Enhanced Sampling for Biomolecular
Simulations

Workalemahu Berhanu, Ping Jiang, and Ulrich H.E. Hansmann

Abstract. The use of computer simulations as “virtual microscopes” is limited by
sampling difficulties that arise from the large dimensionality and the complex energy
landscapes of biological systems leading to poor convergences already in folding
simulations of single proteins. In this chapter, we discuss a few strategies to enhance
sampling in bimolecular simulations, and present some recent applications.

1 Introduction

Proteins are crucial components of the molecular machinery in cells, responsible
for transporting molecules, catalyzing biochemical reactions, or fighting infections.
Despite the remarkable progress in experimental techniques for producing and char-
acterizing proteins a detailed understanding of folding and interaction of proteins is
still missing. Hence, there is a need for reliable computational tools that can com-
plement experiments in describing protein folding and function from physical inter-
actions within a protein, and between a protein and the surrounding environment.
Such tools could lead to new insights into the molecular working of cells as needed
in many medical and biotechnological applications. Shaw and co-workers [[1]] have
demonstrated that it is possible to study reversible folding of small proteins in atom-
istic detail at the time scale observed in experiments. However, their study was based
on specialized hardware, and the extensive usage of CPU is out of reach for most
academic institutions. In addition, the size of proteins that can be studied with such
brute-force approach is limited. This is because the complex form of the forces leads
to a rough energy landscape with a vast number of local minima acting as traps,
and as a result the computational requirements for sampling the energy landscape
increase exponentially with size of the system [2].
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In principle one can think of two approaches to overcome these numerical diffi-
culties. One is to utilize simplified or coarse-grained models since they lead by de-
sign to an energy landscape with reduced number of valleys. However, while such
models allow a much faster evaluation of energy, the problem of poor sampling and
slow convergence will likely reappear for sufficiently large proteins as roughness is
an intrinsic characteristics of protein energy landscapes. The other approach to ob-
tain sufficient sampling of the conformational space is the use of enhanced sampling
techniques that can quickly find local minima but avoid trapping. Such methods will
(flatten) the energy landscape by reducing barriers. While they will change the dy-
namics and therefore often do not allow to study directly the kinetics of protein
folding, association, or aggregation, this is a small price to pay for faster and more
accurate calculation of thermal averages and free energy landscapes.

This chapter is organized as follows: we start with a short review of a number of
advanced simulation techniques before discussing shortcomings and open problems.
Recent applications demonstrate what can be done when using these approaches on
high-performance computing systems. We finish this short review with a summary
and outlook.

2 Advanced Simulation Techniques

The sampling difficulties in protein simulations at physiological temperature are due
to the roughness of the protein energy landscape where crossing of an energy barrier
of height AE is suppressed by a factor o< exp(—AE /kgT) (kg is the Boltzmann
constant and 7 is the temperature of the system). Hence, raising the temperature 7
makes it easier for a protein to cross energy barriers, but at the same time it becomes
more difficult to find low energy configurations. Simulations at high temperature
can induce thermal unfolding of a protein, which is sometimes interpreted as time
- reversed folding [3| 4]. While this approach has been used in the past with some
success [3} 4], it is not clear whether it is in general a valid approach. For instance,
the C-fragment of TOP7 folds by a non-trivial pathway that involves caching of a
N-terminal segment in an adjunct helix. Only when all other part of the proteins
are folded and in place, the N-terminal segment unfolds and refolds to a strand
that completes the final structure in a three-stranded sheet. Time-reversed unfolding
trajectories at high temperature do not show the caching mechanism that governs
folding of this protein. An interpretation of unfolding as time-reversed folding may
be restricted to simple two-state folder and associated with a nucleation mechanism
as observed, for instance, for CI2 [3 [4].

One possibility to ensure sampling of low-energy configurations and avoid trap-
ping in local minima are improved updates that guide the simulation and/or allow
for larger time steps in the integrator in molecular dynamics simulations, or collec-
tive moves in Monte Carlo. One example is hybrid Monte Carlo [5,[6] where a short
molecular dynamics run provides a trial configuration, which is then accepted or
rejected according to the Metropolis criterion. This allows a larger step size in the
molecular dynamics trajectory as the Metropolis step corrects for the discretization
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errors. Another example is the Rugged Metropolis (RM) which uses informations
from a simulation at a higher temperature to bias a Monte Carlo simulation at a low
temperature. Assume a range of temperatures

h>hh>...>T>...>Tf >Tf. (D)

