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Abstract. We present cryptanalytic results of an exhaustive search of all 16!
bijective 4-bit S-Boxes. Previously affine equivalence classes have been exhaus-
tively analyzed in 2007 work by Leander and Poschmann. We extend on this work
by giving further properties of the optimal S-Box linear equivalence classes. In
our main analysis we consider two S-Boxes to be cryptanalytically equivalent if
they are isomorphic up to the permutation of input and output bits and a XOR of a
constant in the input and output. We have enumerated all such equivalence classes
with respect to their differential and linear properties. These equivalence classes
are equivalent not only in their differential and linear bounds but also have equiv-
alent algebraic properties, branch number and circuit complexity. We describe a
“golden” set of S-boxes that have ideal cryptographic properties. We also present
a comparison table of S-Boxes from a dozen published cryptographic algorithms.

Keywords: S-Box, Differential cryptanalysis, Linear cryptanalysis, Exhaustive
permutation search.

1 Introduction

Horst Feistel introduced the Lucifer cipher, which can be considered to be the first
modern block cipher, some 40 years ago. Feistel followed closely the principles outlined
by Claude Shannon in 1949 [36] when designing Lucifer. We quote from Feistel’s 1971
patent text [20]:

Shannon, in his paper, presents further developments in the art of cryptog-
raphy by introducing the product cipher. That is, the successive application
of two or more distinctly different kinds of message symbol transformations.
One example of a product cipher consists of symbol substitution (nonlinear
transformation) followed by a symbol transposition (linear transformation).

Cryptographic algorithms are still designed in 2011 according to these same principles.
A key element of Lucifer’s symbol substitution layer was a pair of 4×4-bit substitution
boxes (S-Boxes).

Much research effort has been dedicated to the analysis of 4-bit S-Boxes in subse-
quent encryption algorithms during last the four decades. In this paper we present an
analysis of all bijective 4-bit S-Boxes in the light of modern cryptanalytic techniques,
together with comparison tables of 4-bit S-Boxes found in a dozen different published
encryption algorithm proposals.
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Overview of This Paper. In Section 2 we give definitions of differential probability,
linear bias, algebraic degree, and branch number of an S-Box. Section 3 defines more
key concepts such as linear (affine) equivalence (LE) and permutation equivalence (PE)
classes, together with the concept of an ordering-based canonical representative iden-
tify LE, PE, and other equivalence classes uniquely. We also make new observations on
the sixteen “optimal” LE classes first identified in [31]. Section 4 describes our exhaus-
tive search of the 16! bijective 4 × 4-bit S-Boxes. We give a description of the search
algorithm in Section 4.1 and the distribution of class sizes and Linear and Differential
properties in Section 4.2. Section 5 discusses the “golden” S-Boxes discovered in our
search. We conclude in 4.2. Appendix A tabulates the properties of 4 × 4-bit S-Boxes
found in a dozen different cryptographic algorithms.

2 S-Box Properties

In the context of cryptographic operations, arithmetic is assumed to be performed on
variables, vectors, or matrices whose individual elements belong to the finite field F2.
Vectors are indexed from 0. We write wt(x) =

∑
xi to denote the Hamming weight of

the bit vector (word) x.
We will first give definitions related to Differential Cryptanalysis [4,5], Linear Crypt-

analysis (LC) [32], and various forms of Algebraic / Cube Cryptanalysis (AC) [16,17].

Definition 1. Let S be an S-Box with |S| input values. Let n be the number of elements
x that satisfy S(x ⊕ Δi) = S(x) ⊕ Δo. Then n/|S| is the differential probability p of
the characteristic SD(Δi → Δo).

For 4×4 bijective S-Boxes the optimal differential bound (maximum of all differentials
in an individual S-Box) is p = 1/4.

Definition 2. Let S be an S-Box with |S| input values. Let n be the number of elements
x that satisfy wt(βi · x ⊕ βo · S(x)) mod 2 = 1 for two bit-mask vectors βi and βo.
Then abs( n

|S| − 1
2 ) is the bias ε of the linear approximation SL(βi → βo).

It is well known that all 22n

functions f from n bits to a single bit can be uniquely
expressed by a polynomial function with coefficients drawn from the Algebraic Normal
Form f̂ , which has the same domain as f :

f(x) =
∑

y∈F
n
2

f̂(y)xy0
0 xy1

1 · · ·xyn−1
n−1 .

