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Preface

This volumecontains the full papers presentedat the 10th InternationalConference
on LatentVariable Analysis and Signal Separation, LVA/ICA2012, which was held
in Tel Aviv, Israel, during March 12–15, 2012, at the Sheraton Tel-Aviv Hotel and
Towers.

The series began nearly 13 years ago under the title of Independent Compo-
nent Analysis (ICA) workshops (held approximately every 18 months), and has
attracted hundreds of participants over the years, continuously broadening its
horizons. Starting with the fundamentals of ICA and Blind Source Separation
(BSS) in the late 1990s and early 2000, the theme of the series has gradually
expanded to include additional forms and models of general mixtures of latent
variables, and was therefore re-titled Latent Variable Analysis (LVA) for the
previous (9th) LVA/ICA conference in St. Malo (France) in 2010, keeping the
acronym ICA as well (at least for a while), for reference to its roots and origins.
This volume of Springer’s Lecture Notes on Computer Science (LNCS) continues
the tradition which began in ICA 2004 (held in Granada, Spain), to publish the
conference proceedings in this form.

The submissions to LVA/ICA 2012 reflected the diversity of research fields
covered by the call for papers, in accordance with the expanded scope of the
theme of the series. Topics ranging from theoretical issues such as causality
analysis and measures, through novel methods for employing the well-established
concepts of sparsity and non-negativity for matrix and tensor factorization, down
to a variety of related applications ranging from audio and biomedical signals
to precipitation analysis, can all be found among the papers collected in this
volume. In addition, LVA/ICA 2012 continued a tradition established in ICA
2009 (in Paraty, Brazil), to host presentations and discussions related to the
Signal Separation Evaluation Campaign (SiSEC). SiSEC 2011 consisted of two
types of tasks: audio source separation and biomedical data analysis. Several
papers associated with submissions to SiSEC 2011 can be found in this volume.

Four world-renowned keynote speakers were invited by the Organizing Com-
mittee to present highlights of their recent research:

• Michael Elad (Technion, Israel Institute of Technology, Israel) on “The Anal-
ysis Sparse Model—Definition, Pursuit, Dictionary Learning, and Beyond”

• Lieven De Lathauwer (Katholieke Universiteit Leuven, Belgium) on “Block
Component Analysis, a New Concept for Blind Source Separation”

• Amnon Shashua (Hebrew University of Jerusalem, Israel) on “The Applica-
tions of Tensor Factorization in Inference, Clustering, Graph Theory, Coding
and Visual Representations”

• Paris Smaragdis (University of Illinois at Urbana-Champaign, USA) on “From
Bases to Exemplars, from Separation to Understanding”



VI Preface

Continuing an initiative introduced at LVA/ICA 2010, the Organizing Com-
mittee announced a Late-Breaking / Demo session, for presentation of results
and ideas that were not yet fully formalized and evaluated by the full-paper sub-
mission deadline, but were sufficiently ripe for presentation at the time of the
conference. These included signal separation methods or systems evaluated in
SiSEC 2011 but not associated with a full-paper submission to the conference.
Submissions to this session were in the form of a “Title + Abstract” only, and
are not included in the proceedings.

We received more than 80 full-paper submissions to regular sessions and
to special sessions. Each submission of a regular full paper was peer reviewed
by at least two members of our Technical Program Committee (TPC) or by
competent sub-reviewers assigned by the TPC members. Most papers received
three reviews, and some papers received four reviews. Submissions to the special
Audio Sessions were peer reviewed by other participants of the same sessions.
This volume contains the 20 full papers accepted for oral presentation and 42
full papers accepted for poster presentation, for the regular as well as for the
special sessions. In addition, the volume contains the two overview papers of
SiSEC 2011, and a paper by Lieven De Lathauwer associated with his keynote
talk.

The growing share of audio-processing-related submissions prompted the suc-
cessful organization of two dedicated special sessions, titled “Real-World Con-
straints and Opportunities in Audio Source Separation” and “From Audio Source
Separation to Multisource Content Analysis.” Moreover, the Organizing Com-
mittee decided to designate one full-day of the conference as an “Audio-Day,”
dedicated to the presentation of audio-related papers, including the keynote talk
by Paris Smaragdis (but excluding the SiSEC-related contributions, which were
presented as part of the SiSEC Special Sessions).

The Organizing Committee would like to extend its warm thanks to those
who made LVA/ICA 2012 possible. First and foremost, these are the authors,
and, of course, the members of the Program Committee and the sub-reviewers.
In addition, we thank the members of the International ICA Steering Commit-
tee for their support and advice. We also thank the SiSEC Chairs for their close
and fruitful collaboration. We are deeply indebted to the Faculty of Engineer-
ing at Bar-Ilan University, and especially to Sharon Gannot and to the Speech
and Audio Lab for hosting the Audio Day. The organizing team at Ortra Ltd.,
and especially Sharon Lapid, were very helpful and always responsive. We also
thank Springer and the LNCS team for their continued collaboration, and in
particular Frank Holzwarth, Anna Kramer, Christine Reiss and Alfred Hofmann
for their help and responsiveness. Finally, we would like to thank our sponsors,
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The Yitzhak and Chaya Weinstein Research Institute for Signal Processing, Tel
Aviv University, Bar-Ilan University, The Technion - Israel Institute of Technol-
ogy, and the Advanced Communication Center at Tel Aviv University.

January 2012 Andrzej Cichocki
Fabian Theis
Arie Yeredor

Michael Zibulevsky
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Joint Diagonalization of Several Scatter Matrices for ICA . . . . . . . . . . . . . 172
Klaus Nordhausen, Harold W. Gutch, Hannu Oja, and
Fabian J. Theis

To Infinity and Beyond: On ICA over Hilbert Spaces . . . . . . . . . . . . . . . . . 180
Harold W. Gutch and Fabian J. Theis

Sparsity, Sparse Coding and Dictionary Learning

Regularized Sparse Representation for Spectrometric Pulse Separation
and Counting Rate Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Tom Trigano and Yann Sepulcre



Table of Contents XIII

Some Uniqueness Results in Sparse Convolutive Source Separation . . . . . 196
Alexis Benichoux, Prasad Sudhakar, Fréderic Bimbot, and
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Abstract. The fact that the decomposition of a matrix in a minimal
number of rank-1 terms is not unique, leads to a basic indeterminacy in
factor analysis. Factors and loadings are only unique under certain as-
sumptions. Working in a multilinear framework has the advantage that
the decomposition of a higher-order tensor in a minimal number of rank-
1 terms (its Canonical Polyadic Decomposition (CPD)) is unique under
mild conditions. We have recently introduced Block Term Decomposi-
tions (BTD) of a higher-order tensor. BTDs write a given tensor as a
sum of terms that have low multilinear rank, without having to be rank-
1. In this paper we explain how BTDs can be used for factor analysis
and blind source separation. We discuss links with Canonical Polyadic
Analysis (CPA) and Independent Component Analysis (ICA). Different
variants of the approach are illustrated with examples.

Keywords: Blind source separation, independent component analysis,
canonical polyadic decomposition, block term decomposition, higher-
order tensor, multilinear algebra.

1 Algebraic Tools

We start with a few basic definitions from multilinear algebra. These are subse-
quently used to define two tensor decompositions.

Definition 1. A mode-n vector of an N th-order tensor T = [ti1i2...iN ] is a
vector obtained by varying the n-th index and keeping the other indices fixed.

Definition 2. The multilinear rank of an N th-order tensor is the N -tuplet con-
sisting of the dimension of the space spanned by the mode-1 vectors, the dimen-
sion of the space spanned by the mode-2 vectors, and so on.

Definition 3. The (tensor) outer product A⊗B of a tensor A ∈ CI1×I2×...×IP

and a tensor B ∈ CJ1×J2×...×JQ is the tensor defined by (A⊗B)i1i2...iP j1j2...jQ =
ai1i2...iP bj1j2...jQ , for all values of the indices.

For instance, the outer product T of three vectors a, b and c is defined by
tijk = aibjck.

F. Theis et al. (Eds.): LVA/ICA 2012, LNCS 7191, pp. 1–8, 2012.
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Definition 4. An N th-order tensor has rank 1 iff it equals the outer product of
N nonzero vectors.

Definition 5. The rank of a tensor T is the minimal number of rank-1 tensors
that yield T in a linear combination.

We can now define a first basic tensor decomposition.

Definition 6. A Canonical Polyadic Decomposition (CPD) of a rank-R tensor
T ∈ CI1×I2×···×IN is a decomposition of T in a sum of R rank-1 terms:

T =

R∑
r=1

a(1)r ⊗a(2)r ⊗ · · · ⊗a(N)
r . (1)

The decomposition was for the first time used for data analysis in [3] and [14],
where it was called Canonical Decomposition (CANDECOMP) and Parallel Fac-
tor Decomposition (PARAFAC), respectively. The term CPD, where “CP” may
also stand for “CANDECOMP/PARAFAC”, is now becoming more common. An
important advantage over the decomposition of a matrix in rank-1 terms, is that
CPD of a higher-order tensor is unique under mild conditions, see [11,16,17,20,21]
and references therein. (Uniqueness is up to permutation of terms and scal-
ing/counterscaling of factors within a term.) For algorithms, see [11,16,22,23]
and references therein.

Consider a third-order tensor T ∈ CI1×I2×I3 that has CPD

T =
R∑

r=1

ar ⊗br ⊗cr . (2)

Define A = [a1 a2 . . . aR] ∈ CI1×R, B = [b1 b2 . . . bR] ∈ CI2×R and C =
[c1 c2 . . . cR] ∈ CI3×R. Eq. (2) is often written as

T:,:,i3 = A · diag(ci31, ci32, . . . , ci3R) ·BT , 1 � i3 � I3 , (3)

in which we use MATLAB colon notation. We see that all slices T:,:,i3 are linear
combinations of the same rank-1 terms arb

T
r , 1 � r � R, where the coefficients

are given by the entries of C.
In [8,9,13] we introduced Block Term Decompositions (BTD) of a higher-order

tensor. BTDs are a generalization of CPD. A specific case is the following.

Definition 7. A decomposition of a tensor T ∈ CI1×I2×I3 in a sum of rank-
(Lr, Lr, 1) terms, 1 � r � R, is a decomposition of T of the form

T =

R∑
r=1

(Ar ·BT
r )⊗cr , (4)

in which each of the matrices Ar ∈ CI1×Lr and Br ∈ CI2×Lr has linearly inde-
pendent columns and in which the vectors cr ∈ CI3 are nonzero, 1 � r � R. We
assume that R is minimal.
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Conditions under which this decomposition is unique, have been established in
[8,9,10]. (Here, uniqueness is up to permutation of terms, scaling/counterscaling
of factors within a term, and post-multiplication of Ar by a square nonsingular
matrix Wr providedBT

r is pre-multiplied by W−1
r , 1 � r � R.) Algorithms have

been presented in [13,18,19,22]. Note that (Lr, Lr, 1) is the multilinear rank of
the r-th term.

Define A = [A1 A2 . . . AR] ∈ CI1×
∑

r Lr , B = [B1 B2 . . . BR] ∈ CI2×
∑

r Lr

and C = [c1 c2 . . . cR] ∈ CI3×R. Eq. (4) can also be written as

T:,:,i3 = A · diag(ci31IL1×L1 , ci32IL2×L2 , . . . , ci3RILR×LR) ·BT , 1 � i3 � I3 .
(5)

All slices T:,:,i3 are linear combinations of the same rank-Lr matrices ArB
T
r ,

1 � r � R, where the coefficients are given by the entries of C.
In the next section we explain how CPD and decomposition in rank-(Lr, Lr, 1)

terms can be used for blind source separation.

2 Block Component Analysis: The Concept

Factor analysis and blind source separation aim at decomposing a data matrix
X ∈ CK×N into a sum of interpretable rank-1 terms:

X = A · ST =

R∑
r=1

ars
T
r . (6)

Here, A = [a1 a2 . . . aR] ∈ CK×R is the unknown mixing matrix and the
columns of S = [s1 s2 . . . sR] ∈ CN×R are the unknown sources. (We consider
the noiseless case for clarity of exposition.) Since the decomposition of a matrix
is not unique, some assumptions need to be made. In Independent Component
Analysis (ICA) the most important assumption is that the sources are mutually
statistically independent [5,6,15].

If we dispose of a data tensor, then things are simpler, in the sense that the
decomposition in rank-1 terms is unique under mild conditions, as mentioned
above. This uniqueness makes CPD a powerful tool for data analysis [4,17,21].
ICA can actually be seen as a form of Canonical Polyadic Analysis (CPA).
Namely, algebraic methods for ICA typically rely on the CPD of a higher-order
cumulant tensor or a third-order tensor in which a set of covariance matrices is
stacked. The links are explicitly discussed in [11].

The crucial observation on which Block Component Analysis (BCA) is based,
is that also the constraints in CPA are in a certain sense restrictive. Namely, in
(3) the matrix slices are decomposed in terms that are rank-1, i.e., they consist
of the outer product of two vectors. One could wish to decompose the slices in
terms that just have low rank, since the latter enable the modelling of more
general phenomena. As explained, this corresponds to the decomposition of a
tensor in rank-(Lr, Lr, 1) terms, which is still unique under certain conditions.
Probably CPA owes much of its success to rank-1 terms that capture the essence
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of components that actually are more complex. In such cases it could be of
interest to check whether BCA provides more detail.

BCA can be applied to matrix data as well. First, the data need to be ten-
sorized. For instance, one could map the rows of X to (I × J) Hankel matrices,
with I + J − 1 = N , yielding a tensor X ∈ CI×J×K . Formally, we define:

(X )ijk = (X)k,i+j−1 , 1 � i � I, 1 � j � J, 1 � k � K. (7)

Since the mapping is linear, we have:

X =

R∑
r=1

Hr ⊗ar, (8)

in which Hr ∈ CI×J is the Hankel matrix associated with the r-th source,
1 � r � R. An interesting property is that, for a sufficient number of samples,
Hankel matrices associated with exponential polynomials have low rank. Expo-
nential polynomials are functions that can be written as sums and/or products of
exponentials, sinusoids and/or polynomials. BCA allows the blind separation of
such signals, provided decomposition (8) is unique. Uniqueness conditions guar-
antee that the components are sufficiently different to allow separation, which in
turn implies a bound on the number of components one can deal with. Also, there
is a trade-off between complexity, measured by rank Lr, and number of compo-
nents. For theory underlying the blind separation of exponential polynomials by
means of a decomposition in rank-(Lr, Lr, 1) terms, we refer to [10].

Hankelization is just one way to tensorize matrix data. What is essential is
that we use a linear transformation that maps the sources to matrices that
(approximately) have low rank. Possible alternatives are spectrograms, wavelet
representations, etc. For comparison we repeat that in ICA the problem is typ-
ically tensorized through the computation of higher-order statistics or sets of
second-order statistics.

In the next section we illustrate the principle of BCA by means of examples.

3 Illustration

3.1 Toy Example: Audio

We consider the following sources: s1 consists of samples 50–80 of the chirp demo
signal and s2 consists of samples 250–280 of the train demo signal in MATLAB
(version 7.13). These two signals are shown in Fig. 1. The singular values of the
corresponding Hankel matricesH1,H2 ∈ R16×16 are shown in Fig. 2. We see that
H1 and H2 can be very well approximated by low-rank matrices. The entries
of A ∈ R5×2 are drawn from a zero-mean unit-variance Gaussian distribution.
Hankelization of X ∈ R5×31 yields a tensor X (H) ∈ R16×16×5. We also map X to
a tensor X (W ) ∈ R40×31×5 by means of the biorthogonal spline wavelet 1.3 [7].
This transformation maps every observed time signal to a (scale × time) matrix,
where we take the scale values equal to 0.8/(0.05s), 1 � s � 40. The singular
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values of the wavelet representations W1,W2 ∈ R40×31 of the two sources are
shown in Fig. 2. Tensors X (H) and X (W ) are decomposed in a sum of a rank-
(L1, L1, 1) and a rank-(L2, L2, 1) term. We conduct a Monte Carlo experiment
consisting of 100 runs for different values of L1 and L2. The mean and median
Signal-to-Interference Ratio (SIR) are shown in Table 1. This table demonstrates
that BCA allows one to accurately separate the sources. Moreover, the choice of
L1 and L2 turns out not to be very critical. The ICA algorithm in [5] yields a
mean and median SIR of only 15 dB, due to the fact that in this toy example
not enough samples are available to allow the reliable estimation of statistics.
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Fig. 1. Chirp (left) and train (right) audio source
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Fig. 2. Left: singular values of Hankel matrices H1 (top) and H2 (bottom). Right:
singular values of wavelet matrices W1 (top) and W2 (bottom).

We next add zero-mean Gaussian noise to the observations and investigate
the effect of the Signal-to-Noise Ratio (SNR) on the quality of the separation.
We conduct a new Monte Carlo simulation consisting of 100 runs. The value of
L1 = L2 = L is varied between 1 and 4. The results are shown in Fig. 3. A
rank-1 structure turns out to be too simple, at least in the Hankel case.

In the Hankel setting, the signals that correspond to rank-1 matrices are
complex exponentials (one frequency, one damping factor). A rank-1 term is
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Table 1. Mean (median) SIR [dB] in the noiseless audio example, as a function of L1

and L2 (top: Hankel-based BCA, bottom: wavelet-based BCA)

L1 / L2 1 2 3 4 5 6 7
1 20 (49) 48 (47) 49 (49) 37 (51) 20 (51) 15 (19) 15 (13)

43 (43) 41 (41) 19 (41) 19 (41) 16 (16) 14 (13) 13 (12)
2 48 (47) 47 (47) 49 (50) 48 (49) 44 (51) 17 (38) 16 (22)

41 (41) 46 (46) 47 (49) 48 (52) 33 (33) 17 (18) 14 (17)
3 49 (49) 49 (50) 49 (49) 47 (48) 23 (49) 20 (47) 19 (45)

19 (41) 47 (49) 46 (46) 27 (41) 25 (32) 18 (33) 13 (12)
4 37 (51) 48 (49) 47 (48) 47 (47) 47 (48) 20 (46) 18 (44)

19 (41) 48 (52) 27 (41) 52 (52) 16 (21) 47 (48) 13 (12)
5 20 (51) 44 (51) 23 (49) 47 (48) 45 (48) 29 (46) 16 (44)

16 (16) 33 (33) 25 (32) 16 (21) 13 (13) 28 (35) 12 (12)
6 15 (19) 17 (38) 20 (47) 20 (46) 29 (46) 25 (46) 33 (47)

14 (13) 17 (18) 18 (33) 47 (48) 28 (35) 46 (47) 17 (25)
7 15 (13) 16 (22) 19 (45) 18 (44) 16 (44) 33 (47) 24 (44)

13 (12) 14 (17) 13 (12) 13 (12) 12 (12) 17 (25) 17 (20)
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Fig. 3. Mean SIR as a function of SNR in the audio example

sometimes called an atom, since it is a constituent element that cannot be split
into smaller parts. In this terminology, CPA consists of splitting a data tensor
into atoms. On the other hand, one could say that sounds or melodies, having
a certain spectral content, correspond to molecules rather than atoms. BCA is
then the separation at the level of molecules.

3.2 Application in Wireless Communication

In spread-spectrum systems that employ an antenna array at the receiver, the
received data are naturally represented by the third-order tensor that shows the
signal along the temporal, spectral and spatial axis. In [20] it was shown for
Direct Sequence - Code Division Multiple Access (DS-CDMA) systems that, in
simple propagation scenarios that do not cause Inter-Symbol-Interference (ISI),
every user contributes a rank-1 term to the received data. Consequently, in a
non-cooperative setting multiple access can be realized through the computation
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of a CPD. In propagation scenarios that do involve ISI, rank-1 terms are a too
restrictive model. It was shown in [12] that, when reflections only take place
in the far field of the receive array, multiple access can be realized through the
computation of a decomposition in rank-(Lr, Lr, 1) terms. In [18] a more general
type of BTD was used to deal with cases where reflections do not only take place
in the far field. The same ideas can be applied to other systems with at least
triple diversity.

4 Discussion and Conclusion

CPA makes a strong assumption on the components that one looks for, namely,
that they are rank-1. In the analysis of text data, web documents, biomedical
data, images, . . . it is often questionable whether this assumption is satisfied.
Low (multilinear) rank may be a better approximation of reality. In this paper
we introduced BCA as an analysis technique based on the computation of BTDs.
BCA can be used for the analysis of matrix data, after these have been tensorized.
To this end, one can compute statistics, like in ICA, but one can also consider
Hankel representations, wavelet representations, etc. Deterministic variants of
BCA may be useful for the analysis of short data sequences.

BCA is related to Sparse Component Analysis (SCA) [1]. In SCA, the sources
are low-dimensional in the sense that they are most often zero. In BCA, the
sources have a low intrinsic dimension, characterized by multilinear rank. BCA
is also related to compressive sensing [2]. In compressive sensing, low intrinsic
dimensionality is used for compact signal representation. In BCA, it is used as
the basis for signal separation.

In this paper we limited ourselves to the decomposition in rank-(Lr, Lr, 1)
terms. In [8,9,13] more general types of BTD were introduced, which allow a
more general analysis.
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Abstract. We address the problem of estimating a random vector X
from two sets of measurements Y and Z, such that the estimator is linear
in Y . We show that the partially linear minimum mean squared error
(PLMMSE) estimator requires knowing only the second-order moments
of X and Y , making it of potential interest in various applications. We
demonstrate the utility of PLMMSE estimation in recovering a signal,
which is sparse in a unitary dictionary, from noisy observations of it
and of a filtered version of it. We apply the method to the problem
of image enhancement from blurred/noisy image pairs. In this setting
the PLMMSE estimator performs better than denoising or deblurring
alone, compared to state-of-the-art algorithms. Its performance is slightly
worse than joint denoising/deblurring methods, but it runs an order of
magnitude faster.

Keywords: Bayesian estimation, minimum mean squared error, linear
estimation.

1 Introduction

Bayesian estimation is concerned with the prediction of a random quantity X
based on a set of observations Y , which are statistically related to X . It is well
known that the estimator minimizing the mean squared error (MSE) is given by
the conditional expectation X̂ = E[X |Y ]. There are various scenarios, however,
in which the minimal MSE (MMSE) estimator cannot be used. This can either
be due to implementation constraints, because of the fact that no closed form
expression for E[X |Y ] exists, or due to lack of complete knowledge of the joint
distribution of X and Y . In these cases, one often resorts to linear estimation.
The appeal of the linear MMSE (LMMSE) estimator is rooted in the fact that it
possesses an easily implementable closed form expression, which merely requires
knowledge of the joint first- and second-order moments of X and Y .

For example, the amount of computation required for calculating the MMSE
estimate of a jump-Markov Gaussian random process from its noisy version
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grows exponentially in time. By contrast, the LMMSE estimator in this setting
possesses a simple recursive implementation, similar to the Kalman filter [1]. A
similar problem arises in the area of sparse representations, in which the use
of Bernoulli-Gaussian and Laplacian priors is very common. The complexity
of calculating the MMSE estimator under the former prior is exponential in the
vector’s dimension, calling for approximate solutions [2,3]. The MMSE estimator
under the latter prior does not possess a closed form expression [4], which has
motivated the use of alternative estimation strategies such as the maximum a-
posteriori (MAP) method.

In practical situations, the reasons for not using the MMSE estimator may
only apply to a subset of the measurements. Then, it may be desirable to con-
struct an estimator that is linear in part of the measurements and nonlinear in
the rest. One such scenario arises when estimating a sparsely representable vector
X from two sets of measurements Y and Z, one blurred and one noisy. Indeed, as
we show in this paper, when working with unitary dictionaries, the MMSE esti-
mate E[X |Z] from the noisy measurements alone possesses an easy-to-implement
closed form solution. However the complexity of computing the MMSE estimate
E[X |Y, Z] from both sets of measurements is exponential. In this setting, the
PLMMSE method, which is linear in Y , is computationally cheap and often
comes close to the MMSE solution E[X |Y, Z] in terms of performance.

Partially linear estimation was studied in the statistical literature in the con-
text of regression [5]. In this line of research, it is assumed that the conditional
expectation g(y, z) = E[X |Y = y, Z = z] is linear in y. The goal, then, is to ap-
proximate g(y, z) from a set of examples {xi, yi, zi} drawn independently from
the joint distribution of X , Y and Z. In this paper, our goal is to derive the
partially linear MMSE (PLMMSE) estimator. Namely, we do not make any as-
sumptions on the structure of the MMSE estimate E[X |Y, Z], but rather look
for the estimator that minimizes the MSE among all functions g(Y, Z) that are
linear in Y .

Due to space limitations, we state here the main results without their proofs,
which can be found in [6].

2 Partially Linear Estimation

Suppose that X , Y and Z are random variables (RVs) taking values in RM ,
RN and RQ, respectively, such that X is the quantity to be estimated and Y
and Z are two sets of measurements thereof. We denote by ΓXX , ΓXY , the
auto-covariance of X and the cross-covariance of X and Y , respectively.

Our goal is to design a partially linear estimator of X based on Y and Z,
which has the form

X̂ = AY + b(Z). (1)

Here A is a deterministic matrix and b(z) is a vector-valued (Borel measurable)
function.
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Theorem 1. The MMSE estimator of the form (1) is given by

X̂ = ΓXWΓ †
WWW + E[X |Z], (2)

where W � Y − E[Y |Z].

Note that (2) is of the form of (1) with A = ΓXWΓ †
WW and b(Z) = E[X |Z]−

ΓXWΓ †
WWE[Y |Z]. As we show in [6], (2) can be equivalently written as

X̂ =
(
ΓXY − Γ X̂Z ŶZ

)(
Γ Y Y − Γ ŶZ ŶZ

)† (
Y − ŶZ

)
+ X̂Z , (3)

where X̂Z � E[X |Z] and ŶZ � E[Y |Z]. Therefore, all we need to know in order
to be able to compute the PLMMSE estimator (2) is the covariance matrix ΓXY ,
the conditional expectation E[X |Z] and the joint distribution of Y and Z.

The intuition behind (2) is similar to that arising in dynamic estimation
schemes, such as the Kalman filter. Specifically, we begin by constructing the
MMSE estimate E[X |Z] of X from Z. We then update it with the LMMSE
estimate of X based on the innovation W of Y with respect to E[X |Z].

One particularly interesting example is the case where X is observed through
two linear systems as (

Y
Z

)
=

(
H
G

)
X +

(
U
V

)
, (4)

where U and V are statistically independent. It is easily shown that in this
setting, the PLMMSE estimate reduces to

X̂ = AY + (I −HA)X̂Z , (5)

where I denotes the identity matrix and

A = CHT (HCHT + ΓUU )
† (6)

with C = ΓXX − Γ X̂ZX̂Z
.

3 Application to Sparse Approximations

Consider the situation in which X is known to be sparsely representable in a
unitary dictionary Ψ ∈ RM×M in the sense that

X = ΨA (7)

for some RV A that is sparse with high probability. More concretely, we assume,
as in [2,3], a Bernoulli-Gaussian prior, so that the elements of A are given by

Ai = SiBi, i = 1, . . . ,M, (8)

where the RVs {Bi} and {Si} are statistically independent, Bi ∼ N (0, σ2
Bi
) and

P(Si = 1) = 1− P(Si = 0) = pi.
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Assume X is observed through two linear systems, as in (4), where H is an
arbitrary matrix, G is an orthogonal matrix satisfying GTG = α2I for some
α �= 0, and U and V are Gaussian RVs with ΓUU = σ2

UI and Γ V V = σ2
V I.

In this case the expression for the MMSE estimate E[X |Y, Z] comprises 2M

summands [2] rendering its computation prohibitively expensive even for modest
values of M . Various approaches have been devised to approximate this solution
by a small number of terms (see e.g., [2,3] and references therein).

There are some special cases, however, in which the MMSE estimate possesses
a simple structure, which can be implemented efficiently. One such case is when
both the channel’s response and the dictionary over whichX is sparse correspond
to orthogonal matrices. As in our setting Ψ is unitary and G is orthogonal, this
implies that we can efficiently compute the MMSE estimate E[X |Z] ofX from Z.
Therefore, instead of resorting to schemes for approximating E[X |Y, Z], we can
employ the PLMMSE estimator of X based on Y and Z, which, in this situation,
possesses the simple closed form expression (5). This approach is particularly
effective when the SNR of the observation Y is much worse than that of Z, since
the MMSE estimate E[X |Y, Z] in this case is close to being partially linear in
Y . Such a setting is demonstrated in the sequel. We have the following result.

Theorem 2. The MMSE estimate of X of (7) given Z of (4) is

E[X |Z] = Ψ f̃

(
1

α
ΨTGTZ

)
, (9)

where f̃(z̃) = (f(z̃1), . . . , f(z̃M ))T , with

f(z̃i) =

ασ2
Bi

α2σ2
Bi

+σ2
V
piN (z̃i; 0, α

2σ2
Bi

+ σ2
V ) z̃i

piN (z̃i; 0, α2σ2
Bi

+ σ2
V ) + (1− pi)N (z̃i; 0, σ2

V )
. (10)

Here, N (α;μ, σ2) denotes the normal probability density function with mean μ
and variance σ2, evaluated at α.

Therefore, if, e.g., Ψ is a wavelet basis and G = I (so that α = 1), then E[X |Z]
can be efficiently computed by taking the wavelet transform of Z (multiplication
by ΨT ), applying a scalar shrinkage function on each of the coefficients (namely
calculating f(z̃i) for the ith coefficient) and applying the inverse wavelet trans-
form (multiplication by Ψ ) on the result.

Equipped with a closed form expression for E[X |Z], we can now compute the
terms needed for implementing the PLMMSE estimator (5). First, we note that

ΓXX = ΨΓAAΨ
T , (11)

where ΓAA is a diagonal matrix with (ΓAA)i,i = piσ
2
Bi
. Similarly,

Γ X̂ZX̂Z
= ΨCov(f̃(Z̃))ΨT , (12)

where Cov(f̃(Z̃)) is a diagonal matrix whose (i, i) element is βi = Var(f(Z̃i)).
This is due to the fact that the elements of Z̃ are statistically independent and
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the fact that the function f̃(·) operates element-wise on its argument. Hence,
the PLMMSE estimator is given by (5) with E[X |Z] of (9) and with the matrix

A = ΨCΨTHT
(
HΨCΨTHT + σ2

UI
)†
, (13)

where hereC = ΓAA−Cov(f̃(Z̃)) = diag(p1σ
2
B1
−β1, . . . , pMσ2

BM
−βM ). Observe

that there is generally no closed form expression for the scalars βi, rendering it
necessary to compute them numerically.

An important special case corresponds to the setting in which pi = p and
σ2
Bi

= σ2
B for every i. In this situation, we also have that βi = β for every i.

Furthermore,

ΓXX = Ψ
(
pσ2

BI
)
ΨT = pσ2

BI (14)

and

Γ X̂ZX̂Z
= Ψ (βI)ΨT = βI, (15)

so that A is simplified to

A = (pσ2
B − β)HT

(
(pσ2

B − β)HHT + σ2
UI
)†
. (16)

As can be seen, here A does not involve multiplication by Ψ or ΨT . Thus, if
H corresponds to a convolution operation, so does A, meaning that it can be
efficiently applied in the Fourier domain.

3.1 Image Deblurring with Blurred/Noisy Image Pairs

When taking photos in dim light using a hand-held camera, there is a tradeoff
between noise and motion blur, which can be controlled by tuning the shutter
speed. Using a long exposure time, the image typically comes out blurred due to
camera shake. On the other hand, with a short exposure time (and high camera
gain), the image is very noisy. In [7] it was demonstrated how a high quality
image can be constructed by properly processing two images of the same scene,
one blurred and one noisy.

We now show how the PLMMSE approach can be applied in this setting to
obtain plausible recoveries at a speed several orders of magnitude faster than
any other sparsity-based method. In our setting X , Y and Z correspond, respec-
tively, to the original, blurred (and slightly noisy) and noisy images. Thus, the
measurement model is that described by (4), where H corresponds to spatial
convolution with some blur kernel, G = I, and U and V correspond to white
Gaussian noise images with small and large variances respectively. We further
assume that the image X is sparse in some orthogonal wavelet basis Ψ , such
that it can be written as in (7) and (8).

As we have seen, in this setting, the PLMMSE estimator can be computed in
two stages. First, we calculate X̂Z = E[X |Z] by computing the wavelet trans-
form Z̃ = ΨTZ, applying the scalar shrinkage function (10) on each wavelet



14 T. Michaeli, D. Sigalov, and Y.C. Eldar

coefficient, and taking the inverse wavelet transform of the result. This stage re-
quires knowledge of the parameters {pi}, {σ2

Bi
} and σ2

V . To this end, we assume
that pi and σ

2
Bi

are the same for wavelets coefficients at the same level. Namely,
all wavelet coefficients of Z at level � correspond to independent draws from the
Gaussian mixture

fZ̃i
(z̃) = p�N (z̃; 0, α2σ2

B� + σ2
V ) + (1− p)N (z̃; 0, σ2

V ). (17)

Consequently, p�, σ2
B� and σ2

V can be estimated by expectation maximization
(EM). In our experiments, we assumed that σ2

V is known.

In the second stage, the denoised image X̂Z needs to be combined with the
blurred image Y using (5) with A of (13). As discussed in Section 3, this can
be carried out very efficiently if pi = p and σ2

Bi
= σ2

B for all i. For the sake
of efficiency we therefore abandon the assumption that pi and σ2

Bi
vary across

wavelet levels and assume henceforth that all wavelet coefficients are independent
and identically distributed. In this case, A corresponds to the filter

A(ω) =
(σ2

A − β)H∗(ω)
(σ2

A − β)|H(ω)|2 + σ2
U

, (18)

where H(ω) is the frequency response of the blur kernel. Consequently, the final
PLMMSE estimate corresponds to the inverse Fourier transform of

X̂F
PLMMSE(ω) =

(σ2
A − β)H∗(ω)Y F(ω) + σ2

U X̂
F
Z(ω)

(σ2
A − β)|H(ω)|2 + σ2

U

, (19)

where Y F(ω) and X̂F
Z(ω) denote the Fourier transforms of Y and X̂Z , respec-

tively. In our experiment, we assumed that the blur H(ω) and noise variance σ2
U

are known. In practice, they can be estimated from Y and Z, as proposed in
[7]. This stage also requires knowing the scalars σ2

A = E[A2] and β = E[f2(z̃)],

which we estimate as σ̂2
A = 1

M

∑M
i=1 z̃

2
i − σ2

V and β̂ = 1
M

∑M
i=1 f

2(z̃i).
Fig. 1 demonstrates our approach on the 512 × 512 Gold-hill image. In this

experiment, the blur corresponded to a Gaussian kernel with standard deviation
3.2. To model a situation in which the noise in Y is due only to quantization
errors, we chose σU = 1/

√
12 ≈ 0.3 and σV = 45. These parameters correspond

to a peak signal to noise ratio (PSNR) of 25.08dB for the blurred image and
15.07dB for the noisy image.

We used the orthogonal Symlet wavelet of order 4 and employed 10 EM it-
erations to estimate p� and σ2

B� in each wavelet level. The entire process takes
1.1 seconds on a Dual-Core 3GHz computer with un-optimized Matlab code.
We note that our approach can be viewed as a smart combination of Wiener fil-
tering for image debluring and wavelet thresholding for image denoising, which
are among the simplest and fastest methods available. Consequently, the run-
ning time is at least an order of magnitude faster than any other sparsity-based
methods (see, e.g., comparisons in [2]).

As can be seen in Fig. 1, the quality of the recoveries corresponding to the
denoised image X̂Z and deblurred image X̂L

Y is rather poor with respect to the
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Debluring with a blurred/noisy image pair using PLMMSE estimation
and RD [7]. (a) Blurred image Y (top left) and noisy image Z (bottom-right).
(b) LMMSE-deblurred image X̂L

Y (top-left) and MMSE-denoised image X̂Z (bottom-
right). (c) BM3D-deblurred image (top left) and BM3D-denoised image (bottom-right).
(d) Original image X. (e) PLMMSE estimate X̂PLMMSE from Y and Z. (f) RD recovery.

state-of-the-art BM3D debnoising method [8] and BM3D debluring algorithm [9].
However, the quality of the joint estimate X̂PLMMSE surpasses each of these
techniques. The residual deconvolution (RD) method [7] for joint debluring and
denoising outperforms the PLMMSE method in terms of recovery error but the
visual differences are not prominent.

A quantitative comparison on several test images is given in Table 1. The
PSNR attained by the PLMMSE method is, on average, 0.3dB higher than
BM3D debluring, 0.4db higher than BM3D denoising, and 0.8dB lower than
RD. In terms of running times, however, our method is, on average, 11 times
faster than BM3D deblurring, 16 times faster than BM3D denoising and 18 times
faster than RD. Note that RD requires initialization with a denoised version of
Z, for which purpose we used the BM3D algorithm. Hence, the running times
reported in the last column of Table 1 include the running times of the BM3D
denoising method.
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Table 1. Performance of deblurring/denoising on several images

X̂Z X̂L
Y

BM3D
Denoise

BM3D
Deblur PLMMSE RD

Boat 25.39
/
0.83 23.45

/
0.06 27.85

/
13.52 28.40

/
10.23 28.05

/
0.88 29.22

/
15.31

Lena 26.93
/
0.73 24.59

/
0.03 29.47

/
13.22 30.58

/
8.90 30.58

/
0.81 31.37

/
15.19

Mandrill 21.40
/
0.64 20.59

/
0.06 22.72

/
13.58 21.78

/
9.57 22.58

/
0.72 23.30

/
15.58

Peppers 26.74
/
0.81 24.89

/
0.08 29.49

/
13.14 29.74

/
8.91 29.80

/
0.88 31.52

/
15.03

Mountain 19.23
/
0.95 17.69

/
0.09 20.11

/
15.24 18.45

/
11.12 20.03

/
1.05 20.42

/
17.47

Frog 23.23
/
0.94 22.35

/
0.16 24.00

/
16.07 24.40

/
13.37 24.69

/
1.09 24.69

/
21.14

Gold-hill 25.90
/
0.69 24.26

/
0.06 27.52

/
13.41 28.70

/
9.54 28.82

/
1.09 29.09

/
21.14

Average 24.12
/
0.81 22.55

/
0.08 25.88

/
14.03 26.01

/
10.23 26.31

/
0.89 27.09

/
16.19

4 Conclusion

In this paper, we derived the PLMMSE estimator and showed that it depends
only on the joint second-order statistics of X and Y , rendering it applicable in a
wide variety of situations. We demonstrated the utility of our approach in sparse
signal recovery from a measurement pair. In the context of image enhancement
from blurred/noisy image pairs, we showed that PLMMSE estimation performs
close to state-of-the-art algorithms while running much faster.
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Abstract. LiNGAM has been successfully applied to casual inferences of some
real world problems. Nevertheless, basic LiNGAM assumes that there is no latent
confounder of the observed variables, which may not hold as the confounding ef-
fect is quite common in the real world. Causal discovery for LiNGAM in the
presence of latent confounders is a more significant and challenging problem. In
this paper, we propose a cumulant-based approach to the pairwise causal discov-
ery for LiNGAM in the presence of latent confounders. The method assumes that
the latent confounder is Gaussian distributed and statistically independent of the
disturbances. We give a theoretical proof that in the presence of latent Gaussian
confounders, the causal direction of the observed variables is identifiable under
the mild condition that the disturbances are both super-gaussian or sub-gaussian.
Experiments on synthesis data and real world data have been conducted to show
the effectiveness of our proposed method.

Keywords: Causal analysis, LiNGAM, latent Gaussian confounder, cumulant-
based measure.

1 Introduction

Causal discovery from non-specifically controlled experimental data has received ex-
tensive attention in recent years. Many models such as structural equation models
(SEMs) and Bayesian networks (BNs) have been proposed to explain the data gen-
erating mechanisms and widely applied to social science, econometrics and medical
science [1] [2]. However, traditional methods assume the Gaussian disturbances and
only employ second order statistics. In general, such methods can only obtain a class
of equivalent models [3] and fail to identify the full causal structure without prior
knowledge in most cases [4]. Recently, it has been shown that by employing the non-
gaussianity of the disturbances, the causal structure can be fully identified. In [3], au-
thors proposed a Linear Non-Gaussian Acyclic Model (LiNGAM) and showed that
the full structure can be identified by Independent Component Analysis (ICA) [5] [6].
The Direct-LiNGAM framework was proposed later to avoid iterative searching [7].
The advantages of LiNGAM over conventional methods are: (1) a full and unique causal
structure can be identified instead of a class of Markov equivalent models. (2) no prior
knowledge of the network structure is needed. (3) Compared to BNs which may re-
quire large amount of conditional independent tests, the computational complexity of

F. Theis et al. (Eds.): LVA/ICA 2012, LNCS 7191, pp. 17–24, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. Casual pair with latent confounder

x = e1 + αc

y = ρx+ e2 + βc
(1)

LiNGAM is much lower. In spite of the advantages mentioned, basic LiNGAM consid-
ers the causally sufficient case where there is no unobserved confounders [3]. However,
this assumption may not hold in many real world problems.

In this paper, we will deal with a more challenging problem: causal discovery for
causal pairs with latent confounders, which can be represented graphically by figure
1. x and y are observed variables of which we aim to discover the causal direction.
e1 and e2 are non-gaussian disturbances. c is the unobserved latent confounder which
can be regarded as the total effect of many latent factors fi. ρ, α and β are the cor-
responding causal strengths. Due to the extra dependence introduced by c, the causal
discovery for x and y becomes much more challenging. Previous methods such as BNs,
LiNGAM and DirectLiNGAM may obtain misleading results as they does not consider
the latent confounders. Recently, Aapo Hyvärinen [8] proposed new measures of causal
directions for causal pairs in the scenario of no latent confounders. Inspired by [8], we
propose a new cumulant-based measure to discover the causal directions for LiNGAM
in the presence of Gaussian Confounders(LiNGAM-GC). The basic idea is the use of
a specially designed measure which is immune to the latent Gaussian confounder. We
prove that the causal direction can be simply identified by investigating the sign of the
proposed cumulant-based measure, i.e. if the measure R̃xy > 0 we can conclude that
x causes y. The advantages of our proposed cumulant-based measure over the one
proposed in [8] are that our measure does not require the explicit estimations of the re-
gression coefficient ρ and more importantly our cumulant-based measure is immune to
the latent Gaussian confounder. In the paper, due to the limit of pages, we mainly deal
with causal-effect pairs. However, the algorithm developed in this paper can be easily
extended to the model with more than two variables following the similar manner as
DirectLiNGAM.

The rest of this paper is organized as follows: In section 2, we briefly introduce some
related works concerning latent confounders in recent years. In section 3, we firstly
introduce the cumulant-based measure proposed in [8] for pairwise causal discovery.
Secondly, we propose our LiNGAM-GC model and a new cumulant-based measure to
tackle the causal discovery problem in this model. In section 4, experiments on synthe-
sis data and real world data are conducted to show the effectiveness of our proposed
approaches. In section 5, we conclude our paper.
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2 Related Works Concerning Latent Confounders

Recently, several papers were published concerning the latent confounder [9] [10] [11].
In [9], authors treated the causal discovery problem for LiNGAM in the presence of con-
fouders as an overcomplete ICA problem and developed algorithms to derive canonical
models from observed variables. They used overcomplete ICA algorithms to estimate
the whole causal structure. However, overcomplete ICA is an ill-posed and challenging
problem which still remains open. There is no reliable and accurate method existing for
this problem especially when the dimensionality of the problem is high.

In [10], authors proposed a model called Confounders with Additive Noise (CAN):

X = u(T ) +NX

Y = v(T ) +NY

(2)

where X and Y are observed effects; T is the latent confounder; NX and NY are
disturbances. T , NX and NY are statistically independent. Authors showed that under
certain assumptions, the confounder is identifiable. Note that in the CAN model, there
is no direct edge between node X and Y . The variances of NX and that of NY are
assumed to be small [10]. However, we are interested in a more general case: there is a
direct edge between X and Y ; NX and NY are not necessarily small.

In [11], authors proposed a new model called GroupLiNGAM. In this model, latent
confounders are allowed but restricted within subsets of the observed variables. They
used the Direct-LiNGAM framework by iteratively finding and removing the exogenous
subsets of the observed variables from the remaining subsets until the whole causal
ordering of the subsets are identified [11]. However, in the GroupLiNGAM model, the
confounders are restricted within certain subsets. Furthermore, the causal direction and
strength remain unidentified within the subsets yet.

3 Causal Discovery for Causal Pairs with Latent Confounders

3.1 Cumulant-Based Measure by Aapo Hyvärinen

Firstly, we introduce the cumulant-based measure proposed in [8], which lays the foun-
dation for our work. Suppose we have observed two random variables x and y with zero
means and generated by equation 1 but with α = 0 and β = 0. e1 and e2 are indepen-
dent non-gaussian distributed disturbances; ρ is the causal strength. Denote by x̂ and ŷ
the normalized x and y with unit variances. Denote by ρ̂ the corresponding regression
coefficient. It is easy to know that |ρ̂| < 1. The cumulant-based measure proposed in [8]
is given as below:

R̃c4(x̂, ŷ) = sign(kurt(x̂))ρ̃Ê{x̂3ŷ − x̂ŷ3} (3)

where Ê means average and ρ̃ is the estimated regression coefficient. Note that the
above cumulant-based measure fails to give any decision when the estimated kurtosis of
x̂ and that of ŷ have opposite signs. According theorem 1 in [8], we have the following:

x̂→ ŷ ⇔ R̃c4 > 0

ŷ → x̂⇔ R̃c4 < 0
(4)
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This cumulant-based measure works quite well in the scenario of no latent confounders.
However, the presence of latent confounders is a very common phenomenon in real
world problems. This measure may obtain misleading results in real applications. In the
following, we consider a new model in presence of latent Gaussian confounders.

3.2 Cause-Effect Pairs in Presence of Latent Gaussian Confounders

Assume x and y are with zero means and generated by equation 1. c is Gaussian dis-
tributed. Note that this model is an extension of LiNGAM by allowing the presence of
latent Gaussian confounders. We argue that the Gaussianity assumption of the latent
confounder is not strong as in real world, there may be a number of latent factors which
are the common causes of the observed effects. The confounder we introduce here can
be regarded as the total effect of such factors as illustrated graphically by figure 1. Ac-
cording to the central limit theorem, the summation of a large number of independent
random variables with finite expectations and finite variances tends to be Gaussian dis-
tributed. Due to the presence of c, the causal inference becomes problematic: (1) due
to the extra dependence introduced by c, the causal direction of x and y can not be
simply inferred by testing independence of regressors and regression residues. (2) the
causal strength especially the sign of causal strength estimated may be severely biased.
To tackle this difficulty, we propose a new cumulant-based measure which is an exten-
sion of the cumulant-based measure proposed in [8] . First of all, we investigate two
different normalization schemes.

3.3 Normalization to Unit Variance / Unit Absolute Kurtosis

Lemma 1. Assume that the observed variables x and y are generated according to
equation 1 and fulfill σ2

2 +(2αρ+β)βσ2
c > 0, where σ2 and σc are the variances of e2

and c respectively. Denote by x̂ and ŷ the normalized x and y with unit variances, then
the casual strength ρ̂ between x̂ and ŷ has the property of |ρ̂| < 1.

Note that |ρ̂| < 1 is a working condition for our cumulant-based measure to be intro-
duced later in this section. We prove that |ρ̂| < 1 under assumption of σ2

2 + (2αρ +
β)βσ2

c > 0, if we normalize x and y to unit variance. However, the assumption
may not hold in some real world problems. Below, we propose another normaliza-
tion method which can guarantee that |ρ̂| < 1 under a much weaker assumption. Let
kx = 4

√
|kurt(x)| and ky = 4

√
|kurt(y)|. We have:

k4x = |kurt(x)| = |kurt(e1 + αc)| .= |kurt(e1)|
k4y = |kurt(y)| = |kurt(ρe1 + e2 + (αρ+ β)c)| .= |ρ4kurt(e1) + kurt(e2)|

The above
.
= holds as kurt(c) = 0 (Remind that c is Gaussian distributed). Normalizing

x and y by x̂ = x/kx and ŷ = y/ky, we have the following lemma.

Lemma 2. Assume the kurtosis of e1 and the kurtosis of e2 have the same sign, i.e. e1
and e2 are both super-gaussian or sub-gaussian. Denote by x̂ and ŷ the normalized x
and y with unit absolute kurtosis , then the casual strength ρ̂ between x̂ and ŷ has the
property of |ρ̂| < 1.

Proof. We skip the proof due to the limit of pages.
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3.4 New Cumulant-Based Measure

For convenience, in the rest of this paper, we use notations x, y, c, α, β and ρ but
we assume that x and y are standardized (either by normalizing to unit variance or
absolute kurtosis). According to lemma 1 or 2, |ρ| < 1. Inspired by [8], we give the
following cumulant-based measure which can be used to determine the causal direction
for LiNGAM-GC. Let:

Cxy = Ê{x3y} − 3Ê{xy}Ê{x2}
Cyx = Ê{xy3} − 3Ê{xy}Ê{y2}

Define new cumulant-based measure as:

R̃xy = (Cxy + Cyx)(Cxy − Cyx) (5)

Ê means sample average. We have the following theorem:

Theorem 1. If the causal direction is x→ y, we have:

R̃xy = ρ2(1 + ρ2)(1− ρ2)kurt(e1)
2 (6)

where kurt(e1) = E{e41} − 3E{e21}2 is the kurtosis of e1.
If the causal direction is y → x, we have:

R̃xy = ρ2(1 + ρ2)(ρ2 − 1)kurt(e2)
2 (7)

Proof. Consider the fourth-order cumulant

C(x, y) = cum(x, x, x, y) = E{x3y} − 3E{xy}E{x2} (8)

R̃xy = {C(x, y) + C(y, x)}{C(x, y)− C(y, x)}
If x → y, i.e. the observed x and y fulfill the generating mechanism described in
equation 1, based on the properties of cumulant [8], we have:

C(x, y) = cum(x, x, x, y) = ρcum(e1, e1, e1, e1) + α3(αρ+ β)cum(c, c, c, c)

= ρkurt(e1) + α3(αρ+ β)kurt(c)

As we assume that the latent confounder c is Gaussian distributed, we have cum(c, c, c, c)
= kurt(c) = 0 and therefore we have C(x, y) = ρkurt(e1).

C(y, x) = cum(y, y, y, x) = ρ3kurt(e1) + α(αρ+ β)3kurt(c) = ρ3kurt(e1)

R̃xy = {ρkurt(e1) + ρ3kurt(e1)}{ρkurt(e1)− ρ3kurt(e1)}
= ρ2(1 + ρ2)(1 − ρ2)kurt(e1)

2

If y → x, through similar derivation, we have the following:

R̃xy = {ρ3kurt(e2) + ρkurt(e2)}{ρ3kurt(e2)− ρkurt(e2)}
= ρ2(1 + ρ2)(ρ2 − 1)kurt(e2)

2
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According to lemma 1 or 2, we know that |ρ| < 1, and therefore we have the following
causal inferencing rule:

x→ y ⇔ R̃xy > 0

y → x⇔ R̃xy < 0
(9)

4 Experiment

4.1 Synthesis Data

In this experiment, we use our proposed cumulant-base measure with different normal-
ization methods: unit variance (LiNGAM-GC-UV) and unit absolute kurtosis(LiNGAM-
GC-UK) , ICA-LiNGAM1, Direct-LiNGAM2, Cumulant-based Measure(C-M) [8] to
identify the causal direction for causal pairs. The purpose of this experiment is to show
that latent confounders can be problematic if they are not considered. We consider the
causal pairs generated by equation 1. e1 and e2 are generated by ei = sign(ni)|ni|2
and normalized to unit variance, where ni are standard Gaussian random variable. c is
Gaussian distributed with zero mean and standard deviation σc 3. We fix α = 1.2 and
β = 1.6. In order to learn how ρ and σ2

c affect the accuracies of five algorithms, we
conduct a series of experiments as follows: {ρ = ±0.1,±0.3, σc = 0.1, 0.2, · · · , 1.3}.
Note that the experimental settings guarantee the assumptions of lemma 1 and lemma
2. For each parameter setting {ρ, σc}, we randomly generate 100 datasets with sample
size of 5000. The percentages of correctly identified datasets for different methods are
shown in figure 2 and 3. The experimental results suggest that LiNGAM-GC-UV and
LiNGAM-GC-UK have the best performances in different scenarios. Although wrong
decisions still occur in the case of small causal strength ρ, it is due to the finite sample
size. If the sample size is large enough, both methods are expected to achieve per-
fect performances. From figure 2 and 3, we also learn that C-M performs very well
in the case of positive casual strength but performs badly in the case of negative casual
strength . The explanation for this observation is that in the scenario of positive ρ, α and
β, the C-M algorithm is immune to the latent Gaussian confounder. However,when the
true causal strength ρ < 0 , the presence of latent confounder may cause C-M algorithm
to get wrong estimation of ρ with opposite sign, which in turn leads to the wrong causal
direction. This shows that the performance of C-M algorithm depends on whether the
effect of the latent confounder is strong enough to flip the sign of the estimated causal
strength. The performances of LiNGAM-ICA and Direct-LiNGAM depend on the vari-
ance of the confounder. When the variance of the latent confounder is large enough, the
performance of both algorithms degenerate dramatically.

1 http://www.cs.helsinki.fi/group/neuroinf/lingam/
2 http://www.ar.sanken.osaka-u.ac.jp/˜inazumi/dlingam.html
3 We also conduct the experiment where the confounder c is mildly Non-Gaussian and the re-

sult shows that the proposed measure is robust. While in the case of strongly Non-Gaussian
confounder, the proposed measure fails to give the correct identification. Due to the limit of
pages, we do not present the result here.

http://www.cs.helsinki.fi/group/neuroinf/lingam/
http://www.ar.sanken.osaka-u.ac.jp/~inazumi/dlingam.html
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Fig. 2. Results of synthesis data: ρ = ±0.1
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Fig. 3. Results of synthesis data: ρ = ±0.3

4.2 Real World Data

In order to show the applicability of our proposed methods in real world data, we com-
pare the performances of difference methods in the real-world cause-effect pairs4. We
select a total of 45 pairs in this dataset5. As the computational time of Direct-LiNGAM
increases dramatically for large sample size, we use at most 1000 samples for each
cause-effect pair. The performances of different algorithms are given in Table 1.

Table 1. Percentage of recovering the true causal direction in 45 real world cause-effect pairs

Algorithm LiNGAM-GC-UV LiNGAM-GC-UK C-M LiNGAM-ICA Direct-LiNGAM IGCI

Accuracy 71.11% 73.33% 62.22% 46.67% 55.56% 60%

Table 1 shows that for causal discovery of real world data, our proposed LiNGAM-
GC-UV and LiNGAM-GC-UK have the best performances followed by C-M. LiNGAM-
GC-UK performs better than LiNGAM-GC-UV possibly due to the milder assumption.
IGCI [12] achieves only 60% accuracy mainly due to the fact that it is originally pro-
posed for deterministic causal relations inference. Direct-LiNGAM performs slightly
better than random guess while LiNGAM-ICA has the accuracy less than 50%. From
this experiment, we learn that by taking into consideration of latent confounders, the
causal inference becomes more reliable and accurate.

5 Conclusion

A new Linear Non-Gaussian Acyclic Model in the presence of latent Gaussian con-
founders is proposed in this paper. By allowing the presence of latent confounders, this

4 http://webdav.tuebingen.mpg.de/cause-effect/
5 We make a simple preprocessing of pair #75 to make the relation more linear and use two

processed pairs {x, 1
y
} and { 1

x
, y} instead of the original one.

http://webdav.tuebingen.mpg.de/cause-effect/
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model is expected to give more accurate description of the real world phenomenon. We
propose a cumulant-based measure to infer the causal structure of the observed vari-
ables for this model. We discuss and prove under what conditions the causal structure is
identifiable by our proposed approach. Experimental results show that our algorithms
work better on synthesis data and real world cause-effect pairs than the compared meth-
ods. The theoretical limit of our proposed method is that its performance is affected by
the sample size due to the estimation of higher order cumulant. Future work will focus
on developing a more robust measure in the case of small sample size. Using unbiased
estimation of cumulant will be an important issue of the future work.

Acknowledgments. The work described in this paper was partially supported by a
grant from the Research Grants Council of the Hong Kong Special Administration
Region, China.
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Abstract. We introduce the concepts of weak and strong asymmetries
in multivariate time series in the context of causal modeling. Weak asym-
metries are by definition differences in univariate properties of the data,
which are not necessarily related to causal relationships between time se-
ries. Nevertheless, they might still mislead (in particular Granger-) causal
analyses. We propose two general strategies to overcome the negative
influence of weak asymmetries in causal modeling. One is to assess the
confidence of causal predictions using the antisymmetry-symmetry ratio,
while the other one is based on comparing the result of a causal analysis
to that of an equivalent analysis of time-reversed data. We demonstrate
that Granger Causality applied to the SiSEC challenge on causal analysis
of simulated EEG data greatly benefits from our suggestions.

Keywords: Weak/strong asymmetries, ASR, time inversion, Granger
Causality, SiSEC challenge.

1 Introduction

Many measures of causal interaction (a. k. a. effective connectivity) are based on
the principle that the cause precedes the effect. However, it would be mislead-
ing to assume that temporal ordering is necessarily the dominant factor when
estimating causal relationship on the basis of the available techniques, such as
Granger causality. In fact, methods to estimate causal relations are based on
general asymmetries between two (or more) signals out of which the temporal
order is just one specific feature. Other asymmetries, like different signal-to-noise
ratios, different overall power or spectral details, may in general also affect causal
estimates depending on which method is used.

We here propose to distinguish between two different kinds of asymmetries.
We call the first type ‘strong asymmetries’ defined as asymmetries in the relation
between two (or more) signals like the temporal ordering. The second type is
called ‘weak asymmetry’ and denotes different univariate properties as given,
e. g., by the spectral densities. Weak asymmetries can hence be detected from
two signals without estimating any functional relationship between them whereas
a strong asymmetry is a property of that functional relationship.

F. Theis et al. (Eds.): LVA/ICA 2012, LNCS 7191, pp. 25–33, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Altough the concepts presented here (but not the test presented below) could
be generalized to other cases in a straight forward way we restrict ourselves in
the following to the discussion of stationary and Gaussian distributed data. Let
xj(t) be the signal in channel j at time t. Then the statistical properties are
completely defined by the cross-covariance matrices

C(p) =
〈
(x(t)− μ̂x) (x(t− p)− μ̂x)

�
〉
, (1)

where 〈·〉 denotes expectation. The process is now said to contain a strong asym-
metry if for some i, j and some p it is found that Ci,j(p) �= Cj,i(p), i. e. C(p) is
asymmetric for at least one p. The process is said to contain a weak asymmetry
if for some i, j and some p it is found that Ci,i(p) �= Cj,j(p), i. e. the diagonals
are not all equal. Since the power spectrum of the i-th signal is given by the
Fourier transform of Ci,i(p) the process contains a weak asymmetry if and only
if it contains signals with different power spectra.

Methods to detect causality are typically sensitive to both weak and strong
asymmetries. Weak asymmetries can be detected more robustly but can also
be considered as weaker evidence for causal relations. This can be illustrated if
data are instantaneous mixtures of independent sources. In this case all cross-
covariances are weighted sums of auto-covariances of the sources. Since auto-
covariances are always symmetric functions of the delay p and since generally
C(−p) = C�(p) it follows that C(p) = C�(p) for mixtures of independent
sources [4]. Hence, such mixtures can only contain weak asymmetries but not
strong ones.

For methods which are sensitive to both weak and strong asymmetries it is in
general difficult to tell on what property of the data an estimate of causal drive
is based. However, using empirical estimators of the cross spectra, it is possible
to measure the proportions of weak and strong asymmetries in a dataset. In this
paper, we demonstrate that a quantity called antisymmetry-symmetry-ratio is a
meaningful predictor of the success of the causal estimation for methods that are
knowingly affected by weak asymmetries. Moreover, we introduce a procedure
based on time inversion, by which it is possible to test whether weak asymmetries
are the dominant cause for a given connectivity estimate. We demonstrate that
our approaches dramatically reduce the number of wrong predictions of Granger
Causality (GC). As a result, GC’s performance in the 2011 Signal Separation
Evaluation Campaign (SiSEC) challenge on causal analysis of simulated EEG
data is significantly improved. Our approaches can be regarded as sanity checks
which are applicable in any causal analysis testing temporal delays between
driver and receiver.

The paper starts with introducing Granger Causality, the SiSEC challenge
dataset and the two novel approaches proposed to improve causal estimations
in the Methods section. The Results section confirms that these approaches
effectively reduce the number of wrong predictions of Granger Causality on the
challenge dataset. In the Discussion section, we elaborate on the applicability
of our approaches and draw connections to permutation testing, which is also
typically used in conjunction with Granger-causal measures.
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2 Methods

2.1 SISEC Challenge Simulated EEG Dataset

To demonstrate our ideas we consider a set of simulated EEG data, which is
part of the 2011 Signal Separation Evaluation Campaign. The data consists of
1 000 examples of bivariate data for 6 000 time points. Each example is a super-
position of a signal (of interest) and noise. The causally-interacting signals are
constructed using a unidirectional bivariate autoregressive (AR) model of order
10 with (otherwise) random AR-parameters and uniformly distributed innova-
tions. The noise is constructed of three independent sources, generated with three
univariate AR-models with random parameters and uniformly distributed input,
which were instantaneously mixed into the two sensors with a random mixing
matrix. The relative strength of noise and signal (i. e. signal-to-noise ratio, SNR)
was set randomly. The task of the challenge is to determine the direction of the
causal interaction. One point is awarded for every correct prediction, while ev-
ery wrong prediction causes a penalty of -10 points. If no prediction is given
for a dataset, this results in 0 points. The maximum score attainable is 1 000
points, while the minimum score (considering that predictors with less than 50%
accuracy can be improved by sign-flipping) is -4 500 points.

The simulation addresses a conceptual problem of EEG data, namely that the
signals of interest are superimposed by mixed noise. However, the actual spectra
can be quite different from real EEG data. Volume conduction (i. e., mixing of
the signals of interest), which is typically also observed in EEG datasets and
poses serious challenges on its own [2], is omitted here in order to facilitate
an objective evaluation. We use Matlab code provided by the organizers of the
challenge to generate 1 000 new instances of the problem with known directions
of causal flow.

2.2 Granger Causality

The multivariate AR (MVAR) model is given by

x(t) =

P∑
p=1

B(p)x(t− p) + ε(t) , (2)

where B(p) are matrices describing the time-delayed influences of x(t − τ) on
x(t). Notably, the off-diagonal parts Bi,j(p), i �= j describe time-lagged influences
between different time series. Granger Causality [1] involves fitting a multivariate
AR model for the full set x{1,...,M} = x, as well as for the reduced set x{1,...,M}\{i}
of available time series, whereM = 2 here. Denoting the prediction errors of the
full model by εfull and those of the reduced model by ε\i, the Granger score GC
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describing the influence of xi on xj is defined as the log-ratio of the mean-squared
errors (MSE) of the two models with respect to xj . i. e.,

GCi,j = log

⎛⎜⎝∑T
t=P+1

[
εfullj (t)

]2
∑T

t=P+1

[
ε
\i
j (t)

]2
⎞⎟⎠ . (3)

This definition, which is based on the ratio of prediction errors, is independent
of the scale of the time series xi and xj . However, as has been demonstrated in
[5], [6], it is influenced by asymmetries in the signal-to-noise ratio.

2.3 Exploiting Statistical Characterics of Non-/interacting Signals
for Assessing the Reliability Causal Predictions

Due to additive noise and (in our case) innovation noise introduced by AR mod-
eling, cross-covariances of realistic measurements are never exactly symmetric
nor are they exactly antisymmetric. Nevertheless, the amount of symmetric vs.
antisymmetric cross-covariance contained in a dataset provides important infor-
mation about the SNR and hence how difficult the problem of estimating the
causal direction is. We propose to use an index called antisymmetry-symmetry
ratio (ASR) defined as

ASR = log

⎛⎝
∥∥∥(Ĉ(1)− Ĉ�(1), . . . , Ĉ(P )− Ĉ�(P )

)∥∥∥
F∥∥∥(Ĉ(1) + Ĉ�(1), . . . , Ĉ(P ) + Ĉ�(P )

)∥∥∥
F

⎞⎠ (4)

for quantifying the confidence in a given causal estimation, where (A1, . . . , AP ) is
the horizontal concatenation of the matrices A1, . . . , AP , AF denotes the Frobe-
nius norm (sum of squared entries) of a matrix and Ĉ(p) are empirical estimates
of the cross-covariance matrices. The higher the ASR, the lower the proportion of
(potentially misguiding) signal parts with symmetric cross-covariance is. Hence,
one strategy to avoid false predictions in Granger- (and other) causal analyses
is to evaluate only datasets characterized by high ASR.

2.4 A Test for Assessing the Time-Lagged Nature of Interactions

As a second simple test to distinguish weak from strong asymmetries we here
suggest to compare the specific result of a causal analysis with the outcome of
the method applied on time-reversed signals. This corresponds to the general
intuitive idea that when all the signals are reversed in time, the direction of
information flow should also reverse. More specifically, if temporal order is cru-
cial to tell a driver from recipient the result can be expected to be reverted if
the temporal order is reverted. The mathematical basis for this is the simple
observation that the cross-covariance for the time inverted signals, say C̃(p), is
given as

C̃(p) = C(−p) = C�(p) (5)
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implying that time inversion inverts all strong asymmetries but none of the weak
asymmetries. If now a specific measure is essentially identical for original and
time inverted signals we conclude that the causal estimate in that specific case
is based only on weak asymmetry. To avoid estimation biases introduced by
weak asymmetries, one may therefore require that a causality measure delivers
significant and opposing flows on original and time-reversed signals. Alterna-
tively, one may require that the difference of the results obtained on original
and time-reversed signals is significant.

2.5 Experiments

As baselines for the numerical evaluation, we apply Granger Causality as well
as the Phase-slope Index (PSI) [5] to all 1 000 datasets and compute the respec-
tive score according to the rules of the SiSEC challenge. Granger Causality is
calculated using the true model order P = 10. The Phase-slope Index is calcu-
lated using the authors’ implementation1 in a wide-band on segments of length
N = 100. For both methods, net flow, i. e. the difference between the flows
in both directions is assessed. Standard deviations of the methods’ results are
estimated using the jackknife method. Standardized results with absolute val-
ues greater than 2 are considered significantly different from zero. Insignificant
results are not reported, i. e. lead to zero points in the evaluation. The whole
procedure is repeated 100 times for different realizations of the 1 000 datasets to
compute average challenge scores and confidence intervals.

The idea introduced in subsection 2.3 is implemented by ordering the datasets
according to their ASR (calculated with P = 30), and evaluating the competi-
tion score attained when only the first K datasets with highest ASR are ana-
lyzed. That is, even significant results might be discarded, if the ASR is low. We
consider three additional variants of GC, in which results are reported only if
additional restrictions are met. The first variant, ‘GC inv both’ reports a causal
net flow only if it is significant, and if the net flow on time-reversed data points to
the opposite direction and is also significant. The variant ‘GC inv diff’ requires
that the difference of the net flows estimated from original and time-reversed
data is significantly different from zero. Finally, we compare time inversion to
general random permutations of the samples (using the same permutation for
all channel) according to the ‘difference’ approach. The resulting procedure is
denoted by ‘GC perm diff’.

3 Results

Figure 1 illustrates that interacting signals and mixed independent noise are
characterized by different proportions of symmetric and antisymmetric parts in
their cross-covariances. The upper-left plot depicts the log-norms of symmetric
and antisymmetric cross-covariances of normalized signal and noise time series
as a scatter plot, while the upper right plot depicts the respective ASR. In both

1 http://ml.cs.tu-berlin.de/causality/

http://ml.cs.tu-berlin.de/causality/
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plots, signal and noise are highly separable. In the lower left plot, the ASR of the
observation is plotted against the signal-to-noise ratio. Apparently, there exists
a quasi-linear functional relationship between the two, which is the basis of our
idea to use the ASR as an indicator for the difficulty of causal predictions.

Figure 2 summarizes the results of the numerical evaluation of the various
causal prediction strategies according to the rules of the SiSEC challenge. For
all methods considered, the challenge score is plotted as a function of the num-
ber of datasets analyzed (starting from datasets with highest ASR). The scores
depicted on the very right hence correspond to the standard situation that all
1 000 datasets are analyzed. The scores obtained by the six contributors of the
SiSec challenge are marked by black horizontal bars.

As in previous analyses [6], PSI outperforms Granger Causality having a total
score of 593±3 points compared to −438±11 points after evaluation of all 1 000
datasets. However, as the plot also strikingly shows, the inferior performance
of GC is a result of a huge number of false predictions predominantly made
on data with low ASR. Hence, by avoiding decisions on low-ASR data, GC’s
score increases dramatically with the maximum of 384 ± 4 points reached if
only the 539 datasets with highest ASR are analyzed. Note that this score is
not anymore dramatically worse than the score obtained by PSI for the same
amount of data, which is 485±1 points. All three alternative variants of Granger
Causality perform better than the conventional GC strategy with scores of 353±2
points, 437 ± 5 points and 79 ± 4 points attained for ‘GC inv both’, ‘GC inv
diff’ and ‘GC perm diff’, respectively when all datasets are analyzed. Note that
this means that both ‘GC inv both’ and ‘GC inv diff’ outperform the winning
contribution of the SiSec challenge, which achieved a score of 252 points. At
the same time, the difference between the score attained when analyzing all
1 000 datasets and the maximal score attained when analyzing fewer datasets is
dramatically reduced. This difference is 2 ± 1 points for ‘GC inv both’, 36 ± 2
points for ‘GC inv diff’ and 116±4 points for ‘GC perm diff’, which is much closer
to the value of 11±1 points measured for PSI than to the value of 841±10 points
measured for conventional GC. Hence, all three proposed variants can be seen
as robustifications of conventional GC, which prevent decisions that are solely
based on weak asymmetries. Among the three proposed strategies, ‘GC inv diff’
performs best with scores that are competitive to those attained by PSI, while
‘GC perm diff’ performs worst. Note that the curve of ‘GC inv diff’ is located
strictly above the curve of ‘GC’, which means that the additional restriction
imposed by the time inversion causes no loss in performance for high-ASR data.

4 Discussion

Our results confirm that the proposed strategies drastically reduce the number
of false predictions for methods that are prone to be dominated by weak asym-
metries in the data such as Granger Causality. While for conventional Granger
Causality the inclusion of the ASR as an additional criterion guiding the pre-
diction is highly benefical, this is less helpful for modified variants that take
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Fig. 1. Upper left: characterization of interacting signals and mixed independent noise
by means of the log-norms of the symmetric and antisymmmetric parts of the cross-
covariance matrices. Upper right: separation of signal and noise by means of the
antisymmetry-symmetry ratio (ASR). Lower left: approximately linear relationship be-
tween the ASR of the observations and the signal-to-noise ratio (SNR).

the results obtained on time-reversed (or permuted) data into account. These
modifications make GC behave more similarly to PSI, which is itself robust to
many weak asymmetries by construction and in particular rather unaffected by
dominant symmetric cross-covariances as indicated by low ASR. The choice of
the ASR threshold remains an open problem, which is outside the scope of this
paper. Empirical strategies to adjust the threshold are, however, conceivable.

Notably, the idea of performing pairwise testing of results obtained on original
and time-reversed signals is a special case of permutation testing, as proposed,
for example, by [3] in the context of Granger-causal analysis of EEG data us-
ing the directed transfer function (DTF). Both approaches have in common
that the reordered data shares certain weak asymmetries with the original data,
which are likely to cancel out in pairwise comparisons. However, time-reversed
data additionally contains strong asymmetries in the opposite direction, which
increases the statistical power of the comparison of original and time-reversed
data. Consequently, our empirical results indicate that time inversion outper-
forms permutation testing by far and should be a viable alternative also when
using DTF. Interestingly, PSI exactly flips its sign (direction) upon time inver-
sion, for which reason pairwise testing against time-reversed data cannot be used
to improve PSI.
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Fig. 2. Score according to the rules of the Signal Separation Evaluation Campaign
(SiSEC) 2011 challenge on causal analysis of simulated EEG data as a function of
the number of datasets analyzed for the Phase-slope Index (PSI) and different vari-
ants of Granger Causality (GC). Confidence intervals are indicated by linewidths. GC:
original approach, requiring significant net flow. GC inv both: improved approach, re-
quiring significant net flow and significant opposing net flow on time-reversed data. GC
inv diff: improved approach, requiring significantly different net flows on original and
time-reversed data. GC perm diff: improved approach, requiring significantly different
net flows on original and temporally permuted data. Datasets are ordered by their
antisymmetry-symmetry ratio (ASR) to illustrate that the analysis of datasets with
low ASR with conventional Granger Causality is error-prone.

5 Conclusion

We proposed two strategies for robustifying Granger-causal analyses, which
boost its performance in the SiSEC 2011 challenge.
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K.R.: Robustly estimating the flow direction of information in complex physical
systems. Phys. Rev. Lett. 100, 234101 (2008)
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Abstract. Non-negative spectrogram factorization algorithms such as
probabilistic latent component analysis (PLCA) have been shown to be
quite powerful for source separation. When training data for all of the
sources are available, it is trivial to learn their dictionaries beforehand
and perform supervised source separation in an online fashion. However,
in many real-world scenarios (e.g. speech denoising), training data for one
of the sources can be hard to obtain beforehand (e.g. speech). In these
cases, we need to perform semi-supervised source separation and learn a
dictionary for that source during the separation process. Existing semi-
supervised separation approaches are generally offline, i.e. they need to
access the entire mixture when updating the dictionary. In this paper,
we propose an online approach to adaptively learn this dictionary and
separate the mixture over time. This enables us to perform online semi-
supervised separation for real-time applications. We demonstrate this
approach on real-time speech denoising.

1 Introduction

In recent years, non-negative matrix factorization (NMF) and its probabilistic
counterparts such as probabilistic latent component analysis (PLCA) have been
widely used for source separation [1]. The basic idea is to represent the magnitude
spectrum of each time frame of the mixture signal as a linear combination of
dictionary elements from source dictionaries. In the language of PLCA, for a
sound mixture of two sources, this can be written as:

Pt(f) ≈
∑

z∈S1
⋃S2

P (f |z)Pt(z) for t = 1, · · · , T (1)

where T is the total number of frames; Pt(f) is the normalized magnitude spec-
trum of the t-th frame of the mixture; P (f |z) for z ∈ S1 and z ∈ S2 represent the
elements (analogous to basis vectors) of the dictionaries of source 1 and source
2 respectively. Pt(z) represents the activation weights of the different dictionary
elements at time t. All these distributions are discrete and nonnegative.

� This work was performed while interning at Adobe Systems Inc.
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Given a mixture spectrogram, we can estimate the dictionary elements and
activation weights using the expectation–maximization (EM) algorithm. The
source spectra in the t-th frame can then be reconstructed as

∑
z∈S1

P (f |z)Pt(z)
and

∑
z∈S2

P (f |z)Pt(z), respectively. This is unfortunately a highly undercon-
strained problem and rarely leads to useful parameter estimates. One way to
address this issue is to perform supervised source separation [1], in which we
first learn the dictionaries for both sources from their isolated training data.
Then in the separation stage, we fix these dictionaries and only the estimate the
activation weights, from which we can reconstruct the spectra of each source.

However, in a lot of real-world problems, training data for one source might be
hard to obtain beforehand. For example, in the application of speech denoising,
we want to separate speech from noise. It is relatively easy to obtain training data
for noise, but hard for speech. In these cases, we need to perform semi-supervised
source separation [1], where we first learn the dictionary for one source (e.g.
noise) from its training data beforehand, and then learn the dictionary for the
other source (e.g. speech) in addition to the activation weights of both sources
from the mixture. Finally, separation can be performed.

For supervised separation, the algorithm in [1] is intrinsically online, since
the activation weights in different frames are estimated independently. For semi-
supervised separation, however, the algorithm in [1] needs to access the entire
mixture to learn the dictionary for the un-pretrained source, hence is offline.

In recent years, researchers have proposed several online NMF algorithms for
dictionary learning in different applications (e.g. dictionary learning for image
databases [2], document clustering [3], audio reconstruction [4]). The idea is to
learn a dictionary to well explain the entire input data, after processing all the
inputs, in an online fashion. However, we argue that these algorithms are not
suitable for real-time semi-supervised source separation. The reason is that these
algorithms only care about the final learned dictionary, after processing all of the
input frames. They do not care about the intermediate estimates of the learned
dictionary during processing the input frames. Therefore, the dictionary learned
after receiving the current frame is not necessarily good enough to explain that
frame and to separate it. In fact, processing all of the input frames once is often
not enough and it has been shown that cycling over the input data set several
times and randomly permuting samples at each cycle [2,3,4] improves the results.

In this paper, we propose an online PLCA algorithm tailored for real-time
semi-supervised source separation. We learn the dictionary for the source that
does not have training data, from the mixture, and apply it to separate the
mixture, in an online fashion. When a new mixture frame comes in, the dictionary
is adaptively updated to explain the current frame instead of explaining the
entire mixture frames. In this way, we can use a much smaller-sized dictionary
compared to the offline PLCA. We show that the performance of the proposed
algorithm is almost as good as that of the offline PLCA algorithm (numerically
equivalent to offline NMF using KL divergence), but significantly better than an
existing online NMF algorithm for this application.
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2 Proposed Algorithm

For the real-time source separation problem of two sources, assuming that some
isolated training excerpts of source 1 (S1) are available beforehand and are long
enough to capture S1’s characteristics, we can follow the semi-supervised source
separation paradigm presented in Section 11. We first learn a dictionary of S1
from the spectrogram of its training excerpts beforehand. Then during separa-
tion, as each incoming mixture frame arrives, we learn and update the dictionary
of S2 using the proposed online PLCA algorithm, with S1’s dictionary fixed.

2.1 Online Separation and Dictionary Learning

In order to separate the t-th frame of the mixture signal, we need to decompose
its magnitude spectrum using Eq. (1). Here, P (f |z) for z ∈ S1 is the pre-learned
dictionary of S1 from training excerpts, and is kept fixed in this decomposition.
We need to estimate the dictionary P (f |z) for z ∈ S2 and activation weights
Pt(z) for all z, such that the decomposition is as accurate as possible, i.e.

argmin
P (f |z) for z∈S2, Pt(z) for all z

dKL(Pt(f)||Qt(f)) (2)

where dKL is the KL divergence between two distributions. Pt(f) is the nor-
malized mixture spectrum at time t and Qt(f) is the reconstructed mixture
spectrum i.e. the LHS and RHS of Eq. (1).

However, this is a highly unconstrained problem, since the number of param-
eters to estimate is much more than the number of equations (i.e. the number of
frequency bins in Eq. (1)), even if there is only one element in S2’s dictionary.
A trivial solution that makes the KL divergence in Eq. (2) equal to zero is to
use only one dictionary element in S2, such that the dictionary element is the
same as the mixture and the corresponding activation weight equals to one (with
all other weights being zero). In practice, this trivial solution is almost always
achieved, essentially making the separated source 2, the same as the mixture.

We therefore need to constrain the dictionary of source 2 to avoid this overfit-
ting. We do this by requiring S2’s dictionary to not only explain S2’s spectrum
in the current frame, but also those in a number of previous frames. We denote
this set of frames as B, representing a running buffer. We update S2’s dictionary
in every frame using B. We also set the size of S2’s dictionary to be much smaller
than the size of B. This avoids the overfitting because a compact dictionary will
now be used to explain a much larger number of frames.

Clearly these buffer frames need to contain S2’s spectra, otherwise the dictio-
nary will be incorrectly learned. We will describe how to determine if a mixture
frame contains S2’s spectrum or not in Section 2.2. Suppose we can identify the
previous mixture frames that contain S2’s spectra, we need to decide which ones
to include in B. On one hand, S2’s spectra in the buffer frames need to be dif-
ferent from those in the current frame, so that the learned S2’s dictionary does

1 It is straightforward to extend this to N sources if isolated training excerpts for N-1
sources are available.
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not overfit the mixture spectra in the current frame. On the other hand, we do
not want S2’s spectra in the buffer frames to be too different from those in the
current frame so that we have a more “localized” and compact dictionary. In
the real-time source separation problem, it is intuitive to use the L most recent
identified mixture frames to balance the tradeoff, as they are not the same as
the current frame but tend to be similar. Based on this, the objective becomes:

argmin
P (f |z) for z∈S2, Pt(z) for all z

dKL(Pt(f)||Qt(f)) +
α

L

∑
s∈B

dKL(Ps(f)||Qs(f)) (3)

where α is the tradeoff between the original objective (good reconstruction of the
current frame) and the added constraint (good reconstruction of buffer frames).

With this new objective, we learn S2’s dictionary and the current frame’s
activation weights. However, we fix the activation weights of the buffer frames
as the values learned when separating them. There are two advantages of fixing
them than updating them: First, it makes the algorithm faster. Second, it im-
poses a heavier constraint on S2’s dictionary that the newly learned dictionary
must not deviate from those learned in the buffer frames too much. We use the
EM algorithm to optimize Eq. (3), which is described in Algorithm 1.

Algorithm 1. Single Frame Dictionary Learning

Require: B (buffer frames set), Vfs for s ∈ B⋃{t} (normalized magnitude spectra of
buffer frames and current frame, each frame becomes a probability distribution),
P (f |z) for z ∈ S1 (S1’s dictionary), P (f |z) for z ∈ S2 (initialization of S2’s dic-
tionary), Ps(z) for s ∈ B⋃{t} and z ∈ S1

⋃S2 (input activation weights of buffer
frames and current frame), α (tradeoff between reconstruction of buffer frames and
current frame), M (number of EM iterations).

1: for i = 1 to M do
2: E Step:

Ps(z|f) ← Ps(z)P (f |z)∑
z∈S1

⋃S2
Ps(z)P (f |z) , for s ∈ B

⋃
{t}. (4)

3: M Step:

φ(f |z) ← VftPt(z|f) + α

|B|
∑
s∈B

VfsPs(z|f), for z ∈ S2, (5)

φt(z) ←
∑
f

VftPt(z|f), for z ∈ S1

⋃
S2. (6)

Normalize φ(f |z) and φt(z) to get P (f |z) and Pt(z) respectively.
4: end for
5: return learned dictionary P (f |z) for z ∈ S2 and activation weights Pt(z) for

z ∈ S1

⋃S2 of the current frame t.

2.2 Mixture Frame Classification

The problem that has not been addressed in Section 2.1 is how to determine
whether a mixture frame contains S2’s spectrum or not. For a mixture of two



38 Z. Duan, G.J. Mysore, and P. Smaragdis

sound sources, we can address this by decomposing the magnitude spectrum of
the mixture frame using only the learned S1’s dictionary as follows:

Pt(f) ≈
∑
z∈S1

P (f |z)Pt(z) (7)

Since the dictionary is fixed, we learn only the activation weights. If the KL
divergence between Pt(f) and the RHS is smaller than a threshold θKL, it means
the mixture spectrum can be well explained by only using S1’s dictionary, hence
S2’s spectrum is not likely to be present. Otherwise, S1’s dictionary is not enough
to explain the spectrum, hence S2’s spectrum is likely to be present.

We learn the threshold θKL by decomposing S1’s training excerpts again, with
its pre-learned dictionary. We calculate the mean and standard deviation of the
KL divergences of all the frames, and set the threshold as θKL = mean+ std.

If the current frame is classified as not containing S2, then we do not include it
in the running buffer B. However, just in case there is some amount of S2 in the
frame, we still perform supervised separation on the frame using the pre-learned
dictionary of S1 and the previously updated dictionary of S2. If the current frame
is classified as containing S2, we run Algorithm 1 on it to update S2’s dictionary
and separate the frame. After separation, we include this frame into the running
buffer B for future use.

2.3 Algorithm Summary

The whole online semi-supervised source separation algorithm is summarized
in Algorithm 2. Note that in Line 6 we make a “warm” initialization of S2’s
dictionary using the one learned in the previous frame. This makes Algorithm 1
converge fast, as spectra in successive frames do not often change much.

3 Experiments

We test the proposed online semi-supervised source separation algorithm for
real-time speech denoising. The two sources are therefore noise and speech. We
learn the dictionary of noise from its training excerpts beforehand2, and learn
and update the dictionary of speech during real-time separation.

We use clean speech files and clean noise files to construct a noisy speech
dataset for our experiments. For clean speech files, we use the full speech cor-
pus in the NOIZEUS dataset3. This corpus has thirty short English sentences
(each about three seconds long) spoken by three female and three male speak-
ers. We concatenate sentences from the same speaker into one long sentence, and
therefore obtain six long sentences, each of which is about fifteen seconds long.

For clean noise files, we collected ten different types of noise, including birds,
casino, cicadas, computer keyboard, eating chips, frogs, jungle, machine guns,

2 Training excerpts for noise is relatively easy to obtain in applications such as telecon-
ferencing, since a few seconds at the beginning in which no one is talking are likely
to be long enough to capture the noise characteristics throughout the teleconference.

3 http://www.utdallas.edu/~loizou/speech/noizeus/

http://www.utdallas.edu/~loizou/speech/noizeus/
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Algorithm 2. Online Semi-supervised Source Separation

Require: Vft for t = 1, · · · , T (magnitude spectra of the mixture signal), P (f |z)
for z ∈ S1 (S1’s dictionary), P (0)(f |z) for z ∈ S2 (random initialization of S2’s
dictionary), θKL (threshold to classify a mixture frame), B (buffer frames set).

1: for t = 1 to T do
2: Decompose normalized magnitude spectrum Pt(f) =

Vft∑
f Vft

by Eq. (7).

3: if dKL(Pt(f)||∑z∈S1
P (f |z)Pt(z)) < θKL then

4: Supervised separation using P (f |z) for z ∈ S1 and P (t−1)(f |z) for z ∈ S2 and
P (t)(f |z) ← P (t−1)(f |z).

5: else
6: Learn S2’s dictionary P (t)(f |z) for z ∈ S2 and activation weights Pt(z) using

Algorithm 1, with P (t)(f |z) for z ∈ S2 initialized as P (t−1)(f |z).
7: Set S2’s magnitude spectrum as:

Vft

∑
z∈S2

P (t)(f |z)Pt(z)∑
z∈S1

P (f |z)Pt(z) +
∑

z∈S2
P (t)(f |z)Pt(z)

. (8)

8: Replace the oldest frame in B with the t-th frame.
9: end if
10: end for
11: return separated magnitude spectra of the current frame.

motorcycles and ocean. Each noise file is at least one minute long. The first
twenty seconds are used to learn the noise dictionary. The rest are used to
construct the noisy speech files.

We generate a noisy speech file by adding a clean speech file and a random
portion of a clean noise file with one of the following signal-to-noise ratios (SNR):
-10dB, -5dB, 0dB, 5dB and 10dB. By exploring all combinations of speech, noise
and SNRs, we generate a total of 300 noisy speech files, each of which is about
fifteen seconds long. The sampling rate of all the files is 16kHz.

For comparison, we run offline semi-supervised PLCA [1] (denoted as “PLCA”)
on this dataset. We segment the mixture into frames of 64ms long and 48ms
overlap. We set the speech dictionary size as 20, since we find it is enough to
get a perceptually good reconstruction of the clean speech files. We use differ-
ent sizes of the noise dictionary for different noise types, due to their different
characteristics and inherent complexities. We set this value by choosing from
{1, 2, 5, 10, 20, 50, 100, 200} the size that achieves the best denoising results in
the condition of SNR of 0dB. The number of EM iterations is set to 100 as it
always converged in that many iterations in our experiments.

We also implement an existing online NMF algorithm [4] (denoted as “O-IS-
NMF”), which is designed for audio reconstruction. We apply it to this dataset
in the semi-supervised paradigm. We use the same frame sizes and dictionary
sizes as PLCA. As suggested in [4], we set the mini-batch parameter β to 1 to
avoid inherent delay, and the scaling factor ρ to 1 to match β.

For the proposed algorithm, we use the same frame sizes and noise dictionary
sizes as PLCA. We set the buffer size L as 60, which is about one second long.
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Since the speech dictionary is only supposed to explain the speech spectra in
the current frame and buffer frames, we can use a much smaller size of speech
dictionary. We set this value to 7 (opposed to 20 in PLCA), since we find that the
average KL divergence in decomposing one second of speech spectra with seven
dictionary elements is about the same as that of the average KL divergence in
decomposing fifteen seconds of speech spectra with twenty dictionary elements.
We choose the tradeoff factor α for each different noise, from the set {1, 2, · · · , 20}
as the one that achieves the best denoising results in the condition of SNR of 0dB.
We run only 20 EM iterations in processing each frame, which we find almost
assures convergence due to the “warm” initialization as described in Section 2.3.
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Fig. 1. Average performances on all types of noise of PLCA [1] (blue solid line), O-IS-
NMF [4] (black dotted line) and the proposed algorithm (red dash line)

We use the BSS-EVALmetrics [5] to evaluate the separated speech files. Figure
1 shows the average results over all noise types and speakers, for each algorithm
and SNR condition. Source-to-interference ratio (SIR) reflects noise suppression,
source-to-artifacts ratio (SAR) reflects the artifacts introduced by the separation
process, and source-to-distortion ratio (SDR) reflects the overall separation per-
formance. It can be seen that for all the three metrics, the proposed algorithms
achieves almost as good of a performance as PLCA. This is a promising result,
since the proposed algorithm is an online algorithm and it uses a much smaller
speech dictionary than PLCA. The performance of O-IS-NMF is significantly
worse than PLCA and the proposed algorithm. As argued in Section 1, we think
this algorithm is not suitable for real-time source separation.

Table 1 presents the performances of PLCA and the proposed algorithm for
different noise types in the SNR condition of 0dB. The noise-specific parameters
for the two algorithms are also presented. It can be seen that for different noise
types, the results vary significantly. This is due to the inherent complexity of
the noise and whether the training data can cover the noise characteristics or
not. For some noise, like birds, cicadas and frogs, the performance of PLCA is
significantly better than the proposed algorithm. For other noise like casino,
computer keyboard, machine guns and ocean, the proposed algorithm achieves
similar results to PLCA. The Kn parameter does not change much, except for
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Table 1. Performances and noise-specific parameters for different noise types in the
SNR condition of 0dB. Kn is the noise dictionary size and α is the tradeoff factor.

SIR SAR SDR
Noise type PLCA Proposed PLCA Proposed PLCA Proposed Kn α

birds 20.0 18.4 10.7 8.9 10.1 8.3 20 14
casino 5.3 7.5 8.6 7.2 3.2 3.9 10 13
cicadas 29.9 18.1 14.8 10.5 14.7 9.7 200 12

computer keyboard 18.5 12.2 8.9 10.2 8.3 7.9 20 3
eating chips 14.0 13.3 8.9 7.0 7.3 5.7 20 13

frogs 11.9 10.9 9.3 7.2 7.1 5.0 10 13
jungle 8.5 5.3 5.6 7.0 3.2 2.5 20 8

machine guns 19.3 16.0 11.8 11.5 10.9 10.0 10 2
motorcycles 10.2 8.0 7.9 7.0 5.6 4.5 10 10

ocean 6.8 7.4 8.8 8.0 4.3 4.3 10 10

the cicada noise. The α parameter is usually around 12, with the exception of
computer keyboard and machine gun noise. Since these two noises are pulse-like
noise with relatively simple spectra, the optimal α values are much smaller to
have a weaker constraint.

The Matlab implementation of the proposed algorithms takes about 25 sec-
onds to denoise each noisy speech file (which is about 15 seconds long), in a
modern laptop computer with a 4-core 2.13GHz CPU. It would be easy to make
it work in real-time in a C++ implementation or in a more advanced computer.

4 Conclusions

In this paper, we presented an online PLCA algorithm for real-time semi-
supervised source separation. For the real-time speech denoising application, we
showed that it achieves almost as good results as offline PLCA and significantly
better results than an existing online NMF algorithm.
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Abstract. Despite an increased interest in complex independent com-
ponent analysis (ICA) during the last two decades, a closed-form expres-
sion for the Cramér-Rao bound (CRB) of the complex ICA problem has
not yet been established. In this paper, we fill this gap for the noiseless
case and circular sources. The CRB depends on the distributions of the
sources only through two characteristic values which can be easily calcu-
lated. In addition, we study the CRB for the family of circular complex
generalized Gaussian distributions (GGD) in more detail and compare
it to simulation results using several ICA estimators.

Keywords: Cramér-Rao bound, Fisher Information, independent com-
ponent analysis, blind source separation, circular complex distribution.

1 Introduction

Independent Component Analysis (ICA) is a relatively recent signal processing
method to extract unobservable source signals or independent components from
their observed linear mixtures. We assume a linear square noiseless mixing model

x = As (1)

where x ∈ CN are N linear combinations of the N source signals s ∈ CN . We
make the following assumptions:

A1. The mixing matrix A ∈ CN×N is deterministic and invertible.
A2. s = [s1, · · · , sN ]T ∈ CN are N independent random variables with zero

mean and unit variance (after scaling the rows of A suitably). The proba-
bility density functions (pdfs) pi(si) of si can be different. We assume the
sources to be circular, i.e. pi(si) = pi(sie

jα) ∀α ∈ R. Hence E[s2i ] = 0.
Furthermore, pi(si) is continuously differentiable with respect to si and s

∗
i

in the sense of Wirtinger derivatives [1] which will be introduced in Sect. 2.
The expectations in (15) and (20) exist.

The task of ICA is to demix the signals x by a demixing matrix W ∈ CN×N

y = Wx = WAs (2)

F. Theis et al. (Eds.): LVA/ICA 2012, LNCS 7191, pp. 42–49, 2012.
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such that y is ”as close to s” as possible according to some metric. The ideal
solution for W is A−1 neglecting scaling, phase and permutation ambiguity [2].

It is very useful, to have a lower bound for the variance of estimation of W.
The Cramér-Rao bound (CRB) provides a lower bound on the covariance matrix
of any unbiased estimator of a parameter vector. Although much research in the
field of ICA has been undertaken, a closed-form expression for the CRB of the
real instantaneous ICA problem has been derived only recently [3, 4]. However,
in many practical applications, such as telecommunication or audio processing in
frequency domain, the signals are complex. Although many different algorithms
for complex ICA have been proposed [5–9], the CRB for this problem has not yet
been established. In this paper, we fill this gap by deriving closed-form expres-
sions for the CRB of the vectorized parameter θ = vec(WT ) and for the CRB
of ϑ = vec((WA)T ). Due to the intrinsic phase ambiguity in circular complex
ICA (cf. A2.: pi(si) = pi(sie

jα) ∀α ∈ R), we can only derive a CRB with the
constraint [WA]ii ∈ R. The CRB depends on the distributions of the sources
only through two scalars defined in (15) which can be easily calculated.

2 Prerequisites

2.1 Complex Functions and Complex Random Vectors

Define the partial derivative of a complex function g(θ) = u(α,β) + jv(α,β)
with respect to α = �[θ] as ∂g/∂α = ∂u/∂α + j∂v/∂α and with respect to
β = [θ] as ∂g/∂β = ∂u/∂β + j∂v/∂β. Then the complex partial differential
operators ∂/∂θ and ∂/∂θ∗ are defined as

∂g

∂θ
=

1

2

(
∂g

∂α
− j

∂g

∂β

)
,

∂g

∂θ∗ =
1

2

(
∂g

∂α
+ j

∂g

∂β

)
. (3)

These differential operators have first been introduced for real valued g by
Wirtinger [1]. As long as the real and imaginary part of a complex function
g are real-differentiable, the two Wirtinger derivatives in (3) also exist [10]. The
direction of steepest descent of a real function g(θ) = u(α,β) is given by ∂g

∂θ∗ and

not ∂g
∂θ [11]. The complex Jacobian matrix of a complex function g: CM → CN

is defined as the complex 2N × 2M matrix

Dg =

[
∂g
∂θ

∂g
∂θ∗(

∂g
∂θ∗

)∗ (
∂g
∂θ

)∗] , (4)

i.e. it is the augmented matrix of ∂g/∂θ and ∂g/∂θ∗. The covariance matrix of a
complex random vector x = xR+jxI ∈ CN is cov(x) =E

[
(x−E[x])(x−E[x])H

]
.

The pseudo-covariance matrix of x is pcov(x) =E
[
(x−E[x])(x−E[x])T

]
.

2.2 Cramér-Rao Bound for a Complex Parameter

We briefly review the CRB for complex parameters (see for example [12]) before
we derive the CRB for circular complex ICA. Assume that L observations of
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x are i.i.d. distributed having the pdf p(x; θ) with parameter vector θ. The
complex Fisher Information Matrix (FIM) of complex parameter θ is defined as

Jθ =

[
Iθ Pθ

P∗
θ I∗θ

]
, (5)

where Iθ = E
[
∇θ∗ log p(x; θ){∇θ∗ log p(x; θ)}H

]
is called the information ma-

trix and Pθ = E
[
∇θ∗ log p(x; θ){∇θ∗ log p(x; θ)}T

]
the pseudo-information ma-

trix. Here ∇θ∗ log p(x; θ) = 1
2 (∇α log p(x; θ) + j∇β log p(x; θ)) is the column

gradient vector of log p(x; θ), i.e. [∂/∂θ∗1, · · · , ∂/∂θ∗N ]T log p(x; θ).
The inverse of the FIM of θ gives, under regularity conditions, the CRB of

the augmented covariance matrix of an unbiased estimator θ̂ of θ and hence[
cov(θ̂) pcov(θ̂)

pcov(θ̂)∗ cov(θ̂)∗

]
≥ L−1J−1

θ =
1

L

[
Iθ Pθ

P∗
θ I∗θ

]−1

. (6)

It holds cov(θ̂) ≥ L−1(Iθ −PθI−∗
θ P∗

θ)
−1 = L−1R−1

θ with Rθ = Iθ −PθI−∗
θ P∗

θ .
The CRB for a transformed vector ϑ = g(θ) is given by the right-hand-side of[

cov(ϑ̂) pcov(ϑ̂)

pcov(ϑ̂)∗ cov(ϑ̂)∗

]
≥ L−1DgJ

−1
θ DT

g . (7)

3 Derivation of Cramér-Rao Bound

In ICA, the parameter of interest is the demixing matrix W. We form the
parameter vector θ = vec(WT ) = [wT

1 , · · · ,wT
N ]T ∈ CN2

, where wi ∈ CN

are the row vectors of W. The operator vec(·) stacks the columns of its argu-
ment into one long column vector. The pdf of x = As is defined as p(x; θ) =

|det(W)|2
∏N

i=1 pi(wix), where pi(si) denotes the pdf of si and W = A−1. By
using matrix derivatives, we obtain

∂

∂WH
log p(x; θ) = A∗ − x∗ϕT (Wx) = A∗(I− sϕH(s))∗ (8)

where ϕ(s) = [ϕ1(s1), · · · , ϕN (sN )]T and ϕi(si) = − ∂
∂s∗i

log pi(si).

Since θ = vec(WT ), we get ∇θ∗ log p(x; θ) = vec
(

∂
∂WH log p(x; θ)

)
and

Iθ =
(
(I⊗A)M1(I⊗AH)

)∗
, Pθ =

(
(I⊗A)M2(I⊗AT )

)∗
, (9)

where M1 =E
[
vec{I− sϕH(s)}vec{I− sϕH(s)}H

]
, M2 =E

[
vec{...}vec{...}T

]
and ⊗ denotes the Kronecker product.

3.1 CRB for G = WA

For simplicity, we first derive the CRB for the transformed parameter ϑ =
vec((WA)T ) = (I ⊗ AT )θ. The covariance of ϑ̂ = vec((ŴA)T ) is given by

cov(ϑ̂) = (I⊗AT )cov(θ̂)(I⊗A∗) where θ̂ = vec(ŴT ). Hence it holds

cov(ϑ̂) ≥ L−1(I⊗AT )(Iθ − PθI−∗
θ P∗

θ)
−1(I⊗A∗) = L−1R−1

ϑ (10)

with Rϑ = (M1 −M2M
−∗
1 M∗

2)
∗.
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As shown in the appendix, Rϑ =
∑N

i=1

∑N
j=1

j �=i

(
κiκj−1

κj

)
Lii ⊗ Ljj , with κi =

E
[
|ϕi(si)|2

]
. Lii denotes an N ×N matrix with a 1 at the (i, i) position and 0’s

elsewhere. Rϑ is a diagonal matrix of rank N2 −N . The CRB for Gij yields

var(Ĝij) ≥
1

L

κj
κiκj − 1

i �= j (11)

where Ĝ = ŴA. Eq. (11) looks the same as in the real case [3, 4], but in the
complex case κi is defined using Wirtinger derivatives instead of real derivatives.

Due to the phase ambiguity in circular complex ICA, the Fisher information
for the diagonal elements Gii is 0 and hence their CRB does not exist. However,
we can constrain Gii to be real and derive the constrained CRB [13] for θ = Gii:
The constraint can be formulated as f(θ) = θ−θ∗ = 0. We then need to calculate

F(θ) =

[
∂f/∂θ ∂f/∂θ∗

∂f∗/∂θ ∂f∗/∂θ∗

]
=

[
1 −1
−1 1

]
and find an orthonormal 2× 1 matrix U

in the null-space of F(θ), i.e. FU = 0. We choose U = 1/
√
2
[
1 1
]T

. The CRB
for the constrained parameter θ = Gii then yields[

var(θ) pvar(θ)
pvar∗(θ) var(θ)

]
≥ 1

L
U

(
UH

[
Iθ Pθ

P∗
θ Iθ

]
U

)−1

UH =
1

4L(ηi − 1)

[
1 1
1 1

]
(12)

where Iθ = ηi − 1 = Pθ and ηi = E
[
|si|2|ϕi(si)|2

]
. The CRB in (12) is valid for

a phase-corrected Gii such that Gii ∈ R. Eq. (12) matches the real case [3, 4],
where var(Ĝij) ≥ L−1(η̄i − 1)−1 since ηi is defined using Wirtinger derivatives
instead of real derivatives and hence for the real case 4(ηi − 1) = η̄i − 1.

Performance of ICA is often measured using Ĝ and hence it can be directly
compared to (11), (12). The absolute values of the diagonal elements |Ĝii| should
be close to 1. They reflect how well we can estimate the power of each component.
The absolute values of the off-diagonal elements |Ĝij | should be close to 0 and
reflect how well we can suppress interfering components.

3.2 CRB for W

It holds vec(WT ) = θ = (I ⊗AT )−1ϑ = (I ⊗WT )ϑ since W = A−1. We can
estimate the rows ofW only up to an arbitrary phase for each row. We can derive
a CRB for the phase-correctedW, for which [WA]ii ∈ R: We use the CRB for the
constrained Gii (12) together with the CRB for Gij (11) to form the inverse FIM

for the constrainedG asR−1
ϑ =

∑N
i=1

1
4(ηi−1)Lii+

∑N
i=1

∑N
j=1

j �=i

(
κiκj−1

κj

)
Lii⊗Ljj .

The CRB for constrained W is then given by R−1
θ = (I ⊗WT )R−1

ϑ (I ⊗W∗)
and cov(θ̂) ≥ L−1R−1

θ .

4 Results for Generalized Gaussian Distribution (GGD)

A circular complex GGD with zero mean and variance E[|s|2] = 1 is given by
the pdf p(s, s∗) = cα

πΓ (1/c)exp (− [αss∗]c) [14], with α = (Γ (2/c))/(Γ (1/c)). Γ (·)
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(a) Varying shape parameter c, L = 1000
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(b) Varying sample size L, c = 0.5

Fig. 1. Comparison of performance of three ICA estimators with CRB

denotes the Gamma function. The shape parameter c > 0 varies the form of the
pdf from super-Gaussian (c < 1) to sub-Gaussian (c > 1). For c = 1, the pdf is
Gaussian. By integration in polar coordinates, we find κ, η and β in (15) and

(20) as κ = c2Γ (2/c)
Γ 2(1/c) , η = β = c+1. For the simulation study, we consider N = 3

identically distributed sources with random mixing matricesA with independent
uniform distributions for the real and imaginary parts of each entry (between -1
and 1). We conduct 100 experiments with differentA and different realizations of
the source signals and consider the following different ICA estimators: Complex
ML-ICA [7], adaptable complex maximization of nongaussianity (ACMN) [9]
and complex ICA by entropy bound minimization (ICA-EBM) [8]. We correct
for permutation ambiguity and then calculate the signal-to-interference ratio

(SIR) averaged over all N sources: SIR = 1
N

∑
i

(
E
[
|Gii|2

]
/
∑

j �=i E
[
|Gij |2

])
.

Fig. 1 (a) compares the SIR given by the CRB with the empirical SIR of the
different ICA estimators for varying shape parameter c and a sample size of
L = 1000. Since all sources are identically distributed, CRB(Gij) → ∞ and
SIR → 0 for c → 1 (Gaussian). In this case, ICA fails to separate the sources.
Clearly, the performance of complex ML-ICA is close to the CRB for a wide range
of the shape parameter c. ACMN outperforms ICA-EBM in most cases except for
strongly super-Gaussian sources: ACMN uses a GGD model and hence is better
suited for separating circular GGD sources. However, ACMN uses prewhitening
and then constrains the demixing matrix to be unitary which ICA-EBM does
not. Fig. 1 (b) studies the influence of sample size L on ICA performance for
c = 0.5. Again, complex ML-ICA performs the best as expected. Except for
small sample sizes, all algorithms come quite close to the CRB.

5 Conclusion

In this paper, we have derived the CRB for the noiseless ICA problem with cir-
cular complex sources. Due to the phase ambiguity in circular complex ICA, the
CRB for the diagonal elements of the demixing-mixing-matrix-productG = WA
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does not exist, but a constrained CRB with Gii ∈ R can be derived. Simulation
results with sources following a circular complex generalized Gaussian distribu-
tion have shown that for large enough sample size some ICA estimators can
achieve a signal-to-interference ratio close to that given by the CRB.

A Useful Matrix Algebra

Similarly to [4], we make use of some matrix algebra in the derivation of the
CRB. We briefly review the required properties here: Let Lij denote a N × N
matrix with a 1 at the (i, j) position and 0’s elsewhere. It is useful to note that

ALijA
T = aia

T
j , LijLkl = 0 for j �= k, LijLjl = Lil (13)

where ⊗ denotes the Kronecker product. We also note that any N2 ×N2 block
matrix A can be written using its N × N diagonal blocks A[i, i] and N × N
off-diagonal blocks A[i, j], i �= j as follows:

A =

N∑
i=1

Lii ⊗A[i, i] +

N∑
i=1

N∑
j=1

j �=i

Lij ⊗A[i, j]. (14)

B Some Steps in the Derivation of the CRB for G

The derivation of the CRB for G, proceeds in three steps: First, we calculate
M1 and M2. Then, we obtain Rϑ = (M1−M2M

−∗
1 M∗

2)
∗ and finally invert Rϑ.

Using E[sϕH(s)] = I, we can simplify M1 as

M1 = E
[
vec{I− sϕH(s)}vec{I− sϕH(s)}H

]
= Ω1 − vec{I}vec{I}H ,

where Ω1 = E
[
vec{sϕH(s)}vec{sϕH(s)}H

]
is a N2 × N2 block matrix. The

(i, i) block Ω1[i, i] = E
[
ssH |ϕi(si)|2

]
is diagonal since the components of s are

independent and zero mean. The diagonal elements Ω1[i, i](j,j) are given by

Ω1[i, i](j,j) =

{
E
[
|si|2|ϕi(si)|2

]
=: ηi i = j

E
[
|sj |2|ϕi(si)|2

]
= E

[
|ϕi(si)|2

]
=: κi i �= j

. (15)

κi and ηi are real since E[g(s)] with g(s) ∈ R is real. The (i, j) block Ω1[i, j] (i �=
j) can be calculated as Ω1[i, j] = E

[
ssHϕ∗

i (si)ϕj(sj)
]
. It has 1 at entry (i, j)

and 0 at entry (j, i), since

Ω1[i, j](i,j) = E
[
sis

∗
jϕ

∗
i (si)ϕj(sj)

]
= E [siϕ

∗
i (si)]E

[
s∗jϕj(sj)

]
= 1, (16)

Ω1[i, j](j,i) = E [s∗i sjϕ
∗
i (si)ϕj(sj)] = E [s∗iϕ

∗
i (si)]E [sjϕj(sj)] = 0. (17)

All other entries of Ω1[i, j] are zero since the components of s are independent
and zero mean. Using the matrix algebra from appendix A, we can write Ω1 as

Ω1 =

N∑
i=1

ηiLii ⊗ Lii +

N∑
i=1

N∑
j=1

j �=i

κiLii ⊗ Ljj +

N∑
i=1

N∑
j=1

j �=i

Lij ⊗ Lij . (18)
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Using vec{I}vec{I}H =
∑N

i=1

∑N
j=1

j �=i
Lij ⊗ Lij +

∑N
i=1 Lii ⊗ Lii, we get M1 as

M1 =

N∑
i=1

(ηi − 1)Lii ⊗ Lii +

N∑
i=1

N∑
j=1

j �=i

κiLii ⊗ Ljj . (19)

We note that M1 is a real diagonal matrix.
M2 can be calculated similarly. It holds:

M2 = E
[
vec{I− sϕH(s)}vec{I− sϕH(s)}T

]
= Ω2 − vec{I}vec{I}T ,

where Ω2 = E
[
vec{sϕH(s)}vec{sϕH(s)}T

]
is a N2 × N2 block matrix. The

(i, i) block Ω2[i, i] = E
[
ssT (ϕ∗

i (si))
2
]
is diagonal since the components of s are

independent and zero mean. The diagonal elements Ω2[i, i](j,j) are given by

Ω2[i, i](j,j) =

{
E
[
s2i (ϕ

∗
i (si))

2
]
=: βi i = j

E
[
s2j(ϕ

∗
i (si)|2

]
= E

[
s2j
]
E
[
(ϕ∗

i (si))
2
]
= 0 i �= j,

. (20)

since E
[
s2j
]
= 0. If si is circular, it can be shown that βi = ηi: For circular

s = sR + jsI , p(−sR, sI) = p(sR, sI), p(sR,−sI) = p(sR, sI) and p(sR, sI) =
g(s2R + s2I). Let f(r

2) = f(s2R + s2I) = log p(sR, sI). It holds

β =
1

4
E

[(
s2R + s2I

)(( ∂f

∂sR

)2

+

(
∂f

∂sI

)2
)]

,

η =
1

4
E

[(
s2R − s2I

)(( ∂f

∂sR

)2

−
(
∂f

∂sI

)2
)

+ 4sRsI

(
∂f

∂sR

)(
∂f

∂sI

)]
,

4(η − β) = −2E
[
s2R

(
∂f

∂sI

)2

+ s2I

(
∂f

∂sR

)2

− 2sRsI

(
∂f

∂sR

)(
∂f

∂sI

)]
= 0,

where we used E

[
sRsI

((
∂f
∂sR

)2
−
(

∂f
∂sI

)2)]
=0 and E

[(
s2R − s2I

)(
∂f
∂sR

)(
∂f
∂sI

)]
=0

in the third line and ∂f
∂sR

= 2sR
∂f(r2)
∂r2 and ∂f

∂sI
= 2sI

∂f(r2)
∂r2 in the last line.

The (i, j) blockΩ2[i, j] (i �= j) can be calculated asΩ2[i, j]=E
[
ssTϕ∗

i (si)ϕ
∗
j (sj)

]
.

It has 1 at entry (i, j) and (j, i), since

Ω2[i, j](i,j) = Ω2[i, j](j,i) = E [siϕ
∗
i (si)]E

[
sjϕ

∗
j (sj)

]
= 1. (21)

All other entries of Ω2[i, j] are zero since the components of s are independent
and zero mean. Hence, we can calculate M2 = Ω2 − vec{I}vec{I}T as

M2 =

N∑
i=1

(βi − 1)Lii ⊗ Lii +

N∑
i=1

N∑
j=1

j �=i

(Lij ⊗ Lji). (22)

We note that M2 is a real diagonal matrix.
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Since M1 and M2 are real matrices, it holds Rϑ = (M1 −M2M
−∗
1 M∗

2)
∗ =

M1 −M2M
−1
1 M2. After some calculations, we get

Rϑ =
N∑
i=1

(ηi − 1)2 − (βi − 1)2

ηi − 1
Lii ⊗ Lii +

N∑
i=1

N∑
j=1

j �=i

(
κiκj − 1

κj

)
Lii ⊗ Ljj (23)

which simplifies to Rϑ =
∑N

i=1

∑N
j=1

j �=i

(
κiκj−1

κj

)
Lii ⊗ Ljj due to βi = ηi.
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Complex Non-Orthogonal Joint Diagonalization  
Based on LU and LQ Decompositions 
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Abstract. In this paper, we propose a class of complex non-orthogonal joint  
diagonalization (NOJD) algorithms with successive rotations. The proposed 
methods consider LU or LQ decompositions of the mixing matrices, and pro-
pose to solve the NOJD problem via two successive stages: L-stage and U 
(or Q)-stage. Moreover, as the manifolds of target matrices in these stages could 
be appropriately parameterized by a sequence of simple elementary triangular 
or unitary matrices, which depend on only one or two parameters, the high-
dimensional minimization problems could be replaced by a sequence of lower-
dimensional ones. As such, the proposed algorithms are of simple closed-form 
in each iteration, and do not require the target matrices to be Hermitian nor pos-
itive definite. Simulations are provided to compare the proposed methods to 
other complex NOJD methods. 

Keywords: Complex non-orthogonal joint diagonalization, Blind source  
separation, LU, LQ. 

1 Introduction 

Joint diagonalization (JD) is instrumental in solving many blind source separation 
(BSS) problems. For example, for an instantaneous linear mixing model ( )t =x  

( )tAs , where ( )ts , A , and ( )tx  are the source, mixing matrix, and observation, 
respectively, we can calculate fourth-order cumulant [1] or time-varying covariance 
matrices 1, , KC C  [2] by assuming source uncorrelation (along with non-
stationarity) or independence, that share the following common JD structure: 

H
k k=C AD A                                      (1) 

where kD  is diagonal, 1,...,k K= , and superscript ‘ H ’ denotes conjugated trans-
pose. JD then seeks an estimate of A  by fitting the above common JD structure. 

Numerous JD algorithms have been proposed, which can be classified into two 
categories: the orthogonal and the non-orthogonal ones. The orthogonal JD (OJD) 
methods, such as Cardoso’s Jacobi-like algorithm, often require A  to be unitary, and 
thus prewhitening must be added to orthogonalize the observation to fulfill this re-
quirement. As prewhitening is always inaccurate and the errors introduced in this 
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stage can not be corrected by OJD that follows [3], the non-orthogonal JD (NOJD) 
which does not require prewhitening has attracted growing attention in the past dec-
ade. Generally speaking, NOJD often uses a cost function to measure the fitting of the 
JD structure and performs minimization of this cost function to update the estimate of 
A  in an iterative manner. To list a few, the weighted least squares (WLS) criterion 

formulates JD as a set of subspace fitting problems [4-6]. These methods do not nec-
essarily require the target matrices to be Hermitian nor square, yet are sometimes 
computationally expensive. Information theoretic criterion is used in [7] that allows 
for super-efficient estimation with positive definite target matrices. The sum of off-
diagonal squared norms is also widely used [8, 9], where the problem is the possible 
convergence to trivial solutions (e.g. singular or zero matrix), especially for gradient 
based or Newton-type methods [12]. 

Among the afore-mentioned JD algorithms, those using successive rotations are of 
a particular kind [1, 9-12]. Instead of optimizing one of the above-mentioned criteria 
for target matrices over all rows and columns, these methods consider lower-
dimensional sub-optimization over two specific row and column indices at each itera-
tion, and repeat the same sub-optimization procedure for all pairs of row and column 
indices to fulfill NOJD. As the elementary rotation matrix used in each iteration is 
nonsingular and determined by very few parameters, these methods are often of sim-
ple closed-form, and are free of trivial solutions. More exactly, the works in [9, 10] 
use polar decomposition of the elementary rotation matrix, while the work in [11] 
considers LU and LQ decompositions. Recently, non-parameterized elementary rota-
tion matrix is considered for NOJD [12]. However, the methods based on parame-
trized elementary rotation matrices [9-11], which have been proven quite effective in 
solving NOJD problems, are mostly real-valued. Therefore, it is of great interests as 
how to extend these methodologies to the complex domain, especially given that 
complex BSS is more and more encountered in practical problems.  

In this paper, we will extend the NOJD algorithms based on successive LU or LQ 
decompositions [11] to the complex domain. It should be noted that this extension is 
not trivial as the complex-valued version involves more parameters in the sub-
optimization problem for each iteration than the real-valued case. In the rest of the 
paper, section 2 presents the proposed algorithm, section 3 provides comparisons with 
other complex NOJD algorithms via simulations, and section 4 concludes this paper. 

2 Proposed Algorithms 

2.1 Framework for the Proposed Algorithms 

For a set of complex-valued matrices 1{ ,..., }K= C CC  sharing the JD structure as 
formulated in (1), we seek the estimate for 1−B A  such that 1{ }H K

k k =BC B  are as 
diagonal as possible. To solve the above JD problem, we propose to minimize the 
sum of off-diagonal squared norms for the estimation of B  as follows: 

1
arg min off( )

K H
kk =

= ∑
B

B BC B                             (2) 
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where 1
2

,off( ) | |i j N i jp≤ ≠ ≤∑P for CN N×∈P . Moreover, we can reasonably assume 
that B  is with unit determinant so that it could be factorized as follows: 

=B LV                                          (3) 

where CN N×∈L  is a lower-triangular matrix with ones at its diagonal, CN N×∈V  is 
upper-triangular if (3) corresponds to LU factorization, and is unitary if (3) denotes 
LQ decomposition. Since any complex non-singular square matrix admits these two 
decompositions, it is reasonable to consider the unmixing matrix =B LV  as in (3). 
As such, (2) could be solved in the following alternating manner: 

1
arg min off( )

K H
kk =

= ∑
V

V VC V                          (4.a) 

1
arg min off( )

K H
kk =
′= ∑

L
L LC L                          (4.b) 

where H
k k
′ =C VC V , and =B LV  is the estimate of B .  

In succesive rotation based methods, the minimization problems in (4) are solved 
by repeating the following scheme for all possible index pairs ( , )i j , 1 i j N≤ < ≤ , 
and iterate until convergence: 

, ( , ) , ( , ) ( , ),H
k new i j k old i j new i j old    = =C T C T V T V                   (5.a) 

, ( , ) , ( , ) ( , ),H
k new i j k old i j new i j old    ′ ′ ′ ′ ′= =C T C T L T L                   (5.b) 

where ,k newC ,  ,k new′C , newV  and newL  denote the updates of kC , k′C , V  and L  in 
the current iteration, and ,k oldC , ,k old′C , oldV  and oldL  are the results obtained in the 
previous iteration, 1,...,k K= . ( , )i jT  and ( , )i j′T  are elementary rotation matrices for 
problems (4.a) and (4.b), respectively, which equal the identity matrix except the 
entries indexed ( , )i i , ( , )i j , ( , )j i , and ( , )j j . The goal is then to find optimal ( , )i jT  
and ( , )i j′T  in each iteration to solve (4.a) and (4.b), respectively. Noting that the ele-
mentary rotation matrices ( , )i jT  and ( , )i j′T  are determined by only one or two para-
meters (as will be shown later), the higher-dimensional optimization problem in (2) 
could be reduced to a sequence of one- or two-dimentional simple sub-problems. 

2.2 Schemes to Find Optimal Elementary Rotation Matrices 

Firstly, we consider the LU decomposition of B  so that the matrix V  in (3) is an 
upper-triangular matrix CN N×∈U , and the JD problem could be solved via two alter-
nating stages termed as U-stage and L-stage, respectively, as indicated in (4) (V  in 
(4.a) is replaced by U  for LU decomposition). We break the minimization problem 
in the U-stage into a sequence of sub-problems via (5.a) with elementary rotation 
matrix ( , )i jT  equal to the identity matrix except the ( , )i j th  upper entry ,i jα . As 
such, for index pair ( , )i j , we note that ( , ) , ( , )

H
i j k old i jT C T  only impacts the ith  row and 

column of ,k oldC , 1, 2,...,k K= . As a result, the minimization of 
( , ) , ( , )1off( )HK
i j k old i jk =∑ T C T  amounts to minimizing the sum-of squared norms of the off-

diagonal elements in the ith  row and column of ,k newC : 
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2 2

, , ,1 1,
( , ) ( , )

K N

i j k new k newk p p i
C i p C p iξ

= = ≠
⎡ ⎤+⎢ ⎥⎣ ⎦∑ ∑                (6) 

Noting , , , ,( , ) ( , ) ( , )k new i j k old k oldC i p C j p C i pα= + , and , ,( , ) ( , )k new k oldC p i C p i= +  
, , ( , )i j k oldC p jα ∗ , (6) could be rewritten as follows after a few manipulations:  

*
, , , , , , ,1 1,

*
, . . . ,

. , . . ,

.

{( ( , ) ( , ) ( , ) ( , ))

+[ ( , ) ( , ) ( , ) ( , )]

+[ ( , ) ( , ) ( , ) ( , )]

[ ( , )

K N
i j k old k old k old k old i j i jk p p i

k old k old k old k old i j

k old k old k old k old i j

k old

ξ = C j p C j p C p j C p j α α
C i p C j p C p j C p i α
C j p C i p C p i C p j α
C i p

∗ ∗
= = ≠

∗ ∗

∗ ∗

+∑ ∑

+
+

+ . . ,( , ) ( , ) ( , )]}k old k old k oldC i p C p i C p i∗ ∗+

     (7) 

As such, the optimal parameter ,i jα  could be obtained by setting the derivative of 
,i jξ  with regards to *

,i jα  to zero, which yields the following:  
* *

1 1, , , , ,
, * *

1 1, , , , ,

[ ( , ) ( , ) ( , ) ( , )]

[ ( , ) ( , ) ( , ) ( , )]

K N
k p p i k old k old k old k old

i j K N
k p p i k old k old k old k old

C i p C j p C p j C p i

C j p C j p C p j C p j
α = = ≠

= = ≠

+∑ ∑
= −

+∑ ∑
             (8) 

The minimization problem in the L-stage could be solved similarly to the U-stage, 
with the only exception that the iterations are repeated for 1 j i N≤ < ≤ , and one U-
stage and L-stage make up a sweep. As a result, the JD problem is tackled by alternat-
ing the U-stage and L-stage until convergence in the LU based method. The LU-based 
method for complex NOJD is termed as LUCJD for short. 

In the second proposed algorithm, we consider the LQ decomposition of B , and 
thus the matrix V  in (3) is a unitary matrix CN N×∈Q . Similarly to LUCJD, JD is 
herein solved by alternating Q-stage and L-stage as indicated in (4) (V  in (4.a) is 
replaced by Q  for LQ decomposition). Moreover, noting that the L-stage could be 
handled similarly as that in LUCJD, and the Q-stage involves an OJD problem, which 
could be actually tackled by Cardoso’s Jacobi-like method [1]. As a result, the JD 
problem is solved by alternating the Q-stage that adopts Jacobi-like algorithm, and the 
L-stage that uses the scheme proposed in LUCJD, until convergence is reached. The 
LQ-based algorithm is termed as LQCJD for clarity. 

2.3 Remarks and Summarization 

We have some implementation remarks on the proposed LUCJD and LQCJD: 

Remark 1: The proposed algorithms do not require the target matrices be Hermitian, 
and therefore could be used for solving BSS problems that involve JD of non-
Hermitian complex matrices (e.g. time-lagged covariance matrices or fourth-order 
cumulant matrices for complex-valued signals ).  

Remark 2: There are several termination criteria for the proposed algorithms. For 
example, we could monitor the value of sum of off-diagonal squared norms, and stop 
the iterations when the decrease in it is smaller than a preset threshold. In this paper, 
we observe the change of 

2
N F

−LV I  (V  is upper-trianguler matrix U  in LUCJD, 
and is unitary matrix Q  in LQCJD, NI  is an N N×  identity matrix) between two 
succesive sweeps and stop the iterations if it’s smaller than a threshold. 

We summarize the proposed algorithms in Table 1: 
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Table 1. Summarization of the proposed algorithm 

 Input: A set of N N×  square matrices 1 2, , , KC C C , and a threshold τ   
 Output: The estimated unmixing matrix B  
 Implementation:  

N←B I , 0oldγ ← , 1ζ τ← + .  
while ζ τ≥  do 

The U-stage or Q-stage: N←V I  
for all 1 i j N≤ < ≤  do 
- For U-stage in LUCJD: obtain optimal elementary upper-triangular matrix ( , )i jT  

with its (i, j)th element determined by (8) 
For Q-stage in LQCJD: obtain optimal elementary unitary matrix ( , )i jT  via the Ja-
cobi-like algorithm [1] 

- Update matrices: ( , ) ( , ) ( , ), H
i j k i j k i j    ← ←V T V C T C T , 1, ,k K=  

end for 
The L-stage: N←L I  
for all 1 j i N≤ < ≤  do 
- obtain optimal elementary lower-triangular matrix ( , )i j′T  with its (i, j)th element de-

termined by (8) 
- Update matrices: ( , ) ( , ) ( , ), ( 1, , )H

i j k i j k i j   k K′ ′ ′← ← =L T L C T C T   
  end for 
  ←B LVB , 

2
new N F
γ ← −LV I , new oldζ γ γ← − , old newγ γ←  

end while 

3 Simulation Results 

We provide simulations to compare the proposed LUCJD and LQCJD with X. Guo's 
nonparametric Jacobi transformation based JD (JTJD)[12], Li's fast approximate JD 
(FAJD) [5], Tichavsky and Yeredor’s uniformly weighted exhaustive diagonalization 
by Gaussian iteration (UWEDGE) [6]. We generate the target matrices as: 

( )1, ,H
k k k+ σ k K= =C AD A N …                         (9) 

where CN N
k

×∈D  is a diagonal matrix with its diagonal elements normally distri-
buted with zero mean. CN N×∈A  and CN N

k
×∈N  are the mixing matrix and the 

noise term which are randomly generated from normal distribution with zero mean. 
σ  is the noise level. We note herein that the above target matrices are neither Hermi-
tian nor positive definite. In addition, all the compared methods are initialized with 
identity matrix, and uniform weights are used for FAJD and UWEDGE. The perfor-
mance index (PI) [3] is used to measure the performance of the algorithms: 

 ( ) 1
1 1 1 1max max

Index [2 ( 1)] [ ( 1) ( 1)]ij ij

k ik k kj

p pN N N N
i j j ip p

N N −
= = = == − − + −∑ ∑ ∑ ∑P  (10) 

where =P BA , with CN N×∈B  being the estimate of the unmixing matrix. 
In the first simulation, we compare the convergence speed of the considered algo-

rithms. We fix the number and the size of target matrices as 10K =  and 10N = , 
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respectively, and plot in Fig. 1 the PI curves from 5 independent runs against the 
number of iterations for 2 different noise levels : (a) 0.0001σ = ; (b) 1σ = . From 
Fig. 1. (a) we see that LUCJD and LQCJD are of almost equal convergence speed as 
FAJD, which is slightly slower than JTJD and UWEDGE, when the noise is at a low 
level of 0.0001σ = . However, when the noise level increases to 1σ = , we note from 
Fig. 1. (b) that the number of iterations for JTJD, UWEDGE, and FAJD significantly 
increase as well, while LUCJD and LQCJD are still able to yield robust converging 
behavior, with LQCJD being the fastest one among all the compared algorithms. 
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Fig. 1. Performance index against number of iterations 

In the second simulation, we compare the estimation accuracy of the mixing matrix 
at different noise levels. We let the noise level σ  vary from 0.0001 to 1 and plot in 
Fig. 2 the PI curves obtained from 200 independent runs versus σ  for the following 4 
cases: (a) K = 5, N = 10; (b) K = 10, N = 10; (c) K = 30, N = 10; (d) K = 10, N = 20. 
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Fig. 2. Performance index versus noise level for different numbers and sizes of target matrices 
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We could see that LUCJD and LQCJD provide almost equal performance in the 
considered scenarios. It is also demonstrated in Fig. 2. (a) to Fig. 2. (c) that LUCJD 
and LQCJD outperform JTJD, FAJD, and UWEDGE for small number of target ma-
trices, yet slightly underperform their competitors when the number of target matrices 
increases. This shows that the proposed algorithms are more robust to noise than 
JTJD, FAJD, and UWEDGE in difficult situations where only a small number of tar-
get matrices are available. In addition, we observe in Fig. 2. (d) that LUCJD and 
LQCJD offer better estimation precision than their competitors. 

In the third simulation, we test the performance of the compared algorithms against 
the number and size of target matrices for a fixed noise level 1σ = . We fix the size of 
target matrices to N = 10, and plot the PI curves of the compared algorithms versus 
the number of target matrices in Fig. 3. (a). Then we fix the number of target matrices 
to K = 10, and plot the PI curves against the matrix size in Fig. 3. (b). The shown 
statistics are obtained from 200 independent runs. From Fig. 3. (a) we see that the 
performance of LUCJD and LQCJD are very stable when the number of target ma-
trices varies. In particular, we note that LUCJD and LQCJD outperform the other 
compared algorithms clearly for small number of target matrices, while only slightly 
underperforms UWEDGE when K = 30. This observation again illustrates the advan-
tage of the proposed methods in difficult scenarios where only a small number of 
target matrices are available. In addition, from Fig. 3. (b) we note that increasing the 
matrix size from 5 to 20 can slightly improve the performance of all the compared 
algorithms, with LUCJD and LQCJD outperforming the other methods. 
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Fig. 3. Performance index versus number and size of target matrices with noise level 1σ =  

4 Conclusion 

In this paper, we proposed a class of complex non-orthogonal joint diagonalization 
(NOJD) algorithms based on LU and LQ decompositions. The proposed algorithms 
(termed as LUCJD and LQCJD, respectively) tackled the NOJD problem by using a 
sequence of simple parameterized elementary rotation matrices, and thus are of sim-
ple closed-form in each iteration and free of trivial solutions. In addition, the proposed 
algorithms do not require the target matrices to be Hermitian nor positive definite. 
Simulations are provided to compare the performance of the proposed algorithms with 
some other complex NOJD algorithms. The results show that the proposed LUCJD 
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and LQCJD are of stable convergence at different noise levels, and LQCJD converges 
faster than the other compared methods at high noise levels. With regards to the esti-
mation accuracy, LUCJD and LQCJD could provide superior performance for differ-
ent noise levels and matrix sizes over the other compared methods, especially in case 
of small number of target matrices. The above simulation results infer that the pro-
posed methods may be preferable in difficult situations where the noise level is high, 
and only a few target matrices are available. 

Acknowledgments. This work is supported by the Fundamental Research Fund for 
Central Universities of China, and by National Natural Science Foundation of China 
under grants 60971097, 61072098, and 61105008. 

References 

1. Cardoso, J.-F., Souloumiac, A.: Blind beamforming for non-Gaussian signals. Radar and 
Signal Processing. IEE Proceedings -F 140, 362–370 (1993) 

2. Belouchrani, A., Abed-Meraim, K., Cardoso, J.-F., Moulines, E.: A blind source separation 
technique using second-order statistics. IEEE Transactions on Signal Processing 45, 434–444 
(1997) 

3. Souloumiac, A.: Joint diagonalization: is non-orthogonal always preferable to orthogonal. 
In: 3rd International Workshop on Computational Advances in Multi-Sensor Adaptive 
Processing, Dutch Antilles, pp. 305–308 (2009) 

4. Yeredor, A.: Non-orthogonal joint diagonalization in the least-squares sense with applica-
tion in blind source separation. IEEE Transactions on Signal Processing 50, 1545–1553 
(2002) 

5. Li, X.-L., Zhang, X.-D.: Nonorthogonal joint diagonalization free of degenerate solution. 
IEEE Transactions on Signal Processing 55, 1803–1814 (2007) 

6. Tichavsky, P., Yeredor, A.: Fast approximate joint diagonalization incorporating weight 
matrices. IEEE Transactions on Signal Processing 57, 878–891 (2009) 

7. Pham, D.-T., Serviére, C., Boumaraf, H.: Blind separation of speech mixtures based on 
nonstationarity. In: 7th International Symposium on Signal Processing and Its Applica-
tions, France, pp. 73–76 (2003) 

8. Hori, G.: Joint diagonalization and matrix differential equations. In: 1999 International 
Symposium on Nonlinear Theory and its Applications, Hawaii, pp. 675–678 (1999) 

9. Souloumiac, A.: Nonorthogonal joint diagonalization by combining givens and hyperbolic 
rotations. IEEE Transactions on Signal Processing 57, 2222–2231 (2009) 

10. Luciani, X., Albera, L.: Joint Eigenvalue Decomposition Using Polar Matrix Factorization. In: 
Vigneron, V., Zarzoso, V., Moreau, E., Gribonval, R., Vincent, E. (eds.) LVA/ICA 2010. 
LNCS, vol. 6365, pp. 555–562. Springer, Heidelberg (2010) 

11. Afsari, B.: Simple LU and QR Based Non-Orthogonal Matrix Joint Diagonalization. In: 
Rosca, J.P., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds.) ICA 2006. LNCS, vol. 3889, 
pp. 1–7. Springer, Heidelberg (2006) 

12. Guo, X.-J., Zhu, S.-H., Miron, S., Brie, D.: Approximate joint diagonalization by nonor-
thogonal nonparametric jacobi transformations. In: 35th International Conference on 
Acoustics, Speech, and Signal Processing, Dallas, pp. 3774–3777 (2010) 



Exact and Approximate Quantum Independent

Component Analysis for Qubit Uncoupling

Yannick Deville1 and Alain Deville2
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Abstract. As a tool for solving the Blind Quantum Source Separation
problem introduced in our previous papers, we here propose the con-
cept of Quantum Independent Component Analysis (QICA). Starting
from quantum bits (qubits) with cylindrical-symmetry Heisenberg cou-
pling, quantum-to-classical conversion yields an original nonlinear mix-
ing model, which leads us to develop QICA methods dedicated to this
model. Our first method consists in minimizing the mutual information
of the outputs of our nonlinear separating system. It is attractive be-
cause it yields an exact solution, without any spurious points thanks to
the (Q)ICA separability of the considered model. The second proposed
method is a simpler approximation of the first one. It is based on a trun-
cated expansion of differential entropy (or negentropy), derived from the
Edgeworth expansion of probability density functions.

Keywords: blind quantum source separation, quantum independent
component analysis, nonlinear mixing model, mutual information, Edge-
worth expansion, qubit, cylindrical-symmetry Heisenberg coupling.

1 Introduction

Source Separation (SS) is an Information Processing (IP) problem, which con-
sists in retrieving a set of unknown source “signals” (time series, images...) from a
set of observations, which are mixtures of these source signals. In particular, the
Blind Source Separation (BSS) configuration corresponds to the case when the
parameter values of the considered mixing model are unknown. On the contrary,
these values are known in the non-blind case, which therefore reduces to the in-
version of a known mixing model. The BSS field emerged in the 1980s and then
yielded major developments, e.g. reported in the handbook [2]. Until recently, all
these investigations were performed in a classical, i.e. non-quantum, framework.
Independently from BSS, another field within the overall IP domain rapidly de-
veloped in the last decades, i.e. Quantum Information Processing (QIP). It is
described in detail in [10], and its main features are summarized in [4],[7],[8].

