
Information Extraction from Webpages

Based on DOM Distances�

Carlos Castillo1, Héctor Valero1, José Guadalupe Ramos2, and Josep Silva1

1 Universidad Politécnica de Valencia, Camino de Vera s/n, E-46022 Valencia, Spain
{carcasg1,hecvalli}@upv.es, jsilva@dsic.upv.es

2 Instituto Tecnológico de La Piedad, La Piedad, México
guadalupe@dsic.upv.es

Abstract. Retrieving information from Internet is a difficult task as it
is demonstrated by the lack of real-time tools able to extract informa-
tion from webpages. The main cause is that most webpages in Internet
are implemented using plain (X)HTML which is a language that lacks
structured semantic information. For this reason much of the efforts in
this area have been directed to the development of techniques for URLs
extraction. This field has produced good results implemented by mod-
ern search engines. But, contrarily, extracting information from a single
webpage has produced poor results or very limited tools. In this work
we define a novel technique for information extraction from single web-
pages or collections of interconnected webpages. This technique is based
on DOM distances to retrieve information. This allows the technique
to work with any webpage and, thus, to retrieve information online.
Our implementation and experiments demonstrate the usefulness of the
technique.

1 Introduction

Information Extraction (IE) is one of the major areas of interest in both the
web and the semantic web. The lack of real-time online applications able to
automatically extract information from the web shows the difficulty of the prob-
lem. Current techniques for IE from Internet are mainly based on the recovering
of webpages that are related to a specified query (see [7] for a survey). In this
area, search engines such as Google or Bing implement very efficient and precise
algorithms for the recovering of related webpages. However, for many purposes,
the granularity level of the produced information is too big: a whole webpage.

In this work we try to reduce the granularity level of the information obtained.
In particular we introduce a technique that given a collection of webpages, it
extract from them all the information relevant for a given query and shows to
the user in a new recomposed webpage.

� This work has been partially supported by the Spanish Ministerio de Ciencia e
Innovación under grant TIN2008-06622-C03-02 and by the Generalitat Valenciana
under grant PROMETEO/2011/052.

A. Gelbukh (Ed.): CICLing 2012, Part II, LNCS 7182, pp. 181–193, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



182 C. Castillo et al.

In the semantic web setting, it is often possible to produce similar results
composed of texts that answer a given question. However, these techniques of-
ten need to pre-process the webpages that are going to be queried. An ontological
model is constructed and the knowledge is modeled and queried using languages
such as RDF [8] or OWL [9]. This imposes important restrictions on the web-
pages that can be processed, and thus the implemented tools are usually offline
tools. One reason is that most Internet pages have been implemented with plain
(X)HTML. A similar problem is faced by the related techniques and tools that
use microformats [10,11,12] to represent knowledge.

In this work we introduce a novel technique for IE that is based on DOM dis-
tances. Roughly speaking the technique looks for a term specified by the user,
and it extracts from the initial webpage and some linked webpages those ele-
ments that are close to this term in the DOM trees of the webpages. Therefore,
the technique relies on the idea that syntactically close means semantically re-
lated. This idea is also extended to distances between pages and domains using
hyperlink distances. The main advantages of the technique are that it does not
need to use proxies (as in [13]), it can work online (with any webpage) without
any pre-compilation or pre-parsing phases (as in [14]); and that it can retrieve
information at a very low level of granularity: a single word.

We are not aware of any tool that performs the kind of filtering that our system
does. Other related approaches and tools [5] for web content filtering focus on
the detection of one particular kind of content (such as porn or violence) in order
to filter the whole webpage from a list of webpage results. Therefore, they do
not decompose a webpage and filter a part of it as we do. Similar approaches
are based on the use of neural networks [4] and application ontologies [6].

There are some works specialized for a particular content (such as tables) that
are somehow related to our work. They do not focus on filtering but in content
extraction from tables [1], or in wrappers induction [2,3]. In general, they detect
a particular content in tables and extract it to be used as a database.

