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Preface

This volume contains the full papers presented at the 10th International Conference
on Latent Variable Analysis and Signal Separation, LVA /ICA 2012, which was held
in Tel Aviv, Israel, during March 12-15, 2012, at the Sheraton Tel-Aviv Hotel and
Towers.

The series began nearly 13 years ago under the title of Independent Compo-
nent Analysis (ICA) workshops (held approximately every 18 months), and has
attracted hundreds of participants over the years, continuously broadening its
horizons. Starting with the fundamentals of ICA and Blind Source Separation
(BSS) in the late 1990s and early 2000, the theme of the series has gradually
expanded to include additional forms and models of general mixtures of latent
variables, and was therefore re-titled Latent Variable Analysis (LVA) for the
previous (9th) LVA/ICA conference in St. Malo (France) in 2010, keeping the
acronym ICA as well (at least for a while), for reference to its roots and origins.
This volume of Springer’s Lecture Notes on Computer Science (LNCS) continues
the tradition which began in ICA 2004 (held in Granada, Spain), to publish the
conference proceedings in this form.

The submissions to LVA/ICA 2012 reflected the diversity of research fields
covered by the call for papers, in accordance with the expanded scope of the
theme of the series. Topics ranging from theoretical issues such as causality
analysis and measures, through novel methods for employing the well-established
concepts of sparsity and non-negativity for matrix and tensor factorization, down
to a variety of related applications ranging from audio and biomedical signals
to precipitation analysis, can all be found among the papers collected in this
volume. In addition, LVA/ICA 2012 continued a tradition established in ICA
2009 (in Paraty, Brazil), to host presentations and discussions related to the
Signal Separation Evaluation Campaign (SISEC). SiSEC 2011 consisted of two
types of tasks: audio source separation and biomedical data analysis. Several
papers associated with submissions to SiISEC 2011 can be found in this volume.

Four world-renowned keynote speakers were invited by the Organizing Com-
mittee to present highlights of their recent research:

e Michael Elad (Technion, Israel Institute of Technology, Israel) on “The Anal-
ysis Sparse Model—Definition, Pursuit, Dictionary Learning, and Beyond”

e Lieven De Lathauwer (Katholieke Universiteit Leuven, Belgium) on “Block
Component Analysis, a New Concept for Blind Source Separation”

e Amnon Shashua (Hebrew University of Jerusalem, Israel) on “The Applica-
tions of Tensor Factorization in Inference, Clustering, Graph Theory, Coding
and Visual Representations”

e Paris Smaragdis (University of Illinois at Urbana-Champaign, USA) on “From
Bases to Exemplars, from Separation to Understanding”



VI Preface

Continuing an initiative introduced at LVA/ICA 2010, the Organizing Com-
mittee announced a Late-Breaking / Demo session, for presentation of results
and ideas that were not yet fully formalized and evaluated by the full-paper sub-
mission deadline, but were sufficiently ripe for presentation at the time of the
conference. These included signal separation methods or systems evaluated in
SiSEC 2011 but not associated with a full-paper submission to the conference.
Submissions to this session were in the form of a “Title + Abstract” only, and
are not included in the proceedings.

We received more than 80 full-paper submissions to regular sessions and
to special sessions. Each submission of a regular full paper was peer reviewed
by at least two members of our Technical Program Committee (TPC) or by
competent sub-reviewers assigned by the TPC members. Most papers received
three reviews, and some papers received four reviews. Submissions to the special
Audio Sessions were peer reviewed by other participants of the same sessions.
This volume contains the 20 full papers accepted for oral presentation and 42
full papers accepted for poster presentation, for the regular as well as for the
special sessions. In addition, the volume contains the two overview papers of
SiSEC 2011, and a paper by Lieven De Lathauwer associated with his keynote
talk.

The growing share of audio-processing-related submissions prompted the suc-
cessful organization of two dedicated special sessions, titled “Real-World Con-
straints and Opportunities in Audio Source Separation” and “From Audio Source
Separation to Multisource Content Analysis.” Moreover, the Organizing Com-
mittee decided to designate one full-day of the conference as an “Audio-Day,”
dedicated to the presentation of audio-related papers, including the keynote talk
by Paris Smaragdis (but excluding the SiSEC-related contributions, which were
presented as part of the SISEC Special Sessions).

The Organizing Committee would like to extend its warm thanks to those
who made LVA/ICA 2012 possible. First and foremost, these are the authors,
and, of course, the members of the Program Committee and the sub-reviewers.
In addition, we thank the members of the International ICA Steering Commit-
tee for their support and advice. We also thank the SISEC Chairs for their close
and fruitful collaboration. We are deeply indebted to the Faculty of Engineer-
ing at Bar-Ilan University, and especially to Sharon Gannot and to the Speech
and Audio Lab for hosting the Audio Day. The organizing team at Ortra Ltd.,
and especially Sharon Lapid, were very helpful and always responsive. We also
thank Springer and the LNCS team for their continued collaboration, and in
particular Frank Holzwarth, Anna Kramer, Christine Reiss and Alfred Hofmann
for their help and responsiveness. Finally, we would like to thank our sponsors,
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The Yitzhak and Chaya Weinstein Research Institute for Signal Processing, Tel
Aviv University, Bar-Ilan University, The Technion - Israel Institute of Technol-
ogy, and the Advanced Communication Center at Tel Aviv University.

January 2012 Andrzej Cichocki
Fabian Theis

Arie Yeredor

Michael Zibulevsky
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Block Component Analysis,
a New Concept for Blind Source Separation

Lieven De Lathauwer

Katholieke Universiteit Leuven Campus Kortrijk,
E. Sabbelaan 53, 8500 Kortrijk, Belgium
Lieven.DelLathauwer@kuleuven-kortrijk.be
http://homes.esat.kuleuven.be/~delathau/

Abstract. The fact that the decomposition of a matrix in a minimal
number of rank-1 terms is not unique, leads to a basic indeterminacy in
factor analysis. Factors and loadings are only unique under certain as-
sumptions. Working in a multilinear framework has the advantage that
the decomposition of a higher-order tensor in a minimal number of rank-
1 terms (its Canonical Polyadic Decomposition (CPD)) is unique under
mild conditions. We have recently introduced Block Term Decomposi-
tions (BTD) of a higher-order tensor. BTDs write a given tensor as a
sum of terms that have low multilinear rank, without having to be rank-
1. In this paper we explain how BTDs can be used for factor analysis
and blind source separation. We discuss links with Canonical Polyadic
Analysis (CPA) and Independent Component Analysis (ICA). Different
variants of the approach are illustrated with examples.

Keywords: Blind source separation, independent component analysis,
canonical polyadic decomposition, block term decomposition, higher-
order tensor, multilinear algebra.

1 Algebraic Tools

We start with a few basic definitions from multilinear algebra. These are subse-
quently used to define two tensor decompositions.

Definition 1. A mode-n vector of an Nth-order tensor T = [tiji,..in] S @
vector obtained by varying the n-th index and keeping the other indices fixed.

Definition 2. The multilinear rank of an N th-order tensor is the N -tuplet con-
sisting of the dimension of the space spanned by the mode-1 vectors, the dimen-
sion of the space spanned by the mode-2 vectors, and so on.

Definition 3. The (tensor) outer product A B of a tensor A € Chixf2x..xIp
and a tensor B € CT1*72XXJa s the tensor defined by (A@B)iyiy...ipjrjo..jo =
Qiyiy..ipDjrja...jg, fOr all values of the indices.

For instance, the outer product 7 of three vectors a, b and c is defined by
tijk = aibjck.

F. Theis et al. (Eds.): LVA/ICA 2012, LNCS 7191, pp. 1-B] 2012.
© Springer-Verlag Berlin Heidelberg 2012
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2 L. De Lathauwer

Definition 4. An Nth-order tensor has rank 1 iff it equals the outer product of
N nonzero vectors.

Definition 5. The rank of a tensor T is the minimal number of rank-1 tensors
that yield T in a linear combination.

We can now define a first basic tensor decomposition.

Definition 6. A Canonical Polyadic Decomposition (CPD) of a rank-R tensor
T € ChvxlaxXIN s g decomposition of T in a sum of R rank-1 terms:

R
T:Zafﬂl)®afﬂ2)®~'®a£m. (1)

r=1

The decomposition was for the first time used for data analysis in [3] and [14],
where it was called Canonical Decomposition (CANDECOMP) and Parallel Fac-
tor Decomposition (PARAFAC), respectively. The term CPD, where “CP” may
also stand for “CANDECOMP /PARAFAC?” | is now becoming more common. An
important advantage over the decomposition of a matrix in rank-1 terms, is that
CPD of a higher-order tensor is unique under mild conditions, see [TTIT6IT7I20/21]
and references therein. (Uniqueness is up to permutation of terms and scal-
ing/counterscaling of factors within a term.) For algorithms, see [T1I16/22/23)

and references therein.
Consider a third-order tensor 7 € Cl1*I2xIs that has CPD

R
T = Zar®br®cT. (2)
r=1
Define A = [a; a3 ... ag] € C'*E B = [b; by ... bg] € C2XF and C =
[c1 ca ... cg] € CBXE Eq. @) is often written as
T:,Z,’i3 - A ° dia‘g(ci317 Ci327 MR | CigR) : BT7 ]- g ZS < IS ) (3)

in which we use MATLAB colon notation. We see that all slices T, . ;, are linear
combinations of the same rank-1 terms arbf, 1 < r < R, where the coefficients
are given by the entries of C.

In [8I9IT3] we introduced Block Term Decompositions (BTD) of a higher-order
tensor. BTDs are a generalization of CPD. A specific case is the following.

Definition 7. A decomposition of a tensor 7 € C1*/2XI3 in a sum of rank-
(Ly, Ly, 1) terms, 1 < r < R, is a decomposition of T of the form

T:

r

R
(A.-BJ)ec,, (4)

=1

in which each of the matrices A, € Cl'**Er and B, € C2XEr has linearly inde-

pendent columns and in which the vectors c, € CIs are nonzero, 1 <r < R. We

assume that R is minimal.
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Conditions under which this decomposition is unique, have been established in
[SI9IT0]. (Here, uniqueness is up to permutation of terms, scaling/counterscaling
of factors within a term, and post-multiplication of A, by a square nonsingular
matrix W, provided BY is pre-multiplied by W, 1, 1 < r < R.) Algorithms have
been presented in [I3JI8[T922]. Note that (L,, L,,1) is the multilinear rank of
the r-th term.

Define A = [A; Ay ... Ag] € Ch*Xrlr B=[B; By ... Bg] € Cl2xxrLr
and C = [c; c2 ... cg] € C3*E. Eq. @) can also be written as

T:,:,ig = A : diag(ci311L1XL17CngILQXLgy sy Ci;;RILRXLR) : BT7 1 < 7:3 < I3 .
()
All slices T. . ;, are linear combinations of the same rank-L, matrices ATBZ,
1 < r < R, where the coefficients are given by the entries of C.
In the next section we explain how CPD and decomposition in rank-(L,., L, 1)
terms can be used for blind source separation.

2 Block Component Analysis: The Concept

Factor analysis and blind source separation aim at decomposing a data matrix
X € CE*N into a sum of interpretable rank-1 terms:

R
X:A-ST:Zarsf. (6)

r=1
Here, A = [a; a3 ... ag] € CEXF is the unknown mixing matrix and the
columns of S = [s1 s2 ... sg] € CV*E are the unknown sources. (We consider

the noiseless case for clarity of exposition.) Since the decomposition of a matrix
is not unique, some assumptions need to be made. In Independent Component
Analysis (ICA) the most important assumption is that the sources are mutually
statistically independent [5I6I15].

If we dispose of a data tensor, then things are simpler, in the sense that the
decomposition in rank-1 terms is unique under mild conditions, as mentioned
above. This uniqueness makes CPD a powerful tool for data analysis [A/17I21].
ICA can actually be seen as a form of Canonical Polyadic Analysis (CPA).
Namely, algebraic methods for ICA typically rely on the CPD of a higher-order
cumulant tensor or a third-order tensor in which a set of covariance matrices is
stacked. The links are explicitly discussed in [IT].

The crucial observation on which Block Component Analysis (BCA) is based,
is that also the constraints in CPA are in a certain sense restrictive. Namely, in
@) the matrix slices are decomposed in terms that are rank-1, i.e., they consist
of the outer product of two vectors. One could wish to decompose the slices in
terms that just have low rank, since the latter enable the modelling of more
general phenomena. As explained, this corresponds to the decomposition of a
tensor in rank-(L,, L,, 1) terms, which is still unique under certain conditions.
Probably CPA owes much of its success to rank-1 terms that capture the essence
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of components that actually are more complex. In such cases it could be of
interest to check whether BCA provides more detail.

BCA can be applied to matrix data as well. First, the data need to be ten-
sorized. For instance, one could map the rows of X to (I x J) Hankel matrices,
with I +.J — 1 = N, yielding a tensor X € C'*/*X Formally, we define:

(X)ijk = (X)k,igj—1, 1<i<I, 1<j<J, 1<k<K. (7)

Since the mapping is linear, we have:

R

X=3 Hoa, (®)

r=1

in which H, € C’*7 is the Hankel matrix associated with the r-th source,
1 < r < R. An interesting property is that, for a sufficient number of samples,
Hankel matrices associated with exponential polynomials have low rank. Expo-
nential polynomials are functions that can be written as sums and/or products of
exponentials, sinusoids and/or polynomials. BCA allows the blind separation of
such signals, provided decomposition (8] is unique. Uniqueness conditions guar-
antee that the components are sufficiently different to allow separation, which in
turn implies a bound on the number of components one can deal with. Also, there
is a trade-off between complexity, measured by rank L,., and number of compo-
nents. For theory underlying the blind separation of exponential polynomials by
means of a decomposition in rank-(L,, L,, 1) terms, we refer to [10].

Hankelization is just one way to tensorize matrix data. What is essential is
that we use a linear transformation that maps the sources to matrices that
(approximately) have low rank. Possible alternatives are spectrograms, wavelet
representations, etc. For comparison we repeat that in ICA the problem is typ-
ically tensorized through the computation of higher-order statistics or sets of
second-order statistics.

In the next section we illustrate the principle of BCA by means of examples.

3 Illustration
3.1 Toy Example: Audio

We consider the following sources: s; consists of samples 50-80 of the chirp demo
signal and s consists of samples 250-280 of the train demo signal in MATLAB
(version 7.13). These two signals are shown in Fig.[Il The singular values of the
corresponding Hankel matrices Hy, Hy € R'6%16 are shown in Fig. 2l We see that
H; and H; can be very well approximated by low-rank matrices. The entries
of A € R>*2 are drawn from a zero-mean unit-variance Gaussian distribution.
Hankelization of X € R%*3! yields a tensor XH) ¢ R16X16x5 We also map X to
a tensor X(W) ¢ R40X31X5 by means of the biorthogonal spline wavelet 1.3 [7].
This transformation maps every observed time signal to a (scale x time) matrix,
where we take the scale values equal to 0.8/(0.05s), 1 < s < 40. The singular
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values of the wavelet representations Wi, Wy € R49%3L of the two sources are
shown in Fig. @ Tensors X)) and XM) are decomposed in a sum of a rank-
(L1,L41,1) and a rank-(Lg, La, 1) term. We conduct a Monte Carlo experiment
consisting of 100 runs for different values of L; and L,. The mean and median
Signal-to-Interference Ratio (SIR) are shown in Table[Il This table demonstrates
that BCA allows one to accurately separate the sources. Moreover, the choice of
L; and Lo turns out not to be very critical. The ICA algorithm in [B] yields a
mean and median SIR of only 15 dB, due to the fact that in this toy example
not enough samples are available to allow the reliable estimation of statistics.

Fig. 1. Chirp (left) and train (right) audio source

M)

[

o = N W hAO

Fig. 2. Left: singular values of Hankel matrices H; (top) and Ha (bottom). Right:
singular values of wavelet matrices W1 (top) and W3 (bottom).

We next add zero-mean Gaussian noise to the observations and investigate
the effect of the Signal-to-Noise Ratio (SNR) on the quality of the separation.
We conduct a new Monte Carlo simulation consisting of 100 runs. The value of
Ly = Ly = L is varied between 1 and 4. The results are shown in Fig. [3l A
rank-1 structure turns out to be too simple, at least in the Hankel case.

In the Hankel setting, the signals that correspond to rank-1 matrices are
complex exponentials (one frequency, one damping factor). A rank-1 term is
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Table 1. Mean (median) SIR [dB] in the noiseless audio example, as a function of L;
and Lo (top: Hankel-based BCA, bottom: wavelet-based BCA)

Ly [ Lo 1 2 3 4 5 6 7
1 20 (49) 48 (47) 49 (49) 37 (51) 20 (51) 15 (19) 15 (13)
43 (43) 41 (41) 19 (41) 19 (41) 16 (16) 14 (13) 13 (12)
2 48 (47) 47 (47) 49 (50) 48 (49) 44 (51) 17 (38) 16 (22)
41 (41) 46 (46) 47 (49) 48 (52) 33 (33) 17 (18) 14 (17)
3 49 (49) 49 (50) 49 (49) 47 (48) 23 (49) 20 (47) 19 (45)
19 (41) 47 (49) 46 (46) 27 (41) 25 (32) 18 (33) 13 (12)
4 37 (51) 48 (49) 47 (48) 47 (47) 47 (48) 20 (46) 18 (44)
19 (41) 48 (52) 27 (41) 52 (52) 16 (21) 47 (48) 13 (12)
5 20 (51) 44 (51) 23 (49) 47 (48) 45 (48) 29 (46) 16 (44)
16 (16) 33 (33) 25 (32) 16 (21) 13 (13) 28 (35) 12 (12)
6 15 (19) 17 (38) 20 (47) 20 (46) 29 (46) 25 (46) 33 (47)
14 (13) 17 (18) 18 (33) 47 (48) 28 (35) 46 (47) 17 (25)
7 15 (13) 16 (22) 19 (45) 18 (44) 16 (44) 33 (47) 24 (44)
13 (12) 14 (17) 13 (12) 13 (12) 12 (12) 17 (25) 17 (20)
60 T T
—— BCA Hankel L=1
551 | BCA Hankel L=2 )
50 | —— BCA Hankel L=3 4
——— BCA Hankel L=4 -
45 | - - BCA wavelet L=1
- - BCA wavelet L=2
o 401 | — - BCA wavelet L=3
- - BCA wavelet L=4
3.3 ICA COM2
=
wn
10F E
5

. .
25 30 35

15 20
SNR [dB]
Fig. 3. Mean SIR as a function of SNR in the audio example

sometimes called an atom, since it is a constituent element that cannot be split
into smaller parts. In this terminology, CPA consists of splitting a data tensor
into atoms. On the other hand, one could say that sounds or melodies, having
a certain spectral content, correspond to molecules rather than atoms. BCA is
then the separation at the level of molecules.

3.2 Application in Wireless Communication

In spread-spectrum systems that employ an antenna array at the receiver, the
received data are naturally represented by the third-order tensor that shows the
signal along the temporal, spectral and spatial axis. In [20] it was shown for
Direct Sequence - Code Division Multiple Access (DS-CDMA) systems that, in
simple propagation scenarios that do not cause Inter-Symbol-Interference (IST),
every user contributes a rank-1 term to the received data. Consequently, in a
non-cooperative setting multiple access can be realized through the computation
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of a CPD. In propagation scenarios that do involve ISI, rank-1 terms are a too
restrictive model. It was shown in [I2] that, when reflections only take place
in the far field of the receive array, multiple access can be realized through the
computation of a decomposition in rank-(L,, L,, 1) terms. In [I8] a more general
type of BTD was used to deal with cases where reflections do not only take place
in the far field. The same ideas can be applied to other systems with at least
triple diversity.

4 Discussion and Conclusion

CPA makes a strong assumption on the components that one looks for, namely,
that they are rank-1. In the analysis of text data, web documents, biomedical
data, images, ...it is often questionable whether this assumption is satisfied.
Low (multilinear) rank may be a better approximation of reality. In this paper
we introduced BCA as an analysis technique based on the computation of BTDs.
BCA can be used for the analysis of matrix data, after these have been tensorized.
To this end, one can compute statistics, like in ICA, but one can also consider
Hankel representations, wavelet representations, etc. Deterministic variants of
BCA may be useful for the analysis of short data sequences.

BCA is related to Sparse Component Analysis (SCA) [I]. In SCA, the sources
are low-dimensional in the sense that they are most often zero. In BCA, the
sources have a low intrinsic dimension, characterized by multilinear rank. BCA
is also related to compressive sensing [2]. In compressive sensing, low intrinsic
dimensionality is used for compact signal representation. In BCA, it is used as
the basis for signal separation.

In this paper we limited ourselves to the decomposition in rank-(L., L,,1)
terms. In [S9IT3] more general types of BTD were introduced, which allow a
more general analysis.
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GOA-MaNet, CoE EF/05/006 Optimization in Engineering (OPTEC), CIF1
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Abstract. We address the problem of estimating a random vector X
from two sets of measurements Y and Z, such that the estimator is linear
in Y. We show that the partially linear minimum mean squared error
(PLMMSE) estimator requires knowing only the second-order moments
of X and Y, making it of potential interest in various applications. We
demonstrate the utility of PLMMSE estimation in recovering a signal,
which is sparse in a unitary dictionary, from noisy observations of it
and of a filtered version of it. We apply the method to the problem
of image enhancement from blurred/noisy image pairs. In this setting
the PLMMSE estimator performs better than denoising or deblurring
alone, compared to state-of-the-art algorithms. Its performance is slightly
worse than joint denoising/deblurring methods, but it runs an order of
magnitude faster.

Keywords: Bayesian estimation, minimum mean squared error, linear
estimation.

1 Introduction

Bayesian estimation is concerned with the prediction of a random quantity X
based on a set of observations Y, which are statistically related to X. It is well
known that the estimator minimizing the mean squared error (MSE) is given by
the conditional expectation X = E[X|Y]. There are various scenarios, however,
in which the minimal MSE (MMSE) estimator cannot be used. This can either
be due to implementation constraints, because of the fact that no closed form
expression for E[X|Y] exists, or due to lack of complete knowledge of the joint
distribution of X and Y. In these cases, one often resorts to linear estimation.
The appeal of the linear MMSE (LMMSE) estimator is rooted in the fact that it
possesses an easily implementable closed form expression, which merely requires
knowledge of the joint first- and second-order moments of X and Y.

For example, the amount of computation required for calculating the MMSE
estimate of a jump-Markov Gaussian random process from its noisy version

* This work was supported in part by a Google Research Award.

F. Theis et al. (Eds.): LVA/ICA 2012, LNCS 7191, pp. 9-]16] 2012.
© Springer-Verlag Berlin Heidelberg 2012
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grows exponentially in time. By contrast, the LMMSE estimator in this setting
possesses a simple recursive implementation, similar to the Kalman filter [I]. A
similar problem arises in the area of sparse representations, in which the use
of Bernoulli-Gaussian and Laplacian priors is very common. The complexity
of calculating the MMSE estimator under the former prior is exponential in the
vector’s dimension, calling for approximate solutions [2/3]. The MMSE estimator
under the latter prior does not possess a closed form expression [4], which has
motivated the use of alternative estimation strategies such as the maximum a-
posteriori (MAP) method.

In practical situations, the reasons for not using the MMSE estimator may
only apply to a subset of the measurements. Then, it may be desirable to con-
struct an estimator that is linear in part of the measurements and nonlinear in
the rest. One such scenario arises when estimating a sparsely representable vector
X from two sets of measurements Y and Z, one blurred and one noisy. Indeed, as
we show in this paper, when working with unitary dictionaries, the MMSE esti-
mate E[X|Z] from the noisy measurements alone possesses an easy-to-implement
closed form solution. However the complexity of computing the MMSE estimate
E[X|Y, Z] from both sets of measurements is exponential. In this setting, the
PLMMSE method, which is linear in Y, is computationally cheap and often
comes close to the MMSE solution E[XY, Z] in terms of performance.

Partially linear estimation was studied in the statistical literature in the con-
text of regression [5]. In this line of research, it is assumed that the conditional
expectation g(y,z) = E[X|Y =y, Z = 2] is linear in y. The goal, then, is to ap-
proximate g(y, z) from a set of examples {z;,y;, z;} drawn independently from
the joint distribution of X, Y and Z. In this paper, our goal is to derive the
partially linear MMSE (PLMMSE) estimator. Namely, we do not make any as-
sumptions on the structure of the MMSE estimate E[X Y, Z], but rather look
for the estimator that minimizes the MSE among all functions ¢(Y, Z) that are
linear in Y.

Due to space limitations, we state here the main results without their proofs,
which can be found in [6].