Results from the simulation at the highest temperature, 77, are used to construct an
estimator of the probability density function

p(-xlv"'axn;Tl)

that biases the simulation at 75. In turn, this simulation provides a bias for the one
at 73, and iteratively continued down to 7. Here, one uses the approximation

n
pxt,.oxn ) =[] pi (T 2)
i=1
where p ,1 (x;; T,) are estimators of reduced one-variable probability densities
pil(x,-;T):/dejp(xl,...,xn;T) . 3)
J#
Recursively, the estimated probability density function

p(xla"-axn;Trfl)

is generated as an approximation of p(xi,...,x,;7,). The acceptance step in the
(biased) Metropolis procedure at temperature 7, is now given by

exp(iﬁE/) p(x]a' . ,)Cn;Tr,])
exp(=BE) p(xy,-...x3:Tr—1)

Improved updates such as rugged Metropolis have been tested successfully in sim-
ulations of small peptides. While in general the gain in efficiency is not enough
to make folding simulations of protein domains (usually consisting of 50-200
residues) feasible, they can be combined readily with the generalized-ensemble
techniques described in the following sections further increasing their efficiency.

Peyy — min { 1, @)

2.1 Generalized-Ensemble Techniques
2.1.1 Energy Landscape Paving

The idea behind all generalized-ensemble techniques can be seen most easily for
the global optimization method energy landscape paving (ELP) [[7] which relies on
low-temperature Monte Carlo simulations with an effective energy:
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w(E) = e E/MT  with E=E+ f(H(q,1)) . ®)

Here, T is a (low) temperature and f(H(q,t)) is a function of the histogram H (g,1)
in a pre-chosen “order parameter” or “reaction coordinate” g. The weight of a
local minimum state decreases the longer the system stays in that state until the lo-
cal minimum is no longer favored, after which the system will again explore higher
energies. We have evaluated the efficiency of ELP in simulations of the 20-residue
trp-cage protein whose structure we could “predict” within a root-mean-square de-
viation (rmsd) of 1 A [§]]. Energy landscape paving allows also the possibility of
zero-temperature simulations [§]]. For T — 0 only moves with AE < 0 will be ac-
cepted. If one chooses: E = E + cH(E,t), the acceptance criterion is given by:

AE +cAH(q,t) <0< cAH(q,t) < —AE (6)

where E is the “physical” energy. Hence, energy landscape paving can overcome
even at T = 0 any energy barrier. The waiting time for such a move is proportional
to the height of the barrier that needs to be crossed. The factor ¢ sets the time scale,
and in this sense the 7 = 0 form of ELP is parameter-free.

However, the weight factor is time dependent, and therefore ELP violates detailed
balance. Hence, the method can not be used to calculate thermodynamic averages.
Detailed balance is fulfilled only for f(H(g,t)) = f(H(g)) in which case ELP re-
duces to one of the generalized-ensemble methods [9] generating a random walk
through order parameter space (energy, for instance), control parameter space (tem-
perature), or model space (i.e. different energy functions).

2.1.2 Random Walks in Order Parameter Space

We first consider generalized-ensemble techniques that realize random walks in or-
der parameter space leading to a broad distribution of a pre-chosen physical quantity.
This allows one to sample both low and high energy states with sufficient probabil-
ity. For simplicity only ensembles that lead to flat distributions in one variable will
be considered. Extensions to higher dimensional are straightforward [10]. One of
the earliest realization of this idea is umbrella sampling [11]], but now more com-
mon is multicanonical sampling [12] and methods derived of it. The first application
of these techniques to protein simulations can be found in Ref [13] where a Monte
Carlo technique was used. Later, it was also adapted to molecular dynamics [14].

In multicanonical simulations configurations with energy E are assigned a weight
w(E) such that the distribution of energies

Py (E) o< n(E)wpyu(E) = const, (7)

where n(E) is the spectral density. Since all energies appear with the equal prob-
ability, a free random walk in the energy space is enforced and the simulation can
overcome any entrapment in one of the many local minima. For a wide range of
temperatures it is now possible to obtain a canonical distribution by reweighting
techniques [[13]:
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Py(T,E) < Pyu(E) wy (E) e PE (8)

since a large range of energies is sampled. This allows one to calculate the expecta-
tion value of any physical quantity ¢ at temperature 7' by

, dE O(E)Py(T,E)
<O>r = . )
! / dE Py(T,E)

The drawback of multicanonical sampling is that the weights wy,, (E) o< n~!(E)
are not a priori known and one needs their estimates for a numerical simulation.
Calculation of the weights is usually done by an iterative procedure [13}[16} [17]]. For
instance, the so-called Wang-Landau sampling [18] where the transition probability
between two conformations with energy E| and E» is given by the ratio of the (time-
dependent) estimators n(E) of the density of states

p(Ei — E>) = min {25231] . (10)

Each time an energy level is visited, the estimator is updated according to
n(E) = n(E) f (11)

where, initially, n(E) = 1 and f = fy = e!. Once the desired energy range is covered,
the factor f is refined,

fi=Fy fart =V fa s (12)

until some small value is reached.