2 Information Extraction Based on DOM Distances

Our technique is based on the Document Object Model (DOM) [15] which is
an API that provides programmers with a standard set of objects for the rep-
resentation of HTML and XML documents. Our technique is based on the use
of DOM as the model for representing webpages. For the sake of concreteness,
in the following we will assume that a DOM tree is a data structure that rep-
resents each single element of a webpage with a node labelled with a text. This
simplification assumes that all nodes have a single attribute, and it allows us to
avoid in our formalization and algorithms low-level details such as the distinc-
tion between different kinds of HTML elements’ attributes. For instance, in our
implementation we have to distinguish and query different properties depending
on the element that we are analyzing, e.g., image nodes are queried by using
their alt, longdesc and src attributes.

Definition 1 (DOM Tree). A DOM tree t = (V,E) is a tree whose vertices
V are nodes labelled with HTML elements connected by a set of edges E.



Information Extraction from Webpages Based on DOM Distances 183

We often refer to the label of a DOM node n with l(n); and we refer to the root
of a DOM tree t with root(t). We also use the notation n−x n′ to denote that
there exists a path of size less or equal to x between nodes n and n′. If the path
is of size x, then we say that the DOM distance between n and n′ is x. Edges
are represented as (n → n′) with n, n′ ∈ V . We use →∗ to denote the reflexive
and transitive closure of →.

Definition 2 (Webpage). A webpage is a pair (u, t) where u is a URL and t
is a DOM tree.

For simplicity, we assume that queries are composed of a single word. The ex-
tension of the technique for multiple words is trivial and it only requires the
iteration of the method over the words of the query. This has been already done
in our implementation, and thus, the interested reader is referred to its (open)
source code for implementation details.

Definition 3 (Query). A query is a pair (w, d) where w is a word that is
associated with the information which is relevant for the user; and d is an integer
that represents the tolerance required in the search.

In our setting, the tolerance represents the maximum DOM distance allowed.
The tolerance is used to decide what elements of the DOM tree are related to the
user specified word. With tolerance=0, only elements that contain the specified
word should be retrieved. With tolerance=1, only elements that contain the word
and those that are in a distance of 1 to them should be retrieved, and so on.

Algorithm 1 implements our method for information extraction of single web-
pages. Clearly, this algorithm has a cost linear with the size of the DOM tree. In
essence, it finds the key nodes that are those whose label contains the searching
word. From these nodes, the relevant nodes are computed which are those whose
DOM distance to the key nodes is equal or lower than the tolerance specified
by the user. This idea is an important contribution of this technique because it
is a novel method to retrieve semantically related information. Our experiments
and implementation together with massive use of anonymous users demonstrate
the practical utility of this DOM distance. All the ancestors and successors of
the relevant nodes form the final nodes of the filtered DOM tree. The final edges
are those induced by the final set of nodes. Therefore, the final webpage (that
we will call in the following slice) is always a portion of the original webpage,
and this portion keeps the original structure of information because the paths
between retrieved elements are maintained.

In order to extend our algorithm for information extraction of interconnected
webpages, in the following we will assume that the user has loaded a webpage
(that we call initial webpage) and she specifies a query to extract information
from this webpage, the webpages that are linked to it (either as incoming or
outgoing links), the webpages included in it (e.g., as frames or iframes) and the
webpages to which it belongs (e.g., as a frame or an iframe). We call all these
pages the interconnected webpages ; and observe that they are not necessarily in
the same domain.



184 C. Castillo et al.

Algorithm 1. Information extraction from single webpages
Input: A webpage P = (u, t) and a query q = (w, d)
Output: A webpage P ′ = (⊥, t′)
Initialization: t = (v, e), t′ = (∅, ∅)

(1) key nodes = {n ∈ v | l(n) contains w}
(2) relevant nodes = {n ∈ v | n −d n′ ∧ n′ ∈ key nodes}
(3) ancestors = {n ∈ v | n0 →∗ n →∗ n1 ∧ n0 = root(t) ∧ n1 ∈ relevant nodes}
(4) successors = {n ∈ v | n0 →∗ n ∧ n0 ∈ relevant nodes}
(5) edges = {(n, n′) ∈ e | n, n′ ∈ (successors ∪ ancestors)}

return P ′ = (⊥, (successors ∪ ancestors, edges))

Frames and iframes can be modeled by considering that their DOM trees are
subtrees of the webpage that contains them. Therefore, Algorithm 1 is able to
extract relevant information from composite webpages structured with frames.
For hyperlinks, we can assume that the label of some nodes in a DOM tree is
a link pointing to a webpage. This is enough to define the notions of reachable
webpages and search hyperspace used in our information extraction algorithm.