2 Partially Linear Estimation

Suppose that X, Y and Z are random variables (RVs) taking values in RM
RY and R, respectively, such that X is the quantity to be estimated and Y
and Z are two sets of measurements thereof. We denote by I'xx, I'xy, the
auto-covariance of X and the cross-covariance of X and Y, respectively.
Our goal is to design a partially linear estimator of X based on Y and Z,
which has the form
X = AY +b(2). (1)

Here A is a deterministic matrix and b(z) is a vector-valued (Borel measurable)
function.
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Theorem 1. The MMSE estimator of the form () is given by
X = PxwIl,, W +E[X|2], (2)
where W 2 Y — E[Y|Z].
Note that (@) is of the form of (I)) with A = I'xw 'y, and b(Z) = E[X|Z] —
I"XWI"I,VW]E[Y|Z]. As we show in [6], @) can be equivalently written as
X = (Pxy —Tyg,y,) (Tyy - PYZYZ)T (v =72) + Xz, (3)

where Xz £ E[X|Z] and Yz £ E[Y|Z]. Therefore, all we need to know in order
to be able to compute the PLMMSE estimator (2)) is the covariance matrix I'xy,
the conditional expectation E[X|Z] and the joint distribution of Y and Z.

The intuition behind () is similar to that arising in dynamic estimation
schemes, such as the Kalman filter. Specifically, we begin by constructing the
MMSE estimate E[X|Z] of X from Z. We then update it with the LMMSE
estimate of X based on the innovation W of Y with respect to E[X|Z].

One particularly interesting example is the case where X is observed through

two linear systems as
Y H U
(2)= (&) (v) @

where U and V are statistically independent. It is easily shown that in this
setting, the PLMMSE estimate reduces to

X =AY +(I- HA)X,, (5)
where I denotes the identity matrix and
A=CH"(HCH" + I'yy)t (6)

WithC:FXX*FXZXZ'

3 Application to Sparse Approximations

Consider the situation in which X is known to be sparsely representable in a
unitary dictionary ¥ € RM*M in the sense that

X=wA (7)

for some RV A that is sparse with high probability. More concretely, we assume,
as in [213], a Bernoulli-Gaussian prior, so that the elements of A are given by

A;=SiBi, i=1,...,M, (8)

where the RVs {B;} and {S;} are statistically independent, B; ~ N'(0,0%, ) and
P(SZ = ].) =1 7P(Si = O) = Pi-
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Assume X is observed through two linear systems, as in (@), where H is an
arbitrary matrix, G is an orthogonal matrix satisfying G G = oI for some
a # 0, and U and V are Gaussian RVs with I'yy = 071 and I'yy = o3 1.
In this case the expression for the MMSE estimate E[X|Y, Z] comprises 2
summands [2] rendering its computation prohibitively expensive even for modest
values of M. Various approaches have been devised to approximate this solution
by a small number of terms (see e.g., [203] and references therein).

There are some special cases, however, in which the MMSE estimate possesses
a simple structure, which can be implemented efficiently. One such case is when
both the channel’s response and the dictionary over which X is sparse correspond
to orthogonal matrices. As in our setting ¥ is unitary and G is orthogonal, this
implies that we can efficiently compute the MMSE estimate E[X |Z] of X from Z.
Therefore, instead of resorting to schemes for approximating E[X|Y, Z], we can
employ the PLMMSE estimator of X based on Y and Z, which, in this situation,
possesses the simple closed form expression (B]). This approach is particularly
effective when the SNR of the observation Y is much worse than that of Z, since
the MMSE estimate E[X|Y, Z] in this case is close to being partially linear in
Y. Such a setting is demonstrated in the sequel. We have the following result.

Theorem 2. The MMSE estimate of X of (@) given Z of (@) is
(1
E[X|Z] =¥ f (awTGTZ> : (9)

where f(2) = (f(Z1), ..., f(Zm))T, with

aok

2 [ 2 Di
2
a O'Bl_+0'v

T piN(Gi0,020% +0%) + (1 - p) N(5:;0,02)

N(z;0, 04201231 +02) %
f(z) (10)
Here, N(a; u,0%) denotes the normal probability density function with mean
and variance o2, evaluated at c.

Therefore, if, e.g., ¥ is a wavelet basis and G = I (so that o = 1), then E[X|Z]
can be efficiently computed by taking the wavelet transform of Z (multiplication
by WT), applying a scalar shrinkage function on each of the coefficients (namely
calculating f(Z;) for the ith coefficient) and applying the inverse wavelet trans-
form (multiplication by ¥) on the result.

Equipped with a closed form expression for E[X|Z], we can now compute the
terms needed for implementing the PLMMSE estimator (). First, we note that

Iyx =WITa,07, (11)

where I' 4 4 is a diagonal matrix with (I'a4);; = pia%i. Similarly,

Iy g, =WCov(f(2)w", (12)

where Cov(f(Z)) is a diagonal matrix whose (i,17) element is 3; = Var(f(Z:)).
This is due to the fact that the elements of Z are statistically independent and
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the fact that the function f () operates element-wise on its argument. Hence,
the PLMMSE estimator is given by (&) with E[X|Z] of @) and with the matrix

A=wCw"H" (HLDCLDTHT + a,%l)T , (13)
where here C' = I"AAf(Cov(f(Z)) = diag(pla?g1 —B1,--. ,pMa%M —Ba). Observe
that there is generally no closed form expression for the scalars (;, rendering it
necessary to compute them numerically.

An important special case corresponds to the setting in which p; = p and
01231 = 0% for every i. In this situation, we also have that 5; = 3 for every i.

Furthermore,
I'xx =% (pogI)¥" =popl (14)
and
g, x, =9(ENPT =3I, (15)

so that A is simplified to
i
A=(pok - OH" (0o} — HHHT + o3 T) . (16)

As can be seen, here A does not involve multiplication by ¥ or ¥’ . Thus, if
H corresponds to a convolution operation, so does A, meaning that it can be
efficiently applied in the Fourier domain.

3.1 Image Deblurring with Blurred/Noisy Image Pairs

When taking photos in dim light using a hand-held camera, there is a tradeoff
between noise and motion blur, which can be controlled by tuning the shutter
speed. Using a long exposure time, the image typically comes out blurred due to
camera shake. On the other hand, with a short exposure time (and high camera
gain), the image is very noisy. In [7] it was demonstrated how a high quality
image can be constructed by properly processing two images of the same scene,
one blurred and one noisy.

We now show how the PLMMSE approach can be applied in this setting to
obtain plausible recoveries at a speed several orders of magnitude faster than
any other sparsity-based method. In our setting X, Y and Z correspond, respec-
tively, to the original, blurred (and slightly noisy) and noisy images. Thus, the
measurement model is that described by (@), where H corresponds to spatial
convolution with some blur kernel, G = I, and U and V correspond to white
Gaussian noise images with small and large variances respectively. We further
assume that the image X is sparse in some orthogonal wavelet basis ¥, such
that it can be written as in () and (g]).

As we have seen, in this setting, the PLMMSE estimator can be computed in
two stages. First, we calculate X, = E[X|Z] by computing the wavelet trans-
form Z = w1 Z, applying the scalar shrinkage function (@0 on each wavelet
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coefficient, and taking the inverse wavelet transform of the result. This stage re-
quires knowledge of the parameters {p;}, {o% } and of,. To this end, we assume
that p; and 0% are the same for wavelets coefficients at the same level. Namely,
all wavelet coefficients of Z at level £ correspond to independent draws from the
Gaussian mixture

f2,(2) = p'N(%0,0%0% + oi) + (1 = p)N (30, 0%). (17)

Consequently, p*, 0123@ and 0‘2/ can be estimated by expectation maximization
(EM). In our experiments, we assumed that o% is known.

In the second stage, the denoised image Xz needs to be combined with the
blurred image Y using (&) with A of (I3). As discussed in Section [3], this can
be carried out very efficiently if p; = p and 0} = o% for all i. For the sake
of efficiency we therefore abandon the assumption that p; and O'Bl vary across
wavelet levels and assume henceforth that all wavelet coefficients are independent
and identically distributed. In this case, A corresponds to the filter

(0% — B H*(w)

AW = 2 ) HW)E + o2

(18)
where H (w) is the frequency response of the blur kernel. Consequently, the final
PLMMSE estimate corresponds to the inverse Fourier transform of

5 2 — B)H*(W)YF (W) + 0% XE(w)
XE W) = (0% —B) uSz\) 19

PLMMSE( ) (0_124 —6)|H(OJ)|2 _|_0_[2] ( )
where Y (w) and X5 (w) denote the Fourier transforms of ¥ and X, respec-
tively. In our experiment, we assumed that the blur H(w) and noise variance 012]
are known. In practice, they can be estimated from Y and Z, as proposed in
[7]. This stage also requires knowmg the scalars O'A = [E[A?] and B8 = E[f%(2)],

which we estimate as 0124 = > M 22— 02 and B= o MR

Fig. [l demonstrates our approach on the 512 x 512 Gold-hill image. In this
experiment, the blur corresponded to a Gaussian kernel with standard deviation
3.2. To model a situation in which the noise in Y is due only to quantization
errors, we chose oy = 1/4/12 ~ 0.3 and oy = 45. These parameters correspond
to a peak signal to noise ratio (PSNR) of 25.08dB for the blurred image and
15.07dB for the noisy image.

We used the orthogonal Symlet wavelet of order 4 and employed 10 EM it-
erations to estimate pz and 0123[ in each wavelet level. The entire process takes
1.1 seconds on a Dual-Core 3GHz computer with un-optimized Matlab code.
We note that our approach can be viewed as a smart combination of Wiener fil-
tering for image debluring and wavelet thresholding for image denoising, which
are among the simplest and fastest methods available. Consequently, the run-
ning time is at least an order of magnitude faster than any other sparsity-based
methods (see, e.g., comparisons in [2]).

As can be seen in Fig. [Il the quality of the recoveries corresponding to the
denoised image X7 and deblurred i image XY is rather poor with respect to the
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Fig.1. Debluring with a blurred/noisy image pair using PLMMSE estimation
and RD [7]. (a) Blurred image Y (top left) and noisy image Z (bottom-right).
(b) LMMSE-deblurred image Xy (top-left) and MMSE-denoised image Xz (bottom-
right). (¢) BM3D-deblurred image (top left) and BM3D-denoised image (bottom-right).
(d) Original image X. (¢) PLMMSE estimate Xprvmse from Y and Z. (f) RD recovery.

state-of-the-art BM3D debnoising method [8] and BM3D debluring algorithm [9].
However, the quality of the joint estimate XpLMMSE surpasses each of these
techniques. The residual deconvolution (RD) method [7] for joint debluring and
denoising outperforms the PLMMSE method in terms of recovery error but the
visual differences are not prominent.

A quantitative comparison on several test images is given in Table [Il The
PSNR attained by the PLMMSE method is, on average, 0.3dB higher than
BM3D debluring, 0.4db higher than BM3D denoising, and 0.8dB lower than
RD. In terms of running times, however, our method is, on average, 11 times
faster than BM3D deblurring, 16 times faster than BM3D denoising and 18 times
faster than RD. Note that RD requires initialization with a denoised version of
7, for which purpose we used the BM3D algorithm. Hence, the running times
reported in the last column of Table [[] include the running times of the BM3D
denoising method.
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Table 1. Performance of deblurring/denoising on several images

¢ v L BM3D BM3D
Xz Xy Denoise Deblur PLMMSE RD

Boat 25.39/0.83 23.45/0.06 27.85/13.52 28.40/10.23 28.05/0.88 29.22/15.31
Lena 26.93/0.73 24.59,/0.03 29.47/13.22 30.58/8.90 30.58/0.81 31.37/15.19
Mandrill - 21.40/0.64 20.59/0.06 22.72/13.58 21.78/9.57 22.58/0.72 23.30/15.58
Peppers  26.74/0.81 24.89/0.08 29.49/13.14 29.74/8.91 29.80/0.88 31.52/15.03
Mountain 19.23/0.95 17.69,/0.09 20.11/15.24 18.45/11.12 20.03/1.05 20.42/17.47
Frog 23.23/0.94 22.35/0.16 24.00,/16.07 24.40/13.37 24.69/1.09 24.69/21.14
Gold-hill 25.90/0.69 24.26/0.06 27.52/13.41 28.70/9.54 28.82/1.09 29.09/21.14
Average 24.12/0.81 22.55/0.08 25.88/14.03 26.01/10.23 26.31/0.89 27.09/16.19

Conclusion

this paper, we derived the PLMMSE estimator and showed that it depends

only on the joint second-order statistics of X and Y, rendering it applicable in a
wide variety of situations. We demonstrated the utility of our approach in sparse
signal recovery from a measurement pair. In the context of image enhancement

from blurred /noisy image pairs, we showed that PLMMSE estimation performs
close to state-of-the-art algorithms while running much faster.
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Models in the Presence of Latent Gaussian Confounders
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Abstract. LINGAM has been successfully applied to casual inferences of some
real world problems. Nevertheless, basic LINGAM assumes that there is no latent
confounder of the observed variables, which may not hold as the confounding ef-
fect is quite common in the real world. Causal discovery for LINGAM in the
presence of latent confounders is a more significant and challenging problem. In
this paper, we propose a cumulant-based approach to the pairwise causal discov-
ery for LINGAM in the presence of latent confounders. The method assumes that
the latent confounder is Gaussian distributed and statistically independent of the
disturbances. We give a theoretical proof that in the presence of latent Gaussian
confounders, the causal direction of the observed variables is identifiable under
the mild condition that the disturbances are both super-gaussian or sub-gaussian.
Experiments on synthesis data and real world data have been conducted to show
the effectiveness of our proposed method.

Keywords: Causal analysis, LINGAM, latent Gaussian confounder, cumulant-
based measure.

1 Introduction

Causal discovery from non-specifically controlled experimental data has received ex-
tensive attention in recent years. Many models such as structural equation models
(SEMs) and Bayesian networks (BNs) have been proposed to explain the data gen-
erating mechanisms and widely applied to social science, econometrics and medical
science [[1] [2]. However, traditional methods assume the Gaussian disturbances and
only employ second order statistics. In general, such methods can only obtain a class
of equivalent models [3] and fail to identify the full causal structure without prior
knowledge in most cases [4]. Recently, it has been shown that by employing the non-
gaussianity of the disturbances, the causal structure can be fully identified. In [3]], au-
thors proposed a Linear Non-Gaussian Acyclic Model (LiINGAM) and showed that
the full structure can be identified by Independent Component Analysis (ICA) [5] [6].
The Direct-LINGAM framework was proposed later to avoid iterative searching [7]].
The advantages of LINGAM over conventional methods are: (1) a full and unique causal
structure can be identified instead of a class of Markov equivalent models. (2) no prior
knowledge of the network structure is needed. (3) Compared to BNs which may re-
quire large amount of conditional independent tests, the computational complexity of

F. Theis et al. (Eds.): LVA/ICA 2012, LNCS 7191, pp. 17— 2012.
(© Springer-Verlag Berlin Heidelberg 2012
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LiNGAM is much lower. In spite of the advantages mentioned, basic LINGAM consid-
ers the causally sufficient case where there is no unobserved confounders [3]]. However,
this assumption may not hold in many real world problems.

In this paper, we will deal with a more challenging problem: causal discovery for
causal pairs with latent confounders, which can be represented graphically by figure
[Il = and y are observed variables of which we aim to discover the causal direction.
e1 and ey are non-gaussian disturbances. c is the unobserved latent confounder which
can be regarded as the total effect of many latent factors f;. p, & and 3 are the cor-
responding causal strengths. Due to the extra dependence introduced by ¢, the causal
discovery for x and y becomes much more challenging. Previous methods such as BN,
LiNGAM and DirectLiNGAM may obtain misleading results as they does not consider
the latent confounders. Recently, Aapo Hyvirinen [8] proposed new measures of causal
directions for causal pairs in the scenario of no latent confounders. Inspired by [8]], we
propose a new cumulant-based measure to discover the causal directions for LINGAM
in the presence of Gaussian Confounders(LINGAM-GC). The basic idea is the use of
a specially designed measure which is immune to the latent Gaussian confounder. We
prove that the causal direction can be simply identified by investigating the sign of the
proposed cumulant-based measure, i.e. if the measure ny > (0 we can conclude that
x causes y. The advantages of our proposed cumulant-based measure over the one
proposed in [8] are that our measure does not require the explicit estimations of the re-
gression coefficient p and more importantly our cumulant-based measure is immune to
the latent Gaussian confounder. In the paper, due to the limit of pages, we mainly deal
with causal-effect pairs. However, the algorithm developed in this paper can be easily
extended to the model with more than two variables following the similar manner as
DirectLINGAM.

The rest of this paper is organized as follows: In section 2, we briefly introduce some
related works concerning latent confounders in recent years. In section 3, we firstly
introduce the cumulant-based measure proposed in [8] for pairwise causal discovery.
Secondly, we propose our LINGAM-GC model and a new cumulant-based measure to
tackle the causal discovery problem in this model. In section 4, experiments on synthe-
sis data and real world data are conducted to show the effectiveness of our proposed
approaches. In section 5, we conclude our paper.
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2 Related Works Concerning Latent Confounders

Recently, several papers were published concerning the latent confounder [9] [10] [L1].
In [9], authors treated the causal discovery problem for LINGAM in the presence of con-
fouders as an overcomplete ICA problem and developed algorithms to derive canonical
models from observed variables. They used overcomplete ICA algorithms to estimate
the whole causal structure. However, overcomplete ICA is an ill-posed and challenging
problem which still remains open. There is no reliable and accurate method existing for
this problem especially when the dimensionality of the problem is high.
In [10], authors proposed a model called Confounders with Additive Noise (CAN):

X =u(T) + Ny

Y = o(T) + Ny @)

where X and Y are observed effects; T is the latent confounder; Nx and Ny are
disturbances. 7', Nx and Ny are statistically independent. Authors showed that under
certain assumptions, the confounder is identifiable. Note that in the CAN model, there
is no direct edge between node X and Y. The variances of Nx and that of Ny are
assumed to be small [10]. However, we are interested in a more general case: there is a
direct edge between X and Y; Nx and Ny are not necessarily small.

In [[11], authors proposed a new model called GroupLiNGAM. In this model, latent
confounders are allowed but restricted within subsets of the observed variables. They
used the Direct-LiNGAM framework by iteratively finding and removing the exogenous
subsets of the observed variables from the remaining subsets until the whole causal
ordering of the subsets are identified [11]. However, in the GroupLiNGAM model, the
confounders are restricted within certain subsets. Furthermore, the causal direction and
strength remain unidentified within the subsets yet.

3 Causal Discovery for Causal Pairs with Latent Confounders

3.1 Cumulant-Based Measure by Aapo Hyvirinen

Firstly, we introduce the cumulant-based measure proposed in [8]], which lays the foun-
dation for our work. Suppose we have observed two random variables x and y with zero
means and generated by equation [I] but with o = 0 and 8 = 0. e; and e5 are indepen-
dent non-gaussian distributed disturbances; p is the causal strength. Denote by 2 and ¢
the normalized = and y with unit variances. Denote by p the corresponding regression
coefficient. It is easy to know that |p| < 1. The cumulant-based measure proposed in [8]
is given as below:

Rea(2,9) = sign(kurt(2))pE{2%) — 29°} 3)

where E means average and p is the estimated regression coefficient. Note that the

above cumulant-based measure fails to give any decision when the estimated kurtosis of

2 and that of g have opposite signs. According theorem 1 in [§]], we have the following:
2§ Ru>0

s e LB 4)

y—= T Ry <0
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This cumulant-based measure works quite well in the scenario of no latent confounders.
However, the presence of latent confounders is a very common phenomenon in real
world problems. This measure may obtain misleading results in real applications. In the
following, we consider a new model in presence of latent Gaussian confounders.

3.2 Cause-Effect Pairs in Presence of Latent Gaussian Confounders

Assume z and y are with zero means and generated by equation [Tl ¢ is Gaussian dis-
tributed. Note that this model is an extension of LINGAM by allowing the presence of
latent Gaussian confounders. We argue that the Gaussianity assumption of the latent
confounder is not strong as in real world, there may be a number of latent factors which
are the common causes of the observed effects. The confounder we introduce here can
be regarded as the total effect of such factors as illustrated graphically by figure[Il Ac-
cording to the central limit theorem, the summation of a large number of independent
random variables with finite expectations and finite variances tends to be Gaussian dis-
tributed. Due to the presence of ¢, the causal inference becomes problematic: (1) due
to the extra dependence introduced by c¢, the causal direction of x and y can not be
simply inferred by testing independence of regressors and regression residues. (2) the
causal strength especially the sign of causal strength estimated may be severely biased.
To tackle this difficulty, we propose a new cumulant-based measure which is an exten-
sion of the cumulant-based measure proposed in [8] . First of all, we investigate two
different normalization schemes.

3.3 Normalization to Unit Variance / Unit Absolute Kurtosis

Lemma 1. Assume that the observed variables x and y are generated according to
equation[lland fulfill 3 + (2ap + 8)Ba? > 0, where o5 and o are the variances of s
and c respectively. Denote by & and {j the normalized x and y with unit variances, then
the casual strength p between I and § has the property of |p| < 1.

Note that |5| < 1 is a working condition for our cumulant-based measure to be intro-
duced later in this section. We prove that |5| < 1 under assumption of o3 + (2ap +
B)Ba? > 0, if we normalize z and y to unit variance. However, the assumption
may not hold in some real world problems. Below, we propose another normaliza-
tion method which can guarantee that |5| < 1 under a much weaker assumption. Let
ke = /|kurt(z)| and k, = /|kurt(y)|. We have:

k2 = |kurt(z)| = |kurt(e; + ac)| = |kurt(er)]
ky = lkurt(y)| = [kurt(per + ez + (ap + B)c)| = |p*kurt(er) + kurt(es)]
The above = holds as kurt(c) = 0 (Remind that ¢ is Gaussian distributed). Normalizing
zand y by ¢ = x/k, and § = y/k,, we have the following lemma.

Lemma 2. Assume the kurtosis of e1 and the kurtosis of ea have the same sign, i.e. e1
and eo are both super-gaussian or sub-gaussian. Denote by & and 7 the normalized x
and y with unit absolute kurtosis , then the casual strength p between & and § has the
property of |p| < 1.

Proof. We skip the proof due to the limit of pages.
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3.4 New Cumulant-Based Measure

For convenience, in the rest of this paper, we use notations x, ¥y, ¢, a, 5 and p but
we assume that x and y are standardized (either by normalizing to unit variance or
absolute kurtosis). According to lemma[for[2 |p| < 1. Inspired by [8], we give the
following cumulant-based measure which can be used to determine the causal direction
for LINGAM-GC. Let:

Cuy = E{a®y} — 3E{ay} E{2”}
Cyo = E{zy®} — 3E{ay} E{y*}
Define new cumulant-based measure as:

F means sample average. We have the following theorem:

Theorem 1. If the causal direction is x — vy, we have:
Ryy = p*(14p*)(1 = p*)kurt(er)? 6)

where kurt(e1) = E{e}} — 3E{e?}? is the kurtosis of e;.
If the causal direction is y — x, we have:

Ray = p*(1+p°) (0 — Dkurt(e2)’ @
Proof. Consider the fourth-order cumulant
Cla,y) = cum(z,z,2,y) = E{z’y} — 3E{zy} E{2*} ®)
Ray = {C(x,y) + Cly, 2) HC(2,y) — Cly,2)}

If x — vy, i.e. the observed x and y fulfill the generating mechanism described in
equation[]] based on the properties of cumulant [8]], we have:

C(z,y) = cum(z,z,z,y) = pcum(er, e, er,e1) + a3(ap + B)eum(e, ¢, ¢, ¢)
= pkurt(e;) + o (ap + B)kurt(c)

As we assume that the latent confounder ¢ is Gaussian distributed, we have cum(c, ¢, ¢, ¢)
= kurt(c) = 0 and therefore we have C'(z,y) = pkurt(ey).

