latrobe.edu.au

Abstract. In Relational Databases (RDB), the concept of stored procedures is
quite familiar to users, these being procedural methods that can be used for data
retrieval and manipulation. When users want to query or manipulate data, they
can utilize these methods and pass in the parameters. By doing so, the users do
not need to perform ad-hoc queries every time they want to perform typical
actions. In contrast, XML databases offer no support for such methods as yet,
meaning that users have to write ad-hoc XQuery or XPath, which can be time
consuming, prone to errors and not user-friendly. This paper investigates how
SQL stored procedures can be developed to effectively conduct various XQuery
and XPath against XML data within the enabled databases. For implementation,
we use SQL Server 2008.

Keywords: XML stored procedures, XML methods, XQuery.

1 Introduction

Stored Procedure has been long established in Relational DBMS. It allows database
users to perform various queries that retrieve and manipulate relational data without
writing ad-hoc queries every time they want to perform typical actions. On the other
hand, XML Database offers no support for such methods as yet, meaning users have
to perform ad-hoc XQuery and XPath.

In general, the manipulation of data in a database using ad-hoc queries is often not
a simple process for database users. There are many scenarios where the decision to
use ad-hoc queries is a difficult procedure. For example, in a hospital, if a doctor
wants to retrieve information on a patient, he/she may not be able to create an ad-hoc
query to manipulate the patient’s information because they would need to understand
SQL and XQuery statements, which may be outside their area of specialization. In
such a circumstance, the best way to proceed would be to implement stored
procedures that would help collect a set of SQL and XQuery statements and then store
these in a database. This requires applications that can obtain the values and then pass
these on as parameters to the stored procedure.

 The Development of XML Stored Procedures in XML Enabled Databases 151

After a comprehensive analysis of existing approaches, several fundamental
concepts relating to XML database stored procedures that need future study have been
identified. One of these concepts is active XML, which might make it possible to
store procedures in a native XML database. Therefore, the active XML approach is
worthy of investigation in this paper. However, in our opinion, the active XML
approach involves various areas such as web applications and services, which are
beyond the scope of this paper. Hence, we do not investigate this approach in this
paper. Rather, we focus on approaches that show how XML stored procedures can
manage XML data in enabled databases.

The capabilities of SQL Stored Procedures can be extended to perform XQuery
and XPath, which led us to use the term XML Stored Procedures (XML SP) to
describe the operation.

This paper is organized as follows: in section 2, we discuss and summarize the
background and related work that has been carried out in the area of XML and stored
procedures. Section 3 outlines the operations of XML Stored Procedures involving
queries and functionalities. The implementation of XML Stored Procedures with
several examples will be given in section 4. Finally, the conclusion of this paper and
the future work will be discussed in section 5.

2 Background and Related Work

The Active XML [4] project seems the best choice to implement stored procedures in
a relational database. As XML performs an exchange of information over the web, an
XML document can embed calls to a web service inside the XML document.
Therefore, it might store some queries in a document, then call this document from
another document to run these queries. The following example is a simple Active
XML document which contains a service call. Service call, represented in bold font,
will call the service forecast@weather.com from the namespace
http://activexml.net

Active XML Example:

<?xml version="1.0" encoding="UTF-8" ?>
<newspaper

 xmlns="xmlns:axml="http://activexml.net">
<title>Le Monde</title>
<date>2-Apr-2003</date>
<edition>Paris</edition>
 <weather>
 % service call
 < axml:call service=”forecast@weather.com” >
 <city>Paris</city>
 < /axml:call>
 </weather>
</newspaper>

152 F. Alahmari and E. Pardede

The service will pass the parameter ‘Paris’ by a SOAP message to the
forecast@weather.com web service. The service answers the request by a SOAP
message that contains the return result. After running the above example, the AXML
is as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<newspaper xmlns="

 xmlns:axml="http://activexml.net">
 <title>Le Monde</title>
 <date>2-Apr-2003</date>
 <edition>Paris</edition>
 <weather>
 <temp>16</temp>
 </weather>
</newspaper>

The principle idea of calling an XML document in Active XML is similar to the idea
in relational and enabled databases. However, the techniques are quite different.
Therefore, the possibility of implementing a stored procedure in a Native XML
database is quite possible but there is a need for further investigation into how this can
be done.

XML Trigger research provides some fundamental information that can be used to
build XML Methods. In this background, we are interested more in the XML query
trigger because it has a special mechanism that can deal with many new applications
in XML-oriented DBMSs.

Grineva and Grinv [7] have shown two implementation methods for the XML
query triggers. The first method, called the “native” method can be performed on a set
of XML documents and depends on copying XML documents during the query
execution. This method is quite simple but it is still limited because of the problem of
copying the documents each time. The other method is implemented based on a
shadow mechanism which can transform XPath expression to semantic expressions.

The investigation into building XML Methods is in its initial stage. Do and
Pardede [3] used XML Database open source to implement XML Method. Their
implementation of functions shows “portability of XML Method as an encapsulated
style of wrapper program” [3]. However, their implementation was limited by the
capability of XML DBMS.

3 Queries and Functionalities of XML Stored Procedures

In an XML-Enabled Database, the way to access the XML data can be done by using
SQL and XQuery languages (SQL/XML). SQL/XML has many features and
functions that facilitate access to both relational models and XML models.

The new XML data type introduced in enabled DBMS provides new features
whereby users can store XML in the database. An XML data type might be used to

 The Development of XML Stored Procedures in XML Enabled Databases 153

create a column, a variable or a parameter to a stored procedure or function.
Furthermore, a column of type XML can be associated with an XML schema that is
used to validate the XML instances. In addition, if an XML column is associated with
an XML schema collection, it is called Typed XML; otherwise, it is called Untyped
XML.

Query languages are used within XML Stored Procedures to retrieve parts of XML
instance based on users’ criteria. XML SP can perform various queries such as:
XQuery 1.0, FLWOR, XQuery methods (query(), value(), nodes(), exist(), modify())
and DML language. In addition, XML SP is capable of running XQuery with SQL to
manipulate data either in relational form or data form.

Table 1 shows several functionalities of the XML Stored Procedure. The table
contains the taxonomy of the operations that can run within XML SP, its possible
functionalities and its general syntax.

Table 1. XML Stored Procedures Functional Overview

Operation Functionalities Syntax
Insert • Inserting a new element into an untyped xml

column.

• Inserting a new node into an untyped xml

column.

• Inserting multiple elements into the document.

• Inserting attributes into a document.

• Inserting a comment node.

• Inserting data using a CDATA section

• Inserting text node.

• Inserting based on an if…else condition

statement.

• Inserting nodes in a typed xml column

Insert

Expression1 ({as

first |as last}

into | after |

before

Expression2)

Delete • Deleting element from a document stored in an

untyped xml column.

• Deleting nodes from a document stored in an

untyped xml column.

• Deleting elements from a document stored in an

untyped xml variable.

• Deleting nodes from a document stored in an

untyped xml variable.

• Deleting elements from a typed xml column.

• Deleting nodes from a typed xml column.

SET

@x.modify('delete

Expression1')

154 F. Alahmari and E. Pardede

Table 1. (continued)

Replace • Replacing values in an XML instance.

• Using the if expression to determine replacement

value.

• Updating XML stored in an untyped XML

column.

• Updating XML stored in a typed XML column.

SET

@x.modify(replace

value of

(Expression1 with

Expression2)

Querying Based on users’ criteria SELECT {

Expression}|

method} from

TableName

As shown in the above table, each operation has various functions that can perform

XML SP against XML instances. These functions can query attributes, nodes,
elements, and XML documents. The function of the Querying operation is dependent
on users’ queries and what users want to extract, which means the classification of
queries here is quite difficult to anticipate. The syntax is in general form that can
work with all functions but the differences between those functions should be
considered. Each function for each operation needs to build its XML SP with its
signature syntax.

XML SP can do more than the above functionalities. For example, it can shred
XML data into multiple tables. Suppose a company has mapped its data using a
relational model but has received particular data in XML format which it now wants
to insert into its relational database. If the company decides to turn its relational
database into XML, there will be complex issues. However, the best solution in such a
scenario is to shred the XML document into a relational table. In SQL Server, the
operation of shredding can be achieved within XML SP in two ways: OPEN XML
function and XQuery language.

In OPEN XML, the system stored procedure sp_xml_preparedocument
must be called. This procedure also accepts parameters and loads XML documents
into the memory. Once the product has been inserted into a table, it can call the
sp_xml_removedocument system stored procedure to remove XML data from
the SQL Server’s memory.

The other way to shred XML within XML SP is to use XQuery language. XQuery
functions allow shredding XML without an intensive strain on the memory on the
server.

The comparison presented in the table above shows that both OPEN XML and
XQuery have the capability to shred XML documents. However, the OPEN XML
function consumes a large amount of memory because it needs to call other
procedures, whereas XQuery reduces the consumption of the server’s memory.

 The Development of XML Stored Procedures in XML Enabled Databases 155

Table 2. A comparison between OPENXML and XQuery within XML stored procedures.

Criteria

Stored Procedure

with OPENXML to

shred xml

Stored Procedure

with XQuery to

shred xml

Using XML data type as parameters √ √

Shredding XML into tables √ √

Reduce the call of other procedures X √

Reduce the consumption of the server memory X √

XML SP has other capabilities that can enhance database performance. As most

users prefer to use GUI for entering data and queries, the entry data that needs to be
manipulated can be converted into an XML model rather than being converted into
plain code as shown in Figure 1. Consequently, an XML SP can be built to take the
XML model as an input parameter. The procedure with its XML will determine the
correct action which should be taken. Basically, the most active queries from users are
classified into two categories [5] of XML DML queries: firstly, Insert, Delete,
Update; and secondly, Select statement, which is used to query from the database.
Using these two categories, two other XML stored procedures can be created. The first
can perform the XML DML queries and the second can perform Select queries. These
two procedures can be called from the main middle procedure [5].

Fig. 1. The output of GUI converts to XML then passes to stored procedure

An XML stored procedure refers to the stored procedure that contains XQuery and
XPath to manipulate inputted XML data. In Table 3, when the XML stored procedure

Table 3. The classification of stored procedures’ functionalities and actions

Main SP Stored Procedure Action

XML SP
(Input XML
Parameter)

Update
Insert

Delete

Update

Query Select

GUI Design

XML Model

XML Stored
Procedure

156 F. Alahmari and E. Pardede

received XML as an input parameter, the procedure will fetch the XML parameter
and then decide what appropriate action should be performed. This procedure could
be developed to call another two procedures (Update and Query) that are performed to
take XML parameters, and then within each one, the decision to move to the next step
will be made.

As shown in the above table, there are only two procedures can be invoked from
the main XML SP. These two procedures perform the action significantly. As a result,
the number of stored procedures can be reduced which reflects positively on database
performance [5].

4 XML Stored Procedure Implementation

This section provides an insight into how an XML stored procedure can be
implemented in an XML Enabled Database. It is important to mention that XML SP
can be built and stored in an Enabled Database. Therefore, when users want to query
or manipulate XML data, they can utilize these XML SPs without writing an ad-hoc
XQuery or XPath every time they want to perform the same queries. The prototype
for XML SP is implemented using visual C# 2008 in conjunction with SQL Server
DBMS [6].

4.1 User Interface

Designing a user interface allows the evaluation of the business layer (programming
code) more than once. Designing a simple user interface was one of our aims when

Fig. 2. User interface for evaluation of the implementation

 The Development of XML Stored Procedures in XML Enabled Databases 157

we proposed this work. The main goal of my conurbation UI is to accept some values
from a user, then manipulate XML data based on these values. Figure 2 shows a
simple form created in Visual Studio 2008. The form is divided into three parts: text
boxes to take users’ values, data grid to manipulate and view the database tables and
the XML section which shows these three tables in the format of an XML document.

4.2 XML SP Syntax to Manipulate XML Instances

Table 1 lists the possible functions that can be implemented by using XML SP. The
operation Insert, delete, update, and querying can be implemented within XML SP as
follows:

Insert a new element into the XML instance

CREATE PROCEDURE [dbo].[insertNewElement] (

 @XmlParameter xml)

AS

BEGIN

 Declare @param xml

 SET @param =(SELECT xml_Coulmn from table_name)

 SET @param.modify('insert sql:variable("@XmlParam")

 as first|as last|into|after|before|

 (queries_path)[element_number]')

 UPDATE table_name set xml_Coulmn =@ param

END

Delete existing element from the XML instance

CREATE PROCEDURE [dbo].[deleteElement] (

 @XmlParam xml)

AS

BEGIN

 Declare @param xml

 SET @ param =(SELECT xml_Coulmn from table_name)

 SET @param.modify('delete ("@XmlParam")')

 UPDATE table_name set xml_Coulmn =@param

END

Replace element into the XML instance

CREATE PROCEDURE [dbo].[reaplceNodeValue] ()

AS

BEGIN

 Declare @param xml

 SET @param =(SELECT xml_Column from table_name)

 SET @param.modify(replace value of

 (queries_path[element|node number]

158 F. Alahmari and E. Pardede

 with “NewValue”)

 UPDATE table_name set xml_Column =@param

END

Querying operation from the XML instance (as an e.g.)

CREATE PROCEDURE [dbo].[queryTest]

 @xmlData xml

AS

BEGIN

 select @xmlData.query('

 for $cd in CATALOG/CD

 where $cd/PRICE>10

 order by $cd

 return

 <CD>{$cd/TITLE}

 {$cd/PRICE}

 </CD>') as Result

END

4.3 XML SP Syntax to Shred XML

XML SP can use XQuery methods. The following example shows two of these
methods: value() and nodes(). The value() method extracts the value of the
node from the rowset with the type specified. The nodes() method returns an
unnamed rowset and can also return multiple values. There is no need to include page
numbers. If the paper title is too long to serve as a running head, it will be shortened.
Suggestions as to how to shorten it are welcome.

Example of how XML SP can shred XML data into multiples tables

CREATE PROCEDURE InsertProducts

(@xmlData XML)

AS

BEGIN

 INSERT INTO Products

 (ProductID, ProductName, Price,Quantity)

 SELECT

 Table1.Column1.value('@ProductID', NT'),

 Table1.Column1.value('@ProductName',

 'NVARCHAR'),

 Table1.Column1.value('@Price', 'FLOAT'),

 Table1.Column1.value('@Quantity','INT'),

 FROM

 @xmlData.nodes('/Products/Product') AS

 Table1(Column1)

END

 The Development of XML Stored Procedures in XML Enabled Databases 159

Using XML with SQL Stored Procedures saves users from passing multiple
parameters, and facilitates the operation of insert, delete, update and query from XML
instances cleanly. If there are no XML stored procedures, then the user will need to
implement an ad-hoc query each time they need to insert or query a person.
Obviously, rewriting ad-hoc queries is time consuming, prone to errors and not user-
friendly.

5 Conclusion and Future Work

This paper presented several functionalities of XML Stored Procedures within an
XML Enabled Database. Some functions are implemented in SQL Server 2008 to
demonstrate the capability of XML SP to mange XML data and relational models as
well. In general, users are able to implement their methods and procedures using
XQuery and XPath.

Future work can be extended to schema because most approaches and experiments
were built with non-schema-based data. In addition, most of the approaches discussed
in this paper are built in SQL Server. Therefore, it is important to extend this work to
other enabled management systems in order to make an empirical comparison
between these systems and its support of XML stored procedures.

All approaches in this work were implemented on an enabled database. These
approaches need further investigation in order to extend this work to XML databases.
Active XML [4] gives a few insights on how stored methods can be implemented in
native XML databases using a web service. Active XML projects also deserve further
investigation.

References

1. Landberg, A., Rahayu, J., Pardede, E.: Extending XML Triggers with Path-Granularity. In:
Benatallah, B., Casati, F., Georgakopoulos, D., Bartolini, C., Sadiq, W., Godart, C. (eds.)
WISE 2007. LNCS, vol. 4831, pp. 410–422. Springer, Heidelberg (2007)

2. Shao, F., Novak, A., Shanmugasundaram, J.: Triggers over XML views of relational data
(2005)

3. Do, W.V., Pardede, E.: On Developing Methods for XML Databases. In: Gervasi,
O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2008,
Part II. LNCS, vol. 5073, pp. 1194–1203. Springer, Heidelberg (2008)

4. Abiteboul, S., Benjelloun, O., Milo, T.: The Active XML project: an overview. The VLDB
Journal The International Journal on Very Large Data Bases 17(5), 1019–1040 (2008)

5. Gunathunga, J., Umagiliya, A., Kodituwakku, S.: Leverage the use of XML in dynamic
GUI parsing and database stored procedures (2007)

6. Rys, M.: XML and relational database management systems: inside Microsoft® SQL
ServerTM. ACM, New York (2005)

7. Grineva, M.P., Grinev, M.N.: Query triggers for XML DBMS: Efficient implementation
on shadow mechanism. Programming and Computer Software 33, 204–213 (2007)

L. Wang et al. (Eds.): WAIM 2011 Workshops, LNCS 7142, pp. 160–166, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Slope One Collaborative Filtering Recommendation
Algorithm Using Uncertain Neighbors Optimizing

Jingjiao Li1, Limei Sun1,2, and Jiao Wang1

1 College of Information Science and Engineering, Northeastern University,
Shenyang, China

2 Information and Control Engineering Faculty, Shenyang Jianzhu University,
Shenyang, China

limeisun@126.com

Abstract. Collaborative filtering is one of widely-used techniques in
recommendation systems. Data sparsity is a main factor which affects the
prediction accuracy of collaborative filtering. Slope One algorithm uses simple
linear regression model to solve data sparisity problem. Combined with users’
similarities, k-nearest-neighborhood method can optimize the quality of ratings
made by users participating in prediction. Based on Slope One algorithm, a new
collaborative filtering algorithm combining uncertain neighbors with Slope One
is presented. Firstly, different numbers of neighbors for each user are
dynamically selected according to the similarities with other users. Secondly,
average deviations between pairs of relevant items are generated on the basis of
ratings from neighbor users. At last, the object ratings are predicted by linear
regression model. Experiments on the MovieLens dataset show that the
proposed algorithm gives better recommendation quality and is more robust to
data sparsity than Slope One. It also outperforms some other collaborative
filtering algorithms on prediction accuracy.

Keywords: collaborative filtering, recommendation system, data mining,
knowledge discovery, k-nearest-neighborhood.

1 Introduction

Recommendation system is such software that can acquire personalized
recommendations. In accordance with the message type used in the system,
recommendation systems can be classified as content-based filtering, collaborative
filtering and hybrid filtering [1]. Collaborative filtering is a frequently-used technique
in recommendation systems [2]. It helps users to choose items with the aid of other
users’ experience. The users’ preference message (such as ratings to items and
browsing time) is recorded to help users filter items. Collaborative filtering is
commonly divided into memory-based and model-based. Memory-based
collaborative filtering can still be subdivided into user-based [3] and item-based [4].
There are also collaborative filtering algorithms that mix user-based and item-based
[5], or mix content-based and item-based [6].

 A Slope One Collaborative Filtering Recommendation Algorithm 161

The basic problems in collaborative filtering are data sparisity, cold start and
expandability [2]. Data sparisity means that many users’ ratings to items are vacant.
Because the historical ratings are used to train and predict, the prediction results are
influenced due to too sparse historical ratings. To solve data sparisity, a lot of
algorithms use probability-based or clustering smooth methods to predict the vacant
ratings initially [2, 5, 7].