In multicanonical simulations the computational effort increases with the num-
ber of residues like ~ N* (when measured in Metropolis updates) [19]. In general,
the computational effort in simulations increases with ~ X> where X is the variable
in which one wants a flat distribution. This is because generalized-ensemble sim-
ulations realize by construction of the ensemble a 1D random walk in the chosen
quantity X. In the multicanonical algorithm the reaction coordinate X is the poten-
tial energy X = E. Since E « N the above scaling relation for the computational
effort ~ N* is recovered. Hence, multicanonical sampling is not always the optimal
generalized-ensemble algorithm in protein simulations. A better scaling of the com-
puter time with size of the molecule may be obtained by choosing more appropriate
reaction coordinate for our ensemble than the energy.

This is the motivation behind the various other existing realizations of the
generalized-ensemble approach. All aim at sampling a broad range of energies in
order that the simulation will overcome energy barriers and allow escape from local
minima. For instance, in Ref. it was proposed that configurations are updated
according to a special choice of the Tsallis generalized mechanics formalism [21]]
(the Tsallis parameter ¢ is chosen as g = 1 + 1/np):
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w(E) = (H_ﬁ(E—Eo))nF . (13)

nr

Here Ej is an estimator for the ground-state energy and np is the number of degrees
of freedom of the system. The weight reduces in the low-energy region to the canon-
ical Boltzmann weight exp(—BE). This is because E — Ey — 0 for § — 0 leading
to B(E — Ey)/np < 1. On the other hand, high-energy regions are no longer expo-
nentially suppressed but only according to a power law, which enhances excursions
to high-energy regions.

In stochastic tunneling [22]), conformations are weighted by w(E) =
exp(f(E)/kpT). Here, f(E) is a nonlinear transformation of the potential energy
onto the interval [0, 1] and T is a low temperature. The energy in the stochastic tun-
neling technique is transformed dynamically dependent on the simulation history.
The transformation is designed so that the system is automatically cooled down
near the local minima, and heated up at the high energy region allowing efficient
tunneling through the barriers [22]]. Such a transformation can be realized by

f(E) = e E-E/nr (14)

where E is again an estimate of the ground state and ny is the number of degrees
of freedom of the system. Note that the location of all minima is preserved. The
efficiency of this algorithm for protein-folding simulations was demonstrated in
Ref. [23]. As a broad range of energies is sampled, one can use again re-weighting
techniques [15]] to calculate thermodynamic quantities over a large range of temper-
atures. In contrast to other generalized-ensemble techniques, the weights are explic-
itly given. One needs only to find an estimator for the ground-state energy £y which
is easier than the determination of weights for other generalized ensembles.

In the context of molecular dynamics the generalized-ensemble idea is utilized in
the metadynamics method where gaussian-shaped repulsive potentials Up;qs(s,) =

2
Y hexp (f ‘s;iig)‘ ) are added iteratively to the energy function. These potentials

are centered at updated points s(#;) of the reaction coordinates in order to discourage
the system from revisiting the configurations [24]. The overall contribution from
these auxiliary potentials flattens the underlying curvatures of the free energy wells,
therefore leading to a random walk. The original free energy potentials are recovered

by _Ubias (S, t) .

2.1.3 Random Walks in Control Parameter Space

Another way of generating a generalized ensemble is through enforcing in the sim-
ulation a random walk in a control parameter, most often temperature. For instance,
in simulated tempering, temperature is treated as an independent dynamic variable
and is sampled uniformly by updating both temperature and configuration with
a weight:

wer (T, E) = e E/ksT=8(T) (15)
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Here, the function g(7') is chosen so that the probability distribution of temperature
is given by

Psr(T) = /dE n(E) e E/ksT=8(T) — const. (16)

Physical quantities have to be sampled for each temperature point separately and
expectation values at intermediate temperatures are calculated by reweighting tech-
niques [13].