C(y,x) = cum(y,y,y,x) = p’kurt(er) + alap + B)*kurt(c) = p*kurt(er)

Ryy = {pkurt(er) + pPkurt(er) Y pkurt(e1) — p*kurt(e)}
— (14 p)(1 - P )hurt(er)?
If y — x, through similar derivation, we have the following:
Ryy = {pPkurt(es) + pkurt(ez) Y p kurt(ez) — pkurt(es)}
= p*(1+p*)(p* = Vkurt(es)?
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According to lemmal[Tl or 2] we know that |p| < 1, and therefore we have the following
causal inferencing rule:

;v—>y<:>]:21y>0
. )]
y =& Ry <0

4 Experiment
4.1 Synthesis Data

In this experiment, we use our proposed cumulant-base measure with different normal-
ization methods: unit variance (LINGAM-GC-UV) and unit absolute kurtosis(LINGAM-
GC-UK) , ICA—LiNGAMﬂ, Direct—LiNGAM@, Cumulant-based Measure(C-M) [8] to
identify the causal direction for causal pairs. The purpose of this experiment is to show
that latent confounders can be problematic if they are not considered. We consider the
causal pairs generated by equation[Il e; and ey are generated by e; = sign(n;)|n;|?
and normalized to unit variance, where n; are standard Gaussian random variable. ¢ is
Gaussian distributed with zero mean and standard deviation o, B. We fix @ = 1.2 and
B = 1.6. In order to learn how p and o2 affect the accuracies of five algorithms, we
conduct a series of experiments as follows: {p = +0.1,4+0.3, 0. = 0.1,0.2,--- , 1.3}.
Note that the experimental settings guarantee the assumptions of lemma/[ll and lemma
For each parameter setting {p, 0.}, we randomly generate 100 datasets with sample
size of 5000. The percentages of correctly identified datasets for different methods are
shown in figure 2 and Bl The experimental results suggest that LINGAM-GC-UV and
LiNGAM-GC-UK have the best performances in different scenarios. Although wrong
decisions still occur in the case of small causal strength p, it is due to the finite sample
size. If the sample size is large enough, both methods are expected to achieve per-
fect performances. From figure 2l and Bl we also learn that C-M performs very well
in the case of positive casual strength but performs badly in the case of negative casual
strength . The explanation for this observation is that in the scenario of positive p, o and
B, the C-M algorithm is immune to the latent Gaussian confounder. However,when the
true causal strength p < 0, the presence of latent confounder may cause C-M algorithm
to get wrong estimation of p with opposite sign, which in turn leads to the wrong causal
direction. This shows that the performance of C-M algorithm depends on whether the
effect of the latent confounder is strong enough to flip the sign of the estimated causal
strength. The performances of LINGAM-ICA and Direct-LiNGAM depend on the vari-
ance of the confounder. When the variance of the latent confounder is large enough, the
performance of both algorithms degenerate dramatically.

! http://www.cs.helsinki.fi/group/neuroinf/lingam/

2 http://www.ar.sanken.osaka-u.ac.jp/~inazumi/dlingam.html

3 We also conduct the experiment where the confounder ¢ is mildly Non-Gaussian and the re-
sult shows that the proposed measure is robust. While in the case of strongly Non-Gaussian
confounder, the proposed measure fails to give the correct identification. Due to the limit of
pages, we do not present the result here.
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Fig. 2. Results of synthesis data: p = £0.1 Fig. 3. Results of synthesis data: p = £0.3

4.2 Real World Data

In order to show the applicability of our proposed methods in real world data, we com-
pare the performances of difference methods in the real-world cause-effect pairﬂ We
select a total of 45 pairs in this datasef). As the computational time of Direct-LINGAM
increases dramatically for large sample size, we use at most 1000 samples for each
cause-effect pair. The performances of different algorithms are given in Table[T}

Table 1. Percentage of recovering the true causal direction in 45 real world cause-effect pairs

Algorithm LINGAM-GC-UV LiINGAM-GC-UK C-M LiNGAM-ICA Direct-LINGAM IGCI
Accuracy 71.11% 73.33% 62.22% 46.67% 55.56% 60%

Table [I] shows that for causal discovery of real world data, our proposed LINGAM-
GC-UV and LINGAM-GC-UK have the best performances followed by C-M. LINGAM-
GC-UK performs better than LINGAM-GC-UYV possibly due to the milder assumption.
IGCI [12] achieves only 60% accuracy mainly due to the fact that it is originally pro-
posed for deterministic causal relations inference. Direct-LiINGAM performs slightly
better than random guess while LINGAM-ICA has the accuracy less than 50%. From
this experiment, we learn that by taking into consideration of latent confounders, the
causal inference becomes more reliable and accurate.

5 Conclusion

A new Linear Non-Gaussian Acyclic Model in the presence of latent Gaussian con-
founders is proposed in this paper. By allowing the presence of latent confounders, this

4 http://webdav.tuebingen.mpg.de/cause-effect/
5 We make a simple preprocessing of pair #75 to make the relation more linear and use two
processed pairs {x, ;‘/ } and {},y} instead of the original one.
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model is expected to give more accurate description of the real world phenomenon. We
propose a cumulant-based measure to infer the causal structure of the observed vari-
ables for this model. We discuss and prove under what conditions the causal structure is
identifiable by our proposed approach. Experimental results show that our algorithms
work better on synthesis data and real world cause-effect pairs than the compared meth-
ods. The theoretical limit of our proposed method is that its performance is affected by
the sample size due to the estimation of higher order cumulant. Future work will focus
on developing a more robust measure in the case of small sample size. Using unbiased
estimation of cumulant will be an important issue of the future work.
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grant from the Research Grants Council of the Hong Kong Special Administration
Region, China.
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Abstract. We introduce the concepts of weak and strong asymmetries
in multivariate time series in the context of causal modeling. Weak asym-
metries are by definition differences in univariate properties of the data,
which are not necessarily related to causal relationships between time se-
ries. Nevertheless, they might still mislead (in particular Granger-) causal
analyses. We propose two general strategies to overcome the negative
influence of weak asymmetries in causal modeling. One is to assess the
confidence of causal predictions using the antisymmetry-symmetry ratio,
while the other one is based on comparing the result of a causal analysis
to that of an equivalent analysis of time-reversed data. We demonstrate
that Granger Causality applied to the SISEC challenge on causal analysis
of simulated EEG data greatly benefits from our suggestions.

Keywords: Weak/strong asymmetries, ASR, time inversion, Granger
Causality, SiISEC challenge.

1 Introduction

Many measures of causal interaction (a.k. a. effective connectivity) are based on
the principle that the cause precedes the effect. However, it would be mislead-
ing to assume that temporal ordering is necessarily the dominant factor when
estimating causal relationship on the basis of the available techniques, such as
Granger causality. In fact, methods to estimate causal relations are based on
general asymmetries between two (or more) signals out of which the temporal
order is just one specific feature. Other asymmetries, like different signal-to-noise
ratios, different overall power or spectral details, may in general also affect causal
estimates depending on which method is used.

We here propose to distinguish between two different kinds of asymmetries.
We call the first type ‘strong asymmetries’ defined as asymmetries in the relation
between two (or more) signals like the temporal ordering. The second type is
called ‘weak asymmetry’ and denotes different univariate properties as given,
e.g., by the spectral densities. Weak asymmetries can hence be detected from
two signals without estimating any functional relationship between them whereas
a strong asymmetry is a property of that functional relationship.

F. Theis et al. (Eds.): LVA/ICA 2012, LNCS 7191, pp. 25 2012.
© Springer-Verlag Berlin Heidelberg 2012
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Altough the concepts presented here (but not the test presented below) could
be generalized to other cases in a straight forward way we restrict ourselves in
the following to the discussion of stationary and Gaussian distributed data. Let
x;(t) be the signal in channel j at time ¢. Then the statistical properties are
completely defined by the cross-covariance matrices

Cp) = ((x(t) = i) (x(t =p) = fix) ) (1)

where (-) denotes expectation. The process is now said to contain a strong asym-
metry if for some 4, j and some p it is found that C; ;(p) # Cj:(p), i.e. C(p) is
asymmetric for at least one p. The process is said to contain a weak asymmetry
if for some ¢, j and some p it is found that C;;(p) # C; ;(p), i.e. the diagonals
are not all equal. Since the power spectrum of the i-th signal is given by the
Fourier transform of C; ;(p) the process contains a weak asymmetry if and only
if it contains signals with different power spectra.

Methods to detect causality are typically sensitive to both weak and strong
asymmetries. Weak asymmetries can be detected more robustly but can also
be considered as weaker evidence for causal relations. This can be illustrated if
data are instantaneous mixtures of independent sources. In this case all cross-
covariances are weighted sums of auto-covariances of the sources. Since auto-
covariances are always symmetric functions of the delay p and since generally
C(-p) = CT(p) it follows that C(p) = CT(p) for mixtures of independent
sources [4]. Hence, such mixtures can only contain weak asymmetries but not
strong ones.

For methods which are sensitive to both weak and strong asymmetries it is in
general difficult to tell on what property of the data an estimate of causal drive
is based. However, using empirical estimators of the cross spectra, it is possible
to measure the proportions of weak and strong asymmetries in a dataset. In this
paper, we demonstrate that a quantity called antisymmetry-symmetry-ratio is a
meaningful predictor of the success of the causal estimation for methods that are
knowingly affected by weak asymmetries. Moreover, we introduce a procedure
based on time inversion, by which it is possible to test whether weak asymmetries
are the dominant cause for a given connectivity estimate. We demonstrate that
our approaches dramatically reduce the number of wrong predictions of Granger
Causality (GC). As a result, GC’s performance in the 2011 Signal Separation
Evaluation Campaign (SiSEC) challenge on causal analysis of simulated EEG
data is significantly improved. Our approaches can be regarded as sanity checks
which are applicable in any causal analysis testing temporal delays between
driver and receiver.

The paper starts with introducing Granger Causality, the SiISEC challenge
dataset and the two novel approaches proposed to improve causal estimations
in the Methods section. The Results section confirms that these approaches
effectively reduce the number of wrong predictions of Granger Causality on the
challenge dataset. In the Discussion section, we elaborate on the applicability
of our approaches and draw connections to permutation testing, which is also
typically used in conjunction with Granger-causal measures.
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2 Methods

2.1 SISEC Challenge Simulated EEG Dataset

To demonstrate our ideas we consider a set of simulated EEG data, which is
part of the 2011 Signal Separation Evaluation Campaign. The data consists of
1000 examples of bivariate data for 6 000 time points. Each example is a super-
position of a signal (of interest) and noise. The causally-interacting signals are
constructed using a unidirectional bivariate autoregressive (AR) model of order
10 with (otherwise) random AR-parameters and uniformly distributed innova-
tions. The noise is constructed of three independent sources, generated with three
univariate AR-models with random parameters and uniformly distributed input,
which were instantaneously mixed into the two sensors with a random mixing
matrix. The relative strength of noise and signal (i. e. signal-to-noise ratio, SNR)
was set randomly. The task of the challenge is to determine the direction of the
causal interaction. One point is awarded for every correct prediction, while ev-
ery wrong prediction causes a penalty of -10 points. If no prediction is given
for a dataset, this results in 0 points. The maximum score attainable is 1000
points, while the minimum score (considering that predictors with less than 50 %
accuracy can be improved by sign-flipping) is -4 500 points.

The simulation addresses a conceptual problem of EEG data, namely that the
signals of interest are superimposed by mixed noise. However, the actual spectra
can be quite different from real EEG data. Volume conduction (i.e., mixing of
the signals of interest), which is typically also observed in EEG datasets and
poses serious challenges on its own [2], is omitted here in order to facilitate
an objective evaluation. We use Matlab code provided by the organizers of the
challenge to generate 1000 new instances of the problem with known directions
of causal flow.

2.2 Granger Causality
The multivariate AR (MVAR) model is given by

P

x(t) =Y Bp)x(t —p) +e(t) , (2)

p=1

where B(p) are matrices describing the time-delayed influences of x(t — 7) on
x(t). Notably, the off-diagonal parts B; ;(p),i # j describe time-lagged influences
between different time series. Granger Causality [I] involves fitting a multivariate
AR model for the full set x(1 . a7} = X, as well as for the reduced set x(1 .. )\ (i}
of available time series, where M = 2 here. Denoting the prediction errors of the
full model by e™! and those of the reduced model by &\*, the Granger score GC
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describing the influence of z; on z; is defined as the log-ratio of the mean-squared
errors (MSE) of the two models with respect to z;. i.e.,

Zt pa1 € fun(tﬂ
Y iepi1 [Ej\-l(t)}

This definition, which is based on the ratio of prediction errors, is independent
of the scale of the time series x; and x;. However, as has been demonstrated in
[5], [6], it is influenced by asymmetries in the signal-to-noise ratio.

GCi’j = log (3)

2.3 Exploiting Statistical Characterics of Non-/interacting Signals
for Assessing the Reliability Causal Predictions

Due to additive noise and (in our case) innovation noise introduced by AR mod-
eling, cross-covariances of realistic measurements are never exactly symmetric
nor are they exactly antisymmetric. Nevertheless, the amount of symmetric vs.
antisymmetric cross-covariance contained in a dataset provides important infor-
mation about the SNR and hence how difficult the problem of estimating the
causal direction is. We propose to use an index called antisymmetry-symmetry

ratio (ASR) defined as
[(ew-crm,..ey-erm)],

ASR = log R (4)
[(Cw+erw....am+eT)|,

for quantifying the confidence in a given causal estimation, where (A1, ..., Ap) is

the horizontal concatenation of the matrices Ay, ... iy Ap, Ar denotes the Frobe-

nius norm (sum of squared entries) of a matrix and C(p) are empirical estimates
of the cross-covariance matrices. The higher the ASR, the lower the proportion of
(potentially misguiding) signal parts with symmetric cross-covariance is. Hence,
one strategy to avoid false predictions in Granger- (and other) causal analyses
is to evaluate only datasets characterized by high ASR.

2.4 A Test for Assessing the Time-Lagged Nature of Interactions

As a second simple test to distinguish weak from strong asymmetries we here
suggest to compare the specific result of a causal analysis with the outcome of
the method applied on time-reversed signals. This corresponds to the general
intuitive idea that when all the signals are reversed in time, the direction of
information flow should also reverse. More specifically, if temporal order is cru-
cial to tell a driver from recipient the result can be expected to be reverted if
the temporal order is reverted. The mathematical basis for this is the simple
observation that the cross-covariance for the time inverted signals, say C(p), is
given as

C(p)=C(-p)=C"(p) (5)
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implying that time inversion inverts all strong asymmetries but none of the weak
asymmetries. If now a specific measure is essentially identical for original and
time inverted signals we conclude that the causal estimate in that specific case
is based only on weak asymmetry. To avoid estimation biases introduced by
weak asymmetries, one may therefore require that a causality measure delivers
significant and opposing flows on original and time-reversed signals. Alterna-
tively, one may require that the difference of the results obtained on original
and time-reversed signals is significant.

2.5 Experiments

As baselines for the numerical evaluation, we apply Granger Causality as well
as the Phase-slope Index (PSI) [5] to all 1000 datasets and compute the respec-
tive score according to the rules of the SISEC challenge. Granger Causality is
calculated using the true model order P = 10. The Phase-slope Index is calcu-
lated using the authors’ implementatiorEI in a wide-band on segments of length
N = 100. For both methods, net flow, i.e. the difference between the flows
in both directions is assessed. Standard deviations of the methods’ results are
estimated using the jackknife method. Standardized results with absolute val-
ues greater than 2 are considered significantly different from zero. Insignificant
results are not reported, i.e. lead to zero points in the evaluation. The whole
procedure is repeated 100 times for different realizations of the 1000 datasets to
compute average challenge scores and confidence intervals.

The idea introduced in subsection 2.3]is implemented by ordering the datasets
according to their ASR (calculated with P = 30), and evaluating the competi-
tion score attained when only the first K datasets with highest ASR are ana-
lyzed. That is, even significant results might be discarded, if the ASR is low. We
consider three additional variants of GC, in which results are reported only if
additional restrictions are met. The first variant, ‘GC inv both’ reports a causal
net flow only if it is significant, and if the net flow on time-reversed data points to
the opposite direction and is also significant. The variant ‘GC inv diff’ requires
that the difference of the net flows estimated from original and time-reversed
data is significantly different from zero. Finally, we compare time inversion to
general random permutations of the samples (using the same permutation for
all channel) according to the ‘difference’ approach. The resulting procedure is
denoted by ‘GC perm diff’.

3 Results

Figure [ illustrates that interacting signals and mixed independent noise are
characterized by different proportions of symmetric and antisymmetric parts in
their cross-covariances. The upper-left plot depicts the log-norms of symmetric
and antisymmetric cross-covariances of normalized signal and noise time series
as a scatter plot, while the upper right plot depicts the respective ASR. In both

!http://ml.cs.tu-berlin.de/causality/
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plots, signal and noise are highly separable. In the lower left plot, the ASR of the
observation is plotted against the signal-to-noise ratio. Apparently, there exists
a quasi-linear functional relationship between the two, which is the basis of our
idea to use the ASR as an indicator for the difficulty of causal predictions.

Figure Bl summarizes the results of the numerical evaluation of the various
causal prediction strategies according to the rules of the SiISEC challenge. For
all methods considered, the challenge score is plotted as a function of the num-
ber of datasets analyzed (starting from datasets with highest ASR). The scores
depicted on the very right hence correspond to the standard situation that all
1000 datasets are analyzed. The scores obtained by the six contributors of the
SiSec challenge are marked by black horizontal bars.

As in previous analyses [6], PSI outperforms Granger Causality having a total
score of 593 =+ 3 points compared to —438 £ 11 points after evaluation of all 1000
datasets. However, as the plot also strikingly shows, the inferior performance
of GC is a result of a huge number of false predictions predominantly made
on data with low ASR. Hence, by avoiding decisions on low-ASR data, GC’s
score increases dramatically with the maximum of 384 + 4 points reached if
only the 539 datasets with highest ASR are analyzed. Note that this score is
not anymore dramatically worse than the score obtained by PSI for the same
amount of data, which is 485+ 1 points. All three alternative variants of Granger
Causality perform better than the conventional GC strategy with scores of 353+2
points, 437 £ 5 points and 79 + 4 points attained for ‘GC inv both’, ‘GC inv
diff” and ‘GC perm diff’, respectively when all datasets are analyzed. Note that
this means that both ‘GC inv both’ and ‘GC inv diff’ outperform the winning
contribution of the SiSec challenge, which achieved a score of 252 points. At
the same time, the difference between the score attained when analyzing all
1000 datasets and the maximal score attained when analyzing fewer datasets is
dramatically reduced. This difference is 2 4+ 1 points for ‘GC inv both’, 36 + 2
points for ‘GC inv diff” and 11644 points for ‘GC perm diff’, which is much closer
to the value of 1141 points measured for PSI than to the value of 841+ 10 points
measured for conventional GC. Hence, all three proposed variants can be seen
as robustifications of conventional GC, which prevent decisions that are solely
based on weak asymmetries. Among the three proposed strategies, ‘GC inv diff’
performs best with scores that are competitive to those attained by PSI, while
‘GC perm diff’ performs worst. Note that the curve of ‘GC inv diff’ is located
strictly above the curve of ‘GC’, which means that the additional restriction
imposed by the time inversion causes no loss in performance for high-ASR data.

4 Discussion

Our results confirm that the proposed strategies drastically reduce the number
of false predictions for methods that are prone to be dominated by weak asym-
metries in the data such as Granger Causality. While for conventional Granger
Causality the inclusion of the ASR as an additional criterion guiding the pre-
diction is highly benefical, this is less helpful for modified variants that take
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Fig. 1. Upper left: characterization of interacting signals and mixed independent noise
by means of the log-norms of the symmetric and antisymmmetric parts of the cross-
covariance matrices. Upper right: separation of signal and noise by means of the
antisymmetry-symmetry ratio (ASR). Lower left: approximately linear relationship be-
tween the ASR of the observations and the signal-to-noise ratio (SNR).

the results obtained on time-reversed (or permuted) data into account. These
modifications make GC behave more similarly to PSI, which is itself robust to
many weak asymmetries by construction and in particular rather unaffected by
dominant symmetric cross-covariances as indicated by low ASR. The choice of
the ASR threshold remains an open problem, which is outside the scope of this
paper. Empirical strategies to adjust the threshold are, however, conceivable.

Notably, the idea of performing pairwise testing of results obtained on original
and time-reversed signals is a special case of permutation testing, as proposed,
for example, by [3] in the context of Granger-causal analysis of EEG data us-
ing the directed transfer function (DTF). Both approaches have in common
that the reordered data shares certain weak asymmetries with the original data,
which are likely to cancel out in pairwise comparisons. However, time-reversed
data additionally contains strong asymmetries in the opposite direction, which
increases the statistical power of the comparison of original and time-reversed
data. Consequently, our empirical results indicate that time inversion outper-
forms permutation testing by far and should be a viable alternative also when
using DTF. Interestingly, PSI exactly flips its sign (direction) upon time inver-
sion, for which reason pairwise testing against time-reversed data cannot be used
to improve PSI.
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Fig. 2. Score according to the rules of the Signal Separation Evaluation Campaign
(SiSEC) 2011 challenge on causal analysis of simulated EEG data as a function of
the number of datasets analyzed for the Phase-slope Index (PSI) and different vari-
ants of Granger Causality (GC). Confidence intervals are indicated by linewidths. GC:
original approach, requiring significant net flow. GC inv both: improved approach, re-
quiring significant net flow and significant opposing net flow on time-reversed data. GC
inv diff: improved approach, requiring significantly different net flows on original and
time-reversed data. GC perm diff: improved approach, requiring significantly different
net flows on original and temporally permuted data. Datasets are ordered by their
antisymmetry-symmetry ratio (ASR) to illustrate that the analysis of datasets with
low ASR with conventional Granger Causality is error-prone.

5 Conclusion

We proposed two strategies for robustifying Granger-causal analyses, which
boost its performance in the SISEC 2011 challenge.

References

1. Granger, C.W.J.: Investigating causal relations by econometric models and cross-
spectral methods. Econometrica 37, 424-438 (1969)

2. Haufe, S.: Towards EEG source connectivity analysis. PhD thesis, TU Berlin (2011)

3. Kaminski, M., Ding, M., Truccolo, W.A., Bressler, S.L.: Evaluating causal rela-
tions in neural systems: Granger causality, directed transfer function and statistical
assessment of significance. Biol. Cybern. 85, 145-157 (2001)



4.

5.

Alleviating the Influence of Weak Data Asymmetries 33

Nolte, G., Meinecke, F.C., Ziehe, A., Miiller, K.-R.: Identifying interactions in mixed
and noisy complex systems. Phys. Rev. E 73, 051913 (2006)

Nolte, G., Ziehe, A., Nikulin, V.V., Schlégl, A., Krdmer, N., Brismar, T., Miiller,
K.R.: Robustly estimating the flow direction of information in complex physical
systems. Phys. Rev. Lett. 100, 234101 (2008)

Nolte, G., Ziehe, A., Kramer, N., Popescu, F., Miiller, K.-R.: Comparison of Granger
causality and phase slope index. JMLR W&CP 6, 267-276 (2010)



Online PLCA for Real-Time Semi-supervised
Source Separation

Zhiyao Duan®*, Gautham J. Mysore?, and Paris Smaragdis®?

! EECS Department, Northwestern University
2 Advanced Technology Labs, Adobe Systems Inc
3 University of Illinois at Urbana-Champaign

Abstract. Non-negative spectrogram factorization algorithms such as
probabilistic latent component analysis (PLCA) have been shown to be
quite powerful for source separation. When training data for all of the
sources are available, it is trivial to learn their dictionaries beforehand
and perform supervised source separation in an online fashion. However,
in many real-world scenarios (e.g. speech denoising), training data for one
of the sources can be hard to obtain beforehand (e.g. speech). In these
cases, we need to perform semi-supervised source separation and learn a
dictionary for that source during the separation process. Existing semi-
supervised separation approaches are generally offline, i.e. they need to
access the entire mixture when updating the dictionary. In this paper,
we propose an online approach to adaptively learn this dictionary and
separate the mixture over time. This enables us to perform online semi-
supervised separation for real-time applications. We demonstrate this
approach on real-time speech denoising.

1 Introduction

In recent years, non-negative matrix factorization (NMF) and its probabilistic
counterparts such as probabilistic latent component analysis (PLCA) have been
widely used for source separation [I]. The basic idea is to represent the magnitude
spectrum of each time frame of the mixture signal as a linear combination of
dictionary elements from source dictionaries. In the language of PLCA, for a
sound mixture of two sources, this can be written as:

P(f)~ Y P(flo)P(z) fort=1,--- T (1)

2€851 U S2

where T is the total number of frames; P;(f) is the normalized magnitude spec-
trum of the ¢-th frame of the mixture; P(f|z) for z € S; and z € Sy represent the
elements (analogous to basis vectors) of the dictionaries of source 1 and source
2 respectively. P;(z) represents the activation weights of the different dictionary
elements at time ¢. All these distributions are discrete and nonnegative.

* This work was performed while interning at Adobe Systems Inc.
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Given a mixture spectrogram, we can estimate the dictionary elements and
activation weights using the expectation—maximization (EM) algorithm. The
source spectra in the ¢-th frame can then be reconstructed as . P(f|2)P:(2)
and ) s P(f|2)Pi(2), respectively. This is unfortunately a highly undercon-
strained problem and rarely leads to useful parameter estimates. One way to
address this issue is to perform supervised source separation [I], in which we
first learn the dictionaries for both sources from their isolated training data.
Then in the separation stage, we fix these dictionaries and only the estimate the
activation weights, from which we can reconstruct the spectra of each source.

