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Preface

The 18th InternationalConference on Selected Areas in Cryptography (SAC 2011)
was held August 11–12, 2011 in Toronto, Canada. SAC is an annual event held in
co-operation with the International Association for Cryptologic Research (IACR).
There were 72 participants from 18 countries. Previous events in this series were
held at Queen’s University (1994, 1996, 1998, 1999, and 2005), Carleton University
(1995, 1997, and 2003), Fields Institute (2001), Memorial University of Newfound-
land (2002), Concordia University (2006), University of Ottawa (2007), Mount Al-
lison University (2008), University of Calgary (2009), and University of Waterloo
(2000, 2004, and 2010).

The objective of the conference is to present cutting-edge research in the
designated areas of cryptography and to facilitate future research through an in-
formal and friendly workshop setting. The SAC conference series has established
itself as a premier international forum for information, discussion and exchange
of ideas in cryptographic research. The themes for SAC 2011 were:

– Design and analysis of symmetric key primitives and cryptosystems, includ-
ing block and stream ciphers, hash functions, and MAC algorithms

– Efficient implementation of symmetric and public key algorithms
– Mathematical and algorithmic aspects of applied cryptology
– Cryptographic tools and methods for securing clouds

The conference received 92 submissions which went through a careful doubly-
anonymous review process aided by 40 Program Committee members and 68
external sub-reviewers. Each paper was reviewed by at least three reviewers,
and submissions that were co-authored by a member of the Program Committee
received two or more additional reviews. Our invited talks were given by:

– Kristin Lauter (Microsoft Research) — “Cryptographic Techniques for Se-
curing the Cloud”

– Alfred Menezes (University of Waterloo) — “Another Look at Tightness”

This volume represents the revised version of the 23 accepted contributed
papers which were presented at the conference along with two invited papers.

The submission and review process was done using the iChair Web-based
software system developed by Thomas Baignères and Matthieu Finiasz.



VI Preface

We would like to thank the authors of all submitted papers, whether their
submission was published or could not be accommodated. Moreover, Program
Committee members and external sub-reviewers put a tremendous amount of
work into the review process and we would like to thank them for their time
and effort. We would also like to acknowledge and thank the work done by the
conference Publicity and Publication Chair, Atefeh Mashatan.

August 2011 Ali Miri
Serge Vaudenay
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Gilles Van Assche

Blockcipher-Based Double-Length Hash Functions for Pseudorandom
Oracles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

Yusuke Naito

ASC-1: An Authenticated Encryption Stream Cipher . . . . . . . . . . . . . . . . . 356
Goce Jakimoski and Samant Khajuria

Mathematical Aspects of Applied Cryptography

On Various Families of Twisted Jacobi Quartics . . . . . . . . . . . . . . . . . . . . . 373
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Boomerang Distinguishers on MD4-Family:

First Practical Results on Full 5-Pass HAVAL

Yu Sasaki

NTT Information Sharing Platform Laboratories, NTT Corporation
3-9-11 Midori-cho, Musashino-shi, Tokyo 180-8585 Japan

sasaki.yu@lab.ntt.co.jp

Abstract. In this paper, we study a boomerang attack approach on
MD4-based hash functions, and present a practical 4-sum distinguisher
against the compression function of the full 5-pass HAVAL. Our ap-
proach is based on the previous work by Kim et al., which proposed the
boomerang distinguisher on the encryption mode of MD4, MD5, and
HAVAL in the related-key setting. Firstly, we prove that the differential
path for 5-pass HAVAL used in the previous boomerang distinguisher
contains a critical flaw and thus the attack cannot work. We then search
for new differential paths. Finally, by using the new paths, we mount
the distinguisher on the compression function of the full 5-pass HAVAL
which generates a 4-sum quartet with a complexity of approximately
211 compression function computations. As far as we know, this is the
first result on the full compression function of 5-pass HAVAL that can be
computed in practice. We also point out that the 4-sum distinguisher can
also be constructed for other MD4-based hash functions such as MD5,
3-pass HAVAL, and 4-pass HAVAL. Our attacks are implemented on a
PC and we present a generated 4-sum quartet for each attack target.

Keywords: boomerang attack, 4-sum distinguisher, hash, HAVAL.

1 Introduction

Hash functions are taking important roles in various aspects of the cryptography.
After the breakthrough by Wang et al. [26,27] and through the SHA-3 competi-
tion [20], cryptanalysis against hash functions have been improved significantly.

The boomerang attack, which was proposed by Wagner [22], is a tool for the
cryptanalysis against block-ciphers. At FSE2011, Biryukov et al. applied the
boomerang attack for hash functions, and showed that a zero-sum distinguisher
could be constructed on them [3], where zero-sum is a set of messages whose
XOR is 0 and the XOR of their corresponding outputs is also 0. Lamberger and
Mendel independently applied the boomerang attack on SHA-2 and obtained
a significant improvement on the 4-sum distinguisher against its reduced-step
compression function [10], where a k-sum is a set of k paired initial-values and
messages such that the XOR of their outputs is 0. It seems that the boomerang
attack is potentially very powerful against hash functions, and thus more investi-
gation is required to understand their impact deeply. Note that at CRYPTO2007,

A. Miri and S. Vaudenay (Eds.): SAC 2011, LNCS 7118, pp. 1–18, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 Y. Sasaki

Joux and Peyrin proposed an (amplified) boomerang attack for SHA-1 [7]. They
used the idea of the boomerang attack for the message modification technique
in the collision attack, which the purpose is different from our research.

The boomerang attack on hash functions does not always discuss the security
as the hash function. As done in [10], it often discusses the security of the
compression function or the internal block-cipher. Although they do not impact
to the security of the hash function immediately, such analyses are useful from
several viewpoints; 1) The progress of the cryptanalysis, in other words, the
security margin can be measured, 2) The attack could be used as a tool for
different purposes in the future, e.g., a pseudo-collision attack on MD5 [4]. 3)
The attack on a building-block may invalidate the security proof for the hash
function. Specifically, hash functions using the PGV modes tend to have the
reduction security by assuming the ideal behavior of the internal block-cipher.

MD4, which was proposed by Rivest in 1990 [13], is a hash function that is
used as a base of various hash functions. MD4 has an interesting property in its
message expansion. The sketch of its computation is as follows;

– Divide an input message block M into several message words m0,
m1, . . . ,mNS−1.

– Iteratively apply a round function NR times, where the round function con-
sists of NS steps.

– For NS steps in each round, each of m0 to mNS−1 is used exactly once.
– The order of message words, in other words, the permutation of the message-

word index may change for different rounds.

We call this type of the message expansion message-words permutation. MD4,
MD5 [14], and HAVAL [32] are examples using the message-words permutation.

MD4, MD5, and HAVAL are now known to be vulnerable against various
attacks. For example, Van Rompay et al. found collisions of 3-pass HAVAL in
2003 [21], and Wang et al. found collisions of MD4, MD5, and 3-pass HAVAL in
2004 [25,27]. The complexity of collision attacks were optimized to 2 for MD4
[18], 210 for MD5 [29], 27 for 3-pass HAVAL [19,24], 236 for 4-pass HAVAL
[28,31], and 2123 for 5-pass HAVAL [31], where the unit of the complexity is one
computation of the compression function. Note that, only the theoretical result
is known for 5-pass HAVAL, and thus real collisions have not been found yet.

Theoretical preimage attacks are also presented. For example, [1,6,11] for
MD4, [17] for MD5, [2,16] for 3-pass HAVAL, and [16] for 4-pass HAVAL. For
5-pass HAVAL, only the attack on 158-steps out of 160-steps is known [15].

Several researchers evaluated the security of the building block for these hash
functions. Examples which analyzed full steps are [4,5] for MD5 and [8,9,30] for
HAVAL. Among them, the work by Kim et al. [8,9], which applied the boomerang
attack to distinguish their encryption modes from a random permutation in
the related-key setting, is very powerful. They successfully distinguished these
encryption modes with 26 queries for MD4, 211.6 queries for MD5, and 29.6

queries for 4-pass HAVAL. These attacks were implemented and an example of
the boomerang quartet was presented for MD5. In addition, Kim et al. claimed
that 5-pass HAVAL could also be distinguished with 261 queries and the attack
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Table 1. Comparison of the attack complexity

Attack Target MD4 MD5 HAVAL-3 HAVAL-4 HAVAL-5
(Time Ref.) (Time Ref.) (Time Ref.) (Time Ref.) (Time Ref.)

Collision Hash Function 2 [18] 210 [29] 27 [19,24] 236 [28,31] 2123 [31]
Boomerang Block-Cipher 26 [9] 211.6 [9] - 29.6 [9] 261 [9]
Boomerang Compress. Func. - 210 Ours 24 Ours 211 Ours 211 Ours

was partially verified by implementing it for reduced-round variants. Note that
although Kim et al. pointed out the vulnerability of the MD4-based structure
against the boomerang attack, the analysis on 5-pass HAVAL is still infeasible.

Our Contributions

In this paper, we study the boomerang attack approach on MD4-based hash
functions. We use the differential path for the boomerang attack to construct
the 4-sum distinguisher on the compression function, while Kim et al. [9] used the
boomerang path to distinguish its encryption mode from a random permutation.
For both of our approach and the one in [9], the core of the attack is the existence
of the differential path suitable for the boomerang attack. However, because the
attack scenario is different, the procedure to optimize the attack is quite different.
We first collect various techniques for the boomerang attack on hash functions
from several papers (mainly [3,9,10]), and summarize the attack framework.

We then revisit the differential path for the boomerang attack against
5-pass HAVAL in [9]. On the contrary to the authors’ claim, we prove that the
differential path in [9] contains a critical flaw and thus the attack cannot work.

We then search for new differential paths for the boomerang attack and con-
struct the attack procedure optimized for attacking the compression function.
Finally, by using the new paths, we mount the distinguisher on the full com-
pression function of 5-pass HAVAL which generates a 4-sum quartet with a
complexity of 211 compression function computations. The attack complexity is
summarized in Table 1. As far as we know, this is the first result on the full
5-pass HAVAL that can be computed in practice. The attack is implemented on
a PC and we present a generated 4-sum quartet.

Note that as long as the good boomerang differential path is available, 4-sum
distinguishers can be constructed on the compression function. Then, with the
differential paths in [9], we attack MD5, 3-pass HAVAL, and 4-pass HAVAL with
a complexity of 210, 24 and 211 compression function computations, respectively.
We present generated 4-sums in Appendix B.

Paper Outline

We describe the specification of HAVAL and clarify the terminology in Sect. 2.
We summarize previous work in Sect. 3. We give a summary of techniques for
the boomerang attack on hash functions in Sect. 4. We demonstrate a dedicate
attack on 5-pass HAVAL in Sect. 5. Finally, we conclude this paper in Sect. 6.
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Table 2. Word-wise rotation φx,y of HAVAL

x6 x5 x4 x3 x2 x1 x0 x6 x5 x4 x3 x2 x1 x0 x6 x5 x4 x3 x2 x1 x0

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
φ3,1 x1 x0 x3 x5 x6 x2 x4 φ4,1 x2 x6 x1 x4 x5 x3 x0 φ5,1 x3 x4 x1 x0 x5 x2 x6

φ3,2 x4 x2 x1 x0 x5 x3 x6 φ4,2 x3 x5 x2 x0 x1 x6 x4 φ5,2 x6 x2 x1 x0 x3 x4 x5

φ3,3 x6 x1 x2 x3 x4 x5 x0 φ4,3 x1 x4 x3 x6 x0 x2 x5 φ5,3 x2 x6 x0 x4 x3 x1 x5

- - φ4,4 x6 x4 x0 x5 x2 x1 x3 φ5,4 x1 x5 x3 x2 x0 x4 x6

- - - - φ5,5 x2 x5 x0 x6 x4 x3 x1

Table 3. Message-words permutation. The first column shows the round numbers.

index for each round
1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
2 5 14 26 18 11 28 7 16 0 23 20 22 1 10 4 8 30 3 21 9 17 24 29 6 19 12 15 13 2 25 31 27
3 19 9 4 20 28 17 8 22 29 14 25 12 24 30 16 26 31 15 7 3 1 0 18 27 13 6 21 10 23 11 5 2
4 24 4 0 14 2 7 28 23 26 6 30 20 18 25 19 3 22 11 31 21 8 27 12 9 1 29 5 15 17 10 16 13
5 27 3 21 26 17 11 20 29 19 0 12 7 13 8 31 10 5 9 14 30 18 6 28 24 2 23 16 22 4 1 25 15

2 Preliminaries

2.1 Specification of HAVAL

HAVAL [32] uses a narrow-pipe Merkle-Damg̊ard structure. An input message
M is padded to be a multiple of the block-size (1024 bits), and then divided
into message blocks (M0,M1, . . . ,ML−1). Then, chaining variable Hi starting
from the pre-specified initial value H0 is iteratively updated by the compression
function CF; Hi+1 ← CF(Hi,Mi), for i = 0, 1, . . . , L − 1. Finally, HL is the
hash value of M . HAVAL can produce a hash value of smaller sizes by using the
output tailoring function. Because our attack target is the compression function,
we omit the description for the padding and the output tailoring function.

The size of chaining variables is 256 bits. Inside the compression function,
Mi is divided into thirty-two 32-bit message words (m0,m1, . . . ,m31). Three
algorithms are prepared for HAVAL; 3-pass, 4-pass, and 5-pass. The number
of rounds for 3-pass, 4-pass, and 5-pass are 3 rounds (96 steps), 4 rounds (128
steps), and 5 rounds (160 steps), respectively.

Let us denote a 256-bit state before step j by pj and denote pj by eight 32-bit
variables Qj−7‖Qj−6‖Qj−5‖Qj−4‖Qj−3‖Qj−2‖Qj−1‖Qj. The step function Rj

computes Qj+1 as follows:

Qj+1 ← (Qj−7 ≫ 11) + (Φj(φx,y(Qj−6, Qj−5, . . . , Qj)) ≫ 7) +mπ(j) + kj ,

where φx,y is a word-wise rotation for x-pass HAVAL in round y defined in
Table 2, and π(j) is shown in Table 3.

2.2 Technical Terminologies

In this paper, we discuss differences of several computations. Let us consider the
two computations Hi+1 ← CF(Hi,Mi) and H ′i+1 ← CF(H ′i ,M

′
i). The message
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difference, input chaining-variable difference, and output difference are defined
as Mi ⊕M ′i , Hi ⊕H ′i, and Hi+1 ⊕H ′i+1, respectively. Similarly, the difference of
two computations is defined as XOR of corresponding states.

The transition of the difference of internal state is described by several terms
such as differential path, differential trail, and differential characteristic. As far
as we know, the term differential characteristic was firstly used in the context of
the symmetric-key cryptography. However, in the context of the hash function
analysis, the term differential path seems to be used more frequently e.g., [26,27].
To follow this convention, in this paper, we use the term differential path.

When the input and output differences are fixed, we often consider all possible
differential paths connecting them. A set of all possible differential paths is called
a differential or multiple-paths. In this paper, we use the term differential.

3 Related Work

3.1 Boomerang Attack

The boomerang attack was proposed by Wagner [22] as a tool for attacking
block-ciphers. The attack is a chosen-plaintext and adaptively chosen-ciphertext
attack. It can be regarded as a type of the second-order differential attack. In
this attack, the attacker divides the target cipher E into two parts E1 and E2

such that E(·) = E2 ◦ E1(·). Let us denote the differential for E1 by Δ → Δ∗

and for E2 by ∇∗ → ∇. The differences Δ,Δ∗,∇∗, and ∇ are chosen by the
attacker at offline. The attack procedure is as follows;

1. The attacker first prepares a plaintext P 1 and compute P 2 ← P 1 ⊕Δ.
2. P 1 and P 2 are passed to the encryption oracle and the attacker obtains the

corresponding ciphertexts C1 and C2.
3. The attacker prepares the paired ciphertexts C3 ← C1⊕∇ and C4 ← C2⊕∇,

and passes them to the decryption oracle.
4. Finally, the attacker checks whether or not P 3 and P 4 has the difference Δ.

Assume that the probability for the differentials for E1 and E2 are p and q,
respectively. Then, Pr[P 3 ⊕ P 4 = Δ] is expressed as p2q2. In the end, we can
conclude that if E can be divided into two parts with a high-probability differ-
ential, the boomerang attack is very efficient.

For a long time, it was assumed that the differentials for E1 and E2 can be
chosen independently. In 2009, Murphy pointed out that this was not sufficient,
and discovered several examples of this case for DES and AES [12].

3.2 Boomerang Distinguishers for Hash Functions

In 2011, Biryukov et al. pointed out that the zero-sum distinguisher can be
constructed by applying the boomerang attack on hash functions [3]. In the
boomerang attack, P 1⊕P 2 = Δ and P 3⊕P 4 = Δ. Therefore, P 1⊕P 2⊕P 3⊕P 4 =
Δ ⊕ Δ = 0. Similarly, C1 ⊕ C2 ⊕ C3 ⊕ C4 = ∇ ⊕ ∇ = 0. Hence, by starting
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from a pair of plaintexts P 1 and P 2 such that P 1 ⊕ P 2 = Δ, the attacker finds
a zero-sum quartet with a complexity of (p2q2)−1. [3] considered the attack
starting from the border state between E1 and E2, and optimized the attack
by applying the message modification technique [26,27]. [3] also computed the
complexity to find a zero-sum in a random function for n-bit output. They
explained that by starting from two paired plaintexts (resp. ciphertexts) with
pre-specified differences, the complexity to find a zero-sum quartet of ciphertexts
(resp. plaintexts) is 2

n
2 . Note that [3] considered the differential path rather

than the differential for their attack. In fact, to apply the message modification
technique, considering a differential path is much easier than a differential. Also
note that [3] considered the observation by Murphy [12]. They had to give up
combining the best differential paths for E1 and E2 due to their dependency.

In 2011, Lamberger and Mendel independently applied the boomerang 4-sum
for the SHA-2 compression function [10]. They claimed that the complexity for
finding a 4-sum quartet in a random function without any limitation on the
input is 2

n
3 by using the generalized birthday attack [23].

3.3 Boomerang on Encryption Modes of MD4, MD5, and HAVAL

Kim et al. applied the boomerang attack approach on the encryption modes of
MD4, MD5, and HAVAL in the related-key model [9]. They proposed boomerang
distinguishers with 26 queries for MD4, 211.6 queries for MD5, and 29.6 queries for
4-pass HAVAL. These attacks were verified by the machine experiment. Further-
more, they proposed differential paths for 5-pass HAVAL, and claimed that the
boomerang distinguisher with 261 queries was possible. They also claimed that
this distinguisher was partially verified with an experiment on a reduced-round
variant which was truncated for the first and the last several rounds.

Our attack framework is close to the one discussed in Sect. 3.2, but use the
differential paths in [9] as a tool. In fact, we use the same paths as [9] for MD5
and 4-pass HAVAL. However, we need new differential paths for 5-pass HAVAL
due to the flaw which we will point out in Sect. 5.

4 Summary of Boomerang Attack on Hash Function

Because various techniques for the boomerang attack on hash functions are dis-
tributed in several papers, we summarize the attack framework. Therefore, most
of the contents in this section were originally observed by [3,9,10].

The attack can be divided into five phases; 1) message differences (ΔM ),
2) differential paths and sufficient conditions (DP), 3) contradiction between
two paths (CP), 4) message modification (MM ), and 5) amplified probability
(AP). We explain each phase with several observations specific to message-words
permutation hash functions.

4.1 Message Differences (ΔM )

A generic strategy for an NR-round hash function is illustrated in Fig. 1. For
NR = 4, the first two and last two rounds are regarded asE1 and E2, respectively.
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Fig. 2. Message search procedure

For E1, we search for the message word which appear in an early step in the
first round and in a late step in the second round. Then, the message difference
is propagated until the beginning and end of E1. The same strategy is applied
for E2. Because the differential paths for both of E1 and E2 are short, they are
satisfied with high probability even without the message modification technique.

For NR = 5, we extend the differential paths for the 4-round attack by a half
more round. As shown in Fig. 1, the paths become long and hard to satisfy by
the naive search. Wang et al. showed that the differential path for one round
can be satisfied for free by the message modification technique [26,27]. Hence,
with these techniques, 5 rounds can be attacked. In this paper, we denote the
differential path between the end of round 2 and the beginning of round 4 by
inside path, and the differential paths in round 1 and round 5 by outside paths.

4.2 Differential Paths and Sufficient Conditions (DP)

Based on the strategy in Fig. 1, we construct differential paths and conditions for
chaining variables. These procedures are basically the same as the ones for pre-
vious collision attacks. We only list the differences of the path search procedure
between the collision and boomerang attacks.

– If the feed-forward operation is performed by a modular addition (H =
P�C), the attacker should introduce the additive difference among a quartet.
in such a case, the difference for the quartet is defined as (H4�H3)� (H2�
H1) = H1 �H2 �H3 �H4.

– The number of conditions must be minimized because setting x more condi-
tions will increase the complexity by a factor of 22x rather than 2x.

– In the middle round, we apply the message modification, and thus even
complicated paths can be satisfied. However, by taking into account the
Phase CP , the paths should be simplified around the border of two paths.
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– If active-bit positions are concentrated around the MSB in both of E1 and E2

for the optimization, the risk of the contradiction of two paths will increase.

4.3 Contradiction between Two Paths (CP)

AsMurphy pointed out [12], differential paths forE1 andE2 are not independent,
and thus we need to check that any contradiction does not occur. As far as we
know, no systematic method is known to check the contradiction. However, it
can be said that the attacker at least needs to check the following conditions.

Condition 1. E1 and E2 do not require to fix the same bit to different values.
Condition 2. E1 (resp. E2) does not require to fix the value of an active bit

for E2 (resp. E1).

The first case is obviously in contradiction. In the second case, even if the condi-
tion is satisfied between one pair, say P 1 and P 2, the condition is never satisfied
for the other pair P 3 and P 4 due to the difference between P 1 and P 3.

As discussed in Sect. 4.2, if many bits are activated or active-bit positions
are concentrated around MSB, the contradiction comes to occur more easily.
Regarding HAVAL, due to the large word-size (32 bits) and the different rotation
constants in forward and backward, the contradiction is less likely to occur. If
the word size is smaller or if the similar rotation constants are used such as
BLAKE, the contradiction seems to occur with a high probability.

If the contradiction occurs, rotating the path for either E1 or E2 by several
bits may avoid the contradiction (though the efficiency becomes worse).

4.4 Message Modification (MM )

Let us denote a quartet of texts at step j forming the boomerang structure
by (p1j , p

2
j , p

3
j , p

4
j). The difference for E1 is denoted by Δ, which is considered

between p1 and p2 and between p3 and p4. The difference for E2 is denoted
by ∇, which is considered between p1 and p3 and between p2 and p4. We call
conditions on the path for E1 Δ-conditions, and for E2 ∇-conditions.

The message search procedure is described in Fig. 2. The attack starts from
the state at the border between E1 and E2. Let us denote this step by b. First,
we set a chaining-variables quartet (p1b , p

2
b , p

3
b , p

4
b) so that both of Δ- and ∇-

conditions are satisfied. We then perform the backward computation for E1 and
forward computation for E2 as shown in Alg. 1 and Alg. 2, respectively.

These procedures are computed until the inside path is ensured to be satisfied
with probability of 1. This often occurs before all message words are fixed by
the above procedure. Therefore, towards the outside paths, we do as follows.

– Assume that several message-words are not determined even after the inside
path are ensured. Then, we never modify the message-words and chaining-
variables related to the inside path, and compute the outside paths by ran-
domly choosing the message-words not used for the inside path.

This enables us to iterate the outside computation with keeping the inside path
satisfied. Hence, the complexity for satisfying the inside path can be ignored.
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Algorithm 1. Message search procedure for step j in the backward direction

Input: Inside differential path and a chaining-variables quartet (p1j+1, p
2
j+1, p

3
j+1, p

4
j+1)

Output: A message-words quartet (m1
π(j),m

2
π(j), m

3
π(j),m

4
π(j)) and a chaining-

variables quartet (p1j , p
2
j , p

3
j , p

4
j)

1: Choose the value of p1j to satisfy conditions (Δ-conditions) for p1j . Then, compute
m1

π(j) by solving equation Rj .

2: Compute m2
π(j), m

3
π(j), and m4

π(j) with the specified differences ΔM and ∇M .

3: Compute p3j with m3
π(j) and check if all conditions (Δ-conditions) for p3j are satis-

fied. If so, compute p2j and p4j . If not, repeat the procedure with different p1j .

Algorithm 2. Message search procedure for step j in the forward direction

Input: Inside differential path and a chaining-variables quartet (p1j , p
2
j , p

3
j , p

4
j )

Output: A message-words quartet (m1
π(j),m

2
π(j), m

3
π(j),m

4
π(j)) and

a chaining-variables quartet (p1j+1, p
2
j+1, p

3
j+1, p

4
j+1)

1: Choose the value of p1j+1 to satisfy conditions (∇-conditions) for p1j+1. Then, com-
pute m1

π(j) by solving Rj .

2: Compute m2
π(j), m

3
π(j), and m4

π(j) with the specified differences ΔM and ∇M .

3: Compute p2j+1 and check if all conditions (∇-conditions) for p2j+1 are satisfied. If
so, compute p3j+1 and p4j+1. If not, repeat the procedure with different p1j+1.

4.5 Amplified Probability (AP)

Amplified probability is the probability that each outside path results in the
4-sum. We consider the differential to estimate this probability. This is often
estimated by an experiment. Alg. 3 shows how to compute the amplified prob-
ability APBack for the first round (from step j − 1 to step 0). The amplified
probability for the final round APFor is similarly computed. Note that as long
as the operation (usually either XOR or the modular addition) used to com-
pute the 4-sum in this experiment and used in the feed-forward is identical, the
success probability after the feed-forward is preserved as APBack ×APFor.

5 4-Sum Distinguisher on 5-Pass HAVAL

We start from pointing out the flaw of the previous differential path (Sect. 5.1),
and construct new differential paths (Sect. 5.2). We then explain the attack
based on the discussion in Sect. 4 and finally show the experimental results.

Algorithm 3. Evaluation of the amplified probability

Input: Outside differential path
Output: Amplified probability of the outside differential path
1: Randomly choose a chaining-variables quartet (p1j , p

2
j , p

3
j , p

4
j) and message-words

used in steps j − 1 to 0 with appropriate message differences ΔM and ∇M .
2: Compute this quartet until step 0 and check whether the 4-sum is constructed.
3: Repeat the above for an enough amount of times, and calculate the probability.
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Table 4. Differential path and conditions for 5-pass HAVAL [9]. ez represents that
only z-th bit has a difference.

Output diff. at step j Equation for Φj Conditions on 20th bit
j (ΔQj−7, . . . , ΔQj) Φj(φ5,3(Qj−6, . . . , Qj)) for Φj = 0

(0,0,0,0,0,0,0,e20)
70 (0,0,0,0,0,0,e20,0) Φ70( Q68, Q64, ΔQ70, Q66, Q67, Q69, Q65) Q69 = 0
71 (0,0,0,0,0,e20,0,0) Φ71( Q69, Q65, Q71, Q67, Q68, ΔQ70, Q66) Q67Q68 ⊕Q71 = 0
72 (0,0,0,0,e20,0,0,0) Φ72(ΔQ70, Q66, Q72, Q68, Q69, Q71, Q67) Q68 = 0
73 (0,0,0,e20,0,0,0,0) Φ73( Q71, Q67, Q73, Q69, ΔQ70, Q72, Q68) Q72Q69 ⊕Q67 = 0
74 (0,0,e20,0,0,0,0,0) Φ74( Q72, Q68, Q74, ΔQ70, Q71, Q73, Q69) Q73 ⊕Q71 ⊕Q72Q69 = 0
75 (0,e20,0,0,0,0,0,0) Φ75( Q73, Q69, Q75, Q71, Q72, Q74, ΔQ70) Q71 = 1
76 (e20,0,0,0,0,0,0,0) Φ76( Q74, ΔQ70, Q76, Q72, Q73, Q75, Q71) Q73 = 0
77 (0,0,0,0,0,0,0,e9) Φ77( Q75, Q71, Q77, Q73, Q74, Q76, Q72) -

5.1 Proving Flaw of Previous Differential Path

We point out that the differential path for the third round in [9] cannot work.
Note that the verifying experiment by [9] is for the reduced-round variants which
are truncated for the first and the last several rounds [9, Sect. 4.2]. Hence, our
claim does not contradict to the partial verification by [9].

The differential path during 8 steps (steps 70-77) in the third round is shown in
Table 4. The authors claimed that the path could be satisfied with a probability
of 2−7. The necessary and sufficient condition for satisfying this path with a
probability of 2−7 is that the difference in Q70 will not propagate through Φj .
Φj for these steps is a bit-wise Boolean function expressed as

Φj(x6, x5, x4, x3, x2, x1, x0) = x1x2x3 ⊕ x1x4 ⊕ x2x5 ⊕ x3x6 ⊕ x0x3 ⊕ x0.

Conditions to achieve the path were not explained in [9]. We first derive the nec-
essary and sufficient conditions to achieve the path, which are shown in Table 4.

Proof. For steps 70, 75, and 76, we have conditions Q69 = 0, Q71 = 1, and
Q73 = 0. Then, the left-hand side of the condition for step 74 becomes 0 ⊕ 1 ⊕
(Q72 · 0) = 1, which contradicts to the condition that this value must be 0. �

We verified the above proof with a small experiment;

1. Randomly choose the values of Q63 to Q70 and mπ(70) to mπ(77).
2. Set Q′z ← Qz for z = 63, 64, . . . , 70. Then computeQ′70 ← Q70⊕0x00100000.
3. Compute until step 77 and check whether or not the path is satisfied.

With 230 trials, the differential path in Table 4 was not satisfied. This contradicts
to the claim in [9], which the path is satisfied with a probability 2−7.

5.2 Constructing New Differential Paths

We reconstruct the attack based on the strategy explained Sect. 4.1. For Phase
ΔM , we confirmed that the message differences in [9] (Δm2 = 0x80000000,
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Table 5. Boomerang path construction for 5-pass HAVAL

index for each round
1 0 1 2© 3 4© 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

← Δ constant
2 5 14 26 18 11 28 7 16 0 23 20 22 1 10 4© 8 30 3 21 9 17 24 29 6 19 12 15 13 2© 25 31 27

constant Δ →
3 19 9 4© 20 28 17 8 22 29 14 25 12 24 30 16 26 31 15 7 3 1 0 18 27 13 6 21 10 23 11 5 2©

message modification message modification
4 24 4© 0 14 2© 7 28 23 26 6 30 20 18 25 19 3 22 11 31 21 8 27 12 9 1 29 5 15 17 10 16 13
← ∇ constant

5 27 3 21 26 17 11 20 29 19 0 12 7 13 8 31 10 5 9 14 30 18 6 28 24 2© 23 16 22 4© 1 25 15
constant ∇ →

Δmx = 0 for x �= 2, ∇m4 = 0x80000000,∇mx = 0 for x �= 4) match the
strategy in Fig. 1, and thus we use the same message differences. This is described
in Table 5.

For Phase DP , we need to specify how the differences will propagate to
chaining variables. We describe our path search algorithm in Appendix A. The
searched paths and conditions for chaining variables are given in Table 6.

For Phase CP , the overlap of the conditions and active-bit positions in Ta-
ble 6 must be checked. According to Table 6, the conditions 1 and 2 described in
Sect. 4.3 are satisfied. Note that as long as the step function is similar to MD4,
MD5, or HAVAL, the active bit positions and conditions for Δ and ∇ tend to
be different due to the asymmetric rotation constants in forward and backward
directions. In fact, for all differential paths in [9] and ours, the best differential
paths which were independently computed could be combined.

5.3 Attack Procedure

In Phase MM , we optimize the attack complexity based on the strategy in
Sect. 4.4. The detailed procedure is given in Alg. 4.

As shown in Table 5 the inside path starts from step 60 and ends at step
97. Several words (w2, w25, w31, w27, w24, w4) are used twice and we need a spe-
cial attention. However, as shown in Table 6, conditions are set only on Q58 to
Q93, and thus, the second-time use of these words outside of Q58 to Q93 always
succeed for any value. Hence, these values are chosen for satisfying conditions
for Q58 to Q93. After we satisfy all conditions for Q58 to Q93, 4 message words
w19, w11, w5, and w2 are still unfixed. Therefore, we can iterate the outside path
search without changing the inside path up to 2128 times, which is enough to
satisfy the outside paths.

The complexity of the message modification for satisfying the inside path
(up to Step 3 in Alg. 4) is negligible. Hence, the attack complexity is only the
iterative computations for satisfying the outside paths (Steps 4–11 in Alg. 4).
This complexity is evaluated by considering the amplified probability in Phase
AP , which will be explained in the following section.
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Algorithm 4. Attack procedure with the message modification

Input: Entire differential paths and conditions
Output: A quartet of (Hi−1,Mi−1) satisfying the 4-sum property
1: Randomly choose the values of p180, p

2
80, p

3
80 and p480 so that the differences and

conditions (both of Δ and ∇) in Table 6 can be satisfied. Note that, choosing px80
means choosing eight 32-bit variables Qx

80, Q
x
79, Q

x
78, Q

x
77, Q

x
76, Q

x
75, Q

x
74, and Qx

73.

2: Apply the backward computation in Alg. 1 to obtain p165, p
2
65, p

3
65 and p465. This

fixes chaining variables up to Qx
58 and message words from mπ(79) to mπ(65).

3: Apply the forward computation in Alg. 2 to obtain p193, p
2
93, p

3
93 and p493. This fixes

chaining variables up to Qx
93 and message words from mπ(80) to mπ(92).

//End of the message modification for the inside path

4: while a 4-sum quartet of the compression function output is not found do
5: Randomly choose the values of message-words quartet for mπ(93) = m11,

mπ(94) = m5, and mπ(95) = m2 with the message difference on m2, and compute
a chaining-variables quartet until p198, p

2
98, p

3
98 and p498.

6: Randomly choose the values of message-words quartet for mπ(64) = m19, and
compute a chaining-variables quartet until p160, p

2
60, p

3
60 and p460.

7: Compute a chaining-variables quartet until p10, p
2
0, p

3
0 and p40 in backward and

p1160, p
2
160, p

3
160 and p4160 in forward.

8: if (p10 � p1160)� (p20 � p2160)� (p30 � p3160)� (p40 � p4160) = 0 then
9: return (p10, p

2
0, p

3
0, p

4
0) and (M1,M2,M3,M4)

10: end if
11: end while

Algorithm 5. Differential path search algorithm for E1 from step 60 to step 79

Input: Message difference ΔM , where Δm2 = 0x80000000 and Δmx = 0 for x �= 2
Output: Differences of each chaining variable between step 60 and step 79
1: Initialize tempHD← 0
2: for x = 53 to 60 do
3: Qx ← a randomly chosen value
4: Q′

x ← Qx

5: end for
6: for x = 60 to 79 do
7: mπ(x) ← a randomly chosen value
8: m′

π(x) ← mπ(x) ⊕ΔM
9: Compute Qx+1 and Q′

x+1

10: tempHD← tempHD+HW (Qx+1 ⊕Q′
x+1)

11: if tempHD > 10 then
12: goto step 1
13: end if
14: end for
15: print Qy ⊕Q′

y for y = 61, 62, . . . , 80
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Table 6. New differential paths and conditions for 5-Pass HAVAL. [z] = 0, [z] = 1 are
conditions on the value of z-th bit of the chaining variable. For the first and last several
steps, we do not fix a particular difference for the amplified probability. The difference
is considered in XOR. In some cases, we need conditions on the sign of the difference.
[z] = 0+, [z] = 1− mean the value is first fixed to 0 (resp. 1) and change to 1 (resp. 0)
after the difference is inserted.

Path for E1 with Δm2 = 0x80000000 Path for E2 with ∇m4 = 0x80000000

j ΔQj Conditions on Qj Δm j ∇Qj Conditions on Qj ∇m mπ(j)

-7 AP AP -7 m1
-6 AP AP -6 m0
-5 AP AP 0x80000000 -5 m2
-4 -4 m3
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
52 52 m13
53 0x80000000 53 m2
54 54 m25
55 55 m31
56 56 m27
57 57 m19
58 [31]=0 58 m9
59 [31]=0 59 m4
60 [31]=0 60 m20
61 0x80000000 61 m28
62 [31]=0 62 m17
63 [31]=0 63 m8
64 [31,24]=0 64 m22
65 [24]=0 65 m29
66 [24,20]=0 66 m14
67 0x01000000 [20]=0 67 m25
68 [24,20]=0 68 m12
69 0x00100000 [24]=0 69 m24
70 [24,20,17]=0 70 m30
71 [20,17]=0 71 m16
72 [24,20,17]=0 72 m26
73 0x00020000 [17]=1− 73
74 [20,17]=0 74 0x00000001 [0]=1−
75 [17,9]=0 75 [18]=0
76 [17,9]=0 76 [18]=0 start
77 0x00000200 [9]=0+ 77 [18,0]=0 step
78 [17,10,9]=0 78 0x00040000 [21]=0,[18]=0+
79 0x00000400 [10]=1− 79 [21]=0,[18]=1
80 80 [21,18]=0

81 81 [21,18,14]=0 m31
82 82 0x00200000 [14]=0 m15
83 83 [21]=1,[14]=0 m7
84 84 0x00004000 [21]=0 m3
85 85 [21]=0,[14]=1 m1
86 86 [14]=0 m0
87 87 [14,10]=0 m18
88 88 [10]=0 m27
89 89 [10]=0 m13
90 90 0x00000400 m6
91 91 [10]=1 m21
92 92 [10]=1 m10
93 93 [10]=1 m23
94 94 m11
95 95 m5
96 96 m2
97 97 m24
98 98 0x80000000 m4
99 99 m0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
156 156 m22
157 157 0x80000000 AP 0x80000000 m4
158 158 AP AP m1
159 159 AP AP m25
160 160 AP AP m15
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Table 7. Experimental results for the amplified probability

Direction Number of trials Number of obtained 4-sums Amplified probability

Back 1,000,000 53,065 2−4.24

For 1,000,000 37,623 2−4.73

Total 1,000,000 1,975 2−8.98

Table 8. An example of the boomerang quartet for the full 5-pass HAVAL

H1
i 0x6ad6913b 0x52831497 0x42e2afea 0x042171e8 0x05c66540 0xf6308a5d 0x69b242bb 0xfeadf2df

M1
i 0x55f408ea 0xade29473 0x5cd48f01 0x862fac29 0xb59b9103 0xdfe1dff3 0x44aaff68 0xa5716cc8

0xd9b3c72a 0x9d9907bb 0x263e9a6f 0x0d81dbdd 0x1a1d1f69 0x35a88db0 0xb50f50b3 0xcb85d403
0xe2898bd5 0x3dc4e64c 0x48a696ae 0x1568e06b 0x286a00c5 0x236529bd 0x8bb673fd 0x481411ed
0xb2117cb1 0xe6911e8d 0x5816e997 0x1a8fc1d3 0xc5dda128 0x43e5f428 0xcf1e861f 0xf5258b98

H1
i+1 0x50b484bf 0x9d28c720 0xc2a5ab4d 0x5aec2d4b 0x63659cae 0x0023f316 0xa02276be 0xeab5fb84

H2
i 0x6ad6913b 0x52831497 0x42e2afea 0x042171e8 0x05c66540 0xf6308e5d 0x69b242bb 0xfeae32df

M2
i 0x55f408ea 0xade29473 0xdcd48f01 0x862fac29 0xb59b9103 0xdfe1dff3 0x44aaff68 0xa5716cc8

0xd9b3c72a 0x9d9907bb 0x263e9a6f 0x0d81dbdd 0x1a1d1f69 0x35a88db0 0xb50f50b3 0xcb85d403
0xe2898bd5 0x3dc4e64c 0x48a696ae 0x1568e06b 0x286a00c5 0x236529bd 0x8bb673fd 0x481411ed
0xb2117cb1 0xe6911e8d 0x5816e997 0x1a8fc1d3 0xc5dda128 0x43e5f428 0xcf1e861f 0xf5258b98

H2
i+1 0xfa15769c 0x6ed1b19a 0x405b263b 0x57cd6359 0xd8688750 0xcdc3c9d3 0xa3dc7fd8 0x2e59f283

H3
i 0xb70b5251 0x851d041a 0x7a5f5fad 0x98626bb1 0x9d739cbc 0x67bc3181 0xe48e4cac 0xeeb57f26

M3
i 0x55f408ea 0xade29473 0x5cd48f01 0x862fac29 0x359b9103 0xdfe1dff3 0x44aaff68 0xa5716cc8

0xd9b3c72a 0x9d9907bb 0x263e9a6f 0x0d81dbdd 0x1a1d1f69 0x35a88db0 0xb50f50b3 0xcb85d403
0xe2898bd5 0x3dc4e64c 0x48a696ae 0x1568e06b 0x286a00c5 0x236529bd 0x8bb673fd 0x481411ed
0xb2117cb1 0xe6911e8d 0x5816e997 0x1a8fc1d3 0xc5dda128 0x43e5f428 0xcf1e861f 0xf5258b98

H3
i+1 0x9ce945d5 0xcfc2b6a3 0xfa225b10 0xef2d2714 0x7b12d42a 0x71af9a3a 0x1afe80af 0xdbbd87cb

H4
i 0xb70b5251 0x851d041a 0x7a5f5fad 0x98626bb1 0x9d739cbc 0x67bc3581 0xe48e4cac 0xeeb5bf26

M4
i 0x55f408ea 0xade29473 0xdcd48f01 0x862fac29 0x359b9103 0xdfe1dff3 0x44aaff68 0xa5716cc8

0xd9b3c72a 0x9d9907bb 0x263e9a6f 0x0d81dbdd 0x1a1d1f69 0x35a88db0 0xb50f50b3 0xcb85d403
0xe2898bd5 0x3dc4e64c 0x48a696ae 0x1568e06b 0x286a00c5 0x236529bd 0x8bb673fd 0x481411ed
0xb2117cb1 0xe6911e8d 0x5816e997 0x1a8fc1d3 0xc5dda128 0x43e5f428 0xcf1e861f 0xf5258b98

H4
i+1 0x464a37b2 0xa16ba11d 0x77d7d5fe 0xec0e5d22 0xf015becc 0x3f4f70f7 0x1eb889c9 0x1f617eca

4-sum 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

Table 9. An example of the boomerang quartet for MD5

H1
i 0x7ad51bee 0x68a07529 0x5369e5f1 0x62f52251

M1
i 0x58df0f5e 0x678b3525 0x03105c08 0xa068f82a 0x21ead339 0xe6e2ea9c 0x5cf986e1 0x9890fd27

0xcf8a438f 0x2cecb915 0x44935dfe 0xf06f103f 0x72d5b376 0x9688dfed 0x7b2ae2f6 0xe9256628

H1
i+1 0x1de7b79a 0x6e573e2a 0x0ef900e3 0xc72985ef

H2
i 0xfad51bee 0x68a07529 0xd369e5f1 0xe2f52251

M2
i 0x58df0f5e 0x678b3525 0x83105c08 0xa068f82a 0x21ead339 0xe6e2ea9c 0x5cf986e1 0x9890fd27

0xcf8a438f 0x2cecb915 0x44935dfe 0xf06f103f 0x72d5b376 0x9688dfed 0x7b2ae2f6 0xe9256628

H2
i+1 0x03d5ae50 0x722a5685 0x361b13a1 0x75a3a89d

H3
i 0x97e364fe 0xb191e24c 0xdec0361f 0x6a8d3d9f

M3
i 0x58df0f5e 0x678b3525 0x03105c08 0xa068f82a 0x21ead339 0xe6e2ea9c 0x5cf986e1 0x9890fd27

0xcf8a438f 0x2cecb915 0x44935dfe 0x706f103f 0x72d5b376 0x9688dfed 0x7b2ae2f6 0xe9256628

H3
i+1 0x3af600aa 0xb748a94d 0x9a4f4f11 0xcec19f3d

H4
i 0x17e364fe 0xb191e24c 0x5ec0361f 0xea8d3d9f

M4
i 0x58df0f5e 0x678b3525 0x83105c08 0xa068f82a 0x21ead339 0xe6e2ea9c 0x5cf986e1 0x9890fd27

0xcf8a438f 0x2cecb915 0x44935dfe 0x706f103f 0x72d5b376 0x9688dfed 0x7b2ae2f6 0xe9256628

H4
i+1 0x20e3f760 0xbb1bc1a8 0xc17161cf 0x7d3bc1eb

4-sum 0x00000000 0x00000000 0x00000000 0x00000000
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Table 10. An example of the boomerang quartet for 3-pass HAVAL

H1
i 0x8af103dd 0x89952e4e 0xba8ba930 0xb1681125 0x8bf68d12 0x11f454da 0x31babeaf 0x1c684f37

M1
i 0x14c97b03 0x03021d0b 0x6e0a398b 0x12acd59d 0xa0e58017 0x56a25710 0x31381427 0x193906fa

0xa97fe484 0x9228f3e7 0x3d307061 0x7ea148a1 0xcf1cf1f5 0x2b250fb8 0xd874f573 0xb71f7585
0xb277563c 0xdb382652 0x1068c5fc 0x12cd8ceb 0x290580bf 0xc95cca2a 0x931d8c52 0xc835f9e8
0x3ef066f9 0x098a53d0 0xf25db814 0xdb003165 0x31779903 0x4ebc57a0 0x9060622a 0x24c0bf29

H1
i+1 0x9b18b769 0x01959420 0x480cea32 0x7c38cf17 0x70323bda 0xd46e06e9 0x09d05ae3 0xd315f8f6

H2
i 0x8af103dd 0x89952e4e 0xba8ba930 0xb1681125 0x8bf68d12 0x11f454da 0x31babeaf 0x1c684b37

M2
i 0x94c97b03 0x03021d0b 0x6e0a398b 0x12acd59d 0xa0e58017 0x56a25710 0x31381427 0x193906fa

0xa97fe484 0x9228f3e7 0x3d307061 0x7ea148a1 0xcf1cf1f5 0x2b250fb8 0xd874f573 0xb71f7585
0xb277563c 0xdb382652 0x1068c5fc 0x12cd8ceb 0x290580bf 0xc95cca2a 0x931d8c52 0xc835f9e8
0x3ef066f9 0x098a53d0 0xf25db814 0xdb003165 0x31779903 0x4ebc57a0 0x9060622a 0x24c0bf29

H2
i+1 0x2ab0c721 0xda378441 0x99789481 0xaf2db9cb 0x900971d1 0xdfa8ec61 0x122c330e 0xa77c26af

H3
i 0x6ca48418 0x6711d760 0x52670414 0x4dfe762f 0xf9bae1d5 0x7a9a2074 0x4518e6bf 0x6acec54d

M3
i 0x14c97b03 0x03021d0b 0x6e0a398b 0x12acd59d 0xa0e58017 0xd6a25710 0x31381427 0x193906fa

0xa97fe484 0x9228f3e7 0x3d307061 0x7ea148a1 0xcf1cf1f5 0x2b250fb8 0xd874f573 0xb71f7585
0xb277563c 0xdb382652 0x1068c5fc 0x12cd8ceb 0x290580bf 0xc95cca2a 0x931d8c52 0xc835f9e8
0x3ef066f9 0x098a53d0 0xf25db814 0xdb003165 0x31779903 0x4ebc57a0 0x9060622a 0x24c0bf29

H3
i+1 0x7ccc37a4 0xdf123d32 0xdfe84516 0x18cf3421 0xddf6909d 0x3d13d283 0x9d2e82f3 0x217c6f0c

H4
i 0x6ca48418 0x6711d760 0x52670414 0x4dfe762f 0xf9bae1d5 0x7a9a2074 0x4518e6bf 0x6acec14d

M4
i 0x94c97b03 0x03021d0b 0x6e0a398b 0x12acd59d 0xa0e58017 0xd6a25710 0x31381427 0x193906fa

0xa97fe484 0x9228f3e7 0x3d307061 0x7ea148a1 0xcf1cf1f5 0x2b250fb8 0xd874f573 0xb71f7585
0xb277563c 0xdb382652 0x1068c5fc 0x12cd8ceb 0x290580bf 0xc95cca2a 0x931d8c52 0xc835f9e8
0x3ef066f9 0x098a53d0 0xf25db814 0xdb003165 0x31779903 0x4ebc57a0 0x9060622a 0x24c0bf29

H4
i+1 0x0c64475c 0xb7b42d53 0x3153ef65 0x4bc41ed5 0xfdcdc694 0x484eb7fb 0xa58a5b1e 0xf5e29cc5

4-sum 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

Table 11. An example of the boomerang quartet for 4-pass HAVAL

H1
i 0x564187b3 0x5af775fb 0x10136ca0 0x8a9ffa0c 0x3edeecd0 0xd2e74f6c 0x15576f1c 0x70de0eb7

M1
i 0x8bc2d93c 0xc9e9f4eb 0xd4e85905 0x39828bfb 0x6aefef32 0xc3284793 0x0ed3477d 0x7e8a91f9

0x84963793 0x263a6675 0xafa8892c 0x340904ff 0xaccb5103 0xf3bac932 0xbe1f0ae4 0x93c377c1
0x48142ead 0x5b911f1b 0xe5693f5f 0xd1c28e92 0x11b24646 0xac7dd73d 0x745b0c46 0x5ca1756c
0xdfb80fbd 0x88cee1fd 0x7bd6c417 0x43ab29df 0xfdb5d87a 0x3569ce43 0xc7dc1347 0x462ef5da

H1
i+1 0x910e3d63 0x83c406ec 0x464230f7 0x3bfc4d84 0x14fddff2 0x5092bf5f 0x07cd2ad3 0x31c0e36a

H2
i 0x564187b3 0x5af775fb 0x10136ca0 0x8a9ffa0c 0x3edeecd0 0xd2e74b6c 0x15572f1c 0x70e24eb7

M2
i 0x8bc2d93c 0xc9e9f4eb 0x54e85905 0x39828bfb 0x6aefef32 0xc3284793 0x0ed3477d 0x7e8a91f9

0x84963793 0x263a6675 0xafa8892c 0x340904ff 0xaccb5103 0xf3bac932 0xbe1f0ae4 0x93c377c1
0x48142ead 0x5b911f1b 0xe5693f5f 0xd1c28e92 0x11b24646 0xac7dd73d 0x745b0c46 0x5ca1756c
0xdfb80fbd 0x88cee1fd 0x7bd6c417 0x43ab29df 0xfdb5d87a 0x3569ce43 0xc7dc1347 0x462ef5da

H2
i+1 0xe6b6ce20 0x3260de7a 0x681aa45d 0x277995cd 0x9d4959bc 0xaec251c2 0x41446efa 0x75cf2b80

H3
i 0xaf8abf6d 0xd2aafd4c 0xc7f01506 0xfd258be0 0x299edd95 0xa561cfbc 0x61175f52 0xec8049a0

M3
i 0x8bc2d93c 0xc9e9f4eb 0xd4e85905 0x39828bfb 0x6aefef32 0xc3284793 0x0ed3477d 0x7e8a91f9

0x84963793 0x263a6675 0xafa8892c 0x340904ff 0xaccb5103 0xf3bac932 0xbe1f0ae4 0x93c377c1
0x48142ead 0xdb911f1b 0xe5693f5f 0xd1c28e92 0x11b24646 0xac7dd73d 0x745b0c46 0x5ca1756c
0xdfb80fbd 0x88cee1fd 0x7bd6c417 0x43ab29df 0xfdb5d87a 0x3569ce43 0xc7dc1347 0x462ef5da

H3
i+1 0xea57751d 0xfb778e3d 0xfe1ed95d 0xae81df58 0x7fbdd0b7 0x230d3faf 0x538d1b09 0xad631e53

H4
i 0xaf8abf6d 0xd2aafd4c 0xc7f01506 0xfd258be0 0x299edd95 0xa561cbbc 0x61171f52 0xec8489a0

M4
i 0x8bc2d93c 0xc9e9f4eb 0x54e85905 0x39828bfb 0x6aefef32 0xc3284793 0x0ed3477d 0x7e8a91f9

0x84963793 0x263a6675 0xafa8892c 0x340904ff 0xaccb5103 0xf3bac932 0xbe1f0ae4 0x93c377c1
0x48142ead 0xdb911f1b 0xe5693f5f 0xd1c28e92 0x11b24646 0xac7dd73d 0x745b0c46 0x5ca1756c
0xdfb80fbd 0x88cee1fd 0x7bd6c417 0x43ab29df 0xfdb5d87a 0x3569ce43 0xc7dc1347 0x462ef5da

H4
i+1 0x400005da 0xaa1465cb 0x1ff74cc3 0x99ff27a1 0x08094a81 0x813cd212 0x8d045f30 0xf1716669

4-sum 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
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5.4 Experimental Results

By following the algorithm in Alg. 3, we evaluated the amplified probability for
the first and last several rounds. The results are shown in Table 7. According
to our experiments, APBack = 2−4.24, APFor = 2−4.73, and the entire success
probability is 2−8.98, which matches APBack × APFor = 2−8.97. The attack
complexity is for 28.98 iterations of Steps 4–11 in Alg. 4. Because we compute
quartets, the complexity is approximately 211(≈ 4 × 28.98) compression func-
tion computations. Finally, we implemented our 4-sum distinguisher on 5-pass
HAVAL. An example of the generated 4-sum quartet is presented in Table 8.

6 Concluding Remarks

We studied the boomerang attack approach on hash functions. We proved that
the previous differential path on 5-pass HAVAL contained a flaw. We then con-
structed the new path and proposed the 4-sum distinguisher on the compression
function with a complexity of approximately 211 computations. We implemented
the attack and showed an example of the 4-sum quartet. As far as we know, this
is the first feasible result on the full compression function of 5-pass HAVAL.
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A Differential Path Search Algorithm for 5-Pass HAVAL

Our path search algorithm is semi-automated and minimizes the Hamming dis-
tance of the entire inside path. We independently searched for the path for
E1 (steps 60 – 79) with Δm2 = 0x80000000 and path for E2 (steps 98 – 73)
with ∇m4 = 0x80000000. Conditions and contradiction of two paths were later
checked by hand. We only explain the algorithm for E1 in Alg. 5. HW (·) returns
the Hamming weight of the input variable.

After an enough number of iterations of Alg. 5, we obtained the path in Table 6
whose tempHD is 6.

B Examples of Boomerang Quartet

The differential paths in [9] can be used to construct a 4-sum on the compression
function. We show the generated 4-sums for MD5, 3-pass HAVAL, and 4-pass
HAVAL. The amplified probability to satisfy the entire path is approximately
2−8 for MD5, 2−2 for 3-pass HAVAL, and 2−9 for 4-pass HAVAL.
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Abstract. ECHO-256 is a second-round candidate of the SHA-3 com-
petition. It is an AES-based hash function that has attracted a lot of
interest and analysis. Up to now, the best known attacks were a distin-
guisher on the full internal permutation and a collision on four rounds of
its compression function. The latter was the best known analysis on the
compression function as well as the one on the largest number of rounds
so far. In this paper, we extend the compression function results to get
a distinguisher on 7 out of 8 rounds using rebound techniques. We also
present the first 5-round collision attack on the ECHO-256 hash function.

Keywords: hash function, cryptanalysis, rebound attack, collision
attack, distinguisher.

1 Introduction

ECHO-256 [1] is the 256-bit version of one of the second-round candidates of
the SHA-3 competition. It is an AES-based hash function that has been the
subject of many studies. Currently, the best known analysis of ECHO-256 are
a distinguisher on the full 8-round internal permutation proposed in [13] and
improved in [10]. Furthermore, a 4-round collision attack of the compression
function has been presented in [4]. A previous analysis due to Schläffer in [14]
has been shown to be incorrect in [4], but it introduced an alternative description
of the ECHO round-function, which has then been reused in several analyses,
including this paper. The best results of this paper are a collision attack on
the hash function reduced to 5 rounds and a distinguisher of the compression
function on 7 rounds. Additionally, we cover two more attacks in the Appendix.
The complexities of previous results and our proposed attacks are reported in
Table 1.

Apart from the improved attacks on ECHO-256, this paper also covers a num-
ber of new techniques. The merging process of multiple inbound phases has been
improved to find solutions also for the hash function, where much less freedom
is available in the chaining input. For the hash function collision attack on 5
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Table 1. Best known cryptanalysis results on ECHO-256

Rounds Time Memory Generic Type Reference

8 2182 237 2256 Internal Permutation Distinguisher [13]

8 2151 267 2256 Internal Permutation Distinguisher [10]

4 252 216 2256 Compression Function Collision [4]

5 2112 285.3 2128 Hash Function Collision Section 3

6 2193 2128 2256 Compression Function Collision Section 4

7 2193 2128 2240 Compression Function Distinguisher Section 4

rounds, we use subspace differences which collide with a high probability at the
output of the hash function. Additionally, we use multiple phases also in the
outbound part to reduce the overall complexity of the attacks. For the 7-round
compression function distinguisher, we use the new techniques and algorithms
introduced in [10, 11].

Outline. The paper is organized as follows. In Section 2, we describe the 256-
bit version of the ECHO hash function and detail an alternative view that has
already been used in several analysis [4, 14]. In particular, we emphasize the
SuperMixColumns and SuperSBox transformations that ease the analysis. In
Section 3, we provide a collision attack on this hash function reduced to 5 rounds
and a distinguisher of the 7-round compression function in Section 4.

In the extended version of this paper [5], we describe a chosen-salt collision
attack on the 6-round compression function and a chosen-salt distinguisher for
the compression function reduced to 7 rounds. We also improve the result from
[4] into a collision attack on the 4-round ECHO-256 hash function.

2 ECHO-256 Description

ECHO is an iterated hash function and the compression function of ECHO updates
an internal state described by a 16× 16 matrix of GF

(
28

)
elements, which can

also be viewed as a 4× 4 matrix of 16 AES states. Transformations on this large
2048-bit state are very similar to the one of the AES, the main difference being
the equivalent S-Box called BigSubWords, which consists in two AES rounds.
The diffusion of the AES states in ECHO is ensured by two big transformations:
BigShiftRows and BigMixColumns (Figure 1).

At the end of the permutation, the BigFinal operation adds the current state to
the initial one (feed-forward) and, in the case of ECHO-256, adds its four columns
together to produce the new chaining value. In this paper, we only focus on ECHO-
256 and refer to the original publication [1] for more details on both ECHO-256
and ECHO-512 versions. Note that the keys used in the two AES rounds are an
internal counter and the salt, respectively: they are mainly introduced to break
the existing symmetries of the AES unkeyed permutation [7]. Since we are not
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Fig. 1. One round of the ECHO permutation. Each of the 16 cells is an AES state.

using any property relying on symmetry and adding constants does not change
differences, we omit these steps in the following.

Two versions of the hash function ECHO have been submitted to the SHA-3
contest: ECHO-256 and ECHO-512, which share the same state size and round
function, but inject messages of size 1536 or 1024 bits respectively in the com-
pression function. Note that the message is padded by adding a single 1 followed
by zeros to fill up the last message block. The last 18 bytes of the last message
block always contain the 2-byte hash output size, followed by the 16-byte mes-
sage length. Focusing on ECHO-256 and denoting f its compression function, Hi

the i-th output chaining value, Mi = M0
i ||M1

i ||M2
i the i-th message block

composed of three chunks of 512 bits each M j
i and S = [C0C1C2C3] the four

512-bit ECHO-columns constituting state S, we have (H0 = IV ):

C0 ← Hi−1, C1 ←M0
i , C2 ←M1

i , C3 ←M2
i .

AES. We recall that one round, among the ten ones, of the AES-128 permuta-
tion is the succession of four transformations: SubBytes (SB), ShiftRows (SR),
MixColumns (MC) and AddRoundKey (AK). We refer to the original publication
[15] for further details.

Notations. We consider each state in the ECHO internal permutation, namely
after each elementary transformations. We start with S0, where the IV and the
message are combined and end the first round after eight transformations in S8.
To refer to the AES-state at row i and column j of a particular ECHO-state Sn,
we use the notation Sn[i, j]. Additionally, we introduce column-slice to refer to
a thin column of size 16× 1 of the ECHO state. The process of merging two lists
L1 and L2 into a new list L is denoted L = L1 �� L2. In the event that the
merging should be done under some relation t, we use the operator ��|t|, where
|t| represents the size of the constraint to be verified in bits. Finally, in an AES-
state, we consider four diagonals (from 0 to 3): diagonal j ∈ [0, 3] will be the
four elements (i, i + j (mod 4)), with i ∈ [0, 3].

2.1 Alternative Description

For an easier description of some of the following attacks, we use an equivalent de-
scription of one round of the ECHO permutation. First, we swap the BigShiftRows
transformation with the MixColumns transformation of the second AES round.
Second, we swap SubBytes with ShiftRows of the first AES round. Swapping
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these operations does not change the computational result of ECHO and similar
alternative descriptions have already been used in the analysis of AES. Hence,
one round of ECHO results in the two transformations SuperSBox (SB-MC-SB)
and SuperMixColumns (MC-BMC), which are separated just by byte-shuffling op-
eration. The SuperSBox has first been analyzed by Daemen and Rijmen in [2] to
study two rounds of AES and has been independently used by Lamberger et al.
in [6] and Gilbert and Peyrin in [12] to analyze AES-based hash functions. The
SuperMixColumns has been first introduced by Schläffer in [14] and reused in [4].
We refer to those articles for further details as well.

3 Attack on the 5-Round ECHO-256 Hash Function

In this section, we use a sparse truncated differential path and the properties
of SuperMixColumns to get a collision attack on 5 rounds of the ECHO-256 hash
function. The resulting complexity is 2112 with memory requirements of 285.3.
We first describe the truncated differential path (a truncated differential path
only considers whether a byte of the state is active or not) and show how to find
conforming input pairs. Due to the sparse truncated differential path, we are
able to apply a rebound attack with multiple inbound phases to ECHO. Since at
most one fourth of each ECHO state is active, we have enough freedom for two
inbound phases and are also able to fully control the chaining input of the hash
function.

3.1 The Truncated Differential Path

In the attack, we use two message blocks where the first block does not contain
differences. For the second message block, we use the truncated differential path
given in Figure 2. We use colors (red, yellow, green, blue, cyan) to describe
different phases of the attack and to denote their resulting solutions. Active
bytes are denoted by black color, and active AES states contain at least one
active byte. Hence, the sequence of active AES states for each round of ECHO is
as follows:

5 r1−→ 16 r2−→ 4 r3−→ 1 r4−→ 4 r5−→ 16.

Note that in this path, we keep the number of active bytes low, except for the
beginning and end. Therefore, we have enough freedom to find many solutions.
We do not allow differences in the chaining input (blue) and in the padding
(cyan). The last 16 bytes of the padding contain the message length and the two
bytes above contain size of the hash function output. Note that the AES states
containing the chaining values (blue) and padding (cyan) do not get mixed with
other AES states until the first BigMixColumns transformation. Since the lower
half of the state (row 2 and 3) is truncated to compute the final hash value, we
force all differences to be in the lower half of the message: the feed-forward will
then preserve that property.



Improved Analysis of ECHO-256 23

F
ig

.
2.

T
he

tr
un

ca
te

d
di

ffe
re

nt
ia

l
pa

th
to

ge
t

a
co

lli
si

on
fo

r
5

ro
un

ds
of

E
C
H
O
-2

56
.

B
la

ck
by

te
s

ar
e

ac
ti

ve
,

bl
ue

an
d

cy
an

by
te

s
ar

e
de

te
rm

in
ed

by
th

e
ch

ai
ni

ng
in

pu
t

an
d

pa
dd

in
g,

re
d

by
te

s
ar

e
va

lu
es

co
m

pu
te

d
in

th
e

re
d

in
bo

un
d

ph
as

e,
ye

llo
w

by
te

s
in

th
e

ye
llo

w
in

bo
un

d
ph

as
e

an
d

gr
ee

n
by

te
s

in
th

e
ou

tb
ou

nd
ph

as
e.



24 J. Jean, M. Naya-Plasencia, and M. Schläffer

3.2 Colliding Subspace Differences

In the following, we show that the resulting output differences after 5 rounds
lie in a vector space of reduced dimension. This can be used to construct a
distinguisher for 5 rounds of the ECHO-256 hash function. However, due to the
low dimension of the output vector space, we can even extend this subspace
distinguisher to get a collision attack on 5 rounds of the ECHO-256 hash function.

First, we need to determine the dimension of the vector space at the output
of the hash function. In general, the dimension of the output vector space is
defined by the number of active bytes prior to the linear transformations in the
last round (16 active bytes after the last SubBytes), combined with the number
of active bytes at the input due to the feed-forward (0 active bytes in our case).
This would results in a vector space dimension of (16 + 0)× 8 = 128. However,
a weakness in the combined transformations SuperMixColumns, BigFinal and the
output truncation reduces the vector space to a dimension of 64 at the output
of the hash function for the truncated differential path in Figure 2.

We can move the BigFinal function prior to SuperMixColumns, since BigFinal is
a linear transformation and the same linear transformation MSMC is applied to
all columns in SuperMixColumns. Then, we get 4 active bytes at the same position
in each AES state of the 4 resulting column-slices. To each active column-slice
C16, we first apply the SuperMixColumns multiplication with MSMC and then, a
matrix multiplication using Mtrunc = [I8 | 08] which truncates the lower 8 rows.
Since only 4 bytes are active in C16, these transformations can be combined into
a transformation using a reduced 4 × 8 matrix Mcomb applied to the reduced
input C4, which contains only the 4 active bytes of C16:

Mtrunc ·MSMC ·C16 = Mcomb ·C4,

The multiplication with zero differences of C16 removes 12 columns of MSMC

while the truncation removes 8 rows of MSMC. For example, considering the
first active column-slice leads to:

Mtrunc ·MSMC ·
[
a 0 0 0 b 0 0 0 c 0 0 0 d 0 0 0

]T

=

⎡

⎢
⎣

4 6 2 2 6 5 3 3

2 3 1 1 4 6 2 2

2 3 1 1 2 3 1 1

6 5 3 3 2 3 1 1

⎤

⎥
⎦

T

︸ ︷︷ ︸
Mcomb

·
[
a b c d

]T

Analyzing the resulting matrix Mcomb for all four active column-slices shows
that in each case, the rank of Mcomb is two, and not four. This reduces the di-
mension of the vector space in each active column-slice from 32 to 16. Since we
have four active columns, the total dimension of the vector space at the output of
the hash function is 64. Furthermore, column i ∈ {0, 1, 2, 3} of the output hash
value depends only on columns 4i of state S38. It follows that the output differ-
ence in the first column i = 0 of the output hash value depends only on the four
active differences in columns 0, 4, 8 and 12 of state S38, which we denote by a,
b, c and d. To get a collision in the first column of the hash function output, we
get the following linear system of equations:
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Mcomb ·
[
a b c d

]T

=
[
0 0 0 0 0 0 0 0

]T

.

Since we cannot control the differences a, b, c and d in the following attack,
we need to find a solution for this system of equations by brute-force. However,
the brute-force complexity is less than expected due to the reduced rank of the
given matrix. Since the rank is two, 216 solutions exist and a random difference
results in a collision with a probability of 2−16 instead of 2−32 for the first
output column. Since the rank of all four output column matrices is two, we get
a collision at the output of the hash function with a probability of 2−16×4 = 2−64

for the given truncated differential path.

3.3 High-Level Outline of the Attack

To find input pairs according to the truncated differential path given in Figure 2,
we use a rebound attack [9] with multiple inbound phases [6, 8]. The main advan-
tage of multiple inbound phases is that we can first find pairs for each inbound
phase independently and then, connect (or merge) the results. Furthermore, we
also use multiple outbound phases and separate the merging process into three
different parts which can be solved mostly independently:

1. First Inbound between S16 and S24: find 296 partial pairs (yellow and
black bytes) with a complexity of 296 in time and 264 memory.

2. First Outbound between S24 and S31: filter the previous solutions to
get 1 partial pair (green, yellow and black bytes) with a complexity of 296

in time and 264 memory.
3. Second Inbound between S7 and S14: find 232 partial pairs (red and

black) for each of the first three BigColumns and 264 partial pairs for the last
BigColumn of state S7 with a total complexity of 264 in time and memory.

4. First Part in Merging the Inbound Phases: combine the 2160 solutions
of the previous phases according to the 128-bit SuperMixColumns condition
given in [4]. We get 232 partial pairs (black, red, yellow and green bytes
between state S7 and S31) with complexity 296 in time and 264 memory.

5. Merge Chaining Input: repeat from Step 1 for 216 times to get 248 solu-
tions for the previous phases. Compute 2112 chaining values (blue) using 2112

random first message blocks. Merge these solutions according to the overlap-
ping 20 bytes (red with blue/cyan) in state S7 to get 248 × 2112 × 2−160 = 1
partial pair with complexity 2112 in time and 248 memory.

6. Second Part in Merging the Inbound Phases: find one partial solution
for the first two columns of state S7 according to the 128-bit condition at
SuperMixColumns between S14 and S16 with complexity 264 in time and
memory.

7. Third Part in Merging the Inbound Phases: find one solution for all
remaining bytes (last two columns of state S7) by fulfilling the resulting 192-
bit condition using a generalized birthday attack with 4 lists. The complexity
is 264 in time and memory to find one solution, and 285.3 in time and memory
to find 264 solutions [16].
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8. Second Outbound Phase to Get Collisions: in a final outbound phase,
the resulting differences at the output of the hash function collide with a
probability of 2−64 and we get one collision among the 264 solutions of the
previous step.

The total time complexity of the attack is 2112 and determined by Step 5; the
memory complexity is 285.3 and determined by Step 7.

3.4 Details of the Attack

In this section, we describe the each phase of the collision attack on 5 rounds of
ECHO-256 in detail. Note that some phases are also reused in the attacks on the
compression function of Section 4.

First Inbound between S16 and S24. We first search for internal state
pairs conforming to the truncated differential path in round 3 (yellow and black
bytes). We start the attack by choosing differences for the active bytes in state
S16 such that the truncated differential path of SuperMixColumns between state
S14 and S16 is fulfilled (Section 2.1). We compute this difference forward to state
S17 through the linear layers.

We continue with randomly chosen differences of state S24 and compute back-
wards to state S20, the output of the SuperSBoxes. Since we have 64 active S-
boxes in this state, the probability of a differential is about 2−1×64. Hence, we
need 264 starting differences but get 264 solutions for the inbound phase in round
3 (see [9]). We determine the right pairs for each of the 16 SuperSBox between
state S17 and S20 independently. Using the Differential Distribution Table of the
SuperSBoxes, we can find one right pair with average complexity one. In total,
we compute 296 solutions for this inbound phase with time complexity 296 and
memory complexity of at most 264. For each of these pairs, differences and values
of all yellow and black bytes in round 3 are determined.

Second Outbound between S24 and S31. In the outbound phase, we ensure
the propagation in round 4 of the truncated differential path by propagating the
right pairs of the previous inbound phase forwards to state S31. With a prob-
ability of 2−96, we get four active bytes after MixColumns in state S31 (green)
conforming to the truncated path. Hence, among the 296 right pairs of the in-
bound phase between S16 and S24 we expect to find one such right pair.

The total complexity to find this partial pair between S16 and S31 is then 296.
Note that for this pair, the values and differences of the yellow, green and black
bytes between states S16 and S31 can be determined. Furthermore, note that for
any choice of the remaining bytes, the truncated differential path between state
S31 and state S40 is fulfilled.

Second Inbound between S7 and S14. Here, we search for many pairs of
internal states conforming to the truncated differential path between states S7

and S14. Note that we can independently search for pairs of each BigColumn
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of state S7, since the four BigColumns stay independent until they are mixed
by the following BigMixColumns transformation between states S15 and S16. For
each BigColumn, four SuperSBoxes are active and we need at least 216 starting
differentials for each one to find the first right pair.

The difference in S14 is already fixed due to the yellow inbound phase but we
can still choose at least 232 differences for each active AES state in S7. Using the
rebound technique, we can find one pair on average for each starting difference
in the inbound phase. Then, we independently iterate through all 232 starting
differences for the first, second and third column and through all 264 starting
differences for the fourth column of state S7. We get 232 right pairs for each of
the first three columns and 264 pairs for the fourth column. The complexity to
find all these pairs is 264 in time and memory.

For each resulting right pair, the values and differences of the red and black
bytes between states S7 and S14 can be computed. Furthermore, the truncated
differential path in backward direction, except for two cyan bytes in the first
states, is fulfilled. In the next phase, we partially merge the right pairs of the
yellow and red inbound phase. But first, we recall the conditions for this merge.

First Part in Merging the Inbound Phases. For each pair of the previ-
ous two phases, the values of the red, yellow and black bytes of state S14 and
S16 are fixed. These two states are separated by the linear SuperMixColumns
transformation: taking the first column-slice as an example, we get

MSMC · [A0 x0 x1 x2 A1 x3 x4 x5 A2 x6 x7 x8 A3 x9 x10 x11]T

= [B0 B1 B2 B3 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11]T,

where MSMC is the SuperMixColumns transformation matrix, Ai the input bytes
determined by the red inbound phase and Bi the output bytes determined by
the yellow inbound phase. All bytes xi and yi are free to choose. As shown
by Jean and Fouque [4], we only get a solution with probability 2−8 for each
column-slice due to the low rank of the MSMC matrix. In [4] (Appendix A), the
8-bit condition for that particular column-slice that ensures the system to have
solutions has been derived and is given as follows:

2 ·A0 + 3 ·A1 + A2 + A3 = 14 ·B0 + 11 ·B1 + 13 ·B2 + 9 ·B3. (1)

Similar 8-bit conditions exist for all 16 column-slices. In total, each right pair
of the two (independent) inbound phases results in a 128-bit condition on the
whole SuperMixColumns transformation between states S14 and S16.

Remember that we have constructed one pair for the yellow inbound phase
and in total, 232×232×232×264 = 2160 pairs for the red inbound phase. Among
these 2160 pairs, we expect to find 232 right pairs which also satisfy the 128-bit
condition of the SuperMixColumns between states S14 and S16. In the following,
we show how to find all these 232 pairs with a complexity of 296.

First, we combine the 232 × 232 = 264 pairs determined by the two first
BigColumns of state S7 in a list L1 and the 232 × 264 = 296 pairs determined by
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the last two BigColumns of state S7 in a list L2. Note that the pairs in these two
lists are independent. Then, we separate Equation (1) into terms determined by
L1 and terms determined by L2:

2 ·A0 + 3 ·A1 = A2 + A3 + 14 ·B0 + 11 ·B1 + 13 ·B2 + 9 ·B3. (2)

We apply the left-hand side to the elements of L1 and the right-hand side to
elements of L2 and sort L1 according to the bytes to be matched.

Then, we can simply merge (join) these lists to find those pairs which satisfy
the 128-bit condition imposed by the SuperMixColumns and store these results
in list L12 = L1 ��128 L2. This way, we get 264 × 296 × 2−128 = 232 right pairs
with a total complexity of 296. We note that the memory requirements can be
reduced to 264 if we do not store the elements of L2 but compute them online.
The resulting 232 solutions are partial right pairs for the black, red, yellow and
green bytes between state S7 and S31.

Merge Chaining Input. Next, we need to merge the 232 results of the previous
phases with the chaining input (blue) and the bytes fixed by the padding (cyan).
The chaining input and padding overlap with the red inbound phase in state S7

on 5 × 4 = 20 bytes. This results in a 160-bit condition on the overlapping
blue/cyan/red bytes. To find a pair verifying this condition, we first generate
2112 random first message blocks, compute the blue bytes of state S7 and store
the results in a list L3.

Additionally, we repeat 216 times from the yellow inbound phase but with
other starting points1 in state S24. This way, we get 216 × 232 = 248 right pairs
for the combined yellow and red inbound phases, which also satisfy the 128-bit
condition of SuperMixColumns between states S14 and S16. The complexity is
216 × 296 = 2112. We store the resulting 248 pairs in list L12.

Next, we merge the lists according to the overlapping 160-bits (L12 ��160 L3)
and get 248× 2112× 2−160 = 1 right pair. If we compute the 2112 message blocks
of list L3 online, the time complexity of this merging step is 2112 with memory
requirements of 248. For the resulting pair, all differences between states S4 and
S33 and all colored byte values (blue, cyan, red, yellow, green and black) between
states S0 and S31 can be determined.

Second Part in Merging Inbound Phases. To completely merge the two
inbound phases, we need to find according values for the white bytes. We use
Figure 3 to illustrate the second and third part of the merge inbound phase.
In this figure, we only consider values and therefore, do not show active bytes
(black). Furthermore, all brown and cyan bytes have already been chosen in one
of the previous steps. In the second part of the merge inbound phase, we only
choose values for the gray and light-gray bytes. All other colored bytes show
steps of the following merging phase.

We first choose random values for all remaining bytes of the two first columns
in state S7 (gray and light-gray) and independently compute the columns forward
1 Until now, we have chosen only 296 out of 2128 differences for this state.
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Fig. 3. States used to merge the two inbound phases with the chaining values. The
merge inbound phase consists of three parts. Brown bytes show values already deter-
mined (first part) and gray values are chosen at random (second part). Green, blue,
yellow and red bytes show independent values used in the generalized birthday attack
(third part) and cyan bytes represent values with the target conditions.

to state S14. Note that we need to try 22×8+1 values for AES state S7[2, 1] to also
match the 2-byte (cyan) and 1-bit padding at the input in AES state S0[2, 3].
Then, all gray, light-gray, cyan and brown bytes have already been determined
either by an inbound phase, chaining value, padding or just by choosing random
values for the remaining free bytes of the two first columns of S7. However, all
white, red, green, yellow and blue bytes are still free to choose.

By considering the linear SuperMixColumns transformation, we observe that in
each column-slice, 14 out of 32 input/output bytes are already fixed and 2 bytes
are still free to choose. Hence, we expect to get 216 solutions for this linear system
of equations. Unfortunately, also for the given position of already determined 14
bytes, the linear system of equations does not have a full rank. Again, we can
determine the resulting system using the matrix MSMC of SuperMixColumns.
As an example, for the first column-slice, the system is given as follows:

MSMC · [A0 L0 L1 L2 A1 L′
0 L′

1 L′
2 A2 x6 x7 x8 A3 x9 x10 x11]T

= [B0 B1 B2 B3 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11]T.

The free variables in this system are x6, . . . , x11 (green). The values A0, A1,
A2, A3, B0, B1, B2, B3 (brown) have been determined by the first or second
inbound phase and the values L0, L1, L2 (light-gray) and L′

0, L′
1, L′

2 (gray) are
determined by the choice of arbitrary values in state S7. We proceed as before
and determine the linear system of equations which needs to have a solution:

⎡

⎣
3 1 1 3 1 1

2 3 1 2 3 1

1 2 3 1 2 3

1 1 2 1 1 2

⎤

⎦ ·
[
x6 x7 x8 x9 x10 x11

]T

=
[
c0 c1 c2 c3

]T

. (3)

The resulting linear 8-bit equation to get a solution for this system can be sep-
arated into terms depending on values of Li and on L′

i, and we get f1(Li) +
f2(L′

i) + f3(ai, bi) = 0, where f1, f2 and f3 are linear functions. For all other
16 column-slices and fixed positions of gray bytes, we get matrices of rank three
as well. In total, we get 16 8-bit conditions and the probability to find a solu-
tion for a given choice of gray and light-gray values in states S14 and S16 is 2−128.
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However, we can find a solution to these linear equations using the birthday
effect and a meet-in-the-middle attack with a complexity of 264 in time and
memory.

We start by choosing 264 values for each of the first (gray) and second (light-
gray) BigColumns in state S7. We compute these values independently forward
to state S14 and store them in two lists L and L′. We also separate all equations
of the 128-bit condition into parts depending only on values of L and L′. We
apply the resulting functions f1, f2, f3 to the elements of lists Li and L′

i, and
merge two lists L ��128 L′ using the birthday effect.

Third Part in Merging Inbound Phases. We continue with a generalized
birthday match to find values for all remaining bytes of the state (blue, red,
green, yellow, cyan and white of Figure 3). For each column in state S14, we
independently choose 264 values for the green, blue, yellow and red columns,
and compute them independently backward to S8. We need to match the values
of the cyan bytes of state S7, which results in a condition on 24 bytes or 192
bits. Since we have four independent lists with 264 values in state S8, we can
use the generalized birthday attack [16] to find one solution with a complexity
of 2192/3 = 264 in time and memory.

In more detail, we need to match values after the BigMixColumns transforma-
tion in the backward direction. Hence, we first multiply each byte of the four
independent lists by the four multipliers of the InvMixColumns transformation.
Then, we get 24 equations containing only XOR conditions on bytes between
the target value and elements of the four independent lists, which can be solved
using a generalized birthday attack.

To improve the average complexity of this generalized birthday attack, we
can start with larger lists for the green, blue, yellow and red columns in state
S14. Since we need to match a 192-bit condition, we can get 23 ·x × 2−192 = 2x

solutions with a time and memory complexity of max{264, 2x} (see [16] for more
details). Note that we can even find solutions with an average complexity of 1
using lists of size 296. Each solutions of the generalized birthday match results
in a valid pair conforming to the whole 5-round truncated differential path.

Second Outbound Phase to Get Collisions. For the collision attack on
5 rounds, we start the generalized birthday attack of the previous phase with
lists of size 285.3. This results in 23 · 85.3 × 2−192 = 264 solutions with a time and
memory complexity of 285.3, or with an average complexity of 221.3 per solution.
These solutions are propagated outwards in a second, independent outbound
phase. Since the differences at the output collide with a probability of 2−64, we
expect to find one pair which collides at the output of the hash function. The
time complexity is determined by merging the chaining input and the memory
requirements by the generalized birthday attack. To summarize, the complexity
to find a collision for 5 rounds of the ECHO-256 hash function is given by about
2112 compression function evaluations with memory requirements of 285.3.



Improved Analysis of ECHO-256 31

4 Distinguisher on the 7-Round ECHO-256 Compression
Function

In this section, we detail our distinguisher on 7 rounds in the known-salt model.
First, we show how to obtain partial solutions that verify the path from the state
S6 to S23 with an average complexity of 264 in time, as we obtain 264 solutions
with a cost of 2128. These partial solutions determine also the values of the blue
bytes (in Figure 4). Next, we show how to do the same for the yellow part of the
path from S30 to S47. Finally, we explain how to merge these partial solutions
for finding one that verifies the whole path.

4.1 Finding Pairs between S6 and S23

We explain here how to find 264 solutions for the blue part with a cost of 2128

in time and 264 in memory. This is done with a stop-in-the-middle algorithm
similar to the one presented in [11] for improving the time complexity of the
ECHO-256 distinguisher. This algorithm has to be adapted to this particular
situation, where all the active states belong to the same BigColumn.

We start by fixing the difference in S8 to a chosen value, so that the transition
between S6 and S8 is verified. We fix the difference in the active diagonals of the
two AES-states S23[0, 0] and S23[3, 1] to a chosen value.

From state S8 to S13, we have four different SuperSBox groups involved in the
active part. From states S16 to S22, we have 4 × 4 SuperSBox groups involved
(4 per active AES state). Those 16 groups, as well as the 4 previous ones, are
completely independent from S16 to S22 (respectively from S8 to S13). From the
known difference in S8, we build four lists of values and differences in S13: each
list corresponds to one of the four SuperSBox groups. Each list is of size 232

because once we know the input difference, we try all the possible 232 possible
values and then we can compute the values and differences in S13 (as we said,
the four groups are independent in this part of the path). In the sequel, those
lists are denoted L0

A, L1
A, L2

A and L3
A.

There are 64 bits of differences not yet fixed in S23. Each active diagonal only
affects the AES state where it is in, so we can independently consider 232 possible
differences for one diagonal and 232 differences for the other. We can now build
the 16 lists corresponding to the 16 SuperSBox groups as we did before, but
considering that: the 8 lists corresponding to 8 groups of the two AES states
S16[0, 0] and S16[3, 0], as they have their differences in S22 already fixed, have a
size of 232 (corresponding to the possible values for each group). These are the
lists Li

0,0 and Li
3,0, with i ∈ [0, 3] that represents the ith diagonal of the state.

But the lists Li
1,0, L

i
2,0, with i ∈ [0, 3], as they do not have yet the difference

fixed, have a size of 232+32 each, as we can consider the 232 possible differences
for each not fixed diagonal independently. Next, we go through the 264 possible
differences of the two first diagonals (diagonals 0 and 1) of the active AES state
in S15. For each one of these 264 possible differences:
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Fig. 4. Differential path for the seven-round distinguisher

– The associated differences in the two same diagonals in the four active AES
states of S16 can be computed. Consequently, we can check in the previously
computed ordered lists Li

j,0 with j ∈ [0, 3] and i ∈ [0, 1] where we find this
difference2. For j ∈ {0, 3}, on average, we obtain one match on each one of
the lists L0

0,0, L1
0,0, L0

3,0 and L1
3,0. For j ∈ {1, 2}, we obtain 232 matches,

one for each of the 232 possible differences in the associated diagonals in
S23. That is 232 matches for L0

1,0 and L1
1,0, where a pair of values formed

2 i is either 0 or 1 because we are just considering the two first diagonals.
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by one element of each list is only valid if they were generated from the
same difference in S23. Consequently, we can construct the list L0,1

1,0 of size
232 where we store the values and differences of those two diagonals in the
AES state S16[1, 0] as well as the difference in S23 from which they were
generated. Repeating the process for L0

2,0 and L1
2,0, we construct the list

L0,1
2,0 of size 232. We can merge the lists L0,1

1,0, L0,1
2,0 and the four fixed values

for differences and values obtained from the matches in the lists L0
0,0, L1

0,0,
L0

3,0 and L1
3,0, corresponding to the AES states S16[0, 0] and S16[3, 0]. This

generates the list L0,1 of size 264. Each element of this list contains the values
and differences of the two diagonals 0 and 1 of the four active AES states
in S16. As we have all the values for the two first diagonals in the four AES
states, for each one of these elements, we compute the values in the two first
diagonals of the active state in S15 by applying the inverse of BigMixColumns.
We order them according to these values.