We recently bridged the gap between the classical BSS and QIP fields, by
introducing a new field, i.e. Quantum Source Separation (QSS), first proposed

F. Theis et al. (Eds.): LVA/ICA 2012, LNCS 7191, pp. 58–65, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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in our paper [4] and then described in more detail in particular in [7]. The QSS
problem consists in restoring the information contained in individual quantum
source signals, only starting from quantum mixtures (in SS terms) of these sig-
nals. This gives rise to three possible approaches:

1. In the classical-processing approach [4], [7], one first converts the mixed
quantum data into classical ones by means of measurements, and then pro-
cesses the measured data with classical (i.e, again, non-quantum) methods.
We showed that original processing methods must then be developed, be-
cause the nonlinear mixing model thus encountered has not previously been
addressed in the classical (B)SS literature.

2. Quantum-processing methods [7] keep the quantum nature of the mixtures
and process them by means of quantum circuits in order to retrieve the
quantum sources.

3. Hybrid methods [8] combine the above two approaches, by first partly pro-
cessing the quantum mixtures with quantum circuits, then converting the
resulting quantum data into classical ones by means of measurements, and
eventually processing the measured data with classical methods.

In this paper, we only consider the first approach to QSS, based on classical-
processing methods, which are the only easily implementable ones nowadays,
since the practical design of quantum circuits is only an emerging field. As in the
classical SS framework, these QSS methods give rise to two configurations, i.e.
the blind and non-blind ones. We here consider the most complex configuration,
i.e. the blind one, which requires us to estimate the value(s) of the mixing model
parameter(s). In our papers [4], [7], we only described a very basic method for
performing this estimation. That method is based on the first-order moment of
a measured signal and has the drawback of setting constraints on some source
statistics. We therefore here aim at developing much more powerful methods for
performing the considered Blind Quantum Source Separation (BQSS) task.

In the classical framework, several classes of methods were proposed for solving
the BSS problem, the most popular of them being Independent Component Anal-
ysis (ICA). Similarly, as a tool for solving the BQSS problem, we here develop
what we will call “Quantum Independent Component Analysis (QICA) meth-
ods”, in the sense: Independent Component Analysis methods for data which
initially have a quantum nature (these data are here converted into classical ones
and then processed by classical means). More precisely, we will first describe
a method which performs exact QICA, and then an associated approximation.
Before this, we now define the considered mixing and separating models.

2 Mixing Model

In the QIP field, “qubits” (i.e. quantum bits) are used instead of classical bits for
performing computations. A qubit, with index i, has a quantum state expressed
as follows (for a pure state):

|ψi >= αi|+ > +βi|− > (1)
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where |+ > and |− > are basis vectors, whereas αi and βi are two complex-
valued coefficients such that

|αi|2 + |βi|2 = 1. (2)

In [4], [7], we considered the situation when the two qubits respectively associated
with two spins of a physical system are separately initialized with states defined
by (1) and then get “mixed” (in the SS sense), due to the undesired coupling
effect which exists in the considered system (Heisenberg coupling in our case).
We proposed an approach which consists in repeatedly initializing the two qubits
according to (1) and later measuring spin components associated with the system
composed of these two coupled qubits. We showed that this yields four possible
measured values, with respective probabilities p1, p2, p3 and p4. In [7], we derived
the expressions of these probabilities with respect to the polar representation of
the qubit parameters αi and βi, which reads

αi = rie
iθi βi = qie

iφi ∀i ∈ {1, 2} (3)

with 0 ≤ ri ≤ 1, qi =
√
1− r2i due to (2), and i = (−1) 1

2 . The above probabilities
may then be expressed as follows:

p1 = r21r
2
2 (4)

p2 = r21(1− r22)(1 − v2) + (1− r21)r
2
2v

2

−2r1r2
√
1− r21

√
1− r22

√
1− v2v sinΔI (5)

p4 = (1− r21)(1 − r22) (6)

where
ΔI = (φ2 − φ1)− (θ2 − θ1) (7)

and v is a parameter, defined in [7], which is such that 0 ≤ v2 ≤ 1, and whose
value is unknown in most configurations (this corresponds to the blind version
of this QSS problem). Note that probability p3 is not considered in this investi-
gation, since it is redundant with the above three ones: we always have

p1 + p2 + p3 + p4 = 1. (8)

Eq. (4)-(6) form the nonlinear “mixing model” (in SS terms) of this investigation.
The observations involved in this model are the probabilities p1, p2 and p4 mea-
sured (in fact, estimated, using repeated qubit initializations [7]) for each choice
of the initial states of the qubits. Using standard SS notations, the observation
vector is therefore x = [x1, x2, x3]

T , where T stands for transpose and

x1 = p1, x2 = p2, x3 = p4. (9)

The source vector to be retrieved from these observations is s = [s1, s2, s3]
T

with s1 = r1, s2 = r2 and s3 = ΔI (the parameters qi are then obtained as
qi =

√
1− r2i ; the four phase parameters in (3) cannot be individually extracted

from their combination ΔI ; only two phases have a physical meaning [8]). In the
blind configuration considered in this paper, retrieving the sources first requires
one to estimate the only unknown mixing parameter of this model, i.e. v.
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3 Separating System

In [7], we showed that the above mixing model is invertible (with respect to
the considered domain of source values), for any fixed v such that 0 < v2 < 1,
provided the source values meet the following conditions:

0 < r1 <
1
2 < r2 < 1 (10)

−π
2 ≤ ΔI ≤ π

2 . (11)

The separating system that we proposed for retrieving (estimates of) the sources
by combining the observations then yields an output vector y = [y1, y2, y3]

T

which reads

y1 =

√
1

2

[
(1 + p1 − p4)−

√
(1 + p1 − p4)2 − 4p1

]
(12)

y2 =

√
1

2

[
(1 + p1 − p4) +

√
(1 + p1 − p4)2 − 4p1

]
(13)

y3 = Arcsin

[
y21(1− y22)(1 − v̂2) + (1− y21)y

2
2 v̂

2 − p2

2y1y2
√
1− y21

√
1− y22

√
1− v̂2v̂

]
(14)

where v̂ is the estimate of v used in the separating system. The outputs y1, y2
and y3 respectively restore the sources s1 = r1, s2 = r2 and s3 = ΔI .

4 Exact QICA

We here consider the case when each source signal of our BQSS problem is
continuous-valued, stochastic, identically distributed (i.d) and all source signals
are mutually statistically independent. The observations and separating system
outputs are then also stochastic and i.d. We therefore consider the random vari-
ables (RVs) defined by all these signals at a single time, and we denote Yi the
RVs thus associated with the outputs of the separating system.

In these conditions, we consider the “global model” (from the source signals
si to their estimates yi) obtained by combining the mixing model (4)-(6) and
the separating model (12)-(14). We call it “the Heisenberg global model”. In [5],
we briefly showed that it is “ICA separable”. Generally speaking, an arbitrary
(memoryless) global model is said to be ICA separable, in the above conditions
and for sources having given probability density functions (pdf), if it meets the
following property: if the output RVs of the separating system are mutually
statistically independent, then they are equal to the source RVs, up to some
acceptable indeterminacies which depend on the considered model (e.g., only one
sign indeterminacy for the Heisenberg global model, as detailed hereafter). In [5],
we first studied the ICA separability of a very general class of global models. We
then briefly focused on the Heisenberg global model, and we proved that it is ICA
separable. We here aim at proceeding much further in the investigation of this
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BQSS problem, by deriving qubit separation methods based on this separability
property. This property is indeed very attractive, because it ensures that, by
adapting v̂ so that the output RVs Yi become statistically independent, it is
guaranteed thay they become equal to the source RVs (up to the indeterminacies
of the Heisenberg model). To derive a practical QICA method from this property,
we need to define a quantity which detects when the output RVs are independent.
A well-known quantity which meets this constraint is the mutual information
of these RVs, denoted I(Y ), where Y = [Y1, Y2, Y3]

T : I(Y ) is null when the
RVs Yi are independent and positive otherwise. A separation criterion for the
Heisenberg global model therefore consists in adapting v̂ so as to minimize (and
thus cancel) a function, therefore called “the cost function”, defined as I(Y ). The
above ICA separability property means that I(Y ) has no global spurious points,
i.e. it reaches its global minimum value only when source separation is achieved,
up to the indeterminacies of the model. From the general analysis provided in [5],
one may derive that these indeterminacies here reduce to a sign indeterminacy
for y3: when the output RVs are independent, we have y3 = ±s3. The other two
output signals yield no indeterminacies, i.e. they are equal to the corresponding
source signals.

The cost function thus obtained may be expressed as

I(Y ) =

(
3∑

i=1

h(Yi)

)
− h(Y ). (15)

In this expression, each term h(Yi) is the differential entropy of the RV Yi, which
may be expressed as

h(Yi) = −E{ln fYi(Yi)} (16)

where fYi(.) is the pdf of Yi and E{.} stands for expectation. Similarly, h(Y ) is
the joint differential entropy of all RVs Yi, which reads

h(Y ) = −E{ln fY (Y )} (17)

where fY (.) is the joint pdf of all RVs Yi.
Moreover, we here use the following general property. Let us consider an

arbitrary random vector X with dimension N , to which an arbitrary invertible
transform φ is applied. We thus get the random vector Y with dimension N ,
defined as: Y = φ(X). This transform has the following effect on joint differential
entropy [6]:

h(Y ) = h(X) + E{ln |Jφ(X)|} (18)

where Jφ(x) is the Jacobian of the transform y = φ(x), i.e. the determinant of
the Jacobian matrix of φ. Each element with indices (i, j) of this matrix is equal

to ∂φi(x)
∂xj

, where φi = yi is the ith component of the vector function φ and xj
is its jth argument. This property here applies to the output joint differential
entropy defined in (17), and the transform φ here consists of the separating
model defined by (9) and (12)-(14). Eq. (12) and (13) show that y1 and y2 do
not depend on x2. Therefore, Jφ(x) here reduces to

Jφ(x) = J1J2 (19)
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where

J1 =
∂y3
∂x2

(20)

= − sgn(v̂)
{
4y21y

2
2(1− y21)(1 − y22)(1− v̂2)v̂2

−[y21(1− y22)(1 − v̂2) + (1− y21)y
2
2 v̂

2 − x2]
2
}− 1

2 (21)

J2 =
∂y1
∂x3

∂y2
∂x1

− ∂y1
∂x1

∂y2
∂x3

(22)

=
1

4y1y2
√
(1 + x1 − x3)2 − 4x1

. (23)

Combining (15) and (18), the considered cost function becomes

I(Y ) =

(
3∑

i=1

h(Yi)

)
− h(X)− E{ln |Jφ(X)|}. (24)

Its term h(X) does not depend on the separating system parameter v̂ to be
optimized, but only on the fixed available observations. Besides, (12) and (13)
show that the outputs y1 and y2, and therefore the differential entropies h(Y1)
and h(Y2) also do not depend on v̂. Therefore, minimizing I(Y ) with respect to
v̂ is equivalent to minimizing the following cost function:

C2(Y ) = h(Y3)− E{ln |Jφ(X)|}. (25)

5 Approximate QICA

The exact QICA criterion developed in the previous section involves the pdf of
a separating system output. It therefore requires one to estimate this pdf (or its
derivative, used in some optimization algorithms), which is cumbersome. An al-
ternative approach consists in deriving an approximation of this pdf, which yields
an associated approximate QICA criterion. We now investigate this approach.

A method for defining an approximation of a pdf, and then of the associated
differential entropy or negentropy, consists in using the Edgeworth expansion,
which is e.g. detailed in [9]. This approach may be summarized as follows. The
considered pdf of an RV U is expressed as the product of a reference pdf, here
selected as a Gaussian RV G with the same mean and variance as U , and of
a factor expressed as a series (see its explicit expression e.g. in [9]). This then
makes it possible to express the negentropy of U , i.e.

J (U) = h(G)− h(U), (26)

as a series. Then truncating that series to a given order provides a corresponding
approximation of that negentropy.

That approach was used and detailed by Comon in [1], but only for a stan-
dardized (i.e. zero-mean and unit-variance) RV. This was motivated by the fact
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that, for the linear instantaneous mixing model considered in [1]: 1) the zero-
mean versions of the observations are linked according to the same model to the
zero-mean versions of the source signals, so that one can restrict oneself to zero-
mean signals and 2) this model does not fix the scales of the estimated sources,
so that one can decide to only consider unit-variance outputs without loss of
generality. Comon thus obtained the following approximation of negentropy:

J (U) � 1

12
cum3(U)2+

1

48
cum4(U)2+

7

48
cum3(U)4− 1

8
cum3(U)2cum4(U) (27)

where cumi(U) is the ith-order cumulant of the standardized RV U .
On the contrary, we here have to consider unstandardized RVs, because our

nonlinear mixing model does not yield the above-defined translation property
and scale indeterminacy. We therefore aim at determining a (neg)entropy ap-
proximation for an unstandardized RV. This could be done by starting from
the pdf expansion provided in [9] for an arbitrary RV and then developing the
above-defined procedure for deriving the corresponding negentropy expansion.
However, these computations would be complicated and may be avoided as fol-
lows, by taking advantage of the results already obtained by Comon for stan-
dardized RVs. Since we eventually aim at deriving an approximation of the
differential entropy of Y3 involved in (25), we introduce the standardized version
of Y3, defined as:

Ỹ3 =
Y3 − E{Y3}

σY3

(28)

where σY3 is the standard deviation of Y3. Then, thanks to the properties of
differential entropy [3], we have

h(Y3) = h(Ỹ3) + lnσY3 . (29)

h(Ỹ3) may then be expressed with respect to the negentropy of Ỹ3 by using (26),
and the fact that the differential entropy of a standardized Gaussian RV is equal
to [ln(2π) + 1]/2, as may be computed directly or derived from [1]. Applying
(27) to the RV defined in (28), and using the translation and scaling properties
of cumulants, one eventually gets

h(Y3) �
ln(2π) + 1

2
+ lnσY3 −

1

12σ6
Y3

cum3(Y3)
2 − 1

48σ8
Y3

cum4(Y3)
2

− 7

48σ12
Y3

cum3(Y3)
4 +

1

8σ10
Y3

cum3(Y3)
2cum4(Y3). (30)

Inserting the latter expression in (25) yields the approximate cost function C3(Y )
to be minimized. Using the standard cumulant-vs-moment expressions, C3(Y )
may be rewritten as a combination of expectations of explicitly defined RVs.
Practical estimators of this cost function may then be derived. Note that, con-
trary to the initial cost function C2(Y ), it is not guaranteed at this stage that the
approximate function C3(Y ) obtained here reaches its global minimum exactly
and only when source separation is achieved. The analysis of this topic is beyond
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the space allocated to this paper. Note also that the constant term [ln(2π)+1]/2
due to the standardized Gaussian may be removed from C3(Y ), since it has no
influence on the minimization of C3(Y ).

6 Extensions and Conclusions

In this paper, we introduced the Quantum Independent Component Analysis
(QICA) concept, and we proposed two resulting criteria for performing the sep-
aration of coupled qubits, once they have been converted into classical data.
Various optimization algorithms may be derived from these criteria. This e.g.
includes standard gradient-based approaches. In addition, a straightforward and
relatively cheap algorithm for reaching the global minimum of the considered cost
functions here consists in performing a sweep over the single (bounded) tunable
parameter of our separating system, and in computing corresponding sample es-
timates of the above-defined cost functions. We plan to assess the performance of
that approach. However, actual data may hardly be presently obtained for per-
forming such tests, since the implementation of QIP systems is only an emerging
topic. Therefore, we will first develop a software simulation of coupled qubits.
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Abstract. Independent Vector Analysis (IVA) is a special form of Inde-
pendent Component Analysis (ICA) in terms of group signals. Most IVA
algorithms are developed via optimizing certain contrast functions. The
main difficulty of these contrast function based approaches lies in esti-
mating the unknown distribution of sources. On the other hand, tensorial
approaches are efficient and richly available to the standard ICA problem,
but unfortunately have not been explored considerably for IVA. In this
paper, we propose a matrix joint diagonalization approach to solve the
complex IVA problem. A conjugate gradient algorithm on an appropri-
ate manifold setting is developed and investigated by several numerical
experiments.

Keywords: Complex blind source separation, independent vector anal-
ysis, complex oblique projective manifold, conjugate gradient algorithm.

1 Introduction

Nowadays, Independent Component Analysis (ICA) has become a standard sta-
tistical tool for solving the Blind Source Separation (BSS) problem, which aims
to recover signals from only the mixed observations without knowing the a priori
information of both the source signals and the mixing process. It is known that
application of the standard ICA model is often limited since it requires mutual
statistical independence between all individual components. In many real appli-
cations, however, there are often groups of signals of interest, where components
from different groups are mutually statistically independent, while mutual statis-
tical dependence is still allowed between components in the same group. Such
problems can be tackled by a technique now referred to as Multidimensional In-
dependent Component Analysis (MICA) [1], or Independent Subspace Analysis
(ISA) [2].

A special form of ISA arises in solving the BSS problem with convolutive
mixtures [3]. After transferring the convolutive observations into frequency do-
main via short-time Fourier transforms, the convolutive BSS problem ends up
with a collection of instantaneous complex BSS problems in each frequency bin.
After solving the sub-problems individually, the final stage faces the challenge
of aligning all statistically dependent component from different groups, which is
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referred to as the permutation problem. To overcome or avoid the permutation
problem, a relatively new approach, namely, Independent Vector Analysis (IVA),
is developed, cf. [4]. Many IVA algorithms are developed via optimizing certain
contrast functions, cf. [5,6]. The main difficulty of these contrast function based
approaches lies in estimating the unknown distribution of sources, which usually
require a large number of observations [7].

On the other hand, tensorial approaches are efficient and richly available to
the standard ICA problem, but unfortunately have not been explored consid-
erably for IVA. In this paper, by assuming that the cross correlation matrices
between different signal groups do not vanish, we propose a matrix joint dia-
gonalization approach to solve the complex IVA problem. After adapting the
so-called the complex oblique projective (COP) manifold, an appropriate set-
ting for the standard instantaneous complex ICA problem [8], to the current
scenario, we develop an efficient conjugate gradient (CG) based IVA algorithm.

The paper is organized as follows. Section 2 introduces briefly the linear com-
plex IVA problem and recall some basic concepts of the COP manifold required
for developing a CG algorithm. In Section 3, we develop an intrinsic conjugate
gradient IVA algorithm. Finally in Section 4, performance of our proposed ap-
proach in terms of separation quality is investigated by several experiments.

2 Problem Descriptions and Prelimiaries

Let us start with some notations and definitions. In this work, we denote by (·)T
the matrix transpose, (·)H the Hermitian transpose, (·) the complex conjugate
of entries of a matrix, and by Gl(m) the set of all m × m invertible complex
matrices.

2.1 Complex Independent Vector Analysis

Given k instantaneous complex linear Independent Component Analysis (ICA)
problems

wi(t) = Aisi(t), for i = 1, . . . , k, (1)

where si(t) = [si1(t), . . . , sim(t)]T ∈ Cm be a group of m mutually statistically
independent complex signals, Ai ∈ Gl(m) is the mixing matrix, and wi(t) =
[wi1(t), . . . , wim(t)]T ∈ Cm presents m corresponding observed linear mixtures
of si(t). One critical assumption of IVA is that signals in all sub-problems are
statistically aligned, i.e., all the j-th sources from different sub-problems, i.e.
{sij(t)}ki=1, are mutually statistically dependent.

As the standard ICA model, we assume without loss of generality that sources
s(t) have zero mean and unit variance, i.e.,

E[si(t)] = 0, and cov(si) := E[si(t)s
H
i (t)] = Im, (2)

where E[·] denotes the expectation over time index t, and Im is the m × m
identity matrix. The expression cov(si) is referred to as the complex covariance
matrix of the sources si(t).
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The task of IVA is to find a set of demixing matrices {Xi}ki=1 ⊂ Gl(m) via

yi(t) = XH
i wi(t), (3)

for i = 1, . . . , k, such that

(1) All k sub-ICA problems are solved, and
(2) The statistical alignment between groups is restored, i.e., the estimated j-th

signals {yij(t)}ki=1 are mutually statistically dependent.

The main idea of this work is to exploit the cross correlation matrices between
groups of observations, defined as

cor(wi, wj) := E[wi(t)w
H
j (t)] = Ai E[si(t)s

H
j (t)]︸ ︷︷ ︸

=:cor(si,sj)

AH
j . (4)

Similarly, pseudo cross correlation matrices can also be generated directly, i.e.

pcor(wi, wj) := E[wi(t)w
T
j (t)] = Ai pcor(si, sj)A

T
j . (5)

In this work, we assume that cross correlations between sources in all groups do
not vanish. With a further assumption on sources being nonstationary, i.e. both
(pseduo) cross correlation matrices of s(t), and consequently, w(t) as well, are
time-varying, we arrive at a problem of jointly diagonalizing two sets of cross
correlation and pseudo cross correlation matrices at different time intervals.

To summarize, we are interested in solving the following problem. For a
complex IVA problem with k sub-problems, we construct cross correlation and
pseudo cross correlation matrices at n time intervals, i.e. for all i, j = 1, . . . , k

and r = 1, . . . , n, a set of Hermitian positive matrices {C(r)
ij }i<j and a set of

complex symmetric matrices {R(r)
ij }i<j . The task is to find a set of matrices

{Xi}ki=1 ⊂ Gl(m) such that

XH
i C

(r)
ij Xj and XH

i R
(r)
ij Xj , (6)

for all i < j and r = 1, . . . , n, are simultaneously diagonalized, or approximately
simultaneously diagonalized subject to certain diagonality measure. Note that,
the above problem is similar to the simultaneous SVD formulation proposed in
[9], whereas in our current setting, the transforms {Xi} are not restricted to be
unitary.

2.2 Complex Oblique Projective Manifold

To make the paper self-contained, in this section, we briefly recall some con-
cepts of the complex oblique projective manifold, and naturally extend it to the
product manifold of k copies.

Recall the definition of the (m − 1)-dimensional complex projective space
CP

m−1 as

CP
m−1 :=

{
P ∈ Cm×m

∣∣PH = P, P 2 = P, tr(P ) = 1
}
, (7)
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i.e. the set of all (m− 1)-dimensional rank-one Hermitian projectors. Then, the
COP manifold, denote by Q(m,C), is defined as

Q(m,C) :=
{
(P1, . . . , Pm)

∣∣Pi ∈ CP
m−1, det

(
m∑
i=1

Pi

)
> 0

}
. (8)

As Q(m,C) is an open and dense Riemannian submanifold of the m-times prod-
uct of CPm−1 with the Euclidean product metric, i.e.

Q(m,C) = CP
m−1 × . . .× CP

m−1︸ ︷︷ ︸
m−times

=:
(
CP

m−1
)m

, (9)

whereQ(m,C) denotes the closure ofQ(m,C), the tangent spaces, the geodesics,
and the parallel transport for Q(m,C) and (CPm−1)m coincide locally.

Let us denote by

u(m) :=
{
Ω ∈ Cm×m

∣∣Ω = −ΩH
}

(10)

the set of skew-Hermitian matrices. Then, given any Υ = (P1, . . . , Pm) ∈ Q(m,C),
the tangent space of Q(m,C) at Υ is defined as

TΥQ(m,C) ∼= TP1CP
m−1 × . . .× TPmCP

m−1, (11)

where TPiCP
m−1 denotes the tangent space of CPm−1 at Pi ∈ CP

m−1, i.e.

TPCP
m−1 := {[P,Ω] | Ω ∈ u(m)} (12)

with matrix commutator [A,B] := AB −BA.
Let Φ = (φ1, . . . , φm) ∈ TΥQ(m,C) with φi ∈ TPiCP

m−1 for all i = 1, . . . ,m,
a Riemannian product metric on TΥQ(m,C) is constructed as

G : TΥQ(m,C)× TΥQ(m,C)→ R, G(Φ, Ψ) :=

m∑
i=1

R tr(φi · ψi), (13)

where RZ is the real part of a complex number Z. The geodesic through Υ ∈
Q(m,C) in direction Φ ∈ TΥQ(m,C) is given by

γΥ,Φ : R→ Q(m,C), γΥ,Φ(t) := (γP1,φ1(t), . . . , γPm,φm(t)) , (14)

where γP,φ defines the geodesic through P ∈ CP
m−1 in direction φ ∈ TPCPm−1

γP,φ : R→ CP
m−1, γP,φ(t) := et[φ,P ]P e−t[φ,P ]. (15)

Here, e(·) denotes the matrix exponential. Then, the parallel transport of Ψ ∈
TΥQ(m,C) with respect to the Levi-Civita connection along the geodesic γΥ,Φ(t)
is

τΥ,Φ(Ψ) := (τP1,φ1(ψ1), . . . , τPm,φm(ψm)) (16)
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with τP,φ being the parallel transport of ψ ∈ TPCP
m−1 with respect to the

Levi-Civita connection along the geodesic γP,φ(t)

τP,φ(ψ) = e[φ,P ]ψe−[φ,P ]. (17)

Trivially, by considering the complex IVA demixing model in (3), a product of
k copies of the COP manifold, i.e. Qk(m,C) := Q(m,C) × . . .×Q(m,C), is an
appropriate manifold setting to the complex IVA problem. The tangent spaces,
the geodesics, and the parallel transport of Qk(m,C) follow directly from the
product manifold structure. We refer to [10] for further insights of the topic.

3 A CG Algorithm for Simultaneous Non-unitary SVD

Recall the definition of the complex oblique manifold as

O(m,C) :=
{
X ∈ Gl(m,C)

∣∣ ddiag(XHX) = Im
}
, (18)

where ddiag(Z) forms a diagonal matrix, whose diagonal entries are just those
of Z, and denote by Ok(m,C) := O(m,C)× . . .×O(m,C) the product manifold
of k copies of O(m,C). Then the off-norm cost function, a popular diagonality
measure of matrices, is straightforwardly adapted to the current setting as

f : Ok(m,C)→ R,

f(X1, . . . , Xk) :=

k∑
i<j

n∑
r=1

1
2

∥∥∥off(XH
i C

(r)
ij Xj)

∥∥∥2
F
+ 1

2

∥∥∥off(XH
i R

(r)
ij Xj)

∥∥∥2
F
,

(19)

where ‖ · ‖F denotes the Frobenius norm of matrices. A direct calculation gives

f(X1, . . . , Xk)

=
k∑

i<j

m∑
p�=q

n∑
r=1

xHipC
(r)
ij xjq(x

H
ipC

(r)
ij xjq)

H + xHipR
(r)
ij xjq(x

H
ipR

(r)
ij xjq)

H

=

k∑
i<j

m∑
p�=q

n∑
r=1

tr xipx
H
ipC

(r)
ij xjqx

H
jqC

(r)H
ij + tr xipx

H
ipR

(r)
ij

(
xjpx

H
jp

)T
R

(r)H
ij .

(20)

Clearly, the function f induces the following function f̃ on Qk(m,C)

f̃ : Qk(m,C)→ R,

f̃(Υ1, . . . , Υk) :=

k∑
i<j

m∑
p�=q

n∑
r=1

trPipC
(r)
ij PjqC

(r)H
ij + trPipR

(r)
ij P

T
jqR

(r)H
ij .

(21)
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Computing the first derivative of f̃ at (Υ1, . . . , Υk) ∈ Qk(m,C) in direction
(Φ1, . . . , Φk) ∈ T(Υ1,...,Υk)Qk(m,C) gives

D f̃(Υ1, . . . , Υk)(Φ1, . . . , Φk)

=

k∑
i<j

m∑
p�=q

n∑
r=1

trφipC
(r)
ij PjqC

(r)H
ij + trPipC

(r)
ij φjqC

(r)H
ij +

+ trφipR
(r)
ij P

T
jqR

(r)H
ij + trPipR

(r)
ij φ

T
jqR

(r)H
ij .

(22)

Then, the Riemannian gradient of f̃ at (Υ1, . . . , Υk) ∈ Qk(m,C), i.e. (Φ1, . . . , Φk)
:= ∇f̃ (Υ1, . . . , Υk) ∈ T(Υ1,...,Υk)Qk(m,C), is computed, for each element φip ∈
TPipCP

m−1, as

φip =

[
Pip,

[
Pip,

k∑
j>i

m∑
p�=q

n∑
r=1

C
(r)
ij PiqC

(r)H
ij +R

(r)
ij P

T
iqR

(r)H
ij

+
k∑

j<i

m∑
p�=q

n∑
r=1

C
(r)H
ij PiqC

(r)
ij +R

(r)T
ij PT

iqR
(r)
ij

]]
.

(23)

Straightforwardly, a conjugate gradient algorithm for minimizing the function
f̃ as defined in (21) follows. Due to the complexity of our algorithm and the
space limit, the algorithm is sketched briefly as follows. We refer to [8,11] and
references therein for detailed descriptions.

Algorithm 1. A conjugate gradient IVA algorithm

Step 1: Given an initial guess (Υ
(0)
1 , . . . , Υ

(0)
k ) ∈ Qk(m,C) and set i = 0.

Step 2: Set i = i+ 1, let (Υ
(i)
1 , . . . , Υ

(i)
k ) = (Υ

(i−1)
1 , . . . , Υ

(i−1)
k ), and compute

(Φ
(1)
1 , . . . , Φ

(1)
k ) = (Ψ

(1)
1 , . . . , Ψ

(1)
k ) = −∇f̃(Υ

(i)
1 , . . . , Υ

(i)
k ).

Step 3: For j = 1, . . . , 2km(m− 1)− 1:

(i) Update (Υ
(i)
1 , . . . , Υ

(i)
k )← γ

(Υ
(i)
1 ,...,Υ

(i)
k ),(Φ

(i)
1 ,...,Φ

(i)
k )

(λ∗), where

λ∗ = argmin
λ∈R

f̃ ◦ γ
(Υ

(i)
1 ,...,Υ

(i)
k ),(Φ

(i)
1 ,...,Φ

(i)
k )

(λ);

(ii) Compute (Ψ
(j+1)
1 , . . . , Ψ

(j+1)
k ) = −∇f̃

(
(Υ

(i)
1 , . . . , Υ

(i)
k )
)
;

(iii) Update conjugate search directions (Φ
(j+1)
1 , . . . , Φ

(j+1)
k ).

Step 4: If
∥∥∥(Υ (i+1)

1 , . . . , Υ
(i+1)
k )− (Υ

(i)
1 , . . . , Υ

(i)
k )
∥∥∥ is small enough, stop.

Otherwise, go to Step 2.
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Fig. 1. Separation performance of the proposed CG algorithm

4 Numerical Experiments

In our experiment, we investigate performance of our method in terms of separa-
tion quality. Separation performance is measured by the averaged Amari error.
Generally, the smaller the Amari error, the better the separation.

The task of our experiment is to jointly diagonalize a set of Hermitian positive

definite matrices {C(r)
ij }i<j and a set of complex symmetric matrices {R(r)

ij }i<j ,
which are constructed by

C
(r)
ij = AiΛ

(r)
ij A

H
j + εEH and R

(r)
ij = AiΛ̂

(r)
ij A

T
j + εES (24)

where Ai ∈ Gl(m) is randomly picked, both real and imaginary parts of the

diagonal entries of Λ
(r)
ij and Λ̂

(r)
ij are drawn from a uniform distribution on the

interval (0, 10), matrices EH ∈ Cm×m and ES ∈ Cm×m are a Hermitian and a
complex symmetric matrix, respectively, whose real and imaginary parts are gen-
erated from a uniform distribution on the unit interval (−0.5, 0.5), representing
additive stationary noises, and ε ∈ R is the noise level.

We set m = 3, k = 3, n = 3, ε ∈ {0.1, 0.5, 1.0}, and run 50 tests. The quartile
based boxplot of averaged Amari errors of our proposed algorithm against three
different noise levels are drawn in Figure 1. Our CG algorithm demonstrates its
correspondingly delaying performance with the increasing noise levels.
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Abstract. The linear BSS problem can be solved under certain condi-
tions via a joint diagonalization approach of only two matrices. Algebraic
solutions, i.e. solutions that only involve eigenvalue decompositions or
singular value decompositions, are of particular interest as efficient eigen-
solvers exist. Success of these methods depends significantly on particular
properties of the sources, such as non-stationarity, non-whiteness, non-
Gaussianity, and non-circularity. In this work, we propose alternative
algebraic solutions to solve the complex BSS problem, which generalize
the existing approaches. For example, applicability of SUT is limited to
the positive definiteness of the covariance matrix, whereas our approach
allows to exploit alternative information, such as autocorrelation and
pseudo-autocorrelation, to solve the complex BBS problem.

Keywords: Complex blind source separation, second order statistics,
(generalized) eigenvalue decomposition, Takagi factorization.

1 Introduction

Since the pioneering work on Independent Component Analysis (ICA) [1], the
problem has attracted enormous attentions from various communities, and many
efficient algorithms have been developed, cf. [2]. Despite the major interest in
developing numerical iterative algorithms, cf. [3], a relatively small fraction of at-
tention has been focused on the development of algebraic solutions, i.e. solutions
that only involve eigenvalue decompositions or singular value decompositions.
Although the algebraic approaches are in general less powerful and less robust
to noise and estimation errors than their iterative counterparts, cf. [4,5], these
methods are of particular interest, as they provide not only general solvability
conditions for successful BSS, but also simple, efficient solutions based on various
powerful eigensolvers.

By exploiting particular properties of the sources, such as non-stationarity,
non-whiteness, non-Gaussianity, and non-circularity, the linear BSS problem can
be solved by jointly diagonalizing two matrices, namely, the covariance matrix
of the observations and an additional matrix, which reflects the assumptions. A
corresponding algebraic solution, named Strong Uncorrelating Transform (SUT),
has been developed in [6]. It employs one step of Eigenvalue Decomposition

F. Theis et al. (Eds.): LVA/ICA 2012, LNCS 7191, pp. 74–81, 2012.
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(EVD) of a positive definite Hermitian matrix, followed by one Takagi factoriza-
tion, which is a special form of Singular Value Decomposition (SVD) of a com-
plex symmetric matrix. We refer to [7,8] for more details on powerful EVD/SVD
methods. Meanwhile, the other three assumptions lead to a unified approach of
Generalized Eigenvalue Decomposition (GEVD), cf. [4], which simply involves
two steps of EVD.

Success of algebraic solutions is knownto be limited to their pre-selectedassump-
tions. For example, the AMUSE algorithm is only capable to separate non-white
signals with distinct autocorrelation coefficients, cf. [9], while the SUT approach
fails when dealing with non-circular sources with indistinct circularity coefficients
[6]. The present work completes the puzzle of algebraic solutions to the linear BSS
problem.We consider all potential combinations of the aforementioned four prop-
erties of signals. Alternative algebraic solutions are developed for the cases when
the existing approaches fail. In particular, we propose a generalization of the pop-
ular SUT algorithm, by eliminating the involvement of the covariance matrix and
relaxing the constraint that one matrix needs to be positive definite.

This paper is organized as follows. In Section 2, we briefly introduce the
complex valued linear BSS problem, and review second order statistics based
approaches. Section 3 presents the main contribution of this work. Finally in
Section 4, performance of the proposed algebraic BSS solution is investigated
and compared with other algebraic approaches.

2 Complex BSS and Second-Order Statistics

Let us start with some notations and definitions. In this work, we denote by (·)T
the matrix transpose, (·)H the Hermitian transpose, (·)∗ the complex conjugate,
and, |·| , �z and z the modulus |z| =

√
zz∗, the real part and the imaginary part

of z ∈ C respectively. Furthermore, we denote by Gl(m), U(m) and O(m), the
set of allm×m invertible, unitary and complex orthogonal matrices, respectively.

2.1 Complex Linear BSS Model

Let s(t) = [s1(t), . . . , sm(t)]T ∈ Cm be an m-dimensional vector representing
the time series of m statistically independent complex signals. The noise-free
instantaneous linear complex BSS model is given by

w(t) = As(t), (1)

where A ∈ Cm×m is the mixing matrix of full rank and w(t) = [w1(t), . . . ,
wm(t)]T ∈ Cm presents m observed linear mixtures of s(t). Without loss of
generality, we assume that the sources s(t) have zero mean, cf. [3], i.e. E[s(t)] = 0,
where E[·] denotes the expectation over the time index t.

The task of the linear complex BSS problem (1) is to recover the source
signals s(t) by estimating the mixing matrix A or its inverse A−1 based only on
the observations w(t) via the demixing model
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y(t) = XHw(t), (2)

where XH ∈ Cm×m is the demixing matrix, an estimation of A−1, and y(t) ∈ Cm

represents the corresponding extracted signals.

2.2 Second-Order Statistics Based Algebraic Solutions

Given the mixing model (2), the covariance matrix of the observations w(t) over
the time t is computed as

Cw := E[w(t)wH(t)] = AE[s(t)sH(t)]︸ ︷︷ ︸
=:Cs

AH, (3)

where the covariance matrix of the sources Cs is diagonal and nonnegative fol-
lowing the statistical independence assumption. When the source signals are
assumed to be nonstationary or time varying, the demixing matrix is expected
to be identifiable via a joint diagonalization of two covariance matrices within
different time intervals [10].

When source signals are stationary but non-white, i.e. with non-zero autocor-
relations, the second order statistics in the form of autocorrelations for time lag
τ > 0 is often used, i.e.

C̃w(τ) := E[w(t)wH(t− τ)] = AC̃s(τ)A
H. (4)

Note that although the autocorrelation matrix of the sources is still diago-
nal, it needs not necessarily to be real. In other words, the autocorrelation
matrix of the observations is not Hermitian in general. Similarly, the demixing
matrix is expected to be identified via a joint diagonalization of one covariance
matrix and one autocorrelation matrix within a non-zero time lag [11].

Furthermore, it is well known that for complex valued signals, there are certain
properties that are not shared with their real valued counterparts, and that can
be employed for complex BSS. Namely, besides the standard covariance matrix
(3), a similar statistical quantity of complex valued signals, known as pseudo-
covariance matrix, can be defined as

Rw := E[w(t)wT(t)] = ARs(t)A
T. (5)

The works in [6,12] have shown that, when the sources are all non-circular with
distinct circularity coefficients, the demixing matrix can be successfully identi-
fied by jointly diagonalizing both the covariance and pseudo-covariance matrix.
The resulting algebraic solution, namely SUT, provides a simple answer to the
complex BSS problem. However, in order to separate non-circular signals with
same circularity coefficients, one has to either utilize numerical iterative algo-
rithms or employ some additional information. Recent work in [13] proposes to
utilize the pseudo-autocorrelation matrix of signals, i.e.

R̃w(τ) := E[w(t)wT(t− τ)] = AR̃s(τ)A
T, (6)

and develops a numerical iterative algorithm to solve the linear BSS problem.
Note that both the pseudo-covariance and pseudo-autocorrelation matrix are
complex symmetric.
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3 Algebraic Solutions to Complex BSS Problem

It is interesting to notice that existing algebraic solutions are only provided for
the situations which combine the covariance matrix (3) and one of the other
three quantities. The main contribution of this work is to consider all possible
mixtures of second order statistics in developing algebraic solution to linear BSS.
Thus, the problem studied in this work can be summarized as follows. Let two
matrices be generated as

C1 := AΩ1A
†1 and C2 := AΩ2A

†2 (7)

where A ∈ Gl(m) and Ωi = diag(ωi1, . . . , ωim) ∈ Gl(m) are unknown, and (·)†i
denotes either the Hermitian transpose or the matrix transpose. It is impor-
tant to notice that the model (7) allows mixtures of both Hermitian congruence
and matrix congruence. Then, the task is to find a matrix X ∈ Gl(m), as an
estimation of A−H, such that C1 and C2 are simultaneously diagonalized via

XHC1(X
H)†1 and XHC2(X

H)†2 . (8)

3.1 Two Hermitian or Two Complex Symmetric

Algebraic solutions dealing with two matrices constructed via the Hermitian
congruence have been studied in [4]. As the cases with the matrix congruence
can be treated in the same way, in this subsection, we only briefly recap the
results in [4] in a unified form.

Let two matrices C1, C2 ∈ Gl(m) be constructed by

C1 = AΩ1A
† and C2 = AΩ2A

†, (9)

where (·)† denotes either the Hermitian transpose or the matrix transpose. Now
let us assume that one of the matrices, say C2, is invertible. Then we compute

C1C
−1
2 = AΩ1A

† (AΩ2A
†)−1

= AΩ1Ω
−1
2 A−1, (10)

which gives the eigendecomposition of C1C
−1
2 . It then follows directly that, if the

eigenvalues of C1C
−1
2 are distinct, i.e. the diagonal entries of Ω1 = diag(ω11, . . . ,

ω1m) and of Ω2 = diag(ω21, . . . , ω2m) satisfy

ω1i

ω2i
�= ω1j

ω2j
(11)

for all pairs (i, j) with i �= j, then the mixing matrix A is identifiable up to
a column-wise scaling and permutation, and can be computed by an EVD of
C1C

−1
2 .
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3.2 One Hermitian and One Complex Symmetric

In this subsection, we develop an algebraic solution to the situation with one
matrix being constructed via Hermitian congruence and the other via matrix
congruence. Hence, let us assume that two matrices C1, C2 ∈ Gl(m) are con-
structed by

C1 = AΩ1A
H and C2 = AΩ2A

T. (12)

Here, Ω1 refers to either the covariance matrix (3), or more general, the au-
tocorrelation matrix (4) of the sources, and Ω2 corresponds to their pseudo-
counterparts (5) and (6). We emphasize that neither C1 nor C2 needs to be
positive definite.

It is clear that SUT does not apply to this situation, as the matrix C1 is neither
Hermitian nor positive definite in general. Nevertheless, the construction of our
approach is largely inspired by the derivation of SUT. Namely, SUT aims to
transfer C1, restricted to be the covariance matrix, into the identity matrix, and
simultaneously bring C2 into a real diagonal matrix. In our case, we propose to
take the opposite direction, i.e. to transfer C2 into the identity matrix, and C1

into a diagonal matrix.

Lemma 1. Let C1 ∈ Gl(m) and C2 ∈ Gl(m) be constructed as in (12), and let
C2 = UΣUT be the Takagi factorization of C2. Then,

(i) the matrix C̃1 := Σ−1/2UHC1UΣ
−1/2 admits a matrix factorization of the

form C̃1 = V ΛV H, where V ∈ O(m) and Λ is diagonal;
(ii) the transformation X := UΣ−1/2V ∗ brings C2 into the identity matrix and

C1 into a diagonal matrix via XHC1X and XHC2X
∗.

Proof. (i) Recall the construction of C2 as in (12), we have

AΩ2A
T = UΣUT. (13)

As diagonal entries of Σ are all positive, Equation (13) is equivalent to

Σ−1/2UHAΩ2A
TU∗Σ−1/2 = Im. (14)

By substituting Ω2 = (Ω
1/2
2 )2 into the above equation, it can be seen that V :=

Σ−1/2UHAΩ
1/2
2 is complex orthogonal. With A = UΣ1/2V Ω

−1/2
2 , Equation (12)

yields

C1 = AΩ1A
H = UΣ1/2V Ω

−1/2
2 Ω1Ω

−H/2
2︸ ︷︷ ︸

=:Λ

V HΣ1/2UH, (15)

where Λ is diagonal. Then, Equation (15) is equivalent to

Σ−1/2UHC1UΣ
−1/2 = V ΛV H. (16)

(ii) It is straightforward to verify that

XHC1X = V TΣ−1/2UHC1UΣ
−1/2V ∗ = Λ, (17)

and
XHC2X

∗ = V TΣ−1/2UHC2U
∗Σ−1/2V = Im. (18)

Hence the lemma follows.
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As the complex symmetric matrix C2 reflects the pseudo second order statistics of
complex signals, we name the matrix X Pseudo-Uncorrelating Transform (PUT)
in referring its connection to SUT. A small computation shows that the matrix
V consists of eigenvectors of C̃1C̃

T
1 , as

C̃1C̃
T
1 = V ΛV HV ∗ΛV T = V Λ2V T. (19)

Thus, if W is a matrix such that C̃1C̃
T
1 = WΛ′W−1 and if the eigenvalues

Λ′ are pairwise distinct, it follows by the uniqueness of the EVD, that V =
W (WTW )−1/2DP , where P is a permutation and D is diagonal with entries
being ±1. Then, the PUT algorithm is summarized as

Algorithm 1. Pseudo-Uncorrelating Transform (PUT)

Step 1: Construct C1, C2 from the observations w(t), where C1 and C2 are
constructed via Hermitian congruence and matrix congruence,
respectively;

Step 2: Compute the Takagi factorization of C2 = UΣUT;

Step 3: Let C̃1 := Σ−1/2UHC1UΣ
−1/2, compute EVD of C̃1C̃

T
1 = WΛW−1;

Step 4: Compute V = W (WTW )−1/2;

Step 5: Compute the PUT matrix X = UΣ−1/2V ∗;

Finally, we characterize the applicability of PUT as an effective ICA technique.
In the context of BSS, we refer to entries of Λ as defined in (15), i.e. {ω1i/|ω2i|}
as the pseudospectrum of the sources.

Theorem 1. Let the source s(t) in the ICA model in (1) have pseudospectra
Λ defined in (15) with Λ2 being pairwise distinct, then a pseudo-uncorrelating
transform of the mixture w(t) is a demixing matrix.

Proof. Recall Equation (19), as an eigenvalue decomposition, the matrix V
is determined up to a permutation and a columnwise sign difference, if the
eigenvalues of C̃1C̃

T
1 , i.e. Λ2, are pairwise distinct. Let V̂ := V DP , where

D = diag(d1, . . . , dm) with di = ±1 and P is a permutation matrix. Then

X̂ := UΣ−1/2V̂ ∗ is a PUT matrix. A direct computation shows

X̂HA = (UΣ−1/2V̂ ∗)HUΣ1/2V Ω
−1/2
2

= PDV TΣ−1/2UHUΣ1/2V Ω
−1/2
2

= PDΩ
−H/2
2 .

(20)

Namely, the PUT matrix X̂ is an estimation of A−H up to a permutation and a
columnwise scaling. Then the result follows.

Remark 1. It is interesting to know that, when the matrix C1 is Hermitian and
positive definite, i.e. ω1i > 0 for all i = 1, . . . ,m. Then the pseudospectra Λ as
in (15) are simply the reciprocal of the circularity coefficients of sources. Our
result coincides with the identifiability condition of SUT, cf. theorem 2 in [6].
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The second observation is that SUT of an arbitrary pair of one positive def-
inite Hermitian and one complex symmetric matrix does always exist, cf. [14].
While PUT does not hold in general for an arbitrary pair of Hermitian and com-
plex symmetric matrix. However, existence of SUT implies the applicability of
PUT on an arbitrary pair of positive definite Hermitian and complex symmetric
matrix. In other words, PUT can be considered as a generalization of SUT.

Corollary 1. For an arbitrary pair of one Hermitian positive definite and one
nonsingular complex symmetric matrix, a PUT matrix always exists.

4 Numerical Experiments

In this section, we investigate separation performance of several algebraic BSS
solutions. In particular, we denote by EVD1, EVD2, EVD3 three eigendecompo-
sition based approaches employing non-stationarity (two covariance mateices),
non-whiteness (one covariance matrix and one autocorrelation matrix), and non-
circularity (one autocorrelation matrix and one pseudo-autocorrelation matrix),
respectively. Separation performance is measured by the normalized Amari er-
ror proposed in [15]. It is important to notice that estimations of the demixing
matrix X from different methods might differ in column-wise scaling. Thus, in
order to compare the methods, we normalize all columns of each estimated X .
Generally speaking, the smaller the Amari error, the better the separation.

The task of our experiment is to five stationary, non-white, non-circular (with
identical circularity coefficients) sources,which are constructed as, fork = 1, . . . , 5,{

�sk(t) = N(0,1)(t) + sin( π
100k t),

sk(t) = N(0,2)(t) + cos( π
100k t),

(21)

where N(0,1)(t) denotes a sample drawn from a standard normal distribution.
We run the experiment for 100 times, and the quartile based boxplot of Amari
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Fig. 1. Separation performance of algebraic solutions
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errors for each method are drawn in Fig. 1. For this particular dataset, it is
obvious that algebraic approaches based on nonstationarity and noncircularity,
i.e. EVD1, EVD3, SUT, fail the task. Whereas both PUT and EVD2 succeed
in achieving good separations. With a closer look to the result in the zoomed-in
window, PUT approach outperforms the EVD2 slightly.
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Abstract. Traditionally, the strong uncorrelating transformation
(SUT) is applied to the zero-lag sample autocovariance and pseudo-
autocovariance matrices of the observed mixtures for separating complex-
valued stationary sources. The performance of the SUT in that context
has been recently analyzed. In this work we extend the analysis to the
case where the SUT is applied to “generalized” covariance and pseudo-
covariance matrices - which are prescribed by an arbitrary symmetric,
positive definite matrix, termed an “association matrix”. The analysis
applies not only to stationary sources, but also to sources with arbitrary
complex-valued temporal covariance and pseudo-covariance. As we show,
the use of generalized covariance and pseudo-covariance matrices for the
SUT entails a potential for significant improvement in the resulting sep-
aration performance, as we also demonstrate in simulation.

1 Introduction and Model Assumptions

We address the use of the Strong Uncorrelating Transformation (SUT) for blind
separation of complex-valued sources. Classically, the SUT is applied to the zero-
lag sample-covariance and sample-pseudo-covariance matrices of the observed
mixtures, yielding an estimate of the demixing matrix. The separation perfor-
mance of the SUT in this context (in terms of the Interference to Source Ratio
(ISR)) was recently analyzed in [1] for the case of wide-sense stationary sources.

It is, however, possible to apply the powerful tool of SUT to other second-order
statistics matrices of the sources, other than the zero-lag covariance and pseudo-
covariance. It would be interesting to explore whether (and if so, when) using
the SUT with alternative matrix-pairs can yield improved separation perfor-
mance relative to its classical use with zero-lag covariance and pseudo-covariance.
Therefore, our objective in this work is to derive expressions for the resulting
ISR when the SUT is applied to more general (“generalized”) covariance and
pseudo-covariance matrices.

We address the static, linear, square-invertible and noiseless mixture model
X = ÃS̃ (the reason for the tilde notation will become clear in the sequel), in

which S̃
	
= [s̃1 s̃2 · · · s̃K ]T is a K × N matrix containing the K unobserved

F. Theis et al. (Eds.): LVA/ICA 2012, LNCS 7191, pp. 82–90, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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source signals (each of length N) as its rows; Ã is the unknown K ×K mixing

matrix (assumed to be nonsingular); and X
	
= [x1 x2 · · · xK ]T is the K × N

matrix of K observed mixtures.
To define the “generalized” covariance and pseudo-covariance matrices, let P

denote some arbitrary N × N real-valued symmetric positive-definite matrix,
which we term an “association-matrix”, and let the sample generalized covari-

ance and generalized pseudo-covariance matrices R̂ and R̂ be given by

R̂x = 1
NXPXH R̂x = 1

NXPXT (1)

(respectively). Evidently, R̂x is always Hermitian and R̂x is always symmetric.
Different types of generalized covariance and pseudo-covariance matrices can be
attained by different selection of the association matrix, for example:

– If P is taken as the N ×N identity matrix, then R̂ and R̂ coincide with the
“standard” sample covariance and pseudo-covariance, taken uniformly over
the entire observation interval;

– If P is diagonal (with positive, possibly different elements along its diago-

nal), then R̂ and R̂ are temporally-weighted sample covariance and pseudo-
covariance, with weighting prescribed by the diagonal values of P .

– If P is a Toeplitz matrix then R̂ (resp., R̂) is a linear combination of sample
correlations (pseudo-correlations) matrices at different lags, as prescribed by
the values along the diagonals of P .

For our subsequent performance analysis we need to introduce assumptions on
the statistical properties of the sources. In addition to the standard ICA assump-
tion, that the sources are zero-mean mutually independent stochastic processes,
we shall only need to quantify second-order properties of the sources. We shall
not make any particular structural assumption, such as stationarity, but merely
denote (for k = 1, . . . ,K) by

C̃k = E[s̃ks̃
H
k ], C̃k = E[s̃ks̃

T
k ] (2)

the complex-valued N ×N temporal covariance and pseudo-covariance matrices
of the sources. Note that we do not assume any particular structure of C̃k and

/ or of C̃k, and do not assume knowledge of these matrices for separation, but
only for the performance analysis. No further information on the distributions
of the sources is needed for our small-errors analysis.

2 Normalization Model and the SUT

Due to the inherent scale and phase ambiguity in complex-valued ICA (equiva-
lent to the scale and sign ambiguity in the real-valued case), we assume a scaling
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and phase correction convention as follows. Given a selected association matrix
P , denote the following (for each source, k = 1, . . . ,K):

μk
	
= 1

NE[s̃TkP s̃∗k] =
1
N Tr{PC̃

∗
k} ρke

jφk
	
= 1

NE[s̃TkP s̃k] =
1
N Tr{PC̃k}, (3)

where the superscript ∗ denotes complex-conjugation, j =
√
−1, and all the pa-

rameters μk, ρk and φk are real-valued. In addition, μk is positive (due to the pos-
itive definiteness of P ), and ρk is non-negative. Now define (for k = 1, . . . ,K) the

normalization factors ηk
	
=
√
μkejφk . If we further define “normalized sources”

as sk
	
= s̃k/ηk and a new mixing-matrix A = Ã ·Diag{η1, . . . , ηK}, then we can

describe the observed mixtures as (scaled, rotated) mixtures of the “normalized”

version of the same sources: X = ÃS̃ = AS, where S
	
= [s1 · · · sK ]T is the

K ×N matrix of normalized sources, each satisfying

1
NE[sTkPs∗k] = 1 1

NE[sTk Psk] =
ρk
μk

	
= κk, (4)

where κk ≥ 0 is the generalized circularity coefficient (e.g., [2,3]) of the k-th
source with respect to P . We assume that the sources have distinct generalized
circularity coefficients, and are ordered in a descending order of these coefficients
(i.e., κ1 > κ2 > · · · > κK). In addition, we shall denote by K ∈ RK×K the diag-
onal matrix holding κ1, ..., κK along its main diagonal (this matrix is sometimes
called the circularity spectrum [2] matrix). The source separation goal is now
to separate the normalized sources, which is equivalent, under the conventional
scaling and phase ambiguities, to separation of the original sources.
In addition, we have (for k = 1, . . . ,K)

Ck
	
= E[ssH ] =

1

μk
C̃k Ck

	
= E[ssT ] =

e−jφk

μk
C̃k (5)

As mentioned above, we consider a separation scheme in which the SUT is

applied to the matrices R̂x and R̂x. The SUT finds a matrix B̂, such that

B̂R̂xB̂
H

= I and B̂R̂xB̂
T
is a diagonal matrix which we shall denote K̂, since

it serves as an estimate of the true circularity spectrum matrix K. B̂ serves as
an estimate of the separation matrix B = A−1.

The computation of the SUT proceeds as follows (see, e.g., [4,5,6,3]). A whiten-

ing transformation Ŵ of R̂ is found first: using the eigenvalues decomposition

R̂ = Φ̂Λ̂Φ̂
H
(where Φ̂ is unitary and Λ̂ is diagonal and positive), Ŵ = Λ̂

−1/2
Φ̂

H

provides B̂ up to multiplication by a unitary matrix U , which can be extracted

from the Singular Values Decomposition (SVD) of the matrix Ŵ R̂Ŵ
T
. Indeed,

denoting the SVD of this matrix as Ŵ R̂Ŵ
T
= ÛΣ̂V̂

H
(where Û and V̂ are

unitary and Σ̂ is diagonal non-negative), the desired SUT matrix is given by

B̂ = Û
H
Ŵ . We note in passing, that since Ŵ R̂Ŵ

T
is symmetric, we also have

U = V ∗, so the SVD essentially yields the Takagi factorization (see, e.g., [7]) in
this case.
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3 Performance Analysis

Any reasonable performance measure would be based on the overall mixing-

unmixing matrix, T
	
= B̂A, which would, under the normalization assumptions

in Section 2, ideally be the Identity matrix. An important feature of SUT-based
separation is the property of equivariance with respect to the mixing matrix A
(closely related to the more general property of equivariance of the generalized
uncorrelating transformation [8]): Given a particular realization of the sources,
the resulting overall mixing-unmixing matrix T does not depend on A. This
appealing property can be shown in a way similar to the derivation in [1], by

showing that T (X) = B̂(X)A is actually T (S) - namely the SUT matrix of
the sources’ generalized covariance and pseudo-covariance matrices. Recalling
(e.g., [2,3]) that if the generalized circularity coefficients are distinct then the
SUT is unique, we conclude that T (AS) = T (S), regardless of the value of A.

Thus, any performance measure which is based on T (X) will be independent
of A. One such popular measure is the ISR matrix, a K ×K matrix in which
the (k, �)-th element (k �= �), defined as

ISRk,� = E

[ ∣∣∣∣ T [k, �](X)

T [k, k](X)

∣∣∣∣2
]
· Tr{C�}
Tr{Ck}

≈ E[ |T [k, �](X)|2] · Tr{C�}
Tr{Ck}

, (6)

(where Tr{·} denotes the trace operator) represents the mean relative residual
energy of the �-th source in the reconstruction of the k-th source. Note that the
approximation in (6) is due to the small-errors assumption, which, combined
with the scaling convention, enables to assume T [k, k](X) ≈ 1.

To proceed with our small-errors analysis, assume now that T (S) = I +Θ,
where Θ ∈ CK×K is a matrix with small elements representing the (small)
deviation of T (S) from its ideal value of I. We therefore have, from the SUT,

(I +Θ)R̂s(I +ΘH) = I, (I +Θ)R̂s(I +ΘT ) = K̂. (7)

We can also express R̂s = I + E and R̂s = K + E , where (under the small-
errors analysis) E,E ∈ CK×K are also matrices with small elements, representing
the (small) deviations of the sources’ sample covariance and pseudo-covariance
(resp.) from their true values. This leads to a description of Θ in terms of these
deviations as follows:

(I +Θ)(I + E)(I +ΘH) = I ⇒ I +Θ +ΘH + E ≈ I

(I +Θ)(K + E)(I +ΘT ) = K̂ ⇒ K +ΘK +KΘT + E ≈ K̂, (8)

where we have neglected terms that are quadratic or higher in the elements of
the small-valued matrices Θ, E and E . This leads, in turn, to

Θ +ΘH = −E, ΘK +KΘT = (K̂ −K)− E. (9)
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Recalling that both K and K̂ are diagonal, we obtain for each off-diagonal term:

Θ[k, �] + Θ∗[�, k] = −E [k, �]
κ�Θ[k, �] + κkΘ[�, k] = −E [k, �], (10)

where Θ[k, �] denotes the (k, �)-th element of Θ, etc. In matrix form we get:⎡⎢⎢⎣
1 1 0 0
κ� κk 0 0
0 0 1 −1
0 0 κ� κk

⎤⎥⎥⎦
︸ ︷︷ ︸

�
=Hk�

⎡⎢⎢⎣
ΘR[k, �]
ΘR[�, k]
ΘI [k, �]
ΘI [�, k]

⎤⎥⎥⎦
︸ ︷︷ ︸

�
=θk�

= −

⎡⎢⎢⎣
ER[k, �]
ER[k, �]
EI [k, �]
EI [k, �]

⎤⎥⎥⎦
︸ ︷︷ ︸

�
=εk�

= −1

2

⎡⎢⎢⎣
1 1 0 0
0 0 1 1
−j j 0 0
0 0 −j j

⎤⎥⎥⎦
︸ ︷︷ ︸

�
=J

⎡⎢⎢⎣
E [k, �]
E∗[k, �]
E [k, �]
E∗[k, �]

⎤⎥⎥⎦
︸ ︷︷ ︸

�
=εk�

(11)

where ΘR[k, �] and ΘI [k, �] denote the real and imaginary parts (resp.) of Θ[k, �],
with similar notations for elements of E and E. Observe now, that the (k, �)-th
elements of E and E are (for k �= �) simply the off-diagonal elements of the

sample generalized covariance and pseudo-covariance matrices R̂ and R̂ (resp.)
of the sources, and therefore E [k, �] = 1

N skPs∗� and E [k, �] = 1
N skPs�. As such,

these are obviously zero-mean random variables (since the sources are mutually
uncorrelated), which means (from (11)) that the off-diagonal elements of Θ are
also zero-mean (under the small-errors assumption). In order to obtain the vari-
ances of the off-diagonal elements of Θ (which by (6) are the respective elements
of the ISR matrix, up to scaling normalization), we first need the covariance ma-

trix of the vector εk�
	
=
[
E [k, �] E∗[k, �] E [k, �] E∗[k, �]

]T
. To this end, we note

the following joint moments (for all k �= �):

E [E [k, �]E∗[k, �]] = 1

N2

N∑
p,q,m,n=1

E [sk[p]P [p, q]s∗� [q]s
∗
k[m]P [m,n]s�[n]]

=
1

N2

N∑
p,q,n,m=1

P [p, q]P [m,n]E [sk[p]s
∗
k[m]s�[n]s

∗
� [q]]

=
1

N2

N∑
p,q,n,m=1

Ck[p,m]P [m,n]C�[n, q]P [q, p] = Tr{CkPC�P }, (12)

where we have used the statistical independence of the sources, as well as the
symmetry of P . Similarly, it is straightforward (although somewhat tedious) to
verify that the entire covariance matrix of εk� can be expressed as

E[εk�ε
H
k�] =

1

N2

⎡⎢⎢⎣
Tr{CkPC�P } Tr{CkPC

∗
�P } Tr{CkPC

∗
�P } Tr{CkPC�P }

Tr{C∗
kPC�P } Tr{C∗

kPC∗
�P } Tr{C

∗
kPC∗

�P } Tr{C∗
kPC�P }

Tr{CkPC�P } Tr{CkPC∗
�P } Tr{CkPC∗

�P } Tr{CkPC�P }
Tr{C∗

kPC�P } Tr{C∗
kPC

∗
�P } Tr{C

∗
kPC

∗
�P } Tr{C∗

kPC�P }

⎤⎥⎥⎦ .
(13)
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For convenience, we may obtain more compact expressions for the subsequent
derivation by defining:

αk�
	
= Tr{CkPC�P } = Tr{C∗

kPC∗
�P } αkl

	
= Tr{CkPC∗

�P } = Tr{C∗
kPC�P }

βk�
	
= Tr{C∗

kPC�P } = Tr{CkPC�P }. (14)

For the first two identities we used the conjugate symmetry of PC�P and
of PC∗

�P , combined with the property that if F and G are Hermitian, then
Tr{FG} is real-valued; For the third identity we used the symmetry of PC�P ,
combined with the property that if F is Hermitian and G is symmetric, then
Tr{FG} = Tr{F ∗G}. We also define

γk�
	
= Tr{CkPC

∗
�P } γk�

	
= Tr{CkPC�P }. (15)

Using these terms, we may express the covariance matrix (13) as

E[εk�ε
H
k�] =

1

N2

⎡⎢⎢⎣
αk� γk� β

∗
k� β�k

γ∗k� αk� β
∗
�k βk�

βk� β�k αkl γkl
β∗
�k β

∗
k� γ

∗
k� αkl

⎤⎥⎥⎦ . (16)

We now proceed to obtain the covariance matrix of the (real-valued) vector
εk� =

1
2Jεk�, given by

Ψk�
	
= E[εk�ε

T
k�] =

1

4
· JE[εk�ε

H
k�]J

H

=
1

2N2

⎡⎢⎢⎣
R{αk� + γk�} R{βk� + β�k} I{γk�} I{βk� + β�k}
R{βk� + β�k} R{αkl + γkl} I{β�k − βk�} I{γkl}
I{γk�} I{β�k − βk�} R{αk� − γk�} R{βk� − β�k}

I{βk� + β�k} I{γkl} R{βk� − β�k} R{αkl − γkl}

⎤⎥⎥⎦ , (17)

where R{·} and I{·} denote the Real and Imaginary parts (resp.). Note that
the αk� and αkl coefficients are always real-valued.

The last step is to obtain the covariance matrix of θk� = H−1
k� εk�, evidently

given by Ck,�
	
= E[θk,�θ

T
k,�] = H−1

k� Ψk�H
−T
k� . Note, however, that for obtaining

the (k, �)-th element of the ISR matrix,

ISRk,� = E[|Θ[k, �]|2] = E[Θ2
R[k, �] +Θ2

I [k, �]] (18)

we only need var{ΘR[k, �]} = Ck,�[1, 1] and var{ΘI [k, �]} = Ck,�[3, 3]. Noting
further that Hk,� is a block-diagonal matrix (with two 2 × 2 blocks), we can
identify these elements from the (1, 1) elements of the respective 2× 2 blocks:

Ck,�[1 : 2, 1 : 2] =

[
1 1
κ� κk

]−1

· Ψk�[1 : 2, 1 : 2] ·
[
1 κ�
1 κk

]−1

=
1

2N2(κk − κ�)2

[
κk −1
−κ� 1

]
· R
{[

αk� + γk� βk� + β�k
βk� + β�k αkl + γkl

]}
·
[
κk −κ�
−1 1

]
(19)
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Ck,�[3 : 4, 3 : 4] =

[
1 −1
κ� κk

]−1

· Ψk�[3 : 4, 3 : 4] ·
[
1 κ�
−1 κk

]−1

=
1

2N2(κk + κ�)2

[
κk 1
−κ� 1

]
· R
{[

αk� − γk� βk� − β�k
βk� − β�k αkl − γkl

]}
·
[
κk −κ�
1 1

]
. (20)

Taking the (1, 1) element of each of these two matrices, we obtain (resp.):

E[Θ2
R[k, �]] = R

{
κ2k(αk� + γk�)− 2κk(βk� + β�k) + (αkl + γkl)

2N2(κk − κ�)2

}
(21)

E[Θ2
I [k, �]] = R

{
κ2k(αk� − γk�) + 2κk(βk� − β�k) + (αkl − γkl)

2N2(κk + κ�)2

}
. (22)

Finally, the asymptotic expression for each ISRk,� is given by the sum of these
two expressions ((21) and (22)), normalized by the ratio Tr{C�}/Tr{Ck}.
We note some important properties of the ISR expression:

– Invariance with respect to the other sources: ISRk,� depends only on the
statistics of the k-th and �-th sources, and not on other sources. Note, how-
ever, that this property only holds under our small-errors assumption, as a
direct result of the approximation made in (8);

– Invariance with respect to the distributions of the sources: The ISR depends
only on the temporal SOS of the (relevant) sources, and is independent of
their higher-order temporal moments or particular distributions. Note that
this property, too, is only valid under the small-errors approximation.

– Non-identifiability condition: If κk = κ�, then the resulting ISRk,� and ISR�,k

are infinite, meaning that two sources with the same generalized circularity
coefficient with respect to P cannot be separated by the SUT of the respec-
tive generalized covariance and pseudo-covariance alone.

4 Simulation

To demonstrate the validity of our analytic derivations, as well as the poten-
tial performance gain in using generalized covariance and pseudo-covariance
matrices, we present the following simulation results. We mixed K = 3 sta-
tionary sources, generated as follows. Each source sk[n] was N = 500 samples
long, obtained as a filtered version of an iid zero-mean complex Gaussian noise
source wk[n], with circularity coefficients 0.9, 0.8, and 0.7 for w1[n], w2[n] and

w3[n] (resp.). Thus, each source was generated as sk[n] =
∑3

m=0 hk[m]wk[n−m]
(for k = 1, 2, 3). The finite impulse-response (FIR) filters (all of order 3) were
structured so as to have the following sets of zeros (in the z-plane): For h1[m]:
{0.8+0.8j, 1−0.2j, 2.6j}; for h2[m]: {−0.9, 1.5+0.9j, 1.3+0.6j}; and for h3[m]:
{1.3j,−0.9−0.1j, 0.6−0.6}. The sources were mixed by random complex-valued
mixing matrices with elements randomly and independently drawn from a zero-
mean unit-variance complex Gaussian distribution. The demixing matrix was
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estimated twice: First, as the SUT of the sample zero-lag covariance and pseudo-
covariance matrices (corresponding to P = P 1 = I), and then as the SUT of
the sample generalized covariance and pseudo-covariance matrices obtained with
P = P 2, structured as a 500× 500 symmetric Toeplitz matrix with the gener-
ating (first row) vector [1 0.1 0 − 0.4 0T ]. The resulting empirical ISR values
(averaged over 5000 independent trials) are presented in Table 1 below for both
separation schemes, together with the analytically predicted values (in parenthe-
ses). A close match between the empirical and analytically predicted values (up
to about 1dB) is observed, as well as significant performance differences (e.g., in
ISR2,1) when using different association matrices.

Table 1. Empirical and (in parentheses) theoretically predicted ISR values [dB]

ISR[dB] s1 s2 s3

s1 : P = P 1 −18.7(−17.6) −25.8(−25.9)
s1 : P = P 2 −23.0(−23.7) −26.2(−26.6)

s2 : P = P 1 −17.8(−17.4) −20.0(−21.6)
s2 : P = P 2 −23.6(−24.5) −18.3(−18.9)

s3 : P = P 1 −24.7(−24.7) −19.2(−20.3)
s3 : P = P 2 −25.7(−26.1) −17.8(−18.2)

5 Conclusion

Using a small-errors analysis, we derived expressions for the resulting ISR in
SUT-based separation using the observations’ generalized covariance and pseudo-
covariance matrices. The results depend only on the sources’ (complex-valued)
SOS and on the association matrix. Theoretically, the analytic expressions can
also serve for optimizing the selection of an association matrix, whenever the
sources’ SOS are known.
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Abstract. We consider an extension of ICA and BSS for separating
mutually dependent and independent components from two related data
sets. We propose a new method which first uses canonical correlation
analysis for detecting subspaces of independent and dependent compo-
nents. Different ICA and BSS methods can after this be used for final
separation of these components. Our method has a sound theoretical
basis, and it is straightforward to implement and computationally not
demanding. Experimental results on synthetic and real-world fMRI data
sets demonstrate its good performance.

1 Introduction

Various independent component analysis (ICA) and blind source separation
(BSS) methods [1, 2] are nowadays well-known techniques for blind extraction
of useful information from single vector-valued data X = [x(1), . . . ,x(Nx)] with
many applications. The data model used in the basic linear ICA is simply

x(t) = As(t) =

n∑
i=1

si(t)ai (1)

Thus each data vector x(t) = [x1(t), x2(t), . . . , xn(t)]
T is expressed as a linear

combination of independent components or source signals si(t), collected re-
spectively to the source vector s(t) = [s1(t), s2(t), . . . , sn(t)]

T . For simplicity,
we first assume that both x(t) and s(t) are zero mean n-vectors, and that the
mixing matrix A is a full-rank constant n × n matrix with column vectors ai,
i = 1, 2, . . . , n.

In standard linear ICA, the index t which usually denotes time or sample in-
dex is not important, because the order of the data vectors x(t) can be arbitrary.
This holds if they are samples from some multivariate statistical distribution.
However, the data vectors x(t) have often important underlying temporal struc-
ture. Alternative BSS methods have been developed for utilizing such temporal
information. They usually utilize either temporal autocorrelations directly or
smoothly changing nonstationarity of variances. The assumptions and applica-
tions domains of these three major categories of methods based on the simple
model (1) vary somewhat [1, 2].
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The most widely used standard ICA method is currently FastICA [1, 3] due
to its efficient implementation and fast convergence which makes it applicable
to higher dimensional problems, too. From the many methods using temporal
autocorrelations, we have used the TDSEP method [4] which performs usually
well. Some attempts have been made to combine different types of BSS methods
so that they would be able to separate wider classes of source signals. In [5], an
approximate method called UbiBSS is developed which tries to utilize higher-
order statistics, temporal autocorrelations, and nonstationarity of variances. We
have used its Matlab code [6] in our experiments.

ICA and BSS have been generalized into many directions from the simple
linear noiseless model (1) [1, 2]. We consider a generalization in which one tries
to find out mutually dependent and independent components from two different
but related data sets X and Y = [y(1), . . . ,y(Ny)]. Data vectors y(t) have
dimension m which can be different from dimension n of the data vectors x(t)
in X, but they obey a similar basic linear model

y(t) = Br(t) =

m∑
i=1

ri(t)bi (2)

in which r(t) is m-vector and B m×m matrix.
This generalization of ICA and BSS has not been studied as much as several

others, but some related work can be found in [7–9, 11–13]. In most of these
methods the data model is more rectrictive than ours, assuming that in the data
sets X and Y there exist pairs of sources which are mutually dependent, but
these sources are independent of all the other sources in X and Y. In particular,
canonical correlation analysis (CCA) or its extension to multiple data sets is
applied in [11, 13], but in a different way than we do. Due to space limitations,
we do not discuss these related works in more detail here.

2 Our Method

We apply canonical correlation analysis (CCA) to find the subspaces of depen-
dent and independent sources in the two related data sets. CCA [14] is an old
statistical technique which measures the linear relationships between two multi-
dimensional datasetsX andY using their autocovariances and cross-covariances.
CCA finds two bases, one for both X and Y, in which the cross-correlation ma-
trix between the data sets X and Y becomes diagonal and the correlations of
the diagonal are maximized.

In CCA, the dimensions of the data vectors x ∈ X and y ∈ Y can be different,
but they are assumed to have zero means. The canonical correlations and the
respective basis vectors can be computed by solving a generalized eigenvalue
problem as discussed in [14]. This solution simplifies considerably if the data
vectors x and y are prewhitened [1]. It turns out that the basis vectors of CCA
can then be determined from the singular value decomposition (SVD) of the
cross-covariance matrix Cxy = E{xyT } of x and y:
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Cxy = UΣVT =

L∑
i=1

ρiuiv
T
i (3)

Note that the SVD of Cyx = E{yxT } = CT
xy is quite similar and is obtained

by transposing both sides of Eq. (3). There U and V are two orthogonal square
matrices (UTU = I, VTV = I) containing as their column vectors the singular
vectors ui and vj . In our case, these singular vectors are the basis vectors provid-
ing canonical correlations. In general, the dimensionalities of the matrices U and
V and consequently the singular vectors ui and vi are different corresponding
to different dimensions of the data vectors x and y. The pseudodiagonal matrix

Σ =

[
D 0
0 0

]
(4)

consists of a diagonal matrixD containing the non-zero singular values appended
with zero matrices so that the matrix Σ is compatible with the different dimen-
sions of x and y. These non-zero singular values are just the non-zero canonical
correlations. If the cross-covariance matrix Cxy has full rank, their number L is
the smaller one of the dimensions of the data vectors x and y.

We first make the data vectors x ∈ X zero mean if necessary. These data
vectors are whitened separately:

vx = Vxx, vy = Vyy (5)

We use standard principal component analysis (PCA) for whitening as discussed
in [1]. After this we estimate the cross-covariance matrix Cvxvy of the whitened
data vectors vx and vy in standard manner:

Ĉvxvy =
1

N

N∑
t=1

vx(t)v
T
y (t) (6)

There N is the smaller of the numbers Nx and Ny of the data vectors in the two
data sets X and Y, respectively.

We then perform the SVD of the estimated cross-covariance matrix Ĉvxvy

quite similarly as for Cxy in (3). After inspecting the magnitudes of the singular
values in the pseudodiagonal matrix Σ, we divide the matrices U and V of
singular vectors into two submatrices:

U = [U1 U2], V = [V1 V2] (7)

There U1 and V1 correspond to dependent components for which the respective
singular values are larger than 0.5, and U2 and V2 to the independent com-
ponents for which the respective singular values are small. The data are then
mapped using these submatrices onto subspaces corresponding to the dependent
and independent components by computing

UT
1 X, UT

2 X, VT
1 Y, VT

2 Y (8)
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where X = [x(1), . . . ,x(Nx)] and Y = [y(1), . . . ,y(Ny)]. It should be noted that
contrary to the customary use of SVD we include in the submatrices U2 and V2

also the singular vectors corresponding to small or even zero singular values for
being able to separate all the sources in X and Y. We are not aware that CCA
would have used in this way in ICA and BSS previously.

Sometimes CCA alone used in this way is sufficient for coarse separation of
sources, but in most cases CCA at least makes clear progress towards separation,
providing signal-to-noise ratios of a few decibels. The preliminary separation
results of CCA can often be improved by applying to the four mapped data
sets defined in (8) some suitable ICA or BSS method. In principle at least it is
possible to apply any kind of postprocessing here.

The somewhat surprising result than CCA alone can provide coarse separa-
tion can be justfied heuristically as follows. First, let us denote the separating
matrices after the whitening step in (5) by WT

x for vx and respectively by WT
y

for vy. A basic result in the theory of ICA and BSS [1] is that after whitening
the separating matrices Wx and Wy become orthogonal: WT

xWx = I, WT
yWy

= I. Thus
ŝ = WT

xVxx = WT
xVxAs = s (9)

where we have for simplicity assumed that the estimated sources ŝ appear in the
same order as the original sources s. Assuming that there are as many linearly
independent mixtures x and Wy as sources s, so that the mixing matrix A is a
full-rank square matrix, we get from (9) by setting ŝ = s

A = (WT
xVx)

−1 = V−1
x Wx (10)

due to the orthogonality of the matrixWx. Quite similarly, we get for the another
mixing matrix B in (2) the equivalent result B = V−1

y Wy.
Consider now the cross-covariance matrix after whitening. It is

Cvxvy = E{vxv
T
y } = VxE{xy}VT

y = VxAQBTVT
y (11)

Here the matrix Q = E{srT } is a diagonal matrix, if the sources signals in the
source vectors s and r are pairwise dependent but otherwise independent of each
other. Inserting A = V−1

x Wx and B = V−1
x Wy into (11) yields finally

Cvxvy = WxQWT
y (12)

But this is exactly the same type of expansion as the SVD of the whitened
cross-covariance matrix Cvxvy in (3), because the matrices Wx and Wy are
orthogonal matrices and Q is a diagonal matrix. Thus on the assumptions made
above the SVD of the whitened cross-covariance matrix provides a solution that
has the same structure as the separating solution. Even though we cannot from
this result directly deduce that the SVD of the whitened cross-covariance matrix
(that is, CCA) would provide a separating solution, this seems to hold in simple
cases at least as shown by our experiments in the next section.

Another justification is that CCA, or SVD of whitened data vectors, uses
second-order statistics (cross-covariances) only for separation, while standard
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ICA algorithms such as FastICA use for separation higher-order statistics only
after the data has been normalized with respect to their second-order statistics
by whitening them. Our method combines both types of statistics. Our exper-
imental results demonstrate that this often provide better results than using
solely second-order or higher-statistics for separation. Dividing the separation
problem into subproblems using the matrices in (8) may also help. Probably
solving two lower dimensional subproblems is easier than solving a higher di-
mensional separation problem.

3 Experimental Results

We have successfully tested our method with synthetical data sets, with data sets
in which real-world sources have been mixed synthetically, and with real-world
robot and fMRI (functional magnetic resonance imaging) data. Due to space
limitations, we can show some quite selected results only here. More experimental
results can be found in [16].

Consider first a set of 6 synthetical stochastic sources which have been pur-
posedly designed so that they are very difficult to separate for most ICA and
BSS methods. They are defined in the Matlab code [6] of the UniBSS method
and explained in the respective paper [5]. Standard ICA methods based on non-
Gaussianity should be able to separate only the two first sources. Methods based
on temporal statistics should not able to separate any of them. Method utilizing
smoothly changing variances are able to separate only the fifth and sixth source.
Only the approximative UniBSS method [5] which utilizes all these properties is
able to separate all these 6 sources.

We mixed the first three sources and the fifth one to form the first data set X,
and the second, third, fourth and sixth source to the second data set Y. Thus in
these data sets there are two completely dependent sources, while the remain-
ing two sources in them are statistically independent of all the other sources.

Table 1. Signal-to-noise ratios (dB) of different methods for the source signals 1-4 in
the first data set X

Method Source 1 Source 2 Source 3 Source 4

CCA 10.3 9.9 10.1 10.3

FastICA 22.5 14.1 9.4 10.6

TDSEP 10.0 30.5 10.0 27.5

UniBSS 33.9 40.7 27.6 28.5

CCA + FastICA 29.3 20.0 21.0 29.4

CCA + TDSEP 30.7 37.9 34.8 30.2

CCA + UniBSS 33.7 48.4 39.2 32.7

Method in [9] 25.7 9.8 9.4 23.1

Method in [13] 12.5 11.4 11.3 13.2
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Table 2. Signal-to-noise ratios (dB) of different methods for the source signals 5-8 in
the second data set Y

Method Source 5 Source 6 Source 7 Source 8

CCA 9.9 10.1 10.5 10.5

FastICA 9.5 4.6 4.2 5.2

TDSEP 9.7 26.4 9.8 28.8

UniBSS 37.1 27.0 28.6 29.0

CCA + FastICA 21.1 21.9 13.1 13.2

CCA + TDSEP 37.9 34.8 31.6 33.1

CCA + UniBSS 49.4 39.2 31.0 33.0

Method in [9] 9.8 9.4 9.5 9.5

Method in [13] 11.4 11.3 3.6 3.9

We used 5000 data vectors and source signal values (t = 1, 2, . . . , 5000) for pro-
viding enough data to the UniBSS method [5]. The other tested methods, CCA,
FastICA, TDSEP and their combinations require less samples, especially CCA.
We computed the average signal-to-noise ratios of the estimated sources over
100 random realizations of the sources and the data sets X and Y because the
results vary for single realizations. In each realization, the elements of the 4× 4
mixing matrices were Gaussian random numbers.

We not only tried our CCA based method and its combinations applying either
FastICA, TDSEP, or UniBSS for post-processing to achieve better separation,
but also compared it with two methods introduced by other authors for the
same problem. The first compared method introduced in [9] assumes that the
dependent sources in the two data sets are active simultaneously. The second
compared method [13] uses multiset canonical correlation analysis. Theoretically
its results should coincide with plain CCA for two data sets but in practice this
may not hold due to problems such as deflationary nature of the algorithm
mentioned in a later paper [12].

The separation results for the four sources 1-4 contained in the first data
set X are shown in Table 1, and for the 4 sources in the other data set Y in
Table 2. For clarity, we have numbered these sources from 5 to 8. We set (some-
what arbitrarily) the threshold of successful separation to 10 dB based on visual
inspection. Tables 1 and 2 show that CCA alone yields fairly similar separa-
tion results for all the 8 sources which already lie at our separation threshold.
FastICA can separate clearly the two first sources but fails for the three last
sources. The TDSEP method separates well four sources, the other sources lie
at the separation threshold. The UniBSS method separates well all the sources.
The results are qualitatively similar if the dependent and independent sources
are selected otherwise from the 6 original sources.

Combining CCA with post-processing with FastICA, TDSEP, or UniBSS
methods improves the results for all these methods, so that also FastICA and
TDSEP can now separate well all the sources in this difficult separation problem.
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The methods introduced in [9] and [13] provide clearly lower signal-to-noise ra-
tios, failing for some sources. Using CCA combined with FastICA or TDESP
methods is in practice often preferable over using the UniBSS method. The
UniBSS method requires much more samples for reliable results. It may already
converge to a separating solution but then deviates again farther away, and this
can happen several times. The UniBSS method also requires different types of
nonlinearities for sub-Gaussian and super-Gaussian sources. The FastICA and
TDSEP methods don’t suffer from this limitation.
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Fig. 1. Experimental results with fMRI data. Each row shows one of the 11 sepa-
rated components. The activation time-course with the stimulation blocks for reference,
shown on the left, and the corresponding spatial pattern on three coincident slices, on
the right. Components from (a) the first and (b) the second dataset.

The usefulness of the method was tested with data from a functional magnetic
resonance imaging (fMRI) study [10], where it is described in more detail. We
used the measurements of two healthy adults while they were listening to spoken
safety instructions in 30 s intervals, interleaved with 30 s resting periods. In
these experiments we used slow feature analysis (SFA) [15] for post-processing
the results given by CCA, because it gave better results than FastICA.

Fig. 1 shows the results of applying our method to the two datasets and
separating 11 components from the dependent subspaces U1 and V1. The con-
sistency of the components across the subjects is quite good. The first component
shows a global hemodynamic contrast, that may also be related to artifacts orig-
inating from smoothing the data in the standard preprocessing. The activity
of the second component is focused on the primary auditory cortices. The third
and fourth components show both positively and negatively task-related activity
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around the anterior and posterior cingulate gyrus. These first results are promis-
ing and in good agreement with the the ones reported in [10]. Future tasks are
extension of the method to multiple datasets for interpreting the found compo-
nents more thoroughly, and a more extensive comparison with existing ICA and
BSS methods using real-world data.
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Abstract. Unsupervised clustering algorithms can be combined to im-
prove the robustness and the quality of the results, e.g. in blind source
separation. Before combining the results of these clustering methods the
corresponding clusters have to be aligned, but usually it is not known
which clusters of the employed methods correspond to each other. In this
paper, we present a method to avoid this correspondence problem using
probability theory. We also present an application of our method in blind
source separation. Our approach is better expandable than other state-
of-the-art separation algorithms while leading to slightly better results.

1 Introduction

The idea of combining the results of multiple clustering methods has been pre-
sented in [1],[2],[3]. For clustering of data, a number of approaches may be ap-
plied, usually leading to different results. The intention of combining multiple
clustering approaches is to improve the results by using the strengths of all the
methods. Unfortunately, in blind clustering methods, the correspondences of the
clusters are unknown. When combining methods this correspondence problem
has to be solved, see [3]. Fred and Jain propose to use a measure of similarity
between patterns [2] to circumvent this problem. We propose a similiar method,
extending the approach by using probabilities, which opens another way of clus-
tering the combined results.

An application where multiple clustering methods can be used is blind source
separation (BSS). BSS tries to separate the original sources out of a mixed au-
dio signal and can be used as a preprocessing step for many audio processing
tasks such as remixing, instrument recognition, or automatic music transcription.
Many state-of-the-art algorithms use non-negative tensor factorization (NTF)
or non-negative matrix factorization (NMF) to factorize single notes out of the
mixture. While [4] and [5] propose extensions to the NTF to factorize complete
melodies, [6] presents an approach, where the single notes are being clustered
to melodies. In [7], different clustering methods are proposed, one using spectral
and the other one temporal features.
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In this paper we propose an approach for combining multiple clustering methods,
which is presented in Section 2. In Section 3 we use our algorithm to combine
the different clustering methods for BSS as proposed in [7] and analyze the per-
formance in comparison to other approaches. Finally in Section 5, a conclusion
is given.

2 The Proposed Combination Algorithm

In this section we present the proposed combination strategy for unsupervised
clustering methods. We assume a testset of I data items that have to be grouped
into C clusters. In the following items will be named im with 1 ≤ m ≤ I and
clusters c with 1 ≤ c ≤ C. We furthermore assume a number of V different
clustering methods, which all return probabilities vpc(im) that item im belongs
to cluster c with 1 ≤ v ≤ V . Thus, every method returns a matrix of size I ×C.
Combining these matrices is not possible because it is not known which clusters
of the different methods correspond to each other. So, before combining the
matrices it is first necessary to estimate the correspondences of the clusters and
to align the columns. This step may induce errors if the correspondences are not
estimated correctly. This issue motivates our proposed algorithm.

2.1 The Basic Idea

Instead of evaluating the probabilitiy pc(im) that item im belongs to cluster c,
we propose to calculate the probability p(im, in) that the items im and in belong
to the same cluster. This means, for every clustering method v we calculate a
matrix

Qv =

⎛⎜⎜⎜⎝
1 vp(i1, i2) · · · vp(i1, iI)

vp(i2, i1) 1 · · · vp(i2, iI)
...

...
. . .

...
vp(iI , i1)

vp(iI , i2) · · · 1

⎞⎟⎟⎟⎠ (1)

where the entries vp(im, in) are calculated as

vp(im, in) =

C∑
k=1

vpk(im) · vpk(in) (2)

for each clustering method v, leading to V matrices Qv of size I × I.
These matrices Qv can now be combined without having to be aligned. One
possibility to combine the matrices is taking the mean values of the entries
vp(im, in) over all v. This leads to a matrix Qav with the average probabilities
pav(im, in)

Qav =

⎛⎜⎜⎜⎝
1 pav(i1, i2) · · · pav(i1, iI)

pav(i2, i1) 1 · · · pav(i2, iI)
...

...
. . .

...
pav(iI , i1) pav(iI , i2) · · · 1

⎞⎟⎟⎟⎠ (3)
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where the entries pav(im, in) are calculated as

pav(im, in) =

∑V
v=1

vp(im, in)

V
. (4)

The indices m and n corresponding to the maximum value in Qav denote the
items that are most probable to belong to the same cluster.

Other combinations of the matrices are possible. For example instead of taking
the mean value, the different methods could be weighted, for example depending
on how good they perform. A weighted combination will be used in Section 3.2.

2.2 The Clustering Algorithm

The matrix Qav can now be used for clustering. In our clustering algorithm,
items will be iteratively grouped together. These groups of items will be named
qZr where q is the current iteration step and 1 ≤ r ≤ R indicates all existing
groups. Every group contains at least one item.

Groups can also be interpreted as events in a probability meaning. Every
group represents the event, that the items in this group belong to the same
cluster.

We define the following notations:

Term Meaning

p(qZr) Probability that all items that are grouped together in group
qZr belong to the same cluster

p({qZr,
qZs}) Probability that all items that are grouped together in the

groups qZr and qZs belong to the same cluster

p(qZr ∩ qZs) Probability that the events qZr and qZs both occur
qZ Unites all events qZ1,

qZ2, . . . ,
qZR. This means the notation

p(qZ) describes the same probability as p(qZ1 ∩ qZ2 ∩ . . .∩ qZR)
q+1Zr = {qZs,

qZt} Indicates, that in the iteration step q + 1, all items that were
grouped together in qZs and qZt are merged in group q+1Zr

For our clustering algorithm we will need to calculate a matrix similiar to the
matrix Qav in Eq. (3) in every iteration step. This matrix is denoted qQ̃av and
will be called probability matrix in the following. The entries at index m,n are
now defined as

pav({qZm,
qZn}|qZ) =

∑V
v=1

vp({qZm,
qZn}|qZ)

V
. (5)

We assume that the events qZr and qZs are independent, if r �= s. In this case
the probabilitiy p(qZr ∩ qZs) reduces to

p(qZr ∩ qZs) = p(qZr) · p(qZs). (6)

Considering the fact that qZs is a subset of {qZr,
qZs} it is obvious that

p({qZr,
qZs} ∩ qZs) = p({qZr,

qZs}). (7)
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Using the definition of conditional probability, the probability vp({qZm,
qZn}|qZ)

in Eq. (5) can be written as

vp({qZm,
qZn}|qZ) =

vp({qZm,
qZn} ∩ qZ)

vp(qZ)
. (8)

With Equations 6 and 7 this term reduces to

vp({qZm,
qZn}|qZ) =

vp({qZm,
qZn})

vp(qZm) · vp(qZn)
. (9)

This group-based definition of qQ̃av allows us to group items together iteratively.
For the special case that every group qZr contains exactly one item, the matrix
qQ̃av is identical to Qav in Eq. (3).

We suggest the following iterative algorithm for combined clustering:

1: Initialize 0Zr = {ir} ∀ r = 1, 2, . . . , I
2: q = 0, qmax = I − C
3: while q < qmax do
4: Calculate qQav (Eq. (3) and (5))
5: m,n = argmax

m̃,ñ

qQav(m̃, ñ), m̃ < ñ

6: q+1Zr =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
qZr for r < m

{qZm,
qZn} for r = m

qZr for m < r < n
qZr+1 for r ≥ n

7: q = q + 1
8: end while
9: Return qmaxZr

The C remaining groups qmaxZr are the result of the clustering. Every group can
be interpreted as one cluster. All items that belong to this group are assigned
to this cluster.

3 Application to Blind Source Separation

In the following the algorithm is applied to BSS. In [7], an approach for BSS
was presented which uses two clustering methods. The methods use spectral and
temporal information, respectively. The combination of both methods was done
by hard-decision. However, it seems reasonable to assume, that even if one of
the methods is more reliable, the other method still contains information that
could improve the clustering. Hence a soft-decision combination could improve
the results.

3.1 Hard-Decision Approach

More detailed information about the hard-decision approach can be found in [7]
and [6].
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In the following we assume x(n) to be an additive mixture of M monaural
sources sm(n), with n being the time index. In the following we present the
signal flow of the algorithm.

• First, the short-time Fourier transform (STFT) of x(n) is taken. The re-
sulting complex-valued spectrogram X is of size K × T with frequency-bins
1 ≤ k ≤ K and time-bins 1 ≤ t ≤ T . In the following only the absolute
values, X = |X|, are used.

• In the next step, X is factorized by the NMF. This results in a separation
of I sound events. The NMF outputs the two matrices B of size K × I and
G of size T × I. These matrices approximate X by

X(k, t) ≈
I∑

j=1

B(k, j)G(t, j). (10)

The j-th column of B corresponds to the spectrum and the j-th column
of G represents the temporal envelope of sound event σj . For multichannel
signals, the NTF can be used instead of the NMF.

• Signal synthesis is done as described in [6]. The spectrogram Yj(k, t) cor-
responding to the estimated time domain signal yj(n) of sound event σj is
calculated as:

Yj(k, t) = X(k, t) · B(k, j)G(t, j)∑I
z=1 B(k, z)G(t, z)

. (11)

The output signals yj(n) are estimated by applying the inverse STFT to Yj .
• The I sound events are clustered intoM clusters. A vector a with I elements
is defined, with 1 ≤ a(j) ≤ M , a(j) ∈ N. The entries a(j) of this vector
specify the cluster, to which cluster the sound event σj is assigned. Clustering
is done using the NMF as proposed in [6].
Features FB and FG are calculated from the matrices B and G using the
source-filter model theory for frequency and time domain [7]. The features
are independently factorized by an NMF, which gives an approximation

F{B|G}(k, j) ≈
M∑

m=1

W{B|G}(k,m)V{B|G}(j,m). (12)

The index {B|G} denotes, that either the matrices calculated from B or
from G are used. While the m-th column of W corresponds to the m-th
cluster center, the m-th column of V corresponds to the m-th connectivity
values. Therefore the clustering vector a is defined as

a(j) = argmax
m

V(j,m). (13)

Hence, we get one vector aB(j) from the spectral clustering and one vector
aG(j) from the temporal clustering.
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• The decision, which clustering vector to be used is based on the number
of note instances μm of the mixture. This value μm is calculated for each
column of G by subtracting the mean value of the corresponding column
and counting the zero crossings from negative to positive values. The final
value μav is estimated as the mean value over all μm. The clustering vector
afinal(j) that is applied for the final clustering is aB(j) if μav ≤ ϑ, or else
aG(j), with ϑ being a predefined threshold. In [7], a value of ϑ = 1.6 is
proposed.

3.2 Extension to Soft-Decision

Instead of using a hard-decision we propose a soft-decision combination of the
clustering methods, using the algorithm presented in Section 2. The correspon-
dences between the given problem and the proposed algorithm are as follows:

Clusters. The clusters for the algorithm are the different estimated sources of
the mixture signal. The number of clusters C in the algorithm is therefore
M .

Items. The items im of the algorithm are the I separated sound events σj .
Methods. The clustering methods that have to be combined are the spectral

and the temporal clustering methods.
Probabilities. Our combination algorithm requires probabilities instead of hard

mappings. We define

pm(σj) =
V(j,m)∑M
k=1 V(j, k)

. (14)

This definition leads to a matrix of probabilities of size I × M for every
clustering method, which can be used as input for the proposed algorithm.

Weightings. Instead of the hard-decision a soft-decision is made by weighting
the probability matrices of the different methods before combining them.
The probability matrix corresponding to the spectral clustering is weigthed
with wB with

wB =

⎧⎪⎨⎪⎩
1 if μav ≤ bl
bu−nav

bu−bl
if bl < μav ≤ bu

0 if μav > bu

, (15)

where bl and bu denote a lower and an upper bound. These parameters have
to be determined by experiment. The probability matrix corresponding to
the temporal clustering is weigthed with 1−wB. For the special case bl = bu
this transforms to the hard-decision criterion with threshold bl.

4 Experimental Results

We compare our soft-decision approach with the hard-decision approach in [7].
We also compare our results with the results of [4].
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For performance measurement we use the measures SDR, SIR and SAR as
proposed in [8]. The test set 1 that we use for comparison with [7] is a set of 1770
two-source mixtures, mixed from 60 monaural recordings, which is identical to
test set A in [7]. Test set 2 are the 25 mixtures used in [4]. This dataset mainly
contains very harmonic mixtures.

For fair comparison, we use exactly the same parameters for our algorithm
as are used in [7]. In [7] a value of ϑ = 1.6 is used as threshold for the hard-
decision. Therefore we chose the values for the upper and the lower bound of the
weights for the soft-decision symmetrical around this value. Experiments show,
that values of bl = 0.8 and bu = 2.4 lead to good results.

The mean values over SDR, SIR and SAR for test set 1 are shown in Table 1.
It can be observed that the soft-decision approach performs slightly better than
the approach of [7] for all of the three measures.

The mean values over SDR, SIR and SAR for test set 2 are shown in Table 2.
We compare our results with the results of the hard-decision approach [7] and
with the results of [4]. Compared to the algorithm in [4], our algorithm leads
to lower distortion by artifacts (SAR) but to higher distortion by interferences
(SIR). Compared to the hard-decision approach [7] our algorithm leads to slightly
better results for all of the three measures. In [7] it is shown that for test set 2,
spectral clustering leads to much better results than temporal clustering, which
can be explained by the high harmonicity of the sources. However, our results
show, that even for such harmonic mixtures the results can be improved by also
using temporal information.

Table 1. Results for SDR, SIR and
SAR in dB for test set 1

Test set 1 SDR SIR SAR

hard-decision [7] 7.20 12.92 13.62

soft-decision 7.23 13.07 13.83

Table 2. Results for SDR, SIR and
SAR in dB for test set 2

Test set 2 SDR SIR SAR

[4] 9.01 24.91 9.52

hard-decision [7] 9.80 15.05 15.91

soft-decision 9.91 15.21 16.27

It should be noted that besides the slightly better results compared to the
hard-decision approach, presented in Table 1 and Table 2, the proposed combi-
nation algorithm holds the advantage of beeing easily expandable by appending
other matrices of clustering results to the input. It can be assumed that by in-
cluding more methods, the results could be improved further. This possibility of
using more clustering methods is not given in the hard-decision approach.

5 Conclusion

In this paper we present a new way of combining different clustering methods
based on probability theory. We calculate the probabilities that different items
belong to the same cluster, which makes it possible to combine different methods
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without having to solve the correspondence problem. We introduce a method of
clustering the combined values by iteratively grouping together items that most
probably belong to the same cluster.

We use the presented approach to extend the BSS-algorithm proposed in [7] by
using a soft-decision combination. We show that this extension leads to slightly
better separation results. Furthermore, our approach has the advantage of being
easily expandable, using more clustering methods.
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Charrelation Matrix Based ICA�
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Abstract. Charrelation matrices are a generalization of the covariance
matrix, encompassing statistical information beyond second order while
maintaining a convenient 2-dimensional structure. In the context of ICA,
charrelation matrices-based separation was recently shown to potentially
attain superior performance over commonly used methods. However, this
approach is strongly dependent on proper selection of the parameters
(termed processing-points) which parameterize the charrelation matri-
ces. In this work we derive a data-driven criterion for proper selection
of the set of processing-points. The proposed criterion uses the available
mixtures samples to quantify the resulting separation errors’ covariance
matrix in terms of the processing points. Minimizing the trace of this
matrix with respect to the processing points enables to optimize (asymp-
totically) the selection of these points, thereby yielding better separation
results than other methods, as we demonstrate in simulation.

1 Introduction

In the framework of instantaneous ICA, consider the model x [n] = As [n],
1 ≤ n ≤ N , where x [n] ∈ RK is a multivariate observations signal acquired
from K sensors, s [n] ∈ RK is a multivariate source signal originates from mu-
tual statistical independent sources, and A ∈ RK×K is an unknown invertible
mixing matrix. The goal is to obtain an estimate B̂ of the demixing matrix,

B
	
= A−1, which in turn provides an estimate of the sources via ŝ [n] = B̂x [n].

This work addresses weighted approximate joint diagonalization (AJD) of matrix-
form statistics (frequently termed target matrices) having the appealing prop-
erty of being strictly diagonal for random vectors with independent components,
such as in JADE [1], SOBI [2], BGL [3] and (more recently) WITCHESS [4]. The
target-matrices in this work are the sample-charrelation matrices (see Sect. 2).
While the potential advantages of charrelation matrix-based ICA were demon-
strated in WITCHESS [4], no method for proper (let alone optimal) selection
of the processing-points, at which the charrelation matrices are evaluated, has
been proposed or developed. The objective of this work is to provide a method
for their selection, which would be completely data-driven and would not require
prior statistical information on the sources or on the mixing matrix.

We begin with a brief overview of charrelation matrices and their relevant
properties in the next section, followed by derivation of the algorithm and sim-
ulation results in the following sections.
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2 Charrelation Matrices

In this section, the definition of the charrelation1 matrix is introduced. The
derivation follows the traditional methodology used in the literature for the
covariance matrix.

Definition 1. (charmean)
Given a random vector x ∈ RK , and a function g(·) : RK → RL, the charmean
of g(x) ∈ RL with respect to (w.r.t.) x at an arbitrary processing-point τ ∈ RK

is defined as:

ηx [g(x); τ ] �
E
[
g (x) exp{xTτ}

]
E [exp{xT τ}] ∈ RL

whenever both means (taken w.r.t. x) exist.

The charmean shares many properties with the conventional expectation opera-
tor (e.g., linearity in g(x), separability in the case of statistical independence),
and for τ = 0 both operators coincide.

Definition 2. (cross-charrelation and charrelation matrices)
Given a random vector x ∈ RK and functions g1(·) : RK → RL1 and g2(·) :
RK → RL2 , the cross-charrelation matrix between g1(x) and g2(x) w.r.t. x at
an arbitrary processing-point τ ∈ RK is defined as:

Ψx [g1(x), g2(x); τ ] � ηx

[
g1(x)g

T
2 (x); τ

]
−ηx [g1(x); τ ]η

T
x [g2(x); τ ] ∈ RL1×L2

whenever all the charmeans involved exist. Similarly, for g(·) : RK → RL,
the charrelation matrix of g(x) (w.r.t. x, at τ ) is simply defined as the cross-

charrelation between g(x) and itself, namely Ψx [g(x); τ ]
	
= Ψx [g(x), g(x); τ ].

The charrelation matrix is a symmetric, positive semi-definite matrix, shar-
ing many properties with the conventional covariance matrix. Both the cross-
charrelation and charrelation matrices coincide with the cross-covariance and
covariance matrices (resp.) for τ = 0. For g(x) = x, the charrelation matrix co-
incides with the Hessian (at τ ) of the second generalized characteristic function

of x, namely Ψx [x; τ ] = ∂2

∂τ ∂τ T logE
[
exp{xT τ}

]
.

The following additional properties are relatively straightforward to derive,
and would be useful in our subsequent derivations:

Properties 1. (Charrelation matrix)

1. Linear transformations: If C ∈ RL×K and c ∈ RL are some constant
matrix and vector, and y = Cx+ c ∈ RL, then

Ψx [y; τ ] = CΨx [x; τ ]CT ∈ RL×L

Ψy [y; τ ] = CΨx

[
x;CTτ

]
CT ∈ RL×L.

1 Pronounced “car-relation”, reflecting the relation to the characteristic function.
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2. Independence: If x ∈ RK can be partitioned into two statistically indepen-
dent groups x1 ∈ RK1 ,x2 ∈ RK2 with K1+K2 = K, then Ψx[x; τ ] ∈ RK×K

is block-diagonal (with the respective partition) for all τ ∈ RK at which it
exists.

Convenient estimates of the charmean and the charrelation matrix are obtained
from the sample-charmean and the sample-charrelation (resp.):

η̂x [g(x); τ ] =

N∑
n=1

g (x [n]) exp{xT [n] τ}

N∑
n=1

exp{xT [n] τ}
∈ RL (1)

Ψ̂x [g(x); τ ] = η̂x

[
g(x)gT (x); τ

]
− η̂x [g(x); τ ] η̂T

x [g(x); τ ] ∈ RL×L (2)

Though biased in general, both estimates are asymptotically unbiased and con-
sistent. To simplify the exposition, we shall from now on use the notationsΨx(τ )

and Ψ̂x(τ ) as shorthand for Ψx [x; τ ] and Ψ̂x [x; τ ].

3 Derivation of the Separation Scheme

We begin by deriving the model function, which is a functional relationship
between the demixing matrix and the observations’ charrelation matrices, eval-
uated at M arbitrary processing-points τ 1, ..., τM . From Property 1.1 above,
and from the relation x = As, we have Ψx(τ ) = AΨs(A

T τ )AT , and thus
BΨx(τ )B

T = Ψs(A
T τ ). Furthermore, from Property 1.2, the charrelation ma-

trix Ψs(A
Tτ ) of the random vector s with mutually independent elements is

strictly diagonal. Consequently, a conceivable model function may be:

H (Ψx(τ 1), . . . ,Ψx(τM );B) =[
Off(BΨx(τ 1)B

T ) · · ·Off(BΨx(τM )BT )
]
= 0 ∈ RK×KM (3)

where the Off(·) operator nullifies the main diagonal of its argument matrix.
Since all matrices of the form BΨx(τ )B

T are symmetric, considerable reduc-
tion may be achieved by rearranging (3) to refer only to the matrix elements
above the main diagonal as follows.
First, consider the following bijective indices-transformation:
γ (k, �,m) �

(
(k − 1)

(
K − 1

2k
)
− k + �− 1

)
M +m, where 1 ≤ k ≤ K − 1, k <

� ≤ K, 1 ≤ m ≤M .
This index transformation is used for rearranging all upper off-diagonal ele-

ments of the target matrices in a single vector, which is sometimes called the
Off-DIagonal Terms (ODIT) vector in this context (see, e.g., [4]). Note that
γ (k, �,m) is in the range [1 . . .G] where G = 1

2K (K − 1)M . Thus, define the
vectorizing operator odit(·) which transforms a set of M matrices, each K ×K,
into a G× 1 vector, such that

[odit(D1, . . . ,DM )]γ(k,�,m) � [Dm]k,� 1 ≤ k < � ≤ K (4)
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where the subscript(s) outside the brackets denote(s) the element index.
The resulting vector-form model function can then be formulated as:

h (Ψx(τ 1), . . . ,Ψx(τM );B) = odit
(
BΨx(τ 1)B

T , · · · ,BΨx(τM )BT
)
= 0 ∈ R

G

(5)

The ensuing weighted least squares (WLS) estimate of B is obtained by substi-
tuting the true (unknown) charrelation matrices in (5) with their sample-means,

and seeking the matrix B̂ which minimizes the weighted norm of the model
function subject to some scaling constraint on B̂ (to avoid the trivial minimizer

B̂ = 0).

min
B

{
hT
(
Ψ̂x(τ 1), . . . , Ψ̂x(τM );B

)
Wh

(
Ψ̂x(τ 1), . . . , Ψ̂x(τM );B

)}
⇒ B̂

(6)
Moreover, under a small-errors assumption it is well-known that the optimal
weight matrix W (in sense of the resulting estimation-error covariance) is the

inverse of the covariance matrix of h
(
Ψ̂x(τ 1), . . . , Ψ̂x(τM );B

)
.

Since the model function (5) is non-linear in B, we resort to a Gauss-Newton-
based iterative solution for minimizing the WLS criterion. We employ a simple
scaling constraint of all-ones elements along the main diagonal2 of B̂, which
leavesK(K−1) free parameters. To this end, we define another bijective indices-
transformation, β(k1, k2) � (K − 1)(k2 − 1) + k1 − 1

2 (1 + sign(k1 − k2)) where
1 ≤ k1 �= k2 ≤ K and sign(k) equals 1 if k > 0 and −1 if k < 0 (note that
β(k1, k2) is in the range [1 . . .K(K−1)]). We now define the vectorizing operator
vec(·) which transforms a K ×K matrix into a K(K − 1)× 1 vector, such that

[vec(D)]β(k1,k2)
� [D]k1,k2

1 ≤ k1 �= k2 ≤ K. (7)

The iterative updates take the form

vec(B̂[j+1]) = vec(B̂[j])−
(
JT
hΣ̂

−1
h Jh

)−1

JT
hΣ̂

−1
h h ∈ RK(K−1) (8)

All the elements in the last term depend on B̂[j], τ 1, . . . , τM which were omitted
for brevity of the exposition, Jh ∈ RG×K(K−1) is the derivative of the model
function w.r.t. the off-diagonal elements of B, and Σ̂h ∈ RG×G is the estimated
covariance matrix of the model function - both are given by the following propo-
sitions:

Proposition 1. The derivative of the model function w.r.t. vec(B), denoted

Jh � ∂h(Ψ̂x(τ 1),...,Ψ̂x(τM );B)
∂vec(B) ∈ RG×K(K−1) is:

[
Jh

(
Ψ̂x(τ 1), . . . , Ψ̂x(τm);B

)]
γ(k,�,m),β(k1,k2)

=

⎧⎪⎪⎨⎪⎪⎩
[
BΨ̂x(τm)

]
�,k2

k = k1[
BΨ̂x(τm)

]
k,k2

� = k1

0 o.w.
(9)

2 This scaling constraint is acceptable due to the inherent scaling ambiguity in ICA,
except in rare cases where B has a zero element on its main diagonal.
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Proof. Substituting (4), (7) and (5) in (9), yields:

∂
[
h
(
Ψ̂x(τ 1), . . . , Ψ̂x(τM );B

)]
γ(k,�,m)

∂ [B]k1,k2

=
∂
[
BΨ̂x(τm)BT

]
k,�

∂[B]k1,k2

=

=

K∑
i=1

K∑
j=1

[B]k,i[B]�,j

[
Ψ̂x(τm)

]
i,j

∂[B]k1,k2

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

K∑
j=1

[B]�,j

[
Ψ̂x(τm)

]
k2,j

k = k1

K∑
i=1

[B]k,i

[
Ψ̂x(τm)

]
i,k2

� = k1

0 o.w.

and using the symmetry of the charrelation matrix, the result is immediate. ��

Proposition 2. The elements of the covariance matrix of the model function
Σh ∈ RG×G, are (for 1 ≤ k < � ≤ K, 1 ≤ p < q ≤ K, 1 ≤ m,n ≤M):

[Σh]γ(k,�,m),γ(p,q,n) =

=

K∑
i,j,u,v=1

[B]k,i [B]�,j [B]p,u [B]q,v Cov

([
Ψ̂x(τm)

]
i,j
,
[
Ψ̂x(τn)

]
u,v

)

where an expression for the inner cross-covariance is given in the Appendix.

Proof.

Cov
(
[h]γ(k,�,m) , [h]γ(p,q,n)

)
= Cov

([
BΨ̂x(τm)BT

]
k,�
,
[
BΨ̂x(τn)B

T
]
p,q

)
=

= Cov

⎛⎝ K∑
i,j=1

[B]k,i

[
Ψ̂x(τm)

]
i,j

[
BT
]
j,�
,

K∑
u,v=1

[B]p,u

[
Ψ̂x(τn)

]
u,v

[
BT
]
v,q

⎞⎠
and the result is immediate from the linearity of the covariance. ��

Although B is unknown in practice, a reasonable estimate of this covariance
matrix can be obtained by plugging in some initial estimate B̂[0] of B (attained
with any consistent ICA method).

In addition, under a small errors assumption the covariance of the estimated

vectorized set of off-diagonal elements of B is Σvec(B̂) =
(
JT
hΣ

−1
h Jh

)−1 ∈
RK(K−1)×K(K−1). While this matrix is unknown, it can be closely estimated for
any set of processing-points τ 1, . . . , τM , using the expressions above, given a pre-
liminary (consistent) estimate B̂[0] of B and the sample-characteristic function,
sample-charmeans and sample-charrelations - as prescribed in the Appendix.
These closed-form expressions provide the ability to predict the resulting sepa-
ration performance for any set of selected processing points, based on statistics
obtained directly from the observed mixtures alone (no prior knowledge is re-
quired). This important feature enables the selection of processing-points, e.g. by



112 A. Slapak and A. Yeredor

finding the set of processing points which minimizes the trace of this (estimated,

or predicted) covariance matrix, denoted as Σ̂vec(B̂)

(
B̂[0]; τ 1, . . . , τM

)
.

We are now ready to summarize our algorithm for charrelation matrices based
ICA, including selection of the processing points.

CHARRICA Algorithm:
Input: mixture signals x[n], 1 ≤ n ≤ N

1. B̂[0] ← initial estimate of the model parameters provided by any consistent
algorithm, rescaled (by rows) to have all-ones along the main diagonal.

2. Find {τ o
m}

M
m=1 = Argmin

{τm}M
m=1

Tr
{
Σ̂vec(B̂)

(
B̂[0]; τ 1, . . . , τM

)}
3. Estimate the sample-charrelation matrices

{
Ψ̂x(τ

o
m)
}M

m=1
4. j ← 0
5. Repeat 6-10 until convergence

6. Estimate Σ̂h

(
B̂[j], τ o

1, . . . , τ
o
M

)
using Proposition 2 and the Appendix

7. Repeat 8-10 until convergence
8. Compute Jh using Proposition 1

9. vec
(
B̂[j+1]

)
= vec

(
B̂[j]

)
−
(
JT
hΣ̂

−1
h Jh

)−1

JT
hΣ̂

−1
h h

10. j ← j + 1

Output: B̂[j].

Since convergence in lines 5 and 7 is usually obtained after 2-3 iterations, the
complexity of the CHARRICA algorithm is mainly determined by the covariance
matrix estimation in line 6. This is quite a demanding task with complexity of
O(K8M2N). The second challenging task is the optimization in line 2, which
also involves the calculation of the covariance matrix of the model function. The
explicit complexity of the optimization is highly dependent on the optimization
method.

4 Results

To capture the effectiveness of the proposed algorithm, two simple scenarios
where considered, in which each of K = 3 sources were drawn independently
from the same distribution. In Fig. 1, the attained mean interference to source
ratio (ISR) vs. the number of samples N is shown for two distributions: zero-
mean unit-variance uniform distribution and a mixture of two equally probable
Gaussians N(±1, 0.04). The sources were mixed by a random mixing matrix
A ∈ R3×3, generated with iid standard Gaussian elements, followed by nor-
malizing each row to unit norm. First, the ISR matrix was obtained as the
empirical average (over 100 independent trials) of the squared elements of the

overall mixing-unmixing matrices (B̂ · A) of each trial, where B̂ is the esti-
mated unmixing matrix. Second, the overall ISR was calculated as the average
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of the off-diagonal terms of the ISR matrix. Five separation algorithms were
compared: (1) JADE [1]; (2) FastICA [5]; (3) EFICA [6]; (4) RADICAL [7]; and
(5) CHARRICA as proposed in Section 3 with M = 3 target matrices. The first
four algorithms were performed using the available codes on the internet with
the default parameters. In both scenarios, the ISR decreases logarithmically with
the number of samples N . For the Uniform distribution, the CHARRICA out-
performs JADE, EFICA and RADICAL by about 7 dB, and FastICA by about
10 dB. For the Gaussian Mixture distribution, CHARRICA outperforms JADE,
EFICA and RADICAL by about 3 dB, and FastICA by about 6 dB.
Comments: in all of the simulations that were performed the Gauss-Newton
algorithm has reached a local minimum. Also, using only the diagonal of Σ̂h

(the covariance matrix of the model function with null off-diagonal elements)
provided almost the same performance as with the full matrix.
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Fig. 1. Performance (ISR [dB] vs. the number of samples N) attained for a Uniform
distribution (left) and for a Gaussian Mixture distribution (right), averaged along 100
independent trials, K = 3 sources.

5 Discussion

The objective of this work was to demonstrate the potential of the properly-
selected charrelation matrices for superior performance over other target matri-
ces in ICA application. The CHARRICA algorithm indeed gives better results
compared with known methods such as JADE, FastICA and EFICA. The im-
provement is achieved, however, at the cost of increased computational complex-
ity which is a considerable drawback of the algorithm.

Using charrelation matrix-based ICA, together with an optimal weighting
scheme and a closed-form algorithm for a proper selection of the processing-
points, outperforms conventional methods. However, further research should be
done to improve the relativity high complexity of the proposed algorithm.
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A Appendix

The cross-covariance of two sample-charrelation matrices is [4]:

Cov

([
Ψ̂x(τm)

]
i,j

,
[
Ψ̂x(τn)

]
u,v

)
=

1

N

φx (τm + τn)

φx (τm)φx (τn)
· ρijuv(τm, τn) ∈ R

where φx(τ ) � E
[
exp{xTτ}] is the generalized characteristic function (GCF) of x at

the processing-point τ , and:

ρijuv(τm, τn) �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ψij,uv (τm + τn)−
−ηi (τm)Ψj,uv (τm + τn)− ηj (τm)Ψi,uv (τm + τn)−
−ηu (τn)Ψij,v (τm + τn)− ηv (τn)Ψij,u (τm + τn)+

+ηi (τm) ηu (τn)Ψj,v (τm + τn)+

+ηj (τm) ηu (τn)Ψi,v (τm + τn)+

+ηi (τm) ηv (τn)Ψj,u (τm + τn)+

+ηj (τm) ηv (τn)Ψi,u (τm + τn)+

+

(
Ψi,j (τm + τn)− Ψi,j (τm)+

+(ηi (τm + τn)− ηi (τm))(ηj (τm + τn)− ηj (τm))

)
·

·
(
Ψu,v (τm + τn)− Ψu,v (τn)+

+(ηu (τm + τn)− ηu (τn))(ηv (τm + τn)− ηv (τn))

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R

For shorthand, the subscript x and the operand(s) were omitted and only the

indices are left, so that, e.g., ηi(τm)
	
= ηx[xi; τm], Ψi,j(τm) � Ψx[xi, xj ; τm],

Ψj,uv(τm) � Ψx[xj , xuxv; τm] and Ψij,uv(τm) � Ψx[xixj , xuxv; τm].
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Abstract. We consider the Independent Subspace Analysis problem from the
point of view of contrast functions, showing that contrast functions are able to
partially solve the ISA problem. That is, basic ICA can solve the ISA problem
up to within-subspace separation/analysis. We define sub- and super-Gaussian
subspaces and extend to ISA a previous result on freedom of ICA from local
optima. We also consider new types of dependent densities that satisfy or violate
the entropy power inequality (EPI) condition.

1 Introduction

The mutual information minimization approach to blind source separation has proved
very effective at separating linear mixtures of independent, nongaussian sources [1].
This approach is equivalent to a maximum likelihood approach in which the source
density models are adapted as well [2]. In general, however, some “sources” sources
may exhibit mutual dependence, e.g. in signal power, leading to what has been variously
called Multidimensional ICA [3], independent subspace analysis [4], and independent
vector analysis [5]; or the dependent subspaces may not be further decomposable into
unique components, as is the case with non-Gaussian subspaces with radial symmetry.

In a foundational paper on ICA [6], Comon defined the contrast functions to be
those (statistical) functions of which are capable of separating or extracting indepen-
dent sources from a linear mixture. This definition is actually very similar to the idea
expressed by P. Huber in his work on projection pursuit [7,8]. Basic ICA, i.e. the max-
imization of a contrast function, is often found to successfully separate sources of the
variance dependence type, with the subspace dependence structure ascertainable after
the separation. The good performance of basic ICA in the dependent subspace context
has led to the conjecture that the minimization of mutual information of the output is
able to perform separation of certain dependent sources as well [3].

Theis has considered the ISA problem in a number of articles, proposing the
joint block-diagonalization approach [9], considering conditions for separation of non-
Gaussian subspaces from Gaussian subspaces in complete mixtures [10], and using the
autocorrelation structure of temporally correlated sources or subspaces to perform ISA
[11]. Gutch [12] defined the concept of “irreducible subspaces” to be those containing
no extractable Gaussian component, and showed that the solution to the ISA problem
is unique in this case.

Castella and Comon [13] have also investigated ISA with known dependent subspace
structure, and determined specific cases in which cumulant-based contrasts preserve

F. Theis et al. (Eds.): LVA/ICA 2012, LNCS 7191, pp. 115–122, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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separability and when they fail. Here again the emphasis is on separability of depen-
dent sources (dependent component analysis) rather than the separation of dependent
subspaces from one another.

Szabo [14] has shown using the entropy power inequality (EPI), that dependent
sources can be separated by minimum mutual information as long as all one-dimensional
projections of the dependent sources satisfy the EPI. Szabo’s emphasis is on the com-
plete solution to the dependent component analysis problem, the EPI sufficient condition
guaranteeing this possibility (in the case of non-radial symmetry). The EPI approach is
shown to be successful when the EPI condition is satisfied by the sources, without re-
quiring prior knowledge of the subspace structure or dimensions.

We show here that dependent subspaces can be separated, i.e. the pairwise mutual
information can be block-diagonalized, in a more general setting than that considered
in [14]. We take the fact that basic ICA can perform ISA (without necessarily further
analyzing the subspaces) as significant in and of itself, since it shows that independent
subspaces can be separated from one another as a preliminary processing step, with
further analysis of the subspaces themselves carried out subsequently.

This result is significant because it immediately provides an answer for the common
criticism of ICA-based methods as being naively misspecified, potentially calling in to
question the validity of the results. Essentially we are expanding the concept of a source
component to be a potentially multidimensional subspace, with the new “ICA model”
that is to be presupposed in the often encountered linear model is that subspaces of
components are independent. Thus we generalize basic ICA in which all subspaces are
one-dimensional, and guarantee the ability of ICA approaches to extract independent
sources even in the context of interfering dependent subspaces, as well as guaranteeing
that estimated dependent subspaces contain all information pertaining to the subspace
that is present in the data.

We also define sub- and super-Gaussian subspaces to be those in which all univariate
projections are sub- or super-Gaussian in the Benveniste sense, and show using a previ-
ous results [16] that ISA of strongly super-Gaussian subspaces is free of local optima.

2 The ISA Problem

Let A ∈ Rn×n, be an invertible matrix consisting of m subspaces, and let s ∈ En
2 be a

finite covariance random vector with m corresponding subvectors:

A = [A1A2 · · ·Am], sT = [sT1 sT2 · · · sTm],

where Aj ∈ Rn×dj ,
∑m

j=1 dj = n, and the sj ∈ E
dj

2 are mutually independent, i.e.
ps(s) =

∏m
j=1 psj(sj). Let x be the random vector given by,

x = As

so that x ∈ En
2 .

The ultimate goal of ISA is to reproduce the source vectors, sj , j = 1, . . . ,m, given a
set of observations {x1,x2, . . .}. That is, we would like to produce a matrixW ∈ Rn×n

such that WA = I, where I is the identity matrix.
However, ISA can be divided logically into two problems:
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P1: Separate the independent subspaces from one another.
P2: Separate the dependent sources within each subspace.

Most of the work on the ISA problem has been concerned with solving both problem
simultaneously. The ISA separation theory of Szabo gives an entropy condition on de-
pendent sources that allows them to be separated using entropy contrasts. We take it,
however, that the well known conjecture that basic ICA also performs ISA, is in fact
largely concerned with P1, separating the subspaces, or in the particular case of extract-
ing an independent source of interest from a mixture that includes interfering dependent
source subspaces.

It should also be noted that P2 of the ISA problem may not have a solution, as
in the case of dependent source subspaces with spherically symmetric distributions.
These sources are shown in [14] to satisfy the entropy constraint allowing “solution”
of the ISA problem. However, as in the case of Gaussian sources in ICA, spherically
symmetric subspaces can only be separated up to an arbitrary rotation. Therefore an
ISA problem with spherically symmetric dependent subspaces only consists of P1.

3 Deflationary Contrast Functions, ICA, and ISA

In the deflationary approach to basic ICA (where dj = 1, j = 1, . . . ,m,) the matrix W
is constructed one row wT

j at a time, i.e. the sources are estimated sequentially. This is
usually done by sequentially determining maxima of a contrast function, Φ : E2 → R,

ŵj = arg max
wT Rxxw=1

Φ(wTx)

The process ensures successive estimates are unique by restricting ŵT
j Rxxŵj′ = 0 for

all previously estimated ŵj′ .

3.1 Contrast Functions

We define contrast functions as follows [6,8].

Definition 1. A contrast function is a functional, Φ : E2 → R, defined on random
variables, satisfying the condition,

Φ
(
cos(θ)X + sin(θ)Y

)
≤ max

(
Φ(X),Φ(Y )

)
, X, Y independent

If the condition is satisfied for all X,Y ∈ S ⊂ E2, and strictly satisfied only when θ is
a multiple of π/2, then the contrast is said to discriminate over S.

Examples. Well known contrasts include the following:

1. Inverse entropy power. The entropy power functional,N(X) is defined by

N(X) � (2πe)−1 exp(2h(X))
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where h(X) � E{− log pX(X)}. The entropy power satisfies,N(aX)=a2N(X),
and the entropy power inequality (EPI), N(X + Y ) ≥ N(X) + N(Y ). We thus
have for the inverse,

N
(
cos(θ)X + sin(θ)Y

)−1 ≤
(
N
(
cos(θ)X

)
+N

(
sin(θ)Y

))−1

=
(
cos2(θ)N

(
X
)
+ sin2(θ)N

(
Y
))−1

≤ cos2(θ)N(X)−1 + sin2(θ)N(Y )−1

≤ max
(
N(X)−1, N(Y )−1

)
2. Fisher Information. The Fisher information J(X) is given by,

J(X) = E

{
d2

dx2
− log pX(x)

}
= E

{(
d

dx
log pX(x)

)2
}

The Fisher information satisfies, a2J(aX) = J(X). It also satisfies an inequality
related to the EPI [15]:

J
(
cos(θ)X + sin(θ)Y

)
≤ cos2(θ)J(X) + sin2(θ)J(Y )

≤ max
(
J(X), J(Y )

)
3. Cumulant magnitude. The nth cumulant functional κn(X) is defined by the nth co-

efficient of the Taylor expansion of the log characteristic function, logϕ(t), where
ϕ(t) � E{exp(itX)}. Cumulants satisfy the property,

κn
(
cos(θ)X + sin(θ)Y

)
= cosn(θ)κn(X) + sinn(θ)κn(Y )

For n even, and X,Y of the same cumulant sign,

|κn
(
cos(θ)X + sin(θ)Y

)
| = cosn(θ)|κn(X)| + sinn(θ) |κn(Y )|
≤ cos2(θ) |κn(X)| + sin2(θ) |κn(Y )|
≤ max

(
|κn(X)|, |κn(Y )|

)
Thus even cumulant magnitude defines a contrast discriminating over sets of ran-
dom variables with the same cumulant sign.

3.2 Contrasts and ISA

We now show that every contrast function is also a subspace contrast in the sense that
deflationary ICA can be used to solve P1.

Let A ∈ Rn×n be invertible,A = [A1A2 · · ·Am], where Aj ∈ Rn×dj ,
∑m

j=1 dj =

n. Let s ∈ En
2 , sT = [sT1 sT2 · · · sTm], with the sj ∈ E

dj

2 mutually independent. Let
x = As.

We prove specifically that for a deflationary contrast Φ, if,

ŵj′ = arg max
wTRxxw=1

Φ(wTx)

then wTAjA
T
j w = 0 for all j �= j′.
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Theorem 1. The deflationary contrast method solves P1.

Proof. Let y = wTx = wTAx = cTx, where c � ATw. Since Rxx = E{xxT } =
AAT , we have that wTRxxw = 1 implies cT c = 1.

We have y = cT s =
∑m

j=1 c
T
j sj . By the contrast function condition, we have,

Φ(cT s) = Φ

( m∑
j=1

cTj sj

)
= Φ

( ∑
‖cj‖�=0

‖cj‖
cTj sj

‖cj‖

)
≤ max

j
Φ

(
cTj sj

‖cj‖

)

with equality only if ‖cj‖ = 0 for all but the maximizing j. But this implies that
wTAjA

T
j w = 0 for all but the maximizing j.

This theorem shows that the solution to a stage of the deflationary ICA process can
only be a linear combination of sources from within one and only one of the dependent
subspaces. Each subsequent source estimate will either be dependent with a previously
estimated source (having positive mutual information) and be a linear combination only
of sources in that subspace, or will be independent of previously estimated sources,
beginning the estimate of (one direction in) a new independent subspace. At the end of
the procedure, the matrix of pairwise mutual information values between the estimated
sources will be a block diagonal permutation.

4 Sub- and Super-Gaussian Subspaces

In this section we define a particular classes of dependent subspaces in terms of linear
projections, and use a previously derived result on globally optimal ICA [16] to show
that the solution to P1 of the ISA problem is also free of local optima.

We first review the Benveniste definition of (strong) sub- and super-Gaussianity.

Definition 2 (Strongly Sub- and Super-Gaussian Random Variables). Let X be a
random variable with differentiable probability density function, pX(x). Define f(x) �
− log pX(x). Then pX is a strongly super-Gaussian (sub-Gaussian) if pX(x) is sym-
metric about x = 0 and f ′(x)/x is strictly decreasing (increasing) on x > 0.

We define sub- and super-Gaussian subspaces to be spaces of dependent random vari-
ables in which all linear projections are strongly sub- or super-Gaussian respectively.

Definition 3 (Sub- and Super-Gaussian Subspaces). Let x ∈ Rd be a non-Gaussian
dependent random vector. Then x is a strongly super-Gaussian (sub-Gaussian) random
vector if, for all w ∈ Rd, we have y = wTx strongly super-Gaussian (sub-Gaussian).

In previous work [17], we have considered Generalized Gaussian scale mixtures as an
example of a non-radially symmetric dependent subspace. As a more general GSM-
based formulation dependent subspaces, let s have independent GSM components, i.e.
si = ξ1/2z for a non-negative finite variance ξi and Gaussian zi. Let,

y = η1/2s
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where a common nonnegative scalar η1/2 multiplies each (independent) GSM compo-
nent of s ∈ Ed

2 to form random vector y with dependent components. Then we have,

u = wTy = η1/2
∑
i

wi ξ
1/2
i zi

d
= η1/2

(
ξ1 + · · ·+ ξd

)1/2
z1

so that u is also a GSM, and thus strongly super-Gaussian. Dependent GSM subspaces
are thus strongly super-Gaussian as defined here.

Theorem 2. The ISA problem P1 with strongly super-Gaussian dependent subspaces
has no local optima when solved using a strongly super-Gaussian contrast.

This follows from the theorem proved in [16].

5 Other Types of Norm Dependence

We finally consider random vectors with somewhat more general dependent densities
to inquire as to which types of non-radially symmetric dependent subspaces violate the
EPI condition of [14]. That is, what kinds of dependent sources are and are not separated
by contrast functions in the solution of P1.

Consider a two dimensional dependent subspace with density,

p(x1, x2) = f
(
g(x1) + g(x2)

)
Let hy(θ) be the entropy of projections y = cos(θ)x1 + sin(θ)x2 as a function of θ.

Theorem 3. Let f be decreasing, with − log f(
√
x) concave. Let g(

√
x) be increasing

and concave on x ∈ (0,∞), then for θ ∈ (0, π/4), we have,

h′y(θ) ≥ 0

This follows from a derivation similar to that in [16].

Definition 4. A density, p(x1, . . . , xn), is said to be sup-sup dependent (respectively
sub-sub dependent) if it is of the form,

p(x1, . . . , xn) = f
(
g1(x1) + · · ·+ gn(xn)

)
with f decreasing on (0,∞), − log f(

√
y) concave (respectively convex), gi(xi) non-

negative, symmetric, and increasing on (0,∞), and gi(
√
x) concave (respectively con-

vex) on (0,∞), for i = 1, . . . , n. Sup-sub and sub-sup dependence are defined by the
concave-convex and convex-concave scenarios respectively.

Corollary 1. Sup-sup and sub-sub dependent densities are satisfy the EPI condition of
[14] and may thus be separated by contrast functions.

If the convexity is not “homogeneous” but rather “conflicting” such that one of − log f
and − log g is concave and one is convex, then we have,

h′y(θ) ≤ 0, θ ∈ (0, π/4)
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Fig. 1. Examples of dependent densities with various combinations of subgaussian and super-
gaussian envelope and level curve function

In Figure 1, we present some experiments to verify the theory of this section. We gen-
erate four sets of two-dimensional dependent sources, corresponding to the sup-sup,
sub-sub, sub-sup, and sup-sub cases respectively. The “sup” density is Laplacian, i.e.
p(x) ∝ exp(−|x|), and the “sub” density is Generalized Gaussian with shape parame-
ter 5, p(x) ∝ exp(−|x|5). The sup-sup data is generated by multiplying i.i.d. Laplacian
samples by a common instance dependent scaling, which is Gamma distributed. This
creates a supergaussian envelope dependence. The sub-sub data is generated by induc-
ing a slight variance dependence on i.i.d. subgaussian data by multiplying it by a com-
mon random Gamma scaling that is tightly concentrated about unity. The sub-sup data
is generated by multiplying uniform data over the diamond (Laplacian level curves) by
a slight common scaling to induce a subgaussian envelope over Laplacian level curves.
The sup-sub data is generated by multiplying i.i.d. uniform data by a strong scaling,
to induce a supergaussian envelope on uniform (subgaussian) level curves. The “time
series” are shown in the second row, shifted to improve visibility. The bottom row plots
the entropy of projections as a function of the rotation angle for θ ∈ (0, π/2). Sym-
metry is expected about π/4, and deviation gives an idea of the noise in the empirical
entropy calculation. Entropy is calculated by approximately integrating the histogram.

It can be seen that entropy increases with rotation for the sup-sup and sub-sub de-
pendent sources, while it decreases for the sub-sup and sup-sub dependent sources, as
predicted.
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Abstract. Independent component analysis (ICA) is possibly the most
widespread approach to solve the blind source separation (BSS) problem.
Many different algorithms have been proposed, together with an extensive
body of work on the theoretical foundations and limits of the methods.

One practical concern about the use of ICA with real-world data is
the reliability of its estimates. Variations of the estimates may stem from
the inherent stochastic nature of the algorithm, or deviations from the
theoretical assumptions. To overcome this problem, some approaches use
bootstrapped estimates. The bootstrapping also allows identification of
subspaces, since multiple separated components can share a common
pattern of variation, when they belong to the same subspace. This is a
desired ability, since real-world data often violates the strict indepen-
dence assumption.

Based on empirical process theory, it can be shown that FastICA and
bootstrapped FastICA are consistent and asymptotically normal. In the
context of subspace analysis, the normal convergence is not satisfied.
This paper shows such limitation, and how to circumvent it, when one
can estimate the canonical directions within the subspace.

1 Introduction

Blind source separation (BSS) has become a mainstream topic in signal and
image processing, with independent component analysis (ICA) as possibly its
most widespread solution. Furthermore, it is believed that the basic theoretical
foundations of ICA, as well as its various implementations are rather well un-
derstood (c.f., [1–3]). In particular, for the FastICA algorithm (c.f. [4, 5]), some
theoretical limits have been presented earlier (see, e.g., [6, 4, 7]).

In practice, with real-world data, one persistent concern for the use of ICA is
the reliability of the estimated sources. Repeated use of most ICA algorithms re-
sults in slight variations in the estimated components. There are many potential
factors, including the possibly inherent stochastic nature of the ICA implemen-
tation, or some mismatch with the ideal ICA theoretical assumptions [8]. To
assess the reliability of the source estimation, several methods have been pro-
posed, often based on a bootstrap analysis of the estimated components [9], or
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using multiple runs of bootstrapped FastICA, with a subsequent clustering of
the estimated sources [8]. Such an approach can lead to very interesting insights
for functional magnetic resonance images (fMRI, [10]), e.g., networks of brain
activity [11] or independent subspaces [12].