However, in a lot of real-world problems, training data for one source might be
hard to obtain beforehand. For example, in the application of speech denoising,
we want to separate speech from noise. It is relatively easy to obtain training data
for noise, but hard for speech. In these cases, we need to perform semi-supervised
source separation [I], where we first learn the dictionary for one source (e.g.
noise) from its training data beforehand, and then learn the dictionary for the
other source (e.g. speech) in addition to the activation weights of both sources
from the mixture. Finally, separation can be performed.

For supervised separation, the algorithm in [I] is intrinsically online, since
the activation weights in different frames are estimated independently. For semi-
supervised separation, however, the algorithm in [I] needs to access the entire
mixture to learn the dictionary for the un-pretrained source, hence is offline.

In recent years, researchers have proposed several online NMF algorithms for
dictionary learning in different applications (e.g. dictionary learning for image
databases [2], document clustering [3], audio reconstruction [4]). The idea is to
learn a dictionary to well explain the entire input data, after processing all the
inputs, in an online fashion. However, we argue that these algorithms are not
suitable for real-time semi-supervised source separation. The reason is that these
algorithms only care about the final learned dictionary, after processing all of the
input frames. They do not care about the intermediate estimates of the learned
dictionary during processing the input frames. Therefore, the dictionary learned
after receiving the current frame is not necessarily good enough to explain that
frame and to separate it. In fact, processing all of the input frames once is often
not enough and it has been shown that cycling over the input data set several
times and randomly permuting samples at each cycle [23/4] improves the results.

In this paper, we propose an online PLCA algorithm tailored for real-time
semi-supervised source separation. We learn the dictionary for the source that
does not have training data, from the mixture, and apply it to separate the
mixture, in an online fashion. When a new mixture frame comes in, the dictionary
is adaptively updated to explain the current frame instead of explaining the
entire mixture frames. In this way, we can use a much smaller-sized dictionary
compared to the offline PLCA. We show that the performance of the proposed
algorithm is almost as good as that of the offline PLCA algorithm (numerically
equivalent to offline NMF using KL divergence), but significantly better than an
existing online NMF algorithm for this application.
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2 Proposed Algorithm

For the real-time source separation problem of two sources, assuming that some
isolated training excerpts of source 1 (S) are available beforehand and are long
enough to capture S1’s characteristics, we can follow the semi-supervised source
separation paradigm presented in Section . We first learn a dictionary of &y
from the spectrogram of its training excerpts beforehand. Then during separa-
tion, as each incoming mixture frame arrives, we learn and update the dictionary
of Sy using the proposed online PLCA algorithm, with S;’s dictionary fixed.

2.1 Online Separation and Dictionary Learning

In order to separate the ¢-th frame of the mixture signal, we need to decompose
its magnitude spectrum using Eq. ({l). Here, P(f|z) for z € &1 is the pre-learned
dictionary of &; from training excerpts, and is kept fixed in this decomposition.
We need to estimate the dictionary P(f|z) for z € Sy and activation weights
Py(z) for all z, such that the decomposition is as accurate as possible, i.e.

arg min drn(P(F)Q:(f)) (2)

P(f|z) for z€8S2, Pi(z) for all z

where dgr, is the KL divergence between two distributions. P(f) is the nor-
malized mixture spectrum at time ¢ and Q:(f) is the reconstructed mixture
spectrum i.e. the LHS and RHS of Eq. ().

However, this is a highly unconstrained problem, since the number of param-
eters to estimate is much more than the number of equations (i.e. the number of
frequency bins in Eq. (), even if there is only one element in Sy’s dictionary.
A trivial solution that makes the KL divergence in Eq. (&) equal to zero is to
use only one dictionary element in Ss, such that the dictionary element is the
same as the mixture and the corresponding activation weight equals to one (with
all other weights being zero). In practice, this trivial solution is almost always
achieved, essentially making the separated source 2, the same as the mixture.

We therefore need to constrain the dictionary of source 2 to avoid this overfit-
ting. We do this by requiring Sy’s dictionary to not only explain Sy’s spectrum
in the current frame, but also those in a number of previous frames. We denote
this set of frames as B, representing a running buffer. We update Ss’s dictionary
in every frame using B. We also set the size of Sy’s dictionary to be much smaller
than the size of B. This avoids the overfitting because a compact dictionary will
now be used to explain a much larger number of frames.

Clearly these buffer frames need to contain Sy’s spectra, otherwise the dictio-
nary will be incorrectly learned. We will describe how to determine if a mixture
frame contains Sy’s spectrum or not in Section Suppose we can identify the
previous mixture frames that contain So’s spectra, we need to decide which ones
to include in B. On one hand, S’s spectra in the buffer frames need to be dif-
ferent from those in the current frame, so that the learned Ss’s dictionary does

! Tt is straightforward to extend this to N sources if isolated training excerpts for N-1
sources are available.
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not overfit the mixture spectra in the current frame. On the other hand, we do
not want Ss’s spectra in the buffer frames to be too different from those in the
current frame so that we have a more “localized” and compact dictionary. In
the real-time source separation problem, it is intuitive to use the L most recent
identified mixture frames to balance the tradeoff, as they are not the same as
the current frame but tend to be similar. Based on this, the objective becomes:

arg min dr (P (f)Q:(f ZdKL HNQs(f)) (3)

P(f|z) for z€S2, Pi(z) for all z SEB

where « is the tradeoff between the original objective (good reconstruction of the
current frame) and the added constraint (good reconstruction of buffer frames).

With this new objective, we learn Ss’s dictionary and the current frame’s
activation weights. However, we fix the activation weights of the buffer frames
as the values learned when separating them. There are two advantages of fixing
them than updating them: First, it makes the algorithm faster. Second, it im-
poses a heavier constraint on Sa’s dictionary that the newly learned dictionary
must not deviate from those learned in the buffer frames too much. We use the
EM algorithm to optimize Eq. @), which is described in Algorithm [

Algorithm 1. Single Frame Dictionary Learning
Require: B (buffer frames set), Vi, for s € B|J{¢} (normalized magnitude spectra of
buffer frames and current frame, each frame becomes a probability distribution),
P(f|z) for z € S1 (S1’s dictionary), P(f|z) for z € Sz (initialization of Sy’s dic-
tionary), Ps(z) for s € BU{t} and z € 8§ U Sz (input activation weights of buffer
frames and current frame), o (tradeoff between reconstruction of buffer frames and
current frame), M (number of EM iterations).

1: for i=1to M do
2:  E Step:
(2)P(fl2)
P, f B . 4
CN e e PPl O € EUE 4
3: M Step:
o(fl2) = VPl + S Vi Pa(zlf), for 2 €8s, (5)
seB
$e(2) < Y VpPu(z|f), for z € S| S (6)
!
Normalize ¢(f|z) and ¢+(z) to get P(f|z) and P:(z) respectively.
4: end for

5: return learned dictionary P(f|z) for z € Sz and activation weights P;(z) for
z € §1|JS2 of the current frame ¢.

2.2 Mixture Frame Classification

The problem that has not been addressed in Section 2] is how to determine
whether a mixture frame contains Ss’s spectrum or not. For a mixture of two
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sound sources, we can address this by decomposing the magnitude spectrum of
the mixture frame using only the learned S;’s dictionary as follows:

P(f)= Y P(fl]2)Pi(2) (7)

z€S8

Since the dictionary is fixed, we learn only the activation weights. If the KL
divergence between P;(f) and the RHS is smaller than a threshold 6, it means
the mixture spectrum can be well explained by only using S;’s dictionary, hence
Sa’s spectrum is not likely to be present. Otherwise, S1’s dictionary is not enough
to explain the spectrum, hence Sy’s spectrum is likely to be present.

We learn the threshold 01 by decomposing S1’s training excerpts again, with
its pre-learned dictionary. We calculate the mean and standard deviation of the
KL divergences of all the frames, and set the threshold as 6k = mean + std.

If the current frame is classified as not containing Sz, then we do not include it
in the running buffer B. However, just in case there is some amount of Sy in the
frame, we still perform supervised separation on the frame using the pre-learned
dictionary of &1 and the previously updated dictionary of Ss. If the current frame
is classified as containing So, we run Algorithm [l on it to update So’s dictionary
and separate the frame. After separation, we include this frame into the running
buffer B for future use.

2.3 Algorithm Summary

The whole online semi-supervised source separation algorithm is summarized
in Algorithm 21 Note that in Line 6 we make a “warm” initialization of Sy’s
dictionary using the one learned in the previous frame. This makes Algorithm [
converge fast, as spectra in successive frames do not often change much.

3 Experiments

We test the proposed online semi-supervised source separation algorithm for
real-time speech denoising. The two sources are therefore noise and speech. We
learn the dictionary of noise from its training excerpts beforehamcﬁ7 and learn
and update the dictionary of speech during real-time separation.

We use clean speech files and clean noise files to construct a noisy speech
dataset for our experiments. For clean speech files, we use the full speech cor-
pus in the NOIZEUS datasetf. This corpus has thirty short English sentences
(each about three seconds long) spoken by three female and three male speak-
ers. We concatenate sentences from the same speaker into one long sentence, and
therefore obtain six long sentences, each of which is about fifteen seconds long.

For clean noise files, we collected ten different types of noise, including birds,
casino, cicadas, computer keyboard, eating chips, frogs, jungle, machine guns,

2 Training excerpts for noise is relatively easy to obtain in applications such as telecon-
ferencing, since a few seconds at the beginning in which no one is talking are likely
to be long enough to capture the noise characteristics throughout the teleconference.

3http://www.utdallas.edu/~loizou/speech/noizeus/
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Algorithm 2. Online Semi-supervised Source Separation

Require: Vy, for ¢ = 1,---,T (magnitude spectra of the mixture signal), P(f|z)
for z € Si (Si’s dictionary), PO (f|z) for z € Sy (random initialization of So’s
dictionary), 0k (threshold to classify a mixture frame), B (buffer frames set).

1: fort=1to T do
2:  Decompose normalized magnitude spectrum P;(f) = E‘;f"/’ﬂ by Eq. (@).
3t if dep(Pe(f)I 2. cs, P(f12)Pi(2)) < Oxr then
4: Supervised separation using P(f|z) for z € S; and P*~Y(f|z) for z € S» and
PO(flz) + PUD(f]2).
5. else
6: Learn Sy’s dictionary P®)(f|z) for z € Sz and activation weights P;(z) using
Algorithm [ with P® (f|z) for z € S, initialized as P*~ Y (f|z).
T Set S2’s magnitude spectrum as:
y S.cs, POUIP) o
ft .
Yes, PUfl2)P(2) + X .cs, PO(fI2) Pi(2)
8: Replace the oldest frame in B with the ¢-th frame.
9:  end if
10: end for

11: return separated magnitude spectra of the current frame.

motorcycles and ocean. Each noise file is at least one minute long. The first
twenty seconds are used to learn the noise dictionary. The rest are used to
construct the noisy speech files.

We generate a noisy speech file by adding a clean speech file and a random
portion of a clean noise file with one of the following signal-to-noise ratios (SNR):
-10dB, -5dB, 0dB, 5dB and 10dB. By exploring all combinations of speech, noise
and SNRs, we generate a total of 300 noisy speech files, each of which is about
fifteen seconds long. The sampling rate of all the files is 16kHz.

For comparison, we run offline semi-supervised PLCA [I] (denoted as “PLCA”)
on this dataset. We segment the mixture into frames of 64ms long and 48ms
overlap. We set the speech dictionary size as 20, since we find it is enough to
get a perceptually good reconstruction of the clean speech files. We use differ-
ent sizes of the noise dictionary for different noise types, due to their different
characteristics and inherent complexities. We set this value by choosing from
{1,2,5,10, 20,50, 100,200} the size that achieves the best denoising results in
the condition of SNR of 0dB. The number of EM iterations is set to 100 as it
always converged in that many iterations in our experiments.

We also implement an existing online NMF algorithm [4] (denoted as “O-IS-
NMF”), which is designed for audio reconstruction. We apply it to this dataset
in the semi-supervised paradigm. We use the same frame sizes and dictionary
sizes as PLCA. As suggested in [4], we set the mini-batch parameter 8 to 1 to
avoid inherent delay, and the scaling factor p to 1 to match .

For the proposed algorithm, we use the same frame sizes and noise dictionary
sizes as PLCA. We set the buffer size L as 60, which is about one second long.
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Since the speech dictionary is only supposed to explain the speech spectra in
the current frame and buffer frames, we can use a much smaller size of speech
dictionary. We set this value to 7 (opposed to 20 in PLCA), since we find that the
average KL divergence in decomposing one second of speech spectra with seven
dictionary elements is about the same as that of the average KL divergence in
decomposing fifteen seconds of speech spectra with twenty dictionary elements.
We choose the tradeoff factor a for each different noise, from the set {1,2,--- ,20}
as the one that achieves the best denoising results in the condition of SNR of 0dB.
We run only 20 EM iterations in processing each frame, which we find almost
assures convergence due to the “warm?” initialization as described in Section

30
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Fig. 1. Average performances on all types of noise of PLCA [I] (blue solid line), O-IS-
NMF [] (black dotted line) and the proposed algorithm (red dash line)

We use the BSS-EVAL metrics [5] to evaluate the separated speech files. Figure
[M shows the average results over all noise types and speakers, for each algorithm
and SNR condition. Source-to-interference ratio (SIR) reflects noise suppression,
source-to-artifacts ratio (SAR) reflects the artifacts introduced by the separation
process, and source-to-distortion ratio (SDR) reflects the overall separation per-
formance. It can be seen that for all the three metrics, the proposed algorithms
achieves almost as good of a performance as PLCA. This is a promising result,
since the proposed algorithm is an online algorithm and it uses a much smaller
speech dictionary than PLCA. The performance of O-IS-NMF is significantly
worse than PLCA and the proposed algorithm. As argued in Section [ we think
this algorithm is not suitable for real-time source separation.

Table [l presents the performances of PLCA and the proposed algorithm for
different noise types in the SNR condition of 0dB. The noise-specific parameters
for the two algorithms are also presented. It can be seen that for different noise
types, the results vary significantly. This is due to the inherent complexity of
the noise and whether the training data can cover the noise characteristics or
not. For some noise, like birds, cicadas and frogs, the performance of PLCA is
significantly better than the proposed algorithm. For other noise like casino,
computer keyboard, machine guns and ocean, the proposed algorithm achieves
similar results to PLCA. The K, parameter does not change much, except for
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Table 1. Performances and noise-specific parameters for different noise types in the
SNR condition of 0dB. K, is the noise dictionary size and « is the tradeoff factor.

SIR SAR SDR
Noise type PLCA Proposed PLCA Proposed PLCA Proposed K,, «
birds 20.0 18.4 10.7 8.9 10.1 8.3 20 14
casino 5.3 7.5 8.6 7.2 3.2 3.9 10 13
cicadas 29.9 18.1 14.8 10.5 14.7 9.7 20012
computer keyboard 18.5 12.2 8.9 10.2 8.3 7.9 20 3
eating chips 14.0 13.3 8.9 7.0 7.3 5.7 20 13
frogs 11.9 10.9 9.3 7.2 7.1 5.0 10 13
jungle 8.5 5.3 5.6 7.0 3.2 2.5 20 8
machine guns 19.3 16.0 11.8 11.5 10.9 100 10 2
motorcycles 10.2 8.0 7.9 7.0 5.6 4.5 10 10
ocean 6.8 7.4 8.8 8.0 4.3 4.3 10 10

the cicada noise. The o parameter is usually around 12, with the exception of
computer keyboard and machine gun noise. Since these two noises are pulse-like
noise with relatively simple spectra, the optimal a values are much smaller to
have a weaker constraint.

The Matlab implementation of the proposed algorithms takes about 25 sec-
onds to denoise each noisy speech file (which is about 15 seconds long), in a
modern laptop computer with a 4-core 2.13GHz CPU. It would be easy to make
it work in real-time in a C+4 implementation or in a more advanced computer.

4 Conclusions

In this paper, we presented an online PLCA algorithm for real-time semi-
supervised source separation. For the real-time speech denoising application, we
showed that it achieves almost as good results as offline PLCA and significantly
better results than an existing online NMF algorithm.
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Abstract. Despite an increased interest in complex independent com-
ponent analysis (ICA) during the last two decades, a closed-form expres-
sion for the Cramér-Rao bound (CRB) of the complex ICA problem has
not yet been established. In this paper, we fill this gap for the noiseless
case and circular sources. The CRB depends on the distributions of the
sources only through two characteristic values which can be easily calcu-
lated. In addition, we study the CRB for the family of circular complex
generalized Gaussian distributions (GGD) in more detail and compare
it to simulation results using several ICA estimators.

Keywords: Cramér-Rao bound, Fisher Information, independent com-
ponent analysis, blind source separation, circular complex distribution.

1 Introduction

Independent Component Analysis (ICA) is a relatively recent signal processing
method to extract unobservable source signals or independent components from
their observed linear mixtures. We assume a linear square noiseless mixing model

x = As (1)

where x € CV are N linear combinations of the N source signals s € CN. We
make the following assumptions:

Al. The mixing matrix A € CN*¥ is deterministic and invertible.

A2. s = [s1,---,s5]7 € CN are N independent random variables with zero
mean and unit variance (after scaling the rows of A suitably). The proba-
bility density functions (pdfs) p;(s;) of s; can be different. We assume the
sources to be circular, i.e. p;(s;) = p;i(s;e’*) Ya € R. Hence E[s?] = 0.
Furthermore, p;(s;) is continuously differentiable with respect to s; and s}
in the sense of Wirtinger derivatives |1] which will be introduced in Sect. 2.
The expectations in (I3 and 20) exist.

The task of ICA is to demix the signals x by a demixing matrix W € CNV*¥

y = Wx = WAs (2)

F. Theis et al. (Eds.): LVA/ICA 2012, LNCS 7191, pp. 42-f9, 2012.
© Springer-Verlag Berlin Heidelberg 2012
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such that y is "as close to s” as possible according to some metric. The ideal
solution for W is A~! neglecting scaling, phase and permutation ambiguity [2].

It is very useful, to have a lower bound for the variance of estimation of W.
The Cramér-Rao bound (CRB) provides a lower bound on the covariance matrix
of any unbiased estimator of a parameter vector. Although much research in the
field of ICA has been undertaken, a closed-form expression for the CRB of the
real instantaneous ICA problem has been derived only recently [3, |4]. However,
in many practical applications, such as telecommunication or audio processing in
frequency domain, the signals are complex. Although many different algorithms
for complex ICA have been proposed |[549], the CRB for this problem has not yet
been established. In this paper, we fill this gap by deriving closed-form expres-
sions for the CRB of the vectorized parameter @ = vec(W7) and for the CRB
of ¥ = vec((WA)T). Due to the intrinsic phase ambiguity in circular complex
ICA (cf. A2.: pi(s;) = pi(s:€7%) Va € R), we can only derive a CRB with the
constraint [WA],, € R. The CRB depends on the distributions of the sources
only through two scalars defined in (5] which can be easily calculated.

2 Prerequisites

2.1 Complex Functions and Complex Random Vectors

Define the partial derivative of a complex function g(0) = u(e, 3) + jv(a, 3)
with respect to o« = R[0] as 0g/0a = du/Oa + jOv/Oda and with respect to
B = S[0] as 9g/08 = 0u/IB + jOv/IB. Then the complex partial differential
operators 9/90 and 9/00" are defined as

8g_1<8g_,8g> Og 1<8g ,8g>

00~ 2 \oa a8 = + (3)

80* ~ 2\ 0a " op
These differential operators have first been introduced for real valued g by
Wirtinger [1]. As long as the real and imaginary part of a complex function
g are real-differentiable, the two Wirtinger derivatives in (B]) also exist [10]. The
direction of steepest descent of a real function g(0) = u(a, 8) is given by ggg* and
not gg [L1]. The complex Jacobian matrix of a complex function g: CM — CV
is defined as the complex 2N x 2M matrix

og og
26 26"
Dg: l( ag)* (Bg)*]7
26" 26
i.e. it is the augmented matrix of dg/90 and dg/00". The covariance matrix of a

complex random vector x = xg+jx; € CV is cov(x) = E[(x— E[x])(x— E[x])].
The pseudo-covariance matrix of x is pcov(x) = E[(x— E[x])(x— E[x])"].

(4)

2.2 Cramér-Rao Bound for a Complex Parameter

We briefly review the CRB for complex parameters (see for example [12]) before
we derive the CRB for circular complex ICA. Assume that L observations of
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x are i.i.d. distributed having the pdf p(x;0) with parameter vector 6. The
complex Fisher Information Matrix (FIM) of complex parameter 6 is defined as

Zo Peo
10|53 3 )
where Zg = E [Vg+ log p(x; 0){Ve- log p(x; 8)}] is called the information ma-
trix and Pg = E [Vg* log p(x; 0){Ve- log p(x; 0)}T] the pseudo-information ma-
trix. Here Vg-logp(x;0) = 1 (Valogp(x;0) + jVglogp(x;0)) is the column
gradient vector of logp(x; 0), i.e. [0/00%,---,0/00%]T logp(x; 0).
The inverse of the FIM of 8 gives, under regularity conditions, the CRB of
the augmented covariance matrix of an unbiased estimator 6 of 6 and hence

ot R

It holds COV(@) > L71(19 - ,PGI;*,P;)71 = L71R51 with Rg = Zg — 7)91'97*7)5.
The CRB for a transformed vector ¥ = g(0) is given by the right-hand-side of

cov(f?) pcov({9 . e
{pcov({?)* cov(f?)*} 2 L7 DgJg Dy (7)

3 Derivation of Cramér-Rao Bound

In ICA, the parameter of interest is the demixing matrix W. We form the
parameter vector 8 = vec(WT) = [wl, ... wk]l € CN*, where w; € CV
are the row vectors of W. The operator vec(-) stacks the columns of its argu-
ment into one long column vector. The pdf of x = As is defined as p(x;0) =
|det (W) |2 Hf\il pi(w;x), where p;(s;) denotes the pdf of s, and W = A~1. By

using matrix derivatives, we obtain

a * * * H *
gy 108P(x:0) = AT = X! (Wx) = A"(I—sp" (s)) (8)
where (s) = [1(s1), - on (sn)IT and i(s:) = — 2. logpi(s:):
Since 8 = vec(WT), we get V- log p(x; ) = vec (av?/H log p(x; 0)) and
To = (I AM(I® A"))", Pp=(I2A)My(I2AT))", (9)

where My =E [vec{I — s (s)}vec{I — s (s)}*], My = E [vec{...}vec{...} 7]
and ® denotes the Kronecker product.

3.1 CRB for G = WA

For simplicity, we first derive the CRB for the transformed parameter 9 =
vec((WA)T) = (I® AT)0. The covariance of ¥ = vec((WA)T) is given by
cov(¥) = (I® AT)cov(0)(I® A*) where 8 = vec(WT). Hence it holds

cov(¥9) > L7HI® AT)(Zg — PeZy*Py) 10 A*) = LT'R;'  (10)
with R19 = (M1 — MQM;*ME)*
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As shown in the appendix, Ry = Zi\il s, (m';"fl) L ® L;j, with &; =
J#i

J
E [|¢i(si)?]. Li; denotes an N x N matrix with a 1 at the (i, ) position and 0’s
elsewhere. Ry is a diagonal matrix of rank N2 — N. The CRB for Gj; yields
1 Ry

1) > P4 11
w(Gy)z i (1)
where G = WA. Eq. () looks the same as in the real case [3, 4], but in the
complex case k; is defined using Wirtinger derivatives instead of real derivatives.

Due to the phase ambiguity in circular complex ICA, the Fisher information
for the diagonal elements G;; is 0 and hence their CRB does not exist. However,
we can constrain Gy; to be real and derive the constrained CRB [13] for 6 = G;:
The constraint can be formulated as f(6) = —6* = 0. We then need to calculate

_|of/08 ofjoor| |1 —1 .

F(0) = L{?f*/a@ oF* Jo0"| = | -1 1 and find an orthonormal 2 x 1 matrix U
in the null-space of F(6), i.e. FU = 0. We choose U = 1/v/2[1 1]T. The CRB
for the constrained parameter § = G;; then yields

oy iy | 2 10 (0" | 3 2 U>1UH = - |11 0

where Zy = 1; — 1 = Py and 1; = E [|s]?|¢i(s;)|?]. The CRB in ([I2) is valid for
a phase-corrected G;; such that G;; € R. Eq. (I2) matches the real case |3, 4],
where Var(éij) > L~ Y(n; — 1)1 since n; is defined using Wirtinger derivatives
instead of real derivatives and hence for the real case 4(n; — 1) = 7j; — 1.

Performance of ICA is often measured using G and hence it can be directly
compared to (), (IZ). The absolute values of the diagonal elements |G| should
be close to 1. They reflect how well we can estimate the power of each component.
The absolute values of the off-diagonal elements |G’ij| should be close to 0 and
reflect how well we can suppress interfering components.

