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Abstract. In today's world, the number of electronic documents made available 
to us is increasing day by day. It is therefore important to look at methods 
which speed up document search and reduce classifier training times. The data 
available to us is frequently divided into several broad domains with many sub-
category levels. Each of these domains of data constitutes a subspace which can 
be processed separately. In this paper, separate classifiers of the same type are 
trained on different subspaces and a test vector is assigned to a subspace using a 
fast novel method of subspace detection. This parallel classifier architecture 
was tested with a wide variety of basic classifiers and the performance 
compared with that of a single basic classifier on the full data space. It was 
observed that the improvement in subspace learning was accompanied by a very 
significant reduction in training times for all types of classifiers used. 
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1 Introduction 

The huge amount and variety of data available to us today makes document search 
and classifier training a lengthy process. Due to the ever increasing volume of 
documents on the web, classifiers have to be periodically retrained to keep up with the 
increasing variation. Reduced classifier training times are therefore a big asset in 
keeping classifiers up to date with the current content. Classifier application 
efficiency (test efficiency) is also very important in returning search results. 
Retrieving a relevant document quickly in the presence of millions of records (the 
web) is an essential characteristic for a search engine today. In addition to this, the 
curse of dimensionality [1] degrades the performance of many learning algorithms.  
The large number of dimensions reduces the effectiveness of distance measures [2]. 
Today's data also contains a large number of data domains which can be as diverse as 
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medicine and politics. These data domains can be considered as independent 
subspaces of the original data. 

Independent data domains give rise to the idea of using parallel classifiers. Instead 
of training a single classifier on the full dataset, we can use many classifiers in 
parallel to process these independent subspaces. Classifier performances can be 
improved further by using only a subset of the dimensions. Active research is going 
on in the area of dimension reduction [3]. 

Random Projections [4] have also been used in dimensionality reduction. In the 
Random Subspace Method (RSM) [5], classifiers were trained on randomly chosen 
subspaces of the original input space and the outputs of the models were then 
combined. However, random selection of features does not guarantee that the selected 
inputs have the necessary distinguishing information. Several variations of RSM have 
been proposed by various researchers such as Relevant Random Feature Subspaces 
for Co-training (Rel-RASCO) [6], Not-so-Random Subspace Method (NsRSM) [7] 
and Local Random Subspace Method [8]. 

There are many methods of classifier combination. One method is to use many 
classifiers of the same or different  types  on different portions of the input data space.  
The combining classifier decides which part of the input data has to be applied to 
which base classifier.  Two special types of classifier combinations are Bagging [9] 
and Boosting [10] which use a large number of primitive classifiers of the same type 
(e.g. a decision stump) on weighted versions of the original data. 

Many classifier combination methods have been applied to text categorization. In 
one method [11], text and metadata were considered as separate descriptions of the 
same object. Another text categorization method [12] was based on a hierarchical 
array of neural networks. The problem of large class imbalances in text classification 
tasks was addressed by using a mixture-of-experts framework [13].  

In the real world, documents can be divided into major semantic subspaces with 
each subspace having its own unique characteristics. The above research does not take 
into account this division of documents into different semantic subspaces. Therefore, 
we present here a novel parallel architecture (Fig. 1) which takes advantage of the 
different semantic subspaces existing in the data. We further show that this new 
parallel architecture improves subspace classification accuracy as well as it 
significantly reduces training time. For this architecture, we use parallel combinations 
of classifiers with a single type of base classifier. We use the conditional significance 
vector representation [14] which is a variation of the semantic significance vector  
[15], [16] to incorporate semantic information into the document vectors.  
The conditional significance vector enhances the distinction between subtopics within 
a given main topic. The region of the test data is determined by the maximum 
significance value which is evaluated in O(k) time where k is the number of level  
1 topics and thus can be very effective where time is critical for returning search 
results. 
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Fig. 1. Parallel Classifier Architecture for Subspace Learning 

2 Methodology and Architecture 

In our experiments, we used the Reuters Corpus [17] as it is a well-known test bench 
for text categorization experiments. It also has a hierarchical organization with four 
major groups which is well suited to test the classification performance of a parallel 
architecture. We used the Reuters Corpus headlines for our experiments as they 
provide a concise summary of each news article. Each Reuters headline consists of 
one line of text with about 3 – 12 words. Some examples of Reuters Headlines are: 
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"Estonian president faces reelection challenge."  
"Guatemalan sides to sign truce in Norway report."  
 