– Next, we go through the 264 possible differences of the two next diagonals
(diagonals 2 and 3) of the active AES state in S15. For each one of these 264

possible differences:
• All the differences in the AES state S13[0, 0] are determined. We check

in the lists L0
A, L1

A, L2
A and L3

A if we find a match for the differences.
We expect to find one in each list and this determines the values for
the whole state S15[0, 0] (as the elements in these lists are formed by
differences and values). This means that the value of the active AES
state in S15 is also completely determined. This way, we can check in the
previously generated list L0,1 if the correct value for the two diagonals
0 and 1 appears. We expect to find it once.
• As we have just found a valid element from L0,1, it determines the dif-

ferences in the AES states S23[1, 0] and S23[2, 0] that were not fixed yet.
Now, we need to check if, for those differences in S23, the corresponding
elements in the four lists Li

1,0, Li
2,0 for i ∈ [2, 3] that match with the dif-

ferences fixed in the diagonals 2 and 3 of S15
3, satisfy the values in S15

that were also determined by the lists Li
A. This occurs with probability

2−64.

All in all, the time complexity of this algorithm is 264 · (264 + 264) = 2129 with
a memory requirement of 264. The resulting expected number of valid pairs is
264 · 264 · 264 · 2−64 · 2−64 = 264.

4.2 Finding Pairs between S30 and S47

In quite the same way as the previous section, we can find solutions for the yellow
part with an average cost of 264. To do so, we take into account the fact that the
MixColumns and BigMixColumns transformations commute. So, if we exchange
their positions between states S39 and S40, we only have one active AES state
in S39. We fix the differences in S47 and in two AES states, say S32[0, 0] and
3 We expect one match per list.
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S32[1, 1], and we still have 232 possible differences for each of the two remaining
active AES states in S32. Then, the lists Li

A are generated from the end and
contain values and differences from S40. Similarly, the lists Li

j,j contain values
and differences from S38. We can apply the same algorithm as before and obtain
264 solutions with a cost of 2128 in time and 264 in memory.

4.3 Merging Solutions

In this section, we explain how to get a solution for the whole path. As explained
in our Section 4.1, we can find 264 solutions for the blue part, that have the same
difference for the active AES states of columns 0 and 1 in S23. We obtain 264

solutions from a fixed value for the differences in S8 and the AES states S23[0, 0]
and S23[3, 1]. Repeating this process for the 232 possible differences in S8, we
obtain in total 296 solutions for the blue part with the same differences in the
columns 0 and 1 in S23. The cost of this step is 2160 in time and 296 in memory.

The same way, using the algorithm explained in Section 4.2, we can also find
296 solutions for the yellow part, that have the same difference value for the AES
active states of columns 0 and 1 in S32 (we fix the difference value of this two
columns in S32, and we try all the 232 possible values for the difference in S47).
The cost of this step is also 2160 in time and 296 in memory.

Now, from the partial solutions obtained in the previous steps, we want to find
a solution that verifies the whole differential path. For this, we want to merge the
solutions from S23 with the solutions from S32. We know that the differences of
the columns 0,1 of S24 and S31 are fixed. Hence, from S24 to S31, there are four
AES states for which we know the input difference and the output difference, as
they are fixed4. We can then apply a variant of the SuperSBox [3, 6] technique
in these four AES states: it fixes the possible values for the active diagonals of
those states.

The differences in the other four AES states in S24 that are fixed are associated
to other differences that are not fixed5. There are 264 possible differences, each
one associated to 232 solutions for S32-S47 given by the solutions that we found
in the second step. For each one of these 264 possible differences, one possible
value is associated by the SuperSBox. When computing backwards these values
to state S24, as we have also the values for the other four AES states of the
columns 0 and 1 that are also fixed (in the third step), we can compute the
values for these two columns in S23, and we need 32 × 2 bit conditions to be
verified on the values. So for each one of the 264 possible differences in S31,
we obtain 296−64 = 232 that verify the conditions on S23. In total, we have
264+32 = 296 possible partial matches.

For each of the 264 possible differences in S31, its associated 232 possible
partial matches also need to verify the 128-bit condition in S30-S32 at the
SuperMixColumns layer [4] and the remaining 2× 32 bit conditions on the values
4 S24[0, 0], S24[0, 1], S24[1, 1], S24[3, 0] correspond to S31[0, 0], S31[0, 1], S31[1, 0],

S31[3, 1], respectively.
5 S24[1, 0], S24[2, 0], S24[2, 1], S24[3, 1] correspond to S31[1, 3], S31[2, 2], S31[2, 3],

S31[3, 2].
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of S23. Since for each of the 264 differences we have 232 possible associated values
in S32, the probability of finding a good pair is 296−128−64+32 = 2−64.

If we repeat this merging procedure 264 times, namely for 232 differences in
the columns 0 and 1 of S23 and for 232 differences in the columns 0 and 1 of S32,
we should find a solution. We then repeat the procedure for the cross product of
the 232 solutions for each side. As we do not want to compute them each time
that we use them, as it would increase the time complexity, we can just store
the 264+32+32 = 2128 solutions for the first part and use the corresponding ones
when needed, while the second part is computed in sequence. The complexity
would be: 2192 +2192 +296+64 in time and 2128 in memory. So far, we have found
a partial solution for the differential part for rounds from S6 to S48. We still
have the passive bytes to determine and the condition to pass from S50 to S51

to verify. This can be done exactly as in the second and third part of the merge
inbound phase of Section 3.4 with no additional cost.

Moreover, since we can find x solutions with complexity max{x, 296} in time
and 296 memory for the (independent) merge inbound phase, we can get x < 2193

solutions with time complexity 2193 + max{x, 296} ∼ 2193 and 2128 memory. We
need only 296 of these solutions to pass the probabilistic propagation in the last
round from S50 to S51. Hence, we can find a complete solution for the whole
path with a cost of about 2193 in time and 2128 in memory. Furthermore, with a
probability of 2−128, the input and output differences in S0 and S48 collide in the
feed-forward and BigFinal transformation. Therefore, we can also generate free-
start collisions for 6 rounds of the compression function with a time complexity
of 2193 + 2128 ∼ 2193 and 2128 memory.

5 Conclusions

In this work, we have presented new results on the second-round candidate of the
SHA-3 competition ECHO-256 that improve considerably the previous published
cryptanalysis. Our analysis are based on multi-inbound rebound attacks and are
summarized in Table 1. The main results are a 5-round collision of the hash
function and a 7-round distinguisher of its compression function. All of our
results take into account the condition observed in [4], which is needed to merge
the results of multiple inbound phases, and satisfy it. The 7-round distinguisher
on the compression function uses the stop-in-the-middle algorithms proposed
in [10].
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Abstract. This paper deals with definitional aspects of the herding at-
tack of Kelsey and Kohno, and investigates the provable security of sev-
eral hash functions against herding attacks.

Firstly, we define the notion of chosen-target-forced-midfix (CTFM)
as a generalization of the classical herding (chosen-target-forced-prefix)
attack to the cases where the challenge message is not only a prefix
but may appear at any place in the preimage. Additionally, we identify
four variants of the CTFM notion in the setting where salts are explicit
input parameters to the hash function. Our results show that including
salts without weakening the compression function does not add up to
the CTFM security of the hash function.

Our second and main technical result is a proof of CTFM security of
the classical Merkle-Damg̊ard construction. The proof demonstrates in
the ideal model that the herding attack of Kelsey and Kohno is optimal
(asymptotically) and no attack with lower complexity exists. Our security
analysis applies to a wide class of narrow-pipe Merkle-Damg̊ard based
iterative hash functions, including enveloped Merkle-Damg̊ard, Merkle-
Damg̊ard with permutation, HAIFA, zipper hash and hash-twice hash
functions. To our knowledge, this is the first positive result in this field.

Finally, having excluded salts from the possible tool set for improv-
ing narrow-pipe designs’ CTFM resistance, we resort to various message
modification techniques. Our findings, however, result in the negative
and we demonstrate CTFM attacks with complexity of the same order
as the Merkle-Damg̊ard herding attack on a broad class of narrow-pipe
schemes with specific message modifications.

Keywords: Herding attack; Chosen-target-forced-midfix; Provable se-
curity; Merkle-Damg̊ard.

1 Introduction

Hash functions are an important cryptographic primitive finding numerous ap-
plications. Most commonly, hash functions are designed from a fixed input length
compression function to accommodate messages of arbitrary length. The most
common domain extender is the Merkle-Damg̊ard (MD) iteration [8,16], which
has long been believed to be a secure design choice due to its collision secu-
rity reduction. Recently, however, several results cast doubt on its security with
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respect to other properties. The MD design was showed to not preserve either
second preimage or preimage properties [3]. Moreover, the indifferentiability at-
tack of Coron et al. [7], the multicollision attack of Joux [12] and the herding
attack of Kelsey and Kohno [13] exposed various weaknesses of the MD design.

The herding attack of Kelsey and Kohno, also known as the chosen-target-
forced-prefix (CTFP) attack, considers an adversary that commits to a hash
value y for a message that is not entirely under his control. The adversary then
demonstrates abilities to incorporate an unknown challenge prefix as part of
the original preimage corresponding to the committed value y. While for a ran-
dom oracle the complexity of such an attack is Θ(2n) compression function
calls for y of length n bits, the herding attack on Merkle-Damg̊ard takes about√
n22n/3 compression function executions for a preimage message of length O(n)

as demonstrated by Kelsey and Kohno [13]. A more precise attack bound was
obtained by Blackburn et al. [6].

Several other hash functions have been analyzed with respect to resistance to
herding attacks. In [2], Andreeva et al. showed applications of the herding attack
to dither hash functions, and in [1] they generalized the herding attack of [13] to
several multi-pass domain extenders, such as the zipper hash and the hash twice
design. Gauravaram et al. [9,10] concluded insecurity against herding attacks for
the MD designs where an XOR tweak is used in the final message block.

While this topic has generated significant interest, many important questions
still remain unanswered. All research so far focused on negative results, being
generalized herding attacks on hash function designs, but it is not known whether
one can launch herding attacks with further improved complexity against the MD
design. The task becomes additionally complicated by the lack of formal security
definitions for herding to accommodate the objectives of a proof based approach.
Apart from wide-pipe designs, no scheme known yet is secure against herding
attacks, nor is it clear how to improve the MD design without enlarging its state
size. Some of the possible directions are to either use randomization (salts) or
to apply certain message modification techniques.

Our Contributions. In this work we address the aforementioned open prob-
lems. Firstly, we develop a formal definition for security against herding attacks.
Neven et al. first formalize the notion of chosen-target-forced-prefix security (as
the random-prefix preimage problem) in [17]. Our new notion of chosen-target-
forced-midfix (CTFM) security extends his notion by enabling challenges of not
only prefix type but also as midfixes and suffixes. We achieve this by giving
the adversary the power to output an “order”-defining mixing function g to-
gether with his response, which fixes the challenge message at a selected by the
adversary position in the preimage message.

In addition, we investigate the notion of salted CTFM. Depending on when
the salt value is generated and who is in control of it, four variants of the salted
notion emerge in the setting where randomness (salt) is used. One of the variants
serves no practical purposes because it forces an adversary to commit to a hash
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value for an unknown salt, where the salt is defined as an input parameter
to the hash function. Although the other three variants are plausible from a
practical perspective, we show that they do not attribute to an improved CTFM
resistance. This is true for the case where the salt is added in such a way that
the cryptographic strength of the compression function is not compromised on
some other level, i.e. collision or preimage resistance.

Our main technical contribution is to exhibit a CTFM security proof for
the MD domain extender. While until now the research in this area has been
focusing on finding herding attacks against hash function designs, we are the first
to provide a security upper bound for a hash function design. In more detail,
we upper bound the strength of a CTFM attacker in finding in the ideal model
a preimage for the MD design, and show that the herding attack described by
Kelsey and Kohno is optimal (asymptotically). Using new proof techniques we
prove that at least approximately 22n/3/L1/3 compression function queries are
needed for a CTFM attack, where n is size of the commitment y and L is the
maximal allowed length of the preimage in blocks. To the best of our knowledge,
there has not been a positive result of this form before. Due to its generic nature,
the new security techniques introduced in this work not only apply to the MD
design, but directly carry over to a broad spectrum of domain extenders derived
from MD, including strengthened MD, MD with a distinct final transformation
and HAIFA [5]. Additionally, the bound implies optimality of the attacks on
hash twice and the zipper hash function performed by Andreeva et al. [1].

We explore further the question of whether a simple tweak on the narrow-pipe
MD construction would allow us to prove optimal CTFM security. Excluding
randomness or salting from the set of available tools, we investigate tweaks that
modify the message inputs by simple message modification techniques like the
XOR operation. These schemes can be viewed as MD type domain extenders
with a more sophisticated padding. Our findings, however, result in the negative
and we demonstrate CTFM attacks on a class of schemes of this form. The attack
particularly applies also to the MD with checksum design, therewith providing
a simple and elegant alternative to the attack by Gauravaram et al. [10].

2 Preliminaries

By x
$← X we denote the uniformly random sampling of an element from a set

X . By y ← A(x) and y
$← A(x), we denote the assignment to y of the output of

a deterministic and randomized algorithm A, respectively, when run on input x.
For a function f , by rng(f) we denote its range. By Func(n+m,n), for m,n ≥ 1,
we denote the set of compression functions f : {0, 1}n × {0, 1}m → {0, 1}n. As
of now, we assume m = Θ(n).

A hash function H : {0, 1}∗ → {0, 1}n is a function that maps an arbitrar-
ily long input to a digest of n bits, internally using a compression function f ∈
Func(n+m,n). In this work we distinguish between a general hash function
design H, and the notion of an iterated hash function which is a specific type
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of hash function that executes the underlying compression function in an
“iterated” way. Let pad : {0, 1}∗ → ({0, 1}m)

∗
be an injective padding function.

Let iv ∈ {0, 1}n be a fixed initial value. We define the iterated hash function IH
as follows:

IH(M) = hl, where: (M1, . . . ,Ml)← pad(M);

h0 ← iv;

hi ← f(hi−1,Mi) for i = 1, . . . , l.

(1)

One may include a special final transformation, but we note that this would not
result in any added value against the herding attack. The general iterative prin-
ciple of IH is followed by a wide range of existing modes of operations, including
the traditional (strengthened) MD design [8,16], enveloped MD (includes final
transformation) [4], MD with permutation (includes final transformation) [11],
HAIFA [5] and the zipper hash design [15].

3 Chosen-Target-Forced-Midfix Preimage Resistance

An adversary for a hash function is a probabilistic algorithm with oracle access
to underlying compression function f . Queries to f are stored in a query history
Q. In the remainder, we assume that Q always contains the queries required
for the attack, and we assume that the adversary does not make trivial queries,
i.e. queries to which the adversary already knows the answer in advance. In this
work we consider information-theoretic adversaries only. This type of adversary
has unbounded computational power, and its complexity is measured by the
number of queries made to its oracles.

The goal of an attacker in the original herding attack [13] against a hash func-
tion H is to successfully commit to a hash digest without knowing the prefix of
the preimage message in advance. In the first phase of the attack, the adver-
sary makes an arbitrary amount of queries to f . Then, he commits to a hash
digest y, and receives challenge prefix P . After a second round of compression
function calls, the adversary outputs a response R such that H(P‖R) = y. In
this form the power of the adversary is limited significantly. In particular, if the
hash function is defined so as to process the message blocks in reverse order,
the success probability of the adversary is limited to the preimage advantage.
We generalize the original attack by introducing the chosen-target-forced-midfix
(CTFM) attack. In the CTFM attack, the challenge P does not necessarily need
to be a prefix, but can technically occur at any place in the preimage message.
The generalized attack mainly differs from the original one in the fact that the
adversary not only outputs a bit string R, but also an “order”-defining function
g such that H(g(P,R)) = y. We note that the attack is trivial for some choices
of g (e.g. if it is defined by the identity function on its second argument). Below
we give a concrete specification of g.

Definition 1. Let H : {0, 1}∗ → {0, 1}n be a hash function design employing
compression function f ∈ Func(n+m,n). Let p denote the length of the forced
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midfix, and denote by L ≥ 1 the maximal length of the forged preimage in blocks.
Let A be a chosen-target-forced-midfix (CTFM) finding adversary for this hash
function. The advantage of A is defined as

Advctfm
H (A) = Pr

(
f

$← Func(n+m,n), (y, st)← Af , P
$← {0, 1}p,

(g,R)← Af (P, st) : Hf (g(P,R)) = y ∧ ∣
∣rng(g)

∣
∣ ≤ 2Lm

)
.

By Advctfm
H (q) we denote the maximum advantage, taken over all adversaries

making q queries to their oracle.

The function g can technically be any function as long as its range is at most
2Lm, but for some choices of g the definition becomes irrelevant. For instance, if
the mutual information between P and g(P,R) is 0, the CTFM attack is trivial.
More generally, the attack becomes easier if the function g is allowed to split P
into parts. However, this type of functions does not correspond to any practically
relevant CTFM attacks. Therefore, in the remainder, we restrict g to satisfy that
g(P,R1‖R2) = R1‖P‖R2, where R1, R2 are of arbitrary length.

The chosen-target-forced-prefix attack of Kelsey and Kohno is covered for g
restricted to R1 being the empty string. The variant of the herding attack by
Andreeva et al. [1] on the zipper hash function can be seen as a chosen-target-
forced-suffix attack, with R2 being the empty string.

The value p defines the size of the challenge P , and plays an important role in
the security results. A smaller value of p allows for higher success probability in
guessing P in the first phase of the attack. A larger value of p limits the number
of “free” queries of the adversary, the adversary needs to make at least �p/m�
compression function queries for incorporating the challenge P , where m is the
message block size.

4 Salted-Chosen-Target-Forced-Midfix Preimage
Resistance

In this section we discuss the salted variant of CTFM, which we denote by
SCTFM. Depending on whether the challenger generates the salt value S or the
adversary himself, and at which stage of the game the salt is chosen, four salted
variants of CTFM emerge. We view the salt as an explicit input parameter of size
s ≥ 1 to the hash function H, which is not integrated at an internal compression
function level, but processed at the higher (iteration) hash function H level. We
define enci : {0, 1}s × {0, 1}n × {0, 1}m → {0, 1}n+m to take inputs S, chaining
value hi−1 and message block Mi, where i varies between 1 and L (which is the
maximum length of the preimage) to provide a possible function diversification.
The function enci is a bijection on hi−1 andMi and we denote its inverse function
by enc−1i . More concretely,

enci(S, hi−1,Mi) = (h′i−1,M
′
i) ∧ enc−1i (S, h′i−1,M

′
i) = (hi−1,Mi).
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We can view the functions enci as keyed permutations on the chaining value and
message block inputs to the compression function, where the key is the salt S.

Our choice of this encoding function is guided by a simple security objective.
Let us define f ′i as f ′i(S, hi−1,Mi) = f(enci(S, hi−1,Mi)) for i = 1, . . . , L. We
choose enci to be a bijection on hi−1 and Mi to provide the full set of valid
input points for the function f . Any deviation from this would weaken the cryp-
tographic strength of f , i.e. by allowing an adversary to easily launch collision
attacks on the encoding function as a way to circumvent collision computations
on f . If enci is not a bijection on its variable inputs (notice that once chosen the
salt is fixed), then the function f would be working only with a restricted set of
its domain points.

We provide the definitions of SCTFM security for the four variants indexed
by j = 1, 2, 3, 4.

Definition 2. Let H : {0, 1}∗ → {0, 1}n be a salted hash function design and
p, L be as in Def. 1. Let s denote the size of the salt and let enc = {enci}Li=1

be the family of encoding functions as described above. Let B be a salted-chosen-
target-forced-midfix (SCTFM) finding adversary for this hash function. For j ∈
{1, 2, 3, 4} the advantage of an adversary B is defined as

Advsctfm
H (B) = Pr

(
Ej : Hf,enc(g(P,R), S) = y ∧ ∣∣rng(g)

∣∣ ≤ 2Lm ∧ |S| = s
)
.

By Advsctfm
H (q) we denote the maximum advantage, taken over all adversaries

making q queries to their oracle. The events Ej (j = 1, 2, 3, 4) are illustrated by
the following four game experiments:

j Ej

1 f
$← Func(n+m,n), (y, S, st)← Bf , P

$← {0, 1}p, (g,R)← Bf (P, st)

2 f
$← Func(n+m,n), S

$← {0, 1}s, (y, st)← Bf (S), P
$← {0, 1}p, (g,R)← Bf (P, st)

3 f
$← Func(n+m,n), (y, st)← Bf , P

$← {0, 1}p, S $← {0, 1}s, (g,R)← Bf (P, S, st)

4 f
$← Func(n+m,n), (y, st)← Bf , P

$← {0, 1}p, (g,R,S)← Bf (P, st)

We provide a discussion on the adversarial abilities for the four SCTFM secu-
rity notions in comparison with the standard CTFM definition and also to the
relevance of salted definitions in practice.

Variants 1, 2 and 4. We will compare the strength of a SCTFM adversary B
in variant 1, 2 or 4 with a CTFM adversary A. Notice first that in a (non-salted)
CTFM security game, A can gain advantage in the precomputation phase (the
phase before the challenge midfix is known) only by skillfully preparing some
computations for f , such that they are consistent with the evaluation of the
function H in order to compute y. Overall, A can only exploit f . On the other
hand, a SCTFM adversaryB (for either of the variants) encounters the additional
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problem that he has to handle the encoding functions enci which may differ each
message block. With respect to the advantage of A, B’s advantage would differ
only in the case B loses control over the outputs of the enci function (which are
inputs to f), i.e. in the case when he does not know the salt value.

But in each of these three variants the SCTFM adversary B knows the salt and
has control over the inputs to f (as is the case with A) before his commitment
to y, and thus his advantage will be the same as the advantage of A. In variant
1, the SCTFM adversary is in full control of the salt value and in variant 2 he
knows the salt before committing to y, therefore he can prepare the respective
computations for f . Notice that, although in variant 4 the salt value is revealed
by the B in the second stage of the game, he is still in full control of the salt
value and his advantage is optimal when he chooses the salt S in the first phase
of the attack, does the respective computations for f , and then reveals S only
in the second phase.

This analysis comes to show that the SCTFM adversary has the same compu-
tational advantage as a CTFM adversary in variants 1, 2 and 4. The conclusion is
that salting in these variants does not help build more secure CTFM hash func-
tions H and one can do as good without additionally increasing the efficiency
and complexity of H.

Variant 3. As opposed to the previous variants, here the SCTFM adversary
B does not have control over the salt value before his commitment to y. In
this scenario, B may lose control over the precomputation, because he is forced
to use an unknown salt. This is the case for example when a Merkle-Damg̊ard
scheme is used where the salt is XORed with each chaining value. The Kelsey
and Kohno attack would fail for such a scheme since the precomputed diamond
does not contain the correct salt value, unless the adversary guessed it correctly
in advance.

Variant 3, however, is not a valid notion because it does not reflect any real
world uses of salts with hash functions. More concretely, variant 3 says that the
SCTFM adversary first commits to some value y and only then is challenged on
the randomness S, which means that he needs to make his precomputations and
commitment without knowing or being able to learn the actual input parameter
of the hash function. It is clear that such scenario fails not only from the point of
view of adversarial abilities, but from a more practical point. The commitment
simply does not make sense since one challenges the committer to make his
best guess at the salt value. The salt shall be available at the point of hash
computation, because it is an explicit input parameter to the hash function. This
is the case with examples of salted hashing, such as password salted hashing and
randomized hashing.

We exhibited 4 variants of salted hashing, where 3 of them have equivalent
complexity as in the non-salted setting and one does not make it for a mean-
ingful salted definition. As opposed to variant 3, the rest of the salted variants
attribute to plausible security definitions. However, the clear conclusion we want
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to draw here is that salts do not help prevent CTFM attacks and one shall aim
at non-salted solutions. We want to elaborate that this is a conclusion drawn
for a reasonable encoding function. A different encoding function might lead to
weakening the cryptographic strength of the compression function.

5 CTFM Resistance of Merkle-Damg̊ard Design

We consider the resistance of the traditional Merkle-Damg̊ard design against
the chosen-target-forced midfix attack. This Merkle-Damg̊ard hash function is
an iterated hash function as in (1) with the following padding function:

pad(M) = M‖10−|M|−1 mod m, (2)

splitted into blocks of length m. As demonstrated by Kelsey and Kohno [13] and
Blackburn et al. [6], one can obtain a CTFM preimage of length O(n) in about√
n22n/3 compression function executions. When larger preimages are allowed,

the elongated herding attack of [13] results in faster attacks: for 0 ≤ r ≤ n/2, one
can find a CTFP preimage of length L = O(n+2r) in approximately

√
n2(2n−r)/3

queries. As we will demonstrate, this is (asymptotically) the best possible result.
In Thm. 1 we derive an upper bound on Advctfm

MD (q) that holds for any q, and
we consider the limiting behavior in Cor. 1, in which we show that at least
22n/3/L1/3 queries are needed for an attack to succeed. After Cor. 1 we explain
why the same or similar analysis applies to a wide class of MD based functions.

Theorem 1. For any integral threshold t > 0, we have

Advctfm
MD (q) ≤ (L− 1)tq

2n
+

m2
p/m�q
2p

+

(
q2e

t2n

)t

+
q3

22n
.

Proof. See Sect. 5.1. ��
The bound of Thm. 1 includes a parameter t used to bound multiple events in the
security analysis, and the bound holds for any integral t. Notice that for larger
value of t, the first factor of the bound becomes large, while for small values the
third term becomes large. Therefore, it is of importance to find a balance for this
value t. Recall that, as explained in the beginning of this section, an adversary
has a higher success probability if larger preimages are allowed. Consequently,
the optimum for t partially depends on the allowed length L. In Cor. 1 we analyze
the limiting behavior of the bound of Thm. 1.

Notice that the bound of Thm. 1 contains a term that not directly depends on
n, the second term. This term essentially represents the “guessing probability”
of the attacker: A may succeed guessing P in advance. If p = |P | is very small,
this factor dominates the bound. Therefore, it only makes sense to evaluate
this bound for p being “large enough”, and we have to put a requirement on
p. Although the requirement looks complicated at first sight, it is satisfied by
any relevant value of p. In particular, it is satisfied for p ≥ 2n/3 for L = O(n)
preimages and even for lower values of p when L becomes larger.
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Corollary 1. Let L = O(2n/2) and let p be such that 2�p/m�22n/3

L1/32p
= O(1) for

n→∞. For any ε > 0, we obtain limn→∞Advctfm
MD

(
2n(2/3−ε)/L1/3

)
= 0.

Proof. The bound of Thm. 1 holds for any t ≥ 1. As L = O(2n/2), there exists

a constant c such that L ≤ c2n/2. We put t = 2n/3

(L/c)2/3
≥ 1. Without loss of

generality, t is integral (one can tweak c a little bit to get integral t). From
Thm. 1:

Advctfm
MD (q) ≤ L1/3c2/3q

22n/3
+

m2
p/m�q
2p

+

(
(L/c)2/3q2e

24n/3

) 2n/3

(L/c)2/3

+
q3

22n
.

For any ε > 0, we obtain:

Advctfm
MD

(
2n(2/3−ε)

L1/3

)
≤ c2/3

2nε
+

m

2nε
2
p/m�22n/3

L1/32p
+
( e

c2/322nε

) 2n/3

(L/c)2/3 +
1

L23nε
.

All terms approach 0 for n → ∞ (notice that for the second term we have
m = Θ(n), and for the third term its exponent is ≥ 1). ��
Although the security analysis of Thm. 1 and Cor. 1 focuses on the original
Merkle-Damg̊ard (MD) hash function, a very similar analysis can be directly
derived for a broad class of MD based iterative hash functions, including MD
with length strengthening [14], enveloped MD [4], MD with permutation [11] and
HAIFA [5]. Indeed, a CTFP attack against strengthened MD is provably harder
than an attack against plain MD due to the presence of the length encoding at
the end, and a similar remark applies to HAIFA. For enveloped MD and MD
with permutation, and in general for any MD based function with final trans-
formation, one can use security properties of the final transformation to show
the adversary knows only a limited amount of state values y′ which propagate
to the commitment y through the final transformation, and we can analyze the
success probability with respect to each of these possible commitments y′.1 The
security analysis furthermore applies to the hash twice hash function (where
the padded message is simply hashed twice) and the zipper hash function (where
the padded message is hashed once forward, and once in the opposite direction)
[15], therewith demonstrating the (asymptotic) optimality of the attacks de-
ployed by Andreeva et al. [1]. Indeed, a CTFM attack for zipper or hash twice is
provably harder than an attack for MD, but the attacks of Andreeva et al. are
of similar complexity as the attack of Kelsey and Kohno on MD.

5.1 Proof of Thm. 1

We introduce some definitions for the purpose of security analysis of MD against
the CTFM attack. We consider adversaries making q = q1 + q2 queries to their

1 In detail for enveloped MD and MD with permutation, the condition on event ¬E2

in the proof of Thm. 1 guarantees the adversary to know at most 2 such values y′.
The final success probability is then at most 2 times as large.



46 E. Andreeva and B. Mennink

random oracle f . Associated to the queries made in the attack we consider
a directed graph (V,A). A compression function execution f(hi−1,Mi) = hi

corresponds to an arc hi−1
Mi−→ hi in the graph. The graph is initialized as

({iv}, ∅). We denote by (V (j), A(j)) (for j = −q1, . . . , q2) the subgraph of (V,A)
after the j-th query. Hence, after the first phase of the attack we are left with
graph (V (0), A(0)).

A path hi
Mi+1−→ hi+1 · · · Ml−→ hl in a graph is called “v-tail” (for “valid tail”)

if Mi+1‖ · · · ‖Ml forms the suffix of a correctly padded message. Formally, it is
v-tail if there exists Mi ∈ ({0, 1}m)∗ such that

Mi‖Mi+1‖ · · · ‖Ml‖Ml+1 ∈ rng(pad).

Intuitively, it means that hi → hl is formed by a valid sequence of message
blocks and can possibly occur at the end of a hash function execution. Notice
that the v-tail property of a path carries over to its sub-suffixes. For two state
values hi, hl ∈ {0, 1}n, we define

disthi→hl
(j) =

{
0 ≤ k <∞ ∣∣ (V (j), A(j)) contains v-tail hi −→ hl of length k

}
.

For a P ∈ {0, 1}p, a path hi
Mi+1−→ hi+1 · · · Mk−→ hk is called “P -comprising” if

Mi+1‖ · · · ‖Mk contains P as a substring.

Proof of Thm. 1. Let A be any CTFM adversary making q1+ q2 queries to its
random function f . In other words, at a high level the attack works as follows:
(1) the adversary makes q1 queries to f , (2) he commits to digest y, (3) he

receives a random challenge P
$← {0, 1}p, (4) he makes q2 queries to f , and (5)

he responds with R1, R2 such that H(R1‖P‖R2) = y and
∣
∣R1‖P‖R2

∣
∣ ≤ Lm.

Denote by Pr (sucA(j)) for j = −q1, . . . , q2 the success probability of A after
the j-th query. Obviously, Advctfm

MD (A) = Pr (sucA(q2)). In the first phase of
the attack, the adversary arbitrarily makes q1 queries to f , and then outputs a

commitment y. Consequently, he receives challenge P
$← {0, 1}p. Consider the

following event E0:

E0 : (V (0), A(0)) contains a P -comprising path.

E0 captures the event of A “guessing” P in the first phase of the attack. We
will split the success probability of the attacker, using the fact that he ei-
ther did or did not guess P in the first phase. In other words, we can write
Pr (sucA(q2)) ≤ Pr (sucA(q2) | ¬E0) +Pr (E0). However, for the purpose of the
analysis we introduce two more events E1,E2. Let t > 0 be any integral threshold.

E1 : α1 > t, where α1 = max
0≤k≤L

|{h ∈ V (q2) | k = min disth→y(q2)}|,
E2 : α2 > 2, where α2 = max

h∈V (q2)
|{h′ ∈ V (q2) | (h′, h) ∈ A(q2)}|.

E1 sorts all nodes in V (q2) in classes with elements at (minimal) distance
0, 1, 2, . . . , L from y, and considers the class with the maximal number of nodes.
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E2 considers the event that Q contains a multi-collision of more than two com-
pression function executions. By basic probability theory, we have

Pr (sucA(q2)) ≤ Pr (sucA(q2) | ¬E0 ∧ ¬E1) +Pr (E0 ∨ E1) ,

≤ Pr (sucA(q2) | ¬E0 ∧ ¬E1) +Pr (E0 ∨ E1 | ¬E2) +Pr (E2) ,

≤ Pr (sucA(q2) | ¬E0 ∧ ¬E1) +Pr (E0 | ¬E2)

+Pr (E1 | ¬E2) +Pr (E2) , (3)

and we consider the probabilities on the right hand side separately.

– Pr (sucA(q2) | ¬E0 ∧ ¬E1). By ¬E0, P is not contained in (V (0), A(0)) yet,
but it may be contained partially and hence the adversary will at least
need to make 1 compression function execution. It may be the case that
the adversary makes calls to the compression function for multiple strings
P , and it may be the case that after he queried for P , he knows multiple
paths of different length including P , but this does not violate the analysis.
In general, the suffix R2 of the attack covers at most L− 1 message blocks.
At any time in the attack, there are at most

|{h ∈ V (q2) | disth→y(q2) ∩ {0, . . . , L− 1}|
possible nodes for which a hit results in a collision. By ¬E1, this set is upper
bounded by (L − 1)t. As the adversary makes at most q2 ≤ q compres-
sion function calls that may result in success, the total probability is upper

bounded by (L−1)tq
2n ;

– Pr (E0 | ¬E2). Notice that ¬E2 implies that all nodes in (V (q2), A(q2)), as
well as all nodes in (V (0), A(0)), have at most 2 incoming arcs. We consider
the probability that there exists a P -comprising path. The existence of such
path implies the existence of an arc that supplies the last bit of P . Consider

any arc hj−1
Mj−→ hj , and let M

(i)
j for i = 1, . . . ,m denote the m-th bit. Now,

we can analyze the probability that P
$← {0, 1}p is included as a substring of

a path in (V (0), A(0)), with M
(i)
j corresponding to the last bit of P . Then,

Pr (E0 | ¬E2) is upper bounded by this probability summed over all i and
the number of arcs. We consider the probability for different values of i:
• i ≥ p. P is integrally captured in Mj as M

(i−p+1)
j ‖ . . . ‖M (i)

j = P . This
happens with probability 1/2p for predetermined Mj and random P ;

• i < p. The first i bits of Mj correspond to the last i bits of P , and
that the first p − i bits of P are a suffix of any path ending in hj−1.
Let β = �(p− i)/m�. As by ¬E2 there are at most 2β paths of length β

blocks to hj−1, we can upper bound the probability by 1
2i · 2β

2p−i = 2β

2p .
Now, we can sum over all possible values of i and the number of queries q1.
We obtain

Pr (E0 | ¬E2) ≤
{

(m+p−1)q1
2p if p ≤ m,

m2�p/m�q1
2p if p > m.

In both cases, we derive upper bound m2�p/m�q
2p , given q1 ≤ q;
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– Pr (E1 | ¬E2). Let k∗ be minimal such that the maximum is achieved, and
let h1, . . . , hα1 be all nodes with distance k∗ from y. Consider the subgraph
(V ,A) of (V (q2), A(q2)) consisting of all2 paths hi → y of length k∗ edges
(for i = 1, . . . , α1). By ways of an elaborate case distinction (see App. A), one
can show that for each node h in (V ,A), all paths to y are of the same length.
This in particular implies that the hi’s (i = 1, . . . , α1) have no ingoing edge,
and that y has no outgoing edge. Therefore, we can classify the nodes in the
subgraph into sets: αk∗

1 = α1 at distance k∗ from y, αk∗−1
1 at distance k∗−1,

etc., α0
1 = 1 at distance 0. Notice that α0

1, . . . , α
k∗−1
1 < αk∗

1 by definition,
but it can be the case that αi−1

1 > αi
1 (for 1 < i < k∗) for technical reasons.

By ¬E2, Q does not contain any 3-way collisions, but only 2-way collisions.
The number of 2-way collisions between the nodes at distances i and i − 1
equals max{αi

1−αi−1
1 , 0}. Consequently, the described subgraph, and hence

(V (q2), A(q2)) itself, contains at least

k∗
∑

i=1

max{αi
1 − αi−1

1 , 0} ≥ αk∗
1 − α0

1 = α1 − 1 ≥ t

2-way collisions. Thus, the probability is upper bounded by
(
q
t

) (
q
2n

)t ≤
(

q2e
t2n

)t

, where the inequality holds due to Stirling’s approximation (x! ≥
(x/e)x for any x);

– Pr (E2). The occurrence of E2 implies the presence of a 3-way collision in Q,
which exists with probability at most q3/22n only [18].

From equation (3) and above upper bounds on the three probabilities, we obtain:

Advctfm
MD (A) = Pr (sucA(q2)) ≤ (L− 1)tq

2n
+

m2
p/m�q
2p

+

(
q2e

t2n

)t

+
q3

22n
.

As this holds for any adversary making q queries, this completes the proof.

6 On Optimally CTFM Resistant Iterated Hash
Functions

Knowing that irrespectively of adding a salt or not, the original MD design of
Sect. 5 does not withstand the CTFM attack, a natural question arises: is it
possible to secure the MD design by ways of a simple tweak? Naturally, wide-
pipe designs offer optimal CTFM security, but they require a larger state size,
which accounts for an efficiency loss. Note that modes of operation that use the
chaining values in an advanced way (e.g. by adding a final compression function
call with the checksum of the chaining values) implicitly belong to the set of
wide-pipe designs. Another direction may be to tweak the way the message is

2 In case of multiple paths of the same length starting from a node hi, one arbitrarily
chooses a path.
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processed by the mode of operation, which is captured by considering the iterated
hash function design of (1) with a more sophisticated padding.

In this section, we launch a CTFM attack against a wide class of iterated hash
functions that differ from the original MD design only in the way the message is
processed. More detailed, we consider the standard iterated hash function design
of (1), with the difference that it employs a sophisticated padding function s-pad
satisfying some criteria. This padding function s-pad may be depending on the
standard padding function pad, and generally does. The attack covers a wide
spectrum of hash functions, and in particular provides an efficient and elegant
alternative to the attacks proposed by Gauravaram et al. [10] on several MD
designs using checksums.

We describe the attack on the base of one representative example hash func-
tion. A generic version of it can be directly extracted from the attack description.
Further, we consider three similar hash functions and a comparison with the at-
tack of [10].

Let pad be the padding function of (2). Let M ∈ {0, 1}∗ and denote pad(M) =
M1‖ · · · ‖Ml. We define a sophisticated padding function s-pad1 : {0, 1}∗ →
({0, 1}m)

∗
on M as follows.

s-pad1(M) = M1

∥
∥
∥

1⊕

i=1

Mi

∥
∥
∥M2

∥
∥
∥

2⊕

i=1

Mi

∥
∥
∥ · · ·

∥
∥
∥Ml

∥
∥
∥

l⊕

i=1

Mi.

For simplicity, denote byNi for i = 1, . . . , 2l the i-th block of s-pad1(M). Let IH1

be defined as an iterated hash function of (1) accommodated with the advanced
padding function s-pad1. We will describe a CTFM attack against IH1, but
before that we briefly recall the attack of Kelsey and Kohno against the MD
hash function. Denote by κ ≥ 1 the size of the diamond we will use.

1. The adversary constructs a diamond of κ levels. He randomly generates 2κ

state values h
(1)
0 , . . . , h

(2κ)
0 , and dynamically finds 2κ−1 compression function

collisions by varying the message values. The same procedure is applied to

the resulting 2κ−1 state values h
(1)
1 , . . . , h

(2κ−1)
1 until one node h

(1)
κ is left;

2. The adversary commits to this state value y := h
(1)
κ and receives challenge

P . Without loss of generality P is of length a multiple of m, and he computes

the path iv
P−→ hp′ ;

3. The adversary finds a message Mhit such that f(hp′ ,Mhit) = h
(j)
0 for some

j ∈ {1, . . . , 2κ}.

The resulting forgery is formed by P‖Mhit‖Mdiam, where Mdiam denotes the

message string that labels the path h
(j)
0 → h

(1)
κ . Phase 1 of the attack requires

about
√
κ2(n+κ)/2 work [13,6], the work for phase 2 is negligible and phase 3

takes about 2n−κ amount of work. The message is of length �p/m� + 1 + κ
blocks.

The construction of the diamond (phase 1) is correct due to the independent
character of the message blocks: given a string Mi‖ · · · ‖Ml of message blocks,



50 E. Andreeva and B. Mennink

one can arbitrarily change one block while still having a valid string of message
blocks. Thus, when constructing the diamond one can vary the message blocks
independently for obtaining collisions. For the sophisticated padding function
s-pad1 this is not possible. If for a given padded message one changes N2i−1 for
i ∈ {1, . . . , l−1}, the values taken by the checksum blocksN2i, . . . , N2i+2, . . . , N2l

should change as well. At first sight, this makes the construction of the diamond
impossible, but by additionally changing N2i+1, one can “stabilize” the values
N2i+2, . . . , N2l and only the blocks N2i−1, N2i, N2i+1 get affected (in case i = l
only N2i−1, N2i get affected). Based on this observation the attack is defined as
follows. Notice, the adversary decides on the length of the forgery in advance:
p′ + 2κ+ 2.

1. The adversary constructs a diamond of κ levels.
– He fixes constants C0, C1, . . . , Cκ ∈ {0, 1}m in advance. These constants

represent

C0 =

p′+2⊕

i=1

Mi, Ci = Mp′+2i+1 ⊕Mp′+2i+2 for i = 1, . . . , κ. (4)

The adversary does not know the blocks Mi yet, but will choose them
so as to comply with (4);

– He randomly generates 2κ state values h
(1)
0 , . . . , h

(2κ)
0 , and dynamically

finds collisions of the following form for j = 1, . . . , 2κ−1

h
(2j−1)
0

C0−→
M

(2j−1)

p′+3−−−−→
C0⊕M(2j−1)

p′+3−−−−−−→
C1⊕M(2j−1)

p′+3−−−−−−→

h
(2j)
0

C0−→
M

(2j)

p′+3−−−−→
C0⊕M(2j)

p′+3−−−−−−→
C1⊕M(2j)

p′+3−−−−−−→
h
(j)
1 .

These collisions can indeed by dynamically found, simply by varying the
Mp′+3-blocks (recall that C0, C1 are fixed constants). The corresponding
blocks Mp′+4 are computed as Mp′+4 = C1 ⊕Mp′+3 by (4);

– The same procedure is applied to the resulting 2κ−1 state values h
(1)
1 ,

. . . , h
(2κ−1)
1 , where the arcs are labeled by C0 ⊕ C1, Mp′+5, C1 ⊕Mp′+5

and C2 ⊕Mp′+5, respectively. Finally, one node h
(1)
κ is left;

2. The adversary commits to this state value y := h
(1)
κ and receives challenge

P . Without loss of generality P is of length a multiple of m, and he defines

M1, . . . ,Mp′ to be the first corresponding blocks. Denote C−1 =
⊕p′

i=1 Mi.

In accordance to the padding function s-pad he computes the path iv
M1−→

. . .
Mp′−→ C−1−→ h2p′ ;

3. The adversary finds a message Mp′+1 such that

h2p′
Mp′+1−→ C−1⊕Mp′+1−−−−−−→ C−1⊕Mp′+1⊕C0−−−−−−→ h

(j)
0

for some j ∈ {1, . . . , 2κ}.
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The resulting forgery is formed by P‖Mp′+1‖Mp′+2‖Mdiam, where Mp′+2 =
C−1⊕Mp′+1⊕C0 by (4) and Mdiam denotes the message string of 2κ blocks that

labels the path h
(j)
0 → h

(1)
κ . By construction, because the values C0, . . . , Cκ have

been fixed in advance, the path iv −→ h
(1)
κ is in accordance with the padding

function s-pad. Phase 1 of the attack requires about 4 · √κ2(n+κ)/2 work, the
work for phase 2 is negligible and phase 3 takes about 3 · 2n−κ amount of work.
The message is of length �p/m�+ 2 + 2κ blocks.

We notice that the same approach can be applied to the following example
hash functions. Consider the following advanced padding functions s-padk(M) :
{0, 1}∗ → ({0, 1}m)

∗
for k = 2, 3, 4:

s-pad2(M) = M1

∥
∥
∥M2

∥
∥
∥M1 ⊕M2

∥
∥
∥M3

∥
∥
∥M2 ⊕M3

∥
∥
∥ · · ·

∥
∥
∥Ml

∥
∥
∥Ml−1 ⊕Ml,

s-pad3(M) = rotatem/2(pad(M)),

s-pad4(M) = pad(M)
∥∥
∥

l⊕

j=1

Mj ,

where the function rotatem/2 rotates the bit string by m/2 places (a half message
block). We define by IHk for k = 2, 3, 4 the standard iterated hash function of
(1) accommodated with the advanced padding function s-padk. Notice that for
IH4, any change of Mi can be corrected by Mi+1 to keep the final checksum
invariant. Now, the attacks are described in a similar manner. For IH2, the
complexity is the same as for IH1. The complexities for IH3, IH4 are half as
large. For each of the functions IHk the optimum is achieved for κ = n/3.
By tweaking the proof of Thm. 1, asymptotic tightness of this bound can be
proven. We notice that Gauravaram et al. [10] describe a generalized herding
attack against a class of MD based hash functions using checksums at the end
(such as IH4). The attack described in this section carries over to many of these
designs, therewith providing an elegant alternative. These attacks are of the same
complexity, although our attack renders shorter messages in case n/3 < m. The
cause of this difference is the fact that the attack of Gauravaram et al. sets the
value of the final checksum at the end while in our attack it is essentially fixed
by the adversary in advance.

We leave the existence of narrow-pipe hash functions that achieve optimal
security against the CTFM attack as an open problem.

7 Conclusions

We introduced and formalized the notion of a chosen-target-forced-midfix
(CTFM) attack as a generalization of the classical herding attack of Kelsey
and Kohno [13]. The new notion allows the adversary to include the challenge
P at any place in the forged preimage. Hence, it enables arguing the security
of hash functions which for example process the message in reverse order and
which were otherwise trivially secure against the herding attack. Additionally,



52 E. Andreeva and B. Mennink

we investigated the CTFM security of salted hash functions showing that adding
a salt value without weakening the compression function does not improve the
CTFM security of the hash function.

As a main technical contribution of the paper we provided a formal security
proof of the MD design against the CTFM attack, and showed that the attack of
Kelsey and Kohno [13] is (asymptotically) the best possible. This proof directly
applies to a wide class of MD based domain extenders, and implies optimality
of other herding attacks, such as those of Andreeva et al. [1] and Gauravaram
et al. [10].

In the quest for optimally CTFM secure narrow-pipe MD designs, we analyzed
the possibility of message modification as a tool to increase CTFM security. Our
result shows however, that such techniques applied to a wide class of narrow-pipe
iterated hash function designs do not block CTFM attacks. An open research
question that emerges from these observations is to construct a narrow-pipe
iterated hash functions that achieves optimal security against the CTFM attacks.
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A Appendum to Proof of Thm. 1

We show that the graph (V ,A) defined in Thm. 1 does not contain a node
with two paths of different lengths to y. Recall that (V ,A) is constructed in
the following manner. k∗ is the minimal value for which there are the maximum
number of nodes, α1 with distance k∗ to y. For each of the α1 nodes h1, . . . , hα1 ,
we take any path of length k∗ to y, and add it to (V ,A). By definition, for each
i = 1, . . . , α1, there does not exist a path hi → y of length shorter than k∗ arcs.
We show that for any node h ∈ V , all paths to y are of the same length. The proof
is done by contradiction: we will show that the existence of an h contradicting
aforementioned property implies the existence of a path hi → y (for some i) of
length strictly shorter than k∗ arcs. Notice that this result in particular implies
that the hi’s (i = 1, . . . , α1) have no ingoing edge, and that y has no outgoing
edge.

Suppose there exists h ∈ V such that for some M1,M2 ∈ ({0, 1}m)∗ with

|M1| < |M2| the paths h
M1−→ y and h

M2−→ y are included in (V ,A). If the path
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h
M2−→ y is a subpath of any hi → y for some i, one can replace this subpath

by h
M1−→ y to obtain a path hi → y of length strictly shorter than k∗ arcs,

rendering contradiction. Thus, we assume that h
M2−→ y is not integrally included

as a subpath of any hi → y. We split up the path h
M2−→ y intro three parts.

Let i ∈ {1, . . . , α1} be such that the first edge of h
M2−→ y is included in the

path hi → y. Let M
(1)
2 be the maximal prefix of M2 such that h

M
(1)
2−→ h(1) (for

some h(1)) is a subpath of hi → y. Secondly, identify the edge leaving3 h(1)

in the path h
M2−→ y, and let i′ be such that this edge is included in the path

hi′ → y. Let M
(2)
2 be of maximal length such that M

(1)
2 ‖M (2)

2 is a prefix of M2

and h(1) M
(2)
2−→ h(2) (for some h(2)) is a subpath of hi′ → y. Thus, we splitted

h
M2−→ y into

h
M

(1)
2−→ h(1) M

(2)
2−→ h(2) M

(3)
2−→ y, (5)

where |M (1)
2 |, |M (2)

2 | > 0 and |M (3)
2 | ≥ 0 and

hi
M3−→ h

M
(1)
2−→ h(1) M4−→ y, hi′

M5−→ h(1) M
(2)
2−→ h(2) M6−→ y, (6)

for some M3,M4,M5,M6 ∈ ({0, 1}m)
∗
. Here, M

(1)
2 and M

(2)
2 are of maximal

possible length, i.e. the first arcs of h(1) M4−→ y and h(1) M
(2)
2−→ h(2) are different

and the first arcs of h(2) M6−→ y and h(2) M
(3)
2−→ y are different.

If h(1) = h, the path hi
M3−→ h

M4−→ y is in (V (q2), A(q2)) and of length shorter
than k∗ blocks, rendering contradiction. Similarly, if h(2) = h(1), a shorter path
hi′ → y can be found. Hence, we consider the case h �= h(1) �= h(2), and make
the following case distinction:

1. |M4| �= |M (2)
2 M6|. One can combine the two paths described in (6) to obtain

either a path hi → y or hi′ → y of length strictly shorter than k∗ arcs;
2. |M4| = |M (2)

2 M6|. We make the following case distinction:

a. |M6| ≥ |M (3)
2 |. This means that |M4| ≥ |M (2)

2 M
(3)
2 | and hence |M (1)

2 M4| ≥
|M2| > |M1|. The path hi

M3−→ h
M1−→ y is thus strictly shorter than k∗ arcs;

b. |M6| < |M (3)
2 |. One can do the same analysis with paths h(2) M6−→ y and

h(2) M
(3)
2−→ y. But by construction |M (3)

2 | < |M2|− 2m so one will eventually

end up with the same problem with |M (3)
2 | = 0, in which case one will not

arrive in case 2b.

Concluding, there does not exist any node in (V ,A) which has two paths of
different lengths to y.

3 This edge exists, as h
M2−→ y is not an integral subpath of any path hi → y.
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Abstract. It is well known that any encryption scheme which supports any form
of homomorphic operation cannot be secure against adaptive chosen ciphertext
attacks. The question then arises as to what is the most stringent security defini-
tion which is achievable by homomorphic encryption schemes. Prior work has
shown that various schemes which support a single homomorphic encryption
scheme can be shown to be IND-CCA1, i.e. secure against lunchtime attacks.
In this paper we extend this analysis to the recent fully homomorphic encryp-
tion scheme proposed by Gentry, as refined by Gentry, Halevi, Smart and Ver-
cauteren. We show that the basic Gentry scheme is not IND-CCA1; indeed a
trivial lunchtime attack allows one to recover the secret key. We then show that
a minor modification to the variant of the somewhat homomorphic encryption
scheme of Smart and Vercauteren will allow one to achieve IND-CCA1, indeed
PA-1, in the standard model assuming a lattice based knowledge assumption. We
also examine the security of the scheme against another security notion, namely
security in the presence of ciphertext validity checking oracles; and show why
CCA-like notions are important in applications in which multiple parties submit
encrypted data to the “cloud” for secure processing.

1 Introduction

That some encryption schemes allow homomorphic operations, or exhibit so called
privacy homomorphisms in the language of Rivest et. al [24], has often been consid-
ered a weakness. This is because any scheme which supports homomorphic operations
is malleable, and hence is unable to achieve the de-facto security definition for en-
cryption namely IND-CCA2. However, homomorphic encryption schemes do present
a number of functional benefits. For example schemes which support a single additive
homomorphic operation have been used to construct secure electronic voting schemes,
e.g. [9,12].
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The usefulness of schemes supporting a single homomorphic operation has led some
authors to consider what security definition existing homomorphic encryption schemes
meet. A natural notion to try to achieve is that of IND-CCA1, i.e. security in the pres-
ence of a lunch-time attack. Lipmaa [20] shows that the ElGamal encryption scheme is
IND-CCA1 secure with respect to a hard problem which is essentially the same as the
IND-CCA1 security of the ElGamal scheme; a path of work recently extended in [2] to
other schemes.

A different line of work has been to examine security in the context of Plaintext
Awareness, introduced by Bellare and Rogaway [5] in the random oracle model and
later refined into a hierarchy of security notions (PA-0, -1 and -2) by Bellare and Palacio
[4]. Intuitively a scheme is said to be PA if the only way an adversary can create a valid
ciphertext is by applying encryption to a public key and a valid message. Bellare and
Palacio prove that a scheme which possesses both PA-1 (resp. PA-2) and is IND-CPA,
is in fact secure against IND-CCA1 (resp. IND-CCA2) attacks.

The advantage of Bellare and Palacio’s work is that one works in the standard model
to prove security of a scheme; the disadvantage appears to be that one needs to make
a strong assumption to prove a scheme is PA-1 or PA-2. The assumption required is a
so-called knowledge assumption. That such a strong assumption is needed should not
be surprising as the PA security notions are themselves very strong. In the context of
encryption schemes supporting a single homomorphic operation Bellare and Pallacio
show that the Cramer-Shoup Lite scheme [10] and an ElGamal variant introduced by
Damgård [11] are both PA-1, and hence IND-CCA1, assuming the standard DDH (to
obtain IND-CPA security) and a Diffie–Hellman knowledge assumption (to obtain PA-
1 security). Informally, the Diffie–Hellman knowledge assumption is the assumption
that an algorithm can only output a Diffie–Hellman tuple if the algorithm “knows” the
discrete logarithm of one-tuple member with respect to another.

Rivest et. al originally proposed homomorphic encryption schemes so as to enable
arbitrary computation on encrypted data. To perform such operations one would require
an encryption scheme which supports two homomorphic operations, which are “com-
plete” in the sense of allowing arbitrary computations. Such schemes are called fully
homomorphic encryption (FHE) schemes, and it was not until Gentry’s breakthrough
construction in 2009 [15,16] that such schemes could be constructed. Since Gentry’s
construction appeared a number of variants have been proposed, such as [14], as well
as various simplifications [27] and improvements thereof [17]. All such schemes have
been proved to be IND-CPA, i.e. secure under chosen plaintext attack.

At a high level all these constructions work in three stages: an initial somewhat ho-
momorphic encryption (SHE) scheme which supports homomorphic evaluation of low
degree polynomials, a process of squashing the decryption circuit and finally a boot-
strapping procedure which will give fully homomorphic encryption and the evaluation
of arbitrary functions on ciphertexts. In this paper we focus solely on the basic some-
what homomorphic scheme, but our attacks and analysis apply also to the extension
using the bootstrapping process. Our construction of an IND-CCA1 scheme however
only applies to the SHE constructions as all existing FHE constructions require public
keys which already contain ciphertexts; thus with existing FHE constructions the notion



On CCA-Secure Somewhat Homomorphic Encryption 57

of IND-CCA1 security is redundant; although in Section 7 we present a notion of CCA
embeddability which can be extended to FHE.

In this paper we consider the Smart–Vercauteren variant [27] of Gentry’s scheme.
In this variant there are two possible message spaces; one can either use the scheme
to encrypt bits, and hence perform homomorphic operations in F2; or one can encrypt
polynomials of degree N over F2. When one encrypts bits one achieves a scheme that
is a specialisation of the original Gentry scheme, and it is this variant that has recently
been realised by Gentry and Halevi [17]. We call this the Gentry–Halevi variant, to
avoid confusion with other variants of Gentry’s scheme, and we show that this scheme
is not IND-CCA1 secure.

In particular in Section 4 we present a trivial complete break of the Gentry–Halevi
variant scheme, in which the secret key can be recovered via a polynomial number of
queries to a decryption oracle. The attack we propose works in a similar fashion to
the attack of Bleichenbacher on RSA [8], in that on each successive oracle call we
reduce the possible interval containing the secret key, based on the output of the oracle.
Eventually the interval contains a single element, namely the secret key. Interesting all
the Bleichenbacher style attacks on RSA, [8,21,26], recover a target message, and are
hence strictly CCA2 attacks, whereas our attack takes no target ciphertext and recovers
the key itself.

In Section 5 we go on to show that a modification of the Smart–Vercauteren SHE
variant which encrypts polynomials can be shown to be PA-1, and hence is IND-CCA1.
Informally we use the full Smart–Vercauteren variant to recover the random polyno-
mial used to encrypt the plaintext polynomial in the decryption phase, and then we
re-encrypt the result to check against the ciphertext. This forms a ciphertext validity
check which then allows us to show PA-1 security based on a new lattice knowledge
assumption. Our lattice knowledge assumption is a natural lattice based variant of the
Diffie–Hellman knowledge assumption mentioned previously. In particular we assume
that if an algorithm is able to output a non-lattice vector which is sufficiently close to
a lattice vector then it must “know” the corresponding close lattice vector. We hope
that this problem may be of independent interest in analysing other lattice based cryp-
tographic schemes; indeed the notion is closely linked to a key “quantum” step in the
results of Regev [23].

In Section 6 we examine possible extensions of the security notion for homomor-
phic encryption. We have remarked that a homomorphic encryption scheme (either
one which supports single homomorphic operations, or a SHE/FHE scheme) cannot
be IND-CCA2, but we have examples of singlely homomorphic and SHE IND-CCA1
schemes. The question then arises as to whether IND-CCA1 is the “correct” security
definition, i.e. whether this is the strongest definition one can obtain for SHE schemes.
In other contexts authors have considered attacks involving partial information oracles.
In [13] Dent introduces the notion of a CPA+ attack, where the adversary is given access
to an oracle which on input of a ciphertext outputs a single bit indicating whether the
ciphertext is valid or not. Such a notion was originally introduced by Joye, Quisquater
and Yung [19] in the context of attacking a variant of the EPOC-2 cipher which had
been “proved” IND-CCA2. This notion was recently re-introduced under the name of



58 J. Loftus et al.

a CVA (ciphertext verification) attack by Hu et al [18], in the context of symmetric
encryption schemes. We use the term CVA rather than CPA+ as it conveys more easily
the meaning of the security notion.

Such ciphertext validity oracles are actually the key component behind the traditional
application of Bleichenbacher style attacks against RSA, in that one uses the oracle to
recover information about the target plaintext. We show that our SHE scheme which is
IND-CCA1 is not IND-CVA, by presenting an IND-CVA attack. In particular this shows
that CVA security is not implied by PA-1 security. Given PA-1 is such a strong notion
this is itself interesting since it shows that CVA attacks are relatively powerful. The
attack is not of the Bleichenbacher type, but is now more akin to the security reduction
between search and decision LWE [25]. This attack opens up the possibility of a new
SHE scheme which is also IND-CVA, a topic which we leave as an open problem; or
indeed the construction of standard additive or multiplicative homomorphic schemes
which are IND-CVA.

Finally, in Section 7 we consider an application area of cloud computing in which
multiple players submit encrypted data to a cloud computer; which in turn will per-
form computations on the encrypted data. We show that such a scenario does indeed
seem to require a form of IND-CCA2 protection of ciphertexts, yet still maintaining ho-
momorphic properties. To deal with this we introduce the notion of CCA-embeddable
homomorphic encryption.

2 Notation and Standard Definitions

For integers z, d reduction of z modulo d in the interval [−d/2, d/2) will be denoted by
[z]d. For a rational number q, �q� will denote the rounding of q to the nearest integer,
and [q] denotes the (signed) distance between q and the nearest integer, i.e. �q� = q−[q].
The notation a ← b means assign the object b to a, whereas a ← B for a set B means
assign a uniformly at random from the set B. If B is an algorithm this means assign a
with the output of B where the probability distribution is over the random coins of B.

For a polynomial F (X) ∈ Q[X ] we let ‖F (X)‖∞ denote the ∞-norm of the co-
efficient vector, i.e. the maximum coefficient in absolute value. If F (X) ∈ Q[X ] then
we let �F (X)� denote the polynomial in Z[X ] obtained by rounding the coefficients of
F (X) to the nearest integer.

FULLY HOMOMORPHIC ENCRYPTION: A fully homomorphic encryption scheme is a
tuple of three algorithms E = (KeyGen,Encrypt,Decrypt) in which the message space
is a ring (R,+, ·) and the ciphertext space is also a ring (R,⊕,⊗) such that for all
messages m1,m2 ∈ R, and all outputs (pk, sk)← KeyGen(1λ), we have

m1 +m2 = Decrypt(Encrypt(m1, pk)⊕ Encrypt(m2, pk), sk)

m1 ·m2 = Decrypt(Encrypt(m1, pk)⊗ Encrypt(m2, pk), sk).

A scheme is said to be somewhat homomorphic if it can deal with only a limited number
of addition and multiplications before decryption fails.

SECURITY NOTIONS FOR PUBLIC KEY ENCRYPTION: Semantic security of a public
key encryption scheme, whether standard, homomorphic, or fully homomorphic, is
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captured by the following game between a challenger and an adversary A, running
in two stages;

– (pk, sk)← KeyGen(1λ).

– (m0,m1, St)← A(·)
1 (pk). /* Stage 1 */

– b← {0, 1}.
– c∗ ← Encrypt(mb, pk; r).

– b′ ← A(·)
2 (c∗, St). /* Stage 2 */

The adversary is said to win the game if b = b′, with the advantage of the adversary
winning the game being defined by

AdvIND−atk
A,E,λ = |Pr(b = b′)− 1/2| .

A scheme is said to be IND-atk secure if no polynomial time adversary A can win
the above game with non-negligible advantage in the security parameter λ. The precise
security notion one obtains depends on the oracle access one gives the adversary in its
different stages.

– If A has access to no oracles in either stage then atk=CPA.
– If A has access to a decryption oracle in stage one then atk=CCA1.
– If A has access to a decryption oracle in both stages then atk=CCA2, often now

denoted simply CCA.
– IfA has access to a ciphertext validity oracle in both stages, which on input of a ci-

phertext determines whether it would output⊥ or not on decryption, then atk=CVA.

LATTICES: A (full-rank) lattice is simply a discrete subgroup of Rn generated by n
linear independent vectors, B = {b1, . . . ,bn}, called a basis. Every lattice has an
infinite number of bases, with each set of basis vectors being related by a unimodular
transformation matrix. If B is such a set of vectors, we write

L = L(B) = {v ·B|v ∈ Z
n}

to be the resulting lattice. An integer lattice is a lattice in which all the bases vectors
have integer coordinates.

For any basis there is an associated fundamental parallelepiped which can be taken
as P(B) = {∑n

i=1 xi · bi|xi ∈ [−1/2, 1/2)}. The volume of this fundamental par-
allelepiped is given by the absolute value of the determinant of the basis matrix Δ =
| det(B)|. We denote by λ∞(L) the∞-norm of a shortest vector (for the∞-norm) in L.

3 The Smart-Vercauteren Variant of Gentry’s Scheme

We will be examining variants of Gentry’s SHE scheme [15], in particular three variants
based on the simplification of Smart and Vercauteren [27], as optimized by Gentry and
Halevi [17]. All variants make use of the same key generation procedure, parametrized



60 J. Loftus et al.

by a tuple of integers (N, t, μ); we assume there is a function mapping security param-
eters λ into tuples (N, t, μ). In practice N will be a power of two, t will be greater than
2
√
N and μ will be a small integer, perhaps one.

KeyGen(1λ)
– Pick an irreducible polynomial F ∈ Z[X ] of degree N .
– Pick a polynomial G(X) ∈ Z[X ] of degree at most N − 1, with coefficients

bounded by t.
– d← resultant(F,G).
– G is chosen such thatG(X) has a single unique root in common withF (X) modulo
d. Let α denote this root.

– Z(X)← d/G(X) (mod F (X)).
– pk← (α, d, μ, F (X)), sk← (Z(X), G(X), d, F (X)).

In [17] Gentry and Halevi show how to compute, for the polynomial F (X) = X2n +1,
the root α and the polynomial Z(X) using a method based on the Fast Fourier Trans-
form. In particular they show how this can be done for non-prime values of d (removing
one of the main restrictions in the key generation method proposed in [27]).

By construction, the principal ideal g generated by G(X) in the number field K =
Z[X ]/(F (X)) is equal to the ideal with OK basis (d,X − α). In particular, the ideal
g precisely consists of all elements in Z[X ]/(F (X)) that are zero when evaluated at
α modulo d. The Hermite-Normal-Form of a basis matrix of the lattice defined by the
coefficient vectors of g is given by

B =

⎛

⎜
⎜
⎜
⎜⎜
⎝

d 0
−α 1
−α2 1

...
. . .

−αN−1 0 1

⎞

⎟
⎟
⎟
⎟⎟
⎠

, (1)

where the elements in the first column are reduced modulo d.
To aid what follows we write Z(X) = z0 + z1 ·X + . . .+ zN−1 ·XN−1 and define

δ∞ = sup

{‖g(X) · h(X) (mod F (X))‖∞
‖g(X)‖∞ · ‖h(X)‖∞ : g, h ∈ Z[X ], deg(g), deg(h) < N

}
.

For the choice f = XN + 1, we have δ∞ = N . The key result to understand how
the simplification of Smart and Vercauteren to Gentry’s scheme works is the following
lemma adapted from [27].

Lemma 1. Let Z(X), G(X), α and d be as defined in the above key generation proce-
dure. If C(X) ∈ Z[X ]/(F (X)) is a polynomial with ‖C(X)‖∞ < U and set c = C(α)
(mod d), then

C(X) = c−
⌊
c · Z(X)

d

⌉
·G(X) (mod F (X))

for

U =
d

2 · δ∞ · ‖Z(X)‖∞ .
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Proof. By definition of c, we have that c − C(X) is contained in the principal ideal
generated byG(X) and thus there exists a q(X) ∈ Z[X ]/(F (X)) such that c−C(X) =
q(X)G(X). Using Z(X) = d/G(X) (mod F (X)), we can write

q(X) =
cZ(X)

d
− C(X)Z(X)

d
.

Since q(X) has integer coefficients, we can recover it by rounding the coefficients of
the first term if the coefficients of the second term are strictly bounded by 1/2. This
shows that C(X) can be recovered from c for ‖C(X)‖∞ < d/(2 · δ∞ · ‖Z(X)‖∞).

Note that the above lemma essentially states that if ‖C(X)‖∞ < U , then C(X) is
determined uniquely by its evaluation in α modulo d. Recall that any polynomialH(X)
of degree less than N , whose coefficient vector is in the lattice defined in equation (1),
satisfies H(α) = 0 (mod d). Therefore, if H(X) �= 0, the lemma implies, for such an
H , that ‖H(X)‖∞ ≥ U , and thus we conclude that U ≤ λ∞(L). Since the coefficient
vector of G(X) is clearly in the lattice L, we conclude that

U ≤ λ∞(L) ≤ ‖G(X)‖∞ .

Although Lemma 1 provides the maximum value of U for which ciphertexts are de-
cryptable, we will only allow a quarter of this maximum value, i.e. T = U/4. As such
we are guaranteed that T ≤ λ∞(L)/4. We note that T defines the size of the circuit
that the somewhat homomorphic encryption scheme can deal with. Our choice of T will
become clear in Section 5.

Using the above key generation method we can define three variants of the Smart–
Vercauteren variant of Gentry’s scheme. The first variant is the one used in the Gen-
try/Halevi implementation of [17], the second is the general variant proposed by Smart
and Vercauteren, whereas the third divides the decryption procedure into two steps and
provides a ciphertext validity check. In later sections we shall show that the first variant
is not IND-CCA1 secure, and by extension neither is the second variant. However, we
will show that the third variant is indeed IND-CCA1. We will then show that the third
variant is not IND-CVA secure.

Each of the following variants is only a somewhat homomorphic scheme, extending
it to a fully homomorphic scheme can be performed using methods of [15,16,17].

GENTRY–HALEVI VARIANT: The plaintext space is the field F2. The above KeyGen
algorithm is modified to only output keys for which d ≡ 1 (mod 2). This implies that
at least one coefficient of Z(X), say zi0 will be odd. We replace Z(X) in the private
key with zi0 , and can drop the values G(X) and F (X) entirely from the private key.
Encryption and decryption can now be defined via the functions:

Encrypt(m, pk; r)

– R(X)← Z[X ] s.t. ‖R(X)‖∞ ≤ μ.
– C(X)← m+ 2 ·R(X).
– c← [C(α)]d.
– Return c.

Decrypt(c, sk)

– m← [c · zi0 ]d (mod 2)
– Return m.
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FULL-SPACE SMART–VERCAUTEREN: In this variant the plaintext space is the algebra
F2[X ]/(F (X)), where messages are given by binary polynomials of degree less than
N . As such we call this the Full-Space Smart–Vercauteren system as the plaintext space
is the full set of binary polynomials, with multiplication and addition defined modulo
F (X). We modify the above key generation algorithm so that it only outputs keys for
which the polynomial G(X) satisifies G(X) ≡ 1 (mod 2). This results in algorithms
defined by:

Encrypt(M(X), pk; r)

– R(X)← Z[X ] s.t. ‖R(X)‖∞ ≤ μ.
– C(X)←M(X) + 2 ·R(X).
– c← [C(α)]d.
– Return c.

Decrypt(c, sk)

– C(X)← c− �c ·Z(X)/d�.
– M(X)← C(X) (mod 2).
– Return M(X).

That decryption works, assuming the input ciphertext corresponds to the evaluation of
a polynomial with coefficients bounded by T , follows from Lemma 1 and the fact that
G(X) ≡ 1 (mod 2).

CCSHE: This is our ciphertext-checking SHE scheme (or ccSHE scheme for short).
This is exactly like the above Full-Space Smart–Vercauteren variant in terms of key
generation, but we now check the ciphertext before we output the message. Thus en-
cryption/decryption become;

Encrypt(M(X), pk; r)

– R(X)← Z[X ] s.t. ‖R(X)‖∞ ≤ μ.
– C(X)←M(X) + 2 ·R(X).
– c← [C(α)]d.
– Return c.

Decrypt(c, sk)

– C(X)← c− �c · Z(X)/d� ·G(X).
– C(X)← C(X) (mod F (X))
– c′ ← [C(α)]d.
– If c′ �= c or ‖C(X)‖∞ > T return⊥.
– M(X)← C(X) (mod 2).
– Return M(X).

4 CCA1 Attack on the Gentry–Halevi Variant

We construct an IND-CCA1 attacker against the above Gentry–Halevi variant. Let z be
the secret key, i.e. the specific odd coefficient of Z(X) chosen by the decryptor. Note
that we can assume z ∈ [0, d), since decryption in the Gentry–Halevi variant works for
any secret key z + k · d with k ∈ Z. We assume the attacker has access to a decryption
oracle to which it can make polynomially many queries, OD(c). On each query the
oracle returns the value of [c · z]d (mod 2).

In Algorithm 1 we present pseudo-code to describe how the attack proceeds. We
start with an interval [L, . . . , U ] which is known to contain the secret key z and in each
iteration we split the interval into two halves determined by a specific ciphertext c.
The choice of which sub-interval to take next depends on whether k multiples of d are
sufficient to reduce c · z into the range [−d/2, . . . , d/2) or whether k + 1 multiples are
required.

ANALYSIS: The core idea of the algorithm is simple: in each step we choose a “cipher-
text” c such that the length of the interval for the quantity c · z is bounded by d. Since in
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Algorithm 1. CCA1 attack on the Gentry–Halevi Variant
L← 0, U ← d− 1
while U − L > 1 do

c← �d/(U − L)�
b← OD(c)
q ← (c+ b) mod 2
k← �Lc/d+ 1/2�
B ← (k + 1/2)d/c
if (k mod 2 = q) then

U ← �B�
else

L← 	B

return L

each step, z ∈ [L,U ], we need to take c = �d/(U − L)�. As such it is easy to see that
c(U − L) ≤ d.

To reduce cL, we need to subtract kd such that −d/2 ≤ cL − kd < d/2, which
shows that k = �Lc/d + 1/2�. Furthermore, since the length of the interval for c · z
is bounded by d, there will be exactly one number of the form d/2 + id in [cL, cU ],
namely d/2 + kd. This means that there is exactly one boundary B = (k + 1/2)d/c in
the interval for z.

Define q as the unique integer such that −d/2 ≤ cz − qd < d/2, then since the
length of the interval for c · z is bounded by d, we either have q = k or q = k + 1.
To distinguish between the two cases, we simply look at the output of the decryption
oracle: recall that the oracle outputs [c · z]d (mod 2), i.e. the bit output by the oracle is

b = c · z − q · d (mod 2) = (c+ q) (mod 2) .

Therefore, q = (b + c) (mod 2) which allows us to choose between the cases k and
k+1. If q = k (mod 2), then z lies in the first part [L, �B�], whereas in the other case,
z lies in the second part [�B�, U ].

Having proved correctness we now estimate the running time. The behaviour of the
algorithm is easily seen to be as follows: in each step, we obtain a boundary B in the
interval [L,U ] and the next interval becomes either [L, �B�] or [�B�, U ]. Since B can
be considered random in [L,U ] as well as the choice of the interval, this shows that in
each step, the size of the interval decreases by a factor 2 on average. In conclusion we
deduce that recovering the secret key will require O(log d) calls to the oracle.

The above attack is highly efficient in practice and recovers keys in a matter of sec-
onds for all parameter sizes in [17].

5 ccSHE is PA-1

In this section we prove that the ccSHE encryption scheme given earlier is PA-1,
assuming a lattice knowledge assumption holds. We first recap on the definition of PA-1
in the standard model, and then we introduce our lattice knowledge assumption. Once
this is done we present the proof.
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PLAINTEXT AWARENESS – PA-1: The original intuition for the introduction of plain-
text awareness was as follows - if an adversary knows the plaintext corresponding to
every ciphertext it produces, then the adversary has no need for a decryption oracle and
hence, PA+IND-CPA must imply IND-CCA. Unfortunately, there are subtleties in the
definition for plaintext awareness, leading to three definitions, PA-0, PA-1 and PA-2.
However, after suitably formalizing the definitions, PA-x plus IND-CPA implies IND-
CCAx, for x = 1 and 2. In our context we are only interested in IND-CCA1 security, so
we will only discuss the notion of PA-1 in this paper.

Before formalizing PA-1 it is worth outlining some of the terminology. We have a
polynomial time adversaryA called a ciphertext creator, that takes as input a public key
and can query ciphertexts to an oracle. An algorithmA∗ is called a successful extractor
forA if it can provide responses toAwhich are computationally indistinguishable from
those provided by a decryption oracle. In particular a scheme is said to be PA-1 if there
exists a successful extractor for any ciphertext creator that makes a polynomial number
of queries. The extractor gets the same public key as A and also has access to the
random coins used by algorithm A. Following [4] we define PA-1 formally as follows:

Definition 1 (PA1). Let E be a public key encryption scheme and A be an algorithm
with access to an oracleO taking input pk and returning a string. LetD be an algorithm
that takes as input a string and returns a single bit and let A∗ be an algorithm which
takes as input a string and some state information and returns either a string or the
symbol⊥, plus a new state. We callA a ciphertext creator,A∗ a PA-1-extractor, andD
a distinguisher. For security parameter λ we define the (distinguishing and extracting)
experiments in Figure 1, and then define the PA-1 advantage to be

AdvPA-1
E,A,D,A∗(λ) =

∣
∣
∣Pr(ExpPA-1-d

E,A,D (λ) = 1)− Pr(ExpPA-1-x
E,A,D,A∗(λ) = 1)

∣
∣
∣ .

We say A∗ is a successful PA-1-extractor for A, if for every polynomial time distin-
guisher the above advantage is negligible.

ExpPA-1-d
E,A,D (λ):

– (pk, sk)← KeyGen(1λ).
– x← ADecrypt(·,sk)(pk).
– d← D(x).
– Return d.

ExpPA-1-x
E,A,A∗ (λ):

– (pk, sk)← KeyGen(1λ).
– Choose coins coins[A] (resp. coins[A∗]) for A (resp.
A∗).

– St← (pk, coins[A]).
– x ← AO(pk; coins[A]), replying to the oracle queries
O(c) as follows:
• (m,St)← A∗(c, St; coins[A∗]).
• Return m to A

– d← D(x).
– Return d.

Fig. 1. Experiments ExpPA-1-d
E,A,D and ExpPA-1-x

E,A,A∗

Note, in experimentExpPA-1-d
E,A,D (λ) the algorithmA’s oracle queries are responded to

by the genuine decryption algorithm, whereas in ExpPA-1-x
E,A,A∗(λ) the queries are
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responded to by the PA-1-extractor. If A∗ did not receive the coins coins[A] from A
then it would be functionally equivalent to the real decryption oracle, thus the fact that
A∗ gets access to the coins in the second experiment is crucial. Also note that the distin-
guisher acts independently ofA∗, and thus this is strictly stronger than havingA decide
as to whether it is interacting with an extractor or a real decryption oracle.

The intuition is that A∗ acts as the unknowing subconscious of A, and is able to
extract knowledge about A’s queries to its oracle. That A∗ can obtain the underlying
message captures the notion that A needs to know the message before it can output a
valid ciphertext.

The following lemma is taken from [4] and will be used in the proof of the main
theorem.

Lemma 2. Let E be a public key encryption scheme. Let A be a polynomial-time ci-
phertext creator attacking E , D a polynomial-time distinguisher, andA∗ a polynomial-
time PA-1-extractor. Let DecOK denote the event that all A∗’s answers to A’s queries
are correct in experiment ExpPA-1-x

E,A,D,A∗(λ). Then,

Pr(ExpPA-1-x
E,A,D,A∗(λ) = 1) ≥ Pr(ExpPA-1-d

E,A,D (λ) = 1)− Pr(DecOK)

LATTICE KNOWLEDGE ASSUMPTION: Our knowledge assumption can be stated in-
formally as follows: suppose there is a (probabilistic) algorithm C which takes as input
a lattice basis of a lattice L and outputs a vector c suitably close to a lattice point p, i.e.
closer than ε ·λ∞(L) in the∞-norm for a fixed ε ∈ (0, 1/2). Then there is an algorithm
C∗ which on input of c and the random coins of C outputs a close lattice vector p, i.e.
one for which ‖c−p‖∞ < ε ·λ∞(L). Note that the algorithm C∗ can therefore act as a
ε-CVP-solver for c in the ∞-norm, given the coins coins[C]. Again as in the PA-1 defi-
nition it is perhaps useful to think of C∗ as the “subconscious” of C, since C is capable
of outputting a vector close to the lattice it must have known the close lattice vector in
the first place. Formally we have:

Definition 2 (LK-ε). Let ε be a fixed constant in the interval (0, 1/2). Let G denote an
algorithm which on input of a security parameter 1λ outputs a lattice L given by a basis
B of dimension n = n(λ) and volume Δ = Δ(λ). Let C be an algorithm that takes
a lattice basis B as input, and has access to an oracle O, and returns nothing. Let C∗
denote an algorithm which takes as input a vector c ∈ Rn and some state information,
and returns another vector p ∈ Rn plus a new state. Consider the experiment in Figure
2. The LK-ε advantage of C relative to C∗ is defined by

AdvLK-ε
G,C,C∗(λ) = Pr[ExpLK-ε

G,C,C∗(λ) = 1].

We say G satisfies the LK-ε assumption, for a fixed ε, if for every polynomial time C
there exists a polynomial time C∗ such that AdvLK-ε

G,C,C∗(λ) is a negligible function of λ.

The algorithm C is called an LK-ε adversary and C∗ a LK-ε extractor. We now discuss
this assumption in more detail. Notice, that for all lattices, if ε < 1/4 then the proba-
bility of a random vector being within ε · λ∞(L) of the lattice is bounded from above
by 1/2n, and for lattices which are not highly orthogonal this is likely to hold for all ε
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ExpLK-ε
G,C,C∗(λ):

– B ← G(1λ).
– Choose coins coins[C] (resp. coins[C∗]) for C (resp. C∗).
– St← (B, coins[C]).
– Run CO(B; coins[C]) until it halts, replying to the oracle queriesO(c) as follows:
• (p,St)← C∗(c,St; coins[C∗]).
• If p �∈ L(B), return 1.
• If ‖p− c‖∞ > ε · λ∞(L), return 1.
• Return p to C.

– Return 0.

Fig. 2. Experiment ExpLK-ε
G,C,C∗(λ)

up to 1/2. Our choice of T in the ccSHE scheme as U/4 is to guarantee that our lattice
knowledge assumption is applied with ε = 1/4, and hence is more likely to hold.

If the query c which C asks of its oracle is within ε ·λ∞(L) of a lattice point then we
require that C∗ finds such a close lattice point. If it does not then the experiment will
output 1; and the assumption is that this happens with negligible probability.

Notice that if C asks its oracle a query of a vector which is not within ε · λ∞(L) of a
lattice point then the algorithm C∗ may do whatever it wants. However, to determine this
condition within the experiment we require that the environment running the experiment
is all powerful, in particular, that it can compute λ∞(L) and decide whether a vector
is close enough to the lattice. Thus our experiment, but not algorithms C and C∗, is
assumed to be information theoretic. This might seem strange at first sight but is akin
to a similarly powerful game experiment in the strong security model for certificateless
encryption [1], or the definition of insider unforgeable signcryption in [3].

For certain input bases, e.g. reduced ones or ones of small dimension, an algorithm
C∗ can be constructed by standard algorithms to solve the CVP problem. This does not
contradict our assumption, since C would also be able to apply such an algorithm and
hence “know” the close lattice point. Our assumption is that when this is not true, the
only way C could generate a close lattice point (for small enough values of ε) is by
computing x ∈ Zn and perturbing the vector x · B.

MAIN THEOREM:

Theorem 1. Let G denote the lattice basis generator induced from the KeyGen algo-
rithm of the ccSHE scheme, i.e. for a given security parameter 1λ, run KeyGen(1λ)
to obtain pk = (α, d, μ, F (X)) and sk = (Z(X), G(X), d, F (X)), and generate the
lattice basis B as in equation (1). Then, if G satisfies the LK-ε assumption for ε = 1/4
then the ccSHE scheme is PA-1.

Proof. Let A be a polynomial-time ciphertext creator attacking the ccSHE scheme,
then we show how to construct a polynomial time PA1-extractor A∗. The creator A
takes as input the public key pk = (α, d, μ, F (X)) and random coins coins[A] and
returns an integer as the candidate ciphertext. To defineA∗, we will exploitA to build a
polynomial-time LK-ε adversary C attacking the generator G. By the LK-ε assumption
there exists a polynomial-time LK-ε extractor C∗, that will serve as the main building
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block for the PA1-extractor A∗. The description of the LK-ε adversary C is given in
Figure 3 and the description of the PA-1-extractorA∗ is given in Figure 4.

LK-ε adversary CO(B; coins[C])
– Let d = B[0][0] and α = −B[1][0]
– Parse coins[C] as μ||F (X)||coins[A]
– Run A on input (α, d, μ, F (X)) and coins coins[A] until it halts, replying to its oracle

queries as follows:
• If A makes a query with input c, then
• Submit (c, 0, 0, . . . , 0) to O and let p denote the response
• Let c = (c, 0, . . . , 0) − p, and C(X) =

∑N−1
i=0 ciX

i

• Let c′ = [C(α)]d
• If c′ �= c or ‖C(X)‖∞ ≥ T , then M(X)←⊥, else M(X)← C(X) (mod 2)
• Return M(X) to A as the oracle response.

– Halt

Fig. 3. LK-ε adversary

PA-1-extractor A∗(c,St[A∗]; coins[A∗])

– If St[A∗] is initial state then
• parse coins[A∗] as (α, d, μ, F (X))||coins[A]
• St[C∗]← (α, d, μ, F (X))||coins[A]
• else parse coins[A∗] as (α, d, μ, F (X))||St[C∗]

– (p,St[C∗])← C∗((c, 0, . . . , 0),St[C∗]; coins[A∗])
– Let c = (c, 0, . . . , 0) − p, and C(X) =

∑N−1
i=0 ciX

i

– Let c′ = [C(α)]d
– If c′ �= c or ‖C(X)‖∞ ≥ T , then M(X)←⊥, else M(X)← C(X) (mod 2)
– St[A∗]← (α, d, μ, F (X))||St[C∗]
– Return (M(X),St[A∗]).

Fig. 4. PA-1-extractor

We first show that A∗ is a successful PA-1-extractor for A. In particular, let DecOK
denote the event that allA∗’s answers toA’s queries are correct in ExpPA-1-x

ccSHE,A,D,A∗(λ),

then we have that Pr(DecOK) ≤ AdvLK-ε
G,C,C∗(λ).

We first consider the case that c is a valid ciphertext, i.e. a ciphertext such that
Decrypt(c, sk) �=⊥, then by definition of Decrypt in the ccSHE scheme there exists
a C(x) such that c = [C(α)]d and ‖C(X)‖∞ ≤ T . Let p′ be the coefficient vector
of c − C(X), then by definition of c, we have that p′ is a lattice vector that is within
distance T of the vector (c, 0, . . . , 0). Furthermore, since T ≤ λ∞(L)/4, the vector p′

is the unique vector with this property. Let p be the vector returned by C∗ and assume
that p passes the test ‖(c, 0, . . . , 0) − p‖∞ ≤ T , then we conclude that p = p′. This
shows that if c is a valid ciphertext, it will be decrypted correctly by A∗.
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When c is an invalid ciphertext then the real decryption oracle will always output
⊥, and it can be easily seen that our PA-1 extractor A∗ will also output ⊥. Thus in
the case of an invalid ciphertext the adversary A cannot tell the two oracles apart. The
theorem now follows from combining the inequality Pr(DecOK) ≤ AdvLK-ε

G,C,C∗(λ) with
Lemma 2 as follows:

AdvPA-1
E,A,D,A∗(λ) = Pr(ExpPA-1-d

E,A,D (λ) = 1)− Pr(ExpPA-1-x
E,A,D,A∗(λ) = 1)

≤ Pr(ExpPA-1-d
E,A,D (λ) = 1)− Pr(ExpPA-1-d

E,A,D (λ) = 1) + Pr(DecOK)

≤ AdvLK-ε
G,C,C∗(λ) .