As with the previously discussed generalized-ensemble methods, the weight
wsr (T, E) is not a priori known, since it requires knowledge of the parameters g(7')
and their estimator has to be calculated. It can be again obtained by an iterative
procedure. In the simplest version the improved estimator for g(i)(T) for the i-th

iteration is calculated from the histogram of temperature distribution HS(?I) (T) of
the preceding simulation as follows:

‘ - i1
g(1) = g1 + logHy (7). (7

In this procedure one uses that the histogram of the i-th iteration is given by
Hsp(T) = e~ 61 7z,(T) (18)

where Z;(T) = [dEn(E)exp(—E/kgT) is an estimate for the canonical partition
function at temperature 7. Setting exp(g;(T)) = Z;(T) leads to the iterative rela-
tionship of Eq.[T7l

It is easy to see that the factor g(7') drops out once one considers more than one
copy of the system. This is the idea behind replica exchange method (or parallel
tempering)[26], which was first applied to protein science in Ref. [27]. Assuming
we have N non-interacting replicas of the molecule, each at a different tempera-
ture 7;, standard MC or MD moves are performed in parallel and independently at
these N temperatures. At certain time points, conformational exchanges occur be-
tween neighboring temperatures 7; and 7;1, and the exchange moves are accepted
or rejected with probability

w(C — €)= min(1,exp(~BiE(C)) — BiE(C)) + BE(C:) + BiE(C)))) (19)
= min(1,exp(ABAE) . (20)

The result of the exchange of conformations is the faster convergence of the Markov
chain than in regular canonical simulations since the resulting random walk in tem-
peratures allows the configurations to move out of local minima and to cross energy
barriers. Hence, the temperature distribution should be chosen such that any relevant
energy barrier can be crossed at the highest temperature.

There is no clear consensus on the optimal frequency of exchange attempts. One
opinion is that exchanges should be performed often, but no more often than the
potential energy autocorrelation time [29]]. The other argument is that exchange
moves should be attempted every few steps [30}, [31]]. It has been also suggested
to use multiplexed layers of replicas (n layers, each with M temperatures). In this
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multiplexed replica exchange method, replicas are exchanged both within and be-
tween layers [32]. This offers a way of using more computing units on massively
parallel computers without the need of adding more temperatures.

Expectation values of a physical quantity A are calculated as usual according to:

1 MES
W= yrps L AGH) 1)

where MES is the number of measurements taken for the i-th temperature. Values for
intermediate temperatures are calculated using reweighting techniques [15]]. Note
that parallel tempering does not require Boltzmann weights. The method can be
combined easily with generalized-ensemble techniques [27]. Obviously, the method
is also not restricted to temperature but can be used with any control parameter, for
instance, pH or pressure.

2.1.4 Random Walks in Model Space

Finally, one can enhance sampling of low energy configurations also by performing
a random walk through an ensemble of systems with altered energy functions. In
that way, information is exchanged between varying stages of coarse graining or
different local environments. This is the idea behind “model hopping” [34], “hamil-
ton exchange method” [33], and related approaches. Consider, for instance, that the
energy function can be separated into two terms: E = E4 +aEp. As in parallel tem-
pering, “model hopping” considers N non-interacting copies of the molecule, but
adjacent copies are now exchanged with probability

w(C% — C"") = min(1,exp{—B [Ea(C}) +aEp(C;) +Ea(C;) +a,;Ep(C;) (22)
—E4(Ci) — aiEB(Ci) — Eo(Cj) — ajER(Cj)]})  (23)

Here, Aa = aj —a; and AEg = Eg(C;) — Ep(C;). Configurations perform a random
walk on a ladder of models with a; = 1 > a; > a3z > .... > ay that differ by the
relative contributions of Ep to the total energy E of the molecule.

Take as an example the barriers in the energy landscape of proteins that arise
from van der Waals repulsion between atoms that come too close. Assuming that
such barriers are a main reason for slow sampling in protein simulations, we have
considered a version of “model hopping” where the contributions from the van der
Waals energy become successively smaller. While the “physical” system is on one
side of the ladder (at a; = 1), the (non-physical) model on the other end of the ladder
(at ay << 1) allows in the extreme atoms to share the same position in space. As
the protein “tunnels” through van der Waals energy barriers, sampling of low-energy
configurations is enhanced in the ’physical” model (at a; = 1). With this realization
of “model hopping” we have “predicted ” the structure of a 46-residue protein A in
an all-atom simulation within a root mean square deviation (rmsd) of 3.2 A [34].

Model Hopping also allows guiding a simulation by information obtained from
homologous structures [36]]. Usually, such spatial constraints introduce an additional
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roughness into the energy landscape which often leads to extremely slow conver-
gence of the simulation. This problem is circumvented in our approach through a
random walk in an ensemble of replicas that differ by the strength of the constraints
which are coupled to the system. We have demonstrated the usefulness of this ap-
proach on some examples of the CASP6 competition [36].

