
A Pipeline for the Segmentation
and Classification of 3D Point Clouds

B. Douillard, J. Underwood, V. Vlaskine, A. Quadros, and S. Singh

Abstract. This paper presents algorithms for fast segmentation of 3D
point clouds and subsequent classification of the obtained 3D segments. The
method jointly determines the ground surface and segments individual ob-
jects in 3D, including overhanging structures. When compared to six other
terrain modelling techniques, this approach has minimal error between the
sensed data and the representation; and is fast (processing a Velodyne scan in
approximately 2 seconds). Applications include improved alignment of suc-
cessive scans by enabling operations in sections (Velodyne scans are aligned
7% sharper compared to an approach using raw points) and more informed
decision-making (paths move around overhangs). The use of segmentation to
aid classification through 3D features, such as the Spin Image or the Spher-
ical Harmonic Descriptor, is discussed and experimentally compared. More-
over, the segmentation facilitates a novel approach to 3D classification that
bypasses feature extraction and directly compares 3D shapes via the ICP
algorithm. This technique is shown to achieve accuracy on par with the best
feature based classifier (92.1%) while being significantly faster and allowing
a clearer understanding of the classifier’s behaviour.

1 Introduction

The natural operating environment of all mobile systems is three-dimensional.
Models of the environment are often simplified to 2D to reduce complexity
and increase computational feasibility, however, the assumptions required
to achieve this come at a cost of reduced accuracy for all but the simplest
of scenes. Three dimensional representations require fewer assumptions in
general, allowing the most accurate representations of the world. Dense 3D
range sensing offers increased perceptual ability. For example, it complements
vision data by addressing illumination variation from monocular imagery
and sparse reconstruction of geometry from stereo. However, it presents a

O. Khatib, V. Kumar, and G. Sukhatme (eds.), Experimental Robotics, 585
Springer Tracts in Advanced Robotics 79,
DOI: 10.1007/978-3-642-28572-1_40, c© Springer-Verlag Berlin Heidelberg 2014

586 B. Douillard et al.

(a) (b) (c)

Fig. 1 Three examples of elevation models constructed from a Riegl scan. (a)
Mean Elevation Map. Colours are mapped to the standard deviation of the height
in each cell. Larger standard deviations correspond to the red end of the colour
range. (b) Min-Max Elevation Map. Yellow cells are cells identified as belonging
to the ground (i.e., the difference between the maximum and minimum height of
the returns in the cell is below the threshold hThresh). Green cells are identified
as containing an object. (c) Map produced by the approach described in [15]. The
colour green corresponds to the class “ground”, red to the class “vertical surface”
and blue to the class “vertical surface containing a gap”. This display is organised
similarly to Fig. 4 in [15]. To avoid the need of hand-crafting a sensor model, the
implementation used here reasons on the minimum and the maximum height of the
returns in the “vertical segments” (“vertical segments” is part of the terminology
used in [15]).

voluminous flood of data (see Fig. 1), which is challenging to process in real
time. Recent hardware developments (e.g. by Velodyne, Riegl, Ibeo) suggest
a proliferation of 3D sensing from static and moving platforms. Utilising
this data for tasks such as mapping and decision making requires quality
conditioning, for which robust segmentation is critical. This not only leads to,
but enhances classification, giving semantic meaning to nondescript segments.

Towards this, the paper presents two algorithms for segmentation and
classification that form a processing pipeline that goes from raw 3D data,
via 3D segmentation, to classification. The Segmentation Pipeline combines
a mean elevation map representation for the ground and a voxel based map
for 3D objects in the scene that yields a compact model, sieving the ground
from objects. Segmented objects are then classified by a novel feature-less 3D
method that uses ICP to align unidentified objects against a set of candidate
template shapes.

2 3D Segmentation

In this section, a novel algorithm for joint terrain estimation and 3D object
segmentation is presented. Several terrain modelling methods are evaluated,
and experiments are presented to compare the new algorithm against current

A Pipeline for the Segmentation and Classification of 3D Point Clouds 587

approaches. The effectiveness of the algorithm is also tested in the context of
tasks such as path planning and data alignment.

2.1 Terrain Modelling

A generalised approach is taken based on the following terrain modelling
techniques from the literature.

In Elevation Map Mean, also referred to as a 21/2D model, the terrain is
represented by a grid in which each cell contains only one height, commonly
the average height of the sensor data located in each grid cell [17]. This
method will be referred to as an elevation map of type “Mean” (see Fig. 1(a)).
Since this representation generates smooth surfaces by filtering out noisy
returns (averaging is akin to low-pass filtering), it was chosen as the basis for
the ground part of the model.