3.2 CRB for W

It holds vec(WT) =0 = (I® AT)"19 = (I® WT)9 since W = A~1. We can
estimate the rows of W only up to an arbitrary phase for each row. We can derive
a CRB for the phase-corrected W, for which [WA],; € R: We use the CRB for the
constrained G;; (I2)) together with the CRB for G;; (1)) to form the inverse FIM
for the constrained G as Ry' = vazl 4(11,1_1)Lii+2£v:1 Zﬁl (KZ’J_l) L;®Lj;.
‘ J#i
The CRB for constrained W is then given by R,' = (I® WT)Ry (I ® W*)
and cov(@) > L™'R, .

4 Results for Generalized Gaussian Distribution (GGD)

A circular complex GGD with zero mean and variance E[|s|?] = 1 is given by
the pdf p(s, s*) = A1 /c) €XP (— [ass*]%) |14], with « = (I'(2/¢))/(I"(1/¢)). T'(-)
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Fig. 1. Comparison of performance of three ICA estimators with CRB

denotes the Gamma function. The shape parameter ¢ > 0 varies the form of the
pdf from super-Gaussian (¢ < 1) to sub-Gaussian (¢ > 1). For ¢ = 1, the pdf is
Gaussian. By integration in polar coordinates, we find x, n and 3 in () and
@0Q) as k = 0;5((12 //CC)), n = 8 = ¢+ 1. For the simulation study, we consider N = 3
identically distributed sources with random mixing matrices A with independent
uniform distributions for the real and imaginary parts of each entry (between -1
and 1). We conduct 100 experiments with different A and different realizations of
the source signals and consider the following different ICA estimators: Complex
ML-ICA [7], adaptable complex maximization of nongaussianity (ACMN) [9]
and complex ICA by entropy bound minimization (ICA-EBM) [8]. We correct
for permutation ambiguity and then calculate the signal-to-interference ratio
(SIR) averaged over all N sources: SIR = 1 >, (E 1Gul?] /X, E [|G”|Q])
Fig. 0l (a) compares the SIR given by the CRB with the empirical SIR of the
different ICA estimators for varying shape parameter ¢ and a sample size of
L = 1000. Since all sources are identically distributed, CRB(G;;) — oo and
SIR — 0 for ¢ — 1 (Gaussian). In this case, ICA fails to separate the sources.
Clearly, the performance of complex ML-ICA is close to the CRB for a wide range
of the shape parameter c. ACMN outperforms ICA-EBM in most cases except for
strongly super-Gaussian sources: ACMN uses a GGD model and hence is better
suited for separating circular GGD sources. However, ACMN uses prewhitening
and then constrains the demixing matrix to be unitary which ICA-EBM does
not. Fig. [l (b) studies the influence of sample size L on ICA performance for
¢ = 0.5. Again, complex ML-ICA performs the best as expected. Except for
small sample sizes, all algorithms come quite close to the CRB.

5 Conclusion

In this paper, we have derived the CRB for the noiseless ICA problem with cir-
cular complex sources. Due to the phase ambiguity in circular complex ICA, the
CRB for the diagonal elements of the demixing-mixing-matrix-product G = WA
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does not exist, but a constrained CRB with G;; € R can be derived. Simulation
results with sources following a circular complex generalized Gaussian distribu-
tion have shown that for large enough sample size some ICA estimators can
achieve a signal-to-interference ratio close to that given by the CRB.

A Useful Matrix Algebra

Similarly to [4], we make use of some matrix algebra in the derivation of the
CRB. We briefly review the required properties here: Let L;; denote a N x N
matrix with a 1 at the (4, j) position and 0’s elsewhere. It is useful to note that

ALijAT = aia?, Liijl =0 for j 75 k‘, Liijl = Lil (13)

where ® denotes the Kronecker product. We also note that any N? x N? block
matrix A can be written using its N x N diagonal blocks Ali,i] and N x N
off-diagonal blocks Al[i, j],4 # j as follows:

N N
A= ZL“@)AH > > Ly @ Al j). (14)

i=1 i=1 j=1
J#

B Some Steps in the Derivation of the CRB for G

The derivation of the CRB for G, proceeds in three steps: First, we calculate
M, and My. Then, we obtain Ry = (M; — MyM7*MJ3)* and finally invert Ry.
Using E[sp’(s)] = I, we can simplify M; as

M, = E [vec{I — s (s)}vec{I — s (s)}"'] = Q1 — vec{I}vec{I}",
where @ = E [vec{sp" (s)}vec{se® (s)}] is a N? x N? block matrix. The

(i,4) block Q1[i,i] = E [ssf]p;(s;)|?] is diagonal since the components of s are
independent and zero mean. The diagonal elements £24[i, i; ;) are given by

34l = [|s,| i ( 1|2}:I77i i=3j
i, i { [|53| i (s |2} - F [|%(sz)|2} =k 1#£j (15)
(

ki and n; are real since Flg s)] with g(s) € R is real. The (i, j) block Q4[i, j] (¢ #
j) can be calculated as Qi j] = E [ss” ¢} (si)¢;(s;)]. It has 1 at entry (i, )
and 0 at entry (j,14), since

i, flg) = E (55597 (si)@i(s5)] = Elsi; (si)] E [sjei(s;)] =1, (16)
i, jl ) = Elsisjei(s:)w(s5)] = E s} (s:)] E [sjp5(s5)] = 0. (17)

All other entries of Q4[i, j] are zero since the components of s are independent
and zero mean. Using the matrix algebra from appendix A, we can write 1 as

an 11®Lzz+zz"% 11®LJJ+ZZLU®LU (18)

i=1 j=1 =1 j=1

J#i J#i
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Using vec{I}vec{I}# = SN Z%l Li; ® Lij + 1, Li; ® Lz, we get M as
YE)

N

N N
M, = Z(m — 1)Ly ® Ly; + Z Z kil @ Ljj. (19)

i=1 1=1 j=1

J#i
We note that M; is a real diagonal matrix.
M, can be calculated similarly. It holds:
M, = E [vec{I — s (s)}vec{I — sp" (s)}"] = Q5 — vec{I}vec{I}”,

where Q; = E [vec{sp(s)}vec{sp(s)}7] is a N? x N? block matrix. The
(i,4) block Qs[i,i] = E [ss” (¢} (s;))?] is diagonal since the components of s are
independent and zero mean. The diagonal elements 5[i, 1](; ;) are given by

1,0 = E[S( ())2}—61 i=j
92[7 ](JJ) {E [S( ( )|2] [ }E[(SOZ(Sz))Q]:O Z#L (20)

since F [sﬂ = 0. If s; is circular, it can be shown that 8; = n;: For circular
s = sr + js1, P(—=SRr,s1) = (SR, 1), P(Sr, —51) = p(sRr,s1) and p(sg,sr) =
g(s% +s7). Let f(r?) = f(s% + s?) = log p(sr, s7). It holds

of \* [of\?
ﬁ:iE (s +57) <<asj;) +(8sfl> )
1 d af \? B B
n=,E (sh —s7) <<8sj;> (&i) ) + 4spsy (85J;> (&i)},
af \? af \? 8 8
L G O RE LA A ) B

2 N2

where we used E[sRsI <(ai];) — (z?sfl) )} 0 and E[(SR — 51) (aas];) (ast )} 0
in the third line and 538{% = 2sp B{)Sf) and gsfl =281 dg(:a ) in the last line.
The (i, j) block Qs[i, j] (i # j) can be calculated as Qoli, j]=F [ss} (s:) ¢} (s5)].
It has 1 at entry (i,7) and (j,1), since

Qofi, g5y = Qa2lis o) = E [si ()] E [55(s5)] = 1. (21)
All other entries of Qs[i, j] are zero since the components of s are independent
and zero mean. Hence, we can calculate My = €y — vec{I}vec{I}T as

N

N N
My = (B = 1)Ly ® Lis + Y > (Li; @ Lj;). (22)
i=1 i=1 j=1

J#i

We note that M is a real diagonal matrix.
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Since My and M are real matrices, it holds Ry = (M — MM "MJ3)* =

M; — MnglMg. After some calculations, we get

n—1

N N N
i — 12— (8; — 1) iki — 1
Rﬂzz(n ) (ﬂ ) L“‘®L“‘+ZZ<H H,i, >Lii®ij (23)
i=1 J

=1 j=1

J#i

K

which simplifies to Ry = Zf\il Zivzl (ij__l) L;; ® Lj; due to B; = ;.
JF#i
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Abstract. In this paper, we propose a class of complex non-orthogonal joint
diagonalization (NOJD) algorithms with successive rotations. The proposed
methods consider LU or LQ decompositions of the mixing matrices, and pro-
pose to solve the NOJD problem via two successive stages: L-stage and U
(or Q)-stage. Moreover, as the manifolds of target matrices in these stages could
be appropriately parameterized by a sequence of simple elementary triangular
or unitary matrices, which depend on only one or two parameters, the high-
dimensional minimization problems could be replaced by a sequence of lower-
dimensional ones. As such, the proposed algorithms are of simple closed-form
in each iteration, and do not require the target matrices to be Hermitian nor pos-
itive definite. Simulations are provided to compare the proposed methods to
other complex NOJD methods.

Keywords: Complex non-orthogonal joint diagonalization, Blind source
separation, LU, LQ.

1 Introduction

Joint diagonalization (JD) is instrumental in solving many blind source separation
(BSS) problems. For example, for an instantaneous linear mixing model x(¢)=
As(t), where s(t), A, and x(¢) are the source, mixing matrix, and observation,
respectively, we can calculate fourth-order cumulant [1] or time-varying covariance
matrices C,,---,Cx [2] by assuming source uncorrelation (along with non-
stationarity) or independence, that share the following common JD structure:

C, =ADA" (1)

where D, is diagonal, k =1,...,K , and superscript ‘H ’ denotes conjugated trans-
pose. JD then seeks an estimate of A by fitting the above common JD structure.
Numerous JD algorithms have been proposed, which can be classified into two
categories: the orthogonal and the non-orthogonal ones. The orthogonal JD (OJD)
methods, such as Cardoso’s Jacobi-like algorithm, often require A to be unitary, and
thus prewhitening must be added to orthogonalize the observation to fulfill this re-
quirement. As prewhitening is always inaccurate and the errors introduced in this
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stage can not be corrected by OJD that follows [3], the non-orthogonal JD (NOJD)
which does not require prewhitening has attracted growing attention in the past dec-
ade. Generally speaking, NOJD often uses a cost function to measure the fitting of the
JD structure and performs minimization of this cost function to update the estimate of
A in an iterative manner. To list a few, the weighted least squares (WLS) criterion
formulates JD as a set of subspace fitting problems [4-6]. These methods do not nec-
essarily require the target matrices to be Hermitian nor square, yet are sometimes
computationally expensive. Information theoretic criterion is used in [7] that allows
for super-efficient estimation with positive definite target matrices. The sum of off-
diagonal squared norms is also widely used [8, 9], where the problem is the possible
convergence to trivial solutions (e.g. singular or zero matrix), especially for gradient
based or Newton-type methods [12].

Among the afore-mentioned JD algorithms, those using successive rotations are of
a particular kind [1, 9-12]. Instead of optimizing one of the above-mentioned criteria
for target matrices over all rows and columns, these methods consider lower-
dimensional sub-optimization over two specific row and column indices at each itera-
tion, and repeat the same sub-optimization procedure for all pairs of row and column
indices to fulfill NOJD. As the elementary rotation matrix used in each iteration is
nonsingular and determined by very few parameters, these methods are often of sim-
ple closed-form, and are free of trivial solutions. More exactly, the works in [9, 10]
use polar decomposition of the elementary rotation matrix, while the work in [11]
considers LU and LQ decompositions. Recently, non-parameterized elementary rota-
tion matrix is considered for NOJD [12]. However, the methods based on parame-
trized elementary rotation matrices [9-11], which have been proven quite effective in
solving NOJD problems, are mostly real-valued. Therefore, it is of great interests as
how to extend these methodologies to the complex domain, especially given that
complex BSS is more and more encountered in practical problems.

In this paper, we will extend the NOJD algorithms based on successive LU or LQ
decompositions [11] to the complex domain. It should be noted that this extension is
not trivial as the complex-valued version involves more parameters in the sub-
optimization problem for each iteration than the real-valued case. In the rest of the
paper, section 2 presents the proposed algorithm, section 3 provides comparisons with
other complex NOJD algorithms via simulations, and section 4 concludes this paper.

2 Proposed Algorithms

2.1  Framework for the Proposed Algorithms

For a set of complex-valued matrices C ={Cj,...,Cx} sharing the JD structure as
formulated in (1), we seek the estimate for B =A™ such that {BC,B"}~ are as
diagonal as possible. To solve the above JD problem, we propose to minimize the
sum of off-diagonal squared norms for the estimation of B as follows:

_ : K H
B =argmin >, off(BC,B") )
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where off(P) £ Dciwsen| Dij I for Pe C"* . Moreover, we can reasonably assume
that B is with unit determinant so that it could be factorized as follows:

B=LV 3

where Le CY" is a lower-triangular matrix with ones at its diagonal, V € C"™" is
upper-triangular if (3) corresponds to LU factorization, and is unitary if (3) denotes
LQ decomposition. Since any complex non-singular square matrix admits these two
decompositions, it is reasonable to consider the unmixing matrix B =LV as in (3).
As such, (2) could be solved in the following alternating manner:

5 . K H
V =arg min Zk:l off(VC, V™) (4.2)

F_ . K ’yH
L =argmin D, Off(LC/L") (4.b)

where C; =VC,V",and B=LV is the estimate of B.

In succesive rotation based methods, the minimization problems in (4) are solved
by repeating the following scheme for all possible index pairs (i,j), 1<i<j<N,
and iterate until convergence:

— H —
Ck.rmw - ]w(i,j)Ck.oldI‘(i,j) > Vnew - I‘(i.j)Vold (Sa)
’ _ ’ ’H _
Ck,new - ];i,j)Ck,oldT'(i,j) ’ Lnew - T‘(i,j)Luld (Sb)

where Ci,ows Chrews View and L, denote the updates of C;, C;, V and L in
the current iteration, and Cy oy, Crow, Voue and L, are the results obtained in the
previous iteration, k=1,..,K . T, ; and T, are elementary rotation matrices for
problems (4.a) and (4.b), respectively, which equal the identity matrix except the
entries indexed (i,i), (i,7), (j,i),and (j,j).The goal is then to find optimal T ;
and 7 in each iteration to solve (4.a) and (4.b), respectively. Noting that the ele-
mentary rotation matrices Ty ;, and 7, ; are determined by only one or two para-
meters (as will be shown later), the higher-dimensional optimization problem in (2)
could be reduced to a sequence of one- or two-dimentional simple sub-problems.

2.2 Schemes to Find Optimal Elementary Rotation Matrices

Firstly, we consider the LU decomposition of B so that the matrix V in (3) is an
upper-triangular matrix U € C"", and the JD problem could be solved via two alter-
nating stages termed as U-stage and L-stage, respectively, as indicated in (4) (V in
(4.a) is replaced by U for LU decomposition). We break the minimization problem
in the U-stage into a sequence of sub-problems via (5.a) with elementary rotation
matrix 7 ; equal to the identity matrix except the (i, j)th upper entry o ;. As
such, for index pair (i, j), we note that T ;,Ci.uT(; only impacts the ith row and
column of Ciw , k=12,..,K . As a result, the minimization of
> K off(T}';Ci T ) amounts to minimizing the sum-of squared norms of the off-
diagonal elements in the ith row and column of Cj . :
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EEDI I
i k=1 p=Lp=i

Noting  Cyuew (i, p) = i jCrota (J, P)+ Croa (i, p) , and  Cpew (p,i) = Cyoa (p, 1) +
o iCr.oa (P, J) » (6) could be rewritten as follows after a few manipulations:
Gij= Zf:lfo:l.p#{ (Crota (> P)Ck 01 (J> P) + Croota (P, J)Ci ota (P, j))oc;_jaij
+Choota (&, P)Cota (Js P) + Crota (P, J)Chota (p,i)losi
+[Crota (Js P)Ci ot (i P) + Crota (P, 1) Ciota (P j)]0ki
HCrota (T, P)Cioota (i, ) + Crota (P, 1) Ciota (1)1}

2 2
Cooen i+ (P | ©)

@)

As such, the optimal parameter o;; could be obtained by setting the derivative of
&, withregards to a;; to zero, which yields the following:

o =— pap fo:n.,m [C, o G p)C:.old (J,P)+C (P, j)CZ,old @)1 8)
Y N pilCrd G PCrid G P+ Co i (P2 DC o (P2 D]

The minimization problem in the L-stage could be solved similarly to the U-stage,
with the only exception that the iterations are repeated for 1< j <i< N, and one U-
stage and L-stage make up a sweep. As a result, the JD problem is tackled by alternat-
ing the U-stage and L-stage until convergence in the LU based method. The LU-based
method for complex NOJD is termed as LUCJD for short.

In the second proposed algorithm, we consider the LQ decomposition of B, and
thus the matrix V in (3) is a unitary matrix Q € C"*" . Similarly to LUCID, JD is
herein solved by alternating Q-stage and L-stage as indicated in (4) (V in (4.a) is
replaced by Q for LQ decomposition). Moreover, noting that the L-stage could be
handled similarly as that in LUCJD, and the Q-stage involves an OJD problem, which
could be actually tackled by Cardoso’s Jacobi-like method . As a result, the JD
problem is solved by alternating the Q-stage that adopts Jacobi-like algorithm, and the
L-stage that uses the scheme proposed in LUCID, until convergence is reached. The
LQ-based algorithm is termed as LQCJD for clarity.

2.3  Remarks and Summarization
We have some implementation remarks on the proposed LUCJD and LQCID:

Remark 1: The proposed algorithms do not require the target matrices be Hermitian,
and therefore could be used for solving BSS problems that involve JD of non-
Hermitian complex matrices (e.g. time-lagged covariance matrices or fourth-order
cumulant matrices for complex-valued signals ).

Remark 2: There are several termination criteria for the proposed algorithms. For
example, we could monitor the value of sum of off-diagonal squared norms, and stop
the iterations when the decrease in it is smaller than a preset threshold. In this paper,
we observe the change of |LV -1 N"i (V is upper-trianguler matrix U in LUCID,
and is unitary matrix @ in LQCID, Iy is an NXN identity matrix) between two
succesive sweeps and stop the iterations if it’s smaller than a threshold.

We summarize the proposed algorithms in Table 1:



54 K. Wang, X.-F. Gong, and Q.-H. Lin

Table 1. Summarization of the proposed algorithm

o Input: Aset of NxN square matrices C,,C,,--,C, , and a threshold
e OQOutput: The estimated unmixing matrix B
o Implementation:
B—Iy,yuu<0,{—1+1.
while {>7 do
The U-stage or Q-stage: V « Iy
forall 1<i<j<N do
- For U-stage in LUCJD: obtain optimal elementary upper-triangular matrix 7Y, ;
with its (7, j)th element determined by (8)
For Q-stage in LOQCJD: obtain optimal elementary unitary matrix 7 ; via the Ja-
cobi-like algorithm !
- Update matrices: V « T(,’»j)V, C, « T(,‘»j)CkT(fj) , k=1,---.K
end for
The L-stage: L« Iy
forall 1<j<i<N do
- obtain optimal elementary lower-triangular matrix 7}, ;, with its (i, j)th element de-

termined by (8)
- Update matrices: L« T} L, Ci < T ,C:T" (k=1,---,K)
end for
B« LVB, pun < HLV —IN‘ i s & Vuew = Vold| s Yola € Vnew
end while

3 Simulation Results

We provide simulations to compare the proposed LUCJID and LQCID with X. Guo's
nonparametric Jacobi transformation based JD (JTID)!'?, Li's fast approximate JD
(FAID) ! Tichavsky and Yeredor’s uniformly weighted exhaustive diagonalization
by Gaussian iteration (UWEDGE) ). We generate the target matrices as:

C,=ADA" +\JoN, (k=1,.,K) ©9)

where D, e CY" is a diagonal matrix with its diagonal elements normally distri-
buted with zero mean. Ae C"" and N, e C"" are the mixing matrix and the
noise term which are randomly generated from normal distribution with zero mean.
o 1is the noise level. We note herein that the above target matrices are neither Hermi-
tian nor positive definite. In addition, all the compared methods are initialized with
identity matrix, and uniform weights are used for FAJD and UWEDGE. The perfor-
mance index (PI) ' is used to measure the performance of the algorithms:

Y =D EL (Y,

Index (P) =[2N(N -DI"[ZX, (2], "l D1 (10)
where P =BA, with Be C"" being the estimate of the unmixing matrix.
In the first simulation, we compare the convergence speed of the considered algo-

rithms. We fix the number and the size of target matrices as K =10 and N =10,
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respectively, and plot in Fig. 1 the PI curves from 5 independent runs against the
number of iterations for 2 different noise levels : (a) ¢ =0.0001; (b) ¢ =1. From
Fig. 1. (a) we see that LUCJD and LQCJD are of almost equal convergence speed as
FAJD, which is slightly slower than JTJD and UWEDGE, when the noise is at a low
level of o =0.0001. However, when the noise level increases to o =1, we note from
Fig. 1. (b) that the number of iterations for JTID, UWEDGE, and FAJD significantly
increase as well, while LUCJD and LQCIJD are still able to yield robust converging
behavior, with LQCJID being the fastest one among all the compared algorithms.

JTJD
—&— LUCJD
—e—LacJD
~ % ~FAJD
- + - UWEDGE

JTID
—&— LUCJD
—e—LQC (4
— * —FAJD
- + -~ UWEDGE

Performance index
3
Performance index

Number of iterations Number of iterations

(a) 0=0.0001 b) o=1
Fig. 1. Performance index against number of iterations

In the second simulation, we compare the estimation accuracy of the mixing matrix
at different noise levels. We let the noise level ¢ vary from 0.0001 to 1 and plot in
Fig. 2 the PI curves obtained from 200 independent runs versus ¢ for the following 4
cases: () K=5,N=10; (b) K=10,N=10; (¢c) K=30, N=10; (d) K= 10, N = 20.

0.01 01 1 0.0001 0.001 001 01 1
Noise level Noise level

(@K=5N=10 (b)K=10,N=10

0.0001 0.001

- > - UWEDGE
JTID

0.0001 0.001 001 01 1 0.0001 0.001 001 01 1
Noise level Noise level

(c)K=30,N=10 (dK=10,N=20

Fig. 2. Performance index versus noise level for different numbers and sizes of target matrices
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We could see that LUCJD and LQCID provide almost equal performance in the
considered scenarios. It is also demonstrated in Fig. 2. (a) to Fig. 2. (c) that LUCJD
and LQCJD outperform JTJD, FAJD, and UWEDGE for small number of target ma-
trices, yet slightly underperform their competitors when the number of target matrices
increases. This shows that the proposed algorithms are more robust to noise than
JTID, FAJD, and UWEDGE in difficult situations where only a small number of tar-
get matrices are available. In addition, we observe in Fig. 2. (d) that LUCJD and
LQCID offer better estimation precision than their competitors.

In the third simulation, we test the performance of the compared algorithms against
the number and size of target matrices for a fixed noise level ¢ =1. We fix the size of
target matrices to N = 10, and plot the PI curves of the compared algorithms versus
the number of target matrices in Fig. 3. (a). Then we fix the number of target matrices
to K = 10, and plot the PI curves against the matrix size in Fig. 3. (b). The shown
statistics are obtained from 200 independent runs. From Fig. 3. (a) we see that the
performance of LUCJID and LQCID are very stable when the number of target ma-
trices varies. In particular, we note that LUCID and LQCJD outperform the other
compared algorithms clearly for small number of target matrices, while only slightly
underperforms UWEDGE when K = 30. This observation again illustrates the advan-
tage of the proposed methods in difficult scenarios where only a small number of
target matrices are available. In addition, from Fig. 3. (b) we note that increasing the
matrix size from 5 to 20 can slightly improve the performance of all the compared
algorithms, with LUCJD and LQCIJD outperforming the other methods.

