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Abstract. Coarse-grained models and force fields have become useful in the studies
of the dynamics and physicochemical properties of nucleic acids. Reduced repre-
sentations of DNA or RNA allow saving computational cost of a few orders of mag-
nitude in comparison with full-atomistic simulations. In this chapter we describe a
few coarse-grained models of nucleic acids in which one nucleotide is represented
as either one, two, or three beads. We selected the examples of the models designed
to investigate the internal dynamics and temperature-dependent denaturation of nu-
cleic acids, as well as created to predict the tertiary structure of RNA or used for
large ribonucleoprotein complexes. We describe how the purpose of the model af-
fects the design of the potential energy function and the choice of the simulation
method. We also address the limitations of these models.

1 Introduction

Genomes of many species, including human, have been already mapped [1, 2] and
are publicly available [3]. Their analyses give critical information on the cell com-
ponents. However, in numerous cases, looking solely at the nucleotide sequence is
not enough to explain how the processes in the cell are controlled. This happens
because these sequences give rise to three-dimensional molecules, immersed in the
environment of the cell, which undergo thermal fluctuations and ”precisely” inter-
act. Therefore, the knowledge of the sequence, even though crucial, is only the first
step to analyze the spatial and temporal pattern of biomolecular interactions. To un-
derstand these interactions one needs to capture both the structural properties and
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time-dependent dynamics of single molecules and macromolecular complexes. Be-
low, we give a few examples where the dynamics is indispensable for biological
function.

Cells use multiple strategies to pack and protect long strands of deoxyribonu-
cleic acid (DNA) to provide for both DNA compaction and DNA accessibility for
transcription, replication, and repair. For example, in bacteria DNA is supercoiled,
a torsional stress is applied to a circular DNA duplex (plasmid) [4, 5]. The changes
in supercoiling result in a bacterial response to hostile conditions such as starvation
or thermal shock [6, 7]. The unwinding of supercoiled DNA is also the first step of
transcription and replication [8]. In eukaryotes, proteins are used to help pack DNA
in the nucleus to the form of chromatin. The simplest building block is the nucleo-
some, which is composed of histone proteins that are wrapped around by about 140
base pair long DNA duplex [9]. Multiple successive nucleosomes are separated by
DNA linkers and resemble “beads on a string” under an electron microscope. Such
organization allows the cell to control access to nucleosomal DNA, which is possi-
ble only when DNA unwraps from the histone core. Therefore, understanding the
dynamics of this mechanism is crucial to control the gene expression or design how
to put the genetic material into cells.

Another important aspect of the stability of DNA is related to the flexibility and
dynamics of its double–helical structure. Topological stress, temperature or force–
pulling might break bonds between the complementary bases and destroy the helix.
DNA denaturation is easily tracked by UV–monitored changes of absorbance upon
raising the temperature. This process depends on the sequence and length of DNA,
and solution conditions such as ionic strength and pH [10]. Although in living cells
a complete denaturation is not desirable, the local opening of a double–helix is im-
portant for gene regulation. A small “bubble” of denatured DNA forms in the areas
where the transcription is initiated and/or regulated [8].

Though ribonucleic acid (RNA) differs from DNA by just one hydroxyl group in
the sugar ring, this difference has important implications for the RNA architecture
leading to a plethora of RNA structures with diverse roles. Messenger RNAs (mR-
NAs) serve as templates to transfer genetic information from DNA to ribosomes.
The RNAs that do not carry genetic information form a large group of non–coding
RNAs [11]. Transport RNAs supply the ribosome with amino acids. The ribosome
itself contains ribosomal RNA which serves not only as a structural skeleton but
also as a catalytic center. There is also a myriad of regulatory RNAs such as micro
RNAs, small interfering RNAs, and small nucleolar RNAs.

Functional differences between DNA and RNA arise from the structural ones.
DNA predominantly forms an ordered double–helical structure, with adenosine–
thymine (A–T) and guanine–cytosine (G–C) complementary canonical base pairs.
RNA is predominantly single–stranded with nucleotides bound by both comple-
mentary and non–complementary hydrogen bonds. Complementary ones, in the
Watson–Crick sense, represent the secondary structure. They are formed first, in mi-
crosecond to millisecond time scales [12]. Bonds formed according to other schemes
are responsible for the RNA 3D folds and the entire tertiary structure [13, 14]. The
tertiary structure formation requires even seconds. The network of interactions in
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RNA leads to double helical regions, intertwined with loops and junctions. Evolu-
tionary conservation analyses show a strong link between the tertiary structure of
RNA and its function, whereas the secondary structure and sequence are less con-
served [15].

The functionality of RNAs is related to its flexibility and ability to change
folds [16]. Some RNAs adapt multiple functional conformations in response to ex-
ternal conditions. The examples are riboswitches [17] which respond to ligand or
metal ion concentrations and RNA thermometers [18] which respond to tempera-
ture shifts. These are mRNA fragments that typically include the Shine–Dalgarno
sequence [19] responsible for binding of mRNA to the ribosome and initialization
of translation. The Shine–Dalgarno sequence either forms a hairpin loop which is
not exposed to interact with the ribosome or it switches the fold and the sequence
becomes accessible to the ribosome. The accessibility of Shine–Dalgarno sequence
depends on the environment and can be moderated by external conditions.

Full understanding of the above processes requires the knowledge of how the
structure of nucleic acids changes and fluctuates in time and how this dynamics is
related with function. The methods that gain information solely from sequence are
of great value, e.g., thermodynamic nearest–neighbor model has been successful in
predicting denaturation temperatures of various DNA or RNA duplexes [20, 21, 22].
Also, the secondary structure can be in most cases reliably predicted just based on
the sequence [23]. However, the sequence-based methods fail for more complicated
tasks such as predictions of RNA 3D structure [24] and more importantly dynam-
ics. The dynamics, which is typically simulated based on the 3D model, helps in
understanding the functional roles of various nucleic acid architectures.

Also, in comparison with the number of available sequences of functional nu-
cleic acids, the experimentally-determined 3D structural data lag behind. As of June
2012, there have been 928 RNA structures deposited in the Protein Data Bank [25].
In the year 2011 there were only 72 new RNA structures resolved. When compared
with proteins these numbers are 75708 deposited structures and 7547 resolved in
2011. Efficient ways to predict the RNA 3D structure will help filling the gap of low
number of RNA structures in the crystallographic database. The dynamical data for
RNA are even more sparse also because the dynamics is difficult to be monitored
experimentally at atomic level and on fast time scales. So the modeling methods
that add the fourth dimension — time-dependence are beneficial to understand the
complexity of interactions in the cell.

To characterize the dynamical processes occurring in nucleic acid molecules mul-
tiple techniques have been used. The three main conformational sampling tech-
niques, are molecular dynamics simulations, normal mode analysis, and Monte
Carlo (MC) algorithms [26]. All typically require, as a starting point, a set of ini-
tial coordinates of the molecule describing its 3D structure. The MC algorithms are
probabilistic methods that help to stochastically explore the conformational space of
molecules. In an MC simulation (e.g., [27, 28]) small modifications of molecule’s
coordinates are randomly introduced and are either accepted or rejected based on
the potential energy of the system. If the modification lowers the potential energy, it
is always accepted. Otherwise, its acceptance is probabilistic, more likely to happen
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if an absolute value of energy change is small. A wide number of possible confor-
mations can be probed using this method. Conversely, if one is not interested in a
wide search of conformational space but in low frequency dynamics of a known
native state, normal mode analysis can be applied [29]. Normal mode analysis pre-
dicts the system’s motions at equilibrium by decomposing them into independent
vibrational modes. This method looks for vibrational normal modes with lowest
frequencies which are usually connected with molecule’s function. Molecular dy-
namics (MD) [30, 31] is a tool most often used to analyze the time-dependent dy-
namic behavior of biomolecules. By integrating Newton’s equations of motion one
can calculate the positions and velocities of atoms or residues at small subsequent
time steps (the trajectory). However, to solve these equations one has to provide
initial positions and velocities. The latter ones are usually assigned according to the
Boltzmann–Maxwell distribution at a requested temperature.

All these methods require a mathematical formula with a set of parameters (force
field, FF) to calculate the potential energy of the system. Well-known examples of
such FFs are Amber [32, 33] or CHARMM [34, 35], which provide sets of param-
eters to simulate proteins, nucleic acids, lipids, and other molecules. They employ
a full-atomistic representation of a molecule, i.e., consider each atom separately in
integrating equations of motion. To provide a good description of the environment
one has to include solvent effects. This can be achieved by explicitly adding wa-
ter (or other solvent) molecules to a system. The state-of-the-art examples of MD
simulations in explicit solvent include a millisecond simulation of a 58 amino-acid
bovine pancreatic trypsin inhibitor protein, performed on a computer build exclu-
sively and purposely for MD simulations by D. E. Shaw group [36, 37] and 13.3
μs MD simulation of folding of a 162 amino-acid human pin1 WW domain by K.
Schulten group [38]. Traditional full-atomistic FFs have their limitations primarily
because they were parameterized based on experiments and quantum-mechanical
calculations for small molecules. There are also doubts about the quality of the mi-
crosecond scale simulations since the FF parameterization was not performed with
such long time scales in mind. Unfortunately, the microsecond time scale is still too
short to model global conformational changes in RNA, to fully grasp how the RNA
tertiary structure is formed or to predict unliganded states of riboswitches.