6 ccSHE Is Not Secure in the Presence of a CVA Attack

We now show that our ccSHE scheme is not secure when the attacker, after being given
the target ciphertext c∗, is given access to an oracle OCVA(c) which returns 1 if c is
a valid ciphertext (i.e. the decryption algorithm would output a message), and which
returns 0 if it is invalid (i.e. the decryption algorithm would output⊥). Such an “oracle”
can often be obtained in the real world by the attacker observing the behaviour of a party
who is fed ciphertexts of the attackers choosing. Since a CVA attack is strictly weaker
than a IND-CCA2 attack it is an interesting open (and practical) question as to whether
an FHE scheme can be CVA secure.

We now show that the ccSHE scheme is not CVA secure, by presenting a relatively
trivial attack: Suppose the adversary is given a target ciphertext c∗ associated with a
hidden message m∗. Using the method in Algorithm 2 it is easy to determine the mes-
sage using access to OCVA(c). Basically, we add on multiples of αi to the ciphertext
until it does not decrypt; this allows us to perform a binary search on the i-th coefficient
of C(X), since we know the bound T on the coefficients of C(X).

Algorithm 2. CVA attack on ccSHE
C(X)← 0
for i from 0 upto N − 1 do

L← −T + 1, U ← T − 1
while U �= L do

M ← 	(U + L)/2
.
c← [−c∗ + (M + T − 1) · αi]d.
if OCVA(c) = 1 then

L←M .
else

U ←M − 1.
C(X)← C(X) + U ·Xi.

m∗ ← C(X) (mod 2)
return m∗

If ci is the ith coefficient of the actual C(X) underlying the target ciphertext c∗, then
the ith coefficient of the polynomial underlying ciphertext c being passed to the OCVA
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oracle is given by M + T − 1 − ci. When M ≤ ci this coefficient is less than T and
so the oracle will return 1, however when M > ci the coefficient is greater than or
equal T and hence the oracle will return 0. Thus we can divide the interval for ci in two
depending on the outcome of the test.

It is obvious that the complexity of the attack is O(N · log2 T ). Since, for the rec-
ommended parameters in the key generation method, N and log2 T are polynomial
functions of the security parameter, we obtain a polynomial time attack.

7 CCA2 Somewhat Homomorphic Encryption?

In this section we deal with an additional issue related to CCA security of somewhat
homomorphic encryption schemes. Consider the following scenario: three parties wish
to use SHE to compute some information about some data they posses. Suppose the
three pieces of data are m1, m2 and m3. The parties encrypt these messages with the
SHE scheme to obtain ciphertexts c1, c2 and c3. These are then passed to a third party
who computes, via the SHE properties, the required function. The resulting ciphertext
is passed to an “Opener” who then decrypts the output and passes the computed value
back to the three parties. As such we are using SHE to perform a form of multi-party
computation, using SHE to perform the computation and a special third party, called an
Opener, to produce the final result.

Consider the above scenario in which the messages lie in {0, 1} and the function to
be computed is the majority function. Now assume that the third party and the protocol
are not synchronous. In such a situation the third party may be able to make a copy
of the first party’s ciphertext and submit it as his own. In such a situation the third
party forces the above protocol to produce an output equal to the first party’s input; thus
security of the first party’s input is lost. This example may seem a little contrived but
it is, in essence, the basis of the recent attack by Smyth and Cortier [28] on the Helios
voting system; recall Helios is a voting system based on homomorphic (but not fully
homomorphic) encryption.

An obvious defence against the above attack would be to disallow input ciphertexts
from one party, which are identical to another party’s. However, this does not preclude a
party from using malleability of the underlying SHE scheme to produce a ciphertext c3,
such that c3 �= c1, but Decrypt(c1, sk) = Decrypt(c3, sk). Hence, we need to preclude
(at least) forms of benign malleability, but to do so would contradict the fact that we
require a fully homomorphic encryption scheme.

To get around this problem we introduce the notion of CCA-embeddable homomor-
phic encryption. Informally this is an IND-CCA2 public key encryption scheme E , for
which given a ciphertext c one can publicly extract an equivalent ciphertext c′ for an
IND-CPA homomorphic encryption scheme E ′. More formally

Definition 3. An IND-CPA homomorphic (possibly fully homomorphic) public key en-
cryption scheme E ′ = (KeyGen′,Encrypt′,Decrypt′) is said to be CCA-embeddable
if there is an IND-CCA encryption scheme E = (KeyGen,Encrypt,Decrypt) and an
algorithm Extract such that

– KeyGen produces two secret keys sk′, sk′′, where sk′ is in the keyspace of E ′.
– Decrypt′(Extract(Encrypt(m, pk), sk′′), sk′) = m.
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– The ciphertext validity check for E is computable using only the secret key sk′′.
– CCA1 security of E ′ is not compromised by leakage of sk′′.

As a simple example, for standard homomorphic encryption, is that ElGamal is CCA-
embeddable into the Cramer–Shoup encryption scheme [10]. We note that this notion of
CCA-embeddable encryption was independently arrived at by [7] for standard (singu-
larly) homomorphic encryption in the context of providing a defence against the earlier
mentioned attack on Helios. See [7] for a more complete discussion of the concept.

As a proof of concept for somewhat homomorphic encryption schemes we show
that, in the random oracle model, the somewhat homomorphic encryption schemes
considered in this paper are CCA-embeddable. We do this by utilizing the Naor–Yung
paradigm [22] for constructing IND-CCA encryption schemes, and the zero-knowledge
proofs of knowledge for semi-homomorphic schemes considered in [6]. Note that our
construction is inefficient; we leave it as an open problem as to whether more specific
constructions can be provided for the specific SHE schemes considered in this paper.

CONSTRUCTION: Given an SHE scheme E ′ = (KeyGen′,Encrypt′,Decrypt′) we con-
struct the scheme E = (KeyGen,Encrypt,Decrypt) into which E ′ embeds as follows,
where NIZKPoK = (Prove,Verify) is a suitable non-malleable non-interactive zero-
knowledge proof of knowledge of equality of two plaintexts:

KeyGen(1λ)

– (pk′1, sk
′
1)← KeyGen′(1λ).

– (pk′2, sk
′
2)← KeyGen′(1λ).

– pk← (pk′1, pk
′
2), sk← (sk′1, sk

′
2).

– Return (pk, sk).

Extract(c)

– Parse c as (c′1, c′2, Σ).
– Return c′1.

Encrypt(m, pk; r)

– c′1 ← Encrypt′(m, pk′1; r
′
1).

– c′2 ← Encrypt′(m, pk′2; r′2).
– Σ ← Prove(c1, c2;m, r′1, r

′
2).

– c← (c′1, c
′
2, Σ).

– Return c.

Decrypt(c, sk)

– Parse c as (c′1, c
′
2, Σ).

– If Verify(Σ, c′1, c
′
2) = 0 return ⊥.

– m← Decrypt′(c′1, sk
′
1).

– Return m.

All that remains is to describe how to instantiate the NIZKPoK. We do this using
the Fiat–Shamir heuristic applied to the Sigma-protocol in Figure 5. The protocol is
derived from the same principles as those in [6], and security (completeness, soundness
and zero-knowledge) can be proved in an almost identical way to that in [6]. The main
difference being that we need an adjustment to be made to the response part of the
protocol to deal with the message space being defined modulo two. We give the Sigma
protocol in the simplified case of application to the Gentry–Halevi variant, where the
message space is equal to {0, 1}. Generalising the protocol to the Full Space Smart–
Vercauteren variant requires a more complex “adjustment” to the values of t1 and t2 in
the protocol. Notice that the soundness error in the following protocol is only 1/2, thus
we need to repeat the protocol a number of times to obtain negligible soundness error
which leads to a loss of efficiency.
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Prover Verifier
c1 = Encrypt′(m,pk′1; r

′
1)

c2 = Encrypt′(m,pk′2; r
′
2) c1, c2

y ← {0, 1}
a1 ← Encrypt′(y, pk′1; s

′
1)

a2 ← Encrypt′(y, pk′2; s
′
2)

a1, a2�
e� e← {0, 1}

z ← y ⊕ e ·m
t1 ← s1 + e · r1 + e · y ·m
t2 ← s2 + e · r2 + e · y ·m z, t1, t2� Accept if and only if

Encrypt′(z, pk1; t1) = a1 + e · c1
Encrypt′(z, pk2; t2) = a2 + e · c2.

Fig. 5. ZKPoK of equality of two plaintexts
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Abstract. In this paper we introduce anonymous yet authorized and
bounded cloud resource schemes. Contrary to many other approaches to
security and privacy in the cloud, we aim at hiding behavioral informa-
tion, i.e. consumption patterns, of users consuming their cloud resources,
e.g. CPU time or storage space, from a cloud provider. More precisely,
users should be able to purchase a contingent of resources from a cloud
provider and be able to anonymously and unlinkably consume their re-
sources till their limit (bound) is reached. Furthermore, they can also
reclaim these resources back anonymously, e.g. if they delete some stored
data. We present a definition of such schemes along with a security
model and present an instantiation based on Camenisch-Lysyanskaya
signatures. Then, we extend the scheme to another scheme providing
even more privacy for users, i.e. by even hiding the issued resource limit
(bound) during interactions and thus providing full anonymity to users,
and present some useful extensions for both schemes. We also support
our theoretical claims with experimental results obtained from an imple-
mentation that show the practicality of our schemes.

1 Introduction

Cloud computing is an emerging paradigm, but some significant attention re-
mains justifiably focused on addressing security and privacy concerns. Reasons
are among others that customers have to trust the security mechanisms and con-
figuration of the cloud provider and the cloud provider itself. Recently, different
cryptographic solutions to improve privacy, mainly focusing on private storage,
private computations and private service usage have been proposed and will be
briefly discussed below.

Storing data encrypted seems to be sine qua non in many cloud storage set-
tings, since cloud providers, having access to the storage infrastructure, can
neither be considered as fully trustworthy nor are resistant to attacks. Kamara
and Lauter [25] propose several architectures for cryptographic cloud storage and
provide a sound overview of recent non-standard cryptographic primitives like
searchable encryption and attribute-based encryption, which are valuable tools
in this context. Other issues are data privacy and verifiability when outsourcing
data and performing computations on these data using the cloud as computa-
tion infrastructure. The recent introduction of fully homomorphic encryption
[24] is a promising concept for performing arbitrary computation on encrypted
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data. Up to now these concepts are far from being practical, although for some
practical applications somewhat homomorphic schemes seem to be promising
[26]. Another interesting issue from a privacy perspective is to hide user’s us-
age behavior (access patterns and frequencies) when accessing cloud services.
More precisely, users may not want the cloud provider to learn how often they
use a service or which resources they access. Nevertheless, cloud providers can
be assumed to have access restricted to authorized users and additionally users
may want to enforce (attribute-based) access control policies. Some approaches
to realize this are anonymous credential systems [3], oblivious transfer [6,7] or
oblivious RAM [23].

In this paper we discuss an additional aspect, which may be valuable when
moving towards privacy friendly cloud computing and seems to be valuable when
used in conjunction with the aforementioned approaches. In particular, we focus
on the anonymous yet authorized and bounded use of cloud resources like CPU
time (e.g. CPU per hour) or storage space. Thereby, we note that in this paper
we illustrate our concept by means of the resource storage space. Think for
instance of anonymous document publishing services provided by organizations
like WikiLeaks or the American Civil Liberties Union (ACLU) who may use
third party cloud storage services like Amazon’s S31 as their document stores.
In this example, WikiLeaks or ACLU may wish to store documents in the cloud,
but may not want to learn the cloud provider, e.g. Amazon, how much storage
they (and their users respectively) store. These organizations may also force
their users to respect storage limits, since they will have to pay for the storage,
but at the same time provide their users with anonymity. Another example are
clients who outsource computations to the cloud and want to hide their pattern.

Our Contribution.We consider a setting where users should be able to register
and obtain a resource bound (limit) from a cloud provider (CP) in form of a
“partially blindly signed” token. This token includes an identifier, the already
consumed resources and the limit, wheres the limit in fact is the only value signed
in clear. This limit determines how much of a resource, e.g. CPU time, storage
space, a user is allowed to consume. Then, users should be able to consume their
resources in an anonymous and unlinkable yet authorized fashion. For instance, if
a user wants to consume l resources, he has to convince the CP that he possesses
a signed token with a valid identifier (double-spending protection) and that his
consumed resources (including l) do not exceed his bound. If this holds, the
anonymous user is allowed to consume the resources and obtains an updated
signature for a token corresponding to a new identifier and updated consumed
resources. Note, due to the anonymity and unlinkability properties, the CP is
unable to track how much a user has already consumed, however, can be sure
that he solely consumes what he has been granted. Furthermore, a user may also
reclaim resources back, e.g. when deleting data or computations did not require
the preassigned time, while still hiding the pattern.

We for the first time consider this problem and provide a definition for the
concept of anonymous yet authorized and bounded cloud resource schemes along

1 http://aws.amazon.com/s3/

http://aws.amazon.com/s3/
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with a security model. Furthermore, we present an efficient instantiation of such
schemes and extend the scheme to another scheme providing even more privacy
for users and present some useful extensions for both schemes. Our schemes
are obtained using recent signature schemes due to Camenisch and Lysyanskaya
[11,12] along with efficient zero-knowledge proofs for proving properties of signed
messages. We note that many of the approaches discussed subsequently employ
similar features of CL signatures as our approach does. But the signer controlled
interactive update of signed messages discussed in Section 4.1, which is an im-
portant functionality behind our protocols, seems to be novel2. Furthermore,
we note that we base our concrete scheme on groups of known order and the
essential ingredient is the pairing based CL signature scheme [12].

Related Work. Pairing based CL signatures [12] and it’s strong RSA based
pendant [11] are useful to construct various privacy enhancing cryptographic
protocols. Among them are anonymous credential systems [19] and group signa-
tures [12] as well as privacy protecting multi-coupon systems [15,17], anonymous
subscriptions [5], electronic toll pricing [4], e-cash systems [9] and n-times anony-
mous authentication schemes [8] based on compact e-cash or unclonable group
identification schemes [21] (which achieve similar goals as in [8]). To solve our
problem, the most straightforward solutions seems e-cash, i.e. CP issues k coins
to a user and a user can use one coin per resource unit. However, to achieve a
suitable granularity this induces a large amount of “small valued coins” which
makes this approach impractical. The same holds for compact e-cash schemes
[9], where a user can withdraw a wallet of 2l coins at a time and thus the with-
drawal procedure is much more efficient. However, in compact e-cash coins from
the wallet can only be spend one by one and the above problem still exists.
In divisible e-cash [14,2], which allows a user to withdraw a wallet of value 2l

in a single withdraw protocol, spending a value 2m for m ≤ l can be realized
more efficient than repeating the spending 2m times. However, in the former
solution even for a moderate value of l = 10 the spending of a single coin re-
quires 800 exponentiations which makes it very expensive. The latter approach
is more efficient but statistical, meaning that users can spend more money than
withdrawn. Nevertheless, we may consider our scheme as some type of a divisible
e-cash scheme, since it allows to withdraw a contingent of resources and to spend
arbitrary amounts of these resources until the contingent is consumed. But we
want to mention that we have not designed these schemes with e-cash as an
application in mind and do not support usual properties of e-cash schemes such
as double-spender identification and spending with arbitrary merchants.

Multi-coupons [15,17] represent a collection of coupons (or coins or tokens)
which is issued in a single withdraw protocol and every single coupon of the MC
can be spend in an anonymous and unlinkable fashion. But in our scenario, they
suffer from the same problem as simple e-cash solutions.

Recently, Camenisch et al. proposed an interesting protocol for unlinkable
priced oblivious transfer with rechargeable wallets [7]. This does not exactly

2 As we were recently informed, the general idea of updating signatures has already
been used in independent work [10] based on Boneh-Boyen signatures.
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fit our scenario but could be mapped to it. However, [7] do not provide an
efficiency analysis in their work and their protocols seem to be quite costly. Their
rechargeable wallets are an interesting feature and recharching is also supported
by our second scheme in Section 4.4.

2 Definition

2.1 Problem Description and Motivation

In our setting we have a cloud provider (CP) and a set of users U . Our main goal
is that users are able to purchase a contingent of resources (we focus on storage
space here) and CP does not learn anything about the resource consumption
behavior of users. In particular, users can store data at the CP as long as there
are still resources from their contingent available. The CP is in any interaction
with the user convinced that a user is allowed to consume (or reclaim) resources
but cannot identify the user nor link any of the user’s actions. Clearly, if the
resource is storage space and the data objects contain information on the user,
then this may break the anonymity property. Nevertheless, then we can assume
that data is encrypted which seems to be sine qua non in many cloud storage
settings.

Our main motivation is that it is very likely that only a few large cloud
providers will own large portions of the infrastructure of the future Internet.
Thus, these cloud providers will eventually be able to link data and information
about resource consumption behavior of their consumers (users) allowing them
to build extensive dossiers. Since for many enterprises such a transparency can
be too intrusive or problematic if these information are available to their com-
petitors we want to hide these information from cloud providers. As for instance
argued in [18], activity patterns may constitute confidential business information
and if divulged could lead to reverse-engineering of customer base, revenue size,
and the like.

2.2 Definition of the Scheme

An anonymous yet authorized and bounded cloud resource scheme is a tuple
(ProviderSetup, ObtainLimit, Consume, Reclaim) of polynomial time algo-
rithms or protocols between users U and cloud provider CP respectively:

– ProviderSetup. On input a security parameter k, this algorithms outputs
a key pair sk and pk of a suitable signature scheme and an empty blacklist
BL (for double-spending detection).

– ObtainLimit. In this protocol a user u wants to obtain a token t for a
resource limit of L units from the CP. The user’s output is a token t with
corresponding signature σt issued by CP. The token contains the limit L
and the actually consumed resources s (wheres both may be represented by
a single value L′ := L − s). The output of CP is a transcript TOL of the
protocol.
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– Consume. In this protocol user u wants to consume l units from his remaining
resources. The user shows value t.id of a token t and convinces the CP that
he holds a valid signature σt for token t. If the token was not already spend
(t.id is not contained in BL), the signature is valid and there are still enough
resources left, i.e. s′+ l ≤ L (or L′− l ≥ 0), then the user’s output is accept
and an updated token t′ for resource limit L and actually consumed resources
s′+ l (or L′− l) with an updated signature σt′ from CP. Otherwise the user’s
output is reject. The output of CP is a transcript TC .

– Reclaim. In this protocol user u wants to reclaim l units, e.g. he wants to
delete some data of size l. The protocol is exactly the same as the Consume

protocol. Except for the accept case the updated token t′ contains s′− l (or
L′ + l) as the actually consumed resources and the transcript is denoted as
TR. We emphasize that u needs to prove by some means that he is allowed
to reclaim l resources, e.g. when deleting some data, the user needs prove
knowledge of some secret associated with the data during the integration.
Otherwise, users could simply run arbitrary many Reclaim protocols to il-
licitly reclaim resources and indirectly improve their actual resource limit
(see end of Section 4.3 for a discussion).

2.3 Security Model

We now describe our formal model for the security requirements of an anonymous
yet authorized and bounded cloud resource scheme and say such a scheme is
secure if it satisfies the properties correctness, unlinkability and unforgeability.

Correctness. If an honest user runs an ObtainLimit protocol with an honest
CP for resource limit L, then he obtains a token t with corresponding signature
σt for resource limit L. If an honest user runs a Consume or Reclaim protocol
with an honest CP for value l, then the respective protocol will output accept
and a valid token-signature pair (t′, σt′) with t′.s = t.s± l (or t′.L′ = t.L′± l). If
the limit is explicitly included we additionally require for the Consume protocol
that t.s+ l ≤ t.L.

Unlinkability. It is required that no collusion of users and the CP can learn
the resource consumption habit of an honest user. Note, that this in particular
means that issuing and showing of a token cannot be linked. With exception of
the issued resource limit, the tokens reveal no information about the actually
consumed resources (if the issued limit is not included then there is absolutely
no link). Formally, we consider a game and provide the adversaryA with (sk, pk)
and BL generated by the ProviderSetup algorithm. Furthermore, A obtains a
fixed (large) resource limit L. Then, during the game A can

– execute ObtainLimit protocols (if included w.r.t. resource limit L) with
honest users in an arbitrary manner,

– execute Consume and Reclaim protocols with honest users.

At some point, A outputs two transcripts T 0
OL and T 1

OL of previously executed
ObtainLimit protocols, whereas we require that the sum of all values consumed
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during all Consume protocols is at most L− v. Then, a bit b is secretly and ran-
domly chosen and A runs a Consume with value at most v (or Reclaim) protocol
with the user who was issued his initial token during the ObtainLimit protocol
corresponding to T b

OL. Finally, A outputs a bit b′ and we say that A has won the
game if b = b′ holds. We require that for every efficient adversary A the proba-
bility of winning the game differs from 1/2 at most by a negligible fraction (the
intuition why we require the sum to be L− v and the last Consume is performed
with respect to value v at most is to rule out trivial attacks3).

Unforgeability. It is required that no collusion of users can spend more tokens
(which will be accepted in Consume or Reclaim protocols) than they have been
issued. Furthermore, no collusion of users must be able to consume more re-
sources than they have obtained. Formally, we consider a game and provide the
adversary A with a public key pk generated by the ProviderSetup algorithm.
Then, during the game A can

– execute ObtainLimit protocols with an honest CP and
– execute Consume and Reclaim protocols with an honest CP.

At some point, A specifies a sequence t = (t1, . . . , tn) of valid tokens (which
were not already shown) and at the end of the game the verifier

– outputs a token t′ either not contained in t
– or a modified token t′′ corresponding to a token ti in t, whereas it holds that

t′′.id �= ti.id and/or t′′.L �= ti.L and/or t′′.s �= ti.s (or if L is not explicitey
included t′′.L′ �= ti.L

′).
– and conducts a Consume or Reclaim protocol with an honest CP.

We require that for every efficient adversary A the probability that the Consume
or Reclaim protocol in the last step terminates with accept is negligible.

3 Preliminaries

An essential ingredient for our construction are honest-verifier zero-knowledge
proofs of knowledge (Σ-protocols). We use the notation from [13], i.e. a proof
of knowledge of a discrete logarithm x = logg y to the base g will be denoted
as PK{(α) : y = gα}, whereas Greek letters always denote values whose knowl-
edge will be proven. We note, that compositions of single Σ-protocols using
conjunctions and disjunctions can be efficiently realized [20]. Furthermore, the
non-interactive version of a (composed) proof obtained by applying the Fiat-
Shamir transform [22] is denoted as a signature of knowledge or SPK for short.

3 The adversary could run one single ObtainLimit protocol and run Consume till the
user can have no more available resources, i.e. Consume protocols will terminate with
reject. Then before going into the challenge phase, the adversary can run another
ObtainLimit protocol and output those two transcripts. Obviously, he will be able to
assign a Consume protocol to the correct user, since one will terminate with reject

and the other one with accept.
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Bilinear Maps. Let G and Gt be two groups of prime order p, let g be a gen-
erator of G and e : G ×G → Gt a bilinear map between these two groups. The
map e must satisfy the following properties:

1. Bilinear: for all u, v ∈ G and a, b ∈ Zp we have e(ua, vb) = e(u, v)ab.
2. Non-degenerate: e(g, g) �= 1.
3. Computable: there is an efficient algorithm to compute e(u, v) for any u, v ∈

G.

Though the group operation in G is in general an additive one, we express both
groups using multiplicative notation. This notion is commonly used, since Gt is
always multiplicative and it is more easy to capture the sense of cryptographic
protocols.

Pedersen Commitments. Pedersen commitments [30] represent a widely used
commitment scheme working in any group G of prime order p. Let g, h be random
generators of G, whereas logg h is unknown. To commit to a value s ∈ Zp, one
chooses r ∈R Zp and computes C(s, r) = gshr, which unconditionally hides
s as long as r is unknown. To open the commitment, one simply publishes
(s, r, C(s, r)) and one verifies whether gshr = C(s, r) holds. For simplicity, we
often write C(s) for a commitment to s instead of C(s, r). We note that the
Pedersen commitment inherits an additive homomorphic property, i.e. given two
commitments C(s1, r1) = gs1hr1 and C(s2, r2) = gs2hr2 then one is able to
compute C(s1 + s2, r1 + r2) = C(s1, r1) · C(s2, r2) without either knowing any
of the hidden values s1 or s2. Furthermore, note that a proof of knowledge
PK{(α, β) : C = gαhβ} of the ability to open a Pedersen commitment can be
realized using a proof of knowledge of a DL representation of C with respect to
the elements g and h [28].

Range Proofs. An elegant proof that a number hidden within a Pedersen
commitment lies in an interval [a, b] in the setting of prime order groups was
presented in [27]. Although this proof might be impractical in general, since it
requires O(log b) single bit-proofs, it is efficient for the application that we have
in mind due to relatively small values of b. The basic idea is to consider for a
number x ∈ [0, b] its binary representation x = x02

0 + x12
1 + . . . + xk−12k−1,

whereas xi ∈ {0, 1}, 0 ≤ i < k. Thereby, k = [log2 b] + 1 represents the number
of digits, which are necessary to represent every number within [0, b]. Now, in
essence one proves that the binary representation of x lies within the interval
[0, 2k − 1]. This can be done by committing to each xi using an Okamoto com-
mitment [29] (essentially a Pedersen bit commitment) along with a proof that
this commitment hides either 0 or 1 and demonstrating that for commitments
to x and all xi’s it holds that x = x02

0 + x12
1 + . . . + xk−12k−1. The concrete

range proof is a Σ-protocol for a proof of knowledge

PK{(α0, . . . , αk−1) :
k−1∧

i=0

(Ci = hαi ∨Cig
−1 = hαi)}

or PK{(α, β) : C = gαhβ ∧ (0 ≤ α ≤ b)} for short.
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Camenisch-Lysyanskaya Signature Scheme. Camenisch and Lysyanskaya
have proposed a signature scheme in [12] which satisfies the usual correctness
and unforgeability properties of digital signatures and is provably secure under
the LRSW assumption for groups with bilinear maps, which implies that the
DLP is hard (cf. [12]). We present the CL signature scheme below:

Key Generation. Let G and Gt be groups of prime order p and e : G×G → Gt

a bilinear map. Choose x, y, z1, . . . , zl ∈R Zp. The private key is sk = (x, y, {zi})
and the public key is pk = (X,Y, {Zi}, e, g,G,Gt, p), whereas X = gx, Y = gy

and Zi = gzi .

Signing. On input message (m0, . . . ,ml), sk and pk, choose a ∈R G, compute

Ai = azi , b = ay, Bi = (Ai)
y and c = ax+xym0

∏l
i=1 A

xymi

i . Output the signature
σ = (a, {Ai}, b, {Bi}, c).
Verification. On input of (m0, . . . ,ml), pk and σ = (a, {Ai}, b, {Bi}, c) check
whether

– Ai’s are formed correct: e(a, Zi) = e(g,Ai)
– b and Bi’s are formed correct: e(a, Y ) = e(g, b) and e(Ai, Y ) = e(g,Bi)

– c is formed correct: e(X, a) · e(X, b)m0
∏l

i=1 e(X,Bi)
mi = e(g, c)

What makes this signature scheme particularly attractive is that it allows a
receiver to obtain a signature on committed messages (using Pedersen commit-
ments), while the messages are information-theoretically hidden from the signer
(messages here means elements of the message tuple). Additionally, the receiver
can randomize a CL signature such that the resulting signature is unlinkable to
the original signature. Furthermore, receivers can use efficient zero-knowledge
proofs to prove knowledge of a signature on committed messages. We will elabo-
rate on the aforementioned functionalities more detailed in Section 4.1 and will
show how to extend this functionality to interactive updates of signatures, the
signed commitments and messages respectively.

4 Scheme

In this section we present our scheme along with an optional modification in
order to increase the privacy in some settings even further. We start with the
presentation of an important observation of CL signatures which is central to
our constructions. Then, we first give a high level description followed by a
detailed description of the schemes. Additionally, we present an performance
evaluation of a prototypical implementation which supports the efficiency of the
schemes. Finally, we present some extensions as well as system issues and provide
a security analysis of the protocols.

4.1 Interactive Update of Signed Messages

As already noted, CL signatures allow signing of committed messages (using
Pedersen commitments), while the signer does not learn anything about them.
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Assume that the signer holds a private key sk = (x, y, z) and publishes the cor-
responding public key pk = (X,Y, Z, e, g,G,Gt, p).

Blind Signing. If a receiver wants to obtain a blind signature for message m,
he chooses r ∈R Zp, computes a commitment C = gmZr and sends C along with
a signature of knowledge SPK{(α, β) : C = gαZβ} to the signer (the ability to
open the commitment is necessary for the security of the scheme, cf. [12]). If the
verification of the proof holds, the signer computes a signature σ = (a,A, b, B, c)
for the commitment C by choosing k ∈R Zp, setting a = gk and computing
σ = (a, az, ay, ayz, axCkxy) and sends σ to the receiver.

Verification. In order to show the signature to a verifier, the receiver random-
izes the signature by choosing r, r′ ∈R Zp and computing σ′ = (a′, A′, b′, B′, c′)
as σ′ = (ar, Ar, br, Br, crr

′
) and sends σ′ with the message m along with a sig-

nature of knowledge SPK{(γ, δ) : vγσ = vvδr} to the verifier. Therefore, both
need to compute vσ = e(c′, g), v = e(X, a′) · e(X, b′)m and vr = e(X,B′). The
verifier checks the proof and checks whether A′ as well as b′ and B′ were cor-
rectly formed. Note, that the proof can be conducted by means of a standard
DL-representation proof [16], which can easily be seen by rewriting the proof as
SPK{(γ, δ) : v = vγσ(v

−1
r )δ}.

Remark. Observe, that we can realize a concept which is similar to partially
blind signatures. However, in contrast to existing partially blind signature schemes
[1], where the signer can integrate some common agreed upon information in the
signature, here, the signer arithmetically adds a message to the “blinded mes-
sage” (hidden in the commitment). Therefore, during the signing, the signer
simply updates the commitment to C′ = CgmS and uses C′ instead of C for
signing. The receiver then obtains a signature for message m+mS, whereas mS

is determined by the signer and m is hidden from the signer.

Update. The interesting and from our point of view novel part is that a signer
can use a somewhat related idea to “update” a randomized signature without
showing the message. Assume that a receiver holds a randomized signature σ′

for message (m′, r) whereas m′ = m + mS and wants the signer to update
the signature such that it represents a signature for message (m′ +m′S , r + 1).
Since showing m′, as within the signature above, would destroy the unlinka-
bility due to both messages are known, the receiver can solely prove that he
knows the message in zero knowledge and both can then interactively update
the signature. Therefore in the verification the receiver provides a signature of
knowledge SPK{(α, β, γ) : vασ = vvβm′vγr } to the verifier, whereas vσ = e(g, c′),
v = e(g, a′), vm′ = e(g, b′) and vr = e(g,B′), which convinces the signer that the
receiver possesses a valid signature for unknown message (m′, r). Then, for the
update, i.e. to add m′S it is sufficient for the signer to compute C̃m′+m′

S
= a′m

′
SA′

and send it to the receiver. The receiver computes Cm′+m′
S
= (C̃m′+m′

S
)r

′
and

provides a signature of knowledge SPK{(α, β, γ) : vασ = vvβm′vγr ∧ C̃m′+m′
S
=

(Cm′+m′
S
)α}. Note that this proof convinces the signer that the receiver has

randomized the commitment of the signer using the same random factor (r′)
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as within the randomization of the signature. Then, the signer computes the
updated signature σ′′ = (ar̃, A′̃r, b′̃r, B ′̃r, (c′(Cm′+m′

S
)xy)r̃) for r̃ ∈ Zp and gives

σ′′ = (a′′, A′′, b′′, B′′, c̃′′) to the receiver. The receiver sets c′′ = (c̃′′)r
′−1

and now
holds a valid signature for message (m′+m′S, r+1) which he can in turn random-
ize. Therefore, observer that in the signature tuple only the last element actually
includes the messages and we have c′ = crr

′
= (axC′kxy)rr

′
= (ax+xy(m′+zr))rr

′

and (Cm′+m′
S
)xy = (axy(m

′
S+z))r. By taking these results together we have a

well formed signature component c′′ = (ax+xy(m′+m′
S+z(r+1)))rr

′
. The remaining

elements of the signature are easy to verify for correctness.

Remark. This functionality can easily be extended to signatures on arbitrary
tuples of messages, will be a building block for our scheme and may also be of
independent interest. Note that issuing a new signature in every step without
revealing the hidden messages would not work and thus we use this “update
functionality”.

4.2 High Level Description of the First Scheme

Before presenting the detailed protocols, we provide a high level description. The
aim of our construction is to let the user solely prove in each Consume protocol
that enough resources, i.e. storage space, is available. In this setting, the user
does not provide any useful information about the actual consumed space to
the verifier, but the verifier learns only the fact that the user is still allowed to
consume storage space.

ProviderSetup. The cloud provider generates a key-pair (sk, pk) for the CL
signature scheme, publishes pk, initializes an empty blacklist BL and fixes a set
L = {L1, . . . , Ln} of space limits.

ObtainLimit. A user chooses a limit L ∈ L and obtains a CL signature σt for
a token t = (C(id), C(s), L), whereas the initially consumed storage space s is
set to be s = 1.

Consume. Assume that the user holds a token t = (C(id), C(s), L) and corre-
sponding signature σt. Note, that id (the token-id) and s were signed as com-
mitments and thus the signer is not aware of these values. When a user wants
to integrate a data object d, the user computes C(id′) for the new token, ran-
domizes the signature σt to σ′t and proves that σ′t is a valid signature for id
and L (by revealing these two elements) and an unknown value s that satisfies
(s + |d|) ∈ [0, L] or equivalently s ∈ [0, L − |d|], i.e. when integrating the new
data object d the user needs to prove that after adding of |d| space units at most
L storage space will be consumed. If id is not contained in BL and this proof
succeeds, the signature will be updated to a signature for C(id+ id′), C(s+ |d|)
and L. Consequently, the provider adds id to BL and the user obtains an up-
dated signature for a token t′ = (C(id+ id′), C(s+ |d|), L). Otherwise, the cloud
provider will reject the integration of a new data object.
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Reclaim. Assume that the user holds a token t = (C(id), C(s), L) and corre-
sponding signature σt. When a user wants to delete a data object d, as above, the
user computes C(id′) for the new token, randomizes the signature σt to σ′t and
“proves” that he is allowed to delete d and that σ′t is a valid signature for id and L
(by revealing these two elements). If id is not contained in BL and the signature
is valid, the user obtains a signature for a token t′ = (C(id+ id′), C(s− |d|), L).
Otherwise, the cloud provider will reject to delete d.

4.3 Detailed Description of the First Scheme

ProviderSetup: The cloud provider generates a key-pair for the CL signa-
ture scheme to sign tokens of the form t = (id, s, L). More precisely, the cloud
provider signs tokens of the form t = (id, rid, s, rs, L), but we usually omit
the randomizers for the ease of presentation. Consequently, the cloud provider
obtains the private key sk = (x, y, z1, z2, z3, z4) and publishes the public key
pk = (X,Y, Z1, Z2, Z3, Z4, e, g,G,Gt, p). Furthermore, he initializes an empty
blacklist BL and fixes a set L = {L1, . . . , Ln} of available limits.

ObtainLimit: A user registers with the cloud provider and obtains a space limit
Li ∈ L (we do not fix any concrete protocol for this task here since no anonymity
is required). After the user has registered and both have agreed on Li (which we
denote as L below for simplicity), they proceed as depicted in Protocol 1.

1. The user chooses a token-identifier id ∈R {0, 1}lid and randomizers rid, rs ∈R Zp for the
commitments and we let the user start with value s = 1. Then, he computes the commitments
Cid = gidZ

rid
1 and Cs = Zs

2Z
rs
3 and sends them along with a signature of knowledge

SPK{(α, β, γ) : Cid = gαZβ
1 ∧ Cs = Z2Z

γ
3 } (1)

to prove the ability to open the commitments, whereas the second part in the proof also con-
vinces the cloud provider that s = 1.

2. If the verification of the signature of knowledge in (1) holds, the cloud provider computes a CL

signature for (Cid, Cs, L) as follows: He chooses k ∈R Zp, computes a = gk, b = ay , Ai = azi ,

Bi = Ay
i for 1 ≤ i ≤ 4 and c = ax(CidCsZ

L
4 )kxy and sends σ = (a, {Ai}, b, {Bi}, c) to the

user.
3. The user verifies whether the signature is valid and if this holds the user is in possession

of a valid signature σ for a token t = (id, s, L), whereas the cloud provider is not aware
of id and knows that s = 1. Furthermore, the user locally randomizes the signature σ to

σ′ = (a′, {A′
i}, b′, {B′

i}, c′) by choosing r, r′ ∈ Zp and computing σ′ = (ar, {Ar
i}, br, {Br

i}, crr
′
).

Remark. All further actions are fully anonymous and in practice also unlinkable, since we can
assume that one limit will be issued to a quite large number of users (and the limit is the only
information that could potentially be used for linking)!

Prot. 1. The ObtainLimit protocol

Consume: A user holds a randomized signature σ′ = (a′, {A′i}, b′, {B′i}, c′) for
a token t = (id, s, L) and wants to integrate a data object d. The protocol to
integrate a data object and obtain a new token is depicted in Protocol 2.
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1. The user sends the randomized signature σ′, the “visible part” (id, L) of the token t and a data
object d along with a signature of knowledge

SPK{(α, β, γ, δ) : v
α
σ = vv

β
rid

v
γ
s v

δ
rs
∧ (0 ≤ γ ≤ 2

lL−l|d| − 1)} (2)

for the validity of the randomized signature containing a proof that still enough space is available
to the cloud provider. It must be noted, that the presentation of the proof in (2) represents a
shorthand notation for the signature of knowledge

SPK{(α, β, γ, δ, ε, ε1, . . . , εk, ζ, ζ1, . . . , ζk) : v = vα
σ (v−1

rid
)β(v−1

s )γ(v−1
rs

)δ ∧
C = gβZ′ζ

1 ∧

C =
k∏

i=1

(gεiZ
′ζi
1 )2

i−1 ∧

k∧
i=1

(Ci = Z
ζi
1 ∨ Cig

−1 = Z
′ζi
1 )}

Essentially, besides the DL-representation proof for the validity of the randomized signature,
we use an additional commitment C = gsZ′r

1 to the value s with a new randomizer r computed
as

r = r12
0 + r22

1 + . . .+ rk2
k−1 MOD p

for ri’s chosen uniformly at random from Zp and the single commitments for the range proof

are Ci = gsiZ
′ri
1 . It also must be mentioned, that k represents lL − l|d|, the binary length

of L − |d|. Furthermore, note that in case of s = 1, i.e. in the first execution of the Consume
protocol, it would not be necessary to provide a range proof. However, when performing a range
proof, the initial Consume protocol is indistinguishable from other protocol executions and thus
provides stronger privacy guarantees.

2. The cloud provider checks whether id ∈ BL. If id is not blacklisted, the cloud provider verifies
the validity of the signature for the part (id, L) of the token t. Therefore, the cloud provider
locally computes the values

vσ = e(g, c′), vrid = e(X,B′
1), vs = e(X,B′

2), vrs = e(X,B′
3) and

v = e(X, a′) · e(X, b′)id · e(X,B′
4)

L

from pk, (id, L) and σ′ and verifies the signature of knowledge (2) Additionally, he checks
whether the A′

i’s as well as b′ and B′
i’s are correctly formed. A positive verification convinces

the cloud provider that enough storage space is available to integrate d and a signature for an
updated token t′ can be computed in cooperation with the user as follows: Firstly, we need
an observation regarding the signature σ′. Note, that the only element of the signature that
depends on the message is c′, which can be rewritten as

c′ = (ax+xy(id+z1rid+z2s+z3rs+z4L))rr
′
= (ax+xyidA

xyrid
1 Axys

2 Axyrs
3 AxyL

4 )rr
′

and in order to update a signature for the id-part (to construct a new id for the new token) it
is sufficient to update a and A1. To update the s-part, which amounts to update the currently
consumed space, it is sufficient to update A2 and A3. The latter update needs to be computed
by the cloud provider to be sure that the correct value |d| is integrated and the former one
needs to be computed by the user to prevent the cloud provider from learning the new token

identifier. Hence, the cloud provider computes C̃s+|d| = A
′|d|
2 A′

3 and sends C̃s+|d| to the user,
who verifies whether |d| has been used to update the commitment. The user in turn chooses a

new identifier and randomizer id′, rid′ ∈R Zp, computes Cid+id′ = (a′id′A
′r

id′
1 )r

′
, Cs+|d| =

(C̃s+|d|)v = (A
′|d|
2 A′

3)
r′ and sends (Cid+id′ , Cs+|d|) along with a signature of knowledge:

SPK{(ε, ζ, η, φ, ι, κ) : Cid+id′ = a′εA′ζ
1 ∧

C̃s+|d| = (Cs+|d|)
η ∧ v = vη

σ(v
−1
rid

)φ(v−1
s )ι(v−1

rs
)κ}

to the cloud provider.



Efficient Anonymous Yet Authorized and Bounded Use of Clouds 85

Note, that the user additionally to the knowledge of the ability to open the commitments
proves that he has randomized the commitment C̃s+|d| to a commitment Cs+|d| using the same

randomization factor (r′) as used to randomize the signature σ without revealing this value.
After positive verification of this signature of knowledge, the cloud provider chooses r̃ ∈R Zp

and computes an updated signature

σ′′ = (a′̃r, {A′̃r
i }, b′̃r , {B ′̃r

i }, (c′(Cid+id′Cs+|d|)
xy)r̃) (3)

and sends this updated signature σ′′ = (a′′, {A′′
i }, b′′, {B′′

i }, c̃′′) to the user. The user sets

c′′ = (c̃′′)r
′−1

and obtains a valid signature for a token t′ = (id + id′, s + |d|, L) or more
precisely a token t′ = (id+ id′, rid + rid′ , s+ |d|, rs +1, L), which he verifies for correctness (it
is quite easy to verify that σ′′ is indeed a valid signature). Consequently, the user can randomize
σ′′ and run a new Consume protocol for a data object d′ with token t′ = (id + id′, s + |d|, L).

Prot. 2. The Consume protocol

Reclaim: Reclaiming resources, i.e. deleting a data object, is achieved by a
slight adaption of the Consume protocol. In step 1, instead of the SPK (2) the
user provides the subsequent signature of knowledge (the proof that enough
space is available is not necessary)

SPK{(α, β, γ, δ) : vασ = vvβridv
γ
s v

δ
rs}

And in step 3, the cloud provider computes C̃s−|d| = A
′p−|d|
2 A′3 instead of

C̃s+|d| = A
′|d|
2 A′3.

Remark. As we have already mentioned, a cloud provider should only perform
a Reclaim protocol if the user is able to prove the possession of the data ob-
ject d (and we may assume that only owners delete their data objects). It is
not the focus of this paper to provide a solution to this task. However, a quite
straightforward solution would be to commit to some secret value for every data
object and the cloud provider requires a user to open the commitment or prove
knowledge that he is able to open the commitment to delete a data object.

4.4 A Modified Scheme Providing Even More Privacy

In order to increase privacy further, it may be desirable that the initially issued
limit L is hidden from the CP during Consume or Reclaim protocols. We, how-
ever, note that if the number of initial tokens associated to CP-defined limits in
L is huge, the respective anonymity sets may be of reasonable size for practical
application and this adaption may not be necessary. Nevertheless, we provide an
adaption of our protocols which removes the necessity to include L, does only
include the available amount of resources (denoted as s) and hides this value
s from the CP during any further interactions. We present the modification
below:

ProviderSetup. Now, tokens are of the form t = (id, rid, s, rs) and thus the
private key is sk = (x, y, z1, z2, z3) and the public key is pk = (X,Y, Z1, Z2, Z3,
e, g,G,Gt, p).
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ObtainLimit. The user computes commitments Cid = gidZrid
1 and Cs = Zrs

3

and provides SPK{(α, β, γ) : Cid = gαZβ
1 ∧ Cs = Zγ

3 }. The element c of the
signature is now computed by the CP as c = ax(CidCsZ

L
2 )

kxy and the user can
randomize this signature for token t = (id, rid, L, rs) as usual.

Consume. Here the user only provides id of the actual token and a signature
of knowledge

SPK{(α, β, γ, δ) : vασ = vvβridv
γ
s v

δ
rs ∧ (2l|d| − 1 ≤ γ ≤ 2lL − 1)}

In this setting L does not represent a user-specific limit but the maximum of
all issued limits (or any large enough number), whereas this proof convinces
the CP that enough resources to integrate d are still available (note that the
local computations of the CP for the verification of the signature in step 2 have
to be adapted, which is however straightforward). In step 3, the update of the
signature remains identical to the first scheme with the exception that the CP

computes the commitment as C̃s−|d| = A
′p−|d|
2 A′3, which updates the remaining

resources, e.g. in the first run of the Consume protocol to s := L− |d|.
Reclaim. The reclaim protocol remains identical to the first scheme with the

exception that C̃s+|d| = A
′|d|
2 A′3.

4.5 Performance Evaluation

In this section we provide a performance evaluation of our first scheme. We have
implemented the user’s and the cloud provider’s parts of the protocols in Java
using the jPBC4 library version 1.2.0. This library provides a Java porting of
as well as a Java wrapper for the Pairing-Based Cryptography Library (PBC)5.
In particular, we have used the Java PBC wrapper which calls the PBC C
library and is significantly faster than the pure Java implementation. All our
experiments were performed on an Intel Core 2 duo running at 2.6 GHz with
3GB RAM on Linux Ubuntu 10.10.

As the cryptographic setting we have chosen a symmetric pairing e : G×G →
Gt constructed on the supersingular elliptic curve y2 = x3 +x over a prime field
Fq where |q| = 512 bits and q ≡ 3 (mod 4). The group G represents a subgroup
of E(Fq) of order r = 160 bits. The embedding degree is k = 2 and thus Gt is a
subgroup of Fq2 and with our choice of the parameters we obtain a DL security
of 1024 bit. For the non-interactive proofs of knowledge we have used the SHA-
256 hash function as a single parameter random oracle.

Experiments. For evaluating the computational performance of the client and
the server implementation we have taken the average timing from 100 experi-
ments. Therefore we have chosen the resource bounds (limits) as L = 10i for
i = 3, . . . , 9 (see Figure 1). Within every of the 100 experiments per bound, the
user has conducted 10 Consume as well as 10 Reclaim operations with |d| sam-
pled uniformly at random from [1, 10i−2]. Figure 1 presents the performance of

4 http://libeccio.dia.unisa.it/projects/jpbc/
5 http://crypto.stanford.edu/pbc/

http://libeccio.dia.unisa.it/projects/jpbc/
http://crypto.stanford.edu/pbc/
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the ObtainLimit, the Consume and the Reclaim protocols from a computational
and bandwidth perspective, whereas point compression for elements in G is used
to reduce the bandwidth consumption. As one can see, all protocols are highly
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Fig. 1. Experimental results from a Java implementation of our first scheme

efficient from the user’s as well as the cloud provider’s perspective, both in the
computational effort and the bandwdith consumption. This holds, although the
code has not been optimized for performance and pre-computations have not
been used. Hence, our evaluation shows that from the efficiency point of view
our protocols are entirely practical.

4.6 Extensions and System Issues

Below, we present extensions of our schemes and aspects which seem to be
important when deploying them for practical applications.

Limited Validity. One could rightly argue that in a large scale cloud the double
spending detection of token identifiers using a blacklist (database) does not scale
well. In order to overcome this limitation, we can extend our schemes such that
a resource limit associated to a token only has a limited validity. Then, before
the validity ends a user has to provide the actual token, i.e. the identifier and the
available resources (either s and L or solely s in the second scheme) along with
the corresponding signature. Then the user runs a new ObtainLimit protocol
with the CP. Note that in case of the first scheme users should not end up with
a new limit L representing the remaining resources, since this is very likely to
be unique. Thus users should take one of the predefined limits. We now sketch
how this adaption for the first scheme looks like (for the second one it can



88 D. Slamanig

be done analogously): The keys of the CP are adapted such that the public
key is pk = (X,Y, Z1, Z2, Z3, Z4, Z5, Z6, e, g,G,Gt, p). Token are augmented by
elements (V, rV ) whereas the former represent the validity period, e.g. a hash
computed from an encoding in Unix time. In the ObtainLimit protocol the user
additionally computes ZrV

6 (and proves knowledge of this DL) and the c part
of the signature is adapted to c = ax(CidCsZ

L
4 Z

V
5 ZrV

6 ) whereas the CP here
integrates the validity V . The remainig ideas stay the same with exception that
in the Consume protocol, the SPK needs to be adapted to

SPK{(α, β, γ, δ, ε, ζ) : vασ = vvβridv
γ
s v

δ
rsv

ε
V v

ζ
rV ∧

(0 ≤ γ ≤ 2lL−l|d| − 1) ∧ (2ltime − 1 ≤ ε ≤ 2lp − 1)}
whereas p represents the maximum validity period and time the representation
of the actual date and time (in the Reclaim protocol we only need the second
range proof). For the update of the signature and the token respectively, the

user has to additionally compute CV = (A′5A
′r′V
6 )r

′
and augment the proof of

knowledge in step 3 of Protocol 2 to

SPK{(ζ, η, φ, ι, κ, λ, μ, ν, ξ) : Cid+id′ = a′ζA′η1 ∧CV = A′φ5 A′ι6 ∧
C̃s+|d| = (Cs+|d|)φ ∧ v = vφσ(v

−1
rid

)κ(v−1s )λ(v−1rs )μ(v−1V )ν(v−1rV )ξ}
Note that these modifications do influence the overall performance of the Consume
protocol approximately by a factor of two, which though performs very good in
practice when compared with our experimental results.

Elasticity. Clouds extremely benefit from users being able to request resources
“on the fly”. In our first scheme this can only be achieved by means of requesting
additional tokens, i.e. running additional ObtainLimt protocols for the required
resource, and users have then to manage a list of tokens. The second scheme
allows for such updates, whereas we can simply use the Reclaim protocol of
Section 4.4 (we may denote it as Recharge in this case), whereas |d| is simply
replaced by the amount of resources to be extended.

Tariff Schemes. If we consider the resource bound as “credits”, then the CP
can apply different tariff schemes at different points in time. This can simply be
realized by using a different weight wi for tariff scheme i and using |d|′ = |d| ·wi

instead of |d| in our schemes.

4.7 Security Analysis

Regarding the security we have the following theorem whereas due to space
constraints we refer the reader to the full version of this paper for the proof.

Theorem 1. Assuming that the LRSW assumption in G (CL signature scheme
is secure) and the DL assumption in G hold (the commitments are secure) and
the proofs of knowledge are honest-verifier zero-knowledge, then the anonymous
yet authorized and bounded cloud resource scheme presented in section 4.3 is
secure with respect to the security model defined in section 2.3.
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5 Conclusion

In this paper we have investigated the problem of anonymous yet authorized and
bounded use of cloud resources. We have presented a scheme, it’s modification
providing even more privacy, have presented extensions valuable for practical
application and have supported the efficiency of the proposed scheme by a per-
formance analysis based on a prototypical implementation.

Concluding we present anonymity revocation as an open problem. It is not
clear to us how anonymity revocation could be suitably realized in this setting.
We argue that it does not seem to be meaningful to use identity escrow within
every transaction, i.e. to verifiably encrypt the user’s identity. It is absolutely not
clear who would have the power to perform anonymity revocation. In contrast,
if at all, it seems more suitable to employ techniques like used within e-cash
[9] or (n-times) anonymous authentication [9,21]. However, it is not clear to us
how to achieve this, since in the aforementioned approaches spend protocols or
authentications are atomic and in our setting we do not know in advance how
often a user will consume or reclaim resources. We leave this functionality as an
open problem for future work.

Acknowledgements. The author would like to thank the anonymous referees
for providing valuable and helpful comments on this work as well as Gregory
Zaverucha for pointing out prior independent work [10] on signature updates.
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Abstract. We derive an explicit method of computing the composition
step in Cantor’s algorithm for group operations on Jacobians of hyper-
elliptic curves. Our technique is inspired by the geometric description
of the group law and applies to hyperelliptic curves of arbitrary genus.
While Cantor’s general composition involves arithmetic in the polyno-
mial ring Fq[x], the algorithm we propose solves a linear system over
the base field which can be written down directly from the Mumford
coordinates of the group elements.

We apply this method to give more efficient formulas for group opera-
tions in both affine and projective coordinates for cryptographic systems
based on Jacobians of genus 2 hyperelliptic curves in general form.
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1 Introduction

The field of curve-based cryptography has flourished for the last quarter century
after Koblitz [31] and Miller [44] independently proposed the use of elliptic curves
in public-key cryptosystems in the mid 1980’s. Compared with traditional group
structures like F∗

p, elliptic curve cryptography (ECC) offers the powerful advan-
tage of achieving the same level of conjectured security with a much smaller
elliptic curve group. In 1989, Koblitz [32] generalized this idea by proposing
Jacobians of hyperelliptic curves of arbitrary genus as a way to construct Abelian
groups suitable for cryptography. Roughly speaking, hyperelliptic curves of genus
g can achieve groups of the same size and security as elliptic curves, whilst being
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defined over finite fields with g times fewer bits1. At the same time however,
increasing the genus of a hyperelliptic curve significantly increases the computa-
tional cost of performing a group operation in the corresponding Jacobian group.
Thus, the question that remains of great interest to the public-key cryptography
community is, under which circumstances elliptic curves are preferable, and vice
versa. At the present time, elliptic curves carry on standing as the front-runner
in most practical scenarios, but whilst both ECC and hyperelliptic curve cryp-
tography (HECC) continue to enjoy a wide range of improvements, this question
remains open in general. For a nice overview of the progress in this race and of
the state-of-the-art in both cases, the reader is referred to the talks by Bernstein
[4], and by Lange [39].

Cantor [6] was the first to give a concrete algorithm for performing computa-
tions in Jacobian groups of hyperelliptic curves over fields of odd characteristic.
Shortly after, Koblitz [32] modified this algorithm to apply to fields of any charac-
teristic. Cantor’s algorithm makes use of the polynomial representation of group
elements proposed by Mumford [46], and consists of two stages: (i) the compo-
sition stage, based on Gauss’s classical composition of binary quadratic forms,
which generally outputs an unreduced divisor, and (ii) the reduction stage, which
transforms the unreduced divisor into the unique reduced divisor that is equiv-
alent to the sum, whose existence is guaranteed by the Riemann-Roch theorem
[33]. Cantor’s algorithm has since been substantially optimized in work initiated
by Harley [24], who was the first to obtain practical explicit formulas in genus
2, and extended by Lange [34,38], who, among several others [43,50,45,49], gen-
eralized and significantly improved Harley’s original approach. Essentially, all of
these improvements involve unrolling the polynomial arithmetic implied by Can-
tor’s algorithm into operations in the underlying field, and finding specialized
shortcuts dedicated to each of the separate cases of input (see [35, §4]).

In this paper we propose an explicit alternative to unrolling Cantor’s polyno-
mial arithmetic in the composition phase. Our method is inspired by considering
the geometric description of the group law and applies to hyperelliptic curves
of any genus. The equivalence of the geometric group law and Cantor’s algo-
rithm was proven by Lauter [40] in the case of genus 2, but since then there has
been almost no reported improvements in explicit formulas that benefit from
this depiction. The notable exception being the work of Leitenberger [42], who
used Gröbner basis reduction to show that in the addition of two distinct di-
visors on the Jacobian of a genus 2 curve, one can obtain explicit formulas to
compute the required geometric function directly from the Mumford coordinates
without (unrolling) polynomial arithmetic. Leitenberger’s idea of obtaining the
necessary geometric functions in a simple and elementary way is central to the
theme of this paper, although we note that the affine addition formulas that
result from our description (which do not rely on any Gröbner basis reduction)
are significantly faster than the direct translation of those given in [42].

1 The security argument becomes more complicated once venturing beyond genus 2,
where the attacks by Gaudry [17] and others [8,21,48] overtake the Pollard Rho
method [47].
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We use the geometric description of the group law to prove that the inter-
polating functions for the composition step can be found by writing down a
linear system in the ground field to be solved in terms of the Mumford coordi-
nates of the divisors. Therefore, the composition algorithm for arbitrary genera
proposed in this work is immediately explicit in terms of arithmetic in Fq, in
contrast to Cantor’s composition which operates in the polynomial ring Fq[x],
the optimization of which calls for ad-hoc attention in each genus to unravel the
Fq[x] operations into explicit formulas in Fq.

To illustrate the value of our approach, we show that, for group operations
on Jacobians of general genus 2 curves over large prime fields, the (affine and
projective) formulas that result from this description are more efficient than
their predecessors. Also, when applying this approach back to the case of genus
1, we are able to recover several of the tricks previously explored for merging
simultaneous group operations to optimize elliptic curve computations.

The rest of this paper is organized as follows. We briefly touch on some more
related work, before moving to Section 2 where we give a short background on
hyperelliptic curves and the Mumford representation of Jacobian elements. Sec-
tion 3 discusses the geometry of Jacobian arithmetic on hyperelliptic curves, and
shows that we can use simple linear algebra to compute the required geometric
functions from the Mumford coordinates. Section 4 is dedicated to illustrating
how this technique results in fast explicit formulas in genus 2, whilst Section 5
generalizes the algorithm for all g ≥ 2. As we hope this work will influence fur-
ther progress in higher genus arithmetic, in Section 6 we highlight some further
implications of adopting this geometrically inspired approach, before concluding
in Section 7. MAGMA scripts that verify our proposed algorithms and formulas
can be found in the full version of this paper.

Related Work. There are several high-level papers (e.g. [27,25]) which discuss
general methods for computing in Jacobians of arbitrary algebraic curves. In
addition, there has also been work which specifically addresses arithmetic on
non-hyperelliptic Jacobians from a geometric perspective (e.g. [13,14]).

Khuri-Makdisi treated divisor composition on arbitrary algebraic curves with
linear algebra techniques in [29] and [30]. In contrast to Khuri-Makdisi’s deep
and more general approach, our paper specifically aims to present an explicit
algorithm in an implementation-ready format that is specific to hyperelliptic
curves, much like his joint work with Abu Salem which applied his earlier tech-
niques to present explicit formulas for arithmetic on C3,4 curves [1]. Some other
authors have also applied techniques from the realm of linear algebra to Jaco-
bian operations: two notable examples being the work of Guyot et al. [23] and
Avanzi et al. [2] who both used matrix methods to compute the resultant of two
polynomials in the composition stage.

Since we have focused on general hyperelliptic curves, our comparison in genus
2 does not include the record-holding work by Gaudry [19], which exploits the
Kummer surface associated with curves of a special form to achieve the current
outright fastest genus 2 arithmetic for those curve models. Gaudry and Harley’s
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second exposition [20] further describes the results in [24]. Finally, we do not
draw comparisons with any work on real models of hyperelliptic curves, which
usually result in slightly slower formulas than imaginary hyperelliptic curves,
but we note that both Galbraith et al. [16] and Erickson et al. [11] achieve
very competitive formulas for group law computations on real models of genus
2 hyperelliptic curves.

2 Background

We give some brief background on hyperelliptic curves and the Mumford repre-
sentation of points in the Jacobian. For a more in depth discussion, the reader
is referred to [3, §4] and [15, §11]. Over the field K, we use Cg to denote the
general (“imaginary quadratic”) hyperelliptic curve of genus g given by

Cg : y2 + h(x)y = f(x),
h(x), f(x) ∈ K[x], deg(f) = 2g + 1, deg(h) ≤ g, f monic, (1)

with the added stipulation that no point (x, y) ∈ K simultaneously sends both
partial derivatives 2y + h(x) and f ′(x) − h′(x)y to zero [3, §14.1]. As long as
char(K) �= 2g + 1, we can isomorphically transform Cg into Ĉg, given as Ĉg :
y2 + h(x)y = x2g+1 + f̂2g−1x

2g−1 + ... + f̂1x + f̂0, so that the coefficient of x2g

is zero [3, §14.13]. In the case of odd characteristic fields, it is standard to also
annihilate the presence of h(x) completely under a suitable transformation, in
order to obtain a simpler model (we will make use of this in §4). We abuse
notation and use Cg from hereon to refer to the simplified version of the curve
equation in each context. Although the proofs in §3 apply to any K, it better
places the intention of the discussion to henceforth regard K as a finite field Fq.

We work in the Jacobian group Jac(Cg) of Cg, where the elements are equiv-
alence classes of degree zero divisors on Cg. Divisors are formal sums of points
on the curve, and the degree of a divisor is the sum of the multiplicities of points
in the support of the divisor. Two divisors are equivalent if their difference is
a principal divisor, i.e. equal to the divisor of zeros and poles of a function. It
follows from the Riemann-Roch Theorem that for hyperelliptic curves, each class
D has a unique reduced representative of the form

ρ(D) = (P1) + (P2) + ... + (Pr)− r(P∞),

such that r ≤ g, Pi �= −Pj for i �= j, no Pi satisfying Pi = −Pi appears more
than once, and with P∞ being the point at infinity on Cg. We drop the ρ from
hereon and, unless stated otherwise, assume divisor equations involve reduced
divisors. When referring to the non-trivial elements in the reduced divisor D, we
mean all P ∈ supp(D) where P �= P∞, i.e. the elements corresponding to the
effective part of D. For each of the r non-trivial elements appearing in D, write
Pi = (xi, yi). Mumford proposed a convenient way to represent such divisors as
D = (u(x), v(x)), where u(x) is a monic polynomial with deg(u(x)) ≤ g satisfying
u(xi) = 0, and v(x) (which is not monic in general) with deg(v(x)) < deg(u(x))
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is such that v(xi) = yi, for 1 ≤ i ≤ r. In this way we have a one-to-one corre-
spondence between reduced divisors and their so-called Mumford representation
[46]. We use ⊕ (resp. 
) to distinguish group additions (resp. subtractions) be-
tween Jacobian elements from “additions” in formal divisor sums. We use D̄ to
denote the divisor obtained by taking the hyperelliptic involution of each of the
non-trivial elements in the support of D.

When developing formulas for implementing genus g arithmetic, we are largely
concerned with the frequent case that arises where both (not necessarily distinct)
reduced divisors D = (u(x), v(x)) and D′ = (u′(x), v′(x)) in the sum D ⊕ D′

are such that deg(u(x)) = deg(u′(x)) = g. This means that D = E − g(P∞)
and D′ = E′ − g(P∞), with both E and E′ being effective divisors of degree g;
from hereon we interchangeably refer to such divisors as full degree or degree g
divisors, and we use Ĵac(Cg) to denote the set of all such divisor classes of full
degree, where Ĵac(Cg) ⊂ Jac(Cg). In Section 5.2 we discuss how to handle the
special case when a divisor of degree less than g is encountered.

3 Computations in the Mumford Function Field

The purpose of this section is to show how to compute group law operations in
Jacobians by applying linear algebra to the Mumford coordinates of divisors. The
geometric description of the group law is an important ingredient in the proof
of the proposed linear algebra approach (particularly in the proof of Proposition
3), so we start by reviewing the geometry underlying arithmetic on Jacobians of
hyperelliptic curves.

Since the Jacobian of a hyperelliptic curve is the group of degree zero divisors
modulo principal divisors, the group operation is formal addition modulo the
equivalence relation. Thus two divisors D and D′ can be added by finding a
function whose divisor contains the support of both D and D′, and then the
sum is equivalent to the negative of the complement of that support. Such a
function �(x) can be obtained by interpolating the points in the support of the
two divisors. The complement of the support of D and D′ in the support of
div(�) consists of the other points of intersection of � with the curve. In general
those individual points may not be defined over the ground field for the curve.
We are thus led to work with Mumford coordinates for divisors on hyperelliptic
curves, since the polynomials in Mumford coordinates are defined over the base
field and allow us to avoid extracting individual roots and working with points
defined over extension fields.

For example, consider adding two full degree genus 3 divisors D, D′ ∈
Ĵac(C3), with respective supports supp(D) = {P1, P2, P3} ∪ {P∞} and
supp(D′) ={P ′

1, P
′
2, P

′
3} ∪ {P∞}, as in Figure 1. After computing the quintic

function �(x, y) =
∑5

i=0 �ix
i that interpolates the six non-trivial points in the

composition phase, computing the x-coordinates of the remaining (four) points
of intersection explicitly would require solving
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�2
5 ·

3∏

i=1

(x− xi) ·
3∏

i=1

(x− x′
i)

4∏

i=1

(x− x̄i) =
( 5∑

i=0

�ix
i
)2 − f(x)

for x̄1,x̄2,x̄3 and x̄4, which would necessitate multiple root extractions. On the
other hand, the exact division

∏4
i=1(x − x̄i) =

((∑5
i=0 �ix

i
)2 − f(x)

)
/
(
�2
5 ·∏3

i=1(x−xi) ·
∏3

i=1(x−x′
i)
)

can be computed very efficiently (and entirely over
Fq) by equating coefficients of x.

•
P1

•
P2

•P3

•
P ′1

•
P ′2

•
P ′3•P̃1

•
P̃2

•
P̃3

•
P̃4

Fig. 1. The composition stage of a gen-
eral addition on the Jacobian of a genus 3
curve C3 over the reals R: the 6 points in
the combined supports of D and D′ are in-
terpolated by a quintic polynomial which
intersects C in 4 more places to form the
unreduced divisor D̃ = P̃1 + P̃2 + P̃3 + P̃4.

•
P̃1

•
P̃2

•
P̃3

•P̃4

•P ′′1

•P
′′
2

•P ′′3

Fig. 2. The reduction stage: a (vertically)
magnified view of the cubic function which
interpolates the points in the support of
D̃ and intersects C3 in three more places
to form D̄′′ = (P ′′

1 + P ′′
2 + P ′′

3 ) ∼ D̃, the
reduced equivalent of D̃.

Whilst the Mumford representation is absolutely necessary for efficient reduc-
tion, the price we seemingly pay in deriving formulas from the simple geometric
description lies in the composition phase. In any case, finding the interpolating
function y = �(x) would be conceptually trivial if we knew the (x, y) coordinates
of the points involved, but computing the function directly from the Mumford
coordinates appears to be more difficult. In what follows we detail how this can
be achieved in general, using only linear algebra over the base field. The mean-
ings of the three propositions in this section are perhaps best illustrated through
the examples that follow each of them.
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Proposition 1. On the Jacobian of a genus g hyperelliptic curve, the set Ĵac(Cg)
of divisor classes with reduced representatives of full degree g can be described
exactly as the intersection of g hypersurfaces of dimension (at most) 2g.

Proof. Let D =
(
u(x), v(x)

)
=

(
xg +

∑g−1
i=0 uix

i ,
∑g−1

i=0 vix
i
) ∈ Ĵac(Cg(K)) be

an arbitrary degree g divisor class representative with supp(D) = {(x1, y1), ...,
(xg, yg)} ∪ {P∞}, so that u(xi) = 0 and v(xi) = yi for 1 ≤ i ≤ g. Let Ψ(x) =∑g−1

i=0 Ψix
i be the polynomial obtained by substituting y = v(x) into the equation

for Cg and reducing modulo the ideal generated by u(x). Clearly, Ψ(xi) ≡ 0 mod
〈u(x)〉 for each of the g non-trivial elements in supp(D), but since deg(Ψ(x)) ≤
g−1, it follows that each of its g coefficients Ψi must be identically zero, implying
that every element D ∈ Ĵac(Cg) of full degree g lies in the intersection of the
g hypersurfaces Ψi = Ψi(u0, ..., ug−1, v0, ..., vg−1) = 0. On the other hand, each
unique 2g-tuple in K which satisfies Ψi = 0 for 1 ≤ i ≤ g defines a unique full
degree representative D ∈ Ĵac(Cg(K)) (cf. [15, ex 11.3.7]). ��
Definition 1 (Mumford ideals). We call the g ideals 〈Ψi〉 arising from the g
hypersurfaces Ψi = 0 in Proposition 1 the Mumford ideals.

Definition 2 (Mumford function fields). The function fields of Ĵac(Cg) and
Ĵac(Cg)× Ĵac(Cg) are respectively identified with the quotient fields of

K[u0, ..., ug−1, v0, ..., vg−1]

〈Ψ0, ..., Ψg−1〉 and
K[u0, ..., ug−1, v0, ..., vg−1, u

′
0, ..., u

′
g−1, v

′
0, ..., v

′
g−1]

〈Ψ0, ..., Ψg−1, Ψ ′
0, ..., Ψ

′
g−1〉

,

which we call the Mumford function fields and denote by KMum
DBL = K(Ĵac(Cg))

and KMum
ADD = K(Ĵac(Cg) × Ĵac(Cg)) respectively. We abbreviate and use

Ψi, Ψ
′
i to differentiate between Ψi = Ψi(u0, ..., ug−1, v0, ..., vg−1) and Ψ ′

i =
Ψi(u′

0, ..., u
′
g−1, v

′
0, ..., v′g−1) when working in KMum

ADD .

Example 1. Consider the genus 2 hyperelliptic curve defined by C : y2 = (x5 +
2x3 − 7x2 + 5x + 1) over F37. A general degree two divisor D ∈ Ĵac(C) takes
the form D = (x2 + u1x + u0, v1x + v0). Substituting y = v1x + v0 into C and
reducing modulo 〈x2 + u1x + u0〉 gives

(v1x + v0)2 − (x5 + 2x3 − 7x2 + 5x + 1) ≡ Ψ1x + Ψ0 ≡ 0 mod 〈x2 + u1x + u0〉

where

Ψ1(u1, u0, v1, v0)=3 u0u1
2 − u1

4 − u0
2 + 2 v0v1 − v1

2u1 + 2 (u0 − u1
2)−7u1 − 5,

Ψ0(u1, u0, v1, v0)=v0
2 − v1

2u0 + 2 u0
2u1 − u1

3u0 − 2u1u0 − 7u0 − 1.

The number of tuples (u0, u1, v0, v1) ∈ F37 lying in the intersection of
Ψ0 = Ψ1 = 0 is 1373, which is the number of degree 2 divisors on Jac(C),
i.e. #Ĵac(C) = 1373. There are 39 other divisors on Jac(C) with de-
grees less than 2, each of which is isomorphic to a point on the curve, so that
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#Jac(C) = #Ĵac(C) + #C = 1373 + 39 = 1412. Formulas for performing
full degree divisor additions are derived inside the Mumford function field
KMum

ADD = Quot(K[u0, u1, v0, v1, u
′
0, u

′
1, v

′
0, v

′
1]/〈Ψ0, Ψ1, Ψ

′
0, Ψ

′
1〉), whilst formulas

for full degree divisor doublings are derived inside the Mumford function field
KMum

DBL = Quot(K[u0, u1, v0, v1]/〈Ψ0, Ψ1〉).
Performing the efficient composition of two divisors amounts to finding the least
degree polynomial function that interpolates the union of their (assumed dis-
joint) non-trivial supports. The following two propositions show that in the gen-
eral addition and doubling of divisors, finding the interpolating functions in the
Mumford function fields can be accomplished by solving linear systems.

Proposition 2 (General divisor addition). Let D and D′ be reduced divi-
sors of degree g on Jac(Cg) such that supp(D) = {(x1, y1), ..., (xg, yg)} ∪ {P∞},
supp(D′) = {(x′

1, y
′
1), ..., (x

′
g , y′

g)}∪{P∞} and xi �= x′
j for all 1 ≤ i, j ≤ g. A func-

tion � on Cg that interpolates the 2g non-trivial elements in supp(D)∪ supp(D′)
can be determined by solving a linear system of dimension 2g inside the Mumford
function field KMum

ADD .

Proof. Let D =
(
u(x), v(x)

)
=

(
xg +

∑g−1
i=0 uix

i ,
∑g−1

i=0 vix
i
)

and D′ =
(
u′(x),

v′(x)
)

=
(
xg +

∑g−1
i=0 u′

ix
i ,

∑g−1
i=0 v′ix

i
)
. Let the polynomial y = �(x) =∑2g−1

i=0 �ix
i be the desired function that interpolates the 2g non-trivial elements

in supp(D) ∪ supp(D′), i.e. yi = �(xi) and y′
i = �(x′

i) for 1 ≤ i ≤ g. Fo-
cussing firstly on D, it follows that v(x) − �(x) = 0 for x ∈ {xi}1≤i≤g. As
in the proof of Proposition 1, we reduce modulo the ideal generated by u(x)
giving Ω(x) = v(x) − �(x) ≡ ∑g−1

i=0 Ωix
i ≡ 0 mod 〈xg +

∑g−1
i=0 uix

i〉. Since
deg(Ω(x)) ≤ g − 1 and Ω(xi) = 0 for 1 ≤ i ≤ g, it follows that the g coefficients
Ωi = Ωi(u0, ..., ug−1, v0, ..., vg−1, �0, ..., �2g−1) must be all identically zero. Each
gives rise to an equation that relates the 2g coefficients of �(x) linearly inside
KMum

ADD . Defining Ω′(x) from D′ identically and reducing modulo u′(x) gives an-
other g linear equations in the 2g coefficients of �(x). ��
Example 2. Consider the genus 3 hyperelliptic curve defined by C : y2 = x7 + 1
over F71, and take D =

(
u(x), v(x)

)
, D′ =

(
u′(x), v′(x)

) ∈ Ĵac(C) as

D =
(
x3 + 6x2 + 41x + 33, 29x2 + 22x + 47

)
,

D′ =
(
x3 + 18x2 + 15x + 37, 49x2 + 46x + 59

)
.

We compute the polynomial �(x) =
∑5

i=0 �ix
i that interpolates the six non-

trivial elements in supp(D) ∪ supp(D′) using �(x) − v(x) ≡ 0 mod 〈u(x)〉 and
�(x)− v′(x) ≡ 0 mod 〈u′(x)〉, to obtain Ωi and Ω′

i for 0 ≤ i ≤ 2. For D and D′,
we respectively have that

0 ≡ �(x)− (29x2 + 22x + 47) ≡ Ω2x
2 + Ω1x + Ω0 mod 〈x3 + 6x2 + 41x + 33〉,

0 ≡ �(x)− (49x2 + 46x + 59) ≡ Ω′
2x

2 + Ω′
1x + Ω′

0 mod 〈x3 + 18x2 + 15x + 37〉,
with
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Ω2 = �2 + 65�3 + 66�4 + 30�5 − 29; Ω′
2 = �2 + 53�3 + 25�4 + 67�5 − 49;

Ω1 = �1 + 30�3 + 48�5 − 22; Ω′
1 = �1 + 56�3 + 20�4 + 7�5 − 46;

Ω0 = �0 + 38�3 + 56�4 + 23�5 − 47; Ω′
0 = �0 + 34�3 + 27�4 + 69�5 − 59.

Solving Ω0≤i≤2, Ω
′
0≤i≤2 = 0 simultaneously for �0, ..., �5 gives �(x) = 21x5 +x4 +

36x3 + 46x2 + 64x + 57.

Proposition 3 (General divisor doubling). Let D be a divisor of degree g
representing a class on Jac(Cg) with supp(D) = {P1, ..., Pg}∪{P∞}. A function
� on Cg such that each non-trivial element in supp(D) occurs with multiplicity
two in div(�) can be determined by a linear system of dimension 2g inside the
Mumford function field KMum

DBL .

Proof. Let D =
(
u(x), v(x)

)
=

(
xg +

∑g−1
i=0 uix

i ,
∑g−1

i=0 vix
i
)

and write Pi =
(xi, yi) for 1 ≤ i ≤ g. Let the polynomial y = �(x) =

∑2g−1
i=0 �ix

i be the desired
function that interpolates the g non-trivial elements of supp(D), and also whose
derivative �′(x) is equal to dy/dx on Cg(x, y) at each such element. Namely,
�(x) =

∑2g−1
i=0 �ix

i is such that �(xi) = yi and d�
dx(xi) = dy

dx(xi) on C for 1 ≤ i ≤ g.
This time the first g equations come from the direct interpolation as before,
whilst the second g equations come from the general expression for the equated
derivates, taking d�

dx(xi) = dy
dx(xi) on Cg as

g−1∑

i=1

i�ix
i−1 =

(2g + 1)x2g +
∑2g−1

i=1 ifix
i−1 + (

∑g
i=0 ihix

i−1) · y
2y +

∑g
i=0 hixi

for each xi with 1 ≤ i ≤ g. Again, it is easy to see that substituting y = v(x) and
reducing modulo the ideal generated by u(x) will produce a polynomial Ω′(x)
with degree less than or equal to g − 1. Since Ω′(x) has g roots, Ω′

i = 0 for
0 ≤ i ≤ g− 1, giving rise to the second g equations which importantly relate the
coefficients of �(x) linearly inside KMum

DBL . ��
Example 3. Consider the genus 3 hyperelliptic curve defined by C : y2 = x7 +
5x + 1 over F257, and take D ∈ Ĵac(C) as D = (u(x), v(x)) = (x3 + 57x2 +
26x + 80, 176x2 + 162x + 202). We compute the polynomial �(x) =

∑5
i=0 �ix

i

that interpolates the three non-trivial points in supp(D), and also has the same
derivative as C at these points. For the interpolation only, we obtain Ω0, Ω1, Ω2

(collected below) identically as in Example 2.
For Ω′

0, Ω
′
1, Ω

′
2, equating dy/dx on C with �′(x) gives

7x6 + 5
2y

≡ 5�5x
4 + 4�4x

3 + 3�3x
2 + 2�2x + �1 mod 〈x3 + 57x2 + 26x + 80〉,

which, after substituting y = 176x2 +162x+202, rearranges to give 0 ≡ Ω′
2x

2 +
Ω′

1x + Ω′
0, where

Ω2 = 118�4 + 256�2 + 57�3 + 96�5; Ω′
2 = 76�5 + 2541�4 + 254�3 + 166;

Ω1 = 140�4 + 256�1 + 26�3 + 82�5; Ω′
1 = 209 + 255�2 + 104�4 + 186�5;

Ω0 = 256�0 + 80�3 + 69�5 + 66�4; Ω′
0 = 73�5 + 63�4 + 256�1 + 31.
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Solving Ω0≤i≤2, Ω
′
0≤i≤2 = 0 simultaneously for �0, ..., �5 gives �(x) = 84x5 +

213x3 + 78x2 + 252x + 165.

This section showed that divisor composition on hyperelliptic curves can be
achieved via linear operations in the Mumford function fields.

4 Generating Explicit Formulas in Genus 2

This section applies the results of the previous section to develop explicit for-
mulas for group law computations involving full degree divisors on Jacobians of
genus 2 hyperelliptic curves. Assuming an underlying field of large prime char-
acteristic, such genus 2 hyperelliptic curves C′/Fq can always be isomorphically
transformed into C2/Fq given by C2 : y2 = x5 + f3x

3 + f2x
2 + f1x + f0, where

C2
∼= C′ (see §2). The Mumford representation of a general degree two divisor

D ∈ Ĵac(C2) ⊂ Jac(C2) is given as D = (x2 + u1x + u0, v1x + v0). From Propo-
sition 1, we compute the g = 2 hypersurfaces whose intersection is the set of all
such divisors Ĵac(C2) as follows. Substituting y = v1x + v0 into the equation for
C2 and reducing modulo the ideal 〈x2 + u1x + u0〉 gives the polynomial Ψ(x) as

Ψ(x) ≡ Ψ1x + Ψ0 ≡ (v1x + v0)2 − (x5 + f3x
3 + f2x

2 + f1x + f0)

mod 〈x2 + u1x + u0〉,
where

Ψ0 = v0
2 − f0 + f2u0 − v1

2u0 + 2 u0
2u1 − u1f3u0 − u1

3u0,

Ψ1 = 2 v0v1 − f1 − v1
2u1 + f2u1 − f3(u1

2 − u0) + 3 u0u1
2 − u1

4 − u0
2. (2)

We will derive doubling formulas inside KMum
ADD = Quot(K[u0, u1, v0, v1]/〈Ψ0, Ψ1〉)

and addition formulas inside KMum
ADD = Quot(K[u0, u1, v0, v1, u

′
0, u

′
1, v

′
0, v

′
1]

/〈Ψ0, Ψ1, Ψ
′
0, Ψ

′
1〉). In §4.2 particularly, we will see how the ideal 〈Ψ0, Ψ1〉 is useful

in simplifying the formulas that arise.

4.1 General Divisor Addition in Genus 2

Let D = (x2 + u1x + u0, v1x + v0), D′ = (x2 + u′
1x + u′

0, v
′
1x + v′0) ∈ Ĵac(C2) be

two divisors with supp(D) = {P1, P2}∪{P∞} and supp(D′) = {P ′
1, P

′
2}∪{P∞},

such that no Pi has the same x coordinate as P ′
j for 1 ≤ i, j ≤ 2. Let D′′ =

(x2 + u′′
1x + u′′

0 , v′′1 x + v′′0 ) = D⊕D′. The composition step in the addition of D
and D′ involves building the linear system inside KMum

ADD that solves to give the
coefficients �i of the cubic polynomial y = �(x) =

∑3
i=0 �ix

i which interpolates
P1, P2, P

′
1, P

′
2. Following Proposition 2, we have

0 ≡ Ω1x + Ω0 ≡ �3x
3 + �2x

2 + �1x + �0 − (v1x + v0)

≡ (�3(u1
2 − u0)− �2u1 + �1 − v1)x + (�3u1u0 − �2u0 + �0 − v0)

mod 〈x2 + u1x + u0〉 , (3)
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•P ′1
•
P ′2

•
P1

•P2 •

•P ′′1

•

•
P ′′2

Fig. 3. The group law (general addition)
on the Jacobian of the genus 2 curve C2

over the reals R, for (P1+P2)⊕(P ′
1+P ′

2) =
P ′′

1 + P ′′
2 .

•
P1

•
P2

•
•

P ′′1

•

•
P ′′2

Fig. 4. A general point doubling on the
Jacobian of a genus 2 curve C2 over the
reals R, for [2](P1 + P2) = P ′′

1 + P ′′
2 .

which provides two equations (Ω1 = 0 and Ω0 = 0) relating the four coefficients
of the interpolating polynomial linearly inside KMum

ADD . Identically, interpolating
the support of D′ produces two more linear equations which allow us to solve
for the four �i as

⎛

⎜
⎜
⎝

1 0 −u0 u1u0

0 1 −u1 u2
1 − u0

1 0 −u′
0 u′

1u
′
0

0 1 −u′
1 u′ 2

1 − u′
0

⎞
⎟
⎟⎠ ·

⎛

⎜
⎜
⎝

�0

�1

�2

�3

⎞
⎟
⎟⎠ =

⎛

⎜
⎜
⎝

v0

v1

v′0
v′1

⎞
⎟
⎟⎠ .

Observe that the respective subtraction of rows 1 and 2 from rows 3 and 4 gives
rise to a smaller system that can be solved for �2 and �3, as

(
u0 − u′

0 u′
1u

′
0 − u1u0

u1 − u′
1 (u′ 2

1 − u′
0)− (u2

1 − u0)

)
·
(

�2

�3

)
=

(
v′0 − v0

v′1 − v1

)
. (4)

Remark 1. We will see in Section 5.1 that for all g ≥ 2, the linear system that
arises in the computation of �(x) can always be trivially reduced to be of di-
mension g, but for now it is useful to observe that once we solve the dimension
g = 2 matrix system for �i with i ≥ g, calculating the remaining �i where i < g
is computationally straightforward.

The next step is to determine the remaining intersection points of y = �(x)
on C2. Since y = �(x) is cubic, its substitution into C2 will give a degree six
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equation in x. Four of the roots will correspond to the four non-trivial points
in supp(D) ∪ supp(D′), whilst the remaining two will correspond to the two
x coordinates of the non-trivial elements in supp(D̄′′), which are the same as
the x coordinates in supp(D′′) (see the intersection points in Figure 3). Let the
Mumford representation of D̄′′ be D̄′′ = (x2 + u1

′′x + u0
′′,−v′′1x− v′′0 ); we then

have

(x2 + u1x + u0) · (x2 + u′
1x + u′

0) · (x2 + u1
′′x + u0

′′) =
(
∑3

i=0 �ix
i)2 − f(x)

�2
3

.

Equating coefficients is an efficient way to compute the exact division required
above to solve for u′′(x). For example, equating coefficients of x5 and x4 above
respectively gives

u1
′′ = −u1 − u′

1 −
1− 2�2�3

�2
3

;

u0
′′ = −(u0 + u′

0 + u1u
′
1 + (u1 + u′

1)u1
′′) +

2�1�3 + �2
2

�2
3

. (5)

It remains to compute v′′1 and v′′0 . Namely, we wish to compute the linear function
that interpolates the points in supp(D′′). Observe that reducing �(x) modulo
〈x2 + u′′

1x + u′′
0〉 gives the linear polynomial −v′′1x +−v′′0 which interpolates the

points in supp(D̄′′), i.e. those points which are the involutions of the points in
supp(D′′). Thus, the computation of v′′1 and v′′0 amounts to negating the result
of �(x) mod 〈x2 + u′′

1x + u′′
0〉. From equation (3) then, it follows that

v′′1 = −(�3(u′′
1
2 − u′′

0)− �2u
′′
1 + �1), v′′0 = −(�3u

′′
1u′′

0 − �2u
′′
0 + �0). (6)

We summarize the process of computing a general addition D′′ = D ⊕ D′ on
Ĵac(C2), as follows. Composition involves constructing and solving the linear
system in (4) for �2 and �3 before computing �0 and �1 via (3), whilst reduction
involves computing u′′

1 and u′′
0 from (5) before computing v′′1 and v′′0 via (6).

The explicit formulas for these computations are in Table 1, where I, M and S
represent the costs of an Fq inversion, multiplication and squaring respectively.
We postpone comparisons with other works until after the doubling discussion.