Slope One is one of item-based collaborative filtering recommendation algorithms
that is based on linear regression. It is adaptive to data sparisity and can generate
effective recommendation in real time [8]. Slope One algorithm is extensible and easy
to be realized. It is used in many online recommendation systems such as Hitflip
DVD recommendation system and in Discover MP3 recommendation system.

In this paper, we propose an improved collaborative filtering algorithm that
combines uncertain neighbors with Slope One. Firstly, we select different number of
neighbors for each user according to the user’s similarity to improve the quality of
rankings from users participating in prediction. Secondly, we use the selected
neighbors’ ratings to calculate the deviation between items by linear regression
formula. Thirdly, we calculate the ratings that target user rates some products. Lastly,
we select the top k products as recommendation results to the target user in line with
the order of ratings. Experiments on the MovieLens dataset show that the improved
algorithm can help to increase the accuracy of recommendations. It is also more
robust to data sparisity.

2 Background

2.1 Question Description

In a recommendation system, there are m users and n items. The users set is

1 2{ , ,..., }mU U U U= and the items set is 1 2{ , ,..., }nI I I I= . The ratings in the

recommendation system are represented by a m n× matrix, called rating matrix. The
rating matrix is denoted by (,)R m n ,where ijr means that user jU rated item jI by

ijr . The value of ijr may be boolean or real. If user iU hadn’t rated item jI , the

value is zero. As shown in Table 1 , (,)R m n is the rating matrix.

Table 1. Ratings Matrix((,)R m n)

 I1 … Ij … In

U1 r11 … r1j … r1n
… … … … … …
Ui ri1 … rij … rin
… … … … … …
Um rm1 … rmj … rmn

162 J. Li, L. Sun, and J. Wang

Recommendation system is such a system that automatically predicts the interest of
an active user and recommends appropriate items to him via collecting information
(usually rating matrix) from other users. The active user is called target user. The
system can provide personalized recommendation to every target user.

2.2 Slope One Algorithm

Slope One algorithm is a rating-based recommendation algorithm which works on the
intuitive principle of a deviation between items for users. It determines how much
better one item is liked by users than another. It uses the simple formula that only
subtracts the average rating of the two items to work out the deviation. Then, given
the ratings that user rates some items, the deviation can be used to predict ratings that
user rates the other items. The predictor is as ()f x x b= + . In

practice, ()Bj Bi Aj Air r r r= + − . Bjr is the predicted rating that user B rates item j. The

prediction process consists of two sections: (1) calculate the deviation ,j kdev

between item j and item k ; (2) predict the unknown rating () jP u which means the

rating that target user rates item j. Recommendation is in line with the predicted
ratings. jkI is the user set that both rate item j and item k. Rj is the item set which are

rated by target user.

, ()
i jk

ij ik
j k

u I jk

r r
dev

card I∈

−
= ∑ (1)

,()

()
()

j

j k k
k R

j
j

dev u

P u
card R

∈

+
=
∑

(2)

There are two versions of Slope One: weighted Slope One and bi-polar Slope One.
Weighted Slope One: the deviation between two items has a weight jkc which is

defined by the number of users that rate both of the two items. ()jk jkc card I= . The

weighted predicted rating is calculated by ()w
jP u .

,()

() j

j

j k k jk
k Rw

j
jk

k R

dev u c

P u
c

∈

∈

+
=
∑

∑
 (3)

Bi-polar Slope One: because the users maybe like or dislike some items, the ratings
are divided into two parts through a threshold that is determined by the average rating
of the user. The deviation is also divided into like-deviation and dislike-deviation.
The like-deviation is calculated by formula (4) and the prediction rating of user j is
calculated by formula (5).

 A Slope One Collaborative Filtering Recommendation Algorithm 163

, ()like
i jk

ij iklike
j k like

u I jk

r r
dev

card I∈

−
= ∑ (4)

, ,

()
()

ji ji

j j

ji ji

j

like like dislike dislike
j i j i

i R i RBI
j like dislike

i R

p c p c

P u
c c

∈ ∈

∈

+
=

+

∑ ∑

∑
 (5)

3 Using Uncertain Neighbors Optimizing

Slope One is very simple but the prediction accuracy is comparative with the other
excellent prediction algorithm. Although Slope One doesn’t predict the vacant ratings
to remedy data sparisity, it achieves more accurate prediction. That is to say, in some
cases, using more ratings to predict one rating will lower the prediction accuracy. So,
the ratings should be denoised before prediction. We use only the ratings from the
target user’s neighbor to generate the deviation data instead of all users’ ratings.
Although the ratings used to predict become less, the quality of ratings becomes
higher. If some user doesn’t have the same interests with the target user, his ratings
will influence the deviation between two items and lower the quality of prediction.
Here we adopt uncertain neighbors to optimize the ratings. If a user is not the target
user’s neighbor, his ratings are deemed as noise ratings. After removing the noise
ratings, the quality of prediction will improve further.

3.1 Choose Uncertain Neighbors

Choosing nearest neighbors mainly depends on similarity computation. In traditional
user-based and item-based collaborative filtering, the common methods are Pearson
correlation coefficient, cosine similarity and adjusted cosine similarity[4]. Because
cosine similarity doesn’t consider the different measure of users and Pearson
correlation coefficient is often used to measure the similarity between items, the
similarity computation used in this paper is adjusted cosine similarity.

, ,

2 2
, ,

()()
(,)

() ()

ij

i j

i c i j c jc I

i j

i c i j c jc I c I

r r r r
sim u u

r r r r

∈

∈ ∈

− −
=

− −

∑
∑ ∑

 (6)

To improve the quality of neighbors further, a similarity threshold λ is defined.
Another parameter k is also needed. k means the max number of neighbors. λ
determines that a user can be the target user’s neighbor when their similarity is greater
than λ . Because the number of neighbors is uncertain, ' ()ik NN u means the 'k

nearest neighbors that user i has, where 0 'k k≤ ≤ .

164 J. Li, L. Sun, and J. Wang

' () { | (,) }i x i xk NN u u sim u u λ= ≥
(7)

3.2 Predict Ratings

By comparing weighted Slope One with bi-polar Slope One, we found the bi-polar
outperform the weighted one in accuracy. Thus, we adopt the bi-polar Slope One to
optimize the recommendation algorithm. We group the deviation between two items
into like-deviation and dislike-deviation.

The improved Slope One using uncertain neighbors is described as follow. k is the
max number of neighbors and λ is the user similarity threshold.

Imput: ratings matrix (,)R m n , target user u, target item ji , k , λ

Output: the predicted rating () jp u that user u rates item ji

1. calculate the user similarity matrix from (,)R m n

2. calculate the ' ()k NN u , here the parameter k and λ are needed

3. foreach item ki that u rated (k j≠) do

4. foreach ' ()v k NN u∈ do

5. If user v has rated both item ji and ki

6. If the rating that user v rated ki v≥

7. Calculate the like-deviation between item ji and ki using the rating

that user v rated item ki

8. else
9. Calculate the dislike-deviation between item ji and ki using the

rating that user v rated item ki

10. Endif
11. Endif
12. Endforeach
13. Endforeach
14. Using formula(5) to calculate () jp u

3.3 Data Sparsity Analysis

At first, the improved algorithm doesn’t predict the vacant ratings to remedy data
sparsity as Slope One does. Secondly, we will prove that the improved one can
accommodate sparser dataset than the common Slope One.

Given m users, n items and N ratings in a recommendation system, we define the
sparsity degree as /N mn . The smaller sparsity degree means the dataset is sparser.
Let ' ()ik NN u represent the uncertain neighbors of user iu . We can get

 A Slope One Collaborative Filtering Recommendation Algorithm 165

1

' ()
m

i
i

k NN u m
=

≤∪ . Let set
1

{ | ' ()}
m

a i
i

X a u k NN u
=

= ∈∪ , then all the ratings that the

improved algorithm uses is in set Y= { | ,1 }b jr b X j n∈ ≤ ≤ . Due to Y N≤ , the

sparsity degree in the improved algorithm practically is
Y

mn
. Obviously we have

Y N

mn mn
≤ . That is to say, the improved algorithm is more robust to data sparsity.

4 Experimental Study

4.1 Data Set

Here we conduct several experiments to compare the recommendation quality
between common Slope One and the improved algorithm. In the experiments we
adopt MovieLens dataset which sparsity degree is: 100000/(943×1682)=6.30%.
MovieLens is a movie website which accepts ratings that user rated movies with
range from 1 to 5.

4.2 Measurements of Prediction Quality

We use MAE (Mean Absolute Error) to measure the prediction quality of our
proposed algorithm with original Slope One and other collaborative filtering
algorithms. ip and iq are the actual and predicted ratings respectively.

1
N
i i ip q

MAE
N

=Σ −
= (8)

4.3 Experimental Results

In the experiments, the dataset is divided into train set and test set. The proportion of
train set is set as 0.8. That means we use 80% of the dataset as train set and the other
20% as test set. The user similarity threshold λ is set as 0.1. 100 users and 200 users
are chose randomly each time. The parameter k is changed to report the performance
of prediction.

We compare original bi-polar Slope One, our proposed UN-bi Slope One(bi-polar
Slope One using uncertain neighbors optimizing), traditional collaborative filtering
algorithms such as UBCF(User-Based Collaborative Filtering) and IBCF(Item-Based
Collaborative Filtering), and recently EMDP(Effective Missing Data Prediction). The
results are shown in Table 2.

166 J. Li, L. Sun, and J. Wang

Table 2. MAE Comparison with Other Algorithms (A smaller MAE means a better performance)

Train Users Methods MAE Train Users Methods MAE

MovieLens 100

bi-Slope One 0.749

MovieLens 200

bi-Slope One 0.74
UN-bi-Slope One 0.743 UN-bi-Slope One 0.735

UPCC 0.811 UPCC 0.807
IPCC 0.824 IPCC 0.812

EMDP 0.769 EMDP 0.761

From the results we can see the bi-polar Slope One using uncertain neighbors

optimizing outperforms the other algorithms. Because the improved algorithm
removes the noise ratings, it can get better performance.

5 Conclusion

In past collaborative filtering algorithms, due to the data sparsity, the algorithms need
to predict the vacant ratings to improve the recommendation quality. This operation
increases the complexity of itself. In this paper, we propose an improved Slope One
algorithm that is optimized with uncertain neighbors. By removing the noise ratings,
it can gain better recommendation quality. Empirical analysis shows that our
proposed algorithm outperforms other collaborative filtering algorithms and is more
robust to data sparsity.

Acknowledgments. This work was financially supported by the National Natural
Science Funds (60970157).

References

1. Choi, S.H., Jeong, Y.-S., Jeong, M.K.: A hybrid recommendation method with reduced
data for large-scale application. Trans. Sys. Man Cyber. Part C 40, 557–566 (2010)

2. Ma, H., King, I., Lyu, M.R.: Effective Missing Data Prediction for Collaborative Filtering.
In: SIGIR (2007)

3. Herlocker, J., Konstan, J.A., Riedl, J.: An empirical analysis of design choices in
neighborhood-based collaborative filtering algorithms. Information Retrieval 5(4),
287–310 (2002)

4. Sarwar, B., Karypis, G., Konstan, J., et al.: Item-based collaborative filtering
recommendation algorithms. In: Proc. of the 10th Int. Conf. on World Wide Web, pp.
285–295. ACM Press, New York (2001)

5. Wang, J., de Vries, A.P., Reinders, M.J.T.: Unifying User-based and Item-based
Collaborative Filtering Approaches by Similarity Fusion. In: SIGIR (2006)

6. Barragans-Martinez, A.B., et al.: A hybrid content-based and item-based collaborative
filtering approach to recommend TV programs enhanced with singular value
decomposition. Information Sciences 180, 4290–4311 (2010)

7. Yıldırım, H., Krishnamoorthy, M.S.: A Random Walk Method for Alleviating the Sparsity
Problem in Collaborative Filtering. In: Proc. of the 2008 ACM Conference on
Recommender Systems, Switzerland (2008)

8. Lemire, D., Maclachlan, A.: Slope One Predictors for Online Rating-Based Collaborative
Filtering. In: Proc. of SIAM Data Mining Conference, Newport Beach, California (2005)

A Social Reputation Management

for Web Communities

Di He, Zhiyong Peng�,
Liang Hong, and Yu Zhang

State Key Laboratory of Softeware Engineering, Wuhan University
Computer School, Wuhan University

{he,peng,hong}@whu.edu.cn, rudyyuzhang@gmail.com

Abstract. This paper proposes a social reputation management mech-
anism for modern Web communities, considering the Web 2.0 principles
such as friendship ties, share, collaboration and etc. A community is a
group of people that have similar topics, so reputation is relevant to the
topic. We aggregate the feedbacks, calculate community reputation and
overall reputation separately, and then publish them in forms of scores.
The case study is conducted to evaluate the reputation model in our Web
community management system.

Keywords: Web Community, Reputation System, Topic, Social Ties.

1 Introduction

The World Wide Web is ever growing with various communities focusing on dif-
ferent sets of interests or topics, even for social and professional purposes. These
Web communities are essentially characterized by social networks. One of the
reasons why social network sites have become so popular today is that these so-
cial systems bring collectivities to the world where those people are isolated, far
away from each other, and they can share some common interests or purposes
easily [1]. Users may become members in various communities and play roles
differently in each of them, build social ties, share information and participate
in collaborations within a community, depending on the degree of interest or the
topic of the community domain. The needs for establishing reputation mecha-
nisms in order to facilitate Web community members’ online activities become
apparent.

The Oxford English dictionary defines reputation as ”the beliefs or opinions
that are generally held about someone or something”. Reputation in such a social
Web community platform thus can be considered as a component of the identity
as defined by others members. In developing a reputation system, community
members are able to get their reputation scores according to the historical be-
haviors or quality of shared contents. Therefore the greater the reputation and

� Supported by the National Basic Research 973 Program of China under Grant No.
2007CB310806, The National Natural Science Foundation of China under Grant
No.61070011, Doctoral Fund of Ministry of Education of China No.20100141120050.

L. Wang et al. (Eds.): WAIM 2011 Workshops, LNCS 7142, pp. 167–174, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

168 D. He et al.

standing score of a member within the community, the greater the member’s
class/rank in community can be considered, the more willingness of member’s
participation will be incented, and the more friends or followers the member
will gain to enlarge his or her social network and collaborate with. An eBay1

empirical study indicates that sellers with better reputations sell their items
more than fewer ones [2]. Reputation systems also provide an alternative to help
users to create reliable social ties over the Web community [3]. From the point
of ties and friendships in social networks, global consumers trust completely in
friends’ recommendations more than other advertising ways [4]. Although many
existing online reputation systems can be beneficial to ecommerce systems and
online communities, the designs of online reputation systems are far from ideal.
Various issues including usability and effectiveness have been encountered [5].
Some common problems have not been well resolved lead to the unfaithful re-
sults or failures of reputation systems. First, there’s low incentive for encouraging
collaborative rating. Reputation score always comes from the collection and ag-
gregation of members’ past behavior and feedback. Many community members
fail or refuse to leave feedback. Second, reputation could be artificially affected
by malicious participants’ actions. Especially in collusion scenarios, for example,
some participants collaborate to rate someone positively [6]. The third problem
is many reputation systems use an overall score. Or the overall score is simply
summed by individual domain ratings. To address the above issues and study
reputation management in a social network environment, we propose a reputa-
tion mechanism on top of Web 2.0 to support dynamics of web communities and
reputation management with social and topic factors, considering the incentive
score, friendships and the reputation propagation phenomenon, etc., and then
aggregate the feedbacks into an overall reputation score and several commu-
nity/topic scores. The remainder of this paper is organized as follows. Section 2
introduces related work and our Web community system and the challenge is-
sues for reputation management. Section 3 illustrates the mechanism to compute
community members’ reputations. Section 4 discusses the simulation experiment
on our Web community system. Finally, we addressed some critical challenges
and future work in Section 5.

2 Related Work

Most ordinary online community platforms integrate simple metrics into repu-
tation systems. Amazon2 reputation system is a Web 2.0 version, considering
multimedia input, community contribution, interaction and other Web 2.0 prin-
ciples [7]. eBay also has its own reputation system, the detail is described in
[8]. There are some relevant prototype reputation systems. The TRAVOS sys-
tem is designed for large-scale open system, exploits two information sources
(Direct Interaction and Witness Observation) to assess the participants’ reputa-
tion, and employs a single rating score [9]. The beta reputation system considers

1 http://www.ebay.com
2 http://www.amazon.com

http://www.ebay.com
http://www.amazon.com

A Social Reputation Management for Web Communities 169

the opinion about the provider of information in order to discount the feedback
accordingly. However there are no clear incentives in this Bayesian model [10].
Liang and Shi [11] argue that simple averaging rating considering the simplicity
of algorithm design is a good method. Reputation also can be propagated be-
tween participators [12]. This is common to the basis of the PageRank algorithm:
if the sum of the ranking of the nodes with edges to a given node is high, then
the ranking of the node itself should be high. The basic idea of these current
reputation systems is gathering the rating feedback, especially in online trade or
biding systems or peer-to-peer (P2P) networks.

We are developing techniques to build a next-generation community manage-
ment system . Our goal is to implement dynamic community and member man-
agement. The Web community is a bounded system [13], which allows individuals
to construct public or semi-public profile, share connections, communicate and
collaborate within it. These social network management systems are different
from traditional web 1.0 sites in that each community is controlled by topics or
rules of engagement. Community systems tend to foster their members who are
authenticated in the system and regularly share interest or invoke related Web
services. Meanwhile, members may have multiple identifiers, roles or reputations
in different communities simultaneously. Reputation in Web communities is such
an important aspect for knowledge sharing and collaboration among community
members. In this paper, we propose a member-centered reputation mechanism
and system for our Web Community Management System (WCMS), with topic
and social connection features, in contrast to the related works.

3 Reputation Model and Mechanism

In our demonstrative Web community management scenario, communities can
be created by the Service Providers who can provide their specific services to
groups of community members. Each community can be defined with some rules.
Web users can become community members only if they satisfy the engagement
rules. They can join multiple communities at the same time and move from
one to another over time. Communities can be divided and merged so that
their members can communicate and collaborate efficiently. We considered these
factors for reputation management. Our reputation model is used to evaluate
the community members’ reputations in WCMS. Reputation is then used to
help a community member judge the trustworthiness or degree of another. We
employ social networking features by accumulating all the available feedback in
the community in order to develop a robust reputation estimation mechanism.

3.1 Member and Community

In this section, we present the formal definitions the reputation model in a Web
community environment.

170 D. He et al.

Definition 1. Member Profile δm: The profile of a community member m
is a tuple δm = 〈R, φ,A〉, where R is the overall reputation rank score that
each member assigns to himself, φ is the set of member’s friends, and A is the
member’s other social properties like the first/last name, birthday and etc.

Definition 2. Community Γc: A Web community c is a tuple Γc = 〈Δ,T, F 〉
which Δ is the set of member profiles in the community c, T is the topic and
engagement rule, and F is the set of members’ collaborate rating actions in the
community c.

