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Abstract. We introduce the concepts of weak and strong asymmetries
in multivariate time series in the context of causal modeling. Weak asym-
metries are by definition differences in univariate properties of the data,
which are not necessarily related to causal relationships between time se-
ries. Nevertheless, they might still mislead (in particular Granger-) causal
analyses. We propose two general strategies to overcome the negative
influence of weak asymmetries in causal modeling. One is to assess the
confidence of causal predictions using the antisymmetry-symmetry ratio,
while the other one is based on comparing the result of a causal analysis
to that of an equivalent analysis of time-reversed data. We demonstrate
that Granger Causality applied to the SiSEC challenge on causal analysis
of simulated EEG data greatly benefits from our suggestions.

Keywords: Weak/strong asymmetries, ASR, time inversion, Granger
Causality, SiSEC challenge.

1 Introduction

Many measures of causal interaction (a. k. a. effective connectivity) are based on
the principle that the cause precedes the effect. However, it would be mislead-
ing to assume that temporal ordering is necessarily the dominant factor when
estimating causal relationship on the basis of the available techniques, such as
Granger causality. In fact, methods to estimate causal relations are based on
general asymmetries between two (or more) signals out of which the temporal
order is just one specific feature. Other asymmetries, like different signal-to-noise
ratios, different overall power or spectral details, may in general also affect causal
estimates depending on which method is used.

We here propose to distinguish between two different kinds of asymmetries.
We call the first type ‘strong asymmetries’ defined as asymmetries in the relation
between two (or more) signals like the temporal ordering. The second type is
called ‘weak asymmetry’ and denotes different univariate properties as given,
e. g., by the spectral densities. Weak asymmetries can hence be detected from
two signals without estimating any functional relationship between them whereas
a strong asymmetry is a property of that functional relationship.
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Altough the concepts presented here (but not the test presented below) could
be generalized to other cases in a straight forward way we restrict ourselves in
the following to the discussion of stationary and Gaussian distributed data. Let
xj(t) be the signal in channel j at time t. Then the statistical properties are
completely defined by the cross-covariance matrices

C(p) =
〈
(x(t)− μ̂x) (x(t− p)− μ̂x)

�
〉

, (1)

where 〈·〉 denotes expectation. The process is now said to contain a strong asym-
metry if for some i, j and some p it is found that Ci,j(p) �= Cj,i(p), i. e. C(p) is
asymmetric for at least one p. The process is said to contain a weak asymmetry
if for some i, j and some p it is found that Ci,i(p) �= Cj,j(p), i. e. the diagonals
are not all equal. Since the power spectrum of the i-th signal is given by the
Fourier transform of Ci,i(p) the process contains a weak asymmetry if and only
if it contains signals with different power spectra.

Methods to detect causality are typically sensitive to both weak and strong
asymmetries. Weak asymmetries can be detected more robustly but can also
be considered as weaker evidence for causal relations. This can be illustrated if
data are instantaneous mixtures of independent sources. In this case all cross-
covariances are weighted sums of auto-covariances of the sources. Since auto-
covariances are always symmetric functions of the delay p and since generally
C(−p) = C�(p) it follows that C(p) = C�(p) for mixtures of independent
sources [4]. Hence, such mixtures can only contain weak asymmetries but not
strong ones.

For methods which are sensitive to both weak and strong asymmetries it is in
general difficult to tell on what property of the data an estimate of causal drive
is based. However, using empirical estimators of the cross spectra, it is possible
to measure the proportions of weak and strong asymmetries in a dataset. In this
paper, we demonstrate that a quantity called antisymmetry-symmetry-ratio is a
meaningful predictor of the success of the causal estimation for methods that are
knowingly affected by weak asymmetries. Moreover, we introduce a procedure
based on time inversion, by which it is possible to test whether weak asymmetries
are the dominant cause for a given connectivity estimate. We demonstrate that
our approaches dramatically reduce the number of wrong predictions of Granger
Causality (GC). As a result, GC’s performance in the 2011 Signal Separation
Evaluation Campaign (SiSEC) challenge on causal analysis of simulated EEG
data is significantly improved. Our approaches can be regarded as sanity checks
which are applicable in any causal analysis testing temporal delays between
driver and receiver.

