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Abstract. An asymmetric pairing e: G2 X G1 — Gr is considered such
that G1 = E(Fp)[r] and G2 = E(Fpk/d)[r], where k is the embedding
degree of the elliptic curve E/F,, r is a large prime divisor of #E(F,),
and E is the degree-d twist of E over F ks with 7 | E(Fpk/d). Hashing to
G is considered easy, while hashing to G2 is done by selecting a random
point @ in E(]Fpk/d) and computing the hash value ¢@, where c¢-r is the
order of E(F ok sa). We show that for a large class of curves, one can hash
to G2 in O(1/p(k)logc) time, as compared with the previously fastest-
known O(logp). In the case of BN curves, we are able to double the
speed of hashing to Gs. For higher-embedding-degree curves, the results
can be more dramatic. We also show how to reduce the cost of the final-
exponentiation step in a pairing calculation by a fixed number of field
multiplications.

Keywords: Pairing-based cryptography, fast hashing, final exponenti-
ation.

1 Introduction

Let E be an elliptic curve defined over F, and let r be a large prime divisor
of #E(F,). The embedding degree of E (with respect to r, p) is the smallest
positive integer k such that 7 | p¥ — 1. The Tate pairing on ordinary elliptic
curves maps two linearly independent rational points defined over the order-r
groups Gi, Ga € E(F,x) to the group of r-th roots of unity of the finite field
F,x. In practice, the Tate pairing is computed using variations of an iterative
algorithm that was proposed by Victor Miller in 1986 [2I]. The result is in the
quotient group ]F;k / (F;k)T and is followed by a final exponentiation in order to
obtain a unique representative.

Efficient realizations of the Tate pairing have been intensively pursued in
recent years. Using different strategies, that research effort has produced sev-
eral remarkable algorithm improvements that include: construction of pairing-
friendly elliptic curves with prescribed embedding degree [AI8I23], decreases of
the Miller loop length [BII3IT4I29], and reductions in the associated towering
field arithmetic costs [GITIIT5ITT].
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With the increase in efficiency of the Miller loop calculation, the final expo-
nentiation step has become more of a computational bottleneck. Several research
works have reported more refined methods for computing the final exponentia-
tion on pairings defined over ordinary elliptic curves [6[12/26]. In particular, the
results by Scott et al. [26] represent the current state-of-the-art in this topic, as
can be verified from the fact that most recent implementations of pairings (see
for example [II5]) have obtained significant accelerations by computing the final
exponentiation according to the vectorial addition chain based method described
in that work.

Another important task related to pairing computation that has been less
studied is the problem of generating random points in G; and Gs, known in the
literature as hashing to Gy and hashing to Gso, respectively. The group Gy is
defined as E(F,)[r]. Hashing to Gy is normally seen as a straightforward task,
whereas hashing to Gz is considered more challenging.

The customary method for representing G, is as the order-r subgroup of
E(Fpk/d), where E is the degree-d twist of E over I k/a with 7 | #E(]Fpk/d); here
#S denotes the cardinality of S. Hashing to G2 can be accomplished by finding
a random point @ € E(Fpk/d) followed by a multiplication by ¢ = #E(Fpk/d)/r.
The main difficulty of this hashing is that ¢ is normally a relatively large scalar
(for example, larger than p). Galbraith and Scott [I0] reduce the computational
cost of this task by means of an endomorphism of E. This idea was further
exploited by Scott et al. [27], where explicit formulae for hashing to Go were
given for several pairing-friendly curves.

In this work, we offer improvements in both the final exponentiation and hash-
ing to Ga. We draw on the methods that Vercauteren [29] employed to reduce the
cost of the Miller function. Our results for the final exponentiation reduce the
cost by a fixed number of operations in several curves, a modest but measurable
improvement. Nonetheless, the techniques we use can be applied to increase the
speed of hashing as well, saving a fixed number of point additions and doublings.
Our framework for fast hashing produces more dramatic results. For example,
we estimate that for BN curves [4] at the 128-bit security level, our results yield
a hashing algorithm that is at least two times faster than the previous fastest-
known algorithm. For higher-embedding-degree curves, the results can be more
dramatic.

The rest of this paper is organized as follows. In Section 2 we review Ver-
cauteren’s “optimal” pairings. Sections 3 and 4 present our lattice-based method
for computing the final exponentiation and exponentiation examples for several
emblematic pairing-friendly elliptic curves, respectively. Sections 5 and 6 give
our lattice-based approach for hashing to G, and hashing for several families of
elliptic curves.

2 Background

The Tate pairing is computed in two steps. First, the Miller function value f =
frP(Q) € 7, is computed. This gives a value in the quotient group F7, / (IF;,C)T.
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Second, to obtain a unique representative in this quotient group, the value f is
raised to the power (p* —1)/r.