We use an Object Deputy [14] Database system to store members as objects and
communities as relevant deputy classes. A community may have some conditions
which are defined as predicates of the deputy class. Only when a web user sat-
isfies the condition, he or she can join the community. When a web user joins a
community, a deputy object is created as an instance of the deputy class repre-
senting the community. A web user can have multiple deputy objects belonging
to different deputy classes for different interests or topics in communities. A
community member is a deputy object of deputy class inherited from the source
class and a user can be the member of several communities simultaneously. Using
the Object Deputy Algebra, communities can be merged or divided flexibly.

3.2 Reputation Rating

In our approach, community member A assigns a rating to member B in collab-
orative scenarios, such as bulletin board discussion threads, blog entries, photo
albums, or shared acknowledge like paper and etc.

Definition 3. Fi(j)
t
c is the rating feedback assigned by member j to member

i at time t in community c. We require that 0 ≤ Fi(j)
t
c ≤ 10, and Fi(j)

0
c = 0.

Each member will adapt his/her rating of another member based on the shared
content and his/her observation. Moreover, a specific rating feedback cannot
be allowed to be assigned more than once, taking into account the malicious
rating behaviors. Traditional approaches directly combine the ratings assigned
by different members.

Definition 4. Rt
i is the reputation rating score of member i at time t. Rt

i =
∑

j∈c Fi(j)
t
c

n .We require that R0
t = s > 0 , with the initial starting rating score s.

We set a starting reputation score which may be a prevention of an entry barrier.
If members start with a reputation of zero, this may be a barrier to entry into
the marketplace or community [5]. This incentive strategy is not perfect enough,
because we argue that reputation scores should lose relevance over time. After
the cross of the entry barrier, member also should be encouraged to engage the
community sharing and collaborative actions.

Definition 5. ρ is a time fading factor for past reputation scores, and the
time fading factor ρ can be any value between 0 and 1. The discount of past
reputation score at time t is ΔRt

i = Rt
i × ρΔt.

A Social Reputation Management for Web Communities 171

A low ρ value means that past rating feedback behaviors are shrunk more quickly.
When ρ = 0 means that past reputation scores are totally ignored. Another
extreme case is that for ρ = 1 all the historical values are kept forever. This is
still a simplistic approach that does not consider the reputations of the witnesses.
We should also consider the rater’s reputation weight.

Definition 6. Wj =
Rt

j

Rt
max

is the weight assigned to a rating of the rater j at

time t, where the Rt
max is the maximum reputation score at time t .

Therefore, the rating feedback from those who have a better reputation should
be weighed more heavily in reputation scores. This approach will also reduce
some malicious members’ effects, because they may have very low reputation
scores.

3.3 Reputation Propagation

To consider a member’s reputation score in a certain community to infer his/her
reputation in other aspects. This shows that each member has a set of potentially
changing neighbors with whom it is on the friend list.

Definition 7. φm = 〈δ0, . . . , δn〉 is a friend list of member m. For every friend
δi will have a reputation propagation factor Pm(i) towards m .
We then define a reputation propagation operator, → .

Definition 8. Pm(i) = δi → δm = 1 +
2×arctan(Rt

i−Rt
avg)

π is a single relation
i → m on the reputation of member m, where Rt

avg is the average reputation at
time t.

When consider this reputation propagation factor Pm(i), the level of reputa-
tion propagates over a negative link in a referral friend is below the average
reputation. Obviously, the value of Pm(i) is between (0, 2) .

Definition 9. Pm(φm) = φm → δm =
∑

i∈φm
Pm(i)

n is the group reputation
propagation factor towards m , considering all m’s friends.

The value of Pm(φm) is also between (0, 2) . Our basic idea is that a community
member m who has a higher reputation should affect other members’ reputation
scores on the friend list. A higher reputation means above the average Rt

avg. If
most friends’ reputations of a member are greater than the average, the result
of group reputation propagation factor will be greater than 1 and nearly 2. This
value indicates that the propagation influence is positive. When the value of
Pm(φm) is below 1, which shows that the reputation of m will be reduced by
friends with much lower reputations.

4 Preliminary Experiments

In this section, the evaluation of our model is presented. Based on our Web
community management system, we collect historical data to evaluate our model

172 D. He et al.

to prove accuracy and stability. Our experiments involve about 65 actual active
members within 5 different communities. We analyze every member’s behaviors
in WCMS and calculate each member’s actual reputation.

4.1 Reputation Metrics

We now define some useful metrics in which to intuitively capture the results of
our experiments. In order to encourage members to assign rating feedbacks, we
take account of recording rating behavior V c

t , which is the rating feedback score
in community c at time t.

Definition 10. Rc
m is the member m’s reputation score in community c.

Rc
m = (

∑
i∈c(ΔRt

i ×Wi) + α×∑
(V c

t × ρΔt) +R0
t)× Pm(φm)

Where V c
t represents the rating feedback behavior of member m in community

c at time t , α is the empirical parameter set by administrators.

Definition 11. Rm is the member m’s overall reputation score.

Rm = (
∑

(ΔRt
i ×Wi) + α×∑

(Vt × ρΔt) +R0
t)× Pm(φm)

Where Vt represents the rating feedback behavior of member m at time t , α is
the empirical parameter set by administrators.

We compute and then show members’ reputation scores to the community
public and personal portal in WCMS.

4.2 Case Study

The WCMS dataset is a collection of 65 active members, 352 friendship relations,
and it contains over 1, 000 rating behaviors. Fig. 1 displays a friendship network
of DB community.

Fig. 1. A friendship network of DB community

A Social Reputation Management for Web Communities 173

Fig. 2. The community reputation score (left) and the overall reputation score

We calculate all members’ reputation scores in DB community and their over-
all scores, for ρ = 0.998 , α = 0.01 and R0

t = 1 . The result of top 5 is shown in
Fig. 2. Notice that for a specific member, the community reputation score and
overall score are different.

We also trace and investigate a student’s overall reputation history changes,
illustrated in Fig. 3. After his entry to WCMS and participation in community
activities, his overall reputation score increased. At time T 6, his reputation de-
scended, the reason is that he left laboratory for about 2 months. It was not a
short time.

Fig. 3. An overall reputation historical change

5 Conclusion

This paper studies on the reputation rating and management method for a Web
community management system. Advantages and disadvantages regarding the
current reputation management systems are discussed in detail. We use social
network characters, such as friendship and collaboration, considering the rep-
utation propagation phenomenon, aggregate the feedbacks into an overall rep-
utation score more precisely. We take account of varies community topics and

174 D. He et al.

calculate the community reputation scores separately, which is helpful to im-
prove present systems. As future work, we intend to carry out case studies and
bring more social network analysis tools with more real community members and
their interactions. Our present approach does not fully against malicious rating
feedbacks and community members, especially in group conspirator scenarios.
We are also interested in analyzing our proposed model with larger datasets to
see how the model scales to larger systems.

References

1. Rheingold, H.: The Virtual Community: Homesteading on the Electronic Frontier.
MIT Press, Cambridge (2000)

2. Resnick, P., Zeckhauser, P.: Trust Among Strangers in Internet Transactions: Em-
pirical Analysis of eBay’s Reputation System. The Economics of the Internet and
E-Commerce 11, 127–157 (2002)

3. Mui, L., Halberstadt, A., Mohtashemi, M.: Notions of Reputation in Multi-Agents
Systems: A Review. In: 1st International Joint Conference on Autonomous Agents
and Multiagent Systems, pp. 304–305. ACM, New York (2002)

4. Giles, M.: A World of Connections: A Special Report on Social Networking. The
Economist, London (2010)

5. Malaga, R.: Web-Based Reputation Management Systems: Problems and Sug-
gested Solutions. Electronic Commerce Research 1(1), 403–417 (2001)

6. Resnick, P., Zeckhauser, P., Friedman, E., Kuwabara, K.: Reputation Systems.
Communications of the ACM 43(12), 45–48 (2000)

7. Zheng, W., Jin, L.: Online Reputation Systems in Web 2.0 Era. In: Nelson,
M.L., Shaw, M.J., Strader, T.J. (eds.) AMCIS 2009. LNBIP, vol. 36, pp. 296–306.
Springer, Heidelberg (2009)

8. Resnick, P., Zeckhauser, R.: Trust among strangers in Internet transactions: Em-
pirical analysis of eBay’s reputation system. The Economics of the Internet and
E-Commerce 11, 127–157 (2002)

9. Patel, J., Teacy, W., Jennings, N., Luck, M.: A Probabilistic Trust Model for Han-
dling Inaccurate Reputation Sources. In: Herrmann, P., Issarny, V., Shiu, S.C.K.
(eds.) iTrust 2005. LNCS, vol. 3477, pp. 193–209. Springer, Heidelberg (2005)

10. Jøsang, A., Ismail, R.: The beta reputation system. In: Proceedings of the 15th
Bled Electronic Commerce Conference on e-Reality: Constructing the e-Economy,
pp. 17–19 (2002)

11. Liang, Z., Shi, W.: Analysis of Rating on trust inference in Open Environments.
Performance Evaluation 65(2), 99–128 (2008)

12. Luo, X., Joshua, S.: MultiRank: Reputation Ranking for Generic Semantic Social
Networks. In: Proceedings of the WWW 2009 Workshop on Web Incentives. ACM,
NY (2009)

13. Boyd, D., Ellison, N.: Social network sites: Definition, History, and Scholarship.
Journal of Computer-Mediated Communication 13(1), 210–230 (2007)

14. Peng, Z., Kambayashi, Y.: Deputy Mechanisms for Object-Oriented Databases.
In: IEEE 11th International Conference on Data Engineering, pp. 333–340. IEEE
Press, New York (1995)

15. Zhai, B., Shi, Y., Peng, Z.: Object Deputy Database Language. In: The Fourth
International Conference on Creating, Connecting and Collaborating through
Computing, pp. 88–95. IEEE Computer Society, Washington (2006)

L. Wang et al. (Eds.): WAIM 2011 Workshops, LNCS 7142, pp. 175–184, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Collaborative Filtering Recommendation System
by Unifying User Similarity and Item Similarity

Dongzhan Zhang and Chao Xu

Xiamen University, Computer Science Department, 361005 Xiamen, China
zdz@xmu.edu.cn

Abstract. Collaborative filtering recommendation system based on user
similarity has been wildly studied because of its broad application. In reality,
users keep partial similarity with larger possibility. Computing the whole
similarity between users without considering item category is inaccurate when
predicting rating for a special category of items by using collaborative filtering
recommendation system. Aiming at this problem, a new similarity measurement
was given. Based on the new similarity measurement, a new collaborative
filtering algorithm named UICF was presented for recommendation. When
predicting rating for the special item, UICF chooses the users as nearest
neighbors which have the similar rating feature for the items with the same type
of the special item, instead of for all the items. Experimental results show the
higher quality of the algorithm.

Keywords: Recommendation system, collaborative filtering, item classification,
partial similarity.

1 Introduction

Recommendation system has become an important research field of e-commerce IT
technology. At present, many kinds of recommendation algorithm have been given by
researchers such as Bayesian network、cluster algorithm, association rules, horting
based on graph-theoretic, collaborative filtering recommendation algorithm and so on.
Bayesian network creates decision tree models relates to recommendation by training
set[1]. In the decision tree model, user information is represented by nodes and edges.
Cluster algorithm gathers the users with similar taste into one cluster[2,3] and then the
rating of target user for special items is predicted according to the rating of users in
the same cluster. Online cluster algorithm can generate recommendation with a high
speed by completing clustering process offline. Recommendation system based on
association rules recommends items to the target user in line with its current behavior
and association rules model[4]. Association rules model can be generated offline, so
recommendation system based on association rules can ensure real-time requirements.
Horting based on graph-theoretic[5] is a recommendation method based on graphic
with its nodes representing users and its edges representing similarity between users.
And it gives recommendation for target user by searching its neighbor nodes and then
integrating the ratings of neighbor nodes.

176 D. Zhang and C. Xu

Among these recommendation algorithms, collaborative filtering, hereinafter
referred to as CF, is the most successful one[6]. The basic idea with traditional
collaborative filtering algorithms is that rating of items which are not rated by user is
predicted based on rating data of the user’s nearest neighbors and then the item with
the highest predicted rating is recommended to the user. In order to find out nearest
neighbors for the target users, a method of measuring the similarity between users is
necessary. But with the expansion of e-commerce systems and the sharp increase of
users and items, the rating data is becoming extremely sparse, which reduces the
accuracy of nearest neighbors computed for the object user and then makes
collaborative filtering algorithm generate bad recommendation. To address this
issue, a number of improved methods have been given by researchers, such as item-
based collaborative filtering algorithm and its improvement[7-9], Collaborative
filtering based on Matrix dimensionality reduction[10-11] and Collaborative Filtering
Based on cloud model[12-13].

All these Methods mentioned above can resolve data sparsity and improve the
accuracy of user similarity to a certain extent, but they all ignore a important issue
that is users keep partial similarity with larger possibility. Computing the whole
similarity between users is inaccurate when predicting rating for special type of items
by using collaborative filtering recommendation system. Such as, user A and user B
maybe keep the same taste for the S type items , maybe user A and user B are all very
like the S type items or vice versa. But for T type items, there are large differences
between their tastes, maybe user A likes the T types items very much and it is just
Opposite to user B. To address this issue, this paper presents a new Collaborative
filtering recommendation algorithm based partial user similarity considering the item
types.

The rest of the paper is structured as follows. Section 2 introduces the main
framework of collective filtering recommendation system based on user similarity and
analyses the disadvantage of traditional user similarity measurement. Section 3
presents a new user similarity measurement and a new collaborative filtering
recommendation algorithm based the new user similarity measurement, hereinafter
referred to as UICF. Section 4 presents empirical studies and section 5 concludes with
future directions discussed.

2 Backgroud

This section mainly introduces the framework of user-based collaborative filtering
recommendation system and analyses the disadvantage of traditional user similarity
measurements.

2.1 User-Based Collaborative Filtering Recommendation System

User-based collaborative filtering recommendation method, referred as UCF below, is
based on the fact that users often like the items which are preferred by others users
who have same taste with them in the past. User-based collaborative filtering

 A Collaborative Filtering Recommendation System by Unifying User 177

recommendation system uses the entire user-item rating database to generate
recommendations. A typical UCF algorithm proceeds in four steps:
1. Computing User-Item matrix

Compute user-item matrix R according rating list. Assume the number of users and
items are m and n respectively, the user-item matrix R is as below.

11 12 1

21 22 2

1 2

n

n

m m mn

r r r

r r r
R

r r r

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

.

In matrix R, user and item are represented by row and column respectively and the
matrix element rij represents the rating of user i for item j. rij is set to zero if user i
hasn’t given rating to item j.
2. Computing user similarity matrix S

User similarity matrix S can be showed as below.

(1,1) (1, 2) (1,)

(2,1) (2,2) (2,)

(,1) (, 2) (,)

S S S m

S S S m
S

S m S m S m m

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

.

S(i,j) represents the similarity between user i and user j. The traditional measurements
of similarity between users are cosine similarity, adjusted cosine similarity and
correlation similarity[13-14] and cosine similarity is as formula 1.

(,) cos(,)
i j

S i j i j
i j

⋅= =
⋅

. (1)

3. Neighborhood selection
After the similarity computation, UCF algorithms have to select the most similar

users for the object user. This is the important step because the final recommendations
of UCF algorithm are generated using the ratings of its neighbors. So neighborhood
selection has a deeply impact on the recommendation quality. Paper[14] introduces
five strategies for neighborhood selection, and the most basic strategy is that selecting
the top k nearest-neighbors who have rated the given item.
4. Generating recommendation

After choosing the neighbors for the target user, UCF computes the prediction rating
for the given item based on a weighted aggregate of neighbor ratings, and then chooses
the item with the highest rating as the recommendation for the object user. Most used
aggregating function is weighted sum. To generate the prediction rating of item i for user
a, the weighted sum aggregating function can be presented as formula 2.

178 D. Zhang and C. Xu

, ,

,

,

()u i u a u
u U

a i a

a u
u U

r r w
P r

w
∈

∈

− ×
= +

∑
∑

. (2)

Pa,i is the prediction rating and U is the chosen neighbor set for user a. ar and ur

are the mean ratings of user a and user u. wa,u is the similarity measurement between
user a and user u.

2.2 Analysis of Traditional User Similarity Measurement

At present, the traditional user similarity measurements used by collective filtering
recommendation system compute the user similarity by user-items rating matrix
without considering the items category. Assume there are three users: A、B、U and
five items:I1、I2, I3、I4、I5. And the user-item rating matrix is as table 1.

Table 1. User-item rating matrix

Item-type Book Clothe Clothe
User\Item I1 I2 I3 I4 I5
A 2 1 1 2 3
U 1 2 1 2 X

B 1 2 2 1 3

If we compute the user similarity by traditional user measurement such as cosine
similarity measurement or others, assuming the similarity between user i and user j is
S(i,j), then S(A,U) is equal to S(B,U) according the rating matrix. Now if we are
going to predict the rating of I5 made by U, then S(A,U) is greater then S(B,U) is
more reality, because the rating feature of clothe-items made by user A and user U
keeps more similarity, and I5 is belong to clothe category. Obviously, the traditional
user similarity is not inaccurate for the example here.

So the basic idea behind this example is that: Users keep different similarity
referring to different item category, if we predict the rating of item which is belong to
clothe category, then the similarity between users in clothe category is more weighty
than similarity between users in other category when computing the whole users
similarity.

3 A New CF Algorithm by Unifying User Similarity and Item
Similarity

The similarity between two users is changing as referring to different categories of
items. This section introduces a new partial user similarity measurement which
computes similarity between users considering the item categories. Based the new
user similarity measurement, a new CF algorithm UICF is advanced.

 A Collaborative Filtering Recommendation System by Unifying User 179

3.1 User Similarity Measurement Considering Item Category

According to the discussion in section 2.2, User similarity measurement without
considering the item category is not accurate. So we divide the whole user similarity
into some parts, and each part is related to an item category in item set contained by
user item matrix. The whole similarity of S(i,j) between user i and user j can be
denoted as formula 3.

1 1

(,) (,) ... (,) ... (,)
i i n nIT IT IT IT IT ITS i j w s i j w s i j w s i j= × + + × + + × . (3)

where (,)
iITs i j is the partial similarity between user i and user j related to ITi item

category and
iITw is the weight of partial similarity. Here if we predict the rating of

item belonging to ITi , then
iITw is set to one and others of similarity weight is set to

a value between zero and one. The principle is that the more similarity kept by items

in category ITj with items in category ITi, the greater value of
jITw is set to.We can

compute the partial similarity (,)
iITs i j by using traditional similarity measurement.

For the example mentioned in table 1, the similarity between user A and user U is as
formula 4,

(,) (,) (,)
clotheclothe book bookS A U w s A U w s A U= + . (4)

And the similarity between user B and user U is as formula 5,

(,) (,) (,)
clotheclothe book bookS B U w s B U w s B U= + . (5)

Because the predicted item I5 belonging to clothe category, so clothew is set to one

and bookw is set to a value which is less than one. We can also get the formula 6 and

formula 7 according to traditional similarity measurement and rating matrix,

(,) (,)clothe clothes A U s B U> . (6)

(,) (,)book books B U s A U> . (7)

According to formulas 4, 5, 6, 7, we can get the result of (,) (,)S A U S B U> . The

result by the new similarity measurement is more accurate and reality.