The paper starts with introducing Granger Causality, the SiSEC challenge
dataset and the two novel approaches proposed to improve causal estimations
in the Methods section. The Results section confirms that these approaches
effectively reduce the number of wrong predictions of Granger Causality on the
challenge dataset. In the Discussion section, we elaborate on the applicability
of our approaches and draw connections to permutation testing, which is also
typically used in conjunction with Granger-causal measures.
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2 Methods

2.1 SISEC Challenge Simulated EEG Dataset

To demonstrate our ideas we consider a set of simulated EEG data, which is
part of the 2011 Signal Separation Evaluation Campaign. The data consists of
1 000 examples of bivariate data for 6 000 time points. Each example is a super-
position of a signal (of interest) and noise. The causally-interacting signals are
constructed using a unidirectional bivariate autoregressive (AR) model of order
10 with (otherwise) random AR-parameters and uniformly distributed innova-
tions. The noise is constructed of three independent sources, generated with three
univariate AR-models with random parameters and uniformly distributed input,
which were instantaneously mixed into the two sensors with a random mixing
matrix. The relative strength of noise and signal (i. e. signal-to-noise ratio, SNR)
was set randomly. The task of the challenge is to determine the direction of the
causal interaction. One point is awarded for every correct prediction, while ev-
ery wrong prediction causes a penalty of -10 points. If no prediction is given
for a dataset, this results in 0 points. The maximum score attainable is 1 000
points, while the minimum score (considering that predictors with less than 50%
accuracy can be improved by sign-flipping) is -4 500 points.

The simulation addresses a conceptual problem of EEG data, namely that the
signals of interest are superimposed by mixed noise. However, the actual spectra
can be quite different from real EEG data. Volume conduction (i. e., mixing of
the signals of interest), which is typically also observed in EEG datasets and
poses serious challenges on its own [2], is omitted here in order to facilitate
an objective evaluation. We use Matlab code provided by the organizers of the
challenge to generate 1 000 new instances of the problem with known directions
of causal flow.

2.2 Granger Causality

The multivariate AR (MVAR) model is given by

x(t) =

P∑
p=1

B(p)x(t− p) + ε(t) , (2)

where B(p) are matrices describing the time-delayed influences of x(t − τ) on
x(t). Notably, the off-diagonal parts Bi,j(p), i �= j describe time-lagged influences
between different time series. Granger Causality [1] involves fitting a multivariate
AR model for the full set x{1,...,M} = x, as well as for the reduced set x{1,...,M}\{i}
of available time series, where M = 2 here. Denoting the prediction errors of the
full model by εfull and those of the reduced model by ε\i, the Granger score GC
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describing the influence of xi on xj is defined as the log-ratio of the mean-squared
errors (MSE) of the two models with respect to xj . i. e.,

GCi,j = log

⎛
⎜⎝
∑T

t=P+1

[
εfullj (t)

]2
∑T

t=P+1

[
ε
\i
j (t)

]2

⎞
⎟⎠ . (3)

This definition, which is based on the ratio of prediction errors, is independent
of the scale of the time series xi and xj . However, as has been demonstrated in
[5], [6], it is influenced by asymmetries in the signal-to-noise ratio.

2.3 Exploiting Statistical Characterics of Non-/interacting Signals
for Assessing the Reliability Causal Predictions

Due to additive noise and (in our case) innovation noise introduced by AR mod-
eling, cross-covariances of realistic measurements are never exactly symmetric
nor are they exactly antisymmetric. Nevertheless, the amount of symmetric vs.
antisymmetric cross-covariance contained in a dataset provides important infor-
mation about the SNR and hence how difficult the problem of estimating the
causal direction is. We propose to use an index called antisymmetry-symmetry
ratio (ASR) defined as

ASR = log

⎛
⎝
∥∥∥
(
Ĉ(1)− Ĉ�(1), . . . , Ĉ(P )− Ĉ�(P )

)∥∥∥
F∥∥∥

(
Ĉ(1) + Ĉ�(1), . . . , Ĉ(P ) + Ĉ�(P )

)∥∥∥
F

⎞
⎠ (4)

for quantifying the confidence in a given causal estimation, where (A1, . . . , AP ) is
the horizontal concatenation of the matrices A1, . . . , AP , AF denotes the Frobe-
nius norm (sum of squared entries) of a matrix and Ĉ(p) are empirical estimates
of the cross-covariance matrices. The higher the ASR, the lower the proportion of
(potentially misguiding) signal parts with symmetric cross-covariance is. Hence,
one strategy to avoid false predictions in Granger- (and other) causal analyses
is to evaluate only datasets characterized by high ASR.