The Miller function is computed using a square-and-multiply algorithm via
the following relation
fa+o,p = fa,pfo,P bapsp .
U(a+b) P
Using this method, the function f, p can be computed in logr steps.

The eta and ate pairings reduces the length of the Miller loop from logr
to log [t] < ;logp, where t is the trace of the p-power Frobenius acting on F
[214]. The R-ate pairing [I§] provided further improvement, reducing the Miller
loop to length (1/¢(k))logr in some cases. This idea was further generalized by
Vercauteren [29] to reduce the Miller loop length to (1/¢(k)) logr for all curves.
The idea behind Vercauteren’s result lies in the fact that for h(p) = > i_, hip’
divisible by r, we have

s
h(p)/r _ hi
f7~7P *gPHfhi,p‘P pi, P’
=0

k k
where gp is the product of s lines. By observing that fﬁpp_l)/T, f;pp_l)/r, cee,

k
fr()f’ P D/™ are pairings, it follows that

s (p*-1)/r
(ng) )
1=0

is a pairing. By choosing a polynomial h with small coefficients, Vercauteren
showed that the loop length for each Miller function in () can be reduced to at
most (1/p(k))logr.

3 A Lattice-Based Method for Efficient Final
Exponentiation

The exponent e = (p* —1)/r in the final exponentiation can be broken into two
parts by

(" = 1)/r =" = 1)/Prp)] - [Pr(p) /7],

where @y (x) denotes the k-th cyclotomic polynomial [I7]. Computing the map
f—=r (" =1/ Pi(p) g relatively inexpensive, costing only a few multiplications,
inversions, and very cheap p-th powerings in IF,x. Raising to the power d =
Py (p)/r is considered more difficult.

Observing that p-th powering is much less expensive than multiplication, Scott
et al. [26] give a systematic method for reducing the expense of exponentiating
by d. They showed that by writing d = & (p)/r in base p as d = do + dip +
S dw(k),lp”’(k)_l, one can find short vectorial addition chains to compute
f — f% much more efficiently than the naive method. For parameterized curves,
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more concrete results can be given. For instance, Barreto-Nachrig curves [4]
are constructed over a prime field F,, where p is a large prime number that
can be parameterized as a fourth-degree polynomial p = p(z), € Z. The
result of Scott et al. gives an algorithm to compute f — f¢, by calculating
three intermediate exponentiations, namely, f%, (f*)%, ( f“"Q)“", along with a short
sequence of products. By choosing the parameter x € Z to have low hamming
weight, the total cost of computing f — f? is Z log p field squarings plus a small
fixed-number of field multiplications and squarings.

Using the fact that a fixed power of a pairing is also a pairing, it suffices
to raise to the power of any multiple d’ of d, with r not dividing d’. Based
on this observation, we present a lattice-based method for determining d’ such
that f — fd, can be computed at least as efficiently as f — f¢. For Barreto-
Naehrig and several other curves, explicit d’ polynomials yielding more-efficient
final exponentiation computations are reported. However, it is noted that the
main bottleneck remains, namely the exponentiation by powers of x.

In the case of parameterized curves, the key to finding suitable polynomials d’
is to consider Q[z]-linear combinations of d(x). Specifically, we consider Q-linear
combinations of d(z), zd(x), ..., z9°8"~1d(x). To see why this set of multiples of
d(x) suffices, consider f € IF,» with order dividing @4 (p). Since r(x)d(z) = Pr(p),
it follows that f7(®4=) = 1 and so f’”degr
fzd(:r)’ s fzdegr*ld(z)'

(=) is the product of Q-powers of f,

Now, consider an arbitrary Q-linear combination d’(z) of the elements d(x),
xd(z), ..., x4°7~1d(z). Following the method of Scott et al. [26], d’(z) can be
written in base p(z) as d'(x) = dj(z) + dj(x)p(x) + -+ + dfﬁ(k)_l(x)p(xw(k)*l,
where each d} has degree less than the degree of p. Set d; = d; o + xdi1 + -+ +
xdegp*ldi,degp,l and assume that d;; € Z for 0 < ¢ < (k) — 1,0 < j <
deg(p(z)) — 1. Then %@ can be computed in two steps as explained next.

First, the exponentiations f*, ..., f”cdegk1 are performed. From these in-
termediate exponentiations, terms of the form f*'?" can be easily calculated.
Second, a vectorial addition chain containing the d; j-s is found. This allows
to compute fd/(z) from terms of the form f*'P" using the work of Olivos [24].
The advantage of allowing multiples of d(z) for this computation is to provide
more flexibility in the choices of the exponents d'(z) = 3 d; ;27p* with d; ; € 7Z,
that can potentially yield shorter addition chains, which in turn means a more-
efficient final exponentiation calculation. However the savings are necessarily
modest, since as in the method of Scott et al. [26], the main expense in this

. . . degp—1
exponentiation process comes from computing the terms f*, ..., f* .