The topic codes in the Reuters Corpus represent the subject areas of each news story. 
They are organized into four hierarchical groups, with four top-level nodes: 
Corporate/Industrial (CCAT), Economics (ECAT), Government/Social (GCAT) and 
Markets (MCAT). Ten thousand headlines along with their topic codes were extracted 
from the Reuters Corpus. These headlines were chosen so that there was no overlap at 
the first level categorization. Each headline belonged to only one level 1 category. At 
the second level, since most headlines had multiple level 2 subtopic categorizations, the 
first subtopic was taken as the assigned subtopic. Thus, each headline had two labels 
associated with it – the main topic (Level 1) label and the subtopic (Level 2) label. 
Headlines were then preprocessed to separate hyphenated words. Dictionaries with term 
frequencies were generated based on the TMG toolbox [18] and were then used to 
generate the Full Significance Vector [14], the Conditional Significance Vector [14] and 
the tf-idf [19] representation for each document. The datasets were then randomized and 
divided into a training set of 9000 documents and a test set of 1000 documents.  

The WEKA machine learning workbench [20] provided various learning 
algorithms which we used as base classifiers to test our parallel architecture. Six 
algorithms were used as base classifiers in parallel classifier representations to 
examine the performance of various classification algorithms. Classification accuracy, 
training time and testing time were recorded for each experiment run. The average of 
ten runs for each representation was used to compare the various classifiers. 

3 Data Processing for Experiments 

3.1 Text Data Processing 

Ten thousand Reuters headlines were used in these experiments. The Level 1 
categorization of the Reuters Corpus divides the data into four main topics. These 
main topics and their distribution in the data along with the number of subtopics of 
each main topic in this data set are given in Table 1. Level 2 categorization further 
divides these main topics into subtopics. Here we took the direct (first level nesting) 
subtopics of each main topic occurring in the 10,000 headlines. A total of 50 
subtopics were included in these experiments. Since all the headlines had multiple 
subtopic assignments, e.g. C11/C15/C18, only the first subtopic e.g. C11 was taken as 
the assigned subtopic. Our assumption here is that the first subtopic used to tag a 
particular Reuters news item is the one which is most relevant to it. 
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Table 1. Reuters Level 1 Topics 

   No.         Main Topic            Description                      Number                   Number of 
                                                                                             Present                     Subtopics 
 

18    4600  Corporate/Industrial  CCAT  1.  

8      900  Economics ECAT  2.  

20      1900  Government/Social  GCAT  3.  

4      1600  Markets  MCAT  4.  

     

3.2 Semantic Significance Vector Generation 

We used a vector representation which represents the significance of the data and 
weighs different words according to their significance for different topics. 
Significance Vectors [15], [16] were determined based on the frequency of a word in 
different semantic categories. A modification of the significance vector called the 
semantic vector uses normalized frequencies where each word w is represented with a 
vector (c1,c2,..,cn) where ci represents a certain semantic category and n is the total 
number of categories. A value v(w, ci) is calculated for each element of the semantic 
word vector as follows: 

 
 Normalized Frequency of w in ci  
v(w , ci)  =   ________________________________   

  n 

 ∑ Normalized Frequency of w in ck  
                        k = 1 

 
For each document, the document semantic vector is obtained by summing the 
semantic vectors for each word in the document and dividing by the total number of 
words in the document. Henceforth it is simply referred to as the significance vector. 
The TMG Toolbox [18] was used to generate the term frequencies for each word in 
each news document. Word vectors were generated for the main and subtopic levels 
separately and then concatenated. The final word vector consisted of 54 columns (for 
4 main topics and 50 subtopics) for the Reuters Corpus. While calculating the 
significance vector entries for each word, its occurrence in all subtopics of all main 
topics was taken into account. This was called the Full Significance Vector [14]. We 
also generated the Conditional Significance Vector [14] where a word's occurrence in 
all subtopics of only a particular main topic is taken into account while calculating 
the word significance vector entries. 
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For each document, the document significance vector was obtained by summing 
the significance vectors for each word in the document and dividing this sum by the 
total number of words in the document. 