2.2 Advancing Generalized-Ensemble Techniques

While there has seen much progress in advancing the generalized-ensemble ap-
proach, folding simulations are still limited in their scope. Aggregation, oligomer
assembly and intra-oligomer conformational rearrangements are examples of sys-
tems with a need for faster algorithms: the sampling process poses even for relatively
simple systems such as polyglutamine repeats a formidable challenge 37, 38]. The
importance and severity of the problem motivates our search for further method-
ological advances.

2.2.1 Improving the Efficiency of Generalized-Ensemble Sampling

The computational efficiency of replica-exchange techniques and generalized-
ensemble is often worse than their theoretical optimum. The reason for this sub-
optimal efficiency is the bottlenecks and barriers that lead to slow relaxation. In
parallel tempering convergence is evaluated by the frequency of statistically inde-
pendent configurations at lowest temperature. A lower bound for this number is the
rate of round-trips n,; between the lowest and highest temperature, 77 and Ty. We
define nyp(i)and ngy,(i) as the number of replicas at temperature 7; that came from
T| (Ty). The fraction of replicas moving up is given by:

N Mup (i)
P 0= ) nan .

and describes the probability of stationary flow between temperatures 77 and Ty.
Maximizing the number of round-trips n,; results in a linear flow distribution [39]:

(i) =i/N (25)

Explicit solvent simulations of proteins are dominated by the water molecules. As
a result, the heat capacity C is constant, and the system can be approximated by
a D = 2C harmonic oscillator. Based on this approximation, one can find that the
optimal temperature distribution is the one with the number of replicas given by

NOP' 2 140.594v/CIn(Tyuar / Trnin) (26)

replicas, and the temperatures distributed according to

i—1

T N-1
R = Tmm< ’”‘”‘) ; 27)
Tmin
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where T,y is the highest temperature, 7,,;,is the lowest temperature. Both quantities
have to be chosen in advance [40]].

If the relaxation at a particular temperature is slower than hopping in tempera-
ture, the state space partitions into disjoint free energy basins forming a tree-like
hierarchical network. Because of this broken ergodicity an optimized temperature
distribution needs to be found iteratively [41]]

T (om) ,
. n*PNT)dT = j/N , (28)

where 1 < j < N, the two terminal temperatures 77 and Ty are kept fixed, and

1 df
(op) (7Y = ¢’ \/ 29
n'PT) AT dT (29)
with the normalization constant C’ chosen so that
Iy
NP (T)dT =1 . (30)
T

This will again lead to a linear flow distribution, but the acceptance probabilities
are not any longer constant. One can also show that in the case of broken ergodicity
weight optimization of flow through order parameter space (for instance, energy)
leads to a distribution that is no longer flat I41].

A direct measurement of the flow distribution is computationally costly as indi-
vidual replicas have to cross the full ladder of nodes many times. Such “tunneling”
events are especially rare in early stages of the control parameter optimization when
round trip times are largest. For this reason, we have proposed to estimate the flow
distribution from measurements of mean first passage times of replicas crossing only
part of the ladder. In our simulations, this procedure led to temperature sets that are
more stable upon iteration than those from flows measured directly [42].

Traditionally, temperature replica exchange method is implemented such that
the exchanges have been synchronous and this has been a major limiting factor
making it highly inefficient. This replica exchange synchronization of attempted
moves strategy which results in wasted computation time as the periodic synchro-
nization causes the overall simulation to run at the speed of the slowest processor
and the centralized coordination step is not scalable to many processors. In asyn-
chronous replica exchange, one attempts to escape this problem through performing
replica exchange moves for pairs of replicas independently from the other repli-
cas, thereby removing the need for processor synchronization found in conventional
synchronous implementations [43]]. Because it does not involve a centralized syn-
chronization step, the algorithm is scalable to an arbitrary number of processors and
it is not limited by the slowest processor. The method is suitable for integration in
dynamical simulation environments, such as computational grids, in which proces-
sors dynamically join and leave the calculation [43]].
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2.2.2 Velocity-Rescaling Improved Replica Exchange Molecular Dynamics

In a molecular dynamic simulation, the energy
E(x,v) pot( ) +Ekzn( ) with Ekm th (31)

is the sum of the potential energy E,,;, which depends only on the coordinates x,
and the kinetic energy Ey;, that is solely a function of the velocities v. Scaling all
velocities by a factor r changes the kinetic energy by:

Eyin(rv) = rzEk,-,,(v) . (32)