Remark 2. The formulas for computing v′′0 and v′′1 in (6) include operations in-
volving u′′2

1 and u′′
1u′′

0 . Since those quantities are also needed in the first step
of the addition formulas (see the first line of Table 1) for any subsequent addi-
tions involving the divisor D′′, it makes sense to carry those quantities along as
extra coordinates to exploit these overlapping computations. It turns out that
an analogous overlap arises in group operations for all g ≥ 2, but for now we
remark that both additions and doublings on genus 2 curves will benefit from
extending the generic affine coordinate system to include two extra coordinates
u2

1 and u1u0.
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Table 1. Explicit formulas for a divisor addition D′′ = D ⊕ D′ involving two distinct
degree 2 divisors on Jac(C2), and for divisor doubling D′′ = [2]D of a degree 2 divisor
on Jac(C2)

AFFINE

ADDITION

Input: D = (u1, u0, v1, v0, U1 = u2
1, U0 = u1u0), D′ = (u′1, u′0, v′1, v′0, U′1 = u′21 , U′0 = u′1u′0) Operations in Fq

σ1 ← u1 + u′1, Δ0 ← v0 − v′0, Δ1 ← v1 − v′1, M1 ← U1 − u0 − U′1 + u′0, M2 ← U′0 − U0,

M3 ← u1 − u′1, M4 ← u′0 − u0, t1 ← (M2 −Δ0) · (Δ1 −M1), t2 ← (−Δ0 −M2) · (Δ1 + M1), 2M

t3 ← (−Δ0 + M4) · (Δ1 −M3), t4 ← (−Δ0 −M4) · (Δ1 + M3), 2M

�2 ← t1 − t2 �3 ← t3 − t4, d← t3 + t4 − t1 − t2 − 2(M2 −M4) · (M1 + M3), 1M

A ← 1/(d · �3), B ← d · A, C ← d · B, D ← �2 · B, E ← �23 · A, CC ← C2, I + 5M + 2S

u′′1 ← 2D − CC − σ1, u′′0 ← D2 + C · (v1 + v′1) − ((u′′1 − CC) · σ1 + (U1 + U′1))/2, 2M + 1S

U′′1 ← u′′21 , U′′0 ← u′′1 · u′′0 , v′′1 ← D · (u1 − u′′1 ) + U′′1 − u′′0 − U1 + u0, 2M + 1S

v′′0 ← D · (u0 − u′′0 ) + U′′0 − U0, v′′1 ← E · v′′1 + v1 v′′0 ← E · v′′0 + v0. 3M

Output: D′′ = ρ(D ⊕ D′) = (u′′1 , u′′0 , v′′1 , v′′0 , U′′1 = u′′21 , U′′0 = u′′1 u′′0 ). Total I + 17M + 4S

PROJECTIVE

ADDITION

Input: D = (U1, U0, V1, V0, Z), D′ = (U′1, U′0, V ′1 , V ′0 , Z′), Operations

ZZ ← Z1 · Z2, U1Z ← U1 · Z2, U1Z′ ← U′1 · Z1, U1ZS ← U1Z2, U1ZS′ ← U1Z′2, 3M + 2S

U0Z ← U0 · Z2, U0Z′ ← U′0 · Z1, V 1Z ← V1 · Z2, V 1Z′ ← V ′1 · Z1, 4M

M1 ← U1ZS − U1ZS′ + ZZ · (U0dZ − U0Z), M2 ← U1Z′ · U0Z′ − U1Z · U0Z; 3M

M3 ← U1Z − U1Z′, M4 ← U0Z′ − U0Z, z1 ← V 0 · Z2 − V 0′ · Z1, z2 ← V 1Z − V 1Z′, 2M

t1 ← (M2 − z1) · (z2 −M1), t2 ← (−z1 −M2) · (z2 + M1), 2M

t3 ← (−z1 + M4) · (z2 −M3), t4 ← (−z1 −M4) · (z2 + M3), 2M

�2 ← t1 − t2, �3 ← t3 − t4, d ← t3 + t4 − t1 − t2 − 2 · (M2 −M4) · (M1 + M3), 1M

A ← d2, B ← �3 · ZZ, C ← �2 · B, D ← d · B, E ← �3 · B, F ← U1Z · E, G← ZZ · E, 6M + 1S

H ← U0Z · G, J ← D · G, K ← Z2 · J, U′′1 ← 2 · C − A− E · (U1Z + U1Z′), 4M

U′′0 ← �22 · ZZ + D · (V 1Z + V 1Z′) − ((U′′1 − A) · (U1Z + U1Z′) + E · (U1ZS + U1ZS′))/2, 4M + 1S

V ′′1 ← U′′1 · (U′′1 − C) + F · (C − F ) + E · (H − U′′0 ), 3M

V ′′0 ← H · (C − F ) + U′′0 · (U′′1 − C), V ′′1 ← V ′′1 · ZZ + K · V1, V ′′0 ← V ′′0 + K · V0, 5M

U′′1 ← U′′1 · D · ZZ, U′′0 ← U′′0 · D, Z′′ ← ZZ · J. 4M

Output: D′′ = ρ(D ⊕ D′) = (U′′1 , U′′0 , V ′′1 , V ′′0 , Z′′). Total 43M + 4S

AFFINE

DOUBLING

Input: D = (u1, u0, v1, v0, U1 = u2
1, U0 = u1u0), with constants f2, f3 Operations

vv ← v2
1 , vu← (v1 + u1)2 − vv − U1, M1 ← 2v0 − 2vu, M2 ← 2v1 · (u0 + 2U1), 1M + 2S

M3 ← −2v1, M4 ← vu + 2v0, z1 ← f2 + 2U1 · u1 + 2U0 − vv, z2 ← f3 − 2u0 + 3U1, 1M

t1 ← (M2 − z1) · (z2 −M1), t2 ← (−z1 −M2) · (z2 + M1), 2M

t3 ← (M4 − z1) · (z2 −M3), t4 ← (−z1 −M4) · (z2 + M3), 2M

�2 ← t1 − t2, �3 ← t3 − t4, d ← t3 + t4 − t1 − t2 − 2(M2 −M4) · (M1 + M3), 1M

A ← 1/(d · �3), B ← d · A, C ← d · B, D ← �2 · B, E ← �23 · A, I + 5M + 1S

u′′1 ← 2D − C2 − 2u1, u′′0 ← (D − u1)2 + 2C · (v1 + C · u1), U′′1 ← u′′21 , U′′0 ← u′′1 · u′′0 , 3M + 3S

v′′1 ← D · (u1 − u′′1 ) + U′′1 − U1 − u′′0 + u0, v′′0 ← D · (u0 − u′′0 ) + U′′0 − U0, 2M

v′′1 ← E · v′′1 + v1, v′′0 ← E · v′′0 + v0. 2M

Output: D′′ = ρ([2]D) = (u′′1 , u′′0 , v′′1 , v′′0 , U′′1 = u′′21 , U′′0 = u′′1 u′′0 ). Total I + 19M + 6S

PROJECTIVE

DOUBLING

Input: D = (U1, U0, V1, V0, Z), curve constants f2, f3 Operations

UU ← U1 · U0, U1S ← U2
1 , ZS ← Z2, V 0Z ← V 0 · Z, U0Z ← U0 · Z, V1S ← V 12, 3M + 3S

UV ← (V1 + U1)2 − V1S − U1S, M1 ← 2 · V 0Z − 2 · UV, M2 ← 2 · V 1 · (U0Z + 2 · U1S), 1M + 1S

M3 ← −2 · V1, M4 ← UV + 2 · V 0Z, z1 ← Z · (f2 · ZS − V1S ) + 2 · U1 · (U1S + U0Z), 2M

z2 ← f3 · ZS − 2 · U0Z + 3 · U1S, t1 ← (M2 − z1) · (z2 −M1), t2 ← (−z1 −M2) · (z2 + M1), 2M

t3 ← (−z1 + M4) · (z2 −M3), t4 ← (−z1 −M4) · (z2 + M3), 2M

�2 ← t1 − t2, �3 ← t3 − t4, d ← t3 + t4 − t1 − t2 − 2 · (M2 −M4) · (M1 + M3), 1M

A ← �22, B ← �23, C ← ((�2 + �3)2 − A− B)/2, D ← B · Z, E ← B · U1, 2M + 3S

F ← d2, G← F · Z, H ← ((d + �3)2 − F − B)/2, J ← H · Z, K ← V1 · J, L ← U0Z · B, 4M + 2S

U′′1 ← 2 · C − 2 · E −G, U′′0 ← A + U1 · (E − 2 · C + 2 ·G) + 2 ·K, 1M

V ′′1 ← (C − E − U′′1 ) · (E − U′′1 ) + B · (L − U′′0 ), V ′′0 ← L · (C − E) + (U′′1 − C) · U′′0 . 4M

V ′′1 ← V ′′1 · Z + K · D, V ′′0 ← V ′′0 + V 0Z · H · D, M ← J · Z, U′′1 ← U′′1 ·M, U′′0 ← U′′0 · J, 7M

Z′′ ← M · D. 1M
Output: D′′ = ρ([2]D) = (U′′1 , U′′0 , V ′′1 , V ′′0 , Z′′). Total 30M + 9S
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4.2 General Divisor Doubling in Genus 2

Let D = (x2 + u1x + u0, v1x + v0) ∈ Ĵac(C2) be a divisor with supp(D) =
{P1, P2}∪{P∞}. To compute [2]D = D⊕D, we seek the cubic polynomial �(x) =∑3

i=0 �ix
i that has zeroes of order two at both P1 = (x1, y1) and P2 = (x2, y2).

We can immediately make use of the equations arising out of the interpolation
of supp(D) in (3) to obtain the first g = 2 equations.

There are two possible approaches to obtaining the second set of g = 2 equa-
tions. The first is the geometric flavored approach that was used in the proof of
Proposition 3 and in Example 3, which involves matching the derivatives. The
second involves reducing the substitution of �(x) into Cg by 〈u(x)2〉 to ensure the
prescribed zeros are of multiplicity two, and using the associated Mumford ideals
to linearize the equations. For the purpose of presenting both approaches, we will
illustrate the latter approach in this subsection, but it is important to highlight
that the guaranteed existence of linear equations follows from the expression
gained when matching derivatives in the geometric approach.

We start by setting y = �(x) into C2 and reducing modulo the ideal 〈(x2 +
u1x + u0)2〉, which gives

Ω(x) = Ω0 + Ω1x + Ω2x
2 + Ω3x

3 ≡ (
3∑

i=0

�ix
i)2 − f(x) mod 〈(x2 + u1x + u0)2〉

where

Ω0 = �2
3(2u3

0 − 3u2
1u

2
0) + 4�3�2u1u

2
0 − 2�3�1u

2
0 + �2

0 − �2
2u

2
0 − 2u1u

2
0 − f0,

Ω1 = 6�2
3(u1u

2
0 − u3

1u0) + 2�3�2(4u2
1u0 − u2

0) + 2�1�0 − 4�3�1u0u1

− 2�2
2u0u1 − 4u2

1u0 + u2
0 − f1,

Ω2 = 3�2
3(u

2
0 − u4

1) + �2
1 − �2

2(u
2
1 + 2u0)− 2u0u1 − 2u3

1 + 4�3�2(u3
1 + u0u1)

− 2�3�1(2u0 + u2
1) + 2�2�0 − f2,

Ω3 = 2�2
3(3u1u0 − 2u3

1) + 2�2�1 + 2�3�2(3u2
1 − 2u0)− 2�2

2u1 − 4�3�1u1 + 2�3�0

− 3u2
1 + 2u0 − f3.

It follows that Ωi = 0 for 0 ≤ i ≤ 3. Although we now have four more equations
relating the unknown �i coefficients, these equations are currently nonlinear.
We linearize by substituting the linear equations taken from (3) above, and
reducing the results modulo the Mumford ideals given in (2). We use the two
linear equations Ω̃2, Ω̃3 resulting from Ω2, Ω3, given as

Ω̃2 = 4�1v1 + 2�2(v0 − 2v1u1)− 6�3u0v1 − 2u0u1 − 2u3
1 − 3v2

1 − f2,

Ω̃3 = 2v1�2 + �3(2v0 − 4u1v1) + 2u0 − 3u2
1 − f3,

which combine with the linear interpolating equations (in (3)) to give rise to the
linear system
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⎛

⎜
⎜
⎝

−1 0 u0 −u1u0

0 −1 u1 −u2
1 + u0

0 4v1 2v0 − 2v1u1 −6u0v1

0 0 2v1 −4v1u1 + 2v0

⎞
⎟
⎟⎠ ·

⎛

⎜
⎜
⎝

�0
�1
�2
�3

⎞
⎟
⎟⎠=

⎛

⎜
⎜
⎝

−v0

−v1

f2 + 2u1u0 + 2u3
1 + 3v2

1

f3 − 2u0 + 3u2
1

⎞
⎟
⎟⎠ .

As was the case with the divisor addition in the previous section, we can first
solve a smaller system for �2 and �3, by adding the appropriate multiple of the
second row to the third row above, to give
(

2v1u1 + 2v0 −2u0v1 − 4v1u
2
1

2v1 −4v1u1 + 2v0

)
·
(

�2

�3

)
=

(
f2 + 2u1u0 + 2u3

1 − v2
1

f3 − 2u0 + 3u2
1

)
.

After solving the above system for �2 and �3, the process of obtaining D′′ =
[2]D = (x2 + u′′

1x + u′′
0 , v′′1 x + v′′0 ) is identical to the case of addition in the

previous section, giving rise to the analogous explicit formulas in Table 1.

4.3 Comparisons of Formulas in Genus 2

Table 2 draws comparisons between the explicit formulas obtained from the
above approach and the explicit formulas presented in previous work. In im-
plementations where inversions are expensive compared to multiplications (i.e.
I > 20M), it can be advantageous to adopt projective formulas which avoid
inversions altogether. Our projective formulas compute scalar multiples faster
than all previous projective formulas for general genus 2 curves. We also note
that our homogeneous projective formulas require only 5 coordinates in total,
which is the heuristic minimum for projective implementations in genus 2.

In the case of the affine formulas, it is worth commenting that, unlike the
case of elliptic curves where point doublings are generally much faster than
additions, affine genus 2 operations reveal divisor additions to be the significantly
cheaper operation. In cases where an addition would usually follow a doubling to
compute [2]D⊕D′, it is likely to be computationally favorable to instead compute
(D⊕D′)⊕D, provided temporary storage of the additional intermediate divisor
is not problematic.

Lastly, the formulas in Table 1 all required the solution to a linear system
of dimension 2. This would ordinarily require 6 Fq multiplications, but we ap-
plied Hisil’s trick [26, eq. 3.8] to instead perform these computations using 5
Fq multiplications. In implementations where extremely optimized multiplica-
tion routines give rise to Fq addition costs that are relatively high compared to
Fq multiplications, it may be advantageous to undo such tricks (including M-S
trade-offs) in favor of a lower number of additions.

5 The General Description

This section presents the algorithm for divisor composition on hyperelliptic Jaco-
bians of any genus g. The general method for reduction has essentially remained
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Table 2. Comparisons between our explicit formulas for genus 2 curves over prime
fields and previous formulas using CRT based composition

Fq inversions Previous work # Doubling Addition Mixed
I coords M S M S M S

Harley [24,20] 4 30 - 24 3 -
2 Lange [34] 4 24 6 24 3 -

Matsuo et al. [43] 4 27 - 25 - -

Takahashi [50] 4 29 - 25 - -
Miyamoto et al. [45] 4 27 - 26 - -

1 Lange [38] 4 22 5 22 3 -
This work 6 19 6 17 4 -

Wollinger and Kovtun [52] 5 39 6 46 4 39 4
Lange [36,38] 5 38 6 47 4 40 3

- Fan et al. [12] 5 39 6 - - 38 3
Fan et al. [12] 8 35 7 - - 36 5
Lange [37,38] 8 34 7 47 7 36 5
This work 5 30 9 43 4 36 5

the same in all related publications following Cantor’s original paper (at least
in the case of low genera), but we give a simple geometric interpretation of the
number of reduction rounds required in Section 5.3 below.

5.1 Composition for g ≥ 2

We extend the composition described for genus 2 in sections 4.1 and 4.2 to
hyperelliptic curves of arbitrary genus. Importantly, there are two aspects of
this general description to highlight.

(i) In contrast to Cantor’s general description of composition which involves
polynomial arithmetic, this general description is immediately explicit in
terms of Fq arithmetic.

(ii) The required function �(x) is of degree 2g−1 and therefore has 2g unknown
coefficients. Thus, we would usually expect to solve a linear system of
dimension 2g, but the linear system that requires solving in the Mumford
function field is actually of dimension g.

Henceforth we use M ·x = z to denote the associated linear system of dimension
g, and we focus our discussion on the structure of M and z.

In the case of a general divisor addition, M is computed as M = U − U′,
where U and U′ are described by D and D′ respectively. In fact, as for the
system derived from coordinates of points above, the matrix M is completely
dependent on u(x) and u′(x), whilst the vector z depends entirely on v(x) and
v′(x). Algorithm 1 details how to build U (resp. U′), where the first column of
U is initialized as the Mumford coordinates {ui}1≤i<g of D, and the remain-
ing g2 − g entries are computed by proceeding across the columns and taking
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Algorithm 1. General composition (addition) of two distinct divisors.
Input: D = {ui, vi}0≤i≤g−1, D′ = {u′

i, v
′
i}0≤i≤g−1.

Output: �(x) =
∑2g−1

i=0 �ix
i such that supp(D) ∪ supp(D′) ⊂ supp(div(�)).

1: U,U′,M ← {0}g×g ∈ F
g×g
q , z ← {0}g ∈ F

g
q .

2: for i from 1 to g do
3: Ug+1−i,1 ← −ug−i ; U′

g+1−i,1 ← −u′
g−i

4: end for
5: for j from 2 to g do
6: U1,j ← Ug,j−1 · U1,1 ; U′

1,j ← U′
g,j−1 · U′

1,1.
7: for i from 2 to g do
8: Ui,j ← Ug,j−1 · Ui,1 + Ui−1,j−1 ; U′

i,j ← U′
g,j−1 · U′

i,1 + U′
i−1,j−1.

9: end for
10: end for
11: M ← U −U′.
12: for i from 1 to g do
13: zi ← vi−1 − v′

i−1

14: end for
15: Solve M · x = z
16: Compute x̃ = U · x
17: for i from 1 to g do
18: x̃i ← vg−i − x̃i

19: end for
20: return �(x) (from x̃ = {�0, ..., �g−1} and x = {�g, ..., �2g−1})

Ui,j = ui−1 ·Ug,j−1 + Ui−1,j−1. This relationship is obtained by a careful gen-
eralization of the process that computed (4) from (3) in the case of genus 2.

Depending on the genus, we remark that Algorithm 1 will most likely not be
the fastest way to compute M. Instead, we propose that a faster routine is likely
to be achieved by using Algorithm 1 to determine the algebraic expression for
each of the elements in M, and tailor making optimized formulas to generate its
entries, in the same way that the previous section did for genus 2.

In addition, there is alternative way to view the structure (and computation)
of the matrix M. This follows from observing that both U and U′ can actually
be written as a sum of g matrices that are computed as outer products; let
c = (c1, .., cg), c̃ = (c̃1, ..., c̃g) ∈ Fg

q be two vectors that are derived solely from
the g Mumford coordinates belonging to D, then U is given by the sum
⎛

⎜
⎜
⎝

c1c̃1 . . . c1c̃g

c2c̃1 . . . c2c̃g

.

.

.
. . .

.

.

.
cg−1c̃1 . . . cg−1c̃g

cg c̃1 . . . cg c̃g

⎞
⎟
⎟⎠+

⎛

⎜
⎜
⎝

0 0 . . . 0
0 c1c̃1 . . . c1c̃g−1

.

.

. . . .
. . .

.

.

.
0 cg−2c̃2 . . . cg−2 c̃g−1
0 cg−1c̃2 . . . cg−1 c̃g−1

⎞
⎟
⎟⎠+. . .+

⎛

⎜
⎜
⎝

0 . . . 0 0
0 . . . 0 0

.

.

. . . .
. . .

.

.

.
0 . . . 0 0
0 . . . 0 c1c̃1

⎞
⎟
⎟⎠ .

Example 4. Assume a general genus 3 curve and let the Mumford representations
of the divisors D and D′ be as usual. The matrix U is given as

U =
( −u0 u2u0 (−u2

2 + u1)u0
−u1 u2u1 (−u2

2 + u1)u1

−u2 u2
2 (−u2

2 + u1)u2

)
+
(

0 0 0
0 −u0 u2u0
0 −u1 u2u1

)
+
(

0 0 0
0 0 0
0 0 −u0

)
,
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and U′ is given identically. In this case c = (u0, u1, u2)T and c̃ = (−1, u2,−u2
2 +

u1)T . Setting M = U − U′ and z = (v0 − v′0, v1 − v′1, v2 − v′2)
T , we find the

g = 3 coefficients �3, �4 and �5 of the quintic �(x) =
∑5

i=0 �ix
i that interpolates

the 6 non-trivial elements in supp(D) ∪ supp(D′) by solving M · x = z for
x = (�3, �4, �5)T . The remaining coefficients are found via a straightforward
matrix multiplication as x̃ = (�0, �1, �2)T = U · x.

The immediate observation in general is that cc̃T is the only outer product that
requires computation in order to determine U entirely.

For general divisor doublings the description of the linear system is much
longer; this is because the right hand side vector z is slightly more complicated
than in the case of addition: as is the case with general Weierstrass elliptic
curves, additions tend to be independent of the curve constants whilst doublings
do not. We reiterate that, for low genus implementations at least, Algorithm 2 is
intended to obtain the algebraic expressions for each element in M; as was the
case with genus 2, a faster computational route to determining the composition
function will probably arise from genus specific attention that derives tailor-
made explicit formulas. Besides, the general consequence of Remark 2 is that
many (if not all) of the values constituting U will have already been computed
in the previous point operation, and can therefore be temporarily stored and
reused.

5.2 Handling Special Cases

The description of divisor composition herein naturally encompasses the special
cases where either (or both) of the divisors have degree less than g. In fact,
Proposition 1 trivially generalizes to describe the set of divisors on Jac(Cg)
whose effective parts have degree d ≤ g, and can therefore be used to obtain the
Mumford ideals associated with special input divisors2.

This will often result in fewer rounds of reduction and a simpler linear system.
For example, whilst the general addition of two full degree divisors in genus 3
requires an additional round of reduction after the first points of intersection
are found (see Figure 1 and Figure 2), it is easy to see that any group operation
on a genus 3 curve involving a divisor of degree less than 3 will give rise to
a reduced divisor immediately. Clearly, the linear systems in these cases are
smaller, and therefore the explicit formulas arising in these special cases will
always be much faster, in agreement with all prior expositions (cf. [3, §14]).
In higher genus implementations that do not explicitly account for all special
cases of inputs, Katagi et al. [28] noted that it can still be very advantageous to
explicitly implement and optimize one of the special cases.
2 Perhaps the most general consequence of Proposition 1 is using it to describe (or

enumerate) the entire Jacobian by summing over all d, as #Jac(Cg) = #Cg +∑g
d=2 nd, where nd is the number of 2d-tuples lying in the intersection of the d

associated hypersurfaces.
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Algorithm 2. General composition (doubling) of a unique divisor with itself
Input: D = {ui, vi}0≤i≤g−1 and curve coefficients f0, f1, ..., f2g−1.

Output: �(x) =
∑2g−1

i=0 �ix
i such that each non-trivial element in supp(D) occurs with

multiplicity two in div(�) .

1: U,M ← {0}g×g ∈ F
g×g
q , v ← {0}g−1 ∈ F

g−1
q , z ← {0}g ∈ F

g
q

2: for i from 1 to g do
3: Ug+1−i,1 ← −ug−i

4: end for
5: for j from 2 to g do
6: U1,j ← Ug,j−1 · U1,1.
7: for i from 2 to g do
8: Ui,j ← Ug,j−1 · Ui,1 + Ui−1,j−1.
9: end for

10: end for
11: uextra ← Ug,1 · Ug,g + Ug−1,g.
12: for i from 1 to g do
13: Mg+1−i,1 ← vg−i

14: end for
15: for j from 2 to g do
16: Mi,j ← Mi,j + Ug,j−1 · Mi,1 + Mg,j−1 · Ui,1 + Mi−1,j−1.
17: end for
18: for i from 1 to g − 1 do
19: zg+1−i ← zg+1−i + 2 · Ug,1 · Ug+1−i,1 + Ug−i,1 + Ug,i+1 + f2g−i.
20: for j from 1 to i do
21: zg−i ← zg−i + f2g−1−i+j · Ug,j .
22: vi ← vi − Mg+1−j,1 · Mg−i+j,1.
23: end for
24: end for
25: z1 ← z1 + 2 · Ug,1 · U1,1 + fg.
26: zg−1 ← zg−1 + v1.
27: for i from 3 to g do
28: for j from 2 to i − 1 do
29: zg+1−i ← zg+1−i + vi−j · Ug,j−1.
30: end for
31: zg+1−i ← zg+1−i + vi−1.
32: end for
33: z1,1 ← z1,1 + uextra.
34: for i from 1 to g do
35: zi ← zi/2.
36: end for
37: Solve M · x = z
38: Compute x̃ = −U · x
39: for i from 1 to g do
40: x̃i ← vg−i + x̃i

41: end for
42: return �(x) (from x̃ = {�0, ..., �g−1} and x = {�g, ..., �2g−1})
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5.3 Reduction in Low Genera

Gaudry’s chapter [18] gives an overview of different algorithms (and complexi-
ties) for the reduction phase. Our experiments lead us to believe that the usual
method of reduction is still the most preferable for small g. In genus 2 we saw
that point additions and doublings do not require more than one round of re-
duction, i.e. the initial interpolating function intersects C2 in at most two more
places (refer to Figure 3), immediately giving rise to the reduced divisor that
is the sum. In genus g ≥ 3 however, this is generally not the case. Namely, the
initial interpolating function intersects Cg in more than g places, giving rise to
an unreduced divisor that requires further reduction. We restate Cantor’s com-
plexity argument concerning the number of rounds of reduction ([6, §4]) in a
geometric way in the following proposition.

Proposition 4. In the addition of any two reduced divisor classes on the Jaco-
bian of a genus g hyperelliptic curve, the number of rounds of further reduction
required to form the reduced divisor is at most � g−1

2 �, with equality occurring in
the general case.

Proof. For completeness note that addition on elliptic curves in Weierstrass form
needs no reduction, so take g ≥ 2. The composition polynomial y = �(x) with
the 2g prescribed zeros (including multiplicities) has degree 2g− 1. Substituting
y = �(x) into Cg : y2 + h(x)y = f(x) gives an equation of degree max{2g +
1, 3g−1, 2(2g−1)}= 2(2g−1) in x, for which there are at most 2(2g−1)−2g =
2g − 2 new roots. Let nt be the maximum number of new roots after t rounds
of reduction, so that n0 = 2g − 2. While nt > g, reduction is not complete, so
continue by interpolating the nt new points with a polynomial of degree nt − 1,
producing at most 2(nt−1)−nt = nt−2 new roots. It follows that nt = 2g−2t−2,
and since t, g ∈ Z, the result follows. ��

6 Further Implications and Potential

This section is intended to further illustrate the potential of coupling a geometric
approach with linear algebra when performing arithmetic in Jacobians. It is our
hope that the suggestions in this section encourage future investigations and
improvements.

We start by commenting that our algorithm can naturally be generalized to
much more than standard divisor additions and doublings. Namely, given any set
of divisors D1, ..., Dn ∈ Cg and any corresponding set of scalars r1, ..., rn ∈ Z,
we can theoretically compute D =

∑n
i=1[ri]Di at once, by first prescribing a

function that, for each 1 ≤ i ≤ n, has a zero of order ri at each of the non-trivial
points in the support of Di. Note that if ri �∈ Z

+, then prescribing a zero of
order ri at some point P is equivalent to prescribing a pole of order −ri ∈ Z+

at P instead. We first return to genus 1 to show that this technique can be used
to recover several results that were previously obtained by alternatively merging
or overlapping consecutive elliptic curve computations (cf. [10,7]).
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Simultaneous Operations on Elliptic Curves. In the case of genus 1,
the Mumford representation of reduced divisors is trivial, i.e. if P = (x1, y1),
the Mumford representation of the associated divisor is DP = (x − x1, y1), and
the associated Mumford ideal is (isomorphic to) the curve itself. However, we
can again explore using the Mumford representation as an alternative to deriva-
tives in order to generate the required linear systems arising from prescribing
multiplicities of greater than one. In addition, when unreduced divisors in genus
1 are encountered, the Mumford representation becomes non-trivial and very
necessary for efficient computations.

•
P

•P ′

•

•
[2]P + P ′

Fig. 5. Computing
[2]P + P ′ by prescribing
a parabola which inter-
sects E at P, P ′ with
multiplicities two and one
respectively.

•
P

•

•[3]P

Fig. 6. Tripling the point
P ∈ E by prescribing a
parabola which intersects
E at P with multiplicity
three.

•
P •P̂1

• P̂2

Fig. 7. Quadrupling the
point P ∈ E by pre-
scribing a cubic which
intersects E at P with
multiplicity four.

To double-and-add or point triple on an elliptic curve, we can prescribe a
parabola �(x) = �2x

2 + �1x + �0 ∈ Fq(E) with appropriate multiplicities in
advance, as an alternative to Eisenträger et al.’s technique of merging two con-
secutive chords into a parabola [10]. Depending on the specifics of an imple-
mentation, computing the parabola in this fashion offers the same potential
advantage as that presented by Ciet et al. [7]; we avoid any intermediate com-
putations and bypass computing P + P ′ or [2]P along the way. When tripling
the point P = (xP , yP ) ∈ E, the parabola is determined from the three equal-
ities �(x)2 ≡ x3 + f1x + f0 mod 〈(x − u0)i〉 for 1 ≤ i ≤ 3, from which we take
one of the coefficients that is identically zero in each of the three cases. As one
example, we found projective formulas which compute triplings on curves of the
form y2 = x3 + f0 and cost 3M + 10S. These are the second fastest tripling
formulas reported across all curve models [5], being only slightly slower (unless
S < 0.75M) than the formulas for tripling-oriented curves introduced by Doche
et al. [9] which require 6M + 6S.

We can quadruple the point P by prescribing a cubic function �(x) = �3x
3 +

�2x
2+�1x+�0 which intersects E at P with multiplicity four (see Figure 7). This

time however, the cubic is zero on E in two other places, resulting in an unre-
duced divisor DP̂ = P̂1 + P̂2, which we can represent in Mumford coordinates
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as DP̂ = (û(x), v̂(x)) (as if it were a reduced divisor in genus 2). Our experi-
ments agree with prior evidence that it is unlikely that point quadruplings will
outperform consecutive doublings in the preferred projective cases, although we
believe that one application which could benefit from this description is pairing
computations, where interpolating functions are necessary in the computations.
To reduce DP̂ , we need the line y = �̂(x) joining P̂1 with P̂2, which can be com-
puted via �̂(x) ≡ �(x) mod 〈û(x)〉. The update to the pairing function requires
both �(x) and �̂(x), as fupd = �(x)/�̂(x). We claim that it may be attractive
to compute a quadrupling in this fashion and only update the pairing function
once, rather than two doublings which update the pairing functions twice, par-
ticularly in implementations where inversions don’t compare so badly against
multiplications [41]. It is also worth pointing out that in a quadruple-and-add
computation, the unreduced divisor DP̂ need not be reduced before adding an
additional point P ′. Rather, it could be advantageous to immediately interpolate
P̂1, P̂2 and P ′ with a parabola instead.

Simultaneous Operations in Higher Genus Jacobians. Increasing the
prescribed multiplicity of a divisor not only increases the degree of the associated
interpolating function (and hence the linear system), but also generally increases
the number of rounds of reduction required after composition. In the case of
genus 1, we can get away with prescribing an extra zero (double-and-add or
point tripling) without having to encounter any further reduction, but for genus
g ≥ 2, this will not be the case in general. For example, even when attempting
to simultaneously compute [2]D + D′ for two general divisors D, D′ ∈ Jac(C2),
the degree of the interpolating polynomial becomes 5, instead of 3, and the
dimension of the linear system that arises can only be trivially reduced from 6
to 4. Our preliminary experiments seem to suggest that unless the linear system
can be reduced further, it is likely that computing [2]D+D′ simultaneously using
our technique won’t be as fast as computing two consecutive straightforward
operations. However, as in the previous paragraph, we argue that such a trade-
off may again become favorable in pairing computations where computing the
higher-degree interpolating function would save a costly function update.

Explicit Formulas in Genus 3 and 4. Developing explicit formulas for hy-
perelliptic curves of genus 3 and 4 has also received some attention [51,53,22]. It
will be interesting to see if the composition technique herein can further improve
these results. In light of Remark 2 and the general description in Section 5, the
new entries in the matrix M will often have been already computed in the pre-
vious point operation, suggesting an obvious extension of the coordinates if the
storage space permits it. Therefore the complexity of our proposed composition
essentially boils down to the complexity of solving the dimension g linear system
in Fq, and so it would also be interesting to determine for which (practically use-
ful) genera one can find tailor-made methods of solving the special linear system
that arises in Section 5.1.
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Characteristic Two, Special Cases, and More Coordinates. Although
the proofs in Section 3 were for arbitrary hyperelliptic curves over general fields,
Section 4 simplified the exposition by focusing only on finite fields of large prime
characteristic. Of course, it is possible that the description herein can be tweaked
to also improve explicit formulas in the cases of special characteristic two curves
(see [3, §14.5]). In addition, it is possible that the geometrically inspired deriva-
tion of explicit formulas for special cases of inputs will enhance implementa-
tions which make use of these (refer to Section 5.2). Finally, we only employed
straightforward homogeneous coordinates to obtain the projective versions of
our formulas. As was the case with the previous formulas based on Cantor’s
composition, it is possible that extending the projective coordinate system will
give rise to even faster formulas.

7 Conclusion

This paper presents a new and explicit method of divisor composition for hyper-
elliptic curves. The method is based on using simple linear algebra to derive the
required geometric functions directly from the Mumford coordinates of Jacobian
elements. In contrast to Cantor’s composition which operates in the polynomial
ring Fq[x], the algorithm we propose is immediately explicit in terms of Fq op-
erations. We showed that this achieves the current fastest general group law
formulas in genus 2, and pointed out several other potential improvements that
could arise from this exposition.

Acknowledgements. We wish to thank Huseyin Hisil and Michael Naehrig for
many fixes and improvements to an earlier version of this paper.
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Abstract. We present cryptanalytic results of an exhaustive search of all 16!
bijective 4-bit S-Boxes. Previously affine equivalence classes have been exhaus-
tively analyzed in 2007 work by Leander and Poschmann. We extend on this work
by giving further properties of the optimal S-Box linear equivalence classes. In
our main analysis we consider two S-Boxes to be cryptanalytically equivalent if
they are isomorphic up to the permutation of input and output bits and a XOR of a
constant in the input and output. We have enumerated all such equivalence classes
with respect to their differential and linear properties. These equivalence classes
are equivalent not only in their differential and linear bounds but also have equiv-
alent algebraic properties, branch number and circuit complexity. We describe a
“golden” set of S-boxes that have ideal cryptographic properties. We also present
a comparison table of S-Boxes from a dozen published cryptographic algorithms.

Keywords: S-Box, Differential cryptanalysis, Linear cryptanalysis, Exhaustive
permutation search.

1 Introduction

Horst Feistel introduced the Lucifer cipher, which can be considered to be the first
modern block cipher, some 40 years ago. Feistel followed closely the principles outlined
by Claude Shannon in 1949 [36] when designing Lucifer. We quote from Feistel’s 1971
patent text [20]:

Shannon, in his paper, presents further developments in the art of cryptog-
raphy by introducing the product cipher. That is, the successive application
of two or more distinctly different kinds of message symbol transformations.
One example of a product cipher consists of symbol substitution (nonlinear
transformation) followed by a symbol transposition (linear transformation).

Cryptographic algorithms are still designed in 2011 according to these same principles.
A key element of Lucifer’s symbol substitution layer was a pair of 4×4-bit substitution
boxes (S-Boxes).

Much research effort has been dedicated to the analysis of 4-bit S-Boxes in subse-
quent encryption algorithms during last the four decades. In this paper we present an
analysis of all bijective 4-bit S-Boxes in the light of modern cryptanalytic techniques,
together with comparison tables of 4-bit S-Boxes found in a dozen different published
encryption algorithm proposals.
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Overview of This Paper. In Section 2 we give definitions of differential probability,
linear bias, algebraic degree, and branch number of an S-Box. Section 3 defines more
key concepts such as linear (affine) equivalence (LE) and permutation equivalence (PE)
classes, together with the concept of an ordering-based canonical representative iden-
tify LE, PE, and other equivalence classes uniquely. We also make new observations on
the sixteen “optimal” LE classes first identified in [31]. Section 4 describes our exhaus-
tive search of the 16! bijective 4 × 4-bit S-Boxes. We give a description of the search
algorithm in Section 4.1 and the distribution of class sizes and Linear and Differential
properties in Section 4.2. Section 5 discusses the “golden” S-Boxes discovered in our
search. We conclude in 4.2. Appendix A tabulates the properties of 4 × 4-bit S-Boxes
found in a dozen different cryptographic algorithms.

2 S-Box Properties

In the context of cryptographic operations, arithmetic is assumed to be performed on
variables, vectors, or matrices whose individual elements belong to the finite field F2.
Vectors are indexed from 0. We write wt(x) =

∑
xi to denote the Hamming weight of

the bit vector (word) x.
We will first give definitions related to Differential Cryptanalysis [4,5], Linear Crypt-

analysis (LC) [32], and various forms of Algebraic / Cube Cryptanalysis (AC) [16,17].

Definition 1. Let S be an S-Box with |S| input values. Let n be the number of elements
x that satisfy S(x ⊕Δi) = S(x) ⊕Δo. Then n/|S| is the differential probability p of
the characteristic SD(Δi → Δo).

For 4×4 bijective S-Boxes the optimal differential bound (maximum of all differentials
in an individual S-Box) is p = 1/4.

Definition 2. Let S be an S-Box with |S| input values. Let n be the number of elements
x that satisfy wt(βi · x ⊕ βo · S(x)) mod 2 = 1 for two bit-mask vectors βi and βo.
Then abs( n

|S| − 1
2 ) is the bias ε of the linear approximation SL(βi → βo).

It is well known that all 22n

functions f from n bits to a single bit can be uniquely
expressed by a polynomial function with coefficients drawn from the Algebraic Normal
Form f̂ , which has the same domain as f :

f(x) =
∑

y∈F
n
2

f̂(y)xy0
0 xy1

1 · · ·xyn−1
n−1 .

This transformation from f to f̂ can also be seen to be equivalent to the Walsh transform
[35].

Definition 3. The algebraic degree deg(f) of a function f : Fn
2 �→ F2 is the maximal

weight wt(x) that satisfies f̂(x) �= 0.

In other words, the degree of f is the number of variables in the biggest monomial in the
polynomial representation of f . Naturally the maximum degree for a 4-bit function is
4. This monomial exists in the polynomial representation exactly when f(0) �= f(15).

We define S-Box branch number similarly to the way it is defined in [39].
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4 × 4 - Bit
S-box S(x)

Mi Mox S′(x)

ci co

Fig. 1. Linear Equivalence (LE) and Permutation-XOR equivalence (PE). Mi and Mo boxes de-
note multiplication by an invertible matrix for LE and by a permutation matrix for PE.

Definition 4. The branch number of an n× n-bit S-Box is

BN = min
a,b�=a

(
wt(a⊕ b) + wt(S(a)⊕ S(b))

)
,

where a, b ∈ Fn
2 .

It is clear that for a bijective S-Box the branch number is at least 2.

3 Equivalence Classes and Canonical Representation

The classification of Boolean functions dates back to the fifties [22]. Previously 4-bit
S-Boxes have been analyzed in relation to linear equivalence [6,31], defined as follows:

Definition 5. Let Mi and Mo be two invertible matrices and ci and co two vectors. The
S-Box S′ defined by two affine transformations

S′(x) = MoS(Mi(x⊕ ci))⊕ co

belongs to the linear equivalence set of S; S′ ∈ LE(S).

We call Mi(x⊕ ci) the inner affine transform and Mox⊕ co the outer affine transform.
There are 20,160 invertible 4×4 matrices defined over F2 and therefore 24×20, 160 =
322, 560 affine invertible transforms.

To be able to identify members of each equivalence class uniquely, we must define
a canonical representation for it. Each member of the equivalence class can be reduced
to this unique representative, which serves as an identifier for the entire class.

Definition 6. The canonical representative of an equivalence class is the member that
is first in lexicographic ordering.

Table 1 gives the canonical members of all 16 “optimal” S-Box LE classes, together
with references to their equivalents in [31].

It has been shown that the members of each LE class have the same differential and
linear bounds [6,31]. However, these linear equivalence classes are not equivalent in
many ways that have cryptographic significance.

Multiple Differential Characteristics and Linear Approximations. For crypto-
graphic security, the differential and linear bounds are the most important factor.
However, the methods of multiple differentials [8] and multiple linear approximations
[7,21,29] raise the question of how many differentials and linear approximations there
are at the respective boundaries. From Table 1 it can be observed that these numbers are
not equivalent, making some S-Boxes “more optimal” than others in this respect.
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Table 1. The canonical representatives of the 16 “optimal” linear equivalence classes. The Gi and
G−1

i identifier references are to Table 6 of [31]. We also give the DC and LC bounds, together
with the number nd of characteristics at the differential bound and the number nl of approxima-
tions at the linear bound. The branch BN number given is the maximal branch number among all
members of the given LE class.

Canonical representative Members DC LC Max
0123456789ABCDEF & Inverse p nd ε nl BN
0123468A5BCF79DE G2 G−1

0
1/4 24 1/4 36 3

0123468A5BCF7D9E G15 G−1
14

1/4 18 1/4 32 3
0123468A5BCF7E9D G0 G−1

2
1/4 24 1/4 36 3

0123468A5BCFDE79 G8 G−1
8

1/4 24 1/4 36 2
0123468A5BCFED97 G1 G−1

1
1/4 24 1/4 36 3

0123468B59CED7AF G9 G−1
9

1/4 18 1/4 32 3
0123468B59CEDA7F G13 G−1

13
1/4 15 1/4 30 2

0123468B59CF7DAE G14 G−1
15

1/4 18 1/4 32 3
0123468B5C9DE7AF G12 G−1

12
1/4 15 1/4 30 2

0123468B5C9DEA7F G4 G−1
4

1/4 15 1/4 30 2
0123468B5CD79FAE G6 G−1

6
1/4 15 1/4 30 2

0123468B5CD7AF9E G5 G−1
5

1/4 15 1/4 30 2
0123468B5CD7F9EA G3 G−1

3
1/4 15 1/4 30 2

0123468C59BDE7AF G10 G−1
10

1/4 18 1/4 32 3
0123468C59BDEA7F G7 G−1

7
1/4 15 1/4 30 2

0123468C59DFA7BE G11 G−1
11

1/4 15 1/4 30 2

Avalanche. For members of an LE class there is no guarantee that a single-bit differ-
ence in input will not result in single-bit output difference. If this happens, only a single
S-Box is activated in the next round of a simple substitution-permutation network such
as PRESENT [9]. This is equivalent to the case where the branch number is 2.

It is somewhat surprising that those optimal S-Boxes with most attractive nd and nl

numbers cannot be affinely transformed so that differentials with wt(Δi) = wt(Δo) =
1 would all have p = 0. Only the seven of the sixteen optimal S-Box classes, G0, G1,
G2, G9, G10, G14, and G15, have members that do not have such single-bit differentials.
This has been verified by exhaustive search by the authors.

We may illustrate the importance of this property by considering a variant of
PRESENT where the S-Box has been replaced by a linearly equivalent one from
LE(G1) such as (0123468A5BCFED97) that has p = 1/4 for the single-bit differ-
ential SD(Δi = 1 → Δo = 1). Due to the fact that the bit 0 is mapped to bit 0 in the
PRESENT pLayer, this variant has an iterative differential in bit 0 that holds through
all 31 rounds with probability 2−62. We may utilize the average branch number in the
last rounds to estimate that this variant would be breakable with less than 256 effort.

This motivates us to define the PE class.

Definition 7. Let Pi and Po be two bit permutation matrices and ci and co two vectors.
The S-Box S′ defined by

S′(x) = PoS(Pi(x ⊕ ci))⊕ co

belongs to the permutation-xor equivalence set of S; S′ ∈ PE(S).
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Algebraic Properties. While the maximal algebraic degree of all output bits may be
preserved in LE [31], some of the output bits may still be almost linear. It is notewor-
thy that despite belonging to LE(G1), one of the PRESENT output bits only has one
nonlinear monomial (of degree 2) and therefore this output bit depends only linearly on
2 of the input bits. This can be crucial when determining the number of secure rounds;
final rounds can be peeled off using such properties.

Circuit Complexity. From an implementation viewpoint, the members of an LE class
may vary very much but the members of a PE class are usually equivalent. This is
important in bit-slicing implementations such as [3].

It can be shown that circuits that use all 2-input Boolean functions [35,40] can be
transformed to equal-size circuits that use only the four commonly available instructions
(AND, OR, XOR, AND NOT) but may require a constant XOR on input and output
bit vectors. These XOR constants may be transferred to round key addition in most
substitution-permutation networks and therefore there is no additional cost.

Note that the methods described in [39] utilize only five registers and two-operand
instructions AND, OR, XOR, NOT and MOV. Most recent CPUs have sixteen 256-bit
YMM registers, three-operand instructions (making MOV redundant) and the ANDNx
instruction for AND NOT [28]. Therefore 2-input boolean circuit complexity is a more
relevant measure for optimality of a circuit. However, for hardware implementation
these gates have uneven implementation-dependent cost [34].

We may also consider the concept of feeble one-wayness [25,26,27]. This property
is also shared between the members of a PE class.

Other Properties. Some researchers put emphasis on the cycle structure of an S-
Box. Cycle structure properties are not usually shared between members of LE and
PE classes. This may be relevant if the cipher design does not protect against the effects
of fixed points or other similar special cases. However, such properties are difficult to
analyze in the context of a single S-Box removed from its setting within an encryption
algorithm. Care should be taken when choosing input and output bit ordering so that
diffusion layers will achieve maximum effect.

Historical Developments. The original DES S-Box design principles are described
in [10]. In hindsight it can be seen that the criteria given in that 1976 document al-
ready offer significantly better resistance against primitive DC and LC than what can
be achieved with entirely random S-Boxes [11]. For a perspective on the development
of DES and the evaluation of its S-Boxes between the years 1975 and 1990 we refer to
[13]. We may compare our current view on the topic of “good” S-Boxes to that given
by Adams and Tavares in 1990 [2]. Four evaluation criteria for S-Boxes were given in
that work: bijectivity, nonlinearity, strict avalanche, and independence of output bits. In
current terminology nonlinearity would map to the algebraic degree, strict avalanche to
the branch number, and independence of output bits roughly to both DC and LC. Note
that modern DC, LC, and AC were (re)discovered after 1990.
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Bit #

Word W0

Word W1

Word W2

Word W3

Hex

0x00FF

0x0F0F

0x3333

0x5555

0

0

0

0

0

1

0

0

0

1

2

0

0

1

0

3

0

0

1

1

4

0

1

0

0

5

0

1

0

1

6

0

1

1

0

7

0

1

1

1

8

1

0

0

0

9

1

0

0

1

10

1

0

1

0

11

1

0

1

1

12

1

1

0

0

13

1

1

0

1

14

1

1

1

0

15

1

1

1

1

Fig. 2. Our internal 4×16-bit representation of the identity permutation (0, 1, . . . , 15). The words
are always stored in increasing order and the highest bit is normalized to zero.

4 An Exhaustive Search Over All PE Classes

We have performed an exhaustive search over all PE classes. Since there are 16! ≈
244.25 different bijective 4-bit S-Boxes, some shortcuts had to be used. We are currently
unable to extend our methods to 5-bit S-Boxes or beyond.

Internally our program uses another (non-lexicographic) ordering to determine the
unique canonical member of each PE class. The permutations are stored as four 16-bit
words Wi that are always in ascending order.

Theorem 1. Any 4× 4-bit bijective S-Box can be uniquely expressed as

S(x) =
( 3∑

i=0

2P (i)Wi,(15−x)

)
⊕ c

for some bit permutation P of numbers (0, 1, 2, 3), a vector c ∈ F4
2 and words Wi =∑15

j=0 2iWi,j satisfying 0 < W0 < W1 < W2 < W3 < 215.

Proof. Output bits can be permuted in 4! = 24 different ways (as each Wi must be dif-
ferent from others) and each one of the 24 = 16 masks c creates a different permutation
due to the limit Wi < 215. P and c uniquely define the 4!24 = 384 outer transforma-
tions while Wi uniquely defines the rest. �	
This representation offers a natural and quick way to normalize a S-Box in respect to
the outer permutation Po and mask co by sorting the four words and inverting all bits of
a word if the highest bit is set. Figure 2 illustrates this ordering.

From the fact that S is bijective it follows that wt(Wi) = 8 for all Wi. There are(
16
8

)
= 12, 870 16-bit words of weight 8, of which we may remove half due to the

co normalization limit Wi < 215, yielding 6, 535 candidates. Furthermore, each word
has a minimal equivalent up to permutation among all input permutations Pi and input
constants ci. We call this minimal word mw(x). At program start, a table is initialized
that contains mw(x) for each 16-bit word by trying all 24 permutations of input bits
and 16 values of ci on the 4× 1-bit Boolean function that the word x represents. If the
resulting word is greater or equal to 215 (indicating that the highest bit is set) all bits of
the word are inverted, normalizing the constant. Each one of the wt(x) = 8 candidates
map to a set of just 58 different mw(x) values.
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Algorithm 1. A bit-combinatorial permutation search algorithm.
1: for i0 = 0 to 6534 do
2: W0 = wt8tab[i0]
3: if mw(W0) = W0 then
4: for i1 = i0 + 1 to 6534 do
5: W1 = wt8tab[i1]
6: if mw(W1) > W0 and

wt(t2 = ¬W0 ∧ W1) = 4 and wt(t3 = W0 ∧ W1) = 4 and
wt(t1 = W0 ∧ ¬W1) = 4 and wt(t0 = ¬W0 ∧ ¬W1) = 4 then

7: for i2 = i1 + 1 to 6534 do
8: W2 = wt8tab[i2]
9: if mw(W1) > W0 and

wt(u0 = t0 ∧ ¬W2) = 2 and wt(u4 = t0 ∧ W2) = 2 and
wt(u1 = t1 ∧ ¬W2) = 2 and wt(u5 = t1 ∧ W2) = 2 and
wt(u2 = t2 ∧ ¬W2) = 2 and wt(u6 = t2 ∧ W2) = 2 and
wt(u3 = t3 ∧ ¬W2) = 2 and wt(u7 = t3 ∧ W2) = 2 then

10: for j = 0 to 8 do
11: vj = lsb(uj)
12: end for
13: for b = 0 to 255 do
14: W3 =

⊕7
j=0

(
uj ⊕ bjvj

)

15: if W3 ≥ 215 then
16: W3 = ¬W3

17: end if
18: if W3 > W2 then
19: test(W0, W1, W2, W3)
20: end if
21: end for
22: end if
23: end for
24: end if
25: end for
26: end if
27: end for

4.1 The Search Algorithm

We will now describe the bit-combinatorial equivalence class search method given in
Algorithm 1. There are basically four nested loops. Various early exit strategies are used
that are based on properties of the permutation (see Theorem 1 and Figure 2). Lines 1–
3 select the smallest word W0 from a table of weight-eight words and checks that it is
indeed minimal w.r.t. permutation of the four input bits. In lines 4–6 we select W1 such
that it is larger than W0 and these two words have each one of the four bit pairs (0, 0),
(0, 1), (1, 0), and (1, 1) exactly four times at corresponding locations (W0,i, W1,i). This
is a necessary condition for them to be a part of a permutation as described by Theorem
1. The corresponding masks are stored in four temporary variables ti. In Lines 7–9 we
choose W2 such that the three words make up two permutations of numbers 0, 1, . . . , 7.
The vector ui containing the two bit positions of i simultaneously computed. We are
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Table 2. Distribution of PE classes. The first column gives the number of elements in each class.
The second column |Cn| gives the number of such classes, followed by their product, which sums
to 16! = 20, 922, 789, 888, 000 as expected.

n
4!24 |Cn| n |Cn| Representative

1 2 768 0123456789ABCDEF
4 4 6144 01234567FEDCBA98
6 1 2304 01237654BA98CDEF
8 4 12288 0123456879ABCDEF

12 30 138240 0123456798BADCFE
16 18 110592 0123457689BADCFE
24 192 1769472 0123456789ABFEDC
32 104 1277952 0123456789ABCDFE
48 1736 31997952 0123456789ABCEDF
64 264 6488064 012345678ACD9EBF
96 13422 494788608 0123456789ABDEFC
128 324 15925248 0123456789ADCEBF
192 373192 27514699776 0123456789ABCEFD
384 141701407 20894722670592 0123456789ACBEFD

1–384 142090700 20922789888000

Table 3. Distribution of the 16! permutations in relation to Differential Cryptanalysis (rows) and
Linear Cryptanalysis (columns)

LC → ε ≤ 1/4 ε ≤ 3/8 ε ≤ 1/2

DC ↓ n % n % n %
p ≤ 1/4 749123665920 3.5804 326998425600 1.5629 0 0.0000
p ≤ 3/8 1040449536000 4.9728 11448247910400 54.7166 118908518400 0.5683
p ≤ 1/2 52022476800 0.2486 5812644741120 27.7814 330249830400 1.5784
p ≤ 5/8 0 0.0000 728314675200 3.4810 193458585600 0.9246
p ≤ 3/4 0 0.0000 52022476800 0.2486 68098867200 0.3255
p ≤ 1 0 0.0000 309657600 0.0015 1940520960 0.0093

now left with exactly 28 = 256 options for the last word W3. In lines 10–12 we store
in vector vi the lesser bit from the two-bit mask ui. In lines 13–20 we loop through the
remaining W3 possibilities. In line 14 we use the bit i of the loop index b to select which
one of the two bits in ui is used as part of W3. Note that this part may be implemented
a bit faster with a Gray-code sequence.

The unique permutation is then tested by the subroutine on line 19 to see if it is the
least member of its class (here an early exit strategy will usually exit the exhaustive loop
early). If (W0, W1, W2, W3) is indeed the canonical member in the special ordering that
we’re using, it is stored on on disk together with the size of the class. The entire process
of creating the 1.4 GB file takes about half an hour with a 2011 consumer laptop.

4.2 Results of the Exhaustive Search

There are 142,090,700 different PE classes of various sizes. Table 2 gives the size dis-
tribution of these PE classes, which sum up to 20, 922, 789, 888, 000 = 16! examined
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Table 4. Golden S-Boxes with ideal properties are all members of these four PE classes. Both
the S-Boxes and their inverses satisfy the bounds p ≤ 1/4, ε ≤ 1/4, have branch number 3, all
output bits have algebraic degree 3 and are dependent on all input bits in nonlinear fashion. n
gives the total size of the class and n′ the number of members which additionally have a perfect
cycle structure.

PE Representative LE n n’
035869C7DAE41FB2 G9 147456 19584
03586CB79EADF214 G9 147456 19584
03586AF4ED9217CB G10 147456 22656
03586CB7A49EF12D G10 147456 22656

S-Boxes. Each class size is divisible by 4!24 = 384 due to the fact that the output
bits can be permuted 4! = 24 ways and the output constant co can have 24 = 16 dif-
ferent values. However, it is less obvious how the inner transform defined by Pi and
ci affect the size of the class together with S. For example, for the identity permuta-
tion (0123456789ABCDEF) the bit shuffles Pi and Po and constant additions ci and
co may be presented with a single bit permutation and addition of constant and hence
hence n = 384. It is interesting to note that that there is one other class with this size,
the one with the largest canonical representative, (07BCDA61E952348F).

Table 3 gives the distribution of differential and linear properties among the 16!
S-Boxes examined. It can be seen that a majority, 54.7155% of all S-Boxes have a
differential bound p ≤ 3/4 and linear bound ε ≤ 3/4. There are no bijective S-Boxes
with differential bound p = 7/8. Appendix A gives results on some well-known 4-bit
S-Boxes.

5 Golden S-Boxes

Based on our exhaustive search, we may describe golden S-Boxes that have ideal prop-
erties. From Table 1 we see that the most tempting candidates belong to the LE sets
of G9, G10, G14, and G15 as they have the smallest nd and nl numbers among those
S-Boxes that have branch number 3. Note that LE(G14) = LE(G−1

15 ) and vice versa.
The only problem with G14 and G15 in comparison to G9 and G10 is that if we want

the branch number to be larger than 2, there are no S-Boxes in these classes that have
the desired property that all output bits are nonlinearly dependent on all input bits and
have degree 3. Either the permutation or its inverse will not satisfy this condition. This
has been verified with exhaustive search. All golden S-Boxes belong to the four PE
classes given in Table 4.

The Serpent [1] S-Box S3, Hummingbird-1 [18] S-Boxes S1, S2, and S3 and
Hummingbird-2 [19] S-Boxes1 S0 and S1 are the only known examples of “golden”
S-Boxes in literature. Note that cipher designers may want to avoid re-using the same
LE class in multiple S-Boxes and hence not all can be “golden”. Please see Appendix
A for a more detailed comparison.

1 Hummingbird-2 was tweaked in May 2011 to use these S-Boxes, and they are also contained
in [19]. Some early prototypes used S-Boxes from Serpent.
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6 Conclusions

We have analyzed all 16! bijective 4 × 4-bit S-Boxes and classified them into linear
equivalence (LE) and permutation equivalence (PE) classes. Members of a LE class
have equivalent differential and linear bounds but not necessarily branch number, alge-
braic properties and circuit complexity. Members of PE classes share these properties.
Each equivalence class can be uniquely identified with the use of a canonical represen-
tative, which we define to be the member which is first in lexicographic ordering of the
class members.

There are 142,090,700 different PE classes, the vast majority (99.7260%) of which
have (4!24)2 = 147456 elements. We classify the S-Boxes according to their differen-
tial and linear properties. It turns out that that a majority (54.7155%) of S-Boxes have
differential bound p ≤ 3/4 and linear bound ε ≤ 3/4.

Furthermore, we have discovered that not all of the “optimal” S-Boxes described
in [31] are equal if we take the branch number and multiple differential and linear
cryptanalysis into account.

In an appendix we give comparison tables of the S-Boxes from Lucifer [37], Present
[9], JH [41], ICEBERG [38], LUFFA [15] NOEKEON [12], HAMSI [30], Serpent [1],
Hummingbird-1 [18], Hummingbird-2 [19], GOST [14,23,24] and DES [33].

Acknowledgements. The author wishes to thank Whitfield Diffie and numerous other
commentators for their input. This work is still ongoing.
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The Cryptographic Power of Random Selection

Matthias Krause and Matthias Hamann
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Abstract. The principle of random selection and the principle of adding
biased noise are new paradigms used in several recent papers for con-
structing lightweight RFID authentication protocols. The cryptographic
power of adding biased noise can be characterized by the hardness of
the intensively studied Learning Parity with Noise (LPN) Problem. In
analogy to this, we identify a corresponding learning problem for ran-
dom selection and study its complexity. Given L secret linear func-
tions f1, . . . , fL : {0, 1}n −→ {0, 1}a, RandomSelect (L, n, a) denotes
the problem of learning f1, . . . , fL from values (u, fl (u)), where the se-
cret indices l ∈ {1, . . . , L} and the inputs u ∈ {0, 1}n are randomly
chosen by an oracle. We take an algebraic attack approach to design a
nontrivial learning algorithm for this problem, where the running time is
dominated by the time needed to solve full-rank systems of linear equa-
tions over O

(
nL

)
unknowns. In addition to the mathematical findings

relating correctness and average running time of the suggested algorithm,
we also provide an experimental assessment of our results.

Keywords: Lightweight Cryptography, Algebraic Attacks, Algorithmic
Learning, Foundations and Complexity Theory.

1 Introduction

The very limited computational resources available in technical devices like RFID
(radio frequency identification) tags implied an intensive search for lightweight
authentication protocols in recent years. Standard block encryption functions
like Triple-DES or AES seem to be not suited for such protocols largely because
the amount of hardware to implement and the energy consumption to perform
these operations is too high (see, e.g., [7] or [17] for more information on this
topic).

This situation initiated two lines of research. The first resulted in proposals
for new lightweight block encryption functions like PRESENT [4], KATAN and
KTANTAN [10] by use of which standard block cipher-based authentication
protocols can be made lightweight, too. A second line, and this line we follow in
the paper, is to look for new cryptographic paradigms which allow for designing
new symmetric lightweight authentication protocols. The two main suggestions
discussed so far in the relevant literature are the principle of random selection
and the principle of adding biased noise.

A. Miri and S. Vaudenay (Eds.): SAC 2011, LNCS 7118, pp. 134–150, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



The Power of Random Selection 135

The principle of adding biased noise to the output of a linear basis function
underlies the HB-protocol, originally proposed by Hopper and Blum [16] and
later improved to HB+ by Juels and Weis [17], as well as its variants HB# and
Trusted-HB (see [13] and [6], respectively). The protocols of the HB-family are
provably secure against passive attacks with respect to the Learning Parity with
Noise Conjecture but the problem to design HB-like protocols which are secure
against active adversaries seems to be still unsolved (see, e.g., [14], [21], [12]).

The principle of random selection underlies, e.g., the CKK-protocols of Ci-
choń, Klonowski, and Kuty�lowski [7] as well as the Ff -protocols in [3] and the
Linear Protocols in [18]. It can be described as follows.

Suppose that the verifier Alice and the prover Bob run a challenge-response
authentication protocol which uses a lightweight symmetric encryption operation
E : {0, 1}n×K −→ {0, 1}m of block length n, whereK denotes an appropriate key
space. Suppose further that E is weak in the sense that a passive adversary can
efficiently compute the secret key K ∈ K from samples of the form (u,EK(u)).
This is obviously the case if E is linear.

Random selection denotes a method for compensating the weakness of E by
using the following mode of operation. Instead of holding a single K ∈ K, Alice
and Bob share a collection K1, . . . ,KL of keys from K as their common secret
information, where L > 1 is a small constant. Upon receiving a challenge u ∈
{0, 1}n from Alice, Bob chooses a random index l ∈ {1, . . . , L} and outputs the
response y = E(u,Kl). The verification of y with respect to u can be efficiently
done by computing E−1Kl

(y) for all l = 1, . . . , L.
The main problem this paper is devoted to is to determine the level of security

which can be reached by applying this principle of random selection.
Note that the protocols introduced in [7], [3], and [18] are based on random

selection of GF (2)-linear functions. The choice of linear basis functions is moti-
vated by the fact that they can be implemented efficiently in hardware and have
desirable pseudo-random properties with respect to a wide range of important
statistical tests.

It is quite obvious that, with respect to passive adversaries, the security
of protocols which use random selection of linear functions can be bounded
from above by the complexity of the following learning problem referred to as
RandomSelect (L, n, a): Learn GF (2)-linear functions f1, . . . , fL : {0, 1}n −→
{0, 1}a from values (u, fl (u)), where the secret indices l ∈ {1, . . . , L} and the
inputs u ∈ {0, 1}n are randomly chosen by an oracle. In order to illustrate
this notion, we sketch in appendix B how an efficient learning algorithm for
RandomSelect (L, n, a) can be used for attacking the linear (n, k, L)+-protocol
described by Krause and Stegemann [18].

In this paper, we present an algebraic attack approach for solving the above
learning problem RandomSelect (L, n, a). The running time of our algorithm is
dominated by the effort necessary to solve a full-rank system of linear equa-
tions of O(nL) unknowns over the field GF (2a). Note that trivial approaches for
solving RandomSelect (L, n, a) lead to a running time exponential in n.



136 M. Krause and M. Hamann

In recent years, people from cryptography as well as from complexity and
coding theory devoted much interest to the solution of learning problems around
linear structures. Prominent examples in the context of lightweight cryptography
are the works by Goldreich and Levin [15], Regev [22], and Arora and Ge [2]. But
all these results are rather connected to the Learning Parity with Noise Problem.
To the best of our knowledge, there are currently no nontrivial results with
respect to the particular problem of learning randomly selected linear functions,
which is studied in the present paper.

We are strongly convinced that the complexity of RandomSelect also defines
a lower bound on the security achievable by protocols using random selection of
linear functions, e.g., the improved (n, k, L)++-protocol in [18]. Thus, the running
time of our algorithm hints at how the parameters n, k, and L should be chosen in
order to achieve an acceptable level of cryptographic security. Note that choosing
n = 128 and L = 8 or n = 256 and L = 4, solving RandomSelect (L, n, a) by
means of our algorithm implies solving a system of around 228 unknowns, which
should be classified as sufficiently difficult in many practical situations.

The paper is organized as follows. In sections 2, 3, and 4, our learning algo-
rithm, which conducts an algebraic attack in the spirit of [23], will be described
in full detail. We represent the L linear basis functions as assignments A to
a collection X =

(
xl
i

)
i=1,...,n,l=1,...,L

of variables taking values from the field

K = GF (2a). We will then see that each example (u, fl (u)) induces a degree-
L equation of a certain type in the X-variables, which allows for reducing the
learning problem RandomSelect (L, n, a) to the problem of solving a system of
degree-L equations over K. While, in general, the latter problem is known to be
NP-hard, we can show an efficient way to solve this special kind of systems.

One specific problem of our approach is that, due to inherent symmetries of
the degree-L equations, we can never reach a system which has full linear rank
with respect to the corresponding monomials. In fact, this is the main difference
between our learning algorithm and the well-known algebraic attack approaches
for cryptanalyzing LFSR-based keystream generators (see, e.g., [20], [8], [9], [1]).

We circumvent this problem by identifying an appropriate set T (n, L) of basis
polynomials of degree at most L which allow to express the degree-L equations as
linear equations over T (n, L). The choice of T (n, L) will be justified by Theorem
2 saying that if |K| ≥ L, then the system of linear equations over T (n, L) induced
by all possible examples has full rank |T (n, L)|. (Note that according to Theorem
1, this is not true if |K| < L.) Our experiments, which are presented in section
5, indicate that if |K| ≥ L, then with probability close to one, the number of
examples needed to get a full rank system over T (n, L) exceeds |T (n, L)| only by
a small constant factor. This implies that the effort to compute the unique weak
solution t (A) = (t∗ (A))t∗∈T (n,L) corresponding to the strong solution A equals

the time needed to solve a system of |T (n, L)| linear equations over K.
But in contrast to the algebraic attacks in [20], [8], [9], [1], we still have

to solve another nontrivial problem, namely, to compute the strong solution
A, which identifies the secret functions f1, . . . , fL, from the unique weak so-
lution. An efficient way to do this will complete our learning algorithm for
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RandomSelect (L, n, a) in section 4. Finally, we also provide an experimental
evaluation of our estimates using the computer algebra system Magma [5] in
section 5 and conclude this paper with a discussion of the obtained results as
well as an outlook on potentially fruitful future work in section 6.

2 The Approach

We fix positive integers n, a, L and secret GF (2)-linear functions f1, . . . , fL :
{0, 1}n −→ {0, 1}a. The learner seeks to deduce specifications of f1, . . . , fL from
an oracle which outputs in each round an example (u,w) ∈ {0, 1}n × {0, 1}a in
the following way. The oracle chooses independently and uniformly a random
input u ∈U {0, 1}n, then chooses secretly a random index l ∈U [L]1, computes
w = fl (u) and outputs (u,w).

It is easy to see that RandomSelect can be efficiently solved in the case
L = 1 by collecting examples

(
u1, w1

)
, . . . , (um, wm) until

{
u1, . . . , um

}
contains

a basis of GF (2)n. The expected number of iterations until the above goal is
reached can be approximated by n+ 1.61 (see, e.g., the appendix in [11]).

We will now treat the case L > 1, which immediately yields a sharp rise in
difficulty. First we need to introduce the notion of a pure basis.

Definition 1. Let us call a set V =
{(

u1, w1

)
, . . . , (un, wn)

}
of n examples a

pure basis, if
{
u1, . . . , un

}
is a basis of GF (2)n and there exists an index l ∈ [L]

such that wi = fl
(
ui
)
is satisfied for all i = 1, . . . , n.

Recalling our preliminary findings, we can easily infer that for m ∈ Ln+ Ω (1),
a set of m random examples contains such a pure basis with high probability.
Moreover, note that for a given set Ṽ =

{(
ũ1, w̃1

)
, . . . , (ũn, w̃n)

}
the pure basis

property can be tested efficiently. The respective strategy makes use of the fact
that in case of a random example (u,w), where u =

⊕
i∈I ũ

i and I ⊆ [n]2, the

probability p that w =
⊕

i∈I w̃i holds is approximately L−1 if Ṽ is pure and at

most (2 · L)−1 otherwise. The latter estimate is based on the trivial observation
that if Ṽ is not a pure basis, it contains at least one tuple

(
ũj , w̃j

)
, j ∈ [n], which

would have to be exchanged to make the set pure. As j ∈ I holds true for half
of all possible (but valid) examples, the probability that w =

⊕
i∈I w̃i is fulfilled

although Ṽ is not pure can be bounded from above by (2 · L)−1.
However, it seems to be nontrivial to extract a pure basis from a set of m ∈

Ln + Ω (1) examples. Exhaustive search among all subsets of size n yields a
running time exponential in n. This can be shown easily by applying Stirling’s
formula3 to the corresponding binomial coefficient

(
m
n

)
.

1 For a positive integer N , we denote by [N ] the set {1, . . . , N}.
2 Let B =

{
v1, . . . , vn

}
denote a basis spanning the vector space V . It is a simple

algebraic fact that every vector v ∈ V has a unique representation I ⊆ [n] over B,
i.e., v =

⊕
i∈I v

i.
3 Stirling’s formula is an approximation for large factorials and commonly written
n! ≈ √2πn (

n
e

)n
.
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We exhibit the following alternative idea for solving RandomSelect (L, n, a)
for L > 1. Let e1, . . . , en denote the standard basis of the GF (2)-vector space
{0, 1}n and keep in mind that {0, 1}n = GF (2)n ⊆ Kn, where K denotes the
field GF (2a). For all i = 1, . . . , n and l = 1, . . . , L let us denote by xl

i a variable
over K representing fl

(
ei
)
. Analogously, let A denote the (n× L)-matrix with

coefficients in K completely defined by Ai,l = fl
(
ei
)
. Henceforth, we will refer to

A as a strong solution of our learning problem, thereby indicating the fact that
its coefficients fully characterize the underlying secret GF (2)-linear functions
f1, . . . , fL.

Observing an example (u,w), where u =
⊕

i∈I e
i, the only thing we know is

that there is some index l ∈ [L] such that w =
⊕

i∈I Ai,l. This is equivalent
to the statement that A is a solution of the following degree-L equation in the
xl
i-variables.

(
⊕

i∈I
x1
i ⊕ w

)

· . . . ·
(
⊕

i∈I
xL
i ⊕ w

)

= 0. (1)

Note that equation (1) can be rewritten as

⊕

J⊆I,1≤|J|≤L′

L⊕

j=|J|
wL−jtJ,j = wL, (2)

L′ = min {L, |I|}, where the basis polynomials tJ,j are defined as

tJ,j =
⊕

g,|dom(g)|=j,im(g)=J

mg

for all J ⊆ [n], 1 ≤ |J | ≤ L, and all j, |J | ≤ j ≤ L. The corresponding monomials
mg are in turn defined as

mg =
∏

l∈dom(g)

xl
g(l)

for all partial mappings g from [L] to [n], where dom (g) denotes the domain of
g and im (g) denotes its image.

Let T (n, L) = {tJ,j | J ⊆ [n] , 1 ≤ |J | ≤ L, |J | ≤ j ≤ L} denote the set of all
basis polynomials tJ,j which may appear as part of equation (2). Moreover, we
define

Φ (a, b) =

b∑

i=0

(
a

i

)

for integers 0 ≤ b ≤ a and write
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|T (n, L)| =
L∑

j=1

(
n

j

)
(L− j + 1)

= (L+ 1) (Φ (n, L)− 1)−
L∑

j=1

n

(
n− 1

j − 1

)

= (L+ 1) (Φ (n, L)− 1)− nΦ (n− 1, L− 1) . (3)

Consequently, each set of examples V =
{(

u1, w1

)
, . . . , (um, wm)

}
yields a sys-

tem of m degree-L equations in the xl
i-variables, which can be written as m K-

linear equations in the tJ,j-variables. In particular, the strong solution A ∈ Kn×L

satisfies the relation

M (V) ◦ t (A) = W (V) , (4)

where

– Kn×L denotes the set of all (n× L)-matrices with coefficients from K,
– M (V) is an (m× |T (n, L)|)-matrix built by the m linear equations of type

(2) corresponding to the examples in V ,
– W (V) ∈ Km is defined by W (V)i = wL

i
4 for all i = 1, . . . ,m,

– t (A) ∈ KT (n,L) is defined by t (A) = (tJ,j (A))J⊆[n],1≤|J|≤L,|J|≤j≤L.

Note that in section 3, we will treat the special structure of M (V) in further
detail. Independently, it is a basic fact from linear algebra that if M (V) has full
column rank, then the linear system (4) has the unique solution t (A), which we
will call the weak solution.

Our learning algorithm proceeds as follows:

(1) Grow a set of examples V until M (V) has full column rank |T (n, L)|.
(2) Compute the unique solution t (A) of system (4), i.e., the weak solution of our

learning problem, by using an appropriate algorithm which solves systems
of linear equations over K.

(3) Compute the strong solution A from t (A).

We discuss the correctness and running time of steps (1) and (2) in section 3
and an approach for step (3) in section 4.

3 On Computing a Weak Solution

Let n and L be arbitrarily fixed such that 2 ≤ L ≤ n holds. Moreover, let
V ⊆ {0, 1}n×K denote a given set of examples obtained through linear functions

4 Keep in mind that, unlike for the previously introduced K-variables x1
s, . . . , x

L
s , s ∈

[n], the superscripted L in case of wL
i is not an index but an exponent. See, e.g.,

equation (2).
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f1, . . . , fL : {0, 1}n −→ K, where K = GF (2a). By definition, for each tuple
(u,w) ∈ V , where u =

⊕
i∈I e

i and I ⊆ [n] denotes the unique representation
of u over the standard basis e1, . . . , en of {0, 1}n, the relation w = fl′ (u) =⊕

i∈I fl′
(
ei
)
is bound to hold for some l′ ∈ [L]. We denote by Kmin ⊆ K the

subfield of K generated by all values fl
(
ei
)
, where l ∈ [L] and i ∈ [n]. Note that

w ∈ Kmin for all examples (u,w) induced by f1, . . . , fl.
In the following, we show that our learning algorithm is precluded from suc-

ceeding if the secret linear functions f1, . . . , fL happen to be of a certain type
or if K itself lacks in size.

Theorem 1. If
∣
∣Kmin

∣
∣ < L, then the columns of M (V) are linearly dependent

for any set V of examples, i.e., a unique weak solution does not exist.

Proof: Let n, K, L, and f1, . . . , fL be arbitrarily fixed such that 2 ≤ ∣
∣Kmin

∣
∣ <

L ≤ n holds and let V denote a corresponding set of examples. Obviously, for
each tuple (u,w) ∈ V , where u =

⊕
i∈I e

i and I ⊆ [n], the two cases 1 ∈ I and
1 /∈ I can be differentiated.

If 1 ∈ I holds, then it follows straightforwardly from equation (2) that the
coefficient with coordinates (u,w) and t{1},(L−1) in M (V) equals wL−(L−1) =
w1. Analogously, the coefficient with coordinates (u,w) and t{1},(L−|Kmin|) in

M (V) equals wL−(L−|Kmin|) = w|Kmin|. Note that t{1},(L−|Kmin|) is a valid (and
different) basis polynomial as

|{1}| = 1 ≤ (
L− ∣

∣Kmin
∣
∣) ≤ (L− 2) < (L− 1) < L

holds for 2 ≤ |Kmin| < L. As Kmin ⊆ K is a finite field of characteristic 2, we
can apply Lagrange’s theorem and straightforwardly conclude that the relation

z1 = z|Kmin| holds for all z ∈ Kmin (including 0 ∈ Kmin). Hence, if 1 ∈ I
holds for an example (u,w), then in the corresponding row of M (V) the two
coefficients indexed by t{1},(L−1) and t{1},(L−|Kmin|) are always equal.

If 1 /∈ I holds for an example (u,w), then the coefficient with coordinates
(u,w) and t{1},(L−1) in M (V) as well as the coefficient with coordinates (u,w)
and t{1},(L−|Kmin|) in M (V) equals 0.

Consequently, if
∣
∣Kmin

∣
∣ < L holds, then the column of M (V) indexed by

t{1},(L−1) equals the column indexed by t{1},(L−|K|) for any set V of examples,
i.e., M (V) can never achieve full column rank. �

Corollary 1. If K is chosen such that |K| < L, then the columns of M (V) are
linearly dependent for any set V of examples, i.e., a unique weak solution does
not exist. �

While we are now aware of a lower bound for the size ofK, it yet remains to prove
that step (1) of our learning algorithm is, in fact, correct. This will be achieved
by introducing the ((2n |K|)× |T (n, L)|)-matrix M∗ = M ({0, 1}n ×K), which
clearly corresponds to the set of all possible examples, and showing that M∗ has
full column rank |T (n, L)| if L ≤ |K| holds.
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However, be careful not to misinterpret this finding, which is presented below
in the form of Theorem 2. The fact that M∗ has full column rank |T (n, L)| by
no means implies that, eventually, this will also hold for M (V) if only the corre-
sponding set of observations V is large enough. In particular, the experimental
results summarized in section 5 (see, e.g., table 1) show that there are cases in
which the rank of M (V) is always smaller than |T (n, L)|, even if L ≤ |K| is
satisfied and V equals the set {(u, fl (u)) | u ∈ {0, 1}n , l ∈ [L]} ⊆ {0, 1}n ×K5

of all possible valid examples.
Still, as a counterpart of Theorem 1, the following theorem proves the pos-

sibility of existence of a unique weak solution for arbitrary parameters n and
L satisfying 2 ≤ L ≤ n. In other words, choosing T (n, L) to be the set of ba-
sis polynomials does not necessarily lead to systems of linear equations which
cannot be solved uniquely.

Theorem 2. Let n and L be arbitrarily fixed such that 2 ≤ L ≤ n holds. If K
satisfies L ≤ |K|, then M∗ has full column rank |T (n, L)|.
Proof: We denote by Z (n) the set of monomials zd0

0 · . . . · zdn
n , where 0 ≤

di ≤ |K| − 1 for i = 0, . . . , n. Obviously, the total number of such monomials

is |Z (n)| = |K|n+1
. Let us recall the aforementioned fact that the relation

z1 = z|K| holds for all z ∈ K (including 0 ∈ K). This straightforwardly implies
that each monomial in the variables z0, . . . , zn is (as a function from Kn+1 to
K) equivalent to a monomial in Z (n). Let μJ,j denote the monomial μJ,j =

zL−j0

∏
r∈J zr for all J ⊆ [n] and j, 0 ≤ j ≤ L. The following lemma can be

easily verified:

Lemma 2.1. For all J ⊆ [n], 1 ≤ |J | ≤ L, and j, |J | ≤ j ≤ L, and examples
(u,w) ∈ {0, 1}n ×K, it holds that μJ,j (w, u) equals the coefficient in M∗ which
has the coordinates (u,w) and tJ,j. �

For i = 1, . . . , |K|, we denote by ki the i-th element of the finite field K. More-
over, we suppose the convention that 00 = 1 in K. Let (u,w) be an example
defined as above and keep in mind that we are treating the case L ≤ |K|. It
should be observed that the coefficients in the corresponding equation of type
(2) are given by wL−j , where 1 ≤ j ≤ L. Thus, the set of possible exponents
{L− j | 1 ≤ j ≤ L} is bounded from above by (L− 1) < L ≤ |K|. It follows
straightforwardly from Lemma 2.1 that the (distinct) columns ofM∗ are columns
of the matrix W ⊗B⊗n, where

W =
(
kji

)

i=1,...,|K|,j=0,...,|K|−1
and B =

[
1 0
1 1

]
.

As W and B are regular, W ⊗ B⊗n is regular, too. This, in turn, implies that
the columns of M∗ are linearly independent, thus proving Theorem 2. �
5 It can be seen easily that for random linear functions f1, . . . , fL, the relation
{(u, fl (u)) | u ∈ {0, 1}n , l ∈ [L]} �= {0, 1}n × K will always hold if L < |K| and
is still very likely to hold if L = |K|.
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We will see in section 4 that for |K| ∈ O
(
dnL4

)
, the strong solution can be

reconstructed from the weak solution in time nO(L) with error probability at
most d−1. Furthermore, section 5 will feature an experimental assessment of the
number of random (valid) observations needed until M (V) achieves full column
rank |T (n, L)| for various combinations of n, L, and K (see table 2).

4 On Computing a Strong Solution from the Unique
Weak Solution

Let n, K, L, and f1, . . . , fL be defined as before. Remember that the goal of our
learning algorithm is to compute a strong solution fully characterized by the L
sets

{(
ei, fl

(
ei
)) | i ∈ [n]

}
, l = 1, . . . , L, where ei denotes the i-th element of the

standard basis of GF (2)n and fl
(
ei
)
= xl

i ∈ K. Obviously, this information can

equivalently be expressed as a matrix A ∈ Kn×L defined by Ai,· =
(
x1
i , . . . , x

L
i

)

for all i = 1, . . . , n.
Hence, we have to solve the following problem: Compute the matrixA ∈ Kn×L

from the information t (A), where

t (A) = (tJ,j (A))J⊆[n],1≤|J|≤L,|J|≤j≤L

is the unique weak solution determined previously. But before we lay out how
(and under which conditions) a strong solution A can be found, we need to
introduce the following two definitions along with an important theorem linking
them:

Definition 2. Let for all vectors x ∈ KL the signature sgt (x) of x be defined
as sgt (x) = (|x|k)k∈K , where |x|k denotes the number of components of x which
equal k.

Furthermore, consider the following new family of polynomials:

Definition 3. a) For all L ≥ 1 and j ≥ 0 let the simple symmetric polynomial
sj over the variables x1, . . . , xL be defined by s0 = 1 and

sj =
⊕

S⊆[L],|S|=j

mS,

where mS =
∏

i∈S xi for all S ⊆ [L]. Moreover, we denote

s (x) = (s0 (x) , s1 (x) , . . . , sL (x))

for all x ∈ KL.
b) Let n, L, 1 ≤ L ≤ n, hold as well as j, 0 ≤ j ≤ L, and J ⊆ [n]. The

symmetric polynomial sJ,j : K
n×L −→ K is defined by

sJ,j (A) = sj

(
⊕

i∈J
Ai,·

)
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for all matrices A ∈ Kn×L. Moreover, we denote

sJ (A) = (sJ,0 (A) , . . . , sJ,L (A)) .

The concept of signatures introduced in Definition 2 and the family of simple
symmetric polynomials described in Definition 3 will now be connected by the
following theorem:

Theorem 3. For all L ≥ 1 and x, x′ ∈ KL it holds that s (x) = s (x′) if and
only if sgt (x) = sgt (x′).

Proof: See appendix A.

Building on this result, we can then prove the following proposition, which is
of vital importance for computing the strong solution A on the basis of the
corresponding weak solution t (A):

Theorem 4. Let A ∈ Kn×L and t (A) be defined as before. For each subset
I ⊆ [n] of rows of A, the signature of the sum of these rows, i.e., sgt

(⊕
i∈I Ai,·

)
,

can be computed by solely using information derived from t (A), in particular,
without knowing the underlying matrix A itself.

Proof: We first observe that the s-polynomials can be written as linear combi-
nations of the t-polynomials. Trivially, the relation t{i},j = s{i},j holds for all
i ∈ [n] and j, 1 ≤ j ≤ L. Moreover, for all I ⊆ [n], |I| > 1, it holds that

sI,j =
⊕

Q⊆I,1≤|Q|≤j

⎛

⎝
⊕

g:[L]−→[n],|dom(g)|=j,im(g)=Q

mg

⎞

⎠ =
⊕

Q⊆I,1≤|Q|≤j
tQ,j . (5)

Note that for all J ⊆ [n] and j, |J | ≤ j ≤ L, relation (5) implies

tJ,j = sJ,j ⊕
⊕

Q⊂J
tQ,j . (6)

By an inductive argument, we obtain from relation (6) that the converse is
also true, i.e., the t-polynomials can be written as linear combinations of the
s-polynomials.

We have seen so far that given t (A), we are able to compute sI,j for all j,
1 ≤ j ≤ L, and each subset I ⊆ [n] of rows of A. Recall

sI,j (A) = sj

(
⊕

i∈I
Ai,·

)

and sI (A) = (sI,0 (A) , . . . , sI,L (A))

from Definition 3 and let x ∈ KL be defined by x =
⊕

i∈I Ai,·. It can be easily
seen that sI (A) = s (x) holds.

In conjunction with Theorem 3, this straightforwardly implies the validity of
Theorem 4. �
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Naturally, it remains to assess the degree of usefulness of this information when
it comes to reconstructing the strong solutionA ∈ Kn×L. In the following, we will
prove that if K is large enough, then with high probability, A can be completely
(up to column permutations) and efficiently derived from the signatures of all
single rows of A and the signatures of all sums of pairs of rows of A:

Theorem 5. Let K = GF (2a) fulfill |K| ≥ 1
4 · d · n · L4, i.e., a ≥ log (n) +

log (d) + 4 log (L) − 2. Then, for a random matrix A ∈U Kn×L, the following
is true with a probability of approximately at least

(
1− 1

d

)
: A can be completely

reconstructed from the signatures sgt (Ai,·), 1 ≤ i ≤ n, and sgt (Ai,· ⊕Aj,·),
1 ≤ i < j ≤ n.

Proof: See appendix A.

As we have seen now that, under certain conditions, it is possible to fully recon-
struct the strong solution A by solely resorting to information obtained from the
weak solution t (A), we can proceed to actually describe a conceivable approach
for step (3) of the learning algorithm:

We choose a constant error parameter d and an exponent a, i.e., K = GF (2a),
in such a way that Theorem 5 can be applied. Note that L ≤ n and |K| ∈ nO(1).
In a pre-computation, we generate two databases DB1 and DB2 of size nO(L).
While DB1 acts as a lookup table with regard to the one-to-one relation between
s (x) and sgt (x) for all x ∈ KL, we use DB2 to store all triples of signatures
S, S′, S̃ for which there is exactly one solution pair x, y ∈ KL fulfilling sgt (x) = S
and sgt (y) = S′ as well as sgt (x⊕ y) = S̃.