—e—LucJD
—%—1acyD
N FAJD

5 0.18[ N & 0151 Sl = B = UWEDGE [

(a)N=10,K=5~30 (b)K=10,N=5~20

Fig. 3. Performance index versus number and size of target matrices with noise level o =1

4 Conclusion

In this paper, we proposed a class of complex non-orthogonal joint diagonalization
(NOJD) algorithms based on LU and LQ decompositions. The proposed algorithms
(termed as LUCJID and LQCID, respectively) tackled the NOJD problem by using a
sequence of simple parameterized elementary rotation matrices, and thus are of sim-
ple closed-form in each iteration and free of trivial solutions. In addition, the proposed
algorithms do not require the target matrices to be Hermitian nor positive definite.
Simulations are provided to compare the performance of the proposed algorithms with
some other complex NOJD algorithms. The results show that the proposed LUCJD
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and LQCID are of stable convergence at different noise levels, and LQCJD converges
faster than the other compared methods at high noise levels. With regards to the esti-
mation accuracy, LUCJD and LQCJD could provide superior performance for differ-
ent noise levels and matrix sizes over the other compared methods, especially in case
of small number of target matrices. The above simulation results infer that the pro-
posed methods may be preferable in difficult situations where the noise level is high,
and only a few target matrices are available.
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Abstract. As a tool for solving the Blind Quantum Source Separation
problem introduced in our previous papers, we here propose the con-
cept of Quantum Independent Component Analysis (QICA). Starting
from quantum bits (qubits) with cylindrical-symmetry Heisenberg cou-
pling, quantum-to-classical conversion yields an original nonlinear mix-
ing model, which leads us to develop QICA methods dedicated to this
model. Our first method consists in minimizing the mutual information
of the outputs of our nonlinear separating system. It is attractive be-
cause it yields an exact solution, without any spurious points thanks to
the (Q)ICA separability of the considered model. The second proposed
method is a simpler approximation of the first one. It is based on a trun-
cated expansion of differential entropy (or negentropy), derived from the
Edgeworth expansion of probability density functions.

Keywords: blind quantum source separation, quantum independent
component analysis, nonlinear mixing model, mutual information, Edge-
worth expansion, qubit, cylindrical-symmetry Heisenberg coupling.

1 Introduction

Source Separation (SS) is an Information Processing (IP) problem, which con-
sists in retrieving a set of unknown source “signals” (time series, images...) from a
set of observations, which are mixtures of these source signals. In particular, the
Blind Source Separation (BSS) configuration corresponds to the case when the
parameter values of the considered mixing model are unknown. On the contrary,
these values are known in the non-blind case, which therefore reduces to the in-
version of a known mixing model. The BSS field emerged in the 1980s and then
yielded major developments, e.g. reported in the handbook [2]. Until recently, all
these investigations were performed in a classical, i.e. non-quantum, framework.
Independently from BSS, another field within the overall IP domain rapidly de-
veloped in the last decades, i.e. Quantum Information Processing (QIP). It is
described in detail in [I0], and its main features are summarized in [4],[7],[8].
We recently bridged the gap between the classical BSS and QIP fields, by
introducing a new field, i.e. Quantum Source Separation (QSS), first proposed
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in our paper [4] and then described in more detail in particular in [7]. The QSS
problem consists in restoring the information contained in individual quantum
source signals, only starting from quantum mixtures (in SS terms) of these sig-
nals. This gives rise to three possible approaches:

1. In the classical-processing approach [], [7], one first converts the mixed
quantum data into classical ones by means of measurements, and then pro-
cesses the measured data with classical (i.e, again, non-quantum) methods.
We showed that original processing methods must then be developed, be-
cause the nonlinear mixing model thus encountered has not previously been
addressed in the classical (B)SS literature.

2. Quantum-processing methods [7] keep the quantum nature of the mixtures
and process them by means of quantum circuits in order to retrieve the
quantum sources.

3. Hybrid methods [§] combine the above two approaches, by first partly pro-
cessing the quantum mixtures with quantum circuits, then converting the
resulting quantum data into classical ones by means of measurements, and
eventually processing the measured data with classical methods.

In this paper, we only consider the first approach to QSS, based on classical-
processing methods, which are the only easily implementable ones nowadays,
since the practical design of quantum circuits is only an emerging field. As in the
classical SS framework, these QSS methods give rise to two configurations, i.e.
the blind and non-blind ones. We here consider the most complex configuration,
i.e. the blind one, which requires us to estimate the value(s) of the mixing model
parameter(s). In our papers [4], [7], we only described a very basic method for
performing this estimation. That method is based on the first-order moment of
a measured signal and has the drawback of setting constraints on some source
statistics. We therefore here aim at developing much more powerful methods for
performing the considered Blind Quantum Source Separation (BQSS) task.

In the classical framework, several classes of methods were proposed for solving
the BSS problem, the most popular of them being Independent Component Anal-
ysis (ICA). Similarly, as a tool for solving the BQSS problem, we here develop
what we will call “Quantum Independent Component Analysis (QICA) meth-
ods”, in the sense: Independent Component Analysis methods for data which
initially have a quantum nature (these data are here converted into classical ones
and then processed by classical means). More precisely, we will first describe
a method which performs exact QICA, and then an associated approximation.
Before this, we now define the considered mixing and separating models.

2 Mixing Model

In the QIP field, “qubits” (i.e. quantum bits) are used instead of classical bits for
performing computations. A qubit, with index 4, has a quantum state expressed
as follows (for a pure state):

[Vi >= ai|+ > +Bi|— > (1)
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where |+ > and |— > are basis vectors, whereas «; and f; are two complex-
valued coefficients such that

il + 1B = 1. (2)

In [4], [7], we considered the situation when the two qubits respectively associated
with two spins of a physical system are separately initialized with states defined
by () and then get “mixed” (in the SS sense), due to the undesired coupling
effect which exists in the considered system (Heisenberg coupling in our case).
We proposed an approach which consists in repeatedly initializing the two qubits
according to () and later measuring spin components associated with the system
composed of these two coupled qubits. We showed that this yields four possible
measured values, with respective probabilities p1, p2, ps and py. In [7], we derived
the expressions of these probabilities with respect to the polar representation of
the qubit parameters a; and 3;, which reads

o =riel% B = el Vi € {1,2} (3)
with0<r; <1,¢ = \/1 — 72 due to @), and i = (71)5. The above probabilities
may then be expressed as follows:

p1 =173 (4)

p2=ri(1=73)(1 —v?) + (1 —rf)rzv’
—27‘17‘2\/1—r%\/l—rg\/l—vgvsinAI (5)
pa=(1—1)(1-r3) (6)

where

Ap = (¢2 — ¢1) — (02 — 01) (7)
and v is a parameter, defined in [7], which is such that 0 < v? < 1, and whose
value is unknown in most configurations (this corresponds to the blind version

of this QSS problem). Note that probability ps is not considered in this investi-
gation, since it is redundant with the above three ones: we always have

p1+p2 +p3+py =1 (8)

Eq. @)-(@) form the nonlinear “mixing model” (in SS terms) of this investigation.
The observations involved in this model are the probabilities p, p2 and ps mea-
sured (in fact, estimated, using repeated qubit initializations [7]) for each choice
of the initial states of the qubits. Using standard SS notations, the observation

vector is therefore x = [z1, 22, 73]T, where T stands for transpose and
x1=p1, T2=Dp2, T3=Dp4. 9)
The source vector to be retrieved from these observations is s = [s1, 52, s3]7

with s1 = r1,82 = ro and s3 = A; (the parameters ¢; are then obtained as
q; = \/ 1 — r? ; the four phase parameters in (B]) cannot be individually extracted
from their combination Ay; only two phases have a physical meaning [§]). In the
blind configuration considered in this paper, retrieving the sources first requires
one to estimate the only unknown mixing parameter of this model, i.e. v.
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3 Separating System

In [7], we showed that the above mixing model is invertible (with respect to
the considered domain of source values), for any fixed v such that 0 < v? < 1,
provided the source values meet the following conditions:

0<rm <j<ry<l1 (10)
-5 <A< 7. (11)

The separating system that we proposed for retrieving (estimates of) the sources
by combining the observations then yields an output vector y = [y1,v2,y3]"
which reads

y1—\/; [(1 +p1—pa) — V(1 +p17p4)2*4p1} (12)

y2—\/; [(1 +p1—pa) +V/(1 +P1*P4)2*4P1} (13)

o — Avcsin |F0 =91 = 0%) + (1 = yh)y3o® pQ]

2y1y2/1 — y3/1 — y3V1 — 920

(14)

where ¢ is the estimate of v used in the separating system. The outputs y1, y2
and y3 respectively restore the sources s; = r1,s9 = ro and s3 = Aj.

4 Exact QICA

We here consider the case when each source signal of our BQSS problem is
continuous-valued, stochastic, identically distributed (i.d) and all source signals
are mutually statistically independent. The observations and separating system
outputs are then also stochastic and i.d. We therefore consider the random vari-
ables (RVs) defined by all these signals at a single time, and we denote Y; the
RVs thus associated with the outputs of the separating system.

In these conditions, we consider the “global model” (from the source signals
s; to their estimates y;) obtained by combining the mixing model [{@)-(@) and
the separating model (I2)-(4). We call it “the Heisenberg global model”. In [5],
we briefly showed that it is “ICA separable”. Generally speaking, an arbitrary
(memoryless) global model is said to be ICA separable, in the above conditions
and for sources having given probability density functions (pdf), if it meets the
following property: if the output RVs of the separating system are mutually
statistically independent, then they are equal to the source RVs, up to some
acceptable indeterminacies which depend on the considered model (e.g., only one
sign indeterminacy for the Heisenberg global model, as detailed hereafter). In [5],
we first studied the ICA separability of a very general class of global models. We
then briefly focused on the Heisenberg global model, and we proved that it is ICA
separable. We here aim at proceeding much further in the investigation of this
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BQSS problem, by deriving qubit separation methods based on this separability
property. This property is indeed very attractive, because it ensures that, by
adapting v so that the output RVs Y; become statistically independent, it is
guaranteed thay they become equal to the source RVs (up to the indeterminacies
of the Heisenberg model). To derive a practical QICA method from this property,
we need to define a quantity which detects when the output RVs are independent.
A well-known quantity which meets this constraint is the mutual information
of these RVs, denoted I(Y), where Y = [Y7,Y,Y3]T: I(Y) is null when the
RVs Y; are independent and positive otherwise. A separation criterion for the
Heisenberg global model therefore consists in adapting ¢ so as to minimize (and
thus cancel) a function, therefore called “the cost function”, defined as I(Y’). The
above ICA separability property means that I(Y") has no global spurious points,
i.e. it reaches its global minimum value only when source separation is achieved,
up to the indeterminacies of the model. From the general analysis provided in [5],
one may derive that these indeterminacies here reduce to a sign indeterminacy
for ys: when the output RVs are independent, we have y3 = +s3. The other two
output signals yield no indeterminacies, i.e. they are equal to the corresponding
source signals.
The cost function thus obtained may be expressed as

3
I(Y) = (Z h(i@)) — h(Y). (15)

In this expression, each term h(Y;) is the differential entropy of the RV Y;, which
may be expressed as

h(Y:) = —E{ln fy,(Yi)} (16)
where fy;(.) is the pdf of ¥; and E{.} stands for expectation. Similarly, h(Y") is
the joint differential entropy of all RVs Y;, which reads

hY) = —E{ln fy (Y)} (17)

where fy(.) is the joint pdf of all RVs Y.

Moreover, we here use the following general property. Let us consider an
arbitrary random vector X with dimension N, to which an arbitrary invertible
transform ¢ is applied. We thus get the random vector Y with dimension N,
defined as: Y = ¢(X). This transform has the following effect on joint differential
entropy [6]:

h(Y) = h(X) + E{ln | J4(X)[} (18)
where Jy4(x) is the Jacobian of the transform y = ¢(z), i.e. the determinant of
the Jacobian matrix of ¢. Each element with indices (4, j) of this matrix is equal
to %5
is its jJth argument. This property here applies to the output joint differential
entropy defined in (7)), and the transform ¢ here consists of the separating
model defined by [@) and (I2)-(I4). Eq. (I2) and (@3) show that y; and ys do

not depend on 3. Therefore, J,;(x) here reduces to

J¢(l’) = J1Jo (19)

, where ¢; = y; is the ith component of the vector function ¢ and z;
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where
_ Y3
Ji = O (20)
= — sgn(d) {4y7y3 (1 — yi) (1 — y3)(1 — 0°)0°
—i(L =) (1 —9%) + (1 —y)yso® —xo?} 2 (21)
_ Oy1 Oy Oy1 Oy
J2 - 81‘3 8$1 81‘1 81‘3 (22)
' (23)

N 4y1y2\/(1 + xr1 — $3)2 — 4$1 '

Combining (IE) and (18], the considered cost function becomes

3
1Y) = (Z h@’i)) = W(X) = E{In[Js(X)[}- (24)

Its term A(X) does not depend on the separating system parameter ¢ to be
optimized, but only on the fixed available observations. Besides, (I2) and (I3)
show that the outputs y; and ys, and therefore the differential entropies h(Y7)
and h(Y2) also do not depend on ©. Therefore, minimizing I(Y") with respect to
¥ is equivalent to minimizing the following cost function:

Ca(Y) = h(Ys) — E{In[Jy(X)]}. (25)

5 Approximate QICA

The exact QICA criterion developed in the previous section involves the pdf of
a separating system output. It therefore requires one to estimate this pdf (or its
derivative, used in some optimization algorithms), which is cumbersome. An al-
ternative approach consists in deriving an approximation of this pdf, which yields
an associated approximate QICA criterion. We now investigate this approach.

A method for defining an approximation of a pdf, and then of the associated
differential entropy or negentropy, consists in using the Edgeworth expansion,
which is e.g. detailed in [9]. This approach may be summarized as follows. The
considered pdf of an RV U is expressed as the product of a reference pdf, here
selected as a Gaussian RV G with the same mean and variance as U, and of
a factor expressed as a series (see its explicit expression e.g. in [9]). This then
makes it possible to express the negentropy of U, i.e.

J(U) = WG) = n(U), (26)

as a series. Then truncating that series to a given order provides a corresponding
approximation of that negentropy.

That approach was used and detailed by Comon in [I], but only for a stan-
dardized (i.e. zero-mean and unit-variance) RV. This was motivated by the fact
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that, for the linear instantaneous mixing model considered in [I]: 1) the zero-
mean versions of the observations are linked according to the same model to the
zero-mean versions of the source signals, so that one can restrict oneself to zero-
mean signals and 2) this model does not fix the scales of the estimated sources,
so that one can decide to only consider unit-variance outputs without loss of
generality. Comon thus obtained the following approximation of negentropy:

JU) ~ 112cum3(U)2+418 478cum3(U)47;cumg(U)chm4(U) (27)
where cum;(U) is the ith-order cumulant of the standardized RV U.

On the contrary, we here have to consider unstandardized RVs, because our
nonlinear mixing model does not yield the above-defined translation property
and scale indeterminacy. We therefore aim at determining a (neg)entropy ap-
proximation for an unstandardized RV. This could be done by starting from
the pdf expansion provided in [9] for an arbitrary RV and then developing the
above-defined procedure for deriving the corresponding negentropy expansion.
However, these computations would be complicated and may be avoided as fol-
lows, by taking advantage of the results already obtained by Comon for stan-
dardized RVs. Since we eventually aim at deriving an approximation of the
differential entropy of Y3 involved in (23], we introduce the standardized version
of Y3, defined as:

cumy (U)? +

o _ Y3 — E{Ys}

v (28)

Y,
where oy, is the standard deviation of Y3. Then, thanks to the properties of
differential entropy [3], we have

h(Y3) = h(Y3) + Inoy,. (29)

h(Y3) may then be expressed with respect to the negentropy of Y3 by using (26),
and the fact that the differential entropy of a standardized Gaussian RV is equal
to [In(27) + 1]/2, as may be computed directly or derived from [I]. Applying
1) to the RV defined in (28]), and using the translation and scaling properties
of cumulants, one eventually gets

In(27) + 1 1 5 1 9
h(Y3) ~ 5 +Inoy, — 120?/3 cums(Y3)® — 480?,3 cumy(Y3)
7 1
- Y3)* Ys3)? Ys). 30
48011/§cumg( 3)* + 8011/(3)cum3( 3)“cumy(Y3) (30)

Inserting the latter expression in (23)) yields the approximate cost function C5(Y)
to be minimized. Using the standard cumulant-vs-moment expressions, C3(Y)
may be rewritten as a combination of expectations of explicitly defined RVs.
Practical estimators of this cost function may then be derived. Note that, con-
trary to the initial cost function Co(Y'), it is not guaranteed at this stage that the
approzimate function C3(Y’) obtained here reaches its global minimum exactly
and only when source separation is achieved. The analysis of this topic is beyond
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the space allocated to this paper. Note also that the constant term [In(27)+1]/2
due to the standardized Gaussian may be removed from C5(Y), since it has no
influence on the minimization of C5(Y").

6 Extensions and Conclusions

In this paper, we introduced the Quantum Independent Component Analysis
(QICA) concept, and we proposed two resulting criteria for performing the sep-
aration of coupled qubits, once they have been converted into classical data.
Various optimization algorithms may be derived from these criteria. This e.g.
includes standard gradient-based approaches. In addition, a straightforward and
relatively cheap algorithm for reaching the global minimum of the considered cost
functions here consists in performing a sweep over the single (bounded) tunable
parameter of our separating system, and in computing corresponding sample es-
timates of the above-defined cost functions. We plan to assess the performance of
that approach. However, actual data may hardly be presently obtained for per-
forming such tests, since the implementation of QIP systems is only an emerging
topic. Therefore, we will first develop a software simulation of coupled qubits.
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Abstract. Independent Vector Analysis (IVA) is a special form of Inde-
pendent Component Analysis (ICA) in terms of group signals. Most IVA
algorithms are developed via optimizing certain contrast functions. The
main difficulty of these contrast function based approaches lies in esti-
mating the unknown distribution of sources. On the other hand, tensorial
approaches are efficient and richly available to the standard ICA problem,
but unfortunately have not been explored considerably for IVA. In this
paper, we propose a matrix joint diagonalization approach to solve the
complex IVA problem. A conjugate gradient algorithm on an appropri-
ate manifold setting is developed and investigated by several numerical
experiments.

Keywords: Complex blind source separation, independent vector anal-
ysis, complex oblique projective manifold, conjugate gradient algorithm.

1 Introduction

Nowadays, Independent Component Analysis (ICA) has become a standard sta-
tistical tool for solving the Blind Source Separation (BSS) problem, which aims
to recover signals from only the mixed observations without knowing the a priori
information of both the source signals and the mixing process. It is known that
application of the standard ICA model is often limited since it requires mutual
statistical independence between all individual components. In many real appli-
cations, however, there are often groups of signals of interest, where components
from different groups are mutually statistically independent, while mutual statis-
tical dependence is still allowed between components in the same group. Such
problems can be tackled by a technique now referred to as Multidimensional In-
dependent Component Analysis (MICA) [I], or Independent Subspace Analysis
(ISA) [2].

A special form of ISA arises in solving the BSS problem with convolutive
mixtures [3]. After transferring the convolutive observations into frequency do-
main via short-time Fourier transforms, the convolutive BSS problem ends up
with a collection of instantaneous complex BSS problems in each frequency bin.
After solving the sub-problems individually, the final stage faces the challenge
of aligning all statistically dependent component from different groups, which is

F. Theis et al. (Eds.): LVA/ICA 2012, LNCS 7191, pp. 66— 2012.
© Springer-Verlag Berlin Heidelberg 2012
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referred to as the permutation problem. To overcome or avoid the permutation
problem, a relatively new approach, namely, Independent Vector Analysis (IVA),
is developed, cf. [4]. Many IVA algorithms are developed via optimizing certain
contrast functions, cf. [5l6]. The main difficulty of these contrast function based
approaches lies in estimating the unknown distribution of sources, which usually
require a large number of observations [7].

On the other hand, tensorial approaches are efficient and richly available to
the standard ICA problem, but unfortunately have not been explored consid-
erably for IVA. In this paper, by assuming that the cross correlation matrices
between different signal groups do not vanish, we propose a matrix joint dia-
gonalization approach to solve the complex IVA problem. After adapting the
so-called the complex oblique projective (COP) manifold, an appropriate set-
ting for the standard instantaneous complex ICA problem [§], to the current
scenario, we develop an efficient conjugate gradient (CG) based IVA algorithm.

The paper is organized as follows. Section [ introduces briefly the linear com-
plex IVA problem and recall some basic concepts of the COP manifold required
for developing a CG algorithm. In Section [B] we develop an intrinsic conjugate
gradient IVA algorithm. Finally in Section M, performance of our proposed ap-
proach in terms of separation quality is investigated by several experiments.

2 Problem Descriptions and Prelimiaries

Let us start with some notations and definitions. In this work, we denote by (-)T
the matrix transpose, (-)" the Hermitian transpose, (-) the complex conjugate
of entries of a matrix, and by Gi(m) the set of all m x m invertible complex
matrices.

2.1 Complex Independent Vector Analysis

Given k instantaneous complex linear Independent Component Analysis (ICA)
problems
w; (t) = A;isi(t), fori=1,... k, (1)

where s;(t) = [8i1(1), ..., sim(t)]T € C™ be a group of m mutually statistically
independent complex signals, 4; € Gl(m) is the mixing matrix, and w;(t) =
[wi1 (), ..., wim(t)]T € C™ presents m corresponding observed linear mixtures
of s;(t). One critical assumption of IVA is that signals in all sub-problems are
statistically aligned, i.e., all the j-th sources from different sub-problems, i.e.
{s:;(t)}F_,, are mutually statistically dependent.

As the standard ICA model, we assume without loss of generality that sources
s(t) have zero mean and unit variance, i.e.,

E[s;(t)] = 0, and cov(s;) == E[s;(t)sH ()] = Ln, (2)

where E[] denotes the expectation over time index ¢, and I, is the m x m
identity matrix. The expression cov(s;) is referred to as the complex covariance
matriz of the sources s;(t).
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The task of IVA is to find a set of demixing matrices {X;}¥_, C Gl(m) via

vi(t) = Xfwi(t), 3)
fori=1,...,k, such that

(1) All k sub-ICA problems are solved, and
(2) The statistical alignment between groups is restored, i.e., the estimated j-th
signals {y;;()}¥_; are mutually statistically dependent.

The main idea of this work is to exploit the cross correlation matrices between
groups of observations, defined as
cor(w;, wj) = IE[wi(t)w;| (t)] = A; E[si(t)sH ()] AH. (4)

J J
~ ~ -~

=:cor(s;,s5)
Similarly, pseudo cross correlation matrices can also be generated directly, i.e.

peor(w;, wj) = E[wi(t)w}(t)] = A, pcor(s;, sj)A]T». (5)

In this work, we assume that cross correlations between sources in all groups do
not vanish. With a further assumption on sources being nonstationary, i.e. both
(pseduo) cross correlation matrices of s(t), and consequently, w(t) as well, are
time-varying, we arrive at a problem of jointly diagonalizing two sets of cross
correlation and pseudo cross correlation matrices at different time intervals.

To summarize, we are interested in solving the following problem. For a
complex IVA problem with k sub-problems, we construct cross correlation and
pseudo cross correlation matrices at n time intervals, i.e. for all 4,5 = 1,... )k

and r = 1,...,n, a set of Hermitian positive matrices {Ci(;)}i<j and a set of

complex symmetric matrices {Rg)}iq. The task is to find a set of matrices
{X;}E., € Gl(m) such that

xfoWx;  and  XPRI X, (6)

foralli < j and r = 1,...,n, are simultaneously diagonalized, or approximately
simultaneously diagonalized subject to certain diagonality measure. Note that,
the above problem is similar to the simultaneous SVD formulation proposed in
[9], whereas in our current setting, the transforms {X;} are not restricted to be
unitary.

2.2 Complex Oblique Projective Manifold

To make the paper self-contained, in this section, we briefly recall some con-
cepts of the complex oblique projective manifold, and naturally extend it to the
product manifold of k copies.

Recall the definition of the (m — 1)-dimensional complex projective space
CP™ ! as

cp i ={pPeC™™|P" =P P*=Pu(P)=1}, (7)
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i.e. the set of all (m — 1)-dimensional rank-one Hermitian projectors. Then, the
COP manifold, denote by Q(m,C), is defined as

Q(m,C) := {(Pl, o P [Py € CP™ T det (;B) > 0}. (8)

As Q(m, C) is an open and dense Riemannian submanifold of the m-times prod-
uct of CP™ ! with the Euclidean product metric, i.e.