In standard replica exchange molecular dynamics this relation is used by scaling the
velocities after a successful exchange with a factor

o2 =/Ten /T (33)

that depends on the temperatures 77 and 75 of the two replicas that are exchanged.
The rescaling of the velocities leads to V(fz) (2 1) and therefore AE);, = 0.
Hence, the probability for an exchange is given only by the difference of potential
energies of the two replicas

w(l ¢ 2) = exp(ABAE ). (34)

Microcanonical replica exchange simulations call for a different scaling [44], [43]].
By definition of the ensemble, one has to assure that AE = 0. Assuming E| < E»,
and scaling parameters r| and r, given by

Eo1) — Epor(X12)

14 =
(12) \/E(I,Z) _Epot(xl.Z)

_ Ekin(v(2,1)) +AEpo (35)
Epin(v1,2) ’

two configurations are exchanged with probability one :

E\(X1,V1) = Epot(X1) + Egin(V1)
pot (XZ) + V%Ekin (VZ) . (36)

and

E>(X2,V2) = Epoi(X2) + Egin(v2)
Epor (1) + r1Egin(v1) (37)
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Such rejection-free moves are possible for E,(X2) < Ej, a restriction that does
not violate detailed balance. Molecular dynamics time evolution between exchange
moves ensures ergodicity. Hence, the sampling will lead for sufficiently long simu-
lation times to the correct distribution:

P(Epot;E) o< ont(Epot)E/:li];l/z , (38)
where (2 is the density of states and n is the number of degrees of freedom.

The above scaling leading to rejection-free sampling has been used in Ref. [43]]
to study the trp-cage protein with an implicit solvent. However, this approach is
not restricted to microcanonical simulations. Instead, it can be generalized to the
more commonly used canonical ensemble without changes of the functional form
of Eq.

The search for more efficient replica exchange schemes is an active area of re-
search [46, [47], especially for the case of explicit solvent simulations of proteins
[48. [49]]. Inspired by Okur et al. [48] we have proposed in Ref. [50] to circumvent
the problem by a hybrid method. We assume that the potential energy of the system
can be written as

E= Epot + Ekin with Epot = Ppp + Ppw + Py and Eyin = Kp + Ky, (39

where P,, marks the contribution from interaction solely between atoms in the pro-
tein, P,,, denotes the ones arising from water-water interactions, and Py, stands
for water-protein interactions. Between exchange moves the system evolves with
the energy function given by Eq. However, for exchange moves we utilize in
addition an implicit solvent term P that is an approximation for P,,, + Pp,,. The
difference between the two solvation terms is given by

H =Py, + Py, — Py . (40)

The “true” potential energy E ), can be approximated by a quantity Q = P,, + Fj ,
leading to:
Epu=0Q+H. (41)

Exchange moves are as usual accepted with probability

w(1 ¢+2)=min (1,exp(D)) with D=ABAQ— By (E\}) —EV) + AH) — By (B2 —E2) — AR),

(42)
where E,El]rl) and E,Elln) are the kinetic energies at temperature 77 before and after an
exchange move, respectively. Rescaling the velocities according to

(1 2)
V2 ) =) Ex — AH and vV & 9@ =) Euin +AH (43)
E® EW
kin kin

EY —EY) —AH and EZ) —EZ) +AH . (44)
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Exchange moves are now accepted with a probability of the same form as in Okur

et al. [48]]:
w(l «>2) =min(1,exp(ABAQ)) with Q = P,, + Py. (45)

However, the velocity rescaling improves on that method by relating the solvation
energies as measured with the explicit solvent and the one calculated with the im-
plicit solvent. We have shown for the 20-residue Trp-cage protein that the number
of replicas in explicit solvent replica exchange molecular dynamics can be reduced
from 40 to 10 replicas [50]. As the contribution of solvent-solvent interaction in-
creases faster than protein—protein and protein-solvent terms one can expect a more
dramatic improvement for the larger proteins, allowing to evaluate and improve
velocity rescaling as a way to advance on explicit solvent simulations and other
applications of replica exchange.

2.3 Multiscale Sampling

Another approach to enhance sampling of protein configurations is multiscale sam-
pling. Simplified or coarse-grained models lead by design to an energy landscape
with reduced number of valleys, and allow often in addition for a much faster eval-
uation of energies. The reduced model allows to observe long time scale changes
quickly enough, which could take all-atom models an infeasible simulation time.
The so-obtained coarse-grained potentials are designed to reproduce the thermo-
dynamical and structural properties of the corresponding all atom system. But the
lost fine details in coarse-grained models are in principle critical to the accurate
description of realistic molecular behaviors. For example, structure prediction of a
pathologically important enzyme is usually performed by using reduced models for
a fast outcome. But the drug screening followed requires more details in side chain
arrangement in the active site. Multiscale simulations attempt to overcome this prob-
lem by combining coarse-grained with all-atom simulations, altering the fineness of
the system studied in a stepwise way.

