
Combining Flat and Structured Approaches
for Temporal Slot Filling or: How Much to Compress?

Qi Li, Javier Artiles, Taylor Cassidy, and Heng Ji

Computer Science Department and Linguistics Department,
Queens College and Graduate Center,

City University of New York,
New York, NY 11367, USA

{liqiearth,javart,taylorcassidy64,hengjicuny}@gmail.com

Abstract. In this paper, we present a hybrid approach to Temporal Slot Filling
(TSF) task. Our method decomposes the task into two steps: temporal classifi-
cation and temporal aggregation. As in many other NLP tasks, a key challenge
lies in capturing relations between text elements separated by a long context. We
have observed that features derived from a structured text representation can help
compressing the context and reducing ambiguity. On the other hand, surface lex-
ical features are more robust and work better in some cases. Experiments on the
KBP2011 temporal training data set show that both surface and structured ap-
proaches outperform a baseline bag-of-word based classifier and the proposed
hybrid method can further improve the performance significantly. Our system
achieved the top performance in KBP2011 evaluation.

1 Introduction

There are many relations between named entities that may change over time (e.g. a per-
son’s residence, an organization’s top employees, etc.), and these changes are expressed
in the usage of temporal expressions in text. The TempEval evaluation campaigns [15]
studied Temporal Information Extraction (TIE) concentrating on the identification of
temporal expressions, events and temporal relations, but these tasks did not tackle the
problem of finding the specific start and end dates for a given relation or event. In order
to solve this problem a TIE system should detect whether a temporal expression actually
concerns a certain relation, and in that case, the kind of role this temporal expression
plays (i.e. whether it expresses the beginning of the relation, its end, or a time in be-
tween). Temporal information about a single relation can be scattered among different
sentences and documents and presented with varying degrees of precision (e.g. a spe-
cific date, a range of dates such as a month, season, or year). To address these problems
a system needs to detect coreferential mentions of the entities involved in a relation
and aggregate the collected temporal information into a single answer. The NIST TAC
Knowledge Base Population (KBP) 2011 track [9] included a pilot Temporal Slot Fill-
ing (TSF) task. In this task systems extract the start and end dates of a relation from
a collection of documents. A relation involves an entity, a type of slot and a particular
fill for that slot (e.g. “Nicole Kidman” is the slot fill for the entity “Tom Cruise” in the
relation spouse) .

A. Gelbukh (Ed.): CICLing 2012, Part II, LNCS 7182, pp. 194–205, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Combining Flat and Structured Approaches for TSF 195

As is the case for many NLP tasks, one of the main challenges of TSF lies in cap-
turing relationships within long contexts. The context surrounding the entity, slot fills
and temporal expressions is often too long and diverse to be generalized with surface
features. By using syntactic parsing we can compress long contexts based on their un-
derlying structure and capture common syntactic patterns. However, NLP tools that try
to provide a deeper representation of the text can introduce many errors. Furthermore,
in cases where there is a short context, surface features tend to provide a more appropri-
ate generalization. One of the earliest works in IE asked “where is the syntax?” [8] and
concluded that, although incorporating structure into an Information Extraction process
would be necessary to overcome performance plateaus, only a conservative approach to
parsing would be accurate enough to improve IE results without introducing too much
noise. Our work re-visits the general hypothesis that using just the right amount of
structure can improve IE results by evaluating the impact of features defined in terms
of multiple levels of structure.

Our general approach to the TSF task is to decompose it into two problems: the
classification of a temporal expression in the context of a query and its slot fill(s);
and temporal information aggregation, in which the classified temporal expressions are
combined to produce the start/end dates of a relation expressed by a given query and its
slot fill. To this end, we have developed and tested two approaches to the temporal clas-
sification problem: a structured approach and a flat approach. The structured approach
captures long syntactic contexts surrounding the query entity, slot fill and temporal ex-
pression using a dependency path kernel tailored to this task. The flat approach exploits
information such as the lexical context and shallow dependency features. We show that
these two approaches are complementary and thus can be combined through a simple
temporal information aggregation process. We also show that the performance of each
approach is highly correlated with the length of the example contexts. Our proposed
approaches outperform a number of baselines, and achieved the top performance in the
KBP2011 evaluation.