Given t (A), i.e., the previously determined weak solution, we then compute
sgt (Ai,·) for all i, 1 ≤ i ≤ n, and sgt (Ai,· ⊕Aj,·) for all i, j, 1 ≤ i < j ≤ n, in
time nO(1) by using DB1 and relation (5), which can be found in the proof of
Theorem 4. According to Theorem 5, it is now possible to reconstruct A by the
help of database DB2 with probability at least 1− 1

d .

5 Experimental Results

To showcase the detailed workings of our learning algorithm as well as to evaluate
its efficiency at a practical level, we created a complete implementation using
the computer algebra system Magma. In case of success, it takes approximately
90 seconds on standard PC hardware (Intel i7, 2.66 GHz, with 6 GB RAM) to
compute the unique strong solution on the basis of a set of 10,000 randomly
generated examples for n = 10, a = 3 (i.e., K = GF (2a)), and L = 5. Relating
to this, we performed various simulations in order to assess the corresponding
probabilities, which were already discussed in sections 3 and 4 from a theoretical
point of view.

The experimental results summarized in table 1 clearly suggest that if |K|
is only slightly larger than the number L of secret linear functions, then in all
likelihood,M (V) will eventually reach full (column) rank |T (n, L)|, thus allowing
for the computation of a unique weak solution. Moreover, in accordance with
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Table 1. An estimate of the rank of M (V) on the basis of all possible valid observations
for up to 10,000 randomly generated instances of RandomSelect (L, n, a). For each
choice of parameters, |T (n,L)| denotes number of columns of M (V) as defined in
section 2 and listed in table 2.

Parameters Performed Iterations

Rank of M (V) < |T (n,L)| Rank of M (V) = |T (n,L)| Total

n K L Number Ratio Number Ratio Number

4 GF
(
22
)

2 37 0.37 % 9,963 99.63 % 10,000
4 GF

(
22
)

3 823 8.23 % 9,177 91.77 % 10,000
4 GF

(
22
)

4 7,588 75.88 % 2,412 24.12 % 10,000
5 GF

(
22
)

4 4,556 45.56 % 5,444 54.44 % 10,000
5 GF

(
22
)

5 10,000 100.00 % 0 0.00 % 10,000
6 GF

(
23
)

4 0 0.00 % 1,000 100.00 % 1,000
8 GF

(
23
)

4 0 0.00 % 1,000 100.00 % 1,000
8 GF

(
23
)

6 0 0.00 % 100 100.00 % 100
8 GF

(
23
)

7 0 0.00 % 100 100.00 % 100
8 GF

(
23
)

8 0 0.00 % 100 100.00 % 100
9 GF

(
23
)

8 0 0.00 % 10 100.00 % 10
9 GF

(
23
)

9 10 100.00 % 0 0.00 % 10

Corollary 1, the columns of M (V) were always linearly dependent in the case
of n = 5, K = GF

(
22
)
and L = 5, i.e., |K| = 4 < 5 = L. A further analysis

of the underlying data revealed in addition that, for arbitrary combinations
of n, K, and L, the matrix M (V) never reached full column rank if at least
two of the corresponding L random linear functions f1, . . . , fL were identical
during an iteration of our experiments. Note that, on the basis of the current
implementation, it was not possible to continue table 1 for larger parameter sizes
because, e.g., in the case of n = 8, K = GF

(
23
)
and L = 7, performing as few

as 100 iterations already took more than 85 minutes on the previously described
computer system.

Table 2 features additional statistical data with respect to the number of
examples needed (in case of success) until the matrix M (V) reaches full col-
umn rank |T (n, L)|. Please note that, in contrast to the experiments underlying
table 1, such examples (u, fl (u)) are generated iteratively and independently
choosing random pairs u ∈U {0, 1}n and l ∈U [L], i.e., they are not processed
in their canonical order but observed randomly (and also repeatedly) to sim-
ulate a practical passive attack. While we have seen previously that for most
choices of n, K and L, the matrix M (V) is highly likely to eventually reach
full column rank, the experimental results summarized in table 2, most no-
tably the observed p-quantiles, strongly suggest that our learning algorithm for
RandomSelect (L, n, a) will also be able to efficiently construct a corresponding
LES which allows for computing a unique weak solution.

It remains to clear up the question, to what extent Theorem 5 reflects reality
concerning the probability of a random (n× L)-matrix over K being sgt (2)-
identifiable (see Definitions 5.1 and 5.2 in the proof of Theorem 5), which is
necessary and sufficient for the success of step (3) of our learning algorithm. Our
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Table 2. An estimate of the number of randomly generated examples (u, fl (u)) which
have to be processed (in case of success) until the matrix M (V) reaches full column
rank |T (n,L)|. Given a probability p, we denote by Qp the p-quantile of the respective
sample.

Parameters Number of Random Examples until Rank (M (V)) = |T (n,L)|
n K L |T (n,L)| Avg. Max. Min. Q0.1 Q0.25 Q0.5 Q0.75 Q0.9

4 GF
(
22
)

1 4 5.5 18 4 4 4 5 6 8
4 GF

(
22
)

2 14 24.4 93 14 18 20 23 27 32
4 GF

(
22
)

3 28 71.8 273 33 51 58 67 81 99
4 GF

(
22
)

4 43 226.2 701 95 147 175 211 261 317
5 GF

(
22
)

4 75 218.5 591 140 176 192 211 237 263
6 GF

(
23
)

4 124 201.6 318 162 184 192 200 211 220
8 GF

(
23
)

4 298 378.7 419 345 365 371 378 386 393
8 GF

(
23
)

6 762 1401.6 1565 1302 1342 1364 1405 1427 1458
8 GF

(
23
)

7 1016 2489.7 2731 2275 2369 2417 2477 2547 2645
8 GF

(
23
)

8 1271 5255.3 7565 4302 4706 4931 5227 5557 5706
9 GF

(
23
)

8 2295 6266.1 6553 6027 6078 6136 6199 6415 6504

Table 3. An estimate of the ratio of sgt (2)-identifiable (n× L)-matrices over K

Parameters Performed Iterations
(
i.e., randomly chosen A ∈U Kn×L

)
A not sgt (2)-identifiable A was sgt (2)-identifiable Total

n K L Number Ratio Number Ratio Number

4 GF
(
22
)

2 0 0.00 % 10,000 100.00 % 10,000
4 GF

(
22
)

3 69 0.69 % 9,931 99.31 % 10,000
4 GF

(
22
)

4 343 3.43 % 9,657 96.57 % 10,000
6 GF

(
23
)

4 0 0.00 % 10,000 100.00 % 10,000
8 GF

(
23
)

4 0 0.00 % 10,000 100.00 % 10,000
8 GF

(
23
)

6 0 0.00 % 1,000 100.00 % 1,000
8 GF

(
23
)

7 0 0.00 % 1,000 100.00 % 1,000
8 GF

(
23
)

8 0 0.00 % 100 100.00 % 100
9 GF

(
23
)

8 0 0.00 % 100 100.00 % 100

corresponding simulations yielded table 3, which immediately suggests that even
for much smaller values of |K| than those called for in Theorem 5, a strong solu-
tion A ∈U Kn×L can be completely reconstructed from the signatures sgt (Ai,·),
1 ≤ i ≤ n, and sgt (Ai,· ⊕Aj,·), 1 ≤ i < j ≤ n. In conjunction with the ex-
perimental results concerning the rank of M (V), this, in turn, implies that our
learning algorithm will efficiently lead to success in the vast majority of cases.

6 Discussion

The running time of our learning algorithm for RandomSelect (L, n, a) is dom-
inated by the complexity of solving a system of linear equations with |T (n, L)|
unknowns. Our hardness conjecture is that this complexity also constitutes a
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lower bound to the complexity of RandomSelect (L, n, a) itself, which would im-
ply acceptable cryptographic security for parameter choices like n = 128 and
L = 8 or n = 256 and L = 6. The experimental results summarized in the previ-
ous section clearly support this view. Consequently, employing the principle of
random selection to design new symmetric lightweight authentication protocols
might result in feasible alternatives to current HB-based cryptographic schemes.

A problem of independent interest is to determine the complexity of recon-
structing an sgt (r)-identifiable matrix A from the signatures of all sums of at
most r rows of A. Note that this problem is wedded to determining the complex-
ity of RandomSelect (L, n, a) with respect to an active learner, who is able to
receive examples (u,w) for inputs u of his choice, where w = fl (u) and l ∈U [L] is
randomly chosen by the oracle. It is easy to see that such learners can efficiently
compute sgt (f1 (u) , . . . , fL (u)) by repeatedly asking for u. As the approach for
reconstructing A which was outlined in section 4 needs a data structure of size
exponential in L, it would be interesting to know if there are corresponding
algorithms of time and space costs polynomial in L.

From a theoretical point of view, another open problem is to determine the
probability that a random (n× L)-matrix over K is sgt (r)-identifiable for some
r, 2 ≤ r ≤ L. Based on the results of our computer experiments, it appears more
than likely that the lower bound derived in Theorem 5 is far from being in line
with reality and that identifiable matrices occur with much higher probability
for fields K of significantly smaller size.
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A The Proofs of Theorems 3 and 5

Please refer to [19] for the full version of this paper including the proofs of
Theorems 3 and 5.

B On Attacking the (n, k, L)+-protocol by Solving
RandomSelect (L, n, a)

The following outline of an attack on the (n, k, L)+-protocol by Krause and
Stegemann [18] is meant to exemplify the immediate connection between the
previously introduced learning problem RandomSelect (L, n, a) and the security
of this whole new class of lightweight authentication protocols. Similar to the
basic communication mode described in the introduction, the (n, k, L)+-protocol
is based on L n-dimensional, injective linear functions F1, . . . , FL : GF (2)n −→
GF (2)n+k (i.e., the secret key) and works as follows.

Each instance is initiated by the verifier Alice, who chooses a random vector
a ∈U GF (2)n/2 and sends it to Bob, who then randomly (i.e., independently and
uniformly) chooses l ∈U [L] along with an additional value b ∈U GF (2)n/2, in or-

der to compute his response w = Fl (a, b). Finally, Alice accepts w ∈ GF (2)
n+k

if there is some l ∈ [L] with w ∈ Vl and the prefix of length n/2 of F−1l (w)

equals a, where Vl denotes the n-dimensional linear subspace of GF (2)
n+k

cor-
responding to the image of Fl.

This leads straightforwardly to a problem called Learning Unions of L Lin-
ear Subspaces (LULS), where an oracle holds the specifications of L secret n-
dimensional linear subspaces V1, . . . , VL of GF (2)n+k, from which it randomly
chooses examples v ∈U Vl for l ∈U [L] and sends them to the learner. Knowing
only n and k, he seeks to deduce the specifications of V1, . . . , VL from a suffi-
ciently large set {w1, . . . , ws} ⊆

⋃L
l=1 Vl of such observations. It is easy to see

that this corresponds to a passive key recovery attack against (n, k, L)-type pro-
tocols. Note that there is a number of exhaustive search strategies to solve this
problem, e.g., the generic exponential time algorithm called search-for-a-basis
heuristic, which was presented in the appendix of [18].

It should be noted that an attacker who is able to solve the LULS problem
needs to perform additional steps to fully break the (n, k, L)+-protocol as im-
personating the prover requires to send responses w ∈ GF (2)n+k which not only

fulfill w ∈ ⋃L
l=1 Vl but also depend on some random nonce a ∈ GF (2)n/2 pro-

vided by the verifier. However, having successfully obtained the specifications of
the secret subspaces V1, . . . , VL allows in turn for generating a specification of
the image of Fl (a, ·) for each l ∈ [L] by repeatedly sending an arbitrary but fixed
(i.e., selected by the attacker) a ∈ GF (2)n/2 to the prover. Remember that, al-
though the prover chooses a random l ∈U [L] each time he computes a response
w based on some fixed a, an attacker who has determined V1, . . . , VL will know
which subspace the vector w actually belongs to. Krause and Stegemann pointed
out that this strategy allows for efficiently constructing specifications of linear



150 M. Krause and M. Hamann

functions G1, . . . , GL : GF (2)n −→ GF (2)n+k and bijective linear functions
g1, . . . , gL : GF (2)n/2 −→ GF (2)n/2 such that

Fl (a, b) = Gl (a, gl (b))

for all l ∈ [L] and a, b ∈ GF (2)n/2 [18]. Hence, the efficiently obtained specifi-
cations of the functions ((G1, . . . , GL) , (g1, . . . , gL)) are equivalent to the actual
secret key (F1, . . . , FL). However, keep in mind that the running time of this
attack is dominated by the effort needed to solve the LULS problem first and
that RandomSelect (L, n, a) in fact refers to a special case of the LULS problem,
which assumes that the secret subspaces have the form

Vl = {(v, fl (v)) | v ∈ GF (2)n} ⊆ GF (2)n+k

for all l ∈ [L] and secret GF (2)-linear functions f1, . . . , fL : GF (2)n −→ GF (2)k.
This is true with probability p (n) ≈ 0.2887 as, given an arbitrary ((n+ k)× n)-
matrix A over GF (2), the general case V = {A ◦ v | v ∈ GF (2)n} can be written
in the special form iff the first n rows of A are linearly independent (see, e.g.,
[11]).

In order to solve this special problem efficiently, we suggest the following
approach, which makes use of our learning algorithm for RandomSelect (L, n, a)
and works by

– determining an appropriate number a ∈ O (log (n)) which, w.l.o.g., divides
k (i.e., k = γ · a for some γ ∈ N),

– identifying vectors w ∈ {0, 1}k with vectors w = (w1, . . . , wγ) ∈ GF (2a)
γ

and functions f : {0, 1}n −→ {0, 1}k with γ-tuples
(
f1, . . . , fγ

)
of compo-

nent functions f1, . . . , fγ : {0, 1}n −→ GF (2a) based on the following rule:
f i (u) = wi for all i = 1, . . . , γ if and only if f (u) = (w1, . . . , wγ),

– learning f1, . . . , fL : {0, 1}n −→ {0, 1}k by learning each of the corresponding
sets of component functions f i

1, . . . , f
i
L : {0, 1}n −→ GF (2a) in time nO(L)

for i = 1, . . . , γ.

Clearly, for efficiency reasons, a should be as small as possible. However, in
section 4 we show that a needs to exceed a certain threshold, which can be
bounded from above by O (log (n)), to enable our learning algorithm to find a
unique solution with high probability.

Please note that, throughout this paper, a is assumed to be fixed as we de-
velop a learning algorithm for sets of secret GF (2)-linear functions f1, . . . , fL :
{0, 1}n −→ K, where K = GF (2a). In particular, for the sake of simplicity,
we write f1, . . . , fL while actually referring to a set of component functions as
explained above.
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Abstract. In SAC 2010, Sepehrdad, Vaudenay and Vuagnoux have re-
ported some empirical biases between the secret key, the internal state
variables and the keystream bytes of RC4, by searching over a space of
all linear correlations between the quantities involved. In this paper, for
the first time, we give theoretical proofs for all such significant empirical
biases. Our analysis not only builds a framework to justify the origin
of these biases, it also brings out several new conditional biases of high
order. We establish that certain conditional biases reported earlier are
correlated with a third event with much higher probability. This gives
rise to the discovery of new keylength-dependent biases of RC4, some
as high as 50/N , where N is the size of the RC4 permutation. The new
biases in turn result in successful keylength prediction from the initial
keystream bytes of the cipher.

Keywords: Conditional Bias, Key Correlation, Keylength Prediction,
RC4.

1 Introduction

RC4 is one of the most popular stream ciphers for software applications. Designed
by Ron Rivest in 1987, the algorithm of RC4 has two parts; Key Scheduling
(KSA) and Pseudo-Random Generation (PRGA), presented in Table 1.

Given a secret key k of length l bytes, an array K of size N bytes is created
to hold the key such that K[y] = k[y mod l] for all y ∈ [0, N−1]. Generally, N is
chosen to be 256. The first part of the cipher, KSA, uses this K to scramble an
initial identity permutation {0, 1, . . . , N − 1} to obtain a ‘secret’ state S. Then
the PRGA generates keystream bytes from this initial state S, which are used for
encrypting the plaintext. Two indices i (deterministic) and j (pseudo-random)
are used in KSA as well as PRGA to point to the locations of S. All additions
in the RC4 algorithm are performed modulo N .

After r (≥ 1) rounds of RC4 PRGA, we denote the variables by Sr, ir, jr, zr
and the output index Sr[ir]+Sr[jr] by tr. After r rounds of KSA, we denote the
same by adding a superscript K to each variable. By SK

0 and S0, we denote the
initial permutations before KSA and PRGA respectively. Note that SK

0 is the
identity permutation and S0 = SK

N .
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Table 1. The RC4 Algorithm: KSA and PRGA

Key Scheduling (KSA) Pseudo-Random Generation (PRGA)

Input: Secret Key K.
Output: S-Box S generated by K.

Initialize S = {0, 1, 2, . . . , N − 1};
Initialize counter: j = 0;

for i = 0, . . . , N − 1 do
j = j + S[i] +K[i];
Swap S[i]↔ S[j];

end

Input: S-Box S, output of KSA.
Output: Random stream Z.

Initialize the counters: i = j = 0;

while TRUE do
i = i+ 1, j = j + S[i];
Swap S[i]↔ S[j];
Output Z = S[S[i] + S[j]];

end

Existing Results. In SAC 2010, Sepehrdad, Vaudenay and Vuagnoux [12] have
reported experimental results of an exhaustive search for biases in all possible
linear combinations of the state variables and the keystream bytes of RC4. In
the process, they have discovered many new biases that are significantly high
compared to random association. Some of these biases were further shown to be
useful for key recovery in WEP [3] mode. In a recent work [13] at Eurocrypt 2011,
the same authors have utilized the pool of all existing biases of RC4, including
a few reported in [12], to mount a distinguishing attack on WPA [4].

In the above approach, RC4 is treated as a black box, where the secret key
bytes are the inputs, the permutation and the index j are internal state vari-
ables and the keystream bytes are the outputs. The goal of [12] was to find out
empirical correlations between the inputs, internal state and the outputs and no
attempt was made to theoretically prove these biases. Finding empirical biases
without any justification or proof may be useful from application point of view.
However, cryptanalysis is a disciplined branch of science and a natural quest in
RC4 cryptanalysis should be: Where do all these biases come from?

Motivation. We felt three primary reasons behind a theoretical investigation
into the source and nature of these biases.

– We attempt to build a framework to analyze the biases and their origin.
– In the process of proving the existing biases, one may need to consider some

additional events and thus may end up discovering new biases, leading to
further insight into the cipher. We have observed some interesting events
with strong biases, which have not yet been reported in the literature.

– When there is a conditional bias in the event ‘A given B’, there may be
three reasons behind it: either some subset of A directly causes B or some
subset of B directly causes A or another set C of different events cause
both A and B. Just from empirical observation, it is impossible to infer
what is the actual reason behind the bias. Only a theoretical study can shed
light upon the interplay between the events. Our observations and analysis
suggest that some conditional biases reported in [12] are possibly of the third
kind discussed above and this provides us with some interesting new results
depending on the length of the RC4 secret key.
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Contribution. Our main contribution in this paper is summarized as follows.

1. In Section 2, we provide theoretical proofs for some significant empirical bi-
ases of RC4 reported in SAC 2010 [12]. In particular, we justify the reported
biases of order approximately 2/N , summarized in Table 2. Note that the
authors of [12] denote the PRGA variables by primed indices. Moreover, the
probabilities mentioned in the table are the ones observed in [12], and the
values for ‘biases at all rounds (round-dependent)’ are the ones for r = 3.
We provide general proofs and formulas for all of these biases.

Table 2. Significant biases observed in [12] and proved in this paper

Type of Bias Label as in [12] Event Probability

New 004 j2 + S2[j2] = S2[i2] + z2 2/N
Bias at Specific New noz 007 j2 + S2[j2] = 6 2.37/N
Initial Rounds New noz 009 j2 + S2[j2] = S2[i2] 2/N

New noz 014 j1 + S1[i1] = 2 1.94/N

Bias at All Rounds New noz 001 jr + Sr[ir ] = ir + Sr[jr] 2/N
(round-independent) New noz 002 jr + Sr[jr ] = ir + Sr[ir] 2/N

Bias at All Rounds New 000 Sr[tr] = tr 1.9/N at r = 3
(round-dependent) New noz 004 Sr[ir] = jr 1.9/N at r = 3

New noz 006 Sr[jr] = ir 2.34/N at r = 3

2. In Section 3, we try to justify the bias Pr[S16[j16] = 0 | z16 = −16] =
0.038488 observed in [12], for which the authors have commented:

“So far, we have no explanation about this new bias.” [12, Section 3]

We have observed that the implied correlation arises because both the events
depend on some other event based on the length of RC4 secret key. We also
prove some related correlations in this direction, in full generality for any
keylength l.

3. In Section 3, we also prove an array of new keylength-dependent conditional
biases of RC4 that are of the same or even higher magnitude. To the best of
our knowledge, these are not reported in the literature [1, 2, 6, 9–15].

4. In Section 3.3, we prove a strong correlation between the length l of the secret
key and the l-th output byte (typically for 5 ≤ l ≤ 30), and thus propose a
method to predict the keylength of the cipher by observing the keystream.
As far as we know, no such significant keylength related bias exists in the
RC4 literature [1, 2, 6, 9–15].

2 Proofs of Recent Empirical Observations

In this section, we investigate some significant empirical biases discovered and
reported in [12]. We provide theoretical justification only for the new biases
which are of the approximate order of 2/N or more, summarized in Table 2. In
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this target list, general biases refer to the ones occurring in all initial rounds
of PRGA (1 ≤ r ≤ N − 1), whereas the specific ones have been reported only
for rounds 1 and 2 of PRGA. We do not consider the biases reported for rounds
0 mod 16 in this section, as they are of order 1/N2 or less.

For the proofs and numeric probability calculations in this paper, we re-
quire [6, Theorem 6.3.1], restated as Proposition 1 below.

Proposition 1. At the end of RC4 KSA, for 0 ≤ u ≤ N − 1, 0 ≤ v ≤ N − 1,

Pr(S0[u] = v) =

⎧
⎨

⎩

1
N

[(
N−1
N

)v
+
(
1− (

N−1
N

)v) (N−1
N

)N−u−1]
if v ≤ u;

1
N

[(
N−1
N

)N−u−1
+
(
N−1
N

)v]
if v > u.

If a pseudorandom permutation is taken as the initial state S0 of RC4 PRGA,
then we would have Pr(S0[u] = v) = 1

N for all 0 ≤ u ≤ N − 1, 0 ≤ v ≤ N − 1.

2.1 Bias at Specific Initial Rounds of PRGA

In this part of the paper, we prove the biases labeled New noz 014, New noz 007,
New noz 009 and New 004, as in [12, Fig. 3 and Fig. 4] and Table 2.

Theorem 1. After the first round (r = 1) of RC4 PRGA,

Pr(j1 + S1[i1] = 2) = Pr(S0[1] = 1) +
∑

X �=1

Pr(S0[X ] = 2−X) · Pr(S0[1] = X)

Proof. Note that j1 = S0[1] and S1[i1] = S0[j1]. So, in the case j1 = S0[1] = 1,
we will have j1 + S0[j1] = S0[1] + S0[1] = 2 with probability 1. Otherwise, the
probability turns out to be Pr(j1+S0[j1] = 2 & j1 = S0[1] �= 1) =

∑
X �=1 Pr(X+

S0[X ] = 2 & S0[1] = X). Thus, the probability Pr(j1+S1[i1] = 2) can be written
as Pr(j1+S1[i1] = 2) = Pr(S0[1] = 1)+

∑
X �=1 Pr(S0[X ] = 2−X)·Pr(S0[1] = X),

as desired. Hence the claimed result. ��
Numerical Values. If we consider the practical RC4 scheme, the probabilities
involving S0 in the expression for Pr(j1 + S1[i1] = 2) should be evaluated using
Proposition 1, giving a total probability of approximately 1.937/N for N = 256.
This closely matches the observed value 1.94/N . If we assume that RC4 PRGA
starts with a truly pseudorandom initial state S0, the probability turns out to
be approximately 2/N − 1/N2 ≈ 1.996/N for N = 256, i.e., almost twice that
of a random occurrence.

Theorem 2. After the second round (r = 2) of RC4 PRGA, the following prob-
ability relations hold between the index j2 and the state variables S2[i2], S2[j2].

Pr (j2 + S2[j2] = 6) ≈ Pr(S0[1] = 2) +
∑

X even, X �=2

(2/N) · Pr(S0[1] = X) (1)

Pr (j2 + S2[j2] = S2[i2]) ≈ 2/N − 1/N2 (2)

Pr (j2 + S2[j2] = S2[i2] + z2) ≈ 2/N − 1/N2 (3)
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Proof. In Equation (1), we have j2+S2[j2] = (j1+S1[2])+S1[i2] = S0[1]+2·S1[2].
In this expression, note that if S0[1] = 2, then one must have the positions 1
and 2 swapped in the first round of PRGA, and thus S1[2] = S0[1] = 2 as well.
This provides one path for j2 + S2[j2] = S0[1] + 2 · S1[2] = 2 + 2 × 2 = 6, with
probability Pr(S0[1] = 2) · 1 ≈ 1

N . If on the other hand, S0[1] = X �= 2, we have
Pr(j2 + S2[j2] = 6 & S0[1] �= 2) =

∑
X �=2 Pr(X + 2 · S1[2] = 6 & S0[1] = X).

Note that the value of X is bound to be even and for each such value of X , the
variable S1[2] can take 2 different values to satisfy the equation 2 ·S1[2] = 6−X .
Thus, we have

∑
X �=2 Pr(2 · S1[2] = 6 − X & S0[1] = X) ≈ ∑

X even, X �=2
2
N ·

Pr(S0[1] = X). Combining the two disjoint cases S0[1] = 2 and S0[1] �= 2, we get
Equation (1).

In case of Equation (2), we have a slightly different condition S0[1]+2 ·S1[2] =
S2[i2] = S1[j2] = S1[S0[1] + S1[2]]. In this expression, if we have S1[2] = 0, then
the left hand side reduces to S0[1] and the right hand side becomes S1[S0[1] +
S1[2]] = S1[S0[1]] = S1[j1] = S0[i1] = S0[1] as well. This provides a probability
1
N path for the condition to be true. In all other cases with S1[2] �= 0, we can
approximate the probability for the condition as 1

N , and hence approximate the
total probability Pr(j2 + S2[j2] = S2[i2]) as Pr(j2 + S2[j2] = S2[i2] & S1[2] =
0) + Pr(j2 + S2[j2] = S2[i2] & S1[2] �= 0) ≈ 1

N +
(
1− 1

N

) · 1
N = 2

N − 1
N2 .

Finally, for Equation (3), the main observation is that this is almost iden-
tical to the condition of Equation (2) apart from the inclusion of z2. But our
first path of S1[2] = 0 in the previous case also provides us with z2 = 0 with
probability 1 (this path was first observed by Mantin and Shamir [7]). Thus,
we have Pr(j2 + S2[j2] = S2[i2] + z2 & S1[2] = 1) ≈ 1

N · 1. In all other cases
with S1[2] �= 0, we assume the conditions to match uniformly at random, and
therefore have Pr(j2 + S2[j2] = S2[i2] + z2) ≈ 1

N · 1 +
(
1− 1

N

) · 1
N = 2

N − 1
N2 .

Hence the desired results of Equations (1), (2) and (3). ��

Numerical Values. In case of Equation (1), if we assume S0 to be the practical
initial state for RC4 PRGA, and substitute all probabilities involving S0 using
Proposition 1, we get the total probability equal to 2.36/N for N = 256. This
value closely match the observed probability 2.37/N . If we suppose that S0 is
pseudorandom, we will get probability 2/N − 2/N2 ≈ 1.992/N for Equation (1).
The theoretical results are summarized in Table 3 along with the experimentally
observed probabilities of [12].

Table 3. Theoretical and observed biases at specific initial rounds of RC4 PRGA

Label [12] Event Observed Theoretical Probability
Probability [12] S0 of RC4 Random S0

New noz 014 j1 + S1[i1] = 2 1.94/N 1.937/N 1.996/N

New noz 007 j2 + S2[j2] = 6 2.37/N 2.363/N 1.992/N

New noz 009 j2 + S2[j2] = S2[i2] 2/N 1.996/N 1.996/N

New noz 004 j2 + S2[j2] = S2[i2] + z2 2/N 1.996/N 1.996/N
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2.2 Biases at All Initial Rounds of PRGA (Round-Independent)

In this section, we turn our attention to the biases labeled New noz 001 and
New noz 002 in [12], both of which continue to persist in all initial rounds (1 ≤
r ≤ N − 1) of RC4 PRGA.

Theorem 3. At any initial round 1 ≤ r ≤ N − 1 of RC4 PRGA, the following
two relations hold between the indices ir, jr and the state variables Sr[ir], Sr[jr].

Pr(jr + Sr[jr] = ir + Sr[ir]) ≈ 2/N (4)

Pr(jr + Sr[ir] = ir + Sr[jr]) ≈ 2/N (5)

Proof. For both the events mentioned above, we shall take the path ir = jr.
Notice that ir = jr occurs with probability 1

N and in that case both the events
mentioned above hold with probability 1. In the case where ir �= jr, we rewrite
the events as Sr[jr] = (ir − jr) + Sr[ir] and Sr[jr] = (jr − ir) + Sr[ir]. Here
we already know that Sr[jr] �= Sr[ir], as jr �= ir and Sr is a permutation. Thus
in case ir �= jr, the values of Sr[ir] and Sr[jr] can be chosen in N(N − 1)
ways (drawing from a permutation without replacement) to satisfy the relations
stated above. This gives the total probability for each event approximately as
Pr(jr = ir) ·1+

∑
jr �=ir

1
N(N−1) =

1
N +(N−1) · 1

N(N−1) =
2
N . Hence the claimed

result for Equations (4) and (5). ��
The probabilities for New noz 001 and New noz 002 proved in Theorem 3 do
not vary with change in r (i.e., they continue to persist at the same order of
2/N at any arbitrary round of PRGA), and our theoretical results match the
probabilities reported in [12, Fig. 2].

2.3 Biases at All Initial Rounds of PRGA (Round-Dependent)

Next, we consider the biases that are labeled as New 000, New noz 004 and
New noz 006 in [12, Fig. 2]. We prove the biases for rounds 3 to 255 in RC4
PRGA, and we show that all of these decrease in magnitude with increase in r,
as observed experimentally in the original paper.

Let us first prove observation New noz 006 of [12]. This proof was also at-
tempted in [5, Lemma 1], where the event was equivalently stated as Sr−1[r] = r.
But that proof used a crude approximation which resulted in a slight mismatch
of the theoretical and practical patterns in the main result of the paper [5, Fig.
2]. Our proof of Theorem 4, as follows, corrects the proof of [5, Lemma 1], and
removes the mismatch in [5, Fig. 2].

Theorem 4. For PRGA rounds r ≥ 3, value of Pr(Sr[jr] = ir) is approximately

Pr(S1[r] = r)

[
1− 1

N

]r−2
+

r−1∑

t=2

r−t∑

k=0

Pr(S1[t] = r)

k! ·N
[
r − t− 1

N

]k [
1− 1

N

]r−3−k

Before proving Theorem 4, let us first prove a necessary technical result.
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Lemma 1. After the first round of RC4 PRGA, the probability Pr(S1[t] = r) is

Pr(S1[t] = r) =

⎧
⎨

⎩

∑N−1
X=0 Pr(S0[1] = X) · Pr(S0[X ] = r), t = 1;

Pr(S0[1] = r) + (1− Pr(S0[1] = r)) · Pr(S0[r] = r), t = r;
(1− Pr(S0[1] = t)) · Pr(S0[t] = r), t �= 1, r.

Proof. After the first round of RC4 PRGA, we obtain the state S1 from the
initial state S0 through a single swap operation between the positions i1 = 1
and j1 = S0[i1] = S0[1]. Thus, all other positions of S0 remain the same apart
from these two. This gives us the value of S1[t] as follows: S1[t] = S0[S0[1]] if
t = 1, S1[t] = S0[1] if t = S0[1], and S1[t] = S0[t] in all other cases. Now, we can
compute the probabilities Pr(S1[t] = r) based on the probabilities for S0, which
are in turn derived from Proposition 1. We have three cases:

– Case t = 1. In this case, using the recurrence relation S1[1] = S0[S0[1]], we

can write Pr(S1[1] = r) =
∑N−1

X=0 Pr(S0[1] = X) · Pr(S0[X ] = r).
– Case t = r. In this situation, if S0[1] = r, we will surely have S1[r] = r

as these are the positions swapped in the first round, and if S0[1] �= r, the
position t = r remains untouched and S1[r] = r is only possible if S0[r] = r.
Thus, Pr(S1[r] = r) = Pr(S0[1] = r) + (1 − Pr(S0[1] = r)) · Pr(S0[r] = r).

– Case t �= 1, r. In all other cases where t �= 1, r, it can either take the value
S0[1] with probability Pr(S0[1] = t), or not. If t = S0[1], the value S0[t] will
get swapped with S0[1] = t itself, i.e., we will get S1[t] = t �= r for sure.
Otherwise, the value S1[t] remains the same as S0[t]. Hence, Pr(S1[t] = r) =
(1− Pr(S0[1] = t)) · Pr(S0[t] = r).

Combining all the above cases together, we obtain the desired result. ��
Proof of Theorem 4. Let us start from the PRGA state S1, that is, the state
that has been updated once in the PRGA (we refer to the state after KSA by
S0). We know that the event Pr(S1[r] = r) is positively biased for all r, and
hence the natural path for investigation is the effect of the event (S1[r] = r) on
(Sr−1[r] = r), i.e, on (Sr[jr] = ir). Notice that there can be two cases, as follows.

Case I. In the first case, suppose that (S1[r] = r) after the first round, and the
r-th index is not disturbed for the next r − 2 state updates. Notice that index
i varies from 2 to r − 1 during these period, and hence never touches the r-th
index. Thus, the index r will retain its state value r if index j does not touch

it. The probability of this event is
(
1− 1

N

)r−2
over all the intermediate rounds.

Hence the first part of the probability is Pr(S1[r] = r)
(
1− 1

N

)r−2
.

Case II. In the second case, suppose that S1[r] �= r and S1[t] = r for some
t �= r. In such a case, only a swap between the positions r and t during rounds
2 to r − 1 of PRGA can make the event (Sr−1[r] = r) possible. Notice that if
t does not fall in the path of i, that is, if the index i does not touch the t-th
location, then the value at S1[t] can only go to some position behind i, and this
can never reach Sr−1[r], as i can only go up to (r − 1) during this period. Thus
we must have 2 ≤ t ≤ r − 1 for S1[t] to reach Sr−1[r]. Note that the way S1[t]
can move to the r-th position may be either a one hop or a multi-hop route.
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– In the easiest case of single hop, we require j not to touch t until i touches t,
and j = r when i = t, and j not to touch r for the next r−t−1 state updates.

Total probability comes to be Pr(S1[t] = r)
(
1− 1

N

)t−2 · 1
N · (1− 1

N

)r−t−1
=

Pr(S1[t] = r) · 1
N

(
1− 1

N

)r−3
.

– Suppose that it requires (k + 1) hops to reach from S1[t] to Sr−1[r]. Then
the main issue to note is that the transfer will never happen if the position t
swaps with any index which does not lie in the future path of i. Again, this
path of i starts from r−t−1

N for the first hop and decreases approximately to
r−t−1
lN at the l-th hop. We would also require j not to touch the position r

for the remaining (r − 3 − k) number of rounds. Combining all, we get the

second part of the probability as Pr(S1[t] = r)
[∏k

l=1
r−t−1
lN

] [
1− 1

N

]r−3−k
=

Pr(S1[t]=r)
k!·N

[
r−t−1

N

]k [
1− 1

N

]r−3−k
.

Finally, note that the number of hops (k+1) is bounded from below by 1 and from
above by (r − t + 1), depending on the initial gap between t and r positions.
Considering the sum over t and k with this consideration, we get the desired
expression for Pr(Sr−1[r] = r). ��
Remark 1. In proving Theorem 4, we use the initial condition S1[r] = r to branch
out the probability paths, and not S0[r] = r as in [5, Lemma 1]. This is because
the probability of S[r] = r takes a leap from around 1/N in S0 to about 2/N in
S1, and this turns out to be the actual cause behind the bias in Sr−1[r] = r.

Fig. 1 illustrates the experimental observations (averages taken over 100 mil-
lion runs with 16-byte key) and the theoretical values for the distribution of
Pr(Sr[jr] = ir) over the initial rounds 3 ≤ r ≤ 255 of RC4 PRGA. It is evident
that our theoretical formula matches the experimental observations in this case.

Experimental (16 byte key)

Theoretical

Fig. 1. Distribution of Pr(Sr[jr] = ir) for initial rounds 3 ≤ r ≤ 255 of RC4 PRGA

Now let us take a look at the other two round-dependent biases of RC4,
observed in [12]. We can state the related result in Theorem 5 (corresponding
to observations New noz 004 and New 000).
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Theorem 5. For PRGA rounds r ≥ 3, the probabilities Pr(Sr[ir] = jr) and
Pr(Sr[tr] = tr) are approximately

r

N2
+

N−1∑

X=r

1
N

[

Pr(S1[X ] = X)

[
1− 1

N

]r−2

+
r−1∑

t=2

r−t∑

k=0

Pr(S1[t] = r)

k! ·N
[
r − t− 1

N

]k [
1− 1

N

]r−3−k]

The proof of this result is omitted for brevity, as it follows the same logic as in
the proof of Theorem 4. A brief proof sketch is presented as follows. For this
proof sketch, we consider the variables jr and tr to be pseudorandom variables
that can take any value between 0 to 255 with probability 1/N . The reader may
note that this is a crude approximation, especially for small values of r, and
causes minor mismatch with the experimental observations in the final result.

Proof-sketch for Pr(Sr[ir] = jr). For this probability computation, we first
rewrite the event as (Sr−1[jr ] = jr) to make it look similar to Sr−1[r] = r,
as in Theorem 4. The only difference is that we were concentrating on a fixed
index r in Theorem 4 instead of a variable index jr. This produces two cases.

Case I. First, suppose that jr assumes a value X ≥ r. In this case, the proba-
bility calculation can be split in two paths, one in which S1[X ] = X is assumed,
and the other in which S1[X ] �= X . If we assume S1[X ] = X , the probability

of (Sr−1[X ] = X) becomes Pr(S1[X ] = X)
[
1− 1

N

]r−2
, similar to the logic in

Theorem 4. If we suppose that S1[t] = X was the initial state, then one may
notice the following two sub-cases:

– The probability for this path is identical to that in Theorem 4 if 2 ≤ t ≤ r−1.
– The probability is 0 in case t ≥ r, as in this case the value X will always be

behind the position of ir = r, whereas X > r as per assumption. That is,
the value X can never reach index X from t.

Assuming Pr(jr = X) = 1/N , this gives
∑N−1

X=r
1
N

[
Pr(S1[X ] = X)

[
1− 1

N

]r−2

+
∑r−1

t=2

∑r−t
k=0

Pr(S1[t]=r)
k!·N

[
r−t−1

N

]k [
1− 1

N

]r−3−k]
.

Case II. In the second case, we assume that jr takes a valueX between 0 to r−1.
Approximately this complete range is touched by index i for sure, and may also
be touched by index j. Thus, with probability approximately 1, the index jr = X
is touched by either of the indices. Simplifying all complicated computations
involving the initial position of value X and the exact location of index X in
this case, we shall assume that the approximate value of Pr(Sr−1[X ] = X) is
1/N . Thus, the total contribution of Case II, assuming Pr(jr = X) = 1/N , is

given by
∑r−1

X=0 Pr(jr = X) · Pr(Sr−1[X ] = X) ≈∑r−1
X=0

1
N · 1

N = r
N2 .

Adding the contributions of the two disjoint cases I and II, we obtain the
total probability for (Sr[ir] = jr) as desired. One may investigate Case II in
more details to incorporate all intertwined sub-cases, and obtain a better closed
form expression for the probability.
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Proof-sketch for Pr(Sr[tr] = tr). In this case, notice that tr is just another
random variable like jr, and may assume all values from 0 to 255 with approxi-
mately the same probability 1/N . Thus we can approximate Pr(Sr[tr] = tr) by
Pr(Sr−1[jr] = jr) with a high confidence margin to obtain the desired expression.

This approximation is particularly close for higher values of r because the
effect of a single state change Sr−1 → Sr is low in such a case. For smaller values
of r, one may approximate Pr(Sr−1[tr] = tr) by Pr(Sr−1[jr] = jr) and critically
analyze the effect of the r-th round of PRGA thereafter. However, in spite of
the approximations we made, one may note that the theoretical values closely
match the experimental observations (averages taken over 100 million runs of
RC4 with 16-byte key), as shown in Fig. 2.

Fig. 2 illustrates the experimental observations (averages taken over 100 mil-
lion runs with 16-byte key) and the theoretical values for the distributions of
Pr(Sr[ir] = jr) and Pr(Sr[tr] = tr) over the initial rounds 3 ≤ r ≤ 255 of RC4
PRGA. It is evident that our theoretical formulas approximately match the ex-
perimental observations in both the cases; the cause of the little deviation is
explained in the proof sketch above.

Experimental (16 byte key)

Theoretical

Experimental (16 byte key)

Theoretical

Fig. 2. Distributions of Pr(Sr[ir] = jr) and Pr(Sr[tr] = tr) for initial rounds 3 ≤ r ≤
255 of RC4 PRGA

Apart from the biases proved so far, all other unconditional biases reported
in [12] are of order 1/N2 or less, and we omit their analysis in this paper. The
next most significant bias reported in [12] was a new conditional bias arising
from a set of correlations in RC4 PRGA. A careful study of this new bias gives
rise to several related observations and results related to the KSA as well, as
presented in the next section.

3 Biases Based on Keylength

In SAC 2010, Sepehrdad, Vaudenay and Vuagnoux [12] discovered several corre-
lations in PRGA using DFT based approach. A list of such biases was presented
in [12, Fig. 10], and the authors commented that:

“After investigation, it seems that all the listed biases are artifact of a
new conditional bias which is Pr[S′16[j

′
16] = 0 | z16 = −16] = 0.038488.”

However, the authors also admitted that

“So far, we have no explanation about this new bias.”
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In our notation, the above event is denoted as Pr(S16[j16] = 0 | z16 = −16).
While exploring this conditional bias and related parameters of RC4 PRGA, we
could immediately observe two things:

1. The number 16 in the result comes from the keylength that is consistently
chosen to be 16 in [12] for most of the experimentation. In its general form,
the conditional bias should be stated as (crude approximation):

Pr (Sl[jl] = 0 | zl = −l) ≈ 10

N
. (6)

It is surprising why this natural observation could not be identified earlier.
2. Along the same line of investigation, we could find a family of related condi-

tional biases, stated in their general form as follows (crude approximations):

Pr(zl = −l | Sl[jl] = 0) ≈ 10/N (7)

Pr(Sl[l] = −l | Sl[jl] = 0) ≈ 30/N (8)

Pr(tl = −l | Sl[jl] = 0) ≈ 30/N (9)

Pr(Sl[jl] = 0 | tl = −l) ≈ 30/N (10)

Note that bias (7) follows almost immediately from bias (6), and biases (10)
and (9) are related in a similar fashion. Moreover, bias (8) implies bias (9) as
tl = Sl[l] + Sl[jl] = −l under the given condition. However, we investigate even
further to study the bias caused in zl due to the state variables.

3.1 Dependence of Conditional Biases on RC4 Secret Key

We found that all of the aforementioned conditional biases between the two
events under consideration are related to the following third event that is de-
pendent on the values and the length of the RC4 secret key.

l−1∑

i=0

K[i] +
l(l− 1)

2
≡ −l (mod N)

We shall henceforth denote the above event by (fl−1 = −l), following the no-
tation of Paul and Maitra [9], and this event is going to constitute the base
for most of the conditional probabilities we consider hereafter. We consider
Pr(fl−1 = −l) ≈ 1

N , assuming that fl−1 can take any value modulo N uni-
formly at random.

Extensive experimentation with different keylengths (100 million runs for each
keylength 1 ≤ l ≤ 256) revealed strong bias in all of the following events:

Pr(Sl[jl] = 0 | fl−1 = −l), Pr(Sl[l] = −l | fl−1 = −l),
Pr(tl = −l | fl−1 = −l), Pr(zl = −l | fl−1 = −l).

Each of the correlations (6), (7), (8), (9), and (10) is an artifact of these com-
mon keylength-based correlations in RC4 PRGA. In this section, we discuss and
justify all these conditional biases.
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To prove our observations in this paper, we shall require the following existing
results from the literature of key-correlation in RC4. These are the correlations
observed by Roos [11] in 1995, which were later proved by Paul and Maitra [9].

Proposition 2. [9, Lemma 1] If index j is pseudorandom at each KSA round,

we have Pr
(
jKy+1 = fy

) ≈ (
1− 1

N

)1+ y(y+1)
2 + 1

N .

Proposition 3. [9, Corollary 1] On completion of KSA in the RC4 algorithm,

Pr(S0[y] = fy) = Pr(SK
N [y] = fy) ≈

(
1− y

N

) · (1− 1
N

) y(y+1)
2 +N

+ 1
N .

Proposition 4. [9, Corollary 1] On completion of KSA, Pr(S0[S0[y]] = fy) ≈[
y
N + 1

N

[
1− 1

N

]2−y
+
[
1− y

N

]2 [
1− 1

N

]] [
1− 1

N

] y(y+1)
2 +2N−4

for 0 ≤ y ≤ 31.

Note that in each of the above statements,

fy = SK
0

[
y∑

x=0

SK
0 [x] +

y∑

x=0

K[x]

]

=

y∑

x=0

x+

y∑

x=0

K[x] =

y∑

x=0

K[x] +
y(y + 1)

2
.

3.2 Proof of Keylength-Dependent Conditional Biases

In this section, we will prove the four main conditional biases that we have
observed. Each depends on the event (fl−1 = −l), and can be justified as follows.

In each of the following theorems, the notation ‘x : A
α−→ B’ denotes that the

value x transits from position A to position B with probability α.

Theorem 6. Suppose that l is the length of the secret key used in the RC4
algorithm. Given fl−1 =

∑l−1
i=0 K[i] + l(l− 1)/2 = −l, we have

Pr(Sl[jl] = 0) ≈ 1

N
+

[
1− l

N

] [
1− 1

N

]N+l−2
⎡

⎣
[
1− 1

N

]1+ l(l+1)
2

+
1

N

⎤

⎦

Pr(Sl−2[l − 1] = −l) ≈ 1

N
+

[
1− 1

N

]l−1
⎡

⎣
[
1− l − 1

N

] [
1− 1

N

]N+ l(l−1)
2

+
1

N

⎤

⎦

Proof. For proving the first conditional bias, we need to trace the value 0 over
KSA and the first l rounds of PRGA. We start from SK

0 [0] = 0, as the initial
state SK

0 of KSA is the identity permutation in RC4. The following gives the
trace pattern for 0 through the complete KSA and l initial rounds of PRGA. We
shall discuss some of the transitions in details.

0 : SK
0 [0]

1−→ SK
1 [K[0]]

p1−→ SK
l [K[0]]

p2−→ SK
l+1[l]

p3−→ Sl−1[l]
1−→ Sl[jl]

Here p1 =
(
1− l

N

) (
1− 1

N

)l−1
denotes the probability that index K[0] is not

touched by iK and jK in the first l rounds of KSA, p2 =
(
1− 1

N

)1+ l(l+1)
2 + 1

N
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denotes the probability Pr(jKl+1 = fl = K[0]) (using Proposition 2) such that 0 is

swapped from SK
l [K[0]] to SK

l+1[l], and p3 =
(
1− 1

N

)N−2
denotes the probability

that the location SK
l+1[l] containing 0 is not touched by iK , jK in the remaining

N − l − 1 rounds of KSA or by i, j in the first l − 1 rounds of PRGA. So, this
path gives a total probability of p1p2p3. If this path does not hold, we assume
that the event (Sl[jl] = 0) still holds at random, with probability 1/N . Thus,
the total probability is obtained as

Pr(Sl[jl] = 0) = p1p2p3 + (1− p1p2p3) · 1

N
=

1

N
+

(
1− 1

N

)
p1p2p3.

We do a similar propagation tracking for the value fl−1 = −l to prove the second
result, and the main path for this tracking looks as follows.

−l : SK
0 [−l] p4−→ S0[l − 1]

p5−→ Sl−2[l − 1]

Here we get p4 = Pr(S0[l − 1] = fl−1) =
(
1− l−1

N

) (
1− 1

N

)N+ l(l−1)
2 + 1

N using

Proposition 3 directly, and p5 =
(
1− 1

N

)l−2
denotes the probability that the

index (l − 1), containing −l, is not touched by i, j in the first l − 2 rounds of
PRGA. Similar to the previous proof, the total probability can be calculated as

Pr(Sl−2[l − 1] = −l) = p4p5 + (1− p4p5) · 1

N
=

1

N
+

(
1− 1

N

)
p4p5.

We get the claimed results by substituting p1, p2, p3 and p4, p5 appropriately. ��
Numerical Values. If we substitute l = 16, the most common keylength for
RC4, and N = 256, we get the probabilities of Theorem 6 of magnitude

Pr(Sl[jl] = 0 | fl−1 = −l) ≈ Pr(Sl−2[l − 1] = −l | fl−1 = −l) ≈ 50/N.

These are, to the best of our knowledge, the best known key-dependent conditional
biases in RC4 PRGA till date. The estimates closely match the experiments we
performed over 100 million runs with 16-byte keys. In the next theorem, we look
at a few natural consequences of these biases.

Theorem 7. Suppose that l is the length of the RC4 secret key. Given that
fl−1 =

∑l−1
i=0 K[i] + l(l − 1)/2 = −l, the probabilities Pr(Sl[l] = −l | fl−1 = −l)

and Pr(tl = −l | fl−1 = −l) are approximately

1

N
+

(
1− 1

N

)
·
⎡

⎣ 1

N
+

[
1− l

N

] [
1− 1

N

]N+l−2
⎡

⎣
[
1− 1

N

]1+ l(l+1)
2

+
1

N

⎤

⎦

⎤

⎦

·
[
1

N
+

[
1− 1

N

]l−1 [[
1− 1

N

]N−l
+

1

N

]]

Proof. Before proving the path for the target events, let us take a look at rounds
l−1 and l of RC4 PRGA when Sl−2[l−1] = −l and Sl−1[l] = 0. In this situation,
we have the following propagation for the value −l.

−l : Sl−2[l − 1]
1−→ Sl−1[jl−1] = Sl−1[jl]

1−→ Sl[l]
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In the above path, the equality holds because jl = jl−1+Sl−1[l] = jl−1+0 as per
the conditions. Again, we have Sl[jl] = Sl−1[l] = 0, implying tl = Sl[l] +Sl[jl] =
−l + 0 = −l as well. This explains the same expression for the probabilities of
the two events in the statement.

Note that we require both the events (Sl[jl] = 0 | fl−1 = −l) and (Sl−2[l −
1] = −l | fl−1 = −l) to occur simultaneously, and need to calculate the joint
probability. Also note that there is a significant overlap between the tracking
paths of these two events, as they both assume that the first l positions of
the state SK

0 are not touched by jK in the first l rounds of KSA (refer to
the proof of Theorem 6 of this paper and proofs of [9, Theorem 1, Corollary
1] for details). In other words, if we assume the occurrence of event (Sl[jl] =
0 | fl−1 = −l) (with probability p6, as derived in Theorem 6, say), then the
precondition for (Sl−2[l − 1] = −l | fl−1 = −l) will be satisfied, and thus the
modified conditional probability is Pr(Sl−2[l − 1] = −l | Sl[jl] = 0 & fl−1 =

−l) = 1
N +

[
1− 1

N

]l−1 [[
1− 1

N

]N−l
+ 1

N

]
= p7, say. Now, we can compute the

joint probability of the two events as

Pr(Sl[l] = −l | fl−1 = −l) = p6p7 + (1− p6p7) · 1

N
=

1

N
+

(
1− 1

N

)
· p6p7.

Substituting the values of p6 and p7, we obtain the desired result. Event (tl = −l)
follows immediately from (Sl[l] = −l), with the same conditional probability. ��
Numerical Values. Substituting l = 16 and N = 256, we get the probabilities
of Theorem 7 of the magnitude Pr(Sl[l] = −l | fl−1 = −l) = Pr(tl = −l | fl−1 =
−l) ≈ 20/N . These estimates closely match our experimental results taken over
100 million runs of RC4 with 16-byte keys.

Conditional Bias in Output. We could also find that the bias in (zl = −l)
is caused due to the event fl−1[l], but in a different path than the one we have
discussed so far. We prove the formal statement next as Theorem 8.

Theorem 8. Suppose that l is the length of the secret key of RC4. Given that
fl−1 =

∑l−1
i=0 K[i] + l(l− 1)/2 = −l, the probability Pr(zl = −l) is approximately

1

N
+

[
1− 1

N

]
·
[
1

N
+

[
1− l

N

] [
1− 1

N

]N+l−2 [[
1− 1

N

]1+l

+
1

N

]]

·
[
1

N
+

[
1− 1

N

]l+1

Pr(S0[S0[l − 1]] = fl−1)

]

Proof. The proof is similar to that of Theorem 7 as both require Sl[jl] = Sl−1[l] =
0 to occur first. Note that if Sl[jl] = Sl−1[l] = 0, we will always have

zl = Sl[Sl[l] + Sl[jl]] = Sl[Sl−2[l − 1] + 0] = Sl[Sl−2[l − 1]].
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Thus the basic intuition is to use the path S0[S0[l − 1]] = fl−1 = −l to get

−l : S0[S0[l− 1]]
p8−→ Sl−2[Sl−2[l − 1]]

p9−→ Sl[Sl−2[l − 1]]

In the above expression, p8 =
(
1− 1

N

)l−2
and p9 =

(
1− 1

N

)2
denote the proba-

bilities of j not touching the state index that stores the value −l. This introduces
a probability

(
1− 1

N

)l
. Thus Pr(Sl[Sl−2[l−1]] = −l | fl−1 = −l) is cumulatively

given by 1
N +

[
1− 1

N

]l+1
Pr(S0[S0[l−1]] = fl−1) = p10, say. Note that one of the

preconditions to prove [9, Theorem 4] is that the first (l− 1) places of state SK
0

remain untouched by jK for the first l−1 rounds of KSA. This partially matches
with the precondition to prove Pr(Sl[jl] = 0 | fl−1 = −l) (see Theorem 6), where
we require the same for first l places over the first l rounds of KSA. Thus we de-
rive the formula for Pr(Sl[jl] = 0 | S0[S0[l− 1]] = −l & fl−1 = −l) by modifying

the result of Theorem 6 as 1
N +

[
1− l

N

] [
1− 1

N

]N+l−2 [[
1− 1

N

]1+l
+ 1

N

]
= p11,

say. The final probability for (zl = −l | fl−1 = −l) can now be computed as

Pr(zl = −l | fl−1 = −l) = p10p11 + (1− p10p11) · 1

N
=

1

N
+

(
1− 1

N

)
· p10p11.

Substituting appropriate values for p10 and p11, we get the desired result. ��
Let us consider Pr(zl = −l | Sl[jl] = 0) = Pr(Sl[Sl−2[l − 1]] = −l | Sl[jl] = 0).
From the proof of Theorem 8, it is evident that the events (Sl[Sl−2[l− 1]] = −l)
and (Sl[jl] = 0) have no obvious connection. Yet, there exists a strong correlation
between them, possibly due to some hidden events that cause them to co-occur
with a high probability. We found that one of these hidden events is (fl−1 = −l).

From the proofs of Theorems 6 and 8, we know that both the aforementioned
events depend strongly on (fl−1 = −l), but along two different paths, as follows.

0 : SK
0 [0]

1−→ SK
1 [K[0]]

p1−→ SK
l [K[0]]

p2−→ SK
l+1[l]

p3−→ Sl−1[l]
1−→ Sl[jl]

−l : SK
0 [SK

0 [l − 1]]
p12−→ S0[S0[l − 1]]

p8−→ Sl−2[Sl−2[l − 1]]
p9−→ Sl[Sl−2[l − 1]]

Here p12 depends on the probability Pr(S0[S0[l−1]] = fl−1) from Proposition 4.
Using these two paths, one may obtain the value of Pr(zl = −l & Sl[jl] = 0) as

Pr(zl = −l & Sl[jl] = 0)

= Pr(fl−1 = −l) · Pr(Sl[Sl−2[l− 1]] = −l & Sl[jl] = 0 | fl−1 = −l)
+Pr(fl−1 �= −l) · Pr(Sl[Sl−2[l − 1]] = −l & Sl[jl] = 0 | fl−1 �= −l).

As before, Pr(fl−1 = −l) can be taken as 1/N . If one assumes that the aforemen-
tioned two paths are independent, the probabilities from Theorems 6 and 8 can
be substituted in the above expression. If one further assumes that the events
occur uniformly at random if fl−1 �= −l, the values of Pr(Sl[jl] = 0 | zl = −l)
and Pr(zl = −l | Sl[jl] = 0) turn out to be approximately 5/N each (for l = 16).
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However, our experiments show that the two paths mentioned earlier are not
entirely independent, and we obtain Pr(zl = −l & Sl[jl] = 0 | fl−1 = −l) ≈ 5/N .
Moreover, the events are not uniformly random if fl−1 �= −l; rather they are
considerably biased for a range of values of fl−1 around −l (e.g., for values like
−l + 1, −l + 2 etc.). These hidden paths contribute towards the probability
Pr(fl−1 �= −l) Pr(zl = −l & Sl[jl] = 0 | fl−1 �= −l) ≈ 5/N2. Through a careful
treatment of the dependences and all the hidden paths, one would be able to
justify the above observations, and obtain

Pr(Sl[jl] = 0 | zl = −l) ≈ Pr(zl = −l | Sl[jl] = 0) ≈ 10/N.
Similar techniques for analyzing dependences and hidden paths would work for
all correlations reported in Equations 6, 7, 8, 9 and, 10.

We now shift our focus to Pr(zl = −l | fl−1 = −l) and its implications.

Numerical Values. First of all, notice that the value of Pr(zl = −l | fl−1 = −l)
depends on the value of Pr(S0[S0[l− 1]] = fl−1). Proposition 4 gives an explicit
formula for Pr(zl = −l | fl−1 = −l) for l up to 32. As l increases beyond 32, one
may check by experimentation that this probability converges approximately to
1/N . Thus, for 1 ≤ l ≤ 32, one can use the formula from Proposition 4, and
for l > 32, one may replace Pr(S0[S0[l − 1]] = fl−1) by 1/N to approximately
compute the distribution of (zl = −l | fl−1 = −l) completely. In fact, after
the state recovery attack by Maximov and Khovratovich [8], that is of time
complexity around 2241, choosing a secret key of length l > 30 is not meaningful.
The value of Pr(zl = −l | fl−1 = −l) for some typical values of l are

12/N for l = 5 11/N for l = 8 7/N for l = 16 2/N for l = 30.

In the list above, each conditional probability is quite high in magnitude com-
pared to the natural probability of random occurrence. We try to exploit this
bias in the next section to predict the length of RC4 secret key.

3.3 Keylength Prediction from Keystream

The huge conditional bias proved in Theorem 8 hints that there may be a related
unconditional bias present in the event zl = −l as well. In fact, New 007 in [12,
Fig. 5] reports a bias in (zi = −i) for i = 0 mod 16. The reported bias for i = 16
is 1.0411/N . Notice that almost all experiments of [12] used the keylength l = 16,
which encourages our speculation for an unconditional bias in (zl = −l) for any
general keylength l of RC4 secret key. Systematic investigation in this direction
reveals the following result.
Theorem 9. Suppose that l is the length of the secret key of RC4. The proba-
bility Pr(zl = −l) is given by

Pr(zl = −l) ≈ 1

N
+ [N · Pr(zl = −l | fl−1 = −l)− 1] · 1

N2
.

Proof. We provide a quick sketch of the proof to obtain a crude approximation
of this bias in zl. Notice that we already have a path (zl = −l | fl−1 = −l) with
probability calculated in Theorem 8. If we assume that for all other values of
fl−1 �= −l, the output zl can take the value −l uniformly at random, we have
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Pr(zl = −l) ≈ Pr(fl−1 = −l) · Pr(zl = −l | fl−1 = −l)
+Pr(fl−1 �= −l) · Pr(zl = −l | fl−1 �= −l)

=
1

N
· Pr(zl = −l | fl−1 = −l) +

(
1− 1

N

)
· 1

N

=
1

N
+ [N · Pr(zl = −l | fl−1 = −l)− 1] · 1

N2
.

Thus we obtain the desired result. ��
Numerical Values. We have a closed form expression for Pr(zl = −l | fl−1 =
−l) from Theorem 8 in cases where 1 ≤ l ≤ 32 (using Proposition 4). We have
also calculated some numerical values of this probability for l = 5, 8, 16, 30 and
N = 256. Using those numeric approximations, the value of Pr(zl = −l) is

1/N + 11/N2 for l = 5 1/N + 10/N2 for l = 8

1/N + 6/N2 for l = 16 1/N + 2/N2 for l = 30

Predicting the Keylength. The lower bound for Pr(zl = −l) within the
typical range of keylength (5 ≤ l ≤ 30) is approximately 1/N + 1/N2, which
is quite high and easily detectable. In experiments with 100 million runs and
different keylengths, we have found that the probabilities are even higher than
those mentioned above. This helps us in predicting the length of the secret key
from the output, as follows.

1. Find the output byte zx biased towards −x. This requires O(N3) many
samples as the bias is O(1/N2). A ‘sample’ in this case means the observation
of keystream bytes zx for all 5 ≤ x ≤ 30 for a specific key. The bias is
computed by examining these keystream bytes with different keys, which
are all of the same length l, say.

2. Check if the probability Pr(zx = −x) is equal or greater than the value
proved in Theorem 9.

3. If the above statements hold for some 5 ≤ x ≤ 30, the keylength can be
accurately predicted as l = x.

Although the bias in zl = −l has been noticed earlier in the literature for specific
keylengths, no attempts have been made for its generalization. Moreover, to
the best of our knowledge, the prediction of keylength from the keystream has
never been attempted. We have performed extensive experiments with varying
keylengths to verify the practical feasibility of the prediction technique. This
prediction technique proves to be successful for all keylengths within the typical
usage range 5 ≤ l ≤ 30. As already pointed out in Section 3.2, choosing a secret
key of length l > 30 is not recommended. So, our keylength prediction effectively
works for all practical values of the keylength.

4 Conclusion

In the paper [12] of SAC 2010, several empirical observations relating a few RC4
variables have been reported, and here we prove all the significant ones. In the
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process, we provide a framework for justifying such non-random events in their
full generality. Our study identifies and proves a family of new key correlations
beyond those observed in [12]. These, in turn, result in keylength dependent
biases in initial keystream bytes of RC4, enabling effective keylength prediction.

Acknowledgments. The authors would like to thank the anonymous reviewers
for their feedback that helped in improving the presentation of this paper.
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Abstract. In this paper we analyze the security of PRINTcipher us-
ing a technique that combines differential and linear cryptanalysis. This
technique is different from differential-linear cryptanalysis. We use linear
approximations to increase the probability of differential characteristics.
We show that specific choices of some of the key bits give rise to a certain
differential characteristic probability, which is far higher than the best
characteristic probability claimed by the designers. We give the under-
lying mechanism of this probability increase. We have developed attacks
on 29 and 31 rounds of PRINTcipher-48 for 4.54% and 0.036% of the
keys, respectively. Moreover, we have implemented the proposed attack
algorithm on 20 rounds of the cipher.

Keywords: PRINTcipher, differential cryptanalysis, linear cryptanal-
ysis, differential-linear cryptanalysis.

1 Introduction

The security and privacy in constrained environments such as RFID tags and sen-
sor networks is a challenging subject in cryptography. Lightweight cryptographic
algorithms and protocols are required for this reason. Some block and stream
ciphers and hash functions are proposed to meet this requirement [2, 3, 8, 10–
12, 17, 18, 22, 27, 28]. The encryption algorithm PRINTcipher was introduced
in CHES 2010 as a lightweight block cipher by Knudsen et al. [19]. The authors
aim to build an algorithm especially suitable for integrated circuit printing.

At FSE 2011, Abdelraheem et al. [1] applied a differential attack on reduced
rounds of PRINTcipher. Their attack can break half of the rounds of the
cipher. The authors have observed that the differential distribution has a key
dependent structure. They have exploited this fact to get information about the
key bits. Their attack uses the whole codebook and has a complexity about 248

computational steps for the 48-bit version of the algorithm. The authors use
the roots of permutations to deduce the key bits which affect the key-dependent
permutations. There are also algebraic cryptanalysis and side channel analyses of
PRINTcipher [9, 31]. But, the designers noticed that side channel and related
key attacks were not their major concern in the design of PRINTcipher.
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Recently, Leander et al. [21] have announced an attack on the full round
PRINTcipher-48 for a class of 252 keys. Also Ågren et al. [15] have applied a
linear attack on 28-round PRINTcipher-48 which works for half of the keys.

Differential [7] and linear cryptanalysis [25] are the most used cryptanalysis
techniques for block ciphers. Also there are some attacks which uses combina-
tions of classical techniques such as impossible-differential [4], boomerang [30],
and differential-linear attack [20]. In the differential-linear method, the attacker
divides the cipher into two parts where a differential and a linear approximation
are constructed for the first and second parts respectively. This combined attack
method was enhanced by some other works [5, 23, 32] and applied on some ci-
phers such as IDEA and Serpent [6, 14, 16]. Also, there are some key-dependent
attacks [13, 16, 26, 29] where [16] uses a differential-linear technique.

In this work, we combine differential and linear cryptanalysis in a different
technique on PRINTcipher. We construct linear approximations to increase
the probability of differential characteristics. Using this method we have found
that for some of the keys, the probability of an r-round differential characteristic
is significantly higher than the maximum probability of r-round characteristic
claimed by the designers. We point out the special key values which induce to
this weakness and explain the mechanism behind this observation. We show that
4.54% and 0.036% of the keys are weak for 29 and 31 rounds, respectively.

This paper proceeds as follows. In Section 2, we briefly introduce the notation
we use and the PRINTcipher. In Section 3, we explain the weak key mechanism
of the cipher. Section 4 is on the cryptanalytic attacks using the observations of
the previous section. Finally, we conclude the paper in Section 5.

2 The PRINTcipher Encryption Algorithm

2.1 Notation

Throughout this paper, we use sk1 for the key used in the xor part and sk2 for
the key which is used to determine the key dependent permutation. The letters
xi, yi, zi, ti denote the inputs of the round, the permutation, the key dependent
permutation and the S-box layers in the i-th round, respectively. x[i] represents
the i-th bit of the variable x where x[0] is the rightmost bit of x. Also x[i − j]
is the bit string x[i]x[i − 1]...x[j], where i > j. We denote the number of 1’s of
a bit vector by hw(xi, ..., x1, x0). We write the bit values between parentheses.
Also we use Δ to indicate the difference between two bit strings.

2.2 PRINTcipher

The PRINTcipher encryption algorithm has two versions, PRINTcipher-48
has block size of 48 bits, consists of 48 rounds and uses 80-bit key whereas
PRINTcipher-96 has block size of 96 bits, consists of 96 rounds and admits
160-bit key.

PRINTcipher has an SP-network structure where the S-box is chosen to
have the best differential and linear distributions among 3-bit functions. Each



Cryptanalysis of Reduced-Round PRINTcipher 171

round function consists of a key xoring, a bitwise permutation over 48 (resp 96)
bits, a round-constant xoring to the least significant bits, a bitwise permutation
on 3 bits and an S-box layer.

Note that the round key k = sk1||sk2 is identical at each round. The first b
bits of the key, sk1, is xored to the state at the beginning of each round. After
that the following bit permutation is applied:

P (i) =
{

3i mod b− 1 for 0 ≤ i ≤ b− 2,
b− 1 for i = b− 1,

where b ∈ {48, 96} is the block size. Then, a 6-bit or a 7-bit round constant
is added to the least significant bits of the state according to the block size.
We would like to point out that most significant bits are not affected from this
addition. This is followed by a key dependent permutation. In this layer, sk2 is
divided into 2-bits and each 2-bit is used to determine the permutation on each
3-bit of the state. This permutation is defined as follows where a1||a0 are the
bits of sk2 and c2||c1||c0 are the state bits:

a1||a0

00 c2||c1||c0

01 c1||c2||c0

10 c2||c0||c1

11 c0||c1||c2

Finally, the same S-box is applied in parallel to every 3-bit of the state. The
unique S-box used in PRINTcipher is the following:

x 0 1 2 3 4 5 6 7
S[x] 0 1 3 6 7 4 5 2

The round function of PRINTcipher-48 is shown in Figure 1. For a more de-
tailed description of PRINTcipher we refer to [19].

Fig. 1. One round of PRINTcipher-48
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3 Key Dependent Differential and Linear Characteristics

According to the designers of PRINTcipher, maximum probability of an r-
round differential characteristic for both versions of the cipher is 2−2×r. However,
we have found that an r-round differential characteristic for PRINTcipher-48
can have a probability of about 2−(6+1.68×(r−3)) for 4.54% of the keys and a
probability of 2−(7.68+1.51×(r−4)) for 0.036% of the keys. To clarify the signif-
icance of the probabilities note that for 24-round differential characteristic we
have a probability of 2−41.28 for the first and 2−37.88 for the second key sub-
set. But according the designers of the algorithm the maximum probability of
24-round differential characteristic is 2−48. Also for PRINTcipher-96 one can
find similar subsets of the keys resulting higher probabilities than the probability
expressed by the designers. We will focus on the analysis of PRINTcipher-48
in this paper.

The reason of this probability increase is the correlation of the input and
output bits of active S-boxes in the differential paths in consecutive rounds. To
express the reason in detail first we give differential and linear properties of the
S-box.

3.1 Differential and Linear Properties of the S-Box

The S-box conserves one bit input difference in the same position in the output
with probability 2−2, see Table 1.

Table 1. Difference distribution table of the S-box

Output Difference
000 001 010 011 100 101 110 111

000 8 0 0 0 0 0 0 0
001 0 2 0 2 0 2 0 2
010 0 0 2 2 0 0 2 2

Input 011 0 2 2 0 0 2 2 0
Difference 100 0 0 0 0 2 2 2 2

101 0 2 0 2 2 0 2 0
110 0 0 2 2 2 2 0 0
111 0 2 2 0 2 0 0 2

Similarly, it can be seen in Table 2 that i-th bit of the input of the S-box
equals to i-th bit of the output with a bias 2−2 or −2−2.

3.2 Characteristics for 4.54% of the Keys of PRINTcipher-48

Using the properties of the S-box mentioned in the previous section and putting
some conditions on the key bits we are able to combine a differential and a linear
characteristic resulting a differential characteristic with higher probability than
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Table 2. Linear approximation table of the S-box

Output Mask
000 001 010 011 100 101 110 111

000 4 0 0 0 0 0 0 0
001 0 −2 0 2 0 2 0 2
010 0 0 2 2 0 0 2 −2

Input 011 0 2 −2 0 0 2 2 0
Mask 100 0 0 0 0 2 −2 2 2

101 0 2 0 2 2 0 −2 0
110 0 0 2 −2 2 2 0 0
111 0 2 2 0 −2 0 0 2

2−2 for one round. We have found 3 different combined characteristics each of
which puts 6-bit conditions on the key bits of PRINTcipher-48. One of the
characteristics is shown in Figure 2 and the other characteristics are given in
Figure 6 and Figure 7 in Appendix A. To express the reason of the probabil-
ity increase we focus on the characteristic shown in Figure 2. The probability
increase for the other characteristics depends on a similar reason.

Fig. 2. Characteristic 1: A combined differential and linear characteristic which has
probability 2−(6+1.68×(r−3)) for r rounds

In Figure 2, the dotted line and the solid line shows the differential path and
the linear path respectively. We give the following lemma to show the correla-
tion of the input-output bits of the active S-boxes in the differential path in
consecutive rounds using the linear path in Figure 2.
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Lemma 1. Let the key bits of PRINTcipher-48 satisfy the following equations

sk2[29] = 1, sk2[28] = 1, sk2[21] = 0, sk2[20] = 1.

Then, the bias of the equation xi[46]⊕ sk1[46]⊕ sk1[42]⊕ sk1[31] = zi+2[46] is
−2−3 where xi is the input of the i-th round and zi+2 is the input of the key
dependent permutation in the (i + 2)-th round.

Proof. Let the three input bits of the S-box be i2i1i0 and three output bits be
o2o1o0. From the linear approximation table of the S-box, the biases of equations
i0⊕o0 = 0 and i1⊕o1 = 0 are −2−2 and 2−2 respectively. Using this information
we can write the following equations with the corresponding biases:

ti[42] = xi+1[42] , ε = −2−2

ti+1[31] = xi+2[31] , ε = 2−2.

Also using the following equations

xi[46]⊕ sk1[46] = ti[42] (since sk2[29] = 1 and sk2[28] = 1)
xi+1[42]⊕ sk1[42] = ti+1[31] (since sk2[21] = 0 and sk2[20] = 1)

xi+2[31]⊕ sk1[31] = zi+2[46]

we can reach the equation xi[46] ⊕ sk1[46] ⊕ sk1[42] ⊕ sk1[31] = zi+2[46] with
bias 2× (−2−2)× 2−2 = −2−3 using the Piling-up Lemma [25].

The correlation of the input and output bits of the active S-boxes in consecutive
rounds helps us to give one of our main statements for the probability of the
differential characteristic shown in Figure 2.

Theorem 1. Let the key bits of PRINTcipher-48 satisfy the following equa-
tions

sk2[30] = 0, sk2[29] = 1, sk2[28] = 1, sk2[21] = 0, sk2[20] = 1,
sk1[46]⊕ sk1[42]⊕ sk1[31] = 1.

Then, the probability of the differential characteristic (100...00)→ (100...00)→
...→ (100...00) for r rounds is 2−(6+1.68×(r−3)).

Proof. Since sk2[30] = 0, the key dependent permutation layer keeps the dif-
ference in the leftmost bit. In the first three rounds, the probability of the dif-
ferential characteristic is 2−6 because there is no linear relation between the
input-output bits of the active S-boxes. In the fourth round, while z4[45] is dis-
tributed uniformly, z4[46] equals to x2[46]⊕ sk1[46]⊕ sk1[42]⊕ sk1[31] with bias
−2−3 putting i = 2 in Lemma 1. We know that x2[46] = 1 because only the pair
(011, 111) conserves the difference in the leftmost bit for the S-box and the corre-
sponding output pair is (110,010). Since sk1[46]⊕ sk1[42]⊕ sk1[31] = 1, we have
z4[46] = 1 with bias 2−3, that is with probability 10/16. Thus, for the fourth
round the input pair of the S-box is (011, 111) with probability 2−1 × 10/16 =
2−1.68. That means the difference in the leftmost bit of the inputs of the S-box
stays in the same position in the output of the S-box with probability 2−1.68.
For the later rounds zi[46] equals to xi−2[46] ⊕ sk1[46] ⊕ sk1[42] ⊕ sk1[31] = 1
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with probability 10/16 and we may assume that zi[45] has a uniform distribu-
tion. That is, the probability for the rounds greater than four is 2−1.68. Thus
the probability of the r-round differential characteristic is 2−(6+1.68×(r−3)).

In Table 3, the key constraints for the combined characteristics are shown. We
use the notation KSi to show the key subsets which satisfy the i-th combined
characteristic.

Table 3. Key constraints for the combined characteristics 1, 2, and 3

Combined Key Key
Characteristic Conditions Subset

Characteristic 1 sk2[30] = 0, sk2[29] = 1, sk2[28] = 1, sk2[21] = 0, KS1

sk2[20] = 1, sk1[46] ⊕ sk1[42] ⊕ sk1[31] = 1

Characteristic 2 sk2[17] = 1, sk2[16] = 0, sk2[19] = 0, sk2[18] = 1, KS2

sk2[27] ⊕ sk2[26] = 0, sk1[40] ⊕ sk1[29] ⊕ sk1[25] = 0

Characteristic 3 sk2[15] = 0, sk2[14] = 1, sk2[13] = 1, sk2[12] = 0, KS3

sk2[5] ⊕ sk2[4] = 0, sk1[22] ⊕ sk1[18] ⊕ sk1[7] = 1

Analyzing the above conditions we have observed that the size of the key
space which satisfies at least one of the constraints in Table 3 is 4.54% of the
key space of the PRINTcipher-48.

3.3 Characteristics for 0.036% of the Keys of PRINTcipher-48

We increase the probability of r-round differential characteristic to
2−(7.68+1.51×(r−4)) for 0.036% of the keys putting extra conditions on the key
bits of PRINTcipher-48.

In Section 3.2, we use only one linear characteristic to increase the probabil-
ity of the differential characteristic. To proceed the increase of the probability
of the differential characteristic we use an extra linear characteristic in this
section. We have found two different combined characteristics which puts 12
and 13-bit conditions on the key bits of PRINTcipher-48 with the probability
2−(7.68+1.51×(r−4)) for r-round differential characteristic. One of the character-
istics is shown in Figure 3 and the other characteristic is given in Figure 8 in
Appendix B. We give the reason of the probability increase for the first charac-
teristic. The second can be derived by similar techniques.

The correlation of the bits in one of the linear paths is stated in Lemma 1.
The following lemma states the correlation of the bits in the new linear path.

Lemma 2. Let the key bits of PRINTcipher-48 satisfy the following equations

sk2[10] = 0, sk2[27] = sk2[26] = sk2[15] = sk2[14] = sk2[11] = 1.

Then, the bias of the equation xi[45] ⊕ sk1[45] ⊕ sk1[39] ⊕ sk1[21] ⊕ sk1[15] =
zi+3[45] is −2−4.
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Fig. 3. Characteristic 4: A combined differential and linear characteristic which has
probability 2−(7.68+1.51×(r−4)) for r rounds

Proof. We can write the following equations with corresponding biases using
linear approximation table of the S-box:

ti[39] = xi+1[39] , ε = −2−2

ti+1[21] = xi+2[21] , ε = −2−2

ti+2[15] = xi+3[15] , ε = −2−2.

Also using the following equations

xi[45]⊕ sk1[45] = ti[39] (since sk2[27] = 1 and sk2[26] = 1),
xi+1[39]⊕ sk1[39] = ti+1[21] (since sk2[15] = 1 and sk2[14] = 1) ,
xi+2[21]⊕ sk1[21] = ti+2[15] (since sk2[11] = 1 and sk2[10] = 0),

xi+3[15]⊕ sk1[15] = zi+3[45]

we can get the equation xi[45]⊕ sk1[45]⊕ sk1[39]⊕ sk1[21]⊕ sk1[15] = zi+3[45]
with bias 22 × (−2−2)× (−2−2)× (−2−2) = −2−4.

Using the correlation of the input and output bits of the active S-boxes in con-
secutive rounds we give our other main statement for the probability of the
differential characteristic shown in Figure 3.
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Theorem 2. Let the key bits of PRINTcipher-48 satisfy the following
constraints

sk2[30] = 0, sk2[29] = 1, sk2[28] = 1, sk2[21] = 0, sk2[20] = 1,
sk1[46]⊕ sk1[42]⊕ sk1[31] = 1,

sk2[10] = 0, sk2[27] = 1, sk2[26] = 1, sk2[15] = 1, sk2[14] = 1, sk2[11] = 1,
sk1[45]⊕ sk1[39]⊕ sk1[21]⊕ sk1[15] = 0.

Then, the probability of the differential characteristic (100...00)→ (100...00)→
...→ (100...00) for r rounds is 2−(7.68+1.51×(r−4)).

Proof. The probability of the first four rounds characteristic is derived as 2−7.68

in the proof of Theorem 1. For the fifth and later rounds as stated in Lemma 2
zi[45] equals to xi−3[45]⊕ sk1[45]⊕ sk1[39]⊕ sk1[21]⊕ sk1[15] with bias −2−4.
We know that xi−3[45] = 0 because the S-box conserves the difference in the
leftmost bit for only the input pair (011,111) where the corresponding output
pair is (110,010). Since sk1[45]⊕ sk1[39]⊕ sk1[21]⊕ sk1[15] = 0, zi[45] = 1 with
bias 2−4 that is with probability 9/16. Also we know that the probability of being
zi[46] = 1 is 10/16 from the proof of Theorem 1. Thus, for the fifth and later
rounds the input pair of the S-box is (011,111) with probability 10/16× 9/16 ≈
2−1.51. As a result, the probability of r-round differential characteristic shown
in Figure 3 is 2−(7.68+1.51×(r−4)).

In Table 4, the key constraints for the combined characteristics are shown.

Table 4. Key constraints for the combined characteristics 4 and 5

Combined Key Key
Characteristic Conditions Subset

Characteristic 4 sk2[30] = 0, sk2[29] = 1, sk2[28] = 1, sk2[27] = 1, sk2[26] = 1, KS4

sk2[21] = 0, sk2[20] = 1, sk2[15] = 1, sk2[14] = 1, sk2[11] = 1,
sk2[10] = 0, sk1[46] ⊕ sk1[42] ⊕ sk1[31] = 1,

sk1[45] ⊕ sk1[39] ⊕ sk1[21] ⊕ sk1[15] = 0

Characteristic 5 sk2[15] = 0, sk2[14] = 1, sk2[13] = 1, sk2[12] = 0, sk2[11] = 1, KS5

sk2[10] = 0, sk2[31] = 0, sk2[5] ⊕ sk2[4] = 0, sk2[27] = 1,
sk2[26] = 1, sk1[22] ⊕ sk1[18] ⊕ sk1[7] = 1,
sk1[45] ⊕ sk1[39] ⊕ sk1[21] ⊕ sk1[15] = 0

Counting the keys in the key space of PRINTcipher-48 which satisfies at
least one of the conditions in Table 4 we find out that 0.036% of the key space
of the PRINTcipher-48 is vulnerable to at least one of the combined charac-
teristics.

4 Key Recovery

4.1 An Attack on 31-Round PRINTcipher-48 for KS4

Assume that PRINTcipher-48 uses a key from KS4. Therefore the key bits sat-
isfy the conditions: sk2[30] = 0, sk2[29] = 1, sk2[28] = 1, sk2[27] = 1, sk2[26] = 1,
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sk2[21] = 0, sk2[20] = 1, sk2[15] = 1, sk2[14] = 1, sk2[11] = 1, sk2[10] = 0,
sk1[46]⊕ sk1[42]⊕ sk1[31] = 1, and sk1[45]⊕ sk1[39]⊕ sk1[21]⊕ sk1[15] = 0. Us-
ing the differential characteristic powered by linear characteristics for 28 rounds
in Section 3.3 we have been able to attack on 31-round version of the cipher and
recover the key bits sk2[25 − 22], sk2[19 − 16], sk1[47 − 39]. For 28 rounds the
probability of the differential characteristic is 2−43.92. The propagation of the
active bit in the output of the 28-th round through 3 rounds is shown in Figure
4. In the figure, the difference in the bits in the dotted line is 0 or 1. We apply
the attack using Algorithm 1.

Fig. 4. 3-R attack for the key subset KS4

We have calculated the signal to noise ratio as 24.08 for the attack on the
reduced 31-round PRINTcipher-48 using the formula

S/N =
2k × p

α× β
=

217 × 2−43.92

24 × 2−35
= 24.08

where k denotes the number of guessed key bits, p is the probability of the
characteristic, α is the average count of the subkeys per counted plaintext pairs
and β is the ratio of the counted pairs to all pairs. Since S/N is bigger than 2,
according to [7], about 4 right pairs are enough to determine the key bits. Thus
we need about 4× 243.92 = 245.92 pairs.

The complexity of the attack is as follows. We use 246.92 chosen plaintext-
ciphertext data. The number of pairs used in the attack is 245.92× 2−35 = 210.92

because of the elimination in step 3 and 5 in the algorithm. Note that in step 4 we
make 225,92 inverse S-box operations. For the counted pairs we make 219.92 key
dependent permutations guessing the 8 bits (sk2[25−22] and sk2[19−16]) of the
key. We decrease the search space to 215.92 using the elimination in step 9. Then
we make 224.92 two round decryptions guessing the 9 bits (sk1[47 − 39]) of the
key. In total, the number of operations in the attack approximately equivalent
to 224.92 × 2 = 225.92 one-round encryptions of PRINTcipher-48.
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Algorithm 1. 3-R attack on r-round PRINTcipher-48 for KS4.
1: N plaintext pairs which have the difference (100...000) in the plaintexts and the

corresponding ciphertexts for reduced r-round cipher are given.
2: for all pairs do
3: if Δxr+1[20 − 0] = (00...00) then
4: Apply inverse of the S-box to the remaining ciphertexts.
5: if Δtr[46−45] = (0, 0), Δtr[44−43] = (0, 0), Δtr[41−40] = (0, 0), hw(Δtr[38−

36]) ≤ 1, hw(Δtr[35 − 33]) ≤ 1, Δtr[32] = (0), Δtr[30] = (0), hw(Δtr[29 −
27]) ≤ 1, hw(Δtr[26 − 24]) ≤ 1, Δtr[23 − 22] = (0, 0) then

6: Guess the key bits sk2[25 − 22] and sk2[19 − 16].
7: for all Guessed key in step 6 do
8: Using the guessed key calculate zr[47 − 21] values of the pairs.
9: if Δzr[37 − 36] = (0, 0), Δzr[34 − 33] = (0, 0), Δzr[28 − 27] = (0, 0),

Δzr[25 − 24] = (0, 0) then
10: Guess the key bits sk1[47 − 39].
11: for all Guessed key in step 10 do
12: Using the guessed key calculate zr−1[47 − 39] and zr−2[47 − 45]

values of the pairs.
13: if Δzr−1[46−45] = (0, 0), Δzr−1[43−42] = (0, 0), Δzr−1[40−39] =

(0, 0) and Δzr−2[47 − 45] = (100) then
14: Increment the counter of the guessed key.
15: end if
16: end for
17: end if
18: end for
19: end if
20: end if
21: end for
22: The right key is the key that has the highest counter.

To verify the attack algorithm and the effect of the linear approximations
we have implemented the attack for 20-round PRINTcipher-48 where the 17-
round characteristic probability is 2−27.31 by Theorem 2. We have run Algorithm
1 using 231 plaintext-ciphertext data 8 different times. In each of these experi-
ments the correct key is found among the highest counted candidates. If there
were no effect of linear approximations on the probability of the differential char-
acteristic, then the probability would be 2−34 for 17 rounds and 231 data would
not be sufficient to recover the key bits.