3.3 Data Vector Sets Generation 

Three different vector representations (Full Significance Vector, Conditional 
Significance Vector and tf-idf) were generated for our data. The Conditional 
Significance Vectors were processed further to generate four main category-wise data 
vector sets. 

3.3.1   Full Significance Vector 
Here, the document vectors were generated by using the full significance word 
vectors as explained in section 3.2. For each Reuters Full Significance document 
vector the first four columns, representing four main topics – CCAT, ECAT, GCAT 
& MCAT, were ignored leaving a vector with 50 columns representing 50 subtopics. 
The order of the data vectors was then randomised and divided into two sets – a 
training set of 9000 vectors and a test set of 1000 vectors.  

3.3.2   Category-Based Conditional Significance Vectors 
Here, the conditional significance word vectors were used to generate the document 
vectors. The order of the 10,000 Reuters Conditional Significance document vectors 
was randomised and divided into two sets – a training set of 9000 vectors and a test 
set of 1000 vectors. The training set was then divided into 4 sets according to the 
main topic labels. For each of these sets, only the relevant subtopic vector entries (e.g. 
C11, C12, etc for CCAT; E11, E12, etc for ECAT) for each main topic were retained. 
Thus, the CCAT category training data set had 18 columns for  the 18 subtopics of 
CCAT. Similarly the ECAT training data set had 8 columns, the GCAT training data 
set had 20 columns and the MCAT training data set had 4 columns. These 4 training 
sets were then used to train the 4 separate base classifiers of the Reuters parallel 
classifier. The main category of a test data vector was determined by the maximum 
significance vector entry for the first four columns representing the four main 
categories. After this, the entries corresponding to the subtopics of this predicted main 
topic were extracted along with the actual subtopic label and given to the classifier 
trained for this predicted main category.  

For the Reuters Corpus, the accuracy of choosing the correct main topic by 
selecting the maximum significance level 1 entry was 96.80% for the 1000 test 
vectors, i.e. 968 vectors were assigned to the correct trained classifiers whereas 3.20% 
or 32 vectors were assigned to a wrong classifier – resulting in a wrong classification 
decision for all these 32 vectors. Hence the upper limit for classification accuracy was 
96.80% for our parallel classifier for the Reuters Corpus.  

3.3.3    TF-IDF Vector Generation 
The tf-idf weight (Term Frequency–Inverse Document Frequency) measures how 
important a word is to a document in a data set. This importance increases with the 
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number of times a word appears in the document but is reduced by the frequency of 
the word in the data set. Words which occur in almost all the documents have very 
little discriminatory power and hence are given very low weight. The TMG toolbox  
[18] was used to generate the tf-idf vectors for our experiments. The tf-idf  vector 
datasets were then randomized and divided into 9000 training /1000 test vectors. 

3.4 Classification Algorithms 

Six classification algorithms were tested with our data sets namely Random Forest, 
J48(C4.5), the Multilayer Perceptron, Naïve Bayes, BayesNet, and PART. Random 
Forests [21] are a combination of tree predictors such that each tree depends on the 
values of a random vector sampled independently. C4.5 [22] is an inductive tree 
algorithm with two pruning methods: subtree replacement and subtree raising. The 
Multilayer Perceptron [23] is a neural network which uses backpropagation for 
training. Naive Bayes [24] is the simplest form of Bayesian network, in which all 
attributes are independent given the value of the class variable. BayesNet [25] 
implements Bayes Network learning using various search algorithms and quality 
measures. A PART [26] decision list uses C4.5 decision trees to generate rules.  