This transformation from f to f̂ can also be seen to be equivalent to the Walsh transform
[35].

Definition 3. The algebraic degree deg(f) of a function f : F
n
2 �→ F2 is the maximal

weight wt(x) that satisfies f̂(x) �= 0.

In other words, the degree of f is the number of variables in the biggest monomial in the
polynomial representation of f . Naturally the maximum degree for a 4-bit function is
4. This monomial exists in the polynomial representation exactly when f(0) �= f(15).

We define S-Box branch number similarly to the way it is defined in [39].
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4 × 4 - Bit
S-box S(x)

Mi Mox S′(x)

ci co

Fig. 1. Linear Equivalence (LE) and Permutation-XOR equivalence (PE). Mi and Mo boxes de-
note multiplication by an invertible matrix for LE and by a permutation matrix for PE.

Definition 4. The branch number of an n × n-bit S-Box is

BN = min
a,b�=a

(
wt(a ⊕ b) + wt(S(a) ⊕ S(b))

)
,

where a, b ∈ F
n
2 .

It is clear that for a bijective S-Box the branch number is at least 2.

3 Equivalence Classes and Canonical Representation

The classification of Boolean functions dates back to the fifties [22]. Previously 4-bit
S-Boxes have been analyzed in relation to linear equivalence [6,31], defined as follows:

Definition 5. Let Mi and Mo be two invertible matrices and ci and co two vectors. The
S-Box S′ defined by two affine transformations

S′(x) = MoS(Mi(x ⊕ ci)) ⊕ co

belongs to the linear equivalence set of S; S′ ∈ LE(S).

We call Mi(x⊕ ci) the inner affine transform and Mox⊕ co the outer affine transform.
There are 20,160 invertible 4×4 matrices defined over F2 and therefore 24×20, 160 =
322, 560 affine invertible transforms.

To be able to identify members of each equivalence class uniquely, we must define
a canonical representation for it. Each member of the equivalence class can be reduced
to this unique representative, which serves as an identifier for the entire class.

Definition 6. The canonical representative of an equivalence class is the member that
is first in lexicographic ordering.

Table 1 gives the canonical members of all 16 “optimal” S-Box LE classes, together
with references to their equivalents in [31].

It has been shown that the members of each LE class have the same differential and
linear bounds [6,31]. However, these linear equivalence classes are not equivalent in
many ways that have cryptographic significance.

Multiple Differential Characteristics and Linear Approximations. For crypto-
graphic security, the differential and linear bounds are the most important factor.
However, the methods of multiple differentials [8] and multiple linear approximations
[7,21,29] raise the question of how many differentials and linear approximations there
are at the respective boundaries. From Table 1 it can be observed that these numbers are
not equivalent, making some S-Boxes “more optimal” than others in this respect.



Cryptographic Analysis of All 4 × 4-Bit S-Boxes 121

Table 1. The canonical representatives of the 16 “optimal” linear equivalence classes. The Gi and
G−1

i identifier references are to Table 6 of [31]. We also give the DC and LC bounds, together
with the number nd of characteristics at the differential bound and the number nl of approxima-
tions at the linear bound. The branch BN number given is the maximal branch number among all
members of the given LE class.

Canonical representative Members DC LC Max
0123456789ABCDEF & Inverse p nd ε nl BN
0123468A5BCF79DE G2 G−1