Time saving by at least an order of magnitude can be achieved by performing
a simulation with the solvent modeled implicitly. To do this one can modify the
FF to include hydrophobic effects by adding a term involving the solvent accessi-
ble surface area [39]. One can also modify equations of motions to include random
collisions with water, like in the Langevin-type dynamics [40]. But simplifying a
system can go further than just removing the solvent degrees of freedom. One can
reduce the system’s representation to achieve the necessary reduction in complex-
ity. In such simulations chemical groups or even whole residues can be represented
as single interacting centers (beads). Then the gain in performance is two-fold.
The more obvious one is the decrease of the number of interactions in the calcu-
lations of the potential energies or forces. Additionally, the most frequent vibrations
are removed from the system, smoothing the potential energy surface, and allow-
ing one to use a larger simulation time step. Therefore, such coarse-graining (CG)
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procedure, should be appropriate to simulate the above introduced nucleic acid dy-
namical problems that occur on nanoseconds to seconds.

In this chapter we present the CG FFs for nucleic acids that use between one and
three beads per nucleotide. We believe that such models give a reasonable balance
between the quality of the results and time efficiency of the calculations. However,
there are models that use a higher number of beads and represent the structural
details of bases (e.g., [41, 42, 43, 44, 45, 46, 47, 48]). On the other spectrum there
are coarser models in which the building blocks are formed of helices and single-
stranded loops (not single nucleotides) [49, 50, 51, 52, 53]. Here, we describe only
the models that use spherical beads but some authors implement interaction centers
as ellipsoids [54] or disks [55]. We will also not cover the two models which are
historically important: a one-bead model published in 1970s by W. K. Olson [56,
57, 58] which was the first attempt of coarse-grain DNA modeling and a three-
bead per nucleotide model by Y. N. Vorobjev [59] from 1990, since the latter model
was not used in actual simulations, despite its strong theoretical background. Also,
the models that we review here belong to the class of the off-lattice models for
which the bead coordinates in the simulations are not limited to a certain set of
positions such as nodes of a cubic grid. Our selection of the models is arbitrary and
far from complete because our aim was to give informative examples of how the CG
models for nucleic acids are constructed and to which biological problems they can
be applied.

2 Coarse-Grained Force Field Parameterization

Coarse-graining is not a problem-free procedure. One of the challenges of the
CG models is their parameterization. For full–atomistic models there are well–
established protocols where FF parameters are determined and benchmarked based
on quantum chemistry models and experimental measurements of thermodynamic
parameters for small molecules. CG models are hard to fit directly to the quantum
mechanical data, although there are examples such as the UNRES FF developed by
Liwo et al. [60, 61] (and described in this book) where tedious derivations led to a
usable CG potential.

Most CG potentials presented in this chapter can be classified as statistical or
knowledge–based. The parameters of such FFs were found based on the average
properties derived from large sets of reference data characterizing the molecules
of interest. In some cases, the data sets include all nucleic acids of a certain class
found in one of the crystallographic databases [25, 62]. In other cases, the data sets
are gathered from full–atomistic simulations. However, in both cases the parame-
terization procedure is the same. Using the Boltzmann inversion procedure one can
infer the potential energy from distributions of certain observables (e.g., distances,
angles, dihedrals) acquired from one of the mentioned sources [63]. A distribution
d(r) of an observable r is linked with the potential energy using the equation

V (r) =−kBT ln
d(r)
d0(r)

, (1)
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where d0(r) is a reference distribution of such an observable, kB is the Boltzmann
constant, and T temperature. To use this method one has to assume that V (r) is not
correlated with other observables, which, if not satisfied, can lead to errors in the
potential energy approximation. However, there are also other problems associated
with the Boltzmann inversion approach. The structural data set might be biased (e.g.,
the PDB database contains rather short RNA molecules and long RNAs are under-
represented) or affected by uncertainties in the structure determination due to low
resolution of electron density maps. Also, the structures of biomolecules from X–
ray crystallography are derived at temperatures much lower than 310K. Moreover,
crystallization of biomolecules typically occurs under unphysiologic high-salt con-
ditions and induces crystal packing forces. Last, but not least, finding the proper ref-
erence distribution, d0(r), is difficult because it should take into account the specifics
of nucleic acid structures (such as the linearity).

Therefore, some authors fix certain parameters to the values that are experimen-
tally known, e.g., from the thermodynamic measurements. Next, this procedure is
followed by a trial–and–error optimization of other parameters in order to correct
for the drawbacks of the Boltzmann inversion method. Typically, one performs tests
of a CG FF on a known system and systematically modifies the parameters until a
reliable set meeting the assigned criteria is found. This last step can be performed
in a systematic way using local or global optimization methods [64, 65, 66, 67].

3 Force Field Description

The basic criterion which we apply to divide the CG models into classes is the
number of beads used to represent one nucleotide. As stated in the introduction we
will cover only a small spectrum of possible representations — one to three beads
per nucleotide. However, even in this bead range one observes differences between
the design and applicability of the coarser– and finer–grained models.

There are also other measures to compare FFs apart from the number of interact-
ing centers. These are the mapping (where the centers of beads are positioned), the
definition of potential energy function, and the range of applicability (or transfer-
ability). Unfortunately, for the CG methods this applicability range is usually very
narrow. To provide reliable and predictive results CG methods have to be fine–tuned
for a particular process and/or group of molecules. Overall, CG FFs lack the general
transferability of all-atom ones. For example, in the presented set of FFs there is not
even one that can be, out of the box, applied to both RNA and DNA systems. Apart
from the target molecule, we have selected the following main classes of problems
that the FF can be applied to:

• Long timescale dynamics — a model provides reliable information about the
time evolution of a molecular structure on at least nanosecond scale.

• Tertiary structure prediction — a model finds a 3D structure or a set of 3D struc-
tures that are closest to the native state. The focus is only on the final structure,
not on the way it is achieved (in contrast to the folding simulations).
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• Temperature denaturation — a model correctly predicts the effects of the tem-
perature increase on nucleic acid stability.

• Supercoiling — a model predicts the effects associated with supercoiling (e.g.,
unwinding mechanics).

• Large molecule mechanics — a model is designed to simulate the dynamics of
large molecular complexes (> 1000 residues) such as the ribosome or nucleo-
some.

• Interaction with non–nucleic acid molecules — a model is able to predict inter-
actions with ligands, proteins or nanomaterials (ions and solvent are not included
in this category).

The FF applicability results from its implementation details such as the definition
of the potential energy function with respect to the chosen degrees of freedom and
connectivity. For the residue-resolution CG FFs the potential energy function, Vtotal ,
is usually expressed in the following, general way:

Vtotal =Vintrastrand +Vinterstrand +Vnb . (2)

The intrastrand term covers the interactions of beads connected by covalent bonds
which extend up to the third neighbor. This term is composed of a pseudo–bond
(Vbond), pseudo–angle (Vangle), and pseudo–dihedral (Vdihedral) parts (see Fig. 1):

Vintrastrand =Vbond +Vangle+Vdihedral . (3)

Typically, these bonds are not allowed to break in a simulation, so they are repre-
sented with harmonic potentials (see Fig. 1a,b,c):

Vbond(r) = kr(r− r0)
2 , (4)

Vangle(θ ) = kθ (θ −θ0)
2 , (5)

Vdihedral(φ) = kφ (φ −φ0)
2 , (6)

where kr
1, kθ and kφ are the force constants, r0 the equilibrium distance, and φ0 and

θ0 are the equilibrium angles. The drawback of the above Vdihedral is that it is not
periodic so to account for full rotation of the pseudo–dihedral angle, a formula with
a cosine is used (see also Fig. 1c):

Vdihedral(φ) = kφ [1− cos(φ −φ0)] , (7)

with the same definition of kφ and φ0. Beads positioned in the same strand can
form complementary bonds which is especially important for RNA that is usually

1 In this chapter we ignore the 1
2 factor because the harmonic potentials in CG FFs are

presented differently (either with or without the 1
2 factor). Including this factor affects

only the numerical value of a force constant but does not change its general form.
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composed of only one folded strand. However, as these are usually residues sep-
arated by more than three bases, for the purpose of CG FFs such bonds are not
considered to be “intrastrand” and accounted for in the interstrand part.

The interstrand term describes the interaction of complementary strands. This
term models hydrogen bonds which in nature can be broken by raising the tem-
perature or adding denaturating agents or enzymes. Breakable bonds are usually
implemented using the Lennard–Jones potential (see Fig. 2a):

VLJ(r) = 4ε
[(σ

r

)12
−
(σ

r

)6
]
, (8)

or in an alternative form (r0 = 21/6σ ):

VLJ(r) = ε
[(r0

r

)12 − 2
(r0

r

)6
]
, (9)

or the Morse (see Fig. 2b) potential:

VMorse(r) =V0(exp[−α(r− r0)− 1])− 1)2−V0 . (10)

Equations (8) and (9) are two forms of the same equation. ε describes the depth
of the potential energy well. σ is the distance where the potential energy is equal
to zero and req is the distance where the potential energy has a minimum. For the
Morse potential of Eq. 10, V0 is also the depth of the energy well and α describes
the width of the potential well. The Lennard–Jones potential might be modified (for
example softened) by changing the powers in the equation. However, not all FF
models permit such actions because this requires a more complex potential energy
formulation. It is not always necessary to allow for the interstrand bond breaking be-
cause a particular CG model may be designed only for non–denaturating conditions.
In such case a simple (4) harmonic potential may suffice. The CG models also differ
in the way the interstrand bond network is set. Simpler models have a predefined
network which is based on the secondary structure prediction and the pairing is not
altered during a simulation, so even after denaturation the molecule will always re-
turn to the same conformational setting as in native conditions. This is beneficial for
RNA structure prediction, when we are interested in the folds that correspond only
to one particular secondary structure. In the case of more elaborate CG FF models
interstrand bonds can be formed dynamically when the two complementary bases
are close and their topology permits bonding.