Elevation Map Min-Max computes the difference between the maxi-
mum and the minimum height of the sensor data in a cell [19]. A cell is de-
clared occupied if its height difference exceeds a pre-defined threshold. Height
differences provide a computationally efficient approximation to the terrain
gradient in a cell. Cells which contain too steep a slope or are occupied by
an object will be characterised by a strong gradient and can be identified as
occupied. Its output is illustrated in Fig. 1(b).

Elevation Map Multi-Levels represents multiple levels of elevation and
handles overhanging structures to allow the generation of large scale 3D maps
by recursively registering local maps [15]. The output it produces is illustrated
in Fig. 1(c). While the algorithm proposed here also discretises the vertical
dimension in order to capture overhanging structures, it differs from the
work in [15] in that the initial segmentation explicitly forms the two classes
“ground” and “object above the ground”, where the ground includes the
regions underneath overhanging objects. The set of classes chosen in [15] is
different and may not facilitate segmentation. As can be seen on the buildings
on the sides of the scene, windows or other causes of sparsity in the data
imply that sections of walls are identified as belonging to the class “vertical
surface containing a gap” (blue). Second, the ground in [15] is not used as
a reference for vertical height. We suggest that such a reference is necessary
when reasoning on the variation of height over a grid: the variation of height
may be locally small and correspond to a flat surface above and distinct from
the ground. These are handled by the Segmentation Pipeline.

Various other terrain modelling techniques were tested (ref. Table 1). They
include local plane fitting [18], volumetric density mapping (which discretises
the space in 3D and reasons about the voxels via ray-tracing) [8] and surface
based segmentation (which stitches 3D surfaces obtained directly in the sen-
sor frame into separate objects) [12]. A recently proposed 3D segmentation
algorithm based on a convexity criterion [13], while fast, does not capture
overhanging structures.

588 B. Douillard et al.

2.2 The Segmentation Pipeline

The processing pipeline applies the strategy of performing segmentation prior
to classification, as argued for in the context of vision applications [11].
Other methods classify single laser returns first, based on the type of feature
presented in Sec. 3, see for instance [1, 20, 14].

The Segmentation is composed of two main processes: (1) the extraction of
the ground surface (lines A1.1 and A1.2 in Algorithm 1); (2) the segmentation
of the objects above the ground (lines A1.3 and A1.4). The name ’Segmen-
tation Pipeline’ refers to the flow of data through the algorithm. Parts of
the pipeline are processed incrementally, meaning that the output is derived
as a function of the previous output and the new data, and other parts are
iterative, meaning that they are repeatedly recalculated as a function of all
current data.

Input : pCloud
Output : ground, voxelClusters
Parameters: res, sdThresh , hThresh
voxelGrid← FillVoxelGrid(pCloud,res) ;1

ground← ExtractGroundSurface(voxelGrid, sdThresh , hThresh) ;2

nonGroundV oxels = voxelGrid− ground ;3

voxelClusters← ClusterVoxelGrid(nonGroundV oxels) ;4

Algorithm 1. The Segmentation Pipeline

The first step of the algorithm places new sensor data in a database called
a voxel-grid (line A1.1). Data are stored in cubic voxels for efficient retrieval
in 3D, and for batch processing per voxel (grid resolution is denoted res
and set to 0.2 m). The data may additionally be filtered in some way, for
example with a policy that considers the maximum data density, age, entropy
or uncertainty. For this paper, all of the data are kept.

The second step (line A1.2) separates the data in two categories: ground
and non-ground (details in Algorithm 2). Points are considered in batches,
defined by their membership in a single cubic voxel in space. A voxel is con-
sidered to contain ground data if two conditions are met: (1) the voxel must
be a member of the lowest (in height) set of adjacent non-empty voxels in
a vertical column (i.e. not part of an overhang); (2) the 3D points stored in
that set of voxels must have a low residual (< sdThresh, 0.1 m) when fitted
to a plane. This is expressed in lines A2.1 to A2.10. Note that line A2.3 is
an efficient test for horizontal planarity in the case where the voxel set is
thicker than two. An incremental algorithm is used to calculate the standard
deviations, so lines A2.1 to A2.10 are all implemented incrementally (calcu-
lated efficiently for each individual new point). In line A2.11, ground cells are
clustered by 2D adjacency to form partitions. From line A2.12 on, starting
with the largest partition as the ground surface, the remaining partitions are

A Pipeline for the Segmentation and Classification of 3D Point Clouds 589

incorporated if they are within a height tolerance (hThresh, 0.2 m for this
paper) of the nearest ground surface partition. This last ground selection
criteria (from line A2.12) is the most expensive part of the whole pipeline
in Algorithms 1 and 2, and other criteria can be used instead. For example,
if after clustering on line A2.11, only the clusters over a size threshold are
chosen, the pipeline cycle can be processed approximately 34 times faster,
presenting a tradeoff between accuracy and speed.