0
1/4 24 1/4 36 3

0123468A5BCF7D9E G15 G−1
14

1/4 18 1/4 32 3
0123468A5BCF7E9D G0 G−1

2
1/4 24 1/4 36 3

0123468A5BCFDE79 G8 G−1
8

1/4 24 1/4 36 2
0123468A5BCFED97 G1 G−1

1
1/4 24 1/4 36 3

0123468B59CED7AF G9 G−1
9

1/4 18 1/4 32 3
0123468B59CEDA7F G13 G−1

13
1/4 15 1/4 30 2

0123468B59CF7DAE G14 G−1
15

1/4 18 1/4 32 3
0123468B5C9DE7AF G12 G−1

12
1/4 15 1/4 30 2

0123468B5C9DEA7F G4 G−1
4

1/4 15 1/4 30 2
0123468B5CD79FAE G6 G−1

6
1/4 15 1/4 30 2

0123468B5CD7AF9E G5 G−1
5

1/4 15 1/4 30 2
0123468B5CD7F9EA G3 G−1

3
1/4 15 1/4 30 2

0123468C59BDE7AF G10 G−1
10

1/4 18 1/4 32 3
0123468C59BDEA7F G7 G−1

7
1/4 15 1/4 30 2

0123468C59DFA7BE G11 G−1
11

1/4 15 1/4 30 2

Avalanche. For members of an LE class there is no guarantee that a single-bit differ-
ence in input will not result in single-bit output difference. If this happens, only a single
S-Box is activated in the next round of a simple substitution-permutation network such
as PRESENT [9]. This is equivalent to the case where the branch number is 2.

It is somewhat surprising that those optimal S-Boxes with most attractive nd and nl

numbers cannot be affinely transformed so that differentials with wt(Δi) = wt(Δo) =
1 would all have p = 0. Only the seven of the sixteen optimal S-Box classes, G0, G1,
G2, G9, G10, G14, and G15, have members that do not have such single-bit differentials.
This has been verified by exhaustive search by the authors.

We may illustrate the importance of this property by considering a variant of
PRESENT where the S-Box has been replaced by a linearly equivalent one from
LE(G1) such as (0123468A5BCFED97) that has p = 1/4 for the single-bit differ-
ential SD(Δi = 1 → Δo = 1). Due to the fact that the bit 0 is mapped to bit 0 in the
PRESENT pLayer, this variant has an iterative differential in bit 0 that holds through
all 31 rounds with probability 2−62. We may utilize the average branch number in the
last rounds to estimate that this variant would be breakable with less than 256 effort.

This motivates us to define the PE class.

Definition 7. Let Pi and Po be two bit permutation matrices and ci and co two vectors.
The S-Box S′ defined by

S′(x) = PoS(Pi(x ⊕ ci)) ⊕ co

belongs to the permutation-xor equivalence set of S; S′ ∈ PE(S).



122 M.-J.O. Saarinen

Algebraic Properties. While the maximal algebraic degree of all output bits may be
preserved in LE [31], some of the output bits may still be almost linear. It is notewor-
thy that despite belonging to LE(G1), one of the PRESENT output bits only has one
nonlinear monomial (of degree 2) and therefore this output bit depends only linearly on
2 of the input bits. This can be crucial when determining the number of secure rounds;
final rounds can be peeled off using such properties.

Circuit Complexity. From an implementation viewpoint, the members of an LE class
may vary very much but the members of a PE class are usually equivalent. This is
important in bit-slicing implementations such as [3].

It can be shown that circuits that use all 2-input Boolean functions [35,40] can be
transformed to equal-size circuits that use only the four commonly available instructions
(AND, OR, XOR, AND NOT) but may require a constant XOR on input and output
bit vectors. These XOR constants may be transferred to round key addition in most
substitution-permutation networks and therefore there is no additional cost.

Note that the methods described in [39] utilize only five registers and two-operand
instructions AND, OR, XOR, NOT and MOV. Most recent CPUs have sixteen 256-bit
YMM registers, three-operand instructions (making MOV redundant) and the ANDNx
instruction for AND NOT [28]. Therefore 2-input boolean circuit complexity is a more
relevant measure for optimality of a circuit. However, for hardware implementation
these gates have uneven implementation-dependent cost [34].

We may also consider the concept of feeble one-wayness [25,26,27]. This property
is also shared between the members of a PE class.

Other Properties. Some researchers put emphasis on the cycle structure of an S-
Box. Cycle structure properties are not usually shared between members of LE and
PE classes. This may be relevant if the cipher design does not protect against the effects
of fixed points or other similar special cases. However, such properties are difficult to
analyze in the context of a single S-Box removed from its setting within an encryption
algorithm. Care should be taken when choosing input and output bit ordering so that
diffusion layers will achieve maximum effect.