The last category of terms are the nonbonded ones nb. They account for the
interactions of residues that are not connected explicitly by intrastrand and inter-
strand terms. Their basic function is to introduce a short–range repulsion to avoid
overlapping of non–interacting beads, however, they also account for long-range
electrostatic interactions and solvent or other environmental conditions. The imple-
mentation of these terms varies among FFs depending on their applications. Some
FFs use Lennard–Jones or Morse terms as in (8) or (10) that describe both the
attraction at short distances and repulsion at long distances. However, for highly
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Fig. 1 Intrastrand potentials used in the presented CG FFs. a. The pseudo–bond harmonic
(solid line,see (4)), cubic (long–dashed line) and quartic (short–dashed line, see (33)) poten-
tial b. The pseudo–angle potential (see (5)) c. The pseudo–dihedral potential implemented
using a cosine function (long-dashed line, see (6)) or harmonic potential (solid line, see (7)).
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Fig. 2 Interstrand and nonbonded potentials used in the presented CG FFs. a. Lennard–Jones
potential b. Morse potential with α = 1.0 (solid line) and α = 2.0 (long–dashed line) c.
Coulomb potential without screening kD = ∞ (solid line), Coulomb potential with two exam-
ple Debye lengths kD1 < kD2 (short– and long–dashed line, respectively) d. Discrete potential
taken from the model of Ding et al. [69, 70] e. Morse potential with a barrier used in Trovato
et al. [71]: Morse potential (solid line), switch function (short–dashed line), final potential
(long–dashed line) f. Restraint potential from the model of Malhotra et al. [72, 73, 74].
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charged molecules, such as nucleic acids, one could also use the Coulomb electro-
static potential to describe the repulsive—only potential, with or without shielding
(see Fig. 2c):

VCoulomb(r) =
qiq j

4πε0εwr
, (11)

VShCoulomb(r) =
qiq j

4πε0εwr
exp(−r/kD) , (12)

where qi and q j are the charges of interacting beads, ε0 is the vacuum and εw the
solvent permittivity. The Debye length,

kD =

(
ε0εwkBT
2NAe2I

)0.5

, (13)

depends on the temperature T and ionic strength I of the solution. kB is the Boltz-
mann constant, NA is the Avogadro number, and e is the electron charge [68].

Fig. 3 DNA helix showing the nucleotide
numbering according to the i:i+n and i:j+n
convention, with a single nucleotide pair
(darker) in the middle as a reference. This
helix is shown in a one–bead represen-
tation, with interaction centers placed on
phosphorus atoms as in FF by Trovato and
Tozzini [71] and Trylska et al. [75, 76].



120 F. Leonarski and J. Trylska

Fig. 4 Left: RNA hairpin loop (PDB:1ATO [77]); Right: yeast phenylalanine tRNA
(PDB:6TNA [78]): a. full–atomistic representation b. three–bead per nucleotide represen-
tation as in the work of Ding et al. [69]. c. one–bead per nucleotide as in the work of Jonikas
et al. [79]. For the RNA hairpin loop (left) we show the bead placement with non–breakable
bonds and for tRNA (right) we show only the bead placement.
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Fig. 5 Guanine – cytosine
nucleotide pair represented
in different CG representa-
tions: a. three–bead model
as in Knotts et al. [68], a
similar model is described
in the work of Ding et
al. [69], however the base
atom is placed in the cen-
ter of the 6–member nu-
cleotide ring. b. a two–bead
model with pseudo–atoms
placed on the backbone
and base as in Drukker
et al. [80] c. one bead
centered on the phospho-
rus atom as in Trovato et
al. [71] and by Trylska et
al. [75, 76] d. one bead
placed in the nucleotide ge-
ometric center as in Sava-
lyev et al. [67] e. one bead
centered on the C3’ atom
as in Jonikas et al. [79]
f. one bead placed on the
phosphorus atom and a spe-
cial “dummy” bead in the
middle of a complementary
pair as Malhotra et al. [72,
73, 74]
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For intrastrand and interstrand interactions we introduce the following notation
shown in Fig. 3: i:i+n denotes the interaction between a nucleotide and its n-th suc-
cessor on a single strand, i:j+n or i:j-n denotes the interaction between a nucleotide
and its n-th successor (or predecessor) of its complementary strand.

A graphical representation of CG FFs described in this chapter can be found in
Figs. 4 and 5. In Tab. 1 we compare the features of the described models. In the
following sections we present the models in the descending order of complexity —
from three to one bead per nucleotide.

4 Three-Bead DNA Model for Dynamics and Melting

The first example that we describe of a three–bead per nucleotide model is the one
of Knotts et al. [68] designed for DNA. In this model the beads that mimic the sugar
and phosphate are placed at the centers of mass of these groups. The adenine and
guanine base beads are placed in the position of their N1 atoms and the thymine and
cytosine beads in the position of their N3 atoms (see Fig. 5a). The authors argue
that representing the DNA backbone with two beads is necessary to properly model
the deformation of grooves which are important for protein—DNA interactions. The
choice of a three–bead representation also helps in later transformation from a CG
representation to a full–atomistic one. The intrastrand part of the potential energy
function contains one additional term, Vstack, in comparison with (3):

Vintrastrand =Vbond +Vangle+Vdihedral +Vstack . (14)

The pseudo–bond Vbond and pseudo–angle Vangle potentials are implemented using
harmonic potentials (see (4) and (5) and Fig. 1a and Fig. 1b). The pseudo–dihedral
potential Vdihedral is implemented using a cosine potential (see (7) and Fig. 1c). The
Vstack term is modeled with the Lennard–Jones potential (see (8) and Fig. 2b).

The first three terms in (14) are standard but Vstack is an additional Go–type po-
tential introduced to account for the stacking interactions [89]. This interaction is
modeled only between the base beads that belong to one strand and the reference
(“native”) structure is positioned within a 9 Å cut–off distance. Therefore, this po-
tential accounts for both the i:i+1 and i:i+2 interaction.

In the interstrand term the complementary base pairs are connected using the
Lennard-Jones-like potential (see Fig. 2a), but with the 12–10 powers instead of
12–6 as in (8):

Vinterstrand(ri j) = 4εbpi j

[
5

(
σi j

ri j

)12

− 6

(
σi j

ri j

)10
]
, (15)

where the summation is over all G–C and A–T base pairs that are not already con-
sidered in Vstack.

The nonbonded potential in the original paper [68] is composed of an excluded
volume term Vex, implemented using the Lennard–Jones potential (see (8) and
Fig. 2a) and a shielded electrostatic term VShCoulomb (see (12) and Fig. 2c):
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Vnb =Vex +VShCoulomb , (16)

where the Vex term is only calculated when the ri j distance between beads is smaller
than a predefined cut–off. The VShCoulomb defines the electrostatic repulsion of only
phosphorus atoms (with the charges qi = q j =−1).

This model was parameterized in an iterative way. The first guess of parameters
was taken from the geometry of an ideal B–DNA helix. Second, a 14 base–pair DNA
duplex was simulated with the CG model using replica-exchange MD [90]. Eight
replicas (or system copies) were simulated in parallel and assigned temperatures
in the range 260–400 K. Temperatures were swapped between two replicas with a
probability related to their potential energy difference. Each replica was equilibrated
and 10 ns production runs were performed. The advantage of replica-exchange MD
over constant-temperature MD was that it allowed the authors to determine the melt-
ing curves of the duplex and provided distance distributions in eight different tem-
peratures. Also, the effect of parameters on the potential of mean force with varying
temperature was analyzed using a weighted histogram analysis method [91] and the
parameters were improved for the next iteration step.

Next, to validate the model, the obtained FF parameter set was evaluated by per-
forming CG replica–exchange MD simulations and comparing them with the DNA
thermal denaturation experiments. In the simulation the melting and the formation
of the denaturation bubble were observed in accord with the reference data for vary-
ing salt concentrations. Knotts et al. [68] show that with their FF they were able to
predict the melting temperatures of three DNA duplexes with an error lower than
5%. To validate the mechanical properties of the model, a CG traditional MD was
performed at 300K. The persistence length for four different fragments of λ -phage
plasmids (one of them was 1489 base pairs and 0.5 μm long) was calculated. Their
model overestimated the persistence length by 2.3 but the authors claim that this
is much less than in other CG models. Based on their parameterization Knotts et
al. suggest that the dihedral force constant (kφ ), potential energy well depths for
base–pairing (εbpi j ), stacking, and excluded volume (Eex), are the most important
parameters to tune.

The presented model was further improved. Sambriski et al. [92] added entropic
effects to the potential energy to allow for rehybridization of the DNA strands, as
the original model of Knotts et al. [68] was unable to model strands’ renaturation.
DeMille et al. [93] added explicit solvation with water as well as monovalent ions.
This modification provides a good cylindrical distribution of ions around DNA but
it over-estimates the DNA melting temperatures. Next, Freeman et al. [82] added to
the model terms for the interactions of DNA with both mono– and di–valent ions.

This model is one of the most comprehensive CG FFs from the ones presented in
this chapter. It can be used to estimate both DNA melting curves and DNA mechan-
ical properties. The subsequent modifications of this model add better treatment of
solvation and electrostatics. Nevertheless, there is still room for improvement, espe-
cially to correct for high errors of the calculated persistence lengths.
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5 RNA Folding with a Three–Bead Model

The model by Ding et al. [69] was designed to predict the tertiary structure of RNA
but may be also used to study the mechanism of RNA folding. This model is based
on discrete MD previously successfully applied to protein folding [70, 94]. In this
method, the interaction between beads is described using pairwise, discontinuous
functions (see Fig. 2d):

Vbond(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞ r < r1

V1 r1 < r < r2

V2 r2 < r < r3

. . .