Finally, all of the voxels in the database that contain data, but were not
considered to be part of the ground surface are now semantically labelled
as non-ground (line A1.3). Importantly, this includes overhanging regions of
occupied space above the identified ground surface. These non-ground voxels
are then geometrically segmented (line A1.4) by partitioning them according
to 3D adjacency. The first half of the algorithm from line A1.1 to line A2.10
can be done done incrementally, as sensor data become available. The second
half (line A2.11 on) is done iteratively, at a rate determined by processing
power (approximately 0.5Hz for Velodyne scans clipped to 30 m range, on a
3 GHz PC), or when needed for an application such as path planning.

Input : voxelGrid, sdThresh , hThresh
Output: ground
for column(i, j) ∈ voxelGrid do1

RemoveOverhangingVoxels() ;2

if More than two voxels left; continue;3

cm← CentreOfMass(column(i, j)) ;4

pCloudi,j ← PointsInColumn(voxelGrid,i,j) ;5

stddev← VerticalStdDev(cm, pCloudi,j) ;6

if stddev < sdThresh then elevation(i, j) = cm ;7

isF lat(i, j) = true ;8

else isF lat(i, j) = false ;9

end10

fPartitions← FindFlatPartitions(isF lat, elevation) ;11

lPartition← FindLargestPartition(fPartitions) ;12

ground← lPartition ;13

for partition ∈ fPartitions and ! ∈ ground do14

{f, g} ← FindNearestCells(partition, ground) ;15

if |elevation(f)− elevation(g)| < hThresh then16

ground← {ground, partition} ;17

end18

end19

Algorithm 2. ExtractGroundSurface

590 B. Douillard et al.

2.3 Experiments

2.3.1 Segmenting Riegl Data

An example of a model produced by Algorithm 1 is shown in Fig. 2. By
considering the full 3D geometry, the ground is properly reconstructed un-
der the canopy of the trees as well as under a fine rope (indicated by the
black arrow). Similarly, the street lamps (on the left side) and the bike racks
(indicated by the white arrow) are correctly retained in the map. Separate
processing (with an Elevation Map Mean) would have removed these features
as noise. However, occlusions cause some anomalies. The building on the left
side is correctly clustered into one segment; however, the building on the
right side is identified as two distinct segments because one of the palm trees
occluding the building from the sensor, resulting in the vertical unobserved
band. The majority of the trees are correctly segmented; but, the tree fur-
thest in the background has been segmented into two components (trunk and
palms) because the palms of the tree partly cover the trunk and the junction
between them is not observed, thus Algorithm 1 identifies two segments.

Fig. 2 Segmentation obtained with Algorithm 1 applied to the data shown in
Fig. 1. The ground is represented by a mesh in which the colours are mapped to
height; blue corresponds to lower areas and red to higher areas. The ground mesh
represents the data structure mapMean produced by Algorithm 1. The segmenta-
tion of the objects above the ground is also colour coded: one colour corresponds to
one 3D segment. Each coloured 3D point cloud is an element of the data structure
voxelClusters. The dataset contains a total of 1,733,633 points. The black and
white arrows indicate a rope and a bike rack, respectively.

A Pipeline for the Segmentation and Classification of 3D Point Clouds 591

Table 1 Performance Evaluation

Segmentation Algorithm Ground Extraction Overhang Representation 3D Segmentation Computation Time RMSE

Map “Mean” [17] no no no 0.92 seconds (C++) 1.725 m

Map “Min-Max” [19] yes no no 0.92 seconds (C++) 3.453 m

Map Multi-level [15] yes yes no 8.12 min (Matlab) 1.324 m

Ground Modelling via Plane Extraction [18] yes no no 13.13 min (Matlab) 1.533 m

Volumetric Density Map [8] no no no 36.04 seconds (C++) 0.297 m

Surface Based Segmentation [12] no yes yes ≈ 10 hours (Matlab) 0 m

The Segmentation Pipeline yes yes yes 30 seconds (C++) 0.077 m

The behaviour of the segmentation algorithm relative to state-of-the-art
methods is compared in Table 1. The first three columns summarise their
respective processing pipelines across the following points: (1) explicit ex-
traction of the ground; (2) representation of overhanging structures (such as
tree canopies); and (3) full 3D segmentation of objects. The Segmentation
Pipeline is the only one which performs all three of these tasks. Computa-
tion times for each of the algorithms applied to the same dataset with a grid
resolution (res) of to 20 cm is shown (“Matlab” or “C++” indicates the
implementation type). Accuracy is noted by the Root Mean Square Errors
(RMSE). That is, for voxel based models, the error given by the distance
between a laser return and the centre of the voxel it belongs to, and for other
models, the error given by the difference between the height of the estimated
surface and the measured height.