To give a formal theoretical grounds for the practical success of the multiple
run approach to FastICA, its limitations and validity were shown in [13], based on
a proof of asymptotic normality of FastICA and bootstrapped FastICA, using the
method of empirical process theory and Z-estimators [14]. Also, a probabilistic
convergence rate was derived. Besides its theoretical importance, the aforemen-
tioned results allow for an elegant check of the algorithm’s convergence, using a
multivariate normality test. Although the HZ-Multivariate Normality Test [15]
was used, other, such as the T 2-Hotelling test [16] could also be used. The focus
is on FastICA, but several of the considerations could possibly be extended to
other ICA methods.

The main focus in this paper is to show that, with real-world data, boot-
strapped FastICA is indeed a consistent estimator and converges asymptotically
to a normal random vector. The paper shows that the difference between the
random estimator and a best guess of the ground truth, converges to a cen-
tered Gaussian random variable. Furthermore, since real-world data can violate
the strict assumptions of ICA and have independent subspaces, the paper addi-
tionally shows that, even in such a subspace situation, it is possible to identify
estimates that still fulfill the asymptotic normality, and validates the the testing
in this condition as well.

2 Materials and Methods

The following is a short summary of the theoretical results in [13], as they apply
in the case of this paper. For a more thorough description and derivations, see
the aforementioned reference. In the following, E is the expectation, Pr denotes

a probability, and
P−→ means converges in probability. Let z denote the whitened

data, w the demixing vectors in the whitened space. More specifically w◦ is the
true solution, ŵ the sample estimator and ŵ∗ the bootstrap estimator.

Theorem 1 (Consistency and Asymptotic Normality of FastICA). Let
us assume Ez = 0 and z has all moments up to the fourth; Ezz� = Id; and func-
tion g : R→ R and its first and second derivatives, denoted by g′ and g′′, are Lip-
schitz. Further, assume g′′(·) is bounded; Eg′(s◦) �= 0;Es2◦g

′(s◦) �= 0;Eg2(s◦) �=
0; and Es2◦g

2(s◦) �= 0. Also, let all exist and together with EG(w�z), ∀w ∈ Sd−1

be bounded. Then the sequence

ŵn = argmax
w∈Sd−1

EG(w�z),

that is produced by the FastICA iteration is consistent and asymptotically normal,
i.e.

ŵn
P−→ w◦√

n(ŵn −w◦) � N (0, Σd),
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where Σd = Adiag[ Eg
2(s◦)

Eg′(s◦)2 , . . . ,
Es2◦g

2(s◦)
(Es2◦g′(s◦))2 , . . . ,

Eg2(s◦)
Eg′(s◦)2 ]A

� and A is the true

mixing matrix. In addition, the bootstrapped FastICA is also asymptotically nor-
mal, i.e.

sup
x∈Rd

∣∣∣∣Pr{√nc (ŵ∗
n − ŵn) ≤ x

}
− PrX

{
N (0, V −1

ŵn
Uŵn

(V −1
ŵn

)�) ≤ x
}∣∣∣∣ P−→ 0,

conditioned thatUŵn
:= 1

n

∑n
i=1 ziz

�
i g

2(ŵ�
n zi)andVŵn

:= 1
n

∑n
i=1 ziz

�
i g

′(ŵ�
n zi)

exist and are non-singular.

The theorem justifies the use of FastICA in a multiple run, bootstrap and ran-
domly initialized manner (see [13]). However, after each run, a different set of
sources may be estimated and the total number of estimates for each component
will vary. Moreover, the whitening step can flip the signs of individual dimen-
sions of the whitened space differently at each run, depending on the bootstrap
sampled data. It is, therefore, crucial to identify and group similar components
from the various runs. A statistical analysis of each group can then be performed.

To show the theoretical implications in practice, a series of experiments were
performed with real-world data. The robust ICA approach used in the experi-
ments is implemented in the Arabica toolbox [17]. Using the toolbox, FastICA
can be run multiple times, with varying initial conditions and bootstrap sam-
pling. The algorithm is summarized in Table 1.

Table 1. Arabica Algorithm: Bootstrapped FastICA

- Perform multiple runs of FastICA by repeating the following steps as many times
as required.
1. Draw a bootstrap sample of the given data matrix.
2. Whiten the bootstrap sample, using PCA, and possibly reduce data dimension.
3. Randomize the initial conditions for FastICA.
4. Estimate the desired number of independent components.

- Form groups with the estimates corresponding to the same independent compo-
nent.
1. Collect all estimates from the multiple runs.
2. Calculate the similarity of the estimates taking into account the sign and scale

ambiguities in ICA, based on a given similarity measure, e.g., correlation or
inner-product.

3. Cluster the estimates, using given similarity threshold and linkage path length.
4. Rank the clusters based on the number of estimates and their compactness.

The experiments were done with functional magnetic resonance imaging (fMRI)
data from an auditory experiment. A series of whole-head recordings of a single
subject were used. In the fMRI study, subjects listened to spoken safety instruc-
tions in 30 s intervals, interleaved with 30 s resting periods. All the data were
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acquired at the Advanced Magnetic Imaging Centre of the Aalto University, us-
ing a 3.0 Tesla MRI scanner (Signa EXCITE 3.0T; GE Healthcare, Chalfont St.
Giles, UK) with a quadrature birdcage head coil, and using Gradient Echo, Echo
Planar Imaging (TR 3 s, TE 32 ms, 96x96 matrix, FOV 20cm, slice thickness
3 mm, 37 axial slices, 80 time points (excl. 4 first ones), flip angle 90◦). For
further details on the data set, see [8]. Preprocessing of the data included the
typical realignment, normalization, smoothing and masking off all areas outside
the brain. The resulting data-matrix has a size of 80× 263361.

Since the ground truth of the real-world data is unknown, one cannot apply the
theory directly. The asymptotic normality of bootstrapped FastICA (see Theorem
1) also means that the difference between the sample estimator and the bootstrap
estimator converges to a centered normal vector with nonsingular covariance ma-
trix. Thus, the ground truth was estimated by performing a separate analysis with
100 rounds of ICA, using the whole data without bootstrap, only altering the al-
gorithm’s random initial conditions. Each round looked for 15 components in a
whitened space with 30 dimensions. The ground truth components were clustered
using cosine similarity on the white demixing vectors, with a threshold of 0.99,
taking into account only direct links between estimates. This ensures that each
group represents a differently estimated demixing vector, even if the components
in the original space would be closely related. Additionally, a representative set
of initial conditions was found during the whole data analysis. This initialization
was kept fixed to those values throughout the bootstrap analysis, so that all the
variations in the estimates were due to the bootstrap sampling.

For the bootstrap results, 500 runs of ICA were performed, searching for 15
components from a whitened space with 30 dimensions, and using a bootstrap
sampling with 138944 (52.76% out of 263361) samples in each run. The estimates
were clustered using correlation between the component time-courses, with a
threshold of 0.97 and taking into account only direct links between estimates.
The similarity measure is different from the one used in estimating the ground
truth, since the aim is to find matching mixing and source vectors, even if they
would be produced by a different demixing. Also, the threshold is slightly lower,
since the bootstrap sampling will likely add small variations to the estimates.

3 Results

Altogether, 39 independent components were identified from the bootstrap ICA.
Figure 1 shows five examples of the found independent components. Each com-
ponent is shown with the estimate means and variabilities.

The first component has barely any variability, whereas the other four compo-
nents have a significant one. Only 43 estimates of the fifth component were found
during the 500 bootstrap rounds, meaning that the component is very difficult
to identify by ICA. The first component represents activation of the primary au-
ditory cortices, whereas the other components split activity along the cingulate
gyrus in four different parts. Note that, in some cases the temporal variability
is higher around some time points than in other, and also the spatial variance is
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focused on certain regions. Moreover, the shared locations of the variances, i.e.
covariance, of the last four components reveals that those components belong to
a subspace, as speculated in [12].

 12 N=487 

 6 N=412  9 N=413 

 27 N=87  28 N=43 

Fig. 1. Examples of independent components estimated with bootstrapped ICA. For
each of the 5 components, on the left: the index of the component; the temporal mean,
with the temporal quantiles as light shades of gray, all overlaid on the stimulus block
reference. On the right: the three slices on top show the spatial mean, overlaid on a
structural reference brain; and similarly on the bottom, the spatial variance, overlaid
on the same reference. The bootstrap was performed 500 times and N shows how many
estimates of each component were found.

To test the convergence of the estimated components, the normality of the
difference between the estimated demixing vectors and the ground truth must
be assessed. Since the whitening step can flip the signs of individual dimensions
among the bootstrap rounds, the results include subgroups of estimated vectors,
each of which with their own pattern of signs. To account for this, the estimates
were reclustered using cosine similarity, with a suitably high threshold. Figure 2
shows the estimated demixing vectors for some of the example components.

The first example does not belong to a subspace and, apart from the obvious
sign flips, the variation is generally quite small. Also, the covariance is nearly
equal to the identity matrix. Five subgroups accounting for different configura-
tions of sign flips were identified. Each of the subgroups was then tested against
the best matching ground truth component. All except one passed the normality
test with P-values of 0.1912, 0.0812, 0.1321 and 0.1615. The group that did not
pass the test could include some outliers, even with a high clustering threshold.

The second example is part of a subspace, and the covariance shows clear block
structure, e.g., around coordinates 20 and 27. In this case, there are also five
subgroups, but they all pass the normality test with P-values of 0.2530, 0.2076,
0.0613, 0.1290 and 0.0512. For the last example, the number of estimates is too
small to allow for a normality test, but otherwise the situation seems similar to
the previous.
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Fig. 2. Estimated demixing vectors and their covariances. The groups of estimated
demixing vectors, with different sign configurations are depicted on the left, and the
covariance matrix of the estimates on the right. (a) applies to component 12, (b) to
component 6, and (c) to component 27. The dashed line is the 0-vector, to make the
sign mirroring easier to identify.

For the omitted components 9 and 28, the situation is very similar. All sub-
groups in component 9 pass the normality test and the covariance shows a weaker
structure than in component 6. Component 28 has a similar covariance to com-
ponent 27, and again too few estimates to allow for normality testing.

The normality tests show that the results are in very good agreement with
the theory, even when the components are considered to belong to a subspace.
This suggests that, even when some of the variability in the components is due to
a covariation within the subspace, bootstrap FastICA is able to estimate reliable
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directions within the subspace. Although the estimated components passed the
normality test, there should be some further evidence of the subspace covariation.

Figure 3 shows coordinate-wise histograms of the largest subgroup of vectors
from component 6. Considered as a multivariate vector above, it passed the
normality test. As expected, most of the dimensions are Gaussian. However, the
estimates of coordinate 27 are clearly bimodal, and suggest that they in fact are
from two different local minima. Coordinate 27 is also bimodal in some of the
other subgroups and components belonging to the same subspace.

Fig. 3. Coordinate-wise histograms of the estimated demixing vectors. The histograms
are calculated from the first subgroup of vectors in component 6. For reference, a fitted
Gaussian probability density function is shown with a solid curve overlaid on each
histogram. Two of the histograms are enlarged to highlight different shapes.

4 Discussion

In spite of the practical success of the multiple run approach to FastICA, no
formal study on its limitations and validity existed before [13]. This paper further
shows that the new theory holds with real-world data, and can be very useful
at fully understanding the performance of the algorithm and, more importantly,
the structure of the data.

However, there are some difficulties with real-world data, as all the assump-
tions may not be fulfilled. In particular, fMRI data may present non-stationarities
and some dependence between components. This may result in a lower rate
of convergence and emergence of subspaces. Still, the asymptotic normality of
the convergence of both FastICA and bootstrapped FastICA suggests that both
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random initialization and subsampling decrease the likelihood of finding local
optima, which results in more reliable and accurate estimation of the population
solution. Also, in the case of subspace estimates, such formulation is still usable,
if we have access to canonical directions within the subspace.
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Abstract. In this contribution, new online EM algorithms are proposed
to perform inference in general hidden Markov models. These algorithms
update the parameter at some deterministic times and use Sequential
Monte Carlo methods to compute approximations of filtering distribu-
tions. Their convergence properties are addressed in [9] and [10]. In this
paper, the performance of these algorithms are highlighted in the chal-
lenging framework of Simultaneous Localization and Mapping.

Keywords: Online Expectation-Maximization, Hidden Markov models,
Statistical inference, SLAM.

1 Introduction

The Expectation Maximization (EM, [6]) algorithm is a versatile tool for
maximum-likelihood based parameter estimation in latent data models. How-
ever, when processing large data sets or data stream, EM becomes intractable
since it requires the whole data set to be available at each iteration of the
algorithm.

In this contribution, we are interested in online-EM algorithms designed to
deal with data which are available sequentially in time. Online-EM algorithms
have been recently proposed. [4,14] address the case of independent and iden-
tically distributed (i.i.d.) observations. More complex incomplete data models
such as Hidden Markov Models (HMM) are of common use to represent time se-
ries in many fields such as statistics, information engineering, signal processing,
financial econometrics. . . [3] provides online-EM algorithms for HMM with finite
state space. These algorithms have been extended to general HMM by [3,5] in
the case of exponential complete-data likelihood, and by [8] for non exponential
and general HMM. Hereafter, we will write ”exponential HMM” as a shorthand
expression for ”HMM with exponential complete-data likelihood”.

These online-EM algorithms for HMM are iterative algorithms. Each itera-
tion consists in two steps: (i) the E step computes the expectation of the com-
plete log-likelihood under the conditional distribution of the hidden states given
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the observations (available up to the current time) and the current parameter;
(ii) the M step updates the parameter as a maximum of this mean complete
log-likelihood. Unfortunately, the algorithms mentioned above rely on many ap-
proximations. For example, the algorithms by [3,5,8] for general HMM combine
stochastic approximation methods, Sequential Monte Carlo (SMC) for the ap-
proximation of the filtering distributions and an approximation of the recursive
mechanism used to compute particle approximations of the filtering distribu-
tions. Therefore, it is really difficult to address the consistency of the estimators
and to assert the convergence of these EM-based algorithms.

In this contribution, we propose new online-EM algorithms for general (and
non necessarily exponential) HMM. The first algorithm, called Block Online EM
(BOEM), is designed for exponential HMM such that the filtering distributions
can be computed explicitly. Examples of such models are finite HMM and linear
Gaussian models. The second algorithm is a SMC approximation of BOEM (so
called Particle-BOEM or P-BOEM) designed for HMM with intractable E step.
For both algorithms, we also propose averaged versions which have better con-
vergence rates. All these algorithms are described in Section 2. The convergence
of these algorithms (BOEM, P-BOEM and their averaged versions) is out of the
scope of this paper: in [9,10], we provide sufficient conditions for these algorithms
to converge to the set of the stationary points of the limiting log-likelihood of
the observations. The convergence rates are also derived and it is proved that
the averaged versions converge at a faster rate.

We provide in Section 3 an application of the P-BOEM algorithm to non-
exponential HMM: P-BOEM is used as a new tool to solve the Simultaneous
Localization And Mapping (SLAM) problem. We compare our algorithm to the
OnlineEM SLAM of [8] and to MarginalSLAM of [12]. This numerical section
highlights the interest of our algorithm to solve the SLAM problem.

2 New Online EM Algorithms for General HMM

The goal is to fit a HMMmodel on Y-valued observations {Yt, t ≥ 0} sequentially
available. We denote by {mθ(x, x

′)dλ(x′), θ ∈ Θ} (resp. {gθ(x, y)dν(y), θ ∈ Θ})
the family of transition kernels onto X of the hidden states (resp. the conditional
distribution of the observation given the hidden state). For simplicity, we assume
that X ⊆ Rnx , Y ⊆ Rny and Θ ⊆ Rnθ . The initial distribution χ of the hidden
state is assumed to be known. We propose algorithms for the computation of
a parameter θ� maximizing the limiting normalized log-likelihood of the obser-
vations on this class of model indexed by Θ. We consider the case when mθ, gθ
describes an exponential HMM i.e. there exist S : X× X× Y→ Rd, ψ : Θ → R

and φ : Θ → Rd such that

log{mθ(x, x
′)gθ(x′, y)} = φ(θ) + 〈S(x, x′, y);ψ(θ)〉 . (1)

For s ∈ Rd, define

θ̄(s)
def
= argmaxθ∈Θ φ(θ) + 〈s;ψ(θ)〉 .
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Given a set of observations Y = {Y1, · · · ,YT }, the (n + 1)-th E step of the
batch EM algorithm would consist in computing

SEM
T (θn)

def
=

1

T

T∑
t=1

Φ0
θn,t,T (S,Y) , (2)

where Φ0
θ,t,T (S,Y) denotes the expectation of the function S under the condi-

tional distribution

Φr
θ,s,t(h,y)

def
=

∫
χ(dxr){

∏t−1
i=r mθ(xi, xi+1)gθ(xi+1,yi+1)} h(xs−1, xs,ys) dλ(xr+1:t)∫

χ(dxr){
∏t−1

i=r mθ(xi, xi+1)gθ(xi+1,yi+1)} dλ(xr+1:t)
; (3)

and the M-step would update the parameter by θn+1 = θ̄(SEM
T (θn)). A natu-

ral extension to deal with sequential data is to update the parameter when a
new observation is available. Therefore, the T -th update of this Online EM is
computed from T observations by the iterative formula θT+1 = θ̄(SEM

T (θT )).
The new ideas of our approach is to update the parameter when a block

of observations have been (sequentially) processed: more precisely, every time
a new observation is available, the conditional expectation of the complete log-
likelihood given the observations from the beginning of the block is updated. Due
to the exponential assumption (1), such an update only requires an update of the
filtering distribution. Then, at some times, the parameter is updated according
to the same rule as in the EM algorithm. Let {τn, n ≥ 0} be positive integers,

and set Tn
def
= Tn−1 + τn =

∑n
i=1 τi , T0

def
= 0. τn is the length of block n and the

parameter will be updated at times Tn.
Block Online EM (BOEM) is an iterative algorithm: given the parameter θn

updated at time Tn,

block E step compute the BOEM statistic

SBOEM
Tn,τn+1

(θn)
def
=

1

τ

Tn+τn+1∑
t=Tn+1

ΦTn

θn,t,Tn+τn+1
(S,Y) .

M step At time Tn+1, update the parameter θn+1 = θ̄
(
SBOEM
Tn,τn+1

(θn)
)
.

Note that the quantity SBOEM
Tn,τn+1

(θn) corresponds to the intermediate quantity

(2) computed with the observations (YTn+1, · · · ,YTn+τn+1). This algorithm is
fully online if the E-step can be processed online: the observations along block
n have to be used once and the algorithm should not ask for a storage of the
data. To that goal, the key property is to observe that (see e.g. [3])

SBOEM
T,τ (θ) = φθT,τ (R

θ
T,τ ) (4)
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where φθT,t is the filtering distribution at time t w.r.t. the parameter θ and the

observations (YT+1, · · · ,YT+t), and the functions Rθ
T,t : X → Rd, 1 ≤ t ≤ τ ,

satisfy the following equation

Rθ
T,t(x) =

1

t
Bθ

T,t (x, S(·, x, YT+t)) +
t− 1

t
Bθ

T,t

(
x,Rθ

T,t−1

)
, (5)

where Bθ
t denotes the backward smoothing kernel at time t: Bθ

T,t(x, dx
′) ∝

mθ(x
′, x)φθT,t−1(dx

′). By convention, Rθ
T,0 = 0.

When the expectation under the filtering distribution φθT,t is intractable, it
can be replaced by a particle approximation. This yields to the Particle-BOEM
(P-BOEM) algorithm.

block Particle E step compute the P-BOEM statistic SP−BOEM
Nn+1,Tn,τn+1

(θn), de-

fined as a SMC approximation of SBOEM
Tn,τn+1

(θn) computed withNn+1 particles.

M step. At time Tn+1, update the parameter θn+1 = θ̄
(
SP−BOEM
Nn+1,Tn,τn+1

(θn)
)
.

Here again, the Particle E step has to be computed online; this can be done
by applying the algorithm of [3] (see also [5]), which consists in replacing the
filtering distributions in Eqs (4) and (5), by a particle approximation.

Eq. (5) shows that the sufficient statistic along block n follows a stochastic
approximation dynamic. It is known that the convergence of such algorithms can
be improved by replacing the updated quantity with its averaged one (see [9]).
In our case, this yields to the averaged BOEM algorithm: each block E step and
M step of BOEM are followed by

averaged block E step. compute the statistic

S̃BOEM
n+1

def
=

Tn
Tn+1

S̃BOEM
n +

τn+1

Tn+1
SBOEM
Tn,τn+1

(θn) =
1

Tn+1

n∑
j=1

τj+1SBOEM
Tj ,τj+1

(θj) .

averaged block M step. Update the parameter θ̃n+1 = θ̄
(
S̃BOEM
n+1

)
.

The same averaged steps can be done for the E and M P-BOEM steps, thus
yielding to the averaged P-BOEM. The convergence properties of both BOEM
and P-BOEM and their averaged versions have been derived in [9] and in [10].
These algorithms are seen as perturbations of a limiting EM recursion and it can
be proved that they inherit the asymptotic behavior of this limiting EM. This has
to be compared to the online EM of [5] which introduces many approximations
and which theoretical analysis remains quite challenging.

3 Experiments

In this section, the performance of the algorithms presented in Section 2 are
illustrated through Monte Carlo experiments. The SLAM problem has been
addressed in different works [2]. When both the robot motion and the robot
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perception are perturbed by Gaussian noises, EKF-based algorithms proposed
to approximate the joint distribution of the map and the robot pose. It has been
successfully applied to numerous SLAM problems. Despite encouraging exper-
imental results, the EKF-based SLAM algorithms do not converge due to the
required Taylor expansion and the necessity to approximate a joint distribution
between the pose and the map which is a static parameter, see [1,7]. On the other
hand, the most famous SLAM solution proposed is the FastSLAM algorithm and
its different variants, see [13]. In this case, the model is not linearized and the
motion noise is not necessarily Gaussian. In the FastSLAM framework, the joint
distribution of the robot trajectories and the map is approximated. The robot
path is estimated with sequential Monte Carlo methods and, for each particle
representing a trajectory, landmark positions are estimated using EKF steps. A
linearization step is required to perform the update of each landmark position.
Once again, experimental results and the possibility to keep a map estimate for
each possible trajectory made these methods successful. However, the issue of
the joint estimation of the static parameter and the robot path still remain: in
this case it comes from the well known path degeneracy issue when comput-
ing joint distribution with SMC methods. As a map estimate is associated to
each particle, after successive resampling steps, all the particles share the same
estimation for old landmarks.

To overcome this difficulty, [12] introduced the MarginalSLAM algorithm and
[8] the OnlineEM SLAM. The SLAM problem is seen as an inference task in
HMM. The map parameterizes a latent data model and is estimated in the max-
imum likelihood sense. The localization procedure is answered by SMC methods.
In [12], the map is estimated by a stochastic gradient algorithm (see e.g. [11]). In
[8], this estimation procedure is replaced by an online EM based algorithm. In
this paper, we propose to use the P-BOEM algorithm to sequentially estimate
the map and to produce weighted particles to solve the localization problem. As
said in Section 1, the convergence properties of P-BOEM have been addressed in
[10], justifying the use of this algorithm to give a solution to the SLAM problem.

The robot evolves in a 2-dimensional landmark based map: its pose xt
def
=

{xt,i}3i=1 consists in cartesian coordinates xt,1 and xt,2 and a heading direction
xt,3. At each time step, the robot motion is controlled by deterministic com-
mands: a velocity vt and a heading direction ψt. The evolution of the robot pose
can be written:

xt = f(xt−1, v̂t, ψ̂t) , (6)

where (v̂t, ψ̂t) ∼ N2(0, Q). Q is assumed to be known. From now on, f is the
kinematic model of the front wheel of a bicycle (see e.g. [1]):

f(xt−1, v̂t, ψ̂t) = xt−1 +

⎛⎜⎝ v̂tdt cos(xt−1,3 + ψ̂t)

v̂tdt sin(xt−1,3 + ψ̂t)

v̂tdt
sin(ψ̂t)

B

⎞⎟⎠ ,

where dt is the time period between two successive poses and B is the robot
wheelbase.
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Each landmark is represented by a vector θj . It is assumed that the total
number of landmarks q and the association between observations and landmarks
are known. The robot is equipped with range and bearing sensors: it observes the
distance and the angular position of all landmarks in its neighborhood denoted
by At at time t. The observation yt,i ∈ R2 of the landmark i is written yt,i =
h(xt, θ.,i) + δt,i, where h is defined by

h(x, τ) =

(√
(τ1 − x1)2 + (τ2 − x2)2

arctan τ2−x2

τ1−x1
− x3

)
.

The noise vectors {δt,i}t,i are i.i.d Gaussian N2 (0, R), where R is assumed to
be known. In this example, the complete-data log-likelihood is not exponential.
The marginal log-likelihood is written (up to an additive constant independent
from θ),∑

i∈At

ln gθ(xt, yt,i) ∝
∑
i∈At

[yt,i − h(xt, θi)]
�
R−1 [yt,i − h(xt, θi)] .

P-BOEM cannot be directly applied: therefore, at the beginning of each block,
the function τ �→ h(x, τ) is approximated by its first order Taylor expansion at
all the current landmark estimates. This kind of first order approximations is
of common use in the SLAM literature (e.g. in EKF-SLAM or in FastSLAM).
In our case, this leads to a quadratic approximation of the likelihood of the
observation and to an approximate exponential-HMM (see [8]).

Observations are sampled using R = diag(σ2
r , σ

2
b ) , where σr = 0.5m and

σb = π
60 rad. The robot path is sampled with a given set of controls and using

Q = diag(σ2
v , σ

2
φ) where σv = 0.5m.s−1 and σψ = π

60 rad. In this experiment, the
proposed algorithm is compared to the MarginalSLAM and to the OnlineEM
SLAM. The block size sequence is slowly increasing {τn ∝ n1.1}n≥1 to allow a
sufficiently large number of updates. The number of particles is constant on each
block and fixed at 50. For the SMC step, new particles are sampled using the
prior model, this method is known in the SMC literature as the Bootstrap filter.
The step-size sequence used in the MarginalSLAM and in the OnlineEM SLAM
for the stochastic approximation step are chosen such that γn ∝ n−0.8.

For each run the weighted mean of the particles and the estimated map are
stored. Figure 1 displays the estimated path given by the MarginalSLAM and
the P-BOEM SLAM for one of the 50 Monte Carlo runs. The path estimate given
by the P-BOEM is clearly better than the one given by the MarginalSLAM.

Figure 2 displays boxplots of the landmark estimation error over 50 Monte
Carlo runs for the MarginalSLAM and the P-BOEM SLAM. Both algorithms
give similar results for the estimation of the landmarks observed at the beginning
of the experiment. However, when considering the other landmarks, P-BOEM
SLAM shows better results. Figure 3 compares the result given by the P-BOEM
and the Online EM SLAM. As noted in [10], both algorithms have a similar
behaviors.
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Fig. 1. True trajectory (bold line) and true landmark positions (balls) with the esti-
mated path given by the P-BOEM SLAM (dashed line) and by the MarginalSLAM
(dashed and dotted line)
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Fig. 2. Distance between the estimate at the end of the loop (T = 1800) and the true
position using the P-BOEM SLAM (left) and the Marginal SLAM (right)
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Fig. 3. Distance between the estimate at the end of the loop (T = 1800) and the true
position using the P-BOEM SLAM (left) and the OnlineEM SLAM (right)
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4 Conclusion

New algorithms for online Maximum-Likelihood based inference in exponential
HMM have been proposed. These new online-EM procedures have been applied
to solve the SLAM problem which is a case of non-exponential HMM. The ex-
periments show that the our algorithm provides better result than the Marginal-
SLAM algorithm when estimating the map online. The results are quite similar
to those given by the online EM algorithm of [5]. Nevertheless, the asymptotic
behavior of our algorithms has been addressed showing that they answer to
the Maximum-Likelihood estimation problem. On the contrary, it remains quite
challenging to analyze the convergence properties of the online EM of [5].
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Abstract. The separation of synchronous sources (SSS) is a relevant
problem in the analysis of electroencephalogram (EEG) and magnetoen-
cephalogram (MEG) synchrony. Previous experimental results,
using pseudo-real MEG data, showed empirically that prewhitening im-
proves the conditioning of the SSS problem. Simulations with synthetic
data also suggest that the mixing matrix is much better conditioned
after whitening is performed. Unlike in Independent Component Anal-
ysis (ICA), synchronous sources can be correlated. Thus, the reasoning
used to motivate whitening in ICA is not directly extendable to SSS. In
this paper, we analytically derive a tight upper bound for the condition
number of the equivalent mixing matrix after whitening. We also present
examples with simulated data, showing the correctness of this bound on
sources with sub- and super-gaussian amplitudes. These examples fur-
ther illustrate the large improvements in the condition number of the
mixing matrix obtained through prewhitening, thus motivating the use
of prewhitening in real applications.

Keywords: whitening, source separation, independent component anal-
ysis (ICA), synchrony, phase-locking factor (PLF), condition number.

1 Introduction

Research on the topic of synchrony has gained momentum in recent years. It
can be studied under an elegant mathematical framework applicable to many
different fields such as laser interferometry, the pull of interstellar objects, and
the human brain [9]. Synchrony is believed to play an important role in the
interaction of distinct brain regions. For example, a muscle’s electromyogram
oscillates coherently with several brain regions, when a person is involved in a
motor task [8,10]. Memorization, learning, autism, Alzheimer’s, Parkinson’s, and
epilepsy are examples of neuroscience topics associated with synchrony [11].

Inference about the synchrony of the networks present in the brain (or other
real-world systems) requires access to the dynamics of the individual oscilla-
tors (the “sources”). However, in the brain’s electroencephalogram (EEG) and
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magnetoencephalogram (MEG), the signals from individual oscillators are not
directly measurable; one has only access to a superposition of the sources. This
is known as the “cross-talk effect” in the field of EEG and MEG research [7]. In
this case, spurious synchrony occurs, as has been shown both empirically and
analytically [2].

Reversing this superposition is usually called blind source separation (BSS).
Usually, it is assumed that the mixing process is linear and instantaneous, a
valid approximation in, e.g., brain signals [12]. Let the vector of sources be de-
noted by s(t) and the vector of measurements by y(t). They are related through
the model y(t) = Ms(t), where M is a real-valued mixing matrix. The BSS
problem has infinitely many solutions. Therefore, assumptions are necessary to
adequately pose the problem, such as the independence of the sources, as in In-
dependent Component Analysis (ICA) [6]. However, in the case discussed here,
independence is not a valid assumption, because synchronous sources are highly
dependent.

We have previously introduced two algorithms to perform Synchronous Source
Separation (SSS): Independent Phase Analysis (IPA), a data-driven approach
[2], and Phase Locked Matrix Factorization (PLMF), a model-driven approach
[3]. Furthermore, we have empirically verified, both with simulated data [2] and
with pseudo-real MEG data [1], that prewhitening the data severely improves the
quality of the results obtained with these algorithms. However, those empirical
findings had no theoretical support. The goal of this paper is to study why
prewhitening improves the results of SSS algorithms. We will derive a tight
upper bound for the condition number of the problem after prewhitening. We
will also present experimental evidence that corroborate this analytical result.

2 Background

2.1 Phase-Locking Factor

Let φj(t) and φk(t), for t = 1, . . . , T , be the time-dependent phases of signals j
and k. The real-valued Phase Locking Factor (PLF) between those signals is

"jk ≡
∣∣∣∣∣ 1T

T∑
t=1

ei[φj(t)−φk(t)]

∣∣∣∣∣ = ∣∣∣〈ei(φj−φk)
〉∣∣∣ , (1)

where 〈·〉 is the time average operator, and i =
√
−1. Note that 0 ≤ "jk ≤ 1.

Importantly, the value "jk = 1 corresponds to two signals that are fully synchro-
nized: their phase lag, defined as φj(t)− φk(t), is constant. The value "jk = 0 is
attained if φj(t)−φk(t) is uniformly distributed in [0,2π). Values between 0 and
1 represent partial synchrony. Note that a signal’s PLF with itself is trivially
equal to 1: thus, for all j, "jj = 1.

2.2 Whitening

Assume that there is an N by T source matrix S, such that its (j, t) element
is the j-th complex-valued source at time t, sj(t). Each component of s(t) is
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assumed to have zero mean, i.e., E[s(t)] = 0. We also assume that these sources
are unknown, but that we can observe a set of measurements y(t), which are
obtained from the sources through y(t) = Ms(t) (note that y(t) also has zero
mean), where M is a square real-valued matrix with full rank.1 If one also stores
successive samples of y(t) in a matrix Y, then Y = MS.

Whitening is a process which involves multiplying the data y(t) by a square
matrix B, such that the resulting vector, z(t) ≡ By(t), has as covariance the
identity matrix. There are infinitely many possible matrices B which can achieve

this; one possibility2 is to haveB = C
−1/2
Y , where CY is the covariance matrix of

y(t). The original BSS problem Y = MS is thus transformed into an equivalent
one Z = BMS; BM is called the equivalent mixing matrix.

The BSS community, in particular the users of ICA, have advocated the use of
whitening as a preprocessing step [6], because if the sources s(t) have the identity
matrix as their covariance matrix (which is always true if they are independent,
up to trivial scalar factors), then the equivalent mixing matrixBM is necessarily
an orthogonal matrix. This means that ICA algorithms can restrict themselves
to finding an orthogonal matrix, which makes the ICA problem considerably
easier [6]. However, in SSS the sources are highly dependent.

2.3 Condition Number

It is well known that the difficulty of solving linear inverse problems, such as ICA
and SSS, can be roughly characterized by the condition number of matrix M
[4]. The condition number of a matrix M is defined3 as the quotient ρ = σmax

σmin
,

where σmax is the largest singular value of M and σmin is its smallest singular
value. The condition number obeys ρ ≥ 1 for any matrix. Problems with a lower
ρ are, in general, easier than problems with a higher ρ, even though this number
does not fully characterize the difficulty of these problems [4].

The condition number of a BSS problem depends on the unknown matrix M.
In ICA, after prewhitening the inverse problem has ρ = 1 [6]. Such is not the
case for SSS; however, we will show that an upper bound for this condition num-
ber can be derived using prewhitening. We also show experimentally that large
improvements on the condition number can be obtained through this process.

3 Upper Bound for Condition Number after
Prewhitening

3.1 Notation and Assumptions

Let S denote a complex-valued N -by-T matrix with the value of the sources,
where the (j, t) element of S contains sj(t). We decompose sj(t) ≡ aj(t)e

iφj(t)

1 This reasoning can be easily extended to M having more rows than columns [1,6].
2 In this paper, square roots are taken only of Hermitian positive semidefinite matrices.
If A = VDVH is the eigendecomposition of A, we define A1/2 ≡ VD1/2VH.

3 Other definitions of condition number exist. The one presented here is quite common,
and will be used throughout the paper.
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where i =
√
−1, aj(t) is the real-valued, non-negative amplitude, and φj(t) is

a real number in the interval [0, 2π), called phase. The amplitudes of each of
the N sources are considered random variables Aj , i.e., each time point aj(t) is
i.i.d., drawn from a certain probability density distribution. The phases of the
sources are also considered random variables, although not independent of each
other, as detailed below.

Our goal is to study the simplest case applicable to SSS. We make the following
assumptions:

– Aj is independent of Ak for j �= k;
– Aj is independent of φk for any j and k, including for j = k;
– All Aj have the same distribution, which is generally denoted as A;
– φj and φk have maximum PLF, i.e. they have a constant phase lag;
– The previous point implies that φj(t) = φj(1) + Φ(t) for all j and t.

We assume that Φ(t) is uniformly distributed in [0,2π).

Note that this is still a harder problem than ICA, because φj(t) and φk(t) are
strongly dependent. Nevertheless, algorithmic solutions exist that can extract
the matrix S using only information from the observations Y = MS [2,3].

3.2 Upper Bound

Multiplying the data by B = C
−1/2
Y will, in general, result in an equivalent

mixing matrix BM which is complex, even if M is real. This is a disadvantage,
if one aims to use algorithms which search for real separation matrices [2,3]. To
take this into account, one can consider the two following formulations, which
are equivalent to Y = MS with the constraint of real M:[

YR

YI

]
=

[
M 0
0 M

] [
SR

SI

]
or [YR YI ] = M [SR SI ] , (2)

where SR ≡ Real(S), SI ≡ Imag(S), and similarly for YR and YI . 0 is a matrix
filled with zeros with the same size as M.

Although both formulations allow the derivations done below, the equiva-
lent mixing matrix is, on average, farther from the bound (and thus, better
conditioned) on the second case; therefore, we use that formulation and define
SRI ≡ [SR SI ] and similarly for YRI .

4

In this formulation, prewhitening involves multiplying the new data YRI by

a new whitening matrix B ≡ C
−1/2
YRI

such that ZRI ≡ BYRI = BMSRI has as
correlation the identity matrix. Since

4 The second formulation has a trickier interpretation, since [SR SI ] is no longer a
matrix whose columns are realizations of one random variable. Consequently, the
term “correlation matrix” for CSRI is somewhat abusive. Formally, we define the

“correlation matrix” of SRI as CSRI ≡ SRIS
T
RI

2T
; technically, it corresponds to the

correlation matrix of a random variable which can take the value Real(s) and Imag(s)
with equal probability. Similar considerations hold for CYRI and CZRI .
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CZRI = BMCSRIM
TBH = (BMC

1/2
SRI

)(BMC
1/2
SRI

)H = I, (3)

one can conclude that BMC
1/2
SRI

is a unitary matrix, which we denote by R.
We can now study the singular values of the equivalent mixing matrix BM.

It holds that BM = RC
−1/2
SRI

, and that the singular values of RC
−1/2
SRI

are the

same as those of C
−1/2
SRI

, since they differ only by a multiplication by a unitary
matrix. Therefore, the conditioning of the equivalent source separation problem

can be studied by studying the singular values of C
−1/2
SRI

.
Note that CSRI = 1/2(CSR +CSI ). Using the assumptions from Section 3.1

yields, for the diagonal elements of CSRI ,

[CSRI ]jj =
1

2
E[A2], (4)

whereas the off-diagonal elements of CSRI can be shown to be

[CSRI ]jk =
1

2
E[A]2 cos(φj(1)− φk(1)). (5)

Since E[A2] = Var[A] + E[A]2, for any random variable A, we get

CSRI =
Var[A]I+ E[A]2F

2
, (6)

where I is the identity matrix and Fjk ≡ cos(φj(1)− φk(1)).
We now study the eigenvalues of matrix F, which are equal to its singular

values, since F is symmetric and positive semidefinite (as shown below). It is
easy to see that F = Re(G), with G ≡ xxH, where the vector x has in its
j-th component xj ≡ eiφj(1). G has simple eigenvalue λG = N (the number of
sources), and an eigenvalue λG = 0 with multiplicity N − 1.

Since the eigenvalues of G are 0 and N , the eigenvalues of F necessarily obey
0 ≤ λF ≤ N . To see this, let v be any real vector with unit norm. Note that
since v is real, we have vH = vT. Then,

vHGv = vTGv = vTFv + vTIm(G)v = vTFv, (7)

where vTIm(G)v = 0 because G is Hermitian, thus its imaginary part is skew-
symmetric. The leftmost expression is valued between 0 and N , since those are
the smallest and largest eigenvalues of G. Thus the rightmost expression must
also be within those values. Therefore, the eigenvalues of F obey 0 ≤ λF ≤ N .

With these bounds for λF, one can immediately conclude that the eigenvalues
of CSRI obey

Var[A]

2
≤ λCSRI

≤ Var[A] +NE[A]2

2
. (8)
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Thus, the condition number of CSRI is bounded above by the quotient of these

two bounds: ρ(CSRI ) ≤ 1+N E[A]2

Var[A] . Also, from simple properties of the condition

number, one can conclude that

ρ(BM) = ρ(C
−1/2
SRI

) =
√
ρ
(
C−1

SRI

)
=
√
ρ (CSRI ) ≤

√
1 +N

E[A]2

Var[A]
. (9)

The proof that this upper bound is tight is very simple. It is sufficient to consider
the case φj(1) = φk(1) for all j, k, i.e., the situation where all sources have zero
phase lag with one another. In that case, F is a matrix full of ones, and its
eigenvalues are exactly 0 and N . It is very simple to see that in that case,

ρ(C
−1/2
SRI

) =
√
1 +N E[A]2

Var[A] holds.

4 Experiments

The above result is derived for the ideal case, where the assumptions of Section
3.1 are valid. However, in real data these assumptions will never hold, because
the number of time points is finite.5 Therefore, we now study whether this upper
bound expression is useful in practice, using small simulated examples.

We generate each set of data in the following way: the initial phase for each
source, φj(1), is randomly drawn from a uniform distribution between 0 and 2π.
The common phase oscillation, Φ(t), is given by Φ(t) = ωt with ω = 0.02π. The
amplitudes aj(t) are independently drawn from the Gamma probability distri-
bution with unit scale parameter and shape parameter equal to 1, 2, 3. A similar
range was used for the Irwin-Hall probability distribution. This corresponds to
the sums of one, two, or three Exponential or Uniform distributions, thus repre-
senting different values of kurtosis. The mixing matrixM has each of its elements
independently drawn from a Uniform(-1,1) distribution.

Each of these datasets has T = 10000 time points and N = 4 sources and
measurements. We generate 1000 such datasets for each of the six distributions.
We then make a scatter plot comparing the condition number of the original
mixing matrix M (in the horizontal axis) with the condition number of the
equivalent mixing matrix BM (in the vertical axis). Each of these plots also
shows the theoretical value of the upper bound from eq. (9), drawn as a horizontal
line. These plots are shown in Figure 1.

At first glance it might seem unexpected that some points are slightly above
the line of the upper bound. This is justified by the difference between the ideal
case with T =∞, which was used to derive the bound, and the experimental case
with a finite T . In other words, it is a consequence of using a sample covariance
matrix instead of the true covariance matrix. Nevertheless, the fraction of points
above the line is very small, as is the vertical gap between those points and the
line. As the number of time points T approaches infinity, the fraction of points
above the line and their gap tends to zero.

5 This is similar to the ICA case, where although independence of the sources is
assumed, it is not verified precisely in real cases.
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Fig. 1. Experimental confirmation of the upper bound. The condition number of the
mixing matrix is displayed on the horizontal axis, and that of the equivalent mixing
matrix on the vertical axis, for six different distributions for A. The horizontal line
corresponds to the upper bound in eq. (9).

5 Discussion

Several directions can be taken to extend this result. One such direction is to
derive an upper bound for cases where the PLF between the sources is smaller
than 1. The case of zero PLF includes the ICA case; in that case, the condition
number of the equivalent mixing matrix is known to be 1 [6]. In general, we
believe that the upper bound for the PLF < 1 case will be smaller than the
one derived here; however, it will probably depend on the specific form of the
sources’ phases: there may be i.i.d. random phase noise, as we studied previously
[1], there may be phase slips [9], or other types of imperfect phase-locking.

Another very important direction is to obtain a result on the probability of a
case with a finite number of points T , to have a condition number higher than the
bound derived here for T =∞. In other words, it would be interesting to know
in anticipation how many points will, on average, end up above the horizontal
line in Figure 1. This result would necessarily depend on T , on the distribution
of the amplitudes A, and on how the mixing matrix M is generated.

Yet another useful extension is to remove the assumption that all amplitudes
are drawn from the same distribution A. As long as the amplitudes are indepen-
dent of each other and of the phases, the reasoning used throughout this paper
stands, although the mathematical expressions involved become less elegant.

Finally, one could also relax the assumption that the amplitudes and phases
are independent, since studies have shown that the power of given brain oscil-
lations may be locked to the phases of other oscillations [5]. This requires the
assumption of a specific dependency between the amplitudes and phases.
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6 Conclusion

We have derived an upper bound for the condition number of an SSS problem,
if whitening is performed as pre-processing. Experimental results confirm the
validity of this upper bound. The main conclusion is that in virtually any situ-
ation, it is advantageous to use whitening as a pre-processing step, even when
there is a degree of dependence in the sources.

Acknowledgements. This work was supported by FCT project PEst-OE /
EEI / LA0008 / 2011, under internal project DECA-Bio, and by the Academy
of Finland through its Centres of Excellence Program 2006-2011.
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Abstract. Many source separation algorithms rely on the approximate
simultaneous diagonalization of matrices. While there exist very efficient
algorithms for symmetric matrices, the skew-symmetric case turned out
to be more difficult. Here we show how the often used whitening/rotation
approach for symmetric matrices can be translated to this case. While
the former leads to orthogonal transformations in Euclidean space, the
latter leads to symplectic transformations in symplectic space. It is
demonstrated that the resulting algorithm is more stable than a näıve
diagonalization that does not respect the symplectic structure of the
problem.

Keywords: Diagonalization, Skew-symmetric matrix, Pairwise Inter-
acting Source Analysis, Symplectic Group.

1 Introduction

Blind source separation (BSS) problems can often be solved by the approximate
simultaneous diagonalization of suitably defined square matrices. Given such a
set of matrices {M(k)|k = 1, . . . ,K}, the BSS task is then formulated as the
search for a transformation matrix B such that for all k

BM(k)B� → diag. (1)

For instance, consider a multivariate time series x(t), which is a linear mixture
of temporally uncorrelated source signals s(t), i.e. x(t) = As(t). Then the al-
gorithms TDSEP [8] and SOBI [1] aim at the simultaneous diagonalization of
symmetrized time-lagged covariance matrices M(τ) = Σx(τ) +Σ�

x (τ), where

Σx(τ) = E[x(t)x�(t− τ)]. (2)

Temporal uncorrelatedness implies that the time-lagged covariances Σs(τ) of
the original sources are diagonal. Therefore, diagonalizing M(τ) corresponds to
solving the source separation task and the matrix B is an estimate of the inverse
of the mixing matrix A (up to scaling and ordering of its rows). Similarly, in the
JADE [2] algorithm, the matrices to be diagonalized are ‘slices’ of the fourth-
order cumulant tensor (or equivalently, eigenmatrices of this tensor). This relies

F. Theis et al. (Eds.): LVA/ICA 2012, LNCS 7191, pp. 147–154, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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on the assumption that the source signals are statistically independent at zero
time lag, which makes these matrices diagonal in the source signal basis.

The matrices mentioned in these examples were all symmetric, i.e. M� = M .
This allows to determine the demixing matrix B in two steps: first a spatial
whitening transforms one of the matrices (usually the data covariance) to the
identity matrix, which constrains the remaining transformation to the set of
orthogonal matrices.1 This reduction to the set of orthogonal matrices stabilizes
the optimization in the sense that the BSS algorithm cannot converge to singular
or ill-conditioned matrices. Another advantage of this two-step procedure is that
there exist very efficient joint diagonalizationmethods using orthogonal matrices.
However, not all source separation problems can be cast in terms of symmetric
matrices. In the following, we show how this whitening-rotation scheme can be
translated to the case of skew-symmetric matrices.

2 Interacting Sources, Skew-Symmetric Matrices and the
Induced Symplectic Geometry

Skew-symmetric matrices play a central role e.g. in Pairwise Interacting Source
Analysis (PISA) [6]. In contrast to the BSS algorithms mentioned in the intro-
duction, PISA does not assume independent source signals; instead the sources
are assumed to be pairwise synchronized such that for 2n source signals, the
i–th source (i < n) is synchronized with the (i + n)–th source, but indepen-
dent of all other sources. Synchrony between signals can be quantified by their
cross-spectrum; however, as shown in [5], only its imaginary part is a reliable
measure of interactions in the sense that it definitely encodes synchronization
and cannot be explained by linear mixtures of independent sources. Therefore,
PISA is based on the imaginary part of the complex cross-spectral matrices
Γx(ω) = E[x̂(ω)x̂(ω)†] where x̂(ω) = F [x(t)] is the Fourier-transformed signal.
It is easy to show that the matrices Γx(ω) are skew-symmetric. Evaluated on the
source signals, the elements of these matrices read

Γ ik
s (ω) =

⎧⎨⎩ γi(ω) if k = i+ n
−γi(ω) if k = i− n

0 else
(3)

so the Γs(ω) matrices in the source basis have the block structure

Γs(ω) =

[
0 D(ω)

−D(ω) 0

]
(4)

with real diagonal sub-matrices D(ω) for each frequency ω. We will refer to
this structure as skew-double-diagonal or short sd-diagonal. So, given the set of
skew-symmetric matrices Γx(ω) estimated from the mixed data x(t), the source
separation task is to find a real invertible transformation B that recovers this

1 More precisely, the whitened matrix has to be symmetric and positive definite.
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original sd-diagonal structure. Since such sd-diagonal matrices are diagonalized
with the constant unitary transformation

U :=
1√
2

[
I −iI
I iI

]
, i.e. by UΓs(ω)U

† =
[
iD(ω) 0

0 −iD(ω)

]
(5)

the source separation is equivalent to a complex simultaneous diagonalization.
It has therefore been proposed to solve the PISA problem in this framework.
However, skew-symmetric matrices do not behave as well as symmetric ones.
Due to their inherent indeterminacy, a prior whitening is not possible, which
means that the optimization cannot profit from the stabilizing effect of a restric-
tion to orthogonal matrices. Another disadvantage is that even if the mixing
is purely real-valued, the diagonalization takes a detour over complex matri-
ces, which introduces unnecessary parameters. Also, the diagonal matrices in
eq. (5) have distinct internal symmetries and it is not obvious how this can be
incorporated into the optimization. Here, we will therefore directly tackle the
real sd-diagonalizing problem, i.e. the problem of transforming the matrices into
the form given by eq. (4).2 It turns out that this formulation allows us to pro-
ceed in a two-step strategy in complete formal analogy to the diagonalization of
symmetric matrices.

To understand this, let us revisit the whitening-rotation scheme for symmetric
matrices. From a formal perspective, the matrix Σ that is used to calculate the
whitening defines a positive definite symmetric bilinear form via (x, y) �→ x�Σy.
A data space that is equipped with such a bilinear form is called Euclidean and
there exists a basis in which this bilinear form assumes its normal form, i.e. the
identity matrix. The whitening W is just a transformation to such a basis. The
remaining transformationR is then such that it leaves this normal form invariant,
i.e. RIR� = I, which means that R is orthogonal.

In the skew-symmetric case, the matrix Γ that the whitening-equivalent trans-
formation should be based on is a skew-symmetric bilinear form. The key point
is that this defines a different geometric structure in the data space: a space
equipped with a skew-symmetric bilinear form is called a symplectic space. There
also exists a linear transformation to a normal form, which is however not the
Identity matrix, but given by

Ω =

[
0 I
−I 0

]
. (6)

Like for the whitening in Euclidean space, it is easy to determine a transfor-
mation to this normal form e.g. by a singular value decomposition with subse-
quent scaling of the dimensions. The remaining transformation R should again
leave this form invariant, i.e. RΩR� = Ω, which means that R is a symplectic
transformation. The following table provides a side-by-side comparison of the
symmetric/Euclidean and the skew-symmetric/symplectic case.

2 Of course this implicitly also solves the simultaneous diagonalization via eq. (5).
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SOBI/TDSEP PISA

symmetric matrices Σ,Σ(τ) skew-symmetric matrices Γ, Γ (ω)
Vector space

Euclidean space Symplectic space
‘Whitening’: transformation of bilinear form to ...

... Euclidean normal form ... symplectic normal form
Σ �→ I =WΣW� Γ �→ Ω =WΓW�

Normal form preserving transformation

RIR� = I RΩR� = Ω
(orthogonal transformation) (symplectic transformation)

It is easy to check that the symplectic matrices form a group, that is they contain
the identity, are invertible and the product of two symplectic matrices is also
symplectic. All elements of this group have unit determinant, which prevents a
symplectic optimization from converging to a trivial solution. The symplectic
matrices also define a manifold, which makes it a Lie group, a structure that
will play an important role in the following. For any Lie-Group G, the elements
R ∈ G can be written as

R = exp(q)

with q being an element of the corresponding Lie-Algebra. Geometrically, the
Lie algebra is the tangent space at the identity element. From RΩR� = Ω, we
obtain for the elements q of the symplectic algebra

Ω exp(q)Ω−1 = exp(−q�) (7)

and the power-series definition of the exponential map leads to Ω exp(q)Ω−1 =
exp(ΩqΩ−1). Using Ω−1 = −Ω, we therefore obtain

ΩqΩ = q�. (8)

By sub-dividing the matrix q into n× n submatrices

q =

[
q1 q2
q3 q4

]
(9)

this finally leads to

q4 = −q�1 q2 = q�2 q3 = q�3 (10)

which reflects the symmetries in the symplectic algebra. Given equation (8), we
can also project any square matrix M to the symplectic algebra by

M �−→ 1

2

(
M +ΩM�Ω

)
. (11)

Based on this structure, we will now derive a gradient-descent based method
for simultaneous sd-diagonalization of real skew-symmetric matrices. In the fol-
lowing, we assume that we already performed the symplectic whitening W on a
suitably chosen skew-symmetric matrix Γ .
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Fig. 1. Cartoon figure, demonstrating geodesic line search in a Lie group. The gra-
dient G (blue arrow) lives in the corresponding Lie algebra (blue plane) and can be
mapped to the group manifold (green surface) by the exponential map. The geodesic
line exp(λG) is then given by the dashed red line.

3 Optimizing the Symplectic Transformation

With the remaining symplectic transformation R, we want to simultaneously
sd-diagonalize the set of real skew-symmetric matrices Γk. This will be achieved
by minimizing the sum over all squared off-sd-diagonal entries as measured by
the loss function

L(R) =
∑
k

trace

((
RΓkR

�  Ψ̄
)�(

RΓkR
�  Ψ̄

))
(12)

where  denotes the element-wise Hadamard product and Ψ := Ω  Ω and
Ψ̄ = 1−Ψ define pattern matrices which retain (or remove) only the sd-diagonal
elements of a square matrix under Hadamard multiplication. This loss function
will be minimized with multiplicative updates, i.e. we start with the identity
matrix (or any random symplectic matrix) and update in each step the current
Rn by the symplectic update Q:

Rn+1 ←− QRn. (13)

So, at each individual step, we have a loss function in Q given by

LRn(Q) := L(QRn) (14)

The gradient of this loss function with respect to Q will always be evaluated
at the point Q = I, which means that the gradient is always an element of the
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tangent space at the identity, or in other words, of the symplectic algebra. Every
update step, however, should not be in this tangent space, but on the manifold
itself. So, given a gradient matrix G = ∇sp LRn in the symplectic algebra, we
will perform a line search on the one-parameter subgroup

Q = exp(λG) λ ∈ R (15)

which is the geodesic line in the group Sp(2n) in direction of the gradient G (see
also fig. 1).

To calculate the gradient ∇sp LRn and define the notion of ’steepest descent’,
we need a distance measure (i.e. an inner product) in the Lie algebra. In general,
the gradient ∇f of a scalar function f is defined as the vector, whose inner
product with a unit vector H is equal to the directional derivative of f in the
direction of H , i.e.

〈∇f,H〉 = ∂

∂λ
f (λH) (16)

For unconstrained matrices with the Euclidean distance (Frobenius norm) and
the inner product 〈M1,M2〉 = trace(M�

1 M2), the gradient is simply the matrix of
the partial derivatives ∇f = ∂f

∂M . However, for constrained sets, this is generally
not as simple. Specifically, because of eq. (10), the components of the matrices
from the symplectic algebra are not independent, which means that they do
not all correspond to different directions in the tangent space. A proper inner
product in the symplectic algebra can be defined as (see e.g. [3])

〈G,H〉sp :=
1

2
trace

(
(G (1+ Ψ))�H

)
. (17)

Note that even though this definition looks asymmetric on a first glance, it is
easy to check that indeed 〈G,H〉sp = 〈H,G〉sp.

With this inner product, we can evaluate the left-hand side of eq. (16). Fur-
thermore, if we let the symplectic update Q vary on the line Q(λ) = exp(λH)
with a H ∈ sp(2n) and 〈H,H〉sp = 1, the right-hand side is given by

∂

∂λ
LRn (Q(λ)) = trace

((
∂LRn

∂Q

)�
HQ

)
= trace

(
Q

(
∂LRn

∂Q

)�
H

)

=
1

2
trace

((
Q

(
∂LRn

∂Q

)�
+Ω

(
∂LRn

∂Q

)
Q�Ω

)
H

)
(18)

where the last equality is due to eq. (11). Using this, we can now solve eq. (16)
for the gradient in the symplectic algebra to obtain

∇sp LRn =

((
∂LRn

∂Q

)
Q� +ΩQ

(
∂LRn

∂Q

)�
Ω

)
 
(
1− Ψ

2

)
. (19)

This equation translates the matrix of partial derivatives ∂LRn/∂Q into the
gradient for the symplectic algebra. If we write the k-th skew-symmetric matrix
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at the current update step as Γ ′
k := RnΓkR

�
n , this partial derivative with respect

to Q is given by ∂LRn/∂Q = −4
∑

k(QΓ
′
kQ

�  Ψ̄)QΓ ′
k so the gradient can be

evaluated as

∇sp LRn = −4
∑
k

((
Γ ′′
k  Ψ̄

)
Γ ′′
k + ΩΓ ′′

k

(
Γ ′′
k  Ψ̄

)
Ω
)
 
(
1− Ψ

2

)
(20)

where Γ ′′
k = QΓ ′

kQ
� = QRn Γk (QRn)

�. Given this gradient we can now per-
form a conjugate gradient descent with multiplicative update steps as described
in eq. (13). By updating with a symplectic matrix Q at every step, we ensure
that we stay on the symplectic manifold, so the scaling of the solution is well
controlled. In each step, a search direction is given by a matrix H from the sym-
plectic algebra and the symplectic update Q is determined by a line search in λ
for the one-parameter subgroup Q(λ) = exp(λH) (see e.g. [7] for details).

4 Simulations and Conclusion

We will now briefly evaluate the performance of the proposed symplectic opti-
mization algorithm and to compare it with a näıve simultaneous diagonalization
in the complex domain, as proposed in [4,6]. The latter approach simply min-
imizes the sum of the squared off-diagonal elements under the constraint that
the transformation B has a unit determinant.

We start with a set of 20 sd-diagonal 6-dimensional matrices and map them
with random mixing matrices (i.e. the mixing coefficients are sampled from a
standard normal distribution) into a 6, 10, 20, or 40-dimensinal space and add
gaussian noise (σ = 0.1) to the obtained matrices.3 The goal of the (symplectic)
diagonalization is to estimate the mixing matrix A (or, equivalently, its inverse
B). We measure the quality of the obtained results in terms of principal angles
between the three true 2d subspaces, as given by the column-span of [A:,iA:,i+3]
and the estimated subspaces determined by the respective algorithm. Principal
angles provide information about the relative position of linear subspaces:4 if
all angles are zero, one subspace is a subset of the other. Given the 2 principal
angles θ1, θ2 between a pair of two-dimensional linear subspaces, we define the
subspace error as

SE :=
1

2

(
sin2 θ1 + sin2 θ2

)
. (21)

This error is always between 0 and 1; it is zero only if the two subspaces are
identical, it is 1 only if any two vectors from the two subspaces are othogonal. In
our simulations, we obtain 3 subspace errors for the three hidden 2d subspaces.
Figure 2 shows the mean subspace error (and its standard deviation) for the
symplectic and the direct diagonalization in the different settings sketched above
over 100 repetitions. To account for possible local minima, each optimization was

3 To keep the matrices skew-symmetric, the noise was also skew-symmetrized.
4 See, e.g. http://en.wikipedia.org/wiki/Principal angles
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Fig. 2. Comparison between the symplectic and the naive (direct) diagonalization

restarted 5 times with random initializations. From the comparison of the error,
it is obvious that respecting the symplectic structure of the underlying problem
really pays off. Besides the fact that the symplectic optimization has less free
parameters than the näıve approach, it does not run into ‘useless’ directions. If
there exists a subspace that cannot be diagonalized properly, the naive approach
would invest much into simply scaling this subspace down with respect to ‘better’
subspaces. The symplectic optimization does not fall into this trap.

To conclude, we have shown that the whitening/rotation scheme from sym-
metric diagonalization can be translated to the skew-symmetric case. Compared
to a näıve complex diagonalization, the resulting algorithm is more stable and
yields better results.
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Abstract. This paper deals with non-orthogonal joint block diagonal-
ization. Two algorithms which minimize the Kullback-Leibler divergence
between a set of real positive-definite matrices and a block-diagonal
transformation thereof are suggested. One algorithm is based on the
relative gradient, and the other is based on a quasi-Newton method.
These algorithms allow for the optimal, in the mean square error sense,
blind separation of multidimensional Gaussian components. Simulations
demonstrate the convergence properties of the suggested algorithms, as
well as the dependence of the criterion on some of the model parameters.

Keywords: Joint block diagonalization, relative gradient, quasi-Newton.

1 Introduction

In this paper, we present two algorithms which (approximately) jointly block-
diagonalize a set of weighted real positive-definite matrices. The proposed joint
block diagonalization (JBD) is achieved by minimizing the Kullback-Leibler di-
vergence (KLD). The KLD maximizes, under asymptotic conditions, the likeli-
hood of the observations.

The most common criteria which define JBD of a set of matrices are the least
squares (LS) criterion and the quadratic criterion. JBD algorithms are usually
divided into orthogonal (unitary) and non-orthogonal (non-unitary) ones. In this
paper, we focus on non-orthogonal algorithms and only on the case where the
de-mixing matrix is invertible. Non-unitary JBD by a LS criterion is discussed,
for example, in [1]. The quadratic criterion is minimized using a non-unitary
algorithm, for example, by [2]. These criteria are different than our KLD-based
criterion, which will be presented shortly. A KLD criterion for JBD, in the con-
text of source separation, has first been suggested by [3], in order to separate
one-dimensional sources from their convolutive mixture; however, [3] do not spec-
ify the algorithm used to minimize their criterion. The fast algorithm for joint
diagonalization via KLD minimization, suggested by Pham [4], is extended for
JBD of cyclostationary sources in [5]. However, to the best of our knowledge,
an algorithm which guarantees minimal mean square error (MSE) in the sense
which will be given in the sequel and for the following data model cannot be
found in the literature.
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The data model which motivates our derivation is as follows. Consider a model
of T observations of an m× 1 vector x(t), whose latent model is

x(t) = As(t) 1 ≤ t ≤ T , (1)

where A is an m × m invertible matrix and s(t) is a vector of independent
sources. A natural extension of practical interest is to assume that the m sources
can be partitioned into n ≤ m groups, with the sources of different groups being
statistically independent while the sources in the same group are not independent
and cannot be made independent by any linear transform on s(t). We thus denote
s(t) = [s1(t)

†, . . . , sn(t)†]† with si(t) a vector of length mi, and
∑n

i=1mi = m.
Let us define a partition A = [A1, . . . ,An], where Ai, the ith column block
of A, has dimension m × mi. Since for any mi ×mi invertible matrix Zi, the
pair (Ai, si(t)) and the pair (AiZ

−1
i , Zisi(t)) contribute the same quantity

xi(t) = AiZ
−1
i Zisi(t) = Aisi(t) to the observations, then source separation

can be determined only up to the inherent indeterminacies of a block-diagonal
invertible matrix Z with block-pattern m = [m1, . . . ,mn], and a block-wise
permutation matrix. Note that x(t) =

∑n
i=1 xi(t). In the sequel, we denote

the scale-invariant vectors xi(t) components, as opposed to the scale-dependent
latent sources si(t).

Let us consider a piecewise stationary model as follows. The observation in-
terval [1, T ] is partitioned into Q domains Dq, q = 1, . . . , Q, where Dq contains

nq samples, so that
∑Q

q=1 nq = T . We assume that s(t) is independent of s(t′)

if t �= t′ and that, for any t ∈ Dq, s(t) ∼ N (0m×1,R
(q)
S ). The linear model (1)

implies that R
(q)
X = AR

(q)
S A† , where R

(q)
X = E{x(t)x†(t)} for t ∈ Dq and

R
(q)
S

	
=

⎡⎣R
(q)
S,11 0 0

0
. . . 0

0 0 R
(q)
S,nn

⎤⎦ = bdiag{R(q)
S,11, . . . ,R

(q)
S,nn} , (2)

where R
(q)
S,ii = E{si(t)s†i (t)} for t ∈ Dq and bdiag{·, . . . , ·} denotes a block-

diagonal matrix constructed from the matrices in brackets. Analogously, given
an m×m matrix M , bdiagm{M} returns the block-diagonal matrix with block
pattern m which has the same diagonal blocks as M and has zeros in the off-
diagonal blocks. Using the notation

D(R1,R2) =
1

2

(
tr{R1R

−1
2 } − log det(R1R

−1
2 )−m

)
(3)

for any two m×m positive-definite matrices R1 and R2, the log-likelihood for
the model just described is [6]

log p({x(t)}Tt=1, ;A, {R
(q)
S }Qq=1) = −

Q∑
q=1

nqD(R̃
(q)

X ,RX(q)) + κ

= − T 〈D(A−1R̃
(q)

X A−†,R(q)
S )〉+ κ (4)
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where κ = − 1
2 (mT + 〈log det(2πR̃

(q)

X )〉), R̃
(q)

X
	
= 1

nq

∑
t∈Dq

x(t)x†(t), and the

last transition in (4) is due to the invariance of (3) to invertible transforms (A

in our case), and the notation 〈M (q)〉 	
= 1

T

∑Q
q=1 nqM

(q). By maximizing the

likelihood with respect to the nuisance parameters {R(q)
S }Qq=1 for fixed A,

max
R

(q)
S

log p({x(t)}Tt=1;A, {R
(q)
S }Qq=1) = −T C(A, {R̃

(q)

X }Qq=1) + κ ,

we obtain the contrast function [7]

C(A) = 〈D(A−1R̃
(q)

X A−†, bdiagm{A−1R̃
(q)

X A−†})〉 (5)

and where, for brevity, the dependence of C(A) on the data via {R̃
(q)

X }Qq=1 is
not denoted explicitly. The term κ is irrelevant to the maximization of the like-
lihood with respect to its parameters since it depends only on the data, not on
the model. Consequently, maximizing the likelihood is equivalent to minimizing
the contrast function (5). Note that (5) is the multidimensional analogue of its
one-dimensional counterpart in [8]. The scalar D(R1,R2), defined in (3), is the
KLD between the distributions N (0,R1) and N (0,R2) and thus is a measure
of mismatch between two positive matrices R1 and R2. Therefore, in our piece-
wise stationary model, maximizing (4) is equivalent to minimizing the average
mismatch between the sample covariance matrices and their expected counter-
parts. Since D(R1, bdiagm{R1}) ≥ 0 with equality if and only if R1 is block
diagonal with block pattern m, then, for any positive matrix R1, the divergence
D(R1, bdiagm{R1}) is a measure of the block-diagonality of R1. Therefore,
C(A) can be understood as joint block diagonalization of the set of covariance

matrices {R̃
(q)

X }Qq=1 by matrix A−1.
Component separation by minimization of (5) achieves, under asymptotical

conditions and when the model holds, the Cramér-Rao lower bound (CRLB)
on the mixing model parameters, and is thus optimal in the MSE sense, where
MSE(component i)= 1

T

∑T
t=1 E{‖x̂i(t)− xi(t)‖2}, ‖ · ‖ denotes the Frobenius

norm and x̂i(t) denotes an estimate of xi(t). A closed-form expression for the
CRLB and MSE is obtained in [6], where it is shown that this MSE is achievable
also for non-Gaussian data.

2 Derivation of the Relative Variations

In this section, we derive the relative gradient (RG) and its first-order variation
for the update step of our algorithms. As demonstrated by [9], relative-variation
algorithms enjoy equivariant performance and are thus preferred for our problem
over their non-relative counterparts.

The first-order variation of C(A) when A is replaced by A(I + E) (where
I denotes the identity matrix and the entries of E are sufficiently small) can
always be expressed by the Taylor expansion

C(A(I +E)) = C(A) + tr{(∇C(A))†E}+ higher-order terms in E , (6)
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for some m × m matrix ∇C(A), defined as the RG of C(A). Similarly to the
derivation for the one-dimensional case in [8], one obtains the RG

∇C(A) = −〈bdiag−1
m {A−1R̃

(q)

X A−†}A−1R̃
(q)

X A−†〉+ I (7)

on which the RG algorithm, explained in Sec. 3, is based.
Another algorithm can be derived based on the Newton method. In order

to realize a quasi-Newton (QN) method in the sense of [10], we obtain a first-
order approximation of the gradient, using the following steps. First, the ML
estimate ofA is obtained by setting the RG (7) to zero. This yields the estimating
equations

〈bdiag−1
m {A−1R̃

(q)

X A−†} A−1R̃
(q)

X A−†〉 = I . (8)

These estimating equations (8) can be rewritten block-wise as

〈([A−1R̃
(q)

X A−†]ii)
−1[A−1R̃

(q)

X A−†]ij〉 = 0mi×mj j �= i . (9)

Note that the (i, i)th block of (8), that is, i = j of (9), degenerates into the
identity matrix: the diagonal blocks i = j do not yield any constraints, regardless

of R̃
(q)

X , reflecting the indeterminacy discussed in Sec. 1. It can be readily verified
that the estimating equations (8) are invariant to block-diagonal scale ambiguity.

In the second step, the first-order expansion of the estimating equations (9)
under asymptotic conditions (T → ∞ for

nq

T fixed ∀q) can be expressed, after
some mathematical manipulations analogous to those in [6], as[

vec{Eij}
vec{Eji}

]
= H−1

ij

[
gij

gji

]
+Ω( 1

T ) i �= j , (10)

where

H
(q)
ij = R

(q)
S,jj ⊗R

−(q)
S,ii , Hij =

[
〈H(q)

ij 〉 T mj ,mi

T mi,mj 〈H
(q)
ji 〉

]
g
(q)
ij = −R−(q)

S,ii R̃
(q)

S,ij , gij = −vec{〈g
(q)
ij 〉}

i �= j , (11)

R̃
(q)

S,ij
	
= 1

nq

∑
t∈Dq

si(t)s
†
j(t), R

−(q)
S,ii

	
=
(
R

(q)
S,ii

)−1
and E ij , the mi × mj blocks

of an m × m matrix E, reflect the relative change in A due to the difference

between R
(q)
S and R̃

(q)

S . It should be emphasized that since bdiagm{∇C(A)} is

invariant to changes in R̃
(q)

X (this is a direct result of (8)), then Eii ≡ 0mi×mi .
The notation Ω(f) in (10) stands for stochastic terms whose standard deviation
grows with f , or faster. T m,n is the transpose operator, where, for an m × n

matrix M , vec{M †} = T m,nvec{M}. We also use the vec{·} operator, which
stacks the columns of a p× q matrix into a pq× 1 vector; the Kronecker product
⊗ and the property [11] vec{MXN} = (N † ⊗M )vec{X} for any matrices
M ,N ,X of compatible dimensions. It is assumed that Hij is invertible (which
is usually the case for randomly-generated data; for further discussion see [12]).
The set of matrices Eij , ∀i �= j, obtained from (10), constitute the Newton step.
This leads to our QN algorithm, explained in Sec. 3.
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3 Algorithms

The pseudocode of the iterative algorithms is given in Algorithm 1, where the
part pertaining to each of the RG and QN algorithms is given in Algorithm 2
and 3, respectively. The RG algorithm works as follows: according to (6), if E is
a matrix with small enough values to ensure the invertibility of I +E, and if A
is changed into A(I+E), then C(A) changes by the amount tr{(∇C(A))†E}+
higher-order terms in E. Given E = −λ∇C(A) and λ > 0 a real scalar, the
updating rule (line 4 in Algorithm 2) changes C(A) into C(A)− λ‖∇C(A)‖2+
higher-order terms in ∇C(A). Hence, the decrease of the contrast function C(A)
is guaranteed for small enough λ. The updating rule is iterated until ‖∇C(A)‖ ≤
threshold. In the QN algorithm, the relative change in A is determined directly
by E (10), as explained in Sec. 2. The transformation matrix T in the Algorithms’
pseudocodes reflects the relative change in A at each iteration.

The choice of the step-size in a RG algorithm determines its convergence
rate; see [2], for example. For the simulations in Sec. 4 we chose to set λ by

backtracking line search. Since only R̃
(q)

X is available to the algorithm, then

within the iterations, A−1R(q)A† is used to approximate both R̃
(q)

S and R
(q)
S

of (11). Then, within Algorithm 3, g
(q)
ij is equal to the evaluated (i, j)th sub-block

of ∇C(A).

Algorithm 1. An Iterative JBD Algorithm

1: function jbd({R̃(q)

X }Qq=1, {nq}Qq=1, m, threshold)
2: A ← I 
 Init
3: R(q) ← R̃

(q)

X ∀q 
 Init
4: while ‖∇C(A)‖ > threshold do
5: ∇C(A) ← I − 〈bdiag−1

m {R(q)}R(q)〉 
 (7)
6: Evaluate T 
 Algorithm 2 for RG, Algorithm 3 for QN
7: R(q) ← T−1R(q)T−†, q = 1, . . . , Q
8: A ← AT 
 For output only
9: end while
10: return A
11: end function

Algorithm 2. Update Step for RG

1: λ ← 1 
 Choose λ, e.g. by backtracking line search
2: while C(A(I − λ∇C(A)) > C(A)− αλtr{‖∇C(A)‖2} do λ ← βλ
3: end while
4: T ← I − λ∇C(A)
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Algorithm 3. Update Step for QN

1: for i=1:n, j=1:i-1 do
2: gij ← [∇C(A)]ij 
 (11)

3: H
(q)
ij ← R

(q)
jj ⊗R

−(q)
ii , q = 1, . . . , Q 
 (11)

4: Evaluate Eij ,Eji 
 (10)
5: end for
6: Reconstruct E from {Eij}i�=j 
 Eii ≡ 0mi×mi , see Sec. 2
7: T ← I − E

It is interesting to compare our algorithm to the Gaussian maximum likelihood
independent vector analysis algorithm of [13], which has a QN-type structure
similar to Algorithm 3. [13], too, minimize the KLD. However, the purpose of
their algorithm is to block-diagonalize a single matrix.

4 Simulations

In this concluding section we compare the convergence rate of the algorithms,
as well as the dependence of the criterion (5), on some of the parameters, in nu-

merical experiments. The real positive-definite matrices R
(q)
S , with block-pattern

m = [4, 3, 2, 1], are drawn as R
(q)
S,ii = U †U , where U is an mi×mi upper trian-

gular matrix whose i.i.d. entries ∼ U [− 1
2 ,

1
2 ], and the condition number of each

R
(q)
S,ii is limited by 500, to assure proper invertibility. Matrices reflecting the la-

tent R̃
(q)

S are drawn from the Wishart distribution with nq degrees of freedom,
mimicking nq observations at each Dq. The stopping threshold is set to 10−4.
In the RG algorithm we set λ at each iteration using backtracking line search
(lines 1–3 in Algorithm 2) with α = 0.3, β = 0.2.

A is realized as A = I + Υ , where the entries of Υ are i.i.d. and ∼ U [− 1
4 ,

1
4 ].

Since the contrast function (5) is invariant to block-diagonal scale ambiguity, we
are concerned only about permutation ambiguity. The said choice of A, together
with initializing A with I (line 2 in Algorithm 1) allows for sufficient variability
in our simulations, while usually assuring convergence to the desired minimum.

The convergence rate of the two algorithms is illustrated in Fig. 1a, on 20

realizations of A, with fixed latent R̃
(q)

S . The fast convergence of the QN algo-
rithm is very distinct from that of the RG algorithm. Both algorithms converge,
eventually, in all trials, to the same value of the KL divergence, which illustrates
the equivariance [9] property of the criterion.

Once we have established that both algorithms converge to the same value,
we shall demonstrate the separation quality of the criterion (5) as a function
of Q and nq. Since the QN realization is faster, it is chosen to be used in the
following experiment. In the following simulations, for each Q and nq, 40 trials

were run, each with different R
(q)
S , R̃

(q)

S and A. At each trial, nq = 50, 500
or 500 and is fixed ∀q. Since the purpose of our JBD algorithm is component
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separation, the figure of merit is the MSE. Therefore, for each trial we evaluate
the normalized empirical and theoretical MSE. The normalized empirical MSE
is defined as (12),

M̂SE =

n∑
i=1

1

σ2
i

1

T

T∑
t=1

‖x̂i(t)− xi(t)‖2 , σ2
i

	
=

1

T

T∑
t=1

E{‖x(t)‖2} (12)

=

n∑
i=1

1

σ2
i

tr{
(
〈R̃X〉 ⊗ I

)
vec{δP i}vec†{δP i}} (13)

and can be shown [6] to be equal to (13), where δP i
	
= P̂ i − P i. P i are the

m ×m oblique projection matrices onto Span(Ai) along Span(Aj) ∀j �= i. By
definition, they satisfy P iAj = δijAi so that xi(t) = P ix(t). As opposed to
A, P i are invariant to scaling. With this notation, the estimated ith component
can be obtained as x̂i(t) = P̂ ix(t), with P̂ i = ÂiB̂i, Â an estimate of A and

B̂i the ith horizontal mi ×m block of B̂
	
= Â

−1
. Therefore, the empirical MSE

in Fig. 1b is evaluated using (13). As shown in [6], E{M̂SE} can be expressed
explicitly in closed form, up to higher-order terms, as a function only of the

model parameters P i and R
(q)
X . The “theoretical” data in Fig. 1b was obtained

using that expression.
Each data point in Fig. 1b is the average of 40 empirical or theoretical MSE

values with the same nq and Q. Fig. 1b illustrates the decreases of the MSE with
Q for fixed nq, as well as with nq for fixed Q. There is good match between the-
oretical and empirical values, which validates the convergence of the algorithm
to the desired solution. The small values of the normalized MSE demonstrate
the separation quality of the signals, in terms of the original multidimensional
component separation problem.
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Fig. 1. (a) Convergence rate of RG and QN algorithms, 20 trials each. Only A varies
at each trial. nq = 100 ∀q. (b) Empirical and theoretical MSE vs. Q; nq=50, 500 or

5000 ∀q. Each data point is averaged over 40 trials. A, R
(q)
S and R̃

(q)

S vary at each
trial. In both subplots, block-pattern m = [4, 3, 2, 1], threshold=10−4.
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To conclude, we have presented two non-orthogonal JBD algorithms: QN and
RG. These algorithms are capable of optimal, in the MSE sense, separation
of multidimensional Gaussian piecewise stationary components, based on min-
imizing a KLD-based contrast function. Simulations demonstrate the proper
convergence of these algorithms, given an appropriate initialization and under
asymptotic conditions, to the theoretically-predicted MSE.
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Abstract. Approximate joint block diagonalization (AJBD) of a set
of matrices has applications in blind source separation, e.g., when the
signal mixtures contain mutually independent subspaces of dimension
higher than one. The main message of this paper is that certain ordinary
approximate joint diagonalization (AJD) methods (which were originally
derived for “degenerate" subspaces of dimension 1) can also be used suc-
cessfully for AJBD, but not all are suitable equally well. In particular, we
prove that when the set is exactly jointly block-diagonalizable, perfect
block-diagonalization is attainable by the recently proposed AJD algo-
rithm “U-WEDGE" (uniformly weighted exhaustive diagonalization with
Gaussian iteration) - but this basic consistency property is not shared
by some other popular AJD algorithms. In addition, we show using sim-
ulation, that in the more general noisy case, the subspace identification
accuracy of U-WEDGE compares favorably to competitors.

1 Introduction

Consider a set of square symmetric matrices Mi, i = 1, . . . , N , that are all
block diagonal, with K blocks of size L × L along its main diagonal, Mi =
Bdiag(Mi1, . . . ,MiK), where Mik is the k−th block of Mi and the Bdiag(·) op-
erator constructs a block-diagonal matrix from its argument matrices. It follows
that the dimension of the matrices is LK × LK. An example of such matrices
is illustrated in Figure 2(a) at the end of the paper. Note that the assumption
that all blocks are of the same size is only used here to simplify the exposition,
and can be relaxed via straightforward generalization.

Next, assume that (possibly perturbed) congruence transformations of these
matrices are given as

Ri = AMiAT + Ni, i = 1, . . . , N (1)
� This work was supported by Ministry of Education, Youth and Sports of the Czech

Republic through the project 1M0572 and by Grant Agency of the Czech Republic
through the project 102/09/1278.
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where the superscript T denotes a matrix transposition, A is an unknown square
“mixing matrix", and Ni is a perturbation (or “noise") matrix. We shall refer to
the case where all Ni = 0, i = 1, . . . , N as the “unperturbed" (or “noiseless")
case. The choice of symbol R reflects the fact that the matrices in the set often
play a role of (sample-) covariance matrices of a partitioned data, or time-lagged
(sample-) covariance matrices.

The goal in Approximate Joint Block Diagonalization (AJBD) is to find a
“demixing" matrix W, such that the matrices

M̂i = WRiWT , i = 1, . . . , N (2)

are all approximately block diagonal, having the blocks on the main diagonal of
the same size as the original matrices Mik. Ideally, one may wish to estimate
W = A−1 and get M̂i ≈ Bdiag(M̂i1, . . . , M̂iK), where M̂ik ≈ Mik.

In general, however, it is impossible to recover the original blocks Mi (even in
the “noiseless" case), because of inherent ambiguities of the problem (e.g., [10]),
but it is possible to recover “independent subspaces", as explained below.

Let W0 = A−1 be partitioned in K blocks Wk of size L × KL, W0 =
[WT

1 , . . . ,WT
K ]T . Each block Wk represents a linear space of all linear combina-

tions of its rows. These linear spaces are in general uniquely identifiable [10,4].
Let Ŵ be an estimated demixing matrix. We say that Ŵ is “essentially equiv-
alent" to W0 (and therefore represents an ideal joint block diagonalization),
if there exists a suitable LK × LK permutation matrix Π such that for each
k = 1, . . . , K the subspaces spanned by Wk and by the respective k-th block of
ΠŴ coincide (two subspaces are said to coincide if their mutual angle1 is zero).

Some existing AJBD algorithms are restricted to the case where A (and there-
fore also Ŵ) are orthogonal [5], some other algorithms consider a general matrix
A [6,10]. In this paper, we examine the general case.

It is known that reasonable solutions to AJBD can be obtained using a two
steps approach, by first applying an ordinary approximate joint diagonaliza-
tion (AJD) algorithm, and then clustering the separated components (rows of
the demixing matrix) [7,12]. In Section 3 we suggest a method for the clus-
tering operation, followed by the main point of this paper: we show that not
all AJD algorithms are equally suitable for such a two-steps AJBD approach.
More specifically, we prove that unlike several popular AJD approaches, one
recently proposed AJD method (U-WEDGE, Uniformly Weighted Exhaustive
Diagonalization with Gauss itErations [14]) features a unique ability to attain
ideal separation in the unperturbed (“noiseless") case, for general (not necessarily
orthogonal) matrices A. Our theoretical results are corroborated with simulation
experiments in Section 4, both for the unperturbed and perturbed cases, showing
the empirical advantages of U-WEDGE for the latter. We start, however, with a
short overview of the AJD methods considered in this work. Their applicability
in solving the block AJD problem is studied later in Section 4.

1 The mutual angle between two subspaces can be obtained in Matlab� using the
subspace function.
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2 Survey of Main AJD Methods

Several well-known AJD methods are based on minimization of one of the three
following criteria, possibly subject to one of the two constraints stated below.

CLS(W) =
N∑

i=1

‖Off(WRiWT )‖2
F (3)

CLL(W) =
N∑

i=1

log
det Ddiag(WR̂iWT )

det(WR̂iWT )
(4)

CJ2(W) =
N∑

i=1

‖Ri − W−1Ddiag(WRiWT )W−T ‖2
F (5)

where the operator “Off" nullifies the diagonal elements, whereas “Ddiag" nullifies
the off-diagonal elements of a square matrix, Ddiag(M) = M − Off(M)), and
“‖ · ‖F " stands for the Frobenius norm. The possible associated constraints are

1. Each row of the estimated demixing matrix Ŵ has unit Euclidean norm.
2. ŴR1ŴT has an all-ones main diagonal.

The latter constraint usually corresponds (in the BSS context) to some scaling
constraint on the estimated sources.

In the sequel we shall examine five AJD methods: QAJD [15], FAJD [9],
LLAJD [11], QRJ2D [2] and WEDGE [14], especially in its unweighted version
U-WEDGE. QAJD is based on minimization of the criterion (3) under the con-
straint 2. FAJD minimizes (3), penalized by a term proportional to log | detW|.
LLAJD minimizes (4) and QRJ2D minimizes (5), both under the constraint 1
(which is actually immaterial to the minimization in these cases).

WEDGE and its more simple unweighted (or uniformly-weighted) version U-
WEDGE, which we consider in here, are different. U-WEDGE seeks a demixing
matrix W which satisfies

argminA

N∑
i=1

‖WRiWT − ADdiag(WRiWT )AT ‖2
F = I (6)

where I is the LK×LK identity matrix. Roughly speaking, this implies that the
set of matrices {WRiWT } cannot be jointly-diagonalized any further, since its
“residual mixing" matrix, or its “best direct-form diagonalizer" (in the LS sense)
is Ā = I, the identity matrix.

It was shown in [14] that a necessary and sufficient condition for A = I to
be a stationary point of the criterion in (6) is a simpler set of nonlinear “normal
equations",

Off

[
N∑

i=1

(WRiWT )Ddiag(WRiWT )

]
= 0 . (7)

The more general WEDGE algorithm differs from U-WEDGE by incorporating
special weight matrices in the quadratic criterion in (6). Although apparently
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complicated, both versions are computationally very efficient. Particular forms
of WEDGE are used successfully in WASOBI for asymptotically optimal blind
separation of stationary sources with spectrum diversity, and in BGSEP for sep-
aration of nonstationary sources [14]. Although our analytical proof and experi-
ments in the sequel refer to the more simple version U-WEDGE, our experience
shows that WEDGE shares the same ability of U-WEDGE to attain exact joint
block-diagonalization in the unperturbed case.

3 AJD Methods in the Block Scenario

A natural extension of AJD methods in the block scenario is to replace the
criterion (3) by

CBLS(W) =
N∑

i=1

‖Boff(WRiWT )‖2
F (8)

where the operator “Boff" nullifies the elements of a matrix that lie in the diag-
onal blocks. This is the main idea in [5].

It is obvious that since the criteria (3) and (8) are generally different, their
minima differ as well, in general. If the diagonal blocks’ sizes L are small, then one
may expect the AJD and AJBD solutions to resemble. It is, however, necessary
to permute (namely to properly cluster) the rows in the estimated demixing
matrix, because the resulting order of rows is arbitrary in plain AJD algorithms.

3.1 Clustering of AJD Components

In this subsection a simple method of clustering the rows of de-mixing matrix
is proposed. It allows to reveal (or at least to enhance) the block structure of
the result. We suggest the following greedy algorithm: Given the AJD demixing
matrix W, compute an auxiliary matrix B as

B =
N∑

i=1

|WRiWT| . (9)

where the absolute value is taken elementwise. If the demixing is perfect, B
should have, after arranging columns and rows, the same block structure as the
original matrices Mi. Take the first column of B and sort its elements decreas-
ingly. Let i1, . . . , iL be the indices of the column elements with the L largest
values. Then W1 is built of the rows of W with these indices. The rows and
columns of B at the positions i1, . . . , iL are set to zero, and the procedure iter-
ates further sorting of the column of B with the next nonzero elements, until all
subspaces (blocks) Wk, k = 1, . . . , K, have been determined.
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3.2 U-WEDGE Provides Perfect Separation of the Blocks

In this subsection we prove that in the unperturbed (“noiseless") case, U-
WEDGE provides, upon convergence, perfect separation of the blocks.2 Let Vk

be the result of the hypothetical operation of applying U-WEDGE to each of
the blocks-sets M1k, . . . ,MNk for k = 1, . . . , K, where Mik is the kth diagonal
block of Mi, i = 1, . . . , N . It follows from (7) that each Vk obeys

Off

[
N∑

i=1

(VkMikVT
k )Ddiag(VkMikVT

k )

]
= 0 . (10)

Now, define WU as

WU = Bdiag(V1, . . . ,VK)A−1 . (11)

It is straightforward to see that WU is a U-WEDGE block diagonalizer of the
original matrix set Ri = AMiAT , because it obeys the corresponding normal
equation

Off

[
N∑

i=1

(WURiWT
U )Ddiag(WURiWT

U )

]
= 0 , (12)

and on the other hand, that WURiWT
U has the perfect block-diagonal structure,

WURiWT
U = Bdiag(V1Mi1VT

1 , . . . ,VKMiKVT
K), i = 1, . . . , N . (13)

We note in passing, that since, as mentioned in [14], (7) is also a necessary
condition for a solution of the FFDiag AJD algorithm [16], this property is
shared by the latter as well.

4 Simulation Experiments

We first consider an experiment reflecting the unperturbed case, as shown in Fig-
ure 2 at the end of the paper. We generated N = 3 block-diagonal matrices Mi,
i = 1, 2, 3, of dimension 20×20, each containing four symmetric 5×5 blocks Mik

generated as Mik = HikHT
ik, Hik being random 5×5 matrices with independent

standard Gaussian elements. The matrices Mi are shown in diagram (a). The
20×20 mixing matrix A was generated as random orthogonal, via QR decompo-
sition of a random matrix. Diagram (b) shows raw results of applying U-WEDGE
to the unperturbed set Ri = AMiAT , i = 1, 2, 3. Obviously, the block-diagonal
structure of the results is obscured by residual random permutations in these

2 Theoretically U-WEDGE can be stacked in a false solution [14], but in practice it is
very rare, and the solution is unique up to well known permutation ambiguity.
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Fig. 1. Average subspace angular error for different AJD techniques versus SNR. (a)
orthogonal mixing matrix, (b) random mixing matrix.

matrices. Diagram (c) shows the same matrices after applying the re-ordering
procedure described in section 3.1. The angular error between the estimated and
original subspaces (blocks of W and A−1) are zeros. Diagrams (d) and (e) show
results obtained using the same procedure with the AJD algorithms QRJ2D and
LLAJD. The average angular errors of the estimated subspaces were 4.6x10−3

(rad) and 1.3x10−4(rad), respectively. The algorithms QAJD and FAJD were
excluded, as they did not converge properly in this experiment.

In Figure 1 we proceed to compare the performance in the perturbed (“noisy")
case. We plot the average angular subspace errors vs. the Signal-to-Noise Ratio
(SNR) for the two-steps method using U-WEDGE, QRJ2D, LLAJD. For refer-
ence, we also compare to a unitary JBD algorithm [5], and three non-unitary
algorithms: the closed form algorithm, utilizing only the first two matrices, la-
belled as CFA [10], the algorithm of Ghennioui et al, labelled as GH, [6], and the
nonlinear conjugent gradient (NCG) of Nion [10]. The random noise matrices
Ni were taken as symmetric with zero-mean entries, Gaussian-distributed with
variance 10−SNR/10. The average of the angular error is taken with respect to the
four block and over 10 independent trials (with newly generated blocks and the
noise, and the same mixing matrix A). We consider both the case of orthogonal
(Fig.1(a)) and non-orthogonal (Fig.1(b)) A. We note that JBD (which assumes
orthogonality) performs best in the former but fails in the latter. Among the
AJD-based methods, U-WEDGE based AJBD usually attains the best results
for moderate SNR’s. It is outperformed by NCG, when the SNR is high. The
worse performance of NCG at low SNR is probably due to getting the algorithm
stacked in side local minima. Note a huge difference in computation speed. While
one run of NCG takes cca 90 s, one run of U-WEDGE takes about 0.01 s of mat-
lab running time on an ordinary PC with a 3GHz processor.
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(a)

(b)

(c)

(d)

(e)

Fig. 2. Original and demixed matrices, displayed as log10(|Mi| + 10−5): (a) Original
block-diagonal matrices (b) the matrices after mixing and de-mixing by U-WEDGE (c)
the matrices after sorting row and columns (d) result for QRJ2D (e) result for LLAJD
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5 Conclusions

We have shown theoretically and demonstrated in simulations that in the context
of AJD-based AJBD, U-WEDGE attains an exact solution in the unperturbed
case (with general mixing matrices), and usually performs better than other
AJD algorithms in the perturbed case. The paper gives an explanation why the
BG-WEDGE algorithm (which is similar) works so well in the time domain blind
audio source separation [8].

Acknowledgements. The authors wish to give thanks to Dr. Dimitri Nion for
sending them a matlab code of his algorithm JBD-NCG.

References

1. Afsari, B.: Sensitivity analysis for the problem of matrix joint diagonalization.
SIMAX 30(3), 1148–1171 (2008)

2. Afsari, B.: Simple LU and QR Based Non-orthogonal Matrix Joint Diagonalization.
In: Rosca, J.P., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds.) ICA 2006. LNCS,
vol. 3889, pp. 1–7. Springer, Heidelberg (2006)

3. Abed-Meraim, K., Belouchrani, A.: Algorithms for Joint Block Diagonalization.
In: Proc. of EUSIPCO 2004, Vienna, Austria, pp. 209–212 (2004)

4. de Lathauwer, L.: Decomposition of higher-order tensor in block terms - Part II:
definitions and uniqueness. SIAM J. Matrix Anal. and Appl. 30(3), 1033–1066
(2008)

5. Févotte, C., Theis, F.J.: Pivot Selection Strategies in Jacobi Joint Block-
Diagonalization. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D.
(eds.) ICA 2007. LNCS, vol. 4666, pp. 177–184. Springer, Heidelberg (2007)

6. Ghennioui, H., et al.: A Nonunitary Joint Block Diagonalization Algorithm for
Blind Separation of Convolutive Mixtures of Sources. IEEE Signal Processing Let-
ters 14(11), 860–863 (2007)

7. Koldovský, Z., Tichavský, P.: A Comparison of Independent Component and In-
dependent Subspace Analysis Algorithms. In: EUSIPCO 2009, Glasgow, Scotland,
April 24-28, pp. 1447–1451 (2009)

8. Koldovský, Z., Tichavský, P.: Time-domain blind separation of audio sources based
on a complete ICA decomposition of an observation space. IEEE Tr. Audio, Speech,
and Language Processing 19(2), 406–416 (2011)

9. Li, X.-L., Zhang, X.D.: Nonorthogonal joint diagonalization free of degenerate so-
lutions. IEEE Tr. Signal Processing 55(5), 1803–1814 (2007)

10. Nion, D.: A Tensor Framework for Nonunitary Joint Block Diagonalization. IEEE
Tr. Signal Processing 59(10), 4585–4594 (2011)

11. Pham, D.-T.: Joint approximate diagonalization of positive definite Hermitian ma-
trices. SIAM J. Matrix Anal. and Appl. 22(4), 1136–1152 (2001)

12. Szabó, Z., Póczos, B., Lörincz, A.: Separation theorem for independent subspace
analysis and its consequences. Pattern Recognition 45(4), 1782–1791 (2012)



On Computation of Approximate Joint Block-Diagonalization 171

13. Tichavský, P.: Matlab code for U-WEDGE, WEDGE, BG-WEDGE and WASOBI,
http://si.utia.cas.cz/Tichavsky.html

14. Tichavský, P., Yeredor, A.: Fast Approximate Joint Diagonalization Incorporating
Weight Matrices. IEEE Tr. Signal Processing 57(3), 878–891 (2009)

15. Vollgraf, R., Obermayer, K.: Quadratic optimization for simultaneous matrix di-
agonalization. IEEE Tr. Signal Processing 54(9), 3270–3278 (2006)

16. Ziehe, A., Laskov, P., Nolte, G., Müller, K.-R.: A Fast Algorithm for Joint Di-
agonalization with Non-orthogonal Transformations and its application to Blind
Source Separation. Journal of Machine Learning Research 5, 777–800 (2004)

http://si.utia.cas.cz/Tichavsky.html


Joint Diagonalization of Several Scatter

Matrices for ICA

Klaus Nordhausen1, Harold W. Gutch2,3, Hannu Oja1, and Fabian J. Theis3,4

1 University of Tampere, Finland
2 Max Planck Institute for Dynamics and Self-Organization, Germany

3 Technical University Munich, Germany
4 Helmholtz-Institute Neuherberg, Germany

Abstract. Procedures such as FOBI that jointly diagonalize two matri-
ces with the independence property have a long tradition in ICA. These
procedures have well-known statistical properties, for example they are
prone to failure if the sources have multiple identical values on the diago-
nal. In this paper we suggest to diagonalize jointly k ≥ 2 scatter matrices
having the independence property. For the joint diagonalization we sug-
gest a novel algorithm which finds the correct direction in an deflation
based manner, one after another. The method is demonstrated in a small
simulation study.

Keywords: ICA, scatter matrix, independence property, joint
diagonalization.

1 Introduction

The independent component (IC) model is a well-established semiparametric
model: Let x be a p-variate random vector. Then the most basic IC model is

x = Ωz, (1)

where z is an unobservable p-variate source vector having independent compo-
nents and Ω is an unknown p × p full-rank mixing matrix. Any p × p matrix
Γ such that Γx has independent components is called an unmixing matrix. Let
X = (x1, ...,xn) be a random sample from a distribution obeying the model (1).
The goal of independent component analysis (ICA) is then to find an estimate

Γ̂ (based on X) for some unmixing matrix Γ . For an overview for different es-
timation procedures, see for example [1,2]. A family of estimates based on the
joint diagonalization of two scatter matrices with the so called independence
property has been recently proposed [3,4,5]. In this paper we extend this family
by jointly diagonalizing k scatter matrices, k ≥ 2. We motivate also why this is
an improvement over diagonalizing only two matrices. For the joint diagonaliza-
tion we use a new algorithm which finds the directions of the unmixing matrix
in a deflation based manner. This allows us to develop the statistical theory
(convergence, asymptotic normality) for the new estimates.

F. Theis et al. (Eds.): LVA/ICA 2012, LNCS 7191, pp. 172–179, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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The structure of the paper is as follows. In Sections 2 and 3, we first define
the concepts of scatter functionals and independent component (IC) functionals,
and recall how two scatter matrices with the independence property can be used
to find an IC functional. Then, in Section 4, we introduce our new family of
IC functionals and estimates based on k ≥ 2 scatter matrices, and describe the
statistical properties of the estimates. The new algorithm for this procedure is
introduced in Section 5, and the paper is concluded with a small simulation
study.

Due to space restrictions proofs and further results will be published in an
extended version of this paper.

2 Scatter Functionals

Location and scatter functionals are generally used to describe the properties
of multivariate distributions in wide nonparametric and semiparametric models.
Let x be a p-variate random vector with cumulative distribution function (cdf)
Fx. A location functional is then a p-vector valued functional T(Fx) that is affine
invariant in the sense that

T(FAx+b) = AT(Fx) + b,

for all full-rank p × p matrices A and all p-vectors b. A scatter functional is a
p×p matrix valued functional S(Fx) which is symmetric, psd and affine invariant
in the sense that

S(FAx+b) = AS(Fx)A
T ,

again for all full rank p × p matrices A and p-vectors b. If only S(FAx+b) ∝
AS(Fx)A

T is true then S is called a shape functional. For any scatter functional
S, functionals (p/trace(S))S and (det(S))−1/pS are shape functionals, for exam-
ple. If X = (x1, . . . ,xn) is a random sample from Fx and Fn is the empirical cdf
based on X, then the sample statistics T(Fn) = T(X) and S(Fn) = S(X) are
natural estimates of T(Fx) and S(Fx), respectively.

There are several families of location and scatter functionals proposed in the
literature. The simultaneous M-functionals for location and scatter are often
defined by the implicit equations

T(x) = E(w1(r))
−1E(w1(r)x) and S(x) = E(w2(r)(x −T(x))(x −T(x))T ),

where r = [(x − T(x))TS(x)−1(x − T(x))]1/2, and w1(r) and w2(r) are two
nonnegative continuous weight functions. Some interesting special cases are

1. the mean vector and the covariance matrix (w1(r) = w2(r) = 1),
2. Hettmansperger-Randles (HR) functional, see [6], with w1(r) = 1/r and

w2(r) = p/r2,

3. Huber’s functional, w1(r) =

{
1 r ≤ c
c/r r > c

and w2(r) =

{
1/σ2 r ≤ c

c/(r2σ2) r > c
,

where c is a tuning constant and σ2 a scaling parameter (see [7]), and
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4. ML-estimate for the Cauchy distribution, see [8], with w1(r) = w2(r) =
(p+ 1)/(r2 + 1).

For other families of location and scatter functionals such as MM-, CM- and
S-functionals, see [9].

In practice, M-estimates, that is, the values of the M-functionals at sample
cdf, are computed using a fixed point algorithm based on the estimating equa-
tions above. One-step M -functionals (T1,S1) are then obtained using initial
functionals (T0,S0) and one step

T1(x) = E(w1(r))
−1E(w1(r)x) and S1(x) = E(w2(r)(x−T0(x))(x−T0(x))

T ),

where now r = [(x − T0(x))
TS0(x)

−1(x − T0(x))]
1/2. Important special cases

are

1. a scatter matrix based on fourth moments COV4 starting with (E,COV)
and using w2(r) = r2/(p+ 2), and

2. one-step Hallin-Paindaveine (HP) functional starting with the HR estimate
and using w2(r) = ψ−1

p (Fr(r))/r where ψp is the cdf of a χ2
p-distribution,

see [10].

If x has an elliptically symmetric distribution, then S(Fx) ∝ COV(x), but
this is not true in the IC model. For ICA, it is important that the scatter
functional possesses the so called independence property meaning that, if x has
independent components then S(x) is a diagonal matrix. For most families of
scatter functionals mentioned above, this is not generally true. It is easy to
see that COV and COV4 have the independence property. However, for any
scatter functional S not having this property, its symmetrized version Ssym has
the property. (Ssym(x) = S(x1−x2) where x1 and x2 are independent copies of
x, see [11,12].) Unfortunately, symmetrized scatter estimates are computational
intensive. Note however that, if x has independent components and at most one
component is skew then all scatter functionals will be diagonal [13].

3 Independent Component (IC) Functionals

Let C be the set of p × p matrices that have exactly one non-zero element in
each row and each column. Assume that x = Ωz obeys the model (1). Then an
independent component (IC) functional Γ (F ) is a p×p matrix valued functional
that satisfies

(i) Γ (Fx)Ω ∈ C and (ii) Γ (FAx+b) = Γ (Fx)A
−1,

for all full-rank A and all b. IC functionals can be constructed, however, only
in submodels of (1); it is well known for example that at most one independent
component can be gaussian.

The IC functional Γ (F ) based on the two scatter matrix functionals S1(F )
and S2(F ) with the independence property is defined by the estimating equations

ΓS1Γ
T = Ip and ΓS2Γ

T = Λ,
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where Λ = Λ(F ) is a diagonal matrix (functional) with diagonal elements
λ1 ≥ . . . ≥ λp > 0. The matrix Γ then jointly diagonalizes both S1 and S2.
Unfortunately, Γ is an IC functional (up to sign changes of its rows) only in
the submodel (1) with distinct eigenvalues λ1 > . . . > λp > 0 of S−1

1 S2. (Note
that these eigenvalues, do not depend on Ω.) This may be seen a serious restric-
tion as then only the components with distinct eigenvalues can be recovered. To
avoid this problem, one can then try to diagonalize simultaneously k > 2 scatter
matrices.

The use of two scatter matrices in ICA has been studied in [3,4] (real data),
and in [5] (complex data). The limiting statistical properties of the estimates
have been studied in [14]. One of the first solutions for the ICA problem, the
FOBI functional [15], is obtained with scatter functionals COV and COV4, re-
spectively. Eigenvalues in Λ are simple functions of the classical moment based
kurtosis measures. FOBI is highly non-robust as it is based on fourth moments
- robust ICA estimates are obtained with robust choices of S1 and S2. JADE
[16] may be seen as an extension of FOBI as it jointly diagonalizes several cu-
mulant matrices in order to avoid the problem of identical eigenvalues. JADE
has however two drawbacks: (i) It is not affine invariant (and therefore not an
IC functional) and (ii) it is highly non-robust.

4 Joint Diagonalization of Several Scatter Functionals

Let now S1, ...,Sk be k scatter functionals with the independence property, k ≥ 2.
The general idea is to find a p×p matrix Γ that minimizes

∑k
i=2 ||off(ΓSiΓ

T )||2
under the constraints ΓS1Γ

T = Ip. As S1, ...,Sk are scatter matrices, it is equiv-

alent to maximize
∑k

i=2 ||diag(ΓSiΓ
T )||2 under the same constraints. To fix the

order of the independent components (rows of Γ ) we require that the diagonal

elements of
∑k

i=2(diag(ΓSiΓ
T ))2 are in decreasing order. The functional Γ is

then an independent component (IC) functional in a wider submodel (1) than
any of the IC functionals based on pairs of scatter matrices (S1,Si), i = 2, ..., k,
only. It is sufficient that only S1 is a scatter matrix and S2, ...,Sk are shape
matrices with the same trace or determinant. This guarantees that none of the
matrices dominates too much the others.

Write Γ = (γ1, ...,γp)
T . The columns γ1, ...,γp can then be solved one by one

so that γj , j = 1, ..., p− 1 maximizes

Gj(γj) =

k∑
i=2

(γT
j Siγj)

2

under the constraints γT
r Siγj = δrj , r = 1, ..., j. Using Lagrangian multiplier

technique, one then obtains estimating equations equations

T(γj) = S1(

j∑
r=1

γrγ
T
r )T(γj), j = 1, ..., p− 1,
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where T(γ) =
∑k

i=2[(γ
TSiγ)Si]γ. One can then show that, under general as-

sumptions, if
√
n(vec(Ŝ1, ..., Ŝk) − vec(Σ1, ...,Σk)) has a limiting multivariate

normal distribution then so does
√
n(Γ̂ − Γ ).

5 Practical Implementation

The implementation of the method described in the previous section is straight-
forward and follows the ideas of the deflation-based fastICA algorithm (see for
example [1]). The basic idea is use S1 to whiten the data and then find the rows
of an orthogonal transformation matrix one by one to jointly diagonalize the
reminding k− 1 scatter (or shape) matrices computed for the whitened data. To
fix the extraction order in practice, the initial value of the orthogonal matrix is

the matrix of the eigenvectors of S
−1/2
1 S2S

−1/2
1 . The algorithm is then as follows:

program k-scatter for ICA

S1 = S1(X) # S1 for the original data

Z = S1^{-1/2} X # whiten the data using S1

SK = array(S_i(Z)) # i=2,...,k.

SK[,,1] = UDU’ # eigendecomposition of S2

W = 0 # pxp matrix with 0’s for storing the results

for (i in 1:p){

wn <- U’[,i]

for (it in 1:maxiter){

w <- wn

wn <- matrix(0,p,1)

for (mi in 1:k-1){

# calculate the gradient

wn <- wn + SK[,,mi] * w * w’ * SK[,,mi] * w

}

wn <- wn - W’ * W * wn

wn <- wn / norm(wn)

if (norm(w-wn) < eps || norm(w+wn) < eps) break

if (it == maxiter) stop("no convergence reached")

}

W[i,] <- wn’

}

W <- W*S1^{-1/2}

return W

6 Simulation

A small simulation study was used to evaluate the finite sample performance
and robustness of the new procedure. Comparisons were made to the procedures
based on two scatter matrices only as well as to classical fastICA and JADE
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algorithms. The performance criterion used in the comparisons was the minimum
distance criterion,

MD(Γ̂ ,Ω) =
1√
p− 1

inf
C∈C

||CΓ̂Ω − Ip||.

The range of the MD index is [0, 1], and MD = 0 means an optimal separation.
For details about the index, see [17].

We compare the performance of the IC estimates in four different 4-variate
settings,

1. z1 has a χ2
4 distribution, z2 a t7 distribution, z3 has a logistic distribution,

and z4 has a N(0, 1) distribution. The variables are standardized so that
E(zi) = 0 and V ar(zi) = 1, i = 1, ..., 4. Marginal kurtosis values are κ1 = 3,
κ2 = 2, κ3 = 1.2, and κ4 = 0.

2. As setting 1 but 5 % of the z = (z1, ..., z4)
T are replaced by outliers having

N4(0,Σ) distribution with Σ = UDU′ where U is a random orthogonal
matrix and D = diag(100, 50, 20, 0.001).

3. z1 has a χ2
10 distribution, z2 has a t9 distribution, z3 has a logistic distri-

bution, and z4 has a power exponential distribution with shape parame-
ter 1.3401. Again, after the standardization, E(zi) = 0 and V ar(zi) = 1,
i = 1, ..., 4. Now κ1 = κ2 = κ3 = κ4 = 1.2 meaning, for example, that FOBI
should not work.

4. As setting 3 but with outliers as in setting 2.

Note that there is only one skew component in each setting. Therefore all the
scatter matrices have the independence property here. The estimation methods
to be compared are (i) non-robust 2S_FOBI using COV and COV4, (ii) robust
2S_ROB using HR and Huber scatter matrices, (iii) non-robust kS_FOBI using
COV, COV4, HR, and Huber scatter matrices, and (iv) robust kS_ROB using
HP, spatial rank (see [3]), HR, Huber and Cauchy scatter matrices. The scale
differences were eliminated so that, in all cases, S2, ...,S5 were standardized to
have determinant 1. The comparisons were made also to (v) the deflation-based
fastICA algorithm with nonlinearity function tanh and a random initial matrix,
to (vi) the JADE estimate, and to (vii) a (reference) random guess matrix where

the elements Γ̂ are iid from a N(0, 1) distribution.
In all settings we choose A = Ip. Note that the methods based on scatter

functionals do not depend on the choice of A. This is not true for JADE which
complicates the comparison. Note also that the performance of deflation-based
fastICA depends on how the initial value of the estimate is chosen in the algo-
rithm. With a random initial value, the estimate is not affine equivariant [18].

Figure 1 shows the average performance of the 7 estimates in four settings
with samples sizes n = 200, 500, 1000, 2000 and with 1000 repetitions in each
case. The results are remarkable. The estimates based on five scatter matrices
clearly outperform those based on two matrices only. The new estimates seem to
work well already for relative small sample sizes. Only in setting 1 and with large
sample sizes, fastICA and JADE are better than the new procedures. JADE,
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Fig. 1. Average MD values in the simulations over 1000 repetitions

fastICA, 2S_FOBI and kS_FOBI suffer severely when outliers are present. The
average MD values of both 2S_FOBI and 2S_ROB converge extremely slowly to
zero. In fact, there is no convergence for 2S_FOBI in setting 3 (and 4) as all the
four kurtosis values are the same. In general the advantage of using more than
2 (robust) scatter matrices is overwhelming in this small simulation study.

7 Conclusions

We suggested in this paper a novel method for ICA which is based on the joint
diagonalization of k > 2 scatter matrices. This new method can be seen as an
extension of the ICA method based on two scatter functionals as well as an ex-
tension of JADE. The new approach is valid for a larger family of distributions
than the two scatter functionals approach. Compared to JADE, the new esti-
mates have the advantage of being affine equivariant. Our novel deflation-based
algorithm for joint diagonalization makes the method also analytically tractable.
Due to space restrictions the theoretic properties like limiting normality are just
outlined and detailed results with limiting covariance matrices of the estimates,
for example, will be presented in an extended version of the paper. A small sim-
ulation study showed that the new approach has a high efficiency and it is seems
highly robust if only robust scatter functionals are employed. For an extended
version of the paper, larger simulations with other model selections and several
other choices of scatter matrices are necessary for a better understanding of the
estimation procedure.
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Abstract. The original Independent Component Analysis (ICA) prob-
lem of blindly separating a mixture of a finite number of real-valued
statistically independent one-dimensional sources has been extended in
a number of ways in recent years. These include dropping the assump-
tion that all sources are one-dimensional and some extensions to the case
where the sources are not real-valued. We introduce an extension in a
further direction, no longer assuming only a finite number of sources,
but instead allowing infinitely many. We define a notion of independent
sources for this case and show separability of ICA in this framework.

1 Introduction

Independent Component Analysis (ICA) has become a standard approach to the
Blind Source Separation (BSS) problem: Assume N real valued signal sources
S = (S1, . . . , SN) that are not directly given, but instead only anM -dimensional
mixture X = f(S) for some invertible function f of the sources can be observed.
Given now only X, the task is reconstruction of S. In the most simple setting
N =M and f is linear (so it can be written as a square matrix A). On a formal
level, S is here modeled as an N -dimensional real valued random vector, and
ICA assumes that the N components of S are stochastically independent. In
this case, it is known [1] that if at most one of the sources has a Gaussian distri-
bution one can indeed uniquely reconstruct S from X up to possible scaling and
permutation indeterminacies. We show that if one instead models S as a random
vector taking values in a real Hilbert space (intuitively, this can be visualized as
the limit case of N →∞), under some mild conditions (which correspond to no
additional assumptions in the finite dimensional case) S can be again recovered
given only X, up to possible scaling and permutation indeterminacies. While
more application-oriented, functionalPCA is a related approach.

This paper is organized as follows. In Section 2 we repeat the definition of
Hilbert spaces and their most elementary properties. Section 3 contains an in-
troduction into random variables with values in Hilbert spaces, and how many
key concepts there can be reduced to real valued random variables. We then
have the tools to prove separability of the ICA model in this setting in Section 4
before concluding with a short discussion, open questions and further directions
of the model in Section 5.

F. Theis et al. (Eds.): LVA/ICA 2012, LNCS 7191, pp. 180–187, 2012.
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2 Vector Spaces and Hilbert Spaces

For any integer d > 0, the d-dimensional real vector space V = Rd can be
visualized as the set of ordered d-fold tuples of reals, v = (v1, . . . , vd) where
addition of two of these is defined component-wise, (v + w)k := vk + wk, and
multiplication of a v ∈ V with a λ ∈ R is defined by (λv)k := λvk. A set of

vectors {v1, . . . ,vl} is said to be linearly independent if
∑l

k=1 λkvk = 0 implies
λk = 0 for all k. Such a set can contain at most d vectors, and in that case
it is said to be a basis. Fixing a basis B = {e1, . . . , ed}, any v ∈ V can be

written as a weighted sum of the basis vectors, v =
∑d

k=1 λkek, with unique
coefficients λk. A linear function f : V → V (i.e., f(v + w) = f(v) + f(w)
and f(λv) = λf(v) for all v,w ∈ V, λ ∈ R) is uniquely determined by the
values it takes on a basis. We can furthermore employ V with an inner product
by letting 〈

∑d
k=1 λkek,

∑d
k=1 μkek〉 :=

∑d
k=1 λkμk. This operation is bilinear,

symmetric and positive definite so it induces a norm by ||v|| :=
√
〈v,v〉 and

gives us a notion of orthogonality by v ⊥ w :⇔ 〈v,w〉 = 0. The basis is said to
be orthonormal, as for all i �= j then ei ⊥ ej and ||ei|| = 1. Note that the inner
product depends on the basis.

2.1 Hilbert Spaces

Generally, a real vector space V is defined as a set that, together with the
inner sum +, forms a commutative group (i.e., v + w = w + v and u + (v +
w) = (u + v) + w for all u,v,w ∈ V, existence of some 0 ∈ V such that
0+ v = v for all v ∈ V and for every v ∈ V existence of some w ∈ V such that
v +w = 0) and that is employed with a scalar multiplication such that for all
λ, μ ∈ R, v,w ∈ V: a) (λμ)v = λ(μv) (associativity), b) (λ + μ)v = λv + μv
and λ(v+w) = λv+ λw (distributivity), and c) 1v = v. This definition allows
to define linear independence as before, and if there then is an integer d such
that there is a set of d linearly independent vectors, but every set of d+1 vectors
is dependent, we say that V has dimension d. In this case this formal definition
fully corresponds to the intuitive visualization from above. However the vector
space axioms do not demand existence of such an integer. Assume for example
the set of all polynomials in one variable t with real coefficients, which easily can
be verified to be a real vector space. Obviously for any d, the set {0, t, . . . , td}
contains d+ 1 linearly independent elements.

It turns out that in this setting it makes more sense not to first fix an or-
thonormal basis and then to let this basis induce a scalar product, but rather to
directly fix a scalar product, and then possibly choose a basis that is orthonormal
with respect to the scalar product.

Definition 1. Let H be a real vector space and 〈., .〉 : H × H → R a scalar
product on H, i.e., 〈., .〉 is symmetric, bilinear and positive definite. If then for
any sequence (xn)n∈N of elements of H where limm,n→∞ ||xm − xn|| = 0 (this
limit is understood to hold for any sequence of indices m,n → ∞) there exists
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some x ∈ H such that limn→∞ ||x − xn|| = 0 (where ||.|| is defined as ||x|| :=√
〈x,x〉 for arbitrary x ∈ H), then H is said to be a Hilbert space1.

Before we look at random variables on Hilbert spaces, we repeat some well known
facts and conventions. A set I is said to be countable if there is a one-to-one
correspondence between I and the natural numbers N2. A set A ⊂ H is said
to be an orthonormal set if 〈x,y〉 = 0 for all x �= y in A and if ||x|| = 1 for
all x ∈ A. If A is an orthonormal set, then for every x ∈ H there is at most
a countable number of y ∈ A such that 〈x,y〉 �= 0. In this case the expression∑

y∈A〈x,y〉y =: PA(x) converges and is independent of the order of terms in
the sum and we call PA the orthogonal projection onto the subspace generated
by A. If PA(x) = x for all x ∈ H, then A is said to be an orthonormal basis.
In this case the coefficients 〈x,y〉 are called the Fourier coefficients of x with
respect to A. Generally, for an orthonormal sequence (yi)i∈N and reals (λi)i∈N,
the expression

∑
i∈N

λiyi converges iff
∑

i∈N
λ2i <∞, so the sum over the squares

of the Fourier coefficients of any x ∈ H is finite. The Hilbert spaceH is said to be
separable if there is a countable sequence (xk)k∈N such that for any x ∈ H and
any ε ∈ R there is some xk such that ||x− xk|| < ε. This is the case if and only
if H has a countable basis. In applications, Hilbert spaces are often encountered
as function spaces, i.e., the elements themselves are functions, e.g. on R or C.
In order to distinguish between these elements of H and functions f : H1 → H2

between Hilibert spaces, the latter are denoted operators. As usual, an operator f
is said to be continuous if for every ε there is some δ such that ||f(x)−f(y)|| < ε
whenever ||x−y|| < δ (i.e., if small changes in the inputs cause only small changes
of the image). In the finite dimensional case every linear operator is continuous,
but in the infinite dimensional case a linear operator A is continuous if and only
if it is bounded, i.e., if ||A|| := sup{||A(x)|| : ||x|| ≤ 1} <∞. This is not always
the case, take for example the “differential operator” D : ek �→ kek−1. For every
linear and bounded operator A : H → H there is a linear and bounded operator
B : H → H such that 〈Ax,y〉 = 〈x,By〉 for all x,y ∈ H, and B is called the
adjoint of A, in symbols: B = A†. If A : H → R is linear and bounded, there
is some y ∈ H such that A(x) = 〈y,x〉 for every x ∈ H (Riesz’ representation
theorem). An operator f : H → R is said to be (weakly) differentiable at x if for

every direction h ∈ H limt→0
f(x+th)−f(x)

t exists, and it is called the derivative
of f at x with respect to the direction h. If f : H → R is linear and bounded,
i.e., f(x) = 〈y,x〉 for some x ∈ H, then f ′ ≡ y.

3 Statistics on Hilbert Spaces

We now give an overview of statistics on Hilbert spaces. We restrict this intro-
duction to only the essentials and refer to [2], Ch. 8 for a good explanation on

1 Sometimes Hilbert spaces are assumed to be infinite dimensional in order to distin-
guish them from “usual” vector spaces, but we do not make this distinction – for us,
a finite dimensional vector space just is a special case of a Hilbert space.

2 Some authors assume only an injection from I to N, also calling finite sets “countable”
and then also using the term “countably infinite” for sets with a bijection to N.
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the basics of statistics on Hilbert spaces, and to [3] for a more technical and
axiomatic approach.

3.1 Random Variables on Hilbert Spaces

Let H be a real, separable Hilbert space with scalar product 〈., .〉 (and induced
norm ||.||). We fix a countable orthonormal basis of H and denote it as {ek|k ∈
N} = {e1, e2, . . . }. Just like in the finite dimensional case, open spheres around
some x ∈ H with radius r ∈ R are defined as Br(x) := {y ∈ H : ||y − x|| < r}.
We then also define B(H), the Borel σ-algebra (or σ-field) generated by the open
spheres in H, i.e., the smallest family of sets that contains all open spheres in H
and is closed under taking of complements and countable unions.

An H-valued random variable is a measurable function X from a probability
space (Ω,F , P ) to (H,B(H)) and B(H) is the set of events of X. The probability
of an event A ∈ B(H) is given via the induced measure on (H,B(H)), defined
as PX(A) := P (X−1(A)) = P ({ω ∈ Ω : X(ω) ∈ A}). The induced measure of a
random variable X is also called its distribution or law.

3.2 Independence of Infinitely Many Components

While independence of a finite number of random variables is a well-known
concept, less is known about this idea in the infinite setting. In this case inde-
pendence of an infinite number of objects reduces to the definition in the finite
case as follows.

Let I be an index set (possibly infinite) for a family of events A := {Ai ∈
B(H) : i ∈ I}. Then A is said to be independent if for every finite index subset
{i1, . . . , iN} ⊆ I, the probability of the joint event factorizes into the probabili-
ties of the single events:

PX(Ai1 ∩ . . . ∩ AiN ) = PX(Ai1) · · ·PX(AiN ) .

Of particular interest in ICA are the components of a random vector, i.e., the
projections of X to the basis vectors ek. These are given by the (real) ran-
dom variables Xk := 〈X, ek〉, and if {i1, . . . , iN} is a set of N indices, we say
that the components Xi1 , . . . , XiN are independent if for every choice of events
(A1, . . . , AN ) (where Ak is an event of Xik) the events A1, . . . , AN are indepen-
dent. Independence of an infinite number of components I ⊂ N again is defined
by demanding that every finite subset of components {i1, . . . , iN} ⊂ I be in-
dependent. This is the case if and only if the probability for any finite tuple
of joint events of these N random variables factorizes into the product of the
probabilities of the single events, or, in other words, if the law of (Xi1 , . . . , XiN )
factorizes into the single laws:

P(Xi1 ,...,XiN
) = PXi1

· · ·PXiN
.

We propose the following definition of independence of a random vector on H:
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Definition 2. Let H be an infinite dimensional, separable Hilbert space with
basis {ei : i ∈ N} and X : (Ω,F , P )→ (H,B(H)) a random variable with values
in H. We say that X is independent if for any finite index set I = {i1, . . . , iN}

1. The components Xi1 , . . . , XiN are independent
2. PeIX and (Id−PeI )X are independent, (where PeI (x) =

∑
i∈I〈x, ei〉ei).

Note that in the finite dimensional case only the first assumption is required.
The reason to include the second assumption is as follows. Simply demanding the
components {X1, X2, . . . } to be independent is per definition equivalent to inde-
pendence of any finite set of components. But every such set obviously is a true
subset of the components of X. In the finite dimensional case, an N -dimensional
random vector X is independent if and only if every finite subset (including the
set {1, . . . , N} itself) is independent, but it is not sufficient if every true subset
of components is independent. Consider for example a random vector where the
first N −1 components are i.i.d. samples from N (0, 1). The last component then
is constructed by first (independently) sampling again from N (0, 1). It then is
either multiplied by (−1) or not, such that after this the number of components
of this sample with non-negative values is even. Projection of this random vector
onto the subspace given by any set of N−1 axes results in an independent N−1
dimensional Gaussian, but the whole random vector clearly is not independent.
As we cannot rule out existence of infinite dimensional random variables similar
to the ones we just described, where every finite dimensional restriction is inde-
pendent, but which are not independent in the sense of our definition, we also
demand independence of the restriction to the rest, as in the second assumption
of the definition.

3.3 Moments

As in the finite dimensional case, statistics on Hilbert spaces are intrinsically
connected to integration with respect to a distribution. If X is a finite random
variable on H (i.e., one taking only finitely many values), say X(Ak) = hk ∈ H
for disjoint sets A1, . . . , AN where ∪N

k=1Ak = Ω, then one defines for all M ∈ F∫
M

XdP :=

∫
M

X(ω)P (dω) :=
N∑

k=1

hkP (M ∩ Ak) .

This integral has the usual properties of additivity and linearity, and as expected,
||
∫
M XdP || ≤

∫
M ||X||dP (note that ||X|| is a real-valued random variable, so

the latter expression is the usual Lebesgue integral). We are mostly interested in
integrals over the whole probability space Ω, and the random variable X is said
to be Bochner integrable or simple integrable if

∫
Ω
||X||dP <∞. Assume in this

case a sequence of finite random variables (Xk)k∈N onH that converges pointwise
to X (i.e., limk→∞ Xk(ω) = X(ω) for every ω ∈ Ω). Then the expectation (or
mean) of X is

E[X] :=

∫
Ω

XdP := lim
k→∞

∫
Ω

XkdP <∞



To Infinity and Beyond: On ICA over Hilbert Spaces 185

(one can show that if X is integrable, this limit is independent of the choice of
the sequence (Xk)k∈N, so this expression is well-defined). Equivalently, E[X] is
the unique value m1 ∈ H for which 〈x,m1〉 =

∫
Ω〈X,m1〉dP reducing the mean

to a Lebesgue integral over the reals (note that the expression in the integral on
the right hand side is real valued). If A is a bounded, linear operator and A(X)
is integrable, then AE[X] = E[A(X)].

More generally, existence of the p-th moment (for an integer p) is defined as∫
Ω ||X||pdP <∞ and if the p-th moment exists, then the q-th moment exists for
every q < p. If the second moment exists, the covariance of X is a symmetric,
positive definite, bilinear form and its value at (x,y) is defined as

Cov(X)(x,y) :=

∫
Ω

〈X− E[X],x〉〈X − E[X],y〉dP .

This expression corresponds to x� Cov(X)y in the finite dimensional case, where
the main interest lies in the entries of Cov(X), the finite dimensional counterparts
to expressions of the kind Cov(X)(ei, ej). One can show that the covariance has
finite trace

∑∞
k=1 Cov(X)(ek, ek) < ∞ if it exists. This prohibits the standard

ICA preprocessing step of assuming unit covariance of the sources and rescaling
of the observations to unit covariance.

3.4 Characteristic Function

The characteristic function of a random variable X with values on a real Hilbert
space H is the complex valued function on H defined as

X̂(x) := E[exp(i〈X,x〉)] .

For every x ∈ H, the characteristic function of X is reduced to the value of the
characteristic function of the (real) random variable 〈X,x〉 at 1. Therefore the

characteristic function of X always exists and just as in the real case X̂(0) = 1.

If X is independent, then X̂(x) =
∑∞

k=1 X̂k(xk) where Xk := 〈X, ek〉 is the k-th
component of X and xk := 〈x, ek〉 is the k-th component of the vector x ∈ H.

4 Separability of ICA on Hilbert Spaces

Let now S : Ω → H be a random variable with values in H. Assume S to
have independent components, none of these to be normally distributed, and let
A : H → H be an arbitrary invertible bounded linear operator. We will show
that if the components of AS again are independent, then A can only map single
components of S to single components of AS, but it can not perform any mixing
of components. In formal terms: For every index i there is exactly one j such
that 〈Aei, ej〉 �= 0. This guarantees that reconstruction of S is possible (apart
from permutation and scaling) given only AS, as it suffices to find an invertible,
linear and bounded W such that WAS again is independent. Indeed, in this case
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(WA) will then not perform any mixing, so it can be represented as at most a
permutation followed by some scaling.

We will make use twice of the following lemma in the main theorem. The
proof of the lemma is straight-forward.

Lemma 1. Assume twice differentiable operators fk : H → C, where k ∈ N such
that the infinite product

∏∞
k=1 f(x) converges to a twice differentiable function

f(x). Then

f∂i∂jf − (∂if)(∂jf) ≡
∞∑
k=1

(∏
l �=k

fl

)2[
fk(∂i∂jfk)− (∂ifk)(∂jfk)

]
.

Using this, we can now proceed to the main theorem.

Theorem 1. Let H be a real, separable Hilbert space and S an independent
random variable with values in H whose characteristic function is twice differ-
entiable. Let A be an invertible bounded linear operator on H and assume that
X := AS again is independent. Whenever k ∈ N such that there are two indices
i �= j ∈ N fulfilling 〈ei,Aek〉 �= 0 �= 〈ej ,Aek〉, then the k-th component of S has
to be normally distributed.

Proof. As X has independent components, X̂(x) =
∏∞

k=1 X̂k(xk), therefore eval-

uating the right hand side of Lemma 1 with fk(x) = X̂k(〈ek,x〉) tells us that

X̂∂i∂jX̂− (∂iX̂)(∂jX̂) ≡ 0 whenever i �= j. Furthermore

X̂(x) = E[exp(i〈AS,x〉)] = Ŝ(A†x) =
∞∏
k=1

Ŝk(〈A†x, ek〉) =
∞∏
k=1

Ŝk(〈x,Aek〉)

so defining gk(x) := Ŝk(〈x,Aek〉) and again applying Lemma 1 to the equality

X̂(x) =
∏∞

k=1 gk(x) yields

0 ≡
∞∑
k=1

(∏
l �=k

gl

)2[
gk(∂i∂jgk)− (∂igk)(∂jgk)

]
. (1)

In order to further simplify this expression we calculate the partial derivatives
of gk. Note that ∂i〈x,Aek〉 = 〈ei,Aek〉, so the chain rule tells us (∂igk)(x) =

Ŝk

′
(〈x,Aek〉)〈ei,Aek〉 and (∂i∂jgk)(x) = Ŝk

′′
(〈x,Aek〉)〈ei,Aek〉〈ej ,Aek〉. Set-

ting sk := 〈x,Aek〉 and plugging these expressions into Eqn. (1) then yields

0 =

∞∑
k=1

(∏
l �=k

Ŝl(sl)
)2
〈ei,Aek〉〈ej ,Aek〉

[
Ŝk(sk)Ŝk

′′
(sk)− Ŝk

′
(sk)Ŝk

′
(sk)

]
(2)

for all x ∈ H. Let s :=
∑∞

k=1 skek, then one readily verifies that A†x = s. As
A (and therefore A†) is invertible, this shows that Eqn. (2) also holds for all

possible s ∈ H. Assume now some s0 such that Ŝ(s0) �= 0 (such a point exists as
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Ŝ(0) = 1), which then also holds in a neighborhood U of s0, as this is an open

condition. Dividing Eqn. (2) by Ŝ(s)2 shows

0 =

∞∑
k=1

Ŝk(sk)
−2〈ei,Aek〉〈ej ,Aek〉

[
Ŝk(sk)Ŝk

′′
(sk)−

(
Ŝk

′
(sk)

)2]
.

This holds for all possible values of s ∈ U . As we are free to independently
modify every single coordinate in this equality, every single summand already
has to be 0:

0 = Ŝk(sk)
−2〈ei,Aek〉〈ej ,Aek〉

[
Ŝk(sk)Ŝk

′′
(sk)−

(
Ŝk

′
(sk)

)2]
.

Here Ŝk(sk)
−2 �= 0, as Ŝ(s) �= 0. But if now also 〈ei,Aek〉〈ej ,Aek〉 �= 0, then

Ŝk(sk)Ŝk

′′
(sk)−

(
Ŝk

′
(sk)

)2
= 0, so Ŝk(sk) = exp(as2k + bsk + c) for some param-

eters a, b, c ∈ C. Due to continuity this then holds not only in U , but also in its
closure U , therefore in all H, proving that Sk has a Gaussian distribution.

We have shown that if for an independent random vector S also X := AS is
independent for an invertible, bounded operator A, then any source Sk of S that
gets mixed into more than one of observations (the components of X), has to
be normally distributed (note that this includes deterministic components as a
special case). Conversely, if none of the sources has a Gaussian distribution, A
can only map single sources to single observations.

5 Discussion

We have introduced a definition of independence of a random vector on a Hilbert
space that is suitable for the ICA application. Using this, we have shown separa-
bility of the ICA model in the context of infinite dimensional random variables.
Apart from the obvious generalization of our model to complex Hilbert spaces
future work can be done towards generalizations of the model to also include
subspace structures. Here there are three possible settings: an infinite number
of subspaces all of which have finite size; a finite number of subspaces, where at
least some have infinite size; and finally an infinite number of subspaces where
at least some have infinite size. Finally, the two questions of actual implementa-
tion and application to a (possibly highly idealized) real world setting are still
completely open.
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Abstract. One of the objectives of nuclear spectroscopy is to estimate
the varying counting rate activity of unknown radioactive sources. When
this activity is high, however, nonparalyzable detectors suffer from a
type of distortion called pile-up effect, when pulses created from different
sources tend to overlap. This distortion leads to an underestimation of
the activity, which explains the interest of methods for individual pulse
separation. We suggest in this paper a two-step method for a better
counting rate estimation: the signal is first approximated using a block-
sparse regression method, allowing to separate individual pulses quite
well. We then estimate their arrival times and plug them into a known
activity estimator. Results on simulations and real data illustrate the
efficiency of the proposed approach.

Keywords: Gamma spectrometry, Group LASSO, sparse representa-
tion, pileup separation.

1 Introduction

Gamma spectrometry experiments aim to identify radioactive sources as well as
their activity. In a given experiment, photons interact with a detector at random
times, creating electrical pulses which are afterwards analyzed [4]. However, when
the activity of the radioactive source is high, generated pulses may start at
very close times and overlap, thus leading to an underestimation of the activity.
An example of the pileup phenomenon is presented in Figure 1: if a simple
threshold is used on the red part of the signal, we detect only two arrivals
and underestimate the activity. The pileup phenomenon motivates the search
for algorithms which allow to separate clusters of electrical pulses for a better
identification of radioactive sources and activity estimation[7], and is known in
this framework as dead-time correction. However, most methods are not fitted
to high counting rates, since they do not rely on any shape information of the
time signal. Since we focus in this paper on counting rate estimation (that is,
retrieving a vector of arrival times from a vector representing the time signal),
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Fig. 1. Example of a spectrometric signal. The red part is made of pileups.

the problem of pileup correction can be formally viewed as a regression problem,
which is moreover sparse since the arrival times are usually modelled by a simple
Poisson process. Since the seminal papers [2], representation of sparse signals
has received a considerable attention, and significant advances have been made
both from the theoretical and applied point of view [3]. The paper is organized
as follows: we present in section 2 the model and describe a post-processed
version of the Group-LASSO in order to estimate the arrival times of individual
pulses and counting rate activity. Results are presented in Section 3, showing
that the proposed approach outperforms the standard counting rates estimation
techniques in the field.

2 Methodology

2.1 Model Description

We consider the following sampled version of the shot-noise model, which is often
used in nuclear science to model the recorded spectrometric signal:

yi =
∑
n≥1

EnΦn(ti − Tn) + εi, i = 1 . . .N, (1)

where {Tn, n ≥ 1} are the photon arrival times on [0, T ], and form a sam-
ple path of a nonhomogeneous Poisson process (NHPP) with intensity λ(t);
{(En, Φn), n ≥ 1} are respectively the energy and the shape pulse created by the
n−th photon impinging the detector; {εi, i ≥ 1} are independent and identically
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distributed normal variables with known variance σ2, which model the additive
noise. We wish to estimate λ(t) given a sample of signal points {yi, i = 1 . . .N}.