2 Related Work

The need for structural representations is acknowledged in many Natural Language
Processing fields. For example, the shortest path between two vertices in a dependency
parsed graph has been used to capture the syntactic and semantic relation between two
words [2,16,18].

Temporal IE has recently attracted intensive research interests. For example, the
TempEval [15,17] shared tasks has aimed at the extraction of relations between events
and temporal expressions from single documents. Various approaches have been devel-
oped for this task, which can be roughly categorized into flat or structured approaches:
(1) Flat approaches: [3] built a supervised learning model to classify a pair of event
triggers in a sentence based on syntactic and semantic features at the lexical level based
on tense and aspect. [19] used similar features, using a Markov Logic based joint infer-
ence framework for temporal relations. [10] also exploited cross-event joint inference,
but they used shallow dependency features to build local formulas without consider-
ing the deeper syntactic structure. (2) Structured approaches: [1] designed syntactic

196 Q. Li et al.

and semantic features based on syntactic treelets and verbal government for temporal
relation classification. [14] used sentence level syntactic trees to propagate temporal
relations between syntactic constituents. [5] introduced a type of feature called tree po-
sition that classifies nodes on a syntactic dependency tree based on their position in the
tree relative to that of a target node.

Our work advances temporal IE in the following three main aspects: (1) it extends the
notion of temporal relation from that of a pair <event, time expression>, or <event>,
to a 3-tuple <entity, relation/event, time expression>, allowing us to capture temporal
information of varying degrees of uncertainty; (2) We represent the contexts surround-
ing the tuple elements, using both flat and structural features; (3) it extends from single-
document extraction to cross-document extraction so that we are able to effectively
combine the advantages from flat and structured approaches through cross-document
information aggregation.

3 Experimental Setup

3.1 Task Definition

The goal of KBP2011 temporal slot filling task is to add temporal information to se-
lected slots for a given entity query from a large collection of documents. The slot types
considered on this task are: spouse, title, employee of, member of, cities of residence,
state or provinces of residence and countries of residence for people, and the top
employees/members slot for organizations. There are two subtasks: full and diagnos-
tic. For the full temporal task, the system is given an entity name and a document where
this entity is mentioned and is expected to find the relevant slots in the document col-
lection, augmented with temporal information as described below. For the diagnostic
temporal task, the system is given the entity and a set of slot values with their types
and the documents that support them. For this task the system should determine the
temporal information for each slot value, based only on the information in the provided
support document. In order to investigate the capability of various approaches to tem-
poral information extraction, we conduct experiments in the diagnostic setting.

3.2 Temporal Representation

The KBP2011 temporal representation model consists of a 4-tuple whose elements are
dates (day, month and year), < t1, t2, t3, t4 >. A tuple represents the set of possible
beginnings and endings of an event. t1 and t2 represent the lower and upper bounds,
respectively, for the beginning of the event, while t3 and t4 represent the lower and
upper bounds for end of the event.

Given a slot-filling query name Jose Padilha, its slot fill Film Maker for the slot
type per:title, a diagnostic temporal slot filling system may discover a temporal tuple
< −∞, 2007− 12− 26, 2007− 12− 26,+∞ > to represent the temporal boundaries.

Combining Flat and Structured Approaches for TSF 197

3.3 Scoring Metric

We use the official scoring metric Q(S) for the task. This metric compares a system’s
output S =< t1, t2, t3, t4 > against a gold standard tuple Sg =< g1, g2, g3, g4 >,
based on the absolute distances between ti and gi:

Q(S) =
1

4

∑

i

1

1 + |ti − gi|
When there is no constraint on t1 or t3 a value of -∞ is assigned; similarly a value of

+∞ is assigned to an unconstrained t3 or t4.
Let {G1, G2, ..., GN} be the set of gold standard tuples, {S1, S2, ..., SM} the set

of system output tuples, where for each unique slot fill i, Gi there is the 4-tuple <
g1, g2, g3, g4 >, and Sj is the 4-tuple < t1, t2, t3, t4 >. Then Precision, Recall and
F-measure scores are calculated as follows:

Precision =

∑
Si∈C(S) Q(Si)

M
Recall =

∑
Si∈C(S) Q(Si)

N
F1 =

2 · Precision ·Recall

P recision+Recall

Where C(S) is the set of all instances in system output which have correct slot filling
answers, and Q(S) is the quality value of S. In the diagnostic task, precision, recall,
and F1 values are the same since we are provided with correct slot filling values as part
of the system input.