4.2 An Attack on 29-Round PRINTcipher-48 for KS1

We attack on 29-round PRINTcipher-48 for the assumption that the key used
in the algorithm is in the key subset KS1 using 26-round differential character-
istic given in Section 3.2. We can recover the key bits sk2[27− 22], sk2[19− 14],
sk1[47− 39] applying the attack.
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The propagation of the active bit in the output of the 26-th round through
3 rounds is shown in Figure 5. We use a similar algorithm as Algorithm 1 to
recover the key bits. The differences between the attack algorithms for KS1 and
KS4 are the followings:

– The condition in step 5 will be Δtr[46 − 45] = (0, 0), Δtr[44 − 43] = (0, 0),
hw(Δtr [41−39]) ≤ 1, hw(Δtr [38−36]) ≤ 1, hw(Δtr [35−33]) ≤ 1, Δtr[32] =
(0), Δtr[30] = (0), hw(Δtr [29 − 27]) ≤ 1, hw(Δtr [26 − 24]) ≤ 1, hw(Δtr

[23− 21]) ≤ 1,
– The guessed key bits will be sk2[27− 22] and sk2[19− 14] in step 6,
– The condition in step 9 will be Δzr[40− 39] = (0, 0), Δzr[37− 36] = (0, 0),

Δzr[34 − 33] = (0, 0), Δzr[28 − 27] = (0, 0), Δzr[25 − 24] = (0, 0), Δzr

[22− 21] = (0, 0).

Fig. 5. 3-R attack for the key subset KS1

We have calculated the signal to noise ratio as

S/N =
2k × p

α× β
=

221 × 2−44.64

26 × 2−33
= 23.59.

About 4× 244.64 = 246.64 pairs are enough to get 4 right pairs.
The complexity of the attack is as follows. We use 247.64 chosen plaintext-

ciphertext data. The number of pairs used in the attack is 246.64× 2−33 = 213.64

because of the elimination in step 3 and 5 in the algorithm. For the counted pairs
we make 226.64 key dependent permutations guessing the 12 bits (sk2[27 − 22]
and sk2[19 − 14]) of the key. We decrease the search space to 220.64 using
the elimination in step 9. Then we make 229.64 two round decryptions guess-
ing the 9 bits (sk1[47 − 39]) of the key. In total, the number of operations
in the attack is approximately equivalent to 230.64 one-round encryptions of
PRINTcipher-48.
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5 Conclusion

In this paper, we have used differential and linear cryptanalysis techniques to-
gether to analyze the security of PRINTcipher. This combined usage is different
from differential-linear cryptanalysis [20]. In differential-linear cryptanalysis, a
cipher is divided into two parts where differentials and linear approximations
are constructed for the first and second parts respectively. In this work, we have
used linear approximations to increase the probability of the differentials. Using
this method, we have found out that for some of the keys, the probability of
an r-round differential characteristic is significantly higher than the designers’
expected values. With the help of linear approximations we have constructed
r-round differential characteristics with probability 2−(6+1.68×(r−3)) for 4.54%
of the keys and with probability 2−(7.68+1.51×(r−4)) for 0.036% of the keys of
PRINTcipher-48. These observations enable us to develop cryptanalytic at-
tacks on 29 and 31 rounds of PRINTcipher-48 for these key subsets.
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aimed to improve the former theoretic related-key rectangle attack on the full
KASUMI block cipher [3] into a fast attack. Sandwich attack is an extension
of the boomerang attack, which was introduced by Wagner [14]. Similar crypt-
analysis techniques with sandwich attack were also used in [4,5,14]. Usually,
boomerang attack is an adaptively chosen plaintexts and ciphertexts attack. It
was further developed by Kelsey et al. [6] into a chosen plaintexts attack called
the amplified boomerang attack, which was independently introduced by Biham
et al. with the name of the rectangle attack [2]. In [10], sandwich attack is also
converted into a chosen plaintexts attack, called rectangle-like sandwich attack.

In this paper, we construct an interesting sandwich distinguisher of 5-round
MMB with probability 1. Using the distinguisher, we present an adaptively cho-
sen texts attack on MMB, which the complexity is 240 texts and 240 MMB
encryptions. We also give a rectangle-like sandwich attack on MMB with 266.5

chosen plaintexts, 266.5 encryptions and 270.5 bytes of memory.
Furthermore, we introduce a 6-round differential with probability 2−94. Uti-

lizing a 5-round differential by truncating the given 6-round differential, we show
an improved differential attack on MMB with 296 chosen plaintexts, 296 MMB
encryptions and 266 bytes of memory. It is interesting that, even if MMB block
cipher is increased to 7 rounds, it is still vulnerable to the differential attack
with the same complexity.

The rest of this paper is organized as follows. A brief description of MMB is
given in Sect. 2. We recall the sandwich attack in Sect. 3. The fast sandwich
attack on MMB is introduced in Sect. 4. Section 5 describes the rectangle-like
attack on MMB. And Section 6 shows the improved differential attack. Finally,
we conclude the paper in Sect. 7.

2 Description of the Block Cipher MMB

MMB is a block cipher with 128-bit block and 128-bit key. It has a Substitution-
Permutation Network (SPN) structure and 6-round iterations. It has two ver-
sions, called MMB 1.0 and MMB 2.0. Compared to MMB 1.0, the key schedule
of MMB 2.0 is tweaked against the related-key attack [8]. In this paper, we only
focus on MMB 2.0 which is simplified as MMB.

We give a brief description of MMB in the following.

Key Schedule. Let the 128-bit key of MMB be K = (k0, k1, k2, k3), the subkey
can be computed as:

kji = k(i+j) mod 4 ⊕ (B ≪ j),

where B = 0x0dae, kj is the (j + 1)-th round subkey, kj = (kj0, k
j
1, k

j
2, k

j
3),

kji (i = 0, . . . , 3) are 32-bit words, and j = 0, . . . , 6.

MMB Encryption. MMB includes the following 6 round-transformations:

Xj+1 = ρ[kj](Xj) = θ ◦ η ◦ γ ◦ σ[kj ](Xj)
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where Xj is the 128-bit input to the (j + 1)-th round, and X0 is the plaintext.
The ciphertext is denoted as C = σ[k6](X6).

The details of the four functions σ, γ, η, θ are given as follows.

1. σ[kj ] is a bitwise XOR operation with the round subkey.

σ[kj ](a0, a1, a2, a3) = (a0 ⊕ kj0, a1 ⊕ kj1, a2 ⊕ kj2, a3 ⊕ kj3),

where (a0, a1, a2, a3) is the 128-bit intermediate value, and ai(i = 0, 1, 2, 3)
are 32-bit words.

2. The nonlinear transformation γ is a cyclic multiplication of the four 32-bit
words respectively by factors G0, G1, G2 and G3.

γ(a0, a1, a2, a3) = (a0 ⊗G0, a1 ⊗G1, a2 ⊗G2, a3 ⊗G3).

The cyclic multiplication ⊗ is defined as:

x⊗ y =

{
x× y mod 232 − 1 if x < 232 − 1,
232 − 1 if x = 232 − 1.

Gi, G
−1
i = (Gi)

−1 mod 232 − 1, i = 0, 1, 2, 3 are listed.

G0 = 0x025f1cdb, G−10 = 0x0dad4694,
G1 = 2⊗G0 = 0x04be39b6, G−11 = 0x06d6a34a,
G2 = 23 ⊗G0 = 0x12f8e6d8, G−12 = 0x81b5a8d2,
G3 = 27 ⊗G0 = 0x2f8e6d81, G−13 = 0x281b5a8d.

There are two differential characteristics with probability 1 for Gi (i =
0, 1, 2, 3) [7],

0
Gi−→
1

0, 0̄
Gi−→
1

0̄.

The two differential characteristics result in a 2-round differential with
probability 1.

3. The asymmetrical transformation η is defined as:

η(a0, a1, a2, a3) = (a0 ⊕ (lsb(a0)× δ), a1, a2, a3 ⊕ ((1 ⊕ lsb(a3))× δ)),

where ‘lsb’ means the least significant bit and δ = 0x2aaaaaaa.
4. The linear transformation θ is a diffusion operation:

θ(a0, a1, a2, a3) = (a3 ⊕ a0 ⊕ a1, a0 ⊕ a1 ⊕ a2, a1 ⊕ a2 ⊕ a3, a2 ⊕ a3 ⊕ a0).

3 Sandwich Attack

Sandwich attack dates from boomerang attack, and was utilized to break effi-
ciently the block cipher KASUMI in the related-key setting [10]. We give a brief
description of the boomerang attack and the sandwich attack.
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3.1 Boomerang Attack

The boomerang attack belongs to differential attack [1]. The purpose is to con-
struct a quartet structure to achieve a distinguisher with more rounds by utilizing
and connecting two short differential. Let E be a block cipher with block size
n, that is considered as a cascade of two sub-ciphers: E = E1 ◦ E0. For the

sub-cipher E0, there is a differential α
E0−→ β with high probability p, and for

E1, there is a differential γ
E1−→ ζ with high probability q. E−1, E0

−1 and E1
−1

stand for the inverse of E,E0, E1 respectively. The boomerang distinguisher (see
Fig.1) can be constructed as follows:

– Randomly choose a pair of plaintexts (P, P ′) such that P ′ ⊕ P = α.
– Ask for the encryption, and get the corresponding ciphertexts C = E(P ),

C′ = E(P ′).
– Compute C̃ = C ⊕ ζ, C̃′ = C′ ⊕ ζ.
– Ask for the decryption, and obtain P̃ = E−1(C̃), P̃ ′ = E−1(C̃′).
– Check whether P̃ ′ ⊕ P̃ = α.

For the distinguisher (see Fig. 1), P̃ ′⊕ P̃ = α holds with probability p2q2. That
is to say, a quarter satisfies the following conditions besides P ′ ⊕ P = α and
P̃ ′ ⊕ P̃ = α,

E0(P
′)⊕ E0(P ) = β,

E1
−1(C̃)⊕ E1

−1(C) = E−11 (C̃′)⊕ E1
−1(C′) = γ.

It is clear that, the boomerang distinguisher is available to cryptanalyze a cipher
if pq > 2−n/2.

The rectangle (amplified boomerang) attack is a chosen plaintext attack in-
stead of adaptive chosen plaintext and ciphertext attack by involving a birthday
attack to guarantee the collision of two middle values E0(P ) and E0(P̃ ) ⊕ γ.

A right quarter (P, P ′, P̃ , P̃ ′) can be distinguished with probability p2q22−n,
which should satisfy the following conditions besides P ⊕ P ′ = α, P̃ ⊕ P̃ ′ = α,
C ⊕ C̃ = ζ, C′ ⊕ C̃′ = ζ,

E0(P
′)⊕ E0(P ) = β , E0(P̃

′)⊕ E0(P̃ ) = β,

E0(P )⊕ E0(P̃ ) = γ .

3.2 Sandwich Attack

The sandwich attack is obtained by pushing a middle layer in the quartet struc-
ture of the boomerang attack. So, in the sandwich attack, the block cipher should
be divided into three sub-ciphers: E = E1 ◦ EM ◦ E0, see Fig. 2. We denote

X = E0(P ), Y = EM (X), C = E1(Y ). Let α
E0→ β be a differential with proba-

bility p on the top layer, and γ
E1→ ζ be a differential with probability q on the

bottom layer, where

α = P ⊕ P ′ = P̃ ⊕ P̃ ′ , β = X ⊕X ′ = X̃ ⊕ X̃ ′

γ = Y ⊕ Ỹ = Y ′ ⊕ Ỹ ′ , ζ = C ⊕ C̃ = C′ ⊕ C̃′.
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Fig. 2. Sandwich distinguisher

The middle layer is a transition differential connecting the top and bottom
differentials. The probability of the transition differential is computed as follows.

r = Pr((X̃ ⊕ X̃ ′ = β)|(Y ⊕ Ỹ = γ) ∧ (Y ′ ⊕ Ỹ ′ = γ) ∧ (X ⊕X ′ = β)).

Thus the sandwich distinguisher holds with probability p2q2r.
The rectangle-like sandwich attack is the combination of sandwich attack and

rectangle attack, and it is a chosen plaintexts attack (see Fig. 4). The probability
of the rectangle-like sandwich distinguisher is p2q2r′2−n,

r′ = Pr((Y ′ ⊕ Ỹ ′ = γ)|(X̃ ⊕ X̃ ′ = β) ∧ (X ⊕X ′ = β) ∧ (Y ⊕ Ỹ = γ)).

4 Practical Sandwich Attack on the Full MMB

In this section, we first construct a sandwich distinguisher for 5-round MMB
with probability 1 without related key, then give a practical key recovery attack
on MMB.

4.1 5-Round Sandwich Distinguisher with Probability 1

We decompose 5-round MMB into E = E1 ◦ EM ◦ E0. E0 contains the first 2
rounds, EM consists of the third round, and E1 includes the last 2 rounds. See
Fig. 2.

We use the following 2-round differential characteristic with probability 1 in
E0 and E1 [13].

(0, 0̄, 0̄, 0)
σ[ki]−→ (0, 0̄, 0̄, 0)

γ−→ (0, 0̄, 0̄, 0)
η−→ (0, 0̄, 0̄, 0)

θ−→ (0̄, 0, 0, 0̄)
σ[ki+1]−→ (0̄, 0, 0, 0̄)

γ−→ (0̄, 0, 0, 0̄)
η−→ (0̄⊕ δ, 0, 0, 0̄⊕ δ)

θ−→ (0, 0̄⊕ δ, 0̄⊕ δ, 0),
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where ‘0’ denotes a 32-bit zero difference word, and 0̄ = 232−1 = 0xffffffff .

So α = γ = (0, 0̄, 0̄, 0), β = ζ = (0, 0̄ ⊕ δ, 0̄ ⊕ δ, 0), and Pr(α
E0−→ β) = 1,

Pr(γ
E1−→ ζ) = 1.

The remaining is to prove that the probability of the transition differential
keeps 1, i.e.,

Pr((X̃ ⊕ X̃ ′ = β)|(Y ⊕ Ỹ = γ) ∧ (Y ′ ⊕ Ỹ ′ = γ) ∧ (X ⊕X ′ = β)) = 1.

X ′i, X̃i, X̃
′
i and Xi denote the i-th words of X,X ′, X̃, X̃ ′, i = 0, 1, 2, 3. The

subkey of the third round is denoted as k̄ = (k̄0, k̄1, k̄2, k̄3).
Since θ and η are linear, by

Y ⊕ Ỹ = (0, 0̄, 0̄, 0),

Y ′ ⊕ Ỹ ′ = (0, 0̄, 0̄, 0),

X ⊕X ′ = (0, 0̄⊕ δ, 0̄⊕ δ, 0), (1)

we get

(η−1 ◦ θ−1(Y ))⊕ (η−1 ◦ θ−1(Ỹ )) = (0̄⊕ δ, 0, 0, 0̄⊕ δ), (2)

(η−1 ◦ θ−1(Y ′))⊕ (η−1 ◦ θ−1(Ỹ ′)) = (0̄⊕ δ, 0, 0, 0̄⊕ δ). (3)

From the round transformation, we know that,

Y = θ ◦ η ◦ γ ◦ σ[k](X),

Y ′ = θ ◦ η ◦ γ ◦ σ[k](X ′),
Ỹ = θ ◦ η ◦ γ ◦ σ[k](X̃),

Ỹ ′ = θ ◦ η ◦ γ ◦ σ[k](X̃ ′). (4)

Using (2), (3) and (4), we deduce the equations

((X1 ⊕ k̄1)⊗G1)⊕ ((X̃1 ⊕ k̄1)⊗G1) = 0, (5)

((X2 ⊕ k̄2)⊗G2)⊕ ((X̃2 ⊕ k̄2)⊗G2) = 0, (6)

((X ′1 ⊕ k̄1)⊗G1)⊕ ((X̃ ′1 ⊕ k̄1)⊗G1) = 0, (7)

((X ′2 ⊕ k̄2)⊗G2)⊕ ((X̃ ′2 ⊕ k̄2)⊗G2) = 0. (8)

((X0 ⊕ k̄0)⊗G0)⊕ ((X̃0 ⊕ k̄0)⊗G0) = 0̄⊕ δ, (9)

((X3 ⊕ k̄3)⊗G3)⊕ ((X̃3 ⊕ k̄3)⊗G3) = 0̄⊕ δ, (10)

((X ′0 ⊕ k̄0)⊗G0)⊕ ((X̃ ′0 ⊕ k̄0)⊗G0) = 0̄⊕ δ, (11)

((X ′3 ⊕ k̄3)⊗G3)⊕ ((X̃ ′3 ⊕ k̄3)⊗G3) = 0̄⊕ δ. (12)

From (5), (6), (7) and (8), it is clear that,

X1 = X̃1, X2 = X̃2, X ′1 = X̃ ′1, X ′2 = X̃ ′2.
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Therefore, we deduce the conditions

X̃1 ⊕ X̃ ′1 = X1 ⊕X ′1 = 0̄⊕ δ,

X̃2 ⊕ X̃ ′2 = X2 ⊕X ′2 = 0̄⊕ δ. (13)

From (9), (10), (11) and (12), we obtain

((X0⊕k̄0)⊗G0)⊕((X̃0⊕k̄0)⊗G0) = ((X′
0⊕k̄0)⊗G0)⊕((X̃′

0⊕k̄0)⊗G0), (14)

((X3⊕k̄3)⊗G3)⊕((X̃3⊕k̄3)⊗G3) = ((X′
3⊕k̄3)⊗G3)⊕((X̃′

3⊕k̄3)⊗G3). (15)

Combining with (1), the following two equations hold.

((X̃0 ⊕ k̄0)⊗G0) = ((X̃ ′0 ⊕ k̄0)⊗G0),

((X̃3 ⊕ k̄3)⊗G3) = ((X̃ ′3 ⊕ k̄3)⊗G3).

Then,

X̃0 ⊕ X̃ ′0 = 0,

X̃3 ⊕ X̃ ′3 = 0. (16)

Combining (13) and (16), we have

X̃ ⊕ X̃ ′ = (0, 0̄⊕ δ, 0̄⊕ δ, 0) = β.

Therefore,

r = Pr((X̃ ⊕ X̃ ′ = β)|(Y ⊕ Ỹ = γ) ∧ (Y ′ ⊕ Ỹ ′ = γ) ∧ (X ⊕X ′ = β)) = 1.

This proves that we get a 5-round sandwich distinguisher with probability 1.

4.2 The Key Recovery Attack

In this subsection, if we apply the 5-round sandwich distinguisher described in
Subsect. 4.1 to rounds 2-6, we can recover 64 bits of the subkey in the first
round. When we locate the distinguisher at rounds 1-5, 64 bits of the equivalent
subkey in the final can be easily captured. The total key can be deduced from
the recovered subkey bits by the key schedule.

Recovering 64 Bits of the First Round Subkey

Collecting Right Quartets. The sandwich distinguisher is from round 2 to
round 6. In order to easily produce the sandwich distinguisher, we select the 1-st
round differential as:

(0xfdff77ef, 0, 0, 0xdffbfeef)
σ[ki]−→ (0xfdff77ef, 0, 0, 0xdffbfeef)

γ−→
(0̄⊕ δ, 0, 0, 0̄⊕ δ)

η−→ (0̄, 0, 0, 0̄)
θ−→ (0, 0̄, 0̄, 0).
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By computer searching, both 0xfdff77ef
G0−→ 0̄ ⊕ δ and 0xdffbfeef

G3−→ 0̄ ⊕ δ
occur with probability about 2−18, so the probability of the differential is about
2−36.

We collect 238 plaintext pairs (P, P ′) and their corresponding ciphertext pairs
(C,C′), where P and P ′ satisfy

P ′ = P ⊕ (0xfdff77ef, 0, 0, 0xdffbfeef).

For each pair, we construct the quartet, and detect whether the quartet satisfies
the differentials. The details are as follows.

– For the collected plaintext-ciphertext pair ((P,C), (P ′, C′)), calculate

C̃ = C ⊕ (0, 0̄⊕ δ, 0̄⊕ δ, 0),

C̃′ = C′ ⊕ (0, 0̄⊕ δ, 0̄⊕ δ, 0).

– Query the decryption to obtain P̃ = E−1(C̃), P̃ ′ = E−1(C̃′), and get the

quartet (P, P ′, P̃ , P̃ ′).
– For the constructed quartet (P, P ′, P̃ , P̃ ′), check whether P̃⊕P̃ ′ = (∗, 0, 0, ∗)

holds, where ‘*’ stands for any non-zero 32-bit value. If P̃ ⊕ P̃ equals to
(∗, 0, 0, ∗), output the quartet.

It is clear that, if the 1-st round differential holds, P̃ ⊕ P̃ ′ always equals to
(∗, 0, 0, ∗), so among 238 plaintext-ciphertext pairs ((P,C), (P ′, C′)), there are

about 4 quartets (P, P ′, P̃ , P̃ ′) are left, and each sieved quartet is right with
probability 1− 238−64 = 1− 2−26.

Partial Key Recovery. For the right quartet (P, P ′, P̃ , P̃ ′), we search the right
subkey k00 among 232 candidates by the following equations:

((P0 ⊕ k00)⊗G0)⊕ ((P ′0 ⊕ k00)⊗G0) = 0̄⊕ δ,

((P̃0 ⊕ k00)⊗G0)⊕ ((P̃ ′0 ⊕ k00)⊗G0) = 0̄⊕ δ.

Similarly, the subkey k03 is derived from the equations

((P3 ⊕ k03)⊗G3)⊕ ((P ′3 ⊕ k03)⊗G3) = 0̄⊕ δ,

((P̃3 ⊕ k03)⊗G3)⊕ ((P̃ ′3 ⊕ k03)⊗G3) = 0̄⊕ δ.

Because 0̄
Gi−→
1

0̄, there are two k00 can be obtained, i.e. the right subkey k00 and

its complement k00 ⊕ 0̄. It is the same for k03 .

Recovering 64 Bits of the Last Subkey

Collecting Right Quartets. We apply the distinguisher to rounds 1-5, and
calculate 64 bits of the last subkey.
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Select the final round differential

(0, 0̄⊕ δ, 0̄⊕ δ, 0)
σ−1[k5]←− (0, 0̄⊕ δ, 0̄⊕ δ, 0)

γ−1

←−
(0, 0xfcfbdfff, 0xf3ef7fff, 0)

η−1

←− (0, 0xfcfbdfff, 0xf3ef7fff, 0)
θ−1←−

(0xfcfbdfff, 0x0f14a000, 0x0f14a000, 0xf3ef7fff).

The probability of 0xfcfbdfff
G−1

1−→ 0̄ ⊕ δ and 0xf3ef7fff
G−1

2−→ 0̄ ⊕ δ are both
2−18, so the total probability of the final round differential is 2−36.

We collect 238 ciphertext pairs (C, C̃) and their corresponding plaintext pairs

(P, P̃ ) such that,

C̃ = C ⊕ (0xfcfbdfff, 0x0f14a000, 0x0f14a000, 0xf3ef7fff).

For each pair, we build the framework of the quartet, and test whether the
quartet satisfies the differential.

– For the collected plaintext-ciphertext pair ((P,C), (P̃ , C̃)), calculate

P ′ = P ⊕ (0, 0̄, 0̄, 0),

P̃ ′ = P ′ ⊕ (0, 0̄, 0̄, 0).

– Ask for the ciphertexts C′, C̃′ of P ′, P̃ ′ respectively. We obtain the quartet
(C,C′, C̃, C̃′).

– For the collected quartet (C,C′, C̃, C̃′), check whether C′ and C̃′ satisfy the
following equation.

C′ ⊕ C̃′ = (V1, V1 ⊕ V2, V1 ⊕ V2, V2),

where V1, V2 are non-zero 32-bit words. If the equation holds, output the
quartet.

Partial Key Recovery. We firstly recover 64 bits of the equivalent key k6
′
of

k6, i.e.,
k6

′
1 = k60 ⊕ k61 ⊕ k62 ,

k6
′

2 = k61 ⊕ k62 ⊕ k63 .

We find the right subkey k6
′

1 by searching 232 candidates with the verification of
the equations

(G−11 ⊗ (C0 ⊕ C1 ⊕ C2 ⊕ k6
′

1 ))⊕ (G−11 ⊗ (C′0 ⊕ C′1 ⊕ C′2 ⊕ k6
′

1 )) = 0̄⊕ δ,

(G−11 ⊗ (C̃0 ⊕ C̃1 ⊕ C̃2 ⊕ k6
′

1 ))⊕ (G−11 ⊗ (C̃′0 ⊕ C̃′1 ⊕ C̃′2 ⊕ k6
′

1 )) = 0̄⊕ δ.

In the similar way, we search the right subkey k6
′

2 among 232 candidates by the
following equations.

(G−12 ⊗ (C1 ⊕ C2 ⊕ C3 ⊕ k6
′

2 ))⊕ (G−12 ⊗ (C′1 ⊕ C′2 ⊕ C′3 ⊕ k6
′

2 )) = 0̄⊕ δ,

(G−12 ⊗ (C̃1 ⊕ C̃2 ⊕ C̃3 ⊕ k6
′

2 ))⊕ (G−12 ⊗ (C̃′1 ⊕ C̃′2 ⊕ C̃′3 ⊕ k6
′

2 )) = 0̄⊕ δ.
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From the key schedule algorithm, we know that, k00=k0 ⊕ B, k03 = k3 ⊕ B,
k6

′
1 = k0 ⊕ k2 ⊕ k3 ⊕ (B ≪ 6), and k6

′
2 = k0 ⊕ k1 ⊕ k3 ⊕ (B ≪ 6). As a result,

we compute the whole 128 bits of the key. 24 = 16 key can be computed, for
there are 2 values for a subkey. Filter the right key by a known plaintext and
corresponding ciphertexts.

Complexity. The data complexity is 239 adaptive chosen plaintexts and cipher-
texts. The collection of the pairs is dominant the time complexity, which is 240

MMB encryptions. Once a right quarter is obtained, the right subkey can be
computed. So the success rate is (0.98)2 = 0.96.

4.3 Experimental Results

We performed an experiment on the number of right quartets. We implement
the quartet framework in Sect. 4.2, check the right quartets, and we repeated
the procedure for 1320 times. The number of right quartet are given in Tab. 1,
and we can see from Fig. 3 that the experimental data approximates well to the
theoretic data.

Table 1. The Number of Right Quartets

#Right Quartets 0 1 2 3 4 5 6 7 8 9 10 11 12

Experiment 23 106 202 252 273 185 137 86 30 17 5 4 0

Theory 24.1 96.7 193.4 257.8 257.8 206.3 137.5 78.5 39.2 17.4 6.9 2.5 0.8

Fig. 3. The Number of Right Quartets in Our Experiment and the Theory

Our experiment was carried out on a IBM X3950 M2 server, with 64 Intel
Xeon E7330 2.4GHz cores inside. The operation system is Red Hat 4.1.2-46,
Linux 2.6.18. The compiler is gcc 4.1.2, and we use the standard optimization
flags, one thread in each core. It takes about 1 hour to identify a right quartet,
and recovery the main key of MMB.
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5 Rectangle-Like Sandwich Attack on MMB

The sandwich attack is an adaptive chosen plaintexts and ciphertexts attack. So
we have to query the decryptions of the adapted ciphertexts. This section is to
fulfill the rectangle-like sandwich attack, which can result in a chosen-plaintext
attack.

5.1 5-Round Rectangle-Like Sandwich Distinguisher

Firstly, we give a 5-round rectangle-like sandwich distinguisher which can be
detected with the birthday attack complexity. We transform the above 5-round
sandwich distinguisher into a rectangle-like sandwich distinguisher directly.

E0

E1

EM

E0

E1

EM
X

Y

C

P

P̃ ′

X̃ ′

Ỹ ′

C̃′

P ′

X ′

Y ′

C′

P̃

X̃

Ỹ

C̃

γ

γ

ζ

ζ

α α

ββ

Fig. 4. Rectangle-like sandwich distinguisher

We decompose 5-round MMB into E = E1 ◦EM ◦E0 the same as Subsect. 4.1.
Let α = γ = (0, 0̄, 0̄, 0), β = ζ = (0, 0̄⊕ δ, 0̄⊕ δ, 0). In the rectangle-like sandwich

distinguisher (see Fig. 4), we choose P ⊕ P ′ = α, P̃ ⊕ P̃ ′ = α. Query the

corresponding ciphertexts of the 5-round MMB (C, C′, C̃, C̃′). If the equations

C ⊕ C̃ = ζ and C′ ⊕ C̃′ = ζ hold, the quartet is right.
Since the probability of the 2-round differential is 1, similar with Subsect. 4.1,

we know that

Pr((Y ′ ⊕ Ỹ ′ = γ)|(Y ⊕ Ỹ = γ) ∧ (X̃ ⊕ X̃ ′ = β) ∧ (X ⊕X ′ = β)) = 1,

P r((Y ⊕ Ỹ = γ)|(Y ′ ⊕ Ỹ ′ = γ) ∧ (X̃ ⊕ X̃ ′ = β) ∧ (X ⊕X ′ = β)) = 1.

It is easy to know that, C ⊕ C̃ = ζ holds if and only if C′ ⊕ C̃′ = ζ holds.
Using the birthday searching algorithm, we get a pair (C, C̃) correspond-

ing to the collision C = C̃ ⊕ ζ by searching two sets with 264 chosen pairs
(P, P ′) and (P̃ , P̃ ′) respectively. (C, C̃) and the corresponding (C′, C̃′) consists
of a right quartet. So, the 5-round rectangle-like sandwich distinguisher can
be distinguished with 264 chosen plaintexts and 264 table lookups.



196 K. Jia et al.

5.2 The Key Recovery Attack

We set the 5-round rectangle-like sandwich distinguisher from round 1 to round
5. If a right quartet occurs, the ciphertext differences should satisfy the following
two equations:

C ⊕ C̃ = (V1, V1 ⊕ V2, V1 ⊕ V2, V2) (17)

C′ ⊕ C̃′ = (W1,W1 ⊕W2,W1 ⊕W2,W2) (18)

where V1 and W1 are output diffrences of G1 corresponding to input difference
(0̄⊕δ), V2 and W2 are output differences of G2 corresponding to input difference
(0̄⊕ δ).

In order to be available to search the right quartet by fulfilling the birthday
attack, we convert (17) and (18) into the following equivalent four equations.

(C0 ⊕ C1 ⊕ C3)⊕ (C̃0 ⊕ C̃1 ⊕ C̃3) = 0,

(C0 ⊕ C2 ⊕ C3)⊕ (C̃0 ⊕ C̃2 ⊕ C̃3) = 0,

(C′0 ⊕ C′1 ⊕ C′3)⊕ (C̃′0 ⊕ C̃′1 ⊕ C̃′3) = 0,

(C′0 ⊕ C′2 ⊕ C′3)⊕ (C̃′0 ⊕ C̃′2 ⊕ C̃′3) = 0.

We choose 265.5 plaintext pairs (P, P ′) at random with the difference (0, 0̄, 0̄, 0).
Encrypt the corresponding ciphertext pairs (C,C′). Compute 265.5 128-bit values
which consist of set A.

A = {Z| Z = (C0 ⊕ C1 ⊕ C3, C0 ⊕ C2 ⊕ C3, C
′
0 ⊕ C′1 ⊕ C′3, C

′
0 ⊕ C′2 ⊕ C′3)}.

Search all the collisions of set A by birthday attack. The expected number of
collisions is 8. This is because, for each 264 pairs of A, there is a right quartet
according to Subsect. 5.1. So, there are about 4 collisions in A which implies 4
right quartets. According to birthday attack, there are another 265.5 · 265.5 · 2−1 ·
2−128 = 4 collisions (Z, Z̃) occur. So, we have totally 8 corresponding quartets

(C,C′, C̃, C̃′), and there are 4 right quartets.
For each sieved quartet, we get the equivalent key k6

′
1 and k6

′
2 respectively as

in Subsect. 4.2 with 230 MMB encryptions. Then we find the rest 64-bit keys
by exhaustively searching. The data complexity of the attack is 2 · 265.5 = 266.5

chosen plaintexts, the memory complexity is 265.5 128-bit block pairs, i.e., 270.5

bytes.

6 The Improved Differential Cryptanalysis of MMB

A 6-round differential with high probability is given in this section, which can
be used to 7-round extended MMB. The differential path is given as,

(0, 0̄, 0̄, 0)
ρ[k0]−→
1

(0̄, 0, 0, 0̄)
ρ[k1]−→
1

(0, 0̄⊕ δ, 0̄⊕ δ, 0)
ρ[k2 ]−→
p1

(τ, 0, 0, τ)
ρ[k3]−→
p2

(0, 0̄, 0̄, 0)
ρ[k4 ]−→

(0̄, 0, 0, 0̄)
ρ[k5]−→
1

(0, 0̄⊕ δ, 0̄⊕ δ, 0),

where τ satisfies the following two differtials.
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0̄⊕ δ
G1−→ τ

G0−→ 0̄, (19)

0̄⊕ δ
G2−→ τ

G3−→ 0̄. (20)

By search all the τ , the 5-round differential holds with probability p1.p2 = 2−94.
Because there are 16862718720 pairs make the differential characteristics (19)
and (20) hold together, the probability is 16862718720/(2128)

.
= 2−94.

6.1 Improved Differential Attack on the Full MMB

We use the last five rounds of the differential path to attack the full round MMB.
The 5-round differential is as follows.

(0̄, 0, 0, 0̄)
ρ[k0]−→
1

(0, 0̄⊕ δ, 0̄⊕ δ, 0)
ρ[k1 ]−→
p1

(τ, 0, 0, τ)
ρ[k2 ]−→
p2

(0, 0̄, 0̄, 0)
ρ[k3]−→
1

(0̄, 0, 0, 0̄)
ρ[k4]−→
1

(0, 0̄⊕ δ, 0̄⊕ δ, 0),

We mount the 5-round differential path to rounds 1-5 of the 6 rounds. In the
rest of the section, we give the attack algorithm.

The Key Recovery Attack. We choose 296 pairs of plaintext with difference
(0̄, 0, 0, 0̄), then there are 4 right pairs. The output difference of the 5-th round
for a right pair is (0, 0̄ ⊕ δ, 0̄ ⊕ δ, 0), so the difference of the ciphertext should
be (V1, V1 ⊕ V2, V1 ⊕ V2, V2), where V1, V2 are non-zero 32-bit words. We use
this to sieve the ciphertext pairs, and there will be 296 · 2−64 = 232 pairs left.
Furthermore, the input difference of the 6-th round is (0, 0̄ ⊕ δ, 0̄ ⊕ δ, 0), the
number of possible output difference values given the input difference 0̄ ⊕ δ for
G1 or G2 is about 228.56. So there are 232 · 2(28.56−32)×2 = 225.12 pairs satisfying
the output difference.

For each of 225.12 pairs, we recover the key as Subsect. 4.2. Calculate the 32-bit
words k6

′
1 , k6

′
2 respectively, and increase the counter corresponding to (k6

′
1 , k6

′
2 )

by 1. For G1 and G2, the number of pairs with input difference 0̄ ⊕ δ and any
given output difference is at most 214.28, so the maximum count per counted
pair of the wrong subkey words will be 214.28 ·214.28 = 228.56. The signal-to-noise
ratio is :

S/N =
p · 2k
α · β =

2−94 × 264

2−64−6.88 × 228.56
= 210.32.

According to [12], the success probability is

Ps =

∫ ∞

−
√

μS/N−Φ−1(1−2−a)√
S/N+1

Φ(x)dx = 0.9686,

where a = 64 is the number of subkey bits guessed, μ is the number of right
pairs and μ = 4.

The data complexity of the attack is 296 chosen plaintexts, which is dominant
the time complexity. We need 2·214.28 ·225.12 = 240.40 XOR operations and 214.28 ·
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Table 2. Summary of the Attacks on MMB

#Rounds Type Time Data Memory Source

3 LC 2126 EN 2114.56 KP - [13]
4 SQ 2126.32 EN 234 CP 266 [13]
6 DC 2118 EN 2118 CP 266 [13]

6 SW 240EN 239 ACP 218 this paper
6 SR 266.5 EN 266.5 CP 270.5 this paper
6 DC 296 EN 296 CP 266 this paper
7 DC 296 EN 296 CP 266 this paper

LC: Linear Cryptanalysis; DC: Differential Cryptanalysis.
SQ: Square Attack; SW: Sandwich Attack; SR: Rectangle-like Sandwich Attack.
EN: MMB Encryption.
KP: Known Plaintexts; CP: Chosen Plaintexts; ACP: adaptive chosen Texts.

214.28 · 225.12 = 253.68 counts, equivalent to 243 MMB encryptions to recovery
the 64-bit subkey. The memory complexity is 264 64-bit counters, equivalent to
266 bytes. There are 4 values for 64 bits of the key, and the rest 64 bits can be
recovered by exhaustive search.

6.2 Differential Attack of MMB+

If we call the 7-round version of MMB as MMB+, we show that MMB+ can
also be broken with the same complexity of the 6-round differential attack. Note
that in the above subsection, we only use 5 rounds out of the 6-round differential
path, and the probability of the 5-round path is the same as the 6-round path.
So if we use the 6-round differential path, we can also attack MMB+ by the
same manner described in the above subsection. It means that even if MMB has
7 rounds it is still vulnerable to the differential attack.

7 Conclusion

In this paper, we construct a 5-round sandwich distinguisher for MMB with high
probability 1. With the distinguisher, we recover the 128-bit key of MMB with
239 adaptive chosen plaintexts and ciphertexts, 240 MMB encryptions. On this
bases, we present a rectangle-like sandwich attack to MMB, with 266.5 chosen
plaintexts, 266.5 MMB encryptions and 270.5 bytes memory. Besides, we improve
the differential attack on MMB in [13]. The data complexity is 296 chosen plain-
texts, the time complexity is 296 MMB encryptions and the memory complexity
is 266 bytes. We summarize the results on MMB in Table 2.
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Abstract. The concept of conditional differential cryptanalysis has been
applied to NLFSR-based cryptosystems at ASIACRYPT 2010. We im-
prove the technique by using automatic tools to find and analyze the in-
volved conditions. Using these improvements we cryptanalyze the stream
cipher Trivium and the KATAN family of lightweight block ciphers. For
both ciphers we obtain new cryptanalytic results. For reduced variants
of Trivium we obtain a class of weak keys that can be practically distin-
guished up to 961 of 1152 rounds. For the KATAN family we focus on
its security in the related-key scenario and obtain practical key-recovery
attacks for 120, 103 and 90 of 254 rounds of KATAN32, KATAN48 and
KATAN64, respectively.

Keywords: Trivium, KATAN, conditional differential cryptanalysis.

1 Introduction

The stream cipher Trivium and the KATAN family of block ciphers are
lightweight cryptographic primitives dedicated to hardware implementation.
They share a very similar structure based on non-linear feedback shift registers
(NLFSR). In [12], conditional differential cryptanalysis, first introduced in [3],
has been applied to such constructions. The idea is to control the propagation
of differences by imposing conditions on the public variables of the cipher. De-
pending whether these conditions involve secret variables or not, key-recovery or
distinguishing attacks can be mounted. The technique extends to higher order
differential cryptanalysis. A similar concept is the dynamic cube attack pre-
sented in [9]. Deriving the conditions by hand is a time consuming and error
prone task. In this paper we use automatic tools to find and simplify these con-
ditions. The method is applied to KATAN and Trivium. In both cases we obtain
new cryptanalytic results.

In the single-key scenario, the KATAN family was already analyzed with re-
spect to conditional differential cryptanalysis in [12]. Table 1 summarizes the
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Table 1. Cryptanalytic results for KATAN. All attacks have practical complexity and
recover parts of the key. The results in the single-key scenario also apply to KTANTAN.

block size scenario rounds reference

32 single-key 78 [12]
related-key 120 this paper

48 single-key 70 [12]
related-key 103 this paper

64 single-key 68 [12]
related-key 90 this paper

results and compares them to the results in the related-key scenario presented
in this paper. The question about the related-key security of KATAN was raised
by very efficient such attacks on KTANTAN [1]. The KTANTAN family of
block ciphers differs from KATAN only by its key scheduling. The latter has
shown some vulnerability which was also exploited for a meet-in-the-middle
attack [4].

The most relevant cryptanalytic results on Trivium are obtained by cube
attacks [8] and cube testers [2,15]. Our analysis can be seen as a refinement
of cube testers. Exploiting these refinements for Trivium is the subject of the
second part of this paper. Table 2 summarizes the results and compares them
to existing analysis.

Table 2. Cryptanalytic results for Trivium

rounds complexity # keys type of attack reference

767 245 all key recovery [8]

790 231 all distinguisher [2]

798 225 all distinguisher this paper

806 244 all distinguisher [15]

868 225 231 distinguisher this paper

961 225 226 distinguisher this paper

The paper is organized as follows. Section 2 reviews conditional differen-
tial cryptanalysis and describes an approach to analyze the conditions more
automatically. In Sections 3 and 4 we apply the technique to KATAN and
Trivium.

2 Review of Conditional Differential Cryptanalysis

The idea of conditional differential cryptanalysis has been introduced in [3].
In [12] it has been extended to higher order cryptanalysis and applied to NLFSR-
based constructions. We briefly review the concept and then sketch our strategies
to analyze the conditions more automatically.
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2.1 Conditional Differential Cryptanalysis

Suppose a prototypical NLFSR-based cipher with an internal state of length �
which is initialized with a key k and an initial value x. Let s0, s1, . . . be the
consecutive state bits generated by the cipher, such that (si, . . . , si+�) is the
state after i rounds, and let h be the output function of the cipher such that
h(si, . . . , si+�) is the output after i rounds. Every state bit is a function of (k, x)
and the same is true for the output of h. For some fixed i, let f = h(si, . . . , si+�).

In differential cryptanalysis one computes derivatives of f . Following [13], the
derivative of f with respect to a is defined as

Δaf(k, x) = f(k, x) + f(k, x⊕ a).

A biased output distribution distinguishes the cipher from an ideal primitive
and may reveals information on the key. The idea of conditional differential
cryptanalysis is to derive conditions on x that control the propagation of the
difference up to some round r. This results in a system of equations

Δasi(k, x) = γi, 0 ≤ i < r. (1)

The γi are either 0 or 1 and describe the differential characteristic. Values x that
satisfy all conditions are called valid. The goal is to find a large sample of valid
inputs X , such that a bias can be detected in the output of Δaf on X . The
conditions may also involve variables of the key. This allows for key recovery or
classification of weak keys.

The technique extends to higher order derivatives (corresponding to higher or-
der differential cryptanalysis). The d-th derivative of f with respect to a1, . . . , ad
is defined as

Δ(d)
a1,...,ad

f(k, x) =
∑

c∈L(a1,...,ad)

f(k, x⊕ c),

where L(a1, . . . , ad) is the set of all 2d linear combinations of a1, . . . , ad. In [12]
it was proposed to analyze the first order propagation of each difference ai and
to merge the obtained conditions. This technique was successfully applied to
Grain-128 in and we will apply it to Trivium in this paper.

2.2 Automatic Strategies for Analyzing the Conditions

Analyzing the conditions is a crucial part of conditional differential cryptanalysis.
There is a trade-off between the number of controlled rounds and the size of
the sample X . Controlling more rounds means to impose more conditions, which
reduces the number of valid inputs that can be derived. In general, the conditions
are not independent of each other and may be simplified during the process. This
makes the analysis complicated and prone to error when done by hand. In the
case of higher order derivatives this tends to be even more intricate.



Conditional Differential Cryptanalysis of Trivium and KATAN 203

In order to do a more automatic analysis, we represent the system of conditions
as an ideal J in the ring of Boolean polynomials F2[K,X ]. All (k, x) in the
algebraic variety of J satisfy the imposed conditions1. We then use the PolyPoRi
library [5] to perform computations in Boolean polynomial rings. Specifically,
we use modular reductions to analyze new conditions with respect to already
imposed conditions, and to obtain a simple representation of J .

We distinguish two strategies for computing J . The strategies differ in whether
the differential characteristic is fixed in advance (for example by linearization)
or if it is derived in parallel with the conditions.

Differential Characteristic Fixed in Advance. This is the simple strategy
and we will use it in our analysis of KATAN. Consider the system of equa-
tions given by (1) and assume that γ0, . . . , γr−1 are given. Algorithm 1 either
returns the ideal describing the exact conditions on k and x for following the
characteristic, or it returns with a message that the characteristic is impossible.

Algorithm 1. Deriving conditions for a given characteristic.

Input: a, γ0, . . . , γr−1

Output: Ideal of conditions
J ← ∅
for i← 0 to r − 1 do

f ← Δasi(k, x)⊕ γi mod J
if f = 1 then

return impossible characteristic
else

add f to J

return J

Differential Characteristic Derived in Parallel. In some cases it can be
difficult to choose a characteristic in advance. This is particularly true for higher
order derivatives where several characteristics have to be chosen such that their
respective conditions do not contradict each other. A straightforward extension
of Algorithm 1 would fail in most cases. Algorithm 2 provides more flexibility. It
takes as input only the initial difference, and at each step develops the charac-
teristic based on the conditions imposed so far. At those steps where γi can take
both values (0 or 1), the algorithm chooses γi = 0 (it prevents the propagation
of the difference). Other strategies are possible, but we found this strategy the
most successful in our applications.

Algorithm 3 is an extension to the higher order case and we will use it in
our analysis of Trivium. Note that this algorithm does not explicitly compute
the characteristics. They are not used for the attack, and in Algorithm 2 the
characteristic is computed only for illustration.

1 The algebraic variety of J is the set {(k, x) | f(k, x) = 0 for all f ∈ J}.
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Algorithm 2. Deriving characteristic in parallel to conditions.

Input: a, r
Output: Differential characteristic and ideal of conditions
J ← ∅
for i← 0 to r − 1 do

f ← Δasi(k, x) mod J
if f = 1 then

γi ← 1
else

γi ← 0
add f to J

return (γ0, . . . , γr−1), J

Algorithm 3. Extension of Algorithm 2 to higher order derivatives.

Input: a1, . . . , ad, r
Output: Ideal of conditions
J ← ∅
foreach a ∈ {a1, . . . , ad} do

for i← 0 to r − 1 do
f ← Δasi(k, x) mod J
if f �= 1 then

add f to J

return J

The algorithms usually produce a very simple representation of J which di-
rectly allows to analyze the dependence on bits of the key, and to derive the
respective sample(s) X . If necessary, more advanced techniques can be applied,
for example Gröbner basis algorithms.

3 Related-Key Attacks for Reduced KATAN

We now evaluate the security of KATAN against conditional differential crypt-
analysis in a related-key attack scenario. More specifically, an attacker is assumed
to obtain two ciphertexts for each chosen plaintext: one encrypted under a secret
key k and the other encrypted under k ⊕ b for a chosen difference b.

3.1 Description of KATAN

KATAN [7] is a family of lightweight block ciphers proposed De Cannière,
Dunkelman and Knezevic. The family consists of three ciphers denoted by
KATANn for n = 32, 48, 64 indicating the block size. All instances accept an
80-bit key. KATANn has a state of n bits which are aligned as two non-linear
feedback shift registers. For n = 32, the registers have lengths 13 and 19, respec-
tively. They are initialized with the plaintext:



Conditional Differential Cryptanalysis of Trivium and KATAN 205

(s1, . . . , s19)← (x0, . . . , x18)

(s20, . . . , s32)← (x19, . . . , x31).

The key is expanded to 508 bits according to the linear recursion

kj+80 = kj + kj+19 + kj+30 + kj+67, 0 ≤ j < 428,

where k0, . . . , k79 are the bits of k. At each round of the encryption process
two consecutive bits of the expanded key are used. The round updates further
depend on a bit ci. The sequence of ci is produced by an 8-bit linear feedback shift
register which is used as a counter. It is initialized by (c0, . . . , c7) = (1, . . . , 1, 0)
and expanded according to ci+8 = ci+ci+1+ci+3+ci+8. Round i, for 0 ≤ i < 254,
corresponds to the following transformation of the state:

t1 ← s32 + s26 + s28s25 + s23ci + k2i

t2 ← s19 + s7 + s12s10 + s8s3 + k2i+1

(s1, . . . , s19)← (t2, s1, . . . , s18)

(s19, . . . , s32)← (t1, s19, . . . , s31)

After 254 rounds, the state is output as the ciphertext. All three members of
the KATAN family use the same key expansion and the same sequence of ci.
The algebraic structure of the non-linear update functions is the same. They
differ in the length of the non-linear registers and the tap positions for the non-
linear update functions. All members perform 254 rounds, but for KATAN48 the
non-linear registers are updated twice per round and for KATAN64 even thrice
(using the same ci and ki for all updates at the same round).

3.2 Basic Analysis Strategy

As in the analysis of KATAN in [12] we use first order differentials. The basic
strategy is as follows:

1. Find a key difference b whose expansion does not introduce differences for
many rounds after some round r. The idea is to cancel all differences intro-
duced by b up to round r and to maximize the number of rounds, where no
differences are introduced again.

2. Compute backwards from round r in order to find a plaintext difference a
that cancels the differences introduced by b. This fixes a differential
characteristic.

3. Use Algorithm 1 to compute the ideal J , describing the conditions for the
characteristic to be followed.

4. Derive a sample of valid plaintexts and empirically find the maximal number
of rounds for which a bias can be detected in the ciphertext differences.
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The automated techniques for condition analysis allow to test many configura-
tions for a and b. The maximal number of consecutive rounds b does not intro-
duce differences is 39 (the key expansion is a 80-bit linear feedback shift register
with maximum period and two bits are used per round). It is easy to compute
differences which have this maximal run of zeros at any desired round r, and
the choice of b essentially reduces to a choice of r. We try to find the largest r
that can be controlled by conditions. If key bits are involved in the conditions,
several samples will be derived and tested for the correct guess.

3.3 Analysis of KATAN32

We now describe the details to attack 120 rounds of KATAN32. We use the
key difference b = [6, 14, 25, 44] which means differences at positions 6,14,25 and
44 of the key. The expanded key difference is given in Table 3. Note that no
differences are introduced after round r = 22 for the subsequent 39 rounds.
By backward computation we find that the plaintext difference a = [6, 9, 19]
cancels all differences up to round 22. The corresponding characteristic is given
in Table 4.

Table 3. Expanded key difference b = [6, 14, 25, 44]

Rnds Round key differences

0-19 00 00 00 10 00 00 00 10 00 00 00 00 01 00 00 00 00 00 00 00
20-39 00 00 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
40-59 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
60-79 00 00 10 00 00 00 00 00 01 00 00 00 00 00 00 10 00 00 00 00
80-99 00 01 00 00 00 00 00 10 10 00 00 00 01 00 01 00 00 00 00 00

100-119 10 10 10 00 00 01 00 01 00 00 00 00 10 10 10 10 00 00 00 00
. . . . . .

240-253 01 01 00 10 11 10 11 10 11 10 00 01 10 11

Using Algorithm 1 we compute the following ideal J given by

J = 〈x11 + 1, x1, x7, x8 + 1, x22, x4, x5 + x10 + x16 + k5, x6 + x9 + x17 + k3,

x0 + x3x10 + x3x16 + x3k5 + k15, x2x20 + x2x24 + x2x29 + x2k4 + x12 + k13,

x3x10x21 + x3x10x23x26 + x3x10x25 + x3x10x30 + x3x10k2 + x3x16x21

+x3x16x23x26 + x3x16x25 + x3x16x30 + x3x16k2 + x3x19 + x3x21x24

+x3x21k5 + x3x23x26k5 + x3x23 + x3x25k5 + x3x28 + x3x30k5 + x3k2k5

+x3k6 + x3 + x9 + x10x12x19 + x10x12x21x24 + x10x12x23 + x10x12x28

+x10x12k6 + x10x12 + x17 + x18x19 + x18x21x24 + x18x23 + x18x28 + x18k6

+x18 + x19x23 + x19k1 + x19k16 + x20x23 + x21x23x24 + x21x24k1 + x21x24k16

+x21k15 + x23x26k15 + x23x28 + x23k1 + x23k6 + x23k16 + x23 + x25k15 + x27

+x28k1 + x28k16 + x30k15 + k1k6 + k1 + k2k15 + k3 + k6k16 + k8 + k25〉.
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Table 4. Differential characteristic for a = [6, 9, 19] and b = [6, 14, 25, 44]

Round Difference in state

0 00000010010000000001000000000000
1 00000001001000000000100000000000
2 00000000100100000000010000000000
3 00000000010010000000001000000000
4 00000000001001000000000100000000
5 00000000000100100001000010000000
6 00000000000010010000100001000000
7 00000000000001001000010000100000
8 00000000000000100100001000010000
9 00000000000000010010000100001000
10 00000000000000001001000010000100
11 00000000000000000100100001000010
12 00000000000000000010010000100001
13 00000000000000000000001000010000
14 00000000000000000000000100001000
15 00000000000000000000000010000100
16 00000000000000000000000001000010
17 00000000000000000000000000100001
18 00000000000000000000000000010000
19 00000000000000000000000000001000
20 00000000000000000000000000000100
21 00000000000000000000000000000010
22 00000000000000000000000000000001
23 00000000000000000000000000000000

. . .
62 00000000000000000000000000000000
63 10000000000000000000000000000000
64 01000000000000000000000000000000

All pairs (k, x) in the algebraic variety of J will follow the characteristic given
in Table 4. The conditions involve 10 bits of the key which can not be chosen.
However, we can guess them and adjust x accordingly. It is not difficult to derive
a sample of 220 valid inputs for each guess. One adjusts a linear variable of each
condition in order to nullify the expression. The remaining variables can be freely
chosen. The correct guess is detected by a significant bias in the difference of
state bit 18 after 120 rounds. Testing one sample costs 221 queries and at most
210 samples have to tested. Hence, the attack needs not more than 231 queries
to the cipher. The number of different queries can be even smaller, since the
samples for the different guesses may overlap. The attack recovers 10 bits of the
key, and we note that the recovered bits are essentially those of the first few
rounds. This enables us to mount the same procedure starting at a later round,
and finally to recover the full key at essentially the same cost.
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3.4 Summary of Results

Table 5 presents the best configurations we found for the different members of
the KATAN family. It contains the differences a and b, the number of rounds for
which a bias can be detected and the cost of the attack. The latter is computed
as 2|X |+κ+1, where |X | is the sample size and κ is the number of key bits that
must be guessed.

Table 5. Summary of the results for KATANn

n plaintext difference key difference # rounds cost

32 [6, 9, 19] [6, 14, 25, 44] 120 231

48 [1, 2, 10, 11, 19, 20, 28, 38, 39, 44, 45] [8, 27] 103 225

64 [6, 7, 8, 19, 20, 21, 34, 58, 59, 60] [2, 21] 90 227

4 Weak Keys for Reduced Trivium

We now apply conditional differential cryptanalysis to the stream cipher Trivium.
Our analysis leads to a classification of weak keys for reduced variants.

4.1 Description of Trivium

Trivium [6] was designed by De Cannière and Preneel and was selected for the
final eSTREAM portfolio [10]. It takes a 80-bit key k and a 80-bit initial value
x as input. The internal state consists of 288 bits which are aligned in three
non-linear feedback shift registers of lengths 93, 84 and 111, respectively. They
are initialized as follows:

(s1, . . . , s93)← (k0, . . . , k79, 0, . . . , 0)

(s94, . . . , s177)← (x0, . . . , x79, 0, 0, 0, 0)

(s178, . . . , s288)← (0, . . . , 0, 1, 1, 1).

The state is then updated iteratively by the following round transformation:

t1 ← s66 + s93

t2 ← s162 + s177

t3 ← s243 + s288

z ← t1 + t2 + t3

t1 ← t1 + s91s92 + s171

t2 ← t2 + s175s176 + s264

t3 ← t3 + s286s287 + s69

(s1, . . . , s93)← (t3, s1, . . . , s92)

(s94, . . . , s177)← (t1, s94, . . . , s176)

(s178, . . . , s288)← (t2, s178, . . . , s287).
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No output is produced during the first 1152 rounds. After this initialization
phase the value of z is output as the key stream at each round.

4.2 Basic Strategy of Analysis

We will use a derivative of order d = 24 in our analysis. For the 24 differences,
we derive conditions using Algorithm 3. Instead of deriving a set of valid inputs
we will derive neutral variables for the derivative. Neutral variables have been
used in a similar context in [2,11], for example. Let Δf(k, x) be the derivative
under consideration, and let ei be the 1-bit difference at bit position i of x. By
the neutrality of xi in Δf we mean the probability that Δf(k, x) = Δf(k, x⊕ei)
for a random key k. Using a single neutral variable as a distinguisher needs at
least two evaluations of Δf . In the case of a d-th derivative this reveals to 2d+1

queries to f . If the neutrality of xi is p, the resulting distinguishing advantage
is |1/2− p|.

4.3 Choosing the Differences

It turns out that differences of hamming weight one give the best results. That
is, the a1, . . . , ad are unit vectors in Fn

2 . We note that this special case of a higher
order derivative is called a superpoly in [2]. Some heuristic techniques for choos-
ing the differences have been proposed. We use none of them, but briefly explain
our choice. The propagation of the single differences should be as independent
as possible. This excludes for example, choosing two differences at a distance
one. Such neighboring differences influence each other in the very early rounds
due to the quadratic monomials in the update functions. Further, the regular
structure of Trivium suggests a regular choice of the differences. Motivated by an
observation in [14] we chose the differences at a distance of three. Empirical tests
confirmed that this choice indeed outperforms all other choices. Specifically, we
choose ai = e3(i−1) for 1 ≤ i ≤ 24, where (e0, . . . , en−1) is the standard basis of

Fn
2 . In the following we use the shorthand Δzj = Δ

(24)
a1,...,a24zj , where zj is the

keystream produced in round j. (In the terminology of [2], Δzj corresponds to
the superpoly of {x0, x3, . . . , x69}.)

4.4 Analysis of Conditions

For the condition analysis we use Algorithm 3 with r = 200, that is, each dif-
ference is controlled for the first 200 rounds. After processing the first difference
(the difference in x0) we obtain

J = 〈x1, x12x13 + x14, x14x15 + x16, x77 + k65,

x62 + x75x76 + x75k64 + x76k63 + k50 + k63k64 + k75k76 + k77,

x64 + k52 + k77k78 + k79, k12k13 + k14 + k56,

k14k15 + k16 + k58〉.
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At this stage, J has the following interpretation: all pairs (k, x) in the algebraic
variety of J follow the same differential characteristic up to round r = 200 with
respect to a1. We already note that two conditions can not be satisfied by the
attacker, since they only involve bits of the key. After processing the remaining
differences we have

J = 〈x1, x2, x4, x5, x7, x8, x10, x11, x13, x14, x16, x17, x19, x20,

x22, x23, x25, x26, x28, x29, x31, x32, x34, x35, x37, x38, x40, x41,

x43, x44, x46, x47, x49, x50, x52, x53, x55, x56, x58, x59, x61, x62,

x64, x65, x67, x68, x70, x71, x73, x74, x76, x77, x79, k1, k2, k4,

k5, k7, k8, k10, k11, k13, k14, k16, k17, k19, k20, k22, k23, k25,

k26, k28, k29, k31, k32, k34, k35, k37, k38, k40, k41, k43, k44, k46,

k47, k49, k50, k52, k53, k55, k56, k58, k59, k61, k62, k64, k65, k66,

k67 + 1, k68, k70, k71, k73, k74, k76, k77, k79〉.

All conditions collapse to conditions on single bits. From x, only the bits x72, x75

and x78 are not fixed by conditions and not touched by the differences. This
makes them candidate neutral bits for Δzj , when all other variables xi are set
to zero. Empirical results confirm that they are probabilistically neutral up to
round 798. Table 6 shows the neutrality which we obtained in an experiment
with 100 random keys. Note that a neutrality of zero means that Δzj is linear in
the corresponding variable (which can be exploited as a distinguishing property
in the same way as neutrality).

Table 6. Neutrality of the bits x72, x75 and x78

j 72 75 78

772 1.00 1.00 1.00
782 0.05 0.10 0.05
789 0.30 0.20 0.25
798 0.40 0.40 0.30

4.5 Classes of Weak Keys

From the above representation of J we can directly read a class of weak keys,
namely the keys satisfying the given 54 conditions on the ki. This class contains
226 keys. Analogous to Table 6, Table 7 shows the neutrality of the bits x72, x75

and x78 for a random weak key. We note that x75 can not be used anymore as
a distinguisher at round j = 961, but x72 and x78 still can.

In order to reduce the number of conditions on the key we processed only a
part of the differences by Algorithm 3. For example, for the first 17 differences
we obtain only 49 conditions, and for the corresponding class of 231 keys, the
bits x72, x75 and x78 are neutral up to round 868.
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Table 7. Neutrality of the bits x72, x75 and x78 for weak keys

j 72 75 78

953 1.00 1.00 1.00
961 0.00 0.50 1.00

5 Conclusion

We evaluated the security of Trivium and KATAN with respect to conditional
differential cryptanalysis. We used an automatic approach to find and analyze
the conditions in terms of polynomial ideals. For reduced Trivium we identified
a class of 226 keys that can be distinguished for 961 of 1152 rounds. For reduced
KATAN we presented a key recovery attack up to 120 of 254 rounds in a related
key scenario. KATAN seems to have a comfortable security margin with respect
to the approach described in this paper.
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Design Principles. In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S., Preneel,
B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 171–186. Springer, Heidelberg (2006)

7. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A
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Abstract. The hardware-attractive block cipher family KTANTAN was
studied by Bogdanov and Rechberger who identified flaws in the key
schedule and gave a meet-in-the-middle attack. We revisit their result
before investigating how to exploit the weakest key bits. We then de-
velop several related-key attacks, e.g., one on KTANTAN32 which finds
28 key bits in time equivalent to 23.0 calls to the full KTANTAN32 en-
cryption. The main result is a related-key attack requiring 228.44 time
(half a minute on a current CPU) to recover the full 80-bit key. For
KTANTAN48, we find three key bits in the time of one encryption, and
give several other attacks, including full key recovery. For KTANTAN64,
the attacks are only slightly more expensive, requiring 210.71 time to find
38 key bits, and 232.28 for the entire key. For all attacks, the requirements
on related-key material are modest as in the forward and backward di-
rections, we only need to flip a single key bit. All attacks succeed with
probability one. Our attacks directly contradict the designers’ claims.
We discuss why this is, and what can be learnt from this.

Keywords: cryptanalysis, related key, block cipher, key schedule,
lightweight cipher, key-recovery.

1 Introduction

KTANTAN is a hardware-oriented block cipher designed by De Cannière,
Dunkelman and Knežević. It is part of the KATAN family [4] of six block ci-
phers. There are three variants KTANTANn where n ∈ {32, 48, 64}. All ciphers
consist of 254 very simple, hardware-efficient rounds.

The only difference between KATAN and KTANTAN is the key schedule. The
goal with KTANTAN is to allow an implementation to use a burnt-in key, which
rules out loading the key into a register and applying some state updates to it in
order to produce subkeys. Instead, subkeys are chosen as original key bits, selected
according to a fixed schedule. This schedule is the same for all three variants.

Aiming for a lightweight cipher, the designers of KTANTAN did not pro-
vide the key schedule as a large table of how to select the key bits. Rather,
a small state machine generates numbers between 0 and 79. In this way, key
bits can hopefully be picked in an irregular fashion. As shown by Bogdanov and

A. Miri and S. Vaudenay (Eds.): SAC 2011, LNCS 7118, pp. 213–229, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Rechberger [3], the sequence in which the key bits are used has some unwanted
properties.

We will revisit the result of Bogdanov and Rechberger. We adjust the pre-
sentation slightly, before using their observation to launch a related-key attack.
Bogdanov and Rechberger noted this as a possible direction of research, but did
not look into it further.

Related-key attacks have been known for almost twenty years [5,1]. Like most
other related-key attacks, the ones presented in this paper are quite academic
in their nature. They are still a good measurement of the security of the cipher,
which should appear as an ideal permutation, and several notable properties
make the attacks in this paper very interesting:

1. They are minimal: they only require flipping one bit in the key and in several
cases, it is enough for the attacker to use only one triplet: one plaintext and
two ciphertexts.

2. They are extreme: we find a large number of key bits in time equivalent to
just a few encryptions. For KTANTAN32, the entire key can be found in
half a minute on a current CPU.

3. They never fail: All the properties exploited in this paper have probability
one, meaning the correct (partial) key always shows the property we look
for.

4. They directly contradict the designers’ claims. We will discuss why this is,
and what can be learnt from this.

The remainder of this paper is organized as follows: In Section 2 we describe the
cipher KTANTAN, and Section 3 introduces (truncated) differentials. Section 4
discusses the result by Bogdanov and Rechberger [3]. Section 5 develops our
attacks on KTANTAN32, while we summarize our results on KTANTAN48 and
KTANTAN64 in Section 6. In Section 7 we compare our results to the designers’
original claims on related-key security before concluding the paper in Section 8.

2 KTANTAN

The n-bit plaintext P = pn−1 . . . p0 is loaded into the state of the cipher, which
consists of two shift registers, L1 and L2, see Fig. 1. For KTANTAN32, these
are of lengths |L1| = 13 and |L2| = 19. The other variants use longer registers.

The 254 rounds are denoted as round 0, 1, . . . , 253. Each round uses two key
bits, kr

a and kr
b , which are picked straight from the 80-bit master key. The key

schedule is provided in Appendix A.
The contents of the registers are shifted, and the new bit in each register

(L1/L2) is created from five or six bits from the other register (L2/L1), through
some simple functions of degree two. For all versions of KTANTAN, the update
is specified by

fa(L1) = L1[x1]⊕ L1[x2]⊕ (L1[x3] · L1[x4])⊕ (L1[x5] · IRr)⊕ kr
a

fb(L2) = L2[y1]⊕ L2[y2]⊕ (L2[y3] · L2[y4])⊕ (L2[y5] · L2[y6])⊕ kr
b .
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L2

L1

fa

fb

IRr

kr
b
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Fig. 1. An overview of KTANTAN32. In each clocking, one shift is made and two
key bits, kr

a and kr
b , are added to the state. IRr is a round constant which decides

whether or not L1[3] is used in the state update or not. Indices denote how bits in the
plaintext/ciphertext are identified. L1 is shifted to the right and L2 to the left.

Table 1. The parameters defining KTANTANn, where n ∈ {32, 48, 64}

n |L1| |L2| x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 y6

32 13 19 12 7 8 5 3 18 7 12 10 8 3
48 19 29 18 12 15 7 6 28 19 21 13 15 6
64 25 39 24 15 20 11 9 38 25 33 21 14 9

The indices are given by Table 1.
There is a round constant IRr, 0 or 1, which decides whether a certain bit

from L1 is included in the feedback to L2 or not, and is taken from a sequence
with long period in order to rule out sliding attacks and similar.

For KTANTAN32, one state update is performed per round. In KTANTAN48
and KTANTAN64, there are two resp. three updates per round using the same
key bits and round constant. This larger amount of state updates means the
state mixing is faster, making our attacks slightly more expensive on the larger
versions of KTANTAN. We use KTANTAN32 to describe our attacks but also
give the characteristics for the attacks on KTANTAN48/64.

Note how the key bits are added linearly to the state. Only after three clock-
ings will they start to propagate nonlinearly. This gives a very slow diffusion,
which we will be able to use in our attacks.

We adopt and refine the notation from [3]: define φr1,r2(S, K) as the partial
encryption that applies rounds r1, r1 + 1, . . . , r2 − 1 to the state S using key K.
Similarly, φ−1

r1,r2
(S, K) applies the decryption rounds r2 − 1, . . . , r1 + 1, r1 to the

state S using key K. This allows us to decompose the full KTANTAN as e.g.,
C = φ127,254(φ0,127(P, K), K).

The final encryption is denoted C = cn−1 . . . c0.
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2.1 On Bit Ordering and Test Vectors

We denote the key K = k79 . . . k0 as in [3]. Test vectors for KTANTAN can
be produced by the reference code. As an example, the all-ones key and the
all-zeros plaintext produce the ciphertext 0x22ea3988. Unfortunately, this does
not highlight the bit order in the plaintext and, more importantly, the key. For
completeness and using the reference code given by the designers, we thus pro-
vide the key 0xfffffffffffffffffffe, plaintext 0x00000001, and ciphertext
0x8b4f0824 to indicate the bit orders involved.

3 (Truncated) Differentials

Differential cryptanalysis was publicly introduced by Biham and Shamir [2] in
1990. The idea is to study how a difference in the plaintext propagates through
the state of the encryption. If a partial key is correctly guessed, this property
should show up with some probability — ideally one but often very close to one
half — while a bad guess should lead to a more random behaviour.

Knudsen [6] extended the technique to truncated differentials, where similar
properties are studied only in some part of the state.

In [3], a differential is denoted by (ΔP, ΔK) → ΔS, where a difference in
the plaintext and key gives a difference in the state some number of rounds
into the encryption. We adopt and extend this notation. To denote truncated
differentials, i.e., differentials where we only know the differences in certain bit
positions, we will use a mask and a value denoted [mask : value]. As an example,
[00010a00:00010800] denotes a known difference in bits 16, 11, and 9. In bits
16 and 11, there is a difference, while there is a bit-equality in bit 9. For the
other bits, we do not know or care about the difference. In pseudo-C code, such
a mask-value pair could be used to identify a match by

if ( ((s1^s2)&mask) == value ) { ... }.

In this paper, ΔK always involves only a single bit, so we will name this bit
specifically, e.g., as in (0, k32)→ [08075080 : 00000080].

With each (truncated) differential, there is also a probability that it holds. In
this paper, we only use differentials with probability one, which means there are
only false positives, which can be ruled out by repeated filtering, and no false
negatives. As a result, all attacks given in this paper have probability one of
succeeding. When we give data complexities, these will be the expected number
of samples needed to obtain a unique solution. Similarly, time complexities will
account for the work needed to rule out false alarms. We assume that an alarm
is raised with probability 2−b for a differential that involves b bits.

Due to the unicity distance, we will always need some extra material in order
to find a unique key. This is a fundamental property of KTANTAN as we can
only access plaintexts and ciphertexts of 32 to 64 bits, but want to find a key
consisting of 80 bits.
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Table 2. The nine most extreme key bits in both directions during encryption. Six
bits do not appear before round 111, while six others are not used after round 131.

Key bit Used first in round Key bit Used last in round
k13 109 k38 164
k27 110 k46 158
k59 110 k15 157
k39 111 k20 131
k66 123 k74 130
k75 127 k41 122
k44 136 k3 106
k61 140 k47 80
k32 218 k63 79

4 A Previous Result on KTANTAN

Bogdanov and Rechberger [3] note that some key bits are not used until very
late in the cipher, while some others are never used after some surprisingly small
number of rounds, see Table 2. Given a plaintext–ciphertext pair, this results
in a guess-and-determine attack, where the “determine” part is a meet-in-the-
middle: Guess 68 key bits. Of the twelve remaining key bits, six are not used in
the first part of the cipher, meaning there are only 212−6 = 26 different states
after calculating φ0,111 from the plaintext. Similarly, there are 26 possible states
after calculating φ−1

132,254 from the ciphertext. By checking the 212 combinations
for matches, one can find the key. In KTANTAN32, one can use eight bits in the
mid-cipher state to judge equality, so false positives should appear with rate 2−8.
Some additional plaintext–ciphertext pairs will help rule out the false positives,
but they are needed anyway due to the unicity distance.

Bogdanov and Rechberger dub this a 3-subset meet-in-the-middle attack and
give similar attacks for KTANTAN48 and KTANTAN64.

4.1 Reformulating the Attack

We note that the last step is not trivial, as the computations that need to be
carried out in order to check for matches are similar to calculating the round
functions themselves. Further, while the original authors choose to only use eight
bits for matching, we have found that one can even use twelve bits, given by the
mask 2a03cd44. This slightly lowers the complexity of the attack as one can
expect fewer false positives.

Summing up, we prefer to view the attack as follows:

1. Define Af = {k63, k47, k3, k41, k74, k20} and Ab = {k32, k61, k44, k75, k66, k39}.
2. Guess key bits K\(Af ∪Ab).
3. Compute 26 partial encryptions m0, . . . , m63 using φ0,127 for each choice of

bit assignments for Af .
4. Compute 26 partial decryptions m′

0, . . . , m
′
63 using φ−1

127,254 for each choice
of bit assignments for Ab.
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Table 3. Probabilistic truncated differentials on the full KTANTAN32

Differential Probability
(0, k32) → [00020000 : 00020000] .687 = .5 + .187
(0, k32) → [40000000 : 00000000] .640 = .5 + .140
(0, k32) → [40020000 : 00020000] .453 = .25 + .203

5. For the 212 combinations, check twelve specific bits for equality:
if ( ((mi^m’j)&0x2a03cd44) == 0 ) { ... }.

Alarms will be raised with probability 2−12, so we expect one alarm.
6. Use some additional plaintext–ciphertext pairs to rule out false alarms.

An implementation improvement is to only calculate those 12 bits that we actu-
ally need. We have then reached something similar to the original formulation of
the attack, with the notable difference that we only perform the computations
involved in matching (φ111,127, φ−1

127,132) once, during the 26-parts. (We can split
at any round between and including 123 and 127, and still get twelve known
(but different) bit positions to look at, but opted for 127 as it makes both halves
equally expensive to calculate.)

5 Related-Key Attacks on KTANTAN32

We first study further how k32 enters the key schedule very late. We then for-
mulate our attack idea and derive various attacks that find some parts of the
key.

5.1 On the Bad Mixing of k32

Key bit 32 is especially weak as it appears for the first time in round 218 of
254. We have thus studied this bit closer. It is worth noting that if the cipher
had used 253 rounds rather than 254, there would have been one ciphertext
bit that is linear in k32. That is, there is a 253-round differential (0, k32) →
[00040000 : 00040000] with probability one. The single bit involved is state bit
18 in Figure 1, i.e., the leftmost bit in L2. This bit is shifted out of the state in the
very last round, so such a probability-one differential is not available on the full
KTANTAN. However, there are some high-probability truncated differentials on
the full KTANTAN as given in Table 3. We do not exploit these differentials in
this paper, but note that they give a very non-random behaviour to the cipher.

5.2 The General Attack Idea

We will present several related-key attacks that recover some or all key bits. The
general outline of our attacks can be formulated as follows: We group key bits
into disjoint subsets A0, . . . , Al−1 of sizes si = |Ai|, i = 0, . . . , l−1. These subsets
do not necessarily need to collectively contain all 80 key bits. Define s =

∑
i si.
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We attack these subsets one after another, i.e., when attempting to find the
correct bit assignments for Aj , we assume that we already know the correct bit
assignments for Ai, i = 0, . . . , j − 1. We then follow this simple outline:

1. Guess the bit assignments for Aj .
2. If the (truncated) differential matches, we have a candidate subkey.
3. If the (truncated) differential does not match, we discard the candidate sub-

key.

In the first step, we can make 2sj guesses for the subkey. Note that the last step
can be performed without risk, since all our differentials have probability one.
Due to this, we can immediately discard large numbers of guesses.

The second step of the attack can however give false positives. As already
noted, we assume that an alarm is raised with probability 2−b for a differential
that involves b bits. To discard the false alarms, we can recheck the differential
on more material.

After finding the key bits specified by ∪iAi, we can conclude by a brute force
for the remaining 80−s key bits. The total complexity would be 2s0 +. . .+2sl−1+
280−s. However, the different operations in these terms have different costs. All
time complexities in this paper will be normalized to KTANTAN calls, and also
incorporate the expected increase of calculations due to false positives. We will
denote this time measurement t and it will, depending on context, refer to the
time required to recover either the full key or only some part of it.

5.3 A First Approach: Finding 28 Bits of the Key

Assume that we have a known plaintext P , and two ciphertexts C0, C1, where
the difference is that k32 has been flipped in the unknown key between the calcu-
lations of the two ciphertexts. During the calculations of these two ciphertexts,
the first 218 states followed the same development. Only after k32 entered could
the calculations diverge to produce different ciphertexts.

Bogdanov and Rechberger give the probability-1 differential (0, k32) → 0 for
218 rounds. We note that this differential can be easily extended into 222 rounds,
still with probability 1: (0, k32)→ 00000008. The flipped bit in ΔS is the linear
appearance of k32.

We will use “triplets” consisting of one plaintext and two ciphertexts to exploit
these differentials. A first attempt to use such a plaintext–ciphertexts triplet in
an attack could look like this: We note that there are 42 key bits used when
decrypting into round 222, see Appendix B. We guess these bits and denote them
by K. Denote by K ′ the same partial key but with k32 flipped. Calculate S0 =
φ−1

222,254(C0, K) and S1 = φ−1
222,254(C1, K

′). For a correct guess, both ciphertexts
will decrypt into the same state S0 = S1.

However, we will have problems with false positives. The first key bits to
enter the decryptions, k71 and k7, will enter into a lot of nonlinearity meaning
that a wrong guess here should give different partial encryptions S0, S1 with high
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Table 4. Key bits recovered in Sections 5.3 and 5.5. In the second set, the 11 reap-
pearing key bits have been underlined.

The 28 key bits guessed and found in Section 5.3, exploiting k32.
{k0, k1, k2, k4, k5, k7, k8, k11, k12, k14, k16, k17, k22, k27, k29,
k32, k34, k55, k56, k60, k62, k64, k66, k68, k69, k71, k73, k75}
The 40 key bits guessed and found in Section 5.5, exploiting k63.
{k7, k10, k11, k14, k15, k17, k19, k21, k22, k25, k26, k28, k30, k31,
k34, k35, k37, k38, k40, k41, k43, k45, k47, k49, k52, k53, k54,
k58, k60, k62, k63, k67, k68, k69, k70, k71, k74, k76, k77, k79}

probability. However, the very last bit we guess, k37, will only enter linearly, and
if the other 41 key bits are correct, we will have S0 = S1 no matter how we guess
k37.

Generalizing, we realize that the bits which enter the partial decryption “late”
will not affect the comparison of S0 and S1 at all as they enter only linearly. We
have found that there are only 28 key bits that affect the equality between S0

and S1. These bits are listed in Table 4.
We thus need to guess 28 bits and for each guess perform two partial de-

cryptions of 32 out of 254 rounds. The total number of round function calls is
expected to be 228 · 2 · 32 = 234, which corresponds to 234/254 ≈ 226.01 full
KTANTAN evaluations. Thus the total time complexity of finding 28 bits is
t ≈ 226. All time complexities in the remainder of the paper will be calculated
in this way.

By using brute-force for the remaining key bits, the entire key can be found
in time t ≈ 226 + 262 ≈ 262.

5.4 Making It Faster

Rather than guessing 28 bits at once, we note that we can apply a divide-and-
conquer approach to these bits, determining a few bits at a time. This will
significantly improve the complexity of the attack. Due to the slow diffusion, we
cannot find any truncated differential on 247 rounds or more for our purposes,
but for 246 rounds, there is (0, k32) → [80050800 : 00000800]. This differential
can be used to find three bits, A0 = {k11, k66, k71}, in time t ≈ 2−0.9. (That this
work is performed in time less than one unit results from the fact that we only
perform a small number of round calculations, compared to the full 254 rounds
that are calculated in one time unit.)

We now know these three bits specified by A0 and attempt to find more bits.
There is no useful 245-round differential, but the 244-round truncated differential
(0, k32) → [20054200 : 00000200] can be used to obtain one additional key bit,
specified by A1 = {k2}, with t ≈ 2−0.5.

Continuing with such small chunks, we can find the 28 bits with t ≈ 2−0.9 +
2−0.5 + . . . ≈ 23.0. All differentials involved are listed in Table 5.
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5.5 Using One Ciphertext and Two Plaintexts

k32 appeared very late in the encryption, and we exploited this above. Similarly,
k63 is only used in the first 80 rounds, meaning that during decryption it shows
similar properties. With one ciphertext and two plaintexts, corresponding to a
secret key with a flipped k63, we can launch an attack similar to that above, with
a truncated differential involving a single bit. With A0 and using φ0,43, we guess
and obtain 40 bits, listed in Table 4, using 40 data and t ≈ 239.44. We can then
exploit k63 for more subsets A1, . . . , A15 and partial encryptions φ0,45, . . . , φ0,71,
finding in total 65 bits of the key still with t ≈ 239.44. Concluding with a brute
force for the remaining bits, we can find the entire key in t ≈ 239.44+215 ≈ 239.44.
All subsets, truncated differentials, etc. can be found in Table 6.

5.6 Going in Both Directions for a Practical-Time Key-Recovery

We first go backwards in time t ≈ 23.0 to find 28 bits as outlines above. We then
go forwards using k63. However, of the 40 bits we needed to guess above, we have
learnt 11 while using k32, so we only need to guess 29 bits. We have t ≈ 228.44.
Finally, we brute force the remaining 80− 28− 29 = 23 bits. The total cost for
finding the entire 80-bit key is t ≈ 23.0 + 228.44 + 223 ≈ 228.47.

A similar attack has been implemented, and requires less than five minutes
to recover the complete key using a single processor of a 2 Xeon E5520 (2.26
Ghz, quadcore). Utilizing all eight processors in parallel, the attack runs in 35
seconds. The implementation uses the more naive approaches for finding the first
28 bits, as this is easier to implement and leads to a total time complexity of
about t ≈ 228.71, which represents a negligible change from the attack described
in this section.

We can use k63 for finding more key bits, and also exploit several different
key bits. This attack does not require a concluding brute force, and recovers the
entire key in t ≈ 228.44. The truncated differentials involved can be found in
Table 5.

In Table 5, note especially the differential on a single state bit involving 29
unknown key bits. This gives a large data requirement in order to rule out false
positives, and gives a time complexity which dominates all other parts of the
full key recovery attack. Any time improvements we make in other partial key
recoveries will only be minor compared to this dominating term.

This leads to the interesting observation that if k32 had been stronger, i.e.,
appeared earlier in the key schedule, we might have been able to find more key
bits at a higher cost (> 23) using it. This would then have lowered the data and
time requirements for utilizing k63 which would have made the entire cipher less
secure. Of course, had both key bits been stronger, the attack would again have
become more expensive.
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Table 5. The differentials used on KTANTAN32 in this paper. PCC means that
the differential is of type (ΔP, ΔK) → ΔS, where S is the state some rounds into
the encryption. Similarly, CPP means a differential (ΔC, ΔK) → ΔS, extending some
rounds into the decryption. (The ’Rounds’ column then denote the round into which
we decrypt, not the number of decryption rounds.) The ’#Key bits’ column counts
how many key bits need to be guessed. We also give the reduced number of guessed
key bits in Aj when we have already acquired a part of the key, ∪i<jAi, by using the
differentials found earlier in the table.

Type Rounds #Key bits Aj Differential
PCC 246 3 {k11, k66, k71} (0, k32) → [80050800 : 00000800]
PCC 244 4/1 {k2} (0, k32) → [20054200 : 00000200]
PCC 243 7/3 {k5, k7, k73} (0, k32) → [1006a100 : 00000100]
PCC 242 8/1 {k4} (0, k32) → [08075080 : 00000080]
PCC 241 11/3 {k32, k68, k75} (0, k32) → [8407a840 : 00000040]
PCC 239 14/3 {k1, k34, k69} (0, k32) → [a107ea10 : 80000010]
PCC 238 15/1 {k0} (0, k32) → [d087f508 : 40000008]
PCC 237 17/2 {k8, k16} (0, k32) → [e847fa84 : 20040004]
PCC 236 19/2 {k12, k17} (0, k32) → [f427fd42 : 10020002]
PCC 234 20/1 {k64} (0, k32) → [bd0fff50 : 04008000]
PCC 233 21/1 {k27} (0, k32) → [de87ffa8 : 02004000]
PCC 232 22/1 {k29} (0, k32) → [ef47ffd4 : 01002000]
PCC 231 24/2 {k14, k62} (0, k32) → [f7a7ffea : 00801000]
PCC 230 25/1 {k60} (0, k32) → [fbd7fff5 : 00400800]
PCC 229 27/2 {k22, k56} (0, k32) → [fdeffffa : 00200400]
PCC 222 28/1 {k55} (0, k32) → [ffffffff : 00000008]
CPP 43 40/29 A16 (see below) (0, k63) → [00000001 : 00000001]
CPP 45 45/4 {k3, k9, k18, k33} (0, k63) → [00000005 : 00000004]
CPP 46 49/2 {k20, k24} (0, k63) → [0000000b : 00000008]
CPP 51 52/1 {k6} (0, k63) → [0000017f : 00000108]
CPP 55 54/1 {k51} (0, k63) → [000017ff : 00001080]
CPP 57 57/1 {k72} (0, k63) → [00085fff : 00084200]
CPP 58 58/1 {k46} (0, k63) → [0010bfff : 00108400]
CPP 60 59/1 {k23} (0, k63) → [0042ffff : 00421000]
CPP 61 60/1 {k48} (0, k63) → [008dffff : 00842000]
CPP 67 62/1 {k65} (0, k63) → [237fffff : 21080000]
CPP 68 64/1 {k50} (0, k63) → [46ffffff : 42100000]
CPP 71 65/1 {k36} (0, k63) → [37ffffff : 10800000]
CPP 83 68/1 {k78} (0, k3) → [00000155 : 00000040]
CPP 98 70/1 {k42} (0, k41) → [000017ff : 00001080]
CPP 102 71/1 {k57} (0, k41) → [00217fff : 00210800]
CPP 115 72/1 {k59} (0, k74) → [046955ff : 04214008]
CPP 116 73/1 {k13} (0, k74) → [08daabff : 08428010]
CPP 118 75/1 {k39} (0, k74) → [237aafff : 210a0040]
PCC 172 70/2 {k44, k61} (0, k61) → [00050000 : 00040000]

A16 = {k10, k15, k19, k21, k25, k26, k28, k30, k31, k35, k37, k38, k40, k41,
k43, k45, k47, k49, k52, k53, k54, k58, k63, k67, k70, k74, k76, k77, k79}
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Table 6. The attack parameters for finding 65 key bits with t ≈ 239.44, exploiting k63

Type Rounds #Key bits Aj Differential
CPP 43 40 A0 (see below) (0, k63) → [00000001 : 00000001]
CPP 45 45/5 {k3, k5, k9, k18, k33} (0, k63) → [00000005 : 00000004]
CPP 46 49/4 {k2, k20, k24, k73} (0, k63) → [0000000b : 00000008]
CPP 47 51/2 {k1, k56} (0, k63) → [00000017 : 00000010]
CPP 51 52/1 {k6} (0, k63) → [0000017f : 00000108]
CPP 53 53/1 {k8} (0, k63) → [000005ff : 00000420]
CPP 55 54/1 {k51} (0, k63) → [000017ff : 00001080]
CPP 56 55/1 {k55} (0, k63) → [00002fff : 00002100]
CPP 57 57/2 {k12, k72} (0, k63) → [00085fff : 00084200]
CPP 58 58/1 {k46} (0, k63) → [0010bfff : 00108400]
CPP 60 59/1 {k23} (0, k63) → [0042ffff : 00421000]
CPP 61 60/1 {k48} (0, k63) → [008dffff : 00842000]
CPP 65 61/1 {k16} (0, k63) → [08dfffff : 08420000]
CPP 67 62/1 {k65} (0, k63) → [237fffff : 21080000]
CPP 68 64/2 {k4, k50} (0, k63) → [46ffffff : 42100000]
CPP 71 65/1 {k36} (0, k63) → [37ffffff : 10800000]

A0 = {k7, k10, k11, k14, k15, k17, k19, k21, k22, k25, k26, k28, k30, k31,
k34, k35, k37, k38, k40, k41, k43, k45, k47, k49, k52, k53, k54,
k58, k60, k62, k63, k67, k68, k69, k70, k71, k74, k76, k77, k79}

Table 7. Characteristics for some attacks on KTANTAN32. We typically first go back-
wards, exploiting k32, then forwards using k63, then perhaps forwards exploiting several
other key bits before reverting to backwards, using k61. Slashes indicate shift of direc-
tion, commas separate needed triplets for different flipped key bits. Differentials and
other details are found in Tables 5 and 6.