4 Results and Analysis 

We tested our parallel classifier architecture using six different types of base 
classifiers. In the parallel classifier using Naïve Bayes, four different Naïve Bayes 
classifiers were trained on the four subspaces of the Reuters Corpus namely CCAT, 
ECAT, GCAT and MCAT. Similarly for the parallel classifier using Multilayer 
Perceptrons, four different Multilayer Perceptron classifiers were trained on the four 
subspaces of the Reuters Corpus and so on. The performance of each single classifier 
on the full data was compared with the performance of the parallel classifier combina- 
tion in which this particular classifier was used as a base classifier. For the baseline 
single classifier experiments, the Full Significance Vector and the tf-idf vector  
representations were used whereas for the parallel classifier experiments, the 
category-wise separated Conditional Significance Vector representation was used. 

In all comparisons, it was observed that the parallel classifier combination 
performed better than the single basic classifier. The classification accuracy was 
improved (Friedman test, p=0.0025), the training times were reduced (Friedman test, 
p=0.0025) and the testing times were reduced (Friedman test, p=0.0094).  The 
baseline using Full Significance Vectors (FSV) performed better than the baseline 
using tf-idf. Fig 2 shows the subtopic classification accuracy, training time and testing 
time for the parallel classifiers along with the baselines. Fig 2a shows that the 
maximum improvement in subtopic classification accuracy is achieved by the Naïve 
Bayes Classifier while the other classifiers also show a substantial improvement. 
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Fig. 2. Parallel Classifier Performance Metrics 
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Fig. 3. Parallel Classifier Speed-up 

Fig 3 shows the  speed-up of  the  parallel classifiers with respect to both baselines. 
Speed-up is calculated by dividing the baseline time by the corresponding parallel 
classifier time. The timing diagrams in Fig. 2 and the speed-up diagrams in Fig. 3 are 
shown on a log scale to accommodate a wide range of values.  The maximum training 
speed-up was achieved by the rule-based classifier PART (14.4 with reference to the 
FSV baseline and 149 with reference to the tf-idf baseline) which was followed by the 
tree-based classifier J48(C4.5) at speed-up 11.76 with reference to the FSV baseline  
and 79.5 with reference to the tf-idf  baseline. The testing time speed-up was 
maximum for the Bayesian classifiers.  Naïve  Bayes  achieved  a  speed-up  of 6 with 
respect  to FSV and 32.8 with respect to  tf-idf  while BayesNet achieved a speed-up 
of 11.75 and 48.75 with the corresponding baselines. Naïve Bayes achieved 
significant speed-up in both training and as well as testing (Train/Test speed-up of  
5.8/6.0 and 15.1/32.8 for FSV and tf-idf respectively).  

We also ran the parallel classifier experiments on 10,000 Reuters Full Text news 
items (containing headlines and body text). It was observed that the subtopic 
classification accuracy of Reuters news items was better with Reuters Headlines than 
with Reuters Full Text (Wilcoxon Signed Rank test, p=0.031). A possible explanation 
for this can be that the extra text present in Reuters Full Text acts as noise which 
degrades classifier performances. Fig 4 shows the corresponding subtopic 
classification accuracies. 
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Fig. 4. Comparison of Reuters Headlines and Reuters Full Text 

5    Conclusion 

Our results show that combining classifiers of the same type in parallel improves the 
classification accuracy of the concerned basic classifier where the underlying data has 
distinct semantic categories. They also show that Reuters Headlines perform better 
than Reuters Full Text for the purpose of news categorization. These results show 
further that a parallel combination of classifiers results in a very sharp reduction in 
training and testing times. The speed-up achieved is very significant in all cases. 
Naïve Bayes achieved a significant speed-up in both training and test timings along 
with the maximum improvement in classification accuracy. Since Naïve Bayes is 
already a fast classifier, further speedup can be put to good use especially in search 
technology. The experiments confirm the fact that the Maximum Significance Value 
is very effective in detecting the relevant subspace of a test document and that 
training separate classifiers on different subsets of the original data enhances overall 
classification accuracy and significantly reduces training/testing times.  
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