Historical Developments. The original DES S-Box design principles are described
in [10]. In hindsight it can be seen that the criteria given in that 1976 document al-
ready offer significantly better resistance against primitive DC and LC than what can
be achieved with entirely random S-Boxes [11]. For a perspective on the development
of DES and the evaluation of its S-Boxes between the years 1975 and 1990 we refer to
[13]. We may compare our current view on the topic of “good” S-Boxes to that given
by Adams and Tavares in 1990 [2]. Four evaluation criteria for S-Boxes were given in
that work: bijectivity, nonlinearity, strict avalanche, and independence of output bits. In
current terminology nonlinearity would map to the algebraic degree, strict avalanche to
the branch number, and independence of output bits roughly to both DC and LC. Note
that modern DC, LC, and AC were (re)discovered after 1990.
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Bit #

Word W0

Word W1

Word W2

Word W3

Hex

0x00FF

0x0F0F

0x3333

0x5555

0

0

0

0

0

1

0

0

0

1

2

0

0

1

0

3

0

0

1

1

4

0

1

0

0

5

0

1

0

1

6

0

1

1

0

7

0

1

1

1

8

1

0

0

0

9

1

0

0

1

10

1

0

1

0

11

1

0

1

1

12

1

1

0

0

13

1

1

0

1

14

1

1

1

0

15

1

1

1

1

Fig. 2. Our internal 4×16-bit representation of the identity permutation (0, 1, . . . , 15). The words
are always stored in increasing order and the highest bit is normalized to zero.

4 An Exhaustive Search Over All PE Classes

We have performed an exhaustive search over all PE classes. Since there are 16! ≈
244.25 different bijective 4-bit S-Boxes, some shortcuts had to be used. We are currently
unable to extend our methods to 5-bit S-Boxes or beyond.

Internally our program uses another (non-lexicographic) ordering to determine the
unique canonical member of each PE class. The permutations are stored as four 16-bit
words Wi that are always in ascending order.

Theorem 1. Any 4 × 4-bit bijective S-Box can be uniquely expressed as

S(x) =
( 3∑

i=0

2P (i)Wi,(15−x)

)
⊕ c

for some bit permutation P of numbers (0, 1, 2, 3), a vector c ∈ F
4
2 and words Wi =

∑15
j=0 2iWi,j satisfying 0 < W0 < W1 < W2 < W3 < 215.

Proof. Output bits can be permuted in 4! = 24 different ways (as each Wi must be dif-
ferent from others) and each one of the 24 = 16 masks c creates a different permutation
due to the limit Wi < 215. P and c uniquely define the 4!24 = 384 outer transforma-
tions while Wi uniquely defines the rest. �	
This representation offers a natural and quick way to normalize a S-Box in respect to
the outer permutation Po and mask co by sorting the four words and inverting all bits of
a word if the highest bit is set. Figure 2 illustrates this ordering.

From the fact that S is bijective it follows that wt(Wi) = 8 for all Wi. There are(
16
8

)
= 12, 870 16-bit words of weight 8, of which we may remove half due to the

co normalization limit Wi < 215, yielding 6, 535 candidates. Furthermore, each word
has a minimal equivalent up to permutation among all input permutations Pi and input
constants ci. We call this minimal word mw(x). At program start, a table is initialized
that contains mw(x) for each 16-bit word by trying all 24 permutations of input bits
and 16 values of ci on the 4 × 1-bit Boolean function that the word x represents. If the
resulting word is greater or equal to 215 (indicating that the highest bit is set) all bits of
the word are inverted, normalizing the constant. Each one of the wt(x) = 8 candidates
map to a set of just 58 different mw(x) values.
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Algorithm 1. A bit-combinatorial permutation search algorithm.
1: for i0 = 0 to 6534 do
2: W0 = wt8tab[i0]
3: if mw(W0) = W0 then
4: for i1 = i0 + 1 to 6534 do
5: W1 = wt8tab[i1]
6: if mw(W1) > W0 and

wt(t2 = ¬W0 ∧ W1) = 4 and wt(t3 = W0 ∧ W1) = 4 and
wt(t1 = W0 ∧ ¬W1) = 4 and wt(t0 = ¬W0 ∧ ¬W1) = 4 then

7: for i2 = i1 + 1 to 6534 do
8: W2 = wt8tab[i2]
9: if mw(W1) > W0 and

wt(u0 = t0 ∧ ¬W2) = 2 and wt(u4 = t0 ∧ W2) = 2 and
wt(u1 = t1 ∧ ¬W2) = 2 and wt(u5 = t1 ∧ W2) = 2 and
wt(u2 = t2 ∧ ¬W2) = 2 and wt(u6 = t2 ∧ W2) = 2 and
wt(u3 = t3 ∧ ¬W2) = 2 and wt(u7 = t3 ∧ W2) = 2 then