In order to find efficient polynomials d’(z), let us construct a rational matrix

M’ with dimensions degr x (k) degp such that

d(x) 1 1

xd(z) ) p(x) x
: =M : ® :

xdegr;ld(l.) p(x)ap(k)—l xdeg.pfl
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Here ® denotes the Kronecker product and the (i, u + v degp)-th entry of M’ is
du, v, where 227 1d(z) = 3" dy 2z 1ptL.

Elements in the rational lattice formed by the matrix M’ correspond to Q-
linear combinations d’(z) of d(x), zd(z), ..., x4°8"~1d(z). Short vectorial addi-
tion chains can be produced from the elements of M’ with small integer entries.
The LLL algorithm of Lenstra, Lenstra, and Lovasz [19] produces an integer
basis of an integer matrix with small coefficients. Let us consider the integer
matrix M constructed from M’ as the unique matrix whose rows are multiples
of the rows of M’ such that the entries of M are integers, and the greatest com-
mon divisor of the set of entries is 1. Next, the LLL algorithm is applied to M
to obtain an integer basis for M with small enties. Finally, small integer linear
combinations of these basis elements are examined with the hope of finding short
addition chains. It is worth mentioning that even if these results do not yield
an advantage over the results of Scott et al. [26], since the lattice contains an
element corresponding to d(x), the method described in this section includes the
results of that work.

In the next section, the main mechanics of our method are explained by
applying it to the computation of the final exponentiation step of several pairing-
friendly families of curves.

4 Exponentiation Examples

4.1 BN Curves

BN curves [4] have embedding degree 12 and are parameterized by x such that

r=r(z) = 36x* + 362° + 182 + 62 + 1
p=p(x) = 362 + 362° + 242% + 62 + 1
are both prime.
The value d = &, (p)/r = (p* — p?> + 1)/r can be expressed as the polynomial
d = d(x) = 466562' + 139968z + 2410562° 4 272160°
+ 2255042 + 13867227 + 654482° + 231122°
+ 62642t + 118823 + 1742? + 6z + 1.

At first glance, it appears that exponentiations by multiples of large powers of
x are required. However, following the work of Scott et al. [26], d can be written
in base p such that the degree of the coefficients is at most 3. In particular,

d(x) = —362> — 302% — 18z — 2
+ p(2)(—362° — 1822 — 122 + 1)
+ p(x)?(62% + 1)

+ p(z)3.
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Scott et al. [26] applied the work of Olivos [24] to compute the map f ~ f¢
using vectorial addition chains. From the above representation for d, vectorial
addition chains can be used to compute f — f¢ using 3 exponentiations by z,
13 multiplications, and 4 squarings.

For the method described in Section B, consider multiples of d represented in
the base p with coefficients in Q[z]/(p(z)).

A 4 x 16 integer matrix M is found such that

d(z) 1 1
vd(z) ANE
6x2d(x) =M ;z?(x)z © | 2
623d(z) p(x)3 3

The first row in M corresponds to the final exponentiation given by Scott et al.
[26]. Any non-trivial integer linear combination of the rows corresponds to an ex-
ponentiation. For computational efficiency, a linear combination with coefficients
as small as possible is desired.

None of the basis vectors returned by the LLL algorithm has an advantage
over [26]. However, if small integer linear combinations of the short vectors re-
turned by the LLL algorithm are considered, a multiple of d which corresponds
to a shorter addition chain could potentially be found. A brute force search of
linear combinations of the LLL basis yields 18 non-zero vectors with maximal
entry 12. Among these vectors we consider the vector

(1,6,12,12,0,4,6,12,0,6,6,12, —1,4,6,12),

which corresponds to the multiple d’(z) = A\g + A1p + Aap? + A3p® = 22(62% +
3z + 1)d(z), where

1+ 6z + 122% + 122°

4x + 627 + 122°

6z + 622 + 1223

—1 4 4z + 622 + 1223,

>

o(z)
A1 ()

(z)
As(x) =
The final exponentiation which results can be computed more efficiently without

using addition chains.
First, the following exponentiations are computed

>~

2

f — fac — f2x — f4ac — fﬁx — f6x2 — f129c2 — f12x3

which requires SSexponzentiations by x, 3 squarings, and 1 multiplication. The
terms a = f122° . f627 . 62 and b = a - (f**)~! can be computed using 3
multiplications. Finally, the result f¢ is obtained as

[a- [ -7 [a? [ £

which requires 6 multiplications.
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In total, our method requires 3 exponentiations by z, 3 squarings, and 10
multiplications.