Definition 4 (Reachability). Given a webpage P0 we say that webpage Pn is
reachable from P0 if and only if ∃ P0, P1, . . . , Pn | ∀ Pi = (u, (V,E)), 0 ≤ i ≤
n− 1, ∃v ∈ V . l(v) contains u′ ∧ Pi+1 = (u′, t).

Roughly speaking, a webpage is reachable from another webpage if it is possible
to follow a sequence of hyperlinks that connect both pages from the later to the
former.

Definition 5 (Search Hyperspace). Given a webpage P = (u, t) the search
hyperspace of P is the set of webpages that either are reachable following hyper-
links from nodes of P , or that can reach P from their hyperlinks.

The search hyperspace is the collection of webpages that are related to the initial
webpage, and that should (ideally) be inspected by our information extraction
algorithm. However, the search hyperspace of a webpage is potentially infinite
(specially when we surf dynamic webpages [16]), and it is often huge. Therefore
we need to reduce it by discarding some of the hyperlinks. In addition, we want
our technique to be online. This implies that time response is a critical factor,
but the analysis of a webpage implies loading it, which is a time-consuming
task. Therefore, reducing the number of webpages that are analyzed is a major
objective of the technique.

With this aim, we define an hyperDOM distance between nodes of the search
hyperspace. This distance is used to decide what hyperlink nodes are more re-
lated to the query specified by the user and should be explored. The others are
discarded. Using syntax distances to approximate semantic relations is an idea
that is supported by experimental evaluation of different works. For instance,
Micarelli and Gasparetti [17] obtained empirical results demonstrating that web-
pages pointed by closer hyperlinks are more related semantically than webpages



Information Extraction from Webpages Based on DOM Distances 185

pointed by hyperlinks that are syntactically separated. In order to define an
hyperDOM distance, we use the following concepts:

– DOM distance (dT): It is the length of the path between two nodes of a
DOM tree.

– Page distance (dP): It is the lower number of hyperlinks that must be
traversed to reach one webpage from another webpage.

– Domain distance (dD): It is the lower number of domains that must be
traversed to reach one webpage from another webpage following a path of
hyperlinks.

We use the initial webpage and the key nodes as the reference to compute dis-
tances. Therefore, for a given node, its DOM distance is the length of the path
between this node and the closest key node in its DOM tree; and the page and
domain distances are taken with respect to the initial webpage.

Definition 6 (HyperDOM Distance). Given a DOM node n, the hyperDOM
distance of n is D = dT + KP · dP + KD · dD where KP and KD are numeric
constants used to weight the equation. The significance S of a DOM node is the
inverse of its hyperDOM distance S = 1/D.

Constants KP and KD determine the importance that we give to the fact that
the word specified by the user is in another page, or in another domain.

Example 1. Consider the following search hyperspace:

where two nodes contain the word specified by the user (those in black); the
first node is in the initial webpage (P1), and the second node is in webpage P2
and thus it has a page distance of 1. Now, observe that nodes n1 and n2 are
hyperlinks to other webpages. The question is: which hyperlink is more related to
the query of the user and should be explored first by the algorithm? The answer
is clear: the most relevant node and thus with a smaller hyperDOM distance.
According to Definition 6, significance strongly depends on the values of the
constants KP and KD. Assuming that all the webpages are in the same domain
and if KP = 1, then D(n1)=3 and D(n2)=2, thus n2 is more significant. In
contrast, if KP = 10, then D(n1)=3 and D(n2)=11, thus n1 is more significant.

After several experiments and intensive testing we took the following design
decisions:

1 Those hyperlinks that are in the initial webpage are more important than
those in another webpage. And the same happens as the page distance
is increased. Hence, the DOM distance is more important than the page
distance.