10: for j = 0 to 8 do
11: vj = lsb(uj)
12: end for
13: for b = 0 to 255 do
14: W3 =

⊕7
j=0

(
uj ⊕ bjvj

)

15: if W3 ≥ 215 then
16: W3 = ¬W3

17: end if
18: if W3 > W2 then
19: test(W0, W1, W2, W3)
20: end if
21: end for
22: end if
23: end for
24: end if
25: end for
26: end if
27: end for

4.1 The Search Algorithm

We will now describe the bit-combinatorial equivalence class search method given in
Algorithm 1. There are basically four nested loops. Various early exit strategies are used
that are based on properties of the permutation (see Theorem 1 and Figure 2). Lines 1–
3 select the smallest word W0 from a table of weight-eight words and checks that it is
indeed minimal w.r.t. permutation of the four input bits. In lines 4–6 we select W1 such
that it is larger than W0 and these two words have each one of the four bit pairs (0, 0),
(0, 1), (1, 0), and (1, 1) exactly four times at corresponding locations (W0,i, W1,i). This
is a necessary condition for them to be a part of a permutation as described by Theorem
1. The corresponding masks are stored in four temporary variables ti. In Lines 7–9 we
choose W2 such that the three words make up two permutations of numbers 0, 1, . . . , 7.
The vector ui containing the two bit positions of i simultaneously computed. We are
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Table 2. Distribution of PE classes. The first column gives the number of elements in each class.
The second column |Cn| gives the number of such classes, followed by their product, which sums
to 16! = 20, 922, 789, 888, 000 as expected.

n
4!24 |Cn| n |Cn| Representative

1 2 768 0123456789ABCDEF
4 4 6144 01234567FEDCBA98
6 1 2304 01237654BA98CDEF
8 4 12288 0123456879ABCDEF

12 30 138240 0123456798BADCFE
16 18 110592 0123457689BADCFE
24 192 1769472 0123456789ABFEDC
32 104 1277952 0123456789ABCDFE
48 1736 31997952 0123456789ABCEDF
64 264 6488064 012345678ACD9EBF
96 13422 494788608 0123456789ABDEFC
128 324 15925248 0123456789ADCEBF
192 373192 27514699776 0123456789ABCEFD
384 141701407 20894722670592 0123456789ACBEFD

1–384 142090700 20922789888000

Table 3. Distribution of the 16! permutations in relation to Differential Cryptanalysis (rows) and
Linear Cryptanalysis (columns)

LC → ε ≤ 1/4 ε ≤ 3/8 ε ≤ 1/2

DC ↓ n % n % n %
p ≤ 1/4 749123665920 3.5804 326998425600 1.5629 0 0.0000
p ≤ 3/8 1040449536000 4.9728 11448247910400 54.7166 118908518400 0.5683
p ≤ 1/2 52022476800 0.2486 5812644741120 27.7814 330249830400 1.5784
p ≤ 5/8 0 0.0000 728314675200 3.4810 193458585600 0.9246
p ≤ 3/4 0 0.0000 52022476800 0.2486 68098867200 0.3255
p ≤ 1 0 0.0000 309657600 0.0015 1940520960 0.0093

now left with exactly 28 = 256 options for the last word W3. In lines 10–12 we store
in vector vi the lesser bit from the two-bit mask ui. In lines 13–20 we loop through the
remaining W3 possibilities. In line 14 we use the bit i of the loop index b to select which
one of the two bits in ui is used as part of W3. Note that this part may be implemented
a bit faster with a Gray-code sequence.

The unique permutation is then tested by the subroutine on line 19 to see if it is the
least member of its class (here an early exit strategy will usually exit the exhaustive loop
early). If (W0, W1, W2, W3) is indeed the canonical member in the special ordering that
we’re using, it is stored on on disk together with the size of the class. The entire process
of creating the 1.4 GB file takes about half an hour with a 2011 consumer laptop.