4 Approach Overview

Our approach to the TSF problem consists of three main steps: (i) find all the contexts
where the entity and the slot value are mentioned; (ii) classify each temporal expression
in those contexts according to its relation with the entity/slot value pair; (iii) aggregate
all the classified temporal information in a coherent 4-tuple. In Figure 1 we summarize
the system pipeline. Our system takes as input an entity, slot type and slot value as well
as the source documents where the slot value was found.

Fig. 1. General Temporal Slot Filling System Architecture

198 Q. Li et al.

Each source document is fully processed using the Stanford NLP Core toolkit [7]
to tokenize, detect sentence boundaries, detect named entities (including temporal ex-
pressions), build coreference chains and analyze the syntactic dependencies within sen-
tences. The annotated output is used to find sentences that mention both the entity and
the slot value. Finding these sentences by string matching provides only very limited
coverage, so we use named entity recognition and coreference results to expand this
set of relevant sentences. We look at the coreference chains that contain the provided
slot value or entity name and we select sentences that mention both, according to the
coreference chains.

Each temporal expression in these sentences is then represented as a classification
instance and labeled as belonging to one of the following classes: start, end, hold, range
and none. Finally, for each particular entity/slot value, all of its classified temporal
expressions are aggregated in a single 4-tuple.

4.1 Temporal Classification

Classification is applied to label temporal expressions that appear in the context of a
particular entity and the slot value as “start”, “end”, “hold”, “range” or “none”. Suppose
our query entity is Smith, the slot type is per:title, and the slot-fill is Chairman. Table 1
shows a description of each class along with its corresponding 4-tuple representation:

Table 1. Description of Temporal Classes

Class Temporal Role Four tuple
Start beginning of the slot fill < ta, tb, ta,∞ >

End end of the slot fill < −∞, tb, ta, tb >

Hold a time at which the slot fill is valid < −∞, tb, ta,∞ >

Range a range in which the slot fill is valid < ta, ta, tb, tb >

None unrelated to the slot fill < −∞,∞,−∞,∞ >

The next two subsections describe the two classification approaches we have tested.

4.2 Flat Approach

The flat approach uses two types of features: window features and dependency features.
A window feature value for the query entity, slot value, and a target temporal expression
is extracted from each example. This value is a set containing all tokens that occur
in the normalized sentence within 4 tokens in either direction of any instance of the
normalized token in question.

Two dependency feature values for the query entity, slot value, and a target temporal
expression are extracted from each example, resulting in two sets of tokens for each
normalized token T . One set contains all tokens that any instance of T governs, the other
set contains all tokens governed by any instance of T . Before a feature value set for a
normalized token T is created, punctuation marks, duplicate consecutive normalized
tokens, and instances of T itself are removed.

Combining Flat and Structured Approaches for TSF 199

Example (1) is from the evaluation set, for the query, attribute = per:title, entity =
Makoni, slot fill = minister of industry and energy development .(1’) is its normalized
version.

(1) In 1981, Makoni was moved to the position of minister of industry and energy
development, where he remained until 1983.

(1’) In DATE, TE was moved to the position of TA , where he remained until TD.
Table 2 shows the feature values extracted from (1’).

Table 2. Feature Values for (1)

Feature Value
TE Win be, move, to, in, DATE, the
TA Win of, to, remain, position, the, where, until, he
TD Win remain, where, until, he
TE Governs -
TA Governs -
TD Governs -
TE Governed by move
TA Governed by position
TD Governed by remain

For two feature values U , V , let KT be the normalized size of their intersection

KT (U, V) =
|U ∩ V |

√|U |2 + |V |2 (1)

Let F denote the flat features. Then for any G ⊆ F , let KS be the kernel function for a
pair of examples, and x.i the feature value for the ith feature value type for example x:

KS(x, y) =
∑

i∈G

KT (x.i, y.i) (2)

With these features we trained a classifier using Support Vector Machines (SVM) [6].