Q(m,C) =CP" ' x ... x CP" ! = (CP™ )", 9)
m—times

where Q(m, C) denotes the closure of Q(m, C), the tangent spaces, the geodesics,
and the parallel transport for Q(m, C) and (CP™ )™ coincide locally.
Let us denote by

um) = {ReC™m|Q=-0"} (10)

the set of skew-Hermitian matrices. Then, given any ¥ = (Py, ..., Py,) € Q(m,C),
the tangent space of Q(m,C) at T is defined as

TrQ(m,C) = Tp,CP™ ! x ... x Tp, CP™ 1, (11)

m

where Tp, CP™ ™! denotes the tangent space of CP™ ! at P; € CP™ ™, i.e.
TpCP" .= {[P, ]| 2 € u(m)} (12)

with matrix commutator [A, B] := AB — BA.
Let & = (¢1,...,0m) € TrQ(m,C) with ¢; € Tp,CP™ ! for alli =1,...,m,
a Riemannian product metric on Ty Q(m, C) is constructed as

G: TrQ(m,C) x TrQ(m,C) - R,  G(®,¥):=Y Rtr(¢i-vhi), (13)
i=1

where 87 is the real part of a complex number Z. The geodesic through 7" €
Q(m, C) in direction @ € Ty Q(m,C) is given by

Yo B— Qm,C),  Aral) = (B Ao ®), (14)

where p 4 defines the geodesic through P € CP™ ! in direction ¢ € TpCP™*
vpp: R — CP™ 1 vpo(t) i= ell® Pl pe=tie.F], (15)

Here, e() denotes the matrix exponential. Then, the parallel transport of ¥ €

Tr Q(m, C) with respect to the Levi-Civita connection along the geodesic yr.s(t)
is

TT@(W) = (TP1,¢1 (wl)a c s TPy, fm (Q/Jm)) (16)
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with 7p 4 being the parallel transport of ¢ € TpCP™ ! with respect to the
Levi-Civita connection along the geodesic yp, 4 (t)

po (1) = el®Flype [0 F], (17)

Trivially, by considering the complex IVA demixing model in (3], a product of
k copies of the COP manifold, i.e. Q%(m,C) := Q(m,C) x ... x Q(m,C), is an
appropriate manifold setting to the complex IVA problem. The tangent spaces,
the geodesics, and the parallel transport of QF(m,C) follow directly from the
product manifold structure. We refer to [I0] for further insights of the topic.

3 A CG Algorithm for Simultaneous Non-unitary SVD

Recall the definition of the complex oblique manifold as
O(m,C) = {X € Gl(m,C)| ddiag(X"X) =1, }, (18)

where ddiag(Z) forms a diagonal matrix, whose diagonal entries are just those
of Z, and denote by OF(m, C) := O(m,C) x ... x O(m, C) the product manifold
of k copies of O(m,C). Then the off-norm cost function, a popular diagonality
measure of matrices, is straightforwardly adapted to the current setting as

f: Ok(m7(C) - R,

k n 2 19
[ X0 = 33 ot x| + 4 ot ng x|
i<j r=1 F
where || - | p denotes the Frobenius norm of matrices. A direct calculation gives
f(X17 ooy Xk)
_ZZ Z xzpC( )SU]q zpCz(j )ij) + ‘rszz(;)‘rjq (x?pRz(’;)xJQ)H
1<Jp7$q7" 1 (20)
_ZZZ“%% ij ququCzJ) thrxwwaw (2jp]; )R(T
i<jpFqr=1
Clearly, the function f induces the following function fon Q%(m,C)
f: Q%m,C) = R,
~ 21
e 1) =33 S Py CO PO 4 e PR PTROY, 2D

1<j pF#qr=1
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Computing the first derivative of f at (11,...,7%) € QF(m,C) in direction
(D1,...,Pr) € T(le’yk)Qk(m, C) gives

DF(M,...,T0)(@,. .. &)

kK m n
=D 2> wonC P C "+ PyCoi0C e (22)
i<j p#qr=1

+tr gy R Pl R + tr PR o7 RIM.

Then, the Riemannian gradient of f at (T1,..., 1) € QF(m,C),ie. (P1,...,Py)
= VJ;(Tl, Tk € T(ylw’yk)Qk(m,(C), is computed, for each element ¢;, €
Tp,, CP™ ', as

kK m n
T r)H I r)H
P,y 33 O PGy + R PIRY

¢ip = Pip7
>4 r=1
J>i p#q (23)
kK m n
Y030 MRy 4 R TRLR
Jj<t p#qr=1

Straightforwardly, a conjugate gradient algorithm for minimizing the function
f as defined in (2I)) follows. Due to the complexity of our algorithm and the
space limit, the algorithm is sketched briefly as follows. We refer to [811] and
references therein for detailed descriptions.

Algorithm 1. A conjugate gradient IVA algorithm

Step 1: Given an initial guess (Tl(o), e T,io)) € QF(m,C) and set i = 0.
Step 2: Set i =i+ 1, let (Tl(i), . ,T,Si)) = (Tl(ifl), . 7T]§¢71))7 and compute
1 1 1 1 i i
@V, o) =@, ) = v 7).
Step 3: For j =1,...,2km(m —1) — 1:

(Z) Update (Tl(i), L. ,Tlgi)) — ’y(Tl(t)’M’Tét))’(43(171)"“’@271)) ()\*), where
A* = argmin f o i iy (A);
/\gE]R f Tr®, . roy),@0, . o?) (A)
(1) Compute (¥, ... wI™)) = ~v; ((Tfi% S 77,51')));
(#71) Update conjugate search directions (@gﬁl), . ,45,?“)).

Step 4: If "(Tl(i+1), cee T,EH_U) — (Tl(i), cee T,E”)H is small enough, stop.
Otherwise, go to Step 2.
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Fig. 1. Separation performance of the proposed CG algorithm

4 Numerical Experiments

In our experiment, we investigate performance of our method in terms of separa-
tion quality. Separation performance is measured by the averaged Amari error.
Generally, the smaller the Amari error, the better the separation.

The task of our experiment is to jointly diagonalize a set of Hermitian positive
definite matrices {C’Z-(;)}Kj and a set of complex symmetric matrices {Rg)}iq,
which are constructed by

O = AN AN v eEy and R = AADAT +cEs (24)

where A; € Gl(m) is randomly picked, both real and imaginary parts of the
diagonal entries of AZ(-;) and //I\g) are drawn from a uniform distribution on the
interval (0,10), matrices Eg € C™*™ and Fg € C™*™ are a Hermitian and a
complex symmetric matrix, respectively, whose real and imaginary parts are gen-
erated from a uniform distribution on the unit interval (—0.5,0.5), representing
additive stationary noises, and ¢ € R is the noise level.

Weset m=3, k=3,n=23,¢€{0.1,0.5,1.0}, and run 50 tests. The quartile
based boxplot of averaged Amari errors of our proposed algorithm against three
different noise levels are drawn in Figure[[l Our CG algorithm demonstrates its
correspondingly delaying performance with the increasing noise levels.

Acknowledgments. This work has been supported in parts by the German
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to Complex Blind Source Separation
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Abstract. The linear BSS problem can be solved under certain condi-
tions via a joint diagonalization approach of only two matrices. Algebraic
solutions, i.e. solutions that only involve eigenvalue decompositions or
singular value decompositions, are of particular interest as efficient eigen-
solvers exist. Success of these methods depends significantly on particular
properties of the sources, such as non-stationarity, non-whiteness, non-
Gaussianity, and non-circularity. In this work, we propose alternative
algebraic solutions to solve the complex BSS problem, which generalize
the existing approaches. For example, applicability of SUT is limited to
the positive definiteness of the covariance matrix, whereas our approach
allows to exploit alternative information, such as autocorrelation and
pseudo-autocorrelation, to solve the complex BBS problem.

Keywords: Complex blind source separation, second order statistics,
(generalized) eigenvalue decomposition, Takagi factorization.

1 Introduction

Since the pioneering work on Independent Component Analysis (ICA) [I], the
problem has attracted enormous attentions from various communities, and many
efficient algorithms have been developed, cf. [2]. Despite the major interest in
developing numerical iterative algorithms, cf. [3], a relatively small fraction of at-
tention has been focused on the development of algebraic solutions, i.e. solutions
that only involve eigenvalue decompositions or singular value decompositions.
Although the algebraic approaches are in general less powerful and less robust
to noise and estimation errors than their iterative counterparts, cf. [45], these
methods are of particular interest, as they provide not only general solvability
conditions for successful BSS, but also simple, efficient solutions based on various
powerful eigensolvers.

By exploiting particular properties of the sources, such as non-stationarity,
non-whiteness, non-Gaussianity, and non-circularity, the linear BSS problem can
be solved by jointly diagonalizing two matrices, namely, the covariance matrix
of the observations and an additional matrix, which reflects the assumptions. A
corresponding algebraic solution, named Strong Uncorrelating Transform (SUT),
has been developed in [6]. It employs one step of Eigenvalue Decomposition

F. Theis et al. (Eds.): LVA/ICA 2012, LNCS 7191, pp. 74 , 2012.
© Springer-Verlag Berlin Heidelberg 2012
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(EVD) of a positive definite Hermitian matrix, followed by one Takagi factoriza-
tion, which is a special form of Singular Value Decomposition (SVD) of a com-
plex symmetric matrix. We refer to [7I8] for more details on powerful EVD/SVD
methods. Meanwhile, the other three assumptions lead to a unified approach of
Generalized Eigenvalue Decomposition (GEVD), cf. [4], which simply involves
two steps of EVD.

Success of algebraic solutions is known to be limited to their pre-selected assump-
tions. For example, the AMUSE algorithm is only capable to separate non-white
signals with distinct autocorrelation coefficients, cf. [9], while the SUT approach
fails when dealing with non-circular sources with indistinct circularity coefficients
[6]. The present work completes the puzzle of algebraic solutions to the linear BSS
problem. We consider all potential combinations of the aforementioned four prop-
erties of signals. Alternative algebraic solutions are developed for the cases when
the existing approaches fail. In particular, we propose a generalization of the pop-
ular SUT algorithm, by eliminating the involvement of the covariance matrix and
relaxing the constraint that one matrix needs to be positive definite.

This paper is organized as follows. In Section ] we briefly introduce the
complex valued linear BSS problem, and review second order statistics based
approaches. Section [ presents the main contribution of this work. Finally in
Section [ performance of the proposed algebraic BSS solution is investigated
and compared with other algebraic approaches.

2 Complex BSS and Second-Order Statistics

Let us start with some notations and definitions. In this work, we denote by (-)T
the matrix transpose, (-)" the Hermitian transpose, (-)* the complex conjugate,
and, || , Rz and Sz the modulus |z| = v/z2z*, the real part and the imaginary part
of z € C respectively. Furthermore, we denote by Gi(m), U(m) and O(m), the
set of all m xm invertible, unitary and complex orthogonal matrices, respectively.

2.1 Complex Linear BSS Model

Let s(t) = [s51(t),...,sm(t)]T € C™ be an m-dimensional vector representing
the time series of m statistically independent complex signals. The noise-free
instantaneous linear complex BSS model is given by

w(t) = As(t), (1)

where A € C™*™ is the mixing matrix of full rank and w(t) = [wy(t),...,
wm (t)]T € C™ presents m observed linear mixtures of s(t). Without loss of
generality, we assume that the sources s(t) have zero mean, cf. [3], i.e. E[s(t)] = 0,
where E[-] denotes the expectation over the time index ¢.

The task of the linear complex BSS problem () is to recover the source
signals s(¢) by estimating the mixing matrix A or its inverse A~! based only on
the observations w(t) via the demixing model
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y(t) = X w(t), (2)
where X" € C™*™ is the demixing matrix, an estimation of A=, and y(t) € C™
represents the corresponding extracted signals.

2.2 Second-Order Statistics Based Algebraic Solutions

Given the mixing model (@), the covariance matrix of the observations w(t) over
the time ¢ is computed as

Cu = Elw(t)u®(t)] = A@[S(tEH(t)lAHa (3)
=:Cy

where the covariance matrix of the sources C; is diagonal and nonnegative fol-
lowing the statistical independence assumption. When the source signals are
assumed to be nonstationary or time varying, the demixing matrix is expected
to be identifiable via a joint diagonalization of two covariance matrices within
different time intervals [10].

When source signals are stationary but non-white, i.e. with non-zero autocor-
relations, the second order statistics in the form of autocorrelations for time lag
7 > 0 is often used, i.e.

Co(7) := E[w(t)w™ (t — 7)) = AC,(r)AM. (4)

Note that although the autocorrelation matrix of the sources is still diago-
nal, it needs not necessarily to be real. In other words, the autocorrelation
matrix of the observations is not Hermitian in general. Similarly, the demixing
matrix is expected to be identified via a joint diagonalization of one covariance
matrix and one autocorrelation matrix within a non-zero time lag [I1].

Furthermore, it is well known that for complex valued signals, there are certain
properties that are not shared with their real valued counterparts, and that can
be employed for complex BSS. Namely, besides the standard covariance matrix
@), a similar statistical quantity of complex valued signals, known as pseudo-
covariance matriz, can be defined as

Ry = Elw(t)w" (t)] = AR, (H)AT. (5)

The works in [6I12] have shown that, when the sources are all non-circular with
distinct circularity coefficients, the demixing matrix can be successfully identi-
fied by jointly diagonalizing both the covariance and pseudo-covariance matrix.
The resulting algebraic solution, namely SUT, provides a simple answer to the
complex BSS problem. However, in order to separate non-circular signals with
same circularity coefficients, one has to either utilize numerical iterative algo-
rithms or employ some additional information. Recent work in [I3] proposes to
utilize the pseudo-autocorrelation matriz of signals, i.e.

Ry (7) := Elw(t)w' (t — 7)] = AR(7)AT, (6)
and develops a numerical iterative algorithm to solve the linear BSS problem.

Note that both the pseudo-covariance and pseudo-autocorrelation matrix are
complex symmetric.
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3 Algebraic Solutions to Complex BSS Problem

It is interesting to notice that existing algebraic solutions are only provided for
the situations which combine the covariance matrix (@) and one of the other
three quantities. The main contribution of this work is to consider all possible
mixtures of second order statistics in developing algebraic solution to linear BSS.
Thus, the problem studied in this work can be summarized as follows. Let two
matrices be generated as

Cy:= A AT and Oy := A AT (7)

where A € Gl(m) and §2; = diag(wi1, .. .,wim) € GI(m) are unknown, and (-)':
denotes either the Hermitian transpose or the matrix transpose. It is impor-
tant to notice that the model (7)) allows mixtures of both Hermitian congruence
and matrix congruence. Then, the task is to find a matrix X € GI(m), as an
estimation of A=H, such that C; and Cs are simultaneously diagonalized via

XHop(xMih o and  XHCOy (XM, (8)

3.1 Two Hermitian or Two Complex Symmetric

Algebraic solutions dealing with two matrices constructed via the Hermitian
congruence have been studied in [4]. As the cases with the matrix congruence
can be treated in the same way, in this subsection, we only briefly recap the
results in [4] in a unified form.

Let two matrices C1, C2 € Gl(m) be constructed by

Cy =AM AT and  Cy = AL AT, (9)

where (-)T denotes either the Hermitian transpose or the matrix transpose. Now
let us assume that one of the matrices, say Cs, is invertible. Then we compute

CiC5" = A AT (AR, AT) ' = A 02514, (10)

which gives the eigendecomposition of C1Cy L Tt then follows directly that, if the
eigenvalues of C;C; ! are distinct, i.e. the diagonal entries of £, = diag(wsy, ...,
w1im) and of 25 = diag(way, ..., wan ) satisfy

Wi;

(11)

6% waj

for all pairs (i,7) with ¢ # j, then the mixing matrix A is identifiable up to
a column-wise scaling and permutation, and can be computed by an EVD of

cCyt
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3.2 One Hermitian and One Complex Symmetric

In this subsection, we develop an algebraic solution to the situation with one
matrix being constructed via Hermitian congruence and the other via matrix
congruence. Hence, let us assume that two matrices C1,Cy € GIl(m) are con-
structed by

Cy=A A" and Oy = A AT, (12)
Here, (21 refers to either the covariance matrix (B]), or more general, the au-
tocorrelation matrix (@) of the sources, and {25 corresponds to their pseudo-
counterparts (@) and (@). We emphasize that neither C; nor Cy needs to be
positive definite.

It is clear that SUT does not apply to this situation, as the matrix C; is neither
Hermitian nor positive definite in general. Nevertheless, the construction of our
approach is largely inspired by the derivation of SUT. Namely, SUT aims to
transfer C1, restricted to be the covariance matrix, into the identity matrix, and
simultaneously bring C5 into a real diagonal matrix. In our case, we propose to
take the opposite direction, i.e. to transfer Cy into the identity matrix, and Cy
into a diagonal matrix.

Lemma 1. Let Cq € Gi(m) and Cy € Gl(m) be constructed as in (I2)), and let
Cy =UXUT be the Takagi factorization of Cy. Then,
(i) the matriz Cy := X~Y2URCLUX~Y2 admits a matriz factorization of the
form Ci = VAVH where V € O(m) and A is diagonal;
(i) the transformation X := UX~Y2V* brings Cy into the identity matriz and
Cy into a diagonal matriz via XHC1 X and X"HCyX*.

Proof. (i) Recall the construction of Cs as in (I2), we have
AQRAT =UXUT. (13)
As diagonal entries of X are all positive, Equation (I3) is equivalent to
pyR A ATUr D2 = 0, (14)

By substituting 25 = (03/2)2 into the above equation, it can be seen that V :=
E‘l/QUHAQ;/2 is complex orthogonal. With A = UEl/QVQ;Uz, Equation (I2))
yields
Cy = A AH = U2V 0 20,0, PPy s 2o, (15)
N~ ~ -
=:A
where A is diagonal. Then, Equation (3] is equivalent to

y2yic U2 = vavh, (16)
(ii) It is straightforward to verify that
xHox =vTe-2ghcus—12y* = 4, (17)
and
xHo,x* =vTy— 2yt U212y = 1, (18)

Hence the lemma follows.
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As the complex symmetric matrix C5 reflects the pseudo second order statistics of
complex signals, we name the matrix X Pseudo-Uncorrelating Transform (PUT)
in referring its connection to SUT. A small computation shows that the matrix
V consists of eigenvectors of C;C], as

CiCT =vaAviv AvT = vaA2vT. (19)

Thus, if W is a matrix such that 5’15; = WA'W~! and if the eigenvalues
A" are pairwise distinct, it follows by the uniqueness of the EVD, that V =
W(WTW)’l/zDP, where P is a permutation and D is diagonal with entries
being +1. Then, the PUT algorithm is summarized as

Algorithm 1. Pseudo-Uncorrelating Transform (PUT)

Step 1: Construct Cq, Cy from the observations w(t), where Cy and Cs are
constructed via Hermitian congruence and matrix congruence,
respectively;

Step 2: Compute the Takagi factorization of Co = UXUT;

Step 3: Let C = Y-12pHc,Uux -2, compute EVD of C,CT = WAW L

Step 4: Compute V = W(WTW)~1/2;

Step 5: Compute the PUT matrix X = UX~1/2V*;

Finally, we characterize the applicability of PUT as an effective ICA technique.
In the context of BSS, we refer to entries of A as defined in ([I3)), i.e. {w1;/|w2il}
as the pseudospectrum of the sources.

Theorem 1. Let the source s(t) in the ICA model in ([Il) have pseudospectra
A defined in ({I5) with A? being pairwise distinct, then a pseudo-uncorrelating
transform of the mizture w(t) is a demizing matriz.

Proof. Recall Equation (I9), as an eigenvalue decomposition, the matrix V'
is determined up to a permutation and a columnwise sign difference, if the
eigenvalues of C1C], i.e. A%, are pairwise distinct. Let V := VDP, where
D = diag(ds,...,d;,) with d; = £1 and P is a permutation matrix. Then
X := UX~Y/2V* is a PUT matrix. A direct computation shows

XHA = (U PR U s Ry P
= PDVT - \2yhy 2y o) 12 (20)
—H/2
= PD; 2.

Namely, the PUT matrix X is an estimation of A—H up to a permutation and a
columnwise scaling. Then the result follows.

Remark 1. Tt is interesting to know that, when the matrix C; is Hermitian and
positive definite, i.e. wy; > 0 for all i = 1,...,m. Then the pseudospectra A as
in ([I8) are simply the reciprocal of the circularity coefficients of sources. Our
result coincides with the identifiability condition of SUT, cf. theorem 2 in [6].
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The second observation is that SUT of an arbitrary pair of one positive def-
inite Hermitian and one complex symmetric matrix does always exist, cf. [14].
While PUT does not hold in general for an arbitrary pair of Hermitian and com-
plex symmetric matrix. However, existence of SUT implies the applicability of
PUT on an arbitrary pair of positive definite Hermitian and complex symmetric
matrix. In other words, PUT can be considered as a generalization of SUT.

Corollary 1. For an arbitrary pair of one Hermitian positive definite and one
nonsingular complex symmetric matriz, a PUT matriz always exists.

4 Numerical Experiments

In this section, we investigate separation performance of several algebraic BSS
solutions. In particular, we denote by FVD1, EVD2, EVD3 three eigendecompo-
sition based approaches employing non-stationarity (two covariance mateices),
non-whiteness (one covariance matrix and one autocorrelation matrix), and non-
circularity (one autocorrelation matrix and one pseudo-autocorrelation matrix),
respectively. Separation performance is measured by the normalized Amari er-
ror proposed in [I5]. It is important to notice that estimations of the demixing
matrix X from different methods might differ in column-wise scaling. Thus, in
order to compare the methods, we normalize all columns of each estimated X.
Generally speaking, the smaller the Amari error, the better the separation.
The task of our experiment is to five stationary, non-white, non-circular (with

identical circularity coefficients) sources, which are constructed as, fork = 1,. .., 5,
Rsk(t) = No,)(t) +sin( g0, 1), (21)
Ssk(t) = Nio,2)(t) + cos(5ont)s

where Mo 1)(t) denotes a sample drawn from a standard normal distribution.
We run the experiment for 100 times, and the quartile based boxplot of Amari
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Fig. 1. Separation performance of algebraic solutions
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errors for each method are drawn in Fig. Il For this particular dataset, it is
obvious that algebraic approaches based on nonstationarity and noncircularity,
i.e. EVDI1, EVDS3, SUT, fail the task. Whereas both PUT and EVD2 succeed
in achieving good separations. With a closer look to the result in the zoomed-in
window, PUT approach outperforms the EVD2 slightly.

Acknowledgments. This work has been supported in parts by the German
DFG funded Cluster of Excellence CoTeSys - Cognition for Technical Systems.
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Abstract. Traditionally, the strong uncorrelating transformation
(SUT) is applied to the zero-lag sample autocovariance and pseudo-
autocovariance matrices of the observed mixtures for separating complex-
valued stationary sources. The performance of the SUT in that context
has been recently analyzed. In this work we extend the analysis to the
case where the SUT is applied to “generalized” covariance and pseudo-
covariance matrices - which are prescribed by an arbitrary symmetric,
positive definite matrix, termed an “association matrix”. The analysis
applies not only to stationary sources, but also to sources with arbitrary
complex-valued temporal covariance and pseudo-covariance. As we show,
the use of generalized covariance and pseudo-covariance matrices for the
SUT entails a potential for significant improvement in the resulting sep-
aration performance, as we also demonstrate in simulation.

1 Introduction and Model Assumptions

We address the use of the Strong Uncorrelating Transformation (SUT) for blind
separation of complex-valued sources. Classically, the SUT is applied to the zero-
lag sample-covariance and sample-pseudo-covariance matrices of the observed
mixtures, yielding an estimate of the demixing matrix. The separation perfor-
mance of the SUT in this context (in terms of the Interference to Source Ratio
(ISR)) was recently analyzed in [I] for the case of wide-sense stationary sources.

It is, however, possible to apply the powerful tool of SUT to other second-order
statistics matrices of the sources, other than the zero-lag covariance and pseudo-
covariance. It would be interesting to explore whether (and if so, when) using
the SUT with alternative matrix-pairs can yield improved separation perfor-
mance relative to its classical use with zero-lag covariance and pseudo-covariance.
Therefore, our objective in this work is to derive expressions for the resulting
ISR when the SUT is applied to more general (“generalized”) covariance and
pseudo-covariance matrices.

We address the static, linear, square-invertible and noiseless mixture model
X = AS (the reason for the tilde notation will become clear in the sequel), in

LS A e~ ~ . . ..
which § = [s1 §2 --- sK]T is a K x N matrix containing the K unobserved

F. Theis et al. (Eds.): LVA/ICA 2012, LNCS 7191, pp. 82{-90, 2012.
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source signals (each of length N) as its rows; A is the unknown K x K mixing

matrix (assumed to be nonsingular); and X 2 [€1 T2 - - xx]T is the K x N
matrix of K observed mixtures.

To define the “generalized” covariance and pseudo-covariance matrices, let P
denote some arbitrary N x N real-valued symmetric positive-definite matrix,
which we term an “association-matrix”, and let the samEIe generalized covari-

ance and generalized pseudo-covariance matrices R and R be given by

B 1 H n 1 T
R, = \XPX R,= XPX (1)
(respectively). Evidently, IAEI is always Hermitian and R, is always symmetric.
Different types of generalized covariance and pseudo-covariance matrices can be
attained by different selection of the association matrix, for example:

— If P is taken as the N x N identity matrix, then R and R coincide with the
“standard” sample covariance and pseudo-covariance, taken uniformly over
the entire observation interval;

— If P is diagonal (with positive, possibly different elements along its diago-

nal), then R and R are temporally-weighted sample covariance and pseudo-
covariance, with weighting prescribed by the diagonal values of P.