186 C. Castillo et al.

Hyperlink dT dP dD D S

1 0 0 0 0 ∞
2 2 0 0 2 0.5

3 2 0 0 2 0.5

4 0 0 0 0 ∞
5 0 1 0 106 1\106

Fig. 1. Relevant information hyperlinked through different pages and domains

2 Those hyperlinks that are in the same domain as the initial webpage are
more important than those in another domain. And the same happens as
the domain distance is increased. Hence, the page distance is more important
than the domain distance.

3 The algorithm should never analyze a webpage with a page distance greater
than 5. This is also supported by previous studies (see, e.g., Baeza and
Castillo’s discussion in [16]) that demonstrate that, in general, three to five
levels of navigation are enough to get 90% of the information which is con-
textually related with the webpage selected by the user for the web search.

Therefore, considering the amount of nodes in a webpage, we take the following
values: KP = 106 and KD = 109. The amount of DOM nodes in a webpage is
usually lower than 103, thus, 106 ensures that the distance of two different pages
is always greater than the distance of two nodes in the same webpage. Similarly,
the amount of webpages analyzed in our method is usually lower than 102, thus,
109 ensures that the distance of two different pages analyzed in different domains
is always greater than the distance of two different pages analyzed in the same
domain. Hence, D = dT + 106 · dP + 109 · dD
Example 2. Consider an initial webpage P1 and its search hyperspace shown in
Fig. 1. Assume that Algorithm 1 has analyzed the three webpages and thus, dark
nodes are relevant (key nodes are black) and white nodes are discarded. In order
to determine what hyperlinks are more relevant, we compute the significance
of their DOM nodes (see the table). This information is used to decide what
hyperlinks must be analyzed first. Observe in the example that the hyperDOM



Information Extraction from Webpages Based on DOM Distances 187

distance of node k4 is 0 + 1 ∗ 106 + 1 ∗ 109. This node has a lower significance
because it is in another domain. Note also that the significance of hyperlinks
is computed from the source node (even though a hyperlink relates two DOM
nodes, the HTML element that represents the hyperlink is in the source).

In a DOM tree we can distinguish between hyperlinks that belong to the slice
and hyperlinks that do not belong to the slice. Those hyperlinks that do not
belong to the slice are often related to webpages of none interest for the user.
Therefore, to ensure the quality of the retrieved information we take a fourth
design decision:

4 Hyperlinks that do not belong to the slice are discarded.

One important problem of extracting information from webpages happens in
presence of dynamic webpages: A dynamic webpage could generate another dy-
namic webpage that contains the word specified by the user. This new dynamic
webpage could do the same, and so on infinitely. This situation is known as black
hole because robots searching in these webpages have an infinite search space
where they always find what they are looking for. Therefore they are trapped
forever if no limit is specified in the search [16]. Observe that the combination of
design decisions 3 and 4 avoids this problem because the search is stopped when
a webpage does not contain key nodes, or when its page distance is greater than
5. In addition, there is a fifth design decision related to the time response of the
technique. Usability rules [18] establish that 10 seconds is (as an average) the
time limit that users spend waiting for a webpage to be loaded. Therefore,

5 The maximum time spent to retrieve and show the information is 10 seconds.

The time used to show the retrieved information is constant, but the time used
to load a webpage is variable. Therefore, the technique uses a mechanism to
iteratively load webpages in significance order and extract information from
them. When the time spent is close to the limit, the technique must stop the
analysis.

Algorithm 2 summarizes the technique for information extraction of intercon-
nected webpages. It uses the following functions that implement the ideas and
equations explained in this section: timeout() controls that the algorithm never
runs more than 10 seconds1. When the time is over, it returns True. getSlice()
computes a slice of a webpage with Algorithm 1. show() shows in the browser a
collection of DOM nodes. It should be implemented in a way that visualization
is incremental. getLinks() extracts the link nodes of a set of nodes. getMostRel-
evantLink() computes the hyperDOM distance of a set of nodes to determine
what is the most relevant node. load() loads a webpage.