Obviously, combining different coarse-graining levels requires a scheme for
back-mapping to the detailed degrees of freedom. The difficulty of back-mapping
is evident — coarse graining in the large part averages a fine-grained model, thus
the reversing is not one-to-one, but mapping a single coarse-grained structure to a
fine-grained ensemble. The high-resolution ensemble generated in the normal back-
mapping mode does not assure necessarily the correct statistical properties. As an
extension of parallel tempering, Zuckermann and coworkers developed the Res-
olution exchange algorithm in which several simulations of differing resolutions
are conducted in parallel and exchanges of configurations are attempted periodi-
cally between the neighboring resolutions[51]]. Instead of using high temperature to
smoothen the rugged potential energy landscape, resolution exchange uses coarse-
grained model to effectively sample the conformational space. The method guar-
antees the canonical sampling in the atomic fineness level by using the following
exchange acceptance criterion.
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7 (Ga, xp) 0 (P1)
e (Pp, Xp) 0L (Ga)

The configuration of a coarse-grained model is described by a set of coordinates ¢
and that of a fine model is described by a larger set of coordinates including not
only ¢ but also x which is for the extra degrees of freedom. If the two configu-
rations before exchange is ¢, and {¢,,x,}, the trial configurations are simply ¢,
and {@,,xp}. Namely, only the coarse-grained part of potential energies are sub-
jected to exchange. Subscripts H and L denote high-resolution and low-resolution
respectively and the corresponding potential energy is defined as Uy and Ur. Then
the probability of having configuration a and b before exchange is the product of
probability of having configuration a, my = exp(—BrUn(9,))/Zy and having b,
ntr, = exp(—BrUL(dp, xp))/Zr. Similarly, the probability after exchange is the prod-
uct of Ty = exp(—ﬁHUH(¢>b))/ZH and m; = exp(—ﬁLUL((ba,xb))/ZL. Zy and Zj,
are partition functions. In sum, the exchange criterion can be written as equation
The criterion satisfies the detailed balance and therefore ensures the canonical
distribution at any resolution.

A practical problem of the resolution exchange method is that when the sys-
tem studied is of larger size than dipeptides, the trial exchanges are rejected eas-
ily. Lyman et. al have found that the rejection rate depends on both number and
type of the degrees of freedom of coordinates x. They employed an incrementally
coarse-graining scheme to coarsegrain one residue each time [52]]. In-between the
finest and most coarse-grained replica, hybrid models which are partially atomic
and for the rest united atoms are used. Finally the acceptance rate of exchange be-
comes reasonably high (from 0.09% to > 2%). To tackle the same issue, Liu et. al
used configurational-bias monte carlo (CBMC) to reconstruct the nascent degrees
of freedom [53]]. The position of the next interacting site is constructed using a look-
ahead algorithm. A set of trial positions are generated and each is assigned a weight
w; = exp(—BU;). The coordinates will be selected based on its Rosenbluth factor,
w;/ Y w;, and the process iterated till the last site is generated.

PRM = min{ 1, (46)

3 Recent Applications

Our group has a long-standing interest in mis-folding and aggregation of proteins.
A class of proteins where one would expect an increased danger of mis-folding are
proteins with end-to-end 3-sheet. This is because the N-terminal 3-strand is synthe-
sized early on, but it cannot bind to the C-terminus before the chain is fully synthe-
sized. During this time there is a danger that the 3-strand at the N-terminus interacts
with nearby molecules leading to potentially harmful aggregates of incompletely
folded proteins. Using our advanced generalized-ensemble techniques we have re-
cently shown [54} [55]] that the 49-residue C-terminal CFr of the artificially designed
Top7 [36, 57]] avoids this risk by a “caching” mechanism, that relies on chameleon
behavior of one of the terminal 3-strands, to facilitate folding. In the early phases of
folding the N-terminal residues are “cached” as part of the subsequent ¢t-helix. Only
after the other parts of the molecules have folded into the correct structure, do the
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N-terminal residues unfold and refold to a strand that then forms with a C-terminal
hairpin into a three-stranded f3-sheet. While “caching” is not in contradiction to the
funnel picture, it implies a rather complex energy landscape. We have shown further
that mutations which increase the propensity of forming strands and decrease that
of forming helices, still lead to the same native structure, but by interfering with the
caching mechanism lead to reduced folding rates [58].