2.4 A Test for Assessing the Time-Lagged Nature of Interactions

As a second simple test to distinguish weak from strong asymmetries we here
suggest to compare the specific result of a causal analysis with the outcome of
the method applied on time-reversed signals. This corresponds to the general
intuitive idea that when all the signals are reversed in time, the direction of
information flow should also reverse. More specifically, if temporal order is cru-
cial to tell a driver from recipient the result can be expected to be reverted if
the temporal order is reverted. The mathematical basis for this is the simple
observation that the cross-covariance for the time inverted signals, say C̃(p), is
given as

C̃(p) = C(−p) = C�(p) (5)
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implying that time inversion inverts all strong asymmetries but none of the weak
asymmetries. If now a specific measure is essentially identical for original and
time inverted signals we conclude that the causal estimate in that specific case
is based only on weak asymmetry. To avoid estimation biases introduced by
weak asymmetries, one may therefore require that a causality measure delivers
significant and opposing flows on original and time-reversed signals. Alterna-
tively, one may require that the difference of the results obtained on original
and time-reversed signals is significant.

2.5 Experiments

As baselines for the numerical evaluation, we apply Granger Causality as well
as the Phase-slope Index (PSI) [5] to all 1 000 datasets and compute the respec-
tive score according to the rules of the SiSEC challenge. Granger Causality is
calculated using the true model order P = 10. The Phase-slope Index is calcu-
lated using the authors’ implementation1 in a wide-band on segments of length
N = 100. For both methods, net flow, i. e. the difference between the flows
in both directions is assessed. Standard deviations of the methods’ results are
estimated using the jackknife method. Standardized results with absolute val-
ues greater than 2 are considered significantly different from zero. Insignificant
results are not reported, i. e. lead to zero points in the evaluation. The whole
procedure is repeated 100 times for different realizations of the 1 000 datasets to
compute average challenge scores and confidence intervals.

The idea introduced in subsection 2.3 is implemented by ordering the datasets
according to their ASR (calculated with P = 30), and evaluating the competi-
tion score attained when only the first K datasets with highest ASR are ana-
lyzed. That is, even significant results might be discarded, if the ASR is low. We
consider three additional variants of GC, in which results are reported only if
additional restrictions are met. The first variant, ‘GC inv both’ reports a causal
net flow only if it is significant, and if the net flow on time-reversed data points to
the opposite direction and is also significant. The variant ‘GC inv diff’ requires
that the difference of the net flows estimated from original and time-reversed
data is significantly different from zero. Finally, we compare time inversion to
general random permutations of the samples (using the same permutation for
all channel) according to the ‘difference’ approach. The resulting procedure is
denoted by ‘GC perm diff’.

3 Results

Figure 1 illustrates that interacting signals and mixed independent noise are
characterized by different proportions of symmetric and antisymmetric parts in
their cross-covariances. The upper-left plot depicts the log-norms of symmetric
and antisymmetric cross-covariances of normalized signal and noise time series
as a scatter plot, while the upper right plot depicts the respective ASR. In both

1 http://ml.cs.tu-berlin.de/causality/

http://ml.cs.tu-berlin.de/causality/
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plots, signal and noise are highly separable. In the lower left plot, the ASR of the
observation is plotted against the signal-to-noise ratio. Apparently, there exists
a quasi-linear functional relationship between the two, which is the basis of our
idea to use the ASR as an indicator for the difficulty of causal predictions.

Figure 2 summarizes the results of the numerical evaluation of the various
causal prediction strategies according to the rules of the SiSEC challenge. For
all methods considered, the challenge score is plotted as a function of the num-
ber of datasets analyzed (starting from datasets with highest ASR). The scores
depicted on the very right hence correspond to the standard situation that all
1 000 datasets are analyzed. The scores obtained by the six contributors of the
SiSec challenge are marked by black horizontal bars.