1 10 seconds is the default time used in our implementation, but it can be set to any
value (e.g., hours). In this case, constants KP and KD are redefined to ensure that
pages in different domains are farther (with the hyperDOM distance) than pages in
the same domain.



188 C. Castillo et al.

Algorithm 2. Information extraction from multiple webpages
Input: A set of interconnected webpages with an initial webpage P , and a query q
Output: A webpage P ′

Initialization: currentPage = P, pendingLinks = ∅

while not(timeout())
(1) relevantNodes = getSlice(currentPage, q)
(2) show(relevantNodes)
(3) pendingLinks = pendingLinks ∪ getLinks(relevantNodes)
(4) link = getMostRelevantLink(pendingLinks)
(5) pendingLinks = pendingLinks/link
(6) currentPage = load(link)

return P ′ (it is incrementally shown by the show function)

2.1 Visualization of the Relevant Information

Algorithm 2 is able to collect all the relevant DOM nodes of a set of webpages.
Moreover, for each page, we know that the slice extracted is a valid webpage
according to Algorithm 1. In addition, the information extracted is semanti-
cally related via hyperlinks and the semantic relation is weighted with the com-
puted significance for each DOM node. Therefore, it is possible to use standard
techniques for hierarchical visualization of the retrieved information. In our im-
plementation reconstructing DOM trees is possible thanks to the DOM API’s
command:

documentNew.appendChildNode(documentOld.getElementById(‘myID’))

The command documentOld.getElementById allows us to extract from a DOM
tree a specific element with a particular identifier myID. Then, the properties of
this node can be queried, and if necessary, it can be inserted into another DOM
tree with the command documentNew.appendChildNode. According to Algorithm
2, the visualization of the final webpage is done incrementally. For each analyzed
webpage, we extract the slice with Algorithm 1, and then, this slice is inserted
into the current webpage. Next, the webpage is refreshed, and thus, the technique
produces results from the very beginning and, while the user inspects them, new
results are added to the results webpage.

We have implemented two different algorithms to show the reconstructed web-
page. The first one presents the information tabularly, the second one uses a
hierarchical representation. Both algorithms retrieve information from different
webpages and show it incrementally while it is being recovered. The main dif-
ference between them is the way in which the information is visualized in the
browser.

Tabular Visualization. The lowest granularity level in this representation is a
page. Basically, the final webpage is a linear succession of the filtered webpages.
Each filtered webpage is considered as a whole, and thus, all the information that
appeared together in the filtered webpage, is also together in the final webpage.
The filtered webpages are ordered according to their navigational structure using
a depth-first order.



Information Extraction from Webpages Based on DOM Distances 189

Hierarchical Visualization. The lowest granularity level in this representation
is a word. In this representation, the final webpage is a tree where the filtered
webpages are organized. In contrast to the tabular representation, the filtered
webpages can be mixed because each filtered webpage is placed next to the
hyperlink that references it.

Example 3. Fig. 7 (left) shows a set of linked webpages where the dark part rep-
resents the relevant information, and its tabular representation of this relevant
information. Fig, 7 (right) shows the hierarchical representation of the same set
of webpages.

Fig. 2. Tabular visualization (left) and hierarchical visualization (right)

In Example 4 we show the complete process of information extraction.

Example 4. Consider again the initial webpage P1 and its search hyperspace
of Fig. 1. Initially, Algorithm 2 extracts the slice of webpage P1. This slice is
constructed from two key nodes (K1 and K2). Then, this information is shown
to the user in a new webpage. Next, the algorithm tries to find the most relevant
link to retrieve information from related webpages. In the table we see that the
most relevant hyperlinks are H1 and H4. But H4 is discarded because it points
to the initial webpage that has been already processed. Therefore, hyperlink 1
is selected and webpage P2 is loaded, processed and its slice shown to the user.

The information of webpage P2 is shown immediately after the information
of K1, because, when this information is added to the webpage, it is placed
close to the nodes that pointed to it. Hyperlink 2 is then discarded because it
points to a webpage that has been already processed (P2). Because hyperlink
3 is more relevant than hyperlink 5, hyperlink 3 is selected first and webpage
P3 is loaded, processed and shown to the user. Finally, hyperlink 5 is discarded
because webpage P3 has been already processed. Hence, in the final webpage
the slices are shown in order K1 K3 K4 K2.