KTANTAN32 80 bits 80 bits 28 bits 3 bits

Low time Time 228.44 228.47 23.02 2−0.90

Data 1/29, 1, 1, 1/1 1/29 1 1

Low data Time 239.44 239.97 as above as above
Data −/1 1/2 as above as above

5.7 Minimizing the Data Complexities

When using truncated differentials involving only a few bits, the probabilities of
getting false positives are high, which leads to large data requirements. For the
forward direction, we can use the 62-round differential (0, k63) → [011bffff :
01084000]. It requires guessing 41 bits and the false-alarm probability is 2−21.
The total time complexity for obtaining the full key then becomes t ≈ 239.97.
The data requirement is one and two triplets, respectively, in the backward and
forward directions.
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Table 8. Characteristics for some attacks on KTANTAN48

KTANTAN48 80 bits 36 bits 3 bits

Low time Time 231.77 24.73 20.01

Data 3/32 3 3

Low data Time 237.34 231.66 as above
Data 1/1 1 as above

Table 9. Characteristics for some attacks on KTANTAN64

KTANTAN64 80 bits 38 bits 13 bits

Low time Time 232.28 210.75 210.71

Data 13/17 13 13

Low data Time 236.54 230.53 as above
Data 1/1 1 as above

6 Attacking KTANTAN48 and KTANTAN64

We summarize our results on KTANTAN32 in Table 7. Similar attacks can be
realized on the two other members of the KTANTAN family, i.e., KTANTAN48
and KTANTAN64. The corresponding complexities are found in Table 8 and
Table 9, respectively, and the differentials in Appendices C and D.

Complexities have been optimized in both dimensions: using a small amount
of related-key data, and using low time complexities.

We give full key-recovery attacks, but also some partial-key recoveries with
extremely low time complexities, similar to the 23.0 attack on KTANTAN32 for
28 bits. We also give costs on finding the smallest possible set of key bits.

Generally, the first step is done in the backwards direction, exploiting k32.
Following this, we switch to the forward direction and k63. For more advanced
attacks, we can use more key bits in the forward direction: k3, k41, k74. We may
then end using more backward calculations on k61. Attacks that require less data
are completed through a brute force.

Note that the benefit of using more data quickly becomes very marginal.
Thus, the implementation overhead may consume any theoretic advantage of
the extremely data-consuming attacks.

6.1 Possible Improvements

We have used a greedy approach for finding the differentials used in this paper. As
an example, on φ0,248, there is the truncated differential (0, k32)→ [00021000 :
00001000], but due to the slow diffusion we cannot find any key bits using it
with probability one. This forces us to use the differential (0, k32)→ [80050800 :
00000800] on φ0,247, where three key bits affect the differential so all three bits



Related-Key Attacks on KTANTAN 225

need to be guessed. We could truncate this truncated differential further to only
involve a single bit, possibly allowing us to only guess a single key bit. In this
way, we could perhaps partition the 28 bits that can be recovered using k32 into
28 subsets A0, . . . , A27, and reach a very small time complexity for the attack.
We have not investigated this optimization as the time complexities are already
impressive enough.

Note that for the key recovery attack on KTANTAN32 the time complexity
is dominated by exploiting k63 to find the 29-bit subkey defined by A16 (see
Table 5). For this, we already use a one-bit truncated differential so this cannot
be improved by the technique outlined above.

7 Comparison to Specification Claims

In the specification of KTANTAN, the authors state the design goal that “no
related-key key-recovery or slide attack with time complexity smaller than 280

exists on the entire cipher” [4]. They also claim to have searched for related-key
differentials on KTANTAN. However, it appears the approach has been ran-
domized over the huge space of differences in plaintext and key. With hindsight,
the authors should have made sure to try differentials where we flip only some
small number of plaintext or key bits. This strategy would have been a good
choice due to the bitwise and irregular nature of the key schedule coupled with
the slow diffusion of the state. If all key bits had been investigated individu-
ally, it would have become apparent e.g., that k32 could not affect encryptions
before round 218, that one state bit in KTANTAN32 only contained this key
bit linearly until the very last round, and that there are some high-probability
truncated differentials on the full KTANTAN32.

Note that the first reference implementation of KTANTAN provided by the
designers used an incorrect key schedule. The pre-proceedings version of [3] only
improved the exhaustive search slightly, while with the correct key schedule, i.e.,
the one described in the design document, the attack eventually published in [3]
gave a more significant speedup. As the incorrect key schedule was in a sense
better than the intended one, the original search for related-key differentials
might have indicated a better behaviour of the cipher than one carried out with
the correct key schedule. Still, even on the incorrect key schedule, using low-
weight differentials would have alerted the designers to the unwanted behaviour
of some key bits.

8 Conclusion

We have presented several weaknesses related to the key schedule of KTANTAN.
We first noted how the exceptionally weak key bit k32 allowed for a nonrandom-
ness result on KTANTAN32.

As the main result, we then derived several related-key attacks allowing for
(partial-)key recovery: With a single triplet, 3 bits can be found in time 2−0.90

and 28 bits can be obtained in time 23.0. Using one triplet in the backward
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and 29 in the forward direction, the full 80-bit key is recovered in time 228.47.
Requiring only three triplets, the full key is instead recovered in time 239.97. Our
implementation of one of the attacks verifies the general attack idea and the
specific results.

Finally, note that none of these attacks are directly applicable to KATAN.
The slow diffusion, which allowed for e.g., the 23.0-attack on 28 bits, is present
also in KATAN, but one needs a weak key bit in order to exploit this.

For the design of future primitives with a bitwise key schedule such as the
one in KTANTAN, we encourage designers to carefully study how individual key
bits are used, either by specifically ensuring that they are used both early and
late in the key schedule, or by investigating all differentials of modest weight.
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A The Key Schedule of KTANTAN

r kr
a kr

b r kr
a kr

b r kr
a kr

b r kr
a kr

b r kr
a kr

b r kr
a kr

b r kr
a kr

b r kr
a kr

b

0 63 31 1 31 63 2 31 63 3 15 47 4 14 14 5 60 76 6 40 40 7 49 17
8 35 67 9 54 22 10 45 77 11 58 26 12 37 69 13 74 10 14 69 69 15 74 10
16 53 21 17 43 43 18 71 7 19 63 79 20 30 62 21 45 45 22 11 11 23 54 70
24 28 60 25 41 41 26 3 19 27 38 70 28 60 28 29 25 73 30 34 34 31 5 21
32 26 74 33 20 52 34 9 41 35 2 18 36 20 68 37 24 56 38 1 33 39 2 2
40 52 68 41 24 56 42 17 49 43 3 35 44 6 6 45 76 76 46 72 8 47 49 17
48 19 51 49 23 55 50 15 63 51 14 46 52 12 28 53 24 72 54 16 48 55 1 49
56 2 34 57 4 20 58 40 72 59 48 16 60 17 65 61 18 50 62 5 53 63 10 58
64 4 36 65 8 8 66 64 64 67 64 0 68 65 1 69 51 19 70 23 55 71 47 47
72 15 15 73 78 78 74 76 12 75 73 9 76 67 3 77 55 23 78 47 47 79 63 31
80 47 79 81 62 30 82 29 77 83 26 58 84 5 37 85 10 26 86 36 68 87 56 24
88 33 65 89 50 18 90 21 69 91 42 42 92 5 5 93 58 74 94 20 52 95 25 57
96 3 51 97 6 38 98 12 12 99 56 72 100 16 48 101 33 33 102 3 3 103 70 70
104 60 28 105 41 41 106 67 3 107 71 71 108 78 14 109 77 13 110 59 27 111 39 39
112 79 15 113 79 79 114 62 30 115 45 45 116 59 27 117 23 71 118 46 46 119 13 29
120 42 74 121 52 20 122 41 73 123 66 2 124 53 69 125 42 42 126 53 21 127 27 75
128 38 38 129 13 13 130 74 74 131 52 20 132 25 57 133 35 35 134 7 7 135 62 78
136 44 44 137 73 9 138 51 67 139 22 54 140 29 61 141 11 43 142 6 22 143 44 76
144 72 8 145 65 65 146 50 18 147 37 37 148 75 11 149 55 71 150 46 46 151 77 13
152 75 75 153 70 6 154 61 29 155 27 59 156 39 39 157 15 31 158 46 78 159 76 12
160 57 73 161 34 34 162 69 5 163 59 75 164 38 38 165 61 29 166 43 75 167 70 6
168 77 77 169 58 26 170 21 53 171 43 43 172 7 23 173 30 78 174 44 44 175 9 25
176 18 66 177 36 36 178 9 9 179 50 66 180 36 36 181 57 25 182 19 67 183 22 54
184 13 45 185 10 10 186 68 68 187 56 24 188 17 49 189 19 51 190 7 39 191 14 30
192 28 76 193 40 40 194 1 1 195 66 66 196 68 4 197 57 25 198 35 35 199 55 23
200 31 79 201 30 62 202 13 61 203 10 42 204 4 4 205 72 72 206 48 16 207 33 33
208 51 19 209 39 71 210 78 14 211 61 77 212 26 58 213 21 53 214 11 59 215 6 54
216 12 44 217 8 24 218 32 64 219 64 0 220 49 65 221 18 50 222 37 37 223 11 27
224 22 70 225 28 60 226 9 57 227 2 50 228 4 52 229 8 40 230 0 0 231 48 64
232 32 32 233 65 1 234 67 67 235 54 22 236 29 61 237 27 59 238 7 55 239 14 62
240 12 60 241 8 56 242 0 32 243 0 16 244 16 64 245 32 32 246 1 17 247 34 66
248 68 4 249 73 73 250 66 2 251 69 5 252 75 11 253 71 7

B Key Bits Used in Round 222 and Forward

0 1 2 4 5 7 8 9 11 12 14 16 17 22 27 28 29 32 34 37 40
48 50 52 54 55 56 57 59 60 61 62 64 65 66 67 68 69 70 71 73 75
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C Differentials for KTANTAN48

The differentials used on KTANTAN48 are given in Table 10.

Table 10. Similar to Table 5, this table gives the truncated differentials used on
KTANTAN48

Type Rounds #Key bits Aj Differential
PCC 246 3/3 {k7, k11, k73} (0, k32) → [000000010000 : 000000000000]
PCC 242 7/4 {k2, k4k32, k71} (0, k32) → [000000010100 : 000000000000]
PCC 241 11/4 {k5, k64, k66, k75} (0, k32) → [00000001c040 : 000000000000]
PCC 240 18/7 A3 (see below) (0, k32) → [000c00007010 : 000000000000]
PCC 239 19/1 {k17} (0, k32) → [700011c04000 : 000000000000]
PCC 238 20/1 {k56} (0, k32) → [1c001c701000 : 000000000000]
PCC 237 23/3 {k12, k14, k60} (0, k32) → [0c7001f1c400 : 000400000000]
PCC 236 24/1 {k62} (0, k32) → [071c01fc7100 : 000100000000]
PCC 235 25/1 {k55} (0, k32) → [1c701ff1c040 : 000040000000]
PCC 234 26/1 {k27} (0, k32) → [871c1ffc7010 : 000010000000]
PCC 233 30/4 {k29, k54, k61, k67} (0, k32) → [e1c71fff1c04 : 000004010000]
PCC 232 32/2 {k22, k65} (0, k32) → [f871dfffc701 : 00000100c000]
PCC 230 33/1 {k48} (0, k32) → [cf871ffffc70 : 000000100c00]
PCC 229 34/1 {k59} (0, k32) → [f3e1dfffff1c : 000000040300]
PCC 225 36/2 {k40, k52} (0, k32) → [fff3ffffffff : 000000003000]

CPP 54 53/32 A15 (see below) (0, k63) → [000000000002 : 000000000000]
CPP 55 54/1 {k6} (0, k63) → [000000000009 : 000000000000]
CPP 57 57/3 {k23, k46, k51} (0, k63) → [00000000009f : 00000000000c]

A3 = {k0, k1, k8, k16, k34, k68, k69}
A15 = {k3, k9, k10, k15, k18, k19, k20, k21, k24, k25, k26, k28, k30, k31, k33, k35,

k37, k38, k41, k43, k45, k47, k49, k53, k58, k63, k70, k72, k74, k76, k77, k79}
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D Differentials for KTANTAN64

The differentials used on KTANTAN64 are given in Table 11.

Table 11. Similar to Table 5, this table gives the truncated differentials used on
KTANTAN64

Type Rounds #Key bits Aj Differential
PCC 241 13/13 A0 (see below) (0, k32) → [0000000000000400 : 0000000000000000]
PCC 237 21/8 A1 (see below) (0, k32) → [0000000704000000 : 0000000000000000]
PCC 236 27/6 A2 (see below) (0, k32) → [00c000007e800000 : 0000000000000000]
PCC 235 29/2 {k29, k61} (0, k32) → [f800007fc0100000 : 0000000e00000000]
PCC 234 30/1 {k22} (0, k32) → [3f00007ff8020000 : 00000001c0000000]
PCC 233 32/2 {k54, k67} (0, k32) → [c7e0007fff004000 : 0000000038000000]
PCC 232 33/1 {k65} (0, k32) → [78fc007fffe00800 : 0000000007000000]
PCC 228 34/1 {k48} (0, k32) → [f8c78ffffffffe00 : 0000070038000000]
PCC 226 36/2 {k40, k50} (0, k32) → [ffe31e7ffffffff8 : 0000000000e00000]
PCC 225 38/2 {k9, k52} (0, k32) → [fffc63ffffffffff : 00000000001c0000]

CPP 58 55/33 A10 (see below) (0, k63) → [0000000000000003 : 0000000000000001]
CPP 59 59/2 {k46, k51} (0, k63) → [000000000000001f : 000000000000000e]
CPP 69 65/1 {k36} (0, k63) → [00000407ffffffff : 0000040380000000]

A0 = {k2, k4, k5, k7, k11, k17, k32, k64, k66, k69, k71, k73, k75}
A1 = {k1, k16, k34, k55, k56, k60, k62, k68}

A2 = {k0, k8, k12, k14, k27, k59}
A10 = {k3, k6, k10, k15, k18, k19, k20, k21, k23, k24, k25, k26, k28, k30, k31, k33,
k35, k37, k38, k41, k43, k45, k47, k49, k53, k58, k63, k70, k72, k74, k76, k77, k79}
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Abstract. In this paper we investigate the security of the two most
recent versions of the message authentication code 128-EIA3, which is
considered for adoption as a third integrity algorithm in the emerging
3GPP standard LTE. We first present an efficient existential forgery at-
tack against the June 2010 version of the algorithm. This attack allows,
given any message and the associated MAC value under an unknown
integrity key and an initial vector, to predict the MAC value of a related
message under the same key and the same initial vector with a success
probability 1/2. We then briefly analyse the tweaked version of the al-
gorithm that was introduced in January 2011 to circumvent this attack.
We give some evidence that while this new version offers a provable re-
sistance against similar forgery attacks under the assumption that (key,
IV) pairs are never reused by any legitimate sender or receiver, some of
its design features limit its resilience against IV reuse.

Keywords: cryptanalysis, message authentication codes, existential
forgery attacks, universal hashing.

1 Introduction

A set of two cryptographic algorithms is currently considered for inclusion in the
emerging mobile communications standard LTE of the 3rd Generation Partner-
ship Project 3GPP. It consists of an encryption algorithm named 128-EEA3 and
an integrity algorithm named 128-EIA31 — that are both derived from a core
stream cipher named ZUC. The algorithms ZUC, 128-EEA3, and 128-EIA3 were
designed by the Data Assurance and Communication Security Research Center
(DACAS) of the Chinese Academy of Sciences.

An initial version of the specifications of 128-EEA3/EIA3 and ZUC, that is re-
ferred to in the sequel as v1.4, was produced in June 2010 and published on the
� also with Université Henri Poincaré-Nancy 1 / LORIA, France.
1 EEA stands for “EPS Encryption Algorithm” and EIA stands for “EPS Integrity

Algorithm”. EPS (Evolved Packet System) is an evolution of the third generation
system UMTS that consists of new radio access system named LTE (Long Term
Evolution) and a new core network named SAE (System Architecture Evolution).

A. Miri and S. Vaudenay (Eds.): SAC 2011, LNCS 7118, pp. 230–242, 2012.
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GSMA web site for an initial public evaluation [5,6]. Following the discovery of
some cryptographic weaknesses in the ZUC v1.4 initialisation [20,18] and of the
forgery attack on 128-EIA3 v1.4 reported in this paper, tweaks to the specifica-
tions of ZUC and EIA3 were introduced by the designers and a modified version
of the specifications referred to in the sequel as v1.5 was published in January
2011 for a second public evaluation period [8,9]. After its adoption by 3GPP, 128-
EEA3/EIA3 will represent the third LTE encryption and integrity algorithm set,
in addition to the already adopted sets 128-EEA1/EIA1 [4] based on the stream
cipher SNOW 3G and 128-EEA2/EIA2 [1, Annex B] based on AES.

The integrity algorithm 128-EIA3 is an IV-dependent MAC that takes as
input (1) a 128-bit key, (2) various public parameters that together determine a
128-bit initial vector, (3) an input message of length between 1 and 20000 bits,
and produces a 32-bit MAC value. It uses an universal hash function-based
construction and has therefore many features in common with the algorithms of
the well known Wegman-Carter family of message authentication codes [3,19].

As already mentioned, we denote by 128-EIA3 v1.4 (resp. 128-EIA3 v1.5)
the initial version specified in [5] (resp.the modified version specified in [8]). In
this paper we analyse the security of both versions. We first show that 128-
EIA3 v1.4 is vulnerable to a simple existential forgery attack. Given any known
message M , any known or unknown initial vector, and the associated MAC un-
der an unknown key, it is possible to predict the MAC value associated with
a new message M ′ �= M derived from M under the same initial vector and
the same unknown key, with a success probability 1/2. This attack is generic,
it does not rely on any specific feature of ZUC and works with any under-
lying stream cipher. It exploits a subtle deviation of 128-EIA3 v1.4 from the
requirements of the Wegman-Carter paradigm. The latter requirements can be
informally summarized by saying that mask values must behave as one-time
masks, which is not the case for 128-EIA3 v1.4. As will be shown in the sequel,
distinct 128-EIA3 v1.4 mask values are not necessarily independent. Indeed, in
128-EIA3 v1.4, the mechanism used to generate the masking values applied to
the output of the universal hash function does not match the model used in the
proof. Consequently, the arguments from [12] and [16] that are invoked in the
design and evaluation report [7] to infer bounds on the success probability of
forgery attacks on 128-EIA3 v1.4 are not applicable.

In [8], a tweak leading to 128-EIA3 v1.5 has been proposed to circumvent this
attack. Through an improved generation procedure, masking values are either
equal or independent. However, it can be observed that for distinct messages,
no separation between the ZUC keystream bits involved in the universal hash
function computation and those involved in the generation of the masking values
is ensured.

While this represents a deviation from the requirements on masking values
used in the Wegman-Carter paradigm, the security consequences are much less
dramatic than for the initial MAC (v1.4) since an ad hoc proof given in [10] allows
to show that the modified MAC offers a provable resistance against existential
forgery attacks under the assumption that the same (key, IV) pair can never
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be re-used, neither by the MAC issuer nor by the MAC verifier. We show that
this property however affects the resilience of 128-EIA3 v1.5 against forgery
attacks if IV repetitions occur. We further observe that independently of this
property, the universal hash function structure also results in some limitations
of this resilience. This leads us to investigate the resistance of 128-EIA3 v1.5
and one natural variant of this MAC against forgery attacks involving three
pairwise distinct messages and the same IV value. We make no claims regarding
the practical applicability of the identified nonce repetition attacks to the LTE
system.

In Section 3, we give a short description of the 128-EIA3 algorithms. We
then describe the attack on v1.4 in Section 4 and discuss the reasons why the
security proofs for related constructions by Krawczyk [12] and Shoup [16] do not
guarantee the security of 128-EIA3 v1.4. In Section 5, we state a property which,
although it may not be considered as an attack in standard security models,
underscores the lack of robustness of 128-EIA3 v1.5 against nonce repetition. We
also explain why a simple modification of 128-EIA3 fails to completely suppress
such properties because of the universal hashing underlying structure.

2 Notation

Throughout the paper, we use the following notation.

– S is a stream cipher.
– For two finite bitstrings A = (a0, . . . , a�−1) and B = (b0, . . . , bm−1), A‖B

denotes the concatenation of A and B, i.e. the bitstring
(a0, . . . , a�−1, b0, . . . , bm−1).

– For a bitstring A = (a0, . . .) of length ≥ j + 1, A|ij , 0 ≤ i ≤ j, denotes the
(j− i+1)-bit string obtained from the consecutive bits of A between indices
i and j, i.e. A|ij = (ai, . . . , aj).

– 0� denotes the bitstring of length � whose bits are all zero.
– W (i) denotes the i-th bit of a 32-bit word W .
– Let consider a 32-bit word W = (W (0), . . . , W (31)) and an integer a between

1 and 31. Then W � a denotes the (32−a)-bit word resulting from a left shift
of W by a positions and a truncation of the a rightmost bits. More precisely,
W � a = (W (a), . . . , W (31)). The (32− b)-bit word, W � b, resulting from
the right shift of W by b positions and a truncation of the b leftmost bits is
defined in the same way. We have W � b = (W (0), . . . , W (31−b)).2

3 Description of the 128-EIA3 Integrity Algorithms

The integrity algorithms 128-EIA3 make a black box use of a stream cipher
to generate a keystream from a key and an initial value. A stream cipher S
2 We are thus using the same somewhat unusual convention as in [6] for defining the

symbols “�” and “�” as a “shift and truncate” rather than mere shifts. This is
motivated by the fact that this convention is more convenient for presenting the
attack of Section 4.
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is an algorithm that takes as input a k-bit key IK and an n-bit initialisation
value IV and outputs a binary sequence z0, . . . , zi, . . . named the keystream.
The keystream is used to compute a 32-bit MAC value Tag according to the
procedure described in Algorithm 1 which includes versions v1.4 and v1.5 for
conciseness.

Stated differently, the MAC value T associated with IK, IV , and an �-bit
message M = (m0, . . . , m�−1) is derived by accumulating (for a set of posi-
tions i determined by the message bits and the message length) 32-bit words
Wi = (zi, . . . , zi+31) extracted from the keystream by applying it a 32-bit “slid-
ing window”:

T = (
�−1⊕
i=0

miWi)⊕W� ⊕Wmask,

where Wmask = WL−32 with the value L being different between v1.4 and v1.5,
i.e. Wmask = W�+32 for v1.4 and Wmask = W� �

32�×32+32 for v1.5. The parameter
lengths used in 128-EIA3 are: k = n = 128 and 1 ≤ � ≤ 20000.

In fact, the MAC of a message M is computed as

MAC(M) = H(z0,...,z�+31)(M)⊕Wmask,

Algorithm 1. The 128-EIA3 MAC algorithms
Input: IK ∈ {0, 1}k, IV ∈ {0, 1}n, 1 ≤ � ≤ 20000
Input: M = (m0, . . . , m�−1) ∈ {0, 1}�

if v1.4 then
L = � + 64

else if v1.5 then
L =

⌈
�

32

⌉
× 32 + 64 {This is the only difference between v1.4 and v1.5}

end if
(z0, . . . , zL−1) ← S(IK, IV )|0L−1

Tag = 0
for i = 0 to � − 1 do

Wi ← (zi, . . . , zi+31)
if mi = 1 then

Tag ← Tag ⊕ Wi

end if
end for
W� ← (z�, . . . , z�+31)
Tag ← Tag ⊕ W�

Wmask ← (zL−32, . . . , zL−1)
Tag ← Tag ⊕ Wmask

return Tag

where
(
H(.)

)
is a family of universal hash functions based on Toeplitz matrices

with pseudorandom coefficients taken from a stream cipher output. We have:
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H(z0,...,z�+31)(m0, . . . , m�−1) = [m0, m1, . . . , m�−1, 1] ·

⎡

⎢
⎢
⎢
⎢
⎢
⎣

z0 z1 . . . z31

z1 z2 . . . z32

z2 z3 . . . z33

...
...

. . .
...

z� z�+1 . . . z�+31

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

4 An Existential Forgery Attack against 128-EIA3 v1.4

In this section we describe an attack on the first version of 128-EIA3, that we
call 128-EIA3 v1.4. This algorithm has some specific properties that we will now
exploit to transform a valid MAC for a message M into a valid MAC for a
message M ′ related to M .

4.1 Description of the Substitution Attack

We can notice that the words Wi derived from the keystream and corresponding
to message bits mi are not independent from each other. More precisely, we have:
Wi+1 = ((Wi � 1), zi+32).

Moreover the “one-time masks” Wmask associated with identical values of IV
but different message lengths are related. We have:

Wmask = (z�(M)+32, . . . , z�(M)+63),

where �(M) denotes the length of the message M . Let us suppose that Wmask is
the one-time mask generated for the input (IK, IV, M) and W ′

mask is the one-
time mask generated for the input (IK, IV, M ′). If �(M ′) − �(M) = Δ� with
0 < Δ� < 32, we have:

W ′
mask = (Wmask � Δ�, β0, . . . , βΔ�−1),

for some bit values βi. We can use these relations in a substitution attack.
Let us suppose that the adversary knows a valid MAC value T for a given

message M = (m0, . . . , m�−1) of length � bits under a given IV value IV and
a key IK. This MAC can be transformed with probability 1/2 into a valid
MAC, T ′, for the (�+1)-bit message M ′ = (0, m0, . . . , m�−1) under the same IV
value IV and the same key IK.

Let us analyse what happens during the computation of the MAC for M ′

(under the same IV value IV and the same key IK). The generated keystream
z0, . . . , z�+64 is the same as the keystream that was used to compute T , with
one extra bit: z�+64. As a consequence, the words Wi, 0 ≤ i ≤ � are identical.
The one-time mask used is W ′

mask = (z�+33, . . . , z�+64) = ((Wmask � 1), z�+64).
Then, the MAC value T ′ is given by the following formula:
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T ′ =

(
�⊕

i=0

m′
iWi

)

⊕W�+1 ⊕W ′
mask

=

(
�−1⊕
i=0

miWi+1

)

⊕W�+1 ⊕W ′
mask

=

(
�−1⊕
i=0

mi ((Wi � 1), zi+32)

)

⊕ (W� � 1, z�+32)⊕ ((Wmask � 1), z�+64)

=

(((
�−1⊕
i=0

miWi

)

⊕W� ⊕Wmask

)

� 1, β

)

= (T � 1, β) , with β =
�−1⊕
i=0

mizi+32 ⊕ z�+32 ⊕ z�+64.

The value (T � 1, β) is thus a valid MAC for M ′. Knowing T , the adversary
only needs to guess the value of bit β, which happens with probability 1/2.
This attack can naturally be generalized by recurrence to generate a valid MAC
for (0r||M), with probability 2−r, when r < 32 : the corresponding tag is then
Tr = ((T � r), β0, . . . , βr−1) for some value of the bits (β0, . . . , βr−1).

Equivalently, we have that T = (α0, . . . , αr−1, Tr � r). This equation enables
an adversary to transform a valid MAC IV, Tr for (0r||M) into a valid MAC for
M with probability 2−r.

The attack was checked for r = 1 and larger values of r on a few examples,
using the implementation programs provided in the annexes of the specification
documents [5,6].

4.2 Partial Flaw in 128-EIA3 v1.4 Security Arguments

The Design and Evaluation Report [7] that accompanied version 1.4 erroneously
invokes the security proofs of [16] to infer that in the case of 128-EIA3 v1.4, no
forgery of a new message can succeed with probability higher than 2−32. The
argument comes from the fact that the algorithm makes use of an ε-almost XOR
universal (ε-AXU) family of hash functions with ε = 2−32.

Definition 1. [3,19,17,12,14] A family of hash functions {HK}K∈{0,1}k of
range {0, 1}t is ε-AXU if for any two distinct messages M, M ′ in {0, 1}∗ and
any c ∈ {0, 1}t

PrK∈{0,1}k [HK(M)⊕HK(M ′) = c] ≤ ε.

In [7], a proof is given that for any value of IV , the family of hash functions
used in 128-EIA3, i.e. the intermediate value obtained in the MAC computation
associated with key K just before before the exclusive or with Wmask is ε-AXU
with ε = 2−32.

As far as we know, the first construction of a secure MAC using ε-AXU hash
functions has been issued by Krawczyk [12], who proved that given HK(M)⊕ r
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for secret uniformly drawn values of K and r, an adversary cannot determine
HK(M ′)⊕ r with probability higher than ε. The one-time mask generation issue
is briefly addressed by noticing that in most practical applications, the mask
generation will rely on a stream cipher.

In [14, Appendix B], the security notions related to a Wegman-Carter MAC
scheme using a pseudorandom function producing the one-time mask from a
counter cnt is stated. In [15, Proposition 14], the probability of a forgery success is
computed. The scheme is defined by: a finite PRF F : {0, 1}κ×{0, 1}n→ {0, 1}t,
a counter cnt ∈ {0, 1}n, and a family of universal hash functions {HK}K∈{0,1}k .
The computation and the verification of MACs require to share an integrity key
that consists of a random a ∈ {0, 1}κ and a random K ∈ {0, 1}k. At most 2n

messages may be MACed with the same key a, and

MAC(M) = (cnt, Fa(cnt)⊕HK(M)).

All the models used for the proofs assume that the hash function and the pseu-
dorandom function are randomly chosen and in particular that they are inde-
pendent from each other. In the case of 128-EIA3 v1.4, the construction does
not fit the model as the two are related. Moreover, what makes our attack work
is that the one-time masks used for messages M and M ′ of distinct lengths are
different but related. In fact, we have:

MAC(M) = (cnt,S(IK, cnt)|�(M)+32
�(M)+63 ⊕HS(IK,cnt)|0

�(M)+31
(M)).

We see that the mask computation also involves the message length and leads to
distinct, but related mask values, for identical IVs and different message lengths.
Therefore no existing proof applies and we manage to derive an attack against
v1.4.

5 Sensitivity of 128-EIA3 v1.5 to Nonce Reuse

In order to resist to our forgery attack, 128-EIA3 has been tweaked [8], leading to
the specification of 128-EIA3 v1.5. This new version corresponds to the condition
v1.5 in Algorithm 1. The tweak ensures that mask values generated by the
algorithm for a given (key, IV) pair for different messages are either equal or
independent through an improved selection of the location in the keystream
from which the mask value is extracted:

Wmask = (zL−32, . . . , zL−1), with L =
⌈

�(M)
32

⌉
× 32 + 64.

This comes at the cost of using a slightly longer part of the keystream. Although
this ensures resistance against forgery attacks under the assumptions that (1)
neither the MAC issuer nor the MAC verifier reuse any IV value under the same
key and the (2) the keystream bits generated by ZUC are indistiguishable from
random, as proven in [10, Section 11], we remark that this scheme remains fragile
towards IV reuse.
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In [15,16], the question of a stateful MAC (implying a counter) against a
stateless MAC (with a randomly chosen IV) is briefly discussed. It is underlined
in [16] that reliably maintaining a state may be difficult. Practical experience
shows that the correct handling of IVs is not a trivial task. Indeed, there is
far from a theoretical security requirement to a practical implementation of a
scheme and former IV critical modes like CBC have already been subjected to
attacks against practical implementations (see e.g. [13]). Therefore we think that
it is also important to assess the level of robustness of a scheme in the case of
an improper handling of the IV.

In this section we expose two specific properties of 128-EIA3 v1.5, which do not
affect a generic Wegman-Carter authentication scheme. These properties involve
the MACs of three distinct messages under the same key/IV pair. Therefore, they
might threaten the security of 128-EIA3 v1.5 if an adversary can get the MAC of
two distinct messages under the same (key, IV) pair. Such an event can happen
if IVs are mistakenly repeated by the MAC generating party. It can also happen
without deviating from the expected behaviour of the message authentication
through substitution attacks: the attacker may use verification queries to gain
knowledge on the system [2,11]. More in detail, two valid 128-EIA3 tag values
can be obtained by an adversary for the same (key, IV) pair and two distinct
messages with a non-negligible probability due to the short MAC size (32 bits):
one from the MAC generating party and (with probability 2−32) an extra one
from the verifying party. This may allow the adversary to predict with certainty
the MAC value of a third message with the same (key, IV) pair.3

5.1 On the Independance of Universal Hashing Keys and Masking
Values

In the following we consider tags generated using the same key/IV pair. We
remark that in the case of 128-EIA3 v1.5, even though masking values for two
distinct messages are either equal or independent, the independence of the uni-
versal hash function keys (i.e. the keystream bits used in the computation of the
hash value) and the masking values is not guaranteed. Parts of the keystream
(zi) used as masking values for a message can be used during the universal hash
function computation for a longer message, and conversely. This represents a de-
viation of the mask value generation of 128-EIA3 v1.5 from the Wegman-Carter
paradigm. We show that consequently, while the proof of [10] guarantees that the
MACs associated with two distinct messages and the same IV value are indepen-
dent and uniformly distributed, the knowledge of the tags of two related messages
under the same (key, IV) pair may allow to compute the tag of a third message
under the same key and IV. Consider any message M1 of arbitrary length �1,
any message M2 of length �2 ≥ 1 + 32(� �1

32�+ 1), and the message M3 = M2 ⊕ δ
of length �3 = �2, where δ is the bitstring of length �2 whose prefix of length �1

3 Whether this third message and the associated tag can be successfully submitted to
the verifying entity depends on wheter the IV repetition detection of this entity is
effective or not.
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is M1 and whose other bits are zero except for the two bits at positions �1 and
32(� �1

32�+ 1). Then we have MAC(M1)⊕MAC(M2)⊕MAC(M3) = 0. Indeed,

MAC(M1) =
⊕�1−1

i=0 (m1
i Wi) ⊕ W�1

⊕ W
32(� �1

32 �+1)
,

MAC(M2) =
⊕�2−1

i=0 (m2
i Wi) ⊕ W�2

⊕ W
32(� �2

32 �+1)
,

MAC(M3) =
⊕�1−1

i=0 (m1
i Wi) ⊕ ⊕�2−1

i=0 (m2
i Wi) ⊕ W�1

⊕ W
32(� �1

32 �+1)
⊕ W�2

⊕ W
32(� �2

32 �+1)
.

Consequently, for any such triplet of pairwise distinct messages the authentica-
tion codes of two messages gives a forgery for the third one.

The above 3-message forgery can be avoided by making the masking values
and the universal hashing keys independent, for example by following the slightly
modified MAC described in Algorithm 2.

Algorithm 2. A modified version of 128-EIA3
Input: IK ∈ {0, 1}k, IV ∈ {0, 1}n, � ∈ N

∗

Input: M = (m0, . . . , m�−1) ∈ {0, 1}�

(z0, . . . , z�+63) ← S(IK, IV )|0�+63

Tag = 0
Wmask ← (z0, . . . , z31)
for i = 0 to � − 1 do

Wi ← (zi+32, . . . , zi+63)
if mi = 1 then

Tag ← Tag ⊕ Wi

end if
end for
W� ← (z�+32, . . . , z�+63)
Tag ← Tag ⊕ W�

Tag ← Tag ⊕ Wmask

return Tag

This algorithm is quite similar to 128-EIA3 and requires the same number of
keystream bits and the same amount of computation as 128-EIA3 v1.4 — the
single difference being that the mask value consists of the first keystream bits
and the universal hash function output value is derived from the subsequent
keystream bits. This scheme ensures the equality or independence of keystream
bits used as masking values or universal hashing key when tagging two different
messages. It is also closer to the Wegman-Carter paradigm in that the masking
value computation does not depend on the message being tagged — which is
not the case in 128-EIA3 v1.4 and v1.5, where the length of the tagged message
impacts the masking value. Unfortunately some non-generic properties remain,
that are related to the Toeplitz matrix structure underlying the universal hash
function construction rather than to the masking values generation method and
hold for both 128-EIA3 v1.5 and Algorithm 2.
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5.2 On the Sliding Property of the Universal Hash Function of
128-EIA3

In Section 4 we exploited a sliding property of the universal hash function used
by 128-EIA3. Let z be the keystream sequence used in the computation of the
universal hash function (i.e. without the final encrypting mask value). We denote
by Hz the universal hash function. Using the “sliding-window” property of the
construction based on Toeplitz matrices, we can derive the following property.
For r < 32, we have

Hz(0r‖M)� r = Hz(M)� r.

Let us now consider two messages M and M ′ = 0‖M and assume that we got
their tags T and T ′ under the same key/IV pair. Assume furthermore that these
tag computations involve the same masking value Wmask. This is always the
case in Algorithm 2 and is true in 128-EIA3 v1.5 under some mild assumption
on the length of M (namely that � (mod 32) �= 0). Thus we get

Hz(M ′)⊕Wmask = T ′,
Hz(M)⊕Hz(M ′) = T ⊕ T ′.

Let us now consider M ′′ = 02‖M . We have

(Hz(M ′)⊕Hz(M ′′))� 1 = (Hz(0‖M)⊕Hz(0‖M ′))� 1
= (Hz(0‖M)� 1)⊕ (Hz(0‖M ′)� 1)
= (Hz(M)� 1)⊕ (Hz(M ′)� 1)
= (Hz(M)⊕Hz(M ′)))� 1
= (T ⊕ T ′)� 1.

By guessing a single bit, we thus get the value of Hz(M ′) ⊕Hz(M ′′). Provided
that the computation of the tag of M ′′ involves the same masking value Wmask

(i.e. � (mod 32) �= 31 in the case of 128-EIA3 v1.5), by adding Hz(M ′)⊕Hz(M ′′)
to T ′ we get a tag value for M ′′.

In other words, one can find a triplet (M, M ′, M ′′) of pairwise distinct mes-
sages such that given the tags T and T ′ of the first two messages under the
same IV, the tag T ′′ of the third one under the same IV can be guessed with
a probability as large as 1/2. This results from the lack of 2-independence of
the universal hash function Hz used in 128-EIA3. While Hz is uniformly dis-
tributed and 2−32-AXU — this implies the independence of the MACs of any
two distinct messages under the same key and the same IV as shown in [10] —
Hz is far from being 2-universal, i.e. the hashes of two distinct messages can be
strongly correlated and this results in the lack of independence of the MACs of
three pairwise distinct messages illustrated here.4

4 While another choice of Hz might have led to a much lower maximum success prob-
ability for a 3-message forgery, the existence of 4-message forgeries of success prob-
ability 1 seems difficult to avoid for any GF (2)-linear universal function family.
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5.3 The IV Construction in 128-EIA-3 and Prevention of Nonce
Reuse

The input to the IV construction for 128-EIAx are [1]:

– a 32-bit counter COUNT,
– a 5-bit bearer identity BEARER,
– a 1-bit direction of transmission DIRECTION.

This differs notably from the UMTS Integrity Algorithm (UIA) where the inputs
for the IV construction are [4]:

– a 32-bit counter COUNT-I,
– a 32-bit random value FRESH,
– a 1-bit direction of transmission DIRECTION.

In the case of 128-EIA3, the IV is 128 bits and defined by 4 32-bit words,
IV0‖IV1‖IV2‖IV3 where:

IV0 = COUNT

IV1 = BEARER‖027

IV2 = IV0 ⊕
(
DIRECTION‖031

)

IV3 = IV1 ⊕
(
016‖DIRECTION‖015

)

We notice that while in UMTS two distinct values managed by the sending
and receiving parties ensure the non-repetition of IVs, one single 32-bit counter
is used for this purpose in LTE. Enforcing the use of fresh IVs by both the
MAC issuer and the MAC verifier might therefore be more complex and we may
express some concerns about the assurance that in LTE implementations the
strong security requirement of (key, IV) pair never being reused at either side
will always be verified.

6 Conclusion

The existential forgery attack presented in Section 4 was forwarded to the de-
signers of 128-EIA3 v1.4, who produced the modified version 128-EIA3 v1.5 to
address the issue. While our analysis of 128-EIA3 v1.5 did not reveal any security
issue of similar significance and the new MAC offers a provable resistance (under
some assumptions) against a large class of forgery attacks, we have highlighted
some structural properties of the mask values computation and the universal
family of hash functions underlying 128-EIA3 v1.5, and shown that these may
lead to limitations of its resilience against nonce reuse. None of the security prop-
erties we have investigated here relates to the specific features of the underlying
IV-dependent stream cipher ZUC.

Acknowledgements. The authors would like to thank Steve Babbage for
insightful comments on an early version of this paper.
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École normale supérieure

45 Rue d’Ulm
75320 Paris, France

{charles.bouillaguet,pierre-alain.fouque}@ens.fr
2 Computer Science Department

University of Haifa
Haifa 31905, Israel

orrd@cs.haifa.ac.il
3 Faculty of Mathematics and Computer Science

Weizmann Institute of Science
P.O. Box 26, Rehovot 76100, Israel

4 Faculty of Science, Technology and Communications
University of Luxembourg

6 Rue Richard Coudenhove-Kalergi
L-1359 Luxembourg

gaetan.leurent@uni.lu

Abstract. Since its introduction, impossible differential cryptanalysis
has been applied to many ciphers. Besides the specific application of the
technique in various instances, there are some very basic results which
apply to generic structures of ciphers, e.g., the well known 5-round im-
possible differential of Feistel ciphers with bijective round functions.

In this paper we present a new approach for the construction and
the usage of impossible differentials for Generalized Feistel structures.
The results allow to extend some of the previous impossible differentials
by one round (or more), answer an open problem about the ability to
perform this kind of analysis, and tackle, for the first time the case of
non-bijective round functions.

Keywords: Impossible differential cryptanalysis, Miss in the middle,
Generalized Feistel, Matrix method.

1 Introduction

Impossible differential attack [3] is a method of using differential concepts in
cryptanalytic attacks. While regular differential cryptanalysis [5] exploits differ-
entials with as high probability as possible, impossible differential cryptanalysis
exploits differentials that cannot happen, i.e., have probability of zero. The actual
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F ⊕

Fig. 1. CAST-like Structure with Four Threads

use of the impossible differential resembles the one of a high probability differen-
tials: given a pair that may “satisfy” the differential, the adversary obtains the
subkey(s) suggested by the pair. Unlike differential cryptanalysis, where such a
subkey is more likely to be the right subkey, in impossible differential cryptanal-
ysis, once a subkey is suggested by a candidate pair, it is necessarily a wrong
one (and thus discarded).

To start an impossible differential attack, the adversary has to identify such
impossible differentials. Most of these differentials are constructed in a miss-
in-the-middle approach [4]. The approach is based on combining two probabil-
ity 1 truncated differentials that cannot coexist. For example, there is a generic
5-round impossible differential for Feistel constructions with a bijective round
function (first identified in [12]) of the form (0, α) �→ (0, α) (depicted in Figure 2).

A method for finding such impossible differentials is presented in [11] under
the name U-method. In this method, one can construct probability 1 truncated
differentials, which in turn leads to finding contradictions. An automated ver-
sion of the method is presented in [10]. The tool (called the matrix method).
The automated analysis shows several results for generalizations of the Feistel
cipher (the Generalized Feistel Network of [14], MARS-like constructions [6], and
CAST-like constructions [1]).

As an example, consider a CAST-like construction (depicted in Figure 1). The
matrix method suggests an impossible differential of n2 − 1 rounds for n ≥ 3
threads assuming that the round function is bijective. The impossible differential
has the form of (0, 0, . . . , 0, α) �→ (0, 0, . . . , 0, ω) for any non-zero α and ω, and
is based on the fact that the (n − 1)-round truncated differential starting at
(0, 0, . . . , 0, α) predicts a zero difference in the one before last word, while the
n(n− 1)-round truncated differential ending at (0, 0, . . . , 0, ω) predicts that the
same word has a non-zero difference.

The U-method was later improved in [13] to incorporate a much larger set
of contradictions. Such new set of contradictions may include the use of specific
differences in the input and the output (rather than truncated differences) or
conditions on XORing a few words together.

In this paper we take a deeper look into the construction of impossible dif-
ferentials. We start the analysis by considering a slightly different approach for
the analysis, a one which does not classify the state of the word as part of a small
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Table 1. Comparison of Impossible Differentials for Feistel Networks

Structure Number of Round Source
Words Rounds Function

Feistel 2 5 bijective [12]
Generalized Feistel Network 2 7 bijective [10]
Generalized Feistel Network 2n 3n + 2 bijective [10]
CAST-like n n2 − 1 bijective [11]
CAST-like n n2 + 3 bijective [7,13]
MARS-like n 2n − 1 bijective [10]
MARS-like n 2n + 3 bijective [13]
RC6-like 2n 4n + 1 bijective [10]

CAST-like n n2 any Sect. 4
MARS-like n 2n any Sect. 4

set of values.1 Instead, we try to look at the specific differences that may form a
contradiction, taking the structure of the round function into account. The main
property we use is the existence of impossible differentials in the round function.

This allows us to extend the impossible differentials by an additional round,
leading to improved attacks on some structures of block ciphers. Moreover, follow-
ing the new point of view, one can even reduce the requirements from the round
function. For example, as part of our analysis, we can offer n2-round impossible
differentials for CAST-like ciphers, even if their round function is not bijective. We
note that our results contradict a claim made in [16], which claims that “generic”
impossible differentials for this structure exist only up to n2− 1 rounds. We com-
pare the previously known results with our new results in Table 1.

We continue and define the differential expansion rate of a round function for
a (set of) input difference(s). The rate tries to measure the speed in which the
set of possible differences evolves through invocations of the round function. To
some extent, it is the equivalent of the expanding rate of a graph.

We then study how to use our new impossible differential in an actual attack,
and how useful is the new impossible differential. We describe attacks using
our new extended impossible differentials, with the same time complexity as
previous attacks (under some natural conditions on the round function), and
covering more rounds.

The structure of this paper is as follows: In Section 2 we cover the basics
of differential cryptanalysis and impossible differential cryptanalysis. Section 3
discusses the previous results and the matrix method. In Section 4 we suggest a
new approach for constructing impossible differentials, and in Section 5 we show
that impossible differential attacks that use the previous impossible differentials
can be extended to more rounds when instantiated with our newly found im-
possible differentials (almost with no additional complexity). Finally, Section 6
concludes this paper.
1 The matrix method classifies the state of a word as one of five states: zero difference,

fixed difference, unknown non-zero difference, the XOR of a fixed difference with an
unknown non-zero difference, or unknown.
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2 Preliminaries

Differential cryptanalysis [5] is one of the corner stones of modern cryptanalytic
techniques. It was used to successfully attack block ciphers, hash functions, and
even stream ciphers. The core idea behind differential cryptanalysis is to look
at the development of differences through the encryption function rather than
at the actual values directly. This approach leads to a much stronger knowledge
of the adversary concerning the encryption process, as it allows “replacing” the
key addition with probabilistic behavior in the nonlinear parts of the cipher.

For sake of simplicity we shall concentrate on differential cryptanalysis used for
the cryptanalysis of block ciphers. In such a case, the adversary first finds a differ-
ential (or a differential characteristic) of high probability p, e.g., ΔIN → ΔOUT

with probability p. The differential can be for the full cipher, but in many cases,
a slightly shorter differential is used. After identifying the differential (charac-
teristic), the adversary asks for the encryption of O(1/p) pairs of plaintexts with
input difference ΔIN and collects the corresponding ciphertexts. Then, the ad-
versary tries to identify the subkey used in the last rounds of the cipher, by
partially decrypting the ciphertext pairs, or by analyzing the last rounds of the
differential characteristics. For the right subkey, it is expected that a few pairs
with difference ΔOUT appear, while the number of pairs with difference ΔOUT

is expected to be significantly lower for wrong guesses.
As the data complexity (and consequently, the time complexity) of differential

attacks are proportional to 1/p, the existence of high probability differentials is
considered a weakness of the block cipher. Hence, many block cipher designers
suggest methodologies to ensure that there are no differentials with high prob-
ability for (almost) the entire cipher. For example, in the case of AES [19], it
can be shown that any 4-round differential characteristic has probability not
higher than 2−150 [8] and that no 4-round differential with probability higher
than 2−113 exists [9].

At that point, it was observed that differential cryptanalysis, as a statistical
attack, uses the fact that the number of pairs counted for the right subkey guess
and the wrong subkey guesses differs. The standard differential attack assumes
that the number of pairs suggested by right subkey is higher than for a wrong
subkey, but it is also possible to mount an attack when the number of pairs
suggested by the right subkey is lower. This led to the introduction of impossible
differential attacks (first at [12] as a dedicated attack on the DEAL cipher, and
then as a general cryptanalytic tool at [3,4]). These attacks are based on finding
differentials whose probability is 0. Namely, for the right subkey guess no pairs
with output difference ΔOUT exist, while for wrong subkey guesses, such pairs
may be “discovered”.

Hence, the impossible differential attack is based on taking a set of plain-
text pairs, asking for their encryption, and then partially decrypting these pairs
under the subkey candidates. Once a subkey candidate suggests that a specific
ciphertext pair “satisfies” the differential, i.e., that ΔIN → ΔOUT has occurred,
we can be assured that this subkey is wrong and discard it.
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The miss-in-the-middle follows the fact that the input and output differences force the
output difference of the third round to be 0. At the same time, due to the bijectiveness
of the round function the input difference of the third round is necessarily non-zero.
The two cannot coexist, as the round function is bijective.

Fig. 2. A Generic 5-Round Impossible Differential for Feistel Ciphers with a Bijective
Round Function

The most successful method for constructing impossible differentials is the miss
in the middle method. In this method, a probability one truncated differential
ΔIN → ΔA and a probability one truncated differential in the backward direction
ΔB ← ΔOUT are identified, such that ΔA and ΔB cannot coexist simultaneously.
For example, Figure 2 describes a 5-round Feistel construction with a bijective
round function, for which (α, 0) �→ (α, 0) is an impossible differential.

2.1 Notations

In this paper we use the following notations:

– n — denotes the number of threads in a given structure.
– w — denotes the size (in bits) of a given thread.
– α, β, . . . — denotes a non-zero difference.
– 0 — denotes a zero difference (in a thread).
– ? — denotes an unknown difference.
– →i, ←i — denotes the propagation of a (truncated) difference for i rounds

in the encryption/decryption direction.
– α � β — denotes the event that an input difference α to a round function

F may result in an output difference β, i.e., Prx[F (x)⊕ F (x⊕ α) = β] > 0.
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3 Previous Results and the Matrix Method

Similarly to looking for good differentials, the search for impossible differentials
is not an easy task. While good impossible differentials were found by hand
(e.g., the one of Figure 2 or the 24-round impossible differential of SKIPJACK
from [3]), it was suggested to try and automate the process of finding these
impossible differentials [10,11,13].

One tool, based on the U-method (of [11]), is the matrix method [10], a mech-
anism to identify truncated differentials of probability 1. The intermediate en-
cryption value is divided into words (or threads), where each such word can be
in one of five states, each associated with a number: a zero difference (denoted
by 0), a fixed non-zero difference (denoted by 1), a non-fixed non-zero difference
(denoted by 1∗), the XOR of a fixed non-zero difference with a non-fixed one
(denoted by 2), and an unknown difference (denoted by 2∗ or any other number
larger than 3, with or without ∗).

The tool targets mostly ciphers whose round function contains one nonlinear
function, which is in itself a bijective function. The round function is represented
as a matrix composed of 0’s, 1’s, and at most one special entry denoted by 1F .
The automated search starts with a vector {0, 1}n, which is multiplied by the
special matrix, repeatedly, to reveal the properties of the truncated difference
after each round.

The main idea behind the matrix multiplication, is to represent the possible
transitions in a way that conveys the actual difference in the state. The matrix
has size of n×n (for an n-thread construction). If thread i does not affect thread
j, then entry (i, j) of the matrix is 0. If thread i affects thread j, then the entry
is 1 (if thread i is XORed/copied into thread j) or 1F (if thread i is sent through
the nonlinear function F and the output is XORed or copied to thread j).

Now, one can define the arithmetics. For example, if the thread has state 0,
then it has no affect on other threads (independent of the operation). A thread
i whose state is 1, contributes 0, 1, or 1∗, to thread j when the corresponding
entry in the matrix is 0,1, or 1F , respectively. A thread i whose state is 1∗,
contributes 0, 1∗, or 1∗, when the corresponding entry in the matrix is 0,1, or
1F , respectively. Other states, α (or x∗), contribute 0, α (respectively, x∗), and
x + 1, when the matrix is 0,1, or 1F , respectively.

Then, each new thread is summed under the following addition rules: 0+x = x,
1 + 1 = 1, 1 + 1∗ = 2, 1 + x = 2∗ (for x > 1 or x∗ > 1∗), and any other addition
just sums the actual numbers (and maintains the ∗). This gives the new state
after the round function, and one can compute as many rounds as possible, until
the entire intermediate encryption value is composed of only 2∗ and x > 2 (with
or without ∗), which denote the longest truncated differential of probability 1
that can be found and that conveys some “useful” characteristics.

It is also possible to run the same algorithm in the backward direction (with
the corresponding matrix), to obtain the longest truncated differential or prob-
ability 1 of that direction.

Given two truncated differentials ΔIN → ΔA and ΔB ← ΔOUT , one can scan
ΔA and ΔB to find inconsistencies. For example, if a word has a a non-zero
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Fig. 3. A Generalized Feistel Network (GFN4) with 8 Threads

F
⊕ ⊕ ⊕

Fig. 4. A MARS-like Cipher

F ⊕ F ⊕

Fig. 5. An RC6-like Cipher

difference (fixed or not) in ΔA but a zero difference in ΔB, both ΔA and ΔB

cannot coexist, which leads to the miss in the middle differential ΔIN �→ ΔOUT .
This fact is described by the matrix method as pairs of contradicting states, e.g.,
0 and 1 (or 0 and 1∗) or 1 and 2.

The method was applied for several constructions: Generalized Feistel Net-
works (introduced in [14]), CAST-like ciphers (based on the CAST-256 block
cipher [1]), MARS-like ciphers (based on MARS [6]), RC6-like ciphers (based on
RC6 [17]), and various variants of SKIPJACK-like ciphers [18]. We outline the
structure of the first four structures in Figures 3, 1, 4, and 5, respectively.

For GFN with 4 threads (called GFN2), there exist several 7-round impossible
differentials assuming that the round function is bijective. For example, the input
difference (0, 0, 0, α) becomes after 6 rounds (?, ?, ?, δ), while the output differ-
ence (β1, 0, β2, 0) is decrypted by one round to the difference (β2, ?, 0, 0) which
cannot coexist. For sake of simplicity we use the notation (0, 0, 0, α)→6 (?, ?, ?, δ)
and (β2, ?, 0, 0)←1 (β1, 0, β2, 0) to denote these truncated differentials. Combin-
ing these two truncated differentials we obtain that (0, 0, 0, α) �→7 (β1, 0, β2, 0).

Similarly, for GFNn (with 2n threads) there exists a (3n + 2)-round impossi-
ble differential of the form (0, 0, . . . , 0, α) �→3n+2 (β1, 0, β2, 0, 0, . . . , 0) follow-
ing the truncated differentials (0, 0, . . . , 0, α) →2n (?, ?, . . . , ?, δ, ?, ?, ?, ?) and
(?, ?, . . . , ?, 0, ?, ?, ?, ?)←n+2 (β1, 0, β2, 0, 0, . . . , 0).2

2 We note that in [10], a small typo suggests that the word which causes the contra-
diction is the fourth from the right while it is actually the fifth.
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For an n-thread CAST-like construction (for n ≥ 3), there exists an
(n2 − 1)-round impossible differential (0, 0, . . . , 0, α) �→n2−1 (β, 0, 0, . . . , 0) fol-
lowing the truncated differentials (0, 0, . . . , 0, α) →3n−3 (?, ?, . . . , ?, δ) and
(?, ?, . . . , ?, 0)←n2−3n+2 (β, 0, 0, . . . , 0).

For an n-thread MARS-like construction (again, for n ≥ 3), the two trun-
cated differentials (0, 0, . . . , 0, α) →n+1 (?, ?, . . . , ?, δ) and (?, ?, . . . , ?, 0) ←n−2

(β, 0, 0, . . . , 0) are combined into an 2n − 1-round impossible differential of the
form (0, 0, . . . , 0, α) �→2n−1 (β, 0, 0, . . . , 0).

In the case of RC6-like structure with n-threads, the impossible differential is
(0, 0, . . . , 0, αi, 0, . . . , 0) �→4n+1 (0, 0, . . . , 0, βi+1, 0, . . . , 0), where αi = βi+1 and
αi is positioned in the ith thread (and βi+1 in the (i + 1)’th thread) for some
odd i.

For details concerning the SKIPJACK-like variants, we refer the interested
reader to [10].

The UID-method of [13] is a generalization of the U-method. In this variant,
each word is not associated with a mere state, but its history (of the actual dif-
ference) is tracked. Using this history, it is possible to compose longer impossible
differentials, as one may look at the XOR of a few words at some point (which
may still contain non-trivial state information even after all words of the state
become “?”). We note that this method still relies on the fact that the round
function is bijective.

4 New Impossible Differentials

Our new impossible differentials on CAST-like and MARS-like ciphers follow a
more subtle analysis.

4.1 CAST-Like Ciphers

We first consider a 4-thread CAST-like cipher. In such a cipher, there is a 4-round
truncated differential with probability 1 of the form (0, 0, 0, α)→4 (β, 0, 0, α) for
non-zero α and some β (which may be zero if F is not bijective). At the same
time, there exists a 12-round truncated differential in the decryption direction
of the form (ω, ?, ?, φ) ←12 (ω, 0, 0, 0) for non-zero ω and some φ (which may
be zero if the round function is not bijective). We outline the differentials in
Table 2.

Observation 1 We note that the above two truncated differentials can coexist if
and only if β = ω. Hence, if an input difference α to the round function may not
cause an ω difference at the output, i.e., if α �� ω is an impossible differential
for F , then these two differentials cannot coexist, and we obtain a 16-round
impossible differential of the form (0, 0, 0, α) �→16 (ω, 0, 0, 0) for the cipher.

Given the structure of the round function F , it is possible to determine
whether α � ω through F . Consider for example the round function of DES,
for which determining whether α � ω can be easily done by checking each of
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Table 2. The Two Truncated Differentials Used in Our New 16-Round Impossible
Differential on 4-Thread CAST-like Ciphers

Round Difference Round Difference

Input (0) (0, 0, 0, α) Output (16) (ω, 0, 0, 0)

1 (0, 0, α, 0) 15 (0, ω, 0, 0)
2 (0, α, 0, 0) 14 (0, 0, ω, 0)
3 (α, 0, 0, 0) 13 (0, 0, 0, ω)
4 (β, 0, 0, α) 12 (ω,ψ, 0, 0)

11 (0, ω, ψ, 0)
10 (0, 0, ω,ψ)
9 (ψ, χ, 0, ω)
8 (ω, ?, χ, 0)
7 (0, ω, ?, χ)
6 (χ,φ, ω, ?)
5 (?, ?, φ, ω)
4 (ω, ?, ?, φ)

Differences are given after the round.

the 8 S-boxes separately. We note that in DES’ round function, given a pair of
random input/output differences from an S-box, there is an 80% chance of the
transition being possible. Hence, for a random α and ω, the probability of x� a
is only 0.88 ≈ 0.17.3

In the more general case, where the form of the round function is Fk(x) =
G(x ⊕ k), one can exhaustively try all possible pairs with input difference α,
and see if any of them leads to ω output difference. For a w-bit G(·) this takes
2w invocations of G(·), even if we only have a black box access to G(·) (but
not to Fk(·)). Of course, when the description of G(·) is known, this verification
is expected to be significantly faster. As we show in Section 5, even under the
worst case assumption, i.e., when G(·) is unknown, this has no real effect on the
actual attack that uses this impossible differential.

Moreover, we note that for a function G(·) of this form, the probability that
α � ω is at most 0.5 for a random4 α and ω (following the fact that the row
corresponding to α in the difference distribution table has at most half of its
entries as non-zero). If we assume that G(·) is a random function, then according
to [15] we can determine that about 60.6% of the possible (α, ω) pairs yield an
impossible differential.

An interesting point concerning the truncated differentials suggested above is
the fact that their existence is independent of the actual differential properties
of the round functions. Namely, in the case Fk(·) is not bijective, the above
truncated differentials still hold, and thus, also the impossible differential. More

3 Even though the actual inputs to the different S-boxes are independent of each other,
assuming the key is chosen randomly, the differences are not. Hence, the actual value
of the full round function may be slightly different.

4 Most impossible differential attacks face a large amount of (α, ω) pairs which are
generated in a random manner.
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precisely, even if different round functions are used, the only one of interest is
the one of round 4.

Now, one can easily generalize the above impossible differential, and can easily
see that for an n-thread CAST-like block cipher, the following is an impossible
differential: (0, 0, 0, . . . , α) →n2 (ω, 0, . . . , 0) if α �� ω following the n-round
truncated differential (0, 0, 0, . . . , 0, α) →n (β, 0, 0, . . . , 0, α) and the n(n − 1)-
round truncated differential (ω, ?, . . . , ?, φ)←n(n−1) (φ, 0, . . . , 0).

4.2 MARS-Like ciphers

The same approach can also be used to extend the impossible differential sug-
gested for a MARS-like structure. As before, we start with a 4-thread example,
and then generalize it. In such a cipher, there is a 5-round truncated differen-
tial (0, 0, 0, α)→5 (?, ?, ?, β) and a 3-round truncated differential (ω, 0, 0, 0)←3

(0, 0, 0, ω). As β is the output difference caused by an α input difference, the two
can coexist if and only if α� ω through the corresponding F (·). We outline the
differentials in Table 3.5

Table 3. The Two Truncated Differentials Used in Our New 8-Round Impossible
Differential on 4-Thread MARS-like Ciphers

Round Difference Round Difference

Input (0) (0, 0, 0, α) Output (8) (ω, 0, 0, 0)

1 (0, 0, α, 0) 7 (0, ω, 0, 0)
2 (0, α, 0, 0) 6 (0, 0, ω, 0)
3 (α, 0, 0, 0) 5 (0, 0, 0, ω)
4 (β, γ, δ, α)
5 (?, ?, ?, β)

Differences are given after the round.

We can of course generalize the above truncated differentials for the case
of an n-thread MARS-like cipher. The backwards differential is the same, i.e.,
5 We note that the differentials presented in Table 3 assume that the differences that

are XORed into each of the three threads is different (as in the real MARS there
are three different functions). When the same output is XORed into all the three
threads (in the real MARS, additions and subtractions are also used) then one can
construct a longer impossible differential for 9 rounds. In the forward direction we
use the following 5-round differential:

(0, 0, 0, α) →4 (β, β, β, α) → (γ, γ, δ, β)

where δ = α ⊕ β ⊕ γ �= γ (whenever α �� α through F (·)), and in the backward
direction we use the following 4-round differential:

(ω,ψ, ψ, ψ) ← (0, 0, 0, ω) ←3 (ω, 0, 0, 0)

and it is easy to see that the two cannot coexist, as the XOR of the two intermediate
words cannot be the same.
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an (n − 1)-round differential of the form (0, 0, . . . , 0, ω) ←n−1 (ω, 0, . . . , 0) and
the forward differential is of the form (0, 0, . . . , 0, α)→n+1 (?, ?, . . . , ?, β) which
cannot coexist if α �� ω through the corresponding F (·).

4.3 A Larger Class of Impossible Differentials

We can extend the above impossible differentials by taking an even closer look
into the round function. Instead of looking for impossible differential in the round
function, we now look for impossible differentials in the iterated round function.
We can do this more delicate analysis based on the following definition of the
output difference set of an unkeyed function F (·) and a set S of input difference:

Definition 1. For a function F (·) and a set ΔS of input differences, we de-
fine the output difference set ΔF (ΔS) to be the set containing all the output
differences that are feasible by an input difference in ΔS.

Now, we can define the differential expansion rate of an unkeyed function f(·):

Definition 2. The differential expansion rate of a function F (·) is

max
|ΔS|>0

|ΔF (ΔS)|
|ΔS| ,

i.e., the maximal increase in the size of a difference set through the round
function.

We first note that the above definitions are set for unkeyed functions. However,
for round functions of the form Fk(x) = G(x ⊕ k), one can disregard the key
addition, and use the same results. Moreover, once the key is fixed, this is the
case for any round function. For the following discussion, we shall assume that
indeed F (·) is of that form.

Now, if the differential expansion rate of a function is small, then ΔF (ΔF ({α}))
for a fixed input difference α may not be large enough to cover all possible dif-
ferences. Assume that this is indeed the case for a round function F (·) (we later
describe an example of such a round function), then one can easily extend the
16-round impossible differential for CAST-like structure with 4 threads by one
round by using the following truncated differentials: (0, 0, 0, α) →5 (γ, 0, α, β)
and (ω, ?, ?, φ) ←12 (ω, 0, 0, 0). If ω �∈ ΔF (ΔF ({α})), one can easily see that
(0, 0, 0, α) �→17 (ω, 0, 0, 0).

More generally, if the differential expansion rate is c < 2w/2 then
|ΔF (ΔF ({x}))| < 2w, which means that there are many ω values for which
ω �∈ ΔF (ΔF ({α})). The smaller the value of c is, there is a larger set of dif-
ferences which are not in |ΔF (ΔF ({α}))|, and thus, allow for longer impossible
differentials.

These results can be generalized. If c < 2w/3, then the above arguments
can be repeated and the forward differential can be extended to a 6-round
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differential (0, 0, 0, α) →6 (δ, α, β, γ) where δ ∈ ΔF (ΔF (ΔF ({α}))), and if
ω �∈ ΔF (ΔF (ΔF ({α}))), then obviously both differentials cannot coexist. Ex-
tending this analysis to more rounds is feasible, by taking into consideration
that the next set of differences is XORed with a difference α (which affects the
difference set, but not its size).

We note that even when the differential expansion rate is large, there are still
cases where we can extend the 16-round impossible differential. This follows the
fact that the differential expansion rate may be determined by a special set of
differences that are not relevant for the impossible differential.

Consider for example a CAST-like structure with 4 threads, whose round
function is from 64 bits to 64 bits, and is based on applying eight 8-bit to 8-bit
S-boxes in parallel, accompanied by a linear transformation L (e.g., the round
function of Camellia [2]). We can even assume that this linear transformation
has a branch number of 9, which ensures that a difference in one S-box affects
all output bytes. Following the properties of differential cryptanalysis, consider
an input difference α with one active byte, where all other bytes have a zero
difference. ΔF ({α}), thus, contains at most 128 possible differences, each with
all the bytes active. For each such difference, applying F again, can yield at most
1288 = 256 possible differences. This implies that the size of ΔF (ΔF ({α})) is
upper bounded by 263, which allows the extension of the impossible differential
to 17 rounds.

If the linear transformation L does not have a maximal branch number b (e.g.,
the actual round function of Camellia uses a linear transformation with branch
number of 4), then we can extend the attack to 18 rounds. Indeed, given values
ω and θ with a single active S-box and ω = Lθ, we have ω /∈ ΔF (ΔF (ΔF ({α})))
for most choices of ω and u. This comes from the fact that α �� ω is an impossible
differential for F ◦F ◦F , following the miss in the middle principle. The differences
in ΔF ({ω}) all have the same pattern of b active S-boxes with some inactive
S-boxes. On the other hand, the differences in ΔF−1({ω}) have a single S-box
(the same as in θ), therefore the differences in ΔF−1(ΔF−1({ω})) all have the
same pattern of at least b active S-boxes, with some inactive ones. If ω and α
are chosen so that the pattern are incompatible, we have α �� ω for F ◦ F ◦ F .

There are two issues that need to be addressed using this new extension. The
first is what is the ratio of impossible combinations. In the first example given
above, the probability that for a random ω, and a random α of the form sug-
gested, the probability that ω �∈ ΔF (ΔF ({α})) is indeed at least 0.5, which still
offers a high probability of contradiction (which is needed to form the impossible
event).

The second concern is the ability to checkwhether a givenω is in ΔF (ΔF ({α})).
Unfortunately, at the moment, even if F (·) is of the form Fk(x) = G(x⊕k), for an
unknown G(·), we are not aware of any algorithm, besides enumerating all possible
differences. At the same time, if the structure of the round function is known, it
can be used to offer an easy way to check whether ω ∈ ΔF (ΔF ({α}))

For example, in the above example (with a Camellia round function), it is
possible to use a meet-in-the-middle approach. First, apply the inverse linear
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transformation on ω, and obtain the required output differences in every S-box
of the second F (·). Then, by trying all 128 values of ΔF ({α}) one can check
whether the difference distribution table of the S-box offers this transition.

4.4 Changes to the Matrix Method

We note that it is possible to extend the matrix method of [10] such that it would
suggest impossible differentials of the above structure. The main idea behind the
change is to know for each non-fixed input difference the size of the set of possible
differences.

The simplest change would be to store for each initial state the size of possible
differences (which is 1 for each word, either active or not). Then, when an active
word passes through the round function, the size of the set is increased by a
factor of c, the differential expansion rate of the round function. Finally, when
XORing two active thread, one with t1 options, and one with t2 options, the
number of possible differences in the output is at most t1 · t2.

In the step when we look for contradictions, we first search for the previous
class of contradictions. Then, we also look for pairs of words, one in ΔA (with
t1 options) and one in ΔB (with t2 options), such that t1 · t2 < 2w, as for
such words, it is probable that the differences cannot coexist (the probability for
contradiction is 1− t1 · t2/2w).

4.5 A 7-Round Impossible Differentials for Feistel Block Ciphers
with Small Differential Expansion Rate

For some block ciphers with small differential expansion rate (or whose round
function allows selecting such differences), it is possible to suggest a 7-round
impossible differential. The impossible differential is based on two truncated
differentials of three rounds each (α, 0) →3 ({X}, ?) and ({Y }, ?) ←3 (ω, 0),
where

{X} = {α⊕ β|β ∈ ΔF (ΔF ({α}))}
and

{Y } = {ω ⊕ ψ|ψ ∈ ΔF (ΔF ({ω}))}.
If the differential expansion rate of the round function is smaller than 2w/4,

then it is expected that |{X}| · |{Y }| < 2n, which means that there are combina-
tions of X and Y which cannot coexist. We note that this impossible differential
does not assume that the round function is bijective. We note that the 7-round
impossible differential of DES mentioned in [4] can be found using this approach
(when starting with α and ω for which there is only one active S-box).

5 New Attacks Using the New Impossible Differentials

Given the new impossible differentials, we need to show that they can be used for
the analysis of block ciphers. As mentioned before, our impossible differentials
are more restricted than the previous ones, and thus they may be of a lesser
usage in attacks.
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To show the contrary, we consider an attack which uses the 16-round impos-
sible differential on 4-thread CAST-like structure and compare it to a similar
attack the uses the original 15-round impossible differential. As before, for sim-
plicity, we shall consider round functions of the form Fk(x) = G(x ⊕ k), which
are very common in block ciphers.

We first note that both the 16-round impossible differential and the 15-round
impossible differential share the same structure, i.e., (0, 0, 0, α) �→ (ω, 0, 0, 0).
Hence, the use of structures and early abort in the attacks is (almost) the same.

In Figure 6 we compare the 16-round attacks using the 15-round impossible
differential (there are two variants, in one the additional round is before the
impossible differential, and in the second it is after the impossible differential)
with the 17-round attacks using the 16-round impossible differential. As can be
seen, the attack algorithms are very similar, and the analysis of them is also
very similar. For example, the data complexity of the 16-round attack with an
additional round after the impossible differential is 2w · 22w chosen plaintexts,
while for the equivalent 17-round attack, the data complexity is 4w · 22w chosen
plaintexts.6 We compare the complexities of these attacks in Table 4.

Table 4. Comparison of the complexities of the (n + 1)-round attacks

Rounds in Attacked Size of Complexity
Imp. Diff. Round Structures Data Time Memory

15 After 2w 2w · 22w 2w · 22w 2w

Before 22w w · 22w w · 22w 22w

16 After 2w 4w · 22w 4w · 22w 2w

Before 22w 2w · 22w 2w · 22w 22w

We note that the attack, requires the identification whether ω ∈ ΔG({α}).
We note that in the worst case, this requires calling G(·) about 2w times (with
all 2w−1 pairs of distinct pairs with input difference α). However, the number
of candidate α and ω’s is about O(w · 2w) (depending on the attack), whose
evaluation is faster than evaluating the full block cipher. Moreover, by collecting
the pairs of α, ω, one can check several pairs using the same invocations of G(·),
thus incurring very little overhead to the attack.

In cases where α and ω are known, one can discard the pairs for which α� ω
beforehand, and repeat the same steps as in the original attack. This allows
extending previous attacks by one more round, in exchange for at most twice
the data and time. In other cases, where there are more candidate pairs, and
when α and ω cannot be determined directly from the plaintext/ciphertext pairs,
one can postpone the verification whether ω �∈ ΔG({α}), to the step just before
discarding the full subkey. If such an attack uses an early abort approach (i.e.,
stops the analysis of a pair immediately as it found to be useless), it is possible

6 This assumption is made under the worst case assumption, where the function G(·)
is an almost perfect nonlinear permutation (for which half of the input/output
differences α and ω satisfy that ω ∈ ΔG({α})).
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16-Round Attacks 17-Round Attacks

– Pick structures of the form
(Ai, Bi, Ci, ) (where Ai, Bi, Ci are
fixed in the structure), and ask for
their encryption.

– Locate in each structure (inde-
pendently) ciphertext pairs whose
difference is (ψ, 0, 0, ω).

– For each remaining pair, discard
any subkey K16 that suggest that
the difference before the last round
is (ω, 0, 0, 0).

– Pick structures of the form
(A,B, C, ) (where Ai, Bi, Ci are
fixed in the structure), and ask for
their encryption.

– Locate in each structure (inde-
pendently) ciphertext pairs whose
difference is (ψ, 0, 0, ω), and de-
note their plaintext difference by
(0, 0, 0, α).

– If ω ∈ ΔF ({α}), discard the pair.
– For each remaining pair, discard

any subkey K17 that suggest that
the difference before the last round
is (ω, 0, 0, 0).

– Pick structures of the form
(, , Ci, Di) (where Ci, Di are
fixed in the structure), and ask for
their encryption.

– Locate in each structure (inde-
pendently) ciphertext pairs whose
difference is (ω, 0, 0, 0), and their
plaintext difference is (α, β, 0, 0).

– For each remaining pair, discard
any subkey K1 that suggest that
the difference after the first round
is (0, 0, 0, α).

– Pick structures of the form
(, , Ci, Di) (where Ci, Di are
fixed in the structure), and ask for
their encryption.

– Locate in each structure (inde-
pendently) ciphertext pairs whose
difference is (ω, 0, 0, 0), and their
plaintext difference is (α, β, 0, 0).

– If ω ∈ ΔF ({α}), discard the pair.
– For each remaining pair, discard

any subkey K1 that suggest that
the difference after the first round
is (0, 0, 0, α).

Fig. 6. Attacks of (n + 1) rounds using an n-round impossible differentials

to show that performing this check only when ω and α are both known, again
increases the data and time by a factor of two at most.

We conclude that the new attacks are indeed one round longer (when the
impossible differential is one round longer), and can be made longer, depending
on the exact impossible differential. At the same time, the data and time com-
plexities of the attacks increase by at most factor of two (the accurate increase
is the 1/p where p is the ratio of non-zero entries in the difference distribution
of G(·)).

Finally, we note that when more complex impossible differentials are used,
the same results apply, as long as the differential expansion rate of G(·) is small
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enough, or in the cases where the structure of G(·) allows quick verification of
the existence of contradiction.

6 Summary and Conclusions

In this paper we show how to extend several impossible differentials for gener-
alized Feistel schemes by one or more round, using a more subtle analysis of the
round function. We follow and show that attacks which are based on these new
impossible differentials require almost the same data and time complexity as the
previous attacks, which proves that these impossible differentials are not only of
theoretical interest, but can also be used in the analysis of block ciphers.

The new measure we introduced, the differential expansion rate of a round
function, is expected to motivate block ciphers designers to re-think some of the
basic approaches in block cipher design. For example, it is commonly believed
that even if only a small amount of nonlinearity is used in the round function,
then the cipher can still be secure. While this belief is not necessarily contradicted
by our findings, we do show that it is possible to exploit this small nonlinearity
in more complex attacks, such as impossible differential attacks, a combination
that was not suggested before.

Additionally, our results may suggest that constructions which take the oppo-
site approach than MARS, i.e., strong outer rounds with weaker inner rounds,
may be susceptible to impossible differential attacks. This follows the fact that
the development of difference sets that interest us, happen not in the outer
rounds, but instead in the inner rounds.
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Abstract. We address a lattice based method on small secret exponent
attack on RSA scheme. Boneh and Durfee reduced the attack into finding
small roots of a bivariate modular equation: x(N+1+y)+1 ≡ 0( mod e),
where N is an RSA moduli and e is the RSA public key. Boneh and Dur-
fee proposed a lattice based algorithm for solving the problem. When the
secret exponent d is less than N0.292, their method breaks RSA scheme.
Since the lattice used in the analysis is not full-rank, the analysis is
not easy. Blömer and May gave an alternative algorithm. Although their
bound d ≤ N0.290 is worse than Boneh–Durfee result, their method used
a full rank lattice. However, the proof for their bound is still complicated.
Herrmann and May gave an elementary proof for the Boneh–Durfee’s
bound: d ≤ N0.292. In this paper, we first give an elementary proof for
achieving the bound of Blömer–May: d ≤ N0.290. Our proof employs un-
ravelled linearization technique introduced by Herrmann and May and
is rather simpler than Blömer–May’s proof. Then, we provide a unified
framework to construct a lattice that are used for solving the problem,
which includes two previous method: Herrmann–May and Blömer–May
methods as a special case. Furthermore, we prove that the bound of
Boneh–Durfee: d ≤ N0.292 is still optimal in our unified framework.

Keywords: LLL algorithm, small inverse problem, RSA, lattice-based
cryptanalysis.

1 Introduction

RSA cryptosystem is the widely used cryptosystem [12]. LetN be an RSAmoduli
and d be an RSA secret key. The small secret exponent d is often used to speed
up the decryption or signature generation in some cryptographic applications.
However, it is well known that RSA scheme is easily broken if secret exponent d
is small.

In 1990, Wiener [14] showed that RSA scheme is broken by using continued
fraction expansion when d < 1

3N
1/4. In 1999, Boneh and Durfee reduced the

small secret exponent attack into finding small roots of a bivariate modular
equation: x(A + y) ≡ 1(mod e) and then proposed two algorithms for solving
the problem [2]. They referred to the problem as the small inverse problem. Their
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algorithms are based on Coppersmith’s approach [3,4,5]. Their first algorithm
breaks RSA scheme when d ≤ N0.284. Then, they presented another algorithm
for solving the small inverse problem and improved the bound to d ≤ N0.292.
It employed a non-full rank lattice for improving the bound. Evaluation of a
volume of non-full rank lattice was needed in evaluating the bound, which is not
so easy task in general. To overcome this difficulty, they introduced a concept of
“Geometrically Progressive Matrix” and succeeded to evaluate an upper bound
of its volume [2]. However, its proof is rather complicated.

In 2001, Blömer and May proposed another algorithm for solving the small
inverse problem [1]. When d ≤ N0.290, their method solves the small inverse
problem. One of good properties is that the lattice used in their method is full
rank. However, the analysis for bound is still complicated. In 2010, Herrmann
and May [7] presented another algorithm which achieves Boneh–Durfee’s im-
proved bound: d ≤ N0.292. In their proof, they employed unravelled linearization
technique introduced in Asiacrypt2009 [6]. As opposed to the Boneh–Durfee’s
method, their method used a full rank lattice.

1.1 Our Contributions

In this paper, we first give a novel method for achieving the bound of Blömer–
May by using unravelled linearization technique, which is also used in the proof
of Herrmann–May. We use the same set of shift-polynomials as Blömer–May’s
and show that our method achieves the same bound as that of Blömer–May:
d ≤ N0.290. Nevertheless, our proof is rather simpler than Blömer–May’s orig-
inal proof. Next, we provide a unified framework which includes two previous
methods: Herrmann–May’s and Blömer–May’s as a special case. Our framework
captures well the lattice structure in the previous methods. Then, we derive
a condition such that the small inverse problem can be solved in polynomial
time and make an optimization in our framework. Since our framework includes
Herrmann–May’s method, we have a chance to go beyond the Boneh–Durfee’s
bound: d ≤ N0.292. Unfortunately, that does not happen. We prove that the
bound d ≤ N0.292 is still optimal in our framework (Theorem 3). Then, we
present a hybrid method which enjoys the both advantages of Herrmann–May’s
and Blömer–May’s methods. Finally, we generalize to the case when the upper
bound of solution y is much smaller than e1/2. We show that Blömer–May’s
method can be superior to Boneh–Durfee’s method and is optimal in our frame-
work (Theorem 4).

2 Preliminaries

First, we briefly recall the LLL algorithm and Howgrave-Graham’s lemma. Then,
we review the small secret exponent attack on RSA cryptosystem [2] and intro-
duce the “small inverse problem.” Then, we explain previous algorithms for
solving the small inverse problem.
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2.1 The LLL Algorithm and Howgrave-Graham’s Lemma

For a vector b, ||b|| denotes the Euclidean norm of b. For an n-variate polyno-
mial h(x1, . . . , xn) =

∑
hj1,...,jnx

j1
1 · · ·xjn

n , define the norm of a polynomial as

||h(x1, . . . , xn)|| =
√∑

h2
j1,...,jn

. That is, ||h(x1, . . . , xn)|| denotes the Euclidean
norm of the vector which consists of coefficients of h(x1, . . . , xn).

Let B = {aij} be a non-singular w × w square matrix of integers. The rows
of B generate a lattice L, a collection of vectors closed under addition and
subtraction; in fact the rows forms a basis of L. The lattice L is also represented
as follows. Letting ai = (ai1, ai2, . . . , aiw), the lattice L spanned by 〈a1, . . . ,aw〉
consists of all integral linear combinations of a1, . . . ,aw, that is:

L =

{
w∑

i=1

niai|ni ∈ Z

}

.

The volume of full-rank lattice is defined by vol(L) = | det(B)|.
The LLL algorithm outputs short vectors in a lattice L:

Proposition 1 (LLL [10]). Let B = {aij} be a non-singular w × w matrix of
integers. The rows of B generate a lattice L. Given B, the LLL algorithm finds
vectors b1, b2 ∈ L such that

||b1|| ≤ 2(w−1)/4(vol(L))1/w, ||b2|| ≤ 2w/4(vol(L))1/(w−1)

in time polynomial in (w,max log2 |aij |).
To convert the modular equation into an equation over the integers, we use the
following lemma.

Lemma 1 (Howgrave-Graham [8]). Let ĥ(x, y, z) ∈ Z[x, y, z] be a polyno-
mial, which is a sum of at most w monomials. Let m be a positive integer and
X,Y, Z and φ be some positive integers. Suppose that

1. ĥ(x̄, ȳ, z̄) = 0 mod φm, where x̄, ȳ and z̄ are integers such that |x̄| < X, |ȳ| <
Y, |z̄| < Z.

2. ||ĥ(xX, yY, zZ)|| < φm/
√
w.

Then ĥ(x̄, ȳ, z̄) = 0 holds over integers.

2.2 Small Inverse Problem [2]

Let (N, e) be a public key in RSA cryptosystem, where N = pq is the product
of two distinct primes. For simplicity, we assume that gcd(p − 1, q − 1) = 2. A
secret key d satisfies that ed = 1 mod (p − 1)(q − 1)/2. Hence, there exists an
integer k such that ed+ k((N + 1)/2− (p + q)/2) = 1. Writing s = −(p+ q)/2
and A = (N + 1)/2, we have k(A+ s) = 1 (mod e).

We set f(x, y) = x(A + y) + 1. Note that the solution of f(x, y) ≡ 0(mod e)
is (x, y) = (−k, s). If one can solve a bivariate modular equation: f(x, y) =
x(A + y) + 1 = 0 (mod e), one has k and s and knows the prime factors p and



A Unified Framework for Small Secret Exponent Attack on RSA 263

q of N by solving an equation: v2 + 2sv + N = 0. Suppose that the secret key
satisfies d ≤ N δ. Further assume that e ≈ N . To summarize, the secret key will
be recovered by finding the solution (x, y) = (x̄, ȳ) of the equation:

f(x, y) = x(A+ y) + 1 ≡ 0 (mod e),

where |x̄| < eδ and |ȳ| < e1/2. They referred to this as the small inverse problem.

2.3 Known Algorithms for Solving Small Inverse Problem

Boneh and Durfee proposed a lattice-based algorithm for solving the small in-
verse problem [2]. First, we briefly recall the algorithm though we use different
symbols from the original description.

They define the polynomials g[i,j](x, y) := xif(x, y)jem−j and h[i,u](x, y) :=
yif(x, y)uem−u. The g[i,j] polynomials are referred as x-shifts and the h[i,u] poly-
nomials are referred as y-shifts. Let FBD(m; τ) be a set of shift-polynomials. The
set FBD(m; τ) is given by FBD(m; τ) := GBD(m) ∪HBD(m; τ), where

GBD(m) := {g[u−i,i]|u = 0, . . . ,m; i = 0, . . . , u} and

HBD(m; τ) := {h[i,u]|u = 0, . . . ,m; i = 1, . . . , τm}.