4.3 Structured Approach

Dependency Path Representation. In the structured approach, we exploit collapsed
dependency parsed graphs generated from the Stanford dependency parser [12] to cap-
ture relevant grammatical relations and discover syntactic patterns. Figure 2 shows a
part of the dependency graph obtained from the sentence, “In 1975[time expression], af-
ter being fired from Columbia amid allegations that he[query entity] used company funds
to pay for his[query entity] son’s bar mitzvah, Davis[query entity] founded Arista[slot fill]”
. In this example, Davis is the query entity, the slot type is per:employee of, Arista is
the slot fill, and 1975 is the time expression.

We extend the idea of shortest path on a dependency graph (see Section 2) to include
three items: query entity, slot fill and time expression. Each instance is represented by

200 Q. Li et al.

Davis fired Arista 1975

founded

Columbia allegation ...

ns
ub

j dobj
prep in

p
r
e
p
c

a
ft
e
r

pr
ep

fr
om

p
re

p
a
m

id

Fig. 2. Dependency parsed graph of the sample sentence

three paths: (i) the path between query entity and temporal expression (P1), (ii) the path
between slot fill and temporal expression (P2); and (iii) the path between query entity
and slot fill (P3).

We found that two modifications in the graph allow us to obtain more informative
paths. To capture phrasal verbs, take for example took over as one node in the path
instead of only using took, we change two vertice linked by prt dependency into one
vertex, where prt indicates a phrasal verb relation. Second, consider dependency path
between he and president, sentence “he was president of ...” and “he is president of ...”
produce same path, because he and president are linked by nsubj, where nsubj indicates
subject relation. To address this issue, we reshaped the dependencies around copula
verb such as is and become to those of common verbs.

Each shortest path Pi is represented as a vector < t1, t2, ..., tn >, where ti can be
either a vertex or a typed edge in the dependency graph. Each edge is represented by
one attribute, which is formed by combining the corresponding dependency type and
direction. More formally, attribute a ∈ D×{←,→}, whereD is the set of dependency
types, and the arrow is directed from the governor to the dependent word. Vertices, on
the other hand, may contain different levels of features, which can be found in Table 3.

Table 3. Features of Vertices

Feature Description
Word The original word token from the sentence. E.g., “Davis

founded[founded] Arista”
Stem Stemmed form of the word token. E.g., “Davis founded[found]

Arista”
Entity type Person, Location, Organization. E.g., “fired from

Columbia[Organization]”
Semantic class of trigger words Each class contains trigger words of event subtype in Automatic

Content Extraction 2005 corpus1, and some manually collected
slot type sensitive key words, E.g. if slot type is per:spouse, then
the word marry belongs to one semantic class while divorce be-
longs to another semantic class.

Part-of-speech Part-of-speech tag of original word

1 http://projects.ldc.upenn.edu/ace/

http://projects.ldc.upenn.edu/ace/

Combining Flat and Structured Approaches for TSF 201

For example, in the sentence of Figure 2, there exists prep in dependency from founded
to 1975. prep in represents prepositional relation between these two words, meaning
that the action founded happened at 1975.

When we search the shortest path between two nodes, we consider all mentions of
the query entity and the slot fill in a sentence. For this reason there could be more
than one candidate for each Pi. We define the following simple but effective strategy to
choose one path among all candidate paths. If some candidate paths contain predefined
trigger words, we choose the shortest path with trigger words. Otherwise, we choose
the shortest path among all candidates.

Figure 3 shows three shortest paths that result from the sentence of Figure 2. These
paths not only contain lexical features such as words, but also syntactic relations. In
the resulting representations, informative patterns are distilled while some irrelevant
information, as well as misleading words such as fire, are discarded.

The next step in our system is to use a kernel function to generalize these paths and
represent them in a high dimensional feature space implicitly.

Davis founded/found/VBD/Start-Position 1975

Arista founded/found/VBD/Start-Position 1975

Davis founded/found/VBD/Start-Position Arista

nsubj prep in

dobj prep in

nsubj dobj

Fig. 3. Three Shortest Paths from Figure 2

Kernel Function. Following previous work [11] and [2], we present a string kernel
function based on dependency paths. The main idea is to use the kernel trick to deal
with common-substring similarity between dependency paths, and to extract syntax-
rich patterns from dependency paths.