2.3.2 Segmenting Velodyne Data

In this experiment a set of 50 Velodyne scans are aligned using the Iterative
Closest Point (ICP) algorithm (detailed in Sec. 4.1) in two different ways:
(1) directly aligning consecutive scans, (2) segmenting and only using the
larger segments for alignment, using the Segmentation Pipeline. The larger
segments are those with a square root eigenvalue above a threshold of 2 m.

The resulting two alignments are compared in terms of their sharpness,
where sharpness is measured as follows: the space is overlaid with a 3D grid
(the same grid is used for both aligned sets) and the number of occupied 3D
cells is counted. The lower the number of occupied cells the sharper the point
cloud. With a resolution of 10 cm, the point cloud obtained using only the
3D segments for alignment is 7.0% sharper than the other point cloud. The
corresponding point cloud is shown in Fig. 3(a). For the 50 tests, the Pipeline
component averaged 2.05 seconds of processing per scan.

2.3.3 Segmentation for 3D Path Planning

The Segmentation Pipeline works as part of a system. A shortest-path plan-
ning experiment shows that the model has sufficient accuracy and speed for
driving robot motion. In this case, trajectories for an eight-goal tour were gen-
erated using a potential field approach (namely the Wave-Front algorithm [3])
using the terrain models from the aforementioned approaches. The proposed

592 B. Douillard et al.

(a) (b)

Fig. 3 (a) Top view of an example of alignment of 50 Velodyne scans acquired
in a suburban area (the corresponding dataset is described at [4]). One colour
corresponds to one scan. The red dots indicate the estimated (via ICP) trajectory
of the platform carrying the Velodyne sensor. In this sequence, it can be seen that
the experimental platform drove by two other vehicles which where moving in the
opposite direction. (b) Sample trajectory calculated based on the segmentation.
The Segmentation Pipeline model allows a motion planner to factor 3D terrain
features. The red line shows a trajectory automatically generated from a number
of user-specified goal locations situated under overhangs (e.g., tree canopies). The
blue cells are those containing an overhang and traversed by the trajectory. For
comparison, the green line shows a path generated using an Elevation Map Mean
(to points nearest the user selected points when these are under overhangs). This
path is longer and gets confused by sparse terrain features (such as the rope).

model reduced the total path length by 8% (see Fig. 3(b)). While other plan-
ners (e.g., RRTs) and tour reordering could have been performed, this would
not necessarily give shorter routes and was beyond the scope of the experi-
ment. By separately classifying the ground, the Segmentation Pipeline terrain
model provides high-resolution terrain navigation, reduces the complexity of
the path planning (via operations over a segmented ground model), simpli-
fies collision checking (via a reduced workspace) and affords more informed
processing (by distinguishing overhangs from obstacles). It also checks for
appropriate clearance around obstacles with complex geometry (e.g., routing
under instead of around the rope).

3 3D Features for Classification

The previous section introduced an algorithm for segmenting 3D point clouds.
The next stage is to classify the individual segments, yielding a semantic la-
belling of the map. This section discusses a number of approaches for building
3D descriptors for classification and presents a set of experiments to compare

A Pipeline for the Segmentation and Classification of 3D Point Clouds 593

Table 2 Left: PCA features definition. Right: examples of PCA features.

Feature Name Explanation Measure

Surfaceness λ0 ≈ λ1 � λ2 λ1 − λ2

Linearness λ0 � λ1 ≈ λ2 λ0 − λ1

Scatterness λ0 ≈ λ1 ≈ λ2 λ2

Feature: Linearness Surfaceness
Radius: 0.2 m 0.2 m
Sensor: Riegl (fixed)Sick Laser (moving platform)

them. The next section introduces a feature-less approach to the classification
of 3D point clouds.

Principal Component Analysis (PCA) applied locally in 3D point
clouds provides the saliency features described in Table 2; where the λis are
the eigenvalues (λ0 ≥ λ1 ≥ λ2) of a subset of points in a local spherical
region [10]. Examples of PCA features are shown in Table 2. The plots show
the magnitude of the Linearness and Surfaceness features for a tree and a
car respectively (colours are mapped to feature value) for a given spherical
radius about each point.

To combine the results from all the points and perform classification, the
whole point cloud is firstly voxelised. Each voxel summarises the encompassed
points by providing the minimum, maximum and average feature values. The
size and number of voxels is kept constant over all objects, and the object
is aligned at the centre of the voxel grid for consistency. This implementa-
tion used 40 cm cube voxels, with a total of 17,000 voxels in the grid. The
results from all voxels are then enrolled into a high dimensional feature vec-
tor that fully describes the object. Classification is then based on K Nearest
Neighbours (KNN), and results are presented in Sec. 3.1.