For formula 3, determining each weight value of
iITw is difficult. A simple way is

to assume that the similarity between users in each category is independent.

According the assumption, we can set zero to each
iITw except the similarity weight

which the predicted item belongs to its related category. If so, the rating data can be
used become more sparse. And the similarity measurement based on cloud[15-18] is
used for spatial similarity computation to resolve the data sparsity. The computational
method of new user similarity measurement is as algorithm 1.

180 D. Zhang and C. Xu

Algorithm 1. Similarity measurement considering predicated item category

Input: item category information, user i,j and the being
predicted item z
Output: the similarity S(i,j) between user i and user j.
Steps:
1. for user i and use j, compute their rating sub-vector
VSi and VSj.
2. compute the cloud eigenvector Vi, Vj of VSi ,VSj using
backward cloud algorithm.
3. compute the partial similarity using Vi, Vj according
 to formula 1.
3. compute S(i,j) by using formula3.
4. return S(i,j).

3.2 Recommendation Algorithm Based on User Similarity and Item Similarity

The complete recommendation algorithm based on user similarity and item similarity
is as below.

Algorithm 2. Recommendation algorithm UICF

Input: user rating list and user UID.
Output: recommendation for user UID
Steps:
1. compute user-item matrix R according user rating list.
2. compute user similarity matrix S using Algorithm 1.
3. select nearest neighbor set U for user UID according
 matrix S.
4. for each items which user UID hasn’t made rating for,
 predict it rating using formula 2 and nearest neighbor
 set U.
5. choose the item as recommendation which has the
 highest predicted rating.
——————————————————————————————————

3.3 Items Classification

For users and items, they both have their own category information. But sometimes
the original category information of items is not suitable or is not reachable, at this
situation we can classify items into categories by their rating features made by users.
The basic idea of classification by rating features is that two items belong to the same
group if they get the similar rating features from users. If movie a and movie b both
get high ratings from children and get lower rating from adults, then movie a and

 A Collaborative Filtering Recommendation System by Unifying User 181

movie b are both cartoon with a high probability, and should be classified into the
same category. Referring to dataset of MovieLens, users have their own category
domain of {educator, engineer, …} and each user i has its own category information
ri, where ri is (i,ci) and ci denotes which category user i belongs to. Users’ own
category information set UR is (r1,r2,…,rs) where s is the number of user categories, so
do items.

For the special item i, its users rating feature tuple is Ti (t1,t2,…,ts), where s is the
count of user categories and ti is its mean rating from i category users. We use the k-
center clustering method to classify items into different categories and the algorithm
is as follows.

Algorithm 3. Items classification algorithm based on Ratings Features

Input: user-item matrix R, users’ own classification
record set UR and group count k
Output: k groups of items
Steps:
1. for each user i , compute its rating feature tuple Ti.
2. choose k users rating feature tuples randomly as the
 center point of k groups.
3. repeat.
4. for each no-center point Ti, compute its similarity
 with the k center points using formula 1 and assign
 Ti to the group whose center point has the most
 similarity with Ti.
5. randomly choose a no-center point T’ , exchange T’
 with the center point Tc of the group which it stays
 in.
6. compute the exchange cost cs.
7. if cs<0 ,then go back to step 4.else go to step 8.
8. return.
——————————————————————————————————

4 Empirical Evaluation

4.1 Experimental Setup

The dataset used by this paper was collected by MovieLens. The dataset includes
totally 100 000 ratings for 1682 movies made by 943 users. The dataset was randomly
divided into training set and testing set by 80%/20%. The method for evaluating the
quality of a recommendation system can be mainly categorized into two classes:
statistical accuracy metrics and decision support accuracy metrics[19-20].Mean
absolute error(MAE) of statistical accuracy metrics is a wildly used method. Assume
the prediction set of user rating is {p1,p2,…,pN},and the corresponding factual user
rating set is {q1,q2,…,qN},then MAE can be expressed formally as formula 8,

182 D. Zhang and C. Xu

1

N

i i
i

p q
MAE

N
=

−
=
∑

.
(8)

So the lower the MAE is, the higher the quality of a recommendation system is.

4.2 Experiment Result and Analysis

In experimental evaluation, we compare three traditional similarity algorithms basic
cosine, correlation and adjusted cosine with the UICF algorithm presented in this
paper. The size nearest neighbor set for objective user is from 10 to 60.Figure 1 shows
the experiment result. From fig. 1, we can see the UICF surpasses the CF algorithm
based on traditional similarity measurement in recommendation quality.

0. 73
0. 74
0. 75
0. 76
0. 77
0. 78
0. 79
0. 8

0. 81
0. 82
0. 83
0. 84

10 20 30 40 50 60

number of near est - nei ghbour s

M
A
E

I - USM

Cor r el at i on- Based

Cosi ne- Based

Adj ust Cosi ne- Based

Fig. 1. MAE-Nearest Neighbors number graph

5 Conclusions

In this paper, considering the inaccuracy of user similarity measurement using the
whole rating features, a new user similarity measurement based on partial similarity
measurement was given. A new collaborative filtering algorithm named UICF was
presented for recommendation based on the new similarity measurement. We
compare tree traditional similarity algorithms basic cosine, correlation and adjusted
cosine with the UICF algorithm. Experimental results show the higher quality of the
recommendation algorithm.

Acknowledgments. My deepest gratitude goes first and foremost to Professor Dong
zhan Zhang, my supervisor, for her constant encouragement and guidance. He has
walked me through all the stages of the writing of this paper. Without his consistent
and illuminating instruction, this paper could not have reached its present form. I also

 A Collaborative Filtering Recommendation System by Unifying User 183

owe my sincere gratitude to my friends and my fellow classmates who gave me their
help and time in listening to me and helping me work out my problems during the
difficult course of the paper.

References

1. Chickering, D., Hecherman, D.: Efficient approximations for the marginal likelihood of
Bayesian networks with hidden variables. Machine Learning 29(2/3), 181–212 (1997)

2. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society B 39, 1–38 (1997)

3. Thiesson B., Meek C., Chickering D., Heckerman D.: Learning mixture of DAG models.
Technical Report, MSR-TR-97-30, Redmond: Microsoft Research (1997)

4. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Analysis of recommendation algorithms for
E-commerce. In: ACM Conference on Electronic Commerce, pp. 158–167 (2000)

5. Wolf, J., Aggarwal, C., Wu, K.L., Yu, P.: Horting hatches an egg: A new graph-theoretic
approach to collaborative filtering. In: Proceedings of the ACM SIGMOD International
Conference on Knowledge Discovery and Data Mining, pp. 201–212 (1999)

6. Breese, J., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for
collaborative filtering. In: Proc. of the 14th Conf. on Uncertainty in Artificial Intelligence,
pp. 43–52 (1998)

7. Karypis, G.: Evaluation of item-based top-n recommendation algorithms. In: Pro. of the
10th Conf. on Information and Knowledge Management, pp. 247–254 (2001)

8. Sarwar, B., Karypis, G., Konstan, J.: Item-based collaborative filtering recommendation
algorithms. In: Proc. of the 10th Int Conf. on Word Wide Web, pp. 285–295 (2001)

9. Chunxiao, X., Fengrong, G., Sinan, Z., et al.: A collaborative filtering recommendation
algorithm incorporated with user interest change. Journal of computer Research and
Development 44(2), 296–301 (2007) (in Chinese)

10. Liang, Z., Naijing, H., Shouzhi, Z.: Algorithm design for personalization recommendation
systems. Journal of Computer Research and Development 39(8), 986–991 (2002) (in
Chinese)

11. Junfeng, Z., Xian, T., Jingfeng, G.: An optimized collaborative filtering recommendation
algorithm. Journal of Computer Research and Development 41(10), 1842–1847 (2004) (in
Chinese)

12. Guangwei, Z., Deyi, L., Peng, L., Jianchu, K., Guisheng, C.: A Collaborative Filtering
Recommendation Algorithm Based on Cloud Model. Journal of Software 18, 2403–2411
(2007) (in Chinese)

13. Shuliang, W., Yuan, X., Meng, F.: A Collaborative Filtering Recommendation Algorithm
Based on Item and Cloud Model. Wuhan University Journal of Natural Sciences 16,
016–020 (2011) (in Chinese)

14. Zhang, J., Pu, P.: A recursive prediction algorithm for collaborative filtering recommender
systems. In: Proceedings of the 2007 ACM Conference on Recommender Systems, pp.
57–64 (2007)

15. Dy, L.: Artificial Intelligence with Uncertainty. National Defense Industry Press, Beijing
(2005) (in Chinese)

16. Dy, L., Cy, L.: Study on the universality of the normal cloud model. Engineering
Science 6(8), 28–34 (2004) (in Chinese)

184 D. Zhang and C. Xu

17. Dy, L., Cy, L., Du, Y., Han, X.: Artificial intelligence with uncertainty. Journal of
Software 15(11), 1583–1594 (2004) (in Chinese)

18. Dy, L.: Uncertainty in knowledge representation. Engineering Science 2(10), 73–79 (2000)
(in Chinese)

19. BinQuan, Z.: A collaborative filtering recommendation algorithm based on domain
knowledge. Computer Engineering 31(21), 7–9 (2005) (in Chinese)

20. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-Based collaborative filtering
recommendation algorithms. In: Proc. of the 10th World Wide Web Conf., pp. 285–295
(2001)

L. Wang et al. (Eds.): WAIM 2011 Workshops, LNCS 7142, pp. 185–196, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Supporting Query over Dynamic Combination
of Data Sources for Social Media

Rongrong Li, Weixiang Zhai, and Zhiyong Peng

Computer School, Wuhan University, 430072

{rrli,peng}@whu.edu.cn, zhaiwx1987@hotmail.com

Abstract. Meta search and social media are combined in our work to build a
platform to share cross-media data. Data are extracted from web on demand with
meta-search engine since more accurate and complete retrieval results can be
provided than a single SE. The key to affect the performance of data extraction is
the schedule of data sources to provide data efficiently. A uniform model to de-
scribe data sources is suggested, with this model a method to construct query plan
graph and an algorithm to get the optimal query plan are proposed. A dynamic
and adaptive adjustment approach for query plan execution is described to deal
with unexpected failure of data source connection or data extraction. The details
of wrapper manager encapsulating data sources are explained at the end of the
paper.

Keywords: Meta search, Social media, Combination query, Dynamic and
adaptive adjustment.

1 Introduction

The popularity of Internet has led to the rapid growth of data on the Web. MetaCrawler,
the first Meta Search Engine (MSE) [1], was released publicly on July 7, 1995. Up to
now, MSEs have been developed rapidly since they can provide more accurate and
complete retrieval results than a single SE.

MSE utilize different kind of data sources to provide data, such as, ordinary Search
Engine (SE), surface web and hidden deep web. Most of the MSEs include three me-
chanisms, retrieval on demand, agent for retrieval interface and presentation of retrieval
results. The key to affect the performance of MSE is how to schedule DSs to provide
data efficiently.

Social media has already become a new way to reflect social nature of users, it
provides tools and platforms for people to share ideas, opinions, experiences. Interac-
tions are established within social network and aggregation platform, in which user’s
experience of being served is the most important of all. The main features of social
media are the new way of interaction and information representations, they are

186 R. Li, W. Zhai, and Z. Peng

dependent on the understanding and generation of shared events from different aspects.
Most of Social media sites, such as Facebook, MySpace, FilmAffinity and Flickr [3]
include texts, images, audios or videos, while few of social media provide audios.

Since music itself has a natural social attributes, people use different music to ex-
press their own unique taste. People having similar taste in music often gather together
to form a "tribe". Our goal is to modify the prototype based on our three layers archi-
tecture for Web Data Management (WDM) [4] to effectively share both music and
semantic information of music extracted from web according to user’s requirements,
also allow users to exchange receptions of music, discover communities and automat-
ically recommend new music to users.

The advantage of our platform is that data is extracted from web on demand (as il-
lustrated in Fig.1.), it needs little storage to store media data which can be obtained
from web with metadata on demand. Unstructured musical data with rich semantic
relationships can be stored and managed by our object deputy database TOTEM [4]
efficiently. Metadata is retrieved to complement the user’s requirement into queries to
be dispatched to relevant DSs to retrieve media data. Since the dynamicity and quality
differences of data sources, while WDMS lacks the flexible capability to combine DSs
and adaptive mechanism to adjust query plan execution, user’s requirement may not be
satisfied.

Fig. 1. Modules in Data Extraction Layer

It is the input and output of a DS that differentiate the query capabilities. The ap-
proach of DSs organization proposed in this paper separates the implementation of a
query executed on a DS from coding for logical layer completely.

Our work is to study the approach of automatically combining DSs to satisfy user’s
need, including dynamic loading to construct a query plan, and dynamically adjusting
the execution of plan. This paper makes the following contributions:

Meta Search Engine

Requirement Scheduler

Controller

MSE Initialization

Media Data Retrieval

Data analysis

Consistency Maintenance

 Supporting Query over Dynamic Combination of Data Sources for Social Media 187

 A uniform model is proposed to describe interface parameters of a DS, DSs with
similar interface parameters are classified into Virtual Data Sources.

 A query plan graph is proposed and an algorithm to generated optimal query plan is
proposed based on the graph.

 An approach of dynamic and adaptive adjustment for query plan execution is
proposed to adapt to unexpected DS changes.

The remainder of this paper is structured as follows. Section 2 introduces the uniform
model for DSs. Section 3 introduces construction of query plan graph, and the algo-
rithm to get the optimal query plan. The adjustment approach for query plan execution
is proposed in Section 4. The implementation of combination query is illustrated in
Section 5. Section 6 introduced related works, and Section 7 concludes.

2 Modeling Data Source

Metadata are the basis for media data search, high quality metadata mean media data
can be obtained more likely, or metadata may not be accepted by searching engine for
metadata. The key to affect quality of service of WDMS is the quality of metadata. Data
space defined by user can only be described with incomplete metadata due to the
ambiguity and uncertainty of user requirements. It is critical to complete metadata for
effective media data search, while the capability of a single DS is too limited to provide
complete metadata, multiple DS can be united. All Metadata involved in data spaces
are stored in TOTEM without redundancy, based on the feature of flexible object view
a data spaces is described with list of metadata. In this paper, global schemas
(attr1,attr2,…,attri,…,attrn) for metadata is assumed to be known. For example, Song
(Singer, Album, Title, Genre, Publish).

2.1 Data Source Model and Interface Description

Although interface parameters of DSs are various, most of them are consistent with
global schemas, some are specific to a few DSs.

DS is described with a six-member tuple (id, server, global_input, global_output,
local_input, local_output).

 id(DS identity): each new DS involved in WDMS is assigned an integer identity.
 server is the string id of a DS. For example,"www.ctrip.com".
 global_input represents metadata attributes that can be used as the DS input.
 global_output is similar to global_input, illustrates attributes in metadata schema

included in the output of a DS.

188 R. Li, W. Zhai, and Z. Peng

 local_input is different from the global input and output mapping with the metadata
schema, the value of this element is effective inside the current DS or relevant data
cources.

 local_output, denoted as {<attri, dsid>} similar to local_input. The value of attri is
null means no local_output, dsid represents the id of DS which can accept the lo-
cal_output as input. local_output can be viewed as the bridge to connect to other DSs
to obtain metadata with more not null attribute values.

For example, there are 4 attributes in metadata, global_input (0110)2（i.e.(6)10）means
the 2nd and 3rd attributes in metadata schema are input parameters. DS with certain
input parameters encoded with an integer can be found more quickly.

Data Source Interface
The interface is defined as (id, AttrList, UR). AttrList is a list of attributes values can be
used as queries extracted by projection on results returned from other DSs. UR (User’s
Requirement) corresponds to metadata attributes used to filter extracted data.

DS wrapper features, data extraction and analysis based on page template, are en-
capsulated in Wrapper Manager (WM). It needn’t to care about how to get data with
combination query in upper logical layer but to focus on the interfaces. Information
about query plan combining DSs are sent to WM, then WM deliver relevant query to
DSs. WM will output results after a series of process, including dispatching query,
acquiring html, parsing page, de-noising, filtering with rules. The wrapper of a new DS
will be incorporated into system simultaneously with DS model.

2.2 Virtual Data Source (VDS)

It is very expensive to directly combine DSs when there are enormous DSs. It is the
contribute to metadata complementation directly global attributes in input and output
that affect the combination and differentiate query capability of a DS from others, DS
subsequences haveing similar capability may be contained in different combinations
for query plans. Metadata schema are rarely changed, so the concept of VDS is pro-
posed to describe these common subsequences of DSs. Some DSs contribute indirectly
to metadata complementation, they can be combined into a DS subsequence, the last
one of them output more complete metadata after accepting local_output returned by
another DS, and the first one only accept a global_input. The subsequence of DSs also
is included into a DsSet as a whole.

VDS, a smallest unit to be combined, is a class of DSs denoted as VDS(id, glob-
al_input, global_output, local_input, local_output, DsSet).

Where global_output of each VDS is larger than 0, it means its can output more
completed metadata than global_inpu; DsSet is a link list in which single DSs or DS
subsequences are included.

 Supporting Query over Dynamic Combination of Data Sources for Social Media 189

global_input and global_output of DSs contained in a DsSet are the same. glob-
al_input of the first DS in a subsequence contained in DsSet and global_output of last
one are the same as other single DSs contained in DsSet. The general process of DS
classification for the list of DSs (denoted as DS_List) is as follows:

Step 1: Traverse DS_List and find successors for each DS which can accept output
of the DS as input.

For each DS S in DS_List Do
Create a VDSi for S, VDSi.DsSet={S};
If S. global_input≠-1 && S.global_output = -1 && S.local_output≠NULL, //ds
accept a global_input and return local_output but no global_output;
Find all successors S_F of S, let VDSi.DsSet= VDSi.DsSet∪ S_F. As illustrated
in Fig.2., DS with id=10 is the successor of DS 9 since DS 10 can use the lo-
cal_output of DS 9 as its local_input;
Get next DS in DataSource_List;

Fig. 2. Generation of a Virtual Data Source

Step 2:Merge all VDSs having the same global_input and global_output. Data
sources sequence 9->10 , DS 4 and DS 7 are merged into a VDS in Fig.2.

Step 3:Find the VDS which has only local_input and no global_input, check if its
output can be used as local_input of another VDS which return only global_output
combine them into a sequence and add sequence into DsSet; if no, then delete it from
the list of VDSs.

A streamlined list of VDS can be got after classification, its size is much smaller than
original size of DSs list. It greatly reduces the number of nodes in combination, thus the

190 R. Li, W. Zhai, and Z. Peng

scale of data sources combination is only determined by the number of attributes in
metadata and the number of data sources or VDSs which have both global_output and
local_output.

3 Generate Query Plan Graph

3.1 Query Plan Graph

A query plan graph G=<V,E> is a directed acyclic graph in which a vertex (also called
StateNode or SN) represent a certain metadata status. Data structure of vertex is named
StateNode(states, local). Similar to global_input mentioned in section 2.2, states is an
integer representing status of metadata being completed. If local is a non negative
integer, it represents id of a VDS which can use data in current StateNode as lo-
cal_input; Otherwise, it means that StateNode has no local data. An edge <u,v>
represents a VDS, u represents the input data of a VDS and v represents output, the
global_output of a DS generally includes more not-null attributes than its global_input.