∞ r > rmax

, (17)

Vnb(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞ r < r1

V1 r1 < r < r2

V2 r2 < r < r3

. . .

0 r > rmax

. (18)

Multiple–step distances r1,r2,r3, ... between beads are defined. If the distance be-
tween two beads is between r1 and r2 their pair potential interaction energy has a
value of V1, if this distance is between r2 and r3 the potential is assigned a different
value – V2, etc. If the distance is smaller than a minimal distance, then an infinite
value of the potential is assigned to avoid overlapping. However, if the distance is
larger than some maximal value, there are two possibilities; the potential energy is
equal to 0 (if the interaction is considered “breakable”) or infinity (if the interaction
is considered for “unbreakable”). The functions described by (17) and (18) could
not be used in traditional MD because of their discontinuity so Ding et al. [69, 70]
have chosen a different approach. In principle, the bead velocities are constant dur-
ing the dynamics and are changed only by colliding with other interacting centers.
If bead kinetic energy is larger than the difference between the two energy steps
Vi −Vi−1 and the distance is smaller than ri, a collision can occur and velocities are
updated. However, if the kinetic energy of beads is lower than a barrier, a hard re-
flection occurs without any change in the potential energy. The advantage of using
this discrete MD method is its higher efficiency in comparison to standard MD. In
the latter each MD step requires recalculating the forces acting on all atoms in the
system and then solving the equations of motion. In the discrete method, in the case
of no collisions, one needs to update only the positions of the beads, not velocities.

In this model single beads are assigned to a phosphate group (P), sugar (S), and
base (B) (see Fig. 4b). As in the model of Knotts et al. [68] for DNA, the sugar and
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phosphate beads are placed in the centers of masses of these groups and the base
bead is placed in the center of a six–membered ring. The intrastrand interactions
contain only the Vbond distance–dependent term and are a combination of unbreak-
able bonds between the P, S and B beads. Since there are no explicit pseudo–angle
and pseudo–dihedral terms as in (3), additional bonds between the beads of two
neighboring nucleotides are added (e.g., a bond between the S bead of an (i−1)–th
nucleotide and a cytosine B bead of an i–th nucleotide). The stacking interaction
between the bases is also implemented as a breakable bond (18) and designed in a
way to provide a correct angle between the three bases in one line.

The interstrand terms are composed of breakable bonds between complemen-
tary nucleotides (also including the wobble pair G-U). A complementary pair is
represented as three bonds: base–base and two sugar–base bonds. Such bonds are
assigned only if a correct (in the Watson-Crick sense) distance and orientation be-
tween the sugar and base beads of both nucleotides are achieved. But in the case of
loops the reduction of the degrees of freedom underestimates the entropy so loop
forming may be modeled in an unphysical fashion. To account for better repre-
sentation of loops, first, loop forming free energies are calculated according to the
nearest–neighbor model [95] and for loops the interstrand bond is formed only with
a probability based on this free energy value.

The nonbonded interactions are implemented as follows. The phosphate-placed
beads repel each other by a discretized screened Coulomb potential (see Fig. 2c
for the Coulomb potential and Fig. 2d for the general discrete potential). The base-
placed beads are connected with an attractive force due to the hydrophobic nature of
the nucleotides. The attraction between bases may result in overpacking of the bases,
so there is an additional term which penalizes the bases with too many contacts in
the defined cut–off region.

The model of Ding et al. [69] was parameterized based on the thermodynamic
data from the nearest–neighbor model by Mathews et al. [95] and on distributions
calculated from known 3D RNA structures. It was next evaluated on 153 known
RNA structures of the lengths between 10 and 100 nucleotides. Their sequences
were used to create linear RNA molecules, which were simulated with the discrete
MD method [70] and their folding was analyzed. The so-called Q-values, defined
as a fraction of native base pairs present in a given RNA conformation, were as-
sessed. The average Q-value for all the tested structures was 94%, which is 3%
higher than Mfold [96], a secondary structure prediction software (especially in the
case of pseudo–knots). 84% of RNA structures had a root mean square deviation
from the final reference structure lower than 4 Å, which is a good score. RNA fold-
ing with this potential can be performed using the iFoldRNA web server [97].

6 RNA Thermal Unfolding and Stretching with a Three–Bead
Model

Another example of a three–bead per nucleotide FF is given by Hyeon et al. [84]
and is an extension of a model that was previously designed for protein folding [98].
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This RNA FF was created to model mechanical unfolding of a particular 22-
nucleotide long RNA hairpin (P5GA hairpin) with a known NMR structure [99].
This hairpin is structurally similar to another P5ab hairpin of group I intron in the
Tetrahymena thermophila ribozyme for which the force unfolding studies were per-
formed using optical tweezers [100, 101]. Hyeon et al. [84] compare their simula-
tion results of the P5GA hairpin to the ones from the above-mentioned experiments.
Their CG model assigns beads to phosphate, sugar and base groups and places the
beads in the geometrical centers of these groups. To create the topology the authors
used the concept of the Go model [102] in which the interactions present in the
native structure are attractive and all the others are repulsive.

The intrastrand potential, similar to the one used by Hyeon et al. [98] for proteins,
is composed of three potential terms, like in (4), where the Vbond and Vangle terms
use a harmonic function (see (4) and Fig. 1a and (5) and Fig. 1b) and Vdihedral is
implemented using the cosine potential (see (7) and Fig. 1c).

The interstrand potential is composed of a stacking term:

Vstack = ΔGi(T )For , (19)

where ΔGi(T ) are the Turner’s parameters of the nearest–neighbor model [95]. For

is an orientation term, including both i:j and i+1:j-1 distances and sugar and base
bead angles involving i,i+1,j,j-1-th nucleotides (according to the i:j notation shown
in Fig. 3).

The nonbonded term is described using the Lennard–Jones potential (see (8) and
Fig. 2a), with separate formulas V native

nb for the interaction of beads forming the
native contacts (closer than 7 Å in the reference structure) and V non−native

nb for the
interactions of non–native beads, and Debye-Huckel potential VPP for the repulsion
of phosphorus beads (see (12) and Fig. 2c):

Vnb =V native
nb +V non−native

nb +VPP . (20)

The FF was first tested by performing MD simulations of the unfolded P5GA, hair-
pin structure, without force steering, to see if the structure converges toward the
NMR resolved one. By slow cooling, simulated annealing, and steepest–descent
minimizations, the RNA hairpin converged to the experimentally folded one with
the root mean square deviation of 0.1 Å. Next, the dynamics of stretching of the
RNA P5GA loop was studied to calculate the phase diagrams of denaturation aris-
ing from external force and temperature. Finally, in the simulation, the hairpin was
force pulled and later refolded from an extended conformation using a force quench.
These MD simulations gave insight into the mechanism of force unfolding and re-
folding of the P5GA loop.

This model was further used to investigate the folding of RNA pseudo–knots.
In the work by Cho et al. [103] the simulations of folding of three pseudo–knots
(MMTV and SRV-1 from viral genomes and hTR from human telomerase) were
performed and the folding mechanisms were consistent with experimental data.
However, the authors emphasized that even though these pseudo–knots are struc-
turally similar, their folding occurred through different scenarios. In the work by
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Biyun et al. [104] further analysis of the hTR pseudo–knot folding was performed
— the effects of the ion concentration jumps and temperature decrease on folding
were investigated giving a better understanding of the transient states and folding
pathways.

7 DNA Nanodevices with a Three Collinear Bead Model

The purpose of this three-bead model designed by Ouldridge and coworkers was to
simulate the dynamics of DNA nanodevices [85, 86, 87]. The interactions in such
DNA nanostructures are based on selective binding of complementary nucleotide
pairs. DNA strands can be designed to form two-dimensional lattices [105], poly-
hedra [106, 107], or other regular structures [108]. There are also DNA structures
in which the complementary hydrogen bonds are dynamically formed and broken.
Overall, one can design a set of interacting DNA strands with a particular purpose
in mind. A cycle based on single– to double–stranded DNA and reverse transitions
may be used to create DNA tweezers [109] or DNA walkers that perform a direc-
tional movement on a DNA track [110, 111, 112]. To simulate such devices a CG
model needs to correctly predict the complementary bond breaking and forming
events. To satisfy this crucial requirement Ouldridge and coworkers have chosen a
top–down methodology. In contrast to other models presented in this chapter, which
are designed by mapping the full–atomistic structure on a CG set of positions, this
model was designed in order to fit with the DNA hybridization and thermodynamic
data. It might appear strange that the model ignores such basic measures as different
sizes of DNA grooves. Its efficiency, however, is measured by the correspondence
with hybridization enthalpies and entropies. And as long as there is an agreement
between thermodynamic predictions and the 3D model, the model is considered
acceptable for a particular task it was designed for.