4.2 Freeman Curves

Freeman curves [7] have embedding degree k = 10 and are parameterized by x
as follows

r=r(z) = 252" + 250% + 1522 + 5 + 1
p=p(z) = 25z + 2523 + 2527 + 10z + 3.

For d = ®10(p)/r = (p* — p® + p?> — p+ 1)/r, let us consider a 4 x 16 integer
matrix M such that

d(x) 1 1
zd(x) | p(x) T
S5z2d(z) | M p(x)? ® 22
5z3d(z) p(x)3 3

In the lattice spanned by M, there exist two short vectors,
+(1,-2,0,-5,-1,—4,-5,-5,1,3,5,5,2,5,5,5).

Both of these vectors have maximal coefficient 5. Consider the vector correspond-
ing to the multiple

d'(z) = (52 4+ 52 4 32 + 1)d(z) = Ao + A1p + Aap® + \3p?,

where
Mo(x) =1 — 22 — 5a®
A(z) =—-1—4z— 522 — 5z
Ao(x) = 1+ 3z + 52° + 52°
A3(z) = 2 + 52 4 522 + 523,

Now, the map f — f¢ can be computed as
f — fz — f2z — f4z — f5:1: — f5:1:2 — f5:1:3’
followed by
A= f59c3 - f2 B
C=prof. D=
and finally .
JU= AT f) BT e (D (- D
requiring a total of 12 multiplications, 2 squarings, and 3 exponentiations by x.

1 We ignore the relatively inexpensive p-power Frobenius maps. Since the embedding

k
degree k is even, we have that f~! = f? 2 for all f in the cyclotomic subgroup
of F,r. That is, inversion can be done using a p-power Frobenius. Hence, we ignore
inversions as well.
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4.3 KSS-8 Curves

KSS-8 curves [16] have embedding degree k = 8 and are parameterized by x
such that

1
r=r(z) = 450 (z* — 822 +25),
1
p=px)= _ (25 +22° — 32" + 82 — 1522 — 82 + 125)

180

are both prime. For d = @ (p)/r, we compute an integer matrix M such that

1

6d(x) 1 x
(6/5)wd(z) | p) | | a?
©6/5)c%d(x) | = M| | p)? | © |2
(6/5)a%d(x) ORI

Note that since x needs to be chosen as a multiple of 5, the rows of M correspond
to integer multiples of d(x). We obtain a short vector corresponding to the

multiple

6
d(2) = d() = do+ \p+ Aop? + Aop”

of d(x), where
Ao = 22" + 42® + 52 + 382 — 25
A\ = —2° — 22% — 2% — 1622 + 202 + 36
Ao = 2t +22% — 52?2 + 42 — 50
As = 32® + 627 + 152 + 72.

We use addition chains to compute fd,. First, write fd/ as

I = vyt y3ysuivsye yitua va yioyitvisvis
and compute the y;’s. The y;’s can be computed from f, f*, ..., f"c5 using only
multiplications and Frobenius maps.
Next, we find an addition chain containing all the powers of the y;’s. With
the inclusion of the element 10, we obtain

{1,2,3,4,5,6,10, 15, 16, 20, 25, 36, 38, 50, 72}

The work of Olivos gives an efficient method for producing a vectorial addition
chain from an addition chain and states the computational expense of computing
the final result f¢ from the y;’s.

The computation of the y;’s requires 5 exponentiations by x, and 6 multi-
plications. The addition chain requires 7 multiplications and 7 squarings. The
conversion to a vectorial addition chain requires 13 multiplications. In total, we
require 5 exponentiations by z, 26 multiplications, and 7 squarings to compute
the map f +— fd,.
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4.4 KSS-18 Curves

KSS-18 curves [16] have embedding degree k£ = 18 and a twist of order d = 6.
These curves are parameterized by x such that

_ _ 1 6 3
r=r(z) = 343(;U + 372° 4 343)
1
p=pr)=, (2 + 527 + 72% + 372° 4 1882*

+ 2592° + 34322 + 17632 + 2401)

are both prime. For d = @ (p)/r, we compute an integer matrix M such that

o

3d(x) 1 x
vl ] |2

2?d(z) | p(z x
3/49)2%d(z) | =M | | pa)? | © |
(3/49)zd(z) p(x)t x®
(3/49)z°d(z) p(x)° xi

Since 7 divides x, the rows of M correspond to integer multiples of d(x). We
find a short vector corresponding to the multiple d'(x) = 3592 d(z) =X+ Mp+
Aap? 4+ A3p? 4+ A\ap* + Asp® of d(x), where

o = 2%+ 525 + 72t 4 2123 + 10822 + 147w,

A\ = =525 — 252% — 3523 — 9822 — 505z — 686,

Ao = —z" — 5xb — 72® — 1921 — 9823 — 13322 + 6,

A3 = 225 + 1025 + 142 + 3523 + 18122 + 245z,

A = =325 — 152% — 2123 — 4922 — 2542 — 343,

As = 2t + 5a® + 72% + 3.