On most detectors, an electrical pulse created by a single photon has a char-
acteristic shape created by the charge collection and migration in the detector,
making relevant to assume that {Φn, n ≥ 1} belong to some parametric family
of Gamma functions

Γθ(t) = tθ1 · e−θ2 t 1(t ≥ 0) ; (2)

where the parameters θ = (θ1, θ2) belong to a discrete domain SΓ of cardi-

nal p. Denote by T Δ
= {0 = t1, t2, . . . , tN = T } the subdivision created by the

sampling, and by Aj the following dictionary of shapes translated by tj ∈ T :
Aj

Δ
= [Γθk

(ti − tj)]1≤i≤N,1≤k≤p .Each column of Aj is a translated and sampled
basis signal. Our global dictionary A is obtained by concatenating the blocks

Aj ordered by increasing times tj , that is A
Δ
= [A1A2 · · ·AN−1]. Observe that

AN = 0, therefore it is not included in the global dictionary. Hence (1) can be
rewritten block-wise as

y =

N−1∑
j=1

Aj βj + δ + ε , (3)

where we define the signal y
Δ
= [y1 y2 . . . yN ]T , the regressor to be esti-

mated β
Δ
= [β1 β2 . . . βN−1], the rounding errors due to discretization δ

Δ
=

[δ1 δ2 . . . δN ]T , and the random noises ε
Δ
= [ε1 ε2 . . . εN ]T . Note that in

the latter definitions all the βj ’s, δj ’s and εj ’s are vectors of size p. Define

J(β)
Δ
= {m, βm �= 0}. The estimation of the arrival times and the separation

of individual pulses can both be related to the estimation of J(β). Provided the
sampling frequency is high this set can be considered as sparse, a condition re-
ferred to as ”block sparsity” in this paper. However, the actual Tk’s in (1) do not
belong to T almost surely, and actual pulses are just approximated by (2). Both
facts yield the use of a ”block sparse” regression method which reconstructs the
signal by a parsimonious use of the blocks Aj .

2.2 Overview on the group LASSO

The linear regression problem raised by (3), which is ”block sparse” in the mean-
ing exposed above, is solved by a specific version of the group LASSO [10]:

βGL(r) = argmin
β∈R(N−1)p

1

2N
‖y −Aβ‖22 + r

N−1∑
j=1

∥∥βj

∥∥
2

; (4)

The mixed �2/�1 penalization right term encourages block sparsity, and not
sparsity inside blocks. The group LASSO is the good candidate to find block
sparse solutions to (3), and it is efficiently computed [1].Furthermore, a numerical
condition known as irrepresentability, introduced originally for the LASSO [9],
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guarantees selection consistency; this condition states roughly that in order to
recover J(β), correlations between active and inactive blocks should be rather
small when compared to the correlations between active blocks only. Unfortu-
nately, this condition is not satisfied in our framework, so for our purpose we
could not accept all the time blocks selected. This justifies the use of an addi-
tional post-processing step in the proposed method for counting rate estimation,
which is now described.

2.3 Proposed Algorithm for Pileup Separation and Activity
Estimation

In this section we present our estimate λ̂(t) of λ(t), based on the group LASSO
estimate βGL(r) obtained from (4). Since irrepresentability condition does not
hold, and since in real world data (2) is only an approximation, it is likely that
J(β) ⊂ J(βGL(r)). However, selected blocks which are not connected to actual
Tn’s are typically consecutive to the correct time blocks, because time proximity
is equivalent to highly correlated signals. Therefore two post-processing steps
are performed on the group LASSO regressor β̂: first we apply a threshold on
each block of β̂ to discard some unwanted selected blocks; then we consider

consecutive active blocks as a single event. Mathematically, defining Ψ (x)
Δ
=

min1≤k≤p xp for some threshold η, the estimated arrival times are computed
recursively:

T̂n = min{tj > T̂n−1 ; Ψ (β̂j) > η, Ψ (β̂j−1) < η}; (5)

The present choice of Ψ is more suitable than other choices (e.g. the average)
which were more adapted to the LASSO estimator [8,6], but one has to choose

η accordingly. Finally, denote by M̂ the number of estimated times T̂1, T̂2, · · · ,
and let W be a nonnegative kernel which integrates to 1 and h(M̂) a standard
bandwith parameter. The intensity is estimated by plugging the latter values in
a known nonparametric kernel estimate of λ(t), e.g. [5]:

λ̂(t) =
1

h(M̂)

M̂∑
n=1

W

(
t− T̂n

h(M̂)

)
. (6)

3 Results and Discussion

We present in this section results on simulations and real data which illustrate
the efficiency of the proposed approach.

3.1 Simulations Protocol

The simulations are carried out similarly to [8]: the arrival times {Tn, n ≥ 0}
are governed by a NHPP with intensity λ(t)

Δ
= 0.2e−(t−30)2/75 + αe−(t−60)2/50
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on [0, 100], where 0.1 < α < 1 is a variable parameter in order to investigate
performances for high to very high counting rates. The sampling rate is set to 1,
the energies {En, n ≥ 0} are drawn according to a truncated Gaussian density
of mean 20 and variance 9; the noise level is σ = 0.1. The kernel W is Gaussian,
the bandwith b = 2. Furthermore, we choose the gamma parameters of A such
that θ1 ∈ {0.4, 0.5, . . . , 1.3} and θ2 = θ1}. Simulations are performed for two
different cases:

(I) the pulse shapes are drawn randomly from the dictionary A;
(II) the pulse shapes are Gamma functions whose parameters are randomly

drawn from a uniform distribution on [0, 2]× [0, 2], which includes SΓ .

Note that case I is the standard regression framework, whereas case II is more
realistic, since the artificial data generated do not belong exactly to the Gamma
model assumed in (2). The threshold η is chosen in order to exhibit performances
similar to [8] in case I, so that we can compare accordingly the performances in
case II. In our simulations, The Mean Integrated Squared Error (MISE) E(‖λ−
λ̂‖22) is approximated by a Monte-Carlo method (104 draws) for four different
approaches:

1. the post-processed group LASSO suggested in this paper (denoted by PPGL
in the results);

2. the post-processed LASSO described in [8], denoted by PPL;
3. the kernel estimator obtained by plugging {[Tn] + 1, n = 1 . . .M} in (6),

referred to as oracle. The oracle is based on the knowledge of the Tn’s and
is in practice impossible to compute; nevertheless, since it is the best value
attainable from the knowledge of the arrival times and the sampled signal,
it will be useful to compare it with PPL and PPGL;

4. the kernel estimator obtained by simple thresholding (denoted by uncor-
rected).

3.2 Results and Discussion

In figure 2 the empirical MISE of λ̂(t) is reported for different values of α, for
every four methods in case I; whereas figure 3 displays analog results in case II.
Figure 4 represents the MISE for case II.

The previous graphs show clearly in both cases that sparse methods (PPGL
and PPL) outperform by far the ”uncorrected” method: indeed, their perfor-
mances are close to the ”oracle”, which is the best attainable estimator given
the sampled signal y. Unsurprisingly figure 3 shows lower performance in the
non standard regression problem (case II), but still close to the oracle and bet-
ter than the uncorrected estimator. Furthermore figures 3, 4 show that PPGL
provides a slightly better λ̂(t) than PPL, validating the proposed approach.

Interestingly Figure 3 shows that both PPL and PPGL overestimate the ac-
tivity in case II for lower intensities, while PPGL proves to be better than PPL:
indeed the incompleteness of A is counterbalanced by the ”grouping effect” of
PPGL, resulting in less false detections. In high intensity consecutive pulses are
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Fig. 2. Nonparametric estimation of λ(t) after pulse separation – Case I

Fig. 3. Nonparametric estimation of λ(t) after pulse separation – Case II
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Fig. 4. MISE approximation of the different methods – Case II

Fig. 5.Decomposition of the signal using PPGL and comparison between the real signal
(blue) and active blocks after PPGL (red). The electrical pulses are well separated.
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often confused with single ones, and the advantage of grouping is less striking.
It should be noted however that PPGL behaves much better than PPL, and
separates individual pulses as well as provides a reliable estimate of the activity.

An application on real Gamma spectrometric data is shown in figure 5: when
the group LASSO and the post-processing steps are applied on real data, we
observe that pulses are well separated in most experiments. However, in our
example, an electrical pulse with small amplitude (around 600) goes undetected.
Since this is connected to both choices of r and η, this stresses that the sparsity
parameter r should be carefully chosen. However, it is noted from figure 5 that
the proposed method allows to separate electrical pulses inside pileups, which
makes it a valuable approach for high counting rates estimation.

4 Conclusion

We illustrated in this paper the advantages of recent sparse representation de-
velopement for the pulse separation and counting rate estimation in the field of
nuclear spectrometry. The PPGL method proposed outperforms current state-
of-the-art methods in our simulations and real datasets. The theoretical results
on this approach is currently under investigation, and should appear in future
contributions.

References

1. Beck, A., Teboulle, M.: A fast iterative Shrinkage-Thresholding algorithm for linear
inverse problems. SIAM Journal on Imaging Sciences 2, 183 (2009)

2. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit.
SIAM Journal on Scientific Computing 20, 33–61 (1998)

3. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Annals
of Statistics 32(2), 407–499 (2004)

4. Knoll, G.F.: Radiation Detection and Measurement, 2nd edn. Wiley (1989)
5. Lewis, P.A.W., Shedler, G.S.: Statistical analysis of non-stationary series of events

in a data base system. IBM J. Res. Dev. 20(5), 465–482 (1976)
6. Meinshausen, N., Yu, B.: Lasso-type recovery of sparse representations for high-

dimensional data. The Annals of Statistics 37(1), 246–270 (2009)
7. Michotte, C., Nonis, M.: Experimental comparison of different dead-time correc-

tion techniques in single-channel counting experiments. Nuclear Instruments and
Methods in Physics Research Section A 608(1), 163–168 (2009)

8. Trigano, T., Sepulcre, Y., Roitman, M., Aferiat, U.: On nonhomogeneous activity
estimation in gamma spectrometry using sparse signal representation. In: 2011
IEEE Statistical Signal Processing Workshop (SSP), pp. 649–652. IEEE (June
2011)

9. Wainwright, M.J.: Sharp thresholds for high-dimensional and noisy sparsity re-
covery using l1-constrained quadratic programming (Lasso). IEEE Trans. Inf.
Theor. 55(5), 2183–2202 (2009)

10. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped
variables. Journal of the Royal Statistical Society, B 68(1), 49–67 (2006)



Some Uniqueness Results

in Sparse Convolutive Source Separation

Alexis Benichoux1, Prasad Sudhakar2, Fréderic Bimbot1, and Rémi Gribonval1

1 METISS Team, INRIA Rennes-Bretagne Atlantique
Campus de Beaulieu, 35042 Rennes CEDEX, France
2 ICTEAM/ELEN, Université catholique de Louvain
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Abstract. The fundamental problems in the traditional frequency do-
main approaches to convolutive blind source separation are 1) arbitrary
permutations and 2) arbitrary scaling in each frequency bin of the esti-
mated filters or sources. These ambiguities are corrected by taking into ac-
count some specific properties of the filters or sources, or both. This paper
focusses on the filter permutation problem, assuming the absence of the
scaling ambiguity, investigating the use of temporal sparsity of the filters
as a property to aid permutation correction. Theoretical and experimental
results bring out the potential as well as the extent to which sparsity can
be used as a hypothesis to formulate a well posed permutation problem.

Keywords: sparse filters, convolutive blind source separation, permuta-
tion ambiguity, �p minimization, Hall’s Marriage Theorem, bi-stochastic
matrices.

1 Introduction

Let xi[t], 1 ≤ i ≤M be M mixtures of N source signals sj [t], resulting from the
convolution with filters aij [t], each of length L such that:

xi[t] =

N∑
j=1

(aij # sj)[t], 1 ≤ i ≤M. (1)

where # denotes convolution. The filter aij [t] typically models the impulse re-
sponse between the jth source and the ith sensor. By abuse of notation, Faij =
{aij [ω]}0≤ω<L denotes the discrete Fourier transform of the filter seen as a vec-
tor aij = {aij [t]}0≤t<L ∈ CL. Also, the mixing equation (1) can be rewritten as
X = A # S, with A the matrix of filters A := ({aij [t]}0≤t<L)1≤i≤M, 1≤j≤N , X
the observation matrix and S the source matrix.

In this context, blind filter estimation refers to the problem of obtaining es-
timates of the filters A from the mixtures X, without any explicit knowledge
about the sources S. Filter estimation is relevant for tasks such as deconvolution,
source localisation, etc. It also has a relationship with the problem of Multiple-
Input-Multiple-Output system identification in communications engineering.
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2 Permutation and Scaling Ambiguities in Frequency
Domain Filter Estimation

A widely used approach for filter estimation relies on the transformation of the
mixing model in Eq. (1) into the time-frequency domain, converting a single con-
volutive filter estimation problem into several complex instantaneous filter esti-
mation problems. Using standard techniques for instantaneous mixing parameter
estimation [1], complex mixing filter coefficients Ã[ω] = {ãij [ω]}1≤i≤M, 1≤j≤N

are estimated for each frequency bin 0 ≤ ω < L.
However, without any further assumption on either the filters aij [t] or the

sources sj [t], one can find filter estimates Ã = (ãij), only up to a global permu-
tation and scaling. That is, for every frequency ω we have

ãij [ω] = λj [ω]aiσω(j)[ω], (2)

where λj [ω] and σω ∈ SN are the unknown scaling and permutation, with SN

being the set of permutations of the integers between 1 and N . Several methods
[2] attempt to solve these ambiguities by exploiting properties of either S or A.

2.1 Exploiting Sparsity to Solve the Permutation Ambiguity

In this paper, we hypothesize that the filtersA are sparse in the time domain and
use this property to solve the permutation ambiguity, in the absence of scaling
(λj [ω] = 1). The assumption that A is sparse means that each filter aij has few
nonzero coefficients, typically measured by the �0 pseudo-norm

‖aij‖0 := ${0 ≤ t < L, aij [t] �= 0} =
∑
t

|aij [t]|0.

Besides the �0 pseudo-norm, the following �p quasi-norms will be used to quantify
the sparsity of A:

‖A‖pp :=
∑
ij

‖aij‖pp =
∑
ijt

|aij [t]|p, 0 < p ≤ 1.

The underlying approach in this work is to seek permutations σ̂0, . . . σ̂L−1 which

yield the sparsest estimated time-domain matrix of filters Â = (âij), where
âij [ω] := ãiσ̂ω(j)[ω].

2.2 Main Result and Structure of the Paper

As the main result, we show (Theorem 2) that when the filter length L is prime,
and if k

L ≤ α(N), with N the number of sources, then k-sparse filters (i.e.,
‖aij‖0 ≤ k) uniquely minimize the �0 norm of A (up to a global permutation).

In Sec. 3, we investigate the interplay of sparsity and frequency permutations
of filters and present our main result. We omit the proof of our main result due
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to the space constraints, but we describe the main ingredients of the same1. In
Sec. 4 we propose a combinatorial �1 minimization algorithm to resolve filter
permutations. The effectiveness and limitations of the algorithm is empirically
shown, and the observations are related with the theoretical results.

3 Theoretical Guarantees

Given an M × N filter matrix A, made of filters of length L, and an L-tuple
(σ0, . . . , σL−1) ∈ SN of permutations, we let Ã be the matrix obtained from A
by applying the permutations in the frequency domain, as in (2), without scaling
(λj [ω] = 1).

The effect of the permutations is said to coincide with that of a global per-
mutation π ∈ SN of the columns of A if ãij = aiπ(j), ∀i, j, or equivalently in
the frequency domain:

ãij [ω] := aiσω(j)[ω] = aiπ(j)[ω], 0 ≤ ω < L, ∀i, j.

This is denoted A ≡ Ã. First, we show that for filters with disjoint time-domain
supports, permutations cannot decrease the �p norm, 0 ≤ p ≤ 1:

Theorem 1. Let Γij ⊂ {0, . . . , L−1} be the time-domain support of aij. Suppose
that for all i and j1 �= j2 we have

Γi,j1 ∩ Γi,j2 = ∅. (3)

Then, for 0 ≤ p ≤ 1, we have ‖Ã‖p ≥ ‖A‖p.
Note that filters with disjoint supports need not be very sparse: M filters

of length L can have disjoint supports provided that maxj ‖aij‖0 ≤ L/M . Yet,
disjointness of supports is a strong assumption, and Theorem 1 only indicates
that frequency permutations cannot decrease the �p norm. Thus, the minimum
value of the �p normmight not be uniquely achieved (up to a global permutation).
In our main result, we consider k-sparse filters of prime length, and p = 0:

Theorem 2. Let A be a M × N matrix of filters of prime length L. Assume
that

max
ij
‖aij‖0 ≤ k. (4)

where
k

L
≤ α(N) :=

{
2

N(N+2) if N is even,
2

(N+1)2 if N is odd.
(5)

Then, up to a global permutation, A uniquely minimises the �0 pseudo-norm
among all possible frequency permutations.

Noticeably, the uniqueness condition does not depend on the number M of mix-
tures. In order to prove Theorem 2, it is important to quantify the amount of
permutations incurred. We use the following definition of the “size” of permu-
tations in the rest of the paper.

1 An extended version of this paper, containing all proofs, has been submitted for
possible publication and is available as INRIA Technical Report No 7782.



Some Uniqueness Results in Sparse Convolutive Source Separation 199

3.1 Quantification of Permutations

Given a reference global permutation π, we define the maximum number of fre-
quencies where each estimated filter actually differs from the (globally permuted)
original filters, by:

Δ(Ã,A|π) := max
i,j
‖F(ãij − aiπ(j))‖0 (6)

The “size” of permutations is then defined as:

Δ(Ã,A) := min
π∈SN

Δ(Ã,A|π). (7)

Note that Δ(Ã,A) = 0 iff Ã ≡ A. We also use the symbolΔ to denote Δ(Ã,A).

3.2 Exploitation of an Uncertainty Principle

Along with the quantification of permutations, the following lemma, which ex-
ploits an uncertainty principle, is an intermediate result to prove Theorem 2.

Lemma 1. Assume that Ã �≡ A, that L is a prime integer, and that (4) holds
with

2k +Δ ≤ L. (8)

Then ‖Ã‖0 > ‖A‖0 and ‖ãij‖0 ≥ ‖aij‖0, ∀i, j. The latter inequality is strict
when ãij �= aij . For a general L (not necessarily prime), the same conclusions
hold when the assumption (8) is replaced with

2k ·Δ < L. (9)

This lemma states that when the original filters A are sufficiently sparse and if
the size Δ of permutations are controlled, in relation to the filter length L, then
the resulting permuted filters Â have a larger �0 norm than A. Moreover, it also
states that each individual filter ãij will have an �

0 norm that is at least as large
as that of the corresponding aij . The skilled reader will rightly sense the role of
uncertainty principles [3,4], [5, Theorem 1] in the above lemma.

As opposed to Lemma 1, Theorem 2 does not use an explicit quantification of
the permutations, Δ. In fact, this quantity is buried inside the constant α(N).
It is actually necessary to make some combinatorial arguments concerning the
permutations to arrive at the constant α(N), starting from Δ. The objective of
these arguments is to bound Δ from above.

3.3 Combinatorial Arguments

Using Lemma 1 with prime L, a simple combinatorial argument can be used to
obtain a weakened version of Theorem 2, with the more conservative constant
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α′(N) := 1/2N !: by the pigeonhole principle, for any L-tuple of frequency permu-
tations among N sources, at least L/N ! permutations are identical; as a result,

Δ(Ã,A) is universally bounded from above by L − L/N !; hence if k ≤ L/2N !
we obtain 2k +Δ ≤ L and we can conclude thanks to Lemma 1.

The proof of Theorem 2 with the constant α(N) exploits a stronger universal

upper bound Δ(Ã,A) ≤ L(1 − 2α(N)), obtained through an apparently new
quantitative application of Hall’s Marriage Theorem [6] to bi-stochastic matrices.
Bi-stochastic matrices are defined as:

Definition 1 (Bi-stochastic matrix). An N × N matrix B is called bi-
stochastic if all its entries are non-negative, and the sum of the entries over
each row as well as the sum of the entries over each column is one.

The following lemma connects permutation matrices, which define permutations,
and bi-stochastic matrices through Hall’s marriage theorem. The subsequent
corollary (Corollary 1) provides the bound Δ(Ã,A) ≤ L(1 − 2α(N)), which is
crucial to Theorem 2.

Lemma 2. Let B be an N ×N bi-stochastic matrix: there exists a permutation
matrix P such that all the entries of B on the support of P exceed the threshold

2α(N) =

{
4

N(N+2) if N is even,
4

(N+1)2 if N is odd.
(10)

Corollary 1. Let σ0, . . . , σL−1 ∈ SN be L permutations. There exists a global
permutation π such that

Cjπ(j) = ${� : σ�(j) = π(j)} ≥ 2Lα(N), ∀1 ≤ j ≤ N.

The reader may have noticed that Theorem 2, while dropping the disjoint support
assumption from Theorem 1, introduces new restrictions: the assumption that
L is prime, and the restriction to p = 0 compared to 0 ≤ p ≤ 1 in Theorem 1.
How critical are these restrictions? Could they be extended to filters of arbitrary
length L and 0 ≤ p ≤ 1? This is discussed in the following section.

3.4 Extending Theorem 2 to Non-prime Filter Length L?

As indicated by Lemma 3 below, even for L ≥ 4, there exists sparse matrices
of filters that are the sparsest but not unique (even up to a global permutation)
solution of the considered problem: certain frequency permutations provide an
equally sparse, but not equivalent, solution.

Lemma 3. For any integer k such that 2k divides L, there exists a matrix of
k-sparse filters A and a set of L/2k frequency permutations resulting in Ã �≡ A

such that for all 0 ≤ p ≤ ∞: ‖Ã‖p = ‖A‖p, and

‖ãij‖p = ‖aij‖p, ∀i, j. (11)

We have 2k ·Δ(Ã,A) = L.



Some Uniqueness Results in Sparse Convolutive Source Separation 201

The fact that the filter matrices A and Ã satisfy 2k ·Δ(Ã,A) = L shows the
sharpness of Lemma 1 for the case when L is even: the strict inequality in (9)
cannot be improved.

Specializing Lemma 3 to k = 1 for even L ≥ 4 yields ideally 1-sparse filters
aij and a set of L/2 frequency permutations such that: ãij are 1-sparse; Ã is not
equivalent to A and cannot be discriminated from it by any �p norm.

Lemma 3 actually gives a worst case well-posedness bound for filters with
arbitrary lengths, and is pessimistic. But, such a bound is achieved in cases
when the filters are associated to Dirac combs, which are highly structured.
However, existing probabilistic versions of uncertainty principles (see, e.g., the
nice survey [7]) lead us to conjecture that if the sparse filters in A are drawn at
random (e.g. from Bernoulli-Gaussian distribution), the uniqueness guarantee
of Theorem 2 will hold except with small probability O(L−β), provided that
k < c(β)L/ logL, for large L.

4 Numerical Experiments

The results achieved so far are theoretical well-posedness guarantee, but do not
quite provide algorithms to compute the potentially unique (up to global permu-
tation) solution of the frequency permutation problem. We conclude this paper
with the description of a relatively naive optimization algorithm, an empirical
assessment of its performance with Monte-Carlo simulations, and a discussion of
how this compares with the theoretical uniqueness guarantees achieved above.

4.1 Proposed Combinatorial Algorithm

Given a “permuted” matrix Ã, one wishes to find a set of frequency permuta-
tions yielding a new matrix Â with minimum �p norm. The proposed algorithm
starts from Â0 = Ã. Given Ân, a candidate matrix Ân+1,π can be obtained by
applying a permutation π at frequency ωn ≡ n [mod L]. Testing each possible

permutation π and retaining the one πn which minimizes ‖Ân+1,π‖p yields the

next iterate Ân+1 := Ân+1,πn . The procedure is repeated until the �p norm

Ân ceases to change. Since there is a finite number of permutations to try, the
stopping criterion is met after sufficiently many iterations.

In theory, it could happen that the stopping criterion is only met after a
combinatorially large number of iterations. However, the algorithm stops much
sooner in practice. In fact, if we were to use the �0 norm, the algorithm would
typically stop after just one iteration, because the �0 norm attains its maximum
valueM×N×L for most frequency permutations except a few very special ones.
For this reason, we chose to test the algorithm using �p norms p > 0, which are
not as “locally constant” as the �0 norm. To our surprise, the experiments below
will show that the best performance is not achieved for small p, but rather for
p = 2 − ε with small ε > 0. For p = 0 and for p ≥ 2, the algorithm indeed
completely fails.
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Fig. 1. Filter recovery success as a function of p, 0 ≤ p ≤ 1.9

4.2 Monte-Carlo Simulations

For various sparsity levels k and dimensionsM , N , random sparse filter matrices
A made of independent random k-sparse filters of length L = 31 were generated.
Each filter was drawn by choosing: a) a support of size k uniformly at random;
b) i.i.d. Gaussian coefficients on this support. For each configuration (k,M,N),
200 random sparse filter matrices A were drawn. For each A, independent ran-
dom frequency permutations were applied to obtain Ã. The algorithm was then
applied to obtain Â. The rate of recovery was then computed for each configu-
ration (k,M,N), with an SNR threshold of 100 dB to consider the estimation as
a success. We observed that in case of success the SNR was actually more than
300 dB, while in case of failure it was essentially 0 dB.

Figure 1 displays the success rate as a function of the relative sparsity k/L,
for various choices of the �p criterion, with filters of prime length L = 131, N = 2
sources and M = 5 channels. The vertical dashed line indicates the threshold
k/L ≤ α(2) associated with the well-posedness guarantee (using an �0 criterion)
of Theorem 2. Surprisingly, one can observe that the success rate increases when
0 < p < 2 is increased. The maximum success rate is achieved when p = 2 − ε
with small ε > 0.

Beyond the well-posedness regime suggested by the theory (i.e., to the right
of the vertical dashed line), the algorithm can succeed, but at a rate that rapidly
decreases when the relative sparsity k/L increases. In the regime of well-posed
problems, the proposed algorithm is often successful but can still fail to per-
fectly recover the filters, especially –and surprisingly– for small values of k. This
phenomenon is strongly marked for p < 1 and essentially disappears for p > 1.
It remains an open question to determine the respective roles of the �p criterion
and of the naive greedy optimization algorithm in this limited performance for
k/L$ 1 when the problem is well-posed with respect to the �0 norm.



Some Uniqueness Results in Sparse Convolutive Source Separation 203

5 Conclusions

It is well known that a sufficient sparsity assumption can be used to make under-
determined linear inverse problems well-posed: without the sparsity assumption,
the problem admits an affine set of solutions, which intersects at only one point
with the set of sparse vectors. Besides this well-posedness property, a key fac-
tor that has lead to the large deployment of sparse models and methods in
various fields of science is the fact that a convex relaxation of the NP-hard �0

minimization problem can be guaranteed to find this unique solution under cer-
tain sparsity assumptions. The availability of efficient convex solvers then really
makes the problem tractable.

The problem considered in this paper is not a linear inverse problem. Even
though it is a simplification of the original permutation and scaling problem
arising from signal processing, it remains a priori a much harder problem than
linear inverse problems in terms of the structure of the solution set: each solution
comes with a herd of solutions that are equivalent up to a global permutation.

It is encouraging that we have obtained well-posedness results in this context,
but this is at best the beginning of the story: even if the solution is unique, how
do we efficiently compute it? Can these results be extended to the original per-
mutation and scaling problem? Why does the proposed naive algorithm perform
better for p > 1? Answers to these questions can have an impact in fields like
blind source separation with sparse multipath channels.
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1 FIAS, Goethe-Universität Frankfurt am Main, Germany
2 Honda Research Institute Europe, Offenbach am Main, Germany

Abstract. We study a novel sparse coding model with discrete and sym-
metric prior distribution. Instead of using continuous latent variables dis-
tributed according to heavy tail distributions, the latent variables of our
approach are discrete. In contrast to approaches using binary latents,
we use latents with three states (-1, 0, and 1) following a symmetric
and zero-mean distribution. While using discrete latents, the model thus
maintains important properties of standard sparse coding models and of
its recent variants. To efficiently train the parameters of our probabilistic
generative model, we apply a truncated variational EM approach (Ex-
pectation Truncation). The resulting learning algorithm infers all model
parameters including the variance of data noise and data sparsity. In
numerical experiments on artificial data, we show that the algorithm ef-
ficiently recovers the generating parameters, and we find that the applied
variational approach helps in avoiding local optima. Using experiments
on natural image patches, we demonstrate large-scale applicability of the
approach and study the obtained Gabor-like basis functions.

1 Introduction

Since it has first been introduced, Sparse Coding (SC) [1] has become a stan-
dard model to explain the behavior of simple cells in the primary visual cortex.
However, the derivation of sparse coding algorithms typically involves analytical
intractabilities, e.g., because involved posterior distributions and their expecta-
tion values have no closed-form solutions. The standard approach to overcome
this difficulty is the use of MAP estimates for inference and learning (e.g.,[1,2]
but also compare [3] or reviews on variational methods). Using binary hidden
variables, this analytical intractability can be avoided altogether because learn-
ing rules using Expectation Maximization (EM) are closed-form. However, in
contrast, e.g., to a Laplace prior, the Bernoulli distribution used for binary vari-
ables is not symmetric and not zero-mean (see Fig. 1). These differences to
conventional priors can have implications for the used preprocessing and the
inferred basis functions, which may add to effects caused by the introduction of
discrete hidden variables. To study the implications of discrete hidden variables
independently of differences in prior symmetries, we investigate in this work a
generative model with a symmetric and discrete prior distribution. Such a prior
can be well suited for different types of data, and it directly relates to recent
Sparse Coding versions with hard-sparseness constraints (compare, e.g., [4,5]).

F. Theis et al. (Eds.): LVA/ICA 2012, LNCS 7191, pp. 204–212, 2012.
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Fig. 1. Comparison of different prior distributions. A shows distributions for a con-
tinuous variable zh (Laplace as used in [1] and the SSC network prior [4]) with model
parameters Θ. In B the symmetrical Ternary Sparse Coding prior of this paper and
the unsymmetrical Bernoulli prior (e.g., [13,6]) are displayed for the discrete variable
sh with model parameter π.

2 Sparse Coding with Ternary Hidden Variables

Let {y (n)}n=1,...,N be a set of N independent data points, y (n) ∈ �D, i.e., the
number of observed variables is D. We want to find the parameters Θ = (W,σ, π)

that maximize the data likelihood L =
∏N

n=1 p(y
(n) |Θ), under the generative

model:

p(s|π) =
∏H

h=1

(
π
2

)|sh| (1−π)1−|sh| , p(y | s , W, σ) = N (y; Ws , σ21) , (1)

where W ∈ RD×H denotes the H basis vectors for the data points, and sh ∈
{−1, 0, 1}, with h = 1, . . . , H, is the latent variable that specifies how Wh

contributes to a data point. That is, we can assume that each observed vari-
able can take the form yd =

∑H
h=1Wdhsh plus a Gaussian noise with vari-

ance σ2. The π parameter in the prior is the probability of a cause being
active. Since our prior is symmetrical, the probability of a cause being added to
generate a data point is equal to the probability of a cause being subtracted:
p(sh = −1) = p(sh = 1) = π

2 . The difference between previous SC generative
models and this model is the choice of a symmetrical and discrete prior for latents
taking values −1, 0, and 1. As a consequence, Ternary Sparse Coding (TSC) can
explain data generated by Binary Sparse Coding (BSC,[13,6]) while the opposite
does not apply (see Fig. 2). To optimize the parameters Θ, we apply with Ex-
pectation Truncation (ET) a truncated variational EM approach [7]. Instead of
optimizing the log-likelihood directly, variational EM optimizes the free-energy,
a lower-bound which depends on the parameters and an approximate posterior
distribution q:

F(q, Θ)=

N∑
n=1

[∑
s

q(n)(s ;Θold)
[
log
(
p(y (n) | s ,W, σ)

)
+ log

(
p(s |π)

)] ]
+H(q) .

(2)
Instead of conventional variational EM, ET does not assume a factored form of
q(n) but uses truncated sums to set q(n) proportional to the exact posterior on



206 G. Exarchakis et al.

BSC Data

TSC Data

L
o
g
-L
ik
el
ih
o
o
d

TSC Data

BSC Data

-80

-50

TSC BSC

Fig. 2. Comparison of model performance on different data
types. We created 100 sets of N = 1000 data points with the
BSC model and the TSC model, then ran both algorithms
on all data sets and compared the likelihood values. The
figure shows the mean Log-likelihood values with standard
deviation for the TSC model and the BSC model both on
TSC data (blue, right) and BSC data (red, left). Evidently,
TSC explains both data types equally well, whereas BSC
describes data points created with TSC worse than its own
data points. While the latter is an expected result for a model
mismatch, the equal performance of TSC on both types of
data points out the more general character of TSC. More
particularly, BSC can be understood as a special case of TSC.

subsets Kn (see [7] for details). Consequently, the expectation values w.r.t. q(n)

amount to:

〈g(s )〉q(n) =

∑
s

p(s ,y (n) |Θold) g(s )∑
∼
s

p(
∼
s ,y (n) |Θold)

≈

∑
s∈Kn

p(s ,y (n) |Θold) g(s )∑
∼
s ∈Kn

p(
∼
s ,y (n) |Θold)

, (3)

where g(s ) is a function of s (and potentially the parameters). Eqn. 3 represents
a good approximation if the set Kn contains most of the posterior probability
mass w.r.t. a given data point y (n). For our model, Kn in (3) is chosen to contain
hidden states s with at most γ active causes, i.e., ‖s ‖1 ≤ γ. Furthermore, we
only consider the combinatorics of H ′ ≥ γ hidden variables that are likely to
have contributed to generating a given data point y (n). More formally we define:

Kn = {s | ‖s ‖1 ≤ γ and ∀i �∈ I : si = 0}, (4)

where the index set I contains those latent indices h with the H ′ largest values
of a selection function Sh(y (n)). In our case this function is given by:

Sh(y) = max
{
p(sh = −1,y |Θold), p(sh = 1,y |Θold)

}
∀s : ‖s ‖1 = 1. (5)

A large value of Sh(y) signals a high likelihood that y contains the basis func-
tion W h as a component. In numerical experiments on ground-truth data we
can verify that for most data points the approach (3) with (4) and (5) indeed
approximates the true expectation values with high accuracy. By applying the
ET approximation, exact EM (which scales exponentially with H) is altered to
an algorithm which scales polynomially with H ′ (approximately O

(
H ′γ)) and

linearly with H . Note, however, that in general larger values of H also require
larger amounts of data points.



Ternary Sparse Coding 207

With the tractable approximations for the expectation values 〈g(s )〉q(n)

computed with (3) to (5) the update equations for W and σ are given by:

W new =
(∑

n∈M y (n) 〈s 〉Tqn
) (∑

n′∈M
〈
s s T

〉
qn′

)−1

(6)

σnew =

√
1

|M|D
∑

n∈M
〈∣∣∣∣y (n) −W s

∣∣∣∣2〉
qn

(7)

Note that we do not sum over all data points y (n) but only over those in
a subset M (note that |M| is the number of elements in M). The subset
contains those data points for which (3) finally represents a good approxima-
tion. It is defined to contain the N cut data points with the highest values for∑

∼
s ∈Kn

p(
∼
s ,y (n) |Θold), i.e., with the highest values for the denominator in (3).

N cut is hereby the expected number of data points that have been generated by
states with less or equal γ non-zero entries: N cut = N

∑
s , ‖s ‖1≤γ p(s |π) =

N
∑γ

γ1=0

∑γ−γ1

γ2=0

(
H

γ1γ2(H−γ1−γ2)

) (
π
2

)γ1+γ2
(1 − π)H−γ1−γ2 .

Update equations (6) and (7) were obtained by setting the derivatives of Eqn. 2
(w.r.t. W and σ) to zero. Similarly, we can derive the update equation for π.
However, as the approximation only considers states s with a maximum of γ
non-zero entries, the update has to correct for an underestimation of π. If such
a correction is taken into account (compare [6,14]), we obtain the update rule:

πnew =
A(π)π

B(π)

1

|M|
∑
n∈M

〈‖s ‖1〉qn with (8)

A(π) =

γ∑
γ1=0

γ−γ1∑
γ2=0

(
H

γ1γ2 (H − γ1 − γ2)

)(π
2

)γ1+γ2

(1 − π)H−γ1−γ2 and

B(π) =

γ∑
γ1=0

γ−γ1∑
γ2=0

(γ1 + γ2)

(
H

γ1γ2 (H − γ1 − γ2)

)(π
2

)γ1+γ2

(1 − π)H−γ1−γ2

Note that if we allow all possible states (i.e., γ = H), the correction factor A(π)π
B(π)

in (8) is equal to 1
H and the set M becomes equal to the set of all data points

(because N cut = N). Eqn. 8 then falls back to the exact EM update rule for
π. The same applies for Eqns. 6 and 7 for γ = H . By choosing a value for γ
between one and H we can thus choose the accuracy of the used approximation.
The higher the value of γ the more accurate is the approximation but the larger
are also the computational costs. For intermediate values of γ we can obtain
very good approximations with small computational costs.

3 Numerical Experiments

Linear Bars Test. In order to evaluate its performance, we applied the algo-
rithm to artificial data points as shown in Fig. 3A. These data were generated
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Fig. 3. Linear bars test with H = 10, D = 5 × 5, and N = 1000. A 14 example data
points. B Basis functions for iterations given on the left. C Sparseness and standard
deviation plotted over the iterations. Ground-truth indicated by dashed horizontal line.

by H = 10 basis functions W h as described by the generative model in (1).
The prior parameter was set to π = 0.2 which results in πH = 2 basis functions
contributing to one data point on average. Each basis function represents one
D = 25 pixel image forming a vertical or a horizontal bar on a 5 × 5 grid. In
particular,W d

h ∈ {0, 10} where the value 10 denotes a bar pixel and 0 represents
a background pixel. To these data we added iid Gaussian noise (mean = 0, std
= 2). ET approximation parameters described in (4) were set to H ′ = 5 and
γ = 3. An annealing temperature (see [8,6]) was kept constant at T = 2 for the
first 10 iterations, and then decreased linearly to T = 1 at iteration 40, where
it was kept until termination of the algorithm at iteration 60. For the first 20
iterations we set the amount of used data points to the number of all data points,
i.e. |M| = N , then linearly decreased it to N cut until iteration 40, where we kept
it until the end (compare [7]). We set the initial values for each basis function to
be the average over the data points plus a Gaussian white noise with standard
deviation 0.05. Sparseness was initialized at πH = 5, thus assuming that five
of the causes contributed to an image on average. The standard deviation was
initialized as the average variance of all pixels which led to a value of σ ≈ 6. Af-
ter each iteration we added Gaussian noise to the learned basis functions (mean
= 0, std = 0.05), which we decreased linearly to zero from iteration 20 to 40.
We ran the algorithm with the above parameters 1000 times, each time using a
newly generated set of N = 1000 data points. In 913 of these trials we recovered
all bars (≈ 91.3% reliability) and obtained a mean value of πH = 2 (0.05 std)
for the sparseness and σ = 2 (0.1 std) for the data noise (i.e., the algorithm
successfully recovered the generating parameters). Figs. 3B and 3C show the
typical development of the model parameters over the 60 iterations.
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Fig. 4. Final log-likelihood values
with standard deviation for TSC
runs with different sets of ET pa-
rameters. The algorithms were ap-
plied to linear bars tests with H =
8, π = 2

H
, D = 4 × 4. For

each approximation parameter pair
(H ′, γ), we ran the algorithm 100
times on N = 1000 newly gener-
ated data point for each run. Model
parameters were initialized as de-
scribed in Sec. 2.

Effect of ET on Local Optima. To examine the effect of different approx-
imation parameters on the convergence of the algorithm, we applied the TSC
algorithms with different sets of values for H ′ and γ to a linear bars test (Fig. 4).
As can be observed in Fig. 4, the highest likelihood values were neither obtained
for very high values of H ′ and γ nor for very low ones. For low values the
approximation gets too coarse and the number of considered data points, N cut,
gets too small. For high values the approximation accuracy is high but the al-
gorithm has a strong tendency to converge to local optima. The local optima
usually correspond to solutions with, on average, more basis functions per data
point than in the generation process. The highest likelihood values are obtained
for intermediate values of H ′ and γ. For such values the approximation quality is
high and, at the same time, local optima are avoided much more frequently. The
latter effect can be explained by ET keeping a subset of all possible fixed-points
of learning stable. In our case, fixed-points of too dense solutions are avoided.

Natural Image Patches. As an example for large-scale applicability, we ap-
plied the TSC algorithm to N = 200 000 preprocessed1 patches of natural im-
ages, of size D = 26× 26, taken from the van Hateren image database [9]. The
algorithm assumed H = 700 basis functions and an initial value for sparseness
πH = 1. The parametersW and σ were initialized as in the linear bars test. The
approximation parameters were set to γ = 8 and H ′ = 10. For the first 20 iter-
ations, the algorithm used all data points for learning, |M| = N , then linearly
decreased the number of data points to |M| = N cut for the next 20 iterations,
and kept it at this value until termination of the algorithm at iteration 200.
After each iteration, the basis functions were slightly perturbed using additive
Gaussian noise which was linearly decreased from iteration 30 to 48.

Fig. 5A shows a random selection of 200 of the 700 obtained basis functions. In
Fig. 5B the most globular of the 700 basis functions are displayed. The monitored
time-course of the data sparseness (πH) and the time-course of the data noise

1 We used a Difference of Gaussians filter where filter parameters were chosen as in
[10]; before the brightest 2% of the pixels were clamped to the maximal value of the
remaining 98% (influence of light-reflections were reduced in this way).
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(σ) are displayed in Fig. 5C. As can be observed, we obtain Gabor-like basis
functions with different orientations, spatial frequencies, and phase as well as
globular basis functions with no or very little orientation preferences (compare
[11]). Along with the basis functions we obtain an estimate for the noise (σ = 1.8)
and, more importantly, for the data sparseness of πH = 6.9 active causes per
26× 26 patch.

0
2000 50 Iteration 2000 50 Iteration

sparseness πH std σ
2

4

4

8CB

A

0

Fig. 5. Numerical experiment on image patches. A 200 basis functions randomly
selected out of the total H = 700. B Example of eight of the most globular fields.
C Time-courses of sparseness (πH) and data noise (standard deviation) σ.

4 Discussion

We have studied a novel sparse coding algorithm using discrete hidden variables.
While in most of the former studies on sparse coding the prior distributions are
continuous, we, in this work, introduced a symmetric prior defined on the set
{−1, 0, 1}. Such a prior maintains important properties of continuous sparse
priors which are, for instance, not preserved for binary hidden variables. As
binary variables are a feature of another large class of probabilistic approaches
such as deep-belief-networks [12], this work can be regarded as connecting two
very successful and active lines of research.

Efficient parameter optimization for our model is made possible by apply-
ing Expectation Truncation (ET; [7]), a recent variational EM approach that
allowed us to infer all model parameters including data sparsity. In numerical
experiments on artificial data, we verified that the resulting algorithm accurately
and efficiently recovers the parameters of the generating distribution. Addition-
ally, we found that ET helps in avoiding local optima during learning. While
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high approximation parameters (H ′, γ) lead to a very high accuracy of the E-
step approximation, learning often converged to local optima corresponding to
a solution of relatively low sparsity. Such local solutions were efficiently avoided,
however, if the used approximation parameters were lower but still large enough
to result in a high approximation quality (Fig. 4). Large-scale applicability of
our algorithm was demonstrated using numerical experiments on pre-processed
image patches. The obtained basis functions in these experiments are instructive
from a neuroscientific perspective. As in previous studies using standard sparse
coding ([1] and many others) as well as in studies using binary latents [6,13], we
obtained localized Gabor-like basis functions with different orientations and spa-
tial frequencies. Additionally, we obtained globular basis functions as in binary
[6] and semi-discrete models [4,5]. Such globular fields are interesting as they
have been recorded in neurophysiological experiments but were not obtained
with standard SC or ICA before [11]. That globular basis functions also emerge
in our study is further evidence for the discreteness of hidden variables facili-
tating the emergence of globular fields (but also see [14]). As the use of ternary
latents is very close to the priors used in [4,5], our approach could be regarded as
capturing the essential functional features of these earlier works, and as taking
their capabilities a step further by inferring data noise and sparsity.
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10. Lücke, J.: Receptive field self-organization in a model of the fine-structure in V1
cortical columns. Neural Computation 21(10), 2805–2845 (2009)

11. Ringach, D.L.: Spatial structure and symmetry of simple-cell receptive fields in
macaque primary visual cortex. Journal of Neurophysiology 88, 455–463 (2002)

12. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief
nets. Neural Computation 18, 1527–1554 (2006)

13. Haft, M., Hofman, R., Tresp, V.: Generative binary codes. Pattern Anal. Appl. 6,
269–284 (2004)
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Abstract. We define and discuss a novel sparse coding algorithm based on closed-
form EM updates and continuous latent variables. The underlying generative
model consists of a standard ‘spike-and-slab’ prior and a Gaussian noise model.
Closed-form solutions for E- and M-step equations are derived by generalizing
probabilistic PCA. The resulting EM algorithm can take all modes of a potentially
multimodal posterior into account. The computational cost of the algorithm scales
exponentially with the number of hidden dimensions. However, with current com-
putational resources, it is still possible to efficiently learn model parameters for
medium-scale problems. Thus, the algorithm can be applied to the typical range
of source separation tasks. In numerical experiments on artificial data we verify
likelihood maximization and show that the derived algorithm recovers the sparse
directions of standard sparse coding distributions. On source separation bench-
marks comprised of realistic data we show that the algorithm is competitive with
other recent methods.

1 Introduction

Probabilistic generative models are a standard approach to model data distributions
and to infer instructive information about the data generating process. Methods like
principle component analysis, factor analysis, or sparse coding (SC) [e.g., 15] have all
been formulated in the form of probabilistic generative models. Moreover, independent
component analysis (ICA), which is a very popular approach to blind source separation,
can also be recovered from sparse coding in the limit of zero observation noise [e.g., 4].
A standard procedure to optimize parameters in generative models is the application of
Expectation Maximization (EM) [e.g., 14]. However, for many generative models the
optimization using EM is analytically intractable. For stationary data only elementary
models such as mixture models and factor analysis (which contains probabilistic PCA
as special case) have closed-form solutions for E- and M-step equations. EM for more
elaborate models requires approximations. In particular, sparse coding models [15, 9,
17, and many more] require approximations because integrals over the latent variables
do not have closed-form solutions.

Here, we study a generative model that combines the Gaussian prior of probabilistic
PCA (p-PCA) with a binary prior distribution. Distributions combining binary and con-
tinuous parts have been discussed and used as priors before [e.g., 12, among many
others] and are commonly referred to as ‘spike-and-slab’ distributions. Also sparse
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coding variants with spike-and-slab distributions have been studied previously
[compare 20, 7, 19, 16, 8, 13]. However, in this work we show that combining binary
and Gaussian latents maintains the p-PCA property of having a closed-form solution
for EM optimization. We can, therefore, derive an algorithm that uses exact posteriors
with potentially many modes to update model parameters.
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Fig. 1. Distributions generated by
the GSC generative model. The left
column shows the distributions gen-
erated for πh = 1 for all h. In
this case the model generates p-
PCA distributions. The middle col-
umn shows an intermediate value of
πh. The generated distributions are
not Gaussians anymore but have a
slight star shape. The right column
shows distributions for small values
of πh. The generated distributions
have a salient star shape similar to
standard sparse coding distributions.

2 Closed-Form EM for a Spike-and-Slab Sparse Coding Model

Let us first consider a pair of H–dimensional i.i.d. latent vectors, a continuous z∈�H

and a binary s∈{0, 1}H with:

p(s |Θ) =
H∏

h=1

πsh
h (1− πh)

1−sh = Bernoulli(s;π) and p(z |Θ) = N (z; 0, 1H), (1)

where πh parameterizes the probability of non-zero entries. After generation, the latent
vectors are combined using a pointwise multiplication operator: i.e., (s  z)h = sh zh
for all h. The resulting hidden random variable is a vector of continuous values and
zeroes, and it follows a ‘spike-and-slab’ distribution. Given a hidden vector (which we
will denote by s z) , we generate a D–dimensional observation y ∈ �D by linearly
combining a set of basis functions W and adding Gaussian noise:

p(y | s, z, Θ) = N (y; W (s z), Σ), (2)

where W ∈ �D×H is the matrix containing the basis functions W.h as columns, and
Σ ∈ �D×D is a covariance matrix parameterizing the data noise. The latents’ priors
(1), their pointwise combination and the noise distribution (2) define the generative
model under consideration. As a special case, the model contains probabilistic PCA (or
factor analysis). This can easily be seen by setting all πh equal to one. The model (1) to
(2) is capable of generating a broad range of distributions including sparse coding like
distributions. This is illustrated in Fig. 1 where the parameters πh allow for continuously
changing PCA-like to a SC-like distribution.

While the generative model itself has been studied previously [20, 19, 16, 8], we will
show that a closed-form EM algorithm can be derived, which can be applied to blind



Closed-Form EM for Sparse Coding and Its Application to Source Separation 215

source separation tasks (also see our preliminary work [10]). We will refer to the gen-
erative model (1) to (2) as the Gaussian Sparse Coding (GSC) model in order to stress
that a specific spike-and-slab prior (Gaussian slab) in conjunction with a Gaussian noise
model is used. The GSC model is thus an instance of the spike-and-slab sparse coding
model (or alternatively known sparse factor analysis models [see e.g., 20, 19, 16, 8]).

Expectation Maximization (EM) for Parameter Optimization. Given a set of N in-
dependent data points {y (n)}n=1,...,N , we seek to infer the parametersΘ = (W,Σ,π)

that maximize the data likelihood L =
∏N

n=1 p(y
(n) |Θ) under the GSC generative

model. We employ Expectation Maximization (EM) algorithm for parameter optimiza-
tion. The EM algorithm [see e.g., 14] optimizes the data likelihood w.r.t. the parameters
Θ by iteratively maximizing the free-energy given by:

F(Θold, Θ) =
∑N

n=1

∑
s

∫
z p(s, z |y (n), Θold)

[
log
(
p(y (n) | s, z, Θ)

)
+ log

(
p(s |Θ)

)
+ log

(
p(z |Θ)

)]
dz + H(Θold) , (3)

where H(Θold) is an entropy term only depending on parameter values held fixed dur-
ing the optimization of F w.r.t. Θ. Note that integration over the hidden space involves
an integral over the continuous part and a sum over the binary part. Optimizing the free-
energy consists of two steps: given the current parametersΘold the posterior probability
is computed in the E-step; and given the posterior,F(Θold, Θ) is maximized w.r.t.Θ in
the M-step. Iteratively applying E- and M-steps locally maximizes the data likelihood.

M-step parameter updates. Let us first consider the maximization of the free-energy
in the M-step before considering expectation values w.r.t. to the posterior in the E-step.
Given a generative model, conditions for a maximum free-energy are canonically de-
rived by setting the derivatives of F(Θold, Θ) w.r.t. the second argument to zero. For
the GSC model we obtain the following parameter updates:

W =
( N∑
n=1

y (n)
〈
s� z

〉T
n

)( N∑
n=1

〈
(s� z)(s� z)T

〉
n

)−1
, (4)

Σ =
1

N

N∑
n=1

[
y (n)(y (n))T − 2W

〈
s� z

〉
n
(y (n))T +W

〈
(s� z)(s� z)T

〉
n
WT

]

and π =
1

N

N∑
n=1

〈
s
〉
n
, where

〈
f(s,z)

〉
n
=
∑
s

∫
z

p(s,z |y (n), Θold) f(s,z) dz. (5)

Equations (4) to (5) define a new set of parameter values Θ = (W,Σ,π) given the
current values Θold. These ’old’ parameters are only used to compute the sufficient
statistics

〈
s
〉
n

,
〈
s z

〉
n

and
〈
(s z)(s z)T

〉
n

of the model.

Expectation Values. Although the derivation of M-step equations can be analytically
intricate, it is the E-step that, for most generative models, poses the major challenge. It
usually involves computations of analytically intractable integrals that are required for
posterior distributions and for expectation values w.r.t. the posterior. The true posterior
is therefore often replaced by an approximate distribution [see e.g., 2, 17] or in the form
of factored variational distributions [6, 5]. The most frequently used approximation is
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the maximum-a-posterior (MAP) estimate [see, e.g., 15, 9] which replaces the true pos-
terior by a delta-function around the posterior’s maximum value. Alternatively, analyti-
cally intractable expectation values are often approximated using sampling approaches.
Using approximations always implies, however, that many analytical properties of ex-
act EM are not maintained. Approximate EM iterations may, for instance, decrease the
likelihood or may not recover (local or global) likelihood optima in many cases. There
are nevertheless, a limited number of models with exact EM solutions; e.g., mixture
models such as the mixture-of-Gaussians, p-PCA or factor analysis etc. Our work adds
a sparse coding model with continuous latents to the set of models with exact EM so-
lution. By following along the same lines as for the p-PCA derivations, we maintain in
our E-step the analytical tractability of computing expectation values w.r.t. the posterior
of the GSC model (5).

Posterior Probability. First observe that the discrete latent variable s of the GSC model
can be directly combined with the basis functions, i.e., W (s  z) = W̃s z, where
(W̃s)dh = Wdhsh. Now we apply Bayes’ rule to write down the posterior:

p(s, z |y (n), Θ) =
N (y (n); W̃s z, Σ)N (z; 0, 1H) p(s |Θ)∑

s′
∫
N (y (n); W̃s′ z′, Σ)N (z′; 0, 1H) p(s′ |Θ) dz′ . (6)

Note that given a state s in (6), the Gaussian governing the observations y (n) is only
dependent on the Gaussian over the continuous latent z, which is analytically indepen-
dent of s. We can exploit this joint relation to refactorize the Gaussians. Using Gaussian
identities the posterior can be rewritten as:

p(s, z |y (n), Θ) =
N (y (n);0, Cs) p(s |Θ)N (z; κ

(n)
s , Λs)∑

s′ N (y (n);0, Cs′) p(s′ |Θ)

= p(s |y (n), Θ) N (z; κ(n)
s , Λs), (7)

whereCs = W̃sW̃
T
s +Σ, Λs =

(
W̃T

s Σ−1 W̃s+1H

)−1
andκ(n)

s = Λs W̃
T
s Σ−1 y (n).

Equation (7) represents the crucial result for the computation of the E-step
below because, first, they show that the posterior does not involve analytically in-
tractable integrals and, second, for fixed s and y (n) the dependency on z follows a
Gaussian distribution. This special form allows for the derivation of analytical expres-
sions for the expectation values as required for the M-step parameter updates.

E-step Equations. Derived from (7), the expectation values are computed as:〈
s
〉
n
=
∑
s

p(s |y (n), Θ) s,
〈
s z

〉
n
=
∑
s

p(s |y (n), Θ) κ(n)
s (8)

and
〈
(s z)(s z)T

〉
n
=
∑
s

p(s |y (n), Θ)
(
Λs + κ(n)

s (κ(n)
s )T

)
. (9)

Note that we have to use the current values Θ = Θold for all parameters on the right-
hand-side. The E-step equations (8) to (9) represent a closed-form solution for expecta-
tion values required for the closed-form M-step (4) to (5).
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Fig. 2. Histogram of likeli-
hood values for 100 runs of
the GSC algorithm on data
generated by a SC model
with Cauchy prior. Almost
all runs converged to high
likelihood values.

3 Numerical Experiments

GSC parameter optimization is non-convex. However, as for all algorithms based on
closed-form EM, the GSC algorithm always increases the data likelihood at least to
a local maxima. We first numerically investigate how frequently local optima are ob-
tained. Later we assess the model’s performance on more practical tasks.

Model Verification: First, we verified on artificial data that the algorithm increases the
likelihood and that it can recover the parameters of the generating distribution. For this,
we generatedN = 500 data points y (n) from the GSC generative model (1) to (2) with
D = H = 2. We used randomly initialized generative parameters1. The algorithm was
run 250 times on the generated data. For each run we performed 300 EM iterations.
For each run, we randomly and uniformly initialized πh between 0.05 and 1, set Σ to
the covariance across the data points, and the elements of W we chose to be indepen-
dently drawn from a normal distribution with zero mean and unit variance. In all runs
the generating parameter values were recovered with high accuracy. Runs with different
generating parameters1 produced essentially the same results.

Recovery of Sparse Directions. To test the model’s robustness w.r.t. a relaxation of the
GSC assumptions, we applied the GSC algorithm to data generated by standard sparse
coding models. We used a standard Cauchy prior and a Gaussian noise model [15] for
data generation. Fig. 3 second panel shows data generated by this sparse coding model
while the first panel shows the prior density along one of its hidden dimensions. We
generated N = 500 data points with H = D = 2. We then applied the GSC algorithm
with the same parameter initialization as in the previous experiment. We performed 100
trials using 300 EM iterations per trial. Again, the algorithm converged to high likeli-
hood values in most runs (see Fig. 2). As a performance measure for this experiment we
investigated how well the heavy tails (i.e., the sparse directions) of standard SC were
recovered. As a performance metric, we used the Amari index [1]:

A(W ) = 1
2H(H−1)

∑H
h,h′=1

(
|Ohh′ |

maxh′′ |Ohh′′ | +
|Ohh′ |

maxh′′ |Oh′′h′ |
)
− 1

H−1 (10)

where Ohh′ :=
(
W−1W gen

)
hh′ . The mean Amari index of all runs with high like-

lihood values was below 10−2, which shows a very accurate recovery of the sparse
directions. The right panel in Fig. 3 visualizes the distribution recovered by the GSC

1 We obtained W gen by independently drawing each matrix entry from a normal distribution
with zero mean and standard deviation 3. πgen

h values were drawn from a uniform distribution
between 0.05 and 1, Σ = σgen1D (where σgen was uniformly drawn between 0.05 and 10).
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Fig. 3. Comparison of standard sparse coding and GSC. Left panels: Cauchy distribution (along
one hidden dimension) as a standard SC prior [15] and data generated by it. Right panels: Spike-
and-slab distribution (one of the hidden dimensions) inferred by the GSC algorithm along with
inferred sparse directions (solid red lines) and posterior data density contours (dotted red lines).

algorithm in a typical run. The dotted red lines show the density contours of the learned
distribution p(y |Θ). High accuracy in the recovery of the generating sparse directions
(solid black lines) can be observed by comparison with the recovered directions (solid
red lines). The results remain qualitatively the same if we increase the number of hidden
and observed dimensions; e.g., for H = D = 4 we found the algorithm converged to a
high likelihood in 91 (with average Amari index below 10−2) of 100 runs.

Other than standard SC with Cauchy prior, we also ran the algorithm on data gener-
ated by SC with Laplace prior [15, 9]. There, for H = D = 2, we converged to high
likelihood values in 99 of 100 runs with an average Amari index 0.06. In the experiment
with H = D = 4 the algorithm converged to a high likelihood in 97 of 100 runs. The
average Amari index of all runs with high likelihoods was 0.07 in this case.

Source Separation. We applied the GSC algorithm to publicly available benchmarks.
We used the non-artificial benchmarks of [18]. The datasets mainly contain acoustic
data obtained from [ICALAB; 3]. We generated the observed data by mixing the bench-
mark sources using randomly generated orthogonal mixing matrices (we followed [18]).
Again the Amari index (10) was used as a performance measure.
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Fig. 4. Histogram of the deviation from or-
thogonality of the W matrix for 100 runs
of the GSC algorithm on the Speech4
benchmark (N = 500). A clear cluster
of the most orthogonal runs can automat-
ically be detected: the threshold of runs
considered is defined to be the minimum
after the cluster (black arrow).

For all the benchmarks we used N = 200 and N = 500 data points (as selected
by [18]). We applied GSC to the data using the same initialization as described before.
For each experiment we performed 100 trials with a random new parameter initializa-
tion per trial. The first column of Tab. 1 list average Amari indices obtained including
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Table 1. Performance of different algorithms on benchmarks for source separation. Data for NG-
LICA, KICA, FICA, and JADE are taken from [18]. Performances are compared based on the
Amari index (10). Bold values highlight the best performing algorithm(s).

datasets Amari index (standard deviation)
name N GSC GSC⊥ NG-LICA KICA FICA JADE

10halo 200 0.34(0.05) 0.29(0.03) 0.29(0.02) 0.38(0.03) 0.33(0.07) 0.36(0.00)
500 0.27(0.01) 0.27(0.01) 0.22(0.02) 0.37(0.03) 0.22(0.03) 0.28(0.00)

Sergio7 200 0.23(0.06) 0.20(0.06) 0.04(0.01) 0.38(0.04) 0.05(0.02) 0.07(0.00)
500 0.18(0.05) 0.17(0.03) 0.05(0.02) 0.37(0.03) 0.04(0.01) 0.04(0.00)

Speech4 200 0.25(0.05) 0.17(0.04) 0.18(0.03) 0.29(0.05) 0.20(0.03) 0.22(0.00)
500 0.11(0.04) 0.05(0.01) 0.07(0.00) 0.10(0.04) 0.10(0.04) 0.06(0.00)

c5signals 200 0.39(0.03) 0.44(0.05) 0.12(0.01) 0.25(0.15) 0.10(0.02) 0.12(0.00)
500 0.41(0.05) 0.44(0.04) 0.06(0.04) 0.07(0.06) 0.04(0.02) 0.07(0.00)

all trials per experiment2. It is important to note that all the other algorithms listed in
the comparison assume orthogonal mixing matrices, while the GSC algorithm does not.
Therefore in the column ’GSC⊥’ in Tab. 1, we report statistics that are only computed
over the runs which inferred the most orthogonal bases. As a measure of orthogonal-
ity we used the maximal deviation from 90o between any two axes. Fig. 4 shows as an
example a histogram of the maximal deviations of all trials on the Speech4 data with
N = 500. As can be observed, we obtained a clear cluster of runs with high orthog-
onality. We observed worst performance of the GSC algorithm on the c5signals
dataset. However, the dataset contains sub-Gaussian sources which in general can not
be recovered by sparse coding approaches.

4 Discussion

The GSC algorithm is a SC algorithm based on a spike-and-slab prior instead of a stan-
dard heavy-tail prior. The algorithm has a distinguishing capability of taking the whole
(potentially multimodal) posterior into account for parameter optimization, which is in
contrast to the MAP approximation of the posterior (as it is widely used for training SC
models [see e.g., 9, 11]). MAP based algorithms can be very efficient but they do not
take much of the posterior structure into account and, e.g., require regularization pa-
rameters. Other approaches with richer approximations of the posterior are, therefore,
actively investigated [e.g., 17, 13]. However, any approximation can introduce learning
biases, e.g., through assumptions of monomodal posteriors.

Closed-form EM learning of the GSC algorithm uses no approximations but it comes
with a computational cost that is exponential w.r.t. the number of hidden dimensionsH .
This can be seen considering Eqn. 7 which requires sums over all binary vectors s (sim-
ilar for expectation values w.r.t. the posterior). Nevertheless, we show in numerical ex-
periments that the approach is well applicable to the typical range of source separation

2 We obtained the reported results by diagonalizing the updated Σ in the M-step by setting
Σ = σ21D, where σ2 = Tr(Σ)/D.
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tasks. As the GSC algorithm takes multimodal posteriors into account and as it infers
model parameters including sparsity per latent, it can be considered as more Bayesian
than, e.g., SC with MAP estimates [compare 9]. Note, however, that another line of
research focuses on a fully Bayesian treatment of SC including approaches using spike-
and-slab priors [e.g., 7, 19, 16, 8, 13, etc.]. While these methods emphasize on greater
flexibility (estimation of the number of latents, use of different noise models etc.), their
great challenge is the procedure of parameter estimation (see e.g., the combination of
deterministic and sampling approximations in [13]). In contrast to such more general
methodologies, the aim of this work is to generalize sparse coding in a form that still
allows for closed-form EM solutions.

To summarize, we have studied a novel sparse coding algorithm and have shown
its competitiveness on source separation benchmarks. Along with the reported results
on source separation, the main contribution of this work is the derivation and numeri-
cal investigation of the (to the knowledge of the authors) first closed-form, exact EM
algorithm for spike-and-slab sparse coding.

Acknowledgement. J. Lücke is funded by the German Research Foundation (DFG),
grant LU 1196/4-1; A.-S. Sheikh is funded by the German BMBF, grant 01GQ0840.
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Convolutive Underdetermined Source

Separation through Weighted Interleaved ICA
and Spatio-temporal Source Correlation

Francesco Nesta and Maurizio Omologo

Fondazione Bruno Kessler - Irst, Center of Information Technology, Italy

Abstract. This paper presents a novel method for underdetermined
acoustic source separation of convolutive mixtures. Multiple complex-
valued Independent Component Analysis adaptations jointly estimate
the mixing matrix and the temporal activities of multiple sources in
each frequency. A structure based on a recursive temporal weighting of
the gradient enforces each ICA adaptation to estimate mixing parame-
ters related to sources having a disjoint temporal activity. Permutation
problem is reduced imposing a multiresolution spatio-temporal correla-
tion of the narrow-band components. Finally, aligned mixing parameters
are used to recover the sources through L0-norm minimization and a
post-processing based on a single channel Wiener filtering. Promising re-
sults obtained over a public dataset show that the proposed method is
an effective solution to the underdetermined source separation problem.

1 Introduction

Blind source separation for acoustic sources has been studied for more than ten
years and mainly aims to solve the cocktail party problem. In spite of the recent
advances in its application to real-world scenarios [1], many issues still remain
unsolved. High reverberation and the underdetermined condition are probably
the two main obstacles which limit its applicability to more general realistic
scenarios. Algorithms for underdetermined source separation in convolutive sce-
narios have been recently proposed. Some of them exploit spatial models to
compute either Wiener filters or binary masks [2][3]. Other methods exploit the
narrow-band mixing system formulation to better cope with high reverberation
[4]. Finally, other algorithms uses multichannel temporal and spectral redundan-
cies for factorizing different source components [5].

In order to separate sources in the underdetermined case, one of the key tasks
that has to be solved is the estimation of the source mixing parameters. If at
least the mixing parameters related to a single target source can be estimated, a
constrained semi-blind source extraction can be applied in order to recover the
source signal [6]. On the other hand, if the complete mixing system is available,
binary masking or Lp-norm minimization can be adopted to recover source sig-
nals having a high sparse representation [7]. In the frequency-domain BSS based
on ICA, mixing parameters for each frequency are estimated from the inverse of
the demixing system, but the inversion can be applied only in the determined

F. Theis et al. (Eds.): LVA/ICA 2012, LNCS 7191, pp. 222–230, 2012.
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case, i.e. when the demixing system is a square matrix. On the other hand, it
was shown that if one source dominates over the others its mixing parameters
can be derived from one column of the inverse of the demixing system [8].

In the traditional formulation of batch-wise ICA, the gradient used in the
iterative adaptation is computed by averaging the generalized covariance matrix
over different time frames. This is based on the main assumption of stationarity
and ergodicity of the random processes. However, acoustic sources are charac-
terized by a prominent high non-stationarity and temporal-spectral sparseness
which is naturally in contrast with the above assumptions. In this paper, we
show how this cue can be used to our advantage in order to properly define a
method based on multiple ICA adaptations, which is able to jointly estimate
the complete mixing matrix even in the non-square case. Furthermore, since the
adaptation is applied to each frequency independently, a second stage to align
mixing parameters of different sources is implemented, which is based on the
spatio-temporal correlation of the source signals.

2 Estimation of the Mixing Parameters

2.1 Weighted Natural Gradient

Let’s assume to record N acoustic sources by a microphone array of M elements
and denote with sn(t) the time-domain signal generated by the n-th source and
with xm(t) the signal sampled at the m-th microphone. We move from time-
domain to a more sparse representation of the sources by means of a short-time
Fourier transform (STFT), applied to frames of Nbins samples. Let Sn(k, l) and
Xm(k, l) be the l-th STFT frame coefficients obtained for the k-th frequency
bin. Indicating the source signal vector with S(k, l) = [S1(k, l) · · ·SN (k, l)]T , the
vector of the transformed observed mixtures X(k, l) = [X1(k, l) · · ·XM (k, l)]T

can be modeled as X(k, l) = H(k)S(k, l), where H(k) is the M × N mixing
matrix corresponding to the transfer function between sources and microphones
at k-th frequency bin. If N = M , by applying a complex-valued ICA algorithm
to the time series at each frequency, one can retrieve the original components
by estimating a set of de-mixing matrices W(k), representing an estimate of
H(k)−1 up to scaling and permutation ambiguities. Then, the original signals
can be computed as Y(k, l) = W(k)X(k, l). According to the minimization of
the Kullback-Liebler divergence with the Natural Gradient (NG) [9], the mixing
matrix and the corresponding output signals are estimated as follows

Y(i)(k, l) = W(i)(k)X(k, l) = [H(i)(k)]
−1X(k, l) (1)

ΔH(i)(k) = H(i)(k)(I− E[Φ(Y(i)(k, l))Y(i)(k, l)
H ]) (2)

H(i+1)(k) = H(i)(k)− ηΔH(i)(k) (3)
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where η is the step-size, i is the index of the iteration used to refine the solution,
Φ(·) is a non-linearity and E[·] indicates the expectation. Note, the above Natural
Gradient formulation directly updates H(k) instead of W(k), as in the most
popular NG formulation which does not require any matrix inversion. However
(3) is a convenient formulation since it shows that each column of the gradient
updates the mixing parameters of a different source.

In a batch approach, the gradient is computed averaging the generalized co-
variance matrix over the frames, i.e. the expectation operator E[·] is substituted
with the time average, implicitly assuming ergodicity and stationarity. However,
acoustic signals are highly non-stationary and their spectral representation is
sparse over time. In principle, if a prior knowledge on the source activity is
available, the expectation can be improved through a time weighted average. In
other terms, the gradient part that updates the mixing parameters of a given
source is computed only with frames where the source is believed to be dominant.
The estimation of (3) can be modified as

ΔH(i)(k) = 〈[H(i)(k)(I − Φ(Y(i)(k, l))Y(i)(k, l)
H)]Ψ(k, l)〉l (4)

where 〈·〉l indicates time average over l, Ψ(k, l) is a diagonal matrix with ele-
ment ψnn(k, l) being a weight (with values ranging from 0 to 1) indicating the
dominance of the n-th source at each time-frequency point.

2.2 Interleaved Orthogonal Adaptations

In the previous work [10], the weights ψnn(k, l) were recursively computed from
the output power ratios of previously separated frequencies, assuming tempo-
ral dependencies across neighbor frequency bins. This approach speeds up the
overall convergence and considerably reduces errors due to the statistical bias
of a limited amount of observed data. Similarly in [11] the prior weighting was
used in a distributed context in order to constrain separate ICA adaptations to
estimate mixing parameters with the same source order. In contrast, in this work
the weighting is adopted to force multiple ICA adaptations to converge to solu-
tions identifying sources having an orthogonal temporal dominance. Assuming
to observe N sources we define N ICA adaptations as

Yn
(i)(k, l) = Wn

(i)(k)X(k, l) (5)

Hn
(i+1)(k)←− Hn

(i)(k)− η〈[Hn
(i)(k)(I− Φ(Yn

(i)(k, l))Y
n
(i)(k, l)

H)]Ψn(k, l)〉l (6)

constrained by the weighting diagonal matrix Ψn(k, l) with diagonal elements
equal to [pn(k, l), 1−pn(k, l), · · · , 1−pn(k, l)], where pn(k, l) is the posterior prob-
ability of observing the n-th source in the (k, l) point given the observationX(k, l).
Assuming orthogonality between the temporal evolution of posteriors of different
sources, i.e. 〈pn(k, l)pn′

(k, l)〉l = 0, ∀(n �= n′), each ICA adaptation would con-
verge to mixing matrices [H1(k), · · · ,HN (k)] where their first columns represent
the mixing parameters of N different sources. The posteriors pn(k, l) can be com-
puted through a multichannel statistical model of the observed STFT coefficients



Convolutive Underdetermined Source Separation 225

0 10 20 30
0

1

2

3

4
x 10

4

interleaved iteration (g)

S
um

 c
k

 

 

TDOA initialization

Random initialization

Fig. 1. Typical average convergence curve
for mask estimation, starting from a
TDOA-based or random initialization

Fig. 2. Dyadic definition of frequency
bins subsets for the multi-resolution
spatio-temporal correlation analysis

X(k, l), whose parameters can be estimated a priori (e.g. if the source TDOAs are
available beforehand, a spatial model can be used for modeling the inter-channel
phase characteristic of X(k, l)). In contrast, here we adopt an EM-like procedure
in order to iteratively estimate both pn(k, l) and [H1(k), · · · ,HN (k)] only from
the observed data, and assuming ideal source sparseness.

Indicating with hn(k) the last estimate of the mixing vector of the n-th source
(i.e. the first column of Hn(k)), the posteriors can be approximated with the
ideal binary masks obtained from the estimated mixing vectors as

pn(k, l) =

⎧⎪⎨⎪⎩
1, if argmax

i
|[hi(k)]HX(k, l)| = n

0, otherwise

(7)

whereH indicates the Hermitian transpose. In practice, we assume that only one
source is observed in each time-frequency point, which is a simplistic assumption
but effective to impose the orthogonality constraint. The overall structure of the
interleaved weighted ICA adaptation can be summarized as follows

for k=1 to Nk

g=1; ck = ∞;initialization of Ψn
0 (k, l);

while (ck > 0) and (g ≤ Ng),
for n=1 to N

for i=1 to Ni

Compute Hn
(i+1)

(k) as in (5)-(6)
end

end

Compute pn
(g)

(k, l) as in (7) from last hn(k), ∀n
ck =

∑
l,n |pn

(g)
(k, l)− pn

(g−1)
(k, l)|

g=g+1
end

end.
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For each frequency, Ψn
0 (k, l) is initialized imposing pn(k, l) ∀n to be a set of

orthogonal binary posteriors. If an estimation of the source TDOA vectors is
available, pn(k, l) can be defined as the ideal binary mask obtained with (7)
and initially approximating hn(k) with the ideal anechoic propagation model.
If this information is unknown, mixing parameters can be initialized by using
random TDOA vectors. For each ICA adaptation the mixing matrix Hn(k) is
iteratively estimated as in (5)-(6) for Ni iterations. Thus, the posteriors are
recomputed as in (7) with the last estimates of hn(k) and the procedure is
iterated till convergence, i.e. when the estimated binary masks do not change
with the iteration. Note, in this work we used the Natural Gradient for the ICA
stage but the proposed structure can be used with any algorithm, on condition
that the gradient can be formulated in terms of mixing matrix H(k). Figure 1
shows a typical convergence curve obtained over Ng iterations for both random
or TDOA-based initialization of Ψn(k, l).

3 Permutation Alignment

The above procedure estimates the source mixing vectors independently at each
frequency. In principle, the adaptation may be run jointly in all the frequencies if
a spatial and/or spectral wide-band model for the sources is available. In this case
the posteriors may be computed from all the estimated mixing parameters and
the adaptations would not be affected by the permutation problem. However,
this requires to introduce global constraints in the estimated mixing vectors
(or source posteriors) which might reduce the convergence speed and accuracy
of the estimated solution. In this work we adopt a two stage approach as for
standard ICA based frequency-domain BSS, where the source mixing parameters
are independently estimated and the permutations are reduced in a second stage.

3.1 TDOA Vector Estimation

A necessarily preliminary step is the estimation of TDOA vectors related to the
multidimensional propagation of the sources over the direct-path. This can be
done by seeking for the maxima of the Generalized State Coherence Transform
(GSCT) [12], which under ideal source sparseness can be obtained directly from
the normalized cross-power spectrum [13].

Note, if there is sufficient sparsity of the TDOA distribution related to differ-
ent sources and the kernel bandwidth is sufficiently small, the total likelihood
may be cumulated over the time-frames l, and the modes can be easily detected
from a single density representation. However, if the microphones are too close
to each other (e.g. 0.05m) and the reverberation is high, TDOA distribution of
multiple sources highly overlap and the modes detection may become difficult.
To circumvent this problem we explicitly exploit the temporal sparsity of the
source activity. Multiple maxima are estimated in each frame independently and
grouped together through a spatio temporal clustering. Finally, the N TDOA
vectors related to different spatial locations and with the highest likelihoods are
selected.
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3.2 Multi-resolution Spatio-temporal Correlation

Once the TDOA vectors are estimated, we enforce a spatio-temporal correlation
between the narrow-band source signals. We define a multichannel narrow-band
model of the activity of the n-th source as

snQ(k, l) = dn(k)snQ(k, l), dn(k) = [1; e−2πjfkτ
n
1 ; · · · ; e−2πjfkτ

n
P ]T (8)

where snQ(k, l) = 〈pn(k, l)〉k∈FQ
q(k)

is the average of the posteriors pn(k, l) related

to frequency bins included in the subset FQ
q(k), at Q-th level of spectral resolu-

tion, and [τn1 ; · · · ; τnP ] is the TDOA vector estimated for the n-th source. While
the spatial model identified by dn(k) is kept constant at each resolution level
Q, the spectral resolution of the temporal activity is properly defined through
the definition of FQ

q(k). Here we adopt a dyadic subdivision of the entire set of

frequencies as shown in Figure 2. Then, we define the normalized mixing vec-

tor as h
n
(k) = hn(k)

hn
1 (k)

/|h
n(k)

hn
1 (k)

|, where hn1 (k) is the first element of hn(k) and /

refers to the element-wise division. Indicating with pn(k, l) = h
n
(k)pn(k, l) the

multichannel representation of the source activity, a measure of spatio-temporal
correlation between the model snQ(k, l) and pn(k, l) is computed as

C[pn(k, l), snQ(k, l)] =

(
Re{[hn

(k)]Hdn(k)}+ (P − 1)

2P

)α

·
(

p̃n(k)[s̃nQ(k)]T

||p̃n(k)|| × ||s̃nQ(k)||

)1−α

(9)

where α is a coefficient with values ranging between 0 and 1, Re{·} indicates the
real part, s̃nQ(k) = [snQ(k, 1); s

n
Q(k, 2); · · · ] and p̃n(k) = [pn(k, 1); pn(k, 2); · · · ].

Then, given the models snQ(k, l) ∀n, for each k we seek for the permutation matrix
Π, with corresponding permutation function Ψ(n) : N → N which maximizes

Πk = argmax
Π

∑
n

C[snQ(k, l),p
Π(n)(k, l)]. (10)

For a given resolution stage Q, equations (8)-(10) are iterated till convergence,
i.e. when no permutation matrix changes with the iterations. We start from a
low spectral resolution, i.e. a single temporal envelope is adopted to align all
the frequency bins, till to a high resolution where multiple models are used to
locally improve the alignment of neighbor frequencies.

Note, the coefficient α defines the importance of the spatial and temporal
correlation. A high value of α increases the robustness of the permutation align-
ment against temporally correlated source signals, e.g. music signals, or when
the sources are observed for a short time. On the other hand, a high value of α
would prevent the optimization to converge to an optimal solution in presence
of high reverberation and high spatial aliasing, where the propagation over the
direct path does not well describe the convolutive mixing system. Here we follow
a simple evidence: the estimated TDOA vectors represent a global spatial coher-
ence (related to the direct path propagation) and then have to be used for the
optimization at low resolution level. On the other hand, the temporal correlation
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needs to be locally optimized to better compensate wrong alignments (at lower
resolution stages) due to phase discontinuities generated by high reverberation.
Therefore, we force α = 0.5 for Q < Qmax (e.g. with Qmax = 4), while α = 0
for higher resolutions. Nevertheless, we believe that other adaptive strategies to
set α worth to be investigated in the future.

4 Source Recovery

Sources are recovered using the L0-norm minimization and the Minimal Dis-
tortion Principle (MDP), in order to estimate the multichannel image of the
separated source signals. Since L0-norm is highly sensitive to the accuracy of
the estimated mixing system, it may lead to a poor separation of low frequen-
cies, where the temporal correlation of the sources is high. Therefore, we further
apply a Wiener post-processing computing the Wiener gains for the n-th source

and the m-th channel as gmn(k, l) =
|yn

m(k,l)|2∑
n |yn

m(k,l)|2 , where y
n
m(k, l) is the n-th

source recovered through the L0-norm minimization. Finally, signals are sepa-
rated applying the Wiener gains to the input mixtures.

Note, in order to better account for the source sparseness, the Wiener gains
are computed from the STFT coefficients obtained with windows of analysis
shorter than those required for the ICA stage [6]. That is, the sources images
ynm(k, l), separated through the L0-norm minimization, are reconstructed back to
time-domain through overlap-and-add (OLA) and after retransformed through
the STFT but with shorter windows (e.g. 1024 samples).

5 Experimental Results

The proposed method is validated for the caseM = 2 with the publicly available
“under-determined speech and audio mixtures” development dataset (dev1.zip),
used in the Signal Separation Evaluation Campaign (SiSEC) 2011 [14]. Time-
domain signals (sampled at fs = 16kHz) were transformed through an STFT
analysis with Hanning windows of 2048 or 4096 samples (respectively for the case
of T60 = 130 ms and T60 = 250 ms) with a shift of 25% of the window. For the
Wiener post-filtering Hanning windows of 1024 samples shifted of 128 samples
were used. The scaled Natural Gradient was adopted for the ICA, setting the
maximum number of iterations to Ni = 10, the step-size to μ = 0.2 and the max-
imum number of interleaved iterations to Ng = 50. Performance are measured in
terms of average Signal Distortion Ratio (SDR) where the decomposition of the
separated signals in target and interference components is determined applying
the resulting processing to the separated source image contributions as in [4].
Note that numbers may differ from those provided by the evaluation in SiSEC
2011 since the procedure for the estimation of the signal decomposition is dif-
ferent. For other comparisons with other state-of-art algorithms see the official
results of SiSEC 2011 [14]. Furthermore, we compute the Misalignment between
the estimated and the optimal Wiener filter gains computed with the true source
images as MISmn = 10log10[||gmn − gideal

mn ||2/||gideal
mn ||2], where gmn and gideal

mn
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Table 1. Average SDR(Misalignment) for separation results of dev1 of SiSEC 2008

T60 = 130 ms T60 = 250 ms
mic. spacing 5 cm 1 m 5 cm 1 m

male3 7.68(-5.81) dB 9.82(-5.07) dB 8.72(-5.15) dB 8.81(-4.24) dB
male4 5.44(-4.22) dB 5.89(-3.55) dB 4.65(-3.43) dB 6.64(-3.16) dB
female3 8.06(-5.91) dB 11.88(-5.07) dB 8.73(-5.14) dB 10.69(-4.06) dB
female4 6.80(-4.10) dB 5.92(-3.27) dB 5.96(-3.35) dB 6.92(-2.88) dB
wdrums - - 5.88(-2.73) dB 7.21(-2.28) dB
nodrums - - 6.67(-3.98) dB 7.61(-3.39) dB

are vectors with elements gmn(k, l) and gidealmn , for any k and l, computed as in
Section 4, and using the estimated and true source signal images, respectively.

Table 1 reports the detailed results and shows that the proposed algorithm is
able to recover both speech and music sources with limited distortion. Numer-
ical performance were also confirmed with a subjective evaluation, by human
listening, confirming the high perceptual quality of the recovered signals1.

6 Conclusion

This paper presents a novel method for the estimation of convolutive mixing
parameters of multiple acoustic sources, in the underdetermined scenario. The
mixing parameters are estimated independently in each frequency with an it-
erative structure based on interleaved weighted Natural Gradient adaptations,
constrained to estimate mixing parameters of sources with a disjoint temporal ac-
tivity. Narrow-band mixing vectors are then aligned enforcing a multi-resolution
spatio-temporal correlation between the estimated narrow-band source signals.
The proposed method is evaluated by recovering the source signals through an
L0-norm minimization and Wiener filtering post-processing. Numerical results
and a subjective evaluation reveal that the proposed method is a promising ro-
bust solution to the underdetermined source separation of convolutive mixtures.
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Abstract. This work presents a new algorithm for dictionary learn-
ing. Existing algorithms such as MOD and K-SVD often fail to find the
best dictionary because they get trapped in a local minimum. Olshausen
and Field’s Sparsenet algorithm relies on a fixed step projected gradient
descent. With the right step, it can avoid local minima and converge
towards the global minimum. The problem then becomes to find the
right step size. In this work we provide the expression of the optimal
step for the gradient descent but the step we use is twice as large as the
optimal step. That large step allows the descent to bypass local min-
ima and yields significantly better results than existing algorithms. The
algorithms are compared on synthetic data. Our method outperforms ex-
isting algorithms both in approximation quality and in perfect recovery
rate if an oracle support for the sparse representation is provided.

Keywords: Dictionary learning, sparse representations, gradientdescent.

1 Introduction

In the method of sparse representations, a signal is expressed as a linear combi-
nation of a few vectors named atoms taken from a set called a dictionary. The
sparsity constraint induces that any given dictionary can only represent a small
subset of all possible signals, so the dictionary has to be adapted to the data
being represented. Good pre-constructed dictionaries are known for common
classes of signals, but sometimes it is not the case, for example when the dic-
tionary has to discriminate against perturbations coming from noise [2]. In that
case, the dictionary can be learned from examples of the data to be represented.

Several different algorithms have been proposed to learn the dictionary. Many
of them iteratively optimize the dictionary and the decomposition [5,3,1]. The
difference between those algorithms is the way they update the dictionary to fit a
known decomposition. In particular, Olshausen and Field’s Sparsenet algorithm
[5] uses a fixed step gradient descent. In this work we observe that all those
update methods are suboptimal even if the right support for the decomposition
is known.
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This work presents a modification to the Sparsenet algorithm that enables it
to bypass local minima. We use the fact that the optimal step of the gradient
descent can easily be obtained, then multiply it by constant larger than 1. Em-
pirical results show that our method often allows the optimization to reach the
global minimum.

2 Dictionary Learning

2.1 Problem

Let S be a D × N matrix of N training signals {sn}N
n=1, sn ∈ RD. Dictionary

learning consists in finding a dictionary Φ of size D×M with M ≥ D and sparse
coefficients X such that S ≈ ΦX. For example, if the exact sparsity level K is
known, the problem can be formalized as minimizing the error cost function

f(Φ,X) = ‖S− ΦX‖2
F (1)

under the constraints

∀m ∈ [1, M ], ‖ϕm‖2 = 1 (2)
∀n ∈ [1, N ], ‖xn‖0 ≤ K (3)

with ϕ an atom (or column) of Φ and ‖xn‖0 the number of non-zero coefficients
in the nth column of X.

2.2 Algorithms

Many dictionary learning algorithms follow an alternating optimization method.
When the dictionary Φ is fixed, estimating the sparse coefficients X is a sparse
representation problem that can be approximately solved by algorithms such as
Orthogonal Matching Pursuit (OMP) [6]. Existing algorithms differ in the way
they update the dictionary Φ once the coefficients X are fixed:

– Sparsenet [5] uses a projected gradient descent with a fixed step α:

R = S− ΦX (4)

∇f = −RxmT (5)
ϕm ← ϕm − α∇f (6)

ϕm ← ϕm

‖ϕm‖2

(7)

with xm the mth line of X.
– MOD [3] directly computes the dictionary that minimizes the error f when

the coefficients are fixed. The result is given by a pseudo-inverse:

Φ ← SX+ (8)

∀m ∈ [1, M ], ϕm ← ϕm

‖ϕm‖2

(9)
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– K-SVD [1] jointly re-estimates each atom and the amplitude of its non-zero
coefficients. For each atom ϕm, the optimal choice is the principal component
of a restricted "error" E(m) obtained by considering the contribution of ϕm

alone and removing all other atoms.

E(m) = R + ϕmxm (10)

ϕm ← argmin
‖ϕ‖2=1

∥∥∥E(m) − ϕϕT E(m)
∥∥∥2

F
(11)

= argmax
‖ϕ‖2=1

ϕTE(m)E(m)T
ϕ (12)

xm ← ϕT
mE(m) (13)

3 Motivations for an Adaptive Gradient Step Size

This section details an experimental framework used to compare the dictionary
update methods presented in Section 2.2. We then show that MOD and K-SVD
often get trapped in a local minimum but that with the right step, Sparsenet is
more likely to find the global minimum.

3.1 Identifying the Global Optimum: Learning with a Fixed
Support

We want to be able to check whether the solution found by an algorithm is the
best one. It is easy in the noiseless case: if the training signals are exactly sparse
on a dictionary, then there is at least one decomposition that leads to an error of
0: the one used for synthesizing the signals. In that case, a factorization (Φ,X)
is globally optimal if and only if the value of its error cost (1) is 0.

Dictionary learning algorithms often fail at that task because of mistakes done
in the sparse representation step: when the dictionary is fixed, tractable sparse
approximation algorithms typically fail to recover the best coefficients, although
there are particular dictionaries for which the sparse representation is guaranteed
to succeed [7]. In order to observe the behavior of the different dictionary update
methods, we can simulate a successful sparse representation by using an oracle
support: instead of running a sparse representation algorithm, the support used
for the synthesis of the training signals is used as an input to the algorithm and
only the values of the non-zero coefficients is updated by quadratic optimization.
The dictionary learning algorithm is then simplified into Algorithm 1.

3.2 Empirical Observations on Existing Algorithms

We ran a simulation to check whether existing update methods are able to re-
cover the best dictionary once the support is known. Each data set is made of
a dictionary containing i.i.d. atoms drawn from a uniform distribution on the
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Algorithm 1. (Φ,X) = dict_learn(S, σ)
Φ ← random dictionary
while not converged do

∀n,xσn
n ← Φ+

σn
sn

Φ ← dict_update(Φ,S,X)
end while

unit sphere. For each dictionary, 256 8-sparse signals were synthesized by draw-
ing uniform i.i.d. 8-sparse supports and i.i.d. Gaussian amplitudes. Then each
algorithm was run for 1000 iterations starting from a random dictionary. The
oracle supports of the representations were provided as explained in Section 3.1.

Figure 1 shows the evolution of the SNR = −10 log10
‖R‖2

2
‖S‖2

2
over the execution

of the algorithm for each data set. 300dB is the highest SNR that can be reached
due to numerical precision. Moreover, we ran some longer simulations and never
saw an execution fail to reach 300dB once a threshold of 100dB was passed For
each algorithm, the plots show how many runs converged to a global minimum
and how fast they did it.

K-SVD found a global minimum in 17 cases and has the best convergence
speed of all studied algorithms. MOD only converged to a global minimum in 1
case and shows a tendency to evolve by steps, so even after a large number of
iterations it is hard to tell whether the algorithm has converged or not. The best
results were obtained when running Sparsenet with a step size α = 0.05. In that
case most runs converge to a global optimum although the convergence speed is
more variable than with K-SVD. The behavior of Sparsenet highly depends on
the choice of α. In our case a step of 0.1 is too large and almost always prevented
the algorithm to converge, but a step of 0.01 is too small and leads to a very
slow convergence.

Moreover, Sparsenet outperforms MOD although they both attempt to solve
the same least-square problem. MOD finds that minimum in only one iteration,
but if each Sparsenet dictionary update was allowed to iterate on its gradient
descent with a well chosen step, it would converge towards the result of the
MOD update. So the source of the gain is unlikely to be that the step α = 0.05
is well adapted to the descent, but rather that it is larger than what an optimal
step would be, thus allowing the descent to jump over local minima. The fact
that the SNR sometimes decreases at one iteration for Sparsenet with α = 0.05
also hints at a larger than optimal step size.

4 Large Step Gradient Descent

This section presents our method to choose the step size of the gradient descent.
Our method is based on optimal step gradient descent, but we purposefully
choose a step size that is larger than the optimal one.
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Fig. 1. Approximation SNR depending on the iteration. K-SVD and MOD often get
trapped in a local minimum. With α = 0.05, Sparsenet avoids local minima, but α = 0.1
is too large and α = 0.01 is too small.

4.1 Optimal Step Projected Gradient Descent

When fixing the coefficients and the whole dictionary but one atom ϕm, there
is a closed-form solution for the best atom ϕ∗

m that minimizes the cost function
(1) [4].

ϕ∗
m = argmin

‖ϕm‖2=1

‖S − ΦX‖2
F (14)

= argmin
‖ϕm‖2=1

∥∥∥E(m) − ϕmxm
∥∥∥2

F
(15)

with E(m) the restricted errors described for K-SVD in Equation (10).∥∥∥E(m) − ϕmxm
∥∥∥2

F
=

∥∥∥E(m)
k

∥∥∥2

F
− 2

〈
E(m)

k , ϕmxm
〉

+ ‖ϕmxm‖2
F (16)

∥∥∥E(m)
k

∥∥∥2

F
is constant with respect to ϕm. If ϕm is constrained to be unitary, then

‖ϕmxm‖2
F = ‖xm‖2

2 is also constant with respect to ϕm. So the only variable
term is the inner product and the expression of the optimum ϕ∗

m is given by:
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ϕ∗
m = argmax

‖ϕm‖2=1

〈
E(m)xmT , ϕm

〉
(17)

=
E(m)xmT∥∥∥E(m)xmT

∥∥∥
2

. (18)

The link with the gradient appears when developing the Expression (18):

ϕ∗
m ∝ (R + ϕmxm)xmT (19)

∝ ϕm +
1

‖xm‖2
2

RxmT . (20)

Starting from the original atom, the global best atom ϕ∗
m can be obtained with

only one iteration of gradient descent and the optimal step α∗ of the descent is
the inverse of the energy of the amplitude coefficients.

α∗ =
1

‖xm‖2
2

(21)

5 Experimental Validation

This section presents dictionary learning experiments using gradient descent
dictionary updates with the step sizes α∗ and 2α∗. The comparison between
them shows that the use of a larger than optimal step size improves the results.

5.1 Learning with a Fixed Support

This experiment uses the same setup as the one presented in Section 3.2. We ran
Sparsenet with the optimal step size α∗ defined in Equation (21) and a larger
step size 2α∗. As expected, the optimal step gradient descent almost always gets
trapped in a local minimum. Doubling that step greatly improves the recovery
rate from 8% to 79%.

5.2 Complete Learning

We also compared the different update rules in the context of a complete dictio-
nary learning, i.e. without the use of an oracle support. The sparse decomposition
step was performed using OMP.

Figure 3 shows the repartition of the SNR obtained by each algorithm. The
different algorithms are sorted by increasing average SNR. For Sparsenet we
used the step size α = 0.05 which was well suited to the fixed support case.
With that choice Sparsenet slightly outperforms K-SVD by 0.01 dB, but in
practical cases one might not have access to such previous knowledge to finely
tune the step size α. Our large step gradient achieved the best average SNR.
It outperforms K-SVD and the fixed step Sparsenet by an average 0.5 dB and
converged to a better solution than K-SVD in 98 cases over 100.
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(b) Large step gradient descent, α = 2α∗

Fig. 2. Approximation SNR depending on the iteration. The optimal gradient descent
only succeeds 8 times whereas using a 2α∗ step succeeds 79 times.
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Fig. 3. Repartition of the SNR after learning dictionaries on 100 random data sets
with different algorithms. The proposed large step gradient descent results in an average
0.5dB improvement over K-SVD.
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6 Conclusion

We have presented a dictionary learning algorithm capable of better approxima-
tion quality of the training signals than K-SVD. That algorithm uses a gradient
descent with an adaptive step guaranteed to be higher than the optimal step.
The large step allows the descent to bypass local minima and converge towards
the global minimum.

While our algorithm yields much better recovery rates than the existing ones,
it can still be improved. With the step size 2α∗, the descent still gets trapped
in a local minimum in 21% of the cases in our experiments. One could think of
using an even larger step, but the algorithm then becomes unstable and fails to
converge at all. The solution could be to use a hybrid algorithm that starts with
large step gradient descent to find the attraction basin of a global minimum,
then switches to one of the fast converging algorithms such as K-SVD to find
the minimum itself.
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Abstract. In this work, we deal with the problem of nonlinear blind
source separation (BSS). We propose a new method for BSS in overde-
termined linear-quadratic (LQ) mixtures. By exploiting the assumption
that the sources are sparse in a transformed domain, we define a frame-
work for canceling the nonlinear part of the mixing process. After that,
separation can be conducted by linear BSS algorithms. Experiments with
synthetic data are performed to assess the viability of our proposal.

Keywords: Nonlinear mixtures, sparse signals, blind source separation.

1 Introduction

In blind source separation (BSS), the goal is to retrieve a set of signals (sources)
based only on the observation of mixed versions of these original sources [1,2].
Typically, the methods developed to solve this problem work with the assumption
that the mixing process can be modeled as a linear system. However, while
this framework has been proven successful in many applications, there are some
practical examples in which the mixtures are clearly nonlinear — this is the case,
for instance, in chemical sensor arrays [3] and hyperspectral imaging [4].

Several works have already pointed out some problems that arise when the
mixtures are nonlinear (see [5] for a discussion). In particular, the application
of methods based on independent component analysis (ICA) [6], which assumes
that the sources are mutually statistically independent random variables, is not
valid in a general nonlinear system. In view of this problem, the research on
nonlinear BSS has been focused on constrained models, for which the task of
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source separation can be accomplished by extending the ideas already considered
in the linear case. Among the constrained nonlinear models studied so far is the
linear-quadratic (LQ) model [7,4]. This model provides a good description of the
mixing process in applications such as show-through effect removal in scanned
images [8] and design of gas sensor arrays [9]. Besides, the LQ model presents
two interesting properties: 1) it can be seen as a first step toward more general
polynomial mixtures; 2) it is linear with respect to the mixing coefficients.

When the number of sources is equal to the number of mixtures in an LQ
model, the definition of a separating structure is not a simple task, given the
difficulty in writing the inverse of the mixing process in an analytical form [7,10].
However, in an overdetermined case, in which the number of mixtures is greater
than the number of sources, separation can be achieved by means of a linear
structure. This idea has already been exploited in the context of sources belong-
ing to a finite alphabet [11], circular sources [12], non-stationary sources [13] and
independent sources [14].

In the present work, we tackle the problem of BSS in overdetermined mixtures
assuming that the sources admit a sparse representation in a given basis. By
using this property, we propose a strategy to cancel the nonlinear part of the
LQ mixing process, so that the resulting problem can be dealt with by linear
BSS algorithms. Since our approach for dealing with the nonlinear terms does
not rely on the independence assumption, it is possible to tackle problems in
which ICA methods fail. Of course, this can be done if the adopted linear BSS
method is able to work with dependent mixtures.

2 Mixing Model

Let sj = [sj(1) . . . sj(nd)]
T represent j-th source (nd is the number of samples).

In the present work, we consider the case of ns = 2 sources, which is represen-
tative in applications such as the design of gas sensor arrays and separation of
scanned mixtures. In this case, the i-th mixture can be represented by the vector

xi = ai1s1 + ai2s2 + ai3s1 ◦ s2, (1)

where ◦ stands for the element-wise product operator (Hadamard product), while
the mixing coefficients are denoted by aij .

An interesting aspect of (1) is that it can be interpreted as a linear mixing
process in which the sources are given by s1, s2 and s1 ◦ s2. Therefore, in an
overdetermined case, with three mixtures given by⎡⎣x1(n)x2(n)

x3(n)

⎤⎦ =

⎡⎣a11 a12 a13a21 a22 a23
a31 a32 a33

⎤⎦⎡⎣ s1(n)
s2(n)

s1(n)s2(n)

⎤⎦ , ∀n ∈ {1, . . . , nd}, (2)

it is possible to achieve source separation by means of a linear separating system,
in which the recovered sources are given by[

y1(n)
y2(n)

]
=

[
w11 w12 w13

w21 w22 w23

]⎡⎣x1(n)x2(n)
x3(n)

⎤⎦ , ∀n ∈ {1, . . . , nd}. (3)
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As will be discussed in the sequel, source separation in this case can be per-
formed by firstly canceling the nonlinear elements of the mixtures, followed by
the application of a linear BSS method.

3 Sparsity-Based Cancellation of Quadratic Terms

3.1 The Main Idea

Since we have access to, at least, three mixtures, it is possible to linearly combine
them in order to extract the quadratic term expressed in (2). Let us consider
the linear combination between the mixtures xi and xj :

zij = xi − αijxj , (4)

where the index ij corresponds to the mixtures considered in the combination.
According to (1), zij can be rewritten as follows

zij = (ai1 − αijaj1)s1 + (ai2 − αijaj2)s2 + (ai3 − αijaj3)s1 ◦ s2 (5)

Therefore, when αij = ai3/aj3, zij becomes a linear mixture of s1 and s2.
The implementation of the idea described above requires the definition of a

criterion to guide the estimation of αij . A possible idea to accomplish this task
can be formulated by rewriting (5) in a transformed domain, which is achieved
by multiplying zij by the nd × nd orthonormal matrix Φ that represents such a
transformation. In mathematical terms,

z′ij = Φzij = (ai1 − αijaj1)Φs1 + (ai2 − αijaj2)Φs2 + (ai3 − αijaj3)Φ(s1 ◦ s2)
= (ai1 − αijaj1)s

′
1 + (ai2 − αijaj2)s

′
2 + (ai3 − αijaj3)Φ(s1 ◦ s2),

(6)
where s′i is the representation in the transformed domain of the source si.

Let us consider for instance that the orthonormal matrix Φ is related to a
frequency transformation, e.g. the discrete cosine transform (DCT). Moreover,
let us assume that both s′1 and s′2 are sparse vectors, in the sense that not all
frequency components of these signals are not null. Note that the term Φ(s1◦s2)
in (6) is related to the convolution of s′1 and s′2, since it is given by the DCT
transform of a product in time. The key point here is that the convolution of s′1
and s′2 tends to produce a signal that is not sparse, or at least less sparse than
s′1 and s′2, as the nonlinear term causes a spreading in the frequency domain
— this feature is illustrated in Figure 1. Based on this observation, our idea
is to adjust αij by maximizing the degree of sparsity of z′ij . If the �0-norm,
which corresponds to the number of non-zero elements of a vector, is adopted
as a measure of sparsity [15], then our idea can be formulated as the following
optimization problem

min
αij

||Φzij ||0. (7)

It is worth mentioning that the matrix Φ should not necessarily be related with
a frequency transform. The only requirement is that Φ somehow spreads the
representation of (s1 ◦ s2). This point will be further discussed in the sequel.



242 L.T. Duarte et al.

0 10 20 30 40 50 60 70 80 90 100
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

s′ 1

(a) s′1.
0 10 20 30 40 50 60 70 80 90 100

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

s′ 2

(b) s′2.
0 10 20 30 40 50 60 70 80 90 100

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Φ
(s

1
◦
s 2

)

(c) Φ(s1 ◦ s2).

Fig. 1. DCTs of the sources and of the product between these sources

3.2 Theoretical Aspects

We here discuss some theoretical aspects related to the idea expressed in (7).
In particular, we provide the guidelines for establishing general conditions for
which our proposal is valid. In our analysis, we assume that the mixing matrix is
full rank. Moreover, we assume that ||Φ(s1 ◦ s2)||0 ≥ max(||s′1||0, ||s′2||0). As our
analysis is based on the �0-norm, it is important to introduce some properties
of this measure, which strictly speaking is not a mathematical norm [15]. Yet,
the �0-norm satisfies the triangle inequality, that is, given two vectors a and b,
then ||a+ b||0 ≤ ||a||0 + ||b||0. As a consequence, the �0-norm also satisfies the

reverse triangle inequality, i.e., ||a − b||0 ≥
∣∣∣||a||0 − ||b||0∣∣∣. Finally, the �0-norm

is scale invariant, i.e., ||ka||0 = ||a||0 for k �= 0.
In order to investigate the cost function ||Φzij ||0, let us rewrite (6) as follows:

z′ij = as′1 + bs′2 + cΦ(s1 ◦ s2). (8)

Ideally, to be in accordance with our idea, ||z′ij ||0 should attain a minimum if,
and only if, αij = ai3/aj3, that is, when c = 0. In this case, one only has the
linear terms of the mixture, and, thus, by considering the triangle inequality and
the scaling invariance property, it turns out that

||z′ij ||0 ≤ ||s′1||0 + ||s′2||0. (9)

We can also investigate ||z′ij ||0 in the cases in which αij does not lead to the
cancellation of the quadratic term, i.e. when c �= 0 in (8). In these situations, our
idea will work when ||z′ij ||0 is greater than the upper bound (9). When a = 0,
b �= 0, and c �= 0, one can use the reverse triangle inequality to obtain the
following lower bound

||z′ij ||0 = ||bs′2 + cΦ(s1 ◦ s2)||0 ≥ ||Φ(s1 ◦ s2)||0 − ||s′2||0. (10)

Analogously, when a �= 0, b = 0, and c �= 0, one can easily show that

||z′ij ||0 ≥ ||Φ(s1 ◦ s2)||0 − ||s′1||0. (11)
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Finally, when a �= 0, b �= 0, and c �= 0, the following lower bound for ||z′ij ||0
can be obtained after the application of the triangle inequality followed by the
application of the reversed triangle inequality

||z′ij ||0 ≥ ||Φ(s1 ◦ s2)||0 − ||s′1||0 − ||s′2||0. (12)

Among the bounds expressed in (10), (11) and (12), and the bound ||Φ(s1◦s2)||0
obtained when a = 0, b = 0, c �= 0, the bound shown in (12) is the smallest one.
Therefore, if the lower bound (12) is greater than the higher bound (9), then
||Φzij ||0 will necessarily reach the global minimum at αij = ai3/aj3 (i.e. c = 0).
This observation leads to the following sufficient condition:

||Φ(s1 ◦ s2)||0 − ||s′1||0 − ||s′2||0 > ||s′1||0 + ||s′2||0, (13)

i.e.
||Φ(s1 ◦ s2)||0 > 2 (||s′1||0 + ||s′2||0) (14)

Some observations can be made on this condition. Firstly, the importance of
defining a proper transformation, for which the representation of the quadratic
terms is as spread as possible, becomes clear. Note that such a requirement
becomes less stringent when the sources have a high degree of sparsity in the
transformed domain. For instance, in the situation illustrated in Figure 1, it is
clear that the DCT satisfies the sufficient condition expressed in (14). Moreover,
when Φ is given by a random matrix submitted to an orthogonalization process,
condition (14) can be satisfied for many different configurations of the sources.

A second point related to (14) is that it provides a sufficient but not necessary
condition. Actually, this condition is quite pessimistic, as it considers a very
peculiar configuration of the positions for which the signals s′1 and s′2 take non-
zero values.

3.3 Implementation Issues

In a practical application, the use of the �0-norm is quite limited, since sparse
signals in practice have many elements that are close to zero, but that are not
necessarily null. Thus, approximations of the �0-norm must be considered. A
possible choice is the smoothed version of �0-norm [16], which, for a given signal
y, is defined as follows:

S�0(y) = nd −
nd∑
i=1

f(y(i), σ), (15)

where f(·, σ) corresponds to a zero mean Gaussian kernel of standard deviation
σ. As σ approaches to zero, (15) approaches to the �0-norm. Ideally, the choice
of σ depends on how close to zero the low-energy elements of a given signal are.

We can now introduce a general scheme for source separation in overdeter-
mined LQ mixtures of two sources. The proposal, which can be applied when
the number of mixtures is greater than 2, is composed of the following steps: 1)
Cancellation of quadratic terms : considering np > 1 pairs of mixtures, xi and
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xj , find, for each of these pairs, an αij which minimizes S�0(z
′
ij). This procedure

will provide the set of signals that, ideally, correspond to linear mixtures of the
sources. 2) Source separation: apply a linear source separation (or extraction)
method on the signals obtained in the first stage.

The first stage of the proposed strategy boils down to np univariate opti-
mization problems, which, in our work, are carried out by an exhaustive search
approach. Note that the first stage can be conducted even when the sources are
not statistically independent. Of course, in this case, the second stage should be
able to deal with linear mixtures of dependent sources.

4 Results

Let us consider an overdetermined LQ source separation problem in which the
mixing matrix is given by A = [1 0.5 2; 0.5 1 4; 1 1 3] (see formulation ex-
pressed in (2)). The sources here are sparse in the DCT domain. To generate the
DCT coefficients, we firstly obtained 500 samples from a distribution uniformly
distributed in [−0.5, 0.5]. Then, we replaced a given percentage of the gener-
ated elements by samples obtained from a zero-mean Gaussian distribution of
standard deviation 0.001 (these are the low-energy DCT coefficients). The per-
centages of these low-energy elements were 90% for the first source and 70%
for the second source, and their position were randomly selected. Finally, the
sources shared 50 DCT coefficients (these coefficiecients are not the ones with
small values), which make them statistically dependent.

In order to remove the quadratic terms in the mixtures, we applied the pro-
posed method to the pairs of mixtures (x1,x2) and (x1,x3). After performing 10
runs, each one considering a different set of sources generated according to the
procedure described above, our method provided very good solutions in every
runs. Indeed, the obtained mean values were α12 = 0.5012 and α13 = 0.6671,
which are very close to the ideal values α12 = 1/2 and α13 = 2/3. To illustrate
that the nonlinear terms were removed in this situation, we plot in Figure 2 the
DCT coefficients of the sources, mixtures and the provided signals z12 and z13
obtained in a given run. Note that the DCT coefficients of the obtained signals
are clearly sparser than those of the mixtures.

With the obtained linear mixtures at hand, we applied the source extraction
method proposed in [17] to retrieve the sparsest component. As discussed in [17],
this method is able to conduct source separation even when the sources are de-
pendent. Indeed, the sparsest source was estimated with a signal-to-interference
ratio1 (SIR) of 58.7dB. On the other hand, the SIRs obtained after the ap-
plication of the ICA-based solution proposed in [14] were 4.0dB (first source)
and 7.1dB (second source). These low values can be attributed to the fact that
the sources were not independent in the considered scenario, thus violating the
central assumption of ICA methods.

1 The SIR is defined as = 10 log
(
E{ŷ2

i }/E{(ŝi − ŷi)
2}), where ŝi and ŷi are, respec-

tively, the actual source and its estimate, being both ones obtained after mean,
variance and sign normalization.
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Fig. 2. Obtained linear mixtures

5 Conclusions

We proposed a method for suppressing the quadratic terms of overdetermined LQ
mixtures. Our approach works with the assumption that the sources are sparse
when represented in a proper domain, which should be known in advance, and is
based on a �0-norm minimization procedure. We provided theoretical elements
that points out that our proposal is suitable for the cases in which the quadratic
terms admit a representation in the considered domain that is less sparse than
those of the sources. A numerical experiment illustrated the effectiveness of the
obtained method, especially when the sources are dependent.

There are several points to be investigated in future works. For instance, a first
one is to extend the theoretical analysis conducted in this paper to the case of the
smoothed �0-norm, paying special attention to the influence of the parameter σ.
Another relevant point is to investigate if the two-stage procedure described in
Section 3.3 can be merged into a unique step guided by the minimization of the
sparsity of the retrieved sources. Finally, we intent to investigate the extension
of the idea to the case in which the number of sources is greater than two, and
its application to actual problems.
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2003. LNCS, vol. 2687, pp. 241–248. Springer, Heidelberg (2003)

8. Merrikh-Bayat, F., Babaie-Zadeh, M., Jutten, C.: Linear-quadratic blind source
separating structure for removing show-through in scanned documents. Interna-
tional Journal on Document Analysis and Recognition, 1–15 (2010)

9. Bedoya, G.: Nonlinear blind signal separation for chemical solid-state sensor arrays.
PhD thesis, Universitat Politecnica de Catalunya (2006)

10. Deville, Y., Hosseini, S.: Recurrent networks for separating extractable-target non-
linear mixtures. part i: Non-blind configurations. Signal Processing 89, 378–393
(2009)

11. Castella, M.: Inversion of polynomial systems and separation of nonlinear mixtures
of finite-alphabet sources. IEEE Trans. on Sig. Proc. 56(8), 3905–3917 (2008)

12. Abed-Meraim, K., Belouchrani, A., Hua, Y.: Blind identification of a linear-
quadratic mixture of independent components based on joint diagonalization pro-
cedure. In: Proc. of the IEEE Inter. Conf. on Acous., Spee., and Signal Processing,
ICASSP (1996)

13. Deville, Y., Hosseini, S.: Blind identification and separation methods for linear-
quadratic mixtures and/or linearly independent non-stationary signals. In: Proc.
of the 9th Int. Symp. on Sig. Proc. and its App., ISSPA (2007)

14. Duarte, L.T., Suyama, R., Attux, R., Deville, Y., Romano, J.M.T., Jutten, C.: Blind
Source Separation of Overdetermined Linear-Quadratic Mixtures. In: Vigneron, V.,
Zarzoso, V., Moreau, E., Gribonval, R., Vincent, E. (eds.) LVA/ICA 2010. LNCS,
vol. 6365, pp. 263–270. Springer, Heidelberg (2010)

15. Elad, M.: Sparse and redundant representations from theory to applications in
signal and image processing. Springer, Heidelberg (2010)

16. Mohimani, H., Babaie-Zadeh, M., Jutten, C.: A fast approach for overcomplete
sparse decomposition based on smoothed �0 norm. IEEE Transactions on Signal
Processing 57(1), 289–301 (2009)

17. Duarte, L.T., Suyama, R., Attux, R., Romano, J.M.T., Jutten, C.: Blind extrac-
tion of sparse components based on �0-norm minimization. In: Proc. of the IEEE
Statistical Signal Processing Workshop, SSP (2011)



Collaborative Filtering via Group-Structured

Dictionary Learning
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Abstract. Structured sparse coding and the related structured dictio-
nary learning problems are novel research areas inmachine learning. In this
paper we present a new application of structured dictionary learning for
collaborative filtering based recommender systems. Our extensive numer-
ical experiments demonstrate that the presented method outperforms its
state-of-the-art competitors and has several advantages over approaches
that do not put structured constraints on the dictionary elements.

Keywords: collaborative filtering, structured dictionary learning.

1 Introduction

The proliferation of online services and the thriving electronic commerce over-
whelms us with alternatives in our daily lives. To handle this information over-
load and to help users in efficient decision making, recommender systems (RS)
have been designed. The goal of RSs is to recommend personalized items for
online users when they need to choose among several items. Typical problems
include recommendations for which movie to watch, which jokes/books/news to
read, which hotel to stay at, or which songs to listen to.

One of the most popular approaches in the field of recommender systems is
collaborative filtering (CF). The underlying idea of CF is very simple: Users
generally express their tastes in an explicit way by rating the items. CF tries to
estimate the users’ preferences based on the ratings they have already made on
items and based on the ratings of other, similar users. For a recent review on
recommender systems and collaborative filtering, see e.g., [1].

Novel advances on CF show that dictionary learning based approaches can
be efficient for making predictions about users’ preferences [2]. The dictionary
learning based approach assumes that (i) there is a latent, unstructured feature
space (hidden representation/code) behind the users’ ratings, and (ii) a rating
of an item is equal to the product of the item and the user’s feature. To increase
the generalization capability, usually �2 regularization is introduced both for the
dictionary and for the users’ representation.
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Recently it has been shown both theoretically and via numerous applica-
tions (e.g., automatic image annotation, feature selection for microarray data,
multi-task learning, multiple kernel learning, face recognition, structure learn-
ing in graphical models) that it can be advantageous to force different kind of
structures (e.g., disjunct groups, trees) on the hidden representation. This regu-
larization approach is called structured sparsity [3]. The structured sparse coding
problem assumes that the dictionary is already given. A more interesting (and
challenging) problem is the combination of these tasks, i.e., learning the best
structured dictionary and structured representation. This is the structured dic-
tionary learning (SDL) problem. SDL is more difficult than structured sparse
coding; one can only find few results in the literature [4–8]. This novel field is
appealing for (i) transformation invariant feature extraction [8], (ii) image de-
noising/inpainting [4, 6], (iii) background subtraction [6], (iv) analysis of text
corpora [4], and (v) face recognition [5].

Several successful applications show the importance of the SDL problem fam-
ily. Interestingly, however, to the best of our knowledge, it has not been used
for the collaborative filtering problem yet. The goal of our paper is to extend
the application domain of SDL to CF. In CF further constraints appear for SDL
since (i) online learning is desired, and (ii) missing information is typical. There
are good reasons for them: novel items/users may appear and user preferences
may change over time. Adaptation to users also motivate online methods. Online
methods have the additional advantage with respect to offline ones that they can
process more instances in the same amount of time, and in many cases this can
lead to increased performance. For a theoretical proof of this claim, see [9]. Usu-
ally users can evaluate only a small portion of the available items, which leads
to incomplete observations, missing rating values. In order to cope with these
constraints of the collaborative filtering problem, we will use a novel extension of
the structured dictionary learning problem, the so-called online group-structured
dictionary learning (OSDL) [10]. OSDL allows (i) overlapping group structures
with (ii) non-convex sparsity inducing regularization, (iii) partial observation
(iv) in an online framework.

Our paper is structured as follows: We briefly review the OSDL technique in
Section 2. We cast the CF problem as an OSDL task in Section 3. Numerical
results are presented in Section 4. Conclusions are drawn in Section 5.

Notations. Vectors have bold faces (a), matrices are written by capital letters
(A). For a set, | · | denotes the number of elements in the set. For set O ⊆
{1, . . . , d}, aO ∈ R|O| (AO ∈ R|O|×D) denotes the coordinates (columns) of
vector a ∈ Rd (matrix A ∈ Rd×D) in O. The �p (quasi-) norm of vector a ∈ Rd

is ‖a‖p = (
∑d

i=1 |ai|p)
1
p (p > 0). Sd

p = {a ∈ Rd : ‖a‖p ≤ 1} denotes the �p unit

sphere in Rd. The point-wise product of a,b ∈ Rd is a◦b = [a1b1; . . . ; adbd]. For
a set system1 G, the coordinates of vector a ∈ R|G| are denoted by aG (G ∈ G),
that is, a = (aG)G∈G.

1 A set system is also called hypergraph or a family of sets.
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2 The OSDL Problem

In this section we formally define the online group-structured dictionary learn-
ing problem (OSDL). Let the dimension of the observations be denoted by dx.
Assume that in each time instant (i = 1, 2, . . .) a set Oi ⊆ {1, . . . , dx} is given,
that is, we know which coordinates are observable at time i, and the observa-
tion is xOi . Our goal is to find a dictionary D ∈ Rdx×dα that can accurately
approximate the observations xOi from the linear combinations of the columns
of D. These column vectors are assumed to belong to a closed, convex, and
bounded set D = ×dα

i=1Di. To formulate the cost of dictionary D, first a fixed
time instant i, observation xOi , and dictionary D are considered, and the hidden
representation αi associated to this (xOi ,D, Oi) triple is defined. Representa-
tion αi is allowed to belong to a closed, convex set A ⊆ Rdα (αi ∈ A) with
certain structural constraints. The structural constraints on αi are expressed by
making use of a given G group structure, which is a set system on {1, . . . , dα}.
Representation α belonging to a triple (xO,D, O) is defined as the solution of
the structured sparse coding task

l(xO,DO) = min
α∈A

[
1

2
‖xO −DOα‖22 + κΩ(α)

]
, (1)

where l(xO,DO) denotes the loss, κ > 0, and Ω(y) = ‖(‖yG‖2)G∈G‖η is the
structured regularizer associated to G and η ∈ (0, 1]. Here, the first term of (1)
is responsible for the quality of approximation on the observed coordinates. The
second term constrains the solution according to the group structure G similarly
to the sparsity inducing regularizer Ω in [5], i.e., it eliminates the terms ‖yG‖2
(G ∈ G) by means of ‖·‖η. The OSDL problem is defined as the minimization of
the cost function:

min
D∈D

ft(D) :=
1∑t

j=1(j/t)
ρ

t∑
i=1

(
i

t

)ρ

l(xOi ,DOi). (2)

Here the goal is to minimize the average loss belonging to the dictionary, where
ρ is a non-negative forgetting factor. If ρ = 0, we get the classical average.

As an example, let Di = Sdx
2 (∀i), A = Rdα . In this case, columns of D

are restricted to the Euclidean unit sphere and we have no constraints for α.
Now, let |G| = dα and G = {desc1, . . . , descdα}, where desci represents the ith

node and its children in a fixed tree. Then the coordinates {αi} are searched
in a hierarchical tree structure and the hierarchical dictionary D is optimized
accordingly.

Optimization of cost function (2) is equivalent to the joint optimization:

argmin
D∈D,{αi∈A}t

i=1

ft(D, {αi}ti=1) =
1∑t

j=1
(j/t)ρ

t∑
i=1

(
i

t

)ρ [1
2
‖xOi −DOiαi‖22 + κΩ(αi)

]
.

By using the sequential observations xOi , one can optimize D online in an al-
ternating manner: The actual dictionary estimation Dt−1 and sample xOt are
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used to optimize (1) for representation αt. After this step, when the estimated
representations {αi}ti=1 are given, the dictionary estimation Dt is derived from
the quadratic optimization problem

f̂t(Dt) = min
D∈D

ft(D, {αi}ti=1). (3)

These optimization problems can be tackled by making use of the variational
property [5] of norm η and using the block-coordinate descent method, which
leads to matrix recursions [10].2

3 OSDL Based Collaborative Filtering

Below, we transform the CF task into an OSDL problem. Consider the tth user’s
known ratings as OSDL observations xOt . Let the optimized group-structured
dictionary on these observations be D. Now, assume that we have a test user
and his/her ratings, i.e., xO ∈ R|O|. The task is to estimate x{1,...,dx}\O, that
is, the missing coordinates of x (the missing ratings of the user). This can be
accomplished by the following steps (Table 1).

Table 1. Solving CF with OSDL

1. Remove the rows of the non-observed {1, . . . , dx}\O coordinates from D. The ob-
tained |O| × dα sized matrix DO and xO can be used to estimate α by solving the
structured sparse coding problem (1).

2. Using the estimated representation α, estimate x as x̂ = Dα.

According to the CF literature, neighbor based correction schemes may further
improve the quality of the estimations [1]. This neighbor correction approach re-
lies on the assumption that similar items (e.g., jokes/movies) are rated similarly.
As we will show below, these schemes can be adapted to OSDL-based CF es-
timation too. Assume that the similarities sij ∈ R (i, j ∈ {1, . . . , dx}) between
individual items are given. We shall provide similarity forms in Section 4. Let
dkαt ∈ R be the OSDL estimation for the rating of the kth non-observed item
of the tth user (k �∈ Ot), where dk ∈ R1×dα is the kth row of matrix D ∈ Rdx×dα ,
and αt ∈ Rdα is computed as described in Table 1. Let the prediction error on
the observable item neighbors (j) of the kth item of the tth user (j ∈ Ot\{k})
be djαt − xjt ∈ R. These prediction errors can be used for the correction of the
OSDL estimation (dkαt) by taking into account the skj similarities:

x̂kt = γ0(dkαt) + γ1

[∑
j∈Ot\{k} skj(djαt − xjt)∑

j∈Ot\{k} skj

]
, (4)

where γ0, γ1 ∈ R are weight parameters, and k �∈ Ot . Equation (4) is a simple
modification of the corresponding expression in [2]. It modulates the first term
with a separate γ0 weight, which we found beneficial in our experiments.

2 The Matlab code of the method is available at http://nipg.inf.elte.hu/szzoli.

http://nipg.inf.elte.hu/szzoli
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4 Numerical Results

We have chosen the Jester dataset [11] for the illustration of the OSDL based CF
approach. It is a standard benchmark dataset for CF. It contains 4, 136, 360 rat-
ings from 73, 421 users on 100 jokes. The ratings are in the continuous [−10, 10]
range. The worst and best possible grades are −10 and +10, respectively. A fixed
10 element subset of the jokes is called gauge set, and it was evaluated by all
users. Two third of the users have rated at least 36 jokes, and the remaining
ones have rated between 15 and 35 jokes. The average number of user ratings
per joke is 46.

In the neighbor correction step (4), we need the sij values, which represent
the similarities of the ith and jth items. We define this sij = sij(di,dj) value as
the similarity between the ith and jth rows of the optimized OSDL dictionary
D. We made experiments with the following two similarities (S1, S2):

S1 : sij =

(
max(0,did

T
j )

‖di‖2 ‖dj‖2

)β

, and S2 : sij =

(
‖di − dj‖22
‖di‖2 ‖dj‖2

)−β

. (5)

Here β > 0 is the parameter of the similarity measure [2]. Quantities sij are
non-negative. If the value of sij is close to zero (large), then the ith and jth

items are very different (very similar).
In our numerical experiments we used the RMSE (root mean square error)

measure for the evaluation of the quality of the estimation, since this is the
most popular measure in the CF literature. The RMSE is the average squared
difference of the true and the estimated rating values:

RMSE =

√√√√ 1

|S|
∑

(i,t)∈S

(xit − x̂it)2, (6)

where S denotes either the validation or the test set. We also performed experi-
ments using the mean absolute error (MAE) and got very similar results.

4.1 Evaluation

We illustrate the efficiency of the OSDL-based CF estimation on the Jester
dataset using the RMSE performance measure. To the best of our knowledge, the
top results on this database are RMSE = 4.1123 [12] and RMSE = 4.1229 [2]. The
method in the first paper is called item neighbor, and it makes use of neighbor
information only. In [2], the authors used a bridge regression based unstructured
dictionary learning model with a neighbor correction scheme. They optimized
the dictionary by gradient descent and set dα to 100.

To study the capability of the OSDL approach in CF, we focused on the
following questions:
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– Is structured dictionary D beneficial for prediction purposes, and how does
it compare to the dictionary of classical (unstructured) sparse dictionary?

– How does the OSDL parameters and the similarity applied affect the effi-
ciency of the prediction?

– How do different group structures G fit to the CF task?

In our numerical studies we chose the Euclidean unit sphere for Di = Sdx
2 (∀i)

and A = Rdα . We set η of the structure inducing regularizer Ω to 0.5. Group
structure G was realized (i) either on a

√
dα×

√
dα toroid with |G| = dα applying

r ≥ 0 neighbors to define G,3 or (ii) on a hierarchy with a complete binary
tree structure parameterized by the number of levels l (|G| = dα, dα = 2l − 1).
The forgetting factor (ρ), the weight of Ω (κ), the size of the mini-batches in
D optimization (R), and the parameter of the Si similarities (β) were chosen
from the sets {0, 1

64 ,
1
32 ,

1
16 ,

1
8 ,

1
4 ,

1
2 , 1}, {

1
2−1 ,

1
20 ,

1
21 ,

1
22 ,

1
24 ,

1
26 , . . . ,

1
214 }, {8, 16},

and {0.2, 1, 1.8, . . . , 14.6}, respectively. We used a 90%−10% (80% training, 10%
validation, 10% test) random split for the observable ratings in our experiments,
similarly to [2].

First, we provide results using toroid group structure. The size of the toroid
was 10× 10 (dα = 100). In the first experiment we study how the size of neigh-
borhood (r) affects the results. To this end, we set the neighborhood size to
r = 0 (no structure), and then increased it to 1, 2, 3, 4, and 5. For each (κ, ρ, β),
the minimum of the validation/test surface w.r.t. β is illustrated in Fig. 1(a)-(b).
According to our experiences, the validation and test surfaces are very similar
for a fixed neighborhood parameter r. It implies that the validation surfaces
are good indicators for the test errors. For the best r, κ and ρ parameters, we
can also observe that the validation and test curves (as functions of β) are very
similar [Fig. 1(c)]. Note that (i) both curves have only one local minimum, and
(ii) these minimum points are close to each other. The quality of the estimation
depends mostly on the κ regularization parameter. The estimation is robust to
the different choices of forgetting factor ρ (see Fig. 1(a)-(b)), and this parameter
can only help in fine-tuning the results.

From our results (Table 2), we can see that structured dictionaries (r > 0) are
advantageous over those methods that do not impose structure on the dictionary
elements (r = 0). Based on this table we can also conclude that the estimation is
robust to the selection of the similarity (S) and the mini-batch size (R). We got
the best results using similarity S1 and R = 8. Similarly to the role of parameter
ρ, adjusting S and R can only be used for fine-tuning. When we increase r up
to r = 4, the results improve. However, for r = 5, the RMSE values do not
improve anymore; they are about the same when using r = 4. The smallest
RMSE we could achieve was 4.0774, and the best known result so far was RMSE
= 4.1123 [12]. This proves the efficiency of our OSDL based collaborative filtering
algorithm. We note that our RMSE result seems to be significantly better than
that of the competitors: we repeated this experiment 5 more times with different
randomly selected training, test, and validation sets, and our RMSE results have
never been worse than 4.08.
3 For r = 0 (G = {{1}, . . . , {dα}}) one gets the classical sparse code based dictionary.
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Fig. 1. (a)-(b): validation and test surface as a function of forgetting factor (ρ) and
regularization (κ). For a fixed (κ, ρ) parameter pair, the surfaces show the best RMSE
values optimized in the β similarity parameter. (c): validation and test curves for the
optimal parameters (κ = 1

210
, ρ = 1

25
, mini-batch size R = 8). (a)-(c): neighbor size:

r = 4, group structure (G): toroid, similarity: S1.

Table 2. Performance of the OSDL prediction using toroid group structure (G) with
different neighbor sizes r (r = 0: unstructured case). Left: mini-batch size R = 8, right:
R = 16. First row: S1, second row: S2 similarity. For fixed R, the best performance is
highlighted with boldface typesetting.

R = 8 R = 16

r = 0 r = 1 r = 2 r = 3 r = 4 r = 0 r = 1 r = 2 r = 3 r = 4
S1 4.1594 4.1326 4.1274 4.0792 4.0774 4.1611 4.1321 4.1255 4.0804 4.0777
S2 4.1765 4.1496 4.1374 4.0815 4.0802 4.1797 4.1487 4.1367 4.0826 4.0802

In our second experiment, we studied how the hierarchical group structure G
affects the results. Our obtained results are similar to that of the toroid structure.
We experimented with hierarchy level l = 3, 4, 5, 6 (i.e, dα = 7, 15, 31, 63),
and achieved the best result for l = 4. The RMSE values decrease until l = 4,
and then increase for l > 4. Our best obtained RMSE value is 4.1220, and
it was achieved for dimension dα = 15. We note that this small dimensional,
hierarchical group structure based result is also better than that of [2], which
makes use of unstructured dictionaries with dα = 100 and has RMSE = 4.1229.
Our result is also competitive with the RMSE = 4.1123 value of [12].

To sum up, in the studied CF problem on the Jester dataset we found that
(i) the application of group structured dictionaries has several advantages and
the proposed algorithm can outperform its state-of-the-art competitors. (ii) The
toroid structure provides better results than the hierarchical structure, (iii) the
quality of the estimation mostly depends on the structure inducing Ω regular-
ization (κ, G, r or l), and (iv) it is robust to the other parameters (ρ forgetting
factor, Si similarity, R mini-batch size).
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5 Conclusions

We have proposed an online group-structured dictionary learning (OSDL) ap-
proach to solve the collaborative filtering (CF) problem. We casted the CF
estimation task as an OSDL problem, and demonstrated the applicability of
our novel approach on joke recommendations. Our extensive numerical experi-
ments show that structured dictionaries have several advantages over the state-
of-the-art CF methods: more precise estimation can be obtained, and smaller
dimensional feature representation can be sufficient by applying group structured
dictionaries.
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10. Szabó, Z., Póczos, B., Lőrincz, A.: Online group-structured dictionary learning. In:
CVPR 2011, pp. 2865–2872 (2011)

11. Goldberg, K., Roeder, T., Gupta, D., Perkins, C.: Eigentaste: A constant time
collaborative filtering algorithm. Inform. Retrieval 4, 133–151 (2001)
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Abstract. Polytope Faces Pursuit is an algorithm that solves the stan-
dard sparse recovery problem. In this paper, we consider the case of
block structured sparsity, and propose a novel algorithm based on the
Polytope Faces Pursuit which incorporates this prior knowledge. The
so-called Group Polytope Faces Pursuit is a greedy algorithm that adds
one group of dictionary atoms at a time and adopts a path following ap-
proach based on the geometry of the polar polytope associated with the
dual linear program. The complexity of the algorithm is of similar order
to Group Orthogonal Matching Pursuit. Numerical experiments demon-
strate the validity of the algorithm and illustrate that in certain cases
the proposed algorithm outperforms the Group Orthogonal Matching
Pursuit algorithm.

Keywords: block-sparsity, polytopes, sparse representations.

1 Introduction

Over recent years, the study of sparse representations [1] has seen an increasing
interest among researchers and its significance has been highlighted in numerous
signal processing applications ranging from signal acquisition to de-noising and
from coding to source separation. Sparse representations are signal expansions
that can accurately represent the signal of interest using a linear combination
of a relatively small number of significant coefficients drawn from a basis or a
redundant dictionary.

Let y ∈ RM be the observed vector that we need to decompose and represent
in the dictionary A of size M × N with M < N using a small number K of
significant coefficients corresponding to the columns of the full rank matrix A.
The sparse representation problem can then be formulated:

y = Ax (1)

where x = [x1, . . . , xN ]T is a K -sparse vector, namely it has only K = ‖x‖0
non-zero entries, with K $ N . The above system of linear equations is said
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to be an underdetermined system, as the number of unknowns is larger than
the number of equations. Such a system yields an infinite number of solutions.
In sparse coding we are interested in obtaining the sparsest solution which has
the smallest number of non-zero elements. Two well studied algorithms that can
recover under certain conditions the sparse vector x in equation (1) are Basis
Pursuit (BP) [2] and Orthogonal Matching Pursuit (OMP) [3].

The conventional sparsity model assumes that the non-zero coefficients can be
located anywhere in the sparse vector. However, block structures, which imply
that the non-zero elements are grouped in blocks (or clusters) instead of being
arbitrarily located throughout the vector x, can appear in practical scenarios.
More specifically, the sparse coefficients in multi-band signals [4] or harmonic
signals [5] can be clustered in groups of dictionary atoms. In that special case
of structured sparsity the block-sparse vector x is treated as a concatenation of
blocks of length d:

x = [x1 . . . xd︸ ︷︷ ︸
xT [1]

xd+1 . . . x2d︸ ︷︷ ︸
xT [2]

. . . xN−d+1 . . . xN︸ ︷︷ ︸
xT [P ]

] (2)

where x[p] denotes the p-th block and N = Pd. In [6] the block k-sparse vector
is defined as the vector x ∈ RN that has non-zero �2 norm for at most k indices
out of P , namely:

‖x‖2,0 =

P∑
p=1

I(‖x[p]‖2 > 0) ≤ k (3)

where I(.) is the indicator function.
It follows that the redundant dictionary A can also be represented as a con-

catenation of P block matrices:

A = [a1 . . . ad︸ ︷︷ ︸
AT [1]

ad+1 . . .a2d︸ ︷︷ ︸
AT [2]

. . . aN−d+1 . . . aN︸ ︷︷ ︸
AT [P ]

] (4)

where A[p] denotes the p-th column block matrix of size M × d.
In order to solve the problem in equation (1) one can attempt the minimization

of the mixed �2/�1 norm [6]:

min
x
‖x‖2,1 such that y = Ax (5)

where ‖x‖2,1 =
∑P

p=1 ‖x[p]‖2. Moreover, greedy algorithms can serve as alterna-
tives to the optimization in equation (5) e.g. Group Orthogonal Matching Pursuit
(G-OMP) [6].

2 Review of the Polytope Faces Pursuit Algorithm

In this section we will review the original Polytope Faces Pursuit (PFP) algo-
rithm, which we will generalize to group form in section 3. The traditional �1-
minimization problem can be converted to its standard form using nonnegative
coefficients:
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min
x̃

1T x̃ such that y = Ãx̃, x̃ ≥ 0 (6)

where 1 is a column vector of ones, Ã = [A,−A] and x̃ is the 2N nonnegative
vector:

x̃i =

{
max(xi, 0) 1 ≤ i ≤ N

max(−xi−N , 0) N + 1 ≤ i ≤ 2N.
(7)

The new linear program has a corresponding dual linear program:

max
c

yT c such that ÃT c ≤ 1 (8)

such that a bounded solution to (8) exists if and only if a bounded solution
to (6) exists. Thus, we can initially look for a solution c∗ to (8) and use the
Karush-Kuhn-Tucker (KKT) [7] conditions to solve the resulting system for x∗.