Other models of visualization are possible and should be investigated. The pre-
sented models are designed to work in real-time because they work well when the
amount of information shown is not too much (e.g., less than 20 slices). However,
if the tool is used in batch mode (e.g., without time limitation), many webpages
are filtered and the amount of information to be shown can be too much as to be
shown in a single webpage; thus, it should be organized and probably indexed.
For this, other models based on tiles [20] or clusters [19] would be more ap-
propriate. Regarding the visualization of many slices, we are currently working



190 C. Castillo et al.

on a third visualization model called site map. Roughly, it produces an initial
webpage with a site map with links that point to all the slices retrieved with the
tool, and these slices are organized according to their original navigational map.

2.2 Implementation and Experiments

We have implemented the technique as an official plugin integrated in Firefox.
The implementation allows the programmer to parameterize the technique in
order to adjust the amount of information retrieved, the number of webpages
explored, the visualization model and other functionalities. In order to deter-
mine the default configuration, it was initially tested with a collection of real
webpages producing good results that allowed us to tune the parameters. Then,
we conducted several experiments with real webpages. Concretely, we selected
domains with different layouts and page structures in order to study the per-
formance of the technique in different contexts (e.g., company’s websites, news
articles, forums, etc.).

For each domain, we performed two independent experiments. The first exper-
iment provides a measure of the average performance of the technique regarding
recall, precision and the F1 measure. The goal of this experiment was to identify
the information in a given domain that is related to a particular query of the user.
Firstly, for each domain, we determined the actual relevant content of each web-
page by downloading it andmanually selecting the relevant content (both text and
multimedia objects). This task was performed by three different people without
any help of the tool. The selected relevant content included all the information
that each user thought was relevant for her. The DOM tree of the selected text
was then built for each webpage. In a second stage, we used the tool to explore
the webpages using Algorithm 2 and it extracted from them the relevant parts
(according to the tool). Finally, we compared the DOM trees produced manually
with those produced automatically by the tool. Table 1 summarizes the results
obtained.

Table 1. Benchmark results

Domain Query Pages Retrieved Correct Missing Recall Precision F1

www.ieee.org student 10 4615 4594 68 98.54 % 99.54 % 99.03 %
www.upv.es student 19 8618 8616 232 97.37 % 99.97 % 98.65 %
www.un.org/en Haiti 8 6344 6344 2191 74.32 % 100 % 85.26 %
www.esa.int launch 14 4860 4860 417 92.09 % 100 % 95.88 %
www.nasa.gov space 16 12043 12008 730 94.26 % 99.70 % 96.90 %
www.mityc.es turismo 14 12521 12381 124 99 % 98.88 % 98.93 %
www.mozilla.org firefox 7 6791 6791 14 99.79 % 100 % 99.89 %
www.edu.gva.es universitat 28 10881 10856 995 91.60 % 99.79 % 95.51 %
www.unicef.es Pakistán 9 5415 5415 260 95.41 % 100 % 97.65 %
www.ilo.org projects 14 1269 1269 544 69.99 % 100 % 82.34 %
www.mec.es beca 24 5527 5513 286 95.06 % 99.74 % 97.34 %
www.who.int medicines 14 8605 8605 276 96.89 % 100 % 98.42 %
www.si.edu asian 18 26301 26269 144 99.45 % 99.87 % 99.65 %
www.sigmaxi.org scientist 8 26482 26359 241 99.08 % 99.54 % 99.30 %
www.scientificamerican.com sun 7 5795 5737 97 98.33 % 98.99 % 98.65 %
ecir2011.dcu.ie news 8 1659 1503 18 98.81 % 90.59 % 94.52 %
dsc.discovery.com arctic 9 29097 29043 114 99.60 % 99.81 % 99.70 %
www.nationalgeographic.com energy 12 41624 33830 428 98.75 % 81.27 % 89.16 %
physicsworld.com nuclear 15 10249 10240 151 98.54 % 99.91 % 99.22 %