Proceeding as in the KSS-8 example, we construct an addition chain

{1,2,3,5,6,7,10,14, 15,19, 21,25, 35, 38,49, 73,
98,108, 133,147, 181, 245, 254, 343, 490, 505, 686 } .
Once again, applying Olivos’ method for computing a short vectorial addition

chain, we can compute the map f +— f? using 7 exponentiations by x, 52 mul-
tiplications, and 8 squarings.

4.5 A Comparison with Scott et al.

In Table [l we compare our results against those given by Scott et al. [26].
Although operation counts are given for only the vectorial addition portion of
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Table 1. A comparison of our final exponentiation method with the method of Scott et
al. [26]. ‘M’ denotes a multiplication and ‘S’ denotes a squaring. Both methods require
the same number of exponentiations by x, determined by the curve.

Curve Scott et al. This work
BN 13M 4S  10M 3S
Freeman 14M 2S 12M 2S
KSS-8 31IM 6S  26M 7S
KSS-18 62M 14S  52M 8S

the exponentiation, the total cost can easily be computed from their work. The
operation counts are given for field multiplications and squarings only, since
the number of exponentiations by z is fixed for each curve and computing p-th
powers maps is comparatively inexpensive.

For example, let us consider the case of BN curves parameterized with x =
—262_9254 4 244 which yields a 127-bit security level [5]. Further, assume that the
relative cost of a field multiplication compared to a cyclotomic squaring on Fx
is given as M ~ 4.5S [I/15]. Then, the total cost to perform the exponentiations
15 (%)=, (f“’Q)“’, is of around 3 - |log, x| = 183 cyclotomic squarings. Using the
results reported in Table [l this gives an approximate cost for the hard part of
the final exponentiation of 1875 + 13M = 2455 for the method of Scott et al.
and 1865 4+ 10M = 2315 using our method.

5 A Lattice-Based Method for Hashing to G,

Let E be an elliptic curve over IF,, with r, a large prime divisor of n = #E(F,),
and let £ > 1 be the embedding degree of E. Let ¢ be an arbitrary power of p.
An elliptic curve E defined over F, is said to be a degree-d twist of E over F,
if d is the smallest integer such that E and E are isomorphic over Foa. If p > 5,
the only possible degrees of twists are those integers d which divide either 4 or 6.
Since our examples deal only with curves where the degree of the twist divides
the embedding degree k, we assume that d divides k and set ¢ = p*/¢. However,
with some modifications, the preliminary discussion and results apply to curves
where d does not divide k.

Hess et al. [14] show that there exists a unique non-trivial twist E of E over
F, such that r divides #E(Fq). If d = 2, then #E(Fq) =q+1+1t, where t is
the trace of the g-power Frobenius of F. In fact, the order of any twist can be
found by first determining the trace ¢ of the g-power Frobenius of E from the
trace t of the p-power Frobenius of F via the Weil Theorem and then using a
result given by Hess et al.[14].

The trace t,, of the p™-power Frobenius of F for an arbitrary m can be
determined using the recursion tg = 2, t1 = ¢, and t;41 = t-t; —p - t;—1 for
all i > 1 [20]. After computing the trace £ of the g-power Frobenius of E, the
possible values for the trace ¢ of the g-power Frobenius of E over F, can be
determined using Table 2] [14], where D is the discriminant of E and f satisfies
2 —4q=Df2.
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Table 2. Possible values for the trace t of the g-power Frobenius of a degree-d twist
Eof E

2 3 4 6
—i (£3f —1)/2 £f (£3f +1)/2

&

The group Gy can be represented as E(F,)[r]. In order to hash to Gg, it
suffices to hash to a random point Q € E (F,) followed by a multiplication by
the cofactor ¢ = #E(F,)/r, to obtain the element cQ € E(F,)[r]. Let ¢: E — E
be an efficiently-computable isomorphism defined over F a and let 7 be the p-
th power Frobenius on E. Scott et al. [27] observed that the endomorphism
W = ¢~ omo ¢ can be used to speed up the computation of @ — cQ. The
endomorphism 1) satisfies

Y?P — 1P + pP = o (2)

for all P € E(F,) [0, Theorem 1]. The cofactor ¢ can be written as a polynomial
in p with coefficients less than p. Scott et al. use this representation of ¢ and
reduce using ([2)) so that ¢ is expressed as a polynomial in ¢ with coefficients less
than p. For parameterized curves, the speedup in the cost of computing Q — cQ
can become quite dramatic. For example, MNT curves have embedding degree
k = 6 and are parameterized by x such that

p(r) = 2% +1
r(z) =2 —x+1

are both prime. It can be shown that

c(x)P= (" + 23+ 3P = (p*+ (2 + 1)p—2 —2)P
= (22 P) + *(22P).