The algorithm in an iterative fashion adds one vector at a time, the one with
the maximum scaled correlation:

ak = arg max
ai /∈Ãk

aTi r
k−1

1− aTi c
k−1

. (9)

After updating the solution vector x̃ and the corresponding c the algorithm
iterates until the stopping criteria is met. The full PFP algorithm is given in [8].

3 Recovery of Block-Sparse Signals via Group Polytope
Faces Pursuit

3.1 Group Selection Criterion

As has been described in [8], the Polytope Faces Pursuit algorithm, based on
the conventional sparsity model, starts at c = 0 and adopts a path following
approach towards the residual until it hits a face of the polar polytope P ∗ = {c |
±aiT c ≤ 1, ai ∈ A}, which is dual to the primal polytope P = conv{±ai, ai ∈
A}. The next face encountered is the one along the current face towards the
projected residual. More specifically, the path of the PFP algorithm at the k-th
iteration can be defined as:

hk = aTi (c
k + αrk). (10)

The next face will be encountered for the minimum α such that hk = 1. A
little manipulation of this condition leads to the maximum scaled correlation of
equation (9) as the atom selection criterion of the PFP algorithm.

In order to extend this to the block sparsity case, inspired from the work in [9]
which proposes an implementation of the group LARS algorithm, at each step
of the algorithm we are looking for a minimum α such that:

‖Ã[i]T (ck + αrk)− 1‖22 = 0 for i = 1, ..., P (11)
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where Ã[i] = [A[i],−A[i]] is the M × 2d doubled block matrix and in the above
expression we consider only d atoms for which the inner product with the residual
is nonnegative. After computations we end up with the following second order
polynomial:

λ2‖1− Ã[i]T c‖22 − 2λ(1T − Ã[i]cT )Ã[i]T r+ ‖Ã[i]T r‖22 = 0 (12)

where λ = 1/α. The discriminant of the above quadratic polynomial is given:

Δ = 4(((1T − Ã[i]cT )Ã[i]T r)2 − ‖Ã[i]T r‖22‖1− Ã[i]T c‖22). (13)

The discriminant of the polynomial of equation (12) will always be less or
equal to zero, and therefore the polynomial will have two complex conjugate so-
lutions. Considering that due to the nonnegative constraint of the solution vector
we require that Ã[i]T r > 0 and also that it always holds 1 − Ã[i]T c ≥ 0, it is
straightforward to show that (1T − Ã[i]cT )Ã[i]T r = ‖(1T − Ã[i]cT )Ã[i]T r‖2 ≤
‖Ã[i]T r‖2‖1− Ã[i]T c‖2, where the Cauchy-Schwarz inequality has been used.
Therefore, it follows that Δ ≤ 0. Consequently, the Group Polytope Faces Pur-
suit (G-PFP) algorithm at each iteration will have to choose the group of dic-
tionary atoms with the maximum λ, where:

λ=
(1T−Ã[i]cT )Ã[i]T r± j

√
‖Ã[i]T r‖22‖1−Ã[i]T c‖22−((1T−Ã[i]cT )Ã[i]T r)2

‖1− Ã[i]T c‖22
.

(14)
In order to simplify equation (14) we take the squared absolute value of the com-
plex conjugate solution and the group selection criterion of the G-PFP algorithm
reduces to:

Ã[i]k = arg max
A[i]/∈Ãk

‖Ã[i]T rk−1‖2
‖1− Ã[i]T ck−1‖2

. (15)

Note that when the block size is d = 1 equation (15) reduces to the maximum
scaled correlation of equation (9). In the next section we derive the dual linear
program for group sparse signals and show that there exists an optimum primal-
dual (x∗,c∗) pair.

3.2 Dual Linear Program of the Group Sparse Recovery Problem

The Lagrangian to the problem of equation (5) is:

L(x, c) = ‖x‖2,1 − cT (Ax− y) (16)

and subsequently, the differential of L with respect to x is:

∂xL(x, c) = ∂x‖x‖2,1 −AT c. (17)
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It can easily be shown that the subdifferential ∂x‖x‖2,1 is given by the expression
∂x‖x‖2,1 = x[p]/‖x[p]‖2 when ‖x[p]‖2 > 0. However, for the zero block-elements
of x the gradient is not defined, but ∂x‖x‖2 coincides with the set of unit �2
norm vectors Br

�2
= {u ∈ Rr|‖u‖2 ≤ 1} [10]. Therefore, for each p = 1, . . . , P ,

we have:

∂x‖x‖2,1 =

{
x[p]/‖x[p]‖2 ‖x[p]‖2 > 0

Br
�2

otherwise.
(18)

It follows that ∂x‖x‖2,1 ≤ 1. The KKT conditions require that Ax = y and
∂xL(x, c) = 0. Substituting equations (17) and (18) to the last expression we
get the dual to the problem of equation (5):

max
c

yT c such that ‖AT c‖∞ ≤ 1. (19)

Therefore, for the optimal x∗ exists a corresponding optimal c∗. According to the
KKT conditions for the primal-dual optimal (x∗,c∗) the necessary and sufficient
conditions are Ax∗ = y and ‖AT c∗‖∞ ≤ 1.

As already discussed, the G-PFP algorithm is based on the geometry of the
polar polytope associated with dual linear program and searches the optimum
vertex c∗ using a path following approach. In the following section the proposed
algorithm is derived.

3.3 The Proposed Algorithm

Let us now derive the proposed algorithm for recovery of block sparse signals.
The G-PFP algorithm is an iterative greedy algorithm that builds the solution
vector in a similar way to the G-OMP algorithm. The algorithm at the k-th iter-
ation uses equation (15) to identify the next group of atoms, where we consider
only vectors ãi for which ãTi r

k−1 > 0 within each group of atoms due to the
nonnegativity constraint of the solution vector and we exclude the groups that
have already been selected in previous iterations. Note that the first iteration
will be identical to the G-OMP algorithm as c is initialized at zero.

Next the algorithm adds the selected group of atoms to the active set and
updates the solution vector x̃k, the residual rk and the corresponding ck. The
algorithm iterates till the stopping criteria are met. The resulting algorithm of
G-PFP is given in Algorithm 1.

One of the most expensive computations of the algorithm is the calculation of
the Moore-Penrose pseudo-inverse (Ãk)† required for the update of the solution
vector x̃k and the corresponding ck at each iteration. As has already been in
discussed in [11] for the conventional sparsity PFP algorithm, directional updates
could be used (e.g. the method of conjugate gradient) instead of the Cholesky
factorization method when dealing with large scale systems.

Note also that following LARS, pretty much as we did in [11] we omit the
releasing step, which reduces the computational cost but is expected not to lead
to a large change to the result.
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Algorithm 1. Group-Polytope Faces Pursuit (G-PFP)

1: Input: Ã = [ãi], y
2: Set stopping conditions lmax and θmin

3: Initialize: k ← 0, Ik ← ∅, Ãk ← ∅, ck ← 0, x̃k ← ∅, ŷk ← 0, rk ← y
4: while |Ik| < lmax and maxi ã

T
i r

k−1 > θmin do {Find next face}
5: k ← k + 1
6: Find face:

ik ← argmaxi/∈Ik−1{‖Ã[i]T rk−1‖2/‖1− Ã[i]T ck−1‖2 | Ã[i]T rk−1 > 0}
7: Add constraints:

Ãk ← [Ãk−1, Ã[i]k], Ik ← Ik−1 ∪ {ik}
8: x̃k ← (Ãk)†y, ck ← (Ãk)†T1, ŷk ← Ãkx̃k, rk ← y − ŷk

9: end while
10: Output: c∗ = ck, x̃∗ ← 0+ corresponding entries from x̃k

4 Simulation Results

In the first experiment we attempted to quantify the performance of the proposed
algorithm and compare against the group sparsity algorithm G-OMP and the
standard sparsity algorithms OMP and PFP, using synthetic data. To do so, we
randomly generated dictionaries of size 40× 200 by drawing from i.i.d. Gaussian
matrices and normalizing them. The block k-sparse vector x with block size d
was generated by selecting uniformly at random the non-zero groups of atoms.

(a) (b)

Fig. 1. Support recovery rates (over 100 trials) of G-OMP, G-PFP, OMP, PFP vs
block-sparsity level k for a dictionary A ∈ R

M×N with M = 40, N = 200 and block
size (a) d = 2 and (b) d = 4

Fig. 1(a)-(b) illustrates the support recovery rate of all tested algorithms for
a variable sparsity level k, where the block size d has chosen equal to 2 and
4, respectively. The results has been averaged over 100 iterations. As can be
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seen, the greedy group sparsity algorithms perform better in both cases and the
performance gain increases with the block size. However, G-OMP shows the best
success recovery rates apart from the case when d = 4 for high sparsity levels,
where G-PFP shows a slightly better performance.

For the second experiment, we chose to apply the algorithms to the problem
of direction-of-arrival (DOA) estimation and compare their performance. In this
case, we compared G-PFP against G-OMP and OMP. After discretization of the
angular space, we formed the redundant dictionary A of size M ×N containing
the impulse responses of M = 8 sensors uniformly spaced at half wavelength for
all N = 181 potential angles of arrival (resolution grid of 1 ◦). Assuming that
the k << N plane waves impinge on the array from different angles (which has
been chosen randomly) and taking d time-snapshots we formulated the resulting
MMV problem as a block sparsity problem by appropriately interleaving the
multiple vectors. Therefore, the d snapshots define the number of the size of
each block.
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Fig. 2. DOA recovery rates (over 100 trials) of G-OMP, G-PFP & OMP vs block-
sparsity level k (or number of sources). The numbers of sensors is M = 8, the angular
grid resolution is set at 1 ◦ and the number of snapshots (or block size) is (a) d = 3
and (b) d = 4.

Fig. 2(a)-(b) shows the recovery success rate of the true angles of arrivals
averaged over 100 iterations when the number of snapshots and subsequently
the block size is 3 and 4, respectively. For the specific setting in both cases
G-PFP outperforms the other two algorithms achieving the highest recovery
success rates. Considering the fact that the dictionary due to the small number
of sensors chosen is quite block-coherent, the results suggest that the G-PFP
algorithm can achieve better performance in distinguishing between correlated
group of atoms.
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5 Conclusions

We have introduced an algorithm for the block sparse recovery problem based on
the PFP algorithm. The so-called G-PFP algorithm, which is a greedy algorithm
of similar complexity to the G-OMP algorithm, adds one group of atoms at a time
and iteratively builds the solution. Experiments on the support recovery of exact
sparse block synthetic signals show that the proposed algorithm outperforms the
standard PFP algorithm, but performs a little worse than G-OMP. However, on
the DOA estimation problem the proposed algorithm showed better performance
than G-OMP at all sparsity levels investigated.

Our future work will investigate and attempt to explain this behaviour of
G-PFP in the coherent dictionary setting.

References

1. Plumbley, M.D., Blumensath, T., Daudet, L., Gribonval, R., Davies, M.E.: Sparse
representations in audio and music: From coding to source separation. Proceedings
of the IEEE 98(6), 995–1005 (2010)

2. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit.
SIAM Journal on Scientific Computing 20(1), 33–61 (1998)

3. Pati, Y.C., Rezaiifar, R., Krishnaprasad, P.S.: Orthogonal matching pursuit: Re-
cursive function approximation with applications to wavelet decomposition. In:
Conference Record of The Twenty-Seventh Asilomar Conference on Signals, Sys-
tems and Computers, Pacific Grove, CA, November 1-3, pp. 40–44 (1993)

4. Mishali, M., Eldar, Y.C.: Blind multi-band signal reconstruction: Compressed sens-
ing for analog signals. IEEE Transactions on Signal Processing 57(3), 993–1009
(2009)

5. Gribonval, R., Bacry, E.: Harmonic decomposition of audio signals with matching
pursuit. IEEE Transactions on Signal Processing 51(1), 101–110 (2003)

6. Eldar, Y.C., Kuppinger, P., Bolcskei, H.: Block-sparse signals: Uncertainty relations
and efficient recovery. IEEE Transactions on Signal Processing 58(6), 3042–3054
(2010)

7. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press
(2004)

8. Plumbley, M.D.: On polar polytopes and the recovery of sparse representations.
IEEE Transactions on Information Theory 53(9), 3188–3195 (2007)

9. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped
variables. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy) 68(1), 49–67 (2006)

10. van den Berg, E., Friedlander, M.P.: Joint-sparse recovery from multiple measure-
ments, Technical Report (2009)

11. Gretsistas, A., Damnjanovic, I., Plumbley, M.D.: Gradient Polytope Faces Pursuit
for large scale sparse recovery problems. In: IEEE International Conference on
Acoustics Speech and Signal Processing (ICASSP), pp. 2030–2033 (2010)



Nonnegative Matrix Factorization via

Generalized Product Rule and Its Application
for Classification

Yu Fujimoto1 and Noboru Murata2

1 Aoyama Gakuin University, Fuchinobe, Sagamihara, Kanagawa 229-8558, Japan
yu.fujimoto@it.aoyama.ac.jp

2 Waseda University, Ohkubo, Shinjuku, Tokyo 169-8555, Japan
noboru.murata@eb.waseda.ac.jp

Abstract. Nonnegative Matrix Factorization (NMF) is broadly used
as a mathematical tool for processing tasks of tabulated data. In this
paper, an extension of NMF based on a generalized product rule, defined
with a nonlinear one-parameter function and its inverse, is proposed.
From a viewpoint of subspace methods, the extended NMF constructs
flexible subspaces which plays an important role in classification tasks.
Experimental results on benchmark datasets show that the proposed
extension improves classification accuracies.

Keywords: Nonnegative matrix factorization, generalized product rule,
nonlinear function, subspace method, classification.

1 Introduction

Nonnegative matrix factorization (NMF) is a popular matrix factorization setup
[4], and frequently applied to signal processing [15], image processing [8], text
mining [14], etc. As a typical application, Benetos et al. [2] have applied NMF
to classification tasks based on the idea of subspace methods [16]. In their setup,
NMF is applied to obtain the basis matrix W and the coefficient matrix H for
each class. An essential part of this approach is to classify an unlabeled datum
into the class of the nearest subspace defined with the bases. However, this
approach will not work when the obtained bases and subspaces are mismatched
for given datasets. In such a situation, it is important to select appropriate bases
and represent flexible subspaces.

In this paper, an extension of NMF based on a generalized product rule is pro-
posed. Multiplication between two positive values x1 and x2 is formally derived
with exponential and logarithmic functions, as

x1 × x2 = exp(log(x1) + log(x2)). (1)

The mathematical operator “×” is naturally generalized with a pair of appro-
priate strictly increasing function u(·) and its inverse function ξ(·) as follows,

x1 ⊗ x2 = u(ξ(x1) + ξ(x2)). (2)

F. Theis et al. (Eds.): LVA/ICA 2012, LNCS 7191, pp. 263–271, 2012.
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The operator “⊗” is used for the generalized product in this paper. Apparently,
Eq. 2 represents various calculation results depending on the function u(·). This
type of extension has been proposed from the viewpoint of a class of statis-
tical models related to a divergence minimization problem based on a convex
function [11,5]. On the other hand, the role of u(·) is closely related to the link
function for the generalized linear model (GLM) [1], or the generator function for
the Archimedean copula [12]. For example, the Archimedean copula is a repre-
sentation of multivariate cumulative distribution functions (cdfs) parametrically
specified with given marginal cdfs with strictly decreasing convex function ψ(·);
in the bivariate case, the Archimedean copula is given as follows

Cψ(a, b) = ψ−1(ψ(a) + ψ(b)), (3)

where a, b ∈ [0, 1].
By using the analogy of the formulation of the Archimedean copula, we intro-

duce a concrete family of u(·) and propose an extension of NMF. The proposed
method is expected to represent various factorization results even with the de-
composed matrices have the same rank by introducing appropriate nonlinearity
denoted with the function u(·). In our method, nonlinear relationship between de-
composed matrices is directly and parametrically described, so that this method
is different from kernel based approaches [17]. We apply the proposed extension
to classification tasks according to a setting of subspace methods. An illustra-
tive example given in this paper shows that the extension achieves “curved”
subspaces, so that the extension is expected to provide good classification re-
sults when subspaces are appropriately curved.

The paper is organized as follows. At first, in Section 2, a generalized product
rule based on a strictly increasing function u(·) is defined for NMF. In Section 3,
we briefly introduce a projected gradient descent method to obtain extended
NMF. Then, we show an illustrative example of our extension in the context
of classification in Section 4. Some experimental results are also shown in this
section. At last, concluding remarks are given in Section 5.

2 NMF via Generalized Product Rules

Let V = [vij ] = [v1, . . . ,vJ ] ∈ RI×J
+ be a nonnegative matrix. The purpose of

NMF is to obtain V̂ ∼= V by using low rank nonnegative matrices, W = [wik] ∈
R

I×K
+ and H = [hkj ] ∈ R

K×J
+ , as V̂ = WH, or equivalently in the elementwise

form, as

v̂ij =

K∑
k=1

wikhkj . (4)

We can obtain this type of decomposition under the given cost function; e.g., a
typical decomposition is given by minimizing the Frobenius norm as follows,

{Ŵ, Ĥ} = argmin
W,H

‖V−WH‖2 = argmin
W,H

∑
ij

{
vij −

K∑
k=1

wikhkj

}2

.
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In conventional NMF, an element of the nonnegative matrix V̂ is described
with the linear combination of elements in two nonnegative matrices W and
H as shown in Eq. 4. By introducing the generalized product rule to Eq. 4, an
extension of NMF is defined as follows,

v̂ij =

K∑
k=1

wik ⊗ hkj =

K∑
k=1

u(w̆ik + h̆kj), (5)

where w̆ik = ξ(wik), h̆kj = ξ(hkj), and u(·) is a strictly increasing function. The
formulation given by Eq. 5 is called u-NMF in this paper. Note that wik and
hkj are assumed to be nonnegative, but the transformed elements w̆ik and h̆kj
are not. Therefore, if we choose appropriate u(·) such that u(x) ≥ 0 (∀x ∈ R),

we only need to obtain nonrestricted elements w̆ik and h̆kj (i.e., they can be
negative) for the u-NMF formulation. Intuitively, Eq. 5 represents a nonlinear
relation between two low rank nonnegative matrices through the function u(·)1.
For simplification, we denote the relation, Eq. 5, in a matrix algebra form, as
V̂ = W ⊗H.

Before introducing a concrete u(·), let us focus on domain D and range R for
the function exp(·) in conventional multiplication Eq. 1. The relations D(exp) =
(−∞,∞) and R(exp) = (0,∞) satisfy the following conditions,

Condition 1. R(u) ⊆ R+ (or equivalently, D(ξ) ⊆ R+).

Condition 2. w̆ik, h̆kj , w̆ik + h̆kj ⊆ D(u) (∀i, j, k).

Condition 1 guarantees nonnegativity of v̂ij , wik and hkj . And Condition 2 is
for feasible calculation of generalized multiplication; let ξ and ξ be the lower and
the upper bounds of D(u)(= R(ξ)), then the condition is equivalently given as

(max{ξ, ξ −min
j′

h̆kj′} ≤ w̆ik ≤ min{ξ, ξ −max
j′

h̆kj′})

∧ (max{ξ, ξ −min
i′

w̆i′k} ≤ h̆kj ≤ min{ξ, ξ −max
i′

w̆i′k}) (∀i, j, k), (6)

which plays an important role in implementation. Note that D(exp) contains
all the real values; therefore, Condition 2 is naturally satisfied in the case of
conventional NMF. For generalization of product rule in the context of NMF,
we introduce a function u(·) which satisfies Condition 1, and factorize V not to
violate Condition 2.

In this paper, we introduce the following one-parameter function,

uθ(x) = −
1

θ
log {exp(x)(exp(−θ)− 1) + 1}

ξθ(x) = log
exp(−θx)− 1

exp(−θ)− 1
, (7)

1 Nonnegative tensor decomposition also can be extended by introducing the gen-
eralized product rule. For example, a generalization of the third-order PARAFAC
model [4] is given as v̂ijl =

∑K
k=1 u(ξ(xik) + ξ(yjk) + ξ(zlk)) where [v̂ijl] ∈ R

I×J×L
+ ,

[xik] ∈ R
I×K
+ , [yjk] ∈ R

J×K
+ and [zlk] ∈ R

L×K
+ .
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(e) x⊗ y (θ = −0.5)

Fig. 1. Functions given in Eq. 7 and relations between x, y ∈ R
+ and x⊗ y

where ξθ(·) is the negative generator function of Frank copula [6]. Frank copula
is known to be a comprehensive class of the Archimedean copulas; this class
of copulas has a flexible representational power (cf. [12]). The analogy between
definitions of generalized multiplication given in Eq. 2 and the Archimedean
copula Cψ in Eq. 3 implies that we can represent a kind of dependency between
variables by using the generalized product rule. Note that D(uθ) and R(uθ) are
given as follows,

D(uθ) =
{
(−∞,− log(1−exp(−θ))) (θ > 0)

(−∞,∞) (θ < 0)
, R(uθ) = (0,∞).

Figure 1(a) and (b) show the forms of these functions. By using such a one-
parameter function, the decomposition result derived with u-NMF is different
from the conventional NMF result. Figure 1(c)-(e) show simple multiplication
results between two values x, y ∈ R+. Intuitively, multiplication results x⊗ y for
large x and y tend to be larger than x× y when θ is positive though they tend
to be smaller than x × y when θ is negative. Note that we regard the case of
θ = 0 in Eq. 7 as limθ→0 uθ(x) = exp(x).

3 Implementation of u-NMF

The multiplicative algorithm, which is proposed by Lee and Seung [9], is the most
popular approach to achieve conventional NMF. However, this type of multiplica-
tive algorithmwill not be derived formost of the u-NMF formulations except when
the function u(·) is well-defined with no bounded domain. In this paper, we intro-
duce the simple stochastic gradient descent approach [3] with the idea of projected
gradientmethod [10] to satisfy the constraints shown in Eq. 6, in the case that u(·)
has the bounded domain.We note that a gradient-based approach for conventional
NMF [13] was also proposed before Lee and Seung’s method.
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Assume that u(z) ≥ 0 (∀z) and v̂ij be the approximated matrix which is given
by Eq. 5. When the domain of u(·) (i.e., the range of ξ(·)) has lower and upper
bounds, ξ and ξ, the minimization problem is defined as the following form with
inequality constraints,

min
W̆,H̆

∑
i,j

{
vij −

K∑
k=1

u
(
w̆ik + h̆kj

)}2

subject to ξ ≤ w̆ik + h̆kj ≤ ξ, ξ ≤ w̆ik ≤ ξ, ξ ≤ h̆kj ≤ ξ (∀i, j, k). (8)

This type of optimization is related with the exponentiated gradient method [7]
for conventional NMF. Now, let

gijk(W,H) = −2
(
vij −

K∑
m=1

u(w̆im + h̆mj)

)
u′(w̆ik + h̆kj), (9)

be the partial derivative of the objective function with respect to w̆ik, or equiva-
lently, that with respect to h̆kj , at {w̆ik, h̆kj}. Then, for a feasible set {w̆ik, h̆kj},
we obtain the following update rules by using the projected gradient method,

w̆new
ik ← φ

[
w̆ik − γgijk(W,H);max

j
h̆kj ,min

j
h̆kj

]
h̆newik ← φ

[
h̆kj − γgijk(W,H);max

i
w̆new

ik ,min
i
w̆new

ik

]
, (10)

where

φ[x; z1, z2] =

⎧⎪⎨⎪⎩
x if max{ξ, ξ − z2} ≤ x ≤ min{ξ, ξ − z1},
min{ξ, ξ − z1} − ε if x ≥ min{ξ, ξ − z1},
max{ξ, ξ − z2}+ ε if x ≤ max{ξ, ξ − z2},

(11)

is a function that projects updated w̆ik and h̆kj into the bounded feasible area,
ε is a small positive value to keep feasibility and γ is the learning step size. Note
that the update rules given by Eq. 10 strictly satisfy feasibility of {w̆new

ik , h̆newkj }
for any feasible sets {w̆ik, h̆kj}; the updated matrices always satisfy Eq. 6. In
our experiments, we simply iterated these update rules for all the elements in
V for 5,000 times. We also note that the minimization problem Eq. 8 has local
minima, so that we repeated this sequence 10 times from different initial values
and adopt the best result in the sense of the Frobenius norm.

4 u-NMF for Classification

4.1 Illustrative Example

Now, we show an illustrative example of the proposed formulation from the view-
point of classification task and compare our setup with a typical subspace method
called CLAFIC [16]. Let C be the number of classes and I be the dimension of
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(b) Subspace (CLAFIC).
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(c) Subspace (θ = 0).
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(d) Subspace (θ = −5).
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(e) Subspace (θ = 1).

Fig. 2. Subspaces in three-dimensional space. (a): Plots of {v1
j}, {v2

j} and {v3
j} in R

3
+

({v1
j} is highlighted). (b): Subspace S1 used in CLAFIC. (c)-(e): Subspaces S1 based

on u-NMF with θ = {0,−5, 1}.

an observed datum. Figure 2(a) shows a typical distribution of data with I = 3
and C = 3. For such a dataset, we extract a subset Vc = [vc

1, . . . ,v
c
Jc ] ∈ R

I×Jc

+

for each class c = 1, . . . , C where Jc is the number of members in class c. The
basic idea of the subspace method is given as follows.

1. Construct a subspace Sc to represent Vc in the space of RI for each c.
2. For an unlabeled datum v∗ ∈ RI , a label is given as ĉ=argmin

c
min
s∈Sc

‖v∗−s‖2.

If there is a kind of dependency in some dimensions in I-dimensional vectors
{vc

j}, Vc is expected to be represented in a low-dimensional subspace in the
I-dimensional feature space. In such a case, the subspace method will work well
by representing appropriate subspaces {Sc}. A problem in the subspace method
is the appropriateness of subspaces for distorted data distributions like V1 in
Figure 2(a).

In CLAFIC, a matrix Vc is represented with a set of orthonormal basis vec-
tors Uc = [uc

1, . . . ,u
c
Kc ] ∈ RI×Kc

where {uc
k} is a set of eigenvectors of the

matrix 1
Jc

∑
v∈{vc

j} vv
t corresponding to the largest Kc eigenvalues for each c.

A subspace used in CLAFIC is a linear combination of basis vectors {uc
k},

Sc = {Uca | ∀a ∈ RKc}, (12)

so that all the subspaces in CLAFIC are interpreted as “flat” (see, Figure 2(b)).
Here, we factorize each matrix Vc into a basis matrix Wc = [wc

1, . . . ,w
c
Kc ] ∈

RI×Kc

+ and a coefficient matrix Hc = [hc
1, . . . ,h

c
Jc ] ∈ RKc×Jc

+ by using u-NMF
respectively. As shown in Figure 2(c), a convex subspace,

Sc = {Wca | ∀a ∈ RKc

+ }, (13)
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Table 1. Datasets and classification results

10-CV lassification errors (mean ± SD)
dataset C I size of dataset CLAFIC NMF u-NMF

breast-cancer 2 9 683 0.161±0.058 0.348±0.070 0.221±0.074
iris 3 4 150 0.027±0.047 0.567±0.141 0.120±0.093
sonar 2 10 990 0.270±0.055 0.226±0.046 0.150±0.087
vowel 11 60 208 0.842±0.034 0.846±0.034 0.794±0.040
wine 3 13 178 0.315±0.138 0.707±0.074 0.152±0.066

which is constructed in conventional NMF (θ = 0.0) is also “flat”. However, a
subspace based on u-NMF with u(·) �= exp(·), which is defined as,

Sc = {Wc ⊗ a | ∀a ∈ RKc

+ }, (14)

is “curved” (and non-convex) according to u(·) in the original data space (see
Figure 2(d) and (e)). For this reason, u-NMF can be a flexible description of
a given nonnegative dataset by selecting appropriately curved subspaces. To
determine ĉ for an unlabeled datum v∗ in our classification setup, we obtain
hc
∗ = argminh ‖v∗−Wc⊗h‖2 ∈ RKc

for each class c under fixedWc for v∗. Then,
the corresponding class label ĉ is determined as ĉ = argminc ‖v∗ −Wc ⊗ hc

∗‖2.
And, a value θ is selected for each class respectively; for given learning set Vc,
θ is defined as argminθ∈Θ ‖Vc −Wc ⊗Hc‖ where Θ is a set of candidates for
θ. This procedure implies that a curved subspace derived with u-NMF has a
possibility to represent a distorted data distribution more appropriately for each
class.

4.2 Benchmark Tests

We compared CLAFIC, subspace methods based on conventional NMF and u-
NMF on benchmark datasets called breast-cancer, iris, sonar, vowel2 and wine,
provided in the UCI Machine Learning Repository3, from the viewpoint of classi-
fication errors based on 10-fold cross validation (10-CV). We divided each learn-
ing subset according to class c = 1, . . . , C, thus a set of matrices {Vc ∈ RI×Jc}
is generated. We prepared subspaces for each class according to Eqs. 12-14 re-
spectively. The dimension Kc for each class is given as the minimum number
of principal components such that the cumulative contribution ratio is more
than 0.95 in CLAFIC, and Kc = & IJc

I+Jc ' [2] is used in NMF and u-NMF4. In
the u-NMF approach, the parameter θ for each class was selected from the set
Θ = {−5.0,−4.5, · · · , 2.0}. And in the conventional NMF approach, all the sub-
spaces were constructed under θ = 0. Table 1 also shows 10-CV classification

2 Log-transformed data values in vowel are converted into original nonnegative data
by the exponential function.

3 http://archive.ics.uci.edu/ml/
4 Obviously, the tuning of Kc is an important topic in classification. Here, we simply
compared appropriateness of the subspaces under the fixedKc for NMF and u-NMF.

http://archive.ics.uci.edu/ml/


270 Y. Fujimoto and N. Murata

errors of three methods. The errors of our method are smaller than those of
CLAFIC on sonar, vowel and wine. Moreover, the classification errors of u-NMF
are smaller than those of conventional NMF in all the cases. The improvement
of classification results indicates that u-NMF flexibly provides appropriate sub-
spaces for various data distributions.

5 Conclusion

In this paper, we proposed an extension of NMF with an idea of generalized
multiplication. To formulate this extension, we introduce a strictly increas-
ing function which is derived from the generator function of a comprehensive
Archimedean copula. An intuitive interpretation of our proposed factorization is
illustrated from the viewpoint of the subspace method. The experimental results
show that we can improve the classification accuracy of conventional NMF by
selecting a suitably curved subspace for each class.

This type of extension is expected to be valid not only in classification tasks,
but also in the other analyses. Although we introduced a concrete form of u(·)
from Frank copula in this paper, the appropriateness of u(·) completely depends
on the dataset and the task. Further discussions are needed for the appropriate
family of u(·). The investigation of the optimization problem and the develop-
ment of an efficient algorithm for estimation of u-NMF under given u(·) are
the other important topics for practical analyses. For the latter issue, if we use
the convex function u(·) such that D(u) = (−∞,∞), e.g., Eq. 7 with negative
θ, an efficient algorithm like the multiplicative algorithm [9] will be derived by
introducing an adequate auxiliary function. This point of view also suggests an
importance of the discussion of the convenient family of u(·) for a given task.
These topics are remained as future works.
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Abstract. In this paper we consider the problem of finding approxi-
mate common rank one factors for a set of matrices. Instead of jointly
diagonalizing the matrices, we perform calculations directly in the prob-
lem intrinsic domain: we present an algorithm, AROFAC, which searches
the approximate linear span of the matrices using an indicator function
for the rank one factors, finding specific single sources. We evaluate the
feasibility of this approach by discussing simulations on generated data
and a neurophysiological dataset. Note however that our contribution is
intended to be mainly conceptual in nature.

1 Introduction

Finding common linear subspaces in data is a classical and well-studied problem
in Machine Learning and the applied sciences. Many of these problems can be
formulated as finding common eigenspaces resp. singular spaces for a set of
matrices, e.g. ICA, CCA, SSA etc. [3,14,1,2]. A standard way to address these
problems algorithmically is jointly diagonalizing the matrices. Several highly
optimized and efficient algorithms already exist to approximately perform joint
diagonalization on a set of matrices [4,12,15,16,17], let them be real or complex,
symmetric or non-symmetric, full rank or rank deficient.

However, there are scenarios in signal processing and pattern recognition
where finding a complete diagonalization may not be necessary, as the prob-
lem often consists intrinsically in finding single common rank one constituents
of the matrices and not the whole diagonalization. In the existing approaches
the problem is then commonly reduced to joint diagonalization and solved by
searching in the space of basis transforms (cf. [5,14,6]).

In this paper, we propose a novel framework to address optimization problems
of this sort in its natural and intrinsic formulation without the need to invoke
joint diagonalization algorithms. We reformulate the setting as an optimization
task on the vector space of matrices and exemplify possible search strategies
by a loss function which measures distance to the rank one manifold. The novel
algorithm that is computing an approximate rank one factor will be refered to as
AROFAC algorithm. We demonstrate its efficacy and noise stability in a signal
processing scenario and study inherent phenomena and applicability.

F. Theis et al. (Eds.): LVA/ICA 2012, LNCS 7191, pp. 272–279, 2012.
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Let us briefly describe the mathematical underpinnings. Let A ∈ Cn×n be a
matrix. The rank ofA is the number of its non-zero singular values. Equivalently,
it is the minimum r such that A can be written as

A =

r∑
i=1

aib
�
i with ai, bi ∈ Cn.

In general, this presentation is unique up to numbering and common scaling of
the ai, bi. We will call it the rank one decomposition of A. If we are now given
matrices M1, . . . ,MK ∈ Cn×n having joint singular vectors, we can similarly
write them as

Mk =

r∑
i=1

σ
(k)
i aib

�
i with ai, bi ∈ Cn and σ

(k)
i ∈ C.

In practice, the Mk are additionally endowed with noise. Also, if the Mk have
additional singular vectors which differ over the k, this may be also modelled
as noise if the non-common singular vectors are sufficiently general - so the
approach can be also used to model the case where some singular vectors are
common and others are not, in contrast to the classical joint diagonalization
ansatz.

An recurring problem is now to find a (possibly complex) linear combination
M of theMk which has (approximately) rank one. In the above presentation,M
is then a complex multiple of aib

�
i for some i. The standard approach to solve

this question would now be to simultaneously diagonalize the Mk. However,
a more natural and intrinsic approach can be obtained from observing that
the vector space spanned by M1, . . . ,MK and the r-dimensional vector space
spanned by the rank one matrices aib

�
i , 1 ≤ i ≤ r (approximately) coincide if

K ≥ r and the M i are sufficiently general. Denote this vector space by V . It has
a natural, though overdetermined, coordinate parametrization for V given by the
λ1, . . . , λK . The parametrization can be made unique for example by changing
to a principal basis of V having dimension r. One then can for example search
V in its natural representation for low rank matrices, e.g. rank one matrices, by
using rank indicator functions. Also, it is possible to perform dimension reduction
procedures such as PCA or deflationary mode computations directly in the vector
space V and its generators.
The AROFAC algorithm presented in this paper searches V for rank one matrices
using an algebraic rank one indicator loss function.

We will explain the mathematical details in the next section.

2 Finding Joint Rank One Factors

In this section, we will present the AROFAC algorithm which finds common rank
one factors. Before proceeding to the algorithm, we will recapitulate notation and
fix the problem it solves. Start with matrices
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M 1, . . . ,MK ∈ Cn×n,

of rank r having a joint rank one decomposition. Assume that K ≥ r. The M i

can be written as

Mk =

r∑
i=1

σ
(k)
i aib

�
i , for 1 ≤ k ≤ K,

where ai, bi ∈ Cn are the singular vectors and σ
(k)
i the corresponding singular

values. The goal is to find ai, bi, for some i, given the matrices M 1, . . . ,MK ,
which are known approximately up to some additive noise.

The central observation for the algorithm is the following: If the M i are
sufficiently different (i.e. generic under the conditions above), they span the r-
dimensional vector space

V = span〈M 1, . . . ,MK〉 = span〈a1b
�
1 , . . . ,arb

�
r 〉.

Instead of optimizing in the space of coordinate transformations, which is O(n2)-
dimensional, we will optimize in this r-dimensional vector space in order to
obtain the span vectors ai and bi. We will explain in the following how:

Due to the above, every element of V can be written uniquely as

M =

r∑
i=1

αiaib
�
i

for some αi ∈ C. If ai, bi are general, the rank of M is then exactly the number
of nonzero αi, 1 ≤ i ≤ r in this expansion. In particular, up to scaling, there are
exactly r points in V corresponding to rank one matrices.

The AROFAC algorithm identifies points of this type in V . For this, AROFAC
first performs PCA to obtain the approximate span of matrices M 1, . . . ,MK

of dimension r; i.e. after this step, we may assume that K = r, by replacing
M1, . . . ,MK by a principal basis M ′

1, . . . ,M
′
r. Thus, element M of V can be

uniquely written as

M (λ) =

r∑
i=1

λiM
′
i,

where λ denotes the r-dimensional vector (λ1, . . . , λr). Then, gradient descent
is performed on the vector space parameterized by the λ1, . . . , λr with respect
to a loss function measuring the difference from rank one. The optimization is
made unconstrained and real by setting λ1 = 1 and optimizing with respect to
real and complex parts of the λi.

To measure distance to rank one, AROFAC uses the following loss function
that is zero if and only if M(λ) has rank one:

L(λ) =
n∑

i=1

n∑
j=1

‖M (λ)iiM(λ)jj −M (λ)ijM(λ)ji‖2 .
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Here, as usual, M(λ)ij denotes the (i, j)-th entry of the matrix M(λ). A deriva-
tion of the loss function can be found in the appendix. Optimizing the loss
function yields an approximate rank one component aib

�
i and is computation-

ally benign if r is small compared with n. In order to obtain a single rank one
factor, AROFAC then takes the corresponding linear combination M (λ) which
is a matrix approximately having rank one, and then factors it approximately
in order to obtain a = ai and b = bi for some i. A pseudo-code description of
AROFAC is given in Algorithm 1.

Algorithm 1. AROFAC.
Input: The matrices M1, . . . ,MK . Output: a, b.

1: Perform PCA on the vector space spanned by the matrices M1, . . . ,MK and
identify the r principal components M ′

1, . . . ,M
′
r.

2: Minimize L(λ), e.g. by gradient descent.
3: Set M = M ′

1 +
∑r

i=2 λiM
′
i.

4: Perform PCA on the row space of M , set b = the principal component.
5: Perform PCA on the column space of M , set a = the principal component.
6: Return a, b.

As the coefficient of M ′
1 is set to one, and M ′

1 is the principal component, ARO-
FAC finds predominantly the common rank one factors which has the highest
weighted occurrence in the decomposition of theM1, . . . ,MK when the gradient
search is initialized with λ = 0.

The numerical optimization in step 2 is done using the “minFunc” MATLAB
routine by Mark Schmidt1 which is suited for unconstrained optimization of
real-valued multivariate functions and can handle problems with large numbers
of variables by implementing a limited-memory BFGS method [8].

3 Experiments

In our experiments, we first analyze the convergence behavior of AROFAC on
toy data. Then we apply AROFAC to electrophysiological brain data.

The toy data input matrices

Mk =
r∑

i=1

σ
(k)
i aib

�
i , 1 ≤ k ≤ K

are generated as follows: Exact singular vectors ai, bi ∈ Rn, 1 ≤ i ≤ r are sam-

pled independently and uniformly from the n-sphere. The singular values σ
(k)
i

are sampled independently and uniformly from the standard normal distribu-
tion. Then, to each matrix Mk, noise is added in the form of a (n× n) matrix

1 The “minFunc” webpage is:
http://www.di.ens.fr/~mschmidt/Software/minFunc.html

http://www.di.ens.fr/~mschmidt/Software/minFunc.html
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whose entries are independently sampled from a normal distribution with mean
0 and covariance ε ∈ R+. We tested AROFAC for a wide range of parame-
ters with n ≤ 100, K ≤ 10n, r ≈ n/5 and ε ≤ 1. Generally, low r and low
ε ≤ 0.5 increase accuracy. Figure 1 shows the typical convergence of the error
for K = 30, d = 4, r = 4.

Fig. 1. Convergence of three typical runs on the toy dataset

Finally, we apply our new method to Pairwise Interacting Source Analysis
(PISA) [10,11] of real EEG data. As shown by Nolte et al., interaction between
source signals results in significant imaginary parts of their cross-spectrum [9].
Therefore, the imaginary parts of the complex-valued cross-spectral matrices
are useful quantities for studying brain connectivity. Here we demonstrate that
AROFAC can be used to extract a dominating rank one factor of such matrices.

EEG measurements were performed with subjects at rest under the relaxed,
eyes-closed condition. EEG data were recorded with 64 Ag/AgCl electrodes, us-
ing the BrainVision Recorder system (Brain Products GmbH, Munich, Germany)
within the FASOR2 project [7].

In order to obtain the target matrices Mk, 59 channels were selected and
cross-spectra were calculated in the frequency range 0 to 25 Hz in 0.4 Hz steps.

Applying AROFAC to the imaginary parts of those 63 matrices yields a com-
plex vector a as the principal rank one component. Figure 2 shows 4 projections
of the 2D subspace spanned by the two components Re(a) and Im(a). The four
panels correspond to four different directions in this subspace with angles 0 de-
grees, 45 degrees, 90 degrees and 135 degrees relative to an arbitrary direction.

We note that the pattern is stably reproduced in several runs and bears sim-
ilarities to typical EOG / visual alpha related components, but also deserves
further detailed analysis e.g. by inverse modelling and source localization.

2 We acknowledge Stefan Haufe and Eike A. Schmidt for providing the data.
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Fig. 2. EEG spatial field patterns of 4 projections of the 2D subspace spanned by
the two components Re(a) and Im(a). The pattern has similarities to typical EOG /
visual alpha related components.

4 Conclusion

This paper has presented a novel approach to finding common linear subspaces
in data which can be modelled by matrices having common singular vectors. The
strategy consists of searching in the overdetermined vector space generated by
the matrices instead in the space of their transformations.

We have demonstrated the feasibility of the AROFAC algorithm that finds
single eigenvectors by identifying common rank one components in this vector
space instead of jointly diagonalizing the matrices. The novel approach may be
preferable over joint diagonalization if the matrices are rank deficient, and only
few eigenvectors which are present in most signals are of interest - in which
case searching the space spanned by the matrices is the natural domain for
computation. Note that computing only in the span of data is an ubiquitous
concept in mathematics in general and signal processing, and kernel methods in
particular (e.g.[13]).

We would like to remark that at this point the proposed novel framework
and the AROFAC algorithm are mainly conceptual. However, a generalization
to tensor factorization seems straightforward. It is also clear that a number of
theoretical and practical questions had to remain unanswered in this first contri-
bution. Improvements in numerical efficiency, studies of robustness, an iterative
deflation mode of AROFAC and applications in the sciences and industry are
still to come.

Concluding, we believe that working directly in the vector space of matrices
is worth considering whenever it carries a simple intrinsic structure and thus de-
veloping optimization strategies for this domain may be of practical importance
for both the signal processing and the machine learning communities.

Appendix

The AROFAC Loss Function

In the following, we will derive the loss function

L(λ) =

n∑
i=1

n∑
j=1

‖M (λ)iiM(λ)jj −M (λ)ijM(λ)ji‖2 .
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applied in the AROFAC algorithm. This loss function can be seen as a special
case of a rank one indicator for arbitrary matrices A ∈ Cn×n given by

L(A) =

n∑
i=1

n∑
j=1

‖AiiAjj −AijAji‖2 .

We claim that L(A) = 0 if and only if A has rank at most one.

Proof: The summands ‖AiiAjj −AijAji‖2 are real, non-negative integers.
Moreover, they are zero if and only if

AiiAjj −AijAji = 0

In particular, L(A) is zero if and only if this holds for all i, j. If Ajj and Aji

are non-zero, the above condition is equivalent to

Aii

Aji
=

Aij

Ajj

which forces the ratios between elements in fixed rows resp. columns to be con-
stant, thus if A has no zero entries, it is of rank at most one if and only if
L(A) = 0. The homogenous equation enforces the same condition on the rows
resp. columns when we have zero entries, but is always defined, as there are no
denominators. So L(A) = 0 if and only if A has at most rank one.

In order to reduce the complex to a real optimization problem, one sets A =
M(λ) and optimizes with respect to the real and imaginary parts of λ. L(A) is
a polynomial in those, so it is a smooth real function, and its gradient, which
can be explicitly obtained by an elementary calculation, also is smooth. Note
that in general L(A) is not convex, since it already has r absolute minima in
the noise-free case, as was stated in the main part of the paper.
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2. von Bünau, P., Meinecke, F.C., Király, F.J., Müller, K.R.: Finding stationary sub-
spaces in multivariate time series. Phys. Rev. Lett. 103(21), 214101 (2009)

3. Cardoso, J.F., Souloumiac, A.: Blind beamforming for non Gaussian signals. IEE
- Proceedings -F 140(6), 362–370 (1993)



An Algebraic Method for Approximate Rank One Factorization 279

4. Cardoso, J.F., Souloumiac, A.: Jacobi angles for simultaneous diagonalization.
SIAM Journal on Matrix Analysis and Applications 17(1), 161–164 (1996)

5. van Der Veen, A.J., Paulraj, A.: An analytical constant modulus algorithm. IEEE
Trans. Signal Processing 44(5), 1–19 (1996)

6. Lathauwer, L.D.: A link between the canonical decomposition in multilinear alge-
bra and simultaneous matrix diagonalization. SIAM J. Matrix Analysis Applica-
tions 28(3), 642–666 (2006)

7. Müller, K.R., Tangermann, M., Dornhege, G., Krauledat, M., Curio, G., Blankertz,
B.: Machine learning for real-time single-trial analysis: From brain-computer in-
terfacing to mental state monitoring. Journal of Neuroscience Methods 167, 82–90
(2008)

8. Nocedal, J.: Updating quasi-Newton matrices with limited storage. Mathematics
of Computation 35(151), 773–782 (1980)

9. Nolte, G., Bai, O., Wheaton, L., Mari, Z., Vorbach, S., Hallett, M.: Identifying true
brain interaction from EEG data using the imaginary part of coherency. Clinical
Neurophysiology 115(10), 2292–2307 (2004),
http://www.ncbi.nlm.nih.gov/pubmed/15351371

10. Nolte, G., Meinecke, F.C., Ziehe, A., Müller, K.R.: Identifying interactions in mixed
and noisy complex systems. Phys. Rev. E 73, 051913 (2006),
http://link.aps.org/doi/10.1103/PhysRevE.73.051913

11. Nolte, G., Ziehe, A., Meinecke, F., Müller, K.-R.: Analyzing coupled brain sources:
Distinguishing true from spurious interaction. In: Weiss, Y., Schölkopf, B., Platt, J.
(eds.) Advances in Neural Information Processing Systems, vol. 18, pp. 1027–1034.
MIT Press, Cambridge (2006)

12. Pham, D.T.: Joint approximate diagonalization of positive definite matrices. SIAM
J. on Matrix Anal. and Appl. 22, 1136–1152 (2001)

13. Schölkopf, B., Smola, A.J., Müller, K.R.: Nonlinear component analysis as a kernel
eigenvalue problem. Neural Computation 10(5), 1299–1319 (1998)

14. van der Veen, A.: Joint diagonalization via subspace fitting techniques. In: Proc.
ICASSP, vol. 5 (2001)

15. Yeredor, A.: Non-orthogonal joint diagonalization in the least-squares sense with
application in blind source separation. IEEE Trans. Signal Processing 50(7),
1545–1553 (2002)

16. Yeredor, A.: On using exact joint diagonalization for noniterative approximate joint
diagonalization. IEEE Signal Processing Letters 12(9), 645–648 (2005)

17. Ziehe, A., Laskov, P., Nolte, G., Müller, K.R.: A fast algorithm for joint diago-
nalization with non-orthogonal transformations and its application to blind source
separation. Journal of Machine Learning Research 5, 777–800 (2004)

http://www.ncbi.nlm.nih.gov/pubmed/15351371
http://link.aps.org/doi/10.1103/PhysRevE.73.051913


Bayesian Non-negative Matrix Factorization

with Learned Temporal Smoothness Priors
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Abstract. We combine the use of a Bayesian NMF framework to add
temporal smoothness priors, with a supervised prior learning of the
smoothness parameters on a database of solo musical instruments. The
goal is to separate main instruments from realistic mono musical mix-
tures. The proposed learning step allows a better initialization of the
spectral dictionaries and of the smoothness parameters. This approach
is shown to outperform the separation results compared to the unsuper-
vised version.

1 Introduction

Non-negative matrix factorization (NMF) is a well-known signal decomposition
technique frequently used for sound source separation. NMF decomposes a spec-
trogram into a set of spectral bases, each one multiplied by a time-varying weight.
When dealing with musical mixtures, it is possible to exploit the specific prop-
erties of musical instruments, such as the typical temporal evolution of their
spectral bases.

One way of integrating such a priori information is by using statistical priors
in a Bayesian statistical framework. This was the approach used to force tem-
poral smoothness in [1], and both temporal smoothness and harmonicity in [2].
Another option is to use supervised methods and perform a prior learning based
on a database of isolated instrumental sounds. An example of this second ap-
proach is the work presented in [3], where NMF is combined with a pre-trained
Hidden Markov Model (HMM) to model dynamic behavior.

In this contribution, we use a combination of both Bayesian priors and database
learning to model temporal smoothness and improve separation quality. The goal
is to extract the lead instrument from realistic mono musical mixtures. In partic-
ular, our system is based on a Bayesian NMF model with temporal smoothness
priors described by Inverse Gamma (IG) distributions (Sect. 2), as was done
in [1,2]. Here, we extend such approach by introducing a learning stage, which
is based on performing NMF optimization on isolated instruments with the IG
parameters as additional optimization parameters (Sect. 3). We evaluate the
performance with 4 different instruments, and for all settings (with or without

F. Theis et al. (Eds.): LVA/ICA 2012, LNCS 7191, pp. 280–287, 2012.
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priors, with or without learning), we compare the performance of two possi-
ble implementations of NMF optimization, one based on Multiplicative Updates
(NMF-MU), and one based on Expectation-Maximization (NMF-EM).

2 Unsupervised Algorithms

2.1 NMF Framework

The input signal is first transformed into the time-frequency domain by means
of a Short Time Fourier Transform (STFT), yielding a matrix X. As in [1],
the squared modulus of each element is computed to obtain a matrix of power
spectral densities V = |X|◦2. The goal of NMF is to find the non-negative
matrices W and H such that

V ≈WH. (1)

W and H have dimensions F ×K and K ×N , respectively, and it is desirable
that F ×K +K ×N $ FN . The rows of H are usually called activations and
the columns of W atoms or bases.

Such factorization is formulated here as the minimization problem

{W,H} = argmin
W,H≥0

DIS(V|WH), (2)

where DIS is a matrix cost function involving the Itakura-Saito element-wise
divergence dIS :

DIS(V|WH) =

F∑
f=1

N∑
n=1

dIS(V(f,n)|[WH](f,n)). (3)

The IS divergence, defined as

dIS(x | y) =
x

y
− log

x

y
− 1, (4)

is a good measure for the perceptual difference between two spectra, which is
explained by its scale invariance: dIS(γx|γy) = dIS(x|y), for a given scalar γ.

It can be shown [1] that the above optimization (Eq. 2) is equivalent to a
Maximum Likelihood (ML) estimation if the columns of the STFT matrix X,
denoted by xn, are supposed to be generated by a K-component Gaussian Mix-
ture Model (GMM):

xn =

K∑
k=1

ckn ∈ CF , ∀n = 1, ..., N, (5)

where latent variables ckn are independent and follow a zero-mean multivariate
normal distribution ckn ∼ N (0, hkndiag (wk)), where hkn are the elements of the
activation matrix H and wk are the columns of the dictionary matrix W. The

separation process consists in optimizing the criterion CML(θ)
	
= log p(V | θ),

where θ = {W,H} is the parameter vector.
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We implement and test two NMF algorithms, one based on Multiplicative Up-
date rules (NMF-MU), and one based on an EM algorithm (NMF-EM). They
mainly differ in their speed of convergence to a global solution and in computa-
tional performance. The first one was used in [1], and the second one in [2], and
both can be adapted to a Bayesian setting.

2.2 NMF-MU Algorithm

Multiplicative Update (MU) rules to iteratively find the optimal W and H are
given for the IS divergence [4] by

H← H ◦
WT

(
(WH)

◦[−2] ◦V
)

WT (WH)
◦[−1]

, (6)

W←W ◦

(
(WH)

◦[−2] ◦V
)
◦HT

(WH)◦[−1] HT
, (7)

where the ◦ symbol denotes element-wise operations, and the division is also
element-wise.

2.3 NMF-EM Algorithm

An alternative to MU is to directly perform an ML estimation of the generative
model of Eq. 5 via an EM algorithm. In particular, the Space Alternating Gener-
alized EM (SAGE) algorithm [1] is a type of EM algorithm that allows to update
large parameter matrices in separate chunks, with fast convergence properties. In
particular, we aim at estimating separately the parameters Ck = (ck1, ..., ckN ).

If we partition the parameter space by θ =
⋃K

k=1 θk where θk = {wk,hk}, SAGE
consists in choosing for each subset θk a hidden-data space which is complete
for this particular subset, i.e. θk = Ck. The resulting algorithm to estimate W
and H is defined in detail in [1].

2.4 Bayesian NMF with Temporal Smoothness Prior

The Bayes rule allows to switch from a ML estimation to a Maximum A Pos-
teriori (MAP) estimation. We can thus introduce the prior distributions p(W)
and p(H) in this manner:

p (W,H | V) =
p (V |W,H) p(W)p(H)

p(V)
. (8)

In the case of temporal modeling, p(H) is the relevant prior. MAP estimation is
obtained by maximizing the following criterion:

CMAP (θ)
	
= log p(θ | V)

c
= CML(θ) + log p(H), (9)

where the binary operator
c
= denotes equality up to an additive constant.
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Based on the MAP estimator, [1] and [2] propose a Markov chain prior struc-
ture to model p(H):

p(hk) = p(hk1)

N∏
n=2

p(hkn | hk,n−1). (10)

The main objective is to assure smoothness over the rows of H. With an appro-
priate choice of the Markov transition matrix, we can favor a slow variation of
hk. For example, we can force p (hkn | hk,n−1) reach its maximum at p(hk,n−1).
The authors propose:

p (hkn | hk,n−1) = IG (hkn | αk, (αk + 1)hk,n−1) , (11)

where IG(x | α, β) is the inverse-Gamma distribution1 with mode β
α+1 and the

initial distribution p(hk1) is Jeffrey’s non-informative prior: p(hk1) ∝ 1
hk1

. Hence,
αk is a parameter that controls the degree of smoothness for the k-th component.

Note that we can have different smoothness parameters for each component.
Thus, the smoothness parameter is actually a vector α = (α1, α2, . . . , αK). In
practice, we want to set a smoothness prior only to those components that are
supposed to describe the lead instrument. If we assign the first Ks components
to the lead instrument, and the remaining ones to the accompaniment, then the
αk priors apply only to 1 ≤ k ≤ Ks, and no priors are used for Ks < k ≤ K.

The priors can be added to both NMF-MU [2] and NMF-EM [1] algorithms,
as follows:

– NMF-MU/IG algorithm. Eq. (9) gives the following new update rules
for H, that replace Eq. 6:

hk1 ← hk1 ×

⎛⎝∑F
f=1

vf1wfk

v̂2
f1

+ αk+1
hk1∑F

f=1
wfk

v̂f1
+ αk+1

hk2

⎞⎠η

(12)

hkn ← hkn ×

⎛⎝∑F
f=1

vfnwfk

v̂2
fn

+ (αk+1)hn−1

h2
kn∑F

f=1
wfk

v̂fn
+ 1

hkn
+ αk+1

hk,n+1

⎞⎠η

(13)

hkN ← hkN ×

⎛⎝∑F
f=1

vfNwfk

v̂2
fN

+ (αk+1)hN−1

h2
kN∑F

f=1
wfk

v̂fN
+ αk+1

hkN

⎞⎠η

, (14)

where η ∈]0, 1] plays the role of the step size in gradient descent.

– NMF-EM/IG algorithm. To integrate the temporal smoothness prior
into NMF-EM, the best way is to add a post estimation after each update,
computed as follows:

1 IG (x | α, β) = βα

Γ (α)
x−(α+1) exp

(−β
x

)
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Table 1. Coefficients for the post estimation of hkn in NMF-EM/IG

p2 p1 p0

hk1
αk+1
hk2

F − αk + 1 −F ĥk1

hkn
αk+1
hkn+1

F + 1 −F ĥkn − (αk + 1)hk,n−1

hkN 0 F + αk + 1 −F ĥkN − (αk + 1)hk,N−1

hkn =

√
p21 − 4p2p0 − p1

2p2
, (15)

where the coefficients p0, p1 and p2 depend on n and are given in Table 1.
In a more recent work [5], a simpler procedure, leading to a better-posed
optimization problem and based on Majorization-Minimization (MM), has
been proposed as an alternative to a Bayesian EM approach as described
above. In the present paper, we use EM as proposed in [1], and will explore
the MM alternative in the future.

3 Supervised Algorithms

The smoothness priors αk defined in the previous section need to be set by hand
prior to separation, and remain fixed throughout the optimization process. Fur-
thermore, it would be too cumbersome to find good manual parameters for the
individual priors of components with indices 1 ≤ k ≤ Ks. Thus, an improve-
ment of separation quality is expected if the αks are automatically learned from
a training database of isolated instrumental excerpts.

We implement learning by considering the smoothness vector α as an addi-
tional parameter to optimize, obtaining the new parameter vector

θ = {W,H,α}. (16)

A MAP estimation (Eq. 9) is performed on an audio file containing concatenated

solo excerpts. We keep the estimated dictionary matrix Ŵ and the smoothness
vector α̂ obtained in this way, and use them to initialize the MAP estimation
performed on the mixture for actual separation.

The new update rule for the αk coefficients is derived via ML estimation given
the IG Markov chain from Eqs. 10 and 11. The log-likelihood is given by

log (p(hk))
c
= log

(
1

hk1

)
+

N∑
n=2

αk log((αk + 1hk,n−1))− log(Γ (αk)) (17)

− (αk + 1) log(hkn)−
αkhk,n−1

hkn
− hk,n−1

hkn

c
= αk(log(hk1)− log(hkn))− log(hk1) +

N∑
n=2

αk log(αk + 1) (18)

− log(Γ (αk))− log(hkn)−
αkhk,n−1

hk,n
− hk,n−1

hkn
.
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Minimizing the ML criterion gives:

∂ log(p(hk))

∂αk
= 0

⇔ log

(
hk1
hkN

)
+

N∑
n=2

log(αk + 1) +
αk

αk + 1
− ψ(αk)−

hk,n−1

hkn
= 0

⇔ log(αk + 1) +
αk

αk + 1
− ψ(αk) =

1

N − 1

(
log

(
hkN
hk1

)
+

N∑
n=2

hk,n−1

hkn

)
,

(19)

where ψ is the digamma function defined as: ψ(x) = Γ ′(x)
Γ (x) . Since Eq. 19 has no

closed-form solution, the estimation of the current αk is computed numerically.
For separation, we assign again the first Ks components to the main instru-

ment. Thus, learned vector α̂ applies only to the first Ks components of the
matrix H is separation, and the first Ks columns of W are equal to the learned
dictionary Ŵ.

4 Evaluation

For learning, 4 instruments from the RWC musical instrument sound database
[6] were used. The instruments chosen were saxophone, trumpet, classical gui-
tar and piano. The saxophone and the trumpet are melodic instruments which
usually play only one note at a time. The piano and the guitar are polyphonic in-
struments that can play several notes at a time (although the guitar will mostly
play individual notes when doing a solo). Furthermore, saxophone and trumpet
are sustained instruments (the notes can be held as long as the breathing of
the player allows), whereas piano and guitar are non-sustained instruments with
note energy always decaying after the onset. Thus, the smoothness parameters
over the rows of H are expected to be quite different between both kinds of
instruments.

To evaluate separation, 18 mixes were created from songs available in multi-
track and featuring solos by those instruments2. For each song, one mono track
was created for the solo, and one mono track containing all the remaining in-
struments (accompaniment).

For objective evaluation in terms of Source to Distortion Ratio (SDR), we
use the BSS EVAL toolbox [7]. After separation into K NMF components, it
is still necessary to assign the components to one of the sources. For evaluation
purposes, SDR is measured between each component and the original tracks.
The higher SDR determines if the component represents the solo or the accom-
paniment.

We evaluate both NMF-MU and NMF-EM algorithms, with or without priors,
and in both unsupervised and supervised versions. In the unsupervised version,

2 Source: ccmixter.org
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Table 2. Average SDR (in dB)

500 iterations Unsupervised Supervised

Without priors IG Without priors IG

Saxophone NMF-MU 10.19 9.12 10.47 9.66

NMF-EM 7.14 6.76 7.01 7.58

Trumpet NMF-MU 6.16 4.80 6.39 7.88

NMF-EM 3.63 3.98 4.55 5.06

Classic Guitar NMF-MU 9.84 8.75 8.88 10.07

NMF-EM 7.38 7.52 8.01 6.52

Piano NMF-MU 6.99 4.73 5.44 6.95

NMF-EM 3.11 3.98 2.97 2.08

Global NMF-MU 8.30 6.85 7.80 8.64

NMF-EM 5.32 5.56 5.64 5.31

the parameters are initialized randomly except for the smoothness parameters,
which are fixed empirically. In that case, we set the same smoothness value
for all αk. In the supervised case, the learned parameters are then used in the
separation process to initialize the system, as explained in Sect 3. Note that in
the supervised version without smoothness priors, the dictionary W is learned
anyway.

Results are given in Table 2. The following conclusions can be drawn:

– NMF-MU algorithms perform in general better than NMF-EM algorithms.
– In unsupervised algorithms, using the IG smoothness priors is not efficient.

This is probably due to the difficulty of manually finding good values for α̂.
– Supervised algorithms outperform unsupervised algorithms, except in the

case of the piano, in which case the maximum performance is virtually the
same. This might indicate that the IG distribution is not well suited to
describe the dynamics of the piano spectra.

– In supervised algorithms, using the smoothness priors improves performance,
except for the saxophone.

A selection of sound examples can be found online3.

5 Conclusions and Perspectives

We have proposed a learning stage for the IG temporal smoothness priors within
an NMF Bayesian framework for separation of main instruments in mono mix-
tures. An evaluation of the different system configurations was performed, in-
cluding supervised and unsupervised versions, with or without priors, and both
in MU and EM implementations, for sustained (trumpet and saxophone) and
non-sustained (piano and guitar) instruments. Supervised approaches are shown

3 http://audionamix.com/BayesianNMF1/
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to perform better than unsupervised ones, except in the case of the piano.
Globally, the MU versions of the algorithms perform better.

A refinement of the temporal priors will be subject to further study. In particu-
lar, a temporal description will probably benefit from a structured representation
considering the attack and sustain parts separately. Also, other prior distribu-
tions will be investigated to improve difficult cases, such as the piano. Finally,
other instrument-specific priors, such as spectral smoothness or harmonicity,
might also be taken into account in order to further improve separation quality.
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Abstract. A connection between the convolutive nonnegative matrix factoriza-
tion (NMF) and the conventional NMF has been established. As a result, we can
convey arbitrary alternating update rules for NMF to update rules for CNMF. In
order to illustrate the novel derivation method, a multiplicative algorithm and a
new ALS algorithm for CNMF are derived. The experiments confirm validity and
high performance of our method and of the proposed algorithm.

Keywords: nonnegative matrix factorization, convolutive nonnegative matrix
factorization, nonnegative quadratic programming, ALS, music analysis.

1 Introduction

Expression of a nonnegative data matrix by set of basis patterns (objects) shifting along
a direction (horizontal or vertical) of a given data following the convolutive model has
recently attracted considerable interest from the view point of applications such as mu-
sic analysis, image deconvolution [1–5, 9, 11]. This decomposition model is called the
convolutive nonnegative matrix factorization (CNMF), and is considered as an exten-
sion of nonnegative matrix factorization (NMF). While there is a vast literature on al-
gorithms for NMF [2], algorithms for CNMF are still very limited in the literature. All
existing CNMF algorithms are based on the multiplicative update rules which minimize
the least-squares error [1, 6, 9] or the Kullback-Leiber divergence [1, 4], or the general-
ized alpha- or beta- divergences [2, 3]. We note that the multiplicative algorithms have
a relatively low complexity of each iteration but they are characterized by rather slow
convergence and they sometimes converge to spurious local minima [7, 8].

Blind deconvolution of a given nonnegative data Y ∈ RI×J
+ is to find P basis pat-

terns (objects) A(p) = [a(p)
1 , a

(p)
2 , . . . , a

(p)
Rp

] ∈ RI×Rp
+ , p = 1, 2, . . . , P and a location matrix

X ∈ RP×J
+ , each p-th row vector xp: representing location and intensity of A(p). For sim-

plicity, assuming that all basis patterns A(p) have the same size Rp = R,∀p, otherwise
they can be padded with zeros to the right. P basis patterns A(p) are lateral slices of a
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3-D tensor A ∈ RI×P×R, i.e., A(i, p, r) = A(p)(i, r), i = 1, . . . , I, r = 1, . . . ,R. Frontal
slices Ar = [a(1)

r a(2)
r · · · a(P)

r ] ∈ RI×P are component matrices, r = 1, 2, . . . ,R. The
mode-1 matricized version ofA is denoted by A(1) = [A1 A2 · · · AR] ∈ RI×RP

+ .
We denote a shift matrix Sr of size J × J which is a binary matrix with ones only

on the r-th superdiagonal for r > 0, or on the r-th subdiagonal for r < 0, and zeroes

elsewhere.
r→
X = XSr is an r column shifted version of X to the right, with the columns

shifted in from outside the matrix set to zero. The relation between Y, A(p) and X can
be expressed as

Y=
R∑

r=1

Ar X Sr−1 + E =
R−1∑
r=0

Ar+1

r→
X + E. (1)

Most CNMF algorithms were derived by considering (1) as R NMFs [3, 4, 6, 9]

Y = Ar+1

r→
X +

⎛⎜⎜⎜⎜⎜⎝
∑
s�r

As+1

s→
X

⎞⎟⎟⎟⎟⎟⎠ + E = Ar+1

r→
X + Er+1, r = 0, 1, . . . ,R − 1. (2)

For example, the multiplicative algorithms [3, 9] update Ar and Xr

Ar+1←Ar+1 �
(r←
Y XT

)
�

⎛⎜⎜⎜⎜⎝
r←
Ŷ XT

⎞⎟⎟⎟⎟⎠ , r = 0, 1, . . . ,R − 1, (3)

Xr+1←X �
(
AT

r+1

r←
Y

)
�

⎛⎜⎜⎜⎜⎝AT
r+1

r←
Ŷ

⎞⎟⎟⎟⎟⎠ , (4)

where symbols “�” and “�” denote the Hadamard element-wise product and division.
The coding matrix X is averaged over R estimations Xr in (4), i.e., X = 1

R

∑R
r=1 Xr.

Although the approach is simple and quite direct, its average update rule for X is not

optimal. The reason is that the factorization (2) does not consider other shifts
s→
X (s � r)

existing in Er+1. Moreover, practical simulations show that the average rules are not
stable and converge slowly.

In the sequel, we present a connection between CNMF and NMF. Based on this,
an arbitrary alternating update rule for NMF can be conveyed to CNMF. In order to
illustrate the novel derivation method, a multiplicative algorithm and a robust ALS al-
gorithm for CNMF are proposed.

2 A Novel Derivation for CNMF Algorithms

In general, update rules for A and X can be derived by minimizing a cost function
which can be the Frobenius norm of the approximation error

D(Y‖Ŷ) =
1
2
‖Y − Ŷ‖2F =

1
2
‖Y −

R∑
r=1

Ar X Sr−1‖2F . (5)

From (1), the approximation of Y can be expressed as an NMF with rank PR, that is,

Y =
[
A1 A2 · · · AR

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X
1→
X
...

(R−1)→
X

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ E = A(1) Z + E , (6)
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or as an approximation of vec(Y)

vec(Y) = vec

⎛⎜⎜⎜⎜⎜⎜⎝
R−1∑
r=0

Ar+1 X Sr + E

⎞⎟⎟⎟⎟⎟⎟⎠ = F vec(X) + vec(E) , (7)

where F =
∑R−1

r=0

(
ST

r ⊗ Ar+1

)
∈ RIJ×PJ

+ , ‘⊗’ denotes the Kronecker product. From (5),
(6) and (7), we can alternatively updateA or X while fixing the other according to the
following procedure

X = arg min
X
‖ vec(Y) − F vec(X) ‖22, subject to X ≥ 0 with fixedA, (8)

A = arg min
A(1)

‖Y − A(1)Z‖2F , subject toA ≥ 0 with fixed X. (9)

Note that we can employ any update rules for NMF to updateA and X. For example,
by employing the multiplicative update rules [7] we can updateA

A(1) ← A(1) �
(
Y ZT

)
�

(
ŶZT

)
= A(1) �

[
Y ST

r XT
]R−1

r=0
�

[
Ŷ ST

r XT
]R−1

r=0
, (10)

which can be rewritten for component matrices Ar, r = 1, 2, . . . ,R

Ar ← Ar �
(
Y ST

r−1 XT
)
�

(
Ŷ ST

r−1 XT
)
, r = 1, 2, . . . ,R. (11)

The multiplicative Least-Squares update rule for X is given by

vec(X)← vec(X) �
(
FT vec(Y)

)
�

(
FT vec

(
Ŷ
))

= vec(X) � vec

⎛⎜⎜⎜⎜⎜⎜⎝
R−1∑
r=0

AT
r+1Y ST

r

⎞⎟⎟⎟⎟⎟⎟⎠ � vec

⎛⎜⎜⎜⎜⎜⎜⎝
R−1∑
r=0

AT
r+1Ŷ ST

r

⎞⎟⎟⎟⎟⎟⎟⎠
or in the matrix form

X← X �

⎛⎜⎜⎜⎜⎜⎜⎝
R−1∑
r=0

AT
r+1Y ST

r

⎞⎟⎟⎟⎟⎟⎟⎠ �
⎛⎜⎜⎜⎜⎜⎜⎝

R−1∑
r=0

AT
r+1Ŷ ST

r

⎞⎟⎟⎟⎟⎟⎟⎠ . (12)

The update rules in (11) and (12) are particular cases of the multiplicative algorithm
for CNMF2D [1]. However, its derivation is much simpler than that in [1]. Similarly,
it is straightforward to derive update rules for the multiplicative Kullback-Leiber algo-
rithms, the ALS algorithms. In addition, (6) and (7) also lead to condition on the number
of patterns and the number of components PR ≤ min(I, J).

3 Alternative Least Squares Algorithm for CNMF

The alternative least squares (ALS) algorithm and its variations are commonly used for
nonnegative matrix factorizations (see Chapter 4 [2]). For CNMF, it is straightforward
to derive from (8) and (9) two ALS update rules given by

A(1) ←
[
Y ZT

(
ZZT

)−1
]
+
, vec(X)←

[
Q−1 b

]
+
, (13)



On Connection between CNMF and NMF 291

where [x]+ = max(x, ε) is the element-wise rectifier which converts negative input to
zero or a small enough value, and

Q = FT F =
R−1∑
r=0

R−1∑
s=0

(
Sr ST

s ⊗ AT
r+1As+1

)
∈ RL×L

+ , L = JP, (14)

b = FT vec(Y) = vec

⎛⎜⎜⎜⎜⎜⎜⎝
R−1∑
r=0

AT
r+1Y ST

r

⎞⎟⎟⎟⎟⎟⎟⎠ ∈ RL. (15)

Although the ALS algorithm (13) is simple, it is not stable for sparse nonnegative data
as illustrated in Section 5 for decomposition of spectrogram of sound sequences. In the
sequel, a robust ALS algorithm is proposed for CNMF. From (5), (8), we consider the
least-squares cost function which leads to a nonnegative quadratic programming (NQP)
problem

D =
1
2
‖ vec(Y) − F vec(X) ‖22 =

1
2
‖Y‖2F +

1
2

xT Qx − bT x, (16)

where x = vec(X).
We denote x̃ = [x̃1 x̃2 · · · x̃L]T = Q−1 b the solution of the gradient∇D(x) = Q x− b,

and I+ ⊂ {1, 2, . . . , L} a set of L1 ≤ L nonnegative entries, i.e. x̃I+ ≥ 0. If L1 = L,
then x̃ is solution of (8) as in (13). Otherwise, the (L − L1) negative entries xI− , I− =
{1, 2, . . . , L}\I+ are set to zeros by the rectifier according to (13). Hence, from (16), the
rest L1 variables xI+ are solutions of a reduced problem of a lower order L1, that is

D =
1
2
‖Y‖2F +

1
2

xT
I+ QI+ xI+ − bT

I+ xI+ , (17)

where QI+ and bI+ are parts of Q and b whose row and column indices are specified
by I+, respectively. If x̃I+ = Q−1

I+ bI+ has L2 < L1 nonnegative entries, we solve the
subproblem of (17) of the lower order L2. The procedure is recursively applied until
there is not any negative entry x̃, i.e. I− = ∅ (see the subfunction nqp in Algorithm 1).

Similarly, the cost function (9) can also be expressed as an NQP problem to update
A(1) or horizontal slices Ai:: defined as Ai::(p, r) =A(i, p, r), i = 1, 2, . . . , I

D =
1
2
‖Y‖2F +

1
2

vec
(
AT

(1)

)T (
II ⊗

(
ZZT

))
vec

(
AT

(1)

)
− vec

(
ZYT

)T
vec

(
AT

(1)

)
(18)

=
1
2
‖Y‖2F +

I∑
i=1

(
1
2

vec(Ai::)T
(
ZZT

)
vec(Ai::) −

(
yi: ZT

)
vec(Ai::)

)
, (19)

where yi: denotes the i-th row vector of Y. Finally, pseudo code of the (Q)ALS algorithm
is described in Algorithm 1.

4 Initialization for CNMF Algorithms

In general, patterns A(p) and coding matrix X can be initialized by nonnegative random
values over multiple runs. The final solution can be chosen among them. Practical exper-
iments show that although this simple method can produce acceptable solution, it needs
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Algorithm 1. QALS Algorithm
Input: Y: nonnegative matrix I × J

P,R: number of patterns and components
Output: A(p) ∈ RI×R

+ , p = 1, 2, . . . , P and X ∈ RR×J
+

begin
InitializeA and X
repeat

vec(X) = nqp (Q, b) // Q in (14), b in (15)

for i = 1 to I do vec(Ai::) = nqp
(
ZZT ,Z yT

i:

)
; // Update A

until a stopping criterion is met
end

function x = nqp (Q, b) // Q ∈ RL×L
+ , b ∈ RL

begin
I+ = {1, 2, . . . , L}
repeat

x̃I+ = Q−1
I+ bI+ ; I− = {l ∈ I+ : x̃l < 0}; I+ = I+\I−;

until I− = ∅
x = max{0, x̃}

end

a large number of iterations and several (many) runs from different initial conditions
to minimize probability of being stucked in false local minima instead of the global
minimum. Noting that from the connection (6), A(1) in approximation ‖Y − A(1)Z‖F
without nonnegativity constraints must comprise PR leading left singular components
of Y. Therefore, an SVD-based initialization method is proposed for A(p) by taking in
account that these leading singular components should be distributed among patterns
A(p). That is the first component matrix A1 takes R leading left singular components,
the next R leading left components are for A2, and so on. Similarly, X can be initialized
by P leading right singular vectors of Y. Moreover, due to nonnegativity constraints,
absolute values of singular vectors are used.

5 Simulations

In this section, we compare CNMF algorithms including QALS, the average multiplica-
tive algorithm (aMLS) in (4) [9], the simultaneous multiplicative algorithm (MLS) in
(12) [1] through decomposition of two music sequences into basic notes. For the first
sequence, the sampled song “London Bridge” composed of five notes D4, E4, F4, G4
and A4 was played on a piano for 4.5 seconds illustrated in Fig. 1(a) (see Chapter 3 [2]).
The signal was sampled at 8 kHz and filtered by using a bandpass filter with a band-
width of 240 − 480 Hz. The magnitude spectrogram Y of size 257 frequency bins ×
141 time frames is shown in Fig. 1(a), in which each rising part corresponds to the note
actually played. It means Y is very sparse.

The second sequence was recorded from the same song but composed of five notes
A3, G3, F3, E3 and D3 played on a guitar for 5 seconds (see Chapter 3 [2]). The log-
frequency spectrogram Y (364 × 151) illustrated in Fig. 1(b) was converted from the
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linear-frequency spectrogram with a quality factor Q = 100 and in the frequency range
from f0 = 109.4 Hz (bin 8) to fI = fs/2 = 4000 Hz (bin 257) [10]. The lowest approxi-
mation error for this spectrum is 27.56 dB when there was no decomposition.
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Fig. 1. Waveforms and spectrograms of the two sequences “London Bridge”

(a) Sequence 1 (b) Sequence 2

Fig. 2. Convergence behavior of CNMF algorithms as function of the number of iterations for
decomposition of two music sequences. Min-max bounds to the relative errors are shown shaded
for random initialization.

Table 1. Performance comparison for various CNMF algorithms

Algo-
rithm

Sequence 1 Sequence 2
SNR (dB) RTime (secs)- SNR (dB) RTime (secs) -

Random SVD-based SNR (dB) Random SVD-based SNR (dB)
aMLS 15.00 ± 1.98 15.49 11.52 ± 0.54 11.81
MLS 19.75 ± 4.99 25.08 6.54 - 25.08 19.30 ± 2.18 19.42 13.10 - 19.42
QALS 24.22± 3.23 25.74 1.37 - 25.14 20.25 ± 0.90 20.38 3.22 - 20.33
ALS 18.12 15.07
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Fig. 3. Coding matrices X estimated by aMLS (left) and QALS (right) using SVD-based initial-
ization, and matched with the piano roll for the sequence 1
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(b) Basis and reconstructed sequences by QALS, SNR =
25.74 dB.

Fig. 4. Waveforms of basis spectral patterns A(p) and the corresponding coding vectors xp: esti-
mated by aMLS and QALS. The reconstructed sequences (in the bottom) are summation of basis
sequences.

For both sequences, CNMF algorithms were applied to extract 5 patterns A(p) ∈
R

I×10
+ , and to explain the observed sequence through basis audio sequences. The ap-

proximate signals were reconstructed from basis patterns, and normalized to have the
same energy as the original signal. Algorithms were initialized by the nonnegative ran-
dom values over 100 times or by absolute values of leading singular vectors extracted

from Y. The relative approximation errors 20 log10

⎛⎜⎜⎜⎜⎝‖Y − Ŷ‖F
‖Y‖F

⎞⎟⎟⎟⎟⎠ (dB) with different ini-

tializations are illustrated as function of the number of iterations in Fig. 2. Moreover,
Table 1 provides the signal-to-noise (SNR) ratio between the original audio sequence

and its approximate signal −20 log

( ‖y − ŷ‖2
‖y‖2

)
(dB). Running time (seconds) and SNR

as the algorithm converged are given in columns 3 and 5 in Table 1, respectively.
As seen in Fig. 2, aMLS (orange shading) is not stable for both sequences, and often

gets stuck in local minima by random initialization. Although SVD-based initialization
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can improve its performance (brown dash-dot lines), the cost values of aMLS did not al-
ways decrease. This was caused by the average rule (4) which is not optimal here. MLS
which simultaneously updates X has better convergence (green shading) than aMLS.
Among algorithms with random initialization, QALS mostly achieved the lowest ap-
proximation error (magenta shading and magenta dash lines). Moreover, QALS reached
the converged values ealier, after 100 iterations, than MLS and aMLS.

Fig. 2 also indicates that SVD-based initialization improved performance compared
with random initialization. QALS (dash-dot red lines) converged after 20 iterations in
1.37 seconds and in 3.22 seconds for two sequences, respectively. Whereas MLS (dash-
dot green lines) run at least 1000 iterations to achieve similar approximation errors in
6.54 seconds and 13.10 seconds respectively. Running time was measured on a comput-
ing server which has 2 quadcore 3.33 GHz processors and 64 GB memory. Therefore,
although complexity per iteration of QALS is higher than that of MLS, QALS may
converge earlier than MLS due to significantly less computation iterations.

Fig. 3 illustrates two coding matrices X estimated by QALS and aMLS for the se-
quence 1 after matching with its piano roll. The coding map X by QALS is more similar
to the piano roll than that of aMLS. The patterns appear continually as the notes played
in the piano roll. In addition, waveforms constructed from the basis spectral patterns
A(p) and the corresponding coding row vectors xp:, p = 1, . . . , 5, are illustrated in Fig. 4
for aMLS and QALS. aMLS achieved a reconstruction error of 15.49 dB. Whereas
QALS obtained much higher performance with an approximation error of 25.74 dB.
The standard ALS achieved an error of 18.20 dB. More comparisons between the algo-
rithms are given in Table 1, which confirms the superior performance of QALS.

6 Conclusions

A connection between CNMF and NMFs is presented and allows us to straightforwardly
extend arbitrary alternating NMF update rules to CNMF. The novel derivation method
has been illustrated by two simple CNMF algorithms. In addition, a novel (Q)ALS
algorithm is proposed and has been confirmed to give higher performance than those
of the multiplicative algorithms in the sense of convergence, and reconstruction error.
Moreover, based on the new connection, an SVD-based initialization method has been
proposed for CNMF algorithms.
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Abstract. A novel tensor decomposition is proposed to make it possible to iden-
tify replicating structures in complex data, such as textures and patterns in music
spectrograms. In order to establish a computational framework for this paradigm,
we adopt a multiway (tensor) approach. To this end, a novel tensor product is
introduced, and the subsequent analysis of its properties shows a perfect match
to the task of identification of recurrent structures present in the data. Out of a
whole class of possible algorithms, we illuminate those derived so as to cater
for orthogonal and nonnegative patterns. Simulations on texture images and a
complex music sequence confirm the benefits of the proposed model and of the
associated learning algorithms.
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1 Problem Formulation

Estimation problems for data with self-replicating structures, such as images, various
textures and music spectrograms require specifically designed approaches to identify,
approximate, and retrieve the dynamical structures present in the data. By modeling
data via summations of Kronecker products of two matrices (scaling and pattern ma-
trices), Loan and Pitsianis [1] established an approximation to address this problem.
Subsequently, Nagy and Kilmer [2] addressed 3-D image reconstruction from real-
world imaging systems in which the point spread function was decomposed into a
Kronecker product form, Bouhamidi and Jbilou [3] used Kronecker approximation for
image restoration, Ford and Tyrtyshnikov focused on sparse matrices in the wavelet
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It is important to note that at present, the Kronecker approximation [1] is limited
to 2-D structures which are required to have the same dimension. In this paper, we
generalize this problem by considering replicas (or similar structures) for multiway data
Y . To this end, we explain the tensor Y by a set of patterns and their locations, while
allowing the patterns to have different dimensions. In order to formulate mechanism
of data replication, we define a new tensor product which is a generalization of the
standard matrix Kronecker product, and is particularly suited for data with recurrent
complex structures.

Definition 1 (Kronecker tensor product). Let A = [a j] and B = [bk] be two N-
dimensional tensors of size J1 × J2 × · · · × JN and K1 × K2 × · · · × KN, respectively, j =
[ j1, j2, . . . , jN], 1 ≤ jn ≤ Jn and k = [k1, k2, . . . , kN], 1 ≤ kn ≤ Kn. A Kronecker
tensor product of A and B is defined as an N-D tensor C = [ci] ∈ RI1×I2×···×IN , i =
[i1, i2, . . . , iN], In = JnKn such that ci = a j bk, in = kn + ( jn − 1)Kn, and is expressed as
C =A ⊗B.

Remark 1. If C is partitioned into an J1 × J2 × · · · × JN block tensor, each block- j
( j = [ j1, j2, . . . , jN]) can be written as a jB.

In this article, we aim to solve the following problem:

Problem 1 (A New Tensor Decomposition). Given an N-dimensional tensorY of size
I1 × I2 × · · · × IN , find smaller scale tensorsAp, Xp, p = 1, ..., P such that

Y ≈
P∑

p=1

Ap ⊗Xp. (1)

We term sub-tensors Xp of size Kp1 × Kp2 × · · · × KpN as patterns, whileAp of dimen-
sions Jp1 × Jp2 × · · · × JpN such that In = Jpn Kpn, are called intensities (see Remark 1).

As such, Problem 1 is a generalization of the 13th problem of Hilbert, which seeks to
perform universal function approximation for a function of n variables by a number of
functions of (n− 1) or fewer variables. This new tensor decomposition is different from
other existing tensor/matrix decompositions such as the canonical polyadic decomposi-
tion (CP) [6], the Tucker decomposition (TD) [7] and the block component decomposi-
tion (BCD) [8], in that it models the relation between latent variables via links between
factor matrices and core tensor(s) which can be diagonal (for CP) or dense tensors (for
TD). In a particular case when all Ap, p = 1, . . . , P in (1) become vectors of size In

or have only one non-singleton dimension, Problem 1 simplifies into BCD which finds
only one factor matrix for each core tensor.

In the sequel, we introduce methods to solve Problem 1 with/without nonnegative
constraints. Simulations on a music sequence and on complex images containing tex-
tures validate the proposed tensor decomposition.

2 Notation and Basic Multilinear Algebra

Throughout the paper, an N-dimensional vector will be denoted by an italic lowercase
boldface letters, with its components in squared brackets, for example i = [i1, i2, . . . , iN]
or I = [I1, I2, . . . , IN].
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Definition 2 (Tensor unfolding [9]). Unfolding a tensorY ∈ RI1×I2×···×IN along modes
r = [r1, r2, . . . , rM] and c = [c1, c2, . . . , cN−M] where [r, c] is a permutation of [1, 2, . . . ,N]

aims to rearrange this tensor to a matrix Yr×c of size
M∏

k=1

Irk ×
N−M∏
l=1

Icl whose entries

( j1, j2) are given by Yr×c( j1, j2) = Y(ir, ic), where ir = [ir1 . . . irM ], ic = [ic1 . . . icN−M ],

j1 = ivec(ir, Ir), j2 = ivec(ic, Ic), and ivec(i, I) = i1 +
N∑

n=2

(in − 1)
n−1∏
j=1

I j.

If c = [c1 < c2 < · · · < cN−M], then Yr×c simplifies into Y(r), while for r = n and
c = [1, . . . , n − 1, n + 1, . . . ,N], we have mode-n matricization Yr×c = Y(n).

Definition 3 (Reshaping). The reshape operator for a tensor Y ∈ RI1×I2×···×IN to a
tensor of a size specified by a vector L = [L1, L2, . . . , LM] with

∏M
m=1 Lm =

∏N
n=1 In

returns an M-D tensor X, such that vec(Y) = vec(X), and is expressed as

X = reshape(Y , L) ∈ RL1×L2×···×LM . (2)

Definition 4 (Kronecker unfolding). A (J × K) Kronecker unfolding ofC ∈ RI1×I2×···×IN

with In = JnKn,∀n, is a matrix C(J×K) of the size
∏N

n=1 Jn ×∏N
n=1 Kn whose entries ( j, k)

are given by
C(J×K)( j, k) = C(i),

for all j = [ j1, . . . , jN], jn = 1, . . . , Jn, k = [k1, . . . , kN], kn = 1, . . . ,Kn, n = 1, . . . ,N
and j = ivec( j, J), and k = ivec(k, K), i = [i1, . . . , iN], in = kn + ( jn − 1)Kn.

Lemma 1 (Rank-1 Factorization). Consider a tensor product C = A ⊗ B whereA
and B have the dimensions as in Definition 1. Then a Kronecker unfolding C(J×K) is a
rank-1 matrix

C(J×K) = vec(A) vec(B)T . (3)

Lemma 1 also provides a convenient way to compute and updateA ⊗B.

Lemma 2 (Implementation of the Kronecker unfolding). Let C̃ = reshape(C, L) of
C ∈ RI1×I2×···×IN following L = [K1, J1,K2, J2, . . . ,KN , JN], In = Jn Kn, n = 1, 2, . . . ,N.
An (J × K) Kronecker unfolding of C is equivalent to a tensor unfolding C̃(r) = C(J×K)

where r = [2, 4, . . . , 2N].

Lemma 3 (Rank-P Factorization). Let a tensor C be expressed as a sum of P Kro-
necker products C = ∑P

p=1Ap ⊗ Bp, where Ap ∈ RJ1×···×JN and Bp ∈ RK1×···×KN ,
p = 1, 2, . . . , P. Then the Kronecker unfolding of C is a matrix of rank-P, such that

C(J×K) =

P∑
p=1

vec
(
Ap

)
vec

(
Bp

)T
. (4)

Lemmas 1 and 3 give us the necessary insight and physical intuition into methods for
solving Problem 1, establishing that the Kronecker tensor decomposition ofY is equiv-
alent to factorizations of Kronecker unfoldings Y(J×K). The algorithms for solving Prob-
lem 1 are presented in the subsequent section.
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3 Decomposition Methods

The desired property of the tensor decomposition (1) is that not all patterns Xp (and
consequently intensitiesAp) are required to have the same size. Assume that there are
G pattern sizes (G ≤ P) Kg1 × Kg2 × · · · × KgN (g = 1, 2, . . . ,G) corresponding to P
patterns Xp (p = 1, 2, . . . , P). Patterns Xp which have the same size are classified into
the same group. There are G groups of pattern sizes whose indices are specified by
Ig = {p : Xp ∈ RKg1×Kg2×···×KgN } = {p(g)

1 , p
(g)
2 , . . . , p

(g)
Pg
}, card{Ig} = Pg,

∑G
g=1 Pg = P.

For simplicity, we assume that the first P1 patterns Xp (p = 1, 2, . . . , P1) belong to
group 1, the next P2 patterns (p = P1 + 1, . . . , P1 + P2) belong to group 2, and so on.
The tensor decomposition (1) can now be rewritten as

Y =
G∑

g=1

∑
pg∈Ig

Apg ⊗Xpg + E =
G∑

g=1

Y (g) + E = Ŷ + E, (5)

where Apg ∈ RJg1×Jg2×···×JgN , Xpg ∈ RKg1×Kg2×···×KgN and Y (g) =
∑

pg∈Ig
Apg ⊗ Xpg . Ac-

cording to Lemma 3, Kronecker unfoldings Y(g)
(Jg×Kg) with Kg = [Kg1,Kg2, . . . ,KgN],

Jg = [Jg1, Jg2, . . . , JgN] are rank-Pg matrices, that is

Y(g)
(Jg×Kg) =

∑
pg∈Ig

vec
(
Apg

)
vec

(
Xpg

)T
. (6)

In order to estimate Apg and Xpg , ∀pg ∈ Ig, we define Y (−g) = Y −
∑
h�g

Y (h), and

minimize the cost function

D(Y ||Ŷ) = ‖Y − Ŷ‖2F = ‖Y (−g) −Y (g)‖2F = ‖Y(−g)
(Jg×Kg) − Y(g)

(Jg×Kg)‖2F
= ‖Y(−g)

(Jg×Kg) −
∑

pg∈Ig

vec
(
Apg

)
vec

(
Xpg

)T ‖2F . (7)

In general, without any constraints, the matrix decomposition in (7) or the tensor de-
composition (1) are not unique, since any basis of the columnspace of the matrix
Y(−g)

(Jg×Kg) in (7) can serve as vec
(
Apg

)
, pg ∈ Ig. One possibility to enforce uniqueness

is to restrict our attention to orthogonal bases in which the scalar product of two pat-
terns Xp, Xq, defined as a sum of the element-wise products of Xp, Xq, is zero for all
p � q. Alternative constraints for nonnegative data Y , such as nonnegativity, can also
be imposed on Ap and Xp. In other words, by using the background physics to con-
strain all Aq and Xq in the other groups q � Ig, we can sequentially minimize (7).
These constraints do not have a serious effect on the generality of the proposed solu-
tions as real world nonnegative data often exhibit a degree of orthogonality, and images
are nonnegative.

3.1 Orthogonal Patterns

Solving the matrix decomposition in (7) with orthogonal constraints yields vectoriza-
tions vec

(
Apg

)
and vec

(
Xpg

)
(pg ∈ Ig) that are proportional to Pg leading left and
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right singular vectors of Y(−g)
(J×K) ≈ U diag{s}VT , where U = [u1, u2, . . . , uPg ] and

V = [v1, v2, . . . , vPg ], that is,

Ap(g)
l
= reshape

(
sl ul, Jg

)
, Jg = [Jg1, Jg2, . . . , JgN], (8)

Xp(g)
l
= reshape

(
vl, Kg

)
, Kg = [Kg1,Kg2, . . . ,KgN]. (9)

If all the patterns have the same size, then Kp = K,∀p,Ap and Xp are reshaped from
P leading left and right singular vectors of the Kronecker unfolding Y(J×K).

3.2 Nonnegative Patterns

We shall now revisit Problem 1 and introduce nonnegative constraints in order to find
nonnegativeAp and Xp from a nonnegative tensor Y . Such a constrained problem can
be solved in a manner similar to the previous problem, that is,Ap andXp are updated by
minimizing the cost functions in (7). Note that we can employ straightforwardly update
rules for nonnegative least squares approximation: the multiplicative update rules [10]
and the ALS algorithms. In the following, we present the multiplicative update rules,
which can be directly applied to (7) and have the form

vec
(
Apg

)
← vec

(
Apg

)
�

(
Y(Jg×Kg) vec

(
Xpg

))
�

(
Ŷ(Jg×Kg) vec

(
Xpg

))
, (10)

vec
(
Xpg

)
← vec

(
Xpg

)
�

(
YT

(Jg×Kg) vec
(
Apg

))
�

(
ŶT

(Jg×Kg) vec
(
Apg

))
. (11)

Note that if all the patterns have the same size, the constrained Problem 1 becomes
nonnegative matrix factorization of the Kronecker unfolding Y(J×K). In a particular case
when data Y is matrix and all patterns have the same size, Problem 1 simplifies into the
matrix decomposition proposed in [1].

4 Simulations

The introduced algorithms were verified by comprehensive simulations on synthetic
benchmark data and on real-world images with texture and music data.

4.1 Synthetic Data

In the first set of simulations, we considered 3-D data of the size 90×90×12 composed
of 12 random nonnegative patterns of different sizes, as given in Table 1 (row 2). Our
aim was to extract orthogonal and nonnegative patterns in 50000 iterations or until

differences of successive relative errors (SNR) −20 log10

(
‖Y−Ŷ‖F
‖Y‖F

)
are lower than 10−5.

Results (SNR) in Table 1 (the second row) show an average SNR = 110.16 dB over
100 runs for orthogonal decomposition, and an average SNR = 107.43 dB based on
nonnegative patterns. The results confirm the validity of the proposed model and the
excellent convergence of the proposed algorithms.
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4.2 Analysis of Texture Images

The next set of simulations were performed on RGB textures “tile 0021” and “metal-
plate 0020” taken from http://texturelib.com. Textures can be represented by

3-D tensors of pixels, or by 4-D tensors with additional modes for approximation and
detail coefficients in the wavelet domain. For example, the image “tile 0021” of size
600 × 600 × 3 is tiled by patterns Xp of size 75 × 75 × 3 as illustrated in Fig. 1(a). De-
tail coefficients of this image obtained by the biorthogonal wavelet transform formulate
a 3-D tensor of size 300 × 300 × 3 × 3. The approximation coefficients can be inde-
pendently decomposed or combined with the tensor of detail coefficients. Parameters
of Kronecker decompositions such as the number of patterns and their dimensions are
given in Table 1. Approximation errors (SNR (dB)) and ratio (%) between the number
of fitting parameters and the number of data elements are also given in Table 1.

In Fig. 1, the image “tile 0021” was approximated by two groups of orthog-
onal and nonnegative patterns. Two nonnegative basis images corresponding to two
groups of patterns are shown in Figs. 1(c), 1(d). The first group consists of 10 patterns
Xp1 ∈ R75×75×3

+ (shown in Fig. 1(e)) expressing replicating structures, whereas the sec-
ond group consists of 7 patterns of size 600 × 1 × 3 representing the background as
in Fig. 1(d). In addition, ten orthogonal patterns are shown in Fig. 1(f). For nonneg-
ative patterns, each pattern in Fig. 1(e) represents a replicating structure in the image,
whereas the orthogonal patterns in Fig. 1(f) were ranked according to the order of singu-
lar values which indicate detail level of patterns. Observe from Fig. 1(f) that the higher
the order of the orthogonal patterns Xp, the more details these patterns comprise.

Results for decompositions of the color image “metal plate 0012” are shown
in Fig. 2. In the wavelet domain, we formulated a 3-D tensor for the approximation

(a) Original “tile 0021”,
600 × 600 × 3.

(b) Approximation Ŷ , SNR
= 28.37 dB .

(c) Ŷ (1)
constructed from 10

Xp1 (75 × 75 × 3)
(d) Ŷ (2)

constructed from 7
Xp2 (600 × 1 × 3).

(e) 10 nonnegative Xp1 (75 × 75 × 3). (f) 10 orthogonal Xp1 (75 × 75 × 3).

Fig. 1. Illustration for orthogonal and nonnegative pattern decompositions of the image
“tile 0021”. (b)-(d) reconstructed images and two basis images by 10 patterns of size 75×75×3
and 7 patterns of size 600 × 1 × 3. (e)-(f) 10 nonnegative and orthogonal patterns.

http://texturelib.com
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(a) “metal plate 0012”,
180 × 240 × 3.

(b) Approximation Ŷ , SNR
= 28.38 dB.

(c) Ŷ (1)
constructed from

orthogonal DWT Xp1 .
(d) Ŷ (2)

constructed from
orthogonal DWT Xp2 .

Fig. 2. Approximation of “metal plate 0012” in the wavelet domain

coefficients and a 4-D tensor comprising the details in the three orientations (horizon-
tal, vertical, and diagonal). The two tensors were independently decomposed to find two
groups of patterns whose sizes are given in Table 1 (row 4). The approximate image was
then constructed from the basis patterns and achieved an SNR = 28.38 dB using 13.74
% of the number of entries. Figs. 2(c) and 2(d) visualize two basis images, each of
which was constructed from one pattern group for the approximation coefficients and
all the patterns for the detail coefficients.

4.3 Analysis of Patterns in Music

In this example, we decomposed a sampled song “London Bridge” composed of five
notes A3, G3, F3, E3 and D3 played on a guitar for 5 seconds [10]. The log-frequency
spectrogram Y (364 × 151), illustrated in Fig. 3(a), was converted from the
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(a) Spectrogram of the sequence.
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(b) Spectrogram for G3.
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(c) Spectrogram for A3
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(d) Spectrogram for F3.
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(e) Spectrogram for E3.
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(f) Spectrogram for D3.

Fig. 3. Log-frequency spectrograms of the music sequence and 5 basis nonnegative patterns cor-
responding to 5 notes G3, A3, F3, E3 and D3. The reconstructed signal has SNR = 20.78 dB.
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Table 1. Parameters and results for orthogonal (Orho.) and nonnegative (NNG) pattern
decompositions

Data Size Pattern Size SNR (dB) Ratio
(Kg1 × · · · × KgN) × Pg Ortho. NNG (%)

random 90 × 90 × 12
(5 × 5 × 2) × 2 &
(6 × 6 × 3) × 4 &

(9 × 9 × 4) × 6
110.16 107.43 12.10

tile 0021

600 × 600 × 3
(75 × 75 × 3) × 10 &

(600 × 1 × 3) × 7
29.69 28.37 17.24

300 × 300 × 3 × 3
(DWT, Detail Coefs.)

(20 × 15 × 1 × 3) × 20 &
(300 × 1 × 1 × 3) × 3

27.84 9.48
300 × 300 × 3

(DWT, Approx. Coefs.)
(15 × 15 × 3) × 40 &

(300 × 1 × 3) × 15

metal plate 0012

180 × 240 × 3
(20 × 20 × 3) × 15 &

(180 × 1 × 3) × 10
27.58 25.35 21.16

90 × 120 × 3 × 3
(DWT, Detail Coefs.)

(5 × 20 × 1 × 3) × 3 &
(90 × 1 × 1 × 3) × 10

28.38 13.74
90 × 120 × 3

(DWT, Approx. Coefs.)
(15 × 15 × 1) × 20 &
(90 × 1 × 1 × 3) × 5

guitar

music sequence
364 × 151

log-freq. spectrogram

(4 × 151) × 5 &
(2 × 151) × 4 &

(7 × 151) × 2
22.71 20.78 13.88

linear-frequency spectrogram in the frequency range from f0 = 109.4 Hz (bin 8) to
fI = fs/2 = 4000 Hz (bin 257) with 70 bins per octave. When there was no decom-
position, the approximation error was 27.56 dB. The spectrogram was decomposed to
find 11 patterns replicating along frequency (see row 5 in Table 1). Among the 11 log-
frequency spectrograms Ŷ(p) constructed from Xp, five spectrograms corresponding to
five notes are illustrated in Figs. 3(b)-3(f). The approximate sequences (in the time do-
main) achieved SNR = 22.71 dB and 20.78 dB using orthogonal and nonnegative pat-
terns, respectively. For this example, we may also apply the nonnegative matrix/tensor
deconvolutions to seek for the similar patterns Xp replicating along frequency [11],
however, the new tensor decomposition requires fewer fitting parameters.

5 Conclusions

A new tensor approximation has been proposed to identify and extract replicating struc-
tures from multiway data. By imposing a constraint on the replicating structures to be
nonnegative or orthogonal, the model has been shown to significantly reduce the num-
ber of fitting parameters, compared with existing tensor/matrix factorizations. In a par-
ticular case when all the patterns have the same size, the new tensor decomposition
simplifies into rank-P matrix factorization. This gives us a new insight and the abil-
ity to seek for hidden patterns by employing well-known matrix factorizations such as
SVD and NMF. It has also been shown that a low-rank approximation by directly ap-
plying SVD or NMF to a data tensor results in common patterns which represent the
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background of the data, whereas factorization on the rearranged data extracts replicat-
ing structures. Simulation results for synthetic data, images and music sequence have
shown that the proposed model and algorithms have the ability to extract desired pat-
terns, and explain the data with relatively low approximation errors. Future extensions
of the presented of this pattern decomposition will include approximating complex data
by several subtensors instead of only two (scaling and pattern) tensors. One interesting
implementation would be a multistage approach, in which patterns or scaling tensors
are Kronecker products of subtensors.
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Abstract. Convolutional non-negative matrix factorization (CNMF) can be 
used to discover recurring temporal (sequential) patterns in sequential vector 
non-negative data such as spectrograms or posteriorgrams. Drawbacks of this 
approach are the rigidity of the patterns and that it is intrinsically a batch me-
thod. However, in speech processing, like in many other applications, the  
patterns show a great deal of time warping variation and recognition should be 
on-line (possibly with some processing delay). Therefore, time-coded NMF  
(TC-NMF) is proposed as an alternative to CNMF to locate temporal patterns in 
time. TC-NMF is motivated by findings in neuroscience. The sequential data 
are first processed by a bank of filters such as leaky integrators with different 
time constants. The responses of these filters are modeled jointly by a con-
strained NMF. Algorithms for learning, decoding and locating patterns in time 
are proposed and verified with preliminary ASR experiments. 

Keywords: non-negative matrix factorization, temporal patterns, integrate-and-
fire neurons, automatic speech recognition. 

1 Introduction 

Non-negative matrix factorization (NMF) [1] can be used to discover recurring pat-
terns in non-negative data such as histograms, spectrograms or images. Multiple ob-
servations are projected to a vector space and stacked as the columns of a matrix V 
and approximated by the product WH of reduced rank, each with non-negative en-
tries. The columns of W will contain the discovered one-dimensional patterns and H 
indicates their presence in the data. Because the non-negative patterns are combined 
with non-negative weights, the model can be thought of as a decomposition into parts. 
NMF and the related [2] PLSA [3] have been applied in many domains including 
image processing, speech enhancement, speech recognition, document clustering and 
term clustering. 

Though this was not addressed in the original work in [1], the patterns to be dis-
covered may show structure, such as adjacency of the pixels belong to a part. NMF 
disregards this structure by mapping the data to a one-dimensional vector and  
not imposing any a priori relation between the entries (the features) in this vector. 



 An On-Line NMF Model for Temporal Pattern Learning Theory 307 

 

Graph-regularized NMF [4] is a generic extension that takes generic feature relations  
into account. 

When the data have a sequential (two-dimensional) structure, such as spectrograms 
or, like the examples in this paper, time-varying neuron activations caused by spoken 
words, more specific formulations can be made. The frame stacking approach of 
stacking successive vectors [5] leads to suboptimal solutions because the repetition of 
features in successive data vectors or patterns is not exploited. Moreover, an inflation 
of the required number of model patterns corresponding to multiple time alignments 
is observed. Another solution is not to stack the data vectors of successive frames but 
rather to add them over a sliding window long enough to span the patterns, which has 
shown good results for modeling spoken digits in [6]. The disadvantage of this ap-
proach is that the event order within the patterns nor the order of occurrence of the 
patterns within a window are modeled. A more elegant solution is given by convolu-
tional NMF (CNMF) [7,8], where the data are modeled as a sum of two-dimensional 
patterns, each convolved with an excitation function. While this model alleviates the 
objections to stacking, it suffers from the rigidity of the patterns. In speech 
processing, like in many other applications, the patterns show a great deal of varia-
tion. Successful models for word-sized patterns include some time warping mechan-
isms such as state alignments in hidden Markov models or dynamic time warping in 
exemplar-based speech recognition. For example, if the speaking rate is reduced, the 
convolutional patterns will tend to be too short and a good match with slow speech 
can only be obtained by averaging the patterns over all possible durations or by in-
creasing the number of patterns. CNMF is also intrinsically a batch formulation re-
quiring the complete input data to be known in order to decompose it. To recast it as 
an online method, block-wise approximations are required.  

In this paper, an alternative NMF model, time coded NMF (TC-NMF), for pattern 
discovery in sequential data and subsequent decoding is proposed. Like CNMF, it is 
capable of modeling the sequential aspects of the patterns and it is capable of locating 
these patterns along the time axis. However, it does not model the data by rigid pat-
terns, yet allows for a controllable temporal resolution. Instead, it feeds the non-
negative data into a bank of filters with different impulse responses and models their 
output jointly with an NMF. The relative output magnitudes of the different filters 
allow to locate patterns in time. Simply put, if the output of a sluggish filter is large, 
while that of a fast filter is small (large), the pattern that caused it must be far (close) 
to the current analysis time. This mechanism can be used to locate the patterns as a 
whole during decoding, but also to locate events within the patterns during pattern 
discovery.   

The proposed model is plausible from the neuroscience perspective. Upstream neu-
rons are tuned to fire on specific (acoustic) events. In early stages of auditory 
processing, the receptive field of a neuron corresponds to a specific time-frequency 
distribution. Further downstream, they respond to more complex temporal patterns. 
The firing rates of such neurons are the inputs to the TC-NMF. The neurons feed 
many integrate-and-fire (IaF) neurons [9] with exponentially fading action potentials 
[10]. Neurons with a long memory or slow decay accumulate spikes form the  
input neurons over a long period of time, a process known as temporal summation in 
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neurophysiology. The firing rate of a IaF neuron will depend on the incoming spike 
frequency relative to its time constant. We assume IaF neurons come with a wide 
range of time constants. By this process, neurons further downstream that are con-
nected to these IaF neurons will observe different inputs depending on how much 
time has elapsed since the occurrence of the (acoustic) event. They will effectively 
result in time-tuned filter behavior, which is proposed as a mechanism for time per-
ception [13]. In the present work, the typical joint response on all IaF neurons is mod-
eled by an NMF, a model that can be viewed as a neural network showing cognitively 
plausible properties such as lateral inhibition [11] and which can learn incrementally, 
i.e. without having to store all past training tokens [12]. An algorithm for computing 
the perceived time of the detected temporal patterns will be given.  

2 Model 

Consider non-negative data vnt (n = 1 … N) that vary with an index t (t = 1 … T) 
which will be called time. In the experimental section, these will be posteriorgrams, 
but in principle, the proposed method applies equally well to any vector-valued se-
quential non-negative data such as magnitude spectrograms. The basic NMF model is 
based on the following generative model:  with  0, 0, 0 

(1)

At each time instant the observations are explained as a linear combination of R one-
dimensional patterns wnr. There is no temporal relation between the pattern weights 
hrt. The one-dimensional pattern model looses the feature relations that exist in higher 
dimensional space. In some cases, it is adequate to extend (1) to a tensor decomposi-
tion [14], but this is not appropriate for spectrograms and most imaging data.  

In convolutional NMF, the r-th pattern is 2-dimensional with a feature index n and 
a time index m (m = 1…Mr) and is convolved with its time-dependent activation hrt: 

 (2)

where  means that the sequence hrt is shifted to the right over m samples of the 
index t , i.e.  except that zeros are shifted in on the left (t = 1) and 
elements are lost on the right (t = T). See [7] and [8]. The patterns have received a 
temporal model of duration Mr and are accurately located in time by hrt. 

2.1 Time-Coded NMF 

To alleviate the disadvantages of CNMF mentioned in section 1, a model is proposed 
where the temporal data are first filtered by a bank of K filters with decaying impulse 
response fk(t) (k = 1 … K): 
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 (3)

The decay functions could be the exponential family 

 (4)

a choice which is grounded in neuroscience (IaF neurons), which can easily be im-
plemented as a bank of first order low-pass filters (leaky integrators) and which will 
be used in section 3. The constants αk are known, corresponding to the physical prop-
erty of a specific neuron in the brain. An alternative choice could be a cascade of first 
order filters with equal time constant   which are reminiscent of 
Laguerre filters. 

The TC-NMF model is derived by assuming vnt is composed of an additive combi-
nation of patterns located at times  having activation . Each pattern has an 
internal structure generating data valued at  at chosen times qrs relative to the end 
of the pattern: 

 (5)

where Sr controls the level of detail within the r-th pattern (much like Mr in CNMF) 
and  will be explained in section 2.3. Approximating  
yields 

 
(6)

where patterns are represented by K vectors  irrespective of their inter-
nal structure or duration with: 

 (7)

For the first order filter bank (4), no approximation is involved and  

2.2 Learning 

Learning is achieved by estimating the parameters ,  and  by minimizing 
the sum over all k of the Kullback-Leibler divergence (KLD) between the left hand 
side and the right hand side of (6). In principle, this can be done completely unsuper-
visedly, which has been successful on toy problems. On real speech data, utterance-
level information was exploited to avoid local minima.  

The update formulae are obtained by equating the partial derivative of the KLD 
w.r.t. the parameters to zero. Like with the original NMF, this leads to a fixed point 
multiplicative update for : 
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∑ ∑ ∑ ∑  (8)

The update for  and  requires solving a 2×2 set of nonlinear equations. Form: 

 (9)

 (10)

where prime denotes derivative. For the case of a leaky integrator filter bank, solve: 

1 0 (11)

for  by a coarse search followed by a few Newton-Raphson updates. Then update 

∑ ∑  (12)

Updates (8), (11) and (12) are repeated until convergence. After each iteration  is 
normalized to sum to unity over n and s while hrt is normalized inversely to mitigate 
scale invariance. The KLD was always observed to decrease under these update rules 
but the convergence behavior remains to be studied from a theoretical point of view. 

2.3 Decoding 

Estimation of the activation of a pattern and its position is done with updates (11) and (12) 
with fixed  (or equivalently fixed ). This will yield a different answer at every t 
for which this problem is solved. Performing actual recognition requires an integration of 
these estimates into a global decision. A left-to-right decoding that does not involve dy-
namic programming is applied here and proceeds as follows. If hrt exceeds a threshold and 
its current τrt is positive (i.e. the pattern is observed completely for it ends earlier than the 
current time) and also places pattern r after the last decoded pattern, pattern r is accepted. 
To avoid that a pattern accepted earlier would be recognized again in the future, its future 
effect on  is predicted by the recursion (for leaky integrators): 

 
(13)

where  is initialized to 0. Adding  to (5) has the desired inhibitory effect and gene-
rates a signal model in which multiple occurrences of a pattern are modeled correctly. 
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3 Application to Speech Recognition 

In this section, preliminary experiments on the adult speakers of the TIDIGITS corpus 
(strings of up to seven digits) are presented. Each of the 11 digits plus silence is con-
sidered as a pattern to be modeled. In order not to make the pattern estimation task 
trivial, the isolated digits are removed from the training set, leaving 6159 utterances 
from 112 speakers. For each utterance, a phone lattice is generated using an acoustic 
model and a bigram phonotactic model which are both trained on the 284 speakers of 
the Wall Street Journal corpus. The vertices of the lattice are labeled with frame num-
ber t (= time at a 10 ms resolution) and the edges are labeled with one of 44 phone 
units and a posterior probability. The data vnt are composed of phone features (1 ≤ n ≤ 
44) and 442 phone co-occurrence features (45 ≤ n ≤ 1980 = N). A phone feature is the 
posterior probability of phone n at time t. The co-occurrence feature of phone pair 
(A,B) is only non-zero of there is a vertex at time t with an incoming edge with label A 
and an outgoing edge with label B. The feature value is the product of their posterior 
probability. The bank of 17 first order filters uses damping coefficients αk linearly 
spaced between 0.02 and 0.1.  

 

Fig. 1. Phone posterior part of the learned pattern model  for the digit “seven”. Dark tones 
are large values. All phone labels were mapped to TIMIT symbols. 

The training procedure is organized in several phases resulting in models with in-
creased temporal detail. First K = 1 and α1 = 0, which is unable to capture temporal 
detail in the patterns and Sr = 1 (and qr1 = 0). At this point, utterance-level supervisory 
information is exploited by setting hrt = 0 for all not-occurring patterns (i.e. only word 
identity but not word order is used) in the estimation of hrt (one per utterance) and  

 (τrt will not affect the cost function and is irrelevant). Then the full K = 17 filters 
are applied and hrt and τrt are re-estimated to locate the patterns. Finally, the patterns 
are refined to Sr = 4 with qrs = 15(s-1) by re-estimation (initialization by duplication 
of ). Figure 1 shows an estimated phone posterior model in . The models cor-
rectly reflect the most likely phones from the beginning to the end of the words (e.g. 
‘S’ at the beginning qr1 = 45). On the test set with 6214 strings of at least two digits 
from 113 speakers (disjoint from the training set), 1.8% substitutions and 1.9% inser-
tions are observed, but also almost 13% deletions. This preliminary result was ob-
tained without much optimization on parameters or feature sets. While the substitu-
tion rate is encouraging, the deletion problem may be due to the bottom-up decoding 
process that does not consider multiple hypotheses.  
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4 Discussion and Conclusion 

Like CNMF, TC-NMF allows to learn, recognize and locate temporal patterns in data. 
The solutions to the training and recognition problems were presented in this paper. 
At ach point in time, the pattern activation hrt can be estimated with their perceived 
times τrt, using only the instantaneous data  which makes TC-NMF an on-line 
method. To conclude, some research directions are listed. 

• Filter bank. The number of filters K is not a critical parameter but should be 
greater than all Sr. The time constants αk need to reflect the time scale of the pat-
terns, but more research is required to suggest optimal values. Inappropriate con-
stants or small K lead to poor numerical conditioning of the R matrices asrk (rows r, 
columns k), which makes it impossible to infer the pattern model from data. The 
identifiability of patterns for other filter bank choices is not investigated. 

• Representation of patterns. Sr and qrs should be optimized for ASR. Parameter 
sharing among the pattern models could be considered. 

• Robustness to timing and warping mismatch. Consider an observed pattern 
instance that is atypical in length (e.g. a slowly spoken digit). In CNMF and frame 
stacking, having a good match at the beginning of the pattern will imply that the 
observed features will not match at all towards the end. On spectrogram data for 
instance, a mismatch in the slope of a formant frequency trajectory will result in 
the different frequency channels (feature index n) holding the formant peak and 
hence extremely poor matches. In TC-NMF, a timing mismatch between model 
and data for pattern r will result in a mismatch in the relative size of  
versus its contribution in , reflecting that close timing matches are better. How-
ever, it will not result in a mismatch along the feature dimension. Hence, a possi-
ble, today unconfirmed, advantage of TC-NMF could be robustness to timing or 
warping mismatch.  

• Cascading TC-NMF. Observe that the input and the output to TC-NMF are alike: 
they are features with a time stamp.  The output integrates inputs to larger, more 
complex units. Architectures that integrate several layers (e.g. spectra to phones to 
words) could be explored. 

• Search. The proposed decoding mechanism maintains only one hypothesis, while 
traditional architectures for ASR examine a (cognitively implausible) huge set of 
hypotheses simultaneously. Augmenting the model with a search that does not take 
instantaneous irrevocable decisions is expected to be advantageous to accuracy and 
might facilitate the integration of a language model. 

• Supervision. In the experiments, limited supervision information was used in the 
form of the identity of the keywords present in an utterance. The method is intrin-
sically unsupervised and could be applied as such. Like in many unsupervised 
NMF-based models, local minima of the cost could become problematic. 
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Abstract. This research focuses on the removal of the singing voice in
polyphonic audio recordings under real-time constraints. It is based on
time-frequency binary masks resulting from the combination of azimuth,
phase difference and absolute frequency spectral bin classification and
harmonic-derived masks. For the harmonic-derived masks, a pitch likeli-
hood estimation technique based on Tikhonov regularization is proposed.
A method for target instrument pitch tracking makes use of supervised
timbre models. This approach runs in real-time on off-the-shelf comput-
ers with latency below 250ms. The method was compared to a state of
the art Non-negative Matrix Factorization (NMF) offline technique and
to the ideal binary mask separation. For the evaluation we used a dataset
of multi-track versions of professional audio recordings.

Keywords: Source separation, Singing voice, Predominant pitch
tracking.

1 Introduction

Audio source separation consists in retrieving one or more audio sources given a
set of one or more observed signals in which the sources are mixed. In the field
of music processing, it has received special attention the past few decades. A
number of methods have been proposed, most of them based on time-frequency
masks. We differentiate between two main strategies in the creation of the time-
frequency mask depending on the constraints of the solution.

Realtime solutions are often based on binary masks, because of their simple
and inexpensive computation. These solutions assume the target sources are
orthogonal in the time-frequency domain. The most common binary mask used in
stereo music recordings is based on panning information of the sources [15,8,13].

Non-realtime approaches do not make such an orthogonality assumption, and
make use of a soft mask based on Wiener filtering [2] which requires estimating
all spectrograms of the constitutive sources. For harmonic sources this estima-
tion is often performed in two steps. First the pitch track of the target source is

� This research has been partially funded by Yamaha Corporation (Japan).
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estimated and then the spectrum of that given pitch track is estimated. The first
step often relies on melody extraction algorithms [7,6]. Some methods estimate
the pitch of the components independently [10], while others perform a joint
estimation of the pitches in the spectrum [10,14]. Most joint pitch estimation
methods are computationally expensive since they evaluate a large number of
possible pitch combinations. NMF approaches to multipitch likelihood estima-
tion [11,5] address this pitfall by factoring the spectrogram into a multiplication
of two positive matrices, a set of spectral templates and a set of time-dependent
gains. In [4] and [9] the spectral templates are fixed to a set of comb filters rep-
resenting the spectra generated by each individual pitch spectrum. We propose
combining several sources of information for the creation of the binary mask
in order to raise the quality of currently existing methods while maintaining
low-latency. We propose two main sources of information for the creation of the
masks. Spectral bin classification based on measures such as lateralization (pan-
ning), phase difference between channels and absolute frequency is used to create
a first mask. Information gathered through a pitch-tracking system is used to
create a second mask for the harmonic part of the main melody instrument.

2 Spectral Bin Classification Masks

Panning information is one of the features that have been used successfully [15,8]
to separate sources in real-time. In [13] the pan and the IPD (inter-channel phase
difference) features are used to classify spectral bins. An interesting feature for
source separation is the actual frequency of each spectrum bin, which can be a
good complement when the panning information is insufficient. Using pan and
frequency descriptors we define a filter in the frequency domain using a binary
mask to mute a given source:

mpf
i [f ] =

{
0 if plow < pi[f ] < phigh and flow < f < fhigh,

1 otherwise.

where pi[f ] is the pan value of the spectral bin f at frame i. The parameters
plow and phigh are the pan boundaries and flow and fhigh are the frequency
boundaries fixed at −0.25, 0.25 and 60Hz and 6000Hz respectively, to keep the
method unsupervised.

The results show that this method produces acceptable results in some sit-
uations. The most obvious limitation being that it is not capable of isolating
sources that share the same pan/frequency region. This technique is also inef-
fective in the presence of strong reverberation or in mono recordings which have
no pan information.

3 Harmonic Mask

Harmonic mask creation is based on two assumptions: that the vocal component
is fully localized in the spectral bins around the position of the singing voice
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partials and that the singing voice is the only source present in these bins.
Under such assumptions an optimal mask to remove the singing voice consists
of zeros around the partials positions and ones elsewhere.

These assumptions are often violated. The singing voice is composed of other
components than the harmonic components such as consonants, fricatives or
breath. Additionally other sources may contribute significantly to the bins where
the singing voice is located. This becomes clear in the results where signal de-
composition methods such as Instantaneous Mixture Model (IMM) [4] that do
not rely on such assumptions perform better than our binary mask proposal.
However these assumptions allow us to greatly simplify the problem.

Under these assumptions we define the harmonic mask mh to mute a given
source as:

mh
i [f ] =

{
0 for (f0i · h)− L/2 < f < (f0i · h) + L/2, ∀h,
1 otherwise.

where f0i is the pitch of the ith frame, and L is the width in bins to be removed
around the partial position.We may also combine the harmonic and spectral bin
classification masks using a logical operation by defining a new mask mpfh

i as:

mpfh
i [f ] = mpf

i [f ] ∨mh
i [f ] (1)

Finally, we are also able to produce a soloing mask m̄i[f ] by inverting any of
the previously presented muting masks m̄i[f ] = ¬mi[f ].

In order to estimate the pitch contour f0i of the chosen instrument, we follow a
three-step procedure: pitch likelihood estimation, timbre classification and pitch
tracking.

3.1 Pitch Likelihood Estimation

The pitch likelihood estimation method proposed is a linear signal decompo-
sition model. Similar to NMF, this method allows us to perform a joint pitch
likelihood estimation. The main strengths of the presented method are low la-
tency, implementation simplicity and robustness in multiple pitch scenarios with
overlapping partials. This technique performed better than a simple harmonic
summation method in our preliminary tests.

The main assumption is that the spectrum Xi ∈ RNS×1 at a given frame i, is a
linear combination ofNC elementary spectra, also named basis components. This
can be expressed as Xi = BGi, NS being the size of the spectrum. B ∈ RNS×NC

is the basis matrix, whose columns are the basis components. Gi ∈ RNC×1 is a
vector of component gains for frame i.

We set the spectra components as filter combs in the following way:

ϕ[m,n] = 2πflHNP
2

iH−F/2+n
HNP − 1

Sr ln (2)

Bm[k] =

F∑
n=0

wa[n]

(
Nh∑
h=1

sin (hϕ[m,n])

)
e−j2πnk/N (2)
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with H = (1 − α)F . Where α is a coefficient to control the frequency overlap
between the components, F is the frame size, Sr the sample rate, wa[n] is the
analysis window, Nh is the number of harmonics of our components, Bm is the
spectrum of size N of the component of mth pitch. Flat harmonic combs have
been used in order to estimate the pitch likelihoods of different types of sources.

The condition number of the basis matrix B defined in Equation 2 is very
high (κ(B) ≈ 3.3 · 1016), possibly due to the harmonic structure and correlation
between the components in our basis matrix. For this ill-posed problem we pro-
pose using the well-known Tikhonov regularization method to find an estimate
of the components gains vector Ĝi given the spectrum Xi. This consists in the
minimization of the following objective function:

Φ(Gi) = |BGi −Xi|2 + λ |Gi|2 (3)

where λ is a positive scalar parameter that controls the effect of the regularization
on the solution. Under the assumption of gaussian errors, the problem has the
closed-form solution Ĝi = RXi where R is defined as:

R = Bt[BBt + λINS ]
+ (4)

and [Z]+ denotes the MoorePenrose pseudoinverse of Z. The calculation of R is
computationally costly, however R only depends on B, which is defined by the
parameters of the analysis process, therefore the only operation that is performed
at each frame is Ĝi = RXi.

We must note that in contrast to NMF, our gains Ĝi can take negative values.
In order to have a proper likelihood we we define the pitch likelihood as:

Pi = [Ĝi]+/sum([Ĝi]+) (5)

where [Z]+ denotes the operation of setting to 0 all the negative values of a given
vector Z.

3.2 Timbre Classification

Estimating the pitch track of the target instrument requires determining when
the instrument is not active or not producing a harmonic signal (e.g. in fricative
phonemes).

We select a limited number of pitch candidates nd by finding the largest local
maxima of the pitch likelihood function Pi 5. For each candidate a feature vector
c is calculated from its harmonic spectral envelope eh(f) and a classification
algorithm predicts the probability of it being a voiced envelope of the target
instrument. The feature vector c of each of the candidates is classified using
Support Vector Machines (SVM). The envelope computation eh(f) results from
the Akima interpolation [1] between the magnitude at harmonic frequencies bins.
The timbre features c are a variant of the Mel-Frequency Cepstrum Coefficients
(MFCC), where the input spectrum is replaced by an interpolated harmonic
spectral envelope eh(f). This way the spectrum values between the harmonics,
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Fig. 1. Spectrum magnitude (solid black line) and the harmonic spectral envelopes
(colored dashed lines) of three pitch candidates

where the target instrument is often not predominant, have no influence on the
classification task. Figure 1 shows an example of a spectrum Xi[f ] (in black) of
a singing voice signal, and the interpolated harmonic spectral envelopes eh,1(f),
eh,2(f) and eh,3(f) (in magenta, blue and orange respectively), of three different
pitch candidates.

The features vector c contains the first 13 coefficients of the Discrete Cosine
Transform (DCT), which are computed from the interpolated envelope eh(f) as:

c = DCT (10 · log (E[k])) (6)

where E[k] =
∑fk,high

fk,low
eh(f)

2, and fk,low and fk,high are the low and high fre-

quencies of the kth band in the Mel scale. We consider 25 Mel bands in a range
[0...5kHz]. Given an audio signal sampled at 44.1kHz, we use a window size of
4096 and a hop size of 512 samples. The workflow of our supervised training
method is shown in Figure 2. Two classes are defined: voiced and unvoiced in
a frame-based process1. Voiced frames contain pitched frames from monophonic
singing voice recordings (i.e. only a vocal source). Pitched frames have been

Fig. 2. In the training stage, the eh(f) is based on the annotated pitch if it exists
if (ref. f0), and on the estimated pitch otherwise

1 The original training and test datasets consist of 384, 152 (160, 779/223, 373)
and 100, 047 (46, 779/53, 268) instances respectively. Sub-sampled datasets contain
50, 000 and 10, 000 respectively. Values in brackets are given for the voiced and
unvoiced instances respectively.
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manually annotated. In order to generalize well to real audio mixtures, we also
include audio examples composed of an annotated vocal track mixed artificially
with background music. Unvoiced frames come from three different sources: a)
non-pitched frames from monophonic singing voice recordings (e.g. fricatives,
plosive, aspirations, silences, etc.); b) other monophonic instrument recordings
(sax, violin, bass, drums); and c) polyphonic instrumental recordings not con-
taining vocals. We employ a radial basis function (RBF) kernel for the SVM
algorithm [3]. As a pre-process step, we apply standardization to the dataset by
subtracting the mean and dividing by the standard deviation. We also perform
a random subsampling to reduce model complexity. We obtain an accuracy of
83.54%, when evaluating the model against the test dataset.

3.3 Instrument Pitch Tracking

The instrument pitch tracking step is a dynamic programming algorithm divided
into two processes. First a Viterbi is used to find the optimal pitch track in the
past C frames, using pitch likelihood Pi for the state probability. Then a second
Viterbi allows us to determine the optimal sequence of voiced and unvoiced
frames using the probability found on the timbre classification step for the state.
In both cases frequency differences larger than 0.5 semitones between consecutive
frames are used to compute transition probabilities. Our implementation works
on an online manner with a latency of C = 20 frames (232 ms). Due to lack of
space the details of the implementation are not presented here.

4 Evaluation

The material used in the evaluation of the source separation method consists of
15 multitrack recordings of song excerpts with vocals, compiled from publicly
available resources (MASS2, SiSEC3, BSS Oracle4)

Using the well known BSSEval toolkit [12], we compare the Signal to Distor-
tion Ratio (SDR) error (difference from the ideal binary mask SDR) of several
versions of our algorithm and the IMM approach [4]. The evaluation is per-
formed on the ”all-minus-vocals” mix versions of the excerpts. Table 1 presents
the SDR results averaged over 15 audio files in the dataset. We also plot the
results of individual audio examples and the average in Figure 4. Pan-freq mask
method results in applying the mpf mask from Equation (1). The quality of our
low-latency approach to source separation is not as high as for off-line meth-
ods such as IMM, which shows an SDR almost 3 dBs higher. However, our
LLIS-SVM method shows an increase of 2.2 dBs in the SDR compared to the
LLIS-noSVM method. Moreover, adding azimuth information to the multiplica-
tive mask (method LLIS-SVM-pan) increases the SDR by 0.7 dBs.

2 http://www.mtg.upf.edu/static/mass
3 http://sisec.wiki.irisa.fr/
4 http://bass-db.gforge.inria.fr/bss_oracle/

http://www.mtg.upf.edu/static/mass
http://sisec.wiki.irisa.fr/
http://bass-db.gforge.inria.fr/bss_oracle/
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Table 1. Signal-To-Distortion Ratio (in dB) for the evaluated methods. The Ideal
column shows the results of applying an ideal binary mask with zeros in the bins where
the target source is predominant and ones elsewhere.

Method pan-freq LLIS-noSVM LLIS-SVM LLIS-SVM-pan IMM Ideal

SDR-vocals 0.21 0.47 2.70 3.43 6.31 12.00

SDR-accomp 4.79 5.05 7.28 8.01 10.70 16.58

5 Conclusions

We present a source separation approach well suited to low-latency applications.
The separation quality of the method is inferior to offline approaches, such as
NMF-based algorithms, but it performs significantly better than other existing
real-time systems. Maintaining low-latency (232 ms), an implementation of the
method runs in real-time on current, consumer-grade computers. The method
only targets the harmonic component of a source and therefore does not remove
other components such as the unvoiced consonants of the singing voice. Addition-
ally it does not remove the reverberation component of sources. However these
are limitations common to other state-of-the-art source separation techniques
and are out of the scope of our study.

We propose a method with a simple implementation for low-latency pitch
likelihood estimation. It performs joint multipitch estimation, making it well-
adapted for polyphonic signals. We also introduce a technique for detecting and
tracking a pitched instrument of choice in an online manner by means of a
classification algorithm. This study applies the method to the human singing
voice, but it is general enough to be extended to other instruments.

Finally, we show how the combination of several sources of information can
enhance binary masks in source separation tasks. The results produced by the
ideal binary mask show that there are still improvements to be made.
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Abstract. In this paper, we present an on-line semi-supervised algo-
rithm for real-time separation of speech and background noise. The
proposed system is based on Nonnegative Matrix Factorization (NMF),
where fixed speech bases are learned from training data whereas the noise
components are estimated in real-time on the recent past.

Experiments with spontaneous conversational speech and real-life non-
stationary noise show that this system performs as well as a supervised
NMF algorithm exploiting noise components learned from the same noise
environment as the test sample. Furthermore, it outperforms a supervised
system trained on different noise conditions.

1 Introduction

Isolating speech from environmental noise remains a challenging problem, espe-
cially in the presence of highly non-stationary noise such as background speech
or music. On the other hand, a great variety of applications could benefit from
a robust separation of speech, such as telephony, automatic speech recognition
or hearing aids. In the case of telephony, additional constraints have to be taken
into account, since usually only one microphone is available and the separation
has to be performed in a real-time, on-line framework with a very small latency
between audio input and output, in order to preserve natural communication.

One of the most popular approaches for single-channel source separation is
Nonnegative Matrix Factorization (NMF) [3]. It has been shown efficient for
speech separation [14,13], when both speech and noise models where learned
prior to the separation. In [9], a variant of this algorithm is used, in which only
one source is learned, the other being estimated from the mixture. However, this
estimation requires off-line processing, where the whole signal is known.

Some studies have considered adapting the NMF algorithm to an incremental,
on-line framework. In [11], pattern learning from large amounts of audio data
using an on-line version of (convolutive) NMF is discussed. In [1], NMF is used
� The research leading to these results has received funding from the HUAWEI Inno-

vation Research Program 2010 (project GLASS).
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to decompose a sequence formed by the new observation and the basis vectors,
which are supposed to encompass the past observations. The approach of [12]
and [6] first optimizes the activations for each coming observation, with fixed
basis vectors, and then updates the bases based on the past activations. Still, we
are not aware of a study on speech separation using on-line NMF algorithms.

In this work, we exploit a simple sliding window approach, where a classic
NMF decomposition is performed on the recent past and the noise components
are adapted in real-time to the current conditions. We test this semi-supervised
on-line NMF method on a speech separation task with realistic data. Results
show that the obtained system performs as well as a supervised NMF trained on
the same noise environment, with a setting allowing for real-time capabilities.

After presenting the general NMF method in Section 2, we outline the pro-
posed on-line NMF algorithms in Section 3. Then, experiments are detailed in
Section 4, before drawing some conclusions.

2 Nonnegative Matrix Factorization (NMF) for Source
Separation

Given a matrix of nonnegative data V ∈ Rm×n
+ , NMF aims at finding the two

nonnegative matrices, W ∈ R
m×r
+ and H ∈ R

r×n
+ , which minimize the error

D(V,WH), where D is some divergence measure. In our audio source sepa-
ration application, V is the original magnitude spectrogram. The columns of
W then represent characteristic spectra of the recording and H contains the
corresponding ‘activation’ values of these basis spectra.

Many algorithms for performing this optimization rely on multiplicative up-
date rules, in order to maintain the nonnegativity of the matrices W and H. For
example, with the generalized Kullback-Leibler divergence:

DKL(X,Y) =
∑
i,j

xi,j log
xi,j

yi,j
− xi,j + yi,j , (1)

the update rules proposed by [5] are as follows:

W ← W ·
V

WHHT

1HT
(2)

H ← H · WT V
WH

WT
, (3)

where X ·Y and X
Y denote element-wise operations and 1 is a matrix of ones.

Assuming that each source is described by a set of columns of W with corre-
sponding rows in H, separated signals can then be reconstructed as follows. Let
Wk be the sub-matrix containing the columns of W corresponding to a source k,
and let Hk be the according activation sub-matrix. The magnitude spectrogram
of the isolated source Vk is obtained by the Wiener-like equation:

Vk = V · WkHk

WH
. (4)

This spectrogram is then inverted using the phase of the original mixture.
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3 On-Line NMF

In this paper, on-line NMF refers to a sliding window method which decomposes
the spectrum of the recent past into matrices W and H as detailed above. The
sliding window contains the recent past spectra of the signal. Once a new frame
is received, the sliding window is shifted by one frame. The activation matrix
H is also shifted and the new column is initialized randomly. The matrices are
then updated using a fixed number of NMF iterations. By using a sliding window
approach, context information (in particular, the activations of the older frames)
is available for this update so that a low number of iterations is sufficient.