— If P is a Toeplitz matrix then R (resp., R) is a linear combination of sample
correlations (pseudo-correlations) matrices at different lags, as prescribed by
the values along the diagonals of P.

For our subsequent performance analysis we need to introduce assumptions on
the statistical properties of the sources. In addition to the standard ICA assump-
tion, that the sources are zero-mean mutually independent stochastic processes,
we shall only need to quantify second-order properties of the sources. We shall
not make any particular structural assumption, such as stationarity, but merely
denote (for k =1,...,K) by

Cy = E[3,57], C\ = E[35}] (2)

the complex-valued N X N temporal covariance and pseudo-covariance matrices
of the sources. Note that we do not assume any particular structure of C, and

/ or of C k, and do not assume knowledge of these matrices for separation, but
only for the performance analysis. No further information on the distributions
of the sources is needed for our small-errors analysis.

2 Normalization Model and the SUT

Due to the inherent scale and phase ambiguity in complex-valued ICA (equiva-
lent to the scale and sign ambiguity in the real-valued case), we assume a scaling
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and phase correction convention as follows. Given a selected association matrix
P, denote the following (for each source, k =1,..., K):

w2 LEBT P = L Tr{PC,} pee?® £ LEGLPS) = L T{PCy}, (3)

where the superscript * denotes complex-conjugation, j = v/—1, and all the pa-
rameters iy, pr and ¢ are real-valued. In addition, uy is positive (due to the pos-
itive definiteness of P), and Pk, is non-negative. Now define (for k =1, ..., K) the

normalization factors n, = \/ ured®xe. If we further define ¢ normahzed sources”

N
as s, = 3x /M, and a new mixing-matrix A = A - Diag{n1,...,nk }, then we can
describe the observed mixtures as (scaled, rotated) mixtures of the “normalized”

. ~% A .
version of the same sources: X = AS = AS, where S = [s; - sk]7 is the
K x N matrix of normalized sources, each satisfying

* Pk A

vE[s{Psi]=1 vE[s{Ps;] = Pl (4)
where K > 0 is the generalized circularity coefficient (e.g., [213]) of the k-th
source with respect to P. We assume that the sources have distinct generalized
circularity coeflicients, and are ordered in a descending order of these coefficients
(i.e., k1 > kg > --- > K ). In addition, we shall denote by K € RE*X the diag-
onal matrix holding k1, ..., kx along its main diagonal (this matrix is sometimes
called the circularity spectrum [2] matrix). The source separation goal is now
to separate the normalized sources, which is equivalent, under the conventional

scaling and phase ambiguities, to separation of the original sources.

In addition, we have (for k=1,..., K)

A 1~ A eItk ~

CkZE[SSH]Z Ck CkZE[SST]Z Ck (5)
| HE

As mentioned above, we consider a separation scheme in which the SUT is
applied to the matrices IAEI and R,. The SUT finds a matrix ﬁ, such that

S~ ~H A AT =
BR,B =1Iand BR,;B is a diagonal matrix which we shall denote K, since
it serves as an estimate of the true circularity spectrum matrix K. B serves as
an estimate of the separation matrix B = AL,

The computation of the SUT proceeds as follows (see, e.g., [4I5I613]). A whiten-
ing transformation W of R is found first: using the eigenvalues decomposition
~  ~~~H ~ ~ ~C1/2AH
R =®Ad (where P is unitary and A is diagonal and positive), wW=4 / @
provides B up to multiplication by a unitary matrix U, which can be extracted
from the Singular Values Decomposition (SVD) of the matrlx WRW . Indeed,

denoting the SVD of this matrix as WRW = UEV (where U and V are
unitary and ¥ is diagonal non-negative), the desired SUT matrix is given by

~ A H_~ T
B =U W. We note in passing, that since W RW is symmetric, we also have
U = V7™, so the SVD essentially yields the Takagi factorization (see, e.g., [7]) in
this case.
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3 Performance Analysis

Any reasonable performance measure would be based on the overall mixing-

unmixing matrix, T' 2 EA, which would, under the normalization assumptions
in Section [ ideally be the Identity matrix. An important feature of SUT-based
separation is the property of equivariance with respect to the mixing matrix A
(closely related to the more general property of equivariance of the generalized
uncorrelating transformation [8]): Given a particular realization of the sources,
the resulting overall mixing-unmixing matrix T' does not depend on A. This
appealing property can be shown in a way similar to the derivation in [I], by
showing that T(X) = E(X)A is actually T'(S) - namely the SUT matrix of
the sources’ generalized covariance and pseudo-covariance matrices. Recalling
(e.g., [218]) that if the generalized circularity coefficients are distinct then the
SUT is unique, we conclude that T'(AS) = T'(S), regardless of the value of A.

Thus, any performance measure which is based on T'(X) will be independent
of A. One such popular measure is the ISR matrix, a K x K matrix in which
the (k, £)-th element (k # £), defined as

| T{Cc N

. Tr{Ck} -

Tr{C/,}

ISRy =F .
k.0 TI'{Ck} 3

E[|T[k, 0(X)?] (6)

Tk, ()(X)
‘T[k, kJ(X)

(where Tr{-} denotes the trace operator) represents the mean relative residual
energy of the ¢-th source in the reconstruction of the k-th source. Note that the
approximation in (@) is due to the small-errors assumption, which, combined
with the scaling convention, enables to assume T'[k, k](X) ~ 1.

To proceed with our small-errors analysis, assume now that T'(S) = I + ©,
where @ € CK*K is a matrix with small elements representing the (small)
deviation of T'(S) from its ideal value of I. We therefore have, from the SUT,

o~

(I+O)R,(I+0") =1, (I+O@)R,(I+0") =K. (7)

We can also express R,=I+E&and R, = K~+E& , where (under the small-
errors analysis) £, £ € CE*K are also matrices with small elements, representing
the (small) deviations of the sources’ sample covariance and pseudo-covariance
(resp.) from their true values. This leads to a description of @ in terms of these
deviations as follows:

I+ I+EI+0%) =T = T1+0+0" +e~T
I+O)K+EIT+0") =K = K+OK+ K0T+~ K, (3)

where we have neglected terms that are quadratic or higher in the elements of
the small-valued matrices @, € and €. This leads, in turn, to

e+0"=_¢, OK + KO = (K - K) - E. (9)
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Recalling that both K and K are diagonal, we obtain for each off-diagonal term:

Olk, (] + O*[¢,k] = —E[k, ]
keOlk, (] + KO0, k] = —E[k, 1], (10)

where Ok, £] denotes the (k,£)-th element of @, etc. In matrix form we get:

110 07 [6r[k1] Erlk, 0] 110 0] &
Ry Rk 0 0 QRM,]C] o SR[I@,K] _7]. 0011 g*[k‘,f] (11)
00 11\ Ok, d]| ~ &k |~ 2 |=jj 00| | &k
00 Re Rk @][ ,k] 51[ ,f] 00 ]j 5 [k‘,f]
éI_Ike éeu éEkg éJ =6k2

where Ok, £] and Ok, £] denote the real and imaginary parts (resp.) of Ok, £],
with similar notations for elements of £ and €. Observe now, that the (k, £)-th
elements of £ and € are (for k # {) simply the off-diagonal elements of the
sample generalized covariance and pseudo-covariance matrices Rand R (resp.)
of the sources, and therefore [k, {] = , s, Ps; and €[k, (] = A s, Psg. As such,
these are obviously zero-mean random variables (since the sources are mutually
uncorrelated), which means (from (1)) that the off-diagonal elements of @ are
also zero-mean (under the small-errors assumption). In order to obtain the vari-
ances of the off-diagonal elements of © (which by (@]) are the respective elements
of the ISR matrix, up to scaling normalization), we first need the covariance ma-

. T
trix of the vector €y = {g[k 0 EXk, L) Ek, L) &€ [k‘,ﬂ]} . To this end, we note
the following joint moments (for all k # ¢):

N
E[f[kﬂ]f*[k,f]]:]\}g Y. ElskpIPlp.dsilalsilm]Plm, n]se[n]]

p,q,m,n=1

N
= LS PPl nlE (sclplsimlsdnlsild]

p,q,n,m=1
1 N
= v > Cilp.m|Plm.nlCiln. qIPlg,p] = TH{CLPC,P}, (12)
p,q,n,m=1

where we have used the statistical independence of the sources, as well as the
symmetry of P. Similarly, it is straightforward (although somewhat tedious) to
verify that the entire covariance matrix of €xy can be expressed as

Tr{C,PC,P} Tr{C,PC, P} T+{C,PC,P} Tr{C,PC,P}

1 |Tr{C,PC,P} Tt{C;PC;P} Tr{C,PC; P} Tt{C;PC,P}
]\7'2 Tr{CkPCgP} TI‘{CkPCZP} TI‘{CkPC;P} Tr{CkPCgP}
Tr{C,PC,P} Tr{C;PC,P} Tt{C,PC, P} Tr{C;PC,P}

(13)

E[EMGkHZ] =
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For convenience, we may obtain more compact expressions for the subsequent
derivation by defining:

are & TH{C,PC P} = Tt{C;PC;P} oy 2 Tr{CPC;P} = Tt{C;PC,P}
B & Tr{CLPC P} = Tt{C,,PC,P}. (14)

For the first two identities we used the conjugate symmetry of PC,P and
of PC} P, combined with the property that if F and G are Hermitian, then
Tr{ FG} is real-valued; For the third identity we used the symmetry of PC,P,
combined with the property that if F' is Hermitian and G is symmetric, then
Tr{FG} = Tr{F*G}. We also define

JAN * A
Ve = TI‘{C]CPC[P} Ve = Tr{CkPCzP}. (15)
Using these terms, we may express the covariance matrix (3] as

are Yee Brg Bek
L~y are By Bre
Elencery] = e th . 16
[exeene] N2 | Bre Bek arl Vi (16)
Bik Biee Ve ki

We now proceed to obtain the covariance matrix of the (real-valued) vector
ere = yJ €, given by

A 1
!pkg = E[ek[é‘&] = 4 . JE[GMGI?Z]JH

Riare + e} R{Bre + Ber}  T{vwe}  Z{Bre + Ber}
1 A\ R{Bre + Ber} Ri{cwa + vt T{Ber — Bre}  T{vwi}
T 2N2 I{vee}  Z{Ber — Bre} R{cwe — Yie} R{Bre — Ber} |’
I{Bre + Bext  T{vmt  R{Bwe — Ban} Riowr — v}

where R{-} and Z{-} denote the Real and Imaginary parts (resp.). Note that
the age and ay; coeflicients are always real-valued.

The last step is to obtain the covariance matrix of @,y = H Eglé‘kz, evidently
given by Cy ¢ = E[Ok,ﬂfl] = H,;;WMH,ZET. Note, however, that for obtaining
the (k, £)-th element of the ISR matrix,

ISRy = E[|O[k, ()|*] = E[O%[k, (] + 67 [k, (] (18)

we only need var{Orlk, (]} = Ciy[1,1] and var{Os[k, (]} = C}[3,3]. Noting
further that Hy ¢ is a block-diagonal matrix (with two 2 x 2 blocks), we can
identify these elements from the (1, 1) elements of the respective 2 x 2 blocks:

(17)

1 1] 1re] ™
Crel:2,1:2]= [/‘W mj “Wpell:2,1:2]- L Kﬂ

_ 1 ki —L o L oke ke Bre o+ Bee| |k —re (19)
2N?(kg — k)2 |—ke 1 Bre + Ber o + iy -1 1
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1 -1]"" 1 k]!
Cril3:4,3:4] = [w KJ W[3:4,3:4] {_1 m‘j

_ 1 [ Kk 1} R{ {Oékf = Vit Bre — ﬂ[k:| } . {/‘Dk Hz} (20)
IN2(Kp + Ke)? |—ke 1 Bre — Bek el — Yy 1]
Taking the (1,1) element of each of these two matrices, we obtain (resp.):
EO} Ik 0] =% {

k(oo + Yre) — 26 (Bre + Ber) + (k + Vi) }

2N2(ky — k)2 1)

R 2 e L) SRC)

Finally, the asymptotic expression for each ISRy ¢ is given by the sum of these
two expressions ((2I) and (22))), normalized by the ratio Tr{C,}/ Tr{C}}.
We note some important properties of the ISR expression:

— Invariance with respect to the other sources: ISRy depends only on the
statistics of the k-th and /-th sources, and not on other sources. Note, how-
ever, that this property only holds under our small-errors assumption, as a
direct result of the approximation made in ({);

— Invariance with respect to the distributions of the sources: The ISR depends
only on the temporal SOS of the (relevant) sources, and is independent of
their higher-order temporal moments or particular distributions. Note that
this property, too, is only valid under the small-errors approximation.

— Non-identifiability condition: If k;, = k¢, then the resulting ISRy, ¢ and ISRy j
are infinite, meaning that two sources with the same generalized circularity
coefficient with respect to P cannot be separated by the SUT of the respec-
tive generalized covariance and pseudo-covariance alone.

4 Simulation

To demonstrate the validity of our analytic derivations, as well as the poten-
tial performance gain in using generalized covariance and pseudo-covariance
matrices, we present the following simulation results. We mixed K = 3 sta-
tionary sources, generated as follows. Each source si[n] was N = 500 samples
long, obtained as a filtered version of an iid zero-mean complex Gaussian noise
source wg[n], with circularity coefficients 0.9, 0.8, and 0.7 for w[n], wz[n] and
ws[n] (resp.). Thus, each source was generated as si[n] = Efnzo hi[m]wg[n —m]
(for k = 1,2,3). The finite impulse-response (FIR) filters (all of order 3) were
structured so as to have the following sets of zeros (in the z-plane): For hi[m]:
{0.8+40.85,1—0.24,2.65}; for ha[m]: {—0.9,1.5+0.95,1.34+0.65}; and for hz[m]:
{1.35,—0.9—-10.15,0.6 — 0.6}. The sources were mixed by random complex-valued
mixing matrices with elements randomly and independently drawn from a zero-
mean unit-variance complex Gaussian distribution. The demixing matrix was
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estimated twice: First, as the SUT of the sample zero-lag covariance and pseudo-
covariance matrices (corresponding to P = Py = I), and then as the SUT of
the sample generalized covariance and pseudo-covariance matrices obtained with
P = Ps, structured as a 500 x 500 symmetric Toeplitz matrix with the gener-
ating (first row) vector [1 0.1 0 — 0.4 07]. The resulting empirical ISR values
(averaged over 5000 independent trials) are presented in Table [l below for both
separation schemes, together with the analytically predicted values (in parenthe-
ses). A close match between the empirical and analytically predicted values (up
to about 1dB) is observed, as well as significant performance differences (e.g., in
ISRs,1) when using different association matrices.

Table 1. Empirical and (in parentheses) theoretically predicted ISR values [dB]

ISR[dB] 51 $2 s3
s1: P =P —18.7(—17.6) —25.8(—25.9)
s1: P =P, —23.0(—23.7) —26.2(—26.6)
sp: P =Py —17.8(—17.4) —20.0(—21.6)
so: P =Py —23.6(—24.5) —18.3(—18.9)
sg: P =Py —24.7(—24.7) —19.2(—20.3)
s3: P =Py —25.7(—26.1) —17.8(—18.2)

5 Conclusion

Using a small-errors analysis, we derived expressions for the resulting ISR in
SUT-based separation using the observations’ generalized covariance and pseudo-
covariance matrices. The results depend only on the sources’ (complex-valued)
SOS and on the association matrix. Theoretically, the analytic expressions can
also serve for optimizing the selection of an association matrix, whenever the
sources’ SOS are known.
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Abstract. We consider an extension of ICA and BSS for separating
mutually dependent and independent components from two related data
sets. We propose a new method which first uses canonical correlation
analysis for detecting subspaces of independent and dependent compo-
nents. Different ICA and BSS methods can after this be used for final
separation of these components. Our method has a sound theoretical
basis, and it is straightforward to implement and computationally not
demanding. Experimental results on synthetic and real-world fMRI data
sets demonstrate its good performance.

1 Introduction

Various independent component analysis (ICA) and blind source separation
(BSS) methods [1, 2] are nowadays well-known techniques for blind extraction
of useful information from single vector-valued data X = [x(1),...,x(N,)] with
many applications. The data model used in the basic linear ICA is simply

n

x(t) = As(t) = > si(t)a; (1)

i=1

Thus each data vector x(t) = [z1(t),x2(t),...,zn(t)]T is expressed as a linear
combination of independent components or source signals s;(t), collected re-
spectively to the source vector s(t) = [s1(t),s2(t),...,sn(t)]T. For simplicity,
we first assume that both x(t) and s(¢) are zero mean n-vectors, and that the
mixing matrix A is a full-rank constant n x n matrix with column vectors a;,
i=1,2,...,n.

In standard linear ICA, the index ¢ which usually denotes time or sample in-
dex is not important, because the order of the data vectors x(¢) can be arbitrary.
This holds if they are samples from some multivariate statistical distribution.
However, the data vectors x(t) have often important underlying temporal struc-
ture. Alternative BSS methods have been developed for utilizing such temporal
information. They usually utilize either temporal autocorrelations directly or
smoothly changing nonstationarity of variances. The assumptions and applica-
tions domains of these three major categories of methods based on the simple
model []) vary somewhat [1, 2].

F. Theis et al. (Eds.): LVA/ICA 2012, LNCS 7191, pp. 91-[98] 2012.
© Springer-Verlag Berlin Heidelberg 2012
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The most widely used standard ICA method is currently FastICA [1, 13] due
to its efficient implementation and fast convergence which makes it applicable
to higher dimensional problems, too. From the many methods using temporal
autocorrelations, we have used the TDSEP method [4] which performs usually
well. Some attempts have been made to combine different types of BSS methods
so that they would be able to separate wider classes of source signals. In [5], an
approximate method called UbiBSS is developed which tries to utilize higher-
order statistics, temporal autocorrelations, and nonstationarity of variances. We
have used its Matlab code [6] in our experiments.

ICA and BSS have been generalized into many directions from the simple
linear noiseless model () [1, 12]. We consider a generalization in which one tries
to find out mutually dependent and independent components from two different
but related data sets X and Y = [y(1),...,y(N,)]. Data vectors y(t) have
dimension m which can be different from dimension n of the data vectors x(t)
in X, but they obey a similar basic linear model

y(t) = Br(t) = Y ri(t)b; (2)

=1

in which r(¢) is m-vector and B m x m matrix.

This generalization of ICA and BSS has not been studied as much as several
others, but some related work can be found in |749, [11413]. In most of these
methods the data model is more rectrictive than ours, assuming that in the data
sets X and Y there exist pairs of sources which are mutually dependent, but
these sources are independent of all the other sources in X and Y. In particular,
canonical correlation analysis (CCA) or its extension to multiple data sets is
applied in |11, [13], but in a different way than we do. Due to space limitations,
we do not discuss these related works in more detail here.

2 Owur Method

We apply canonical correlation analysis (CCA) to find the subspaces of depen-
dent and independent sources in the two related data sets. CCA [14] is an old
statistical technique which measures the linear relationships between two multi-
dimensional datasets X and Y using their autocovariances and cross-covariances.
CCA finds two bases, one for both X and Y, in which the cross-correlation ma-
trix between the data sets X and Y becomes diagonal and the correlations of
the diagonal are maximized.

In CCA, the dimensions of the data vectors x € X and y € Y can be different,
but they are assumed to have zero means. The canonical correlations and the
respective basis vectors can be computed by solving a generalized eigenvalue
problem as discussed in [14]. This solution simplifies considerably if the data
vectors x and y are prewhitened [1]. It turns out that the basis vectors of CCA
can then be determined from the singular value decomposition (SVD) of the
cross-covariance matrix Cxy = E{xy’} of x and y:
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L
Cay = UDVT =) " pu;v] (3)
i=1

Note that the SVD of Cyx = E{yx"} = CL is quite similar and is obtained
by transposing both sides of Eq. [@B]). There U and V are two orthogonal square
matrices (UTU =1, VI'V =I) containing as their column vectors the singular
vectors u; and v;. In our case, these singular vectors are the basis vectors provid-
ing canonical correlations. In general, the dimensionalities of the matrices U and
V and consequently the singular vectors u; and v; are different corresponding
to different dimensions of the data vectors x and y. The pseudodiagonal matrix

=[5

consists of a diagonal matrix D containing the non-zero singular values appended
with zero matrices so that the matrix X is compatible with the different dimen-
sions of x and y. These non-zero singular values are just the non-zero canonical
correlations. If the cross-covariance matrix Cxy has full rank, their number L is
the smaller one of the dimensions of the data vectors x and y.

We first make the data vectors x € X zero mean if necessary. These data
vectors are whitened separately:

vx = Vxx, vy =Vyy (5)

We use standard principal component analysis (PCA) for whitening as discussed
in [1]. After this we estimate the cross-covariance matrix Cy,, ., of the whitened
data vectors vy and vy in standard manner:

~ 1 Y
Cunsy = y Lwxl 0 (6)

There N is the smaller of the numbers N, and N, of the data vectors in the two
data sets X and Y, respectively. R

We then perform the SVD of the estimated cross-covariance matrix Cy, v,
quite similarly as for Cxy in (3). After inspecting the magnitudes of the singular
values in the pseudodiagonal matrix 3, we divide the matrices U and V of
singular vectors into two submatrices:

U= [Ul Ug], V= [Vl VQ] (7)

There U; and V; correspond to dependent components for which the respective
singular values are larger than 0.5, and Uy and V, to the independent com-
ponents for which the respective singular values are small. The data are then
mapped using these submatrices onto subspaces corresponding to the dependent
and independent components by computing

UlX, UlX, Viy, ViYy (8)
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where X = [x(1),...,x(N,)] and Y = [y(1),...,y(INy)]. It should be noted that
contrary to the customary use of SVD we include in the submatrices Us and Vo
also the singular vectors corresponding to small or even zero singular values for
being able to separate all the sources in X and Y. We are not aware that CCA
would have used in this way in ICA and BSS previously.

Sometimes CCA alone used in this way is sufficient for coarse separation of
sources, but in most cases CCA at least makes clear progress towards separation,
providing signal-to-noise ratios of a few decibels. The preliminary separation
results of CCA can often be improved by applying to the four mapped data
sets defined in (&) some suitable ICA or BSS method. In principle at least it is
possible to apply any kind of postprocessing here.

The somewhat surprising result than CCA alone can provide coarse separa-
tion can be justfied heuristically as follows. First, let us denote the separating
matrices after the whitening step in (&) by WZ for v, and respectively by W;
for vy. A basic result in the theory of ICA and BSS [1]] is that after whitening
the separating matrices Wy and W, become orthogonal: WIw, =1, W)T, W,
= I. Thus

S=WIV,x=WIV,As=s (9)

where we have for simplicity assumed that the estimated sources s appear in the
same order as the original sources s. Assuming that there are as many linearly
independent mixtures x and W, as sources s, so that the mixing matrix A is a
full-rank square matrix, we get from (@) by setting s = s

A=WIv,)'=v W, (10)

due to the orthogonality of the matrix W. Quite similarly, we get for the another
mixing matrix B in (2)) the equivalent result B = A\ 1VVy.
Consider now the cross-covariance matrix after whitening. It is

Cy,vy = E{vxv]} = ViE{xy}V] = V,AQB" V] (11)

Here the matrix Q = E{sr’} is a diagonal matrix, if the sources signals in the
source vectors s and r are pairwise dependent but otherwise independent of each
other. Inserting A = V_'Wy and B = V 'W,, into (1)) yields finally

Cvxvy = Wwag (12)

But this is exactly the same type of expansion as the SVD of the whitened
cross-covariance matrix Cy, v, in @), because the matrices Wy and Wy, are
orthogonal matrices and Q is a diagonal matrix. Thus on the assumptions made
above the SVD of the whitened cross-covariance matrix provides a solution that
has the same structure as the separating solution. Even though we cannot from
this result directly deduce that the SVD of the whitened cross-covariance matrix
(that is, CCA) would provide a separating solution, this seems to hold in simple
cases at least as shown by our experiments in the next section.

Another justification is that CCA, or SVD of whitened data vectors, uses
second-order statistics (cross-covariances) only for separation, while standard
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ICA algorithms such as FastICA use for separation higher-order statistics only
after the data has been normalized with respect to their second-order statistics
by whitening them. Our method combines both types of statistics. Our exper-
imental results demonstrate that this often provide better results than using
solely second-order or higher-statistics for separation. Dividing the separation
problem into subproblems using the matrices in (§) may also help. Probably
solving two lower dimensional subproblems is easier than solving a higher di-
mensional separation problem.

3 Experimental Results

We have successfully tested our method with synthetical data sets, with data sets
in which real-world sources have been mixed synthetically, and with real-world
robot and fMRI (functional magnetic resonance imaging) data. Due to space
limitations, we can show some quite selected results only here. More experimental
results can be found in |16].

Consider first a set of 6 synthetical st