It suffices to multiply by a multiple ¢’ of ¢ such that ¢ # 0 (mod r). Combining
this observation with a new method of representing ¢ in base 1, we prove the
following theorem.

Theorem 1. Suppose that E(F,) is cyclic andp = 1 (mod d). Then there exists
a polynomial h(z) = ho + h1z + -+ + hyy—12?M =1 € Z[z] such that h(y)P is
a multiple of ¢P for all P € E(F,) and |h;|*®) < #E(F,)/r for all i.

The proof of Theorem [1is divided into two parts. We first prove a technical
lemma and then show how the polynomial h can be obtained using an integer-
lattice technique. Let f, f be such that t> —4p = Df? and 2 —4q = D f?, where
D is the discriminant. It also holds that n +¢ =p+ 1 and n + t =g+ 1, where
n=#E(F,).

Recall that the endomorphism ¢: E — E is defined over Fa. In the following
lemma, it is proved that 1 fixes E(F,) as a set.
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Lemma 1. Ifp=1 (mod d), then P € E(F,) for all P € E(F,).

Proof. From the work of Hess et al. we have that the twist is defined by first
selecting v € Fa such that 7% € F,. The map ¢ is then defined by ¢(x,y) =
(v2x,+%y) and hence 1) is defined by (z,y) = (2P~ DzP 3E=Dyr) Now,
74 € F, and p—1 = 0 (mod d) yield v*~1 € F,, which in turn implies that
Y(z,y) € E(F,) for (z,y) € E(F,). O

The following lemma illustrates the effect of 1 on elements in E(F,).

Lemma 2. Ifp =1 (mod d), ged(f,7) = 1, and E(F,) is a cyclic group, then
YP = aP for all P € E(F,), where a is one of (t+f(i—2)/f)/2, (t—f(T—2)/f)/2.

Proof. Since E(]Fq) is cyclic and v fixes E(Fq), there exists an integer a such
that ¢y P = aP for all P € E(F,). By solving for a in (2) and using the fact that
—4p = Df27 we obtain

a= ti\/tQ 4p) = (ti\/DfQ)E;(tif\/D) (mod 7).

Working modulo 71, we observe that Df2 = {2 —4q = 2 —4f + 4 = (I — 2)2
and so \/D +(f —2)/f (mod 7). Without loss of generality, let f, f be such
that a = }(t+ fvD) and VD = (f — 2)/f (mod 7). Then, since P € E(F,) has
order d1V1d1ng n, it follows that

VP =aP = <;(t+f\/D)> P= (;(t+f({52)/f)> P
O

In the space of polynomials i € Q[z] such that h(a) =0 (mod ¢), we wish to find
an h with small integer coefficients. Ignoring the small coefficient requirement
for the moment, h(z) = ¢ and h(z) = 2z* — a* satisfy the required condition for
all integers i. Furthermore, any linear combination of these polynomials satisfies
this condition.

Since 7 acting on E(F,x) has order k and 1 is an automorphism when re-
stricted to the cyclic group E(]Fq), the automorphism v acting on E(Fq) has
order k. Hence, the integer a satisfies @x(a) = 0 (mod 7). Therefore, the poly-
nomial h(z) = 2* — a® with i > ¢(k) can be written as a linear combination
(modulo ¢) of z —a, ..., 2#M=1 — q#(k)=1 For this reason, the polynomials of
higher degree are excluded in the following construction.

Notice that polynomials h € Z[z] such that h(a) = 0 (mod ¢) correspond to
points in the integer lattice generated by the matrix

o
alyp-1]’

where a is the column vector with i-th entry —a’. Consider the convex set
C C R¥%) generated by all vectors of the form (&|c|/?®) ... +|c|'/¢(*)). The
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volume of C is 2¢()|c| and the lattice above has volume |c|. By Minkowski’s
Theorem [22], the region C' contains a lattice point. Hence, there exists a non-
zero polynomial h with coefficients at most |c[*/#?(®) such that h(a) =0 (mod c).
This concludes the proof of Theorem [I1 a

6 Hashing Examples

6.1 BN Curves

BN curves are parameterized by

p(x) = 362 + 362% + 2422 + 62 + 1
r(z) = 36x* + 362° + 182% + 62 + 1
t(z) = 622 + 1

f(x) =62 + 4z +1

where

t(z)? — 4p(x) = =3f(z)?