3.1 On-Line Supervised NMF

In order to exploit the NMF decomposition for a practical source separation
task, one needs to determine the source corresponding to each part of the de-
composition. For our supervised algorithm, we assume that the sources which
are to be separated are known in advance. This can correspond, for example, to
the case of a teleconference, where several known people can talk simultaneously.
We can then perform a learning of the characteristics of each isolated source.
Hence, a spectral basis matrix is created for each considered source, using the
(unsupervised) NMF decomposition of the learning data, as in [8].

For the separation phase, the W matrix is built by concatenating the basis
matrices of the isolated sources. This matrix is kept constant and only the acti-
vation matrix H is updated using eq. (2). This particular case is straightforward
to implement in an on-line system. This is because the update rule for each
column h:,t of H can be rewritten as:

h:,t ← h:,t ·
WT v:,t

Wh:,t

WT1:,t
. (5)

Thus, each column of the activation matrix can be updated independently of
the others, using only the current observation spectrum v:,t. The obtained fac-
torization is then equivalent to an off-line version of supervised NMF.

3.2 On-Line Semi-supervised NMF

In the semi-supervised version of the on-line NMF algorithm, we consider that
one source is unknown (modeling for example noise, or a new speaker). Thus,
the spectral basis matrix W is no longer fully determined in advance. In the
separation phase, the columns corresponding to the unknown source are initial-
ized randomly, and updated with each new frame, following eq. (2). The other
columns are kept constant.

With this semi-supervised algorithm, it is no longer possible to process each
frame independently of the others, since the two matrices W and H depend on
each other. Thus, the length of the sliding window — and thus of the amount of
context information considered — does have an impact on the decomposition.
Intuitively, a meaningful estimation of the ‘noise spectral basis’, i.e. the non-
constant part of W , requires a whole sequence of observations.
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3.3 Real-Time Implementation

For a real-time implementation of the on-line semi-supervised NMF, another im-
portant parameter is the delay parameter. It denotes the position in the sliding
window of the frame to be output. If this parameter is equal to 0, only the past
context is used for the NMF decomposition. By increasing this value, later ob-
servations can be considered. Moreover, the precision of the activations depends
not only on the estimation of the matrix W (which can be controlled by the
length of the sliding window), but also on the number of iterations that have
been used for computation, which increases with the delay parameter.

The total latency L introduced by the system (neglecting computation time)
is then determined by the frame size s and the delay parameter d, thanks to
the relation: L = (d + 1)s. Note that the delay parameter is not relevant for
the supervised algorithm, since the sliding window can be limited to the single
current frame. Our implementation of the systems exploits the openSMILE [4]
framework, which allows for an efficient incremental processing of audio data.

4 Experimental Evaluation

4.1 Experimental Settings

We evaluate the system on speech that was artificially mixed with real-life noise.
Speech was taken from the Buckeye database [7], which contains recordings of
interviews. The speech is highly spontaneous and contains a variety of non-
linguistic vocalizations. Thus, we believe that this corpus is better suited for
evaluation of speech separation in real-life conditions than, e. g., the popular
TIMIT corpus of read speech, which is characterized by lower variation. We
subdivided the Buckeye recording sessions, each of which is approximately 10 min
long, into turns by cutting whenever the subject’s speech was interrupted by the
interviewer, or by a silence of more than 0.5 s length. Only the subject’s speech
is used. In these experiments, we only exploit turns of at least 3 s.

The test signals were then corrupted using noise recordings from the official
corpus provided for the 2011 PASCAL CHiME Challenge [2]. These contain
genuine recordings from a domestic environment obtained over a period of several
weeks in a house with two small children. The noise is highly instationary due
to abrupt changes such as appliances being turned on/off, impact noises such as
banging doors, and interfering speakers [2]. All these data are publicly available1.
The noise mixed with the speech was randomly drawn from the six hours of noise
recordings in the database. We intentionally do not scale speech or noise to attain
a distribution of noise levels corresponding to a real-life environment.

The sampling rate of the recordings is 16 kHz and the tested systems employ
32 ms analysis frames, with a 50 % overlap. In our experiments, we used 12
randomly chosen segments of speech, between 3 s and 20 s long. For each speech
sample, a training sequence is created by concatenating 20 other speech segments
from the same speaker, yielding lengths between 1.5 min and 5.5 min.
1 http://spandh.dcs.shef.ac.uk/projects/chime/PCC/datasets.html

http://spandh.dcs.shef.ac.uk/projects/chime/PCC/datasets.html
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We constructed two different noise training sequences for supervised NMF.
The first was created by concatenating 1024 short segments (0.5 s) drawn from
diverse locations in the CHiME noise recordings. Hence, this training sequence
contains most of the noise sources that can be found in the database. In order to
assess the generalization property of the system to different types of noise, we also
constructed another 17 min training sequence, composed of noise recordings from
the SiSEC 2010 noisy speech database2 as well as some extract of the SPIB noise
database3 and some street noise from the soundcities website4. These sequences
are referred to as matched and mismatched training noise.

Several speech separation systems are tested here. All of them exploit constant
basis components for speech, previously learned from the training sequence. The
first two systems exploit the on-line supervised NMF algorithm presented in
subsection 3.1, with noise components learned respectively from the matched and
mismatched training noise. For these systems, the numbers of NMF components
for speech and noise are equal to cs = cn = 50, which has been empirically found
satisfactory for the speaker separation task. All the training processes use 256
iterations. The other system uses the on-line semi-supervised NMF algorithm
of subsection 3.2, with cs = 50 speech components. The tested values of the
different parameters are displayed in Table 1. This values were chosen to maintain
a limited computational complexity.

Table 1. Tested values of the parameters for the on-line semi-supervised NMF system

Parameter Tested Values
cs number of speech components {50}
cn number of noise components {1,2,4,8,12,16}
� sliding window length {2,4,6,8,12,16,20,25,30}
d delay {0,1,2,3,4,5,6,7}
n number of optimization iterations {1,2,4,8,16,32,64}

Several evaluation criteria were computed from the separated speech: the
Source to Distortion Ratio (SDR), the Source to Interference Ratio (SIR) and
the Source to Artifact Ratio (SAR) [10]. For comparison of the on-line approach,
we consider an ‘optimal’ off-line version of the semi-supervised NMF algorithm,
which outperforms supervised NMF on our test data. For this system, 256 it-
erations are used and the number of noise components was chosen from the
set cn ∈ {1, 2, 4, 8, 12, 16, 20, 25, 30, 35, 40, 45, 50}. The value cn = 30 is selected,
maximizing the average SDR in the test database. This optimal SDR is equal to
5.2 dB, which represents the best result that can be achieved with basic NMF
speech separation algorithms on our test data.
2 http://sisec2010.wiki.irisa.fr/tiki-index.php?
page=Source+separation+in+the+presence+of+real-world+background+noise

3 http://spib.rice.edu/spib/select_noise.html
4 http://www.soundcities.com

http://sisec2010.wiki.irisa.fr/tiki-index.php?page=Source+separation+in+the+presence+of+real-world+background+noise
http://sisec2010.wiki.irisa.fr/tiki-index.php?page=Source+separation+in+the+presence+of+real-world+background+noise
http://spib.rice.edu/spib/select_noise.html
http://www.soundcities.com
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4.2 Results

The results obtained by the supervised NMF systems are displayed in Fig. 1.
It can be observed that for both systems, the SIR increases with the number
of iterations. However, this reduction of the interferences is at the cost of more
artifacts, since the SAR concurrently decreases. The optimal trade-off is here
realized for a single iteration, yielding a 4.2 dB SDR, against 0.6 dB for the
original corrupted speech. Although the optimal number of iterations may be
dependent on the data; this shows that a very small number of iterations is
sufficient for a satisfactory separation. Thus, the obtained complexity is very
low, achieving a real-time factor of 2 % on a 3.4 GHz, 64 bits CPU.

Fig. 1. Average source separation criteria (dB) for the supervised NMF systems, trained
on the matched and mismatched noise

Our results also show the importance of an adequate noise model for the sep-
aration. Indeed, the supervised NMF systems are outperformed by the off-line
semi-supervised algorithm, whose noise spectra seem to fit the observations even
better, probably since they are estimated directly on each test sample. Further-
more, whereas the SARs of both supervised systems are roughly equivalent, the
‘matched’ noise training induces significantly higher SIRs (by over 2 dB) and
thus a better separation quality.

Fig. 2 to 4 present a few of the numerous results of the on-line semi-supervised
NMF system. The best SDR is equal to 4.4 dB that is slightly better than the
result obtained with the supervised NMF, even with the ‘matched’ noise training.
This shows the efficiency of the proposed method to adapt the noise model to
the environment in an on-line framework.

The best score is obtained with the parameters cn = 8, � = 20, d = 0 and
i = 1 (see Table 1). Contrarily to the supervised case, Fig. 2 shows a degradation
of the SIR when the number of iterations increases. This can be due to an
‘overfitting’ phenomenon, where the updated components tend to model speech
as well as noise. One can see in Fig. 3 that, with a larger sliding window, the SIR
decreases while the SAR is improved. This can be explained by the fact that the
adaptation to the environment is then a bit less precise, but it is more robust to
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Fig. 2. Criteria (dB) as a function of i
for constant cn = 8, � = 20 and d = 0

Fig. 3. Criteria (dB) as a function of �
for constant cn = 8, d = 0 and i = 1

Fig. 4. Criteria (dB) as a function of cn

for constant l = 20, d = 0 and i = 1
Fig. 5. Criteria (dB) as a function of d
for constant cn = 8, � = 20 and i = 1

the overfitting phenomenon. The number of noise components seems to have the
opposite influence (Fig. 4). Hence, the values cn = 8 and � = 20, corresponding
to a sliding window of 336 ms, here constitute a reasonable trade-off.

The delay parameter has only a small influence, as shown in Fig. 5. Thus,
the value d = 0 can be chosen so as to minimize the latency of the system.
Furthermore, the best-performing setting has a relatively low complexity, since
only one iteration is performed for each frame. The real-time factor then is 20 %,
on the aforementioned CPU. Therefore, the system is fully real-time capable.

5 Conclusion

We presented a method for on-line speech separation exploiting a sliding window
version of the semi-supervised Nonnegative Matrix Factorization algorithm. An
extensive experimental study has been conducted, testing numerous parameter
combinations. Our results show that this system performs similarly to (and even
slightly better than) a supervised algorithm in which the noise components are
learned from the same environment as the test samples. Furthermore, the optimal
setting yields a system which is real-time capable on a recent PC.

Among the future works for further improvements of the system can be the in-
troduction of regularization terms such as priors [14] or sparsity and continuity



Real-Time Speech Separation by Semi-supervised NMF 329

constraints, in order to obtain more meaningful components in both learning
and separation phases without considerably affecting the complexity. The use of
a small-order Nonnegative Matrix Deconvolution algorithm [8] could also be ex-
plored, although at the cost of increased latency and computational complexity.
Finally, the observed behavior depending on the number of iterations motivates
introduction of relaxation [3] into the multiplicative update algorithm.
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Abstract. The machine cocktail party problem has been researched for
several decades. Although many blind source separation schemes have
been proposed to address this problem, few of them are tested by using
a real room audio video recording. In this paper, we propose an audio
video based independent vector analysis (AVIVA) method, and test it
with other independent vector analysis methods by using a real room
recording dataset, i.e. the AV16.3 corpus. Moreover, we also use a new
method based on pitch difference detection for objective evaluation of
the separation performance of the algorithms when applied on the real
dataset which confirms advantages of using the visual modality with IVA.

Keywords: blind source separation, independent vector analysis, real
room recording, pitch difference.

1 Introduction

The machine cocktail party problem was first proposed by Colin Cherry in 1953
[1]. For a real room environment, the acoustic sources take multiple paths to
the microphone sensors instead of only the direct path. Thus the convolutive
model is used to represent the practical situation. In recent years, considerable
research has been performed in the field of convolutive blind source separation
[2]. Initially, research was aimed at solutions based in the time domain. However,
real room impulse responses are typically on the order of thousands of samples
in length. Thus the computational cost of the time domain methods will be
very expensive. A solution in the frequency domain was proposed to solve this
problem [3]. Although the frequency domain blind source separation (FD-BSS)
method can reduce the computational cost, it has two indeterminacies, i.e. the
scaling problem and permutation problem.

The scaling ambiguity can be managed by matrix normalization. For the per-
mutation ambiguity various methods have been proposed [2]. All of these meth-
ods need prior knowledge about the locations of the sources or post-processing
exploiting some features of the separated signals. Recently, Kim proposed an ex-
citing new algorithm named independent vector analysis (IVA), which preserves
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the higher order dependencies and structures of signals across frequencies to solve
the permutation problem [4]. This method can solve the permutation problem
during the unmixing matrix learning process without any prior knowledge or
post-processing. Thus, it is a natural way to solve the permutation problem.
Based on the original IVA method, several extended IVA methods have been
proposed. An adaptive step size IVA method was proposed to improve the con-
vergence speed by controlling the learning step size [5]. The fast fixed-point IVA
method introduces a quadratic Taylor polynomial in the notations of complex
variables which is very useful in directly applying Newton’s method to a contrast
function of complex-valued variables and can achieve a fast and good separation
[6]. The first contribution in this paper is to propose an audio and video based in-
dependent vector analysis method which uses the video information to initialize
the algorithm and thereby improve convergence properties.

Moreover, we compare this with the conventional and fast forms of the audio
only IVA algorithms by using a real dataset. For real room recording separation,
there is a problem in performing objective evaluation. Traditionally, blind source
separation experiments are all simulations, for which we know the mixing matrix
and the source signals. Thus, we can evaluate the separation performance by
performance index [7], signal to interference rate (SIR) or signal to distortion
rate (SDR) [8]. However, a real room recording only provides the mixtures.
Objective evaluation of the separation performance becomes a problem. The final
contribution in the paper is to use a new evaluation based on pitch information. It
detects the pitches of the separated signals respectively, and then calculates the
pitch differences between them, and provides an objective evaluation. The paper
is organized as follows, in Section 2, different IVA methods are introduced, then
the audio and video based IVA method is proposed. The pitch difference based
evaluation method is proposed in Section 3. The introduction of the real room
recording AV16.3 and the separation performance comparisons are provided in
Section 4. Finally, conclusions are drawn in Section 5.

2 Independent Vector Analysis Based Methods

2.1 Model

The basic noise free blind source separation generative model is x = Hs, which
is also adopted by IVA; x = [x1, x2 · · ·xm]T is the observed mixed signal vector,
s = [s1, s2 · · · sn]T is the source signal vector, and H is the mixing matrix with
m × n dimension, (·)T denotes the transpose operator. In this paper, we focus
on the exactly determined case, namely m = n. Our target is to find the inverse
matrix W of mixing matrix H. Due to the scaling and permutation ambiguities,
we can not generally obtain W uniquely. Actually, W = PDH−1, therefore,
ŝ = Wx = PDs, where P is a permutation matrix, D is a scaling diagonal
matrix, and ŝ is the estimation of the source signal s.

In practical situations, due to the reverberation, convolutive methods are more
often used which are generally implemented in the frequency domain. Thus, the
noise free model in the frequency domain is described as:
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x(k) = H(k)s(k) (1)

ŝ(k) = W(k)s(k) (2)

where x(k) = [x
(k)
1 , x

(k)
2 · · ·x(k)m ]T is the observed signal vector in the frequency

domain, and ŝ(k) = [ŝ1
(k), ŝ2

(k) · · · ŝn(k)]T is the estimated signal vector in the
frequency domain. The index k denotes the kth frequency bin. It is a multivariate
model.

2.2 Independent Vector Analysis

In order to separate multivariate sources from multivariate observations, a cost
function for multivariate random variables is needed. The IVA method adopts
Kullback-Leibler divergence between the joint probability density function p(ŝ)
and the product of probability density functions of the individual source vectors∏
q(ŝ). This is used as the cost function of the IVA model.

J = KL(p(ŝ)||
∏

q(ŝ)) = const−
K∑

k=1

log|det(W (k))| −
n∑

i=1

E[log(q(ŝi))] (3)

where E[·] denotes the statistical expectation operator, and det(·) is the matrix
determinant operator. The cost function would be minimized when the depen-
dency between the source vectors is removed but the dependency between the
components of each vector can be retained. Thus, the cost function preserves
the inherent frequency dependency within each source, but it removes the de-
pendency between the sources [4].

The gradient descent method is used to minimize the cost function. By dif-
ferentiating the cost function J with respect to the coefficients of the separating

matrices w
(k)
ij , the gradients for the coefficients can be obtained as follows:

Δw
(k)
ij = − ∂J

∂w
(k)
ij

= (w
(k)
ij )−H − E[ϕ(k)(ŝ

(1)
i · · · ŝ(k)i )]x

∗(k)
j (4)

where (·)H and (·)∗ denote the Hermitian transpose and the conjugate operator
respectively, and ϕ(k)(·) is the nonlinear function. This nonlinearity represents
the core idea of the IVA method, which is the main difference between traditional
ICA and IVA. In ICA, this nonlinear function is single-variate. However, for IVA,
it becomes multi-variate. As discussed in [4], the Laplacian distribution is used as
the source prior, and we can obtain a simple but effective form for the nonlinear
function as:

ϕ(k)(ŝ
(1)
i · · · ŝ(k)i ) =

ŝ
(k)
i√∑K

1 |ŝ
(k)
i |2

(5)
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2.3 Fast Fixed-Point Independent Vector Analysis

Fast fixed-point independent vector analysis (FastIVA) employs Newton’s method
update rules, which converges fast and is free from selecting an efficient learning
rate. In order to apply Newton’s method update rules, it introduces a quadratic
Taylor polynomial in the notations of complex variables which can be used for
a contrast function of complex-valued variables [6]. The contrast function used
by FastIVA is as follows:

J =
∑
i

(E[G(
∑
k

|ŝ(k)i |2)]−
∑
k

λ
(k)
i (w

(k)
i (w

(k)
i )H − 1)) (6)

where, wi is the i-th row of the unmixing matrix W, λi is the i-th Lagrange
multiplier. G(·) is the nonlinearity function, which has several different types as
discussed in [6]. With normalization, the learning rule is:

(w
(k)
i )H ←E[G

′
(
∑
k

|ŝ(k)i |2) + |ŝ(k)i |2G′′
(
∑
k

|ŝ(k)i |2))](w(k)
i )H

− E[(ŝ
(k)
i )∗G

′
(
∑
k

|ŝ(k)i |2)xk]
(7)

and if this is used for all sources, an unmixing matrix W(k) can be constructed
which must be decorrelated with

W(k) ← (W(k)(W(k))H)−1/2W(k) (8)

2.4 Audio-Video Based Independent Vector Analysis

For human beings, when we solve the cocktail party problem, we not only use our
ears but also our eyes. The video information is potentially helpful to solve the
machine cocktail party problem. The positions of the sources can be obtained
by the video information. Then a smart initialization of the unmixing matrix
can be achieved, which will potentially lead to a faster convergence and better
performance. In this paper, the video information is combined with the FastIVA
algorithm to propose the audio-video based independent vector analysis (AVIVA)
algorithm.

The mixing matrix can be calculated under the plane wave propagation as-
sumption by using the positions of the sources which are captured by video

H(k) = [h(k, θ1, φ1) · · ·h(k, θn, φn)] (9)

where

h(k, θi, φi) =

⎡⎢⎢⎢⎢⎢⎣
exp(−jκ(sin(θi).cos(φi).ux1 + sin(θi).

sin(φi).uy1 + cos(θi).uz1))
...

exp(−jκ(sin(θi).cos(φi).uxm + sin(θi).
sin(φi).uym + cos(θi).uzm))

⎤⎥⎥⎥⎥⎥⎦ (10)
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and κ = k/c where c is the speed of sound in air at room temperature. The
coordinates uxi , uyi and uzi are the 3-D positions of the i-th microphone. The
parameters (θi) and (φi) are the elevation angle and azimuth angle of arrival
to the center of the microphone array, which can be obtained by the 3D visual
tracker as in [9].

Thus, the initialization of the unmixing matrix can be obtained by following
the approach in [10].

W(k) = Q(k)H(k) (11)

where Q is the whitening matrix. After that, it can be used as the initialization
of the unmixing matrix of FastIVA rather than an identity matrix or random
matrix.

3 Pitch Difference Based Evaluation for Real Recordings

For real recording, the only thing we obtain is the mixed signals captured by the
microphone array. We can not access either the mixing matrix or the pure source
signals. Thus, we can not evaluate the separation performance by traditional
methods, such as performance index [7] which is based on the prior knowledge
of the mixing matrix, or the SIR or SDR [8] which require prior knowledge about
the source signals. It is a tough problem to evaluate objectively real recording
separation performance. We can listen to the separated signals, but it is just a
kind of subjective evaluation. In order to evaluate the results objectively, the
features of the separated signals should be used. Pitch information is one of the
features which can help to evaluate the separation performance, because different
speech sections at different time slots have different pitches [11]. We adopt the
Sawtooth Waveform Inspired Pitch Estimator (SWIPE) method [12], which has
better performance compared with traditional pitch estimators.

Fig. 1 shows that the pitches of mixed signals are still mixed, while the pitches
of source signals are well separated. It is obvious that good separated pitches
can indicate good separation performance provided that the original sources do
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Fig. 1. Comparison of the pitch of a mixture signal and separated signals. (a) the
pitches of the mixed signal (b) the pitches of separated signal.
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not have substantially overlapping pitch characteristics. In order to evaluate
objectively, we calculate the pitch difference:

pdiff (t) =

√∑
i�=j

(pi(t)− pj(t))2 i, j = 1, · · · ,m t = 1, · · · , T (12)

where T is the number of time slots. Then we set a threshold pthr, if the pitch
difference is greater than the threshold at a certain time slot, we can consider
that the mixed signals are separated at that time slot and set the separation
status equal to 1, otherwise 0.

sep status(t) =

{
1 if pdiff(t) > pthr

0 otherwise
(13)

Finally, we can calculate a separation rate to evaluate the separation perfor-
mance.

sep rate =

∑
t sep status(t)

T
(14)

The bigger value that the separation rate takes, the better the separation perfor-
mance. We need to highlight here that it can not evaluate the absolute quality
of the separated signal, but it can be used for comparing the separation perfor-
mance when using different separation methods.

4 Experiments and Results

The real recording used in our experiments is the AV 16.3 corpus [13], which
is recorded in a meeting room context. 16.3 stands for 16 microphones and 3
cameras, recorded in a fully synchronized manner. We use the “seq37-3p-0001”
recording to perform the experiment, which contains three speakers. Fig.2 shows
the room environment, the positions of microphone arrays and the positions of
the three speakers. There are two microphone arrays, we choose three micro-
phones (mic3, mic5 and mic7) from microphone array 1 which is in the red
circle. The sampling frequency of the recording is 16kHz. The pitch threshold in
(13) is set to 5.

We extract the recorded speech from 200s to 220s, during which three speakers
are speaking simultaneously. Then, the positions of the speakers are obtained by
using the video information. After that, IVA, FastIVA and AVIVA are applied
respectively. The experimental results are shown in Fig.3 and Table 1. Fig. 3(a)
shows that the pitches of the mixed signals are all mixed. Fig. 3(b),(c),(d) are the
separation results by using IVA, FastIVA and AVIVA respectively. It is clear that
the pitches are separated, which indicates that the mixed signals are separated.
The objective evaluation separation rate and iteration number are shown in
Table.1, which confirms that the proposed AVIVA algorithm can achieve the best
separation rate by using the least iterations comparing with IVA and FastIVA
algorithms.

Further evaluation on the AV16.3 corpus will be presented at the conference.
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Fig. 2. A single video frame showing the room environment for one of the AV16.3
corpus recordings
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Fig. 3. Separation result comparison by using different IVA methods. (a) mixed signal
(b) IVA (c) FastIVA (d)AVIVA.

Table 1. Separation performance comparison for three sources

method IVA FastIVA AVIVA

sep rate 0.1364 0.1479 0.1604
iter number 100 77 71

5 Conclusion

In this paper, different independent vector analysis methods are introduced, and
an audio-video based independent vector analysis method is proposed. Real room
recording separation performance evaluation is hard to achieve due to the lack
of prior knowledge such as mixing matrix and source signals. A pitch difference
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based evaluation method is proposed to evaluate objectively the separation per-
formance of the real recording. The experimental results on the real recordings
confirm that although all the IVA algorithms can achieve some degree of sepa-
ration the proposed audio-video based method has the best separation rate with
much improved convergence rate as compared to the basic IVA algorithm.
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Abstract. In this paper, we propose a noise reduction method based on non-
negative matrix factorization (NMF) for noise-robust automatic speech recogni-
tion (ASR). Most noise reduction methods applied to ASR front-ends have been 
developed for suppressing background noise that is assumed to be stationary ra-
ther than non-stationary. Instead, the proposed method attenuates non-target 
noise by a hybrid approach that combines a Wiener filtering and an NMF tech-
nique. This is motivated by the fact that Wiener filtering and NMF are suitable 
for reduction of stationary and non-stationary noise, respectively. It is shown 
from ASR experiments that an ASR system employing the proposed approach 
improves the average word error rate by 11.9%, 22.4%, and 5.2%, compared to 
systems employing the two-stage mel-warped Wiener filter, the minimum mean 
square error log-spectral amplitude estimator, and NMF with a Wiener post-
filter , respectively. 

Keywords: Automatic speech recognition (ASR), Non-negative matrix factori-
zation (NMF), Noise reduction, Non-stationary background noise, Wiener filter. 

1 Introduction 

Most automatic speech recognition (ASR) systems often suffer considerably from 
unexpected background noise [1]. Thus, many noise-robust methods in the frequency 
domain have been reported such as spectral subtraction [2], minimum mean square 
error log-spectral amplitude (MMSE-LSA) estimation [3], and Wiener filtering [4][5]. 
In general, conventional front-ends employing such noise reduction methods perform 
well in stationary noise environments but not always in non-stationary ones. This is 
because noise reduction is usually performed by estimating noise components during 
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the period when target speech is declared inactive under the stationary noise 
assumption [1][4]. 

On the other hand, a non-negative matrix factorization (NMF) technique [6] can 
provide an alternative to estimate target speech from an observed noisy signal. 
However, the performance of noise reduction methods based on NMF might be 
degraded when speech and noise have similar distributions in the frequency domain [7]. 
In other words, there is a large overlap between speech and noise in the frequency 
domain, thus a certain degree of residual noise remains in the estimated target speech 
while some speech components are apt to be missed in the target speech. To overcome 
this problem, we have proposed an NMF-based target speech enhancement method [8], 
where a Wiener filter was applied to a weighted-sum of speech bases in order to remove 
the residual noise from the estimated speech. In particular, the temporal continuity 
constraint technique [9] was also employed so that the characteristics of residual noise 
remained in the estimated NMF-based target speech became stationary. On the other 
hand, the target speech was a little damaged after the NMF procedure, even though a 
regularization technique [7] had been used. Therefore, we need to mitigate such a 
problem. 

In order to mitigate the problem mentioned above, we propose a noise reduction 
method based on non-negative matrix factorization (NMF) and apply it to noise-
robust ASR. The proposed method attenuates non-target noise by a hybrid approach 
that combines a Wiener filtering and an NMF technique. In addition, stationary noise 
is estimated from recursively averaging noise components during inactive speech 
intervals. On the other hand, non-stationary noise is estimated as the difference 
between the original noise and the estimated noise variance based on recursive 
averaging. After that, the estimated stationary and non-stationary noises are reduced 
by Wiener filtering and NMF, respectively. Note here that the NMF bases of the non-
stationary noise are trained using a non-stationary noise database (DB), which is 
generated from an original noise DB. 

The rest of this paper is organized as follows. Section 2 proposes an NMF-based 
noise reduction method. Section 3 demonstrates the effect of the proposed method on 
ASR performance, and Section 4 concludes this paper. 

2 Proposed NMF-Based Noise Reduction Method for ASR 

Fig. 1 shows an overall procedure of the proposed noise reduction method which 
combines NMF with a conventional Wiener filter. As shown in the figure, in the 
training stage the speech and non-stationary noise bases, SB and ,DB  are estimated 

from speech and non-stationary noise databases (DBs), S and ,D  respectively. In 

particular, the non-stationary noise DB, ,D  is obtained by applying a recursive aver-

aging method [10] to the original noise DB, .Y  Note that S  or Y is represented in a 
matrix form by concatenating a sequence of absolute values of speech or noise spectra 
along the analysis frame, respectively. In the noise reduction stage, activation  
matrices of target speech and non-stationary (or residual) noise, SA  and ,DA  are 

estimated by an NMF multiplicative updating rule in order to approximate Wiener  
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Fig. 1. Block diagram of the proposed NMF-based noise reduction technique applied as a front-
end of ASR 

filtered outputs, ,S  using known SB  and .DB  Then, the weighting value matrix for 

noise spectral attenuation, ,G is obtained from the Wiener filter coefficient matrix, ,F  and 

the NMF decomposition outputs, ,SA ,DA ,SB  and .DB  Next, target speech spectral 

components, ,Ŝ  are obtained from .G  After that, target speech spectral components are 

transformed into a time-domain signal, ),(ˆ ns  by using an overlap-add method, and )(ˆ ns  
is finally used for mel-frequency cepstral coefficient (MFCC) extraction for ASR. 

Let ),(nx  ),(ns  and )(ny  be noisy speech, target speech, and additive noise, 

respectively, where )(nx  and )(ny  are assumed to be uncorrelated. In addition, we 

have =)(kX ),()( kk YS +  where ),(kX  ),(kS  and )(kY  denote the spectral 

components of ),(nx  ),(ns  and ),(ny  respectively, at the k-th frequency bin index 

)1,,1,0( −= Kk  and -th segmented frame index ).,2,1,0( =  

As mentioned in Section 1, the performance of an NMF-based noise reduction 
method could be degraded when speech and noise have similar distributions in 
the frequency domain [8]. Figs. 2(a) and 2(b) show the spectral distribution and basis  

 

 
(a)                                                (b) 

Fig. 2. Examples of NMF bases and activations for (a) Gaussian noise and (b) male speech 



 NMF Based Noise Reduction for Noise Robust Automatic Speech Recognition 341 

 

distribution for Gaussian noise and male speech, respectively. As shown in the figure, 
the spectrum of Gaussian noise is distributed across a wide range of frequencies and 
overlapped with that of male speech. Similarly, NMF bases of Gaussian noise are also 
widely distributed and overlapped with those of the male speech. Compared to the 
male speech, Gaussian noise, which is one of the typical stationary noises, can be 
removed well by conventional noise reduction methods such as a Wiener filter and an 
MMSE-LSA. Based on this observation, Wiener filtering and the NMF technique are 
combined in the proposed method. 

Accordingly, it is assumed that )(kY is decomposed into stationary noise, ),(kV  
and non-stationary noise, )(kD ; i.e., ).()()( kkk DVY +=  Assuming that a weight 

value, ),(,kVG  for reducing stationary noise gives little damage on target speech, 

multiplying )(,kVG  to )(kX  provides the sum of the estimate of target speech and 

non-stationary noise such as )()(ˆ)()()( , kkkkVk DSSGX +==⋅ . As a next step, a 

weighting value, ),(,kDG  for the residual noise attenuation is applied to )(kS  in 

order to reduce non-stationary noise from ),(kS  which results in more enhanced 

target speech, ).(ˆ
kS  That is, ).(ˆ)()( , kkDk SGS =  By combining these two steps, a 

weighting value, ),(kG  for both the stationary and non-stationary noise reduction 

can be represented as the product of two weighting values, )(,kVG  and ),(,kDG  

such that ),()()(ˆ
kkk XGS =  where ).()()( ,, kDkVk GGG ⋅=  

2.1 Stationary Noise Reduction Based on Wiener Filtering 

In this subsection, we explain how to obtain )(,kVG  for stationary noise reduction. 

First, spectral variance of stationary noise, ),(ˆ
,kVλ  is estimated by the recursive 

averaging method that is executed only when target speech absence is declared [11]. 

That is, 2
,, |)(|)1()1(ˆ)(ˆ

kVkVVkV Xζλζλ −+−=  if target speech is absent, where Vζ  
is a forgetting factor. Then, )(,kVG  is represented by employing the a priori SNR 

estimate by the decision-directed (DD) approach [3], ),(ˆ
kξ  as 

.
1)(ˆ

)(ˆ
)(, +

=
k

k
kVG

ξ
ξ

                                      
(1) 

2.2 Non-stationary Noise Reduction Based on NMF 

In this subsection, we explain how to estimate )(,kDG  for non-stationary (or 

residual) noise reduction by using the NMF technique. NMF is an algorithm for 
multivariate data analysis that decomposes a LK ×  matrix, ,LK ×V  into the product 

of a basis matrix, ,RK ×B and an activation matrix, LR×A ; i.e., ≈×LKV ,LRRK ×× AB  where 

,K  ,R  and L  correspond to the number of spectral channels, the rank of the basis 
vector, and the number of frames, respectively. From now on, each matrix is 
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represented in the text without any subscript for the simplicity. To find B  and ,A  
two kinds of cost functions are commonly used [6]: the Euclidean distance and 
the Kullback–Leibler (KL) divergence. For speech processing, NMF using the KL 
divergence shows better performance than that using the Euclidean distance [7], thus 
the KL divergence, ),||( BAXDiv  is used in this paper, defined as [12] 

∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−=

ji
jiji

ji

ji
jiDiv

,
,,

,

,
, )(

)(
log)||( BAX

BA

X
XBAX

                

(2) 

where i and j indicate the row and column index of a matrix, respectively. By applying 
NMF, target speech estimated from Wiener filtering in Section 2.1, ,S  is further 

decomposed into target speech, ,Ŝ and non-stationary noise, ,D by ),||( BASDiv  as 

[ ][ ] LRRKLDRDLSRSDRKDSRKSLKLKLK ××××××××× =≈+= ABAABBDSS ,,,, ;;ˆ

   

(3) 

where SR  and DR  are the rank of the basis vectors for speech and non-stationary 

noise, respectively, and .DS RRR +=  In Eq. 3, the basis matrix ]),[( DS BBB =  is 

replaced with the pre-trained matrix, ]),,[( DS BBB =  assuming that SB  and DB  hold 

the ability for constructing current speech and noise, respectively. Thus, we have 
.ABX ≈  To obtain the non-stationary noise basis matrix, ,DB  the non-stationary 

noise DB, ,D  is generated from the original noise DB, .Y  As mentioned earlier, 
original noise is decomposed into non-stationary noise and stationary noise. Thus, the 
estimate of the variance, ),(,kVλ  is obtained by

 

,, )0),()(max()( kkVkk YD ∀−= λ                           
(4)

 

where ),(,kVλ  is the estimate of non-stationary noise by the recursive averaging 

method. To estimate the activation matrix, ]),[( DS  ; AAA =  the activation matrix A  

is first randomly initialized. Then, the cost function in Eq. 2 is minimized by 
iteratively applying an updating rule defined as [12] 

1B
BA
X

B
AA Τ

Τ

+ ⊗= mm 1

     

                          (5) 

where m represents an iteration number, and 1 is a matrix with all elements equal to 
unity. Moreover, both multiplication ⊗  and division denote the element-wise opera-
tors. Hence, the weighting value for non-stationary noise reduction is represented as 

DDSS

SS
D ABAB

AB
G

+
=                                    
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  (a)                                  (c)  

      
(b)                                       (d) 

Fig. 3. Examples of noise bases for two difference noise signals ((a) and (c)) and the estimate 
of non-stationary noise ((b) and (d)) 

where ik  and j  indicate the row and column index of a matrix, respectively, and 
they correspond to the k-th frequency channel and the -th frame. Eq. 7 implies that 
the NMF-based noise reduction can also be interpreted as filtering the noisy signal 
with a time-varying filter, which is similar to the Wiener filtering in Eq. 2. 

Fig. 3 shows the bases of the two different noise signals and the estimated non-
stationary noise signals obtained from Eq. 7. It is shown from the figure that the bases 
of the estimated non-stationary noise (Figs. 3(b) and 3(d)) are more localized over 
frequency than those of the original noise bases (Figs. 3(a) and 3(c)).  

2.3 Target Speech Reconstruction 

The combined weighting value, ),(kG  for noise reduction is represented as the 

product of )(,kVG  and )(,kDG  that are described in Eqs. 1 and 7, respectively. That 

is, )()()( ,, kDkVk GGG = . Thus, the target speech estimate, ),(ˆ
kS  is obtained by 

multiplying )(kG  to ),(kX  and it is transformed into a time-discrete signal, ),(ˆ ns  

that is finally brought to the MFCC extraction for speech recognition. 

3 Speech Recognition Experiments 

The performance of the proposed noise reduction method was evaluated in a view of 
ASR performance. First of all, a word recognition system in several different 
background noise environments was constructed, where acoustic models were  
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Table 1. Comparison of average word error rates (WERs) (%) 

SNR 

(dB) 

Bus Stop Home TV 

No [3] [4] [8] Proposed No [3] [4] [8] Proposed 

20 13.0 10.7 10.0 10.7 10.6 19.3 32.3 25.6 18.3 16.1 

15 20.5 13.9 12.8 13.6 10.3 28.7 45.5 34.1 26.1 22.2 

10 45.4 21.3 20.2 20.6 18.4 42.1 60.1 46.0 36.0 35.2 

5 81.4 34.3 32.3 33.5 30.2 65.7 82.0 64.6 51.1 54.0 

0 97.9 77.3 74.4 67.3 71.6 88.1 101.4 86.0 77.6 75.8 

Avg. 51.6 31.5 30.0 29.1 28.2 48.8 64.3 51.3 41.8 40.7 
 

SNR 

(dB) 

Restaurant Subway 

No [3] [4] [8] Proposed No [3] [4] [8] Proposed 

20 14.6 11.5 12.7 12.8 11.8 11.9 13.4 12.7 12.9 10.5 

15 22.6 17.7 15.3 15.1 15.2 16.3 13.2 13.2 13.2 10.2 

10 48.7 24.2 22.2 21.6 20.1 35.1 19.2 16.8 18.8 14.3 

5 86.2 43.0 36.1 39.2 34.8 74.5 33.6 31.6 33.3 28.4 

0 100 80.8 72.1 70.1 71.4 97.5 67.7 69.2 66.0 64.0 

Avg. 54.4 35.5 31.7 31.7 30.7 47.0 29.4 28.7 28.8 25.5 

 
 
tri-phone based three-state left-to-right hidden Markov models (HMMs). The context-
dependent acoustic models were trained from around 170,000 phonetically balanced 
words [5] recorded from 1,800 persons in quiet environments, where speech signals 
were sampled at a rate of 16 kHz with 16-bit resolution. As a speech recognition 
feature, a feature extraction procedure was applied once every 20 ms frame. In other 
words, 13 mel-frequency cepstral coefficients (MFCCs) including the zeroth order 
were extracted, and their first two derivatives were added, which resulted in a 39-
dimensional feature vector per 20 ms frame. 

A speech database was collected using a mobile phone, where there were 20 
speakers (10 males and 10 females) and each speaker pronounced 40 utterances in a 
quiet office. On one hand, two sets of four different environmental noises were rec-
orded such as bus stops, home TV, restaurants, and subways. A noise basis matrix 
was trained for each noise, whose length was 10 seconds long, from the first noise set. 
In order to obtain the NMF bases for speech, half of the speech database was used. 
Note here that each speaker had his/her own NMF bases that were kind of speaker-
dependent NMF bases. In this paper, the rank of each basis vector for speech and 
noise were set at RS=100 and RD=50, respectively. 

The other noise set was used to generate a test database. That is, each of half of ut-
terances for a speaker was artificially added by each of four different environmental 
noises, where signal-to-noise ratios (SNRs) varied from 0 to 20 dB with a step of 5 
dB. In total, there were 400 noisy speech utterances for the test.  

Table 1 compares average word error rates (WERs) of an ASR system employing 
the proposed method with those employing conventional noise reduction methods 
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such as MMSE-LSA [3], the two-stage mel-warped Wiener filter (Mel-WF) [4], and 
the NMF-Wiener filter (NMF-WF) [8]. As shown in the table, MMSE-LSA gave the 
lowest performance in all noise environments under all SNR conditions. On the other 
hand, the Mel-WF and NMF-WF achieved similar WERs at bus stops, in restaurants, 
and on subways. However, in the home TV noise environment, NMF-WF 
outperformed Mel-WF. Note that the non-stationary components in home TV noise 
environment were more dominant than those in other noise environments. Comparing 
to NMF-WF, the proposed method provided smaller WER under all different SNRs 
and noise types. In other words, an ASR system employing the proposed method 
relatively reduced average WER by 5.2% compared to that using NMF-WF. 
Moreover, the proposed method provided WER reduction of 11.9% and 22.4% 
compared to Mel-WF and MMSE-LSA, respectively. 

4 Conclusion 

In this paper, we proposed an NMF-based noise reduction method for noise-robust 
ASR. To this end, stationary components in observed noisy speech were reduced by 
Wiener filtering. Next, an NMF-based decomposition technique was applied to re-
move the residual non-stationary noise that remained after the Wiener filter 
processing. In particular, the NMF bases of the residual noise were trained using the 
non-stationary noise database, estimated from an original noise database. It was 
shown from the ASR experiments that an ASR system employing the proposed me-
thod performed better than those using the conventional two-stage mel-warped  
Wiener filter, the MMSE-LSA estimator, and the NMF-Wiener filter. 
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Abstract. Missing data in corrupted audio recordings poses a challeng-
ing problem for audio signal processing. In this paper we present an
approach that allows us to estimate missing values in the time-frequency
domain of audio signals. The proposed approach, based on the Non-
negative Hidden Markov Model, enables more temporally coherent es-
timation for the missing data by taking into account both the spectral
and temporal information of the audio signal. This approach is able to
reconstruct highly corrupted audio signals with large parts of the spectro-
gram missing. We demonstrate this approach on real-world polyphonic
music signals. The initial experimental results show that our approach
has advantages over a previous missing data imputation method.

1 Introduction

The problem of missing data in an audio spectrogram occurs in many scenarios.
For example, the problem is common in signal transmission, where the signal
quality is degraded by linear or non-linear filtering operations. In other cases,
audio compression and editing techniques often introduce spectral holes to the
audio. Missing values also occur frequently in the output of audio source sepa-
ration algorithms, due to time-frequency component masking [2]. Audio impu-
tation is the task of filling in missing values of the audio signal to improve the
perceived quality of the resulting signal. An effective approach for audio impu-
tation could benefit many important applications, such as bandwidth extension,
sound restoration, audio declipping, and audio source separation.

Audio imputation from highly corrupted recordings can be a challenging prob-
lem. The popular existing generic imputation algorithm [1] is usually ill-suited
for use with audio signals and results in audible distortions. Other algorithms
such as those in [6] are suitable for imputation of speech, or in the case of musical
audio [3] or [7]. However, these algorithms treat individual time frames of the
spectrogram as independent of adjacent time frames, disregarding the important
temporal dynamics of sound, which makes them less effective for complex audio
scenes or severely corrupted audio.

In this paper, we propose an audio imputation algorithm, based on the Non-
negative Hidden Markov Model (N-HMM) [4], which takes the temporal dynam-
ics of audio into consideration. The N-HMM jointly learns several small spectral
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dictionaries as well as a Markov chain that describes the structure of transitions
between these dictionaries. We extend the N-HMM for missing values imputa-
tion by formulating the imputation problem in an Expectation–Maximization
(EM) framework. We show promising performance of the proposed algorithm
by comparing it to an existing imputation algorithm on real-world polyphonic
music audio.

2 Proposed Method

In this section, we describe the proposed audio imputation method. We first give
an overview of the modeling strategy. We then briefly describe the probabilistic
model that we employ, followed by the actual imputation methodology.

2.1 Overview

The general procedure of supervised audio imputation methods [7] is as fol-
lows. We first train a dictionary of spectral vectors from the training data using
non-negative spectrogram factorization techniques such as Non-negative Matrix
Factorization (NMF) or Probabilistic Latent Component Analysis (PLCA). Each
frame of the spectrogram is then modeled as a linear combination of the spec-
tral vectors from the dictionary. Given the spectrogram of a corrupted audio, we
estimate the weights for each spectral vector as well as the expected values for
the missing entries of the spectrogram using an EM algorithm.

Fig.1 shows an example of Audio Imputation using PLCA. In this example,
a dictionary of 30 spectral vectors is learned from an intact audio spectrogram.

Fig. 1. General Procedure of Supervised Audio Imputation
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Given corrupted audio that is similar to the training audio, the original audio
spectrogram can be estimated by a linear combination of the spectral vectors
from the dictionary.

Previous audio imputation methods [3][7] are based on NMF or PLCA to
learn a single dictionary of spectral vectors to represent the entire signal. These
approaches treat individual time frame independently, ignoring the temporal
dynamics of audio signal. Furthermore, it is not always the case that the training
data has exact the same characteristics as the corrupted audio. For example, the
corrupted audio may contain a piano solo playing an intro of a song but the
training audio from the same song may contain the piano source and the singing
voice. In this case, a single dictionary learned from a mixture of the piano and
singing voice may be less effective in reconstructing the piano sound from the
corrupted audio. This may introduce interference to the reconstructed piano
sound from the dictionary elements that are used to explain the singing voice.

Fig. 2. Supervised Audio Imputation using N-HMM

As shown in Fig.2, our proposed approach uses a N-HMM to learn several
small dictionaries from the training audio. Dictionaries are associated with states
in a model that incorporates the dynamic temporal structure of the given audio
signal. Several small dictionaries are learned from the training data to explain
different aspects of the audio signal. During the imputation process, only spec-
tral vectors from one dictionary are used to reconstruct a certain frame of the
corrupted spectrogram. In this way, it is less likely to introduce interference from
other sources of the training data.
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2.2 Probabilistic Model

Fig.3 shows the graphical model of the N-HMM, an extension of Hidden Markov
Model (HMM) by imposing non-negativity on the observation model. The ob-
servation alphabet for each state q in the N-HMM is a dictionary of spectral
vectors. Each vector z can be thought of a magnitude spectrum. To maintain
consistency with prior work [4] we treat it as a probability distribution. For
frequency f and time t, we notate the contribution to the magnitude of the
spectrogram from a spectral vector z in dictionary q as P (ft|zt, qt). Here, f is
one of a set of K frequencies of analysis of a spectrogram. At time t, the obser-
vation model is obtained by a linear combination of all spectral vectors z from
the current dictionary q:

P (ft|qt) =
∑
zt

P (zt|qt)P (ft|zt, qt) (1)

where P (zt|qt) is the spectral vector mixture weight, given qt. The transitions
between states are modeled with a Markov chain, given by P (qt+1|qt).

Fig. 3. Graphical Model of the N-
HMM. {Q, Z, F} is a set of random
variables and {q, z, f} the realiza-
tion of the random variables. vt rep-
resents the number draws at time t.

Ft

Qt Qt+1

Ft+1

vt+1vt

Zt Zt+1

In our model, we assume the spectrum Vt at time t is generated by repeated
draws from a distribution Pt(f) given by

Pt(f) =
∑
qt

P (ft|qt)γt(qt) (2)

where γt(qt) is the distribution over the states, conditioned on all the observa-
tions over all time frames. We can compute γt(qt) using the forward-backward
algorithm as in traditional HMM. Please refer to [4] for the full formulation.
Here, the resulting value Pt(f) can be thought as an estimation of the relative
magnitude of the spectrum at frequency f and time t.

A comparison between a N-HMM and a PLCA is illustrated in Fig.4. Com-
pared to most other non-negative spectrogram decomposition techniques, the
N-HMM has taken into account the temporal dynamics of the audio signal.
Instead of using one large dictionary to explain everything in the audio, the N-
HMM learns several small dictionaries, each of which will explain a particular
part in the spectrogram. All the parameters of the N-HMM can be learned using
the EM algorithm detailed in [4].
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Fig. 4. A comparison between PLCA and N-HMM

3 Estimation of Incomplete Data

When the spectrogram is incomplete, a great deal of the entries in the spectro-
gram could be missing. In this paper, we assume the locations of the corrupted
bins are known. Identifying the corrupted region is beyond the scope of this pa-
per. Our objective is to estimate missing values in the magnitude spectrogram
of audio signals.

In the rest of the paper we use the following notation: we will denote the
observed regions of any spectrogram V as V o and the missing regions as V m =
V \V o. Within any magnitude spectrum Vt at time t, we will represent the set of
observed entries of Vt as V

o
t and the missing entries as V m

t . F o
t will refer to the

set of frequencies for which the values of Vt are known, i.e. the set of frequencies
in V o

t . Fm
t will similarly refer to the set of frequencies for which the values of

Vt are missing, i.e. the set of frequencies in V m
t . V o

t (f) and V
m
t (f) will refer to

specific frequency entries of V o
t and V m

t respectively.
To estimate the magnitude of each value in V m

t we need to scale the value
Pt(f) from Eq.2. We do not know the total amplitude at time t because some val-
ues are missing. Therefore, we must estimate a scaling factor. We sum the values
of the uncorrupted frequencies in the original audio to get no

t =
∑

f∈Fo
t
V o
t (f).

We sum the values of Pt(f) for f ∈ F o
t to get pot =

∑
f∈Fo

t
Pt(f). The expected

amplitude at time t is obtained by dividing no
t by pot . This gives us a scaling

factor. The expected value of any missing term V m
t (f) can be estimated by:

E[V m
t (f)] =

no
t

pot
Pt(f) (3)

The audio imputation process is as follows:

1. Learn the parameters of a N-HMM from the training audio spectrogram,
using the EM algorithm.

2. Initialize the missing entries of the corrupted spectrogram to random values.
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3. Perform the N-HMM learning on the corrupted spectrogram from step 2.
During the learning process,

– Fix most of the parameters such as P (f |z, q) and P (qt+1|qt) to the above
learned parameters from step 1.

– Learn the remaining parameters in the N-HMM model using the EM
algorithm. Specifically, learn the weights distributions P (zt|qt). Then es-
timate the posterior state distribution γt(qt) using the forward-backward
algorithm and update Pt(f) using Eq.2.

– At each iteration, update every missing entry in the spectrogram with
its expected value using Eq.3.

4. Reconstruct the corrupted audio spectrogram by:

V̄t(f) =

⎧⎪⎪⎨⎪⎪⎩
Vt(f) if f ∈ F o

t

E[V m
t (f)] if f ∈ Fm

t
(4)

5. Convert the estimated spectrogram to the time domain.

This paper does not address the problem of missing phase recovery. Instead we
use the recovered magnitude spectrogramwith the original phase to re-synthesize
the time domain signal. We found this to be more perceptually pleasing than a
standard phase recovery method [5].

4 Experiments

We test the proposed N-HMM audio imputation algorithm on real-world poly-
phonic musical data. We performed the experiment on 12 real-world pop music
songs. The proposed method is compared to a recent audio imputation method
using PLCA [7].

For a particular audio clip, both the testing data and training data are taken
from the same song. The testing data is about 6-second long, taken from the begin-
ning of a song. The corrupted audio is obtained from the testing data by removing
all the frequencies between 800 Hz and 12k Hz in the spectrogram. Another clip
(not containing the testing audio) of about 11-second long is taken from the same
song as the training data. The details of each audio clip is listed in Table.1. We
learn the N-HMM parameters for each song from the training data, and update
the N-HMM for the corrupted audio during the imputation process. Specifically,
we learned 10 dictionaries of 8 spectral vectors each as well as the transition ma-
trix from the training data.When using PLCA, we learn 1 dictionary of 40 spectral
vectors. The values for the parameters are determined by the authors empirically.
Signal-to-Noise-Ratio (SNR)1 is used to measure the outputs of both imputation
methods. During the experiments, we find out the existing signal measurements

1 SNR = 10log10
∑

t s(t)2∑
t(s̄(t)−s(t))2

where s(t) and ¯s(t) are the original and the recon-

structed signals respectively.



Audio Imputation Using the Non-negative Hidden Markov Model 353

(a) (b)

(c) (d)

Fig. 5. 5.5-second audio clip from “Born to be wild” by “Steppenwolf”. a)Original
audio; b) Corrupted audio input (1.05 dB SNR); c) Imputation result by PLCA (1.41
dB SNR); d) Imputation result by proposed algorithm (4.89 dB SNR).

do not always correspond well to the perceptual quality of the audio. More exam-
ples of the experimental results are available at the authors’ website [8] to show the
perceptual quality of the reconstructed signals.

We first examine two examples that favor the proposed approach against the
PLCA method. The first one is a 5.5-second audio clip from “Born to be wild” by
“Steppenwolf”. The spectrogram of the original audio, corrupted audio, output
of the proposed method and PLCA are illustrated in Fig.5. The proposed method
produces an output with a higher SNR than PLCA.

The next example is a 5.4-second audio clip from “Scar Tissue” by “Red Hot
Chili Peppers”. In this example, both PLCA and the proposed method improve
the SNR of the corrupted audio by about 7 dB. The proposed method has a
lower SNR measurement, however, when listening to the reconstructed audio,
the output of the proposed method has better perceptual quality compared to
the output of the PLCA method. This difference is also shown in the spectro-
gram plot in Fig.6. The spectrogram reconstructed by PLCA has more random
energy scatted in the high frequency region, while the proposed method only
reconstructs the signal in the region where it should have been.

Table 1 presents the performance of PLCA and the proposed algorithm on 12
clips of real-world music recordings using the SNR measurement. The average
performance of the proposed method is 15.32 dB SNR, improving 5.67 dB from
the corrupted audio and 1.8 dB from the output of the PLCA. The proposed
method has better SNR measurement than PLCA on 9 out of 12 song clips. For
the audio where the proposed method does not have better SNR measurement, as
shown by the example in Fig.6, the proposed method may still produce an audio
signal with equivalent or better perceptual quality. We encourage the readers to
compare the results of both methods by listening more examples listed at the
authors’ website [8].
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(a) (b)

(c) (d)

Fig. 6. 5.4-second audio clip from “Scar Tissue” by “Red Hot Chili Peppers”. a)
Original Audio; b) Corrupted Audio Input (7.46 dB SNR); c) Imputation result by
PLCA (15.56 dB SNR); d) Imputation result by proposed algorithm (14.34 dB SNR).

Table 1. Performances of the Imputation results by the proposed method and PLCA

SNR (dB) Audio length (Second)
Song name Input Proposed PLCA Testing Training

Better together 11.23 22.48 19.5 4.5 10.3
1979 14.43 19.72 18.07 5.7 11.3

Born to be wild 1.05 4.89 1.41 5.5 20.4
Scar tissue 7.46 14.34 15.56 5.4 10

Bad day 6.48 13.84 12.55 6.3 11.5
Wonderwall -2.21 8.36 5.28 5.8 5.5

Here I go again 11.49 15.95 14.5 5.1 9.5
Every breath you take 7.46 14.34 15.65 6.9 10

Viva La Vida 7.6 11.66 11.77 6.2 10.1
She will be loved 17.66 18.46 15.2 5.7 11.9

Making memories of us 18.06 21.3 18.11 9.8 12.8
Daughters 15.11 18.47 14.56 8.2 16.2

Average measurement 9.65 15.32 13.52 6.29 11.63

5 Conclusions

In this paper we present an approach that allows us to estimate the missing
values in the time-frequency domain of audio signals. The proposed approach
is based on the N-HMM, which enables us to learn the spectral information as
well as the temporal dynamics of the audio signal. Initial experimental results
showed that this approach is quite effective in reconstructing missing values from
corrupted spectrograms and has advantages over performing imputation using
PLCA. Future work includes developping techiniques for missing phase recovery.
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tional auditory induction as a missing-data model-fitting problem with bregman
divergence. Speech Communication (2010)

4. Mysore, G.J.: A Non-negative Framework for Joint Modeling of Spectral Structure
and Temporal Dynamics in Sound Mixtures. Ph.d. dissertation, Stanford University
(2010)

5. Nawab, S., Quatieri, T., Lim, J.: Signal reconstruction from short-time fourier trans-
form magnitude. IEEE Trans. on Acoustics, Speech & Signal Processing 31, 986–998
(1983)

6. Raj, B.: Reconstruction of Incomplete Spectrograms for Robust Speech Recognition.
Ph.d. dissertation, Carnegie Mellon University (2000)

7. Smaragdis, P., Raj, B., Shashanka, M.: Missing data imputation for time-frequency
representations of audio signals. J. Signal Processing Systems (2010)

8. www.cs.northwestern.edu/~jha222/imputation

www.cs.northwestern.edu/~jha222/imputation


A Non-negative Approach
to Language Informed Speech Separation
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Abstract. The use of high level information in source separation algo-
rithms can greatly constrain the problem and lead to improved results
by limiting the solution space to semantically plausible results. The au-
tomatic speech recognition community has shown that the use of high
level information in the form of language models is crucial to obtain-
ing high quality recognition results. In this paper, we apply language
models in the context of speech separation. Specifically, we use language
models to constrain the recently proposed non-negative factorial hidden
Markov model. We compare the proposed method to non-negative spec-
trogram factorization using standard source separation metrics and show
improved results in all metrics.

1 Introduction

The cocktail party problem is a classical source separation problem in which the
goal is to separate speech of multiple concurrent speakers. This is a challenging
problem, particularly in the single channel case. It would therefore be beneficial
to use any high level information that is available to us. Specifically, if it is
known that the speakers follow a certain grammar (constrained sequences of
words), this information could be useful. We refer to this as a language model.
This is routinely used in automatic speech recognition [1] and is in fact crucial
to obtaining recognition results with high accuracy.

Non-negative spectrogram factorization algorithms [2] are a major research
area in the source separation community and have been quite successful. They
provide rich models of the spectral structure of sound sources by representing
each time frame of the spectrogram of a given source as a linear combination of
non-negative spectral components (analogous to basis vectors) from a dictionary.
However, they model each time frame of audio as independent and consequently
ignore an important aspect of audio – temporal dynamics. In order to address this
issue, we proposed the non-negative hidden Markov model (N-HMM) [3] in which
we model a given source using multiple dictionaries of spectral components such
that each time frame of audio is explained by a linear combination of spectral
components from one of the dictionaries. This gives us the rich spectral modeling
capability of non-negative spectrogram factorizations. Additionally, we learn a
Markov chain that explains the temporal dynamics between the dictionaries.
The dictionaries therefore correspond to states of the Markov chain. We model

F. Theis et al. (Eds.): LVA/ICA 2012, LNCS 7191, pp. 356–363, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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mixtures by combining N-HMMs of individual sources into the non-negative
factorial hidden Markov model (N-FHMM).

There has been some other work [4,5,6] that extends non-negative spectro-
gram factorizations to model temporal dynamics. Ozerov [4] and Nakano [5]
modeled the temporal dynamics between individual spectral components rather
than dictionaries. They therefore model each time frame of a given source with
a single spectral component rather than a linear combination of spectral com-
ponents and can thus be too restrictive. Smaragdis [6] introduced a model that
does allow linear combinations of spectral components with transitions between
dictionaries. However, it also allows all spectral components of all dictionaries
to be active at the same time, which is often not restrictive enough.

Since we use a hidden Markov model structure, we can readily use the ideas
of language modeling from automatic speech recognition in the context of source
separation. That is the context of this paper. Specifically, we constrain the
Markov chain of each individual source to explain a valid grammar.

There has been some previous work [6,7,8] on modeling concurrent speakers
using hidden Markov models and factorial hidden Markov models with language
models. However, the goal has been concurrent speech recognition of multiple
speakers. These papers report speech recognition performance and are presum-
ably optimized for this. On the other hand, our goal is high quality source
separation and we make design decisions for this goal. Also, to the best of our
knowledge, no previous work on using language models for multiple concurrent
speakers has reported source separation metrics.

2 Models of Individual Speakers

In this section, we explain how we learn models of individual speakers. We first
describe the Non-negative hidden Markov model (N-HMM). We then explain
how to learn N-HMMs for individual words of a given speaker. Finally, we explain
how to combine these individual word models into a single N-HMM according
to the rules of the grammar, as dictated by the language model.

2.1 Non-negative Hidden Markov Model

Non-negative spectrogram factorizations (Fig. 1a) include non-negative matrix
factorization (NMF) and their probabilistic counterparts such as probabilistic
latent component analysis (PLCA). These models use a single dictionary of
non-negative spectral components to model a given sound source. Specifically,
they explain each time frame of the spectrogram of a given source with a linear
combination of spectral components from the dictionary. These models however
ignore two important aspects of audio – non-stationarity and temporal dynam-
ics. To overcome this issue, we proposed the N-HMM (Fig.1b) [3]. This model
uses multiple dictionaries such that each time frame is explained by any one of
the several dictionaries (accounting for non-stationarity). Additionally it uses
a Markov chain to explain the transitions between dictionaries (accounting for
temporal dynamics).
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(a) Non-negative Spectrogram
Factorization

(b) Non-negative Hidden Markov
Model with left to right transitions

Fig. 1. Comparison of non-negative models. Non-negative spectrogram factorization
uses a single large dictionary to explain a sound source, whereas the N-HMM uses
multiple small dictionaries and a Markov chain.

The graphical model of the N-HMM is shown in Fig.2. Each dictionary corre-
sponds to a state q. At time t, the N-HMM is in state qt. Each spectral component
of a given dictionary q is represented by z. A given spectral component is a dis-
crete distribution. Therefore, spectral component z of dictionary q is represented
by P (f |z, q). The non-negativity in the N-HMM comes from the fact that the
parameters of a discrete distribution are non-negative by definition. Since each
column of the spectrogram is modeled as a linear combination of spectral com-
ponents, time frame t (modeled by state q) is given by the following observation
model:

P (ft|qt) =
∑
zt

P (ft|zt, qt)P (zt|qt), (1)

where P (zt|qt) is a discrete distribution of mixture weights for time t. The tran-
sitions between states are modeled with a Markov chain, given by P (qt+1|qt).

Ft

Qt Qt+1

Ft+1

vt+1vt

Zt Zt+1

Fig. 2. Graphical model of the N-HMM

2.2 Word Models

Given an instance of a word, we can estimate the parameters of all of the distri-
butions of the N-HMM using the expectation–maximization (EM) algorithm [3].
In this paper, we extend this idea to learn word models from multiple instances
of a given word as routinely done in speech recognition [1]. We compute the E



A Non-negative Approach to Language Informed Speech Separation 359

step of EM algorithm separately for each instance. The procedure is the same as
in [3]. This gives us the marginalized posterior distributions P

(k)
t (z, q|f, f) and

P
(k)
t (qt, qt+1|f ) for each instance k. We use these in the M step of the EM algo-

rithm. Specifically, we compute a separate weights distribution for each instance
k as follows:

P
(k)
t (zt|qt) =

∑
ft

V
(k)
ft P

(k)
t (zt, qt|ft, f)∑

zt

∑
ft

V
(k)
ft P

(k)
t (zt, qt|ft, f)

, (2)

where V
(k)
ft is the spectrogram of instance k. However, we estimate a single set

of dictionaries of spectral components and a single transition matrix using the
marginalized posterior distributions of all instances as follows:

P (f |z, q) =

∑
k

∑
t V

(k)
ft P

(k)
t (z, q|f, f)∑

f

∑
k

∑
t V

(k)
ft P

(k)
t (z, q|f, f)

, (3)

P (qt+1|qt) =
∑

k

∑T−1
t=1 P

(k)
t (qt, qt+1|f)∑

qt+1

∑
k

∑T−1
t=1 P

(k)
t (qt, qt+1|f)

. (4)

We restrict the transition matrix to use only left to right transitions.

2.3 Combining Word Models

Once we learn N-HMMs for each word of a given speaker, we combine them into a
single speaker dependent N-HMM. We do this by constructing a large transition
matrix that consists of each individual transition matrix. The transition matrix
of each individual word stays the same. However, the transitions between words
are dictated by a language model. Each state of the speaker dependent N-HMM
corresponds to a specific dictionary of that speaker. Therefore, this N-HMM also
contains all dictionaries of all words.

3 Model of Mixtures

We first describe how to combine models of individual speakers into a model of
speech mixtures. We then explain how to use this model for speech separation.
Finally, we describe the pruning that we use to reduce computational complexity.

3.1 Combining Speaker Dependent Models

We model a mixture of two speakers using the non-negative factorial hidden
Markov model (N-FHMM) [3]. Given the N-HMM of two speakers, we can com-
bine them into an N-FHMM. We use the dictionaries and the Markov chains of
the N-HMMs of the two speakers. A given time frame is then explained using any
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Dictionaries 
of Speaker 1

Dictionaries 
of Speaker 2

Dictionary of 
Speech Mixture

Q
(1)
t = 1

Q
(2)
t = 1

Q
(1)
t = 1

Q
(2)
t = 1Q

(2)
t = 2 Q

(2)
t = 2

Q
(1)
t = 2 Q

(1)
t = 2

Fig. 3. Combining dictionaries of two sources to model a mixture. In this simple ex-
ample, each source has two dictionaries so there are a total of four ways of combining
them.

one dictionary of the first speaker and any one dictionary of the second speaker.
Specifically, the given time frame is modeled using a linear combination of the
spectral components of the two appropriate dictionaries. This is illustrated in
Fig. 3.

The graphical model of the N-FHMM is shown in Fig. 3. An N-HMM can be
seen in the upper half of the graphical model and another one can be seen in the
lower half. The interaction model (of the two sources) introduces a new variable
st that indicates the ratio of the sources at a given time frame. P (st|q(1)

t , q(2))
is a Bernoulli distribution that depends on the states of the sources at the given
time frame. The interaction model is given by:

P (ft|q(1)
t , q

(2)
t ) =

∑
st

∑
zt

P (ft|zt, st, q
(st)
t )P (zt, st|q(1)

t , q
(2)
t ), (5)

where P (ft|zt, st, q
(st)
t ) is spectral component zt of state q

(st)
t of source st.

3.2 Speech Separation

P (zt, st|q(1)
t , q

(2)
t ) combines the new distribution P (st|q(1)

t , q(2)) and the weights
distributions of each source into a single weights distribution of the mixture.
Since the dictionaries and the Markov chain of each source are already specified,
if we learn the weights distribution of the mixture, we can estimate soft masks
to separate the two sources. This is done using the EM algorithm. Details on
how to estimate the masks and then separate the sources can be found in [3].



A Non-negative Approach to Language Informed Speech Separation 361

Ft

Q
(1)
t Q

(1)
t+1

Ft+1

Q
(2)
t Q

(2)
t+1

v
(1)
t+1 + v

(2)
t+1v

(1)
t + v

(2)
t

St Zt Zt+1St+1

Fig. 4. Graphical model of the N-FHMM

3.3 Pruning

At every time frame, we need to compute the likelihood of every possible state
pair (one state from each source). This causes the computational complexity
of the N-FHMM to be exponential in the number sources. This can lead to
intractable computation. However, we do not need to consider state pairs that
have a very small probability. Specifically, we prune out all of the state pairs
whose posterior probability γ(q(1)

t , q
(2)
t ), is below a pre-determined threshold. In

our experiments, we set this threshold to −1000 in the log domain. Even though
it is an extremely small number, this pruned out around 99% of the state pairs.
This is due to the heavy constraining of the language model.

For each speaker, we used an N-HMM of 127 states (more details are in Sec.
4). Therefore, there are a total of 16129 possible state pairs. With our pruning,
we need to consider less than 250 state pairs in most time frames. With the
number of states that we used, this corresponds to computation complexity that
is linear in the number of sources.

4 Experimental Results and Discussion

We performed experiments on a subset of the data from the speech separation
challenge [9]. The test data from the challenge does not contain ground truth,
without which we cannot compute source separation metrics. Therefore, we di-
vided the training data into a training set and a test set. We trained N-HMMs for
10 speakers using 450 of the 500 sentences from the training set of each speaker.
The remaining 50 sentences were used to construct the test set. We segmented
the training sentences into words in order to learn individual word models as de-
scribed in Section 2.2. We used one dictionary (state) per phoneme. This is less
than what is typically used in speech recognition. However, we did not want to
excessively constrain the model in order to obtain high quality reconstructions.
We used 10 spectral components per dictionary as this number was previously
found to give good results in N-HMMs [3].

We then combined the word models of a given speaker into a single N-HMM
according to the language model, as described in Section 2.3.
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We performed speech separation using the N-FHMM on speakers of different
genders and the same gender1. For both categories, we constructed 10 test mix-
tures from our test set. The mixing was done at 0dB. We evaluated the source
separation performance using the BSS-EVAL metrics [10]. As a comparison, we
performed separation using a non-negative spectrogram factorization technique
(PLCA) [2]. When using PLCA, we used the same training and test sets that
we used with the proposed model. However, we simply concatenated all of the
training data of a given speaker and learned a single dictionary for that speaker,
which is customary when using non-negative spectrogram factorizations [2]. We
used a dictionary size of 100 spectral components as this gave the best separa-
tion results. This is more than used in our previous paper [3] since the database
used in this paper has much more training data for each speaker. The proposed
method has the advantage (over PLCA) of using language information. However,
the point that we are trying to make is that language information can lead to
improved speech separation results.

Our results are shown in Table 1. The proposed model outperforms PLCA in
all metrics of both categories. Specifically, we see a 7-8dB improvement in source
to interference ratio (SIR) while still maintaining a higher source to artifacts ratio
(SAR). This means that we are achieving much higher amounts of separation
than PLCA and also introducing less artifacts. The source to distortion ratio
(SDR), which reflects both of these things is therefore also higher.

Another observation is that when we compare the performance of the N-
FHMM in the two categories, we see only a small deterioration in performance
from the different gender to the same gender case (0.5-1 dB in each metric). With
PLCA, however, we see a greater deterioration in SIR and SDR (2-3 dB). This
is because the dictionaries of the two sources are much more similar in the same
gender case than in the different gender case. With the N-FHMM, the language
model helps disambiguate the sources. However, only the spectral information is
used in the case of PLCA.

Table 1. Source separation performance of the N-FHMM and PLCA

Different Gender SIR SAR SDR
N-FHMM 14.91 10.29 8.78

PLCA 7.96 9.08 4.86

Same Gender SIR SAR SDR
N-FHMM 13.88 9.89 8.24

PLCA 5.11 8.77 2.85

The introduction of constraints, priors, and additional structure in non-
negative models often leads to improved separation quality (higher SIR), when
compared to PLCA or NMF. However, this usually leads to more artifacts (lower
SAR). Ozerov [4] noted this with the FS-HMM. We have improved results in
both metrics. The reason is that the language model only attempts to determine
the correct dictionary to explain each source but not the exact fitting of the
spectral components of the given dictionary to the data. Once this dictionary of

1 Examples at https://ccrma.stanford.edu/~gautham/Site/lva_ica_2012.html
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each source is determined for a given time frame, the algorithm fits the corre-
sponding spectral components to the mixture data to obtain the closest possible
reconstruction of the mixture. This flexibility after determining the appropriate
dictionary avoids excessive artifacts.

5 Conclusions

We presented a method to perform high quality speech separation using language
models in the N-HMM framework. We showed that use of the language model
greatly boosts source separation performance when compared to non-negative
spectrogram factorization. The methodology was shown for speech but it can be
used in other contexts in which high level structure information is available such
as incorporating music theory into the N-HMM framework for music separation.
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Abstract. In this paper, a method for multi-pitch detection which ex-
ploits the temporal evolution of musical sounds is presented. The pro-
posed method extends the shift-invariant probabilistic latent component
analysis algorithm by introducing temporal constraints using multiple
Hidden Markov Models, while supporting multiple-instrument spectral
templates. Thus, this model can support the representation of sound
states such as attack, sustain, and decay, while the shift-invariance across
log-frequency can be utilized for multi-pitch detection in music signals
that contain frequency modulations or tuning changes. For note track-
ing, pitch-specific Hidden Markov Models are also employed in a post-
processing step. The proposed system was tested on recordings from the
RWC database, the MIREX multi-F0 dataset, and on recordings from
a Disklavier piano. Experimental results using a variety of error met-
rics, show that the proposed system outperforms a non-temporally con-
strained model. The proposed system also outperforms state-of-the art
transcription algorithms for the RWC and Disklavier datasets.

Keywords: Music signal analysis, probabilistic latent component anal-
ysis, hidden Markov models.

1 Introduction

Multi-pitch detection is one of the core problems of music signal analysis, having
numerous applications in music information retrieval, computational musicology,
and interactive music systems [4]. The creation of a robust multi-pitch detection
system for multiple instrument sources is considered to be an open problem in
the literature. The performance of multi-pitch estimation systems has not yet
matched that of a human expert, which can be partly attributed to the non-
stationary nature of musical sounds. A produced musical note can be expressed
by a sound state sequence (e.g. attack, transient, decay, and sustain states) [1],
and can also exhibit frequency modulations such as vibrato.
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A method for modeling sound states in music signals was proposed by Nakano
et al. in [8], combining the non-negative matrix factorization (NMF) algorithm
with Markov-chained constraints. Smaragdis in [11] employed the shift-invariant
probabilistic latent component analysis (PLCA) algorithm for pitch tracking,
which can model frequency modulations. Mysore proposed a method for sound
modeling which combined the PLCA method with temporal constraints using
hidden Markov models (HMMs) [7]. In [3], the authors extended the shift-
invariant PLCA model for multi-pitch detection, supporting multiple instrument
and pitch templates, with time-dependent source contributions. Finally, the au-
thors combined shift-invariant PLCA with HMMs using sound state templates
for modeling the temporal evolution of monophonic recordings [2].

Here, we extend the single-instrument single-pitch model of [2] for multi-pitch
detection of multiple-instrument recordings. This is accomplished by extracting
sound state templates for the complete pitch range of multiple instruments, and
utilizing multiple independent HMMs, one for each pitch, for modeling the tem-
poral evolution of produced notes. Experiments performed on excerpts from the
RWC database [6], Disklavier recordings [9], and the MIREX multi-F0 dataset
showed that the proposed model outperforms the non-temporally constrained
model of [3] and also provides accuracy rates that outperform state-of-the-art
methods for automatic transcription.

2 Proposed Method

The motivation behind this model is to propose a multi-pitch detection algo-
rithm which supports multiple instrument sources, can express the temporal
evolution of a produced note (by modeling sound states), and can support fre-
quency modulations (e.g. vibrati). Frequency modulations can be supported us-
ing a shift-invariant model and a log-frequency representation, while modeling
the temporal evolution of a sound can be done by utilizing templates for differ-
ent sound states and constraining the order of appearance of these states using
HMMs. This would allow for a rich and informative representation of the music
signal, addressing some drawbacks of current polyphonic transcription systems.

2.1 Model

The proposed model extends the single-pitch single-source algorithm proposed
in [2], which incorporated temporal constraints into the single-component shift-
invariant PLCA algorithm. Here, this method supports multiple concurrent
pitches produced by multiple instrument sources, using as an input the log-
frequency spectrogram Vω,t, where ω is the log-frequency index and t is the time
index. The model approximates the input spectrogram as a probability distri-
bution P (ω, t):

P (ω, t) = P (t)
∑
s,p

Pt(p)Pt(s|p)
∑
q
(p)
t

Pt(q
(p)
t |p, ω̄)P (ω|s, p, q(p)t ) ∗ω Pt(f |p) (1)
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where p = 1, . . . , 88 is the pitch index, s denotes the instrument source, q(p) the
sound state for each pitch, and f the pitch shifting. Thus, Pt(p) expresses the

piano-roll transcription, Pt(q
(p)
t |p, ω̄) is the sound state activation for the p-th

pitch, Pt(s|p) the s-th instrument source contribution, Pt(f |p) the pitch impulse

distribution, and P (ω|s, p, q(p)t ) the spectral template for the s-th source, p-th

pitch, and q(p)-th sound state. The convolution of P (ω|s, p, q(p)t )∗ω Pt(f |p) takes
place between ω and f using an area spanning one semitone around the ideal
position of p, in order to constrain each template for the detection of the pitch
it corresponds to. In addition, such formulation allows a greater control over the
polyphony level of the signal, as explained in Section 2.2. It should also be noted
that Pt(f |p) is not dependent on the instrument source s for computational
speed purposes. This design choice might have an effect in the rare case of two
instruments producing the same note concurrently. Since 60 bins per octave are
used in the input log-frequency spectrogram, f has a length of 5.

Since the sequence of each pitch-specific sound state is temporally constrained,
the corresponding HMM for the p-th pitch is:

P (ω̄) =
∑
q̄(p)

∑
s̄

∑
p̄

∑
f̄

P (q
(p)
1 )

∏
t

P (q
(p)
t+1|q

(p)
t )

∏
t

Pt(ωt|q(p)t ) (2)

where ω̄ refers to all observations,P (q
(p)
1 ) is the state prior distribution,P (q

(p)
t+1|q

(p)
t )

is the transition probability, and Pt(ωt|q(p)t ) is the observation probability for the
pitch sound state. The observation probability is defined as:

Pt(ωt|q(p)t ) = 1− ||P (ω, t|q(p)t )− Vω,t||2∑
q
(p)
t
||P (ω, t|q(p)t )− Vω,t||2

(3)

where || · ||2 is the l2 norm and

P (ω, t|q(p)t ) = P (t)
∑
s

Pt(p)Pt(s|p)Pt(q
(p)
t |p, ω̄)

∑
f

P (ω − f |s, p, q(p)t )Pt(f |p)

(4)
is the spectrogram reconstruction for the p-th pitch and q(p)-th sound state.
Thus, for a specific pitch, a greater observation probability is given to the
state spectrogram that better approximates the input spectrogram using the
Euclidean distance. Again, for computational speed purposes, the HMMs are
not dependent on s, which was done in order to avoid using S × 88 HMMs.

2.2 Parameter Estimation

As in the single-pitch model from [2], the aforementioned parameters can be
estimated using the Expectation-Maximization algorithm. For the Expectation
step, the update equations are:

Pt(ft, s, p, q
(1)
t , . . . , q

(88)
t |ω̄) = Pt(q

(1)
t , . . . , q

(88)
t |ω̄)Pt(ft, s, p|q(1)t , . . . , q

(88)
t , ωt)

(5)
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Pt(q
(1)
t , . . . , q

(88)
t |ω̄) =

88∏
p=1

Pt(q
(p)
t |ω̄) (6)

Pt(q
(p)
t |ω̄) = αt(q

(p)
t )βt(q

(p)
t )∑

q
(p)
t
αt(q

(p)
t )βt(q

(p)
t )

(7)

Pt(ft, s, p|ωt, q
(1)
t , . . . , q

(88)
t ) =

Pt(p)P (ωt − ft|s, p, q(p)t )Pt(ft|p)Pt(s|p)∑
p Pt(p)

∑
s,ft

P (ωt − ft|s, p, q(p)t )Pt(ft|p)Pt(s|p)
(8)

Equation (5) is the model posterior, for the source components, sound state
activity, pitch impulse, and pitch activity. In (7), αt(qt) and βt(qt) are the HMM
forward and backward variables, respectively, which can be computed using the
forward/backward procedure described in [10] and the observation probability
from (3). Also, the posterior for the pitch-wise transition matrices is:

P (q
(p)
t+1, q

(p)
t |ω̄) =

αt(q
(p)
t )P (q

(p)
t+1|q

(p)
t )βt+1(q

(p)
t+1)Pt(ωt+1|q(p)t+1)∑

q
(p)
t

∑
q
(p)
t+1

αt(q
(p)
t )P (q

(p)
t+1|q

(p)
t )βt+1(q

(p)
t+1)Pt(ωt+1|q(p)t+1)

(9)

For the Maximization step, the update equations for the unknown parameters
are:

P (ω|s, p, q(p)) =
∑

f,s,t

∑
q
(p)
t
Vω+f,tPt(f, s, p, q

(1), . . . , q(88)|ω + f)∑
ω,f,s,t

∑
q
(p)
t
Vω+f,tPt(f, s, p, q(1), . . . , q(88)|ω + f)

(10)
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Finally, the pitch-wise initial state probabilities are: P (q
(p)
1 ) = P1(q

(p)
1 |ω̄). It

should be noted that the spectral template update rule in (10) is not used in
this system since we are utilizing pre-extracted templates, but is included for
completeness.
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Sparsity constraints were also incorporated, in order for the algorithm to
provide as meaningful solutions as possible. Using the technique shown in [3],
sparsity was enforced on the update rules for the pitch activity matrix Pt(p)
and the source contribution matrix Pt(s|p). This means that we would like few
notes active in a time frame, and that each note is produced by few instru-
ment sources. The same sparsity parameters that were used in [3] were used.
A pitch spectrogram can also be created using P (f, p, t) = P (t)Pt(p)Pt(f |p)
and stacking together slices of tensor P (f, p, t) for all pitch values: P (f, t) =
[P (f, 1, t) · · ·P (f, 88, t)].

2.3 Postprocessing

For performing note smoothing and tracking, the resulting pitch activity matrix
P (p, t) = P (t)Pt(p) is postprocessed using pitch-wise HMMs, as in [9,3]. Each
pitch p is modeled by a 2-state on/off HMM, while the hidden state sequence
is q′p[t] and the observed sequence op[t]. MIDI files from the RWC database [6]
were employed in order to estimate the pitch-wise state priors and the state
transition matrices. For estimating the observation probability for each active
pitch P (op[t]|q′p[t] = 1), we use a sigmoid curve which has P (p, t) as input:

P (op[t]|q′p[t] = 1) =
1

1 + e−P (p,t)
(15)

and use the Viterbi algorithm [10] for extracting the note tracking output for
each pitch. The result of the HMM postprocessing step is a binary piano-roll
transcription which can be used for evaluation.

3 Evaluation

3.1 Datasets

For training, the spectral templates P (ω|s, p, q(p)) were extracted for various
instruments, over their complete pitch range, using q = 3 sound states. The
extraction process was performed using the unsupervised single-source single-
pitch model of [2] and the constant-Q transform with 60 bins/octave as input.
Isolated note samples from 3 piano models were used from the MAPS database
[5] and templates from cello, clarinet, flute, guitar, harpsichord, oboe, and violin
were extracted from the RWCmusical instrument sounds dataset [6]. An example
of the sound state template extraction process is given in Fig. 1.

For evaluation, we employed 12 excerpts from the RWC classical and jazz
datasets which are widely used for transcription (see [3] for comparative results).
We also used the woodwind quintet recording from the MIREX multi-F0 devel-
opment set1. Finally, 10 one-minute recordings taken from a Yamaha Disklavier
piano which were presented in [9] were also utilized.

1 http://www.music-ir.org/mirex

http://www.music-ir.org/mirex
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Fig. 1. (a) Spectrogram Vω,t of a D3 piano note (b) Extracted spectral templates using
the method in [2] corresponding to different sound states

3.2 Results

For evaluation, the transcription metrics also used in [3] were utilized, namely the
two accuracy measures (Acc1, Acc2), the total error (Etot ), the substitution error
(Esubs), missed detection error (Efn ), and false alarm error (Efp). Compared to
Acc1, accuracy Acc2 also takes into account note substitutions. All evaluations
take place by comparing the transcribed pitch output and the ground-truth MIDI
files at a 10 ms scale.

For comparison, we employed the shift-invariant PLCA-based transcription
model of [3] with the same CQT resolution as in the proposed model. The sys-
tem used for comparison does not support any temporal constraints but uses the
same formulation for source contribution, pitch impulse, pitch activity, as well as
the same postprocessing step. Experiments were performed using ergodic HMMs
(initialized with uniform transition probabilities), as they demonstrated superior
performance compared to left-to-right HMMs for the single-pitch detection ex-
periments in [2]. As explained in [2], although left-to-right HMMs might be more
suitable for instruments exhibiting a clear temporal structure in note evolution
(such as piano), in most instruments a fully connected HMM is more appropri-
ate for expressing the temporal evolution of sound states. An example of the
multi-pitch detection process can be seen in Fig. 2 where the pitch spectrogram
of a guitar recording can be seen, along with the MIDI ground truth.

Results for the multi-pitch estimation experiments are presented in table 1,
comparing the performance of the proposed method with the non-temporally
constrained system of [3], over the three datasets. It can be seen that in all cases,
the proposed method outperforms the shift-invariant PLCA-based model, with
the smallest difference in terms of accuracy occurring for the MIREX recording.
It should be noted that for the Disklavier dataset from [9], only piano templates
were used in both systems. A common observation for all experiments is that the
number of missed pitch detections is higher than the number of false positives.
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Fig. 2. (a) Pitch spectrogram P (f, t) of an excerpt of “RWC-MDB-J-2001 No. 7”
(guitar). (b) The pitch ground truth of the same recording. The abscissa corresponds
to 10ms.

Table 1. Multi-pitch detection results using the proposed method compared to the
one in [3] using three datasets

Dataset Method Acc1 Acc2 Etot Esubs Efn Efp

RWC
Proposed 61.6% 62.8% 37.2% 9.1% 18.3% 9.8%
[3] 59.5% 60.3% 39.7% 9.2% 20.3% 10.2%

Disklavier
Proposed 58.6% 57.3% 42.7% 9.9% 16.3% 16.5%
[3] 57.4% 55.5% 44.5% 10.8% 16.3% 17.4%

MIREX
Proposed 41.0% 47.0% 53.0% 25.4% 20.1% 7.5%
[3] 40.5% 46.3% 53.8% 18.5% 32.3% 3.0%

Also, for the RWC and Disklavier datasets, results outperform state-of-the-art
transcription algorithms (see [3] for transcription results using other methods in
the literature). It should also be noted that most of the missed detections are lo-
cated in the decay part of the produced notes. When no sparsity is used, the pro-
posed method reports accuracy metrics {Acc1,Acc2} of {56.3%, 55.6%} for the
RWC database, {56.8%, 53.1%} for the Disklavier dataset, and {40.8%, 46.9%}
for the MIREX recording. Selected transcription examples are available online2,
along with the original recordings for comparison.

To the authors’ knowledge, no statistical significance tests have been made for
multi-pitch detection, apart from the piecewise Friedman tests in the MIREX
task. However, given the fact that evaluations actually take place using 10 ms
frames, even a small accuracy change can be shown to be statistically significant.
Also, it should be noted that although using factorial HMMs (as in the source
separation experiments of [7]) for the temporal constraints might in theory pro-
duce improved detection results, the model would be intractable, since it would
need to compute 388 sound state combinations.

2 http://www.eecs.qmul.ac.uk/~emmanouilb/transcription.html

http://www.eecs.qmul.ac.uk/~emmanouilb/transcription.html
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4 Conclusions

In this work we proposed a model for multi-pitch detection that extends the shift-
invariant PLCA algorithm by introducing temporal constraints using HMMs.
The goal was to model the temporal evolution for each produced note using
spectral templates for each sound state. Results indicate that the temporal con-
straints produce improved multi-pitch detection accuracy rates compared to the
standard shift-invariant PLCA model. It is also seen that the proposed system
outperforms the state-of-the-art methods for the RWC transcription dataset and
the Disklavier [9] dataset.

In the future, the proposed model will be tested using different HMM topolo-
gies and by incorporating update scheduling procedures for the various parame-
ters to be estimated. Finally, the proposed transcription system will be extended
by including an instrument identification step and by jointly performing multi-
pitch estimation with note tracking.

References

1. Bello, J.P., Daudet, L., Abdallah, S., Duxbury, C., Davies, M., Sandler, M.: A tuto-
rial on onset detection of music signals. IEEE Trans. Audio, Speech, and Language
Processing 13(5), 1035–1047 (2005)

2. Benetos, E., Dixon, S.: A temporally-constrained convolutive probabilistic model
for pitch detection. In: IEEE Workshop on Applications of Signal Processing to
Audio and Acoustics, New Paltz, NY, USA, pp. 133–136 (October 2011)

3. Benetos, E., Dixon, S.: Multiple-instrument polyphonic music transcription using
a convolutive probabilistic model. In: 8th Sound and Music Computing Conf.,
Padova, Italy, pp. 19–24 (July 2011)
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Abstract. We present a method for audio source separation and local-
ization from binaural recordings. The method combines a new genera-
tive probabilistic model with time-frequency masking. We suggest that
device-dependent relationships between point-source positions and inter-
aural spectral cues may be learnt in order to constrain a mixture model.
This allows to capture subtle separation and localization features embed-
ded in the auditory data. We illustrate our method with data composed
of two and three mixed speech signals in the presence of reverberations.
Using standard evaluation metrics, we compare our method with a recent
binaural-based source separation-localization algorithm.

1 Introduction

We address the problem of simultaneous separation and localization of sound
sources mixed in an acoustical environment and recorded with two microphones.
Time-frequency masking is a technique allowing the separation of an arbitrary
number of sources with only two microphones by assuming that a single source
is active at every time-frequency point – the W-disjoint orthogonality (W-DO).
It was shown that this assumption holds, in general, for simultaneous speech sig-
nals [8]. The input signal is represented in a time-frequency domain and points
corresponding to the target source are weighted with 1 and otherwise with 0.
The masked spectrogram is then converted back to a temporal signal. A number
of methods combine time-frequency masking with localization-based clustering
([8],[3],[2]), e.g., DUET [8] which allows to separate anechoic mixtures when each
source reaches the microphones with a single attenuation coefficient and delay.
This mixing model is well suited for “clean” binaural recordings. In practice,
more complex filtering effects exist, namely the head-related transfer function
(HRTF) and the room impulse response (RIR). These filters lead to frequency-
dependent attenuations and delays between the two microphones, respectively
called the interaural level difference (ILD) and the interaural phase difference
(IPD). Some approaches attempted to account for these dependencies by learn-
ing a mapping between azimuth, frequencies and interaural cues [7,5,3]. These
mappings usually consist in finding a functional relationship that best fits data
obtained from an HRTF dataset. To improve robustness to RIR variations, these
interaural cues can also be integrated in a mixture model, e.g., [2].

F. Theis et al. (Eds.): LVA/ICA 2012, LNCS 7191, pp. 372–379, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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In this paper we propose to directly learn a discrete mapping between a set
of 3D point sources and IPD/ILD spectral cues. We will refer to such mappings
as Source-Position-to-Interaural-Cues maps (SPIC maps). Unlike what is done
in [7,5,3], the proposed mapping is built point-wise, does not rely on azimuth
only and is device-dependent. We explicitly incorporate it into a novel latently
constrained mixture model for point sound sources. Our model is specifically de-
signed to capture the richness of binaural data recorded with an acoustic dummy
head, and this to improve both localization and separation performances. We
formally derive an EM algorithm that iteratively performs separation (E-step)
followed by localization and source-parameter estimation (M-step). The algo-
rithm is supervised by a training stage consisting in learning a mapping between
potential source positions and interaural cues, i.e., SPIC maps. We believe that
a number of methods could be used in practice to learn such maps. In particular
we propose an audio-motor mapping approach. The results obtained with our
method compare favorably with the recently proposed MESSL algorithm [2].

2 Binaural Sound Representation

Spectrograms associated with each one of the two microphones are computed
using short-term FFT analysis. We use a 64ms time-window with 8ms window
overlap, thus yielding T = 126 time windows for a 1s signal. Since sounds were
recorded at a sample rate of 16,000Hz, each time window contains 1,024 samples.
Each window is then transformed via FFT to obtain complex coefficients of
F = 513 positive frequency channels between 0 and 8,000Hz. We denote with

s
(k)
f,t ∈ C the (f, t) point of the spectrogram emitted by sound-source k, and with

s
(L)
f,t and s

(R)
f,t the spectrogram points perceived by the left- and right-microphone

respectively. The W-DO assumption implies that a single sound source k emits
at a given point (f, t). The relationships between the emitted and the left and
right perceived spectrogram points are:

s
(L)
f,t = h(L)(xk, f) s

(k)
f,t and s

(R)
f,t = h(R)(xk, f) s

(k)
f,t (1)

where xk ∈ R3 is the 3D position of sound source k in a listener-centered coor-
dinate frame and h(L) and h(R) denote the left and right HRTFs. The interaural
transfer function (ITF) is defined by the ratio between the two HRTFs, i.e.,
I(xk, f) = h(R)(xk, f)/h

(L)(xk, f) ∈ C. The interaural spectrogram is defined

by Îf,t := s
(R)
f,t /s

(L)
f,t , so that Îf,t ≈ I(xk, f). Note that the last approximation

only holds if there is a source k emitting at frequency-time point (f, t), and if the
time delay between microphones (≈ 0.75ms) is much smaller than the Fourier
transform time-window that is used (64ms). Under these conditions, at a given
frequency-time point, the interaural spectrogram value Îf,t does not depend on

the emitted spectrogram value s
(k)
f,t but only on the emitting source position

xk. We finally define the ILD spectrogram α and the IPD spectrogram φ as the
log-amplitude and phase of the complex interaural spectrogram Îf,t:
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αf,t = 20 log |Îf,t| ∈ R, φf,t = arg(Îf,t) ∈ ]−π, π] (2)

As already outlined in Section 1 our method makes use of a SPIC map that is
learnt during a training stage. Let X = {xn}Nn=1 be a set of 3D sound-source
locations in a listener-centered coordinate frame. Let a sound-source n, located
at xn emit white noise and let {αn

f,t}
F,T
f=1,t=1 and {φnf,t}

F,T
f=1,t=1be the perceived

ILD and IPD spectrograms. The mean ILD μ(xn) = (μn
1 . . . μ

n
f . . . μ

n
F )

� ∈ RF

and mean IPD ξ(xn) = (ξn1 . . . ξ
n
f . . . ξ

n
F )

� ∈ ]−π, π] vectors associated with
n are defined by taking the temporal means of αn and φn at each frequency
channel:

μn
f = 1/T

∑T
t=1 α

n
f,t and ξnf = arg(1/T

∑T
t=1 e

jφn
f,t) (3)

Vector ξ is estimated in the complex domain in order to avoid problems due to
phase circularity [4]. White noise is used because it contains equal power within
a fixed bandwidth at any center frequency: The source n is therefore the only
source emitting at each point (f, t); μn

f and ξnf are thus approximating the log-
amplitude and phase of I(xk, f). The set X of 3D source locations as well as
the mappings μ and ξ will be referred to as the training data to be used in
conjunction with the separation-localization algorithm described below.

3 Constrained Mixtures for Separation and Localization

Let’s suppose now that there are K simultaneously emitting sounds sources
from unknown locations {xk}Kk=1 ⊂ X and with unknown spectrograms. Using
the listener’s microphone pair it is possible to build the ILD and IPD observed
spectrograms {αf,t}F,T

f=1,t=1 and {φf,t}F,T
f=1,t=1. The goal of the sound-source sep-

aration and localization algorithm described in this section is to associate each
observed point (f, t) with a single source and to estimate the 3D location of each
source.

As mentioned in section 2, the observations αf,t (ILD) and φf,t (IPD) are
significant only if there is a sound source emitting at (f, t). To identify such
significant observations we estimate the sound intensity level (SIL) spectrogram
at the two microphones, and retain only those frequency-time points for which
the SIL is above some threshold. One empirical way to choose the thresholds
(one for each frequency) is to average the SILs at each f in the absence of any
emitting source. These thresholds are typically very low compared to SILs of
natural sounds, and allow to filter out frequency-time points corresponding to
“room silence”. Let Mf ≤ T be the number of significant observations at f and
let αf,m and φf,m be the m-th significant ILD and IPD observations at f . Let

A = {αf,m}F,Mf

f=1,m=1 and Φ = {φf,m}F,Mf

f=1,m=1 be the observed data.

Let zf,m ∈ {0, 1}K be the missing data, i.e., the data-to-source assignment
variables, such that zf,m,k = 1 if observations αf,m and φf,m are generated by
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source k, and zf,m,k = 0 otherwise. The W-DO assumption yields
∑K

k=1 zf,m,k =

1 for all (f,m). Mk = {zf,m,k}F,Mf

f=1,m=1 is the binary spectral mask of the k-th

source. Finally, Z = {zf,m}F,Mf

f=1,m=1 denotes the set of all missing data. The
problem of simultaneous localization and separation amounts to estimate the
masking variables Z and the locations {xk}Kk=1 conditioned by A and Φ, given
the number of sources K. We assume that observed data are perturbed by Gaus-
sian noise. Hence, the probability of observing αf,m conditioned by source k
(zf,m,k = 1) located at xk is drawn from a normal distribution, and the proba-
bility of observing φf,m is drawn from a circular normal distribution. The source
position xk acts here as a latent constraint on ILD and IPD means:

P (αf,m|zf,m,k = 1,xk, σf,k) = N (αf,m|μf (xk), σ
2
f,k) and (4)

P (φf,m|zf,m,k = 1,xk, ρf,k) = N (Δ(φf,m, ξf (xk))|0, ρ2f,k) (5)

where σ2
f,k and ρ2f,k are the ILD and IPD variances associated with source k at

frequency f and theΔ function is defined byΔ(x, y) = arg(ej(x−y)) ∈ ]−π, π]. As
in [2], (5) approximates the normal distribution on the circle ]−π, π] when ρf,k
is small relative to 2π. Preliminary experiments on IPD spectrograms of white
noise showed that this assumption holds in the general case. As emphasized in
[2], the well known correlation between ILD and IPD does not contradict the as-
sumption that Gaussian noises corrupting the observations are independent. The
conditional likelihood of the observed data (αf,m, φf,m) is therefore given by the
product of (4) and (5). We also define the priors πf,k = P (zf,m,k) which model
the proportion of the observed data generated by source k at frequency f . In
summary, the model parameters are Θ = {{xk}; {πf,k}; {σ2

f,k}; {ρ2f,k}}
F,K
f=1,k=1.

The problem can now be expressed as the maximization of the observed-data
log-likelihood conditioned by Θ. In order to keep the model as general as possi-
ble, there is no assumption on the emitted sounds as well as the way their spectra
are spread across the frequency-time points. Therefore, we assume that all the
observations are statistically independent, yielding the following expression for
the observed-data log-likelihood:

L(A,Φ;Θ) = logP (A,Φ;Θ) =
∑F

f=1

∑Mf

m=1 logP (αf,m, φf,m;Θ) (6)

We address this maximum-likelihood with missing-data problem within the
framework of expectation-maximization (EM). In our case, the E-step com-
putes the posterior probabilities of assigning each spectrogram point to a sound
source k (separation) while the M-step maximizes the expected complete-data
log-likelihood with respect to the model parameters Θ and, most notably, with
the source locations {xk}Kk=1 (localization). The MAP criterion provides binary
spectral masks Mk associated with each source k while the final parameters
{xk}Kk=1 provide estimates for the source locations. The expected complete-data
log-likelihood writes ((p) denotes the p-th iteration):

Q(Θ|Θ(p−1)) =
∑F

f=1

∑Mf

m=1

∑K
k=1 r

(p)
f,m,k log πf,kP (αf,m, φf,m|zf,m;Θ) (7)



376 A. Deleforge and R. Horaud

The E-step updates the responsibilities according to the standard formula:

r
(p)
f,m,k =

πf,kP (αf,m, φf,m|zf,m;Θ(p−1))∑K
i=1 πf,iP (αf,m, φf,m|zf,m;Θ(p−1))

(8)

The M-step maximizes (7) with respect to Θ. By combining (4) and (5) with (7)
the equivalent minimization criterion writes:

F∑
f=1

Mf∑
m=1

r
(p)
f,m,k

(
log
(

σ2
f,kρ

2
f,k

π2
f,k

)
+

(xf,m − μf (xk))
2

σ2
f,k

+
Δ(φf,m, ξf (xk))

2

ρ2f,k

)
(9)

which can be differentiated with respect to {πf,k}f , {σf,k}f and {ρf,k}f to obtain
closed-form expressions for the optimal parameter values conditioned by xk:

π̃f,k =
rf,k
Mf

, with rf,k =
∑Mf

m=1 rf,m,k (10)

σ̃2
f,k(xk) =

1
rf,k

∑Mf

m=1 r
(p)
f,m,k(xf,m − μf (xk))

2 (11)

ρ̃2f,k(xk) =
1

rf,k

∑Mf

m=1 r
(p)
f,m,kΔ(φf,m, ξf (xk))

2 (12)

By substituting (11) and (12) into (9) the optimal location x̃k is obtained by
minimizing the following expression with respect to xk:

F∑
f=1

rf,k

(
log

(
1 +

(αf,k − μf (xk))
2

Vf,k

)
+ log

(
1 +

Δ(φf,k, ξf (xk))
2

Wf,k

))
(13)

with: αf,k = 1
rf,k

∑Mf

m=1 r
(p)
f,m,kαf,m ; Vf,k = 1

rf,k

∑Mf

m=1 r
(p)
f,m,k(αf,m − αf,k)

2

φf,k = arg
(

1
rf,k

∑Mf

m=1 r
(p)
f,m,ke

jφf,m

)
;Wf,k = 1

rf,k

∑Mf

m=1 r
(p)
f,m,kΔ(φf,m, φf,k)

2

(13) is evaluated for each source location in the training dataset X (Section 2)
in order to find an optimal 3D location x̃k. This is then substituted back in (11)
and (12) to estimate σ̃f,k and ρ̃f,k and repeated for each unknown source k.

In general, EM converges to a local maximum of (6). The non-injectivity na-
ture of the interaural functions μf and ξf and the high cardinality of Θ leads
to a very large number of such maxima, especially when the training set X
is large. This makes our algorithm very sensitive to initialization. One way to
avoid being trapped in local maxima is to initialize the mixture’s parameters
at random several times. This cannot be easily applied here since there is no
straightforward way to initialize the model’s variances. Alternatively, one may
randomly initialize the assignment variables Z and then proceed with the M-
step. However, extensive simulated experiments revealed that this solution fails
to converge to the ground-truth solution in most of the cases. We therefore
propose to combine these strategies by randomly perturbing both the source
locations and the source assignments during the first stages of the algorithm.
We developed a stochastic initialization procedure similar in spirit to SEM [1].



A Constrained Mixture Model for Audio Source Separation and Localization 377

The SEM algorithm includes a stochastic step (S) between the E- and the M-step,
during which random samples Rf,m,k ∈ {0, 1} are drawn from the responsibilities
(8). These samples are then used instead of (8) during the M-step. To initialize

our algorithm, we first set r
(0)
f,m,k = 1/K for all k and then proceed through

the sequence S M* E S M, where M* is a variation of M in which the source
positions are drawn randomly from X instead of solving (13). In practice, ten
such initializations are used to enforce algorithm convergence, and only the one
providing the best log-likelihood after two iterations is iterated twenty more
times. A second technique was used to overcome local maxima issues due to the
large number of parameters. During the first ten steps of the algorithm only,
a unique pair of variances (σ2

k, ρ
2
k) is estimated for each source. This is done

by calculating the means σ2
k(xk) and ρ2k(xk) of frequency-dependent variances

(11) and (12) weighted by rf,k. The optimal value x̃k is the one minimizing
σ2
k(x)ρ

2
k(x) evaluated over all x ∈ X . Intensive experiments showed that the

proposed method converges to a global optimum in most of the cases.

4 Experiments, Results, and Conclusions

In order to evaluate and compare our method, a specific data set of binaural
records was built1 using a Sennheiser MKE 2002 acoustic dummy-head mounted
onto a robotic system with two rotational degrees of freedom, namely pan (ψ)
and tilt (θ). This device, specifically designed to perform accurate and repro-
ducible motions, allows us to collect both a very dense SPIC map for the training
set (section 2) and a large test set of mixed speech point sources. The emitter (a
loud speaker) is placed at approximately 2.5 meters in front of the listener. Un-
der these conditions the HRTF mainly depends on the sound-source direction:
Hence, the location is parameterized by the angles ψ and θ. All the experiments
were carried out in a reverberant room and in the presence of background noise.
For recording purposes, the robot is placed in 90 pan angles ψ ∈ [−90◦, 90◦] (left-
right) and 60 tilt angles θ ∈ [−60◦, 60◦] (top-down), i.e., N = 5, 400 uniformly
distributed motor states in front of the static emitter, forming the set X . Five
binaural recordings are available with each motor state: Sound #0 corresponds
to a 1s “room silence” used to estimate the SIL thresholds (section 3). Sound #1
corresponds to 1s white-noise used to build the training set (section 2). Sounds
#2, #3 and #4 form the test set and correspond to “They never met you know”
by a female (#2), “It was time to go up myself” by a male (#3), and “As we
ate we talked” by a male (#4). The three sounds are about 2s long and were
randomly chosen from the TIMIT database. Each record was associated to its
ground-truth motor-state, thus allowing to create signals of mixed sound sources
from different direction with 2◦ resolution.

We generated 1000 mixtures of two and three speech signals emitted by ran-
domly located sources. 97.7% of the individual sources were correctly mapped to
their associated position (i.e. ≤ 2◦ error for both ψ and θ) in the two-source case,

1 Online at: http://perception.inrialpes.fr/~Deleforge/CAMIL_Dataset

http://perception.inrialpes.fr/~Deleforge/CAMIL_Dataset


378 A. Deleforge and R. Horaud

Table 1. Comparing the mean

source-to-distortion ratio (SDR) and
source-to-interference ratio (SIR), in
dB, for 1000 mixtures of 2 and 3
sources. Mean separation results with
our approach are calculated over all
sources (All) and over correctly local-
ized sources only (Loc).

2 Sources 3 Sources
SDR SIR SDR SIR

Oracle Mask 11.73 19.23 9.20 16.16
Our Approach (Loc) 5.28 8.91 2.44 3.92
Our Approach (All) 5.19 8.84 1.72 2.74

MESSL-G 2.83 5.74 1.48 1.47
Original Mixture 0.00 0.45 -3.50 -2.82

and 63.8% in the three-source case. The performance of separation was evaluated
with the standard SDR and SIR metrics [6]. We compared our results to those
obtained with the original mixture (no mask applied), with the ground truth
or Oracle mask [8], and with the recently proposed MESSL2 algorithm [2]. The
Oracle mask is set to 1 at every spectrogram point in which the target signal is
at least as loud as the combined other signals and 0 everywhere else. The version
MESSL-G used includes a garbage component and ILD priors to better account
for reverberations and is reported to outperform four methods in reverberant
conditions, including [8] and [3]. Table 1 shows that our method yields signif-
icantly better results than MESSL-G on an average, although both algorithm
require similar computational times. Notice how the localization correctness crit-
ically affects the separation performances, and decreases in the three-source case,
as the number of observations per source becomes lower and the number of local
maxima in (6) becomes higher. Our SDR scores strongly outperform MESSL-G
in most cases, while SIR results are only slightly better when sources are more
than 70◦ apart in azimuth (pan angle), e.g., Fig. 1. However, they become much
higher when sources are nearby in azimuth, or share the same azimuthal plane
with different elevations (tilt angles). This is because MESSL relies on the esti-
mation of a probability density in a discretized ITD space for each source, and
thus does not account for more subtle spatial cues induced by the HRTF.

These results clearly demonstrate the efficiency of our method, but they some-
how favor our algorithm because of the absence of RIR variations both in the
training and the test data sets. The aim of experimenting with these relatively
simple data has been to show that our method can conceptually separate and
accurately locate both in azimuth and elevation a binaural mixture of 2 to 3
sound sources. The prerequisite is a training stage: the interaural cues associ-
ated with source positions need to be learnt in advance using white noise, and
we showed that the algorithm performs well even for a very large and dense set
of learnt positions. Preliminary results obtained while changing the position of
the test sound source in the room suggested that our constrained mixture model
coupled with frequency-dependent variances presented some robustness to RIR
variations. Alternatively, one could build a training set on different premises
such as seat locations in a conference room or musician locations in a concert
hall, and thus directly learn the RIR during the training stage.

To conclude, we proposed a novel audio source separation and localization
method based on a mixture model constrained by a SPIC map. Experiments

2 http://blog.mr-pc.org/2011/09/14/messl-code-online/.

http://blog.mr-pc.org/2011/09/14/messl-code-online/
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Fig. 1. SIR as a function of azimuth (pan) and elevation (tilt) separation between two sources.
Left: one source fixed at (−90◦, 0◦) while the other takes 90 positions between (−90◦, 0◦) and
(+90◦, 0◦). Right: one source fixed at (0◦,−60◦) while the other takes 60 positions between
(0◦,−60◦) and (0◦,+60◦). SIRs are averaged over 6 mixtures of 2 sources (12 targets). Top-
to-down: Oracle (∗), our method (◦), MESSL-G (�), and original mixture (+).

and comparisons showed that our algorithm performs better than a recently
published probabilistic spectral masking technique in terms of separation and
yields very good multi-source localization results. The combination of a SPIC
map with a mixture model is a unique feature. In the future, we plan to study
more thoroughly the behavior of our algorithm to RIR variations, and improve
its robustness by extending our model to a continuous and probabilistic mapping
between source positions and interaural parameters. Dynamic models incorpo-
rating moving sound sources and head movements could also be included.
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Abstract. This work makes use of instrument-dependent models to
separate the different sources of multiple instrument mixtures. Three
different models are applied: (a) basic spectral model with harmonic
constraint, (b) source-filter model with harmonic-comb excitation and
(c) source-filter model with multi-excitation per instrument. The param-
eters of the models are optimized by an augmented NMF algorithm and
learnt in a training stage. The models are presented in [1], here the ex-
perimental setting for the application to source separation is explained.
The instrument-dependent NMF models are first trained and then a test
stage is performed. A comparison with other state-of-the-art software is
presented. Results show that source-filter model with multi-excitation
per instrument outperforms the other compared models.

Keywords: non-negative matrix factorization (NMF), source-filter
model, excitation modeling, spectral analysis, music source separation.

1 Introduction

An audio spectrogram can be decomposed as a linear combination of spectral
basis functions. In such a model, the short-term magnitude (or power) spectrum
of the signal xt(f) in frame t and frequency f is modeled as a weighted sum of
basis functions as

x̂t(f) =
N∑

n=1

gn,tbn(f) (1)

where gn,t is the gain of the basis function n in the frame t, and bn(f), n = 1, ..., N
are the bases. In other words, the signal is modeled as a sum of components with
fixed basis and time varying amplitudes.

In this paper three models are tested for source separation of musical in-
struments. The models are derived from eq.(1) and have different constraints
to predict note spectrum of musical instruments. All of them are explained in
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[1] and here are tested and compared with a state-of-the-art software. Despite
this, here a brief formulation of each model is shown in order to show a general
description of them.

2 NMF Models

2.1 Basic Harmonic Constrained Model

This model is based on the assumption that musical notes spectra have regularly
spaced frequency peaks. Because of this, the elements in the basis bn,j(f) are
forced to follow this harmonic shape by imposing harmonicity to the spectral
basis.

Consequently, in the Basic Harmonic Constrained (BHC) model the short-
term magnitude spectrum of the signal xt(f) at frame t is estimated as

x̂t(f) =

J∑
j=1

N∑
n=1

gn,t,j

M∑
m=1

an,m,jG(f −mf0(n)) (2)

where m = 1, ...,M is the number of harmonics, an,m,j the amplitude for the
m-th partial of the pitch n and instrument j, f0(n) the fundamental frequency of
pitch n, G(f) is the magnitude spectrum of the window function, the spectrum
of a harmonic component at frequency mf0(n) is approximated by translated
G(f −mf0(n)) and J is the number of instruments. The parameters to estimate
of the BHC model for the NMF iterative algorithm are the time gains gn,t and
the pitch amplitudes an,m,j.

2.2 Source-filter Model with Harmonic-Comb Excitation

This model is based on the proposal of Virtanen and Klapuri [2]. Here, each
basis is modeled as the product of an excitation en(f) and a source-filter hj(f).

In order not to have a large number of parameter to be fitted by the NMF
algorithm, which would have a negative effect in the results, we introduce the ex-
citations en(f) as frequency components of unity magnitude at integer multiples
of the fundamental frequency of the pitch n as in [3]. This results in modeling
the basis using a harmonic comb excitation consisting of a sum of harmonic
components. When using source-filter model with Harmonic-Comb Excitation
(HCE) for the definition of basis functions, the time-frequency representation of
the signal can be obtained as

x̂t(f) =

J∑
j=1

N∑
n=1

gn,t,j

M∑
m=1

hj(mf0(n))G(f −mf0(n)) (3)

The parameters to estimate for the NMF algorithm are the time gains gn,t,j and
the source-filter hj(f) and can be estimated in a NMF framework.
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2.3 Source-filter Model with Multi-Excitation Per Instrument

In the third model, we use the multi-excitation model proposed in [1]. Here the
excitation is composed of a weighted sum of a set of instrument-dependent exci-
tation basis vectors. For each instrument, the pitch excitation is obtained as the
weighted sum of excitation basis functions which are unique for each instrument
while the weights vary as function of the pitch. The magnitude spectra of the
whole signal is represented as:

x̂t(f) =
∑
n,j

gn,t,jhj(f)
M∑

m=1

I∑
i=1

wi,n,jvi,m,jG (f −mf0(n)) (4)

where vi,m,j is the i-th excitation basis vector, wi,n,j is the weight of the i-th
excitation,n = 1, ..., N (N being the number of pitches), j = 1, ..., J (J being
the number of instruments), M represents the number of harmonics and I the
number of considered excitations with I << N . The parameters to estimate
of the model are: the time gains gn,t,j, the instrument filter hj(f), the basis
excitation vectors vi,m,j and the excitation weigths wi,n,j .

More details of these instrument-dependent NMF models, such as the param-
eter estimation can be revised in [1].

3 Application to Source Separation

Source separation is a practical application that can be approached even without
a priori information [4]. The approach proposed here is based on training NMF
models with all the range of notes of some instruments. In the test stage, the
parameters of the trained models are fixed except the time gains gn,t,j. For
the separation task, multiple instrument mixtures are modelled obtaining the
estimations of magnitude spectra x̂t(f) per each instrument.

In this work, we do NMF-based separation based on the three different models
explained in Section 2. It must be stressed that these models have been proposed
in the literature and are here applied to source separation.

3.1 Experimental Setup

Training Data. For the training stage, the full pitch range of isolated notes for
each instrument from RWCmusical instrument sound database [5] has been used.
Five instruments are considered for the experiments (clarinet, flute, oboe, horn
and bassoon). For each instrument, individual sounds are available at semi-tone
intervals over the entire range of notes that can be produced by that instrument.
From the RWC database we select the files with normal playing style and mezzo
dynamic level.

Test Data. To evaluate the separation application, we have used the woodwind
database for the Multiple Fundamental Estimation task of the Third Music In-
formation Retrieval Evaluation Exchange (MIREX2007) [6]. This subset is com-
posed of 5 solo instruments (bassoon, clarinet, flute, horn and oboe). Polyphonic
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signals are generated by mixing the recordings of the individual instrument ex-
cerpts. The mixing is performed using just the first 30 seconds of the individual
instruments as in [7]. In this way, excerpts range from polyphony 2 to 5 are
created, giving 26 individual excerpts as a result.

Time-Frequency Representation. The model parameters are learnt using
the training data. Consequently, the training data has to be labelled with the
instrument j and pitch n active at each frame t. In our system we use the
resolution of a single semitone as in [1]. Taking this decision, the implementation
is easier because the database is also annotated with a single semitone resolution.

The most straightforward implementation of this time-frequency representa-
tion is the integration of the STFT bins corresponding to the same semitone.
However, the frequency representation given by this simple implementation re-
tains energy out of the boundaries of the played MIDI note (and its multiples)
especially at low frequency due to the side lobes of the window transform. As
a consequence, harmonic constrained NMF models can found energy out of the
played MIDI semitone (and its multiples) which limits the separation capabili-
ties.

To avoid this behavior, perceptually most significant sinusoids are extracted
at each frame using the Perceptual Matching Pursuit [8]. This approach achieves
the cancellation (in a great degree) of each extracted sinusoid minimizing the
side lobe effect. After this processing block, all perceptually important peaks of
the spectrum are extracted. The frequency resolution of a semitone is achieved
retaining in xt(f) only the most perceptually important sinusoid with the fre-
quency range of each MIDI note f at each frame t. Due to the properties of
matching pursuits, the window transform G(f) simplifies to the delta function.
The frame size and the hop size are 128 ms and 32 ms, respectively. This si-
nusoidal model is used to process both the training and test data. More details
about the used time-frequency representation can be revised in [1].

NMF-Based Separation Procedure. All the tested NMF-based methods are
processed on the same procedure:

– Compute the time-frequency representation of the mixture xt(f) as ex-
plained above.

– Estimate the factorization x̂t(f) ≈
∑
n
gn,tbn,j(f). The bases are fixed from

the training stage for all the compared models, while the time gains are
optimized using the NMF algorithm for each mixture.

– The factorization can be particularized for each instrument j obtaining
x̂t,j(f). Here, we factorize only for the active instruments, in other words,
the number and kind of instruments is given to the system as a priori infor-
mation. Other approaches does not inform to the algorithm about the active
instruments [3] in such cases an instrument classification is performed before
separation.
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– The separation mask is obtained computing the proportional amount of am-
plitude of each time-frequency cell (frame t and MIDI note interval f) to
the instrument j. The use of separation Wiener masks is common in the
separation literature [9].

– Once obtained the instrument masks, the spectrogram of the signal is fil-
tered by each mask. Here, as the frequency resolution is different from that
of the spectrogram, all frequency bins belonging to the current MIDI note
interval are filtered in the same way. The spectrogram is computed with 8192
frequency bins.

State-of-the-Art Comparison. In order to obtain a fair comparison with a
state-of-the-art method, we have performed an instrument separation making
use of the Flexible Audio Source Separation Toolbox (FASST) [10]. This toolbox
is a configurable framework for sound source separation. From all the possible
scenarios in the toolbox, in the experiments presented at this work, the toolbox
has been configured using the most similar as possible scenario than proposed
methods. The tested transform are qerb and stft, both of them are implemented
in FASST. The decompositions are always computed using K = 114 bases, with
this value the range of notes for any instrument is modelled. The excitation-
filter decomposition is selected. The source separation is done following a two
stage approach: 1) First of all, a training stage is implemented. To do that, a
decomposition for each instrument of the training data set is performed. Spectral
patterns activations are initialized to zero for all bases k that are not active at
frame n. The obtained characteristic spectral patterns are stored for the next
stage. 2) Then the test stage is implemented. Now, a decomposition for each
excerpt of the test data set (with polyphony from 2 to 5) is computed using the
stored characteristic spectral patterns for the active instruments of each excerpt.
The obtained spectral patterns activations for each excerpt are utilized for the
final separation in FASST. This two stage approach is implemented to make a
comparison under the same conditions than the used in the proposed procedure
for the instrument-dependent NMF models. In FASST, the sampling frequency
is set to 44, 100 Hz, the used transforms are QERB (Quadratic Equivalent Rect-
angular Bandwidth) and STFT (Short Time Fourier Transform), the length of
the time integration function is set to 5, 644 samples (128 ms frames, so the
frequency resolution is configured to F = 5644) and an overlapping of 50 %
between frames is chosen.

Evaluation. For an objective evaluation of the separation performance we use
the metrics implemented in [11]. The metrics for each separated signal are the
Source to Distortion Ratio (SDR), the Source to Interference Ratio (SIR), the
Source to Artifacts Ratio (SAR).

In a NMF framework, the unknown parameters are initialized randomly. Thus,
in the test stage, the estimated magnitude spectra are different at each execution
giving results to different separation metrics per execution. We have performed
a set of 30 executions per algorithm to demonstrate the statistical significance
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of the metrics. The 95% confidence intervals for the metrics was smaller than
0.7dB for all the algorithms, which means that differences between most of the
algorithms are statistically significant.

4 Results

Separation results for the BHC, HCE and MEI models are presented at Table
1. A comparison with the separation performed by ideal Wiener masks and
the chosen configuration of the FASST software is also included. These ideal
masks are obtained with the original signals, which is an unrealistic situation.
Anyway, this particular comparison is interesting to demonstrate the limitations
of the system. The separation performance is here limited by the time-frequency
resolution. This is the reason why ideal Wiener masks do not perform better.

Table 1. Objective Results for Source Separation ofMultiple InstrumentMixtures in dB

Algorithms / Polyphony 2 3 4 5

(all values in dB) SDR SIR SARSDR SIR SARSDR SIR SARSDR SIR SAR

BHC 8.8 10.9 11.0 6.8 8.6 9.4 5.2 5.9 8.3 3.8 2.4 7.5

HCE 5.5 8.3 11.0 2.9 4.8 9.6 1.7 2.8 8.7 0.9 -8.2 8.2

MEI I=1 9.0 10.9 11.4 6.5 8.3 9.8 4.2 5.7 8.9 0.9 1.3 7.9

I=2 9.1 11.1 11.4 6.9 8.9 9.8 5.0 6.7 8.6 2.8 4.1 8.0

I=4 9.4 11.3 11.5 7.6 9.4 10.0 6.3 7.8 9.0 5.2 6.2 8.2

FASST stft 4.9 6.3 6.9 3.3 3.7 4.6 1.3 2.1 3.4 0.4 2.3 3.4

FASST qerb 7.1 9.0 8.9 5.2 5.7 5.6 3.8 4.3 5.6 2.1 3.3 4.7

Ideal Wiener masks 12.4 14.0 12.8 11.4 13.2 11.9 10.8 12.7 11.3 10.3 12.4 10.8

In relation to the separation results obtained with FASST, it can be seen that
only HCE model performs similarly than FASST software and this happens only
for high levels of polyphony. The characteristic spectral patterns trained with
FASST are not harmonic constrained. The main differences of the FASST sep-
aration procedure and the implemented NMF-based procedure are due to the
time-frequency resolution and the sinusoidal model. FASST with qerb transform
has similar results as the HCE model, however FASST with stft transform, which
does not use a logarithmic frequency resolution, has worse results. Linear resolu-
tion in frequency is not appropriate for the separation of musical instruments as
results indicate. When using linear resolution, small variations in the fundamen-
tal frequency (smaller than a quarter-tone) can produce variations larger than
the main lobe of the window at high frequencies. Consequently, the separation
capabilities are limited because trained spectral patterns does not model prop-
erly the different spectra produced by the same note (we refer to small variations
in the pitch for the same note). Other musical source separation approaches [11]
also implement logarithmic resolution. Apart from this, we have experienced
that harmonic constraint is particularly beneficial to reduce the interferences
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between sources (see SIR values in Table 1). For harmonic constrained models,
the spectral patterns out of the harmonic excitation is set to zero minimizing,
in this way, the interferences.

The Multi-Excitation per Instrument (MEI) model for I = 4 excitations ob-
tains the best results. In fact, the results are improved as the number of excitation
increases from I = 1 to I = 4. This behavior is explained by the greater capa-
bility of modeling when increasing the number of excitations. The HCE model,
which is also based on the source-filter paradigm, achieves worse because it does
not provide enough degree of freedom to model accurately the note spectra.

The case of the BHC model is particularly interesting. This method is able
to model each instrument note independently from the others. Thus, this model
has the highest degree of freedom because it is not restricted by the use of the
source-filter. However, this model is comparable with the MEI model for I = 1, 2
excitations but does not reach the separation results of the MEI model for I = 4
excitations. The differences between the databases for training and test can ex-
plain this behavior because the conditions of the music scene produce variations
in the note spectra. In other words, BHC model is particularly trained to an
implementation of each instrument while the MEI model obtains a more flexible
representation thanks to the use of the source-filter. Anyway, the BHC model
presents a competitive performance, specially for higher levels of polyphony.

Finally, we conclude that the MEI model proposed in [1] achieves the best
results mainly by the two following reasons: 1) The use of a set of excitations
provides good modeling capabilities in comparison with HCE model. 2) This
method is based on a source-filter model, which provides a better tolerance
when the conditions of the music scene vary in opposition to the BHC model.

5 Conclusion and Perspectives

In this work, we have demonstrated the viability of a source separation task
of multiple instrument mixtures using instrument-dependent NMF models.This
kind of models defines the instrument index j in its parameters, which allows
the estimation of the magnitude spectra for each instrument x̂t,j(f). Separation
Wiener masks can be defined by assigning the proportional quantity of amplitude
to each time-frequency cell to the instrument in relation to the total amplitude of
all instruments in this cell. Separation metrics indicate that the Multi-Excitation
Model proposed in [1] obtains the better results when including a few set of
excitations.

In the future, we plan to work in two directions: 1) The frequency resolution
of just a semitone is quite limited. We are planning to extend it interpolating
the source filter models. 2) In the source filter models, the basis parameters can
be updated in testing to adapt the model to the conditions of the music scene.

Acknowledgment. This work was supported by FEDER, the Spanish Min-
istry of Science and Innovation under Project TEC2009-14414-C03-02, and the
University of Jaen under Project R1/12/2010/64.



Multiple Instrument Mixtures Source Separation Evaluation 387

References

1. Carabias-Orti, J.J., Virtanen, T., Vera-Candeas, P., Ruiz-Reyes, N., Canadas-
Quesada, F.J.: Musical Instrument Sound Multi-Excitation Model for Non-
Negative Spectrogram Factorization. IEEE Journal on Selected Topics on Signal
Processing 5(6), 1144–1158 (2011)

2. Virtanen, T., Klapuri, A.: Analysis of polyphonic audio using source-filter model
and non-negative matrix factorization. In: Advances in Models for Acoustic Pro-
cessing, Neural Information Processing Systems Workshop (2006)

3. Heittola, T., Klapuri, A., Virtanen, T.: Musical instrument recognition in poly-
phonic audio using source-filter model for sound separation. In: Proc. 10th Int.
Society for Music Information Retrieval Conf. (ISMIR), Kobe, Japan (2009)

4. Virtanen, T.: Monaural sound source separation by nonnegative matrix factoriza-
tion with temporal continuity and sparseness criteria. IEEE Transactions on Audio,
Speech, and Language Processing 15(3), 1066–1074 (2007)

5. Goto, M.: Development of the RWC Music Database. In: Proc. of the 18th Inter-
national Congress on Acoustics (ICA 2004), pp.I-553–I-556 (April 2004) (invited
paper)

6. Mirex 2007: Music information retrieval evaluation exchange,
http://www.music-ir.org/mirex/wiki/2007:MIREX_HOME

7. Vincent, E., Bertin, N., Badeau, R.: Adaptive Harmonic Spectral Decomposition
for Multiple Pitch Estimation. IEEE Transactions on Audio, Speech, and Language
Processing 18(3), 528–537 (2010)

8. Ruiz-Reyes, N., Vera-Candeas, P.: Adaptive Signal Modeling Based on Sparse Ap-
proximations for Scalable Parametric Audio Coding. IEEE Transactions on Audio,
Speech, and Language Processing 18(3), 447–460 (2010)

9. Every, M.R., Szymanski, J.E.: Separation of synchronous pitched notes by spectral
filtering of harmonics. IEEE Trans. Audio, Speech, Lang. Process. 14(5), 1845–1856
(2006)

10. Ozerov, A., Vincent, E.: A general flexible framework for the handling of prior
information in audio source separation. IEEE Trans. Audio, Speech, Lang. Process
(to appear)

11. Vincent, E.: Musical source separation using time-frequency source priors. IEEE
Transactions on Audio, Speech, and Language Processing 14(1), 91–98 (2006)

http://www.music-ir.org/mirex/wiki/2007:MIREX_HOME


Complex Extension of Infinite Sparse Factor

Analysis for Blind Speech Separation

Kohei Nagira, Toru Takahashi, Tetsuya Ogata, and Hiroshi G. Okuno

Graduate School of Informatics, Kyoto University, Kyoto, Japan
{knagira,tall,ogata,okuno}@kuis.kyoto-u.ac.jp

Abstract. We present a method of blind source separation (BSS) for
speech signals using a complex extension of infinite sparse factor anal-
ysis (ISFA) in the frequency domain. Our method is robust against de-
layed signals that usually occur in real environments, such as reflections,
short-time reverberations, and time lags of signals arriving at micro-
phones. ISFA is a conventional non-parametric Bayesian method of BSS,
which has only been applied to time domain signals because it can only
deal with real signals. Our method uses complex normal distributions
to estimate source signals and mixing matrix. Experimental results indi-
cate that our method outperforms the conventional ISFA in the average
signal-to-distortion ratio (SDR).

Keywords: Blind source separation, Infinite sparse factor analysis,
Non-parametric Bayes.

1 Introduction

Source separation of speech signals is applicable in many areas including distant
speech recognition [1,2] and robot audition systems [3,4], and it has therefore
been the focus of intensive research in recent years. The signals captured by
the systems from microphones in a real environment consist of a mixture of
signals from many talkers, and the captured signals are also contaminated by
their reflected signals and reverberations. Source separation is applied to such
mixtures of acoustic sounds to recognize the speech signals of each talker.

The main requirements for source separation of speech signals are summarized
as follows:

1. Source separation without prior information.
2. Simultaneous separation and source activity detection.
3. Robustness against delayed signals.

Source separation without prior information, such as the locations of the sound
sources and microphones, is called blind source separation (BSS) [5]. Indepen-
dent component analysis (ICA) [6] is a method that is frequently used for BSS.
Frequency domain ICA can achieve BSS in real environments, but ICA assumes
that the number of sources equals that of microphones because it cannot detect
their source activities.

F. Theis et al. (Eds.): LVA/ICA 2012, LNCS 7191, pp. 388–396, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Infinite sparse factor analysis (ISFA) [7] is a BSS method based on a non-
parametric Bayesian approach. ISFA simultaneously achieves both source sep-
aration and source activity detection. However, with conventional ISFA it is
difficult to separate delayed signals that include reflections, reverberations, and
time lags of signals arriving at microphones.

The objective of our research is to develop a BSS system that fulfills the three
above requirements. This paper presents a method of BSS that meets these three
requirements by using a complex extension of ISFA.

2 Blind Source Separation Using ISFA

This section specifies the problem addressed in this paper, explains the conven-
tional ISFA, and presents the matter to be solved.

2.1 Problem Settings of BSS

The blind source separation problem this paper deals with is summarized as
follows:

Input: Sound mixtures of K sources captured by D microphones.
Output: Estimated K source signals and their activity

Assumption: K ≤ D, and
Reverberation time is less than window length of
short-time Fourier transform (STFT).

This system captures the mixed signals from K sound sources by D micro-
phones, and separates them into original K sources without using prior informa-
tion of mixing processes such as the location of sources or the impulse responses.

2.2 BSS for Speech Signals

Mixed signals captured at the microphones are represented as convoluted mix-
tures of source signals.

x(t) =

J∑
j=0

A(j)s(t− j) (1)

where x(t), s(t), and A(j) are observed signals, source signals, and transfer
function coefficients, respectively. In general, when a sound is captured by mi-
crophones, it takes a little time for the signal to arrive at the microphone, and
this time differs depending on the location of the microphone. In addition, the
microphones capture the reflections and reverberations of sound sources. Thus,
sounds captured by microphones consist of convoluted mixtures of source signals.

When solving a BSS problem involving convoluted mixtures of signals, STFT
is often applied in order to convert a convoluted mixture in a time domain into
an instantaneous mixture in a frequency domain, and signals are separated for
each frequency bin independently.
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2.3 Model of ISFA

Infinite sparse factor analysis [7] is a non-parametric Bayesian BSS method. This
subsection presents the ISFA model. Let K, D, and N be the number of sources,
the number of microphones, and the length of the source signals, respectively.
The instantaneous mixture model is expressed as

X = A(Z S) +E, (2)

where Z = [z1, · · · zN ], X = [x1, · · ·xN ], S = [s1, · · · sN ], E = [ε1, · · · εN ], xt =
[x1t, x2t, · · · , xDt]

T is a mixed signal vector at time t, st = [s1t, s2t, · · · , sKt]
T

is the source signal vector, and εt = [ε1t, ε2t, · · · , εDt]
T is the Gaussian noise

vector. Here, A is the D × K mixing matrix, zt = [z1t, z2t, · · · , zKt]
T is the

activity of each source at time t, and source activity zkt is a binary variable:
zkt = 1 if source k is active at time t, otherwise zkt = 0. Operator  indicates
the element-wise product. ISFA can estimate source signals S, their activity Z,
mixing matrix A, and other parameters by using only the observed signal X.

2.4 Problems with Conventional Method

Conventional ISFA [7] cannot separate convoluted mixed signals because it can
only handle real signals. This means that it cannot be applied to the complex
spectra of source signals that are transformed by STFT. This is one of the main
problems to be solved in BSS of speech signals because, as we showed in Section
2.1, the mixing process of speech signals can be considered as a convolution of
the transfer function.

3 Complex Extension of ISFA

This section presents the complex extension of ISFA. To separate convoluted
mixed signals, this algorithm is applied to observed signals for each frequency
bin. First, the inference algorithm of our method is given in Table 1. Our method
is based on the Metropolis-Hastings algorithm and Gibbs sampling. Posterior
distributions of latent variables are derived from Bayes’ theorem by multiplying
priors by likelihood function. The following part shows priors and posteriors of
each parameter and explains the likelihood functions of this model in detail.

3.1 Priors

The prior distributions of variables are assumed as follows:

εt ∼ NC(0, σ
2
εI), σ

2
ε ∼ IG(p1, p2), (3)

skt ∼ NC(0, 1), (4)

ak ∼ NC(0, σ
2
AI), σ2

A ∼ IG(p3, p4), and (5)

Z ∼ IBP(α), α ∼ G(p5, p6). (6)
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Table 1. Algorithm for estimating model parameters of complex ISFA

Input: Observed signals X, Output: Source signals S and their activity Z

1. Initialize mixing matrixA, source activity Z, and source signals S using their priors.
2. At each time t, carry out the following:

2-1 In each source k, sample zkt from Eq. (14).
2-2 If zkt = 1, sample skt from Eq. (11); otherwise skt = 0.
2-3 Determine the number of new classes κt, and initialize the parameters.

3. In each source k, sample mixing matrix ak from Eq. (16).
4. If there is a source that is always inactive, remove it.
5. Update σ2

ε, σ
2
A, and α from Eqs. (17), (18), and (19), respectively.

6. Go to 2.

Here, ak is the kth row of A, and p1, p2, p3, p4, p5, and p6 are hyperparameters.
The NC(μ, σ

2) is the univariate complex normal distribution with mean μ and
variance σ2. The G(b, θ) and IG(b, θ) are the gamma distribution and the inverse
gamma distribution with shape parameter b and scale parameter θ, respectively.
The probability density functions of these distributions are

NC(x;μ, σ
2) =

1

πσ2
exp

(
−|x− μ|2

σ2

)
, (7)

G(x; b, θ) = xb−1

Γ (b) θb
exp
(
−x
θ

)
, and (8)

IG(x; b, θ) = x−(b−1)

Γ (b) θb
exp

(
− 1

θx

)
. (9)

IBP(α) means Indian buffet process (IBP) [8] with parameter α. IBP is a stochas-
tic process that can deal with a potentially infinite number of signals. IBP can
briefly be explained as follows.

1. Time t = 1
Sample the number of sources from the beginning using Poisson(α).

2. Time t = i
– Source k in the existing sources is active in probability mk

i , where mk is
how many times source k is active from t = 1 to i− 1.

– After determining whether existing sources are active or not, sample the
number of new sources using Poisson(αi ).

3.2 Likelihood Function

The likelihood function of complex ISFA is written as follows.

P (X|A,S,Z) =
N∏
t=1

P (xt|A, st, zt) =
N∏
t=1

NC(xt;A(zt  st), σ
2
εI)

=
1

(πσ2
ε)

ND
exp

(
− tr((X−A(Z S))H(X−A(Z S)))

σ2
ε

)
.(10)

Here, each data point is assumed to be independent and identically distributed.
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3.3 Posteriors

This part shows inferences of posteriors based on Bayes’ theorem.

Sound Sources. When zkt is active, skt is sampled by the following posterior.