Let x, y be two instances. We use l(P) to denote the length of a dependency path P ,
P [k] to denote the set of all substrings of P which have length k, and a substring a ∈
P [k] is a substring of P with length k. For example, if P is “ABC”, then P [2] ={“AB”,
“BC”}. The kernel function of x and y is defined as follows:

Ks(x, y) =
3∑

i=1

Kp(x.Pi, y.Pi) (3)

Kp(Px, Py) =

Min(l(Px),l(Py))∑

k=1

∑

a∈Px[k],b∈Py[k]

k∏

i=1

c(ai, bi) (4)

Where Kp is a kernel function on two dependency paths Px and Py which sums the
number of common substrings of feature paths in Px and Py with length from 1 to
the maximum length. In c(ai, bi) we calculate the inner product of the attribute vectors
of ai and bi, where ai and bi are elements of two paths respectively. The final kernel
function Ks does the summation of the partial results of the three dependency paths
(query entity-slot fill, query entity-temporal expression, slot fill-temporal expression).

Consider the following example containing two dependency paths Px and Py

between an entity (E) and a temporal expression (T) in two different sentences.

202 Q. Li et al.

E
nsubj−−→founded/found/VBD/Start-Position

prep in←−−−T
E

nsubj−−→joined/join/VBD/Start-Position
prep in←−−−T

For instance, if we consider substrings of length 5 we find the following two matches:

E
nsubj−−→VBD

prep in←−−−T
E

nsubj−−→Start-Position
prep in←−−−T

By counting the common substrings for the remaining lengths (1 to 4) we can obtain
the final result: Kp(Px, Py) = 26.

A problem of Equation (4) is that Kp has a bias toward longer dependency paths. To
avoid this bias, we normalize Kp as in [11]. This normalization scales the feature vector

φ(P) in the kernel space to φ′(P) = φ(P)
|φ(P)| :

K′
p(Px, Py) =

Kp(Px, Py)√
Kp(Px, Px) ·Kp(Py, Py)

(5)

A deviation from related work in [11] and [2] is that we count common substrings from
m to maximum, rather than a fixed length. Furthermore, we only consider contigu-
ous substrings in Kp because each substring feature in the kernel space is treated as
a pattern. Non-contiguous substrings with the same length can be safely discarded as
different patterns.

Although it’s not easy to enumerate all substrings explicitly, like many other kernel
functions, Kp can be efficiently computed by using dynamic programming in polyno-
mial time complexity. Here, we applied a variant of the Levenshtein Distance algorithm
to calculate Kp. Given the representation and kernel function, SVM model was applied
to train a classifier.

4.4 Temporal Aggregation

In order to produce the final 4-tuple for each entity/slot value pair, we sort the set of the
corresponding classified temporal expressions according to the classifier’s prediction
confidence. We initialize a 4-tuple to < −∞,+∞,−∞,+∞ > and then iterate through
that set, aggregating at each point the temporal information as indicated by the predicted
label (see Section 4.1). Given two four-tuples T and T ′, we use the following equation
for aggregation.

T ∧ T ′ = < max(t1, t
′
1),min(t2, t

′
2),max(t3, t

′
3),min(t4, t

′
4) >

At each step we modify the tuple only if the result is consistent (i.e. t1 ≤ t2, t3 ≤ t4,
and t1 ≤ t4).

Furthermore, we utilize 4-tuple aggregation to combine outputs from the flat classi-
fier, which uses shallow syntactic features, with that of the structured classifier, which
uses deep syntactic features. We hypothesize that these two systems are complementary
when combined in this way. Given an input, we consider the output from the structured
classifier T as the default output. If one element of the output equals −∞ or∞, then
we combine it with output from flat classifier T ′ as final output.

Combining Flat and Structured Approaches for TSF 203

5 Experiments

5.1 Automatic Training Data from Distant Supervision

Given the expensive nature of human-assessed training data for this task, we adapted a
distant supervision approach [13] to obtain large amount of training data from the Web
without human intervention.

We use Freebase2 to gather not only instances of relations, but also the start and
end dates of those particular relations. We can still follow the usual distant supervi-
sion assumption: given a context that mentions the query entity and slot fill it is likely
that it will express the relation in the database. But our methods go beyond the usual
distant supervision in that we incorporate an additional element, the temporal expres-
sion. We assume that we can label a temporal expression occurring in the context of the
entity/slot fill pair by comparing it to the start/end temporal information that is stored
in our database. We obtained through this method more than 40,000 training instances
with no human intervention.