The aim of metadata searching is to complement attributes values to reduce the
ambiguity and uncertainty of incomplete metadata, so all bits of status field in vertex
StateNoden (final,-1) (i.e. SNn in Fig.3.) are 1. That means all attributes in completed
metadata having not-null values. The source vertex of query plan graph stands for
user’s requirement represented by a binary integer.

Constructing Query Path Graph
After DSs are classfied into VDS, the query plan graph can be constructed. A relaxation
operation (as dotted rectangular illustrated in Fig.3.) is adopted to establish relation-
ships between user’s requirement and DSs, a vertex is added with an the edge added to
generate a query plan tree, merge the same nodes in the tree and generate a query plan
graph.

Defintion 3.1. A path exists between StateNodei and StateNodej if there are at least one
VDS which can take states in StateNodei as input and output states in StateNodej. One
condition of the following two must be satisfied:

 If vds[local_input] is null, (vds[global_input] & StateNodei.states) = =
vds[global_input] must be satisfied;
Otherwise, vds[id] = = StateNodei.local must be satisfied;

 (StateNodei.states | vds[global_output]) = = StateNodej.states &&
vds[local_output] = = StateNodej.local.

DsSet of a path, similar to DsSet of VDS, includes DsSets of all VDSs involved in the
path. Because the content of user’s requirement is inconsistent with the global_input of
VDS, successors of initial node will be constructed directly with query relaxation, they
satisfy the following conditions:

 Supporting Query over Dynamic Combination of Data Sources for Social Media 191

 The states field of the node is the combination of attributes in requirement, i.e.,
(states & request) = states;

 The value of the node’s states is accord with the input of some VDS.

Fig. 3. Query Plan Graph

For example, if a request (global_input) is ‘01101’, then 2n-1 possible states of its
successors are 00001,00100,01000,00101,01001, 01100, 01101, invalid states are
removed according to the list of VDSs. Constructing a query plan graph is a process to
complement the attributes in metadata gradually.

Two approaches can be used to construct query plan. One is to generate a tree for
construct query plan, the leaves are final nodes, and the number of final nodes is the
number of query plan trees. Another is to generate the query plan directly during in-
volving new nodes in graph one by one. A new node will be judged whether it has
already been included in the graph, then decide whether to generate new node or add
new path. The former is easier to be understood and implemented, while cycle may be
found in the process of combination in the latter.

3.2 Optimal Query Path

Except for the data source model mentioned in Section 2 representing the property of a
DS, there are three other properties to reflect the quality of the DS as follows:

 Total time expense: total time of history queries executed on a DS;
 Total query times: total time of queries executed to a DS;
 Times of valid queries: times that valid data could be got after query submission.

Weights of Edges in Query Plan Graph
In order to evaluate the quality of DS, precision of query (as equation 1) and average
response time (as equation 2) are used to measure of data source quality.

SN0

SN1

SN2

SNi

…

SN SN

SN

……

……

SN ……

……

SNn

…… SNn

……
SNn

…

SN

……

……

……

192 R. Li, W. Zhai, and Z. Peng

_

_

valid query
qp

total query
= (1)

Where valid_query stands for the times acquiring valid data after query submission;
total_query stands for the total query times, qp reflects the history precision of DS.

_
_ _

_

total time
avg resp time

total query
= (2)

When user’s requirement is scheduled the first time, weight of the edge is assigned the
response time of DS to return data as soon as possible; when the requirement is ex-
ecuted again, weight is assigned the precision of DS to guarantee quality. The weight of
edge is set to avg_resp_time or 1/qp of available DS. If an edge corresponds to a list of
DSs, its weight is assigned sum of avg_resp_time or 1/qp of DSs in the list.

Algorithm for Searching for the Optimal Query Path

Definition 3.2. A query plan is a sequence of edges which represent DSs denoted as:

SearchPlan={
1 2, , , , ,i nStateNode StateNode StateNode StateNode…… …… }. The conditions

satisfied by query plan are as follows:

1. There is a path between adjacent nodes;
2. The first node in the sequence is the source node of the DS relationship graph;
3. The last node in the sequence should guarantee the every attributes in metadata

schema are true, so the last node represents (, 1)nStateNode final − .

PQ-Dijkstra(PQ)

// Input: PQ; Output: path is the nodes of query plan.

PQ = new Priority Queue;

for each v ∈V

do dist[v] = •; path[v] = -1; dist[s] = 0;

// array path is initialized.

for each v ∈V

 do Insert(v,dist[v]) into PQ;

 while(PQ is not empty)

 do u = getMin(PQ);

 for each neighbor v of u

 do w = weight of edge(u,v);

newLen = dist[u] + w;

 if (newLen < dist[v])

 then decreaseKey(PQ,v,newLen);

 dist[v] = newLen; path[v] = u;

 Supporting Query over Dynamic Combination of Data Sources for Social Media 193

The path with the minimum weight in the graph is the optimal query plan. An algorithm
based Dijkstra algorithm with a set S in which all DSs are sorted by weight (sum of
weights from source to current vertex) is proposed, so that the elements with minimum
weight always can be found in constant time. The time complexity of PQ-Dijkstra is
O((V*logV+E) .

4 Dynamic and Adaptive Adjustment for Query Plan Execution

Query plan execution may fail owing to the dynamic nature of DS. When a DS becomes
un-accessible since it is closed or removed, or its domain name or IP has been changed,
or connection timeout led by network traffic. A threshold can be set to judge whether
connection to a DS is timeout. When layout of a DS page is changed but its page tem-
plate has not been altered in time, it is impossible to get valid data from page. It is
unreasonable to construct query plan according to quality of DS only evaluated by
statistics history of queries executed on it, query plan should be adjusted dynamically.
However, changes are unpredictable and uses’ queries may be submitted to system at
any time, a DS candidate shall be selected or a new query path be taken instead to
guarantee the quality of service.

Adjustment of a query plan is implemented by rolling back. An array named Sear-
chedNode is maintained in which data status attained successfully are stored, also a link
list of metadata is maintained in which each element contains multiple metadata
attributes. To efficiently utilize the data already obtained, we will only mark them
released but not remove them actually when rolling back. So a field named mark re-
flecting the validity of data is used. The following process will be executed when the
execution of a query path is failed:

Step 1：Check if there is a candidate for the DS (i.e. edge) in the VDS the path; if
no, remove the edge and delete the failure node to ensure all the final node will be
reached from all adjacent nodes;

Step 2：Get nodes in SearchedNode, and recalculate the distance from each node in
array to final node according to query plan modified, select the nearest node v to final
node and remove nodes whose distance to final node is infinity;

Step 3：Roll back metadata obtained according to states values, to keep the data
consistent with the states of node v mark metadata released;

Step 4：Construct query path from v to final node and return.
The re-execution of search can be avoided with the released mark when query plan is
modified, and attributes of metadata stored is only set released to improve efficiency.

5 Wrapper Manager

To evaluate the performance of our combination query approach, we modify our
WDMS prototype TMusic for cross-media search, include 19 well-known musical SEs
or portals as data sources, such as soso.com, www.9sky.com, mp3.baidu.com,

194 R. Li, W. Zhai, and Z. Peng

sogo.com and etc. A table is created to manage these DSs uniformly (listed in Table 1.),
extractor is also prepared for each data source.

Wrapper Manager (illustrated in Fig.4.) integrates all of DSs uniformly, it maintains a
wrapper selector and indexes DSs on id. It is convenient to call corresponding DS
wrapper with its id directly after the logical layer of program get the sequence of DS ids.

Table 1. List of data sources in modified prototype TMusic

ID Name
Global_

input

Global_

output

Local_

input

Local_

output

0 9sky -1 7 {album} NULL

1 Baidu 24 -1 NULL {album,0}

2 Soso 24 -1 NULL {album 0}

9 Sogou 8 16 NULL NULL

10 Sogou 24 7 NULL NULL

11 Sogou 4 24 NULL NULL

12 BaiduMp3 4 24 NULL NULL

13 BaiduMp3 24 4 NULL NULL

14 BaiduMp3 16 8 NULL NULL

15 SosoMp3 8 16 NULL {album,20}

16 SosoMp3 4 24 NULL NULL

17 SosoMp3 16 -1 NULL {singer,18}

18 SosoMp3 -1 8 {singer} {album,20}

19 SosoMp3 2 25 NULL {album,20}

20 SosoMp3 -1 28 {album} NULL

21 9sky 2 25 NULL {album,0}

23 9sky 1 24 NULL {album,0}

24 BaiduMp3 20 8 NULL NULL

25 SosoMp3 20 8 NULL NULL

 Supporting Query over Dynamic Combination of Data Sources for Social Media 195

The content in a Web page includes two kinds of data:

Data listed are usually in similar style, and they are generated dynamically and ga-
thered in a DIV block or TABLE;

• Isolated data are usually irregular, may exist anywhere.
These two kinds of data are labeled with CTAG and STAG in page template. With the
uniform labels added, a generic page analysis can be designed easily.

Fig. 4. Wrapper Manager

6 Related Work

User’s requirement may not be accepted by every single data source, but the output of
one source may be used as the input of another source. [5] focuses on analysis of the
retrieval capability of complex query interfaces automatically, models each DS with
atom query composed of a set of attributes submitted to DS to get data efficiently to
show its query capability. [6] suggests an approach to combine DSs based on DS
descriptions, user’s requirement is modeled with relational model, then it is serialized
and mapped to local schema of a DS which is constructed based on its description. [7]
proposes an algorithm to generate query plan based on schema mapping with the
correct definition of rules. [8] describes an approach to create query plan
automatically according to dependencies between deep web sources, the algorithm to
create Top-K query plan is proposed. Our combination query can be applied in MSE
with more clear purpose compared to other methods. It supports combination of
massive data sources with virtual data sources. User’s requirement can be satisfied
with the dynamic and adaptive adjustment mechanism for execution of query plan.

Wrapper Switcher

Wrapperi Page Template

Page Parsing,
data extraction

Select Wrapper Access
Data filtering

ID,AttrList,UR

Result

Wrapper Manager

196 R. Li, W. Zhai, and Z. Peng

7 Conclusion

The purpose of our combination query is more obvious than other combination query,
query combining VDSs supports search on enormous DSs, also supports dynamic and
adaptive adjustment for query execution to guarantee user’s requirement to be satisfied.
User experience of searching with TMusic has been greatly improved after combina-
tion query over sources proposed in this paper is introduced into the prototype which
combines meta-search and social media.

References

1. Selberg, E., Etzioni, O.: Multi-Service Search and Comparison using the MetaCrawler. In:
WWW 1995 (1995)

2. Liu, K.-L., Meng, W., Qiu, J., Yu, C.T., Raghavan, V., Wu, Z., Lu, Y., He, H., Zhao,
H.: AllInOneNews: development and evaluation of a large-scale news metasearch engine.
In: SIGMOD 2007, pp. 1017–1028 (2007)

3. List of major active social networking websites,
http://en.wikipedia.org/wiki/List_of_social_networking_websi
tes

4. Peng, Z., Wang, H., Peng, Y., Xu, B., Huang, Z.: A Three Layer System Architecture for
Web-Based Unstructured Data Management. In: APWeb, pp. 447–450 (2010)

5. Shu, L., Meng, W., He, H., Yu, C.: Querying Capability Modeling and Construction of Deep
Web Sources. In: Benatallah, B., Casati, F., Georgakopoulos, D., Bartolini, C., Sadiq,
W., Godart, C. (eds.) WISE 2007. LNCS, vol. 4831, pp. 13–25. Springer, Heidelberg (2007)

6. Levy, A., Rajaraman, A., Ordille, J.: Querying Heterogeneous Information Sources Using
Source Descriptions. In: VLDB, pp. 251–262 (1996)

7. Li, Y., Liu, D., Zhang, W.: A Query Discovery Algorithm Based on Schema Mapping.
Computer Science (2006) (in Chinese)

8. Gu, Z., Li, J., Xu, B.: Automatic Service Composition Based on Enhanced Service
Dependency Graph. In: ICWS 2008 (2008)

L. Wang et al. (Eds.): WAIM 2011 Workshops, LNCS 7142, pp. 197–209, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Detecting Opinion Leader Dynamically
in Chinese News Comments∗

Kaisong Song1, Daling Wang1,2, Shi Feng1,2, and Ge Yu1,2

1 School of Information Science and Engineering, Northeastern University
2 Key Laboratory of Medical Image Computing (Northeastern University), Ministry of

Education, Shenyang 110819, P.R. China
songkaisongabc@126.com,

{wangdaling,fengshi,yuge}@ise.neu.edu.cn

Abstract. Nowadays, more and more users publish their opinions by means of
Web 2.0. Analyzing users’ opinion, discovering the relationship between
opinions, and detecting opinion leader are important for Web public opinion
analysis. Opinion leader is regarded as the most influential comment and user
during the information dissemination process. However, most existing
researches pay less attention on their internal relation, implicit relationship
between users’ opinions and the changes of opinion leader over time. In this
paper, we focus on modeling comment network with explicit and implicit links
for detecting the most influential comment dynamically, and modeling user
network and clustering users for detecting the most influential user. We propose
an approach with sentiment analysis, explicit and implicit link mining for
modeling comment network in Chinese news comments. We also propose an
algorithm for detecting most influential comment from the comment network
dynamically. Moreover, we model user network based on the comments
network, and detect the most influential user from the user network.
Experiments using Chinese Sina news comment dataset show that our approach
can detect opinion leaders and the changes of them over time dynamically.

Keywords: Opinion mining, opinion leader, comment network, sentiment
analysis, clustering.

1 Introduction

In recent years, with the advent of Web 2.0, more and more users publish their
opinions about social events and phenomena by means of tools such as blogs,
microblogs, and forums, among which news comments contain rich public opinions.
In these opinions, opinion leaders often provide constructive information for other
users, and play a critical role during the information dissemination process. Analyzing

∗ Project supported by the State Key Development Program for Basic Research of China (Grant

No. 2011CB302200-G) and National Natural Science Foundation of China (Grant No.
60973019, 61100026).

198 K. Song et al.

users’ opinions, discovering the relationship between opinions, especially detecting
opinion leaders are important for Web public opinion analysis. The researchers have
done some pioneering work for discovering opinion leaders in Web 2.0 media.
However, there are still some drawbacks in these researches:

(1) Most existing work pay more attentions on analyzing explicit relationship
among users’ opinions such as following, replying, but neglecting the implicit ones.

(2) A user’s’ opinion may be a gradual process and affected to a large extent by
previous users. However, most existing methods for detecting opinion leaders have
not considered the impact of both time and sentiment.

(3) Few people consider the internal relation between the comment’s influence and
user’s one for detecting the most influential user.

(4) In addition, opinion leader with positive influence is more useful in real life.

Based on the characteristics of news comments, in this paper, we focus on modeling
comment network with explicit and implicit links for detecting the most influential
comment from the comment network dynamically, and clustering users for the most
influential user. We model comment network by sentiment orientation analysis,
opinion similarity calculating, explicit and implicit link mining, and other related
techniques with opinion mining, and propose an algorithm named Dynamic
OpinionRank for detecting the most influential opinion from the comment network.
Moreover, we apply DBSCAN [3] to find the most influential user. According to the
method proposed above, we detect the opinion leader including user and comment.
The experiments using Chinese Sina news comments dataset validate the
effectiveness of the proposed dynamical opinion leader detection algorithm.

The rest of the paper is organized as follows. Section 2 introduces the related work.
Section 3 describes the problem definition. Section 4 analyzes sentiment orientation and
model the comment network. Section 5 detects opinion leader including the most
influential comment and user. Section 6 shows our experiment results. Finally Section 7
concludes the research and gives directions for future studies.

2 Related Work

In this paper, our purpose is to detect opinion leader in Web 2.0 social media. In this
field, the researchers have done some pioneering work. Xiao et al. [9] propose a
LeaderRank algorithm to identify the opinion leaders in BBS, which includes finding
the interest user group based on topic content analysis and defining the authority
value as the weight of the link between users. They also utilize LeaderRank algorithm
to identify opinion leaders based on community discovery and emotion mining
methods [10]. Freimut and Carolin [5, 6] present an approach, which initially detects
opinions and relationships among forum users, extracts main influential factors for
opinion forming in virtual communities, and identifies opinion leaders and analyzes
opinion evolvement by social network analysis. Zhou et al. [12] introduce the concept
of Opinion Networks and propose OpinionRank algorithm to rank the nodes in an
opinion network. Zhai et al. [11] propose interest-field based algorithms to identify

 Detecting Opinion Leader Dynamically in Chinese News Comments 199

opinion leaders in BBS, which not only take into account of the reply networks’
structure but also the users’ interest space. Feng and Timon [4] proposes a framework,
which builds ontology for a marketing product to identify opinion leaders using the
information retrieved from blog content, authors, readers, and their relationships.

These studies above have some obvious shortcomings. Firstly, few of them do
research based on Chinese. Secondly, although some of the works take emotional
factors into consideration, they do not discover the impact of other features such as
time. To overcome these shortcomings, in this paper we propose a dynamic detection
technology for finding opinion leaders from Chinese news comments.

3 Problem Description

Let C={C1, C2, …, Cn} be a comment set, and Ci (1≤i≤n) be an item of comment. We
can obtain the sentiment orientation Oi (1≤i≤n) for every Ci∈C by sentiment analysis
techniques, and the value of Oi is defined as P, N, and M corresponding to positive
(support), negative (oppose), and neutral sentiment, respectively. Moreover, we give
the following definitions.

Definition 1 (explicit link and implicit link). For Ci and Cj (1≤i,j≤n), suppose Ci be
published earlier than Cj. If Cj is a follower or reply of Ci, Cj is regarded as having an
explicit link to Ci. If they don’t have the relationship, but Ci has semantic similarity
with Cj (same or different), Cj is regarded as having an implicit link to Ci.

Definition 2 (positive link and negative link). If Cj has the same sentiment
orientation with Ci, the link (explicit or implicit) is called as “positive link”, otherwise
as “negative link”. According to this relationship among comments, we can obtain a
link structure about C. Fig.1. shows a comment webpage and its link structure in the
webpage.

Positive floor1

Negative floor2

Positive floor3

Negative floor4

Negative floor5

(a) Comment page (b) Link Structure

explicit link

implicit link

positive link

negative link

Fig. 1. An Example of a Comment Page and Its Linked Structure

200 K. Song et al.

In Fig.1, floor1 is the first reviewer, floor2, floor3 and floor4 are the followers of
floor1, and floor5 represents user himself. So floor2, floor3 and floor4 are explicitly
linked to floor1. According to their content, floor5 is linked implicitly to others.

Definition 3 (comment network and user network). Let E be the set of the links of
definition 1 and definition 2 (as edge), and V be the comment set, i.e. C={C1, C2, …,
Cn} (as vertex), then GCN (V, E) be a comment network (as graph). Moreover, if the
vertex in GCN (V, E) is defined with the user who published comments instead of
comment, GCN (V, E) will express the relationship among users. We named it as
GUN(V, E), i.e. user network. Different form GCN (V, E), the edges in GUN(V, E) are
only explicit links.

GCN(V, E) and GUN(V, E) are directed graphs similar to link structure in Fig.1 (b).
Difference from Fig.1 (b), the edge in GCN(V, E) or GUN(V, E) has a weight wt, and wt
can be calculated according to similarity of two vertexes linking the edge.