In this FF a nucleotide is modeled as three collinear beads (see Fig. 6). A single
bead mimics the position of the backbone and two beads represent a base — the
first one is responsible for stacking and the second one is responsible for hydrogen–
bonding and excluded volume interactions.2 The distances between the backbone
bead and base sites and between two consecutive backbone sites were chosen to be
consistent with the geometry of the B–DNA helix. Since these three beads are al-
ways collinear and their distances are kept constant, based on the number of degrees
of freedom we classify this model as a two bead one. The top–down methodology
precludes direct transformation of a full–atomistic structure into the CG represen-
tation. However, such relationship is unnecessary because the model was not de-
signed to reproduce the results from more detailed methods. The (re)mapping is not
required for applying this CG model as long as one is interested solely in the dynam-
ics of DNA hybridization. Here, the fidelity to the 3D structure is rather substituted
with an adherence to the 2D hydrogen bond topology. Such bonding network may

2 There is an earlier version of the model [86] in a four collinear beads variant, with separate
beads for base repulsion site and base hydrogen–bonding site.
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Fig. 6 Four base pair
part of a helix in the
Ouldridge et al. model [87].
Large beads represent the
backbone sites. Small
black beads represent
the stacking sites and
small white beads the
base repulsion/hydrogen–
bonding sites. In contrast
to other presented FFs, this
model does not provide a
mapping function that links
full–atomistic and coarse–
grained structures, so the
full–atom structure is not
shown in the background.

be created by a user or taken from a cadnano program [113], which facilitates the
design of DNA Origami.

Presented CG FF is consistent with a general form presented in (2). The poten-
tial might be used in both Langevin MD and Virtual Move MC simulation meth-
ods [114] (variant of MC simulation by Whitelam et al. to model system dynamics
in time). For efficient simulation in the latter one all interactions have to be pairwise,
so the authors included in the model only interact between two nucleotides (treated
as rigid bodies),

The intrastrand interactions are modeled using three terms:

Vintrastrand =Vbond +Vstack +Vex , (21)

where the Vbond term, responsible for the interaction of two backbone beads, uses a
finitely extensible nonlinear elastic spring:

Vbond =−ε
2

ln

(
1− (r− r0)

2

Δ 2

)
, (22)

where r0 is the equilibrium distance, Δ defines the range of acceptable deviations
from the equilibrium (for r < r0 −Δ or r > r0 +Δ the potential is infinite ∞) and
ε reflects the value of the potential on the edges (at r = r0 − Δ and r = r0 + Δ )
and controls the steepness of the potential. The stacking term, Vstack, is controlled
by the Morse potential (see Fig. 2b and (10)) and connects the stacking sites of the
base. This term is multiplied by numerous orientation terms that depend on mutual
arrangement of bases (see Fig. 7), e.g., preventing the formation of a left–handed
helix (see [87, 86] for full equations). Finally, the excluded volume term Vex is re-
sponsible for the interactions between the base repulsive site and the neighboring
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Fig. 7 Topology of interactions presented in the Ouldridge et al. model. The upper part
presents the stacking and non–bonded interactions. Middle left, middle right, and bottom
left pictures show the angles that modulate the hydrogen bonding and stacking terms. The
bottom right figure shows the topology of the excluded volume terms. (Figure was taken
from reference [87] and used with permission)
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base backbone site and is described by the repulsive part of the Lennard–Jones po-
tential (see Fig. 2a for r < σ and (8)).

The interstrand potential is composed of two terms:

Vinterstrand =VHB +Vcross−stacking , (23)

where VHB is the hydrogen bonding and Vcross−stacking the cross–stacking potential
term. These interactions are calculated between all A and T bases and C and G bases
in the system (no secondary structure is supplied), therefore, cutoffs are applied. The
VHB term accounts for the interactions of hydrogen bonding sites of two complemen-
tary bases and is implemented with the Morse potential (see Fig. 2b and (10) with
orientation terms [87, 86] as in the case of Vstack (see [87, 86] for full equations).
The Vcross−stacking term connects the stacking sites of a base and its complementary
counterpart neighbor (i.e., i:j+1 and i:j-1 interactions). It is implemented with a har-
monic potential (see 1a and (4)) multiplied by additional orientation terms [87, 86].

Finally, the non-bonded term, Vnb, is an excluded volume potential, which is im-
plemented using the repulsive part of the Lennard–Jones potential (see Fig. 2a and
(8) for r < σ ). Vnb describes the interactions of the backbone site with the base re-
pulsion site, between the base repulsion sites, and between the backbone sites (but
not between the i:i+1 neighbors).

This FF was applied to simulate the dynamics of DNA tweezers [109] — a DNA
system with two arms which can acquire an open or a closed state like real tweezers.
The transition between the two states is done by adding two short complementary
DNA fragments. These oligomers take part in a sequence of events — hybridiza-
tion and strand–breaking, but finally they are removed from the system, with the
tweezers state altered. The model of Ouldridge et al. [85] was the first CG model
applied to DNA tweezers. CG Virtual Move MC simulations [114] helped to under-
stand the free energy changes related to the transition between an open and closed
state, caused among others by unfavorable opening up of a second single–stranded
region when the displacement begins. This CG model was also applied to simulate
a DNA walker [111] in which a short single–stranded DNA fragment moves over
a longer strand — a track. The CG Langevin MD simulations pointed to possible
problems in this nanostructure, e.g., the authors predicted that in some cases a back-
ward movement of the walker might occur. The CG simulations gave ideas how to
avoid this backward movement, e.g., suggested to apply a mechanical tension to the
track. The Ouldridge et al. [85] model was also used to simulate kissing loops [115]
and Holliday junctions [116] – well-known RNA motifs.

The model of Ouldridge et al. [85] is an interesting approach to modeling nu-
cleic acids — its biggest advantage is a top–down design that sets thermodynamics
above structural fidelity. Although the model seems perfect for nanotechnological
applications, in the current version it cannot be applied to biological problems. The
structural details which are not that important in the nanotechnology field, such as
the major and minor groove sizes (which in this model are of the same size), are
fundamental for DNA–protein interactions. Also, in the case of RNA, it would be
problematic that a starting structure for the CG simulation cannot be supplied from
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an external file containing the coordinates of an already folded 3D RNA model and
that there is no treatment of non–canonical base pairs.

8 Thermal Denaturation of DNA with a Two–Bead Model

The two-bead per nucleotide model by Drukker et al. [80, 117] was designed to
describe the thermal denaturation of DNA. The model was applied in nanomaterial
science and used to model DNA translocation in nanopores [118] and in carbon
nanotubes [119]. The CG beads are placed in the geometrical center of a backbone
group (sugar and phosphate) and a base (see Fig. 5b).

This CG FF uses the standard intrastrand potential scheme (4), where the pseudo–
bond Vbond , pseudo–angle Vangle, and pseudo–dihedral Vdihedral potentials are
harmonic (see (4), (5), (6) and Fig. 1.) In addition, the i:i+2 bonds between the
backbone beads are added in the intrastrand potential to account for stabilization of
the backbone helical conformation since the Vangle and Vdihedral were insufficient.

In the interstrand potential, this model accounts for the chemical details of hydro-
gen bonding. The A–T pair is connected by two and the C–G pair by three bonds.
Each base can be a donor and/or an acceptor of a hydrogen bond. A and T are both
an acceptor and a donor of one bond. G is a donor of two bonds and an acceptor
of one. C is a donor of one and an acceptor of two. To assure that interstrand in-
teractions are considered only between the correctly oriented beads, a θ HB

i j angle is
introduced. This is an angle between a donor backbone, donor base, and acceptor
base beads.

Vinterstrand(r,θ HB) =VMorse(r)−VH2(r) f (θ HB) , (24)

VH2(r) =
1
4
(tanh[λ (r− r2)]− 1) , (25)

f (θ HB
i j ) =

⎧⎨
⎩

1
2 (cos(γθ HB

i j )+ 1) θmin < θ HB
i j < θmax

0 otherwise
. (26)

There are three parts of the potential: VMorse is a Morse potential (see (10) and
Fig. 2b) that stabilizes a bond between two complementary residues. VH2 mimics
the solvent effects, which stabilize the denaturated state, and is a switch function
(see Fig. 2e for an example of a switch function), with the λ parameter controlling
the steepness at the switching distance r2. Function f (θi j) describes the effect of the
θ HB

i j on the total potential (only if θ HB
i j is in the range θmin – θmax). The intrastrand

potential can be applied between any two complementary bases so it is not depen-
dent on the inputted secondary structure. The nonbonded potential is implemented
using the Lennard–Jones potential (see (8) and Fig. 2a).

This FF was used in 75 ns-long MD simulations and correctly predicted the
melting temperatures of 10 base-pair DNA duplexes containing either A–T or C–
G pairs [80]. For the A–T and G–C duplexes, the calculated melting temperature
error was on average 6.5 K and 18.5 K, respectively. The model was also shown to
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give correct melting temperatures of these duplexes containing single mismatches.
Introducing a single G–G mismatch to the G–C duplex decreased the melting tem-
perature by 21 K. Such decrease is consistent with the predictions from the ther-
modynamic models but any quantitative conclusions cannot be made because the
thermodynamic models give temperature shifts from 12 to 38 K.

This two–bead FF is useful in the simulations in which the complementary bonds
need to be broken such as in DNA melting. With less interaction sites it gives a
higher efficiency than three–bead models [68]. This CG FF does not depend on a
provided secondary structure as in one–bead models [71]. A two–bead model is the
minimal one to be able to introduce base–base orientation terms, as in (24), and this
is a necessary condition to determine the presence of a hydrogen bond.

9 One–Bead Model for Linear and Circular DNA

Trovato and Tozzini [71] designed a one–bead model for MD simulations of a linear
and circular DNA duplexes and parameterized it to account also for the temperature
effects. The nucleotide bead is placed in the position of a phosphorus atom (see
Figs. 3 and 5c). This model was also recently modified for RNA helices using an
automatic parameterization method based on evolutionary algorithm [66].

The sum of standard terms as in (3) forms the intrastrand potential. The pseudo–
bond Vbond , pseudo–angle Vangle, and pseudo–dihedral Vdihedral potentials have the
harmonic functional form (see (4), (5), (6) and Fig. 1).