After computing the trace t of the g-power Frobenious of F, we compute f such
that 4¢ — ¢ = —3f2. Using # and f, we find the twist E(FF,) is parameterized by

Ai(x) = (@) +1— (3f(z) + (x))/2
= (362 + 362> + 182 + 62 + 1)(362* + 362> 4 3022 + 62 + 1)
t(z) = 362* +1

We have that ¢(z) = p(x)+t(x)—1 is such that n(x) = r(z)c(x). Using Lemmal[2]
we obtain

1 - ~
a(e) =, (t+ [T~ 2)/])
1
= (345627 + 66962° 4 748825 + 49322* 4 21122% + 58822 + 1062 + 6).

As a sobriety check, note that a(x) = p(r) (mod r) and thus YQ = a(z)Q =
p(z)Q for all Q € E(F,)[r]. ‘
We construct the following lattice and reduce the —a(x)" entries modulo ¢(z):

c(r) 000 3621 + 362° + 3022 + 62 +1000

—a(z) 100 48/52 + 622 +4x —2/5 100
2 - 3 2

a(x)?010 36/52% + 622 + 62 +1/5 010

a(z)®001 1203+ 1222 +8x+1 001
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From this lattice, we find the polynomial h(z) = z + 3zz + 222 + 23. Working
modulo 7(z), we have that

h(a) = — (182 4+ 122° + 3z + 1)c(z)

and since ged(182% + 1222 + 3z + 1, 7(x)) = 1, the following map is a homomor-
phism of E(F,) with image E(F,)[r]:

Q — 2Q + ¥ (32Q) + ¥ (2Q) + ¥*(Q).

We can compute @ — xQ — 22Q) — 3@ using one doubling, one addition, and
one multiply-by-z. Given Q, z@, 3zQ, we can compute h(a)Q using three -
maps, and three additions. In total, we require one doubling, four additions, one
multiply-by-z, and three 1)-maps. As seen in Table [3 on page @28 the previous
fastest-known method of computing such a homomorphism costs two doublings,
four additions, two multiply-by-z’s, and three 1-maps.

6.2 Freeman Curves

Freeman curves [7] have embedding degree k = 10 and are parameterized by x
as follows

r=r(z) =25z + 252 4+ 1502 + 5z + 1
p = p(z) = 252 + 2523 + 2522 + 10z + 3.

Since Freeman curves do not have a fixed discriminant, the algorithm given
in the proof of Lemma [2] does not directly apply. However, we are able to apply
the techniques of Scott et al. on c(z), xc(x), z2c(x), 23¢(x) and then use our
method from Section Bl

We find a short vector corresponding to the multiple h(a) = Ao+ Aja+ Aga® +

Aza® of ¢, where A = (Ao, A1, A2, A3, \g) is such that

Xo(z) = 102 4+ 52 + 42 + 1

M () =
Ao(z) = —102% — 102? — 8z — 3
A\3(z) = =523 — 522 —

M (z) = =53 + 2.

Using the addition chain {1,2,3,4,5,8,10}, we can compute h(a)Q using four-
teen additions, four doublings, three multiply-by-z’s, and four 1) maps.

6.3 KSS-8
KSS-8 curves [16] have embedding degree k = 8 and are parameterized by x
such that

1
- 450(

1
= 180 (2% + 225 — 32 4 823 — 152% — 822 4 125)

z* — 8x? + 25)
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are both prime. Set ¢ = p¥/¢ = p?. There exists a degree-4 twist E(Fq) of order

1
ﬁ(m)::72(x8%—4x74—6x6—k36x5—%34x4——84x3—%486x24—620x—%193M(x)
Set c(x) = n(x)/r(x). After some work, we discover that ¢ is such that Y@ = aQ

for all Q € E(F,) where

1

= _ 11 10 9 s
0= giomssop — 5252871 — 174115010 4 2675852° — 103271

— 32529027 + 150931902% — 290004462° — 1082075182*
+2351388812° + 28491700122 — 8113612952 — 362511175).

As we’ve done previously, we find a short basis for the lattice generated by the
matrix
ce(x) 000
—a(z) 100
—a(r)?010
—a(x)3001

and discover a short vector corresponding to the multiple

1

@)= v

(x% — 25)c(x) = Ao + Ma + Aga® + Aza®
of ¢ such that A = (Mg, A1, Ao, A3) = (—2? —z,2 — 3,20 + 6, —2z — 4).

For an element Q € E (Fy), we can compute h(a)Q with the following sequence
of calculations. We compute @ +— zQ — (z+1)Q — (22 + 2)Q and Q — 2Q
4@ which requires one addition, two doublings, and two multiply-by-z’s. Then
we compute

XQ = —(a? +2)Q

MQ = (z+1)Q - 4Q
M@ =2(z +1)Q +4Q
A3Q = —2(z+1)Q —2Q

which requires three more additions and another doubling. Finally, we compute
h(a)Q = 20Q + (M Q) + ¥*(MQ) +¢*(X3Q)
which requires three more additions and three 1 maps.