Moment grids are a detailed local shape descriptor, introduced by Bosse
and Zlot [2] for finding matching keypoints in place recognition. In the context
of this study they are applied to object classification. Firstly a number of
salient keypoints from the full point cloud are selected. A local grid is placed
at each keypoint, aligned with the local principle axes to make it invariant
to rotation and translation. This implementation used a 3 × 3× 3 grid with
a total size of 80 cm, comprised of 27 overlapping 40 cm cubic cells. For
each grid cell, the points encompassed are used to calculate a number of
descriptors (11 in this implementation) based on moments up to the second
order. The descriptors from each cell are combined in a vector (resulting in
a dimensionality of 297). This vector provides a detailed spatial description
of the keypoint region.

In the previous section, local PCA features across the object were com-
bined in a 17,000 voxel grid. The much higher dimensionality of moment
grids means this is not a feasible approach without dimensionality reduction.
Instead, keypoints from labelled point clouds are placed in feature space.

594 B. Douillard et al.

Classification of new keypoints is done by finding the nearest labelled key-
points in feature space using KNN. Keypoint selection can be performed
using an even subsample [2].

The Spin Image was introduced by Johnson et al. [5]. A Spin Image is
built by first creating a 3D surface mesh in which each point is a vertex.
Matching two objects requires computing the description at each vertex of
the associated mesh; matching mechanism which allows to take into account
multiple view points. In our implementation the surface mesh is obtained by
voxelisation of the point cloud (with a voxel size of 20 cm); each vertex of
the mesh then corresponds to the centre of one voxel. Classification is based
on KNN (as in [6]).

The Spherical Harmonic Descriptor is a global feature, that is, a
descriptor representing the whole point cloud, unlike the three previous de-
scriptors which are local features. The Spherical Harmonic Descriptor was
introduced by Kazhdan et al. [7] with the aim of addressing the angular reg-
istration problem. One of the main challenges in 3D shape matching arises
from the requirement of matching similar objects which appear different due
to different 3D orientations. The Spherical Harmonic Descriptor avoids this
issue since it is invariant to 3D rotations. On the other hand, the proposed
approach attempts to explicitly address the angular registration problem by
means of the ICP algorithm. Once the Spherical Harmonic Descriptor is com-
puted, classification is based on KNN (as in [7]).

3.1 Experiments

The set of 3D descriptors mentioned above were compared in the context
of classification using the dataset presented in Fig. 4(a). The corresponding
results are given in Table 3.

In the first row of the table, Global PCA refers simply to the eigenval-
ues computed for the full point cloud, that is, the feature vector contains
only three dimensions. The associated classification performance provides
a baseline. Since classification is based on KNN, the following numbers of
neighbours were systematically tested: 1, 11, 101, 1001. The second column
of Table 3 gives the range of accuracies achieved as well as the corresponding
number of neighbours. The precision and recall values correspond to the best

Table 3 Classification Performance

Feature Accuracy Precision (in %) \Recall (in %) Feature Computation Times
Car Pole Tree Wall Mean \Std Deviation

Global PCA Features KNN 50.0% (K=101) to 68.4% (K=1) 62.5 \62.5 50.0 \40.0 73.7 \73.7 71.4 \83.3 3 ms \6 ms (Matlab)

Global Grid PCA Features (0.2 m) KNN 44.7% (K=11) to 63.2% (K=1) 87.5 \58.3 25.0 \25.0 63.2 \70.6 57.1 \80.0 77 ms \266 ms (C++)

Keypoints PCA Features (0.2 m) KNN 61.4% (K=1) to 64.1% (K=11) 0.0 \nan 0.0 \nan 100 \61.3 85.7 \75.0 103 ms \379 ms (C++)

Spin Image KNN 63.2% (K=1001) to 92.1% (K=1) 87.5 \100 75.0 \75.0 94.7 \94.7 100 \95.7 5.5 min \11 min (Matlab)

Spherical Harmonic Descriptor KNN 50.0% (K=1001) to 84.2% (K=1) 100 \88.9 75.0 \60.0 78.9 \93.8 85.7 \75.0 0.7 s \0.8 s (Matlab & C)

Keypoints Moments Grid KNN 51.3% (K=1001) to 61.5% (K=1) 0.0\nan 0.0 \nan 94.7 \69.2 85.7 \46.2 3.9 s \7.9 s (C++)

A Pipeline for the Segmentation and Classification of 3D Point Clouds 595

accuracy of the classifier. The computation times are indicated together with
the type of implementation used.

Global PCA does surprisingly well for only three features, although the
classes in this experiment are well differentiated by global shape. Local PCA
features in a grid results in one of the worst results. The variation within
each class is large, with trees and walls varying greatly in size, resulting in
different alignments within the grid. The pole may be too small for the grid
to form an adequate description. Keypoint PCA performs similarly, as does
moment grid keypoints. This is surprising given that moment grids, with
297 dimensions describing a keypoint, give an overall classification accuracy
similar to the 3 dimensional local PCA descriptor. Both PCA and moment
grid keypoint approaches fail completely in car and pole classification. This
indicates that for both these feature spaces, car and pole keypoints are not
distinct, occurring too close to the more numerous tree and wall keypoints.