Our final purpose is to discover opinion leader including the most influential
comment in GCN(V, E) and the most influential user in GUN(V, E), and they may
change over time. So we call the process as “detecting opinion leader dynamically”.

For this purpose, we will do the following work.

(1) Analyzing sentiment orientation of every comment.
(2) Constructing the link structure as Fig.1 (b).
(3) Modeling GCN(V, E) and GUN(V, E) based on links between comments and time.
(4) Detecting opinion leaders including the most influential comment and user.
Above work will be introduced in Section 4, Section 5 and Section 6 in this paper.

4 Sentiment Analysis and Comment Network Modeling

After downloading related comments about news, we can find explicit links among
the comments according to webpage structure. Then we will analyze the content of
every comment and calculate the similarity between comments for analyzing their
sentiment orientation, finding implicit links, determining positive links and negative
links, obtaining the weight of every edge, and finally building the comment network.

4.1 Sentiment Analysis

We utilize HowNet [2] sentiment lexicon for judging sentiment orientation.
Firstly, every comment Ci (1≤i≤n) is partitioned into m sentences i.e. <S1, S2,

S3, …, Sm>, and apply ICTCLAS [7] to splitting sentence into l words i.e. <w1, w2,
w3… wl>. After that, we extract adjectives, nouns, verbs with sentiment and match
them according to the lexicon. Thirdly, we calculate the total number of negation
words such as “no”, “not”. If the number of negation words is odd, the emotional
orientation will remain unchanged. If it is even, the sentiment orientation will switch
to the opposite. Finally, we get the value of sentiment orientation 1, -1 and 0
according to the rules shown below. We describe the algorithm as Algorithm
CommentOrientation.

 Detecting Opinion Leader Dynamically in Chinese News Comments 201

Algorithm CommentOrientation;
Input: C is any Ci;
Output: O as the sentiment orientation of C and O∈{P, N, M };

//{P, N, M} corresponds to {positive, negative, neutral}
Description:

1. partition C into <S1, S2, S3, …, Sm>; //Si (1≤i≤m) is a sentence
2. for each sentence Si in C;
3. {splitting Si into <w1, w2, w3… wl>; //wi (1≤i≤l) is a word
4. for every sentiment word wij∈<wi1, wi2, wi3… wil>
5. wij.value={1, -1, 0}| wij.orientation={P, N, M };
6. compute sentiment orientation of Si by ∑=

j
iji valuewnorientatioS ..

7. for negation word set N=<ni1, ni2, ni3…> (nik∈<wi1, wi2, wi3… wil>)
8. if |N| is an odd then Si.orientation=-1* Si.orientation;
9. }

10. compute orientation C by ∑
=

=
m

i
iSnorientatioC

1

. ;

11. O={P, N, M }|C.orientation={>0, <0, =0};

4.2 Implicit Link Discovery

Through webpage structure, we can find explicit links easily. Compared with explicit
links detection, implicit relationships are much more difficult to find out. According
to definition 1, we have to analyze content of every comment for obtaining implicit
links. Here we use Vector Space Model (VSM) to describe every comment and
calculate the similarity between comments to get their implicit links.

In detail, for two comments Ci and Cj, we remove punctuation and eliminate
stopwords from Ci and Cj. Then we split Ci and Cj into words respectively, and apply a
vector consisting of meaningful characteristic words to describe Ci and Cj. After that, we
utilize wtij=TFij×IDFi to calculate weighting by document frequency and inverse
document frequency. Here TFij can be normalized by using 0.5+0.5×(TFi/MaxTFi). In
the end, two formulas 1+log(TF) and 1+log(N/DF) can be utilized for smoothing the
results. After that, we set a threshold for judging whether Ci and Cj have implicit link.
And if the threshold is satisfied, we say there is an implicit link Ci→Cj (if Cj is
published earlier than Ci) or Cj→Ci (if Ci is published earlier than Cj).

After above process, we can generate all explicit links and implicit links between
any Ci and Cj in comment set C.

4.3 Comment Network Modeling

Based on the results of sentiment analysis, explicit and implicit links mining, we can
give out positive links and negative links for comment set C according to definition 2
and further build comment network according to definition 3. The process is
described as Algorithm CommentNetworkBuild.

202 K. Song et al.

Algorithm CommentNetworkBuild;
Input: explicit links and implicit links in C, sentiment orientation Oi of every Ci∈C;
Output: GCN(V, E) //Comment Network of C;
Description:

1. for each Ci∈C
2. for each Cj ≠Ci∈C
3. if (Ci link to Cj) //the link includes explicit and implicit link
4. if Ci has the same sentiment orientation with Cj
5. Ci positive link to Cj;
6. else
7. Ci negative link to Cj;
8. assign weight wtij for edge Ci→ Cj;

In the Algorithm, Line 8 is for assigning weight for every edge with positive links and
negative links. Initially, wtij is calculated with formula (1).

wti,j=tag×similarity(Ci, Cj) (-1≤wti,j≤1) (1)

The function similarity(Ci, Cj) represents the similarity between comment Ci and Cj,
and tag means the relationships of them. If Ci→ Cj is positive link, tag=1. If Ci→ Cj is
negative link, tag=-1.

In fact, wtij can also express influence of Cj to Ci. Each comment is accompanied
by the attribute of time, i.e. time of the comment published, and the relationship
between two comments is related to time. For example, when we are reading
comments, we may prefer to read those comments that published recently rather than
the old ones. So we can come to a conclusion that the impact of time should be taken
into consideration. As is said above, we propose a model, which is shown in Fig.2 to
further explain the idea.

A B C D time

2 5

6
4

Fig. 2. Time Interval among Comments

As is shown in Fig.2, the former published comments can influence the latter ones.
For instance, B→A means B is influenced by A. The distance between two comments
is their time interval. The larger the distance is, the less possibility the latter will be
influenced. For example, the time distance between C and A is larger than the distance
between C and B, so we think that C prefers to be influenced by B rather than A.

For comments, the opinion leader is changing over time, so wtij will concern
similarity of Ci with Cj and the time interval between them.

 Detecting Opinion Leader Dynamically in Chinese News Comments 203

5 Opinion Leader Detection

Opinion leader can be regarded as the most influential comment or its publisher, i.e.
user. In this paper, we can detect the most influential comment from GCN(V, E) by
computing the score rank of comments, and further build user network GUN(V, E) and
discover the most influential user from GUN(V, E).

5.1 The Most Influential Comment Detection

In the field of Web search and Web link analysis, PageRank algorithm [1] is used
widely and has excellent effects in many applications. Inspired by PageRank
algorithm, we propose a new random walk model called Dynamic OpinionRank,
which take emotional and temporal features into consideration. In the meanwhile, a
concept of opinion similarity has been proposed and the linked relationships among
comments are completely different from the original page linked relationships.

News comments are usually displayed in the form of paging technique. When a
user publishes comment, he may be influenced by other comments on two kinds of
browsing patterns. Firstly, if the user browses comments backwards and forwards
randomly, he will be affected by random comments. Secondly, if he is interested in a
certain topic, he will focus on it and may search for relevant comments. That is to say,
a user may be influenced by a fixed topic and expresses positive or negative opinions
towards relevant comments. So GCN(V, E) may transfer at a certain probability.

Considering users’ general browsing habits, our algorithm is based on a reasonable
hypothesis that users like referring to the newly published opinions. If the released
time of a comment is far from now, the user’s comment has less probability to be
influenced. Similarly, comments may have two probabilities below to be influenced:

(1) They will be influenced by a relevant topic in a probability f to some purpose.
(2) They may have a probability 1-f to be influenced randomly.

The definition of f is shown as formula (2).

60100060
21

12

),,(××
×−

=
Ktt

DDttf
(2)

According to the formula above, f is a function relevant to damping coefficient D, t1
and t2 represent published time (with the unit of microseconds) of former and latter
comment respectively, so f is an alterable damping coefficient. If the cited comment is
far from now, it has less probability to be visited. K is a control parameter and we
initialize it to 2. D is a damping coefficient which is unrelated to time and we
initialize it to 0.85. When a comment is influenced explicitly, it will be less influenced
as |t2-t1| becomes bigger. Otherwise it is influenced more deeply. If |t2-t1|<1/K, f is
bigger than D. If |t2-t1|>1/K, f is smaller than D. And if there is no relationship, f is D.
Based on the above theory, a promoted model which is similar to PageRank has been
proposed as formula (3).

204 K. Song et al.

PADttf
n

E
DttfP T

⎥⎦
⎤

⎢⎣
⎡ +−=),,()),,(1(2121

 (3)

where A is an n×n matrix which is shown in formula (4) and n represents the total
number of comments. The matrix reflects the mutual influences among comments,
and aij means the comment i is influenced by the comment j.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

nnn

n

T

aa

aa

A

..

....

....

..

1

111

 (4)

As for aij=wtij/ODi, ODi represents out-degree of comment i (i.e. Ci). As comments do
not always have a large number of out-degrees and in-degrees in comparison with
Web page link analysis, matrix A may be not a transfer matrix. If a node only has in-
degree but has not out-degree, ODi will be 0. We adopt general processing method
similar to PageRank, but double the result after taking sentiment features into
consideration. And we use the formula aij=(1/n)2 to initialize the line of aij.

We utilize the formula (5) for calculating final scores of Ci.

1 (,)

()(1 (, ,))
() (, ,) jii k

i j
k n j i E j

P j wtf t t D
P i f t t D

n OD≤ ≤ ∈

×−= +∑ ∑ (5)

where P(i) presents authority value. If we follow the above methods, we will get the
final ranking score of each comment in a period of time. Afterwards, we will select
the top comment with the highest score as the opinion leader. According to the above
operation, a comment network diagram can be modeled easily. Only if a vertex gets
more in-degree, which means the comment expresses consistent emotional orientation
with others, and time interval is not too long, the comment may get a higher ranking
score. The Dynamic OpinionRank algorithm is given below.

Algorithm Dynamic OpinionRank;
Input: GCN(V, E); parameter D and K; threshold ε;
Output: PR //PR[i] is ranking score of comment Ci;
Description:

1. compute matrix A from GCN(V, E);
2. Repeat
3. for i=1 to n
4. {for all j satisfying aij≠0 compute f(ti, tj, D) using formula (2);
5. compute P(i) using formula (5);
6. }
7. Until |current P(i)-last P(i)|≤ε;

5.2 The Most Influential User Detection

According to the explicit relationships among comments, we can build up GUN(V, E)
to express the relationship among users. If a user replies to another user, then there

 Detecting Opinion Leader Dynamically in Chinese News Comments 205

will be a link between the two users. In GUN(V, E), we can calculate Degree Centrality
and Proximity Prestige [8], and get Comment Quality from the ranking score
calculated by Dynamic OpinionRank algorithm proposed above. They will be used to
detect the influence of a user.

In [8], Degree Centrality and Proximity Prestige are calculated by formula (6) and
formula (7) respectively, and reflect the out-degree and range of user i.

)1()(−= nODiDC i (6)

)||/),(()1/(|(|)(∑
∈

−=
iIi

ii IijdnIiPP (7)

where Ii is the set linked to vertex (user) i, ODi is the out-degree of user i (the same
definition with comment), and d(j, i) is the shortest link length between i and j.
formula (8) is used for getting Comment Quality, and shows influence of comment.

CML

iCL

UC

jScore

iCQ
i

UCj i
)(

||

)(

)(×=
∑
∈ (8)

As for formula (8), UCi represents the set of comments published by user i, Score(j) is
ranking score of comment j (from Dynamic OpinionRank), CL(i) is the mean value of
all comment lengths of user i, and CML is the max length of all users’ comments.

Each user is described by PP(i), CQ(i), and DC(i), and the vector represents a point
in the three dimensional space. The method below is based on the hypothesis that if a
user has strong influence, it will be away from the other points. So we use DBSCAN
[3] algorithm to cluster these points, and the outliers may be the most influential
users. We set reasonable radius and MinPts for clustering, and then use the formula
(9) below to detect the most influential user from the outliers.

3))()()(()(iDCwiCQwiPPwiS DCCQPP ×+×+×= (9)

where wPP, wCQ, and wDC represent the weight of PP(i), CQ(i), and DC(i),
respectively.

6 Experiment Results

In order to get a real dataset, we collect comments from four different period of time. The
dataset is about “Libya's civil war”. Based on the purpose, we collect real comments about
this title from Sina news forum (http://comment4.news.sina.com.cn/ comment/skin/
default.html?channel=gj&newsid=1-1-23003128&style=0#page=10) during two days
(2011-08-17 08:04:37~2011-08-18 06:47:08).

6.1 Opinion Leader Detection from Comments

By building GCN(V, E), we apply the most influential comment detection method in
Section 5.1, the ranking scores of comments are shown in Fig.3 and Fig.4.

206 K. Song et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

comment ID

ra
nk

in
g

sc
or

e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 10 19 28 37 46 55 64 73 82 91 100 109 118

comment ID

re
nk

in
g

sc
or

e

Fig. 3. Ranking (08:04:07-11:07:11) Fig. 4. Ranking (08:04:07-13:45:49)

In Fig.3, a total number of 60 comments are in this period of time. According to
the diagram, it is easy to find that NO.12 gets the highest score. However, as there is
much less mutual influence between the comments, the opinion leader may change in
all probability as time goes on.

From the Fig.4, we can find that NO.12 is not the opinion leader, and NO.63 gets
the highest scores, so it is the opinion leader now. Some comments get low value
because they are opposed by the other users. Though, there are more comments,
mutual influence is still not too much.

-0.2

0

0.2

0.4

0.6

0.8

1

1 16 31 46 61 76 91 106 121 136 151 166 181 196

comment ID

ra
nk

in
g

sc
or

e

-0.2

0

0.2

0.4

0.6

0.8

1

1 19 37 55 73 91 109 127 145 163 181 199 217

comment ID

re
nk

in
g

sc
or

e

 Fig. 5. Ranking (08:04:07-18:43:22) Fig. 6. Ranking (08:04:07-next day 06:47:08)

In the third period of time of Fig.5, NO.63 continues to be the opinion leader, and
his scores are decreasing as the time goes on. With the increasing number of
comments, newly published comment is increasing much faster, and there is much
more mutual influence between comments. This figure shows new comments attract
more attention, and it also proves the effectiveness of taking time into consideration.

In the Fig.6, after tracking a day of the news forum, the number of comments
reaches to 220. Now NO.151 gets the highest score, and it is the opinion leader.
Compared with the Fig.5, many comments’ scores are increasing to a certain degree.
The number of comments keeps stability in a certain range because of its real-time
characteristic, and No.151 is probably the opinion leader in the end.

 Detecting Opinion Leader Dynamically in Chinese News Comments 207

The most influential comment and ranking score are shown in Table 1 below.

Table 1. The Changes of Opinion Leader in the Comments

No Content of Comment Ranking Score

No.12 政府军打击不准确,无非是不伤害平民百姓的 0.9312

No.63 和当年萨达姆政权的政府发言人如出一辙！ 1.2886

No.63 和当年萨达姆政权的政府发言人如出一辙！ 0.905

No.151

民主是用导弹和战机换来的吗？民主是用导弹

和战机换来的吗？民主是用导弹和战机换来的

吗？

0.8772

From the Table 1 above, we can find the opinion leader may change over the time.
And opinion leader’s ranking is influenced by time. That’s the reason why we
introduce the feature of time in our proposed algorithms.

In order to evaluate the performance of our proposed Dynamic OpinionRank, we
construct a standard by letting expert divide all comments of each period into two
categories: strong influence and weak influence. We compare our method with
published time, Degree Centrality, Proximity Prestige and OpinionRank proposed in
[12] by calculating F-Score. The comparison result is shown in Fig.7 below.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

11:07:11 13:45:49 18:43:22 next day 6:47:08

the time of day

F
-S

co
re

time

Dynamic OpinionRank

Degree Centrality

Proximity Prestige

OpinionRank

Fig. 7. F-Score of Each Method

From Fig.7, we can find Dynamic OpinionRank has a high accuracy and stability
compared with other methods, and it proves the effectiveness of our proposed
method.

6.2 Opinion Leader Detection from Users

We apply the method proposed in Section 5.2 for building GUN(V, E) and detecting
most influential user. For DBSCAN clustering algorithm, we set radius ranges from

208 K. Song et al.

0.06 to 0.12, and initialize MinPts to 1 so that some clusters may contain one single
user, which means an outlier. We generally get three to five clusters, and clustering
result is shown in Table 2 below.

Table 2. Clustering Results for Detection Opinion Leader from Users

08:04:37~11:07:11 08:04:07~13:45:49 08:04:37~18:43:22 08:04:37~6:47:08

Cluster
User

Count
Cluster

User
Count

Cluster
User

Count
Cluster

User
Count

1 43 1 81 1 117 1 129

2 1 2 1 2 3 2 1

3 2 3 1 3 1 3 1

4 1 4 1

 5 1

uid 1220398631 uid 1151164004 uid 1199491660 uid 1725406570

From Table 2, we can remove the first cluster from every cluster group, and use
other clusters with fewer points to get the most influential user as opinion leader by
formula (9) in each period of time. As GUN(V, E) is very sparse, so we set wPP=10,
wCQ=0.3, and wDC=10. At last, we can get opinion leader of each period of time which
is shown in the last row of Table 2. According to the experiment, we detect both the
most influential comment and user as opinion leader, we also draw a conclusion that
the opinion leader may change dynamically as the time goes.

7 Conclusions and Future Work

In this paper, we focus on Chinese news comments, and utilize the techniques such as
sentiment orientation analysis, and opinion mining for modeling comment network
with explicit and implicit links, and further generating user network. Based on the
comment network, we propose an algorithm called Dynamic OpinionRank, for
detecting the most influential comment as opinion leader in Chinese news comments.
Different from related work, the proposed comment network model considers not
only explicit but implicit links, and Dynamic OpinionRank algorithm can detect the
most influential comment and track their changes over the time. Moreover, we detect
the most influential user in the user network by clustering algorithm according to
internal relations between comment and user, and the ranking scores of the comments.

Although this paper puts forward many actual effective methods, there are still
some places needed in the later work to improve. As the implicit relationship beyond
the context content is difficult to define, there is still no way to find their connections
effectively. In addition, combining emotional analysis and natural language grammar
characteristics may improve the final accuracy greatly. The other implicit influential
features need to be detected. All of them are our future research topics.