The interstrand potential is added based on the information about the secondary
structure. This potential has a specific topology (see Fig. 8). For a complementary
pair i:j the following pseudo–bonds are created: i:j, i:j+1, i+1:j+1. The term is
composed of a Morse with a barrier function (for the graph of the potential function
see Fig. 2e):

Vinterstrand =Vi: j +Vi: j+1+Vi+1: j+1 , (27)

Vi: j(r) =V i: j
0 ([1− exp(−αi: j(rkl − ri: j

0 ))]2 − ci: j)swi: j(ri: j) , (28)

swi: j(r) =
1
2

V i: j
1 [1− tanh(λi: j(r− ri: j

1 ))] , (29)

where V i: j
0 , ri: j

0 , and αi: j control the shape of the original Morse potential, c affects
the energy difference between the energy minimum and unbound state, λi: j controls
the slope of the switch function, V i: j

1 controls the switch function energy difference,

and ri: j
1 the position of the switch. Equations (28) and (29) are identical for i:j+1

and i+1:j+1. Though the formula seems complicated it is advantageous; the Morse
function (28) makes it possible to account for the breaking of hydrogen bonds and
the switch function (29) adds a barrier for long–range electrostatic repulsion.
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Fig. 8 One–bead representation of DNA. The interstrand interaction topology for a single
complementary pair is shown according to the model of Trovato and Tozzini [71].

A similar formula is used for the nonbonded potential:

Vnb(r) = V nb
0 ([1− exp(−αnb(rkl − rnb

0 ))]2 − cnb)

(1+ 2swnb
2 (rkl))swnb

1 (rkl)+ 2Anbswnb
2 (rkl))

, (30)

swnb
q (r) =

1
2

V nb
q [1− tanh(λ nb

q (r− rnb
q ))] , (31)

where the Anb parameter controls the addition of a second switch function and thus
affects the slope of the “unbound” site of the barrier. Other labels are consistent
with (28) and (29), but since two switch functions are used in (30), superscripts in
(31) denote the first and the second switch. The authors found that this formula pro-
vides for the stabilization of DNA grooves. Since both interstrand and nonbonded
potential formulas are computationally expensive, the energy (and force) can be pre-
computed for a range of distances. Next, their value at a given bead distance, which
is between two precomputed points, is interpolated. This procedure saves a lot of
time in contrast to calculating exponential and hyperbolic tangents in each simula-
tion step for each pair of beads connected by interstrand or nonbonded interactions.
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First, the potential was parameterized based on the potential of mean force, cal-
culated from the experimentally derived 3D structures containing DNA helices. Sec-
ond, the potential was tuned to match the experimental melting temperatures. The
authors validated their CG FF by performing MD simulations of 92 base-pair DNA
nano–circles with different twist angles. The effects of the initial twist angle on the
nano–circle topology were in agreement with full–atomistic simulations [120, 121].
Next, the authors show the results of CG MD simulations of a DNA plasmid com-
posed of 861 base pairs (approx. 0.3μ circumference length) on a microsecond time
scale. These MD simulations show that modification of a torsional stress affects the
stability of the plasmid and allows forming a denaturation “bubble” [71].

10 One–Bead DNA Model Derived with the Renormalization
Group Method

This model of Savalyev et al. [67, 88] is more a parameterization method than
a model to study the dynamics of DNA. The authors present a renormalization
group optimization method developed by Swendsen [122] and further improved by
Lyubartsev and Laaksonen [123], to find the best parameters of a DNA one–bead
FF. For the renormalization group method, categorized as the local optimization
method, the potential energy function V has to be a linear combination of terms,
V = ∑N

i ki ∗Vi, with a set of linear combination parameters ki. In addition, a set of
observables S j that characterize a CG FF has to be defined. These observables must
depend on the selected ki parameters in the potential energy expansion. The aim
of the optimization is to find a set of ki that result in S j which best resemble the
reference data. The observables used by Savalyev et al. were distance distribution,
with reference values taken from full–atomistic simulations. In the parameteriza-
tion procedure one creates a set of ki parameters and calculates the “susceptibility”
of a certain parameter to affect the observables. This susceptibility is expressed
as a partial derivative of an S j observable over a ki parameter. Next, these deriva-
tives are used to calculate the corrections of parameter sets. This method allows for
an objective and effective parameterization, however, it is only applicable to linear
combination terms. This means that if the methodology was applied to a harmonic
potential ki(r − r0)

2, it could find an optimal value of the ki force constant but not
the equilibrium distance r0.

To show the applicability of the renormalization group optimization Savalyev et
al. [67] test it on a one-bead CG FF of DNA. In the model the pseudo–atoms are
placed in the geometrical center of a nucleotide (see Fig. 5d). The FF uses only
pseudo–bond and pseudo–angle terms omitting the pseudo–dihedral term. These
terms are a sum of the harmonic, cubic, and quartic terms to include the anhar-
monicity of bonds (see Fig. 1a):

Vintrastrand =Vbond +Vangle , (32)
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Vbond(r) = kr2(r− r0)
2 + kr3(r− r0)

3 + kr4(r− r0)
4 , (33)

Vangle(θ ) = (kθ2(θ −θ0)
2 + kθ3(θ −θi)

3 + kθ4(θ −θ0)
4 . (34)

Fig. 9 A DNA helix in a one–bead representation with the beads placed in the geometri-
cal center of each base. The cartoon representation in the background shows the positions
of the phosphate backbone (ribbon) and bases. The bonds between the beads represent the
“fan” interactions, as defined in the Savelyev et. al [67] model. These interactions connect
the nucleotide corresponding to bead i with eleven nucleotide beads from j-5 to j+5 on the
complementary strand.

The interstrand terms are implemented using the so-called “fan” interactions. The
name originates from their topology (see Fig. 9) because they explicitly connect
a nucleotide bead with eleven beads on the opposite strand. Fan interactions are
thus i:j-5 to i:j+5 interactions in the previously introduced notation (see Fig. 3).
These interactions are implemented in the same way as Vbond interactions, i.e., as a
combination of harmonic, cubic, and quartic terms (see Fig. 1a)

Vf an = ∑
−6<m<6

(k2(ri: j+m − r0)
2 + k3(ri: j+m − r0)

3 + k4(ri: j+m − r0)
4) . (35)

For both the intra– and interstrand potentials, the CG equilibrium distances and
angles, as well as the starting values of force constants, are found by matching with
the reference distance distributions. The reference distributions are obtained from a
60 ns full–atomistic MD simulations of a 16 base-pair DNA duplex performed with
the AMBER parmbsc0 FF [124]. The CG force constants are optimized based on
the difference of distance distribution from 20 ns CG MD simulations (preceded by
a 5 ns heating and 10 ns equilibration) and from the reference full–atomistic MD
simulation.

In the first Savalyev et al. paper [67] the nonbonded interactions were modeled
using the following equation to match the potential of mean force:

Vel(r) = A
exp−r/kD

r4 +
qiq j exp(−(r− rbead)/kD)

4πε0εwr(1+ rbead/kD)
. (36)
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In the next publication [88] of this group, another expression for this potential was
found, which better describes the interaction of DNA beads with ions:

Vel(r) =
A

r12 +
3

∑
k=1

Bk exp(−Ck(r−Rk))+
qiq j

4πε0εwr
, (37)

where A and Bk, Ck, and Rk are adjustable parameters.
According to the authors, the optimized potential results in a radial distribution

function that is consistent with the full–atomistic simulation. Though the calculated
DNA persistence length is overestimated nearly two times, it is in agreement with
the results from full–atomistic model used for parameterization [125]. If the force
constants are rescaled by a factor of 0.7, the DNA persistence length differs by less
than 10% from the experiments. This value is much lower than the one obtained by
Knotts et al. [68] for a three–bead model (error higher than 200% was considered
good enough in this work). However, Knotts et al. modeled a much longer 1489
base-pair DNA and Savalyev et al. tested less than 100 base pairs. Also, Knotts et
al. tested a larger variety of DNA chain lengths and sequences. The difference in
the persistence length in the model of Savalyev et al. is attributed to widening of the
“fan” interactions allowing for larger internal fluctuations. Savalyev et al. estimated
also the effects of NaCl salt concentration on supercoiling of a 90–base pair DNA
plasmid but made only qualitative conclusions.

This work is a success of automatic optimization methods for CG FFs. By per-
forming a systematic procedure, the authors obtained a reasonable one–bead FF
for DNA. However, in comparison with the other DNA FFs (e.g., Trovato and
Tozzini [71] described below), the model of Savalyev et al. [67] contains too many
potential terms and parameters. The latter model requires 10 quartic, cubic, and
harmonic terms per one nucleotide pair and the model of Trovato and Tozzini [71]
requires only three Morse with a barrier terms. Since the Savalyev et al. [67] al-
gorithm cannot cope with non-linear parameters, in order to find an efficient DNA
model, a perfect strategy would be to add new terms. However, this would result in
a much slower performance of the method.

11 One–Bead Model for RNA Structure Prediction
from Tertiary Contacts

The Nucleic Acid Simulation Tool (NAST) by Jonikas et al. [79] was designed to
generate candidate tertiary structures of RNAs in order to solve the RNA struc-
ture prediction problem. This is the only FF presented in this chapter that is not
intended to analyze the internal motions of nucleic acids. MD is only used as a
means of sampling the conformational space. The generated trajectories do not
serve to understand the RNA folding process. Only the final 3D RNA structure is
of value. Also, NAST was not designed to perform the tertiary structure prediction
from scratch, like the model by Ding et al. [69]. In advance, one has to provide
the RNA secondary structure (from a secondary structure prediction software [23])
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and information about a few tertiary contacts (from chemical or spectroscopic meth-
ods [126, 127, 128, 129]). Though NAST imposes these a priori requirements, it is
useful. For example, for RNAs which are difficult to crystalize but were preliminary
studied with some chemical methods, NAST can quickly perform a wide search of
possible conformations and generate multiple candidate structures for further stud-
ies. The quality of these structures is assessed by comparing them with pairwise
distance distributions from small angle X–ray scattering experiments, solvent ac-
cessibility data, and the NAST energy tool. The RNA structures that score best can
be later tested with full–atomistic models.