In contrast, the Spin Image does the best, with a similar keypoint matching
working effectively. Trees and walls are accurately classified despite having
a wide variation in shape. The global Spherical Harmonic Descriptor does
worse on trees and walls for this reason, but gets comparable results on the
more consistent cars and poles. These results will be compared in the next
section to a feature-less classification technique.

4 Feature-Less 3D Classification

This section presents a feature-less approach to 3D classification. A key com-
ponent is the exploitation of the context of the ground model provided by The
Segmentation Pipeline. The previous section described an approach to classi-
fication which consists of computing local features to encode the local shape
of objects. Simply due to the scale at which these features are computed, they
are not easily interpretable. For instance, the harmonic coefficients forming
the spherical harmonic descriptor do not allow a straightforward interpreta-
tion which limits potential improvements to the description. With the aim of
building a classifier whose behaviour is more intuitive, a feature-less approach
to classification based on the direct matching of known shapes is proposed.
As can be seen in Fig. 4, the result of a match allows a clear interpretation
of cases of misclassification. This aspect is needed for robust 3D classifying
systems in the long run.

4.1 ICP for 3D Shape Alignment

The ICP (Iterative Closest Point) algorithm is a technique for performing
geometric alignment of 3D models. Many variants of ICP have been pro-
posed, varying aspects from point selection and matching to the minimisation
strategy. As generalised by [16], most ICP implementations can be charac-
terised by six aspects. Our design involves the following choices: (1) selection:

596 B. Douillard et al.

uniform random sampling at each iteration of ICP (based on speed consider-
ations); (2) matching: L2 norm; (3) weighting : none; (4) rejection: based on
a measure of overlap between the two 3D surfaces; (5) error metric: the sum
square distances between matched points (detailed in sec. 4.2); (6) minimi-
sation: trust-region-reflective non-linear least square optimisation (based on
Matlab’s lsqnonlin implementation).

In addition, as noted in [9], large numbers of 3D models are available on
the Internet and can be used for the training and testing of 3D classifiers.
Processing 3D models avoids the need for scanning real-world objects during
the development phase of a classifier while allowing large-scale evaluations.

ICP optimisation based on distance means that while ICP is run on 3D
point clouds, it corresponds to an optimisation which is 2D from a geometric
point of view. Since the segmentation mechanism described in Sec. 2 provides
an explicit representation of the ground, the position of the ground under-
neath each segmented object is known. As a consequence, the point clouds
can be shifted so that they lie on a common ground surface. A 2D alignment
then encodes contextual constraints. For example, if a pole is aligned with
a car, a full 3D ICP may position the pole horizontally (this was observed
during testing). On the other hand, performing a 2D alignment enforces that,
during matching, the objects can only be shifted and rotated. The contex-
tual information brought by the identification of the ground is essential to
the classification process proposed here.

4.2 Template Based Classification

Once alignment of the two 3D shapes has been performed, a measure of
similarity is computed for classification. The error metric used to evaluate
the quality of the fit between the template and test shapes is as follows:

err =

NTest∑

i=1

||PTest
i −PTemplate

closest ||+
NTemplate∑

i=1

||PTemplate
i −PTest

closest||, (1)

where NTest is the number of 3D points in the test point cloud {PTest
i } used

to compute the error. Here {PTest
i } is a subset of the full test point cloud;

it is obtained by voxelisation of the point cloud and by retaining only one
return per occupied voxel (selected at random). Using a sub-sampled set

accelerates the computations of the error metric. PTemplate
closest is the 3D point

in the template point cloud the closest to point PTest
i . The same notations

are used in the second term of the equation with the difference that the
superscripts Template and Test are exchanged. This second term makes the
error symmetric, which is necessary if the template point cloud has a larger
extent than the test case. In this case, the first term in Eq. 1 will be rather
small since the whole test cloud is “covered” by the template set; however, for
the same reason, the second term will be larger, allowing us to more accurately

A Pipeline for the Segmentation and Classification of 3D Point Clouds 597

capture the difference between the two shapes. Note that the error computed
by the expression above is in metres which makes it easily interpretable.

For a given set of templates, the error metric defined above can be min-
imised by a certain template, but the corresponding minimum value may
still be large. For instance, a test shape might belong to a class which is not
represented in the set of templates. Thus, a rejection mechanism is needed.
This is equivalent to the gating process in the context of data association. It
is proposed to evaluate the amount of overlap between the two shapes com-
pared (after alignment). The largest of the two sets is first identified (based
on the sum of the eigenvalues of the point cloud). If, for instance, the largest
point cloud is the test point cloud, the following operations are carried out
for each of PTest

i point. A plane is fitted to the points belonging to the same
voxel as PTest

i . Two additional planes normal to the first and orthogonal
between themselves are built. If the (3D) quadrants defined by the two addi-
tional planes all contain at least one data point, then point PTest

i is identified
as belonging to the zone of overlap between the two surfaces. If more than
minOverlap of the {PTest

i } points are identified as belonging to the zone of
overlap, the pair of surfaces is accepted for matching, otherwise, it is rejected.
In our implementation minOverlap is set to 1/2.