5.2 Overall Results

To evaluate the performance of different approaches, we use the KBP 2011 temporal
slot filling training data as test set. This data set contains 430 query entity names, and
748 slot fills and corresponding temporal four-tuples. In the experiments, we used LIB-
SVM library [4]3 to train SVM classifiers.

Table 4. Overall Performance

System Overall Employee of City State Country Memebr of Title Top members Spouse
BoW 0.638 0.637 0.781 0.525 0.662 0.582 0.702 0.510 0.438
Structured 0.667 0.674 0.844 0.675 0.766 0.627 0.702 0.538 0.556
Flat 0.663 0.657 0.844 0.661 0.707 0.613 0.707 0.544 0.570
Combine 0.678 0.681 0.865 0.673 0.721 0.628 0.720 0.545 0.862

We compared the performance of the proposed combination approach against Struc-
tured, Flat, and BoW. The baseline BoW uses bag-of-words representation and lin-
ear kernel on top of sentence normalization to represent each instance. Table 4 shows
overall performance with breakdown scores for each slot type. Compared to other
approaches, BoW achieves the lowest performance. Although the advantage of the
structured approach against the flat approach is subtle, the combined system outper-
forms both of them, and achieves the highest scores in 7 slot types. We conducted the
Wilcoxon Matched-Pairs Signed-Ranks Test on a four-tuple basis. The results show
that the improvement of the combined system is significant at the 99.8% confidence
level when compared with the structured approach, and at the 99.9% confidence level
compared with the flat approach.

2 http://www.freebase.com
3 http://www.csie.ntu.edu.tw/˜cjlin/libsvm/

http://www.freebase.com
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

204 Q. Li et al.

6 Discussions

For many NLP tasks including this new TSF task, one main challenge lies in capturing
long contexts. Semantic analysis such as dependency parsing can make unstructured
data more structured by compressing long contexts and thus reduce ambiguities. How-
ever, current core NLP annotation tools such as dependency parsing and coreference
resolution are not yet ideal for real applications. The deeper the representation is, the
more risk we have to introduce annotation errors. Furthermore, for certain types of
slots such as “title”, since the contexts are relatively short between the query and its
slot fill (e.g. “Today[Time] President[Title] Obama [Query]...”), structured representa-
tion is not appropriate. Therefore we pursued a more conservative approach combining
benefits from both flat approach (local context, short dependency path, etc.) and struc-
tured approach (e.g. dependency path kernel). We reported that the structured approach
outperforms the flat approach in general except slot types involve shorter contexts. Fur-
thermore, combining them through cross-document temporal aggregation can achieve
higher performance than each approach alone.

For example, there is a long context between the query “Mugabe”, the time expres-
sion “1980” and its slot fill “ZANU-PF” in the following sentence “ZANU, which was
renamed ZANU-PF after taking over ZAPU, has been the country’s ruling party and
led by Mugabe since 1980.” The structured approach successfully identified “1980” as
the starting date based on the short dependency paths among “ZANU-PF”, “Mugabe”
and “Mugabe”.

On the other hand, dependency parsing can produce errors. For example, it failed to
capture the dependency relation between “September 2005” and “the Brookings Insti-
tute” in the following sentence “In September 2005, Dichter left office and became a
research fellow at the Brookings Institute in Washington , D.C.”. In contrast the flat
approach can easily identify “September 2005” as the starting date for the query “Avi
Dichter” to be a member of “the Brookings Institute” based on lexical features such as
“became”.

We also found that the gains by the structured approach are highly correlated with
the compression rate, which is defined by (1 - the lengths of dependency paths among
[query, slot fill, time expression] divided by the number of context words). For example,
using structured approach they achieved much higher gains on residence slots (about
0.78 compression rate) than title (about 0.68 compression rate).