In total, we require seven additions, three doublings, two multiply-by-x’s, and
three 1 maps to compute @ — h(a)Q.
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6.4 KSS-18

KSS-18 curves [16] have embedding degree k = 18 and a twist of order d = 6.
These curves are parameterized by x such that

_ _ 1 6 3
r=r(z) = 343(;U + 372° 4 343)
1
p=pr)=, (2® + 527 + 72% + 372° 4 1882*

+ 2592° + 34322 + 17632 + 2401)

are both prime. We find that

c(x) = __ (2! + 15217 + 9626 + 4092'° 4 17912 + 792923 + 27539212

a7
+ 81660z + 256908z1° + 757927x° + 18036842°
+ 4055484z + 9658007z + 194653622° + 308605952

+ 500758332 + 8255423422 + 88845918z + 40301641).

Constructing our lattice, we obtain the vector corresponding to the multiple

3
z(823 + 147)e(z) = Ao + Mia + Aaa? + Mza® + haat + N3a®

M) = "33

of ¢(x), where

Ao =5z + 18

A =23 +322+1
Ao = —322 — 8z
A3 =3zx+1
A= —22—2

A5 = 22 + 5.

We construct the addition chain {1, 2,3, 5,8, 10, 18}, from which we can compute
Q@ — h(a)Q using sixteen additions, two doublings, three multiply-by-a’s, and
five 1) maps.

6.5 Comparison with Previous Work

In Table Bl we compare our results to the work of Scott et al. [27I28]. In the
proceedings version [27] of their work, the authors assume that the identity
@ (1h)P = oo holds for all points P in E(F,). However, there exist concrete
examples showing that this identity does not hold for some curves. In partic-
ular, MNT and Freeman curves do not satisfy this identity in general. On the
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Table 3. A comparison of our hashing algorithm with the hashing algorithm of Scott
et al. ‘A’ denotes a point addition, ‘D’ denotes a point doubling, ‘X’ denotes a multi-
plication by z, and ‘¢’ denotes an application of the map .

Curve Scott et al. This work
BN 4A 2D 2X 3¢ 4A 1D 1X 3¢
Freeman 20A 5D 3X 44 14A 4D 3X 44
KSS-8 22A 5D 5X 2 TA 3D 2X 3¢
KSS-18 59A 5D 7X 44 16A 2D 3X 59

other hand, the identity ¢*/2P = —P is critically used in the eprint version 28]
of their work. Fortunately, all curves except the MNT curve can be explicitly
shown to satisfy the identity ¢*/2P = —P. In practice, we’ve found that MNT
curves also satisfy this property. More work needs to be done to determine the
structure of the twist and the action of ¥ on various subgroups of the twist.

We use the eprint version [28] to represent Scott et al.’s operation counts
on Freeman curves. We have verified that the identity @ (¢))P = oo holds for
BN, KSS-8, and KSS-18 curves and use the counts from the proceedings version
[27] of their work for those curves in Table Bl Since the multiplications by z
dominate the other operations, it can be seen that our hash algorithm is ap-
proximately twice as fast as that of Scott et al. for BN curves. For the KSS-8
curve we see a g—fold improvement, and for the KSS-18 curves, we see a g-fold
improvement.

7 Conclusion

We shown that both the final exponentiation and hashing to Go tasks can be
efficiently performed by adapting the lattice-based framework that Vercauteren
utilized in [29] for finding optimal pairings. Let us recall that an optimal pairing
as defined in [29] computes the Miller loop in just logar/¢(k) iterations.

Scott et al. [26] showed that by writing d = &(p)/r in base p as d =
do+dip+---+ dgp(k)_lp“"(k)*l, one can find short vectorial addition chains to
efficiently compute the hard part of the final exponentiation f — f¢. This work
presents a lattice-based method for determining a multiple d’ of d, with r not
dividing d’ such that f — f can be computed at least as efficiently as f — f%
and where d'(z) is written in base p(x) as d'(z) = dj(z) + dj(x)p(x) + - +
d;(k)fl(x)p(x)wk)_l. In theorem [I] it was proved that there exists a polynomial
h(z) =ho+ hiz+ 4 hy)—129®) 1 € Z[2] such that every point P € E(F,),
can be hashed to Gy by computing h(t) P, where |h;|#(*) < #E(F,)/r for all i.

Vercauteren’s lattice-based framework reveals the crucial role that ¢(k) plays
for defining upper bounds on the optimal length of the Miller loop and on the
final exponentiation and hashing to Go computational efforts. This makes us
conclude that the optimal solutions of these three problems are tightly related
on an eternal golden braid.
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