As in previous analyses [6], PSI outperforms Granger Causality having a total
score of 593±3 points compared to −438±11 points after evaluation of all 1 000
datasets. However, as the plot also strikingly shows, the inferior performance
of GC is a result of a huge number of false predictions predominantly made
on data with low ASR. Hence, by avoiding decisions on low-ASR data, GC’s
score increases dramatically with the maximum of 384 ± 4 points reached if
only the 539 datasets with highest ASR are analyzed. Note that this score is
not anymore dramatically worse than the score obtained by PSI for the same
amount of data, which is 485±1 points. All three alternative variants of Granger
Causality perform better than the conventional GC strategy with scores of 353±2
points, 437 ± 5 points and 79 ± 4 points attained for ‘GC inv both’, ‘GC inv
diff’ and ‘GC perm diff’, respectively when all datasets are analyzed. Note that
this means that both ‘GC inv both’ and ‘GC inv diff’ outperform the winning
contribution of the SiSec challenge, which achieved a score of 252 points. At
the same time, the difference between the score attained when analyzing all
1 000 datasets and the maximal score attained when analyzing fewer datasets is
dramatically reduced. This difference is 2 ± 1 points for ‘GC inv both’, 36 ± 2
points for ‘GC inv diff’ and 116±4 points for ‘GC perm diff’, which is much closer
to the value of 11±1 points measured for PSI than to the value of 841±10 points
measured for conventional GC. Hence, all three proposed variants can be seen
as robustifications of conventional GC, which prevent decisions that are solely
based on weak asymmetries. Among the three proposed strategies, ‘GC inv diff’
performs best with scores that are competitive to those attained by PSI, while
‘GC perm diff’ performs worst. Note that the curve of ‘GC inv diff’ is located
strictly above the curve of ‘GC’, which means that the additional restriction
imposed by the time inversion causes no loss in performance for high-ASR data.

4 Discussion

Our results confirm that the proposed strategies drastically reduce the number
of false predictions for methods that are prone to be dominated by weak asym-
metries in the data such as Granger Causality. While for conventional Granger
Causality the inclusion of the ASR as an additional criterion guiding the pre-
diction is highly benefical, this is less helpful for modified variants that take
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Fig. 1. Upper left: characterization of interacting signals and mixed independent noise
by means of the log-norms of the symmetric and antisymmmetric parts of the cross-
covariance matrices. Upper right: separation of signal and noise by means of the
antisymmetry-symmetry ratio (ASR). Lower left: approximately linear relationship be-
tween the ASR of the observations and the signal-to-noise ratio (SNR).

the results obtained on time-reversed (or permuted) data into account. These
modifications make GC behave more similarly to PSI, which is itself robust to
many weak asymmetries by construction and in particular rather unaffected by
dominant symmetric cross-covariances as indicated by low ASR. The choice of
the ASR threshold remains an open problem, which is outside the scope of this
paper. Empirical strategies to adjust the threshold are, however, conceivable.

Notably, the idea of performing pairwise testing of results obtained on original
and time-reversed signals is a special case of permutation testing, as proposed,
for example, by [3] in the context of Granger-causal analysis of EEG data us-
ing the directed transfer function (DTF). Both approaches have in common
that the reordered data shares certain weak asymmetries with the original data,
which are likely to cancel out in pairwise comparisons. However, time-reversed
data additionally contains strong asymmetries in the opposite direction, which
increases the statistical power of the comparison of original and time-reversed
data. Consequently, our empirical results indicate that time inversion outper-
forms permutation testing by far and should be a viable alternative also when
using DTF. Interestingly, PSI exactly flips its sign (direction) upon time inver-
sion, for which reason pairwise testing against time-reversed data cannot be used
to improve PSI.
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Fig. 2. Score according to the rules of the Signal Separation Evaluation Campaign
(SiSEC) 2011 challenge on causal analysis of simulated EEG data as a function of
the number of datasets analyzed for the Phase-slope Index (PSI) and different vari-
ants of Granger Causality (GC). Confidence intervals are indicated by linewidths. GC:
original approach, requiring significant net flow. GC inv both: improved approach, re-
quiring significant net flow and significant opposing net flow on time-reversed data. GC
inv diff: improved approach, requiring significantly different net flows on original and
time-reversed data. GC perm diff: improved approach, requiring significantly different
net flows on original and temporally permuted data. Datasets are ordered by their
antisymmetry-symmetry ratio (ASR) to illustrate that the analysis of datasets with
low ASR with conventional Granger Causality is error-prone.

5 Conclusion

We proposed two strategies for robustifying Granger-causal analyses, which
boost its performance in the SiSEC 2011 challenge.
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