In this model RNA is represented using a single bead, centered on the C3’ atom
of the sugar group (see Figs. 4c and 5e). The total potential energy of RNA is a sum
of four terms:

Vtotal =Vintrastrand +Vinterstrand +Vtertiary +Vnb, (38)

where Vintrastrand , Vinterstrand , and Vnb are consistent with (2) and Vtertiary is a restraint
for tertiary RNA contacts.

The intrastrand potential is a sum of three terms previously shown in (3) with the
pseudo–bondVbond and pseudo–angleVangle potentials using the harmonic functions
(see (4), (5) and Fig. 1a,b) but the Vangle term uses two different force constants, kθ ,
for single– and double–stranded regions. The pseudo–dihedral potential Vdihedral is
implemented using a cosine potential (see (7) and Fig. 1c).

The interstrand potential is composed in a similar manner as the intrastrand
one of bonded (Vbond, (4)), angle (Vangle, (5)), and dihedral (Vdihedral , (7)) terms.
The pseudo–bonds connect only complementary base pairs, the pseudo–angle is
between a complementary bond and the next neighbor on the first strand, and
pseudo–dihedrals are the following: j-1:j:i:i+1 and j+1:i-1:i:i+1 (for details of the
i,j notation see Fig. 3).

The nonbonded interactions, Vnb, are implemented using a repulsive–only
potential

Vrep(r) = 4V0

(σ
r

)12
. (39)

The user-supplied tertiary interactions (Vtertiary) are implemented as pseudo–bonds
with the assumption that the nucleotides are close to each other in the final structure
(see (4)). If a particular tertiary contact is uncertain, the authors recommend using a
much smaller force constant for that contact.

NAST is a knowledge–based model. It was parameterized by fitting the presented
potential functions to the Boltzmann inversion of distance distributions from three
high-resolution ribosome structures. The authors test 3D structure predictions for
tRNA and a P4–P6 medium–sized RNA with the root mean square deviations from
the crystal structures equal to 8 Å and 16.3 Å, respectively. Another measure, the
GDS–TS score (the average percentage of residues that are within 1, 2, 4, and 8 Å
of their reference position), was equal to 0.2 and 0.06. These numbers are larger than
the ones obtained by Ding et al. [69], where the root mean square deviation was on
average less than 4 Å. This difference is accounted to the smaller number of details
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that can be captured in a one–bead NAST FF in comparison with the three–bead FF
of Ding et al. [69].

NAST relies on the provided secondary structure and tertiary contacts. The out-
putted 3D prediction is the best one that reflects the applied constraints. In a more
complex model of Ding et al. [69], in which the mutual base orientation is present,
the tertiary interactions can be predicted. However, the predictions of the NAST
one–bead model are useful because they still give a lower deviation from the crys-
tal structures than a random structure of the same sequence and a similar radius of
gyration. This model can be useful, e.g., to rebuild missing loops.

NAST also provides a supplementary tool, C2A, to rebuild a full–atomistic struc-
ture from a CG model [130]. The remapping is performed by finding short fragments
of a matching sequence in the 3D structure of the ribosome and then building and
optimizing the user’s RNA structure. However, remapping is as good as the given
CG model. Two measures were used to asses the quality of remapping — root mean
square deviations and interaction network fidelity (INF) score, which measures the
number of correctly found base pairs and stacking [131]. If a tRNA [78] PDB struc-
ture is reduced to a CG representation and then used as a template for C2A rebuild-
ing the root mean square deviation of 2.81 Å and the INF score of 69% are achieved.
However, if the best NAST-predicted tRNA structure is used, the root mean square
deviation becomes 8.30 Å and the INF score drops to 46% (35% if only base pairing
is taken into account in the INF score).

12 One–Bead Model for Large RNAs

Contrary to the previous NAST model, this one was designed for large RNAs and
ribonucleoprotein particles, namely the 30S ribosomal subunit which contains over
1500 nucleotide long RNA chain (16S RNA). The model is based on previous ones
for supercoiled DNA [132] and ribosomal RNA [72, 73, 74] and can be classified
as either one bead or one and a half bead per residue model. The residues are repre-
sented as beads centered on a P atom (for nucleic acids) or Cα atom (for proteins).
In order to achieve the correct helical conformation, additional space–filling dummy
beads (“X-atoms”) are placed in the geometrical center of complementary base pairs
(apart from the last base pair in the helix, see Figs. 5f and 10).

The intrastrand potential is a sum of standard terms shown in equation 3 with
Vbond , Vangle, and Vdihedral calculated with harmonic functions ((4), (5), (6), and
Fig. 1a,b,c). The pseudo–bond and pseudo–angle force constants are higher in heli-
cal regions than in non-helical ones.

The interstrand potential is also composed of pseudo–bonded, pseudo–angle, and
pseudo–dihedral terms with the same definitions of potentials as in (4), (5), and
(6). Here, the pseudo–bonds connect the nucleotide beads with the corresponding
X-atoms and complementary bases (i:j+1 and i:j-1 configurations). The pseudo–
angle interactions are present in the P–X–P configuration along a complementary
bond. There is also a dihedral angle connecting i-1:i:j:j+1 (see Fig. 10). Proteins are
modeled as simple elastic networks where the harmonic pseudo–bonds are created
between all protein beads that are closer than 8 Å to each other.
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Fig. 10 Topology of inter-
strand bonds in the CG model
of Malhotra et al. [72, 73,
74] showing the placement
of beads on the phospho-
rus P atoms. The central nu-
cleotide pair is represented
with two pseudo–atoms: in
the position of the P atom
and the dummy X atom in
the middle. Two neighbor-
ing base pairs are presented
only using P atoms. There
are 6 pseudo–bonds associ-
ated with this i:j pair (two
P–X in the middle and four
P–P bonds) and a pseudo–
angle P–X–P.

The nonbonded potential consists of restraints on the helix–helix and protein–
RNA distances (Vrest) and a volume exclusion term (Vexcl) among P-, X-, and C-
atoms

Vnb =Vrest +Vexcl , (40)

Vrestr(r) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

k2(r− r2)
2 r < r2

0 r2 < r < r3

k3(r− r3)
2 r3 < r < r4

k3

[
b

r−r3
+ 1

]
r > r4

, (41)

Vexcl(r) = Kexcl(r− d0)
2 r < d0 . (42)

For graphical representation of distances r2, r3, r4 see Fig. 2f. a = 3(r4 − r3)
2 and

b = −2(r4 − r3)
3. k3 is a constant describing the steepness of the restraint potential

for r > r3. The Vrestr restraints, presented in (41), are applied to all P–Cα pairs
that lie within a 10 Å cutoff in the reference structure. For helices, these restraints
are also applied to non-canonical base pairs (i.e. nucleotides hydrogen bonded with
other than Watson–Crick type bonding). However, the ones explicitly enumerated
by Wimberly et al. [133], in this chapter describing the crystal structure of Thermus
thermoplius 30S ribosomal subunit, are considered in the interstrand potential on
the same basis as Watson–Crick ones. Other ones, i. e., all P–P pairs within a 6 Å
cutoff distance that are not already connected, are included in the restraints term.
This term provides a certain freedom of movement between the r2 and r3 distances
(which are independently set for each type of atom pairs), however, the movement
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is penalized when going outside of this range (see Fig. 2f). Therefore, this restraint
term generates a bias toward a starting structure. The space exclusion term, Vexcl ,
prohibits two nucleotide beads from getting closer to each other than d0.

This is also a knowledge–based potential. The crucial parameters for the model,
i.e., the parameters of protein–RNA distance restraints are taken from the high reso-
lution Thermus thermophilus 30S ribosome subunit structure. Other parameters are
taken from the lower resolution ribosome models and/or older models [73]. The
force constants k2 and k3 are optimized to maintain the crystal structure of the 30S
ribosome subunit at room temperature, while allowing the flexibility of the free 16S
ribosomal RNA.

This model was designed and applied to study the assembly of proteins to 16S
RNA of the small ribosomal subunit. Stagg et al. [134] explored one of the assembly
paths using the MC simulated annealing technique. The starting model of 16S RNA
contained only the information on its secondary structure. The restraints of (41)
guided the ribosomal proteins from the initial random positions to their appropriate
binding sites on 16S RNA. The authors examined the change in the fluctuations of
16S RNA upon binding of proteins and predicted the contributions of each protein to
the organization of its binding site. Cui et al. [74] also used this model to investigate
the assembly of ribosomal proteins but applied MD simulations and additionally
studied the flexibility of 16S RNA during adding the proteins at various orders. The
experimental assembly paths were reproduced even with such a simple CG model.

13 One–Bead Model for Protein-RNA Complexes

This model was developed to perform MD simulations of macromolecular com-
plexes of proteins and RNA on microsecond time scales. In the original publication
it was applied to investigate the flexibility of the whole ribosome [75]. In this model
a single bead represents a nucleotide (centered on a phosphorus atom, see Fig. 5c)
or an amino acid (centered on a Cα atom).

The residues of the backbone are connected with the intrastrand harmonic poten-
tial which is a sum of the pseudo–bond (4), pseudo–angle (5), and pseudo–dihedral
(6) terms as in equation 3. The classical Morse potential was also tested for the in-
trastrand terms but since these terms connect the residues that are no more than four
CG beads apart the authors found that harmonic functions are sufficient.