Information Extraction from Webpages Based on DOM Distances 191

For each domain, the first column contains the URL of the initial webpage.
Column Pages shows the number of pages explored by the tool in each exper-
iment (the analysis time was limited to 10 seconds). Column Query shows the
query used as the slicing criterion. Column Retrieved shows the number of
DOM nodes retrieved by the tool; in the DOM model, the amount of words
contained in a DOM node depends on the HTML source code of the webpage.
It usually contains between one sentence and one paragraph. Column Correct

shows the number of retrieved nodes that were relevant. Column Missing shows
the number of relevant nodes not retrieved by the tool. Column Recall shows
the number of relevant nodes retrieved divided by the total number of rele-
vant nodes (in all the analyzed webpages of each domain). Column Precision

shows the number of relevant nodes retrieved divided by the total number of
retrieved nodes. Finally, column F1 shows the F1 metric that is computed as
(2 ∗ P ∗R)/(P +R) being P the precision and R the recall.

The first important conclusion of the experiments is that, in 10 seconds, the
tool is able to analyze 13,3 pages as an average for each domain. Therefore,
because the visualization algorithms are incremental, the first result is shown to
the user in less than 1 second (10/13,3 seconds).

Results show that the tool produces a very high recall and precision. We were
not surprised by the high precision of the tool because the syntactic matches
with the DOM nodes ensures that the information retrieved is often very related
to the user’s query. But we were very excited with the recall being so high.
Only in a few cases the recall was bellow 75%. The cause was the occurrence
of synonyms that the tool is currently ignoring. Our next release will include a
lexicon to solve this problem. In ten seconds results are very good because the
tool explores webpages that are close to the initial webpage, and, in this search
space, it is able to accurately detect semantic relations between pages.

After these good results, we were wondering whether this tool could be also
used to retrieve information in a batch process (i.e., without a time limit, an-
alyzing as many pages as possible). In this context, we wanted to know what
is the page coverage of the tool. For this, we conducted a second experiment in
which we retrieved information from the domains allowing the tool to explore
as much as possible (i.e., restrictions 3 and 5 were ignored). Then, we collected
the amount of webpages analyzed by the tool and compared it with the amount
of (reachable) webpages in the whole domain. The later was computed with the
Apache crawler Nutch [22]: the whole domain was indexed starting from the ini-
tial webpage and the amount of indexed documents was counted. The result was
that the tool explored, as an average, 30% of the webpages in the search space
of all the domains in Table 1. The cause is that the technique automatically
discards many hyperlinks and concentrates on the most relevant search space;
this is due to restriction 4, that prevents the tool to explore those webpages
pointed by other webpages without relevant nodes. Relaxing restriction 4 would
allow the tool to explore the whole search space, but precision would (proba-
bly) decrease significantly, because it would retrieve information from different
contexts.



192 C. Castillo et al.

All the information related to the experiments, including the source code of
the tool and other material can be found at: http://www.dsic.upv.es/̃jsilva/web
filtering

The official webpage of the tool at Firefox where the last stable release
can be downloaded and where several comments and feedback from real users
can be found at: https://addons.mozilla.org/en-US/firefox/addon/web-filtering-
toolbar

3 Conclusions

This work introduces a novel information extraction technique based on syntax
distances. The technique is able to work online and extract information from
websites without any pre-compilation, labeling, or indexing of the webpages to
be analyzed. Our experiments produced an F1 measure of 96%, demonstrating
the usefulness of the technique. The analysis of the experimental results revealed
that synonyms can cause a loss of recall. We are currently analyzing the impact
of a lexicon. Using synonyms and semantic relations will allow us to increase the
precision of our algorithms, but the efficiency of the technique will be affected.
Empirical experimentation is needed to decide whether it is better to analyze
many webpages without the use of a lexicon or few webpages with a lexicon.
A balance between amount of information retrieved and the quality of this in-
formation must be studied. Our current implementation has been integrated in
version 1.5 of the Firefox WebFiltering Toolbar. This tool is an official extension
of the Firefox web browser that has been tested and approved by Firefox de-
velopers experts area, and that has more than 11.000 downloads at the time of
writing these lines.