Note that a hard threshold on the metric in Eq. 1 is not used for rejection
since such a threshold would have to be adjusted depending on the objects
being matched. For larger objects for instance, the overlap may be large but
so may be the error (Eq. 1), simply due to the size of the objects. Applying a
threshold on the error may reject the association, while the measure of overlap
may accept it. The notion of overlap is a relative quantity that avoids the
issues related to applying an absolute threshold, that must be valid for all
sizes of objects.

4.3 Experiments

In this experiment, a subset of the 3D segments generated by the segmen-
tation algorithm (on the Riegl scan) are used to evaluate the classification
process (see Fig. 4(a)). The test is performed based on a leave-one-out pro-
cedure: a single segment is used as test data and the remaining segments
are used as training data, the evaluation being repeated for each segment.
The confusion matrix is presented in Table 4. The overall evaluation takes
3.9 minutes (3GHz Intel Duo Core, Matlab implementation). The evaluation
is performed in such a way that the matching between any two objects is
computed only once and the value is stored for when the same evaluation
is required again. ICP is run for 10 iterations before evaluating the error in
Eq. 1. Also the point clouds are subsampled before applying ICP to accelerate
the computations.

With respect to the classes “car”, “pole” and “tree”, the classifier displays
a high accuracy. This is indicated by the off diagonal terms in the confusion

598 B. Douillard et al.

matrix, which in the case of the class car are all zero (correct car classification
is illustrated in Fig. 4(b)). One of the trees is confused with a pole which is
due to the lack of samples on the canopy of the tree, implying that this tree
looks like a pole; this is illustrated in Fig. 4(c). With respect to the class
“wall”, the accuracy is lower, due to confusion with the class “tree”. A case
of wrong classification of the class wall with the class tree is illustrated in
Fig. 4(d). This comes from the small number of segments in the class “wall”
(7 segments) as well as the large variety of shapes (due to their extent and
due to occlusions during scanning generating holes in the 3D surfaces, as
can be seen in Fig. 4(a)), implying that a correct match may not be found.
Fig. 4(e) illustrates a correct matching between two trees.

Overall, the accuracy is 92.1% which similar to the best accuracy obtained
with a feature based approach (see Table 3): the Spin Image based classifier.
However the proposed approach is much faster to compute: the whole feature-
less classification process runs in 3.9 minutes while the computation of a
single Spin Image takes on average 5.5 minutes (Matlab implementations).

Table 4 Confusion Matrix. Accuracy=92.1%.

Truth \Inferred Car Pole Tree Wall

Car 8 0 0 0

Pole 0 4 0 0

Tree 0 1 18 0

Wall 1 0 1 5

(a) Segment Set (b) car-car (c) tree-
pole

(d) tree-wall (e) tree-
tree

Fig. 4 (a) The subset of 3D segments used to test the 3D classifiers. The (8)
segments belonging to the class “car” are indicated in cyan, the (4) segments in the
class “pole” in blue, in red are the (19) segments of the class “tree” and in green the
(7) segments of the class “wall”. (b)(c)(d)(e) Examples of best alignments computed
during the ICP-based classification of the Riegl data. (b) The car in blue is correctly
matched to the car in red. (c) Due to the lack of samples on the canopy of the tree in
blue, the latter is identified with the pole in red. (d) The wall in blue is incorrectly
matched to the tree in red. As developed in the text, this is due to the lack of 3D
segments in the class “wall” implying that the best fit is found with the tree in
red. In this plot the larger markers indicate the points forming the set {PTest

i } (see
Sec. 4.2). (e) A correct match between two trees.

A Pipeline for the Segmentation and Classification of 3D Point Clouds 599

While the size of the current dataset is limited, these preliminary results
demonstrate the potential of a feature-less approach to classification in terms
of its interpretation and performance.

5 Conclusion

The paper introduces two methods as part of a robust 3D point cloud pro-
cessing pipeline. The first is a segmentation method that jointly determines
the ground surface and individual objects. The second is a feature-less classi-
fication that directly compares subsequent objects to templates via the ICP
algorithm.

These methods are tested against field datasets and shown to be fast and
accurate. For example, a 1.7 million point Riegl scan is segmented in 30 sec-
onds and has four times less error than if processed by the next alternative
approach. Similarly, 50 Velodyne scans are modelled with 7% less occupied
voxels because the segmentation focuses the alignment on key sections. The
feature-less classification achieves accuracy (92.1%) on par with the best fea-
ture based classifier (Spin Image KNN) while being 30% faster. Future work
is considering the use of the ICP based classifier to explicitly remove cars,
pedestrians and other dynamic objects in 3D scans before performing ICP
registration. This should make the resulting alignment more accurate and
useful.