 Detecting Opinion Leader Dynamically in Chinese News Comments 209

References

1. Brin, S., Page, L.: The Anatomy of A Large-Scale Hypertextual Web Search Engine. In:
WWW-7 (1998)

2. Dong, Z., Dong, Q.: HowNet (2003),
http://www.keenage.com/html/e_index.html

3. Ester, M., Kriegel, H., Sander, J., Xu, X.: A Density-Based Algorithm for Discovering
Clusters in Large Spatial Databases with Noise. In: KDD 1996, pp. 226–231 (1996)

4. Feng, L., Timon, C.: Who is talking? An ontology-based opinion leader identification
framework for word-of-mouth marketing in online social blogs. Decision Support Systems
(DSS) 51(1), 190–197 (2011)

5. Freimut, B., Carolin, K.: Detecting Opinion Leaders and Trends in Online Communities.
In: ICDS 2010, pp. 124–129 (2010)

6. Freimut, B., Carolin, K.: Detecting opinion leaders and trends in online social networks.
In: CIKM-SWSM, pp. 65–68 (2009)

7. Golaxy: ICTCLAS, http://www.ictclas.org
8. Liu, B.: Web Data Mining: Exploring, Hyperlinks, Contents, and Usage Data. Springer,

Heidelberg (2007)
9. Yu, X., Wei, X., Lin, X.: Algorithms of BBS Opinion Leader Mining Based on Sentiment

Analysis. In: Wang, F.L., Gong, Z., Luo, X., Lei, J. (eds.) WISM 2010. LNCS, vol. 6318,
pp. 360–369. Springer, Heidelberg (2010)

10. Xiao, Y., Xia, L.: Understanding opinion leaders in bulletin board systems: Structures and
algorithms. In: LCN 2010, pp. 1062–1067 (2010)

11. Zhai, Z., Xu, H., Jia, P.: Identifying Opinion Leaders in BBS. In: Web Intelligence/IAT
Workshops 2008, pp. 398–401 (2008)

12. Zhou, H., Zeng, D., Zhang, C.: Finding leaders from opinion networks. In: ISI 2009,
pp. 266–268 (2009)

L. Wang et al. (Eds.): WAIM 2011 Workshops, LNCS 7142, pp. 210–222, 2012.
© Springer-Verlag Berlin Heidelberg 2012

An Approach of Semi-automatic Public Sentiment
Analysis for Opinion and District∗

Daling Wang1,2, Shi Feng1,2, Chao Yan1, and Ge Yu1,2

1 School of Information Science and Engineering, Northeastern University
2 Key Laboratory of Medical Image Computing (Northeastern University), Ministry of

Education, Shenyang 110819, P.R. China
{wangdaling,fengshi,yuge}@ise.neu.edu.cn, lavenderchao@126.com

Abstract. The contents generated by netizens on the Web can reflect public
sentiments to a great extent, so analyzing these contents is very useful for
government agencies in guiding their public information, propaganda programs,
and decision support. Because of the civilization diversity and economy
difference, the netizens inhabiting or employing in different districts may have
the different sentiments for the same topic or event. Analyzing the sentiment
difference of different districts will help government agencies make more
pertinent decision. However, current researches in this domain have less
considered the opinion distribution on different districts. In this paper, we
propose an approach of semi-automatic public sentiment analysis for opinion
and district, which includes automatic data acquiring, sentiment modeling,
opinion clustering, and district clustering, and manual threshold setting and
result analysis. In detail, on the one hand, we group public sentiment into some
opinion clusters by means of clustering technique. On the other hand, based on
the opinion clusters, we further partition every opinion cluster on district into
district opinion and analyze the result. Experiment results in Tencent comments
show the feasibility and validity of our approach.

Keywords: Public sentiment analysis, opinion clustering, opinion distribution.

1 Introduction

More and more netizens publish their opinions about social events and phenomenon
by means of social media such as blog, microblog, wiki, BBS, IM. The attitudes or
beliefs of these netizens can reflect Web public sentiments and current issues to a
great extent. For government agencies, analyzing public sentiment is very useful in
guiding their public information and propaganda programs, and occasionally for
helping in the formulation of other kinds of policies.

∗ Project supported by the State Key Development Program for Basic Research of China (Grant

No. 2011CB302200-G) and National Natural Science Foundation of China (Grant No.
60973019, 61100026).

 An Approach of Semi-automatic Public Sentiment Analysis for Opinion and District 211

Public sentiment is the aggregate of individual attitudes or beliefs held by the adult
population [14]. Current most researches classify public sentiment into positive,
negative, and neutral category according to the sentiment orientation of netizens’
opinion, some researches consider more exquisite sentiment such as Fig.1 [3].

Fig. 1. An Example of Opinion Clustering for More Exquisite Sentiment [3]

In many cases, public sentiments are relative to district, status, age, and sex of the
netizens. For example, for the news of “Copenhagen Climate Conference 2009”, the
netizens from developed countries may have different opinions with ones from
developing countries. For the comments of “Chinese physician-patient relationship
reconsidered why nervous”, physicians may have different opinions with patients due
to different perspective. For the content about property in “New marriage law of
China”, male netizens may have different opinions with female netizens. Even senior
citizens are different from younglings about the law. However, current researches in
this domain have less considered the opinion distribution on different districts, status,
age, and sex of netizens. The reason may be that netizens always publish their opinion
in anonymous login, so their above information can not be known.

In fact, some websites can show the district of netizens according to their login
information, and they even ask netizens to login using real-name. Meantime, we think
that analyzing the opinion distribution of different districts will help government
agencies make more pertinent decision. Based on this idea, in this paper, we apply the
more exquisite and particular sentiment analysis in [3] but improve the sentiment
representing model, and further consider the opinion distribution in different districts.
For this purpose, we propose an approach of semi-automatic public sentiment analysis
for opinion and district, which includes automatic data acquiring, comment modeling,
opinion clustering, and district clustering, and manual threshold setting and result
analysis. We crawl and download the comments from Tencent for experiments, and
the results show the feasibility and validity of our approach.

The rest of the paper is organized as follows. Section 2 introduces the related work.
Section 3 describes our approach. Section 4 designs our comment represent model
and the clustering algorithm on opinion. Section 5 presents the method of concept
climbing for district and sentiment distribution discovery for districts. Section 6
shows our experiment results and analyzes them. Finally, Section 7 concludes the
research and gives directions for future studies.

212 D. Wang et al.

2 Related Work

Our approach is based on sentiment, and the main platform for netizens to express
their sentiment is the texts in social media such as blog, microblog, BBS, and IM, so
text sentiment analysis is the foundation of our work. The text sentiment analysis
mainly includes subjectivity classification, word sentiment classification, document
sentiment classification and opinion extraction [12]. In text sentiment analysis,
Melville et al. presented a unified framework for analyzing sentiment of blogs by
combining lexical knowledge with text classification [9]. Tan and Zhang studied
sentiment categorization on Chinese documents, and investigated four feature
selection methods and five learning methods for classifying Chinese sentiment corpus
[11]. Ye et al. performed automatic classifications based on the sentiment attitudes of
online reviews with regards to travel destinations [16]. Wu and Tan proposed a two-
stage framework for cross-domain sentiment classification and improved the
performance of cross-domain sentiment classification [15]. Khan, Baharudin, et al.
proposed a method for classifying subjective and objective sentences from reviews
and blog comments [5].

These researches used different methods for sentiment classification in different
documents, but most of them classify sentiment orientation into two categories
(positive and negative) or three categories (positive, negative, and neutral). There are
some studies about sentiment clustering. Luo et al. employed finer granularity
clustering for opinion extraction and the clustering results were further used for the
calculation of their sentiment orientation [7]. We ever modeled the hidden emotion
factors based on Probabilistic Latent Semantic Analysis (PLSA) and clustered
Chinese blogs according to the sentiment similarities between them [3].

In this paper, we also apply the clustering technique for acquiring more exquisite
and particular public sentiment. Different from above work, we use LDA [1] model to
represent the contents generated by netizens and deduce sentiment factors for opinion
clustering. Especially, we further analyze the sentiment distribution in different
districts based on opinion clustering.

3 Problem Description

Here we describe our problem on comments. In fact, our approach can also be applied
to other user generated content on the Web.

cm.ad cm.ar cm.ct cm.sp cm.tm

cm

Fig. 2. An Example of Comment Item Structure

 An Approach of Semi-automatic Public Sentiment Analysis for Opinion and District 213

Let CM={cm1, cm2, …, cmm} be a comment set and cmi=<ar, ad, tm, sp, ct> (i=1,
2, …, m) be an item of the set (or a comment), where ar, ad, tm, sp, ct are author (not
always the real name of a netizen), address, published time, support number, and
content of the comment item cmi. We mark them as cmi.ar, cmi.ad, cmi.tm, cmi.sp, and
cmi.ct respectively. We take an example with Tencent comment site (http://comment5.
news.qq.com/comment.htm) to explain it, which is shown as Fig.2.

Obviously, comment content cm.ct is the most important for sentiment analysis of
every comment item, so we will model cm.ct, which utilizes a natural language
process technique for obtaining sentiments words and their modifiers, and applies
LDA-based method for deducing the latent sentiment factors embedded in cm.ct.
Moreover, cm.ad is another important attribute for our work, we will use it to partition
public sentiment on district, i.e. discover opinion distribution on district.

For above purposes, we propose an approach of semi-automatic public sentiment
analysis for opinion and district. The implementing framework in this paper includes
automatic and manual parts for different functions. The framework of our approach is
shown as Fig.3.

Comments
texts

lexicon

districts

data control automatic manual

(2)
Data

Acquiring

(3)
Data

Reprocessing

(4)
LDA

modeling

(6)
Opinion

clusteringclusters

(7)
District

clustering

parameters

(8)
Results

Analyzing
(5)

Threshold
Setting

(1)
Topic

Giving

Fig. 3. Framework of Semi-Automatic Public Sentiment Analysis for Opinion and District

In Fig.3, the framework includes eight parts for the following functions.

(1) One or more topics are given by opinion analysts.
(2) For a given topic, related comments are crawled from all kinds of forums and

comment sites.
(3) For every comment, related tools and sentiment lexicons such as ICTCLAS [4],

HowNet [2] and NTUSD [6] are used for reprocessing, which includes segmenting
sentence into words, extracting sentiment words and their modifiers, and storing them
in text.

(4) LDA-based method is used to model the comments and deduce sentiment
factors and related parameters.

(5) The sentiment factors are analyzed for giving thresholds of clustering
algorithm.

214 D. Wang et al.

(6) Deduced parameters in (4) and given thresholds in (5) are used for opinion
clustering.

(7) Based on opinion clusters obtained in (6), further clustering on district is
implemented, which uses district concept hierarchy knowledge.

(8) Opinion distribution on different districts is analyzed for decision support.

In above work, (1), (5), and (8) are manual, i.e. they are done by users or opinion
analysts. These processes mean that for users or opinion analysts, they should present
interested topics by themselves, give threshold by means of LDA deducing results,
and analyze final sentiment distribution for decision support. (2), (3), (4), (6), and (7)
are implemented automatically. So we call the approach as semi-automatic one.

4 Comment Content Modeling and Opinion Clustering

For obtaining sentiment from comments, we apply Chinese text processing tools
ICTCLAS [4] for segmenting every comment item content cm.ct (abbreviated as cm)
into words and tagging part of speech for each word. For all contents of cm∈CM, we
extract sentiment words (adjectives, adverbs, and some of verbs) and their modifiers
by means of HowNet [2] and NTUSD [6] sentiment lexicon. Finally we obtain a
sentiment word set SW={sw1, sw2, …, swn}. For every cm∈CM, a vector of sentiment
word SV⊆SW will correspond to it. For all cmi (i=1, 2, …, m), their sentiment word
vectors SVi (i=1, 2, …, m) will be utilized for modeling the latent sentiment factors
using LDA, and further clustering the comments based on embedded opinions.

4.1 Comment Content Modeling Using LDA

Latent Dirichlet allocation (LDA) [1] is a probabilistic generative model, which has
been applied recently in many text mining problems especially short reviews [10, 13].
Here we assume that CM is generated using a mixture of v latent sentiment
factors LS = {ls1, ls2, …, lsv} and utilize LDA model to identify the latent semantic
relationships among CM, LS, and SW. The generative model is shown as Fig.4 (a).

 ls sw

n

m

ls
n

m

(a) LDA Model (b) Simplified LDA Model

Fig. 4. LDA Model and Its simplicity [1]

 An Approach of Semi-automatic Public Sentiment Analysis for Opinion and District 215

In Fig.4 (a), comment set CM is composed with m comments {cm1, cm2, …,
cmi, …, cmm}. cmi is composed with n sentiment words {sw1, sw2, …, swn} and they
associate v latent sentiment factors {ls1, ls2, …, lsv}. Based on the relationship, the
model is presented with Formula (1).

),|(

),|,,(
),,|,(

βα
βαθβαθ

swP

swlsP
swlsP = (1)

For estimating α and β, Blei [1] proposed a variational inference approach to simplify
the model, which selected a variational distribution Q as Fig.4 (b) instead of P in
Fig.4 (a) and Formula (2).

∏
=

=
n

i
iilsQQlsQ

1

)|()|(),|,(φγθφγθ (2)

where the Dirichlet parameter γ and the multinomial parameters (φ1, φ2, …, φn) are
the free variational parameters.

Thus the optimizing values of the variational parameters are found by minimizing
the Kullback-Leibler (KL) divergence between the variational distribution Q(θ, ls|γ,
ϕ) and the true posterior P(θ, ls|sw, α, β). By derivation of the variational EM
algorithm, E-step (for finding the optimizing values of the variational parameters γ
and ϕ) and M-step (for maximizing the resulting lower bound on the log likelihood
with respect to α and β) are repeated until the result converges.

In Fig.4, θ is the probability of picking a latent sentiment factor ls for a comment
cm, and it represents how much a latent sentiment factor ls “contributes” to the cm.
So, we utilize θ to represent cm∈CM for opinion clustering, and here θ can be
regarded as (P(ls1|cm), P(ls2|cm), …, P(lsv|cm)).

4.2 Opinion Clustering Using k-Means

According to the sentiment expressed by content of each cm (i.e. cm.ct), CM can be
group into k clusters cl1, cl2, …, clk and they compose cluster set CL. Because the cms
in the same cluster have similar opinions, we call each cluster as an opinion cluster.

For any opinion cluster cl∈CL, without losing of generality, we suppose {cm1, cm2,
…, cml}∈cl (l≤k) and SentiSim(x, y) means the sentiment similarity of comment item
content x and y. Then, for any i≤l, j≤l, and k>l, it satisfies:

(1) SentiSim(cmi, cmj)>SentiSim(cmi, cmk) and
(2) SentiSim(cmj, cmi)>SentiSim (cmj, cmk).

Above statement means that every cluster is a collection of comment items that
contents have similar opinions to one another within the same cluster and have
dissimilar opinions to the comment items in the other clusters. This is the same as
traditional clustering techniques, but here “similarity” means the same or similar
opinion embedded in comment contents.

After modeling comment content, for all cm∈CM, cm can be represented as
cm=<ar, ad, tm, sp, <P(ls1|cm), P(ls2|cm), …, P(lsv|cm)>>, so we apply <P(ls1|cm),

216 D. Wang et al.

P(ls2|cm), …, P(lsv|cm)> as the factor vector to present cm.ct and use SentSim(cmi,
cmj) to measure the similarity between two cms as Formula (3).

ji

ji
ji

dd

dd
ddSentSim

×

⋅
=),((3)

where)|()|(
1
∑

=

=⋅
v

m
jmimji cmlsPcmlsPdd and ∑

=

=
v

l
ili cmlsPd

1

2)|(

Based on the sentiment similarity, we can apply a clustering algorithm to group
CM into k clusters. We take k-Means [8] algorithm as an example and the algorithm
of clustering CM by k-Means is shown as Algorithm 1.

In Algorithm 1, Line 1) is for representing latent sentiment factors (see Section
4.1), and from Line 3)~7) is for clustering by k-Means. After clustering, CM can be
partitioned into k clusters, i.e. k opinion clusters, based on the opinion similarity
between their contents. Line 2) is for giving threshold k.

In k-Means algorithm, k must be given beforehand. Though there are some
methods for selecting k automatically, but the selection should correspond to the data
distribution and application requirement. Here we use manual analysis by means of
LDA parameters. In LDA implementation, we can obtain not only the probability of
latent sentiment factors (θ vector) but also latent sentiment words (Top 10 feature
words of v latent sentiment factors). The former is used for similarity measure in
clustering, and latter is used for manual analysis. Because 10×v (feature words) is less
than n×m (all word of CM) out and away, the manual analysis is feasible.

Algorithm 1: Clustering CM by k-Means

Input: comment set CM;
Output: opinion cluster set CL={cl1, cl2, …, clk} // k clusters of CM;
Method:
 1) for all cm.ct∈CM, calculate P(ls|cm) using LDA model

and represent cm.ct as <P(ls1|cm), P(ls2|cm), …, P(lsv|cm)>; //i.e. θ in LDA
 2) give k by manual analysis; //by means of LDA parameters
 3) arbitrarily choose k cms from CM as the initial cluster centers;
 4) repeat
 5) (re)assign each cm to the cluster to which the cm.ct has the most similar sentiment

with the mean value of the cm.ct in the cluster based on Formula (3);
 6) update the cluster means, recalculate the mean value of the cm.ct for each cluster;
 7) until no change;

5 Opinion Distribution Discovery Based on District

As mentioned in Section 1, some public sentiments are relative to the district of their
publishers. For some special opinions, discovering the district distribution of netizens
who hold the opinions is useful for government and opinion analysts to understand
public opinions.

 An Approach of Semi-automatic Public Sentiment Analysis for Opinion and District 217

…… ……

…… ……

all

China foreign

Beijing Jiangsu Liaoning

Nanjing Suzhou Shenyang Dalian

anonymity

province

city

country

Fig. 5. Concept Hierarchy of China District

In Section 3, we describe a comment item cm=<ar, ad, tm, sp, ct>, where ad is the
address or district of the item publisher. We can obtain the district distribution of an
opinion according to ad. In Web comments, the address can be a city, a province, or
anonymous. For unifying the address, we create a concept hierarchy tree as district
domain knowledge. A China district concept hierarchy tree is shown as Fig.5.

The concept hierarchy tree can be maintained by offline handwork or online
interaction. For an opinion cluster, based on the concept hierarchy tree in Fig.5, we
can unify the address to province or other levels and group them by district.
Algorithm 2 describes the process method. In the algorithm, the district is unified to
province and the concept hierarchy tree is maintained by online interaction.

Algorithm 2: Discovering district distribution for opinion

Input: an opinion cluster cl, district concept hierarchy tree R-tree;
Output: district distribution of cl;
Method:
 1) for all cm∈cl
 2) {if cm.ad is in R-tree
 3) if cm.ad is not in province level then climb cm.ad to province;
 4) else accept cm.ad by dialog box; //man-machine conversation
 5) }; cluster cm by cm.ad;

In the algorithm, Line 1)~4) can unity cm.ad to the same level. In this case, cm.ad

is regarded as the feature of cm, and clustering all cm∈cl in Line 5) is just grouping
them by cm.ad, i.e. merging the cms with the same ad to a cluster. Here the similarity
between two comments means they have the same cm.ad.

The result can show the district distribution of every public sentiment. However,
the reason why we can obtain such opinion cluster and district distribution needs to be
analyzed by opinion analysts. The analysis may require more humanities and
geography knowledge. Meantime, the concept hierarchy needs to be built beforehand.

218 D. Wang et al.

6 Experiment and Analysis

We collect the Tencent comments concerning “春节晚会节目低俗 (Spring Festival
Evening Show is Vulgar)” (http://comment5.ent.qq.com/comment.htm?site=ent&id=
22881311) by constructing URL parameters, downloading source codes, and parsing
the source codes. The number of valid comment is 7438.

6.1 Opinion Clustering Experiment

We reprocess and model the comments using the process in Section 4.1. In LDA
implementation, we apply GibbsLDA++ program and let v=10. Table 1 gives 10
sentiment factors and top 10 words of each factor in above comment set.