References

1. Dalvi, B., Cohen, W.W., Callan, J.: Websets: Extracting sets of entities from the
web using unsupervised information extraction. Technical report, Carnegie Mellon
School of computer Science (2011)

2. Kushmerick, N., Weld, D.S., Doorenbos, R.: Wrapper induction for information
extraction. In: Proceedings of the Fifteenth International Joint Conference on Ar-
tificial Intelligence (IJCAI 1997) (1997)

3. Cohen, W.W., Hurst, M., Jensen, L.S.: A flexible learning system for wrapping
tables and lists in html documents. In: Proceedings of the international World
Wide Web conference (WWW 2002), pp. 232–241 (2002)

4. Lee, P.Y., Hui, S.C., Fong, A.C.M.: Neural networks for web content filtering. IEEE
Intelligent Systems 17(5), 48–57 (2002)

5. Anti-Porn Parental Controls Software. Porn Filtering (March 2010),
http://www.tueagles.com/anti-porn/

6. Kang, B.-Y., Kim, H.-G.: Web page filtering for domain ontology with the context
of concept. IEICE - Trans. Inf. Syst. E90, D859–D862 (2007)

7. Henzinger, M.: The Past, Present and Future of Web Information Retrieval. In:
Proceedings of the 23th ACM Symposium on Principles of Database Systems (2004)

http://www.tueagles.com/anti-porn/


Information Extraction from Webpages Based on DOM Distances 193

8. W3C Consortium. Resource Description Framework (RDF), www.w3.org/RDF
9. W3C Consortium. Web Ontology Language (OWL), www.w3.org/2004/OWL

10. Microformats.org. The Official Microformats Site (2009),
http://microformats.org

11. Khare, R., Çelik, T.: Microformats: a Pragmatic Path to the Semantic Web. In:
Proceedings of the 15h International Conference on World Wide Web, pp. 865–866
(2006)

12. Khare, R.: Microformats: The Next (Small) Thing on the Semantic Web? IEEE
Internet Computing 10(1), 68–75 (2006)

13. Gupta, S., et al.: Automating Content Extraction of HTML Documents. World
Wide Archive 8(2), 179–224 (2005)

14. Li, P., Liu, M., Lin, Y., Lai, Y.: Accelerating Web Content Filtering by the Early
Decision Algorithm. IEICE Transactions on Information and Systems E91-D, 251–
257 (2008)

15. W3C Consortium, Document Object Model (DOM), www.w3.org/DOM
16. Baeza-Yates, R., Castillo, C.: Crawling the Infinite Web: Five Levels Are Enough.

In: Leonardi, S. (ed.) WAW 2004. LNCS, vol. 3243, pp. 156–167. Springer, Heidel-
berg (2004)

17. Micarelli, A., Gasparetti, F.: Adaptative Focused Crawling. In: The Adaptative
Web, pp. 231–262 (2007)

18. Nielsen, J.: Designing Web Usability: The Practice of Simplicity. New Riders Pub-
lishing, Indianapolis (2010) ISBN 1-56205-810-X

19. Zhang, J.: Visualization for Information Retrieval. The Information Retrieval Se-
ries. Springer, Heidelberg (2007) ISBN 3-54075-1475

20. Hearst, M.A.: TileBars: Visualization of Term Distribution Information. In: Pro-
ceedings of the ACM SIGCHI Conference on Human Factors in Computing Sys-
tems, Denver, CO, pp. 59–66 (May 1995)

21. Gottron, T.: Evaluating Content Extraction on HTML Documents. In: Proceedings
of the 2nd International Conference on Internet Technologies and Applications, pp.
123–132 (2007)

22. Apache Foundation. The Apache crawler Nutch (2010), http://nutch.apache.org

www.w3.org/RDF
www.w3.org/2004/OWL
http://microformats.org
www.w3.org/DOM
http://nutch.apache.org

	Information Extraction from WebpagesBased on DOM Distances
	Introduction
	Information Extraction Based on DOM Distances
	Visualization of the Relevant Information
	Implementation and Experiments

	Conclusions
	References