In the end, an integrated processing approach based on robust segmen-
tation is advocated as a means of going from 3D data to semantically rich
classifications on which informed decisions can be made.

Acknowledgements. This work was supported by the Centre for Intelligent Mo-

bile Systems (CIMS), funded by BAE Systems as part of an ongoing partnership

with the University of Sydney, the Rio Tinto Centre for Mine Automation and the

ARC Centre of Excellence programme, funded by the Australian Research Council

(ARC) and the New South Wales State Government.

References

1. Anguelov, D., Taskar, B., Chatalbashev, V., Koller, D., Gupta, D., Heitz, G.,
Ng, A.: Discriminative learning of Markov random fields for segmentation of 3D
scan data. In: Proc. of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, CVPR (2005)

2. Bosse, M., Zlot, R.: Place recognition using regional point descriptors for
3d mapping. In: Proc. of the International Conference on Field and Service
Robotics, FSR (2009)

3. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki,
L.E., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Imple-
mentations. MIT Press, Cambridge (2005)

600 B. Douillard et al.

4. MIT Urban Challenge datasets,
http://grandchallenge.mit.edu/wiki/index.php/PublicData

5. Johnson, A.: Spin-Images: A Representation for 3-D Surface Matching. PhD
thesis, Carnegie Mellon University (1997)

6. Johnson, A., Hebert, M.: Using spin images for efficient object recognition
in cluttered 3d scenes. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI) 25(1), 433–449 (1999)

7. Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation invariant spherical
harmonic representation of 3d shape descriptors. In: Proceedings of the 2003
Eurographics/ACM SIGGRAPH Symposium on Geometry Processing (2003)

8. Kelly, A., Stentz, A., Amidi, O., Bode, M., Bradley, D., Diaz-Calderon, A., Hap-
pold, M., Herman, H., Pilarski, T., Rander, P., Thayer, S., Vallidis, N., Warner,
R.: Toward reliable off road autonomous vehicles operating in challenging envi-
ronments. International Journal of Robotics Research (IJRR) 25(5-6), 449–483
(2006)

9. Lai, K., Fox, D.: 3D laser scan classification using web data and domain adap-
tation. In: Proceedings of Robotics: Science and Systems, Seattle, USA (June
2009)

10. Lalonde, J., Vandapel, N., Huber, D., Hebert, M.: Natural terrain classification
using three-dimensional ladar data for ground robot mobility. Journal of Field
Robotics 23(10), 839–861 (2006)

11. Malisiewicz, T., Efros, A.: Improving spatial support for objects via multiple
segmentations. In: British Machine Vision Conference, pp. 282–289 (2007)

12. Melkumyan, N.: Surface-based Synthesis of 3D Maps for Outdoor Unstructured
Environments. PhD thesis, University of Sydney, Australian Centre for Field
Robotics (2008)

13. Moosmann, F., Pink, O., Stiller, C.: Segmentation of 3D Lidar Data in non-
flat Urban Environments using a Local Convexity Criterion. In: Intl. Conf.
Information Visualisation (2009)

14. Munoz, D., Vandapel, N., Hebert, M.: Onboard contextual classification of 3-d
point clouds with learned high-order markov random fields. In: Proc. of the
IEEE International Conference on Robotics & Automation, ICRA (2009)

15. Pfaff, P., Burgard, W.: An efficient extension to elevation maps for outdoor
terrain mapping and loop closing. International Journal of Robotics Research
(IJRR) 26(2), 217–230 (2007)

16. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Proc.
3DIM, pp. 145–152 (2001)

17. Siciliano, B., Khatib, O.: Springer handbook of robotics. Springer (2008)
18. Simmons, R., Henriksen, L., Chrisman, L., Whelan, G.: Obstacle avoidance and

safeguarding for a lunar rover. In: AIAA Forum on Advanced Developments in
Space Robotics (1996)

19. Thrun, S., et al.: Stanley: The robot that won the darpa grand challenge.
Journal of Field Robotics 23(9), 661–692 (2006)

20. Triebel, R., Kersting, K., Burgard, W.: Robust 3D scan point classification
using associative Markov networks. In: Proc. of the IEEE International Con-
ference on Robotics & Automation (ICRA), pp. 2603–2608 (2006)

http://grandchallenge.mit.edu/wiki/index.php/PublicData

	A Pipeline for the Segmentation and Classification of 3D Point Clouds
	1 Introduction
	2 3DSegmentation
	3 3D Features for Classification
	4 Feature-Less 3D Classification
	5 Conclusion
	References