By analyzing the top 10 words of 10 sentiment factors in Table 1, we think it
should concern 4 aspects about “spring festival evening show itself” (factor 1 and 3),
“northeast couple dance opera” (factor 2, 4, and 8), “elegance and vulgarity” (factor 5,
6, and 7), and “approval or opposition” (factor 9 and 10), respectively. So we set k=4
for k-Means clustering. Moreover, we extract a sentiment word and its modifier words
as the “label” or typical opinion of every cluster. The result is shown as Fig.6.

Table 1. Top10 Sentiment Factors and Top 10 Words of Each Factor

Sentiment factor Top 10 words

1 央视 春晚 太 赵 现在 台 成 问题 应该 已经

2 二人转 喜欢 现在 人 知道 好 观众 艺术 东西 地

3 春晚 节目 年 广告 一年 太 确实 导演 越来越 感

4 赵本山 小品 小 真 演 笑 点 沈阳 今年 最

5 高雅 艺术 水平 老百姓 低俗 欣赏 晚会 高 应该

6 低俗 好 全国 顶 搞 人 委员 金铁霖 政协 垃圾

7 文化 中国 农民 俗 只 种 社会 文艺 代表 民族

8 东北 东北人 钱 人 南方 吃 北方 南方人 真 北方

9 人 想 懂 一个 中国 听 觉得 只 骂 再

10 说 支持 话 金 老师 下 请 句 好 看看

40%

20%

32%

8% , (like, Spring Festival
Evening Show)

, , (businessman,
control, Zhao Benshan)

, , (northeast, art,
couple dance opera)

, , (we, enjoy,
program)

Fig. 6. Clustering Result on Opinion

 An Approach of Semi-automatic Public Sentiment Analysis for Opinion and District 219

Here we set v=10 using LDA model and obtain Table 1, it results in k=4. From
Fig.6, we can see the label of every cluster is not a complete sentence but only some
words. How to extract more suitable sentence as label will be our future work.

In fact, if we let v be other value, the result may be changed. How to set correct v
value will also be our future work.

6.2 Opinion Distribution on District Experiment

Based on opinion clustering, we further partition every cluster according to district.
We regard the process as district clustering. In this case, cm.ad, i.e. address of
comment publisher is used to represent the comments. In this experiment, it is unified
to province. According to the representation, similarity measure between comments
becomes their corresponding province. If they have the same province, they will be
assigned to the same cluster. The number of comments in each cluster for every
province is shown as Table 2.

Table 2. Experiment Results for Opinion Distribution

province cluster1 cluster2 cluster3 cluster4 total

Beijing 159 71 138 38 406

Shanghai 59 44 54 15 172

Tianjin 35 16 45 11 107

Chongqing 48 25 36 8 117

Hebei 81 36 74 15 206

Shanxi 60 30 42 10 142

Inner Mongolia 35 14 25 5 79

Liaoning 211 67 167 43 488

Jilin 122 28 71 35 256

Heilongjiang 121 46 88 24 279

Jiangsu 129 70 103 35 337

Zhejiang 213 138 140 42 533

Anhui 59 29 56 11 155

Fujian 95 54 66 16 231

Jiangxi 38 21 33 11 103

Shandong 104 52 126 23 305

Henan 95 60 100 26 281

Hubei 80 48 84 11 223

Hunan 53 41 60 17 171

Guangdong 218 149 153 41 561

Guangxi 79 48 62 24 213

220 D. Wang et al.

Table 2. (Continued)

Hainan 17 6 7 2 32

Sichuan 89 62 97 20 268

Guizhou 18 8 10 1 37

Yunnan 21 15 23 7 66

Xizang 1 0 0 0 1

Shanxi 48 31 48 15 142

Gansu 38 12 27 5 82

Qinghai 7 0 4 0 11

Ningxia 4 0 4 0 8

Xinjiang 0 0 0 0 0

From Table 2, we can do further analysis by manual. Firstly, we analyze top 10
provinces of total comments, which can show the attention degree of different district.
The result is shown as Fig.7.

561
533

488

406
337

305 281 279 268 256

0

100

200

300

400

500

600

G
ua

ng
do

ng

Zh
ej

ia
ng

Li
ao

ni
ng

B
ei

jin
g

Jia
ng

su

Sh
an

do
ng

H
en

an

H
ei

lo
ng

jia
ng

Si
ch

ua
n

Jil
in

nu
m

be
r o

f c
om

m
en

t

Fig. 7. Top 10 Provinces of Total Comments

According to Fig.7, in these provinces, Guangdong, Zhejiang, and Jiangsu are
developed provinces in economy and culture, so their netizens give more attentions to
“Spring Festival Evening Show”. Because the current programs and shows have more
characteristics and style of the north of China, especially the northeast, Liaoning,
Heilongjiang, and Jilin (three provinces in northeast) are more interested.

Of four clusters in Table 1, cluster3 is about “northeast, art, couple dance opera”,
and the sentiment is positive, so Liaoning (one of the three provinces in northeast) has
the most number of comments in this cluster. We can also see Liaoning has not the
most comments in cluster2, because this cluster is about Zhao Benshan (a comedian
from Liaoning), and the sentiment is negative.

 An Approach of Semi-automatic Public Sentiment Analysis for Opinion and District 221

7 Conclusions and Future Work

In this paper, we focus on Chinese comments, and propose an approach combining
human analysis and machine computing, called semi-automatic public sentiment
analysis for opinion and district, which includes automatic data acquiring, comment
modeling, opinion clustering, district clustering, and manual threshold setting and
result analysis. In comment modeling, we apply LDA model to represent comments
and deduce their latent sentiment factors. In opinion clustering, we apply classical k-
Means algorithm. Experiment shows that our approach is simple and advantageous,
which has the following characteristics.

(1) Comparing with full automatic process, it can interact with users or analysts.
Comparing with pure manual analysis, it can facilitate opinion analysis by means of
LDA representation, sentiment factors deducing, opinion clustering, and district
distribution results. So it is feasible and valid.

(2) Comparing with related work, it can obtain not only opinion clusters, but also
opinion distribution on different district. Moreover, the analysis can be expanded to
other attributes such as status, age, and sex of the netizens.

(3) From experiment results, the label or typical opinion extracted from every
cluster is not perfect, which concerns the application of text mining and natural
language process techniques.

Moreover, because of inauthentic information on the Web, our analysis results may be
inaccurate, but the problem and above disadvantages can be tackled with our future
work. So in the future work we should advance the automation and accuracy of
opinion analysis by improving our model and process approach.

References

1. Blei, D., Ng, A., Jordan, M.: Latent Dirichlet Allocation. Journal of Machine Learning
Research (JMLR) 3, 993–1022 (2003)

2. Dong, Z., Dong, Q.: HowNet, http://www.keenage.com/html/e_index.html
3. Feng, S., Wang, D., Yu, G., Gao, W., Wong, K.: Extracting common emotions from blogs

based on fine-grained sentiment clustering. Knowl. Inf. Syst. 27(2), 281–302 (2011)
4. Golaxy: ICTCLAS, http://www.ictclas.org
5. Khan, A., Baharudin, B., Khan, K.: Sentiment Classification from Online Customer

Reviews Using Lexical Contextual Sentence Structure. In: Mohamad Zain, J., Wan Mohd,
W.M.b., El-Qawasmeh, E. (eds.) ICSECS 2011, Part I. CCIS, vol. 179, pp. 317–331.
Springer, Heidelberg (2011)

6. Ku, L., Chen, H.: Mining opinions from the Web: Beyond relevance retrieval. JASIST
(JASIS) 58(12), 1838–1850 (2007)

7. Luo, Y., Lin, G., Fu, Y.: Finer Granularity Clustering for Opinion Mining. In: ISCID, pp.
68–71 (2009)

8. MacQueen, J.: Some methods for classification and analysis of multivariate observation.
In: Proc. of 5th Berkeley Symp. Math. Statist. and Prob., vol. 1, pp. 281–297 (1967)

9. Melville, P., Gryc, W., Lawrence, R.: Sentiment analysis of blogs by combining lexical
knowledge with text classification. In: KDD 2009, pp. 1275–1284 (2009)

222 D. Wang et al.

10. Phan, X., Nguyen, M., Horiguchi, S.: Learning to classify short and sparse text & web with
hidden topics from large-scale data collections. In: WWW 2008, pp. 91–100 (2008)

11. Tan, S., Zhang, J.: An empirical study of sentiment analysis for Chinese documents.
Expert Syst. Appl. (ESWA) 34(4), 2622–2629 (2008)

12. Tang, H., Tan, S., Cheng, X.: A survey on sentiment detection of reviews. Expert Syst.
Appl. (ESWA) 36(7), 10760–10773 (2009)

13. Titov, I., McDonald, R.: Modeling online reviews with multi-grain topic models. In:
WWW 2008, pp. 111–120 (2008)

14. Wang, L., Yn, C., Jia, Y.: Toward Public Opinions Detection: Measuring the Similarity
between Instant Messages. In: ODBIS 2008, pp. 21–28 (2008)

15. Wu, Q., Tan, S.: A two-stage framework for cross-domain sentiment classification. Expert
Syst. Appl. (ESWA) 38(11), 14269–14275 (2011)

16. Ye, Q., Zhang, Z., Law, R.: Sentiment classification of online reviews to travel
destinations by supervised machine learning approaches. Expert Syst. Appl.
(ESWA) 36(3), 6527–6535 (2009)

Author Index

Abdelmoty, Alia 1
Alahmari, Fahad 150

Bača, Radim 103
Bressan, Stéphane 113

Cao, Jiaheng 26
Chen, Kunjie 63
Chen, Qun 140
Chovanec, Peter 103

ElGindy, Ehab 1

Fang, Ying 26
Feng, Shi 197, 210

Gao, Hong 124

He, Di 167
Hong, Liang 167
Htoo, Htoo 51

Jin, Peiquan 13, 76
Jing, Yinan 63

Krátký, Michal 103
Křižka, Filip 103

Li, Jingjiao 160
Li, Ning 140
Li, Rongrong 185
Li, Xia 140
Li, Zhanhuai 140
Lin, Sheng 76
Liu, Tingting 90
Liu, Weimo 63
Lu, Jiaheng 136

Ma, Yuchi 90
Meyers, Michael 40

Ohsawa, Yutaka 51

Pardede, Eric 150
Peng, Yuwei 26
Peng, Zhiyong 167, 185

Qu, Chunyan 90

Ralston, Bruce A. 40

Sonehara, Noboru 51
Song, Kaisong 197
Song, Wei 26
Sun, Limei 160
Sun, Weiwei 63

Tang, Changjie 90
Tang, Ruiming 113

Wang, Daling 197, 210
Wang, Hongzhi 124
Wang, Huaishuai 13
Wang, Jiao 160
Wang, Junzhou 26
Wang, PeiYing 140
Wang, Wei 136
Wang, Yang 124
Wang, Yue 124
Wu, Huayu 113

Xu, Chao 175

Yan, Chao 210
Yang, Ning 90
Yao, Caiyun 136
Yu, Ge 197, 210
Yue, Lihua 13, 76

Zhai, Weixiang 185
Zhang, Dongzhan 175
Zhang, Lanlan 13
Zhang, Lijun 140
Zhang, Qingqing 76
Zhang, Yu 167
Zhao, Lei 13
Zhou, Xiaofang 136

	7142
	WAIM 2011 Workshop Chairs’ Message
	The First International Workshop on Web-Based Geographic Information Management (WGIM 2011) Chairs’ Message
	The Third International Workshop on XML Data Management (XMLDM 2011) Chairs’ Message
	The First International Workshop on Social Network Analysis (SNA 2011) Chairs’ Message
	The First International Workshop on Web-Based Geographic Information Management (WGIM 2011)
	The Third International Workshop on XML Data Management (XMLDM 2011)
	The First International Workshop on Social Network Analysis (SNA 2011)
	Table of Contents
	The First International Workshop on Web-Based Geographic Information Management (WGIM 2011)
	Enhancing the Quality of Place Resources in Geo-folksonomies
	Introduction
	Related Work
	Problem Definition
	Identifying Redundant Place Resources
	Spatial Clustering
	Textual Clustering
	Clustering Place Resources

	Experiment and Evaluation
	Experiment
	Measuring the Uncertainty
	Evaluation Results

	Discussion and Future Work
	References

	Generating Semantic-Based Trajectories for Indoor Moving Objects
	Introduction
	Related Work
	Overview of IndoorSTG
	Design Considerations of IndoorSTG
	Architecture of IndoorSTG

	Introducing Semantics in IndoorSTG
	Correlation between Objects and Locations

	Implementation and a Case Study
	Implementation of IndoorSTG
	A Case Study

	Conclusions
	References

	HTPR*-Tree: An Efficient Index for Moving Objects to Support Predictive Query and Partial History Query
	Introduction
	Related Works
	The HTPR*-Tree
	Index Structure
	Insertion and Deletion
	Search Procedure

	Bottom-Up Update
	Performance Study
	Experimental Setting and Details
	Performance Analysis

	Conclusion
	References

	Developing Rich Web GIS Applications for Visual Analytics
	Introduction
	Development Considerations
	Visualization Components
	Component Behavior
	Component Layout
	Reporting

	Data Preparation
	Attribute Data Preparation
	Geographic Data Preparation

	Server Side Functions
	Final Comments and Looking Ahead
	References

	Single-Source Multi-Target A* Algorithm for POI Queries on Road Network
	Introduction
	Related Work
	Single-Source Multi-Target A* Algorithm
	Preliminaries
	Basic Algorithm
	Incremental Query

	Application to ANN Queries
	Performance Evaluation
	Conclusion
	References

	Combining Top-k Query in Road Networks
	Introduction
	Related Work
	The Model
	Algorithm
	NRA (No Random Accesses) Algorithm
	Access with Topology Changed (ATC) Algorithm

	Performance Evaluation
	Experiment Settings
	Experiments on the Efficiency

	Conclusion
	References

	Extracting Focused Locations for Web Pages
	Introduction
	Related Work
	Geo-Candidates Disambiguation
	The GeoRank Algorithm for Resolving the GEO/GEO Ambiguity
	The Heuristic Algorithm for Resolving GEO/NON-GEO Ambiguity

	Determining Focused Locations
	Experiments
	Datasets
	Pre-processing
	Geo-Candidates Disambiguation
	Experiments on Determining Focused Locations

	Conclusions
	References

	Searching Similar Trajectories in Real Time: An Effectiveness and Efficiency Study
	Introduction
	Related Work
	Global Temporal Similarity
	RTSTS-Tree
	Query Algorithms
	kNN Query
	Top k Similar Pairs Query

	Experiments
	Data Sets
	Effectiveness of GTS
	Updating Time of RTSTS-Tree
	Performance of Search_kNN
	Performance of Search_Topk

	Conclusion
	References

	The Third International Workshop on XML DataManagement (XMLDM 2011)
	Multidimensional Implementation of Stream ADT
	Introduction
	Why Multidimensional Implementation?
	Multidimensional Index for XML
	Preliminary Results
	Conclusion
	References

	Measuring XML Structured-ness with Entropy
	Introduction
	Background and Related Work
	Background
	Related Work

	Structured-ness Measurement
	Path-Based Entropy
	Subtree-Based Entropy

	Performance Experiment
	Experiment Setup
	Experimental Evaluation on Synthetic Data
	Experiment Evaluation on Real Data

	Conclusion and Future Work
	References

	Similarity Join on XML Based on k-Generation Set Distance
	Introduction
	Related Work
	Preliminary
	New Edit Operations and Extended Tree Edit Distance
	Similarity Join on XML

	Similarity Join Based on k-Generation Set
	k-Generation Set and k-Generation Set Distance
	Algorithms Concerning the k-Generation Set Distance
	Characteristics of k-Generation Set Distance
	Time Complexity Analysis

	Performance Experiments
	Efficiency of Our Method
	Influence of Related Parameter
	Scalability and Flexibility

	Conclusions
	References

	XML Query Processing Using Views
	Introduction
	Equivalent Result
	Encoding Scheme

	Preliminary Research
	Future Work
	References

	XIO-SLCA: Optimize SLCA for Effective Keyword Search in XML Documents
	Introduction
	Our Contributions
	Paper Organization

	Related Work and Our Motivation
	Related Work
	Algorithms about SLCA
	 Our Motivation

	XML Information Object and XIO Similarity Score Algorithm
	XIO: XML Information ObjectXIOFISA2010
	XIO Similarity Score AlgorithmXIOFISA2010
	Meaningless XIOXIOFISA2010

	XIO-SLCA Algorithm
	Root Node as SLCA Result
	Discard the Useful Result
	Return Meaningless SLCA Result

	Experiments
	Conclusion
	References

	The Development of XML Stored Procedures in XML Enabled Databases
	Introduction
	Background and Related Work
	Queries and Functionalities of XML Stored Procedures
	XML Stored Procedure Implementation
	User Interface
	XML SP Syntax to Manipulate XML Instances
	XML SP Syntax to Shred XML

	Conclusion and Future Work
	References

	The First International Workshop on Social Network Analysis (SNA 2011)
	A Slope One Collaborative Filtering Recommendation Algorithm Using Uncertain Neighbors Optimizing
	Introduction
	Background
	Question Description
	Slope One Algorithm

	Using Uncertain Neighbors Optimizing
	Choose Uncertain Neighbors
	Predict Ratings
	Data Sparsity Analysis

	Experimental Study
	Data Set
	Measurements of Prediction Quality
	Experimental Results

	Conclusion
	References

	A Social Reputation Management for Web Communities
	Introduction
	Related Work
	Reputation Model and Mechanism
	Member and Community
	Reputation Rating
	Reputation Propagation

	Preliminary Experiments
	Reputation Metrics
	Case Study

	Conclusion
	References

	A Collaborative Filtering Recommendation System by Unifying User Similarity and Item Similarity
	Introduction
	Backgroud
	User-Based Collaborative Filtering Recommendation System
	Analysis of Traditional User Similarity Measurement

	A New CF Algorithm by Unifying User Similarity and Item Similarity
	User Similarity Measurement Considering Item Category
	Items Classification

	Empirical Evaluation
	Experimental Setup
	Experiment Result and Analysis

	Conclusions
	References

	Supporting Query over Dynamic Combination of Data Sources for Social Media
	Introduction
	Modeling Data Source
	Data Source Model and Interface Description
	Virtual Data Source (VDS)

	Generate Query Plan Graph
	Query Plan Graph
	Optimal Query Path

	Dynamic and Adaptive Adjustment for Query Plan Execution
	Wrapper Manager
	Related Work
	Conclusion
	References

	Detecting Opinion Leader Dynamically in Chinese News Comments
	Introduction
	Related Work
	Problem Description
	Sentiment Analysis and Comment Network Modeling
	Sentiment Analysis
	Implicit Link Discovery
	Comment Network Modeling

	Opinion Leader Detection
	The Most Influential Comment Detection
	The Most Influential User Detection

	Experiment Results
	Opinion Leader Detection from Comments
	Opinion Leader Detection from Users

	Conclusions and Future Work
	References

	An Approach of Semi-automatic Public Sentiment Analysis for Opinion and District
	Introduction
	Related Work
	Problem Description
	Comment Content Modeling and Opinion Clustering
	Comment Content Modeling Using LDA
	Opinion Clustering Using k-Means

	Opinion Distribution Discovery Based on District
	Experiment and Analysis
	Opinion Clustering Experiment
	Opinion Distribution on District Experiment

	Conclusions and Future Work
	References

	Author Index