The interstrand Vinterstrand energy term is based on an externally provided sec-
ondary structure for RNA and uses a harmonic function (see (4) and Fig. 1a). This
potential accounts for the canonical hydrogen bonds that appear in the RNA motifs.

The nonbonded potential is implemented using Morse functions and its general
form is:

Vnb(ri j) = AP,Cα (r
i j
0 )[1− exp(−α(ri j − ri j

0 ))]
2 . (43)

The strength of this potential is adjusted by the AP,Cα (r
i j
0 ) = aexp(−ri j

0 /b) function.
The constants a and b are based on the interacting bead types (different for P and
Cα ). For local short-range interactions (within a predefined cut–off of 12Å for Cα
and 20Å for P pairs), the ri j

0 equilibrium values are taken from the starting structure.
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For all the other long-range nonbonded interactions beyond the short-range cutoff
(but within a certain limits), ri j

0 assumes three different values for P–P, Cα –Cα , and
Cα –P pairs and does not depend on the starting conformation. Therefore, the model
is only locally biased toward the starting structure even though the possibility of
breaking of the interactions exists also for the nonbonded short-range contacts.

Overall, the model is an extension of an elastic network model but since the non-
bonded interactions are represented with the Morse potential it allows for larger
fluctuations from the initial conformation than the harmonic potential. The model
was parameterized based on the Boltzmann inversion procedure with the distribution
functions taken from a single ribosome structure so it is not immediately transferable
to other systems. This CG FF was used to perform half a microsecond MD simu-
lations of the ribosome and determine global collective motions of the ribosome
fragments. The correlations of motions showed the possible movements during the
translocation of tRNAs on the ribosome. The movement of the distant ribosomal
stalks, positioned on the opposite sides of the tRNA path, appeared to be coupled
with the ratchet-like motion of the subunits.

14 One–Bead Model for Protein–DNA Complexes

Later a similar anharmonic elastic network methodology was applied in MD simu-
lations of the nucleosome [76]. The nucleosome is a basic unit of chromatin and is
composed of double-stranded DNA wrapped around histone proteins.

The interstrand and nonbonded functional terms are similar as in the model of
Trylska et al. [75]. However, in order to account for the helicity of the histone pro-
teins and DNA, the nucleosome model required slightly different formulation of the
intrastrand potential:

Vintrastrand =V1−2 +V1−3+V1−4+V1−5 , (44)

where V1−n terms are implemented using a harmonic potential (see (4) and Fig. 1a).
For the α–helical regions of the proteins, all terms in (44) are included. However,
in unstructured regions or loops only V1−2 and V1−3 are included, whereas V1−4 and
V1−5 are modeled as nonbonded interactions. In the case of DNA beads V1−5 is not
required.

The model was parameterized with the Boltzmann inversion procedure based on
short 50 ns full-atomistic MD simulations of the nucleosome [76]. Next, it was ap-
plied to perform multiple 10 microsecond scale MD simulations of the nucleosome
complex [135]. In these simulations a biologically relevant partial unwrapping of
the DNA from the nucleosome core was observed. Further remapping to all-atom
model provided a better insight into the interactions that are formed by histone tails
after the DNA detachment from the nucleosome core. One of the histone tails (H3)
was seen to stabilize the nucleosome in the open state by interacting with the nucle-
osome core. The removal of this H3 tail in the simulations precluded the formation
of such a long-lived detachment of the DNA terminal segment from the nucleosome
protein core. This suggests an active role of this tail not only in the detachment
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of the DNA end from the nucleosome core but also in preventing the nucleosomal
DNA from rewrapping.

15 Conclusions

Residue resolution FFs may be applied to solve various kinds of problems in the
nucleic acid field, ranging from RNA structure prediction to global motions of large
ribonucleoprotein complexes. We have presented a limited set of CG FFs, with the
number of beads ranging from one to three per nucleotide. Even in this bead range
the design and applicability of the FFs differ. In one bead models the interaction
network is based on an externally supplied secondary structure or native contacts
from a reference structure. Adding a second bead allows for the secondary struc-
ture to be dynamically modified because the orientation of an interstrand bond with
regard to the backbone can be measured. Overall, increasing the number of beads
corresponds to removing the bias from the system. On the other hand, if one accepts
the limitations of one–bead models, problems on much larger spatial and temporal
scales may be investigated. For example, the Jonikas et al. [79] one-bead model was
easily applied to a 158–nucleotide structure but the three-bead Ding et al. [69] model
only to RNA chains shorter than 100 nucleotides. Also, the CG FFs used for large
macromolecular complexes, such as the nucleosome or ribosome, are one–bead FFs.

There are two other crucial things to consider when choosing one- to three-bead
models. First, with one bead models it is problematic to achieve a correct helical
twist. Creating bonds only between complementary pairs, which is easily applied in
two- or three-bead models, is not sufficient to keep the helicity in one-bead models.
The remedy is to create dummy atoms in the middle of a helix (as in the model
of Cui et al. [74]), provide multiple pseudo–bonds per single complementary pair
(Savelyev et al. [67], Trovato et al. [71]) or use multi–body terms — angle and
dihedral over the interstrand bonds (Jonikas et al. [79]). These ”tricks” were not re-
quired, in the model of Trylska et al. [75] because to stabilize the helical structure
the equilibrium distances were taken from the native structure. Adding the terms
that ensure the correct helicity may give reasonable dynamics but requires higher
computational time. Second thing to consider is that neither of one-bead models ap-
plies interaction terms that are nucleotide-specific3. Even if such interactions were
implemented, they would be inefficient since there is no information about the rel-
ative orientation of bases. The two- and three-bead models easily incorporate the
base specificity.

There are also residue-resolution nucleic acid models with more than three beads
per nucleotide, so one may ask if it is worth going beyond the FFs presented in this
chapter. The four- or more bead per nucleotide models include more details such
as base dipole moments [47] or non–canonical hydrogen bonding schemes [44].
Niewieczerzał et al. [136] compared three CG models with different number of
beads per nucleotide: two, three [68], and four/five (depending on the nucleotide

3 Some of one–bead models, e.g., Trovato et al. [71], assign a mass consistent with the base
type in MD simulations but it has a limited effect on the interactions.
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type). All three models were applied to a problem of mechanical stretching and
twisting of the DNA duplexes. The authors show that the number of beads does not
affect the mechanical properties of DNA at low and moderate temperatures, but may
become an issue at room temperature.

When comparing the three-bead CG models we also have to consider their ap-
plicability to other tasks than these for which they were designed. Typically, their
target is narrow and CG FFs are not transferable to other problems or systems. For
example, the Hyeon et al. [84] potential was created to answer a specific question
about a particular RNA hairpin. A desirable CG FF would be the one that could be
easily applied to different sets of problems, i.e., a FF with a clear parameterization
procedure and a universal formulation of the potential energy function. A good ex-
ample is the model of Knotts et al. [68] since this model can be easily implemented
and modified. This task would be more difficult with the model of Ding et al. [69].
Despite promising results for the RNA structure prediction, its applicability and pos-
sibilities for modifications are limited because its formulation using a non–standard
engine, discrete MD, makes this potential much harder to re-implement. There are
multiple codes available to provide classical MD or MC procedures, and to use the
model of Ding et al. [69] one would have to rely on the authors’ or own in-house
made code. The model of Hyeon et al. [84] was tuned for a particular molecule,
however, the authors show the source of parameterization parameters and it should
be easy to re-implement the model for a different task. Another good example of
an extendable model is the one designed by Trylska et al. [75]. It was originally
created and parameterized for a particular complex — the ribosome. However, there
are other studies that applied this model for a large system involving long chains of
DNA, not RNA — the nucleosome [76, 135]. The model is also implemented in a
freely available software RedMD [137] (http://bionano.cent.uw.edu.pl/Software).

The transferability of the present CG models is insufficient and new models will
certainly be needed for particular applications. However, future efforts have to be
also put to solve methodological problems. Just to mention two of such problems:
the definition of the reference state in the Boltzmann inversion procedure and gener-
alization of simulation results obtained for isolated, small systems to larger volumes.
In the first problem we go back to (1), where a function d0(r) has been introduced
as a reference state. The FF parameters depend on this function and its choice is
often arbitrary. The second problem, mentioned by Ouldridge et al.[138, 87], refers
to the fact that typically CG simulations are performed in small volumes with only
a single set of interacting molecules. The process of single DNA duplex formation
may give different melting temperatures than when using many duplexes in a larger
volume. The solutions to extrapolate the results of a small-size simulation to a larger
one have been proposed [138, 87].

There is still room for improvement in the field of low–resolution nucleic acid
models. For example, creating an unbiased model of the ribosome is still an open
problem and it would provide better insight into the mechanics of this system in
comparison with the model based on the concept of native contacts. There is also
a need to create more formal protocols for the parameterization of CG FFs and as-
sessment of the quality of parameters. Unfortunately, most authors are vague about
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the parameterization details. In some parameterizations there is no account of how
well the chosen potential was fitted to experimental data (by means of for example
the R2 regression parameter). The correctness of the model is proven only by sim-
ulations of selected test cases but more details on the parameterization would give
better confidence in these models. Another issue is that most authors do not give
hard evidence why a certain potential energy functional term was used. Test cases
that would justify the use of a particular potential form would be of great value.
A good remedy for the parameterization problems might be the use of automated
procedures to derive the parametes, like the one mentioned by Savelyev et al. [67]
using renormalization group approach or developed by us [66] implementing the
evolutionary algorithm.
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