P (skt|A, s−kt,xtzt) ∝ P (xt|A, st, zt, σ2
ε)P (skt) = NC

(
skt;μs, σ

2
s

)
, (11)

where σ2
s =

σ2
ε

σ2
ε+aH

k ak
, μs =

aH
k ε−kt

σ2
ε+aH

k ak
. s−kt means st except for skt, and ε−kt

means ε|zkt=0.

Source Activity. The ratio of the probability that zkt becomes active to the
probability that zkt becomes inactive is calculated by Eq. (12). This ratio r is
divided into two parts, the ratio of prior rp and the ratio of likelihood rl.

r =
P (zkt = 1|A, s−kt,xt, z−kt)

P (zkt = 0|A, s−kt,xt, z−kt)

=
P (xt|A, s−kt,xt, z−kt, zkt = 1, σ2

ε)

P (xt|A, s−kt,xt, z−kt, zkt = 0, σ2
ε)

P (zkt = 1|zkt)
P (zkt = 0|zkt)

= rlrp. (12)

The ratio of prior rp is calculated by rp =
P (zkt=1|z−kt)
P (zkt=0|z−kt)

=
mk,−t

N−mk,−t
. This is

derived from the priors of source activity based on IBP [8].
The ratio of likelihood rl is calculated by Eq. (13).

rl =
P (xt|A, s−kt,xt, z−kt, zkt = 1, σ2

ε)

P (xt|A, s−kt,xt, z−kt, zkt = 0, σ2
ε)

= σ2 exp

(
|μs|2
σ2
s

)
, (13)

The posterior probability of zkt = 1 is calculated using ratio r.

P (zkt = 1|A, s−kt,xt, z−kt) = r/(1 + r) (14)

To decide whether or not zkt is active, we sample u from Uniform(0,1) and
compare it to r/(1+ r). If u ≤ r/(1+ r), zkt becomes active; otherwise it is not.

Number of New Sources. Some source signals that were not active at the
beginning are active at time t for the first time. Let κt be the number of these
sources. This κt is sampled with the Metropolis-Hastings algorithm.

First, the prior distribution of κt is P (κt|α) = Poisson
(
α
N

)
. After sampling κt,

we initialize new sources and their activities. Next, we decide whether this update
is accepted or not. The acceptance probability of transition is min(1, rξ→ξ∗).
According to Meeds [9] and Knowles [7], rξ→ξ∗ becomes the ratio of the likelihood
of the current state to that of the next state. Then, the ratio can be calculated
as follows.

rξ→ξ∗ = (detΛξ)
−1 exp

(
μH
ξ Λξμξ

)
, (15)

where Λξ = I+ A∗ HA∗
σ2
ε

, Λξμξ = 1
σ2
ε
A∗Hεt. Here, A

∗ is the D×κt matrix of the

additional part of A.
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Fig. 1. Locations of microphones
and sources

Table 2. Experimental conditions

Number of sources K 2

Number of microphones D 2

Sampling rate 16 [kHz]

STFT window length 64 [msec]

STFT shift length 32 [msec]

Iteration 150 [times]

Mixing matrix. The mixing matrix is estimated in each column. The posterior
distribution is

P (ak|A−k,S,X,Z, σ
2
ε, σ

2
A) ∝ P (X|A,S,Z, σ2

ε)P (ak|σ2
A) = NC(ak;μA, Λ

−1
A ),
(16)

where ΛA =
(

sHk sk
σ2
ε

+ 1
σ2
A

)
ID×D, μA =

σ2
A

sHk skσ2
A+σ2

ε
E|ak=0sk.

Variance of Noise and Mixing Matrix. The variance of noise corresponds
to the noise level of the estimated signals, and the variance of the mixing matrix
affects the scale of the estimated signals. Their posteriors are as follows.

P (σ2
ε|E) ∝ P (E|σ2

ε)P (σ2
ε|p1, p2) = IG

(
σ2
ε; p1 +ND, p2/(1 + p2 tr(E

HE))
)
.

(17)

P (σ2
A|A) ∝ P (A|σ2

A)P (σ2
A|p3, p4) = IG

(
σ2
A; p3 +DK, p4/(1 + p4 tr(A

HA))
)
.

(18)

Parameter of IBP. The posterior distribution of IBP parameter α is

p(α|Z) ∝ P (Z|α)P (α|p5, p6) = G (α;K+ + p5, p6/(1 + p6HN )) . (19)

where K+ is the active number of sources, and Hn =
∑N

j−1
1
j is the N -th har-

monic number.

3.4 Postprocessing

Just as in frequency domain ICA, our method has problems involving permu-
tation and scaling ambiguity. These problems are caused by a property that
prevents our method from determining the amplitude and permutation of out-
put signals at all subbands.

Here, the scaling problem is solved by using the projection back approach
[10]. The permutation problem is solved in this paper by using original sources
as reference because we want to evaluate the separation performance itself of
complex ISFA. Although a solutions to this problem is has been proposed by
Sawada et al. [11], there has been no exceptional solution to it until now, so this
problem is being actively discussed even now.
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Fig. 2. Spectrogram
of source signal
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Fig. 3. Spectrogram
of mixed signal
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Fig. 4. Separated
signal with ours
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Fig. 5. Baseline
separated signal

Table 3. Average separation performance from experimental results [dB]

Instantaneous Anechoic chamber Meeting room
Before Baseline Proposed Before Baseline Proposed Before Baseline Proposed

SDR -1.21 20.54 2.29 -1.07 -0.87 2.06 -2.03 -1.97 0.55

ISR 2.37 26.10 4.07 1.50 2.64 3.81 1.01 1.98 2.94

SIR 1.12 30.34 10.58 0.94 1.59 8.84 1.71 2.36 4.95

SAR 75.67 35.03 2.83 58.88 35.89 2.74 58.68 36.07 3.16

4 Experimental Results

We tested our method in a separation experiment using speech signals in order
to evaluate the separation performance of our method. In this experiment, our
method is compared with the baseline method, real-domain ISFA. We use three
kinds of mixed signals for this experiment: instantaneous mixture, convoluted
mixture with impulse responses measured in anechoic chamber, and convoluted
mixture with impulse responses measured in meeting room (RT20 = 430[msec]).
Table 2 lists the conditions for this experiment, and Fig. 1 shows the locations
of the microphones and sources. We used 214 utterances from ATR phoneme
balanced word set.

Figures 2–5 show the spectrograms of a source signal, mixed signal, a signal
separated with our method, and a signal separated with the baseline method.
We also evaluated our method in terms of the Signal to Distortion Ratio (SDR),
the Image to Spatial distortion Ratio (ISR), the Source to Interference Ratio
(SIR), and the Source to Artifacts Ratio (SAR) [12].

Table 3 summarizes the results. The baseline refers to time-domain ISFA. Our
method improves the average SDR by 2.93 dB compared to the baseline on the
condition of anechoic chamber, and our method outperformed the baseline on the
condition of meeting room. Especially, our method achieves better improvement
in SIR than baseline when they are applied to convoluted mixture signals. The
result SAR of our method is worse than baseline method, because the separated
signals are contaminated by applying STFT and inverse STFT.
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5 Conclusion

We presented a method for performing BSS that separates a convoluted mixture
of sounds in a real environment, such as reflections, short-time reverberations,
and time lags of signals arriving at microphones, with their source activity at
the same time. The method was designed by using a non-parametric Bayesian
approach. The method separates complex signals in the frequency domain by
using a complex extension of ISFA. Our method improves the average SDR
by 2.93 dB compared to the baseline based on real-domain ISFA in separating
convoluted mixtures in anechoic chamber, and our method also outperforms the
conventional ISFA on the condition of meeting room.

In the future, we will evaluate the accuracy of source activity, and we expect
to apply source activity to voice activity detection to achieve better speech
recognition. Last but not least, the method should be sped up to attain real-time
processing so that it can be applied to robot applications.

Acknowledgement. This research was partially supported by Grant-in-Aid for
Scientific Research (S), the Global COE Program, and HRI-JP.

References

1. Wölfel, M., McDonough, J.: Distant Speech Recognition. Wiley (2009)
2. Seltzer, M.L., Raj, B., Stern, R.M.: Likelihood-maximizing beamforming for robust

hands-free speech recognition. IEEE Trans. on Speech and Audio Processing 12(5),
489–498 (2004)

3. Nakadai, K., Takahashi, T., Okuno, H.G., Nakajima, H., Hasegawa, Y., Tsujino,
H.: Design and Implementation of Robot Audition System ”HARK” Open Source
Software for Listening to Three Simultaneous Speakers. Advanced Robotics 24(5–
6), 739–761 (2010)

4. Valin, J.M., Rouat, J., Michaud, F.: Enhanced robot audition based on microphone
array source separation with post-filter. In: Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS 2004, vol. 3, pp. 2123–2128.
IEEE (2004)

5. Belouchrani, A., Abed-Meraim, K., Cardoso, J.F., Moulines, E.: A blind source
separation technique using second-order statistics. IEEE Transactions on Signal
Processing 45(2), 434–444 (1997)

6. Hyvärinen, A., Karhunen, J., Oja, E.: Independent component analysis. Wiley
Interscience (2001)

7. Knowles, D., Ghahramani, Z.: Infinite Sparse Factor Analysis and Infinite Indepen-
dent Components Analysis. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumb-
ley, M.D. (eds.) ICA 2007. LNCS, vol. 4666, pp. 381–388. Springer, Heidelberg
(2007)

8. Griffiths, T., Ghahramani, Z.: Infinite latent feature models and the Indian buffet
process. Advances in Neural Information Processing Systems 18, 475–482 (2006)

9. Meeds, E., Ghahramani, Z., Neal, R.M., Roweis, S.T.: Modeling dyadic data with
binary latent factors. Advances in Neural Information Processing Systems 19, 977–
984 (2007)



396 K. Nagira et al.

10. Murata, N., Ikeda, S., Ziehe, A.: An approach to blind source separation based on
temporal structure of speech signals. Neurocomputing 41(1-4), 1–24 (2001)

11. Sawada, H., Mukai, R., Araki, S., Makino, S.: A robust and precise method for solv-
ing the permutation problem of frequency-domain blind source separation. IEEE
Trans. on Speech and Audio Processing 12(5), 530–538 (2004)

12. Vincent, E., Sawada, H., Bofill, P., Makino, S., Rosca, J.P.: First Stereo Au-
dio Source Separation Evaluation Campaign: Data, Algorithms and Results. In:
Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds.) ICA 2007. LNCS,
vol. 4666, pp. 552–559. Springer, Heidelberg (2007)



A General Framework for Online Audio Source

Separation

Laurent S.R. Simon and Emmanuel Vincent

INRIA, Centre de Rennes - Bretagne Atlantique
Campus de Beaulieu, 35042 Rennes Cedex, France
{laurent.s.simon,emmanuel.vincent}@inria.fr

Abstract. We consider the problem of online audio source separation.
Existing algorithms adopt either a sliding block approach or a stochas-
tic gradient approach, which is faster but less accurate. Also, they rely
either on spatial cues or on spectral cues and cannot separate certain
mixtures. In this paper, we design a general online audio source separa-
tion framework that combines both approaches and both types of cues.
The model parameters are estimated in the Maximum Likelihood (ML)
sense using a Generalised Expectation Maximisation (GEM) algorithm
with multiplicative updates. The separation performance is evaluated as
a function of the block size and the step size and compared to that of an
offline algorithm.

Keywords: Online audio source separation, nonnegative matrix factori-
sation, sliding block, stochastic gradient.

1 Introduction

Audio source separation is the process of recovering a set of audio signals from
a given mixture signal. This can be addressed via established approaches such
as Independent Component Analysis (ICA), binary masking and Sparse Com-
ponent Analysis (SCA) [1] or more recent approaches such as local Gaussian
modeling and Nonnegative Matrix Factorisation (NMF) [2]. Most current algo-
rithms are offline algorithms which require the whole signal in order to estimate
the sources. In this paper, we focus on online audio source separation, whereby
only the past samples of the mixture are available. This constraint arises in
particular in real-time scenarios.

A few online implementations have been designed for ICA [3] [4], time-frequency
masking [5], local Gaussian modeling [6], spectral continuity-based separation [7]
and NMF [8]. However, these algorithms rely either on spatial cues [3] – [6] or on
spectral cues [7,8] alone. Such algorithms are not capable of separating mixtures
where several sources have the same spatial position and several sources have
similar spectral characteristics. For example, in pop music, the voice, the snare
drum, the bass drum and the bass are often mixed to the centre and several
voices or several guitars are present.

F. Theis et al. (Eds.): LVA/ICA 2012, LNCS 7191, pp. 397–404, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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In order to address this issue, we consider the general flexible source sepa-
ration framework in [9]. This framework generalises a wide range of algorithms
such as certain forms of ICA, local Gaussian modeling and NMF, and enables
the specification of additional constraints on the sources such as harmonicity.
By jointly exploiting spatial and spectral cues, it makes it possible to robustly
separate difficult mixtures such as above.

The two main approaches for online source separation are the sliding block
(also known as blockwise) approach, as used in [3] [4] [5] [7], and the stochastic
gradient (also known as stepwise) approach, as used in [6] [8]. The sliding block
method consists in applying the offline audio source separation algorithm to a
block of M time frames. Once this block of signal has been processed, a frame
is extracted for each of the J sources before sliding the processing block by one
frame. This approach is computationally intensive but accurate. The stepwise
method offers to update the model parameters in every frame using only the
latest available frame and the model parameters estimated in the previous frame.
As it uses only the latest available frame at a given time, this approach is faster
than the sliding block approach but can be inaccurate.

In this paper, we propose a general iterative online algorithm for the source
separation framework in [9] that combines the sliding block approach and the
stepwise approach using two hyper-parameters: the block sizeM and the step size
α. As a by-product, we provide a way of circumventing the annealing procedure
in [9], which would require a large number of iterations per block. Moreover, we
determine the best trade-off between these two approaches experimentally on a
set of real-world music mixtures.

The structure of the rest of the paper is as follows: the flexible framework in [9]
is introduced in Section 2. Section 3 presents the online algorithm. Experimental
results are shown in Section 4. The conclusion can be found in Section 5.

2 General Audio Source Separation Framework

We operate in the time-frequency (TF) domain by means of the Short-Time
Fourier Transform (STFT). In each frequency bin f and each time frame n, the
multichannel mixture signal x(f, n) can be expressed as

x(f, n) =

J∑
j=1

cj(f, n) (1)

where J is the number of sources and cj(f, n) is the STFT of the spatial image
of the j-th source.

2.1 Model

We assume that cj(f, n) is a complex-valued Gaussian random vector with zero
mean and covariance matrix Rcj (f, n)

cj ∼ Nc(0,Rcj ) (2)
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and that Rcj (f, n) factors as

Rcj (f, n) = Rj(f)vj(f, n) (3)

where Rj(f) is the spatial covariance matrix of the j-th source and vj(f, n) is
its spectral variance.

In [9], Rj(f) is expressed as Rj(f) = Aj(f)A
H
j (f), and Aj(f) is estimated

instead. This results in an annealing procedure, which would translate into a
large number of iterations within each block in our context. In order to cir-
cumvent the annealing, we assume that Rj(f) is full-rank and directly estimate
Rj(f) instead, similarly to [10].

The spectral variance vj(f, n) is modeled via a form of hierarchical NMF [9].

The matrix of spectral variances Vj � [vj(f, n)]f,n is first decomposed into the
product of an excitation spectral power Vx

j and a filter spectral power Vf
j

Vj = Vx
j  Vf

j (4)

where  denotes entrywise multiplication. Vx
j is further decomposed into the

product of a matrix of narrowband spectral patterns Wx
j , a matrix of spectral

envelope weights Ux
j , a matrix of temporal envelope weights Gx

j and a matrix
of time-localised temporal patterns Hx

j, so that

Vx
j = Wx

jU
x
jG

x
jH

x
j . (5)

Vf
j is decomposed in a similar way.
This factorisation enables the specification of various spectral or temporal

constraints over the sources. For example, harmonicity can be enforced by fixing
Wx

j to a set of narrowband harmonic patterns.

2.2 Offline EM-MU Algorithm

In an offline context, the model parameters are estimated in the Maximum Like-
lihood (ML) sense by a Generalised Expectation-Maximisation (GEM) algo-
rithm combined with Multiplicative Updates (MU) applied to the complete data
{cj(f, n)}.

The log-likelihood is defined using the empirical mixture covariance matrix
R̂x(f, n) [10] as

logL =
∑
f,n

− tr
(
R−1

x (f, n)R̂x(f, n)
)
− log det(πRx(f, n)) (6)

where

Rx(f, n) =
J∑

j=1

Rcj (f, n) (7)

is the covariance of the mixture x(f, n).
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In the E-step, the expectation of the natural statistics is computed via [10]

Ωj(f, n) = Rcj (f, n)R
−1
x (f, n) (8)

R̂cj (f, n) = Ωj(f, n)R̂x(f, n)Ω
H
j (f, n) + (I−Wj(f, n))Rcj (f, n) (9)

where Ωj is the Wiener filter, I is the I × I identity matrix and I is the number
of channels of the mixture.

In the M-step, the model parameters are updated as [9,10]

Rj(f) =
1

N

N∑
n=1

1

vj(f, n)
R̂cj (f, n) (10)

Wx
j = Wx

j  
[Ξ̂j  Vx

j .
−2  Vf

j .
−1](Ux

jG
x
jH

x
j )

T

Vx
j .

−1(Ux
jG

x
jH

x
j )

T
(11)

Ux
j = Ux

j  
Wx

j
T [Ξ̂j  Vx

j .
−2  Vf

j .
−1](Gx

jH
x
j )

T

Wx
j
TVx

j .
−1(Gx

jH
x
j )

T
(12)

Gx
j = Gx

j  
(Wx

jU
x
j )

T [Ξ̂j  Vx
j .

−2  Vf
j .
−1]Hx

j
T

(Wx
jU

x
j )

TVx
j .

−1Hx
j
T

(13)

Hx
j = Hx

j  
(Wx

jU
x
jG

x
j )

T [Ξ̂j  Vx
j .

−2  Vf
j .

−1]

(Wx
jU

x
jG

x
j )

TVx
j .

−1
(14)

where .p denotes entrywise raising to the power p, N is the number of time
frames in the STFT of the signal and Ξ̂j = [ξ̂j(f, n)]f,n, with

ξ̂j(f, n) =
1

I
tr(R−1

j (f)R̂cj (f, n)). (15)

Wf
j , U

f
j , G

f
j and Hf

j are updated in a similar way.
After each EM iteration, the model parameters are normalised: the mean of

Rj, W
x
j , U

x
j ,G

x
j , H

x
j , W

f
j, U

f
j and Hf

j are normalised to 1 while Gf
j is multiplied

by the product of the normalisation factors of the other variables.
The separated sources are then obtained via

ĉj(f, n) = Ωj(f, n)x(f, n). (16)

3 Online EM-MU Algorithm

We now consider an online context where in each time frame t, the data is
limited to a block of M STFT frames indexed by n with t −M + 1 ≤ n ≤ t,
whereM = 1 for the stepwise approach andM = N for the full offline approach.
We define a step size coefficient α ∈ ]0; 1] to stabilise the parameter updates by

averaging over time. For each block, the spatial covariance matrices R
(t)
j (f) are

initialised to a diffuse spatial covariance spanning a part of the audio space. The
temporal weights Gx

j
(t) are randomly initialised and the normalised to the mean
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spectral power of the signal. Finally, the temporal patterns Hx
j
(t) are initialised

to diagonal matrices. The expectation of the natural statistics is computed using
(8) and (9) for t−M+1 ≤ n ≤ t, whilst the spatial covariance matrix is updated
as follows:

R
(t)
j (f) = (1 − α)R

(t−1)
j (f) + α

(
1

M

t∑
n=t−M+1

1

vj(f, n)
R̂cj (f, n)

)
(17)

where the superscript (t) denotes is the value of matrix for the block t.
Gx

j
(t) and Hx

j
(t) are updated using (13) and (14) for t −M + 1 ≤ n ≤ t, as

they are expected to significantly vary between blocks, whereas the updates of
Wx

j and Ux
j become

Wx
j
(t) = Wx

j
(t)  

Mx
j
(t)

Cx
j
(t)

(18)

Ux
j
(t) = Ux

j
(t)  

Nx
j
(t)

Dx
j
(t)

(19)

where

Mx
j
(t) = (1 − α)Mx

j
(t−1) + α[Ξ̂j  Vx

j .
−2  Vf

j .
−1](Ux

j
(t)Gx

j
(t)Hx

j
(t))T (20)

Cx
j
(t) = (1 − α)Cx

j
(t−1) + αVx

j .
−1(Ux

j
(t)Gx

j
(t)Hx

j
(t))T (21)

Nx
j
(t) = (1 − α)Nx

j
(t−1) + αWx

j
(t)T [Ξ̂j  Vx

j .
−2  Vf

j .
−1](Gx

j
(t)Hx

j
(t))T (22)

Dx
j
(t) = (1 − α)Dx

j
(t−1) + αWx

j
(t)TVx

j .
−1(Gx

j
(t)Hx

j
(t))T (23)

where Ξ̂
(t)
j is computed as in (16). Mf

j
(t)
, Cf

j
(t)
, Nf

j
(t)

and Df
j
(t)

are updated
in a similar way. At each block, several iterations can be performed in order to
improve the estimation of the model parameters.

Although equations (17) to (19) look similar to the online update of the local
Gaussian model in [6] and [8], there are two crucial differences:

– The framework introduced in the current paper is more general in the sense
that it uses hierarchical NMF, enabling the user to apply more specific con-
straints than when using shallow NMF.

– It is not limited to the sole use of the latest audio frame.

4 Experimental Results

We compared the performance of the online audio source separation framework
to the offline framework introduced in section 2.2, as a function of the number of
EM iterations, α andM . The project aiming at remixing of recordings for sound
engineers, DJs and consumers, we processed five 10 s long stereo commercial
pop recordings composed of bass, drums, guitars, strings and voice. All the
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recordings were recorded at 44100 Hz. The STFT was computed using half-
overlapping 2048 sample sine windows. In the offline algorithm as well as in the
online algorithm, each of the modeled sources were constrained in a way similar
to section V.C in [9]. In the case of an harmonic source, Wx

j
(t) was fixed to a

set of narrowband harmonic spectral patterns and the spectral envelope weights
in Ux

j
(t) were updated, whereas for bass and percussive sources, Wx

j
(t) was a

fixed diagonal matrix and Ux
j
(t) was a fixed matrix of basis spectra learned over

a corpus of bass and drum sounds.
Audio samples of the separated sounds of this experiment can be found on

http://www.irisa.fr/metiss/lssimon/LVA2012/index.html .
Separation performance was evaluated using the Signal-to-Distortion Ratio

(SDR), the Signal-to-Interference Ratio (SIR), the source Image to Spatial dis-
tortion Ratio (ISR) and the Source-to-Artifacts Ratio (SAR) defined in [11]. For
each set of conditions over the number of iterations, M and α, each of these
criteria was averaged over all the mixtures and all the separated sound sources.
Over all the results of this experiment, the SDR varied between -1.1 and 0.9 dB,
the SIR between -4 and 1 dB, the ISR between 2.3 and 3.9 dB and the SAR
between 10 and 19 dB.

Table 1. Separation performance (dB) of the offline and best online algorithms

Algorithm α M number of iterations SDR SIR ISR SAR

offline N/A N/A 100 0.8586 1.2837 3.7989 13.3872

online 1 50 30 0.8671 1.0675 3.9690 12.3278

As shown in table 1, when α = 1, M = 50 and 30 GEM iterations are per-
formed, the separation performance of the online algorithm is close to that of the
offline algorithm. For smaller block size and smaller number of iterations, the per-
formance decreases. For example, for M = 10 and 6 GEM iteration, the SDR is
0.53 dB and the SIR is 3.53 dB.More generally, fig. 1 shows that for α = 1, increas-
ing either the block size or the number of iterations increases the SDR, though the
block size has less effect on the SDR than the number of iterations. The results
also show that increasing the number of iterations from 10 to 30 increases the SDR
by 0.2 dB, which can be considered as a significant improvement.

When α < 1, the SDR decreases significantly as can be seen in fig. 1. It can
also be seen that increasing the number of iterations decreases the SDR and
changes of block size have little to no effect on the SDR. This can be explained
by an inaccurate estimation of the model parameters of certain sources in the
time intervals when these sources are inactive. These inaccurate parameters are
then carried over subsequent time frames and may not converge back to accurate
values. This undesirable effect is particularly salient for those parameters that are
less constrained. For instance, with the considered model, the spatial covariance
matrices of all sources gradually diverge towards a diffuse spatial covariance
spanning all directions in the mixture, while the effect is more limited for spectral
parameters which are fixed or heavily constrained. Potential solutions to this
problem are presented in the conclusion.
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Fig. 1. Mean SDR for all sources and all mixtures, as a function of α, M and step size

5 Conclusion

In this paper, a new framework for online audio source separation was presented.
This algorithm offers an increased flexibility both in terms of the range of con-
straints that can be specified for each source and of the choice of a trade-off
between separation accuracy and computational cost. It was shown that the
separation accuracy is higher when the block size is large, but that small block
sizes nevertheless offer an acceptable separation. However, small step sizes cause
the spatial covariance matrices to diverge due to the presence of silence intervals
in the sources.

This issue is well-known in the beamforming literature where a voice activ-
ity detector is used to restrict the time frames in which the model parameters
are updated [12]. While this solution does not readily extend to source sepa-
ration, we believe that there exist a number of alternative promising solutions,
e.g. adding soft constraints over the least constrained parameters by means of
probabilistic priors, using different step sizes for the most constrained and the
least constrained parameters, and using signal-dependent step sizes related to
the power of Rcj (f, n) such that the parameters are not updated in the time
intervals with low power.

Future work should also include an optimisation of the initialisation of the
model parameters for each new block. After these improvements, we expect that
the proposed framework will reach its full potential and provide a better trade-off
between separation performance and computational cost.

Acknowledgements. This work was supported by the EUREKA Eurostars
i3DMusic project funded by Oseo.
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Abstract. In this paper, we describe a method for recognizing sound
sources in a mixture. While many audio-based content analysis methods
focus on detecting or classifying target sounds in a discriminative man-
ner, we approach this as a regression problem, in which we estimate the
relative proportions of sound sources in the given mixture. Using source
separation ideas based on probabilistic latent component analysis, we
directly estimate these proportions from the mixture without actually
separating the sources. We also introduce a method for learning a tran-
sition matrix to temporally constrain the problem. We demonstrate the
proposed method on a mixture of five classes of sounds and show that it
is quite effective in correctly estimating the relative proportions of the
sounds in the mixture.

1 Introduction

Nowadays, a huge volume of multimedia content is available and is rapidly in-
creasing over broadband networks. While the content is usually managed or
searched using manually annotated text or collaborative information from users,
there has been increasing efforts to automatically analyze the content and find
relevant information. In particular, some researchers have tried to analyze the
content by recognizing sounds in the video because information in the audio
domain is crucial for certain tasks, such as sports highlight detection and event
detection in surveillance systems [1] and also audio data is generally more effi-
cient to process due to its relatively low bandwidth compared to video data.

The majority of audio-based content analysis methods focus on detecting a
target source or classifying sound classes in a discriminative manner [2,3]. Al-
though they are successful in some detection or classification tasks, such discrim-
inative approaches have a limitation in that most real-world sounds are mixtures
of multiple sources. It is therefore useful to be able to simultaneously model mul-
tiple sources for various applications such as searching for certain scenes in a film
soundtrack. For example, if we want to search for a scene with a specific actor
in which a car is passing by and background music is present, it would be useful
to model each of these sources.

In this paper, we propose a generative approach, which models a mixture
sound as multiple single sources and estimates the relative proportion of each

� This work was performed while interning at Adobe Systems Inc.

F. Theis et al. (Eds.): LVA/ICA 2012, LNCS 7191, pp. 405–413, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



406 J. Nam, G.J. Mysore, and P. Smaragdis

source. Our method is based on probabilistic latent component analysis (PLCA)
[4], which is a variant of non-negative matrix factorization (NMF). PLCA has
been widely used as a way of modeling sounds in the spectral domain because
of the interpretable decomposition and extensible capability as a probabilistic
model. We first formalize our problem using a PLCA-based approach and then
we propose an improved model which takes temporal characteristics of each
source into account. Lastly, we evaluate our method with a dataset and discuss
the results.

2 Proposed Method

The basic methodology that we follow is that of supervised source separation
using PLCA [5]. For each source, we estimate a dictionary of basis elements from
isolated training data of that source. Then, given a mixture, we estimate a set
of mixture weights. Using these weights, it is possible to separate the sources
(typical PLCA-based supervised source separation). However, without actually
separating the sources, we estimate the relative proportion of each source in the
mixture. Since we bypass the actual separation process, we can do certain things
to improve sound recognition performance even when it does not improve source
separation performance. Specifically, we choose the dictionary sizes based on
sound recognition performance. Also, we impose a temporal continuity constraint
that helps this performance but could introduce fairly heavy artifacts if we were
to actually separate the sources. Note that we refer to a source as a general class
of sounds, such as speech, music and other environmental sounds in this paper.

2.1 Basic Model

PLCA is an additive latent variable model that is used to decompose audio
spectrograms [4]. An asymmetric version of PLCA models each time frame of a
spectrogram as a linear combination of dictionary elements as follows:

X(f, t) ≈ γ
∑
z

P (f |z)Pt(z) (1)

where X(f, t) is the audio spectrogram, z is a latent variable, each P (f |z) is a
dictionary element, Pt(z) is a distribution of weights at time frame t, and γ is
a constant scaling factor. All distributions are discrete. Given X(f, t), we can
estimate the parameters of P (f |z) and Pt(z) using the EM algorithm.

We model single sound sources and their mixtures using PLCA. We first com-
pute the spectrogram Xs(f, t) given isolated training data of source s. We then
use Eq. 1 to estimate a set of dictionary elements and weights that correspond to
that source. In the basic model, we assume that a single source is characterized
by the dictionary elements. Therefore, we retain the dictionary elements while
discarding the weights. Using the dictionary elements from each single source,
we build a larger dictionary to represent a mixture spectrogram. This is formed
by simply concatenating the dictionaries of the individual sources. Thus, if we
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have a spectrogram XM (f, t) that is a mixture of two sources, we model it as
follows1:

XM (f, t) ≈ γ
∑

z∈{zs1 ,zs2}
P (f |z)Pt(z) (2)

where zs1 and zs2 represent the dictionary elements that belong to source 1 and
source 2 respectively. Since the dictionary elements of both sources are already
known, we keep them fixed and simply estimate the weights Pt(z) at each time
frame using the EM algorithm. The weights tell us the relative proportion of
each dictionary element in the mixture. It is therefore intuitive that the sum of
the weights that correspond to a given source, will give us the proportion of that
source present in the mixture. Accordingly, we compute the relative proportions
of the sources at each time frame by simply summing the corresponding weights
as follows:

rt(s1) =
∑
z∈zs1

Pt(z) (3)

rt(s2) =
∑
z∈zs2

Pt(z) (4)

2.2 Modeling Temporal Dependencies

When we learn a model for a single source from isolated training data of that
source, we obtain a dictionary of basis elements and a set of weights. In the
previous subsection, we discarded the weights as they simply tell us how to
fit the dictionary to that specific instance of training data. This is usually the
practice when performing NMF or PLCA based supervised source separation [5].

Although the weights are specific to the training data, they do contain certain
information that is more generally applicable. One such piece of information is
temporal dependencies amongst dictionary elements. For example, if a dictio-
nary element is quite active in one time frame, it is usually likely to be quite
active in the following time frame as well. However, there are usually more such
dependencies present such as things like a high presence of dictionary element
m in time frame t usually followed by a high presence of dictionary element n
in time frame t + 1. Using the weights of adjacent time frames, we can infer
this information. For time frames t and t + 1 of source s, we can compute this
dependency as follows:

φs(zt, zt+1) = P (zt)P (zt+1), ∀z ∈ zs. (5)

This gives us the affinity of every dictionary element to every other dictionary
element in two adjacent time frames. If we average this value over all time frames

1 It is straightforward to extend this to more sources.
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and normalize, we obtain a set of conditional probability distributions that serve
as a transition matrix as follows:

Ps(zt+1|zt) =
∑T−1

t=1 φs(zt, zt+1)∑
zt+1

∑T−1
t=1 φs(zt, zt+1)

. (6)

When we learn dictionaries from isolated training data, we can compute such a
transition matrix for each source. As a result, our model for each source consists
of a dictionary and a transition matrix.

Given a mixture, our method of estimating weights should be accordingly
changed to make use of the transition matrix. First, we should have a joint
transition matrix P (zt+1|zt) that corresponds to the concatenated dictionaries.
Since we assume that the activity of the dictionary elements in one dictionary
are independent of those in other dictionaries, we construct the joint transition
matrix by diagonalizing individual transition matrices. For example, if we have
two sound sources and two corresponding transition matrices T 1 and T 2, the
joint transition matrix is formed as:

T =

[
T1 0
0 T2

]
. (7)

Once we obtain the concatenated dictionary and transition matrix, we move on
to the actual sound recognition stage. Given the mixture, we first estimate the
weights Pt(z) as described in the previous subsection. We call this our initial

weights estimate P
(i)
t (z). Using these estimates, we obtain a new estimate of the

weights that is more consistent with the dependencies that are implied by the
joint transition matrix2. We do this by first computing re-weighting terms in the
forward and backward directions to impose the joint transition matrix in both
directions:

Ft+1(z) =
∑
zt

P (zt+1|zt)P (i)
t (z). (8)

Bt(z) =
∑
zt+1

P (zt+1|zt)P (i)
t+1(z). (9)

Using the above terms, we perform the re-weighting and normalize as follows to
get our final estimate of the weights:

Pt(z) =
P

(i)
t (z) (C + Ft(z) +Bt(z))∑

z P
(i)
t (z) (C + Ft(z) +Bt(z))

, (10)

where C is a parameter that controls the influence of the joint transition matrix.
As C tends to infinity, the effect of the forward and backward re-weighting terms
becomes negligible, whereas as C tends to 0 we tend to modulate the estimated

2 This is analogous to smoothing an estimated time series with a moving average filter
if we believe that the time series is slowly varying.
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Fig. 1. A toy example: training sources are given as chirps that have frequencies chang-
ing in opposite directions and the test mixture is created by linearly cross-fading the
two chirps. The basic model fails to discriminate the two sources whereas the model us-
ing the transition matrix successfully estimates the cross-fading curves, although there
is a little glitch in the intersection.

P
(i)
t (z) by the predictions of these two terms, thereby imposing the expected

structure. This re-weighting is performed after the M step in every EM iteration.
Finally, we obtain the relative proportions of single sources at each time frame
by simply summing the corresponding weights as in Eq. 3 and 4.

Fig. 1 illustrates the effect of re-weighing by the transition matrix. In the
example, two source signals are given as chirps that have frequencies changing
in opposite directions and thus they produce the same dictionary but different
transition matrices. The test signal is created by cross-fading the two chirps. The
basic model estimates approximately the same proportions of the two sources
because both dictionaries explain the mixture equally well at every time frame.
On the other hand, the re-weighting using the transition matrix successfully esti-
mates the cross-fading curves by filtering out weights inconsistent with temporal
dependencies of each source.

3 Experimental Results

We evaluated the proposed method on five classes of sound sources–speech, mu-
sic, applause, gun shot and car. We collected ten clips of sound files for each
class. Speech and music files were extracted from movies, each about 25 seconds
long. Other sound files were obtained from a sound effects library.3 They have
different lengths from less than one to five seconds. We resampled all sound

3 www.sound-ideas.com

www.sound-ideas.com
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Fig. 2. Estimated relative proportions for mixtures of two sources. For the purpose of
visualization, we shows amplitude envelopes of estimated sources instead of the relative
proportions. The amplitude envelopes are obtained by multiplying the relative propor-
tions to the sum of the magnitudes in that time frame (

∑
f X(f, t)) (an approximation

to the envelope of the mixture sound). The top plots are the ground truth computed
from individual sources. The middle and bottom plots show the results using the basic
model and the improved model with the transition matrix, respectively.

files to 8kHz, and used a 64ms Hann window with 32ms overlap to compute the
spectrograms. In the training phase, we obtained a dictionary of elements and
a transition matrix separately for each sound source. The size of the dictionary
was set to small numbers (less than 15) because we do not need a high-quality
reconstruction. In addition, dictionary sizes of speech and music were set to
be greater than those of other environmental sounds because speech and music
generally have more variations in the training data.

3.1 Examples

Fig. 2 shows examples in which the test sound is given as a mixture of two
sources. For the mixture of speech and music sounds, both models recognize the
two sources fairly well. However, in the basic model, separation between speech
and music is somewhat diluted and loud utterances of speech are partly explained
by other sources, which are absent from the test sound. On the other hand, the
model with the transition matrix shows better separation between speech and
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Table 1. Estimation errors for single test sources

Test sources speech music applause gun shot car

basic model 0.37 0.45 0.20 0.76 0.41

with transition matrix 0.26 0.32 0.03 0.42 0.39

music and suppresses other sources more effectively. For the mixture of speech
and gunshot sounds, the two models show more apparent difference. The basic
model completely fails to estimate the relative proportions as the gunshot sound
is represented by many other sources, whereas the model with the transition
matrix restores the original envelopes fairly well.

3.2 Evaluation

In order to examine the two models more accurately, we performed a formal
evaluation using ten-fold cross-validation. At each validation stage, we split the
dataset into nine training files and one test file for each source. From the train-
ing files we trained the models with ten sets of dictionary sizes; the maximum
numbers of dictionary sizes were 12, 15, 5, 5 and 8 for speech, music, applause,
gunshot and car sounds, respectively, and the minimum numbers were 1 for all
sources. For the model with transition matrix, we additionally adjusted four re-
weighting strengths (C = 0.3, 0.5, 0.7 and 1.0). For the test files we estimated
the relative proportions for single sources and mixtures of two and three sources.
The mixtures were created by mixing two or three test files with different relative
gains.4 To quantify the estimation accuracy, we computed the following metric:

Estimation error =
1

N

∑
s

∑
t

|rt(s)− gt(s)|, (11)

where rt(s) is the estimated proportion from Eq. 3 and 4, gt(s) is the ground
truth proportion andN is the number of time frames in the test file. We obtained
the ground truth proportion from the ratio of envelope between each single source
and the mixture at each time frame. The envelope was computed by summing
the magnitudes in that time frame (

∑
f X(f, t)). We measured this metric only

for active sources, that is, those exist in the test sound. Note that the ground
truth proportion is 1 for single test sounds because no other sound is present in
that case.

Table 1 shows the best results for the single test source. In the basic model,
the significant proportion of the test sound is explained by dictionaries of other
sources, particularly for gun shot sounds. However, the model with the transition
matrix show significant improvement for most sounds. Table 2 and 3 shows the

4 For the mixtures of two sources, the relative gains of the two sources were adjusted
to be -12, -6, 0, 6 and 12 in dB. For the mixtures of three sources, they were adjusted
to be -6, 0 and 6 in dB for each pair.
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Table 2. Estimation errors for mixtures of two sources

Test sources speech/music speech/gun shot speech/applause music/car

basic model 0.17 / 0.27 0.19 / 0.48 0.13 / 0.16 0.26 / 0.25

with transition matrix 0.15 / 0.21 0.15 / 0.34 0.13 / 0.12 0.21 / 0.26

Table 3. Estimation errors for mixtures of three sources

Test sources speech/music/gun shot speech/music/car

basic model 0.17 / 0.21 / 0.25 0.16 / 0.20 / 0.20

with transition matrix 0.15 / 0.18 / 0.25 0.15 / 0.17 / 0.21

results for the mixtures of two and three sources. Although the improvements
are slightly less than those in the single source case, the model with transition
matrix generally outperform the basic model. Note that as we have more sources
in the test sound, the estimation errors for individual sources become smaller
because the relative proportions of single sources are also smaller.

4 Summary and Discussion

In this paper we presented a method to estimate the relative proportions of sin-
gle sources in sound mixtures as a way of recognizing real-world sounds which
usually contains multiple sources. We first suggested a method of performing
this estimation using standard PLCA. We then proposed a method to improve
this estimation by accounting for temporal dependencies among dictionary el-
ements. Our experiments on five classes of sound sources and their mixtures
showed promising results, particularly with the model that considers temporal
dependencies.

A difficulty that we encountered in our experiments was choosing different
combinations of dictionary sizes for each single sound source in the training
stage because if we consider all possible combinations of dictionary sizes (i.e.
grid search), the number of possibilities exponentially grows. Therefore, we had
to choose possible combinations of dictionary sizes using some heuristics. For
the future works, we need to figure out more algorithmic methods to choose dic-
tionary sizes. In addition, the evaluation metric we used is somewhat rigorous
in that it counts accuracy for a very short time. Thus, softer metrics such as
mean accuracy over some period or the presence of sound sources (e.g. by check-
ing if the proportion is greater than a certain threshold) could be additionally
considered. Finally, the proposed models are desired to be evaluated on a larger
dataset.
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Abstract. This paper summarizes the audio part of the 2011 community-
based Signal Separation Evaluation Campaign (SiSEC2011). Four speech
and music datasets were contributed, including datasets recorded in noisy
or dynamic environments and a subset of the SiSEC2010 datasets. The
participants addressed one or more tasks out of four source separation
tasks, and the results for each task were evaluated using different objec-
tive performance criteria. We provide an overview of the audio datasets,
tasks and criteria. We also report the results achieved with the submitted
systems, and discuss organization strategies for future campaigns.

1 Introduction

The Signal Separation Evaluation Campaign (SiSEC) is a regular campaign fo-
cused on the evaluation of methods for signal separation. It was built on the
experience of previous evaluation campaigns (e.g., the MLSP’05 Data Analysis
Competition1, the PASCAL Speech Separation Challenge [1], and the Stereo
Audio Source Separation Evaluation Campaign (SASSEC)) and has been orga-
nized since 2008 [2]. SiSEC is not a competition but a community-based scientific
evaluation whose aspects are publicly defined. A call for participation precedes
the evaluation and aims to define datasets, tasks and evaluation criteria.

This article describes the audio part of SiSEC 2011. In response to the feed-
back received at SiSEC2008 and SiSEC2010, previous datasets were reorganized
as follows:

1. datasets sharing similar scenarios were merged in order to remove some re-
dundancies (e.g. the 2-channel 1-source dataset of the “Source separation in
the presence of real-world background noise” task of SiSEC2010 was merged
with a new dataset from the PASCAL CHiME Challenge [3]).

2. tasks with little participation in the previous campaign were excluded;

1 http://mlsp2005.conwiz.dk/index.php@id=30.html

F. Theis et al. (Eds.): LVA/ICA 2012, LNCS 7191, pp. 414–422, 2012.
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3. unrealistic data was removed (e.g. the synthetic mixtures of the “Underde-
termined speech and music separation” task of SiSEC2010 were eliminated
and fresh real-world data was provided).

In general the new campaign was designed so as to better match with real-world
scenarios. We believe this data could be of high potential interest for many
audio applications in the future years. Specifically, the new datasets embody
more realistic features such as a) more reverberant rooms b) real-world diffuse
or rapidly varying noise c) source movements.

Datasets and tasks are specified in Section 2 and the obtained outcomes are
summarized in Section 3. Due to the variety of the submissions, we focus on the
general outcomes of the campaign and ask readers to refer to http://sisec.wiki.
irisa.fr/ for further details.

2 Specifications

This section describes the tasks, datasets and evaluation criteria, which were
specified in a collaborative fashion. A few initial specifications were first sug-
gested by the organizers. Potential participants were then invited to provide
feedback and contribute additional specifications through the wiki or the mail-
ing list.

2.1 Tasks

For each dataset, audio mixtures spanning a variety of mixing conditions are
provided. The channels xi(t) (1 ≤ i ≤ I) of each mixture signal were generally

obtained as xi(t) =
∑J

j=1 s
img
ij (t), where simg

ij (t) is the spatial image of source j

(1 ≤ j ≤ J) on channel i [2]. For point sources, simg
ij (t) =

∑
τ aij(t−τ, τ)sj(t−τ)

where sj(t) are the source signals and aij(t, τ) the (possibly time-varying) mixing
filters. For these mixtures, we specified the following four tasks:

T1 Source counting
T2 Source signal estimation

T3 Source spatial image estimation
T4 Source DOA estimation

These tasks consist in finding, respectively: (T1) the number of sources J , (T2)

the source signals sj(t), (T3) the spatial images simg
ij (t) of the sources for all

channels i, and (T4) the direction of arrival (DOA) of each source. Participants
were asked to submit the results of their systems for T2 and/or T3, and option-
ally for T1 and/or T4.

Two oracle systems were also considered for benchmarking task T3: ideal
binary masking over a short-time Fourier transform (STFT) [4] (O1) and over a
cochleagram [5] (O2). These systems require the true source spatial images and
provide upper bounds on the performance of binary masking-based systems.
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2.2 Datasets

Four distinct datasets were provided for SiSEC2011:

D1 Under-Determined Speech and Music Mixtures
This dataset includes the stereo dataset D1 from SiSEC2010 [6], and a fresh
dataset containing ten 3-channel mixtures of four audio sources of 10 s
duration, sampled at 16 kHz. For 3-channel data we used a linear microphone
array. The room reverberation time (RT) for the fresh dataset was 130 ms
or 380 ms. Instantaneous mixtures are also included. Tasks T1, T2 and T3
are considered.

D2 Determined Convolutive Mixtures Under Dynamic Conditions
This dataset consists of two kinds of scenarios: (1) random source activity of
multiple sources in multiple static locations, and (2) a source continuously
moving and overlapped with a source in a fixed or random location. The
former aims to simulate a meeting scenario, where multiple talkers utter
from fixed locations and their activity is unknown. The latter was specifically
designed to evaluate systems able to handle dynamic variations of the mixing
parameters. Due to the challenging reverberation conditions, datasets with
different difficulty levels were provided (i.e. varying the source-array distance
and the angular direction of simultaneously active sources). In the mixtures,
two speakers are simultaneously active at most. In these datasets 4-channel
mixtures are provided, and participants can decide whether using all the
available channels or only a subset of them. The recordings were obtained
in a real room of size (6 × 5 × 4 m) with an estimated RT of 700 ms. For
both the datasets the signals were recorded by a uniform linear array of four
(directional) microphones with a different spacing (of about 2 cm, 8 cm, and
18 cm) and sampled at 16 kHz. T2 and T3 are considered for this dataset.

D3 Professionally Produced Music Recordings
According to many positive requests from the community, we decided to
repeat this dataset in SiSEC2011. This dataset contains stereo music signals
sampled at 44.1 kHz, including those of the dataset D3 from SiSEC2010 [6].
In addition to the 20-second snips to be separated, full-length recordings
are provided as well. The mixtures were created by sound engineers, and
the ways of mixing and the mixing effects applied are unknown. Task T3 is
imposed on this dataset.

D4 Two-channelMixtures of Speech andReal-worldBackgroundNoise
This task aims to evaluate source separation and denoising techniques in
the context of speech enhancement by merging two datasets: the dataset
D3 from SiSEC2010 [6] and the CHiME corpus [3]. Both datasets consist of
two-channel mixtures of one speech source and real-world background noise
sampled at 16 kHz. In both datasets, the spatial image of the background
noise was recorded in real-world environments: a subway car, a cafeteria,
or a square for the former, and a British family living room for the latter.
Tasks T2, T3 and T4 are evaluated for this dataset.
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All datasets include both test and development data, and the CHiME corpus in
D4 also includes training data. The true source signals and source positions un-
derlying the test data were hidden to the participants, while they were provided
for the development data. The true number of speech/music sources was always
available.

2.3 Evaluation Criteria

Tasks T2 and T3 were evaluated via the criteria in the BSS Eval toolbox termed
signal to distortion ratio (SDR), source image to spatial distortion ratio (ISR),
signal to interference ratio (SIR) and signal to artifacts ratio (SAR) [7,2]. In
addition, version 2.0 of the PEASS toolbox [8,9] was used to assess the per-
ceptual quality of the estimated signals for stereo data according to four per-
formance measures akin to SDR, ISR, SIR and SAR: overall perceptual score
(OPS), target-related perceptual score (TPS), interference-related perceptual
score (IPS) and artifact-related perceptual score (APS).

Task T4 was evaluated by the absolute difference between the true and esti-
mated DOAs.

3 Results

Despite the challenging specifications of each dataset, a remarkable participation
was obtained. A total of 32 submissions were received from 18 different research
centers. Many participants were involved in SiSEC for the first time, revealing a
positive enlargement of the community. Tables 1 to 5 summarize the average per-
formance obtained over the submitted algorithms. The algorithm details and all
the results are available at http://sisec2011.wiki.irisa.fr/tiki-index.php.
It should be noted that the presented values are the absolute values, not the im-
provements from the values for mixtures.

By comparison with the previous SiSEC, an unexpected high participation was
observed for dataset D3. This trend seems to be in line with the recent increasing
interest in NMF-based techniques, which have shown to marry well with the
task of music recordings separation. The traditional dataset D1 has attracted a
satisfactory amount of new participants, although the performance improvement
seems to be still limited by the amount of reverberation. The datasets D2 and D4,
aimed to simulate more realistic real-world scenarios, have attracted a sufficient
but yet limited number of participants, probably due to the intrinsic difficulty of
the data. Furthermore, the proposed algorithms do not seem to be equivalently
effective in all the scenarios, which reveals that the acoustic source separation is
still an open problem for real-world applications.

Note that a close analysis of each table is beyond the scope of this pa-
per and a more detailed investigations will be discussed at the LVA/ICA 2012
conference.
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Table 1. Average performance for task T2 or T3 for instantaneous dataset D1. 2 mic:
average over test & test2 datasets, 3 mic: average over test3 dataset.

System
2 mic, 3 speech 2 mic, 3 music 2 mic, 4 speech 3 mic, 4 speech

SDR ISR SIR SAR SDR ISR SIR SAR SDR ISR SIR SAR SDR ISR SIR SAR
OPS TPS IPS APS OPS TPS IPS APS OPS TPS IPS APS OPS TPS IPS APS

S1 [10] 13.4 25.7 21.2 14.5 16.6 27.0 23.1 20.5 8.9 17.2 15.4 9.7 - - - -
43.9 55.4 61.0 58.6 52.3 58.9 66.6 55.5 42.4 65.1 62.2 47.0 - - - -

S2 [11] 7.9 - 13.6 9.7 6.9 - 12.2 10.2 3.0 - 8.0 5.8 11.7 - 19.1 12.6
43.2 - 61.7 25.6 40.0 - 62.7 10.6 29.8 - 46.7 10.7 39.7 - 64.0 37.7

S3 2 8.8 - 19.8 9.4 5.9 - 13.9 8.5 5.8 - 16.4 6.7 8.0 - 20.5 8.4
38.5 - 75.3 10.4 35.7 - 68.9 16.2 35.7 - 65.7 12.1 38.6 - 75.5 9.2

O1 10.8 20.1 21.7 11.1 10.4 18.0 18.8 12.5 9.1 17.6 20.0 9.3 - - - -
38.9 61.8 70.5 37.7 33.3 48.5 64.8 34.2 27.1 57.7 71.8 21.9 - - - -

O2 8.5 15.7 17.4 9.1 9.0 14.1 18.1 11.3 7.5 13.7 16.4 8.1 - - - -
24.0 29.8 72.4 20.0 30.4 28.3 69.5 21.6 22.0 20.9 70.8 13.1 - - - -

Table 2. Average performance for task T3 for convolutive dataset D1. 2 mic: average
over test & test2 datasets, 3 mic: average over test3 dataset. The values are averaged
over all the reverberation time.

System
2 mic, 3 speech 2 mic, 3 music 2 mic, 4 speech 3 mic, 4 speech

SDR ISR SIR SAR SDR ISR SIR SAR SDR ISR SIR SAR SDR ISR SIR SAR
OPS TPS IPS APS OPS TPS IPS APS OPS TPS IPS APS OPS TPS IPS APS

S1 [10] 3.4 8.2 6.4 7.8 2.1 7.2 4.4 10.0 2.0 6.1 3.8 5.5 - - - -
27.9 47.6 38.5 55.9 21.8 33.3 29.7 39.1 31.2 46.9 39.2 48.9 - - - -

S2 [12]3 1.8 4.1 2.2 4.3 - - - - 1.1 3.3 0.1 2.8 1.6 3.4 1.8 3.4
21.4 33.9 43.8 38.8 - - - - 19.9 27.4 40.5 35.8 20.1 33.6 53.6 34.0

S3 [13] 5.3 9.3 7.7 10.0 - - - - - - - - - - - -
26.9 51.5 35.3 62.1 - - - - - - - - - - - -

S4 [14] 4.3 9.0 6.9 8.8 0.2 4.8 0.6 7.1 1.4 4.7 1.4 6.2 1.2 2.9 2.4 5.6
25.4 49.9 38.1 56.3 19.7 28.9 19.6 42.0 27.2 41.7 28.4 50.6 29.7 58.8 59.3 30.0

S5 [15]4 5.4 8.9 8.9 9.1 2.8 6.8 5.0 8.8 3.3 6.3 5.6 6.3 - - - -
34.4 59.8 52.2 57.7 27.3 43.8 37.8 43.1 35.0 58.3 47.9 49.2 - - - -

S6 [15] 6.1 10.9 10.5 9.1 3.0 7.6 5.4 8.9 3.6 7.4 6.9 6.5 - - - -
38.3 58.8 53.7 55.0 26.5 39.7 38.0 42.0 35.1 56.0 49.5 48.7 - - - -

S7 [16]5 5.8 10.8 10.3 8.2 1.7 6.3 3.0 6.7 3.2 7.3 5.9 5.6 5.3 10.0 9.9 7.5
37.2 61.9 52.3 51.4 22.4 35.9 32.6 38.8 30.3 54.6 48.2 42.6 31.1 63.1 61.6 34.4

O1 10.2 18.7 20.2 10.7 9.9 16.9 18.0 11.0 8.7 16.4 18.5 9.1 - - - -
43.4 63.1 69.9 45.1 36.0 52.7 64.2 40.6 36.2 63.1 71.9 34.3 - - - -

O2 7.6 13.8 16.8 8.2 7.1 12.3 14.5 8.3 6.1 11.3 15.1 6.3 - - - -
26.7 41.9 72.7 23.8 25.9 21.8 69.3 19.0 23.7 37.8 72.4 18.8 - - - -

2 The system details can be found at the SiSEC2011 wiki.
3 Figure computed by averaging over an incomplete set of mixtures.
4 The same algorithm as [15] without the Wiener-Filter post-processing.
5 The values for “2mic.” are from SiSEC2010 submissions.
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Table 3. Average performance for dataset D2, ”random source activity of multiple
sources in multiple static locations” (top) and ”a continuously moving active source
overlapped with a source in a fixed or random location” (bottom). All the signals are
evaluated as source signal and spatial source signal estimates. For more details see
http://www.irisa.fr/metiss/SiSEC11/dynamic/main.html.

System
Source signal estimation Spatial image estimation

SDR SIR SAR OPS IPS APS SDRi SIRi SARi ISRi OPSi TPSi IPSi APSi
S1 [17] 3.5 9.2 7.0 30.5 69.5 11.9 2.0 6.0 7.5 3.0 29.5 30.3 67.2 27.3

S2 [15,18]6 3.7 6.2 9.3 35.4 53.2 20.9 2.6 4.1 12.1 4.4 33.1 48.7 51.4 41.3
S3 [15,18]7 3.5 7.3 7.5 31.8 63.0 7.1 2.3 5.2 10.1 3.6 29.6 41.1 61.6 32.6
S4 [19] 2.2 6.6 6.1 28.5 66.9 4.1 2.1 4.5 7.0 3.6 27.7 41.7 66.5 24.6
S5 [19]8 2.3 7.4 5.9 26.9 70.6 3.0 1.9 4.8 6.9 3.3 25.9 32.1 70.3 21.1
S6 [20,21] 1.8 7.3 5.1 26.9 71.9 1.6 1.5 5.4 5.7 2.3 26.4 31.1 71.8 23.5
S7 [20,21]9 3.1 10.6 5.3 27.1 72.6 1.9 1.2 6.7 6.2 1.7 27.0 20.4 72.3 22.5

System
Source signal estimation Spatial image estimation

SDR SIR SAR OPS IPS APS SDRi SIRi SARi ISRi OPSi TPSi IPSi APSi
S1 [17] 2.5 7.7 6.2 30.9 66.5 6.2 1.3 6.3 8.0 1.9 29.0 31.3 65.1 30.8

S2 [15,18]6 4.2 7.1 9.1 36.2 55.3 21.3 4.3 5.5 12.8 7.0 33.9 59.5 53.4 40.8
S3 [15,18]7 4.0 8.5 7.3 32.2 65.9 6.7 4.0 6.9 10.9 6.1 30.2 53.8 64.2 30.7
S4 [19] 3.3 10.5 5.3 26.0 77.1 1.4 2.5 8.0 7.1 3.8 26.9 39.9 76.8 18.1
S5 [19]8 3.5 11.0 5.4 25.7 78.2 1.3 2.5 8.5 7.2 3.8 27.0 36.5 78.1 18.2
S6 [20,21] 2.4 8.5 5.1 28.1 71.3 2.6 2.0 7.2 6.7 3.0 27.2 36.7 70.8 24.6
S7 [20,21]9 3.8 12.9 5.4 28.4 72.1 2.9 1.7 9.0 7.6 2.2 28.0 23.8 70.3 24.7

Table 4. Average performance for T2/T3 for testset of D3. The results only for the
vocal and drum tracks, which most of the submissions addressed, are summarized.
S4, S6 and S8 addressed all the specified tracks. Complete results can be found at
SiSEC2011 wiki.

System
Vocal Drums

SDR ISR SIR SAR OPS TPS IPS APS SDR ISR SIR SAR OPS TPS IPS APS
S1 [22] 3.8 6.2 Inf 3.1 22.4 28.8 59.0 30.8 - - - - - - - -
S2 [23] 4.5 6.8 Inf 3.8 26.6 29.3 62.7 29.5 - - - - - - - -
S3 [24] -2.7 -0.8 Inf -7.2 22.5 5.0 64.6 10.0 - - - - - - - -
S4 [25] -5.5 -1.3 7.0 3.6 15.7 15.7 27.6 15.3 -7.1 -2.9 2.9 2.7 23.3 23.2 50.4 12.8
S5 [26] 2.4 8.5 Inf 0.1 25.2 15.9 70.5 11.6 -0.2 2.2 5.9 -5.4 23.6 44.0 67.8 2.1
S6 [10] 3.1 8.1 7.7 3.7 24.4 37.1 20.8 54.3 2.0 4.3 2.9 2.1 29.3 54.6 28.9 50.4
S7 [27] 3 4.1 10.7 6.3 7.3 41.6 74.5 61.2 40.0 - - - - - - - -

S8 2 3.0 7.7 9.0 2.4 19.4 28.7 55.2 31.9 1.7 2.1 11.6 1.1 20.7 19.9 58.7 9.0
O1 6.2 22.1 22.3 6.2 28.4 69.1 69.1 16.6 6.3 24.6 23.2 6.2 25.7 73.7 74.5 2.8
O2 4.7 17.0 16.3 4.7 23.6 38.1 61.9 14.8 1.4 2.7 17.3 0.4 18.1 32.2 69.4 4.6

6 Algorithm derived from the weighted Natural Gradient in [15].
7 The same algorithm as S2 with additional Binary Masking post-processing.
8 The same algorithm as S4 with additional TF post-processing.
9 The same algorithm as S6 with additional Wiener-Filter like post-processing.
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Table 5. Average performance for task T2/T3 for test dataset D4. Outdoor and indoor
indicates the recordings 2ch-1src in the dataset D3 from SiSEC2010 [6] and the CHiME
corpus [3], respectively. Performance of S1 are evaluated on the source signal estimates
(i.e. ’src’ files), while the remaining systems are evaluated on the spatial source image
estimates (i.e. ’sim’ files).

System
Outdoor Indoor

SDR ISR SIR SAR OPS TPS IPS APS SDR ISR SIR SAR OPS TPS IPS APS

S12 - - - - - - - - 1.8 - 6.1 6.2 - - - -
S22 -1.8 13.3 -0.7 16.0 11.2 46.7 35.8 81.3 - - - - - - - -

S3[28] 8.8 13.4 15.1 14.4 14.6 50.8 39.3 80.0 -1.7 8.0 0.7 14.1 20.9 50.3 30.0 69.3
S4[28]2 6.1 13.1 13.4 10.9 43.8 59.8 58.2 57.6 - - - - - - - -
S5[29,15] 3.5 16.6 6.4 12.2 33.4 59.0 57.5 70.0 6.0 7.3 16.5 11.0 37.3 43.5 68.7 38.9

S6[29,15]10 3.4 17.6 5.8 12.8 29.6 58.2 55.2 73.3 8.0 11.0 14.7 12.0 38.5 55.3 65.0 49.9
S7[10] - - - - - - - - 5.4 7.3 14.0 11.7 35.2 62.2 49.9 51.0
S82 4.0 7.0 8.8 7.6 36.5 51.2 63.4 41.8 - - - - - - - -

baseline [30] 2.4 8.9 7.2 8.7 22.2 49.9 47.6 64.3 1.7 3.5 5.2 8.6 29.3 34.8 44.1 37.5
O1 15.8 27.1 24.3 16.9 51.3 65.9 75.6 45.5 14.5 20.9 22.7 16.6 53.5 67.2 73.6 57.0

4 Conclusion

This paper presented the specifications of SiSEC2011 and summarized the per-
formance obtained over all the submissions. This time, in accordance with dis-
cussions at previous SiSECs, we carefully selected the datasets and tasks in a
collaborative fashion. Ultimately, four datasets and tasks were provided which
attracted many submissions from 18 research institutions.

Despite some open challenges which still do not allow us to provide an unam-
biguous evaluation of all the submissions, we hope that SiSEC2011 will continue
to represent a common platform for sharing new ideas and perspectives in the
source separation research field. We believe SiSEC2011 data could be of high
potential interest for many audio applications and encourage the community to
use it as a reference for future evaluations.

Following the experience maturated till this campaign, new criteria seem
needed for better evaluating more realistic scenarios, such as source separa-
tion involving dereverberation or tracking of time-varying mixing conditions.
Furthermore, it would be worthwhile to investigate on new objective evaluation
criteria more related to the separation filter accuracy rather than to the quality
of the signals itself, with the hope of minimizing the presence of outliers. With
this regard, we invite all willing participants to join a continuous collaborative
discussion on the future of source separation evaluation.

Acknowledgments. We thank all the participants and data providers. We also
thank to all the researchers who gave their opinions on the wiki and the mailing-
list. Special thanks go to Mr. Antoine Liutkus, who proposed to repeat the
dataset D3, and encouraged researches of the field to join in SiSEC2011.

10 The same algorithm as S5 with different parameter settings.
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Abstract. This paper summarizes the bio part of the 2011 community
based Signal Separation Evaluation Campaign (SiSEC2011). Two dif-
ferent data sets were given. In the first task, participants were asked to
estimate the causal relations of underlying sources from simulated bivari-
ate EEG data. In the second task, participants were asked to reconstruct
signaling pathways or parts of it from the microarray expression profiles.
The results for each task were evaluated using different objective perfor-
mance criteria. We provide an overview of the biomedical datasets, tasks
and criteria, and we report on the achieved results.

1 Introduction

The Signal Separation Evaluation Campaign (SiSEC) is a regular campaign fo-
cused on the evaluation of methods for signal separation. While its main focus
is on separation of audio data, after the campaign in 2010 [1] this is now the
second time that tasks on biomedical data analysis are proposed. This article
describes the bio part of SiSEC 2011.

The standard application of ICA-algorithms in biomedical data analysis are
EEG and MEG data. In contrast to signal separation in audio datasets, the
respective mixing model is static. The algorithms to solve such a problem are
well established and are applied routinely by many researches. It is our opinion
that conceptually only minor technical details could be added to present day
knowledge. Additionally, a formulation of an ICA challenge for EEG/MEG data
is problematic because of two reasons: a) in contrast to audio data, for real
EEG/MEG data the ground truth is almost never known, and b), existing ICA
algorithms exploit different statistical properties, and the winning method for
simulated data will then be the one for which, essentially by coincidence, the
simulated statistical properties match the exploited ones.

F. Theis et al. (Eds.): LVA/ICA 2012, LNCS 7191, pp. 423–429, 2012.
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We therefore decided to deviate from the ’standard’ problem and to propose
two different tasks. In the first task, source separation shall be applied to analyze
gene expressions, and in the second we simulate EEG data, but the task is not
to separate sources but to separate the effect of confounding noise in an estimate
of causal relations.

Details of the tasks can be found at http://sisec.wiki.irisa.fr/ and following
the link to ’biomedical data analysis’.

2 Estimating Causal Relations

2.1 Task

Noninvasive electrophysiological measurements like EEG/MEG measure to large
extent unknown superpositions of very many sources. Any relation observed
between channels is dominated by meaningless mixtures of mainly independent
sources. The question is how to observe and properly interpret true interactions
in the presence of such strong confounders. Since recently, a focus of research
are the causal relations between groups of neurons. Many methods have been
suggested to address this question for EEG or MEG data [2,3,4,5,6].

In this task contributors are requested to estimate the direction of interaction
for simulated unidirectional bivariate dynamical systems. The difficulty is the
presence of additive noise which is both non-white and spatially correlated.

The task is to estimate the direction of the interaction of the signal. A sub-
mitted result is a vector with 1000 numbers having the values 1, -1, or 0. Here, 1
means direction is from first to second sensor, -1 means direction is from second
to first sensor, and 0 means ’I do not know’.

2.2 Dataset

The dataset consists of 1000 examples of bivariate data for 6000 time points.
Each example is a superposition of a signal (of interest) and noise. The sig-
nal is constructed from a unidirectional bivariate AR-model of order 10 with
(otherwise) random AR-parameters and uniformly distributed input. The noise
is constructed of three independent sources, generated with 3 univariate AR-
models with random parameters and uniformly distributed input, which were
instantaneously mixed into the two sensors with a random mixing matrix. The
relative strength of noise and signal was set randomly. The Matlab code used to
generate the data was provided. Note, that the phrase ’simulated EEG data’ is
meant loosely. The simulation addresses the conceptual problems of EEG data,
but e.g. the actual spectra can be quite different from real EEG data.

The data z(t) were generated as

z(t) = (1− γ)
x(t)

||X || + γ
By(t)

||BY || (1)

where x is a unidirectional linear system and y are two independent noise sources
which are mixed into channels by a random matrix B. The parameter γ was set
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randomly between 0 and 1, || · || denotes Frobenius matrix norm, and X and
Y denote the full data as a matrix, e.g. X = (x(1),x(2), ...,x(N)) for N data
points. The noise y(t) was generated with an AR(10)-model with diagonal but
otherwise random parameters and uniformly distributed input, i.e.

yi(t) =

10∑
p=1

Ai(p)(t− p) + ηi(t) (2)

for i = 1, 2, 3. For each data set the parameters Aik were selected randomly
according to a Gaussian distribution with a standard deviation 0.25. Nonsta-
tionary, i.e. diverging, systems were excluded. If the standard is substantially
larger, almost all systems are nonstationary. If it is chosen substantially smaller,
the spectra are nearly white. The ’innovation’ ηi(t) was uniformly distributed
in the range [−.5, .5]. This takes into account that some algorithms require non-
Gaussian data or, especially, non-Gaussian innovations.

The signal x(t) was generated in the following way. If, e.g., the first channel
was the sender, then x1(t) was generated with a random AR-model of order 10
in the same way as the noise term, and x2(t) was generated as

x2(t) =
∑
p

A22(p)x2(t− p) +A21(p)x1(t− p) + ε2(t) (3)

where, again, ε2(t) was uniformly distributed in the range [−.5, .5]. The con-
struction for the other direction is analogous.

2.3 Evaluation Criterion

For all examples either 1 or -1 is correct. The most important point here is the
way it is counted: you get +1 point for each correct answer; you get -10 points
for each wrong answer; and you get 0 points for each 0 in the result vector.
With this counting confidence about the result is added into the evaluation. It is
strongly recommended that for each example the evidence for a specific finding
is assessed. To our knowledge, this causality challenge is the first time that such
an evaluation scheme is proposed.

2.4 Results

We received a total of 5 submissions. Results are shown in table1Another sub-
mission arrived after the deadline and after announcement of the results and was
not counted. All participants were among the list of people who were contacted
personally and were encouraged to submit.

This kind of challenge is new within the SiSEC campaign and can therefore
not be compared to previous challenges.
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Submission Total Points Correct Detections False Detection
S1 -2289 701 299

S2 [7] 252 352 10
S3 [8] -357 773 113

S4 [9,10,11,12,13] 218 278 6
S5 [14,15] -247 163 41

Table 1. Results of causality challenge. The total points can be calculated as the
number of correct detections minus ten times the number of false detections.

3 Cancer Pathway Reconstruction

3.1 The Task

Cellular signaling pathways are the key transducers from extracellular signals
to cellular reaction. Dysfunction of signaling pathways is often involved in the
formation of cancer [16]. Thus, understanding the biology of cell signaling helps
to understand cancer and to develop new therapies. The regulation of these
signaling pathways takes place on multiple layers, from extracellular receptors
to intracellular transduction, ending with the transcriptional activation of target
genes. Single genes can take part in more than one pathway and the expression
profiles can be regarded as linear superpositions of different signaling pathways or
more generally biological processes. All gene expression levels are represented by
anM×N data matrixX = [x�

i . . .x
�
M ] with each row-vector x�

m representing the
gene expression levels off all N genes measured in one experiment, or microarray.
Assuming a linear mixture model, each vector x�

m represents a mixture of K
unknown source signals s�k , each representing a pathway related gene expression
profile with the corresponding mixing coefficients represented as a column-vector
am. Thus, using blind source separation (BSS) techniques, the data-matrix X
can be decomposed into X = AS, where A is the M ×K mixing matrix and S
the K ×N matrix of source signals. These source signals can now be used as a
basis to identify distinct signaling pathways in terms of cellular responses [17].
A more detailed discussion of the linear factor model can be found in [18,19].

Here, the task is to reconstruct these signaling pathways or parts of it from
the microarray expression profiles using BSS techniques. In a first approximation
we consider a signaling pathways as gene lists. These pathway gene lists were
taken from NETPATH (www.netpath.org).

3.2 Dataset

The microarray technology a method for mRNA profiling has become one of
the most popular approaches in the field of gene expression analysis. Based on
the complexity of gene expression profiles, a variety of statistical methods have
been developed to provide insights into the biological mechanisms of gene expres-
sion regulation [20,21,22]. The dataset consists of the i gene expression profiles.
Each expression profile xi mirrors the expression of N genes via measuring the
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level of the corresponding mRNA under a specific condition. In our case, mRNA
was extracted from i = 189 invasive breast carcinomes [23] and measured us-
ing Affymetrix U133A Gene-chips. The Affymetrix raw data was normalized
using the RMA algorithm [24] from the R Bioconductor package simpleaffy.
Non-expressed genes were filtered out and Affymetrix probe sets were mapped
to Gene Symbols. This resulted in a total of N = 11815 expressed genes.

3.3 Evaluation

Evaluation of the reconstructed pathways was performed by testing for the sig-
nificance of enriched genes that can be mapped to the distinct pathways. For
each source signal or estimated pathway we identify the number of genes that
map to the distinct pathways and calculate p-values using Fisher’s exact test.
To correct for multiple testing we use the Benjamini-Hochberg procedure to es-
timate false positive rates (FDR). Now, after Benjamini-Hochberg correction a
reconstructed pathway was declared as enriched if the p-value was below 0.05.
Finally, the number of all different significantly reconstructed pathways were
counted.

3.4 Results

There were no submissions.

4 Conclusion

In this paper we presented the specifications of the biomedical data analysis part
of SiSEC2011 and summarized the performance obtained over all the submis-
sions. Two different tasks of very different nature we given. The ’Cancer pathway
reconstruction’ received no submission which could be due to the fact that the
mathematical details were unclear to people not familiar with the biology.

For the EEG/MEG data analysis it might appear natural that ICA challenges
were proposed. However, the ICA model for these data is not convolutive, which,
from an algorithmic viewpoint, is a much simpler case than acoustic data. For
instantaneous mixtures the algorithms have become standard. Probably every-
thing which could be said , apart from minor details, was said already, and such
a challenge does not attract researchers working on the technical aspects.

It was therefore decided to propose a different kind of challenge, in which
causal direction in the presence of noise were to be estimated and in which evi-
dence had to assessed for a successful submission. The large variation across final
scores that it is largely unclear how to optimally solve this problem. Although
the data were, strictly speaking, nonlinear (i.e. non-Gaussian), the nonlinearity
was small, and people working on nonlinear methods were effectively left out.
For the future we intend to expand the simulations such that both linear and
nonlinear methods can reasonably be applied.
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Abstract. We aim to predict the perceived quality of estimated source
signals in the context of audio source separation. Recently, we proposed a
set of metrics called PEASS that consist of three computation steps: de-
composition of the estimation error into three components, measurement
of the salience of each component via the PEMO-Q auditory-motivated
measure, and combination of these saliences via a nonlinear mapping
trained on subjective opinion scores. The parameters of the decomposi-
tion were shown to have little influence on the prediction performance.
In this paper, we evaluate the impact of the parameters of PEMO-Q
and the nonlinear mapping on the prediction performance. By selecting
the optimal parameters, we improve the average correlation with mean
opinion scores (MOS) from 0.738 to 0.909 in a cross-validation setting.
The resulting improved metrics are used in the context of the 2011 Signal
Separation Evaluation Campaign (SiSEC).

Keywords: audio source separation, objective evaluation, PEASS.

1 Introduction

Audio source separation is the task of extracting the signal of each sound source
from a given mixture. In a number of applications such as speech enhancement
for hearing aids or denoising of old music recordings, the separation performance
amounts to the subjective judgment of listeners.

A popular set of performance metrics can be obtained by decomposing the
estimation error into three components, namely target distortion, interference
and artifacts, and measuring the salience of these components via energy ratios
termed signal to distortion ratio (SDR), source image to spatial distortion ratio
(ISR), signal to interference ratio (SIR) and signal to artifacts ratio (SAR) [11].
Despite the wide use of the associated BSS Eval toolbox1, e.g. within the annual
Signal Separation Evaluation Campaign (SiSEC) [11], these metrics are known
to poorly correlate with subjective performance for certain mixtures involving
e.g. low-frequency sounds or time-varying distortion. Two different routes have

1 http://bass-db.gforge.inria.fr/bss_eval/

F. Theis et al. (Eds.): LVA/ICA 2012, LNCS 7191, pp. 430–437, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://bass-db.gforge.inria.fr/bss_eval/
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been taken to increase correlation: assessing the overall distortion via auditory-
motivated measures such as PEAQ [9] or PEMO-Q [8], or combining energy
ratios via linear or nonlinear mappings trained on subjective opinion scores [4].

In [3], we combined these two routes via a three-step procedure consisting of

1. decomposing the estimation error into target distortion, interference and
artifacts components,

2. assessing the salience of each component via PEMO-Q,
3. combining these saliences via trained nonlinear mappings.

We distributed the resulting metrics termed overall perceptual score (OPS),
target-related perceptual score (TPS), interference-related perceptual score
(IPS) and artifacts-related perceptual score (APS), as the version 1.0 of a toolkit
called PEASS2. Each of the above three steps involves one or more design param-
eters. In [3], we showed that the parameters of the first step have little influence
on the prediction performance. In this paper, we evaluate the impact of the pa-
rameters of the two latter steps and select the optimal parameters maximizing
the correlation with mean opinion scores (MOS). The resulting improved met-
rics are distributed as the version 2.0 of PEASS and used among others for the
evaluation of the algorithms submitted to SiSEC 2011.

The structure of the rest of the paper is as follows. In Section 2, we summarize
the computation of the PEASS metrics and highlight the parameters involved in
each step. In Section 3, we describe the evaluation protocol and show the effect
of each parameter on the prediction performance. We conclude in Section 4.

2 The PEASS Metrics

For a given set of separated sources, we aim to predict the perceived quality of the
estimated multichannel spatial image ŝj(t) of each source j, i.e. its contribution
to all mixture channels, relatively to the true spatial image sj(t) [11]. The PEASS
metrics [3] involve three computation steps outlined in the introduction. In the
following, we summarize each step with a focus on the two latter steps, including
the internal computations of PEMO-Q which were not detailed in [3].

2.1 Distortion Decomposition

In the first step, the estimation error ŝj(t)− sj(t) is split into three components:
target distortion etargetj (t), interference einterfj (t) and artifacts eartifj (t) such that

ŝj(t)− sij(t) = etargetj (t) + einterfj (t) + eartifj (t). (1)

This is achieved by passing the signals through a bank of gammatone filters [6],
partitioning the output into overlapping time frames, performing decomposition
(1) in each subband and each time frame by least-squares projection onto the
subspaces spanned by delayed versions of the true source spatial image signals,
and reconstructing time-domain signals by filterbank inversion. Compared with
BSS Eval, this step aims to improve the handling of time-varying distortion.

2 http://bass-db.gforge.inria.fr/peass/

http://bass-db.gforge.inria.fr/peass/


432 E. Vincent

2.2 PEMO-Q Component Saliences

In the second step, the perceptual salience of these components is assessed as

qoj = PEMO-Q(ŝj , sj) (2)

qtj = PEMO-Q(ŝj , ŝj − etargetj ) (3)

qij = PEMO-Q(ŝj , ŝj − einterfj ) (4)

qaj = PEMO-Q(ŝj , ŝj − eartifj ) (5)

where PEMO-Q(x̂,x) ∈ [−1, 1] is the perceptual similarity measured by PEMO-
Q between a test signal x̂ and a reference signal x. Compared with BSS Eval,
this step accounts for auditory masking and dynamic compression phenomena.

PEMO-Q first computes internal auditory representations X̂i and Xi of each
channel i of x̂ and x via the computational auditory model in [2,1]. This model
comes in two versions and consists of:

R1 subband decomposition via a bank of gammatone filters linearly spaced on
the equivalent rectangular bandwidth (ERB) scale between fmin and fmax,

R2 for each subband, halfwave rectification, first-order autoregressive (AR) low-
pass filtering with 1 kHz cutoff, and summation with a threshold athresh,

R3 amplitude compression by five consecutive nonlinear feedback loops empha-
sizing rapid changes up to a maximum amplitude ratio of rmax for each loop,

R4 either first-order AR lowpass filtering with 8 Hz cutoff (lowpass version [2])
or decomposition via a bank of eight first-order AR bandpass filters with
center frequencies ranging from 0 to 129 Hz (modulation version [1]).

This mimics the effect of haircells in the inner ear and modulation processing
in the auditory cortex. The outputs X̂i and Xi are either two-dimensional time-
frequency representations for the lowpass version or three-dimensional time-
frequency-rate representations for the modulation version.

The perceptual similarity between X̂i and Xi is then measured by [7,8]

S1 partial assimilation of the two representations in each time-frequency-rate
bin (t, f,m) as X̂itfm ← αXitfm + (1 − α)X̂itfm if |X̂itfm| < |Xitfm|,

S2 computation of the time-varying linear cross-correlation between X̂i and Xi

over time frames of length lcorr
3,

S3 computation of the time-varying root mean square (RMS) amplitude of Xi

over time frames of length lamp,
S4 computation of the p-th percentile of the cross-correlation series weighted by

the RMS amplitude.

This attempts to model the perception of global similarity based on the local sim-
ilarities between the signals. Finally, the overall scalar similarity PEMO-Q(x̂,x)
is selected as the minimum of the channel-wise similarity over all channels i.

3 A slightly distinct processing is applied in the modulation version. See [8] for details.
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2.3 Trained Nonlinear Mapping

In the third step, the saliences in (2)–(5) are combined by [3]

M1 optional log-mapping from [−1, 1] to R via qkj ← log((1 + qkj )/(1− qkj )) [7],
M2 selection of one or more saliences forming a feature vector qj ,
M3 transformation into a scalar objective score via a feedforward neural network

(NN) [5] composed of nlay layers of nneur neurons trained on subjective scores.

Compared with BSS Eval, this accounts for the different perceptual importance
of each distortion component by which artifacts may be heard as more disturbing
than interference for instance.

Four different perceptual assessment tasks were considered in [3]: global qual-
ity, preservation of the target source, suppression of other sources, and absence
of additional artificial noise. For each task, a different feature vector was selected
and a different NN was trained by minimizing the RMS error between the pre-
dicted and the actual subjective opinion scores. This resulted in four metrics
called OPS, TPS, IPS and APS, respectively.

3 Effect of the Design Parameters

3.1 Data and Evaluation Procedure

Each processing block from R1 to M3 involves some design parameters listed
above. In order to evaluate their effect on the prediction performance, we consider
the set of 6400 subjective scores collected in [3] using the MUltiple Stimuli with
Hidden Reference and Anchor (MUSHRA) protocol [10]. For each of 10 mixtures
and each of the four tasks listed in Section 2.3, 20 subjects were asked to score 8
test sounds, including 4 real-world sounds produced by actual source separation
algorithms, one hidden reference and 3 anchors. The scoring scale ranges from
0 to 100, where larger means better. The anchors are artificial sounds with low
quality ensuring that the whole scale is used. For information about the variance
of subjective scores and outliers, see [3]. In order to avoid overfitting, a 200-fold
cross-validation procedure is used. For each fold, the scores of 19 subjects over
9 mixtures are used for training while testing is performed on the scores of
the remaining subject over the remaining mixture. The prediction accuracy is
assessed via the linear correlation between the predicted scores and the MOS.

3.2 Main Results

The version 1.0 of PEASS relies on the following default parameters of PEMO-
Q: modulation version, fmin = 235 Hz, fmax = 14500 Hz, athresh = 10−5, rmax =
+∞, α = 0.5, lcorr = +∞ and lamp = +∞4. The mapping consists of a 1.5-layer
NN5 without input log-mapping. For each mixture and subject, all 8 test sounds

4 p is irrelevant here due to the use of global correlation (lcorr = +∞).
5 This term refers to a 2-layer NN with linear output layer.
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Table 1. Accuracy after successive parameter optimization stages

Optimization stage OPS TPS IPS APS Average

Baseline (version 1.0) 0.799 0.396 0.860 0.896 0.738

Optimal mapping and PEMO-Q version 0.909 0.815 0.934 0.870 0.882

Optimal PEMO-Q similarity measure 0.925 0.812 0.931 0.924 0.898

Optimal PEMO-Q internal representation 0.922 0.864 0.926 0.925 0.909

were used for training but only the 4 real-world sounds for testing. The best
feature vector among 3 or 4 candidates and the best number of neurons were
then selected so as to maximize accuracy over the test set [3].

In subsequent experiments, we found this approach to be unsuitable for two
reasons. First, the absence of references and anchors in the test set resulted
in objective metrics that do not span the whole range from 0 to 100 and thus
fail to handle better or poorer sounds than those in that set. Second, the 10
references in the training set drew the NN to better fit scores close to 100 instead
of uniformly fitting all scores. In order to avoid these drawbacks, we adopt a
consistent approach from now on, whereby all real-world sounds and anchors but
only one reference are employed in each training and testing fold. The resulting
baseline performance of version 1.0 is displayed in the top row of Table 1.

Due to the large number of design parameters, we optimize these parameters
in three successive stages, from higher-level to lower-level ones. For simplicity
and computational efficiency, the same parameters are used for all four metrics,
except the optimal feature vector and number of neurons which depend on the
metric. The resulting performance after each stage is shown in the bottom three
lines of Table 1. On average, the accuracy improves from 0.738 to 0.909 when
combining all three stages. This huge improvement is mostly due to the opti-
mization of higher-level parameters in the first stage, while the two other stages
have less impact. We analyze each stage in more details in the following.

3.3 Detailed Impact of the Mapping and the Version of PEMO-Q

The top half of Table 2 describes the effect of the number of neurons nneur and
the feature vectors. By simply selecting the optimal nneur (first row) and features
(second row), we greatly improve the performance of the TPS and significantly
improve that of the three other metrics, resulting in an average accuracy of 0.868.
This is a direct consequence of the consistent training approach discussed above,
but also of the fact that all possible feature vectors are tested here. Indeed, none
of the optimal feature vectors belongs to the list of candidate vectors previously
tested in [3].

Table 3 describes the effect of the other parameters of the nonlinear mapping
and the version of PEMO-Q. The use of a 2-layer NN with input log-mapping
along with the lowpass version of PEMO-Q appears optimal for all metrics except
the APS and yields an optimal average accuracy of 0.882. The corresponding
feature vectors are shown in the bottom line of Table 2.
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Table 2. Accuracy as a function of the feature vectors and of the baseline or the
optimal mapping and version of PEMO-Q, assuming optimal number of neurons and
default PEMO-Q parameters

Mapping and version Feature vector OPS TPS IPS APS Average

baseline
baseline 0.799 0.710 0.860 0.905 0.819

optimal
[qoj q

a
j ] [qtj q

i
j ] [qoj q

i
j q

a
j ] [q

o
j q

t
j q

a
j ] 0.868

0.871 0.747 0.935 0.920

optimal
baseline 0.901 0.801 0.865 0.834 0.850

optimal
[qoj q

a
j ] [q

t
j q

i
j q

a
j ] [q

o
j q

i
j q

a
j ] [qtj q

a
j ] 0.882

0.909 0.815 0.934 0.870

Table 3. Accuracy as a function of the version of PEMO-Q, the optional log-mapping
and the number of NN layers nlay, assuming optimal feature vectors and numbers of
neurons in each case and default PEMO-Q parameters

Version Log-mapping nlay OPS TPS IPS APS Average

filterbank
no

1.5 0.871 0.747 0.935 0.920 0.868
2 0.877 0.759 0.912 0.924 0.868

yes
1.5 0.884 0.784 0.928 0.916 0.878
2 0.884 0.761 0.926 0.909 0.870

lowpass
no

1.5 0.886 0.794 0.940 0.869 0.872
2 0.877 0.788 0.919 0.878 0.866

yes
1.5 0.903 0.775 0.939 0.839 0.864
2 0.909 0.815 0.934 0.870 0.882

3.4 Detailed Impact of the PEMO-Q Similarity Measure

After fixing the optimal mapping and version of PEMO-Q, we consider the
parameters of the PEMO-Q similarity measure in a second stage. The effect of
each parameter is illustrated in Figure 1. Among the tested values, the average
accuracy appears to increase with p and decrease with α and lcorr. This effect
is particularly significant for the APS, which may be due to the nonstationary
nature of artifacts calling for local rather than global correlation between the
reference and the test representation. The optimal values are α = 0.25, lcorr =
100 ms, lamp = 1 s and p = 0.5, yielding an average accuracy of 0.898.

3.5 Detailed Impact of the PEMO-Q Internal Representation

After fixing the optimal parameters of the similarity measure, we consider the
parameters of the internal representation in a last stage. The effect of each pa-
rameter is illustrated in Figure 2. Among the tested values, the average accuracy
appears to increase with fmin and rmax and decrease with fmax and athresh. This
effect is significant for all metrics except the IPS. The optimal parameters are
the default fmin, fmax and rmax along with athresh = 10−6, yielding an average
accuracy of 0.909.
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4 Conclusion and Perspectives

We examined the impact of various design parameters over the accuracy of the
PEASS metrics. By adopting a consistent training approach together with un-
constrained feature selection, we improved the accuracy from 0.738 to 0.868 in
a cross-validation setting. By optimizing the parameters of PEMO-Q and the
nonlinear mapping, we further increased it to 0.909. These results show that
the mapping from the error component saliences to the metrics is crucial, while
fine tuning of auditory parameters has smaller impact. The resulting improved
metrics have been released as version 2.0 of PEASS and used within SiSEC 2011.
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Abstract. A system for user-guided audio source separation is pre-
sented in this article. Following previous works on time-frequency music
representations, the proposed User Interface allows the user to select the
desired audio source, by means of the assumed fundamental frequency
(F0) track of that source. The system then automatically refines the se-
lected F0 tracks, estimates and separates the corresponding source from
the mixture. The interface was tested and the separation results compare
positively to the results of a fully automatic system, showing that the
F0 track selection improves the separation performance.

Keywords: User-guided Audio Source Separation, Graphical User In-
terface, Non-negative Matrix Factorization.

1 Introduction

Most audio signals are mixtures of different sources, such as a speaker, an instru-
ment, or noise. Applications such as speech enhancement or musical remixing
require the identification and the extraction of one such source from the others.

While many existing musical source separation algorithms aim at blindly sepa-
rating all the different instruments, the aim of the proposed system is to separate
the source defined by the user. Let {xt}t=1...T be a single-channel mixture signal
of duration T . Let {vt}t and {mr,t}t respectively be the mono signals of the
source of interest, usually a singing voice, and of the R remaining sources, i.e.
the musical accompaniment. These signals are mixed such that:

xt = vt +

R∑
r=1

mr,t (1)

The task at hand is to estimate the signal of interest vt, given user-provided
information on the corresponding source. We propose a separation system that
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allows the user to choose the source in an intuitive way, thanks to a representation
of the polyphonic pitch content of the audio excerpt. The system was tested by
several users on a SiSEC 2011 [10] data set, and the contribution of the users is
shown to improve the separation performance compared to the automatic system
in [3].

This paper is organized as follows. The relevance of user-guided source sepa-
ration is first discussed, followed by the presentation of the proposed Graphical
User Interface (GUI). The underlying signal model, representation and the al-
gorithm for source separation, mostly derived from previous works from the
authors [3], are then briefly stated. The separation guided by the users is there-
after discussed and compared with the automatic separation system. Finally, we
conclude with perspectives for the proposed system and concept.

2 User-Guided Source Separation

2.1 Related Works

Audio source separation methods essentially mimic auditory abilities: a human
being can focus on the individual instruments of a mixture thanks to their lo-
cations, energies, pitch ranges or timbres. With multi-channel signals, such as
stereo signals, one can infer spatial information [2], or train models to extract
specific sources, even with single-channel signals [1].

The user can be required to provide some meta-information, such as the in-
strument name in a supervised framework [13], a musical score [5], the time
intervals of activity for each instrument [7] or a sung target sound [11]. Musi-
cal scores or correct singing are however difficult to acquire, and are often not
aligned with the mixture signal.

Expert users can be asked to choose the desired source through its position [14]
or selecting components that are played by the desired instrument, thanks to
intermediate separation results [15]. In [8], the automatically estimated melody
line can be corrected by the user.

2.2 F0-Guided Musical Source Separation

For musical audio excerpts, in particular for vocal sources, many studies have
shown the relevance of the fundamental frequency (F0) contours. In [5], the
authors use the music score to extract the notes, which helps estimating the
actual F0 line of the instrument to remove. In [9], an estimated F0-contour is
used to separate the corresponding instrument.

The goal of this work is to study to what extent user input can improve the
separation of a specific source. Indeed, some ill-posed issues in the automatic
separation problem, using F0 contours, can arise. First, with many interfering
sources, it is difficult to automatically decide whether a specific source is present
or not. Furthermore, octave and other harmonic-related confusions in the F0
representation can lead to erroneous separations. These errors may easily be
corrected by a trained user who uses the context to solve these ambiguities.
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3 Graphical User Interface

3.1 Ergonomy Issues

Allowing the user to dynamically choose the desired source requires a repre-
sentation that clearly displays the possible choices. The waveform would not
allow to locate, in time and in frequency, sources that are overlapping in time.
Time-frequency representations (TFR), such as the short-term Fourier trans-
form (STFT), are therefore required to visually identify such sources. With a
time x-axis and a frequency y-axis, the sinusoids (horizontal lines) or the noises
(vertical patterns) corresponding to the desired source easily stand out. Such an
approach would however require a significant amount of work, and would not
scale well.

Harmonic sources exhibit a characteristic graphical pattern, in the STFT, for
each F0: the system in [3] identifies these patterns and provides the energy of
the different F0s for each signal frame. From such a representation, the user can
select the desired source thanks to its melody line, with little effort.

Furthermore, representing the pitch on the Western musical scale is a visual-
ization that many users can understand. For instance, in [6], Klapuri proposes
such a “piano-roll” visualization.

In this article, the mid-level representation introduced in [3] was chosen, be-
cause it is easy to configure so as to look like a piano-roll. The method however
relies on a fixed dictionary of harmonic spectral shapes, and the proposed sys-
tem is therefore better suited for the separation of corresponding sources, such
as wind instruments, voice or bowed string instruments.

3.2 Practical Solutions

Using Python/NumPy, with the Matplotlib and PyQt4 modules [12], it was
possible to design a GUI taking advantage of the representation in [3].

A screen capture of the proposed GUI application is shown on Fig. 1, with the
following elements: (1) specify the audio file and the output folder, (2) parameter
controls, for the analysis window length, the minimum and maximum candidate
F0, (3) a button to “load the file” (computing the decomposition of Sect. 4.1),
(4) the waveform of the audio file, (5) the energies for each frame and for each
F0 candidate, on which the user can select the melody F0 track (time on x-axis
and F0 on y-axis), (6) a toolbar, for zooming and exploring, (7) a representation
(musical staff) to indicate the corresponding F0s or notes, (8) normalization
choices for the image, (9) buttons toggling between selection (“Lead”) and de-
selection (“Delete”), plus a field to choose the vertical extent of the selection
(in semitone), (10) “Separate” and “Separate (Auto)” buttons to launch the
separation with or without the user selected track, respectively.

The user can select on (5) a region and thus identify it as a desired F0 range.
Once she is finished with her choice, she can start the separation with one of
the “Separate” buttons. The underlying mechanisms are further explained in the
following section.
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Fig. 1. GUI for selecting the desired F0 track

4 F0 Representation and Separation Algorithm

The audio signal model presented in [3] is first briefly described. The computation
of the F0 representation is then discussed, and at last the user-assisted separation
algorithm of the selected source is presented.

4.1 Audio Signal Model

The audio mixture is modelled through its F × N short-term power spectrum
(STPS) matrix S, defined as the power of its STFT X, with F the number of
Fourier frequencies and N the number of frames. For simplicity, the model is
presented for the single-channel case, but the stereo model of [3] was used for
the experiments of this article.

S is assumed to be the sum of the STPS of the signal of interest SV with the
residual STPS SM :

S = SV + SM (2)

SV is the element-wise product of a “source” part (F0) by a “filter” part (Φ):

SV = SΦ • SF0 (3)

All the contributions SΦ, SF0 and SM are further modelled as non-negative
matrix products of a spectral shape matrix (WΦ, WF0 and WM , with K, U
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and R elementary shapes, respectively) by the corresponding amplitude matrix
(HΦ, HF0 and HM ). Finally:

S = WΦHΦ •WF0HF0 +WMHM (4)

In (4), all the parameters of the right hand-side are estimated on the signal,
except the matrix WF0 which is a dictionary of harmonic spectral “comb”,
parameterized by its F0 frequency. As discussed in [3], a careful choice of the
F0s used in that dictionary leads to the desired representation in HF0 : in our
case, we chose log2-spaced F0 values, i.e. a scale proportional to the Western
musical scale. The number of F0s per semitone is fixed to 16, and the user can
choose the extents of the scale, to fit the expected tessitura.

The other parameters are estimated thanks to the Non-negative Matrix Fac-
torization (NMF) algorithm developed in [3]. The resulting matrix HF0 finally
provides the user with an image in which high values correspond to high energies
associated with F0 frequencies, as shown on Fig. 1.

4.2 F0 Line Selection and Usage

The user can then, through the GUI of Fig. 1, select the zones containing the
F0 values that correspond to the desired melody. A binary mask matrix H, of
the same size as HF0 , initialized to 0 everywhere, is updated each time the user
draws a curve with the mouse (while holding the left button) over the HF0

image. All the coefficients along that curve, as well as the coefficients located
within a user-defined vertical extent (half a semitone by default) are set to 1.
The program superimposes the contour of the selection on the HF0 image.

Once all the desired tracks have been selected, the user can trigger the sep-
aration, given her mask H. Let H̃F0 = H • HF0 . Assuming the desired source
generates smooth melody lines, the melody path is then tracked in H̃F0 with a
Viterbi algorithm [4]: the user-defined regions are therefore used to restrict the
melody tracking. The user can also refine the chosen regions with a narrower
vertical extent, effectively allowing non-smooth melodies if needed.

Finally, the smoothed-out melody line is used to create a refined version of
H̃F0 , zeroing coefficients lying too far from the melody. The parameters are
then re-estimated, using H̃F0 as initial HF0 matrix. These updated parameters
{HF0 ,WΦ,HΦ,WM ,HM} are used to compute the separated sources. This sec-
ond estimation round focuses on voiced patterns, and a third round is done to
include more unvoiced elements [3].

4.3 Separating the Selected Source

Wiener filters are used to separate the sources, obtaining the estimates of the
STFT V and M, using [3]:

V̂ =
WΦHΦ •WF0HF0

WΦHΦ •WF0HF0 +WMHM
•X and M̂ = X− V̂ (5)

The time-domain signals are then retrieved using an inverse STFT (overlap-add
procedure).
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5 Experiments

5.1 Database and Protocoles

In order to evaluate the usage and the performance of the proposed user-guided
source separation system, the development set (5 excerpts) for the SiSEC 2011
“Professionally Produced Music Recordings” task [10] is used.

Three users were asked to try the software. They were all used to handling
computer softwares and had some background knowledge in music. The repre-
sentation and separation principle were explained to each user beforehand. They
provided their feedback about the software usage, Sect. 5.2, and the separation
scores are discussed in Sect. 5.3. All the systems and users discussed in this sec-
tion used the same default following parameters: K = 4, U = 577 (for 16 F0s
per semitone, from 100 to 800Hz), R = 40, F = 1025 (for Fourier tranforms of
size 2048, i.e. 46.44ms@44.1kHz) and with 25 iterations of the NMF algorithm.

5.2 Usage Feedbacks

The users first tested an early version of the GUI, and their observations were
mostly linked with ergonomy issues or missing features (audio feedback, better
display). Following their recommendations, we refined the GUI such that the
focus was turned to the usability of the F0 representation.

For “easy” songs, with a clearly voiced, sustained vocal track, the F0 repre-
sentation makes it easy to choose the desired source. However, for near-spoken
or weak sources, identifying the vocal tracks was felt as a difficult task: for in-
stance, one user declared not to be able to proceed with two songs for this reason
(marked as ‘-’ in Table 1, user #3). In addition, it is interesting to note that
other types of sources are also harder to locate (both in time and frequency)
than vocals, such as guitar or piano tracks.

5.3 Separation Performance

The Signal-to-Distortion-Ratios (SDRs) for the estimated vocal source for each
user (#1, #2 and #3) are reported in Table 1. The results obtained when using
the mixture x as the vocals estimation (Mix), when using the fully automatic

Table 1. Source separation results, see text for details

Mix Auto #1 #2 #3 [7] SiSEC [10]
Song - V U V U V U V U S3 S4 S5 S6 S7

dev1 bearlin -5.3 4.7 4.9 6.1 6.2 5.4 5.8 4.7 5.1 - - - 3.3 3.2 -
dev1 tamy 0.2 8.6 8.9 10.3 10.1 10.7 10.6 8.9 9.2 - - - 7.1 8.7 10.3

dev2 another -3.0 5.1 5.7 5.7 6.2 5.8 6.6 - - -0.7 -2.9 -2.8 3.4 2.2 -
dev2 fort -7.2 2.3 2.4 3.2 3.7 3.4 3.8 - - 3.2 - -5.9 2.5 2.5 -

dev2 ultimate -7.5 3.2 3.4 4.0 4.4 3.8 4.0 3.2 3.5 2.6 -0.9 -10.2 -0.6 1.4 -
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system [3] (Auto), those of the algorithm in [7] (from the SiSEC website [10])
and the SiSEC 2011 results for 5 algorithms (S3 to S7) [10] are also given.

The SDRs for the “Auto” and user-guided systems are better than those of
the other systems, even the other user-guided system [7]. Furthermore, these ex-
amples show that the system is able to take advantage of the user-provided infor-
mation. Some songs might be more challenging, such as the rap song (dev2 fort),
probably because the desired vocal signal is closer to speech than to singing voice.
The inadequation of the chosen HF0 representation for this type of sources was
already discussed [3], and the present study shows that even trained users could
hardly use it for these signals.

6 Conclusion

A novel user-guided audio source separation system is proposed, allowing the
user to easily select a harmonic audio source she desires to separate from a
musical audio mixture. The energy of different hypothesized F0 candidates is
displayed. Once the user has selected the relevant F0 melody track, the system
automatically finds the F0 path maximizing the energy within the regions of in-
terest, estimates the corresponding source and separates it using Wiener filtering
and NMF-derived techniques.

The proposed system delegates the source identification to the user, such that
there is less ambiguity with the definition of the target source, for the system.
The evaluation of the system therefore becomes more relevant. The chosen rep-
resentation also allows the choice of the source to be straightforward, especially
for songs, where the lead singer usually dominates the mixture, providing a fairly
readable representation.

The system and GUI could be further improved by adding, for instance, partial
separation excerpts allowing the user to listen to what specific chunks of the
representation correspond to, before performing the final separation. The user
may also want to identify sources from the musical background that are not to
be included in the desired source. Such a feature would require to search how to
integrate such a prior into the separation stage.

The technique could be used for other applications, such as speech enhance-
ment. The extension to one-speaker signals is straightforward, but many-speakers
signals lead to representations that are harder to interprete. Finally, the system
could be used as annotation tool: it could assist semi-automatic transcription
music signals into musical scores, where an automatic system would infer note
boundaries, rhythms, key and time signature from the user inputs.
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Abstract. This paper focuses on blind speech separation in under-
determined conditions, that is, in the case when there are more sound
sources than microphones. We introduce a sound source model based
on the Gaussian mixture model (GMM) to represent a speech signal in
the time-frequency domain, and derive rules for updating the model pa-
rameters using the auxiliary function method. Our GMM sound source
model consists of two kinds of Gaussians: sharp ones representing har-
monic parts and smooth ones representing nonharmonic parts. Exper-
imental results reveal that our method outperforms the method based
on non-negative matrix factorization (NMF) by 0.7dB in the signal-to-
distortion ratio (SDR), and by 1.7dB in the signal-to-interference ratio
(SIR). This means that our method effectively removes interference com-
ing from other talkers.

Keywords: Blind speech separation, Under-determined condition, GMM
sound source model, Auxiliary function method.

1 Introduction

Under-determined blind speech separation is a challenging task in the field of
sound separation. Here, the word “blind” means the separation without detailed
prior knowledge about mixing model parameters, and “under-determined” refers
to the condition in which the number of sounds exceeds that of microphones (Fig.
1). Note that single-channel speech separation is not considered in this paper.

The important characteristic of the human voice is its harmonicity. However,
many methods proposed for under-determined source separation, such as the
clustering-based method [1], the spatial covariance-based method [2], and the
NMF-based source-modeling method [3], do not consider the harmonicity. We
believe this is because harmonicity is not easy to handle; estimating parameters
for a harmonic model is difficult, especially when there are many speech signals.

In this paper, we propose a GMM sound source model, which can represent
the harmonicity in each time frame, and we derive the parameter update rules
using an auxiliary function method. Our GMM sound source model also handles
nonharmonic parts in the same framework using two kinds of Gaussians: a sharp
one for harmonic parts and a smooth one for nonharmonic parts.

F. Theis et al. (Eds.): LVA/ICA 2012, LNCS 7191, pp. 446–453, 2012.
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Fig. 1. Our under-determined blind speech separation
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Fig. 2. Proposed GMM sound source model

Since our objective is multiple speech separation, we focus on reducing the in-
terference coming from other talkers. Thus, we accept the existence of distortion
because it can be reduced by post-filtering. Experiments reveal that our method
achieves the separation with less noise leakage compared to the conventional
method using the NMF sound source model.

2 Under-determined Sound Source Separation

2.1 Problem Settings

Table 1 lists the definitions of variables mentioned in this paper. The superscripts
H and N indicate harmonic and nonharmonic; we do not use H to express the
Hermite transpose. Note that many of the variables are complex-valued because
we separate sound mixtures in the time-frequency domain. With these variables,
the problem setting for under-determined sound separation is written as follows.

Input I mixtures of J sound sources: xi,fn
Output Estimated sound source of J sources: ŝj,fn
Assumption Linear time-invariant mixing in the time-frequency domain

2.2 Sound Source Model and Cost Function

We model the sound spectrum of each time frame using two kinds of Gaussians:
sharp Gaussians that represent harmonic parts and smooth Gaussians that rep-
resent nonharmonic parts. The sharp Gaussians correspond to the sinusoidal
representation proposed by McAulay [4]. Figure 2 shows our model visually.
Note that although this figure shows the real amplitudes of the spectrum, our
model considers the complex amplitudes of the spectrum.
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Table 1. Definition of variables

Indices

i, j, f, n Index of microphone / talker / frequency bin / time frame

I, J, F,N Number of microphones / talkers / frequency bins / time frames

mh,mn Index of harmonic overtone / nonharmonic overtone

MH ,MN Number of harmonic overtones / nonharmonic overtones

Signals

ŝj,fn Estimated sound source (∈ C)

xi,fn, x̂i,fn Observed / Expected spatial sound image (∈ C)

Parameters

aij,f Element of mixing matrix (∈ C)

FH
0,j,n Fundamental frequency of harmonic Gaussian

pHj,n,mh
Complex amplitude of harmonic Gaussian (∈ C)

pNj,n,mn
Real amplitude of nonharmonic Gaussian

φN
j,fn Phase of nonharmonic component (∈ C)

Others

t, T Symbol to indicate harmonic/nonharmonic (t ∈ T = {H,N})
FN

0 Base frequency of nonharmonic Gaussian (const.)

More concretely, our sound source model is formalized as follows:

ŝj,fn =
∑

mh
pHj,n,mh

gHj,fn,mh
+
∑

mn
pNj,n,mn

gNf,mn
φNj,fn. (1)

Each harmonic Gaussian is transformed from a sinusoidal wave by discrete
Fourier transformation with the Gaussian window. Thus time-frequency com-
ponents in one harmonic Gaussian should have a common phase, hence the peak
height of it, pHj,n,mh

, is complex-valued. On the other hand, the nonharmonic

Gaussian does not have such regularity, hence the peak height of it, pNj,n,mn
, is

real-valued, and phase information φNj,fn is added independently.
Harmonic and nonharmonic Gaussians are defined as follows:

gHj,fn,mh
= exp

(
−
(f −mhF

H
0,j,n)

2

2σH2

)
, gNf,mn

= exp

(
− (f −mnF

N
0 )2

2σN 2

)
. (2)

Note that the Gaussians for nonharmonic parts are independent from source
number j and time frame n.

From the assumption that the mixing process is time-invariant and linear in
the time-frequency domain, we calculate the expected observed signal as follows:

x̂i,fn =
∑

j aij,f ŝj,fn. (3)

In addition, we employ the following scaling constraints∑
i |aij,f |

2
= 1,

∣∣φNj,fn∣∣ = 1, (4)
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because there is scaling arbitrariness between aij,f and pHj,n,mh
, between aij,f

and pNj,n,mn
, and between pNj,n,mn

and φNj,fn.
Finally, we define the cost function as the square distance between the real

observed signal and the expected observed signal.

C =
∑

ifn |xi,fn − x̂i,fn|2 (5)

Since x̂i,fn contains summation terms which have Gaussians in it, straightfor-
ward derivation of parameter update rules is difficult. To overcome this problem,
we use the auxiliary function method described in the next subsection.

2.3 Auxiliary Function Method

We use the auxiliary function method [5] to analytically derive update rules for
the model parameters. The basic idea of this method is to introduce auxiliary
function C+(θ, ψ), whose lower bound is the same as that of the original cost
function C(θ), and to derive update rules on the auxiliary function.

More formally, we use the auxiliary function satisfying the followings:

1. C(θ) = minψ C+(θ, ψ)
2. ψnew = argminψ C+(θ, ψ) is analytically solvable
3. θnew = argminθ C+(θ, ψ) is analytically solvable

where ψ is an auxiliary variable. Using these three properties, we update θ using
the property 3 following the update of ψ using the property 2, and do the same
updates iteratively. These two steps monotonically decrease the value of the
original cost because C(θ) = C+(θ, ψnew) ≥ C+(θnew, ψnew) ≥ C(θnew).

2.4 Derivation of Update Rules

We apply the auxiliary function method to Eq. (5) and derive update rules for
each parameter. The basic idea of derivation was proposed by Kameoka [6],
and the following is its expansion to multi-channel observations. In addition,
parameter updates for nonharmonic parts are newly introduced. Please refer the
paper [6] for the details about the auxiliary functions used in this paper.

By substituting Eqs. (1) and (3) into Eq. (5), we have

C =
∑

ifn

∣∣xi,fn −∑jTmt
aij,fp

T
j,n,mt

gTj,fn,mt
φTj,fn

∣∣2, (6)

where T ∈ {H,N} is a variable to select harmonic (H) or nonharmonic (N)
parts, and mt indicates mh or mn depending on T . Here, φHj,fn and gNj,fn,mn

are

introduced for simplicity; φHj,fn = 1 and gNj,fn,mn
= gNf,mn

are satisfied.
Using the first auxiliary function, we have

C+ =
∑

ijfnTmt
βT −1

ij,fn,mt

∣∣ᾱT
ij,fn,mt

− aij,fp
T
j,n,mt

gTj,fn,mt
φTj,fn

∣∣2, (7)

where ᾱT
ij,fn,mt

= αT
ij,fn,mt

xi,fn (∈ C). Note that αT
ij,fn,mt

(∈ C) is an auxil-

iary variable and βT
ij,fn,mt

is its parameter satisfying the following constraints:
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jTmt

βT
ij,fn,mt

= 1, 0 < βT
ij,fn,mt

∈ R. The following equation minimizes
the auxiliary function and satisfies the property 1 mentioned in subsection 2.3.

αT
ij,fn,mt

= xi,fn
−1
{
aij,fp

T
j,n,mt

gTj,fn,mt
φTj,fn + βT

ij,fn,mt
(xi,fn − x̂i,fn)

}
(8)

Update rules for mixing matrix and amplitudes. We derive parameter
update rules using a partial derivation of Eq. (7). Calculating ∂C+/∂a∗ij,f = 0,

∂C+/∂pH∗
j,n,mh

= 0, and ∂C+/∂pNj,n,mn
= 0 yields the following update rules.

aij,f =

∑
nTmt

βT −1

ij,fn,mt
ᾱT
ij,fn,mt

pT∗
j,n,mt

gTj,fn,mt
φT∗
j,fn∑

nTmt
βT −1

ij,fn,mt

∣∣pTj,n,mt

∣∣2 gTj,fn,mt

2 (9)

pHj,n,mh
=

∑
if βH −1

ij,fn,mh
ᾱH
ij,fn,mh

a∗ij,fg
H
j,fn,mh∑

if βH −1

ij,fn,mh
|aij,f |2 gHj,fn,mh

2 (10)

pNj,n,mn
=

∑
if βN −1

ij,fn,mn
�e
[
ᾱN
ij,fn,mn

a∗ij,fg
N
f,mn

φN∗
j,fn

]
∑

if βN −1

ij,fn,mn
|aij,f |2 gNf,mn

2 (11)

Here, ∗ indicates a complex conjecture and �e[..] is a function to take real part.

Update rule for phase information. When we expand the square-norm term
in Eq. (7), only the following term contains φNj,fn from the constraint Eq. (4):

−2�e
[∑

imn
βN −1

ij,fn,mn
ᾱN
ij,fn,mn

a∗ij,fp
N
j,n,mn

gNf,mn
φN∗
j,fn

]
.

From the constraint Eq. (4), the only thing we can change is the phase of
φNj,fn. To minimize the above term, we can obtain the following update rule:

φNj,fn = phase
(∑

imn
βN −1

ij,fn,mn
ᾱN
ij,fn,mn

a∗ij,fp
N
j,n,mn

gNf,mn

)
, (12)

where phase(..) is the function to return the phase information of the argument.

Update rule for fundamental frequencies. When we expand the square-
norm term in Eq. (7), two terms are related to FH

0,j,n. However, one term will be

independent from FH
0,j,n using the Gaussian integration when the free parameter

βH
ij,fn,mh

is defined independently from f . This is because the harmonic Gaussian

gHj,fn,mh
has strong locality, and we can assume aij,fg

H
j,fn,mh

≈ aij,f#g
H
j,fn,mh

,
where f# indicates the true frequency.

Thus, the term containing FH
0,j,n, which appeared in gHj,fn,mh

, is only the

following one: −2
∑

ifmh
βH −1

ij,fn,mh
�e
[
ᾱH
ij,fn,mh

a∗ij,fp
H∗
j,n,mh

]
gHj,fn,mh

. We refer

to this as CF , and using the second auxiliary function, we obtain C+
F as follows:

C+
F = 2

∑
ifmh

βH −1

ij,fn,mh
�e
[
ᾱH
ij,fn,mh

a∗ij,fp
H∗
j,n,mh

]
×

e−γj,fn,mh

(
(f −mhF

H
0,j,n)

2/(2σH2
)− γj,fn,mh

− 1
)
. (13)
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Note that γj,fn,mh
(∈ R) is a new auxiliary variable, and

γj,fn,mh
= (f −mhF

H
0,j,n)

2/(2σH2
) (14)

minimizes the auxiliary function and satisfies property 1 of auxiliary functions.
Finally, we calculate ∂C+

F /∂F
H
0,j,n = 0 and get the following update rule:

FH
0,j,n =

∑
ifmh

βH −1

ij,fn,mh
�e
[
ᾱH
ij,fn,mh

a∗ij,fp
H∗
j,n,mh

]
e−γj,fn,mhfmh∑

ifmh
βH −1

ij,fn,mh
�e
[
ᾱH
ij,fn,mh

a∗ij,fp
H∗
j,n,mh

]
e−γj,fn,mhmh

2
. (15)

2.5 Parameter Update Ordering

Using the above update rules, we can update parameters in the following order.

1. Update αT
ij,fn,mt

using Eq. (8)

2. Update pHj,n,mh
and pNj,n,mn

using Eqs. (10) and (11), respectively

3. Update φNj,fn using Eq. (12)
4. Update aij,f using Eq. (9) and normalize it to satisfy Eq. (4)
5. Update γj,fn,mh

using Eq. (14) and update FH
0,j,n using Eq. (15)

This order is just a example. As we mentioned in 2.3, we update the parameters
after updating the auxiliary variable used in its update rule. If we comply with
this, the other ordering is arbitrary. Experimentally, pHj,n,mh

and pNj,n,mn
should

be updated frequently because they are sensitive to other parameters.

3 Experiments

To reveal the capability of the proposed method, we separate the sound mix-
tures given in the community-based Signal Separation Evaluation Campaign
(SiSEC) [7]. The testsets used here are dev1_female3_liverec_130ms_1m and
dev3_female4_srec_130ms_50cm, which are the stereo and 3-channel sound
mixtures containing 3 and 4 females’ simultaneous utterances, respectively. Both
are recorded in live condition whose reverberation time is 130ms.

We evaluate the results using the energy ratio criteria: signal-to-distortion
ratio (SDR), image-to-spatial-distortion ratio (ISR), signal-to-interference ratio
(SIR), and signal-to-artifacts ratio (SAR) [8], as used in SiSEC’s evaluation. As
we mentioned in the introduction, our goal is to achieve the separation with low
noise leakage. Thus, we focus on SIR, the noise reduction measure, as well as
SDR, the overall performance measure.

Initial parameters are calculated by the following non-supervised method.
First, we roughly estimate aij,f using the interaural phase difference (IPD).
Second, we make time-frequency mask for each source using IPD information,
and estimate FH

0,j,n using masked observation signal as follows:
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Fig. 3. (Top) Clean speech, (Middle) Sound mixture, (Bottom) Separation result

Table 2. Separation results (dB)

3 females / 2 mics 4 females / 3 mics

model for separation F0 SDR ISR SIR SAR SDR ISR SIR SAR

NMF sound source model - 4.3 8.8 6.8 8.7 - - - -

GMM sound source model Given 6.3 11.6 11.9 6.9 5.5 9.9 11.0 6.3

GMM sound source model Estimated 5.0 9.3 8.5 6.4 4.2 7.9 7.7 5.8

1. Prepare the candidates of F0 for each time frame (5 Hz interval)
2. Update only FH

0,j,n and pHj,n,mh
using Eqs. (8), (10), (14), and (15)

3. Choose the F0 that achieves the minimum cost on Eq. (5)

Since this is a very naive method, we plan to improve it in the near future. Initial
values of other three parameters, pHj,n,mh

, pNj,n,mn
, and φNj,fn, are set to be one.

To evaluate the GMM sound source model, we separate the sound mixtures in
two conditions; FH

0,j,n is initialized by (1) the values estimated by above method
and (2) oracle data annotated manually. STFT frame length and shift width are
set 1024 points (64 ms) and 256 points (16 ms), respectively. We apply Wiener
filtering after the iterations. To compare our separation results with others, We
use the method based on NMF sound source model [3]. We use the source code
published at its author’s website, and modify it in order to use the same initial
mixing matrix. We choose the number of basis to realize the best performance.
Since its source code is specialized for stereo observation, the second testset,
which is 3-channel observation, is separated only by our method.
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Figure 3 shows the spectrograms of the clean speech, the sound mixture, and
the separation result of our method. Table 2 gives the average separation results,
and shows that our method outperforms in the noise reduction measure, SIR,
and the overall performance measure, SDR, especially when the F0 is given. This
implies that developing more accurate multi-F0 estimation method improves the
performance of our separation method.

4 Conclusion and Future Work

In this paper, we aimed to realize the under-determined blind speech separation
with less noise leakage. We proposed a GMM sound source model, which consists
of two kinds of Gaussians, and derived its parameter update rules using the
auxiliary function method. Experimental results show that our method achieves
the separation with less interference from other talkers.

The most important task in the future is to develop a robust multi-channel
multi-F0 estimation method. Also, we believe that modification of nonharmonic
model decreases the noise leakage and increases the overall separation accuracy.

Note that the results of SiSEC 2011 is opened after the notification of this
paper, and now there are methods that realizes much higher SDR than ours. We
also try to integrate our GMM model to the other methods in the near future.

Acknowledgment. This research was partially supported by Grant-in-Aid for
Scientific Research (S), the Global COE Program, and HRI-JP.
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Abstract. We present a low complexity speech enhancement technique
for real-life multi-source environments. Assuming that the speaker iden-
tity is known a priori, we present the idea of incorporating speaker
model to enhance a target signal corrupted in non-stationary noise in
a reverberant scenario. Based on experiments, this helps to improve the
limited performance of noise-tracking based speech enhancement meth-
ods under unpredictable and non-stationary noise scenarios. Using pre-
trained speaker model captures a constrained subspace for target speech
and is capable to provide enhanced speech estimate by rejecting the
non-stationary noise sources. Experimental results on Signal Separation
Evaluation Campaign (SiSEC) showed that the proposed approach is
successful in canceling the interference signal in the noisy input and pro-
viding an enhanced output signal.

Keywords: Model-driven, Speaker model, SiSEC.

1 Introduction

Most of the current speech enhancement methods rely on noise and speech power
estimates typically provided by a noise estimation (NE) scheme in a decision-
directed manner and a signal-to-noise ratio (SNR) as speech power estimator.
These methods assume that the noise signal shows less variations in its second
order moment compared to the speech and therefore are limited in performance
when the interfering noise signal has a characteristic close to the speech [1–3]. In
real-life, the noise signal is time-varying and unpredictable, hence, the stationary
assumption is an unrealistic one. Accordingly, the conventional speech enhance-
ment techniques successfully improve those noisy regions where the noise signal
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is more or less stationary and does not reject the noise burst or non-stationary
noise sources. In an unpredictable and non-stationary noise scenario as in [4],
stationarity assumption on noise statistics fail. Instead, we need to rely on a
strong speech model in order to accurately identify reliable features.

In this paper, we seek to propose a model-driven approach for speech enhance-
ment in reverberant non-stationary noise environment. Incorporating speaker
model information into the speech enhancement framework helps to improve the
limited performance of the noise-tracking based speech enhancement methods
under unpredictable or non-stationary noise scenarios. The experimental results
show that the proposed approach compared to other well known speech enhance-
ment methods, provides a reasonable interference rejection capability especially
in presence of non-stationary interference signals.

2 Problem Statement

For an acoustic environment, in general, the relationship between the observed
time domain samples of noisy data zn and clean speech xn is modeled as:

zn = xn∗hn + dstn + dnstn , (1)

where hn is the time-domain channel impulse response through which the clean
source signal gets distorted and n ∈ [0, N − 1] is the sample index with N the
window length. The corrupting noise is comprised of two terms: dstn that accounts
for the stationary part and dnstn as non-stationary part. Hence, the distorted
speech signal experiences two phenomena: hn accounting for reverberation and
dn = dstn +dnstn accounting for interference signal which itself is comprised of two
parts. As frequency domain symbols, in the rest of the paper, the spectral vector
of length K for the unknown clean, the received signal at microphone and the
noise signals are denoted by X, Z and D, respectively, with Xk, Zk and Dk as
their kth frequency component.

The problem is formulated as follows; given the noisy speech signal zn, find
the speech estimate which best explains the observed signal according to an
optimality criterion. In this paper, we solve the problem under the constraint
that the speech estimate are to be selected from a pre-trained speaker codebook
used to capture the characteristics of the target source. To train the speaker
models we employ the spectral magnitude as the selected feature extracted from
the training set data. The speaker model is denoted as C = {μi|i ∈ [1,M ]}
and μi ∈ RK where M is the model order of the quantizer used, i is an index
to refer to the ith codevector denoted by μi composed of K components μk,i,
and k is the frequency bin index with k ∈ [0,K − 1] with K as the number of
DFT points. Posing the aforementioned problem in a model-based one, given
the observed noisy data, the problem is to find the maximum likelihood (ML)
estimate of the speech signal under the constraint that the speech spectrum is
a member of the pre-trained codebook.
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3 Proposed Method

The proposed method integrates two mechanisms: noise estimation and speaker
model. The first mechanism copes with quasi-stationary noise in the background.
The second mechanism benefits the good interference rejection capability of
model-driven single-channel speech separation systems [5]. For an overview on
the large amount of literature about speech separation using codebook see [5,6]
and the reference therein. For taking into account the effect of the distortion
channel hn, we train the speaker models on the clean reverberated speech data,
a priori available for each speaker in the dataset [4]. The reason why we emply
the recerberated data instead of the clean ones is because in this way we consider
the filter hn as a part of the speaker models trained per speakers and as a result,
the pre-trained codebooks capture a constrained subspace for the spectral shape
of target speech (speaker characteristics) as well as learn the average room im-
pulse responses (channel). The codebooks were trained in spectrum amplitude
domain. The proposed approach consists of three fundamental steps: (1) esti-
mation of stationary noise spectrum, (2) ML speech estimation with codebook
constraint, and (3) signal reconstruction. In the following, each step is explained
in detail.

3.1 Noise Spectrum Estimation

To estimate the power spectrum of stationary part (|Dst
k |2), we use the noise-

estimation algorithm in [7] proposed for highly non-stationary environments.
The periodogram of the noisy data |Zk|2 is smoothed by recursively updating
the first order recursive equation. Based on pilot experiments, in this paper, we
set the key parameters in [7] as: η = 0.7, γ = 0.998 and αd = 0.95. The estimated
noise power spectrum estimate |D̂st

k | is sent to next stage.

3.2 ML Speech Estimation

Based on the noise estimate |D̂st
k | found in previous stage, we produce binary

mask Ĝk,0 as below

Ĝk,0 =

{
1 , |Dst

k | < |Zk|
0 , Otherwise

. (2)

The mask mostly rejects the speech pauses and noise only regions in the ob-
served noisy signal. This is needed to avoid modeling these regions using the
codebook inference (presented in the following). The filtered signal, Gk,0|Zk|,
is then given to pre-trained speaker model to find the maximum likelihood
speech estimate μi∗ . We assume that probability density function, fk,i(x), for the
kth frequency component of speech follow a normal distribution, i.e. fk,i(x) =
N(xi;μk,i, σk,i) with μk,i and σk,i as the mean and variance for the kth fre-
quency component for the ith state in the speaker model. The ML speech esti-
mate is then obtained by selecting the codevector with the largest log-likelihood
i∗ = argmaxμk,i∈C ln fk,i(|Zk|) given by
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μi∗ = min
μk,i∈C

K−1∑
k=0

[
(Gk,0|Zk| − μk,i)

2

2σ2
k,i

+ ln(
√
2πσk,i)

]
. (3)

For sake of simplicity, in this work, we assume that the variance terms σ2
k,i are

equal for all components and dimensions. Training a codebook which only fits
the mean vectors μi with i ∈ [1,M ], from the minimization in (3) we obtain the

ML speech estimate as |X̂ML| = μi∗ .

3.3 Reconstructing the Separated Signals

Given |D̂st
k |2 as the noise power spectrum estimate (step one), and |X̂ML| as an

estimate for hn ∗ xn (step two), from (1) we find an estimate of dnstn as

d̂nstn = zn − x̂ML
n − d̂stn . (4)

To recover the unknown speech and noise signals, we produce the following mask

Ĝk,1 =

⎧⎨⎩
|X̂ML

k |√
|Ẑw

k
|2+|D̂nst

k
|2
, |X̂ML

k | > |D̂st
k |

Gmin , Otherwise
,

where we define |D̂nst
k | = (1 − G̃k)|Zk| as non-stationay noise estimation with

G̃k =
|Ẑw

k
|

|Zk| and |Ẑw
k | =

√
|X̂ML

k |2 + |D̂st
k |2. The speech absence gain is set to

20 log10Gmin = −25dB as suggested by [8]. Using K-point inverse DFT, the
time domain separated speech x̂nis obtained as

x̂n = DFT−1{Ĝk,1Zk}. (5)

4 Experiments and Results

System Setup and Dataset. In the proposed method the window size was 32
msec and the frame shift was set to 8 msec with the sampling frequency set to
16 kHz.

Experimental Results on SiSEC. As processing strategy, we process each
mixture (isolated sentence) alone. The proposed method was applied to the de-
velopment data and the test data (24+24 utterances) 1. The computing station
info are as follow: RAM: 4.00 GB, CPU: Intel(R) Core(TM) i5 3.2 GHz. The
averaged running time for the algorithm is 1.84 × RT. As our benchmark tech-
niques, we include well-known speech enhancement techniques in order to study
the effectiveness of the proposed model-driven idea versus other enhancement
techniques relying on noise-trackers. The methods are:

1 The enhanced wave files can be found at cs.joensuu.fi/pages/saeidi/Sisec2011
wavFiles.tar.gz

file:cs.joensuu.fi/pages/saeidi/Sisec2011_wavFiles.tar.gz
file:cs.joensuu.fi/pages/saeidi/Sisec2011_wavFiles.tar.gz
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Fig. 1. Showing spectrogram of clean, mixture, separated speech and interference sig-
nals using the proposed method. The results are shown for four utterances mixed at
3 dB (transcriptions are shown on the top panel). Absolute improvement compared to
noisy mixture data: 5.7 (dB) SDR, 9.6 (dB) SIR, 4.8 (dB) SNR, and 2.9 (dB) SSNR.
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– M1 (VAD+LSA): MMSE spectral amplitude estimator (STSA) [1] with a
voice activity detector (VAD)-based noise tracker.

– M2: (VAD+MMSE) log-spectral amplitude estimator (LSA) [2] with a VAD-
based noise tracker.

– M3 (MMSE+GGD): speech enhancement described in [3].
– M4 (IBM): ideal binary mask [9] known for its maximum SNR performance.

Both M1 and M2 use the decision-directed (DD) approach for a priori SNR
estimation [1]. The noise tracker used for both M1 and M2 update its noise es-
timaete according to a VAD-based decision with a threshold equal to 0.15 was
used. In M3 [3] , to estimate the clean speech DFT coefficients, the magnitude-
DFT MMSE estimator is used which assumes that speech magnitude-DFT co-
efficients are generalized Gamma distributed (GGD) with parameters γ = 1 and
ν = 0.6 [10]. For noise tracking it uses the MMSE noise PSD tracker [3].

Improvement in Spectrogram. A useful subjective quality measure is the
assessment of spectrograms. Figure 1 is an example to give indications about
how the proposed method deals with background noise (as stationary part) and
interference signals (as non-stationary part) by integrating noise estimation with
codebook constraint. The mixed signal is selected from the development dataset
containing speaker 23 corrupted at signal-to-noise ratio of 3 dB. In Figure 1,
the top panel shows the clean signal, the second row depicts the noisy input
signal, the third row shows the separated speech signal produced by the pro-
posed method and finally the fourth row shows the separated noise signal. From
these figures, it is observed that the proposed model-driven approach is capable
of rejecting the interference signal while recovering the most part of the tar-
get speaker spectrogram. The proposed method also finds lots of noise spectral
structure making it as a favorable candidate for noise tracking compared to other
well-known methods in speech enhancement literature.

Objective Measurement of Speech Quality. We evaluate the separation
performance of the proposed method for the reverberant noisy data consist of
multiple sources as described in SiSEC [12]. We report the separation results in
terms of the following objective metrics: overall perceptual score (OPS) from [13],
signal-to-distortion ratio (SDR), signal-to-interference ratio (SIR) from BSS
EVAL [11] and finally signal-to-noise ratio (SNR) and segmental signal and seg-
mental SNR. Table 1 shows the separation performance evaluation results aver-
aged over the SiSEC development database. The proposed method consistently
improves all objective metrics compared to other methods. It still achieves lower
performance compared to ideal binary mask in terms of SNR-based measures
confirming the fact that ideal binary mask is known to provide the maximum
achievable SNR-based measures [9]. An exception of this, is the OPS results,
where the proposed method achieves the highest performance, higher than that
obtained by ideal binary mask. In [13], it was shown that the OPS measure out-
performs all concurrent measures used for separation performance evaluation.
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Table 1. Showing SNR, SSNR, SDR and SIR results over the SiSEC develop-
ment database. The SDR and SIR results reported in table are calculated using
bss eval sources.m from BSS EVAL toolbox, well-known for the evaluation of estimated
single-channel source signals [11]. The results are reported for the proposed technique
versus those obtained by noisy mixture and other benchmark methods.

NE + Method Metric -6dB -3dB 0dB 3dB 6dB 9dB Average

- + Noisy speech [4]

SNR -8.2 -3.0 -0.6 2.6 -2.8 6.3 -1.0
SSNR -3.8 -4.1 0.8 0.5 -0.3 5.2 -0.3
SDR -8.7 -3.6 -2.9 -0.9 5.2 -2.2 -2.2
SIR -8.9 -3.6 -2.9 -0.9 5.9 -2.18 -2.1
OPS 9.4 8.6 25.9 8.6 9.2 18.2 13.3

M1: VAD + LSA [2]

SNR -6.7 -0.8 1.4 4.3 -1.7 5.4 0.3
SSNR -1.7 -1.9 1.8 1.8 1.5 3.7 0.9
SDR -7.2 -1.2 1.9 5.1 0.0 9.4 1.3
SIR -6.8 -0.5 2.7 7.8 1.1 14.1 3.1
OPS 19.7 15.7 30.6 28.9 34.4 40.9 28.3

M2: VAD + STSA [1]

SNR -6.6 -0.8 1.4 4.2 -1.7 5.2 0.3
SSNR -1.6 -1.8 1.7 1.8 1.5 3.4 0.8
SDR -7.2 -1.3 1.9 5.2 -0.0 9.1 1.3
SIR -6.7 -0.5 2.7 8.4 1.3 14.5 3.3
OPS 20.4 16.2 31.9 29.4 34.4 37.5 28.3

M3: MMSE [3] + GGD [10]

SNR 0.6 0.9 1.2 1.1 0.9 1.2 1.0
SSNR -0.8 -0.3 0.1 0.3 0.1 0.8 0.0
SDR -6.6 -4.3 -1.1 1.9 -0.8 9.6 -0.2
SIR -2.9 -0.6 2.7 3.3 3.1 9.6 2.5
OPS 21.8 19.3 26.3 27.9 31.7 28.1 25.8

Proposed

SNR 2.1 3.1 4.5 4.8 4.7 6.2 4.2
SSNR 0.9 1.2 2.6 2.9 3.2 4.9 2.6
SDR 0.2 2.4 6.0 5.7 8.1 11.3 5.6
SIR 2.8 5.6 8.9 9.6 15.4 16.2 9.8
OPS 27.0 21.8 45.4 34.0 33.4 50.3 35.3

M4: Ideal + IBM [9]

SNR 4.4 5.5 5.1 5.1 3.6 4.3 4.7
SSNR 3.3 3.4 3.4 3.3 2.5 3.0 3.1
SDR 6.7 6.9 7.9 6.7 7.5 7.2 7.1
SIR 21.5 18.7 23.5 19.9 23.4 22.9 21.6
OPS 16.6 12.4 13.3 14.4 14.0 13.9 14.1

5 Conclusion

We presented a model-driven approach to recover unknown speech signal of a
target speaker from a mixtures of multi source reverberant with non-stationary
noise environment. The proposed approach makes use of a codebook as pre-
trained speaker model to reject the interference in the noise corrupted observed
signal. The experimental results on SiSEC indicated consistent improvements in
terms of spectrograms as well as the objective quality measures by the proposed
method. Future work includes the application of the proposed method in binaural
speech enhancement as well as in robust automatic speech recognition task.
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Abstract. We propose a semi-blind method for separation of stereo
recordings of several sources. The method begins with computation of
a set of cancellation filters for potential fixed positions of the sources.
These filters are computed from one-source-only intervals selected upon
cross-talk detection. Each source in some of the fixed positions is can-
celed by the corresponding filter, by which the other sources are sepa-
rated. The former source can be then separated by adaptive suppression
of the separated sources. To select the appropriate cancellation filter,
we use Independent Component Analysis. The performance of the pro-
posed method is verified on real-world SiSEC data with two fixed and/or
moving sources.

Keywords: Semi-blind Separation, Audio Source Separation, Cancella-
tion Filter, Independent Component Analysis.

1 Introduction

Separation of multiple audio signals recorded in a natural environment is a dis-
cipline comprising several situations. These mainly differ in mutual positions of
microphones and sources, room reverberation and variability of the environment.
The SiSEC 2012 evaluation campaign1 defines several tasks. In this paper, we
consider the task “Determined convolutive mixtures under dynamic conditions”.
The goal is here to separate utterances of several speakers where at most two
of them speak simultaneously from random fixed positions or moving positions
(one source). The scenario is practical as it simulates a meeting situation. Sig-
nals recorded by four microphones are available, but we focus on using only two
microphones, which are more accessible in practice.

The problem can be solved in a blind way, that is, by using only general
assumptions such as the sparsity or independence. The latter assumption en-
ables the use of Independent Component Analysis (ICA) either in the frequency

� This work was supported by Grant Agency of the Czech Republic through the project
P103/11/1947.
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domain or in the time domain. A drawback of blind methods consists in their lim-
ited efficiency due to the generality of the conception. The recent effort is there-
fore to take advantage of blind approaches together with incorporated a priori
knowledge. These approaches have the common label semi-blind.

The known features of the SiSEC scenario (a priori knowledge) are as follows.

F1 Maximum two sources are active at the same time instant.
F2 At least one of the active sources is located at a fixed position.
F3 There is a finite number of potential fixed positions, and for each such posi-

tion there exists an interval (even just one second short) in which a source
sounds from this position but other sources are silent.

F4 Different sources are mutually independent.

In this paper, we propose a separation method that takes advantage of the above
features as much as possible. The method utilizes two basic tools: cancellation
filters and the ICA. The use of cancellation filters for separation of audio sources
has been already proved to be useful even in difficult environments [2]. The
approach is however restricted to sources having fixed known position. In this
paper, we go one step further by applying ICA to find the filter assuming that
the source is in one of possible (but unknown) positions.