We recently started to explore the importance of the caching mechanism in other
proteins with an end-to-end f3-sheet. For instance, we became interested in the pos-
sible mechanisms by which the A629P (alanine to prolin) mutant of ATP7A causes
Menkes Disease (a hereditary copper deficiency disease in most cases leads to death
in early childhood). The mutation is located in the fourth (and C-terminal) strand of
the B-sheet in the sixth domain. The isolated domain consists of 75 residues, with
the mutation at position 69, and exists in solution as a monomer. As such it has been
characterized by NMR for wild type and mutant, both in the apo and the copper-
binding form. Structural differences between wild type and mutant are around 3
A rmsd and within the variations of the respective NMR ensembles. Hence, the
question arises by what mechanism the mutation leads to the outbreak of Menkes
disease. Our results indicate that the mutation does not have appreciable effects on
the stability of copper-bound states but rather destabilizes the characteristic end-
to-end [3-sheet [39]. The resulting transient unfolding leads to partial exposure of
hydrophobic residues that makes the mutant prone to degradation. In turn this leads
to the low effective concentration of the copper transporting protein that is respon-
sible for the pathology of Menke’s disease. We further show that the differences in
the binding affinities between the two terminal strands alter the folding mechanism
for the mutant: the secondary structure elements form contacts between each other
in different order than in the wild type [60].

Another example of recent applications of generalized-ensemble techniques are
our investigations into the folding of the A and B domain of protein G. Both pro-
teins fold in a two-state way without detectable intermediates, similar to the often
studied small protein CI2. They share no significant sequence homology and have
different folds: GA is a three-helix bundle, and GB a «-helix on top of a 4-stranded
B-sheet. The group of Bryan and Orban (University of Maryland) have studied sys-
tematically mutations of these two proteins that increased the homology of the two
proteins up while preserving structure and function [61]. The final mutants GA98
and GB98 differ by a single residue that switches between the two folds. Our as-
sumption is that the two proteins and their mutants have both structures as local
minima, with the sequence determining their relative weight. We conjecture that the
sequence of a protein encodes not only the native fold but also other forms that ei-
ther are important to the folding process (as in the case of the caching mechanism
in CFr) and the protein functions (changes of protein structure upon binding), or re-
flect an evolutionary history (or future): mutations can accumulate without changing
structure and function of a protein until a single mutation finally switches the fold.
In the case of GA and GB this process can be studied systematically by comparing
the free-energy landscapes of the various mutants.
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We have probed this assumption with all-atom Go-model simulations of both the
GA and GB wild types and the GA98 and GB98 mutants [62]. While Go-models
by construction lead to preselected structures as lowest-energy states, our simula-
tions show a clear difference between sequences that “fits” a certain fold and ones
that do not. For the wild type GA and GB, simple all-atom Go-model simulations
allow to study the folding mechanism of these proteins. However, such models that
by construction have only a single folding funnel will fail when the energy land-
scape of a protein is more complex. In the case of the mutants GA98 and GB98 that
differ only in a single residue but have very different distributions of folded struc-
tures we therefore tried a modified Go-model that incorporates folding funnels to
both GA and GB fold. This model reproduced not only correctly the experimentally
observed distributions but also revealed details on the folding mechanism in these
two mutants. The two mutants differ only in residue 45. This difference does not
change the frequency of the long range contacts typical for the GB fold. In the case
of GA98, the competing structure (resembling the B domain of protein G instead of
the A domain) therefore is also accessible, and is indeed also observed experimen-
tally with a certain, but low, probability. On the other hand, 45TYR in GB98 has a
much smaller probability to form contacts with residues 32-35 (characteristic for the
GA fold) than 45LEU in GA98. Hence, switching from 45LEU to 45TYR decreases
the frequency of intra-helical contacts (i.e. disfavoring the GA fold). Hence, unlike
in GA98 one does not observe in GB98 the competing structure (resembling the A
domain of protein G instead of the B domain).

4 Conclusion

Progress in the development of algorithms over the last two decades has extended
the size of peptides and proteins that are accessible in all-atom simulations, and
has also allowed to pinpoint the remaining difficulties. The most important open
problem in present generalized-ensemble techniques is that they require careful tun-
ing of parameters. Unfortunately, there are no simple and universal rules for this
tuning toward optimal sampling. As the described techniques can only reduce the
sampling difficulties from an exponential scaling to a power law, it is necessary to
have software that is highly adapted to massively parallel computers and modern
architectures such as GPUs and cell processors. Further advancements in hardware
and algorithms may overcome the remaining sampling problems and establish the
use of computer simulations as “microscope” to a point where the whole cells can
be explored in silico.
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