4.2 Results of the Exhaustive Search

There are 142,090,700 different PE classes of various sizes. Table 2 gives the size dis-
tribution of these PE classes, which sum up to 20, 922, 789, 888, 000 = 16! examined
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Table 4. Golden S-Boxes with ideal properties are all members of these four PE classes. Both
the S-Boxes and their inverses satisfy the bounds p ≤ 1/4, ε ≤ 1/4, have branch number 3, all
output bits have algebraic degree 3 and are dependent on all input bits in nonlinear fashion. n
gives the total size of the class and n′ the number of members which additionally have a perfect
cycle structure.

PE Representative LE n n’
035869C7DAE41FB2 G9 147456 19584
03586CB79EADF214 G9 147456 19584
03586AF4ED9217CB G10 147456 22656
03586CB7A49EF12D G10 147456 22656

S-Boxes. Each class size is divisible by 4!24 = 384 due to the fact that the output
bits can be permuted 4! = 24 ways and the output constant co can have 24 = 16 dif-
ferent values. However, it is less obvious how the inner transform defined by Pi and
ci affect the size of the class together with S. For example, for the identity permuta-
tion (0123456789ABCDEF) the bit shuffles Pi and Po and constant additions ci and
co may be presented with a single bit permutation and addition of constant and hence
hence n = 384. It is interesting to note that that there is one other class with this size,
the one with the largest canonical representative, (07BCDA61E952348F).

Table 3 gives the distribution of differential and linear properties among the 16!
S-Boxes examined. It can be seen that a majority, 54.7155% of all S-Boxes have a
differential bound p ≤ 3/4 and linear bound ε ≤ 3/4. There are no bijective S-Boxes
with differential bound p = 7/8. Appendix A gives results on some well-known 4-bit
S-Boxes.

5 Golden S-Boxes

Based on our exhaustive search, we may describe golden S-Boxes that have ideal prop-
erties. From Table 1 we see that the most tempting candidates belong to the LE sets
of G9, G10, G14, and G15 as they have the smallest nd and nl numbers among those
S-Boxes that have branch number 3. Note that LE(G14) = LE(G−1

15 ) and vice versa.
The only problem with G14 and G15 in comparison to G9 and G10 is that if we want

the branch number to be larger than 2, there are no S-Boxes in these classes that have
the desired property that all output bits are nonlinearly dependent on all input bits and
have degree 3. Either the permutation or its inverse will not satisfy this condition. This
has been verified with exhaustive search. All golden S-Boxes belong to the four PE
classes given in Table 4.

The Serpent [1] S-Box S3, Hummingbird-1 [18] S-Boxes S1, S2, and S3 and
Hummingbird-2 [19] S-Boxes1 S0 and S1 are the only known examples of “golden”
S-Boxes in literature. Note that cipher designers may want to avoid re-using the same
LE class in multiple S-Boxes and hence not all can be “golden”. Please see Appendix
A for a more detailed comparison.

1 Hummingbird-2 was tweaked in May 2011 to use these S-Boxes, and they are also contained
in [19]. Some early prototypes used S-Boxes from Serpent.
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6 Conclusions

We have analyzed all 16! bijective 4 × 4-bit S-Boxes and classified them into linear
equivalence (LE) and permutation equivalence (PE) classes. Members of a LE class
have equivalent differential and linear bounds but not necessarily branch number, alge-
braic properties and circuit complexity. Members of PE classes share these properties.
Each equivalence class can be uniquely identified with the use of a canonical represen-
tative, which we define to be the member which is first in lexicographic ordering of the
class members.

There are 142,090,700 different PE classes, the vast majority (99.7260%) of which
have (4!24)2 = 147456 elements. We classify the S-Boxes according to their differen-
tial and linear properties. It turns out that that a majority (54.7155%) of S-Boxes have
differential bound p ≤ 3/4 and linear bound ε ≤ 3/4.

Furthermore, we have discovered that not all of the “optimal” S-Boxes described
in [31] are equal if we take the branch number and multiple differential and linear
cryptanalysis into account.

In an appendix we give comparison tables of the S-Boxes from Lucifer [37], Present
[9], JH [41], ICEBERG [38], LUFFA [15] NOEKEON [12], HAMSI [30], Serpent [1],
Hummingbird-1 [18], Hummingbird-2 [19], GOST [14,23,24] and DES [33].

Acknowledgements. The author wishes to thank Whitfield Diffie and numerous other
commentators for their input. This work is still ongoing.
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