A cancellation filter (CF) is a filter that cancels a targeted signal and passes
the other signal through. Its output thus gives, on one hand, a separated (non-
target) signal, which, on the other hand, can be suppressed from the original
recording by an adaptive filter to separate the targeted signal. The CF is a
time-invariant filter, so it cannot cancel a moving source.

In some situations such as a meeting, CFs can be computed for potential
positions of sources in advance. Then, when an active speaker is detected at a
given position and its speech overlaps with another speaker, the speeches can be
separated using the corresponding CF(s). The SiSEC scenario considered here
can be seen as one such situation. The CFs can be found based on F3, and the
separation is possible thanks to F1 and F2. For easy reference, let the set of the
computed CFs be called the cancellation filter-bank (CFB).

The only problem to cope with is the fact that the positions of active sources
are not known at a given time. Based on F4, we propose a sophisticated method
that uses ICA to separate the signals without knowing their positions. Following
the idea of [3] and [4], ICA is applied to a data matrix that is defined using the
a priori known CFB. In this sense, the method is “semi-blind”. The details are
given in Section 4. The following section describes the mixing model and the
way to derive a CF. Section 3 describes how the CFB for the SiSEC data was
derived. Results of the separation of the SiSEC data are presented in Section 5.

2 Problem Statement

Let s denote a targeted signal whose position is fixed. A stereo mixture of this
signal with a noise is, in general, described by

xL(n) = {hL ∗ s}(n) + yL(n),

xR(n) = {hR ∗ s}(n) + yR(n)
(1)
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where n is the time index, ∗ denotes the convolution, xL(n) and xR(n) are,
respectively, the signals from the left and right microphone, and hL(n) and hR(n)
denote the microphone-source impulse responses. The noise signals on respective
microphones are denoted by yL and yR. The signals are independent of s and,
in our case, they correspond to responses (images) of the other speaker (or may
be equal to zero). When the position of the “noise” speaker is fixed, the roles of
the target and “noise” are interchangeable.

2.1 Cancellation Filter

To cancel the target s, we can seek a filter g that satisfies

{g ∗ hL}(n) = hR(n), (2)

because then the signal

v(n) = {g ∗ xL}(n)− xR(n)

= {g ∗ hL ∗ s}(n) + {g ∗ yL}(n)− {hR ∗ s}(n)− yR(n)

= {g ∗ yL}(n)− yR(n)

(3)

does not contain any contribution of s(n), while yL and yR are passed through.
The filter g can be found using a noise-free interval n = N1, . . . , N2, i.e. when

yL(n) = yR(n) = 0, as a solution to the least square problem

g = argmin
g

N2∑
n=N1

∣∣∣{g ∗ xL − xR}(n)
∣∣∣2. (4)

We will call g the cancellation filter, although the true CF is the MISO filter on
the right-hand side of (3), comprising of g and −δ (the unit impulse).

3 Building the CFB

According to F3, it is possible to compute the CF for each potential (fixed) po-
sition of a source. Our strategy is therefore to find one-source-only intervals and
compute the CF according to (4), for each interval. This can be done manually,
that is, in a supervised way, which we take into consideration. On the other hand,
an automatic selection may be needed in real-time applications. Therefore, we
propose two approaches to find the one-source-only intervals automatically.

The need is to distinguish three possible situations: silence, one speaker active,
and two speakers active. The silence is easily detected by thresholding the energy
of signals on microphones. It is more challenging to distinguish one speaker talk
from a cross-talk.

Our first approach uses single (left) microphone only and is based on the
linear predictive coding (LPC) of the observed signal. LPC models the signal
as an autoregressive process of a selected order and measures the energy of
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the residual signal (the prediction error). In the literature, see e.g. [7], it was
observed that the prediction error of single speech signal is lower than that of
an overlapped speech signal. The first approach therefore does the detection by
thresholding the linear prediction error.

The second approach utilizes both microphones and measures the coherence
of the signals [5]. The coherence is equal to one when the signal from one mi-
crophone is a delayed version of the signal from the other microphone, which
ideally happens when the signal comes from a single direction without any re-
verberation. The reverberation must be taken into account, so the detection is
based on thresholding the coherence.

The automatic selection proceeds as follows, examples of selected intervals are
shown in Figure 1.

1. The detection criterion is computed throughout available data and smoothed
by the moving-average filter (the length is 250 ms).

2. The intervals where the smoothed criterion is lower (higher) than a threshold
are selected.

3. For each block of a sufficient length (≥ 1 s), compute the CF according to
(4) a store it into the CFB.
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Fig. 1. An example of detected one-source-only blocks by thresholding LPC error and
coherence. “True” blocks denote manually selected blocks.

The automatic procedure (but also the manual one) has the potential prob-
lem of computing several CFs for the same position. The duplicated CFs can
be recognized by using a similarity measure (e.g. the mean square distance).
However, there still may be CFs that differ quite much due to estimation errors
but correspond to the same position. Fortunately, our method is robust in this
respect thanks to the applied ICA, as it is explained in the following section.

4 Source Separation Using ICA and CFB

The SiSEC data can be divided into intervals in which two overlapping sources
sound from unknown positions. In this section, we focus on processing one such
interval n = N1, . . . , N2 and propose a method that separates the signals from
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the mixtures xL(n) and xR(n). The features F1-F4 are taken into account, so it
is assumed that a CFB containing CF for each potential position of stationary
sources is available.

Let gi, i = 1, . . . , P denote CFs in the CFB. We define a data matrix as

X =

⎡⎢⎢⎢⎣
{g1 # xL}(N1) . . . {g1 # xL}(N2)

...
...

...
{gP # xL}(N1) . . . {gP # xL}(N2)

xR(N1) . . . xR(N2)

⎤⎥⎥⎥⎦ (5)

and search for its independent components (ICs) by an ICA algorithm2. The ICA
yields the de-mixing (P + 1)× (P + 1) matrix W and independent components
C = WX which are linear combinations of rows of X. It is highly expectable
that at least one such combination (independent component) corresponds to the
signal in which one source having fixed position is canceled. There are two key
reasons for this claim.

1. The output of the kth CF can be expressed by

[0, . . . , 0, 1︸ ︷︷ ︸
k

, 0, . . . ,−1] ·X = {gk # xL} − xR, (6)

which means that the subspace spanned by rows of X contains the outputs
of all CFs in the CFB. Since one source is in one of the potential positions
(although unknown), there exists a linear combination of rows of X that
cancels the source.

2. Such linear combination is an independent signal since it contains the con-
tribution of one source only.

Since the order of the independent components (ICs) is random, the one that
corresponds to the signal with canceled source must be found. This problem
is easily resolved by finding the largest element (in absolute value) of the last
column of W. To explain, the �th element of the last column of W determines
how much the last row of X contributes to the �th IC. Since only the last row
of X contains samples of xR (the other rows contain xL), its contribution must
be significant so that a source in the IC be canceled. Similarly, when there are
two stationary sources in the mixture, we select two components corresponding
to the two largest elements.

4.1 Separation by Adaptive Post-filtering

Once an independent signal is obtained, it can be considered as a separated one
thanks to F1; let it be denoted by v(n). The other source can be obtained by an
adaptive Wiener-like filter that suppresses v(n) from xL and xR.

2 An arbitrary ICA algorithm can be used. We utilize the BGSEP algorithm from [6]
for its speed and accuracy.
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Let X(k, �) and V (k, �) be the short-time Fourier transform of xL(n) (or xR)
and v(n), respectively, where k is the frequency index and � is the time-frame
index. The adaptive filter, which is sometimes called a soft mask or the frequency-
domain Wiener filter [8], is defined in the time-frequency domain by

W (k, �) =
|X(k, �)|2

|X(k, �)|2 + τ |V (k, �)|2 . (7)

The time-frequency representation of the final output signal is

Ŝ(k, �) = W (k, �)X(k, �). (8)

The free positive parameter τ allows control of the trade-off between the Signal-
to-Interference ratio (SIR) and Signal-to-Distortion ratio (SDR) of the output
signal.

5 Experiments

The SiSEC datasets “Determined convolutive mixtures under dynamic condi-
tions” were recorded in a room with reverberation time about 700 ms. The
sampling rate of signals is 16 kHz. From the four channel recordings in develop-
ment dataset, we use signals from microphone 2 and 3, whose distance is 2 cm.
The distances of the sources from microphones are about 1 m.3

The datasets are divided into intervals in which two sources are active. Each
interval is processed separately and the separated signals are evaluated using
the BSS EVAL toolbox [9]. We use the criteria SIR, SDR and SAR (Signal-to-
Artifact ratio) and SIR improvement (the difference between the SIR of mixed
and separated signals). The resulting criteria are averaged over all intervals.

In our experiments, we distinguish the three ways of obtaining the CFB needed
for our method (Section 3). MAN means the manual selection of one-source-only
intervals. The automatic selections are denoted by LPC (LPC with the AR order
18) and COH (coherences with the length of the FFT window 128 samples and
zero overlap).

5.1 Random Sources Activity in Unknown Static Positions

In this situation, two active speakers are located at unknown fixed positions
on a semi-circle with radius 1 m. In Setup 1, the competing sources are always
located on different angular sides with respect to the center of the array, that is
one speaker is in (−90◦;0◦) while the other one is in (0◦;90◦). In the Setup 2, the
two competing sources can be located in the whole angular space (−90◦;90◦),
but never in the same position. We consider two ways the separated signals

3 The results for other microphone/source distances achieved on the SiSEC datasets
can be found on the SiSEC results web page http://www.irisa.fr/metiss/

SiSEC11/dynamic/main.html.
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could be obtained. They can either be both obtained as ICs (Section 4) in which
one source is canceled (denoted by ica) or both as the outputs of the adaptive
Wiener-like filter (Section 4.1) that suppresses the obtained component from
original recordings (denoted by wf ); the parameter τ in (7) was put equal to 10.
The results averaged over both separated sources are summarized in Table 1.

Table 1. Separation of fixed sources with random location

method SIR[dB] SIR impr.[dB] SDR[dB] SAR[dB]

Setup 1

MAN (ica) 17.18 15.65 4.02 4.88
MAN (wf) 12.16 10.62 1.17 3.24
LPC (ica) 12.76 11.22 2.95 4.56
LPC (wf) 9.64 8.10 -0.33 2.60
COH (ica) 14.34 12.80 2.96 4.26
COH (wf) 10.33 8.80 0.13 2.66

Setup 2

MAN (ica) 14.67 12.79 1.36 2.88
MAN (wf) 11.42 9.54 0.71 3.33
LPC (ica) 12.57 10.69 1.61 3.25
LPC (wf) 8.62 6.74 -0.58 2.89
COH (ica) 11.99 10.11 0.79 2.89
COH (wf) 8.20 6.32 -1.15 3.06

The manually selected CFB leads to a better performance in terms of all
criteria. The unsupervised approaches give comparable results, which points
to their efficiency. The separation is better when signals are taken as the ICs
than when they are obtained by the adaptive filter, especially in terms of SDR
and SAR. This is explained by the fact that the sources are in fixed positions,
so invariant filters (ica), which generate less distortions, are sufficient for the
separation.

5.2 A Moving Source

In this scenario, one source is moving within the angular space (0◦;90◦) and its
distance from microphones is varying between 0.5 m and 1.2 m. The position
of the second source is fixed within the angular space (−90◦;0◦) either at one
position during the whole dataset (Setup 1) or random position (Setup 2). Here,
the moving source can be separated as the IC only, while the stationary source
must be separated by the adaptive filter. Table 2 shows the results. In the case
of Setup 1 (fixed source at one position), the label single denotes the case, when
the CFB contains one filter only. This filter is able to supress the fixed source in
the whole recording, i.e. the ICA utilization is not necesary.

The performance achieved with the single manually selected filter in Setup 1
confirms the suitability of the CF utilization for this type of separation scenario.
In case of automatically constructed CFBs, the performance is lower, because the
CFB contain CFs for positions where the moving source appeared for a moment.
These CFs cause random confusion of the separated sources and deteriorate the
performance.
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Table 2. Separation of mixtures of one fixed and one moving source

method src. position SIR[dB] SIR impr.[dB] SDR[dB] SAR[dB]

Setup 1

MAN (single) moving 13.00 12.62 6.62 8.23
MAN (wf) fixed 19.48 16.33 3.74 3.98
LPC (ica) moving 7.04 6.66 1.31 4.25
LPC (wf) fixed 16.72 13.57 0.17 0.50
COH (ica) moving 7.99 7.61 1.33 3.65
COH (wf) fixed 16.73 13.57 0.92 1.24

Setup 2

MAN (ica) moving 10.28 10.26 -1.47 1.81
MAN (wf) fixed 14.82 11.29 1.70 2.24
LPC (ica) moving 9.10 9.08 1.17 3.73
LPC (wf) fixed 15.88 12.35 0.03 0.44
COH (ica) moving 10.03 10.01 1.23 3.65
COH (wf) fixed 15.29 11.75 -0.60 0.01

6 Conclusion

We presented a solution for the task presented in SISEC evaluation campaign
using ICA and cancellation filters. The proposed method can be easily extended
to situations where there are more than two sources [10].
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Nonparametric Modelling of ECG:
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Fetal ECG Extraction
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Abstract. In this work, we tackle the problem of fetal electrocardio-
gram (ECG) extraction from a single sensor. The proposed method is
based on non-parametric modelling of the ECG signal described thanks
to its second order statistics. Each assumed source in the mixture is thus
modelled as a second order process thanks to its covariance function.
This modelling allows to reconstruct each source by maximizing the re-
lated posterior distribution. The proposed method is tested on synthetic
data to evaluate its performance behavior to denoise ECG. It is then ap-
plied on real data to extract fetal ECG from a single maternal abdominal
sensor.

Keywords: non-parametric modelling, source extraction, denoising, fe-
tal ECG extraction.

1 Introduction

Fetal electrocardiogram (f-ECG) extraction from maternal abdominal ECG sen-
sors is an old problem. Since the first works of Cremer [1] who produced a
very primitive record of fetal rate activity, this problem is still of interest nowa-
days since it is a fascinating issue due to the characteristics of the involved
signals. Indeed, the f-ECG is definitively less powerful than the mother’s ECG
(m-ECG), moreover the recorded signals are also contaminated by noise due to
electromyogram (EMG) or to power line interference and they are also influ-
enced by the fluctuation of the baseline. Among the several approaches used to
tackle the extraction of f-ECG, one can quote methods which require several sen-
sors e.g., adaptive filtering [15], blind source separation [2,16] or quasi-periodic
analysis [14].

In this paper, we consider the same issue but assuming that only a single
sensor is available. In this case, one can extract f-ECG by singular value decom-
position [4] or by nonlinear decomposition such as shrinkage wavelet denoising [7]
or nonlinear projections [10]. Moreover, state modelling as Kalman filtering [13]
has been applied to overcome the lack of information provided by a single sensor.
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Fig. 1. Modelling (1) of the amplitude of one beat

Among these methods, the latter has been shown to be the most efficient [12].
However, Kalman filtering relies on a very strong assumption: the state equation,
which models the dynamical evolution of the unobserved state. As a consequence,
Kalman filtering needs reliable prior about the state to perform accurately. To
overcome the potential lack of prior information about the system, we propose
in this study to model the second order statistics of the signal instead of the
signal itself.

This article is organized as follows. Section 2 presents the proposed approach
to model a signal thanks to its second order statistics. The proposed algorithm
to extract f-ECG is then introduced in Section 3. Numerical experiments and
results are given in Section 4 before conclusion and perspectives in Section 5.

2 Nonparametric Modelling of ECG

As already proposed in [13], one can choose a parametric model of ECG: each
beat of an ECG signal is a summation of 5 Gaussian functions, each of them
modelling the P, Q, R, S and T waves as illustrated in Figure 1:

z(θ) =
∑

i∈{P,Q,R,S,T}
ai exp

(
− (θ − θi)

2

2σ2
i

)
, (1)

where ai, θi and σi are the amplitude, the position and the width of each wave,
respectively. Note that in this model, the beats are defined in phase θ ∈ [−π, π],
so that each beat is assumed to have a linear variation of phase with respect to
the time, even if each beat has not the same duration. This model can then be
used in an extended Kalman filtering to denoise a single ECG or extract f-ECG
from a mixture of m-ECG and f-ECG [13,11]. This method is thus a parametric
method since the unknown amplitude z(θ) is explicitly parameterized.

On the other hand, nonparametric methods perform estimation, prediction
or denoising without explicitly parameterizing the unknown amplitude z(θ). For
instance, a well known approach is the spline smoothing [5]. If one considers the
ECG z(θ) as a statistical process, it can be fully described at the second order by
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Fig. 2. Two functions drawn at random from a zero-mean GP with covariance func-
tion (2). The shaded area represents plus and minus two times the standard deviation
for the prior. On the right, the related σ(θ) and ld(θ) functions.

its mean function m(θ) = E[z(θ)] and covariance function k(θ1, θ2)
	
= E[(z(θ1)−

m(θ1))(z(θ2) −m(θ2))] [8]. Obviously, the ECG signal is almost surely a more
complex statistical process than a simple second order one. As a consequence,
considering only its second order statistics, it relies among the Gaussian process
(GP) framework which is widely used in machine learning e.g., [6,9]. A GP
z(θ) is a distribution over functions denoted as GP(m(θ), k(θ1, θ2)). In this case,
the statistical latent process z(θ) is not directly parameterized as in parametric
model, but its statistics are it thanks to hyper-parameters. This means that one
has to choose a class of semidefinite positive functions k(θ1, θ2) which describes
the expected second order properties of the latent process.

In this study, we propose to use the following non-stationary covariance func-
tion

k(θ1, θ2) = σ(θ1)σ(θ2)

√
2ld(θ1)ld(θ2)

ld(θ1)2 + ld(θ2)2
exp

(
−

(
θ1 − θ2

)2
ld(θ1)2 + ld(θ2)2

)
, (2)

with

σ(θ) = am + (aM − am) exp

(
− (θ − θ0)

2

2σ2
T

)
,

ld(θ) = lM − (lM − lm) exp

(
− (θ − θ0)

2

2σ2
l

)
,

where σ(θ) and ld(θ) allow to have a time-varying power (between am and aM )
and a time-varying length scale correlation (between lm and lM ), respectively.
Indeed, as shown in Fig. 1, an ECG beat can be decomposed into three parts:
the P wave, the QRS complex and the T wave. The P and T waves share the
same kind of second order statistics: a larger length scale and a lower power
than the QRS complex. Fig. 2 shows two functions drawn at random from
the zero-mean GP prior with covariance function (2). This figure illustrates the
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flexibility of such a representation compared to model (1) since with the same
prior GP

(
0, k(θ1, θ2)

)
, it can generate a multitude of different shapes with the

same prior.

3 Denoising of ECG and Extraction of Fetal ECG from a
Single Sensor

Suppose that the observed values x(t) differ from the ECG, s(t), by additive
noise n(t):

x(t) = s(t) + n(t), (3)

and that this noise is uncorrelated with s(t). The aim of this study is to infer the
values of s(t) from x(t), i.e. to denoise or extract the ECG from the observations.
Moreover, it is assumed that the ECG signal, s(t), is a succession of beats, each
of them following a zero-mean GP defining by (2) and that the additive noise
follows a zero-mean GP whose covariance function kn(t, t

′) is given by

kn(t, t
′) = σ2

n exp

(
− (t− t′)2

2 l2n

)
+ σ2

wδ(t− t′), (4)

where δ(·) is the delta Dirac function. In this expression, the first term is useful
for instance to model a baseline variation as a stationary process for which
the correlation is almost unity between close samples and decreases as their
distance increases compared to the length scale ln. The second term models a
white Gaussian noise of power σ2

w. From (3) and (4), the covariance function of
observation x(t) is thus expressed as

kx
(
t, t′
)
= ks

(
t, t′
)
+ kn

(
t, t′
)
, (5)

where

ks
(
t, t′
)
=

N∑
n=1

N∑
n′=1

k
(
t− τn, t

′ − τn′
)

and {τn}1≤n≤N is the set of R peak instants that can be estimated easily from
the raw signals. From this modelling and assuming that the observed process x(t)
has been recorded at times {Tm}1≤m≤M , the covariance matrix of this process
is thus given by Kx, whose (i, j)th entry is

Kx(i, j) = kx(Ti, Tj). (6)

One can then infer on the value s(t) thanks to the maximization of the a poste-
riori distribution of s(t) given x = [x(T1), · · · , x(TM )]T by

ŝ(t) = kTK−1
x x, (7)

where k = [k(t, T1), · · · , k(t, TM )]T . It is interesting to note that as soon as
σ2
w �= 0, matrix Kx is invertible as the summation of definite positive matrices
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and a diagonal matrix σ2
wI. This algorithm needs some comments. First of all,

the recorded signal, x(t), does not need to be regularly sampled and one can
observe from (7) that the value of the latent process, s(t), can be predicted at any
time t even for t �= Ti, ∀i ∈ {1, · · · , TM}. Moreover, the hyper-parameters θ =
{am, aM , σ2

T , lm, lM , σ2
l , θ0, {τk}k, σ2

n, l
2
n, σ

2
w} defining k(·, ·) and kn(·, ·) need to

be estimated. This can be done by maximizing the evidence (or log marginal
likelihood) given by

log p
(
x|{Ti}i, θ

)
= −1

2
xT
(
Ks +Kn

)−1
x− 1

2
log
∣∣Ks +Kn

∣∣ − M

2
log(2π). (8)

The optimization of the latter equation is obtained thanks to a gradient ascent
method, assuming that the initial parameter values are not so far from its actual
values.

Fetal ECG extraction from a single abdominal sensor is then a direct extension
of the proposed method by modelling the recorded signal x(t) as

x(t) = sm(t) + sf (t) + n(t), (9)

where sm(t) is the signal related to the mother, sf (t) is related to the fetus
and n(t) is the additive noise. All these signals are modelled by zero-mean GPs
with covariance functions km(·, ·) and kf (·, ·) defined by (2) and kn(·, ·) obtained
from (4), respectively. In this case, the estimation of sf (t) is given by

ŝf (t) = kT
f

(
Km +Kf +Kn

)−1
x, (10)

where kf = [kf (t, T1), · · · , kf (t, TM )]T .

4 Numerical Experiments

In this section we first investigate the performance of the proposed method on
synthetic data to denoise ECG (Section 4.1). An illustration of f-ECG extraction
is then provided on real data (Section 4.2).

4.1 Synthetic Data: ECG Denoising

The performance of the proposed algorithm to denoise ECG is assessed. In the
first experiment, each beat of the ECG signal is generated by model (1). To
mimic the variability presented in a real ECG, the waves amplitudes and P-R
and R-T intervals are randomly changed (3%) around their average values. The
ECG signal is then obtained as the summation of several beats with random
global amplitudes and random R-R intervals. To ensure the consistency of the
results, the whole procedure has been repeated one thousand times by regener-
ating all random parameters of the signal and noise samples. In this experiment,
1500 samples are used with 15 heart beats simulated at 100Hz sampled frequency.
It is worth noting that the proposed method does not assume that the maxima
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Fig. 3. ECG denoising: output SNRs vs. the input SNR without Fig. 3(a) and with
Fig. 3(b) parameters variability. In the two figures, the black line corresponds to the
same input and output SNRs. In each case, the median are plotted, as well as the first
and last quartiles as error bars.

of the R peaks are located at observed samples but can also appear in between
samples. The proposed method is compared to the extended Kalman filtering
(EKF) and smoothing (EKS) [13]. The state model is chosen equal to (1) (i.e.
the same model than the one used to generate data) whose parameters are equal
to average values.

Quantitative results are shown in Fig. 3 which compares the output signal-to-
noise ratio (SNR) achieved after denoising versus different input SNRs. As one
can see (Fig. 3(b)), the proposed method increases the SNR with a gain between
3dB to 18dB. Contrary to extended Kalman filtering, the proposed method al-
ways improves the SNR. Indeed, in the case of high input SNR, EKS and EKF
deteriorate the SNR: this can be explained by the variability of the simulated
ECG as confirmed by Fig. 3(a), since this phenomenon is not observed with-
out variability. Moreover, one can see that the variability decreases the overall
performance, but the proposed method keeps the best performance by a smaller
decrease than EKS or EKF.

4.2 Real Data: f-ECG Extraction

In this section, we illustrate (Fig. 4) the proposed method to extract f-ECG
from a single sensor on the well-known DaISy fetal ECG database [3]. As one
can see, the proposed method provides suitable estimations of both maternal
and fetal ECG even when mother’s and fetus’s R peaks are concomitant (e.g.,
the fourth, seventh and tenth mother’s beats). Moreover, a visual inspection
of the residual noise n̂(t) = x(t) − ŝm(t) − ŝf (t) confirms the validity of the
assumed modelling (9). Indeed, this residual noise is effectively composed of a
smooth varying baseline (dark curve) related to the first term of covariance func-
tion (4) plus a quasi white noise (validated by its covariance function empirical
estimation). Moreover, both contributions are decorrelated with the mother’s
and fetus’s ECG signals.
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Fig. 4. Fetal ECG extraction. Top to bottom: recorded signal x(t), estimated mother’s
ECG ŝm(t), estimated fetal’s ECG ŝf (t) and residual noise n̂(t) (light gray curve) with
estimated baseline (dark curve), respectively.

5 Conclusions and Perspectives

In this paper, a non-parametric model of ECG signals is derived. By considering
them as second order processes, which are fully defined by their mean and covari-
ance functions, one can model a large class of signals with few hyper-parameters.
From this modelling, denoising or extraction methods are directly obtained as
the maximization of the posterior distribution. Numerical experiments show that
the proposed method outperforms an extended Kalman filtering especially in
presence of slightly random state parameters. Indeed, Gaussian processes real-
ize a tradeoff between the suitable description of the signal by its second order
statistics and its intrinsic variabilities. Finally, the main advantage of the pro-
posed method is its flexibility and it provides a mix between purely data based
methods as principal component analysis and parametric model based methods
as Kalman filtering.

Future work will deal with a computationally efficient implementation of
hyper-parameters estimation of the proposed method as well as an online imple-
mentation.
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Abstract. Nonnegative Matrix Factorization (NMF) is an efficient tool
for a supervised classification of various objects such as text documents,
gene expressions, spectrograms, facial images, and texture patterns. In
this paper, we consider the projected Nesterov’s method for estimat-
ing nonnegative factors in NMF, especially for classification of texture
patterns. This method belongs to a class of gradient (first-order) meth-
ods but its convergence rate is determined by O(1/k2). The classifica-
tion experiments for the selected images taken from the UIUC database
demonstrate a high efficiency of the discussed approach.

1 Introduction

Nonnegative Matrix Factorization (NMF) [1] is a relevant tool for extracting
low-dimensional, nonnegative, sparse, and parts-based feature vectors that are
particularly useful for classification of various objects. Qin et al [2] successfully
applied NMF to unsupervised classification of texture patterns. Their approach
combines several strategies from pattern analysis, such as a local invariant affine
region detection, scale-invariant feature transform, model reduction and feature
extraction, and finally multi-label nearest-neighbor classification. NMF was used
for extracting low-dimensional nonnegative encoding vectors from a set of scale,
affine and rotation invariant key-points that intimately characterize the images
to be classified. Unfortunately, the multiplicative algorithms used in their ap-
proach for estimating the nonnegative factors in NMF are slowly-convergent and
do not guarantee convergence to a local minimizer.

Another NMF-based approach to texture pattern classification is to use the
NMF algorithm that was proposed by Sandler and Lindenbaum [3] for minimiz-
ing the Earth Mover’s Distance (EMD). The EMD is more suitable for measuring
similarity between images with local deformations. However, this approach in-
volves solving a huge system of linear equations with the Linear Programming
(LP) technique, which is a computationally very expensive.

In this paper, we discuss the Nesterov’s method [4] that belongs to a class
of gradient methods but it has O(1/k2) iteration complexity for the functions
f(·) ∈ C1,1

L (continuously differentiable with a Lipschitz continuous gradient).
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This condition is intimately satisfied for the Euclidean distance or the alpha- and
beta-divergences [5]. Since a computational complexity of the Nesterov’s method
is very low (roughly the same as for the Landweber iterations), we applied this
method for updating both factors of NMF in training as well as testing stages.

The Nesterov’s method has already found several relevant applications in
signal and image processing [6,7]. Guan et al. [8] efficiently applied this method
to NMF in the context of text document clustering. Following this way, we
propose this method to other NMF-application, however, we discuss another
version of the Nesterov’s method and our alternating optimization algorithm is
somehow different than given in [8].

The paper is organized in the following way. The next section discusses the
tools used for preprocessing the images to be classified. Section 3 is concerned
with the NMF algorithm. The Nesterov’s iterations are briefly discussed in Sec-
tion 4. The experiments for texture image classification are presented in Section
5. Finally, the conclusions are given in Section 6.

2 Image Preprocessing

The process of supervised classification of texture patterns consists of a few
stages. The preprocessing aims at extracting some local features that uniquely
identify the analyzed images.

The first step of preprocessing is to identify local regions in a given image that
are similar by geometrical transformations such as scaling, rotation, and shear-
ing. This task can be achieved with the Harris-Laplace invariant detector [10]
that extracts blobs of homogeneous intensity. Thus, this stage of the preprocess-
ing provides a number of local regions (subimages) for each training or testing
image.

The number of local regions should be large for each image to maximize the
amount of global information on local patterns in each image. This approach
considerably enlarges both sets of training and testing images, leading to a sub-
stantial increase in a computational complexity, and to a strong redundancy.
To tackle the redundancy problem, we propose a simple approach that selects
a certain, predefined number of the least correlated images from each analyzed
set. This approach assures the images in both sets are considerably diversified
but their redundancy is strongly decreased.

The least correlated local regions are then processed by the Scale-Invariant
Feature Transform (SIFT) descriptor to get rotation invariant descriptors for
each image. SIFT descriptor was proposed by D. Lowe in 1999 [11] to detect
local image features that are invariant to scale, orientation, affine distortion,
and partially to illumination changes. The SIFT extracts a certain number of
keypoints from the analyzed image, and provides rotation and scale invariant de-
scriptors for each keypoint. In our approach, we create SIFT descriptors using the
Matlab software taken from the Lowe’s homepage1. It provides a 128-dimension

1 http://www.cs.ubc.ca/∼lowe/keypoints/
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vector of a descriptor for each detected key-point, which gives a 128×K matrix
of descriptors for each local region extracted from the affine detector, where
K is the number of key-points. Assuming we have P training images, and we
extract Rp local regions for the p-th training image, thus the total number of

training vectors for processing with NMF is T =
∑P

p=1

∑Rp

r=1Kr, where Kr is
the number of key-points for the r-th local region. The input matrix for NMF is
Y ∈ R128×T .

3 NMF Algorithm

The aim of NMF is to find such lower-rank nonnegative matrices A = [aij ] ∈
RI×J and X = [xjt] ∈ RJ×T that Y = [yit] ∼= AX ∈ RI×T , given the matrix
Y , the lower rank J , and possibly a priori knowledge on the matrices A and
X. Assuming each column vector of Y = [y1, . . . ,yT ] represents a rotation
invariant descriptor (a datum point in RI) of a given key-point, and J is a
priori known number of clusters (usually it is equal to the number of classes),
we can interpret the column vectors of A = [a1, . . . ,aJ ] as the feature vectors
or centroids (indicating the directions of central points of clusters in RI) and
the columns vectors in X = [x1, . . . ,xT ] are the low-dimensional nonnegative
encoding vectors that contain coefficients of a convex combination of the feature
vectors, and have discriminant nature. Each xt for t = 1, . . . , T corresponds to
the t-th keypoint.

To estimate the matrices A and X, we assume the Euclidean function:

D(Y ||AX) =
1

2
||Y −AX||2F , (1)

which is then alternatingly minimized by the Algorithm 1.
The matricesA andX are updated in Algorithm 1 with the function NestIter

which executes the Nesterov’s iterations that are not fixed but changing with
the alternating steps. The rule given in step 4 of Algorithm 1 aims at adapting
the nature of alternating steps, starting from projected gradient updates and
exploring local minima more and more when the alternating steps proceed. This
is a similar rule as proposed in [12], however, here the regularization is achieved
by truncated iterations instead of the damping parameter.

After estimating the nonnegative factors A and X, the classification can be
readily performed in the J-dimensional space of the encoding vectors in X with
some multi-label nearest-neighbor classification. Note that for each testing image
we have a couple of key-points. We assumed the following strategy: all the key-
points from the testing image are projected onto the column space of the matrix
A estimated in the training process. Then for each testing key-point in the
“reduced” space, the corresponding training key-point in the same “reduced”
space is found using the 1-NN rule with a given metrics. The tests are carried
out for the Euclidean distance metrics. Finally, we get a set of class-labels for a
given test image. The most frequently occurring label indicates the right class.
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Algorithm 1. MN-NMF Algorithm

Input : Y ∈ R
I×T , J - lower rank

Output: Factors A and X

Initialize (randomly) A and X , s = 0;1

repeat2

s ← s+ 1;3

kinner = min {10, s} ; // Inner iterations4

X ← NestIter(A,Y ,X, kinner) ; // Update for X5

d
(X)
j =

∑T
t=1 xjt, ; // l1 norms of rows in X6

X ← diag
{
(d

(X)
j )−1

}
X, A ← Adiag

{
d
(X)
j

}
, ; // Scaling7

Ā ← NestIter(XT ,Y T ,AT , kinner) ; // Update for A8

A = Ā
T
;9

d
(A)
j =

∑I
i=1 aij , ; // l1 norms of columns in A10

X ← diag
{
d
(A)
j

}
X, A ← Adiag

{
(d

(A)
j )−1

}
, ; // Scaling11

until Stop criterion is satisfied ;12

4 Nesterov’s Iterations

The Nesterov’s method [4] solves the problem of unconstrained minimization
of the convex function f(·). Its convergence rate is determined by O(1/k2) if
f(·) ∈ C1,1

L . It is easy to notice that the cost function (1) belongs to the class

C1,1
L with respect to either A or X. Thus:

||∇XD(Y ||AX)−∇XD(Y ||AX̄)||F ≤ LX ||X − X̄||F , (2)

where {X, X̄} ∈ RJ×T , and LX = ||ATA||2 is the Lipschitz constant. From (2),
we have D(Y ||AX) ≤ FX(X, X̄), where

FX(X , X̄) = D(Y ||AX̄) +
〈
∇XD(Y ||AX̄),X − X̄

〉
+

L̃X

2
||X − X̄ ||2F

is the majorization function with LX ≥ L̃X . The similar expressions can be
written for A. Assuming the proximal-gradient approach, one obtains:

X = proxh(X̄) = argmin
X

(
h(X) + FX(X, X̄)

)
, (3)

where proxh(X̄) is the proximal mapping of the convex function h(X). For

h(xjt) =

{
0 if xjt ∈ Ω,
∞ else

where Ω = {ξ : ξ ≥ 0}, (4)

the updates for X are as follows:

X =
[
X̄ − L̃−1

X GX(X̄)
]
+
, (5)

where GX(X̄) = ∇XD(Y ||AX̄) = AT (AX̄ − Y ), and [ξ]+ = max{0, ξ}.
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There are several strategies for determining the approximation point X̄. If
X̄ = X(k−1) for the k-th iterative step, the update (5) can be considered as the
projected Landweber iterations. In the Nesterov’s method, X̄ is computed as
extrapolated directions from the previous updates, that is:

X̄ = X(k−1) + β(k)(X(k−1) −X(k−2)). (6)

According to [4], an optimal rate of convergence can be achieved if the factor

β(k) in the k-th iteration is expressed by β(k) = γ(k−1)−1
γ(k) , where γ(k) solves the

quadratic equation (γ(k))2 − γ(k) − (γ(k−1))2 = 0.
The final function NestIter(A,Y ,X, kinner) used in the steps 5 and 8 of

Algorithm 1 is given by Algorithm 2.

Algorithm 2. NestIter

Input : A ∈ R
I×J , Y ∈ R

I×T , X ∈ R
J×T , kinner - number of inner iterations

Output: X - estimated factors

Initialize X(0) = Z(0) = X, LX = ||ATA||2, γ(0) = 1;1

for k = 1, 2, . . . , kinner do2

G
(k)
X = AT (AZ(k−1) − Y ) ; // Gradient at Z(k)

3

X(k) =
[
Z(k−1) − L−1

X G
(k)
X

]
+

; // Projected updates
4

γ(k) =
1+

√
4(γ(k−1))2−1

2
, β(k) = γ(k−1)−1

γ(k) ;5

Z(k) = X(k) + β(k)(X(k) −X(k−1)) ; // Search direction

Theorem 1. Let the sequences {X(k)} and {Z(k)} be generated by Algorithm 2

for k ≥ 1, and X(∗) be the limit point achieved by Algorithm 2, then

D(Y ||AX(k))−D(Y ||AX(∗)) ≤ 2LX ||X(k) −X(∗)||2F
(k + 2)2

.

The proof of Theorem 1 is given in [6].

5 Classification Results

The experiments are carried out for the texture images taken from the UIUC
database2. We selected 18 categories whose sample images are shown in Fig. 1.
Each class consists of 16 images with inhomogeneous texture patterns and signif-
icant nonrigid deformations. To create the training set 14 images are randomly
selected, and the remainder (2 images) forms the testing set. For each train-
ing or testing image 30 local regions are extracted with the Harris-Laplace affine

2 http://perso.telecom-paristech.fr/∼xia/texture.html
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T1 T2 T3 T4 T5 T6

T7 T8 T9 T10 T11 T12

T13 T14 T15 T16 T17 T18

Fig. 1. Examples of texture images from each class

(a) (b)

Fig. 2. Normalized residuals: ||Y −AX ||F /||Y ||F versus: (a) iterations; (b) CPU time

detector, and then we select 20 the most uncorrelated sub-images. The number
of key-points is adaptively selected by the SIFT descriptor, and this value ranges
from few to a few dozen.

We tested the following NMF algorithms: MUE, LPG, FC-NNLS, and MN-
NMF. The MUE stands for the standard Lee-Seung algorithm for minimizing the
Euclidean distance [1]. The LPG3 denotes the projected gradient NMF proposed
by C. Lin [13]. The FC-NNLS [14] is a modified version of the standard NNLS
algorithm that was originally proposed by Lawson and Hanson [15]. Kim and
Park [16] applied the FC-NNLS to NMF-based processing of gene expression
microarrays. This algorithm has been also extended and efficiently applied to
supervised classification of texture patterns in [9]. The MN-NMF refers to the
algorithm discussed here.

3 http://www.csie.ntu.edu.tw/∼cjlin/nmf/
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Each tested NMF algorithm is initiated randomly and runs for 50 iterations
with J = 18. The initial regularization parameter η0 in the FC-NNLS [9] was
set to η0 = 10−4.

The normalized residuals ||Y − AX||F /||Y ||F versus alternating steps are
shown in Fig. 2. The averaged recognition rates and the elapsed time over 100
Monte Carlo (MC) runs are presented in Table 1.

Table 1. Statistics for testing NMF algorithms with 100 MC runs. Each algorithm
and in each MC run performs 50 alternating steps.

MUE LPG FC-NNLS MN-NMF

Time [seconds] 10.7 42.5 67.1 19.6
Mean recognition rate 96.4 98.5 98.6 98.6

Std. 2.7 1.9 1.8 1.8

6 Conclusions

Our tests (Table 1) demonstrated that the FC-NNLS, LPG and MN-NMF algo-
rithms give nearly the same accuracy of the classification results, measured in
terms of the mean recognition rate and the standard deviation. However, accord-
ing to Table 1 the MN-NMF algorithm after 50 alternating steps is more than
twice faster than the LPG, and more than 3 times faster than the FC-NNLS. Fig.
2(a) shows that the FC-NNLS and LPG are initially faster than the MN-NMF
but a single iteration of both the FC-NNLS and LPG involves more computa-
tional effort than the MN-NMF, hence we observe the faster convergence of the
MN-NMF versus the elapsed time in Fig. 2(b).

The computational complexity of the MN-NMF algorithm for updating X is
O(IJ2+IJT )+k

(
O(J2T ) + 2O(JT )

)
, where k is the number of inner iterations.

Note that the MUE has the computational complexity O(IJ2+IJT )+O(J2T )+
2O(JT ) per one update of X. In our example, I = 128, J = 18, and T = 25200
(roughly estimated). Thus, the MN-NMF and MUE perform 50 alternating steps
with 7.033 and 3.359 Giga floating-point operations, respectively. This justifies
the elapsed time in Table 1. The computational complexity of the remaining
algorithms is rather difficult to estimate since it depends on the dataset. The
number of inner iterations in the LPG can variate in each alternating step (gov-
erned by the Armijo rule). Motivated by the step 4 in Algorithm 1, we set the
maximum number of inner iterations in the LPG to 10.

Summing up, our experiments demonstrate that there is some computational
potential in the Nesterov’s method and replacing multiplicative algorithms in
NMF with the optimal gradient method might be beneficial for texture pattern
classification.



Nesterov’s Iterations for NMF-Based Supervised Classification 485

Acknowledgment. This work was partially supported by the habilitation grant
N N515 603139 (2010-2012) from the Ministry of Science and Higher Education,
Poland.

References

[1] Lee, D.D., Seung, H.S.: Learning of the parts of objects by non-negative matrix
factorization. Nature 401, 788–791 (1999)

[2] Qin, L., Zheng, Q., Jiang, S., Huang, Q., Gao, W.: Unsupervised texture classi-
fication: Automatically discover and classify texture patterns. Image and Vision
Computing 26(5), 647–656 (2008)

[3] Sandler, R., Lindenbaum, M.: Nonnegative matrix factorization with earth mover’s
distance metric. In: IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pp. 1873–1880. IEEE Computer Society, Los Alamitos (2009)

[4] Nesterov, Y.: A method of solving a convex programming problem with conver-
gence rate o(1/k2). Soviet Mathematics Doklady 27(2), 372–376 (1983)

[5] Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.I.: Nonnegative Matrix and Tensor
Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind
Source Separation. Wiley and Sons (2009)

[6] Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM Journal on Imaging Sciences 2(1), 183–202 (2009)

[7] Zhou, T., Tao, D., Wu, X.: NESVM: A fast gradient method for support vector
machines. In: ICDM, pp. 679–688 (2010)

[8] Guan, N., Tao, D., Luo, Z., Yuan, B.: NeNMF: An optimal gradient method
for solving non-negative matrix factorization and its variants. Technical report,
Mendeley database (2010)

[9] Zdunek, R.: Supervised classification of texture patterns with nonnegative matrix
factorization. In: The 2011 International Conference on Image Processing, Com-
puter Vision, and Pattern Recognition (IPCV 2011), vol. II, pp. 544–550. CSREA
Press, Las Vegas (2011); WORLDCOMP 2011

[10] Lindeberg, T., Garding, J.: Shape-adapted smoothing in estimation of 3-d depth
cues from affine distortions of local 2-d brightness structure. Image and Vision
Computing 15, 415–434 (1997)

[11] Lowe, D.: Object recognition from local scale-invariant features. In: Proceedings
of the International Conference on Computer Vision, pp. 1150–1157 (1999)

[12] Zdunek, R., Phan, A., Cichocki, A.: Damped Newton iterations for nonnegative
matrix factorization. Australian Journal of Intelligent Information Processing Sys-
tems 12(1), 16–22 (2010)

[13] Lin, C.J.: Projected gradient methods for non-negative matrix factorization. Neu-
ral Computation 19(10), 2756–2779 (2007)

[14] Benthem, M.H.V., Keenan, M.R.: Fast algorithm for the solution of large-scale
non-negativity-constrained least squares problems. Journal of Chemometrics 18,
44–450 (2004)

[15] Lawson, C.L., Hanson, R.J.: Solving Least Squares Problems. Prentice-Hall,
Englewood Cliffs (1974)

[16] Kim, H., Park, H.: Non-negative matrix factorization based on alternating non-
negativity constrained least squares and active set method. SIAM Journal in
Matrix Analysis and Applications 30(2), 713–730 (2008)



Detection of Aliasing in Image Sequences Using

Nonlinear Factor Analysis

Scott C. Douglas

Department of Electrical Engineering
Bobby B. Lyle School of Engineering

Southern Methodist University
Dallas, Texas 75275 USA
douglas@lyle.smu.edu

Abstract. In computational imaging, reconstructing a single high-reso-
lution scene from multiple low-resolution aliased images is most efficient
if done only over those regions where significant aliasing occurs. This
paper presents a framework for detecting pixel locations exhibiting the
most-prominent effects of aliasing in a sequence of subpixel-shifted im-
ages. The process employs nonlinear factor analysis of the image se-
quence, in which the latent variables are the relative position offsets for
each image in the sequence, followed by outlier detection on the error
residuals from the joint estimation process. Numerical examples illus-
trate the capabilities of the methodology.

Keywords: aliasing, computational imaging, image reconstruction, non-
linear factor analysis, signal detection.

1 Introduction

Computational imaging refers to imaging system designs for producing high-
quality visual images through numerical procedures on the collected data. In
these systems, the image content is often split across the measurements in non-
conventional ways, and a final image is obtained only after mathematical re-
construction is performed. One well-known problem in computational imaging
is the reconstruction of high-quality images from multiple low-resolution aliased
and shifted versions of these images. In this context, aliased information is de-
sirable, as it provides additional information beyond the Nyquist limit of the
sensor array to enhance spatial detail using multiple observations [1].

Most algorithms for multi-frame image reconstruction under aliasing assume
that all regions of the scene are aliased and apply advanced reconstruction pro-
cesses everywhere in the scene. In practice, large portions of the scene may not
be aliased, and such an approach is wasteful of both computational and imaging
resources. The PANOPTES architecture attempts to achieve a matching of com-
putational imaging resources to scene complexity through careful management
of both imaging resources and computational effort [2]. In this context, a key
challenge is the following: How does one determine which portions of the scene

F. Theis et al. (Eds.): LVA/ICA 2012, LNCS 7191, pp. 486–493, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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suffer from excessive aliasing? This paper considers the problem of identifying
aliased regions within image sequences as a nonlinear factor analysis problem, in
which image offsets are the latent variables. The error residuals from this esti-
mation process are used to detect those regions that exhibit significant aliasing.
Application of the procedure to both synthetic and real-world image sequences
shows the efficacy of the method.

2 Nonlinear Factor Analysis for Modeling Image Offsets

Assume that a digital image g[m,n] is generated by ideal sampling of a image
field f(x, y) via the relation

g[m,n] = f(x, y)|x=mT,y=nT , (1)

where T is the spatial sampling period. The image field models all effects due to
blurring by the optical imaging system and sensor averaging, and sensor noise
is neglected. We collect N such images gi[m,n] that differ from each other due
to spatial offsets {Δx[i], Δy[i]}, 1 ≤ i ≤ N as

gi[m,n] = f(x−Δx[i], y −Δy[i])|x=mT,y=nT . (2)

The goal is to model this image set assuming that the N images are suitably
“smooth,” such that aliasing is neglected. Those regions that violate this model
will suffer from significant aliasing artifacts.

The smoothness model used for the image set is similar to that used in deter-
mining optical flow [3] and is given by the two-dimensional Taylor series

gi[m,n] = g[m,n] + p2[m,n]Δx[i] + p3[m,n]Δy[i]

+p4[m,n](Δx[i])
2 + p5[m,n](Δy[i])

2 + p6[m,n]Δx[i]Δy[i]

+ {higher order terms} . (3)

where pj[m,n], 2 ≤ j ≤ 6 are spatial derivative terms to be described. In what
follows, we assume that the higher order terms in the expansion can be neglected
for image pixels with no aliasing. Indexing the data in a 1-D raster format, we
can express the qth image sample of the ith image as gi[q] = pT [q]d[i], where
p1[q] = g[q], 1 ≤ q ≤ P , P is the number of pixels in each aliased image, and

d[i] = [1 Δx[i] Δy[i] (Δx[i])
2 (Δy [i])

2 (Δx[i]Δy[i])]
T . (4)

Collected all image pixels across all scenes, we form the imaging model

G = PD. (5)

The dimensions of G, P, and D are (P ×N), (P × 6) and (6×N), respectively,
where P is the number of pixels in each aliased image. Eqn. (5) is in the form
of a nonlinear factor model employing a second-order bivariate Taylor series [4].
Solutions to this problem are reasonable if (a) the number of pixels P in each
aliased image much larger than the number of collected images N , and (b) the
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number of aliased images collected is significantly greater than the dimension
of the nonlinear factor model. In practice, we desire N * 6, although there are
only 2N unknowns in the definition of D.

To jointly estimate P and D from G, we use the standard approach of alter-
nating least-squares. Starting with a chosen initial P(0), we iterate the following:

D(k) = (P(k−1)TP(k−1))−1P(k−1)TG (6)

P(k) = GD(k)T (D(k)D(k)T )−1 (7)

In the above, we only need to solve for the second and third row of D(k) at each
iteration, as the first row of D(k) is forced to be unity, and the last three rows of
D(k) are quadratic forms of the second and third rows. To initialize the entries

of P(0), we generate a prior p
(0)
1 [m,n] ≈ g[m,n] to be described shortly, and

then form estimates of the spatial derivatives of this prior over the entire image,
where we use the linear convolutional models

p(0)q [m,n] =
∑
i,j

hq[i, j]p
(0)
1 [m− i, n− j], 2 ≤ q ≤ 6, where (8)

• p
(0)
2 [m,n] is the horizontal difference of p

(0)
1 [m,n], where H2 = [−1 1].

• p
(0)
3 [m,n] is the vertical difference of p

(0)
1 [m,n], where H3 = [−1 1]T .

• p
(0)
4 [m,n] is the twice-horizontal-difference of p

(0)
1 [m,n], where

H4 = [1 − 2 1].

• p
(0)
5 [m,n] is the twice-vertical-difference of p

(0)
1 [m,n], where

H5 = [1 − 2 1]T .

• p
(0)
6 [m,n] is the local Laplacian of p

(0)
1 [m,n], where H6 = H5 ·H4.

Other convolutional kernels involving difference-of-Gaussians and Laplacian-of-
Gaussians were also tried but resulted in no significant performance differences.

As for the initial prior p
(0)
1 [m,n], we do not have access to an undistorted

version of the downsampled image, only its aliased versions in the columns of
G. Without any prior information, a reasonable selection is the average of the
measured images at each pixel position, or

p1[m,n] =
1

N

N∑
i=1

gi[m,n]. (9)

Other estimators are also possible and are the subject of further investigation.
Table 1 provides the entire algorithm in a convenient listing. Convergence of

the iterative portion is fast and typically takes only a few iterations. The error
matrix E shown at convergence is equivalent to

E = G−P(f)D(f). (10)

Remark: The complexity of the iterative portion of the algorithm is much-
reduced when one considers the fact that P(k) need not be formed at each iter-
ation k. The algorithm manipulates matrices with a maximum dimension of N
once D(1) is found. Since P * N in practice, the most-significant computations
are the calculation of D(1) and RG at initialization and E at convergence.
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Table 1. Nonlinear Factor Analysis for Detecting Aliased Regions

Initialize. Compute P(0), RG = GTG, and the second and third rows of

D(1) = (P(0)TP(0))−1(P(0)TG).
Iteration: For k = 1, 2, . . ., do until convergence (“iteration f”)

1. Let d
(k)
pq be the (p, q)th element of D(k). Then, compute the first, fourth,

fifth, and sixth rows of D(k) as follows: for all 1 ≤ q ≤ N ,

d
(k)
1q = 1, d

(k)
4q =

(
d
(k)
2q

)2

d
(k)
5q =

(
d
(k)
3q

)2

d
(k)
6q = d

(k)
2q d

(k)
3q

2. Compute the second and third row of

D(k+1) = (D(k)D(k)T )(D(k)RGD(k)T )−1D(k)RG.

Finalize: Set the first, fourth, fifth, and sixth rows of D(f) as in Step 1, and

E = G−GD(f)T (D(f)D(f)T )−1D(f).

3 Detection of Aliased Regions

Regions that are not well-modeled by the model in (5) are not spatially-smooth,
and these positions likely correspond to areas with significant aliasing. Clearly,
such regions can be identified by those rows in E where the errors are large. The
key concept is determining the detection mechanism.

We have explored numerous examples involving sequences of aliased and non-
aliased imagery under subpixel translation. When aliasing is present, the errors
in the nonlinear factor analysis model are “heavy-tailed” and appear as outliers
in the error images. Fig. 1 shows results of three particular synthetic numerical
examples showing the logs of the histograms of the magnitudes of the elements
of E for images with only smooth features, for images with only aliased features,
and for images with both smooth and aliased features. When the underlying fea-
tures are smooth, the percentage of errors decreases to zero as |e| is increased.
When only aliasing is present, the error distribution is considerably flatter, in-
dicating the presence of strong outliers. When there is a combination of aliased
and non-aliased features, the outliers due to aliasing are also clearly present.
Thus, we can detect the locations of aliased regions by calculating the histogram
of the absolute values of the elements of E, determining a threshold from the
distribution where the log of the p.d.f. experiences an upwards inflection, and
using this threshold to detect those pixels where the errors are large. In the plots
of Fig. 1, the chosen threshold is τ = 0.015.

In practice, the detection of aliased regions is jointly performed over all of the
error images, as we expect these regions to exhibit large errors for several image
frames. In the examples that follow, we use the following detection criterion: a
pixel is identified to be part of an aliased region when |ei[m,n]| exceeds τ for
at least 10% of the images in the sequence. Other criteria are possible and are
under investigation.

4 Numerical Examples

The first image sequence tested using the described procedure is synthetically-
generated to show its capabilities under complete sequence knowledge. The
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Fig. 1. The distributions of |ei[m,n]| for three different synthetic image sequences

upper-left image in Fig. 3 shows the high-resolution image, which consists of
a set of 80 binary squares that are of size 3× 3 to size 16× 16 in high-resolution
pixel space, along with the same 80 squares that have been filtered by a Gaussian
kernel with σ = 5. This (600× 600) pixel image is offset by 7 different subpixel
shifts in both x and y directions, and the resulting images are downsampled via
pixel averaging to produce 49 different (120 × 120) aliased images. The upper-
right image in Fig. 3 shows one image of this sequence. The proposed algorithm
is applied to this data. The middle-left image in Fig. 3 is the sum of the absolute
errors of the estimation procedure across all 49 images, inverted for clarity. The
aliased portions of the image clearly have higher error magnitudes. The middle-
right image in Fig. 3 shows those pixel positions for which |ei[m,n]| > τ for at
least 4 images in the sequence. As can be seen, the regions where aliasing occurs
are clearly detected, whereas the smoothed regions are largely not detected.

Fig. 2. Real-world image sequence (Left) One image from the first thirty frames of
the aliased Emily sequence [5]. (Right) Aliased regions as bright pixels, detected as
described in the text.
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Fig. 3. Synthetic image sequence example (Upper Left) Original image. (Upper Right)
One of the 49 downsampled images. (Middle Left) Sum of absolute errors across all
49 images after nonlinear factor analysis, shown in inverted grayscale. (Middle Right)
Aliased regions as dark pixels, detected as described in the text. (Bottom) Estimated
offsets [large blue dots] and actual offsets [small red dots].
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Fig. 4. Real-world image sequence (Top) One image from the 25-frame aliased Air
Force target sequence. (Bottom) Aliased regions as bright pixels, detected as described
in the text.
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The bottom plot in Fig. 3 shows the estimated offsets determined by the
nonlinear factor analysis procedure in blue as well as the true offsets for the
images in red. The general distribution and gridding of the estimated offsets is
similar to the actual offsets, but the estimates are clearly biased. We believe

the issue is the accuracy of the estimated prior p
(0)
1 [m,n] in the presence of

significant aliasing in the synthetic example. The estimated positions depend on
the accuracy of this prior, but the algorithm’s ability to detect aliased regions
is not significantly hampered by these differences.

We now explore the behavior of the procedure on real-world imagery. The top
image of Fig. 4 is one of a 25 image sequence collected as part of a precision
imaging collection system at SMU. Subpixel shifts in the image capture were
obtained by computer-controlled precision micrometer adjustment of the camera
position for a fixed Air Force resolution target. These 25 images were modeled
using the nonlinear factor analysis procedure, and the absolute values of the error
residuals were used to detect aliased regions in which τ = 0.0185 was selected.
The bottom image of Fig. 4 shows those pixels whose error magnitudes exceeded
the chosen threshold for two or more images. The pixels identified by the process
occur along edges of large objects that exhibit ±45-degree slopes where the
spatial sampling rate is lower, as well as in the finer resolution portions that are
known to be aliased for this data set. Only a small portion of the image region
– 0.949% of the (601× 901) pixel area – is identified in this process, suggesting
that much of the image area does not require resolution enhancement.

Fig. 2 shows the application of the procedure on the Emily sequence available
from [5]. The first thirty frames of this sequence exhibit largely translational
motion. Shown on the left is one image from this 30-frame sequence. Shown on
the right are the aliased pixel regions identified by the procedure in this paper,
in which τ = 0.0062 was selected. As can be seen, the portions of the image
selected represent areas where spatial detail can be improved, including regions
of the white board, the seated individual, and borders of larger objects.

Acknowledgements. The author would like to thank Indranil Sinharoy and
Vikrant Bhakta for supplying the Air Force target image sequence, and the
PANOPTES group for fruitful discussions.
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Abstract. This paper presents a geometrical method for solving the
overdetermined Nonnegative Blind Source Separation (N-BSS) problem.
Considering each column of the mixed data as a point in the data space,
we develop a Simplicial Cone Shrinking Algorithm for Unmixing Nonneg-
ative Sources (SCSA-UNS). The proposed method estimates the mixing
matrix and the sources by fitting a simplicial cone to the scatter plot
of the mixed data. It requires weak assumption on the sources distri-
bution, in particular the independence of the different sources is not
necessary. Simulations on synthetic data show that SCSA-UNS outper-
forms other existing geometrical methods in noiseless case. Experiment
on real Dynamic Positon Emission Tomography (PET) images illustrates
the efficiency of the proposed method.

Keywords: Blind Source Separation, Nonnegativity, Simplicial Cone,
Minimum Volume, Facet.

1 Introduction

We deal with the problem of Nonnegative Blind Source Separation (N-BSS) in
noiseless, linear intantaneous mixture case. The mixture model is given by:

X
m×p

= A
m×n

S
n×p

(1)

wherem is the number of observations,n is the number of sources and p is the num-
ber of samples.X ,A and S are respectively the given observations matrix, the un-
known mixing matrix and the hidden nonnegative sources matrix. N-BSS consists
on retrieving S andA given onlyX . Possible directions for solving problem (1) are
the geometrical approaches. These methods are very natural and intuitive and re-
quire weak assumption on the sources distribution. The first geometrical method
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was introduced by Puntonet et al. [1] for separating two sources having bounded
probability density functions. The mixing matrix is retrieved by finding the slopes
of the parallelogram containing the scatter plot of mixed data. Babaie-Zadeh et
al. [2] propose another geometrical method applicable to more than two sources
based on clustering the observations points and fitting a line (hyper-plane) to each
cluster to recover the mixing matrix. By assuming the (very strong) condition lo-
cal dominance of the sources (i.e. for every source there is at least one instant
where the underlined source is active and all the others are not), several authors
propose estimating the mixing matrix by looking for the vertices of the convex hull
of the scatter plot of mixed data [3][4]. These methods can unfortunately be very
slow and demanding very large size samples, specially for large scale problem due
to the convex hull computing. Noting that when the sources are nonnegative, the
scatter plot of mixed data is contained in the simplicial cone generated by the mix-
ing matrix, other geometrical methods were proposed for solving problem (1) by
looking for the Minimum Volume (MV) simplicial cone containing the mixed data
[5][6]. MV like methods do not require local dominance of sources. But the sim-
plicial cone generated by the mixing matrix must be well recognizable from the
scatter plot of mixed data. This weaker condition implies that there should be at
least n−1mixed data points on, or close to, each facet of this cone. It’s also neces-
sary to specify that beside the nonnegativity, someMV like methods developed for
hyperspectral data processing [5][6] require full additivity of the sources (i.e.
the sum on every column of the sources matrix is equal to one).

This paper presents a MV like method for solving overdetermined N-BSS
problem called Simplicial Cone Shrinking Algorithm for Unmixing Nonnegative
Sources (SCSA-UNS). This work establishes an extension of [9] in which we only
consider the determined case with nonnegative mixing matrix. Section 2 reviews
the geometrical view of the N-BSS problem and derives the main idea of MV like
methods. In section 3, we describe the proposed SCSA-UNS method. Section 4
presents simulation results on synthetic data and real Dynamic Positon Emission
Tomography (PET) data and comparisons with other MV like methods. Finally
section 5 presents the conclusions and future works.

2 Geometrical View of N-BSS Problem

Let’s review the geometrical view of the N-BSS problem we described in [9]. For a
given matrix W = [w1, w2, · · · , wn], we define the Simplicial Cone Span+(W )
generated by W by :

Span+(W ) =
{
z z = Wy with y ∈ Rn

+

}
(2)

We also define the positive orthant Rn
+ as being the simplicial cone generated

by the identity matrix In: R
n
+ = Span+(In)

By considering each column xi of X (1 ≤ i ≤ p) as a point in the n dimension
data space, it comes that when the sources are nonnegative, the mixed data form
a cloud of points contained in the simplicial cone generated by the mixing matrix.

{xi xi ∈ X, 1 ≤ i ≤ p} ⊆ Span+(A) (3)
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One can thus imagine to estimate A (up to the classical (positive here) scal-
ing and permutation BSS indetermination’s) by finding a simplicial cone con-
taining all the mixed data. But without any additional condition there is an
infinite number of such cones. So for recovering the mixing matrix, we require
the scatter plot of the mixed data to fill enough Span+(A) and we look for
the Minimum Volume (i.e. the smallest) simplicial cone containing the mixed
data [7]. Filling enough means that Span+(A) must be well recognizable from
{xi, xi ∈ X, 1 ≤ i ≤ p} (i.e. there should be at least n− 1 mixed data points on,
or close to, each facet of Span+(A) [8]). This intuitive and natural condition
will be defined more formally in a future work.

3 Geometrical Method Using Simplicial Cones for
Overdetermined Nonnegative Blind Source Separation

3.1 Determined Case : Simplicial Cone Shrinking Algorithm for
Unmixing Nonnegative Sources (SCSA-UNS)

We first restrict to determined case with full column rank nonnegative mixing
matrix (i.e. m = n and A ≥ 0). This case is considered in [9]. SCSA-UNS aims at
estimating A by finding the Minimum Volume simplicial cone containing all the
mixed data. In this objective, we propose a criterion for measuring the volume
of a given simplicial cone and an algorithm to minimize this criterion.

Proposed Criterion : We define V (W ), the volume of a simplicial cone
Span+(W ) generated by a given square matrix W = [w1, w2, · · · , wn], where
wi is the i-th column of W , by :

V (W ) =
|det(W )|

‖w1‖ × ‖w2‖ × · · · × ‖wn‖
(4)

V (W ) strictly represents the “aperture” of the simplicial cone Span+(W ), it is
positive and upper bounded by 1 (Hadamard’s Inequality).
The task of estimating the mixing matrix can then be reduced to solving the
following optimization problem:

W ∗ = argmin
W≥0, W−1X≥0

V (W ) (5)

Proposed Algorithm : We define the Rl
k like matrices by :

Rl
k =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 rl1k 0 · · · 0
0 1 · · · 0 rl2k 0 · · · 0
...
...
. . .

...
...

... · · ·
...

0 0 · · · 1 rlk−1k 0 · · · 0
0 0 · · · 0 1 0 · · · 0
0 0 · · · 0 rlk+1k 1 · · · 0
...
... · · ·

...
...

...
. . .

...
0 0 · · · 0 rlnk 0 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where rlik ≥ 0, ∀ 1 ≤ i ≤ n, i �= k (6)
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Proposition 1. For a given nonnegative matrix W , the volume V (W ) of Span+(W )
decreases when W is multiplied to the right by Rl

k, ∀ l and ∀ 1 ≤ k ≤ n.

Proof. For fixed l, fixed k (1 ≤ k ≤ n) and a given nonnegative square ma-
trix W = [w1, w2, · · · , wn], let U = WRl

k (U = [u1, u2, · · · , un]). The task is
to demonstrate that V (U) ≤ V (W ):
1. |det(U)| =

∣∣det(WRl
k)
∣∣ = |det(W )|

∣∣det(Rl
k)
∣∣ = |det(W )| because det(Rl

k) = 1
2. ∀ j �= k, uj = wj =⇒ ‖uj‖ = ‖wj‖
3. For j = k, ∀ 1 ≤ i ≤ n, uik = wik +

∑n
q=1,q �=k wiqr

l
qk ≥ wik because wiq and

rlqk are all nonnegative. Therefore (uik)
2 ≥ (wik)

2 which leads to ‖uk‖ ≥ ‖wk‖
According to the definition of the volume of a simplicial cone given by (4), 1.,
2. and 3. allow us to conclude that V (U) ≤ V (W )

For solving problem (5), SCSA-UNS starts from an initial simplicial cone con-
taining all the mixed data (typically, the positive orthant Span+(In)) and itera-
tively decreases its volume by performing several sweeps of n right-multiplications
of the matrix which generated this initial cone (W0 = In) by the Rl

k matrices
(1 ≤ k ≤ n). At each iteration, the matrix Rl

k is computed so to keep the mixed
data inside the new simplicial cone. Details for computing the Rl

k are given in Ap-
pendix 1. Let W ≥ 0 be the matrix which generated the current simplicial cone
(W is the current estimation of the mixing matrix and Y = W−1X ≥ 0 is the
current estimation of the sources). The algorithm stops when one cannot decrease
anymore V (W ) without creating negative values in Y . This often corresponds to
the convergence of W to the true mixing matrix A. However, it may happen that
V (W ) does not decrease anymore during the iterations whileW has not converged
yet to A. This freezing1 situation arises when there is at least one zero value on
each row of Y . To avoid this problem, we suggest applying, after each sweep l, an
orthogonal linear transformationQl to Y (andQT

l toW ) to delete the zeros values
of Y without increasing V (W ). The details of computing the unfreezing matrices
Ql are given in Appendix 2.

The whole estimated mixing matrix and sources are given by:

A = W0

∏
l

[(
n∏

k=1

Rl
k

)
QT

l

]
and S = A−1X (7)

3.2 Proposed Method for Overdetermined Case

When the number of observations is greater than the number of sources (m >
n), we propose to first perform a dimension reduction of the mixed data and
afterward run the SCSA-UNS algorithm on the reduced mixed data.

Dimension Reduction : The dimension reduction is performed by the classical
Principle Component Analysis (PCA). We compute the Singular Value Decom-
position (SVD) of the mixed data and we keep only the n largest singular values
and the corresponding singular vectors.

1 See Appendix 2 for more details.
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X
m×p

≈ E
m×n

F
n×n

GT

n×p
(8)

The SCSA-UNS algorithm should be executed on GT but GT is not necessarily
nonnegative, so its scatter plot is not necessarily contained in the positive or-
thant. One must then find an initial simplicial cone containing all the dimension
reduced mixed data GT , since Span+(In) is not necessarily suited any more.

Widening Procedure for Initialization : If all the observations are not non-
negative, we have developed a procedure for finding a convenient initial simplicial
cone containing all the mixed for the SCSA-UNS algorithm. This procedure is
based on widening Span+(In) by multiplying In by Dl

k matrices, with a struc-
ture similar to Rl

k, but with negative entries in order to increase the volume of
Span+(In) up to enclose all the mixed data. The details of computation of the
Dl

k are not given here due to lack of space. This widening procedure is used on
GT to compute W1 and Y1 so that:

GT

n×p
= W1

n×n
Y1
n×p

with Y1 ≥ 0 (9)

Estimating the Mixing Matrix and the Sources : The SCSA-UNS algo-
rithm is finally executed on Y1 to give Y1

n×p
= W2

n×n
Y2
n×p

.

The whole mixing matrix and sources are estimated by:

A
m×n

≈ E
m×n

F
n×n

W1
n×n

W2
n×n

and S
n×p

≈ Y2
n×p

(10)

4 Simulations and Discussions

Case 1: Synthetic Data
The proposed method is first evaluated on synthetic data and compared with
two other MV methods: MVSA [5] and MVES [6]. To make sure that the mixed
data fill enough the simplicial cone generated by the mixing matrix, the non-
negative sources have been generated using “random sparse uniform distribution
generator” with 64% of non-zero elements in the sources matrix. We consider
two cases: full additive sources and non full additive sources. The mixing matrix
has Gaussian random entries. We set m = 20, n = 5 and p = 10000. Comparison
criteria are the CPU time to converge T and the separation error Esep defined
by (11). The smaller Esep, the better the separation.

Esep =
1

n(n− 1)
[
∑
i

(
∑
j

∣∣(W−1A)ij
∣∣

maxk |(W−1A)ik|
−1)+

∑
j

(
∑
i

∣∣(W−1A)ij
∣∣

maxk |(W−1A)kj |
−1)]

(11)
Table 1 records the average performance indices for 50 independent Monte-

Carlo runs. One may note that when the sources are full additive, the three
methods perform a good separation but SCSA-UNS is faster than MVSA and
MVES. However when the sources are not full additive, SCSA-UNS still performs
a perfect separation while MVSA and MVES do not.
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Table 1. Average performance indices

Index SCSA-UNS MVSA MVES

Full additive sources Esep 3, 56.10−10 1, 23.10−12 2, 67.10−8

T (s) 0.69 2, 21 8, 37

Non full additive sources Esep 1, 54.10−9 7, 89 6, 01
T (s) 0, 83 4, 76 5, 59

Case 2: Real Dynamic Positon Emission Tomography (PET) Images
Simulations have also been performed on real Dynamic Positon Emission To-
mography (PET) data to study the pharmacokinetics of the [18F]-FDG (Fluo-
roDeoxyGlucose) tracer on human brain. The main objective is to estimate the
arterial pharmacokinetic also called Arterial Input Function (AIF) using only
the dynamic TEP images with no arterial blood sampling (rAIF) which is too
invasive for routine clinic use. The rAIF is only considered here as the reference
AIF to assess the proposed estimator accuracy. As a matter of fact, an accurate
estimation of the AIF allows a quantitative measurement which is indispensable
for an efficient treatment evaluation in oncology. We have 19 human brain PET
images recorded during 33mn. Each 3D PET image is reshaped to form one row
of the observations matrix X . The number of observations is m = 19 and the
number of samples is p = 266742. We set the number of sources to n = 4.

Fig 1 shows the pharmacokinetics compartments estimated by the SCSA-UNS
algorithm. Every subfigure represents the normalized kinetics (estimated mixing
matrix) over the first four minutes (lower left) and the corresponding spatial

(a) Arterial (b) Veinous

(c) Tissue (d) Unidentified

Fig. 1. Estimated pharmacokinetics compartments
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distributions (estimated sources) according to the three views coronal (upper
left), sagittal (upper right) and axial (lower right). Three of the estimated com-
partments are identified to be the Arterial compartment (Fig 1.a), the Veinous
one (Fig 1.b) and the Tissue one (Fig 1.c). Fig 1.a (lower left) shows that the
normalized estimated AIF correctly approximates the normalized rAIF obtained
by blood sampling, which was the main objective. However, one may note nega-
tive values on the kinetic of the unidentified compartment (lower left of Fig 1.d)
which we attribute to measure noise.

5 Conclusions an Future Works

In this paper, we present a geometrical method for separating nonnegative
sources. In overdetermined case, the proposed method first reduces the dimension
of mixed data by performing the classical PCA and afterward runs the SCSA-
UNS algorithm on the reduced data. The SCSA-UNS algorithm, estimates the
mixing matrix by fitting a minimum volume simplicial cone to the scatter plot
of observations. Unlike other geometrical methods that require local dominance
or full additivity of the sources, SCSA-UNS only requires the mixed data to
fill enough the simplicial cone generated by the mixing matrix. Simulations on
synthetic data have showned that the proposed method always performs a good
separation in noiseless case and runs faster than other MV methods. The pro-
posed method also gave very promising results on real Dynamic PET images.
As future works, we will investigate how to avoid the freezing situations without
having to compute unfreezing matrices and we will consider the noisy case.
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Appendix 1: Computing Rl
k

W ≥ 0 and Y = W−1X ≥ 0 are the current estimations of A and S at iteration
k − 1 of sweep l, respectively. At iteration k, we look for a matrix Rl

k, so that
U = WRl

k verify the following three conditions:
i) U ≥ 0
ii) V (U) ≤ V (W )
iii) Z = U−1X ≥ 0

(
Z = U−1X = (Rl

k)
−1W−1X = (Rl

k)
−1Y

)
The first two conditions are automatically satisfied because W and Rl

k are non-
negative and due to Proposition 1. From the definition of Rl

k given by (6), one
may demonstrate that [Z]ij = [Y ]ij − rlik[Y ]kj , ∀ 1 ≤ i ≤ n, ∀ 1 ≤ j ≤ p. For

fixed i, [Z]ij ≥ 0⇔ rlik ≤
[Y ]ij
[Y ]kj

, ∀ 1 ≤ j ≤ p.

A convenient Rl
k matrix can then be computed by taking:

rlkk = 1 and rlik = min
1≤j≤p

[Y ]ij
[Y ]kj

, [Y ]kj �= 0, for i �= k (12)

Appendix 2: Computing the Unfreezing Matrix Ql

Before giving details of computation of the unfreezing matrix Ql, lets explain
how arises the freezing situation. Given W ≥ 0 and Y = W−1X ≥ 0 the current
estimated mixing matrix sources respectively and U = WRl

k:
V (U) = V (W ) ⇔ Rl

k = In ⇐⇒ rlik = δik. For i �= k and according to (12),
rlik = 0⇐⇒ ∃ 1 ≤ j ≤ p so [Y ]ij = 0 and [Y ]kj �= 0.

The freezing arises if, at sweep l, the algorithm finds Rl
k = In, ∀ 1 ≤ k ≤ n.

This situation happens when there are at least one zero value on each row of the
current estimated sources matrix (i.e. when ∀ 1 ≤ i ≤ n, ∃ 1 ≤ j ≤ p, [Y ]ij = 0).
To avoid this problem, we suggest applying an orthogonal linear transformation
Ql to Y (and QT

l to W ) to delete the zeros values of Y without increasing V (W ).
We then introduce the unfreezing matrix Ql so that X = WQT

l QlY = HT . The
current estimated mixing matrix and sources become H = WQT

l and T = QlY .
We look for a matrix Ql so that QT

l Ql = In and T > 0.
For findind such a Ql matrix, we define the criterion J by:

J(Q) =
n∑

i=1

p∑
j=1

1Tij where 1Tij =

{
1 if Tij = 0
0 elsewhere

(13)

The unfreezing matrix Ql can be computed by solving the following equation:

Ql = argmin
QTQ=In

J(Q) (14)

We developed a regularized gradient algorithm for solving the optimization prob-
lem (14) [9] but this method is not described here due to lack of space.
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Extracted by Nonnegative Tensor Factorization: 5 vs. 14 

Electrodes EEG Data  

Fengyu Cong1, Anh Huy Phan2, Piia Astikainen3, Qibin Zhao2,  
Jari K. Hietanen4, Tapani Ristaniemi1, and Andrzej Cichocki2  

1 Department of Mathematical Information Technology, University of Jyväskylä, Finland 
2Laboratory for Advanced Brain Signal Processing, RIKEN Brain Science Institute, Japan 

3Department of Psychology, University of Jyväskylä, Finland  
4Human Information Processing Laboratory, School of Social Science and Humanities, 

University of Tampere, Finland 
{fengyu.cong,piia.astikainen,tapani.ristaniemi}@jyu.fi, 
{phan,qbzhao,cia}@brain.riken.jp, {jari.hietanen}@uta.fi 

Abstract. As nonnegative tensor factorization (NTF) is particularly useful for 
the problem of underdetermined linear transform model, we performed NTF on 
the EEG data recorded from 14 electrodes to extract the multi-domain feature of 
N170 which is a visual event-related potential (ERP), as well as 5 typical 
electrodes in occipital-temporal sites for N170 and in frontal-central sites for 
vertex positive potential (VPP) which is the counterpart of N170, respectively. 
We found that the multi-domain feature of N170 from 5 electrodes was very 
similar to that from 14 electrodes and more discriminative for different groups 
of participants than that of VPP from 5 electrodes. Hence, we conclude that 
when the data of typical electrodes for an ERP are decomposed by NTF, the 
estimated multi-domain feature of this ERP keeps identical to its counterpart 
extracted from the data of all electrodes used in one ERP experiment. 

Keywords: Event-related potential, feature extraction, multi-domain feature, 
N170, nonnegative tensor factorization. 

1 Introduction 

Event-related potentials (ERPs) have become a very useful method to reveal, for 
example, the specific perceptual and cognitive processes [11]. To achieve this goal, it 
is necessary to represent the information carried by data of an ERP with a feature or 
features for analysis. Generally, the peak amplitude of an ERP measured from its 
waveform in the time domain has become a mostly used feature to symbolize the ERP 
for statistical analysis [11], [12]. Furthermore, an ERP can also be represented by 
features in the frequency domain and in the time-frequency domain for analysis [9], 
[15]. Combined with the source localization method, these measurements can be 
applied to formulate the topography of an ERP in the spatial domain [2]. Indeed, the 
above mentioned features are very conventional to analyze ERPs. With the 
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development of advanced signal processing technologies, some new features of ERPs 
can be formulated, for example, the multi-domain feature of an ERP [6], [7] extracted 
by nonnegative tensor factorization (NTF) [5]. In contrast to an ERP’s conventional 
features which exploit the ERP’s information in one or more domains sequentially, 
the multi-domain feature of the ERP can reveal the properties of the ERP in the time, 
frequency, and spatial domains simultaneously [4], [5], [6], [7]. Hence, this new 
feature may be less affected by the heterogeneousness of datasets [7].   

Generally, when an ERP is statistically analyzed, the EEG data at the typical 
electrodes for the ERP are often used. For example, regarding a visual N170, the data 
at P7 and P8 are mostly analyzed [14] and for the auditory mismatch negativity 
(MMN), the data at Fz is frequently studied [13]. In our previous report to extract the 
multi-domain feature of MMN by NTF from the time-frequency representation of 
EEG, we used all the data collected at frontal, central, parietal and mastoid sites [7]. 
Since NTF is particularly useful for the problem of the underdetermined linear 
transformation model where the number of sensors is smaller than that of sources, it is 
possible to apply NTF for data collected at one scalp area (the model of such data is 
underdetermined since the number of electrodes is smaller than that of brain sources). 
Hence, it can be very interesting to examine whether NTF can extract the desired 
multi-domain feature of an ERP not from data collected at sites distributed along the 
whole scalp, but just from data recorded at a typical or restricted area of the scalp. 
This is very significant in EEG data collection when the target of research is not the 
source localization, but the more conventional analysis of ERPs.  

In this study, we performed NTF on the multi-way representation of ERPs elicited 
by pictures of human faces in adult participants with and without depressive 
symptoms. We expected to obtain the identical multi-domain features of N170 from 
the data of 14 electrodes and the data of five typical electrodes for N170.            

2 Method 

2.1 Data Description 

Twenty two healthy adults (control group, denoted as CONT hereinafter, 18 females, 
age range 30-58 years, mean 46.1 years) and 29 adults with depressive symptoms 
(depressive symptom group, denoted as DEPR hereinafter, 24 females, age range 29-
61 years, mean 49.1 years) participated in the experiment. Pictures of neutral facial 
expressions served as a repeated standard stimulus (probability = 0.8), and pictures of 
happy and fearful expressions (probability = 0.1 for each) as rarely presented deviant 
stimuli. At least two standards were presented between randomly presented 
consecutive deviants. The stimulus duration was 200 ms, and the stimulus onset 
asynchrony was 700 ms. Altogether, a total of 1600 stimuli presented. During the 
recordings, the participants were seated in a chair, and were instructed to pay no 
attention to the visual stimuli but instead attended to a radio play presented via loud 
speakers. Enhanced face sensitive N170 responses for the emotional faces have 
shown to be elicited also in this type of an oddball paradigm [1].  

Brain Vision Recorder software (Brain Products GmbH, Munich, Germany) was 
used to record the EEG with 14 electrodes at Fz, F3, F4, Cz, C3, C4, Pz, P3, P4, P7, 
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P8, Oz, O1 and O2 according to the international 10-20 system. An average reference 
was used. Data were on-line digitally filtered from 0.1 to 100 Hz, and the down 
sampling frequency was 1000 Hz. Then, the obtained data were offline processed 
with Brain Vision Analyzer software and MATLAB (Version R2010b, The 
Mathworks, Inc., Natick, MA). EEG data were segmented into ERP responses of 200 
ms pre-stimulus period and 500 ms after the stimulus onset, and the baseline was 
corrected based on the average amplitude of the 200-ms pre-stimulus period. 
Segments with signal amplitudes beyond the range between -100 and 100 μV in any 
recording channel, were rejected from further analysis. The number of kept trials for 
the averaging was about 100 in average. The recordings of the artifact-free single 
trials were averaged at each channel for each subject. For the present study, the data 
from the happy deviants were chosen for the analysis as the processing of positive 
information is known to be especially impaired in the depressed individual [16]. 
Therefore, comparison of the brain activity between the happy and the fearful 
expressions, or between the rare emotional (happy and fearful) stimuli and the 
frequently presented (neutral) standard stimuli are out of the scope of this study.  

2.2 Nonnegative Tensor Factorization for Multi-domain Feature Extraction 

In the form of tensor products, the NTF model [5] can also be written as 

           Y I U U N U N Y ,             (1) 

where  Y is an approximation of the N-order tensor Y I I IN , and I is an 

identity tensor [5], U u , u , , uJ I J  is the nonnegative matrix, n 1,2, , N, and u 1, for n 1,2, , N 1, j 1,2, , J. Each factor U  explains the data tensor along a corresponding mode. Most algorithms for NTF 
are to minimize a squared Euclidean distance as the following cost function [5] 

      D Y|Y Y I U U N U N F.           (2) 

In this study, we applied the hierarchical alternating least squares (HALS) algorithm 
[5] whose simplified version for NMF has been proved to be superior to the 
multiplicative algorithms [8]. The HALS is related to the column-wise version of the 
ALS algorithm for 3-D data [3]. The HALS algorithm sequentially updates 

components u  by a simple update rule u Y u u u u N u N                               U U Tu                                             (3) 

where, ‘ ’  denotes the Hadarmard product, , and  Y u  represents the 

n-mode product between tensor and vector [5]. The factor except the last one will be 

normalized to be unit vectors during iterations u u u , 1,2, , 1. It should be noted that this study does not tend to propose an NTF 
algorithm. Therefore, any NTF algorithm can work for the data. 

In detail, regarding the study N170 with NTF, we formulated a fourth-order tensor Y including modes of the frequency by time by channel by subject. The number of 
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frequency bins (I ), timestamps (I ), channels (I ), and subjects (I ) compose the 
dimensions of the tensor Y. Decomposition of Y results in four matrices: Y I U U U U I U U U F,    (4) 
where, the last factor is the feature matrix (I J) consisting of J extracted multi-
domain features of brain responses in the N170 experiment onto the subspaces 
spanned by the spectral (i.e., U (I J)), temporal (i.e., U I J ) and spatial 
(i.e., U (I J)) factors. This is that each subject i i 1,2, , I  is characterized 
by the i  row of U  n 1,2,3,4  in this study. Furthermore, for one feature, i.e., 
one component among J  components in the feature factor matrix, the values of 
different participants, i.e., the data at the same column of feature factor matrix U , 
are comparable since they are extracted under the identical subspaces; but due to the 
variance ambiguity of NTF [5], the variances of the different features/components in 
any factor matrix are not comparable. Moreover, the extracted J  multi-domain 
features should be associated with different sources of brain activities. Then, it is 
necessary to determine which multi-domain feature corresponds to the desired ERP.  

Regarding the multi-domain feature of N170, firstly, the temporal components in 
the temporal factor matrix extracted by NTF have different peak latencies and the 
desired one for N170 may look like the waveform with a sole peak whose latency 
should be around 170 ms. Secondly, when the subjects in the fourth-order tensor as 
denoted by the tensor  include two groups, the spatial pattern extracted by NTF can 
be the difference topography between the two groups of participants because NTF 
also decomposes the multi-way representation of data in the spatial dimension. We 
will show in the next section that N170 has different peak amplitudes at P7 for the 
two groups. Thus, in this study, we assume the desired spatial component reveals the 
difference topography around P7 for N170. Finally, the desired spectral structure of 
an ERP elicited by the passive oddball paradigm may possess its largest energy 
between 1 and 5 Hz [7]. These are the criteria to choose the desired multi-domain 
feature of N170 from all the extracted multi-domain features. Furthermore, in our 
experiment, the vertical positive potential (VPP) and N170 probably correspond to the 
identical brain processes [10]. Hence, the multi-domain feature of VPP was also 
extracted here. The difference in the topography of VPP between two groups of 
participants would probably appear at the right hemisphere in this study. For detail of 
the multi-domain feature selection for an ERP, please refer to our previous report [7].  

2.3 Data Processing and Analysis 

In this study, NFT was performed on all subjects’ data consisting of the time-frequency 
representation of the ordinary averaged traces at all 14 electrodes, as well as at five 
electrodes including P7, P8, O1, Oz and O2 which are typical electrode sites to analyze 
N170 [14], and at five electrodes including Fz, F3, F4, C3 and C4 which are typical sites 
to analyze VPP [10]. In order to obtain the time-frequency representation (TFR) of ERPs, 
the complex Morlet wavelet transformation [17] was performed on the averaged trace at 
each channel. For the Morlet, the half wavelet length was set to be six for the optimal 
resolutions of the frequency and the time [17]; the frequency range was set from 1 to 10 
Hz, and 91 frequency bins were uniformly distributed within this frequency range. Next, 
the fourth-order tensor with the dimensions of frequency (91 bins) by time (700 samples) 
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by channel (14 or 5) by subject (51) was formulated in terms of TFR of all subjects at 
chosen channels. And then, from the formed tensor, multi-domain features respectively 
were extracted by 10 NTF models with numbers of components ranging from 15 till 24 
based on the experience learned from our previous report [7]. Subsequently, in each 
model, the desired multi-domain feature of N170 was selected according to properties of 
N170 in the time, frequency, and spatial domains as mentioned above. So did for VPP. 
After the desired feature component which was a vector including values for all subjects 
was chosen in one NTF model, it was normalized according to its L-2 norm. Finally, we 
obtained multi-domain features of N170 and VPP with the data of 3 multi-domain 
features of ERPs by 51 participants by 10 models.  

After features of N170 were ready, statistical tests were performed to examine the 
difference of N170 between two groups with the Bonferroni correction and with 0.05 
as the level of significance. For peak amplitudes of N170 in the time domain 
measured from ordinary averaged traces (i.e., ‘raw data’), a General Linear Model 
(GLM) multivariate procedure for a 4×2 design was applied using the channel (P7, 
P8, O1 and O2) as the independent variable and the group (CONT and DEPR) as the 
fixed factor. Regarding the multi-domain feature of N170 extracted by NTF, a GLM 
multivariate procedure was implemented. The GLM multivariate procedure for an 10 
× 2 design was made using the NTF-model as the dependent variable and the group 
(CONT and DEPR) as the fixed factor.  

3 Results 

In this section we compare discriminability of various features of N170 between two 
groups of participants, as well as the coherence between the multi-domain feature of 
an ERP extracted from data of 14 electrodes and that from data of five electrodes.  

Fig. 1 demonstrates the grand averaged waveforms of ERPs. The significant 
difference between two groups only appeared at P7 (F(1,49) = 5.185, p = 0.027). For 
illustration on how the multi-way data can be decomposed by a multi-way analysis 
method, Fig. 2 shows the demo for the common components factors in different 
domains extracted by NTF from the data of 14 electrodes when 20 components were 
extracted in each mode of Eq. (4). In this model as the third component in the 
temporal, spectral and spatial components matrices matched the properties of N170, 
the third feature was chosen as the desired multi-domain feature of N170 which is the 
one for model-20 in Fig.3. Fig.3 presents the desired multi-domain features of N170 
extracted through 10 NTF models from the data of 14 electrodes for demonstration.  

As illustrated in Table-1, the difference between two groups of participants was 
better revealed by the multi-domain features of N170 no matter they were extracted 
from the data of 14 electrodes or 5 typical electrodes, and the multi-domain feature of 
N170 outperformed that of VPP in discriminating the two groups based on the degree 
of significance of difference. Moreover, Table-2 tells that the multi-domain features 
of N170 between the data of 14 electrodes and the data of 5 typical electrodes were 
more highly correlated (correlations in Table-2 were all significant) than any other 
two pairs, which means they reflect absolutely similar information. Furthermore, 
these indicate that although VPP and N170 possess the identical latency and conform 
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to identical brain processes [10], the multi-domain feature of N170 extracted by NTF 
from its typical electrodes better represented the brain processes than that of VPP 
from its typical electrodes to categorize different groups of participants.  
 

 

Fig. 1. Grand averaged waveforms of ERPs   

 
a)                                       b)  

               
                                c ) 

Fig. 2. Common 
components’ 
factors extracted by 
NTF from data of 
14 electrodes in one 
NTF model as 
illustrated in Eq. 
(4): a) temporal 
factor, b) spectral 
factor, c) spatial 
factor 
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Fig. 3. Multi-domain features of N170 extracted by 10 NTF models from data of 14 electrodes  

 

Table 1. Statistical tests of extracted features    

 

 

Table 2. Correlation coefficient of features 
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4 Conclusions 

Though NTF from data of fewer electrodes which are typical to analyze an ERP, the 
extracted multi-domain feature of the ERP may be as identical as that from the data of 
much more electrodes distributed all over the scalp surface. Furthermore, in one ERP 
experiment, different components with different polarities in different scalp sites may 
have the same latency and reveal identical brain activities, such as, VPP in frontal-
central sites and N170 in occipital-temporal sites [10], the multi-domain feature of 
prime component may better represent the brain activities than other components do. 
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Abstract. High frequency electromagnetic waves are highly influenced by at-
mospheric conditions, namely wireless microwave links with carrier frequency 
of tens of GHz can be used for precipitation monitoring. In the scope of this pa-
per we present a novel detection/classification system capable of detecting wet 
periods, with the ability to classify the precipitation type as rain or sleet, given 
an attenuation signal from spatially distributed wireless commercial microwave 
links. Fade (attenuation) dynamics was selected as a discriminating feature  
providing the data for classification. Linear Feature Extraction method is  
formulated; thereafter, the efficiency is evaluated based on real data. The detec-
tion/classification system is based on the Fisher’s linear discriminant and like-
lihood ratio test. Its performance is demonstrated using actual Received Signal 
Level measurements from a cellular backhaul network in the northern part of 
Israel. In particular, the use of the raw data as well as its derivatives to achieve 
better classification performance is suggested. 

Keywords: Environmental monitoring, Received Signal Level (RSL) mea-
surements, feature extraction, rain sleet events classification/detection, fade  
dynamics. 

1 Introduction 

Microwave communication links are used in the backhaul network of cellular sys-
tems, making them widespread in most countries. Since the carrier frequency of those 
links is typically above 10GHz, the wave propagation is highly influenced by precipi-
tation. The impairment caused by precipitation has been extensively studied,  
whereas the main objective is designing a reliable communication network. However, 
those 'impairments' can be used for monitoring precipitation, as first suggested by 
Messer et al [ 1]. Following these finding, a number of metrological applications using 
microwave Received Signal Level (RSL) recording were explored [ 2]. Dual-
frequency links find applications in calibration of weather radar [ 3], correction of X-
band radar rainfall estimates [ 4] and identification of melting snow [ 5]. The use of 
microwave links to study evaporation was explored by Leijnse et al. in  6]. A method 
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for estimation of two-dimensional rainfall intensity field based on multiple path-
integrated RSLs was suggested in [ 7]. A method for the detection of RSL attenuation 
in a single link caused by sleet events was proposed in [8]. 

In this paper we deal, for the first time, with the challenge of classifying precipitation 
(rain, sleet and snow) given RSL measurements. RSL signals from 3 commercial micro-
wave links were recorded in the area of Ortal Mountain in the northern part of Israel.  
Following the basic observation of [8] that sleet/snow and rain events could be distin-
guished by observing the dynamics (magnitude, duration and slope) of attenuation;  
optimal feature vector for classification of rain, sleet and snow events were selected by 
maximizing the Fisher’s Linear criterion, and by applying Linear Mapping (LM). Finally, 
the classification of the events was done using the Likelihood Ration Test (LRT). 

The paper is organized as follows: Section 2 describes the classification method 
and the resulting algorithm. Section 3 provides experimental results, and in Section 4 
discussion and conclusions are provided. 

2 Method 

2.1 Setup 

A backhaul system composed of fixed terrestrial line-of-sight radio microwave links, 
employed for transmission purposes by an Israeli cellular operator named Cellcom 
(http://www.cellcom.com/), was used to demonstrate the classification method. In 
particular, three microwave links in the northern part of Israel were used, as described 
in Table 1. Microwave Links Information. Cellcom system was designed to secure 
reliable communication and not to precipitate monitoring, and the RSL records were 
pre-processed accordingly, introducing two main challenges once used for precipita-
tion monitoring: i) The RSL signal measured at the base station with quantization 
level of 1dB; ii) Only a maximum RSL (MRSL) and minimum RSL (mRSL) values 
within every 15 (non-overlapping) minutes were transmitted and recorded at the con-
trol center. The RSL records at a control center were used as input for the  
classification system described in Fig.1. 

Table 1. Microwave Links Information 

Link 
# Microwave Link Name 

Frequency 
(GHz)

Length 
(km) 

Site 1 
Height(m) 

Site 2 
Height(m) 

1 HAR ODEM - ORTAL 19.3 12.8 1080 898 
2 ORTAL- HAR ODEM 19.3 12.8 898 1080 
3 KATZRIN - ORTAL 18.36 11.9 375 898 

 
As seen in Table 1, the three links had a common base station in Ortal, whereas a 

Parsivellaser based disdrometer [ 9] was installed as a control device by our research 
group. This disdrometer measures the size and velocity of the particles passing 
through the laser beam and classifies them into rain/snow/drizzle/hail [ 9], to name a 
few. The disdrometer output signal (precipitate type and intensity, measured every 10 
sec) was used as a “ground truth” (baseline) to validate the performance of the classi-
fication system depicted in Fig.1. 
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2.2 Signal Processing 

The proposed signal processing system for the classification of precipitates, based on 
Pattern Recognition (PR), is schematically illustrated in Fig.1. A preliminary task 
(preprocessing) in PR problems is to select suitable features allowing to distinct  
between the classes. Following [8], the dynamic properties of the fade (RSL) are used 
as a distinctive feature. Moreover, it is essential to select the best possible class indi-
cators (features) from the data obtained by the sensors, prior to classifying the data. A 
common method for the selection of indicators (features) is Feature Extraction (FE). 
In the following section, a general linear method for FE is described [ 15], aiming to 
select an optimal feature for classification. In the last part of this section, Likelihood 
Ratio Test for comparison of two hypotheses will be presented. 

 

Fig. 1. Precipitates Classification System - Data Flowchart 

2.2.1   Fade Dynamics 
The dynamics of the attenuation caused by specific precipitation can be characterized 
by a fade magnitude, fade duration and fade slope [ 10, 11]. Fade duration is simply 
the time interval during which attenuation exceeds a certain threshold value. Fade 
slope indicates the rate of change in the attenuation. The fade slope attenuation caused 
by rain or other meteorological events is very important for designing fade mitigation 
techniques, since it determines the required tracking speed of fade mitigation tech-
niques. The ITU-R Model [ 12] defines the fade slope ξ  at a certain point in time by 

filter data as: 

 ( )
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ξ

⎛ ⎞ ⎛ ⎞+ Δ − − Δ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠=

Δ
 (1) 

Where A is the attenuation in dB, and tΔ  is time interval length inwhich the fade 
slope is calculated, in seconds. The following model for Conditional Probability Dis-
tribution (CPD) of the fade slope ξ  for a given attenuation A  was suggested by Van 

de Kamp [ 13].The model was developed using measurements collected in16 months: 
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Whereas ξσ is the standard deviation of the conditional fade slope at a given attenua-

tion level. The standard deviation is a function of: attenuation level, properties of  
the microwave link, climate and type of precipitate - drop diameter, and a fraction of 
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melting water the drop contains [12,  13]. An experimental study [ 8] demonstrated that 
the CPD - p(ζ|A) is different in casesofattenuation caused by rain compared with atten-
uation caused by sleet. Fig.2 demonstrates qualitatively the difference between the fade 
slope CPD function caused by rain vs. the functioncaused by sleet, according to [8]. 

0
Fade Slope [dB/s]

P
ro

ba
bi

lit
y

 

Slope caused by rain

Slope caused by sleet

 

Fig. 2. Qualitativeshapeof the Conditional Probability Distribution Functions of fade slope 

2.2.2   Linear Discriminant 
The goal of discriminant analysis can be summarized as finding a function returning 
values,allowing a good discrimination between different classes of the input data. 

More formally, one is looking for a function : Df X R→ , 

whereas ( )f x and ( )f z are similar whenever x and z are similar, and different 

otherwise. Similarity is usually measured by class membership and Euclidean 
distance. In a uniquecase of linear discriminant analysis, one is seeking for the linear 
function ( ) ,    N Df R ×= ⋅ ∈x w x w . The most renowned linear discriminant was 

presented by Fisher [14]. Fisher’s idea was to look for a direction w , whereas the 
distance between class measuresis as large as possible, while achieving thesmallest 
possible variance for every class.Meaning, given a training 

set ( ) ( ){ }1 1, ,.., ,l lX y y= x x , where 1,...,i i l∀ =x are the input vectors and  

 1,...,iy i l∀ = are the class labels, Fisher’s linear discriminant is given by 

vector w maximizing [14,15]:  
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are the between class and within class scattering matrices, respectively, 
im is the 

sample average of class i , defined by
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il is the number of samples in 
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class i , ( ){ }, |i y X y i= ∈ =x x , and i is the class index. In order to find the op-

timal w , one should differentiate (3) with respect to w  and set the result to zero: 
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 (5) 

Two important properties of Fisher’s discriminant[ 16, 17] are: i) it has a global solu-
tion (maximum), although not necessarily unique, ii) this global maximum of (3) can 
be found by solving a generalized eigenvalue problem. It is well known that w max-
imizing (3) is the leading eigenvector of the eigenvalue problem (5). A linear model is 
relatively robust to noise and most likely will not overfit; on the other hand, the  
performance is naturallylimited by the linearity assumption. 

2.2.3   Likelihood Ratio Test 
In the scope of this work, our main objective is to classify the various physical  
phenomena responsible for the measured attenuations on a microwave link. In the 
previous sections we described analgorithm for selecting optimal features (or projec-
tion of the RSL signal to optimal space for classification); following such projection, 
we will have to assign each feature to one of the classes. In other words, a decision 
to which class each feature belongs must be made. A fundamental approach for pat-
tern classification induced by Bayesian Decision Theory is a Likelihood Ration Test, 
which iswidely and extensivelydiscussed in the literature, e.g., [ 18]. At a glance, in a 

scenario of decision between two possible classes 1 2,ω ω  with known a priori prob-

abilities ( ) ( )1 2,P Pω ω , respectively, a sample x  will be associated with 
1ω  or 

2ω  
according to: 
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Where mlλ is the loss associated with determining mω where the true class is lω ; 

therefore, it is reasonable to assume that no loss is caused by correct classification, 

and to set 11 22 0λ λ= = . 
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The selection of the ratio 12 21λ λ  can increase the probability of detection, while 

increasing the probability of false alarm and vice versa. For the symmetrical case 

(zero-one loss) where 12 21 1λ λ = and equal priors ( ) ( )1 2p pω ω= , we obtain the 

decision rule that minimizes the average probability of error in theclassification 
process.  
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3 Experiment and Results  

The preprocessing unit converts the sequence of l  RSL measurements from the 3 
links (mRSL and MRSL from each) into a 12 by (l-1) matrix X, with the first 6  
columns presenting the raw data (mRSL and MRSL for each link), and the next 6 
columns presenting an approximation to the derivative of the measurementsin order to 
provide information on the dynamics of the RSL. Matrix X is given by: 

 [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

1 1 1 1 1 1

1 1 1 1 1 1

0 0 0 1 0 1

2 2 2 1 2 1

mRSL MRSL mRSL mRSL MRSL MRSL

X

mRSL l MRSL l mRSL l mRSL l MRSL l MRSL l

⎡ ⎤− −
⎢ ⎥
⎢ ⎥
⎢ ⎥− − − − − − − −⎣ ⎦

… …

… …

 (8) 

The classification system was designed a decision making tree, as illustrated in  0. By 
applying a tree classification method we need only a single feature at each decision 
node, since under an optimal projection only c-1 features are needed to distinguish 
between c classes [15]. In Fig.3, scatter plots of two different features are demonstrat-
ed: on the left hand side, a scatter diagram of a feature for classification between wet 
and dry events, fdw, is depicted; while on the right hand side, a scatter plot of a feature 
distinguishing between rain and sleet events, frs, is shown. The featuresfdw,frs were 
calculated as a linear combination of thematrix Xtogether withthe projecting vec-
torswdw,wrs, respectively. Theprojecting vectors were calculated using the LDA  
method (3-5), based on a training set(X,y), where yi is a class  
label { }, ,iy dry rain sleet∈ , as measured by a disdrometer. 

 

(a)  

(b) 

Fig. 3. (a) Classification Tree. (b) Scatter plots of an optimal feature obtained by applying 
LDA. On the left hand side, a scatter diagram of a feature for classification between wet and 
dry events; on the right hand side, a scatter plot of a feature distinguishing between rain and 
sleet events. 

Fig.4 presents the performance of the proposed classification system, whereas data 
from the 3 day storm in mid-December, 2010, was used. It describes the probability of 
detection as a function of probability of false alarm for different decision rules. The  
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ratio of 12 21λ λ was varied from 0 to infinity and for each probability of detection 

value and probability of false alarm value was evaluated.  As a reference, the classifi-
er of Fig. 1 has been applied on the raw RSL data only (without the derivative);  
subsequently, the X matrix contains only the first 6 columns. As expected in this case, 
where the different dynamics of rain/sleet events are less emphasized, the perfor-
mance of the classifier is worse (Fig. 4b). The classification between dry and wet 
events, however, is less influenced once the derivative is not used.  
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Fig. 4. ROCs of the classification system for various preprocessing methods (RSL only vs. 
using RSL with its derivative dRSL/dt.) and LDA feature extractor. On the left hand side, 
“Dry” / “Wet” classification ROC. On right hand side, “Rain” / “Sleet” classification ROC. 

4   Discussion and Summary  

In the scope of this paper, a novel detection/classification system capable of detecting 
wet periods, and of classifying the type of precipitationas rain or sleet, based on a 
measured attenuation signal obtained from spatially distributed wireless microwave 
links, was presented. The performance of the proposed classification system is  
summarized in Table 2.  

Table 2. Classification system with LDA feature extraction – performace summary 

 “Dry”, “Wet” classification “Rain”, “Sleet” classification 

Definition of “False Alarm”  “dry” classified as “wet” “rain” classified as “sleet” 
Definition of “Detection”  “wet” classified as “wet” “sleet” classified as “sleet” 
dRSL/dt contribution to  
classication performance 

Low High 

Pr(Error)@ Pr(detection) 12%@ 83% 9% @ 52% , 25% @ 80% 

This work presents, for the first time, the applicability of RSL signal measured on a 
commercial wireless microwaves network to monitor the type of precipitation  
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causingthe attenuation.  As part of this work, it was shown that the dynamic behavior 
of the Received Signal Level as expressed by the derivative of the attenuation signal 
is a sufficient discriminator for the classification of rain and sleet events. Following 
this work, it wouldbe interesting to go one step further to estimate the 
amount/intensity of the precipitation, which is relatively straightforward in case of 
pure rain and/or pure snow [ 19]. However, once sleet is involved,a solid theory relat-
ing to how this can be done could not be found. In searchfor a better classification 
performance, one may also consider a non-linear classification system as the physical 
system that is defiantly non-linear (quantization, minimum/maximum signals). 

Acknowledgements. This research was partially supported by THE ISRAEL 
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Abstract. In the study of gene regulatory networks, more and more
quantitative data becomes available. However, few of the players in such
networks are observed, others are latent. Focusing on the inference of
multiple such latent causes, we arrive at a blind source separation prob-
lem. Under the assumptions of independent sources and Gaussian noise,
this condenses to a Bayesian independent component analysis problem
with a natural dynamic structure. We here present a method for the
inference in networks with linear dynamics, with a straightforward ex-
tension to the nonlinear case. The proposed method uses a maximum a
posteriori estimate of the latent causes, with additional prior information
guaranteeing independence. We illustrate the feasibility of our method
on a toy example and compare the results with standard approaches.

Keywords: Independent component analysis, Bayesian inference, latent
causes.

1 Introduction

In the field of bioinformatics, one prominent task is the study and inference
of gene regulatory networks (GRNs). Even though more and more quantitative
data becomes available, we still don’t observe all players in these networks. The
time courses of the unobserved players, also called latent causes, should then
be inferred from the data through their influence on the observed players. For
this, we use an ordinary differential equation model for the network with linear
dynamics which can easily be extended to include also nonlinear dynamics. If we
then assume that the latent causes are independent of each other and that the
noise in our system is Gaussian, we can infer multiple latent causes by solving
a Bayesian independent component analysis (ICA) problem. We here present a
straightforward approach, where the maximum a posteriori (MAP) estimate for
the latent causes is computed by a gradient descent algorithm in both linear and
nonlinear models. Our method allows inference of all parameters involved in the
system and naturally incorporates prior knowledge. When provided with suitable
prior knowledge, it is able to break the sign indeterminacy present in usual ICA
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solutions. As example we study a small model, the so-called repressilator [1,3].
We introduce latent causes in the form of time courses of gene activity influencing
the feedback loop. Our model can become nonlinear by the use of a sigmoidal
activation function. We then show that Bayesian inference is able to retrieve
the latent causes in the linear case. In the following, boldface capital/lowercase
letters stand for matrices/vectors, non-bold capital/lowercase letters for their
entries or scalars. We now first present some background on Bayesian inference
in Section 2, then details on the method and the model in Section 3 and finally
the results for the example in Section 4.

2 Bayesian Inference

When attempting blind source separation (BSS) of time course data, one dif-
ficulty is noisy data, due to measurement errors, biological variability etc. For
this reason, we chose a Bayesian inference approach to BSS since it naturally
incorporates the noise model for the data, here we will focus on Gaussian noise.
We base our approach on Bayes’ Theorem for the log of the posterior probability

log p(θ|X) ∝ log p(X|θ) + log p(θ) (1)

where θ are the parameters of the model andX is the measured time course data,
derived from the observed players. Thus the log posterior is proportional to the
log likelihood plus the log prior. In our case, the parameters are the unobserved
time courses of the latent causes and the mixing matrix of how they interact to
produce the data X, plus further parameters such as the strength of the noise.

In comparison to more involved methods such as mean field ICA [4], we di-
rectly determine an optimal set of parameters by computing the MAP estimate.
We do so by minimization of the negative log posterior by gradient descent. This
is convenient since with the assumption of normally distributed noise, the log
posterior can be derived analytically such that we can compute explicit update
formulas for the gradient descent. We will refer to our method as EM-MAP. We
will now further describe the model and then provide details on the Bayesian
inference.

3 Model Setup and Method Description

3.1 Data Description

Gene regulatory networks can be modeled by using a recent approach to gene
expression data analysis [2] which uses generalized continuous time recurrent
neural networks (CTRNN) as abstract dynamical models of regulatory systems,
leading to ODEs of the form

ġi (τ) = λi

⎛⎜⎝−gi (τ) +∑
l

W
(o)
i,l︸ ︷︷ ︸

known

ϕl (gl (τ)) +
∑
j

W
(u)
i,j︸ ︷︷ ︸

unknown

ϕj (hj (τ))

⎞⎟⎠ . (2)
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The different gi in equation (2) represent the time courses of the measured genes,
i.e. the observed players, while the hj represent the time courses of the latent
causes, all varying with time τ . Interactions are incorporated via the possibly
linear or nonlinear activation function ϕ, where an example for a nonlinear ac-
tivation could be ϕ(x) = (1 + e−ax)−1. In the linear case, which we will use to
compare our method to standard approaches, we take ϕ(x) = x. The indexes
i = 1, ..., ni and j = 1, ..., nj indicate the ni observed genes and the nj latent
causes, respectively. We assume here that nj is known, otherwise we face the
more difficult task of model selection.

The parameter λi in equation (2) denotes the degradation rate. The matrix
W is the interaction matrix, containing the interactions between all involved
players, whether observed or latent.

g h

W =

(
W(o) W(u)

0 0

)
g
h

(3)

We assume that the interactions between the observed players, i.e the blockW(o)

in equation (3), are known and the block of W belonging to the interactions on
the latent causes is equal to zero, see equation (3). The matrix W(u) in equation
(3) corresponds to the interactions of the latent causes on the observed players,
we will call it the mixing matrix from now on. It corresponds to the mixing matrix
commonly found in standard BSS problems. Furthermore, a positive mixing
matrix entry means an activating interaction, while a negative entry stands for
inhibition.

We now resort equation (2) according to observed and unobserved players and
obtain the mixing model

xi (τ) = λi

∑
j

W
(u)
i,j ϕj (hj (τ)) , (4)

where the data xi (τ) can be computed from the observed time courses gi (τ)
according to:

xi (τ) = ġi (τ) + λigi (τ) − λi

∑
l

W
(o)
i,l ϕl (gl (τ)) (5)

The derivative ġi (τ) in eq. (5) can be estimated from gi (τ) using e.g. splines.
In order to be able to solve the system numerically, we abandon the notion of
continuous time τ and make a transition to t = 1, ..., nt discrete time points,
yielding discrete versions of equations (4) and (5), cf. also equation (6).

3.2 Likelihood Setup

By assuming that our data is subject to time-independent, signal-specific Gaus-
sian noise

xi,t = λi

nj∑
j=1

W
(u)
i,j ϕj (hj,t)+εi, εi ∼ N

(
0, σ2

i

)
for i = 1, ..., ni, t = 1, ..., nt (6)
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we are able to set up the likelihood p(X|θ). Now we can describe in detail what
the parameters θ of the system are: first the time courses of the latent causes H,
then the entries of the mixing matrix corresponding to the influence of the latent
causes on the observed players W(u) and furthermore the additional parameters
of the mixing model, namely λi, σi, i = 1, ..., ni and possibly the parameters of
the activation function ai, i = 1, ..., ni. For easier computation, we rearrange all
parameters lexicographically into a vector, i.e. θ. An advantage of our method
in comparison with non-Bayesian methods like FastICA lies in the fact that by
our approach, we naturally get an estimate for all parameters of the system,
i.e. also for the strength of the noise and not only for the two matrices W(u)

and H.
We take the natural logarithm of the likelihood and get

F (θ) = log p(X|θ) = log

nt∏
t=1

ni∏
i=1

Nxi,t

⎛⎝λi

nj∑
j=1

W
(u)
i,j ϕj (hj,t) , σ

2
i

⎞⎠ = (7)

= −nt

ni∑
i=1

log
(√

2πσi

)
−

nt∑
t=1

ni∑
i=1

1

2σ2
i

⎛⎝xi,t − λi

nj∑
j=1

W
(u)
i,j ϕj (hj,t)

⎞⎠2

.

This yields a derivative (provided all ϕj are differentiable) of

∂F

∂hj,t
= −ϕ′

j (hj,t)

ni∑
i=1

λiW
(u)
i,j

σ2
i

(
xi,t − λi

nj∑
b=1

W
(u)
i,b ϕb (hb,t)

)
(8)

and
∂F

∂W
(u)
i,j

= − λi

σ2
i

nt∑
t=1

ϕj (hj,t)

(
xi,t − λi

nj∑
b=1

W
(u)
i,b ϕb (hb,t)

)
. (9)

The derivatives with respect to σi, λi and ai are similar in form and thus omitted
for the sake of brevity.

3.3 Prior Distributions

Since the likelihood is just a consequence of the assumed error model, we need
to use the prior distribution of the latent causes to enforce their independence.
This is equivalent to a prior that factorizes over the causes, such as

p(H) =

nj∏
j=1

p (hj) , p (hj) =

nt∏
t=1

p (hj,t) . (10)

To give the prior a shape which is well suited to represent a latent cause which
switches on and off again, we choose a mixture of two Gaussians, which is a
commonly used approach [8], to yield

p (hj,t) =

2∑
k=1

αj,k N
(
hj,t|φj,t,k, β

2
j,k

)
(11)
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where
φj,t,k = νj,k N (t|ξj,k, δj,k) (12)

The prior modes ξj,k should be chosen according to the largest change in the
data or any prior knowledge on the on/off time of the latent cause. For all other
parameters, we choose uniform priors. A prior of this form yields a derivative of

∂p (hj,t)

∂hj,t
=

2∑
k=1

αj,k
1√

2πβ2
j,k

·

· exp
(
− 1

2β2
j,k

(hj,t − φj,t,k)
2

)
·
(
− 1

β2
j,k

(hj,t − φj,t,k)

)
(13)

Together with eq. (8) and eq. (9), equation (13) yields the gradient necessary
for a standard gradient descent. In the actual implementation, we use adaptive
step sizes and an EM-like update scheme (hence the name EM-MAP), where
the parameters of the mixing matrix and all the other parameters are updated
alternately. To exclude the possibility of the optimization getting stuck in a
local optimum, we run it 100 times with randomly drawn initial values until
convergence. We ensure uniqueness of the decomposition by first whitening the
data X and furthermore whitening the current matrix H after each step.

4 Results

4.1 Setup of the Toy Example

We demonstrate the potential of our method by applying it to a toy model. We
chose the so-called repressilator [3], a GRN of three observed genes, where each
gene inhibits the next gene in the loop. Tying into that loop are two additional
players which are unobserved and thus latent causes [1]. The aim is to reconstruct
the latent causes from their influence on the observed gene activities. We do so
by inferring the entries of the mixing matrix W(u) for the latent causes which
corresponds to finding out which of the observed genes are or are not targeted
by which of the latent causes. Indeed, we will focus on a reconstruction of the
mixing matrix which is as good as possible, since the entries describe the type of
interaction and may thus yield testable predictions. The complete setup of the
toy data is shown in Figure (1), the corresponding mixing matrix W(u) is shown
in equation (14).

W(u) =

⎛⎝ −2 1.2
−1 0
0 0

⎞⎠ (14)

To obtain the data from our toy model, we solved the differential equations
numerically on the time interval τ ∈ [0, 50]. By inserting the solution into the
right hand side of the differential equation, we obtain the derivatives and can
then compute the data X from the discrete version of equation (5), based on
nt = 20 time points.
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g1

g2 g3

h2h1

1.2-2.5

-2
-1

-1.5

-1

Fig. 1. The toydata: on the left a schematic of the setup with the observed players
g1,g2,g3 in red and the latent causes h1,h2 in blue, in the middle the time courses of
all five players and on the right the three signals computed from the players according
to the discrete version of equation (5)

4.2 Results for the Toy Example

For the evaluation of EM-MAP, we focused on the linear case with ϕ(x) = x,
since we can then compare our results to existing ICA methods. For this reason,
we also fixed the noise strengths σi and set λi = 1. We obtained results for our
toy model for four scenarios with different noise strengths, first with no noise,
then low (SNR ≈ 20 dB), medium (SNR ≈ 10 dB) and high noise intensity
(SNR ≈ 5 dB). For all four settings, the gradient descent of EM-MAP was run
a 100 times to yield the results depicted in Figure (2). We see from Figure (2)
that the runs corresponding to good posterior values, i.e. near the beforehand
known maximum, also correspond to good fits with the true entries of the mixing
matrix. About 10 % of runs converge to a value near the true solution. On the
left in Figure (2), we see the results for the noise free case, where the match is
very good. Notice especially that practically all runs correctly reconstruct the
fact that g3 is not targeted by the latent causes, i.e. that the entries 3 and
6 are zero. In the case for low noise intensity, we see that the quality of the
reconstruction is still very good, while it deteriorates for medium and high noise
levels, depicted in the two plots on the right. Note that now entries 3 and 6 of
the mixing matrix are not zero anymore in many runs. Also, we tested several
variants of the prior with different widths and locations of the modes and found
that results stay about the same, as long as prior modes are not close together.

4.3 Comparison of Our Method with Standard Approaches

We also compared our results with existing methods, namely with FastICA [6]
and mean field ICA [4], correcting for permutations and sign changes in the
mixing matrix for these two methods. Due to the influence of the prior, which
prefers positive time courses to negative ones, our method does not suffer from
the sign indeterminacy. For the comparison, we randomly chose ten additional
settings of the repressilator with two latent causes and ran both EM-MAP and
FastICA 100 times. The settings varied in the values in both W(u) and in W(o),
however we kept the structure of the three known players inhibiting each other
in a loop. Note that we use only nt = 20 time points, since data for GRNs is
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Fig. 2. The six entries of the mixing matrix, shown in a parallel coordinates plot.
Each line corresponds to one found mixing matrix, grey lines for solutions with low
posterior values, red lines for solutions with high posterior value, for all four noise
levels, respectively. The green line represents the true matrix.

typically sparse. To evaluate our method, we picked the gradient descent run
with the best posterior value. We then looked at the absolute differences from
the true mixing matrix for all three methods, see Table (1). We find that icaMF,
the mean field ICA method, does not perform very well on our toy example, while
our results are comparable to the results for FastICA. Indeed FastICA performs
better than EM-MAP in the settings with no noise and low noise intensity,
for medium noise intensity, both methods are equally good. EM-MAP clearly
outperforms FastICA for high noise intensity, a situation we will typically have
in GRNs combined with only few time points. Furthermore, FastICA did not
converge for the first 100 initial values for one of the settings, while convergence
for EM-MAP stays constant over all noise levels. This suggests a high robustness
to noise of our method, which is especially important for the study of GRNs such
that we expect our method to perform better than FastICA on real data. All
methods also work with only 10 time points, however the quality of the solution
deteriorates.

Table 1. The absolute differences from the true mixing matrix, for the four noise
levels and the three methods: our method (EM-MAP), icaMF and FastICA, mean and
standard error computed from the 11 settings of the repressilator

Data EM-MAP icaMF FastICA

noise free 0.5287 ± 0.060 3.0458 ± 0.29 0.2970 ± 0.03

low noise intensity 0.6166 ± 0.049 3.0526 ± 0.36 0.4566 ± 0.032

medium noise intensity 0.8098 ± 0.078 3.0964 ± 0.28 0.7794 ± 0.058

high noise intensity 1.2969 ± 0.15 3.7274 ± 0.34 2.2310 ± 0.21
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5 Conclusions and Outlook

In this contribution, we propose a direct method to compute the MAP estimate
for Bayesian ICA we call EM-MAP. We demonstrated its ability to correctly
reconstruct the mixing matrix on a toy example. Furthermore, we showed that
it is robust to noise in the data. We expect it to be that also when challenged with
real data. It is easily possible to extend our method to nonlinear settings by using
a nonlinear activation function. We conclude that Bayesian inference provides
a powerful framework for BSS which can use existing prior knowledge on the
latent causes. Also, in a next step, it would be desirable to extend the inference
by using MCMC sampling instead of a MAP estimate in order to provide whole
distributions for the unknown parameters. Another possible extension is the
use of a mixture of Gaussian processes as a prior distribution which would then
capture the time dependence between adjacent data points in the signals. Future
work could also include model selection through thermodynamic integration [7].
Since we will probably only very rarely have the case in GRNs that all players
are observed, we expect methods for reconstructing latent causes and especially
EM-MAP to be of particular relevance in that field.
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Abstract. With the increasing availability of interaction data stemming
form fields as diverse as systems biology, telecommunication or social
sciences, the task of mining and understanding the underlying graph
structures becomes more and more important. Here we focus on data
with different types of nodes; we subsume this meta information in the
color of a node. An important first step is the unsupervised clustering
of nodes into communities, which are of the same color and highly con-
nected within but sparsely connected to the rest of the graph. Recently
we have proposed a fuzzy extension of this clustering concept, which
allows a node to have membership in multiple clusters. The resulting
gradient descent algorithm shared many similarities with the multiplica-
tive update rules from nonnegative matrix factorization. Two issues left
open were the determination of the number of clusters of each color, as
well as the non-defined integration of additional prior information. In this
contribution we resolve these issues by reinterpreting the factorization
in a Bayesian framework, which allows the ready inclusion of priors. We
integrate automatic relevance determination to automatically estimate
group sizes. We derive a maximum-a-posteriori estimator, and illustrate
the feasibility of the approach on a toy as well as a protein-complex hy-
pergraph, where the resulting fuzzy clusters show significant enrichment
of distinct gene ontology categories.

1 Introduction

We are studying the question of clustering a k-colored graph into multiple over-
lapping (‘fuzzy’) clusters within each color. Here, a k-colored weighted graph
denotes a (positively) weighted graph G = (V,E) together with a partition of
the vertices V into k disjoint sets Vi. G is called partite if no two vertices in the
same subset are adjacent, i.e. edges are only allowed between different subsets.
In the following we denote the different sets as colors. Let ni := |Vi| be the num-
ber of vertices in partition i. We represent the graph as a set of ni × nj weight
matrices A(ij) with nonnegative entries for 1 ≤ i < j ≤ k. So node r of color i

is linked with weight A
(ij)
rl to node l of color j. The graph may be directed if

A
(ij)
rl �= A

(ij)
lr .

Letmi denote the number of clusters of Vi. We say that a non-negative ni×mi-

matrix C(i) is a fuzzy clustering of Vi, if it is right-stochastic i.e.
∑

s c
(i)
rs = 1 for

F. Theis et al. (Eds.): LVA/ICA 2012, LNCS 7191, pp. 528–535, 2012.
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all k. In other words c
(i)
rs quantifies the contribution of the r-th vertex of Vi to

the Vi-cluster s. A fuzzy clustering of G is then defined as the approximation of
G by a smaller ‘backbone network’ H , defined on fuzzy clusters of same-colored
vertices of G. So we search for a k-colored graph H with mi×mj weight matrices
B(ij) and ni × mi fuzzy clustering matrices C(i) such that the connectivity
explained by H is as close as possible to G after clustering, i.e. such that

A(ij) ≈ C(i)B(ij)(C(j))� =: Â(ij). (1)

In the following we will measure approximation quality by some matrix norm or
divergence.

We have previously addressed this question [2, 3] as extension of a discrete
graph clustering method [6]. Our main contribution was a novel efficient mini-
mization procedure, mimicking the multiplicative update rules employed in al-
gorithms for non-negative matrix factorization [4]. However just as in k-means,
the user had to provide the algorithm with the desired number of clusters for
each color. Moreover, it was unclear how to include additional prior information
such as already known interactions or clusterings in the method.

Here we propose a Bayesian extension of our previously proposed algorithm.
The number of clusters will be determined using automatic relevance determi-
nation (ARD), which only needs a single hyper parameter to determine a degree
of coarse graining simultaneously and comparably across all graph colors. ARD
has been initially proposed by [7], with later successful applications in PCA [1]
and more recently NMF [11] and community detection [9].

In the following, we will first derive the algorithm and then present an NMF-
type multiplicative update algorithm, solving a maximum-a-posteriori optimiza-
tion. We finish with a toy and an example from Bioinformatics.

2 Method

2.1 Bayesian Fuzzy Clustering Model

We want to approximate each adjacency matrix by its clustered backbone ac-
cording to equation (1). A Bayesian interpretation of the previously used least-
squares cost function [2,3] implies a probabilistic noise model resulting in the like-

lihood p(A(ij)|Â(ij)) = N (A(ij)|Â(ij), σ), with normal distribution N and some
fixed noise variance σ. Instead we now choose the parameter-free noise model

of a Poisson prior p(a
(ij)
rs |â(ij)rs ) = P(a(ij)rs |â(ij)rs ) with P(x|λ) = e−λλx/Γ (x + 1)

as motivated e.g. in [8, 11]. The corresponding negative log-likelihood can be
rewritten as

− log p(A(ij)|Â(ij)) =
∑
rs

â(ij)rs − a(ij)rs log â(ij)rs + logΓ (a(ij)rs + 1),

which essentially measures the Kullback-Leibler divergence between matrices
A(ij) and Â(ij), interpreted as i.i.d. samples of two random variables. Since the
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last term is independent of Â, maximizing the above negative log-likelihood is
equivalent to minimizing the KL-divergence.

Using the shrinkage approach from automatic relevance determination [7],
successfully employed in Bayesian PCA [1] and NMF [11], we now constrain
each of the clustering matrices C(i) along the rows according to

p(c
(i)
rk |β

(i)
k ) = HN

(
c
(i)
rk

∣∣∣ 0, β(i)−1
k

)
with

HN (x|0, β−1) =

{√
2
π β1/2 exp

(
− 1

2βx
2
)
x ≥ 0

0 x < 0

being the half-normal distribution cut off at 0 with precision (of the correspond-
ing full normal distribution) β. This implies the negative log-priors

− log p(C(i)|β(i)) =
1

2

∑
k

(
mi∑
r=1

β
(i)
k c

(i)2
rk

)
−mi log β

(i)
k + const .

Here mi is the (maximal) number of allowed dimensions in the reduction, which
may be as high as ni, but in practice should be lower.

The key point now lies in tying the prior for the middle factor B(ij) to the
same hyper-parameters β:

p(b
(ij)
kl |β

(i)
k , β

(j)
l ) = HN

(
b
(ij)
kl

∣∣∣ 0, β(i)−1
k + β

(j)−1
l

)
We need to include these terms in the fuzzy clustering from left (by C(i)) and
from right (by C(j)), so we add up the two variances. Note that instead of nor-
malizing the clustering matrices as before to remove the scaling indeterminacies,
we now include the scale parameter β, which does not overconstrain the problem.
This results in the following negative log-prior

− log p(B(ij)|β(i),β(j)) =

=
1

2

∑
kl

β
(i)
k β

(j)
l

β
(i)
k + β

(j)
l

b
(ij)2
kl − log β

(i)
k − log β

(j)
l + log(β

(i)
k + β

(j)
l ) + const

=
1

2

(∑
kl

β
(i)
k β

(j)
l

β
(i)
k + β

(j)
l

b
(ij)2
kl + log(β

(i)
k + β

(j)
l )

)

− 1

2
mj

∑
k

log β
(i)
k − 1

2
mi

∑
l

log β
(j)
l + const .

Finally, we specify each precision β
(i)
k by a Gamma distribution, conjugate to

the half-normal density, with hyper-parameters shape g and rate h chosen to be
independent of k and i:

p(β
(i)
k |g, h) =

hg

Γ (g)
β
(i)g−1
k exp(−β(i)

k h)
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This leads to the negative log-prior

− log p(β(i)|g, h) =
∑
k

hβ
(i)
k − (g − 1) log β

(i)
k + const .

The resulting overall posterior of the model is

p(B,C,β|A) ∼ p(A|B,C)p(B|β)p(C|β)p(β)

according to Bayes theorem, so altogether after some simplification we get the
total negative log posterior of the model as

fMAP(B,C,β) =
∑
ij

∑
rs

(∑
kl

c
(i)
rk b

(ij)
kl c

(j)
sl − a(ij)rs log

∑
kl

c
(i)
rk b

(ij)
kl c

(j)
sl

)

+
∑
i

∑
k

(
h+

1

2

∑
r

c
(i)2
rk

)
β
(i)
k

+
1

2

∑
ij

∑
kl

b
(ij)2
kl

β
(i)
k β

(j)
l

β
(i)
k + β

(j)
l

+
1

2

∑
ij

∑
kl

log(β
(i)
k + β

(j)
l )

−
∑
i

∑
k

(
1

2
mi +M + (g − 1)

)
log β

(i)
k + const,

with M =
∑

j mj being the number of all latent dimensions. Here the regulating

influence of β can be seen: for larger β
(i)
k , the last (negative) term will decrease

i.e. become more negative, whereas the second to fourth (positive) terms will all

increase, thus in effect forcing some β
(i)
k to stay small.

2.2 Algorithm

We will minimize the negative log posterior fMAP using a multiplicative update
rule, based on local gradient descent, generalizing the multiplicative updates
from NMF [4, 5]. For this we first determine partial derivatives of fMAP. If we
are to minimize f by alternating gradient descent, we then simply start from an
initial guess of B(ij),C(i),β(i) and alternate between updates of B(ij), C(i) and
β(i) for all i, j:

b
(ij)
kl ← b

(ij)
kl − η

(ij)
kl

∂f

∂b
(ij)
kl

c
(i)
rk ← c

(i)
rk − η

(i)
rk

∂f

∂c
(i)
rk

β
(i)
k ← β

(i)
k − η

(i)
k

∂f

∂β
(i)
k
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These update rules have two disadvantages: for one, choice of update rate η
(possibly different for B, C, β and i, j) is unclear; in particular, for too small η
convergence may take too long or may not be achieved at all, whereas for too
large η we may easily overshoot the minimum. Moreover, the resulting matrices
may become negative. Hence we follow the Lee and Seung’s idea for NMF [4]
and rewrite this into multiplicative update rules. Let us choose update rates

η
(ij)
kl :=

b
(ij)
kl

b
(ij)
kl

β
(i)
k β

(j)
l

β
(i)
k +β

(j)
l

+
∑

rs c
(i)
rk c

(j)
sl

Plugging this into the gradient descent equations, this results in the desired
multiplicative update rules

b
(ij)
kl ← b

(ij)
kl − η

(ij)
kl

(
b
(ij)
kl

β
(i)
k β

(j)
l

β
(i)
k + β

(j)
l

+
∑
r

c
(i)
rk

∑
s

c
(j)
sl

)
+ η

(ij)
kl

∑
rs

a
(ij)
rs c

(i)
rk c

(j)
sl∑

uv c
(i)
rub

(ij)
uv c

(j)
sv

=
b
(ij)
kl

b
(ij)
kl

β
(i)
k β

(j)
l

β
(i)
k +β

(j)
l

+
∑

r c
(i)
rk

∑
s c

(j)
sl

∑
rs

a
(ij)
rs c

(i)
rk c

(j)
sl∑

uv c
(i)
rub

(ij)
uv c

(j)
sv

c
(i)
rk ←

c
(i)
rk

c
(i)
rkβ

(i)
k +

∑
sjl

(
b
(ij)
kl + b

(ji)
lk

)
c
(j)
sl

∑
sjl

(
a
(ij)
rs b

(ij)
kl + a

(ji)
sr b

(ji)
lk

)
c
(j)
sl∑

uv c
(i)
rub

(ij)
uv c

(j)
sv

β
(i)
k ←

1
2mi +M + (g − 1)

h+ 1
2

∑
r c

(i)2
rk +

∑
j

∑
l

( (
b
(ij)2
kl +b

(ji)2
lk

)
2(β

(i)
k /β

(j)
l +1)2

+ 1

β
(i)
k +β

(j)
l

)
Note that we can rewrite the update rules in the commonly used matrix form;
however in our present setting they turn out to be more complicated than the
above component-wise rules, so we omit them for brevity.

In practice we set the shape hyper-parameter in the Gamma prior on β to
g = 2, and only include the rate hyper-parameter h as tunable scale, which can
be increased to get more clusters overall. An abort criterion is defined via a
minimally required rate of increase of the cost function.

3 Results

3.1 Algorithm Performance on a 2-Partite Toy Example

As starting example, we choose a 2-partite toy example already proposed in [6]
and further studied in [2]. 6 nodes of color 1 (‘upper’, see figure 3.1a) connect 4
nodes of color 2 (‘lower’), whereby the first two upper connect only the first two
lower, same for the last two, and the center two upper nodes connect all lower
ones.
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Fig. 1. Fuzzy clustering on a toy example. (a) The 2-partite example from [6] is chosen,
with (n1, n2) = (6, 4). (b) Result of structure recovery for different hyper-parameters
h over 20 runs.

Depending on the hyper-parameter h, the fuzzy clustering finds different num-
ber of clusters; this also depends on initialization due to local convergence of the
search algorithm. However for sufficiently larger h, the algorithm much more
robustly determines the correct answer, see figure 3.1b, where we measure re-
construction by the norm of s1A

(ij)−s2C
(i)B(ij)(C(j))� with scalings s1 and s2

chosen as the respective factor’s inverse norm in order to account for such inde-
terminacies, occurring due to use of Kullback-Leibler distance. We observe that
for sufficiently high hyper-parameter h, the correct reconstruction and indeed
the correct number of clusters is always found. This is not the case for lower
h. Hence the algorithm needs to be initialized with sufficiently large h, which
however only needs to be chose across all colors. Actual choice does not matter
as much as the cluster choice in previous work [2].

3.2 Fuzzy Clusters of a Protein-Complex Hypergraph

We finish by briefly illustrating the applicability of our method to heterogeneous
biological data; here we choose an example network from bioinformatics consist-
ing of proteins and protein complexes. A protein complex is defined as a group
of two or more associated polypeptide chains. Proteins in such a complex are
linked by non-covalent protein?protein interactions. Protein complexes are a key
building block of many biological processes. Essentially, they form the molecular
machinery that perform a vast array of biological functions in a cell.

We ask the question how proteins are organized in their functional protein
complexes. For this we constructed a hypergraph i.e. a two-partite graph with
nodes protein and protein complex, and links if a protein is involved in a complex.
The hypergraph was extracted from the CORUM data base [10], which repre-
sents a non-redundant catalogue of experimentally verified mammalian protein
complexes manually annotated at MIPS. Proteins were mapped onto their cor-
responding gene names in order to compile such a hypergraph across multiple
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Fig. 2. Fuzzy clustering of a protein-complex-hypergraph. (a) The bipartite unweighted
adjacency matrix of proteins and protein complexes. (b) Algorithm convergence (pos-
terior) over 100 iterations. The resulting fuzzy protein clusters (c) and complex clusters
(d) are mostly non-overlapping. A gene ontology enrichment (p < 10−9) of each protein
cluster (e) shows clearly separated biological processes per cluster.

species (mammals only). The resulting bipartite graph G = ((V1, V2), E) con-
sisted of |V1| = 3041 proteins and |V2| = 1515 complexes, and was linked with
|E| = 8255 edges, see figure 3.2(a).

Bayesian fuzzy clustering was applied with sufficiently high h and 10 as maxi-
mal number of clusters for both proteins and complexes. The algorithm was run
for 100 iterations, and resulted in 3 protein and 2 complex clusters, see figure
3.2(b-d). In order to test for relevance of each of the three protein clusters, we
tested whether ‘similar’ proteins are grouped together. This we determine by
gene ontology enrichment, which measures whcih biological processes are over-
represented in which cluster (Figure 3.2e). We find that each of the clusters
represents processes essential for cell survival and progression. Most notably,
the three major processes have a dynamic nature. On protein level, the coor-
dination of proteins is accomplished by proteins transiently forming complexes
to carry out their tasks. Depending on the e.g. signaling pathway activated,
proteins may build many different complexes each fulfilling the majority of cel-
lular processes. In summary, the proposed fuzzy clustering method was able to
identify important biological processes such as translation as protein clusters.
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4 Conclusions

We have extended a previously proposed fuzzy colored graph clustering method
to a Bayesian setting, thus being able to determine adequate cluster sizes by
appropriate prior choice. The resulting NMF-type update rules allow efficient
search for the maximum-a-posteriori solution. In the future, we will study real-
istic use-cases in more detail and if necessary choose more informative priors for
better clusterings.
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