7 Conclusions and Future Work

In this paper, we presented a hybrid approach to diagnostic temporal slot filling task. We
decompose the task into two steps: temporal classification and temporal aggregation.
First, two approaches are developed for temporal classification: a flat approach that
uses lexical context and shallow dependency features and a structured approach that
captures long syntactic contexts by using a dependency path kernel tailored for this
task. Following the hypothesis that these two approaches are complementary, we then
combine them by aggregation as a hybrid approach. Experiment results show that the
individual flat and structured approaches both outperform bag-of-word based classifier,

Combining Flat and Structured Approaches for TSF 205

and the proposed hybrid method can further improve the performance significantly.
In the future we are particularly interested in conducting cross-query and cross-slot
temporal reasoning to enhance the performance.

References

1. Bethard, S., Martin, J.H.: Cu-tmp: Temporal relation classification using syntactic and se-
mantic features. In: SemEval 2007: 4th International Workshop on Semantic Evaluations
(2007)

2. Bunescu, R.C., Mooney, R.J.: A shortest path dependency kernel for relation extraction. In:
Proc. of the HLT and EMNLP, pp. 724–731 (2005)

3. Chambers, N., Wang, S., Jurafsky, D.: Classifying temporal relations between events. In: An-
nual Meeting of the Association for Computational Linguistics (ACL), pp. 173–176 (2007)

4. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001)
5. Cheng, Y., Asahara, M., Matsumoto, Y.: Naist.japan: Temporal relation identification using

dependency parsed tree. In: Proceedings of the Fourth International Workshop on Semantic
Evaluations (SemEval 2007), pp. 245–248 (2007)

6. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning, 273–297 (1995)
7. Finkel, J.R., Grenager, T., Manning, C.D.: Incorporating non-local information into informa-

tion extraction systems by gibbs sampling. In: ACL (2005)
8. Grishman, R.: The NYU System for MUC-6 or Where’s the Syntax? In: Proceedings of the

MUC-6 workshop (2010)
9. Ji, H., Grishman, R., Dang, H.T., Li, X., Griffitt, K., Ellis, J.: An Overview of the TAC2011

Knowledge Base Population Track. In: Proc. Text Analytics Conference (TAC 2011) (2010)
10. Ling, X., Weld, D.: Temporal information extraction. In: Proceedings of the Twenty Fifth

National Conference on Artificial Intelligence (2010)
11. Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text classification

using string kernels. The Journal of Machine Learning Research 2, 419–444 (2002)
12. Marneffe, M.C.D., Maccartney, B., Manning, C.D.: Generating Typed Dependency Parses

from Phrase Structure Parses. In: LREC 2006 (2006)
13. Mintz, M., Bills, S., Snow, R., Jurafsky, D.: Distant supervision for relation extraction with-

out labeled data. In: ACL/AFNLP, pp. 1003–1011 (2009)
14. Puşcaşu, G.: Wvali: Temporal relation identification by syntactico-semantic analysis. In: Pro-

ceedings of the Fourth International Workshop on Semantic Evaluations (SemEval 2007), pp.
484–487 (2007)

15. Pustejovsky, J., Verhagen, M.: Semeval-2010 task 13: Evaluating events, time expressions,
and temporal relations (tempeval-2) (2010)

16. Snow, R., Jurafsky, D., Ng, A.Y.: Learning syntactic patterns for automatic hypernym dis-
covery. In: Advances in Neural Information Processing Systems, vol. 17, pp. 1297–1304
(2005)

17. Verhagen, M., Gaizauskas, R., Schilder, F., Katz, G., Pustejovsky, J.: Semeval2007 task 15:
Tempeval temporal relation identification. In: SemEval 2007: 4th International Workshop on
Semantic Evaluations (2007)

18. Wu, F., Weld, D.S.: Open Information Extraction using Wikipedia. In: Proc. of the 48th
Annual Meeting of the Association for Computational Linguistics (2010)

19. Yoshikawa, K., Riedel, S., Asahara, M., Matsumoto, Y.: Jointly identifying temporal relations
with markov logic. In: Proceedings of the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference on Natural Language Processing of the
AFNLP, pp. 405–413 (2009)

	Combining Flat and Structured Approachesfor Temporal Slot Filling or: How Much to Compress?
	Introduction
	Related Work
	Experimental Setup
	Task Definition
	Temporal Representation
	Scoring Metric

	Approach Overview
	Temporal Classification
	Flat Approach
	Structured Approach
	Temporal Aggregation

	Experiments
	Automatic Training Data from Distant Supervision
	Overall Results

	Discussions
	Conclusions and Future Work
	References