They achieved a bound: d ≤ N0.284 using FBD(m; τ). We refer to this method as
Boneh–Durfee’s weaker method. Then, Boneh and Durfee improved the bound
to d ≤ N0.292 by removing y-shift polynomials whose coefficient of leading term
exceeds em. The resulting lattice is not full rank and computing its volume is not
easy. To overcome this difficulty, they introduced a concept of “Geometrically
Progressive Matrix” and succeeded to obtain an upper bound of the volume. The
analysis for its bound, especially its volume evaluation, is rather complicated.

Blömer and May [1] presented another algorithm. Although the bound: d ≤
N0.290 is worse than Boneh–Durfee’s bound, their method has several interesting
features. The first is that it requires a smaller lattice dimension for solving the
problem. The second is that the involved lattice is full rank and the analysis for
the bound is simpler than Boneh–Durfee’s. However, the evaluation of bound is
still complicated.

Herrmann and May [7] proposed a novel method which achieves the bound:
d ≤ N0.292 by employing unravelled linearization technique. We briefly recall
Herrmann–May’s method. Note that we use different notation from the original
description of [7]. First, f(x, y) is transformed into f(x, y) = x(A+y)+1 = (xy+
1)+Ax. The first step of their method is to perform a linearization of f(x, y) into
f̄(x, z) := z+Ax by setting xy+1 = z. In a second step of analysis, xy is back-
substituted by xy = z−1 for each occurrence of xy. They define the polynomials
as ḡ[i,j](x, z) := xif̄(x, z)jem−j and h̄[i,u](x, y, z) := yif̄(x, z)uem−u. Let τ be
an optimization parameter with 0 < τ ≤ 1. Let FHM(m; τ) be a set of shift-
polynomials. The FHM(m; τ) is given by FHM(m; τ) := GHM(m) ∪ HHM(m; τ),
where
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GHM(m) := {ḡ[u−i,i]|u = 0, . . . ,m; i = 0, . . . , u} and

HHM(m; τ) := {h̄[i,u]|u = 0, . . . ,m; i = 1, . . . , τu}.
They achieved the bound: d ≤ N0.292 using FHM(m; τ). Note that its lattice is
also full rank.

3 A New Proof for Bound of Blömer–May: d ≤ N0.290

Blömer and May [1] presented the algorithm which achieves the bound: d ≤
N0.290. Although this bound is worse than the result of Boneh–Durfee, it has a
desirable property. Since it uses full-rank lattice, the analysis for bound is rather
easy. On the other hand, Herrmann and May [7] presented the algorithm which
achieves d ≤ N0.292 by using unravelled linearization technique. In this section,
we provide a new proof for the bound of Blömer–May: d ≤ N0.290 by using
unravelled linearization technique as like as the proof of Herrmann–May.

3.1 A Set of Shift-Polynomials

First, we transform f(x, y) = x(A + y) + 1 into f(x, y) = (xy + 1) + Ax. We
define z = xy + 1 and

f̄(x, z) := z +Ax

as well as Herrmann and May method [7]. Note that the term xy will be replaced
by xy = z − 1 for each occurrence of xy in the consequent analysis.

We define shift-polynomials as follows. For x-shifts, we define

ḡ[i,k](x, z) := xif̄(x, z)kem−k.

Let z̄ = x̄ȳ + 1. It is easy to see that ḡ[i,k](x̄, z̄) = 0(mod em) for any non-
negative integers i and k. The upper bound of |z̄| is given by XY + 1 and then
we define Z = XY + 1.

For y-shifts, we set

h̄[i,k](x, y, z) := yif̄(x, z)kem−k.

It is easy to see that h̄[i,k](x̄, ȳ, z̄) = 0(mod em) for any non-negative integers i
and k.

Remark 1. From the definition, it holds that ḡ[0,u](x, z) = h̄[0,u](x, y, z).

Next, we fix a set of indexes for shift-polynomials. Let t be a parameter which
is optimized later with 0 ≤ t ≤ m. Let FBM(m; t) be a set of shift-polynomials.
The set FBM(m; t) is given by FBM(m; t) := GBM(m; t) ∪HBM(m; t), where

GBM(m; t) := {ḡ[u−i,i]|u = m− t, . . . ,m; i = 0, . . . , u} and

HBM(m; t) := {h̄[i,u]|u = m− t, . . . ,m; i = 1, . . . , t− (m− u)}.
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Then, we define a polynomial order ! in FBM(m; t) as follows:

– ḡ[i,j] ! h̄[i′,u] for any i, j, i′, u
– ḡ[i,j] ! ḡ[i′,j′] if (i+ j < i′ + j′) or (i + j = i′ + j′ and j ≤ j′)
– h̄[i,u] ! h̄[i′,u′] if (u < u′) or (u = u′ and i ≤ i′)

We write a ≺ b if a ! b and a �= b.
Regarding the set FBM(m; t) for shift-polynomials and the above polynomial

order, we have the following two lemmas.

Lemma 2. If ḡ[u−j,j] ∈ FBM(m; t) for j ≥ 1, then ḡ[u−j+1,j−1] ∈ FBM(m; t)
and ḡ[u−j+1,j−1] ≺ ḡ[u−j,j].

Lemma 3. If h̄[j,u] ∈ FBM(m; t), then h̄[j−1,u] and h̄[j−1,u−1] ∈ FBM(m; t).
Furthermore, it holds that h̄[j−1,u] ≺ h̄[j,u] and h̄[j−1,u−1] ≺ h̄[j,u].

Proof of Lemma 3. It is clear that h̄[j−1,u] ∈ FBM(m; t). Note that we can
ḡ[0,u] instead of h̄[0,u] since h̄[0,u] and ḡ[0,u] are identical from Remark 1. Since
h̄[j,u] ∈ FBM(m; t), it holds that 1 ≤ j ≤ u+t−m. Then, 0 ≤ j−1 ≤ (u−1)+t−m.
Hence, it holds that h̄[j−1,u−1] ∈ FBM(m; t). ��

3.2 Expansions of Shift-Polynomials

First, we introduce some definitions.

Definition 1. We denote by S(f) a set of monomials appearing in expansion
of f .

Note that a monomial xiyjzk with i, j ≥ 1 never appears in S(h[i,j](x, y, z))

since we replace xy by xy = z − 1. Hence, only the terms xizk and yjzk appear
in the expansion of shift-polynomials.

Definition 2. We say f(x, y, z) ∼= g(x, y, z) if S(f) = S(g).
A lattice basis is constructed by using the coefficient vectors of shift-polynomials
in FBM(m; t) as basis vectors. Note that the coefficient vectors of the shift-
polynomials g[u−i,i](xX, zZ) and h[i,u](xX, yY, zZ) are written as row vectors.
LetBBM(m; t) be a matrix, where all rows ofBBM(m; t) are the coefficient vectors
of shift-polynomials according to the ordering of FBM(m; t).

Theorem 1. Letm and t be integers with t ≤ m. A lattice basis matrixBBM(m; t)
is triangular for any m and t.

Before giving a proof, we give three lemmas, whose proofs are given in Ap-
pendix A.1.

Lemma 4. If 0 ≤ u ≤ m, S(ḡ[u,0] − emxu) = ∅.
Lemma 5. If 0≤u≤m and 1≤j≤u, S(ḡ[u−j,j]−em−jxu−jzj)=S(ḡ[u−j+1,j−1]).
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Lemma 6. If 1 ≤ u ≤ m and i ≥ 1, S(h̄[i,u] − em−uyizu) ⊆ S(h̄[i−1,u−1]) ∪
S(h̄[i−1,u]).

Proof of Theorem 1. We show that the number of monomials newly appearing
in expansion of shift-polynomial is one for any shift-polynomials in FBM(m; t).
In this proof, we abbreviate FBM(m; t) as F . We define Ff := {g ∈ F|g ≺ f}
and S(Ff ) :=

⋃
g∈Ff S(g). It is enough for proving Theorem 1 to show that for

any polynomial f ∈ F there exist a monomial mf such that

– S(f −mf ) ⊆ S(Ff ) and

– mf �∈ S(Ff ).

From Lemmas 2–3 and 4–6, for any f ∈ F , there existsmf such that S(f−mf ) ⊆
S(Ff ). We can easily verify that mf �∈ S(Ff ). Then, the lattice basis matrix is
triangular. ��
We show an example for m = 2. We consider ḡ[1,2](x, z). The expansion of
ḡ[1,2](x, z) is given by x1(z+Ax)2 = xz2+2Ax2z+A2x3. Since ḡ[1,2](x, z)−xz2 =
2Ax2z+A2x3, it holds that S(ḡ[1,2]−xz2) = {x2z, x3}. On the other hand, since
ḡ[2,1] = ex2(z + Ax) = ex2z + eAx3, it holds that S(ḡ[2,1]) = {x2z, x3}. Then,
S(ḡ[1,2] − xz2) = S(ḡ[2,1]) and Lemma 5 holds. We’ll show another example. We
consider h̄[2,2](x, y, z). The expansion of h̄[2,2](x, y, z) is given by y2(z +Ax)2 =
y2z2 + 2Axy2z +A2(xy)2 = y2z2 + 2Ay(z − 1)z +A2(z − 1)2 = y2z2 + 2Ayz2−
2Ayz + A2z2 − 2A2z + A2. Then, we have S(h̄[2,2] − y2z2) = {yz2, yz, z2, z, 1}.
On the other hand, since h̄[1,1] = ey(z+Ax) = eyz+Aexy = eyz+Ae(z− 1) =
eyz + Aez − Ae, we have S(h̄[1,1]) = {yz, z, 1}. Furthermore, we have h̄[1,2]

= y(z + Ax)2 = y(z2 + 2Axz + A2x2) = yz2 + 2Axyz + A2x2y = yz2 + 2A(z −
1)z+A2x(z− 1) = yz2+2Az2− 2Az+A2xz−A2x. Hence, we have S(h̄[1,2]) =
{yz2, z2, z, xz, x}. Then, it holds that S(h̄[2,2] − y2z2) = {yz2, yz, z2, z, 1} ⊆
S(h̄[1,1]) ∪ S(h̄[1,2]) = {yz2, yz, z2, z, xz, x, 1} and Lemma 6 holds.

3.3 Deriving the Bound of Blömer–May: d ≤ N0.290

A lattice basis is constructed by using coefficient vectors of x-shifts ḡ[i,k](xX, zZ)
in GBM(m; t) and y-shifts h̄[j,u](xX, yY, zZ) inHBM(m; t). We denote the number
of shift-polynomials used in x-shifts and y-shifts by wx and wy , respectively. We
also denote contributions in x-shifts and y-shifts to lattice volume by vol(LX)
and vol(LY ), respectively. The total number of shift-polynomials w is given by
w = wx + wy and a lattice volume vol(L) is given by vol(L) = vol(LX)vol(LY ).

First, we derive wx and vol(LX). The lattice dimension wx is given by wx =∑m
l=m−t

∑l
k=0 1. The volume vol(LX) is given by

vol(LX) =

m∏
l=m−t

l∏
k=0

X l−kZkem−k = emwx

m∏
l=m−t

l∏
k=0

X l−k(Z/e)k.
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Let vol(LX) = emwxXsXX (Z/e)sXZ . Each sXX and sXZ is explicitly given as
follows:

sXX =
m∑

l=m−t

l∑

k=0

l − k =
m3 − (m− t)3

6
+ o(m3) =

1− (1 − η)3

6
m3 + o(m3)

sXZ =

m∑

l=m−t

l∑

k=0

k =
m3 − (m− t)3

6
+ o(m3) =

1− (1− η)3

6
m3 + o(m3),

where η := t/m. Then,wehave vol(LX)=emwxX(1−(1−η)3)m3/6(Z/e)(1−(1−η)
3)m3/6.

Second, we derive wy and vol(LY ). The lattice dimension wy is given by

wy =
∑t

l=0

∑l
j=1 1. The volume vol(LY ) is given by

vol(LY ) =

t∏
l=0

l∏
j=1

Y jZ l+m−tem−l−m+t = emwy

t∏
l=0

l∏
j=1

Y j(Z/e)l+m−t.

Let vol(LY ) = emwyY sY Y (Z/e)sY Z . Each sY Y and sY Z is explicitly given as
follows:

sY Y =

t∑

l=0

l∑

j=1

j =

t∑

l=0

l(l + 1)

2
=

t3

6
+ o(m3) = η3

m3

6
+ o(m3)

sY Z =

t∑

l=0

l∑

j=1

l + (m− t) =
t3

3
+ (m− t)

t2

2
+ o(m3) = η2(3− η)

m3

6
+ o(m3).

Then, we have vol(LY ) = emwyY η3m3/6(Z/e)η
2(3−η)m3/6.

Summing up the above discussion, we have

vol(L) = vol(LX)vol(LY ) = emwX(1−(1−η)3)m3/6Y η3m3/6(Z/e)ηm
3/2. (1)

By combining Proposition 1 and Lemma 1, the condition that the problem can be
solved in polynomial time is given by 2w/4vol(L)1/(w−1) ≤ em/

√
w. By ignoring

small terms, we have the condition: vol(L) ≤ emw. From Eq. (1), we have the
condition:

X3−3η+η2

Y η2

Z3 ≤ e3. (2)

By substituting Z = XY + 1 ≤ 2XY and Y = e1/2 into Eq. (2) and neglecting
small terms which don’t depend on e, we have the following inequality about X :

X < e
3−η2

2(6−3η+η2) .

The maximum value of the exponent part in the right hand side is given by
(
√
6 − 1)/5 ≈ 0.290 when η = 3 − √

6 ≈ 0.55. This is exactly the same as the
bound of Blömer–May [1].
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4 A Unified Framework for Solving Small Inverse
Problem

As we showed in previous section, the Blömer–May method [1] can be explained
by unravelled linearization technique. It is natural to think that Herrmann–
May method [7] and Blömer–May method [1] have some kinds of relation. In
this section, we will present an explicit relation and an interpolation between
two methods. First, we present a unified framework for solving small inverse
problem, which includes Herrmann–May method and Blömer–May method as
a special case by adequately setting parameters. Then, we show that Boneh–
Durfee’s improved bound: d ≤ N0.292 is still optimal in our framework. Finally,
we propose a hybrid method by interpolating two methods, which enjoys the
both advantages of two methods.

4.1 A Set of Shift-Polynomials

We define ḡ[i,k](x, z) := xif̄(x, z)kem−k for x-shifts and h̄[i,u](x, y, z) :=
yif̄(x, z)uem−u for y-shifts, respectively.The aboveare the same shift-polynomials
described in Section 3.However,we use a different set of index for shift-polynomials.
Let τ and η be parameters which are optimized later with 0 < τ≤1 and 0<η≤1.

We define sets G(m; η),H(m; τ, η) and F(m; τ, η) of shift-polynomials as
follows:

G(m; η) := {ḡ[u−i,i]|u = �m(1− η)�, . . . ,m; i = 0, . . . , u}
H(m; τ, η) := {h̄[i,u]|u = �m(1− η)�, . . . ,m; i = 1, . . . , �τ(u −m(1− η))�} and

F(m; τ, η) := G(m; η) ∪H(m; τ, η)

We define a polynomial order ! in F(m; τ, η) as follows:

– ḡ[i,j] ! h̄[i′,u] for any i, j, i′, u
– ḡ[i,j] ! ḡ[i′,j′] if (i+ j < i′ + j′) or (i + j = i′ + j′ and j ≤ j′)
– h̄[i,u] ! h̄[i′,u′] if (u < u′) or (u = u′ and i ≤ i′)

Regarding the set F(m; τ, η) for shift-polynomials and the above polynomial
order, we have the following two lemmas.

Lemma 7. Suppose that 0 < τ ≤ 1. If ḡ[u−j,j] ∈ F(m; τ, η) for j ≥ 1, then
ḡ[u−j+1,j−1] ∈ F(m; τ, η) and ḡ[u−j+1,j−1] ≺ ḡ[u−j,j].

Lemma 8. Suppose that 0 < τ ≤ 1. If h̄[j,u] ∈ F(m; τ, η), then h̄[j−1,u] and
h̄[j−1,u−1] ∈ F(m; τ, η). Furthermore, it holds that h̄[j−1,u] ≺ h̄[j,u] and h̄[j−1,u−1]
≺ h̄[j,u].

Proof of Lemma 8. It is clear that h̄[j−1,u] ∈ F(m; τ, η). Since h̄[j,u] ∈
F(m; τ, η), it holds that 1 ≤ j ≤ τ(u − m(1 − η)). Then, 0 ≤ j − 1 ≤ τ(u −
m(1− η))− 1. Since τ ≤ 1 from the setting, it holds that τ(u−m(1− η))− 1 ≤
τ(u−m(1− η))− τ = τ((u− 1)−m(1− η)). Then, h̄[j−1,u−1] ∈ F(m; τ, η). ��
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Remark 2. If τ > 1, Lemma 8 does not always hold.

We show that our framework includes previous works as special cases. First, we
show that our Framework includes Herrmann–May’s work [7] as a special case.
We gave the set of shift-polynomials FHM(m; τ) for Herrmann–May’s method in
Section 2.3. From the definition, it holds that

FHM(m; τ) = F(m; τ, 1).

Then, Herrmann–May’s method is obtained by setting η = 1 in our unified
framework. Next, we show that our Framework includes Blömer–May’s work [1]
as a special case. We gave the set of shift-polynomials FBM(m; t) for Blömer–
May’s method in Section 3.1. From the definition, it holds that

FBM(m; t) = F(m; 1, t/m).

Note that t/m ≤ 1 from the definition. Then, Blömer–May’s method is obtained
by setting τ = 1 in our unified framework.

4.2 Deriving a Condition for Solving Small Inverse Problem in Our
Framework

A lattice basis is constructed by using the coefficient vectors of shift-polynomials
in F(m; τ, η) as basis vectors. Note that the coefficient vectors of the shift-
polynomials ḡ[u−i,i](xX, zZ) and h̄[i,u](xX, yY, zZ) are written as row vectors.
Let B(m; τ, η) be a matrix, where all rows of B(m; τ, η) are the coefficient vectors
of shift-polynomials according to the ordering of F(m; τ, η).

Theorem 2. Let m be an integer. Let τ and η be parameters with 0 < τ ≤ 1 and
0 ≤ η ≤ 1. A lattice basis matrix B(m; τ, η) is triangular for any m, τ and η.

Proof of Theorem 2. We show that the number of monomials newly appearing
in expansion of shift-polynomial is one for any shift-polynomials in F(m; τ, η).
In this proof, we abbreviate F(m; τ, η) as F . We define Ff := {g ∈ F|g ≺ f}
and S(Ff ) :=

⋃
g∈Ff S(g). It is enough for proving Theorem 2 to show that for

any polynomial f ∈ F there exist a monomial mf such that

– S(f −mf ) ⊆ S(Ff ) and
– mf �∈ S(Ff ).

From Lemmas 4–6 and 7–8, for any f ∈ F , there existsmf such that S(f−mf ) ⊆
S(Ff ). We can easily verify that mf �∈ S(Ff ). Then, the lattice basis matrix is
triangular. ��

We show a small example for m = 3, τ = 1/2 and η = 1/3. We have

G(3; 1/3) = {g[u−i,i]|u = 2, 3; i = 0, . . . , u} and

H(3; 1/2, 1/3) = {h[i,u]|u = 2, 3; i = 1, . . . , u/2− 1}.
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or we explicitly have

G(3; 1/3)={ḡ[2,0], ḡ[1,1], ḡ[0,2], ḡ[3,0], ḡ[2,1], ḡ[1,2], ḡ[0,3]} and H(3; 1/2, 1/3)={h̄[1,3]}.

A lattice basis is constructed by using the coefficients vectors x-shifts
ḡ[i,j](xX, zZ) in G(3; 1/3) and y-shifts h̄[i,u](xX, yY, zZ) in H(3; 1/2, 1/3).

ḡ[2,0]
ḡ[1,1]
ḡ[0,2]
ḡ[3,0]
ḡ[2,1]
ḡ[1,2]
ḡ[0,3]
h̄[1,3]

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

x2 xz z2 x3 x2z xz2 z3 yz3

X2e3

Ae2X2 e2XZ
A2eX2 2eAXZ eZ2

X3e3

AX3e2 e2X2Z
eA2X3 e2AX2Z eXZ2

A3X3 3A2X2Z 3AXZ2 Z3

−A3X2 −3A2XZ −3AZ2 0 A3X2Z 3A2XZ2 3AZ3 Y Z3

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

Note that if we expand h̄[1,3] by x and y instead of x and z, many monomials
appears. The determinant of the above matrix is given by the product of diagonal
elements: e12X9Y 1Z12.

For the following asymptotic analysis, we omit roundings in setting ofF(m; τ, η)
as their contribution is negligible for sufficiently largem. We denote by wx and wy

the number of shift-polynomials used in x-shifts and y-shifts, respectively. And
we denote by vol(LX) and vol(LY ) contributions in x-shifts and y-shifts to a lat-
tice volume, respectively. The total number of shift-polynomials w is given by
w = wx + wy and a lattice volume vol(L) is given by vol(L) = vol(LX)vol(LY ).

First, we derive wx and vol(LX). The lattice dimension wx is given by wx =∑m
l=m(1−η)

∑l
k=0 1. The volume vol(LX) is given by

vol(LX) =
m∏

l=m(1−η)

l∏
k=0

X l−kZkem−k = emwx

m∏
l=m(1−η)

l∏
k=0

X l−k
(
Z

e

)k

.

Let vol(LX) = emwxXsXX (Z/e)sXZ . Each sXX and sXZ is explicitly given as
follows:

sXX =

m∑

l=m(1−η)

l∑

k=0

l − k =
1− (1− η)3

6
m3 + o(m3) and

sXZ =

m∑

l=m(1−η)

l∑

k=0

k =
1− (1− η)3

6
m3 + o(m3).

Then, we have

vol(LX) = emwxX(1−(1−η)3)m3/6

(
Z

e

)(1−(1−η)3)m3/6

.
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Second, we derive wy and vol(LY ). The lattice dimension wy is given by

wy =
∑ηm

l=0

∑τl
j=1 1. The volume vol(LY ) is given by

vol(LY ) =

ηm∏
l=0

τl∏
j=1

Y jZ l+m(1−η)em−l−m(1−η) = emwy

ηm∏
l=0

τl∏
j=1

Y j

(
Z

e

)l+m(1−η)
.

Let vol(LY ) = emwyY sY Y (Z/e)sY Z Each sY Y and sY Z is explicitly given as
follows:

sY Y =

ηm∑

l=0

τl∑

j=1

j = η3τ2
m3

6
+ o(m3) and

sY Z =

ηm∑

l=0

τl∑

j=1

l+(1−η)m=τη3
m3

3
+τ(1−η)m

η2m2

2
=τη2(3 − η)

m3

6
+ o(m3).

Then, we have

vol(LY ) = emwyY η3τ2m3/6

(
Z

e

)τη2(3−η)m3/6

.

Summing up the above discussion, we have

vol(L) = vol(LX)vol(LY )

= emwXη(3−3η+η2)m3/6Y η3τ2m3/6

(
Z

e

)(η(3−3η+η2)+τη2(3−η))m3/6

. (3)

Remember that the condition that the problem can be solved in polynomial time
is given by vol(L) ≤ emw by ignoring small terms. From Eq. (3), we have the
condition:

X3−3η+η2

Y τ2η2

(
Z

e

)(3−3η+η2)+τ(3η−η2)

≤ 1. (4)

As described in previous subsection, we obtain the same set as those of Herrmann–
May or Blömer–May if we set η = 1 or τ=1. Deriving bounds for each case are
described in full version [9].

4.3 Optimal Bound in Our Framework

We have seen that the optimal bound of X is e1−
√

1/2 if η = 1 or τ = 1. Hence,
we have a chance to go beyond the Boneh–Durfee’s bound. Unfortunately, the
following theorem shows that d ≤ N0.292 is still optimal in our framework.

Theorem 3. Suppose that Y = e1/2. The maximal bound of X in our framework

is e1−
√

1/2.
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Proof of Theorem 3. By substituting Z = XY + 1 and Y = e1/2 into Eq. (4)
and ignoring small terms, Eq. (4) is transformed into

X ≤ e
1
2

(3−3η+η2)+(3η−η2)τ−η2τ2

2(3−3η+η2)+τ(3η−η2) . (5)

Let P and P̄ be sets such that P = {(τ, η) | 0 < τ < 1, 0 < η < 1} and
P̄ = {(τ, η) | 0 < τ ≤ 1, 0 < η ≤ 1}. In order to obtain the maximal value of the
right side of Eq. (5) in P̄ , we firstly consider the extremal values of the following
function Ψ(τ, η) in P :

Ψ(τ, η) :=
(3 − 3η + η2) + (3η − η2)τ − η2τ2

2(3− 3η + η2) + (3η − η2)τ
.

Let Num(τ, η) and Den(τ, η) be the numerator and denominator of Ψ(τ, η) re-
spectively. Here, we show that Den(τ, η) �= 0 in P . If Den(τ, η) = 0, then we
have

0 < τ =
2(3− 3η + η2)

η2 − 3η
= 2

(η − 3/2)2 + 3
4

(η − 3)η
.

However, this contradicts the condition 0 < η < 1. Therefore, the rational func-
tion Ψ(τ, η) ∈ Q(τ, η) is obviously differentiable in P . By solving the algebraic
equation ∂Ψ

∂τ = ∂Ψ
∂η = 0, we show that there are no extremal values of Ψ(τ, η) in

P . Let Φτ (τ, η), Φη(τ, η) be polynomials such that

Φτ (τ, η) :=
∂Ψ

∂τ
· Den(τ, η)2, Φη(τ, η) :=

∂Ψ

∂η
· Den(τ, η)2.

Note that both Φτ and Φη are in Z[τ, η], and we solve the algebraic equation
Φτ = Φη = 0 by introducing Gröbner basis. Let G be the Gröbner basis for
the ideal generated by Φτ , Φη with respect to the lexicographic order ≺LEX such
that η ≺LEX τ . Then G contains three polynomials in Z[τ, η], and one of them
is m(η) such that

m(η) = η(η − 1)(η − 3)(η2 − 3η + 3){3(η − 1)2 + 2(η − 3)2}.
This fact implies that, for every extremal value Ψ(τ0, η0) where (τ0, η0) ∈ R2, η0
is a root of m(η) over R. Since m(η) does not have its root in the real interval
(0, 1), there are no extremal values of Ψ(τ, η) in P .

Hence, we only have to check the maximal values of Ψ(0, η), Ψ(1, η) for 0 ≤
η ≤ 1 and Ψ(τ, 0), Ψ(τ, 1) for 0 ≤ τ ≤ 1, and furthermore the two cases τ = 1
and η = 1 are discussed above. The maximal value of the right side of Eq. (5)
for τ = 0 or η = 0 is e1/4 since Ψ(0, η) = Ψ(τ, 0) = 1/2, and thus the maximal

value of the right side of Eq. (5) in P̄ is e1−
√

1/2. ��

4.4 A Hybrid Method

It has been known that Blömer–May method: (τ, η) = (1, 3 − √
6) has an

advantage because their method requires a smaller lattice dimension. On the
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other hands, Herrmann–May method: (τ, η) = (
√
2 − 1, 1) has an advantage

because it achieves a higher bound. We present a simple hybrid method which
enjoys both of advantages by interpolating two methods. Letting t be a param-
eter with 0 ≤ t ≤ 1, we set τ(t) and η(t) by

(τ(t), η(t)) = (1− (2 −
√
2)t, (

√
6− 2)t+ (3−

√
6))

and use the parameter (τ(t), η(t)) for our framework. The setting t = 0 corre-
sponds to Blömer–May’s method: (τ(0), η(0)) = (1, 3−√6) and the setting t = 1
corresponds to Herrmann–May’s method: (τ(1), η(1)) = (

√
2− 1, 1)). We define

Ψ̄(t) := Ψ(τ(t), η(t)). We can easily see that Ψ̄(t)is monotonically increasing
function in the interval 0 ≤ t ≤ 1. Then, there is a trade-off between a lattice
dimension and an achievable bound. That is, the choice of a bigger t implies
a higher bound but less efficiency and the choice of a smaller t implies more
efficiency but a lower bound. Our hybrid method makes it possible to choose the
best lattice construction for a practical attack.

5 Extension to Cryptanalysis of Arbitrary Y = eα

In previous section, we discussed only the case of Y = e1/2. In this section, we
extend our results to arbitrary Y = eα. Sarkar et al. presented the small secret
exponent attack under the situation that a few MSBs of the prime p is known [13].
Suppose that some estimate p0 of p is known such that |p − p0| < Nα. Let q0
be an estimation of q. Letting A = N + 1 − p0 − q0, a solution of the modular
equation x(A+ y) + 1 = 0(mod e) is given by (x, y) = (k, p0 + q0 − p− q). Note
that k < eδ and |p0 + q0− p− q| < eα. They showed that the barrier d < N0.292

can be broken through if α is strictly less than 1/2. In this section, we focus on
the problem: x(A+y)+1 = 0( mod e) with upper bound of solution:X = eδ and
Y = eα. They showed extensions of three algorithms: two algorithms from Boneh
and Durfee’s paper [2], and one algorithm from Blömer and May’s paper [1] into
arbitrary α [13]. Although α should be 1/4 < α ≤ 1/2 in this attack scenario1,
we show an analysis for 0 < α < 1.

It is important to point out that the discussion in Sections 3 and 4 (except
Sections 4.3 and 4.4) is valid for an arbitrary α, which implies that a set of
indexes F(m; τ, η) of shift-polynomials and the determinant calculation of the
volume are also valid. From the same analysis, we have the same condition as
Eq. (4). Letting X = eδ and Y = eα, we have the following theorem. A proof is
given in Appendix A.2.

Theorem 4. Suppose that Y = eα and X = eδ. The maximal bound of δ in our
framework is given by

δ <

{
1−√

α if α ≥ 1/4,
2

5
(
√
4α2 − α+ 1− 3α+ 1) if 0 < α < 1/4.

1 Suppose that α is less than or equal to 1/4. The whole prime factor p can be found
by Coppersmith’s attack [4] since the upper half of p is known.
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We will present a hybrid method for arbitrary α in full version [9]. Theorem 4
shows that Blömer–May like method (τ = 1) is superior to Herrmann–May like
method (η = 1) if α < 1/4. Interestingly, if α is extremely small (α < 3/35),
Herrmann–May like and Blömer–May like methods are not best-known algo-
rithms. We show the details in full version [9]. We also show another extension
in Appendix B.

6 Concluding Remarks

We should point out the relationship between our results and the discussion
in May’s PhD thesis [11]. He presented the interpolation between the results
of Blömer–May and Boneh–Durfee by using a concept called strictly decreasing
pattern in Section 7 of [11]. He also argued that Boneh–Durfee’s stronger bound is
optimal over all decreasing patterns. However, no formal proof of its optimality
has been given in [11]. On the contrary to [11], we give a strict proof of the
optimality within our framework in Section 4. Furthermore, we extend our results
to arbitrary Y = eα, which has not been discussed in [11] and is also an advantage
over [11].

It has been known that Blömer–May method has an advantage because their
method requires a smaller lattice dimension than the Boneh–Durfee’s lattice.
Theorem 4 gives another view of their algorithm. Theorem 4 shows Blömer–May
method has another advantage because it achieves a better bound in addition
to less lattice dimension; Blömer–May method achieves a higher bound than
Herrmann–May method (and Boneh–Durfee’s method) if α ≤ 1/4.

For the usual small secret exponent attack on RSA, we just showed that
d ≤ N0.292 is an optimal bound in our framework. Hence, the bound might be
improved if we develop the other method outside of our framework, which is an
open problem.

Acknowledgement. The first author was supported by KAKENHI 22700006.
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A Proofs

A.1 Proofs of Lemma 4–6

Proof of Lemma 4. The polynomial ḡ[u,0] is given by ḡ[u,0](x, z) = emxu. Then,
we have the lemma. ��
Proof of Lemma 5. The expansion of ḡ[u−j,j] for j ≥ 1 is given by

ḡ[u−j,j](x, z) = em−jxu−j(z +Ax)j =

j∑

i=0

em−jxu−j
(
j

i

)
zixj−iAj−i

= em−jxu−jzj +
j−1∑

i=0

em−jAj−i
(
j

i

)
xu−izi.

Then, we have

ḡ[u−j,j](x, z)− em−jxu−jzj ∼=
j−1∑

i=0

xu−izi = xu−j+1

j−1∑

i=0

x(j−1)−izi

∼= xu−j+1(z +Ax)j−1 ∼= ḡ[u−j+1,j−1].

Then, we have S(ḡ[u−j,j] − em−jxu−jzj) = S(ḡ[u−j+1,j−1]). ��
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Proof of Lemma 6. The expansion of h̄[j,u] for j ≥ 1 is given as follows:

h̄[j,u](x, y, z) = yj(z +Ax)uem−u = em−u
u∑

i=0

(
u

i

)
yjzi(Ax)u−i

= em−uyjzu + em−u
u−1∑

i=0

(
u

i

)
Au−ixu−iyjzi.

Then, we have

h̄[j,u](x, y, z)− em−uyjzu ∼=
u−1∑

i=0

xu−iyjzi = yj−1xy
u−1∑

i=0

x(u−1)−izi

∼= yj−1(z − 1)(z +Ax)u−1 ∼= yj−1(z +Ax)u−1z + yj−1(z +Ax)u−1

∼= h̄[j−1,u−1]z + h̄[j−1,u−1].

Hence, we have

S(h̄[j,u](x, y, z)− em−uyjzu) = S(h̄[j−1,u−1]z) ∪ S(h̄[j−1,u−1])
⊆ S(h[j−1,u−1](z +Ax)) ∪ S(h̄[j−1,u−1]) = S(h̄[j−1,u]) ∪ S(h̄[j−1,u−1]).

Then, we have the lemma. ��

A.2 Proof of Theorem 4

By substituting Z = XY +1 and Y = eα into Eq. (4) and ignoring small terms,
Eq. (4) is transformed into

X ≤ e
(1−α)((3−3η+η2)+(3η−η2)τ)−αη2τ2

2(3−3η+η2)+(3η−η2)τ . (6)

Let P and P̄ be the sets defined in the proof of Theorem 3. In order to obtain
the maximal value of the right side of (6) in P̄ , we firstly consider the extremal
values of the following function Ψα(τ, η) in P :

Ψα(τ, η) =
(1− α)((3 − 3η + η2) + (3η − η2)τ)− αη2τ2

2(3− 3η + η2) + (3η − η2)τ

Notice that the denominator of Ψα(τ, η) is Den(τ, η) given in the proof of The-
orem 3, and so Ψα(τ, η) is also differentiable in P .

In the same manner as the proof of Theorem 3, we show that there are no

extremal values of Ψα(τ, η) in P for any α ∈ (0, 1). Let Φ
(α)
τ (τ, η), Φ

(α)
η (τ, η) be

polynomials such that

Φ(α)
τ (τ, η) =

∂Ψα

∂τ
·Den(τ, η)2, Φ(α)

η (τ, η) =
∂Ψα

∂η
·Den(τ, η)2.

We solve the algebraic equation Φ
(α)
τ = Φ

(α)
η = 0 by introducing Gröbner basis.

Let Gα be the Gröbner basis under 0 < α < 1 for the ideal generated by
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Φ
(α)
τ , Φ

(α)
η with respect to the lexicographic order ≺LEX such that η ≺LEX τ .

One of polynomials in Gα is mα(η) such that

mα(η) = η(η − 1)(η − 3)(η2 − 3η + 3){3α(η − 1)2 + (η − 3)2}.
This fact implies that, for every extremal value Ψα(τ0, η0) where (τ0, η0) ∈ R2,
η0 is a root of mα(η) over R. Since mα(η) does not have its root in the real
interval (0, 1), there are no extremal values of Ψα(τ, η) in P .

Hence, we only have to check the maximal values of Ψα(0, η), Ψα(1, η) for
0 ≤ η ≤ 1 and Ψα(τ, 0), Ψα(τ, 1) for 0 ≤ τ ≤ 1. If η = 0 or τ = 0, then
Ψα(τ, 0) = Ψα(0, η) = (1− α)/2, and so the maximal value for η = 0 or τ = 0 is
(1− α)/2.

For η = 1, we have that

Ψα(τ, 1) =
−ατ2 + (1− α)(1 + 2τ)

2(τ + 1)
,

and so the maximal value for η = 1 is
{

3
4 − α (τ = 1, 0 < α < 1

4 )

1−√
α (τ =

√
1/α− 1, 1

4 ≤ α < 1).
(7)

For τ = 1, we have that

Ψα(1, η) =
3− α(η2 + 3)

6− 3η + η2
,

and so the maximal value for τ = 1 is

2

5
(
√
α2 − α+ 1− 3α+ 1). (8)

By comparing with the above values, we have the theorem. ��

B Extension to x(A + y) + C = 0(mod e) for an
Arbitrary Integer C

In Section 4, we discussed only the case of x(A + y) + 1 = 0(mod e). In this
section, we extend to x(A + y) + C = 0(mod e) for an arbitrary integer C. For
simplicity, we assume that 0 < |C| < e. In the discussion of Section 4, we set Z
as Z = XY + 1. For general C, Z should be replaced into Z = XY + |C|. The
value Z is upper bounded by 2max(XY, |C|). We consider two typical cases.

Suppose that |C| is small compared to XY for the first case. Concretely,
suppose that XY ≥ |C|. Since Z ≤ 2XY , the discussion of Section 4 is valid
and the same bound is obtained.

Suppose that |C| is uniformly chosen from integers within the interval (0, e).
It is clear that |C| ≈ e with high probability. In this case, Z ≤ 2e. By ignoring

small terms, Eq. (4) is transformed into X3−3η+η2

Y τ2η2

< 1. Since X and Y are
positive integers, there are no ranges forX and Y satisfying the above inequality.
Then, we cannot solve the problem by using our framework2 in this case.

2 Boneh and Durfee’s weaker method is valid even if |C| is large.
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Abstract. The 128-bit blockcipher CLEFIA is known to be highly ef-
ficient in hardware implementations. This paper proposes very com-
pact hardware implementations of CLEFIA-128. Our implementations
are based on novel serialized architectures in the data processing block.
Three types of hardware architectures are implemented and synthesized
using a 0.13 μm standard cell library. In the smallest implementation,
the area requirements are only 2,488 GE, which are about half of the
previous smallest implementation as far as we know. Furthermore, only
additional 116 GE enable to support decryption.

Keywords: blockcipher, CLEFIA, compact hardware implementation,
ASIC.

1 Introduction

CLEFIA [9,11] is a 128-bit blockcipher supporting key lengths of 128, 192 and
256 bits, which is compatible with AES [2]. CLEFIA achieves enough immunity
against known attacks and flexibility for efficient implementation in both hard-
ware and software. It is reported that CLEFIA is highly efficient particularly in
hardware implementations [12,10,13].

Compact hardware implementations are very significant for small embedded
devices such as RFID tags and wireless sensor nodes because of their limited
hardware resources. As for AES with 128-bit keys, low-area hardware implemen-
tations have been reported in [3] and [4]. The former uses a RAM based archi-
tecture supporting both encryption and decryption with the area requirements
of 3,400 GE, while the latter uses a shift-register based architecture supporting
encryption only with the area requirements of 3,100 GE. Both implementations
use an 8-bit serialized data path and implement only a fraction of the Mix-
Columns operation with additional three 8-bit registers, where it takes several
clock cycles to calculate one column. Very recently, another low-area hardware
implementation of AES was proposed in [5] requiring 2,400 GE for encryption
only. Unlike the previous two implementations, it implements MixColumns not
in a serialized way, where one column of MixColumns is processed in 1 clock
cycle. Thus it requires 4 times more XOR gates for MixColumns, but requires
no additional register and can reduce gate requirements for control logic.

A. Miri and S. Vaudenay (Eds.): SAC 2011, LNCS 7118, pp. 278–292, 2012.
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In this paper, we present very compact hardware architectures of CLEFIA
with 128-bit keys based on 8-bit shift registers. We show that the data process-
ing part of CLEFIA-128 can be implemented in a serialized way without any
additional registers. Three types of hardware architectures are proposed accord-
ing to required cycles for one block process by adaptively applying clock gating
technique. Those architectures are implemented and synthesized using a 0.13
μm standard cell library. In our smallest implementation, the area requirements
are only 2,488 GE, which are to the best of our knowledge about half as small
as the previous smallest implementation, 4,950 GE [10,12], and competitive to
the smallest AES implementation. Furthermore, only additional 116 GE are re-
quired to support decryption by switching the processing order of F-functions
at even-numbered rounds.

The rest of the paper is organized as follows. Sect. 2 gives brief description
of CLEFIA and its previously proposed hardware implementations. In Sect. 3,
we propose three types of hardware architectures. Sect. 4 describes additional
hardware resources to support decryption. Sect. 5 gives evaluation results for
our implementations, compared with the previous results of CLEFIA and AES.
Finally, we conclude in Sect. 6.

2 128-bit Blockcipher CLEFIA

2.1 Algorithm

CLEFIA [9,11] is a 128-bit blockcipher with its key length being 128, 192, and
256 bits. For brevity, we consider 128-bit key CLEFIA, denoted as CLEFIA-128,
though similar techniques are applicable to CLEFIA with 192-bit and 256-bit
keys. CLEFIA-128 is divided into two parts: the data processing part and the
key scheduling part.

The data processing part employs a 4-branch Type-2 generalized Feistel net-
work [14] with two parallel F-functions F0 and F1 per round. The number of
rounds r for CLEFIA-128 is 18. The encryption function ENCr takes a 128-bit
plaintext P = P0|P1|P2|P3, 32-bit whitening keys WKi (0 ≤ i < 4), and 32-
bit round keys RKj (0 ≤ j < 2r) as inputs, and outputs a 128-bit ciphertext
C = C0|C1|C2|C3 as shown in Fig. 1.

The two F-functions F0 and F1 consist of round key addition, 4 non-linear
8-bit S-boxes, and a diffusion matrix. The construction of F0 and F1 is shown
in Fig. 2. Two kind of S-boxes S0 and S1 are employed, and the order of these
S-boxes is different in F0 and F1. The diffusion matrices of F0 and F1 are also
different; the matrices M0 for F0 and M1 for F1 are defined as

M0 =

⎛

⎜⎜
⎝

01 02 04 06

02 01 06 04

04 06 01 02

06 04 02 01

⎞

⎟⎟
⎠ , M1 =

⎛

⎜⎜
⎝

01 08 02 0A

08 01 0A 02

02 0A 01 08

0A 02 08 01

⎞

⎟⎟
⎠ .

The multiplications between these matrices and vectors are performed in GF(28)
defined by a primitive polynomial z8 + z4 + z3 + z2 + 1.
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Fig. 1. Encryption function ENCr
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Fig. 3. DoubleSwap function Σ

The key scheduling part of CLEFIA-128 takes a secret key K as an input,
and outputs 32-bit whitening keys WKi (0 ≤ i < 4) and 32-bit round keys
RKj (0 ≤ j < 2r). It is divided into the following two steps: generating a 128-
bit intermediate key L (step 1) and generating WKi and RKj from K and L
(step 2). In step 1, the intermediate key L is generated by 12 rounds of encryption
function which takes K as a plaintext and constant values CONi (0 ≤ i < 24)
as round keys. In step 2, the intermediate key L is updated by the DoubleSwap
function Σ, which is illustrated in Fig. 3. Round keys RKj (0 ≤ j < 36) is
generated by mixing K, L, and constant values CONi (24 ≤ i < 60). Whitening
keys WKi are equivalent to 32-bit chunks Ki of K as K = K0|K1|K2|K3.

2.2 Previous Hardware Implementations

Hardware implementations of CLEFIA-128 have been studied in [12,10,13].
In [12], optimization techniques in data processing part including S-boxes and
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diffusion matrices were proposed. The compact architecture, where F0 is pro-
cessed in one cycle and F1 is processed in another cycle, was implemented, and
its area requirements in area optimization are reported to be 4,950 GE.

In [10], two optimization techniques in key scheduling part were introduced.
The first technique is related to implementation of the DoubleSwap function Σ.
Σ is decomposed into the following Swap function Ω and SubSwap function Ψ
as Σ = Ψ ◦Ω.

Ω : X $→ Y

Y = X [64-127] | X [0-63]

Ψ : X $→ Y

Y = X [71-127] | X [57-70] | X [0-56]

X [a-b] denotes a bit string cut from the a-th bit to the b-th bit of X . Please note
that Ω and Ψ are both involutive. The 128-bit key register for the intermediate
key L is updated by applying Ω and Ψ alternately. Round keys are always
generated from the most significant 64-bit of the key register. After the final
round of encryption, L is re-stored into the key register by applying the following
FinalSwap function Φ.

Φ : X $→ Y

Y = X [49-55] | X [42-48] | X [35-41] | X [28-34] | X [21-27] | X [14-20] |
X [7-13] | X [0-6] | X [64-71] | X [56-63] | X [121-127] | X [114-120] |
X [107-113] | X [100-106] | X [93-99] | X [86-92] | X [79-85] | X [72-78]

Please note that Φ is also involutive. In case of decryption, round keys are always
generated from the most significant 64-bit of the key register by applying the
inverse functions of Ω, Ψ and Φ in reverse order of encryption. Due to their
involutive property, only three functions Ω, Ψ and Φ are required for encryption
and decryption.

In the second technique, XOR operations with the parts of round keys re-
lated to a secret key K are moved by an equivalent transformation into the two
data lines where key whitening operations are processed. Therefore, these XOR
operations and key whitening operations can be shared.

In [13], five types of hardware architectures were designed and fairly compared
to the ISO 18033-3 standard blockciphers under the same conditions. In their
results, the highest efficiency of 400.96 Kbps/gates was achieved, which is at
least 2.2 times higher than that of the ISO 18033-3 standard blockciphers.

3 Proposed Architectures

In this section we propose three types of hardware architectures. Firstly, we
propose a compact matrix multiplier for CLEFIA-128. Next, in Type-I architec-
ture, we propose a novel serialized architecture of the data processing block of
CLEFIA-128. By adaptively applying clock gating logic to Type-I architecture,
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(c)

Fig. 4. Matrix multiplier: (a) F -function F0, (b) Data path, (c) Contents of registers
Rj (0 ≤ j < 4) at the l-th cycle

we can reduce the number of multiplexers (MUXes) in Type-II and Type-III
architectures with increasing cycle counts.

Clock gating is a power-saving technique used in synchronous circuits. For
hardware implementations of blockciphers, it was firstly introduced in [8] as a
technique to reduce gate counts and power consumption, and have been applied
to KATAN family [1] and AES [5]. Clock gating works by taking the enable
conditions attached to registers. It can remove feedback MUXes to hold their
present state and replace them with clock gating logic. In case that several bits
of registers take the same enable conditions, their gate counts will be saved by
applying clock gating.

3.1 Matrix Multiplier

Among low-area AES implementations, MixColumns matrix operations are
computed row by row in [3], while they are computed column by column in [4].
In our architecture, matrix operations are computed column by column in the
following way.

The 4-byte output of M0 operation is XORed with the next 4-byte data as
shown in Fig. 4 (a). The matrix multiplier in Fig. 4 (b) performs the matrix
multiplication together with the above XOR operation in 4 clock cycles. Fig. 4 (c)
presents the contents of the registers Ri at the l-th cycle (1 ≤ l ≤ 4). At the 1st
cycle, the output a0 of S0 are fed to the multiplier and multiplied by {01}, {02},
{04}, and {06}. The products are XORed with the data zi (0 ≤ i < 4), and then
the intermediate results are stored in the four registers Rj (0 ≤ j < 4). As each
column in M0 consists of the same coefficients, the matrix multiplication can be
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Fig. 5. Data path of Type-I architecture

performed by selecting the intermediate results through MUX2 and XORing the
products of ai (i = 1, 2, 3) with them at the (i+1)-th cycle. After 4 clock cycles,
wi (0 ≤ i < 4) are stored in Ri. The multiplication by M1 can be performed by
switching MUX1.

In [4], three 8-bit registers are required for the construction of a parallel-to-
serial converter due to avoiding register competition with the next calculation of
a matrix. On the other hand, no competition occurs in our architecture because
zi is input at the 1st cycle of a matrix multiplication. wi can be moved into the
register where zi for the newly processing F-function is stored.

3.2 Type-I Architecture

Fig. 5 shows the data path of Type-I architecture, where the width of data path is
8 bit except those written in the figure. It is divided into the following two blocks:
the data processing block and the key scheduling block. Type-I architecture
processes a round of the encryption function in 8 clock cycles. We show, in
appendix, the detailed data flow of the data registers Rij (0 ≤ i, j < 4) in Fig. 5
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for a round of the encryption processing. As described in Sect. 3.1, at the 1st
and the 5th cycle in the 8 cycles, the data stored in R20–R23 are moved into
R03–R12, and simultaneously the data stored in R10–R13 are input to the matrix
multiplier. Therefore, no additional register but the 128-bit data register exists
in the data processing block. Please note that R30–R33 hold the current state at
the 5–8th cycle by clock gating.

In the start of encryption, a 128-bit plaintext is located to Rij in 16 clock
cycles by inputting it byte by byte from data in. After 18 rounds of the encryp-
tion function which require 144 cycles, a 128-bit ciphertext is output byte by
byte from data out in 16 clock cycles. Therefore, it takes 176 cycles for encryp-
tion. The reason why data out is connected to R30 is that no word rotation is
necessary at the final round of encryption. In the start of key setup, a 128-bit
secret key K input from key in is located to Rij in 16 clock. After 12 rounds of
the encryption function which require 96 cycles, a 128-bit intermediate key L is
stored into the key registers Lij (0 ≤ i, j < 4) by shifting Rij and Lij in 16 clock
cycles. Therefore, it takes 128 cycles for key setup.

The two S-box circuits S0 and S1 are located in the data processing block,
and one of those outputs is selected by a 2-to-1 MUX (8-bit width) and input to
the matrix multiplier. The encryption processing of CLEFIA-128 is modified by
a equivalent transformation as shown in Fig. 7 (a). The 32-bit XOR operation
with 32-bit chunks Ki is reduced to the 8-bit XOR operation by locating it in
the matrix multiplier. The 32-bit chunk Ki selected by a 32-bit 4-to-1 MUX is
divided into four 8-bit data, and then one of the data is selected by a 8-bit 4-to-1
MUX and fed into the matrix multiplier one by one in 4 clock cycles.

In the key scheduling block, the intermediate key L stored in Lij is cyclically
shifted by one byte, and the 8-bit chunk in L00 is fed into the data processing
after being XORed with the 8-bit chunk of CONi. At the end of even-numbered
rounds, Lij is updated by (8-bit shift+Σ) operation; at the end of encryption, Lij

is updated by (8-bit shift +Σ−8) operation in order to recover the intermediate
key L. After restoring the intermediate key L, Lij holds it by clock gating until
next start of encryption.

3.3 Type-II Architecture

In Type-II architecture, we aim the area optimization of the key scheduling
block. Since DoubleSwap function Σ is decomposed as Σ = Ψ ◦ Ω, where Ψ
and Ω are both involutive, as described in Sect. 2.2, Σ−8 satisfies the following
equations.

Σ−8 = (Ψ ◦Ω)−8

= (Ω ◦ Ψ)8
= (Ω ◦ Ψ)8 ◦ (Ω ◦Ω)

= (Ω ◦ Ψ) ◦ · · · ◦ (Ω ◦ Ψ) ◦ (Ω ◦Ω)

= Ω ◦ (Ψ ◦Ω)8 ◦Ω
= Ω ◦Σ8 ◦Ω
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Fig. 6. Data path of Type-III architecture

Swap function Ω is realized by 8 iterations of cyclic shifting. Thus Σ−8 operation
can be achieved by 8 iterations of cyclic shifting, 8 iterations of Σ operation,
and 8 iterations of cyclic shifting again, which require 24 cycle counts.

During the encryption processing the intermediate key L is updated by Σ op-
eration at the 17th cycle after 16 iterations of cyclic shifting every two rounds.
At the 17th cycle, the data registers must hold the current data by clock gat-
ing. Accordingly, both 8 additional cycles for the encryption processing and 8
additional cycles to recover the intermediate key L after outputting a ciphertext
are required, which results in 192 cycles for encryption. In compensation for the
increase of 16 cycle counts, a 128-bit input of MUX in the key scheduling block
can be discarded.

3.4 Type-III Architecture

In Type-III architecture, we achieve the area optimization of the data process-
ing block by applying clock gating effectively. Fig. 6 shows the data path of
Type-III architecture. Instead of using MUXes, the data stored in R10–R13 and
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Fig. 7. (a) Encryption processing, (b) Decryption processing, (c) Optimized decryption
processing. XOR operations with the part of round keys related to secret key K are
moved by an equivalent transformation, and thus RK∗

j (0 ≤ j < 36) denote the
remaining part of round keys.

those stored in R20–R23 are swapped by cyclically shifting these registers in 4
clock cycles, while the other data register and the key registers hold the current
state by clock gating. Simultaneously, the XOR operation with a 32-bit chunk
Ki is done by XOR gates in the matrix multiplier, which leads the savings
of 8 XOR gates. These data swaps are required twice for a round of the en-
cryption processing. Therefore, it takes 16 cycles for a round of the encryption
processing; in total 328 and 224 clock cycles are required for encryption and key
setup, respectively. In compensation for the increase of many cycle counts, several
8-bit inputs of MUXes together with 8 XOR gates for secret key chunk can be
discarded.

4 Supporting Decryption

Any encryption-only implementation can support decryption by using the CTR
mode. Yet, if the implementation itself supports decryption, it can be used for
more application, e.g., an application requiring the CBC mode. Accordingly, we
consider the three types of hardware architectures supporting decryption.

Since the data processing part of CLEFIA employs a 4-branch Type-2 gen-
eralized Feistel network [14], the directions of word rotation are different be-
tween the encryption function and the decryption function. The encryption and
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Fig. 8. 4-input AND-NOR and 4-input OR-NAND gate with 2 inputs inverted, which
correspond to XOR and XNOR gate

decryption processing of CLEFIA-128 is shown in Fig. 7 (a) and (b), respectively.
When the hardware architectures described in Sect. 3 support the decryption
processing straightforwardly, many additional multiplexers are considered to be
required due to these different directions of word rotation. For avoiding this, we
switch the positions of F0 and those of F1 at even-numbered rounds as shown
in Fig. 7 (c), and then the direction of word rotation becomes the same as the
encryption processing shown in Fig. 7 (a). Thus we do not have to largely modify
the data path of the above three architectures by processing F1 ahead of F0 at
even-numbered rounds. However, as the order of round keys fed into the data
processing block has been changed, the 8-bit round keys are fed from L10 when
F1 is processed at even-numbered rounds and from L30 when F0 is processed at
even-numbered rounds. Accordingly, a 8-bit 3-to-1 MUX is required for selecting
the source registers of appropriate round keys including L00. Since the leading
byte of a ciphertext is stored in R10, not R30 for encryption, at the end of
decryption because of the optimized decryption processing, a 8-bit 2-to-1 MUX
is required for selecting data out.

5 Implementation Results

We designed and evaluated the three types of hardware architectures presented in
Sect. 3 together with their versions supporting both encryption and decryption.
The environment of our hardware design and evaluation is as follows:

Language Verilog-HDL
Design library 0.13 μm CMOS ASIC library
Simulator VCS version 2006.06
Logic synthesis Design Compiler version 2007.03-SP3

One Gate Equivalent (GE) is equivalent to the area of a 2-way NAND with the
lowest drive strength. For synthesis, we use a clock frequency of 100 KHz, which
is widely used operating frequency for RFID applications.

Recently, scan flip-flops have been used in the low-area implementations of
blockciphers instead of combinations of D flip-flops and 2-to-1 MUXes [8,1,5] to
reduce area requirements. In our evaluation, a D flip-flop and a 2-to-1 MUX cost
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Table 1. Detailed implementation figures

Components [GE] Type-I Type-II Type-III

Data Processing Block 1392.5 1392.5 1314.5
Data Register (including MUX) 668 668 612
S-box (including MUX) 332.5 332.5 332.5
S0 117.25 117.25 117.25
S1 201.25 201.25 201.25

Matrix Multiplier 212 212 200
Secret Key MUX 136 136 136
Secret Key XOR 16 16 0∗

Round Key XOR 16 16 16
Other MUX 12 12 18

Key Scheduling Block 952 824 824
Key Register (including MUX) 936 808 808
CON XOR 16 16 16

Controller 333 377.25 349.25

Total [GE] 2677.5 2593.75 2487.75

Cycles [clk] 176 192 328

Throughput @100KHz [Kbps] 73 67 39

∗: Secret key XOR is merged to XOR gates in matrix multiplier

4.5 and 2.0 GE, respectively, while a scan flip-flop costs 6.25 GE. Thus, we can
save 0.25 GE per bit of storage. Moreover, the library we used has the 4-input
AND-NOR and 4-input OR-NAND gates with 2 inputs inverted described in
Fig. 8. The outputs of these cells are corresponding to those of XOR or XNOR
gates when the inputs X,Y are set as shown in Fig. 8. Since these cells cost 2
GE instead of 2.25 GE required for XOR or XNOR cell, we can save 0.25 GE per
XOR or XNOR gate. Clock gating logics are inserted into the design manually
by instantiating Integrated Clock Gating (ICG) cells to gate the clocks of specific
registers.

Table 1 shows the detailed implementations figures of the three types of hard-
ware architectures presented in Sect. 3. CON generator and selector, ICG cells,
and buffers are included in controller.

The area savings for the key scheduling block of Type-II/III implementation
over Type-I implementation are 128 GE. In the library we used, a register with
a 3-to-1 MUX costs 7.25 GE per bit; a register with a 4-to-1 MUX costs 8.25 GE
per bit. The key register of Type-I implementation consists of 120 registers with
a 3-to-1 MUX (870 GE) and 8 registers with a 4-to-1 MUX (66 GE), while the
key register of Type-II/III implementation consists of 120 scan flip-flops (750
GE) and 8 registers with a 3-to-1 MUX (58 GE). Thus, the area savings of 128
GE are achieved.

The area savings for the data processing block of Type-III implementation
over Type-I/II implementation are 78 GE. As for the data register of Type-
III implementation 32 scan flips-flops (200 GE) is replaced with 32 D flip-flops
(144 GE), which leads savings of 56 GE. 24 3-to-1 MUXes with output inverted
(54 GE) can be replaced with 24 2-to-1 MUXes with output inverted (42 GE)
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Table 2. Implementation results and comparison

Algorithm Source Mode
Cycles Area Throughput @100KHz Technology
[clk] [GE] [Kbps] [μm]

CLEFIA

Type-I
Enc 176 2,678 73

0.13

Enc/Dec 176 2,781 73

Type-II
Enc 192 2,594 67

Enc/Dec 192/184 2,678 67/70

Type-III
Enc 328 2,488 39

Enc/Dec 328/320 2,604 39/40
[10,12] Enc/Dec 36 4,950 356 0.09

AES
[3] Enc/Dec 1,032/1,165 3,400 12/11 0.35
[4] Enc 177 3,100 72 0.13
[5] Enc 226 2,400 57 0.18

in the matrix multiplier, leading to savings of 12 GE. In addition, 8 XOR gates
(16 GE) for secret key XOR is merged to XOR gates in the matrix multiplier.
Therefore, the area savings of 78 GE are achieved despite the additional 6 GE
for the other MUX.

Table 2 shows the implementation results of the proposed architectures to-
gether with their versions supporting both encryption and decryption. We also
show, for comparison, the best known result of CLEFIA and low-area implemen-
tation results of AES. Our implementations supporting encryption only achieve
46–50% reduction of the area requirements compared to the smallest implemen-
tation [10,12] of CLEFIA. As for implementations supporting both encryption
and decryption, our implementations are 44–47% smaller. Type-III implementa-
tion is 4% larger than the smallest encryption-only implementation [5] of AES,
but its encryption/decryption version achieves 23% reduction of the area re-
quirements compared to the smallest encryption/decryption implementation [3]
of AES.

In order to investigate the components of 47% area reduction of Type-III im-
plementation supporting both encryption and decryption over [10,12], we first
optimized and synthesized the smallest design in [10,12] using the ASIC library
in this paper. Next, we designed and evaluated Type-I architecture without using
hardware implementation technique such as clock gating and the use of scan flip-
flops. As a result, 10%, 29%, and 8% area reduction was shown to be achieved by
the difference of ASIC libraries, data-path serialization, and hardware implemen-
tation techniques, respectively. 29% area reduction by data-path serialization in
detail was divided into 8% by the S-box circuit, 5% by the matrix multiplier
circuit, 6% by the reduction of XORs, and 10% by the reduction of MUXes. On
the other hand, 8% area reduction by hardware implementation techniques was
divided into 6% by clock gating, 1% by the use of scan flip-flops, and 1% by the
other techniques.
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6 Conclusion

In this paper, we have proposed very compact hardware architectures of CLE-
FIA with 128-bit keys based on 8-bit shift registers. We showed that the data
processing part of CLEFIA-128 can be implemented in a serialized way without
any additional registers. Three types of hardware architectures were proposed
according to required cycles for one block process by adaptively applying clock
gating technique. Those architectures were implemented and synthesized using a
0.13 μm standard cell library. In our smallest implementation, the area require-
ments are only 2,488 GE, which is 50% smaller than the smallest implementa-
tion of CLEFIA-128, and competitive to the smallest AES-128 implementation.
Moreover, the area requirements for its version supporting both encryption and
decryption are only 2,604 GE, which achieve 23% reduction of area requirement
compared to the smallest encryption/decryption implementation of AES-128.

Future work will include the application of side-channel countermeasures such
as threshold implementations [6,7] to the proposed architectures.

References

1. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A
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Appendix

In this appendix, we show the detailed data flow of the registers Rij in Fig. 5
during a round of the encryption processing for Type-I architecture. Fig. 9 defines
the data structure of a round of the encryption processing. The contents of the
registers Rij (0 ≤ i < 4) are clarified in Table 3.

S1

S0

S1

S0

RK2i+1
*

M1

b0

b1

b2

b3

Kt0|Kt1|Kt2|Kt3

x30|x31|x32|x33x20|x21|x22|x23

S0

S1

S0

S1

RK2i
*

M0

a0

a1

a2

a3

Ks0|Ks1|Ks2|Ks3

x10|x11|x12|x13x00|x01|x02|x03

y00|y01|y02|y03 y10|y11|y12|y13 y20|y21|y22|y23 y30|y31|y32|y33

Fig. 9. A round of encryption processing

http://www.sony.net/Products/cryptography/clefia/download/data/clefia-spec-1.0.pdf
http://www.sony.net/Products/cryptography/clefia/download/data/clefia-spec-1.0.pdf
http://www.sony.net/Products/cryptography/clefia/download/data/clefia-eval-1.0.pdf
http://www.sony.net/Products/cryptography/clefia/data/clefia-eval-1.0.pdf


292 T. Akishita and H. Hiwatari

Table 3. Contents of registers Rij (0 ≤ i, j < 4) at the l-th cycle

l 0 1 2 3 4
R00 x00 x01 x02 x03 x20

R01 x01 x02 x03 x20 x21

R02 x02 x03 x20 x21 x22

R03 x03 x20 x21 x22 x23

R10 x10 x21 x22 x23 x30

R11 x11 x22 x23 x30 x31

R12 x12 x23 x30 x31 x32

R13 x13 x30 x31 x32 x33

R20 x20 x13⊕{06}a0 x12⊕{04}a0⊕{06}a1 x11⊕{02}a0⊕a1⊕{06}a2⊕Ks1 y00

R21 x21 x12⊕{04}a0 x13⊕{06}a0⊕{04}a1 x10⊕a0⊕{02}a1⊕{04}a2⊕Ks0 y01

R22 x22 x11⊕{02}a0 x10⊕a0⊕{02}a1⊕Ks0 x13⊕{06}a0⊕{04}a1⊕{02}a2 y02

R23 x23 x10⊕a0⊕Ks0 x11⊕{02}a0⊕a1⊕Ks1 x12⊕{04}a0⊕{06}a1⊕a2⊕Ks2 y03

R30 x30 x31 x32 x33 x00 (= y30)
R31 x31 x32 x33 x00 x01 (= y31)
R32 x32 x33 x00 x01 x02 (= y32)
R33 x33 x00 x01 x02 x03 (= y33)

l 4 5 6 7 8
R00 x20 x21 x22 x23 y00

R01 x21 x22 x23 y00 y01

R02 x22 x23 y00 y01 y02

R03 x23 y00 y01 y02 y03

R10 x30 y01 y02 y03 x20 (= y10)
R11 x31 y02 y03 x20 x21 (= y11)
R12 x32 y03 x20 x21 x22 (= y12)
R13 x33 x20 x21 x22 x23 (= y13)
R20 y00 x33⊕{0A}b0 x32⊕{02}b0⊕{0A}b1 x31⊕{08}b0⊕b1⊕{0A}b2⊕Kt1 y20

R21 y01 x32⊕{02}b0 x33⊕{0A}b0⊕{02}b1 x30⊕b0⊕{08}b1⊕{02}b2⊕Kt0 y21

R22 y02 x31⊕{08}b0 x30⊕b0⊕{08}b1⊕Kt0 x33⊕{0A}b0⊕{02}b1⊕{08}b2 y22

R23 y03 x30⊕b0⊕Kt0 x31⊕{08}b0⊕b1⊕Kt1 x32⊕{02}b0⊕{0A}b1⊕b2⊕Kt2 y23

R30 y30 y30 y30 y30 y30

R31 y31 y31 y31 y31 y31

R32 y32 y32 y32 y32 y32

R33 y33 y33 y33 y33 y33



Another Look at Tightness

Sanjit Chatterjee1, Alfred Menezes2, and Palash Sarkar3

1 Department of Computer Science and Automation, Indian Institute of Science
sanjit@csa.iisc.ernet.in

2 Department of Combinatorics & Optimization, University of Waterloo
ajmeneze@uwaterloo.ca

3 Applied Statistics Unit, Indian Statistical Institute
palash@isical.ac.in

Abstract. We examine a natural, but non-tight, reductionist security
proof for deterministic message authentication code (MAC) schemes in
the multi-user setting. If security parameters for the MAC scheme are
selected without accounting for the non-tightness in the reduction, then
the MAC scheme is shown to provide a level of security that is less
than desirable in the multi-user setting. We find similar deficiencies in
the security assurances provided by non-tight proofs when we analyze
some protocols in the literature including ones for network authentication
and aggregate MACs. Our observations call into question the practical
value of non-tight reductionist security proofs. We also exhibit attacks on
authenticated encryption schemes, disk encryption schemes, and stream
ciphers in the multi-user setting.

1 Introduction

A reductionist security proof for a cryptographic protocol P with respect to a
problem S is an algorithm R for solving S, where R has access to a hypothetical
subroutine A (called an oracle) that achieves the adversarial goal specified by the
security definition for P . Suppose that A takes time at most T and is successful
with probability at least ε, where T and ε are functions of the security parameter.
Suppose further that R solves S in time T ′ with probability at least ε′; again,
T ′ and ε′ are functions of the security parameter. Then the reductionist security
proof R is said to be tight if T ′ ≈ T and ε′ ≈ ε. Roughly speaking, it is non-tight
if T ′ % T or if ε′ & ε, in which case the tightness gap can be informally defined
to be (T ′ε)/(T ε′).

A tight proof for P with respect to S is desirable because one can then deploy
P and be assured that breaking P (within the confines of the adversarial model
specified by the security definition for P) is at least as hard as solving S. On the
other hand, a non-tight proof for P with respect to S provides only the weaker
assurance that breaking P requires at least as much work as a certain fraction
of the work believed to be necessary for solving S. In that case, the desired
security assurance for P can be attained by using larger parameters — but at
the expense of slower performance.

A. Miri and S. Vaudenay (Eds.): SAC 2011, LNCS 7118, pp. 293–319, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



294 S. Chatterjee, A. Menezes, and P. Sarkar

BBS Generator. As an example, consider the Blum-Blum-Shub (BBS) pseu-
dorandom bit generator G [14]. For an n-bit integer N that is the product of
two primes each of which is congruent to 3 modulo 4, the BBS generator takes
a random integer x mod N as the seed and produces M = jk bits as follows:
Let x0 = x, and for i = 1, . . . , k let xi = min{x2

i−1 mod N, N − (x2
i−1 mod N)}.

Then the output of G consists of the j least significant bits of xi, i = 1, . . . , k.
In [1] it was proven that j = O(log n) bits can be securely extracted in each

iteration, under the assumption that factoring is intractable. More precisely, if
one assumes that no algorithm can factor N in expected time less than L(n),
then the security proof in [1] (see [68]) shows that the BBS generator is (T, ε)
secure if

T ≤ L(n)(ε/M)8

24j+27n3
. (1)

Here, (T, ε)-security means that there is no algorithm with running time bounded
by T which can distinguish between the outputs of G and a purely random bit
generator with advantage greater than ε.

The aforementioned security proof is an example of a polynomial-time reduc-
tion since, for M = O(nc) (where c is a constant), j = O(log n), and constant ε,
the right-hand side of (1) is of the form L(n)/f(n) where f is a polynomial in
the security parameter n. Such polynomial-time security proofs provide security
assurances in an asymptotic sense, i.e., as the security parameter n tends to
infinity. However, for a fixed security parameter that might be used in practice,
the proof might provide little or no security assurance. For example, suppose
that one were to follow the recommendations in [29] and [72] and implement
the BBS generator with n = 768 and j = 9. Then, as observed in [47], by using
the number field sieve to estimate L(n) and taking M = 107 and ε = 0.01, one
sees that the inequality (1) provides security assurances only against an adver-
sary whose time is bounded by 2−264. Thus, the security proof is completely
meaningless for these parameters.

Does Tightness Matter? As discussed in [47], a non-tight reductionist security
proof for a protocol P with respect to a problem S can be interpreted in several
ways. An optimistic interpretation is that it is reasonable to expect that a tighter
reduction will be found in the future, or perhaps that P is secure in practice in
the sense that there is no attack on P that is faster than the best attack on S
even though a tight reduction from S to P might not exist. However, strictly
speaking, if one implements P using a security parameter for which the problem
S is expected to take time T ′ to solve, then the security proof does not rule out
the possibility that an attack on P which takes time considerably less than T ′

will be discovered in the future.
Researchers who work in theoretical cryptography are generally satisfied with

polynomial-time reductions, although some of them caution about the validity
of non-tight proofs in practice. For instance, Luby [52] writes “when we describe
a reduction of one primitive to another we are careful to quantify how much
of the security of the first instance is transferred to the second.” Goldreich [36]
cautions that a (non-tight) asymptotic proof offers only the “plausibility” of
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the protocol’s security. On the other hand, Damg̊ard [25] asserts that a non-
tight polynomial-time reduction is useful because it rules out all polynomial-
time attacks. However, such an assurance is not very comforting since proofs
are meant to guarantee resistance to all attacks, and moreover there are many
examples of practical cryptographic schemes that have succumbed to attacks
that are deemed to be effective in practice even though in asymptotic terms
they require super-polynomial time.

Considerable effort has been expended on devising tighter security proofs for
existing protocols, and on designing new protocols with tighter security proofs.
For example, the first security proof [5] for the traditional hash-then-sign RSA
signature scheme (called RSA-FDH) was highly non-tight. Subsequently, Coron
[23] found an alternate proof that is significantly tighter (although still consid-
ered non-tight), and proved that no tighter reduction exists [24]. Meanwhile,
Katz and Wang [43] showed that a small modification of RSA-FDH yields a sig-
nature scheme that has a tight security proof, arguably increasing confidence in
RSA-FDH itself. Nonetheless, another variant of RSA-FDH, called RSA-PSS, is
commonly recommended in practice because it has a tight security proof [5]. As
another example, Gentry and Halevi [35] designed a hierarchical identity-based
encryption (HIBE) scheme that has a security proof whose tightness gap depends
only linearly on the number of levels, in contrast to all previous HIBE schemes
whose tightness gaps depend exponentially on the number of levels. Finally, we
mention Bernstein’s [7] tight proof in the random oracle model for the Rabin-
Williams signature scheme, and Schäge’s [65] tight proofs without the random
oracle assumption for the Cramer-Shoup and Camenisch-Lysyanskaya signature
schemes.

Despite ongoing efforts by some to tighten security proofs of existing protocols
and to develop new protocols with tighter proofs, it is fair to say that, for the
most part, the tightness gaps in security proofs are not viewed as a major concern
in practice. Researchers who design protocols with non-tight proofs typically give
arguments in favour of their protocol’s efficiency by using parameters that would
make sense if the proof had been tight. For example, the Schnorr signature
scheme [66] is widely regarded as being secure, although its known security
proofs are highly non-tight [58]. In fact, there are arguments which suggest that
a tighter proof is not even possible [57]. Nevertheless, the Schnorr signature
scheme is widely used in the cryptographic literature without any suggestion to
use larger key sizes to account for the tightness gap in the proof.

Other examples of well-known protocols with highly non-tight proofs include
the Boneh-Franklin (BF) [16,34], Sakai-Kasahara (SK) [22] and Boneh-Boyen
(BB1) [15] identity-based encryption schemes, the Lu et al. aggregate signature
scheme [51], and the HMQV key agreement protocol [48]. In [18], Boyen com-
pares the tightness of the reductions for BB1, BF and SK. The reduction for
BB1 is significantly tighter than the reduction for BF, which in turn is signifi-
cantly tighter than that for SK. However, all three reductions are in fact highly
non-tight, the tightness gap being (at least) linear, quadratic and cubic in the
number of random oracle queries made by the adversary for BB1, BF and SK,
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respectively. Although all these proofs have large tightness gaps, Boyen recom-
mends that SK should “generally be avoided as a rule of thumb”, BF is “safe
to use”, and BB1 “appears to be the smartest choice” in part due to the “fairly
efficient security reduction” of the latter. Despite the importance Boyen attaches
to tightness as a reason for avoiding SK, a recent IETF standard co-authored
by Boyen that describes BB1 and BF [19] does not recommend larger security
parameters to account for tightness gaps in their security proofs.

Our Work. In §2, we examine a natural, but non-tight, reductionist security
proof for MAC schemes in the multi-user setting. If parameters are selected
without accounting for the tightness gap in the reduction, then the MAC scheme
is shown to provide a level of security that is less than what one would desire
in the multi-user setting. In particular, the attacks we describe are effective on
HMAC as standardized in [33,26] and CMAC as standardized in [28,69]. In §3,
we show that this deficiency in the security assurances provided by the non-
tight proof appears in a network authentication protocol [20], and in §4 we
obtain analogous results for aggregate MACs and aggregate designated verifier
signatures. In §5, we exhibit attacks on some authenticated encryption schemes,
disk encryption schemes, and stream ciphers in the multi-user setting. We draw
our conclusions in §6.

2 MACs in the Multi-user Setting

Cryptographic protocols that provide basic confidentiality and authentication
security services are typically examined in the single-user setting, where there
is only one legitimate user (or a pair of legitimate users) and an adversary.
However, these protocols are generally deployed in the multi-user setting, where
there may be additional threats. Key establishment protocols were first analyzed
in the multi-user setting in [4,13]. This was followed by a study of multi-user
public-key encryption [2] and signatures [54]. In this section, we consider the
security of MAC schemes in the multi-user setting.

2.1 Security Definition

A MAC scheme consists of a family of functions {Hk}k∈K, where K = {0, 1}r
is the key space and Hk : D → {0, 1}t for each k ∈ K. Here, D is the set of all
(non-empty) binary strings of some maximum length L. A pair of users A and
B select a secret key k ∈ K. To authenticate a message m ∈ D, user A computes
the tag τ = Hk(m) and sends (m, τ). The receiver B verifies that τ = Hk(m).

The traditional definition of MAC security (in the single-user setting) is the
following. An adversary B has complete knowledge of the MAC scheme, i.e., it
can select arbitrary k ∈ K and m ∈ D and compute Hk(m). Now, a key k′ is
selected independently and uniformly at random from K and kept secret from
B. The adversary B has access to a MAC oracle indexed by k′ in the following
way: for any m ∈ D of B’s choosing, B is given Hk′(m). B’s goal is to produce a
forgery, i.e., a pair (m, τ) such that m ∈ D was not queried to the MAC oracle
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and Hk′(m) = τ . We will henceforth denote B’s task by MAC1 (breaking a MAC
scheme in the single-user setting). An adversary B is said to (T, ε)-break MAC1
if its running time is bounded by T and it produces a forgery with probability
at least ε; the probability is assessed over the choice of k′ and B’s coin tosses.
MAC1 is said to be (T, ε)-secure if there does not exist an adversary B that
(T, ε)-breaks it.

Our definition of MAC security in the multi-user setting is the following.
An adversary A has complete knowledge of the MAC scheme. First, n keys
k1, k2, . . . , kn corresponding to users1 1, 2, . . . , n are chosen independently and
uniformly at random from K and kept secret from A; n is an upper bound on
the total number of users in the system. The adversary A has access to MAC
oracles indexed by k1, . . . , kn in the following way: for any (i,m) of A’s choosing,
where i ∈ [1, n] and m ∈ D, A is given Hki(m). Furthermore, A is allowed to
corrupt any oracle (or user); i.e., for any i ∈ [1, n] of its choosing, A is given ki.
The adversary’s goal is to produce a forgery, i.e., find a triple (i,m, τ) such that:

(i) i ∈ [1, n] and m ∈ D;

(ii) the adversary did not corrupt oracle i;

(iii) the adversary did not query Hki with m; and

(iv) Hki(m) = τ .

Henceforth, A’s task will be denoted by MAC* (breaking a MAC scheme in
the multi-user setting)2. A is said to (T, ε)-break MAC* if its running time is
bounded by T and it produces a forgery with probability at least ε; the proba-
bility is assessed over the choices of k1, . . . , kn and A’s coin tosses. MAC* is said
to be (T, ε)-secure if there does not exist an adversary A that (T, ε)-breaks it.

2.2 Reductionist Security Proof

We present a natural reductionist security proof that a MAC scheme is secure
in the multi-user setting, provided that it is secure in the single-user setting.

Suppose, by way of contradiction, that A is an adversary that (T, ε)-breaks
MAC*. Suppose we are given access to a MAC oracle for Hk, where k ∈R K; call
the oracle MACk. We show how A can be used to design an adversary B that
produces a forgery with respect to MACk.
B begins by selecting an index j ∈R [1, n], guessing that if A succeeds then

its forgery will be with respect to user j. For each i ∈ [1, n] with i �= j, B
selects ki ∈R K as i’s secret key. User j’s secret key is assigned to be k (which
is unknown to B). B now runs A, answering A’s MAC and corrupt queries to
users i �= j using knowledge of ki, and using the given oracle MACk to answer
A’s MAC queries to user j. If A corrupts user j, then B aborts with failure. If
A outputs a forgery (j,m, τ), then B outputs (m, τ) as its forgery with respect
to MACk; otherwise, B’s experiment has failed.

1 More precisely, a ‘user’ is a pair of entities who share a symmetric key.
2 The MAC* problem without the corrupt capability was first formulated in [13].
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Now, A’s operation is independent of B’s guess j, unless A corrupts user j in
which case B is certain to fail. Hence, the probability that A succeeds and B’s
guess is correct is at least ε/n and so B (T, ε/n)-breaks MAC1. We conclude that
if a MAC scheme is (T, ε)-secure in the single-user setting, then it is (T, nε)-secure
in the multi-user setting.

Remark 1. (tightness gap in the security proof for MAC* ) The security reduction
is non-tight, having a tightness gap of n, the number of users of the MAC scheme.
In §2.3, we present a generic attack on an ideal MAC scheme in the multi-user
setting that, under the assumption that keys and tags are of the same bitlength
r, produces a MAC forgery within time 2r/n. The attack is faster than the best
possible attack — exhaustive key search with running time 2r — on an ideal
MAC scheme in the single-user setting. Note that the attack does not contradict
the security proof for MAC* because of the tightness gap of n. The attack
suggests that a reduction for MAC* that is tighter than the one given above
does not exist.

Remark 2. (tightness gap in the security proof for RSA-FDH ) The security proof
for MAC* given above is somewhat similar to the Bellare-Rogaway security
proof for RSA-FDH in the random oracle model [5]. Recall that the RSA-FDH
signature on a message m is s = H(m)d mod N , where (N, e) is an RSA public
key and d is the corresponding private key, and where H : {0, 1}∗ → [0, N − 1]
is a hash function modeled as a public random oracle. In the Bellare-Rogaway
proof, the simulator uses a signature forger F to solve a given instance (N, e, y)
of the RSA problem, i.e., find x ∈ [0, N − 1] satisfying y ≡ xe (mod N). The
forger F is executed with (N, e) as public key, and the simulator has to faithfully
answer F ’s signature queries and queries to H . Assuming that F makes at most
q H-queries, the simulator selects j ∈R [1, q] and answers the jth H-query m
with H(m) = y, hoping that F eventually produces a forger on m — since the
signature on m must be x, the simulator thereby obtains the solution to its
instance of the RSA problem. If F forges a signature on any of the other q − 1
messages it presented to H , then the simulator fails. Consequently, the security
reduction has a tightness gap of q.

Coron [23] gave an alternate security proof for RSA-FDH for which the tight-
ness gap is qS , the number of signature queries F is permitted to make. Since
qS can be expected to be significantly smaller than the number of hash queries
a real-world forger can make, Coron’s proof is significantly tighter. However, it
is still non-tight, and in fact Coron [24] showed that no tighter proof is possible.

Unlike the non-tight proof for multi-user MAC schemes, the tightness gap
in the RSA-FDH proof does not seem to be a concern because no one expects
there to be a method for breaking RSA-FDH that is faster than solving the
RSA problem (for which the fastest method known is to factor N). Indeed, it is
shown in [46] that RSA-FDH is tightly equivalent to an interactive version of the
RSA problem, called RSA1. Although Coron’s separation result implies that the
RSA1 problem cannot be proven to be tightly equivalent to the RSA problem,
reasonable heuristic arguments suggest that the RSA1 and RSA problems are
indeed equivalent in practice.
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Remark 3. (tightness gaps in security proofs for Diffie-Hellman key agreement
protocols) Numerous Diffie-Hellman key agreement protocols have been proposed
in the literature, and many of them have been proven secure in the Canetti-
Krawczyk (CK) [20] model (and its variants). In the CK model, there can be
many users, any two of which can engage in several sessions of the key agreement
protocol; suppose that there are at most n sessions in total. The security proofs
are with respect to the computational Diffie-Hellman problem (CDH) or a variant
of it: given g, gx and gy, where g is a generator of a cyclic group, compute gxy.
Typically, one part of the proof involves the simulator selecting a session j at
random and then embedding gx and gy as the (ephemeral or static) public keys
of each of the two communicating parties for that session. If the adversary of
the key agreement protocol succeeds in compromising the security of the jth
session, then the simulator is able to compute gxy; otherwise the simulator fails.
Consequently, the security reduction has a tightness gap of at least n.

To the best of our knowledge, all published security proofs for Diffie-Hellman
protocols in the CK model (e.g., see [48,50,55,70]) have tightness gaps of at
least n. However, no one has insisted that implementations of these protocols
use larger security parameters in order to account for the possible existence of
an attack that is better than the fastest known attack on the underlying Diffie-
Hellman problem.

2.3 An Attack on MAC*

Select an arbitrary message m and obtain the tags Hki(m) for i = 1, 2, . . . , n.
Next, select an arbitrary subset W of keys with |W| = w. For each � ∈ W ,
compute H�(m). If H�(m) = Hki(m) for some i (this event is called a collision),
then conclude that � = ki and use � to forge a message-tag pair for user i.

The expected running time of the attack is w, and there are n MAC queries.
The attack is deemed successful if � = ki the first time a collision H�(m) =
Hki(m) is detected. In §2.4, the attack’s success probability is analyzed in the
ideal MAC model. Recall that r is the key length and t is the tag length. Suppose
that n2 & 2r+1 and nw = c2t for some constant c. One consequence of the
analysis is that if r = t, then the success probability is approximately 1

2 . If t% r
then the success probability is essentially 1, whereas if r % t then the attack is
virtually certain to fail. These conclusions are not surprising, as the following
informal argument shows. A collision can occur due to either a key collision (i.e.,
ki = kj) or a tag collision (i.e., Hki(m) = Hkj (m) but ki �= kj). Given that a
collision has occurred, if keys and tags are of the same size, then the probability
that it is due to a key collision is about 1

2 ; if keys are much longer than tags, the
collision is most likely due to a tag collision; and if tags are much longer than
the keys, then the collision is most likely due to a key collision.

In the remainder of the paper, the attack will be referred to as Attack 1.

Remark 4. (a second attack on MAC* ) Select an arbitrarymessagem and obtain
the tags Hki(m) for i=1, 2, . . . until a collision is obtained: Hkp(m)=Hkq (m)
where p < q. Now corrupt user p and obtain kp. Under the assumption that
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kp = kq, use kp to forge a message-tag pair with respect to user q. This attack
is called Attack 2. One can show that if r ≤ t then the probability that the
first collision is a key collision is significant only when the number of MAC
queries is at least 2r/2. Since Attack 1 can succeed with fewer MAC queries,
does not require corrupt queries, and is amenable to time-memory trade-offs (cf.
Remark 7), it is always superior to Attack 2.

Remark 5. (symmetric-key encryption) Attack 1 shows that existential key re-
covery (i.e., finding the secret key of any one of a set of users) is easier than
universal key recovery (i.e., finding the secret key of a specified user) for (de-
terministic) MAC schemes; these notions of key recovery were discussed in [47,
Section 5] in the context of public-key cryptosystems. Gligor, Parno and Shin
(see [67]) proved that existential key recovery is intractable for nonce-based
symmetric-key encryption schemes that are indistinguishable against chosen-
plaintext attacks; an example of such an encryption scheme is the counter mode
of encryption (cf. §5). However, their proof is non-tight, the tightness gap being
equal to the number of secret keys in the system. They then showed that this
tightness gap allows an existential key recovery attack that is faster than the
best attack known for universal key recovery for certain nonce-based encryption
schemes including the counter mode of encryption. Attack 1 is analogous to their
attack, which in turn was preceded by Biham’s key collision attacks [9].

We next argue that Attack 1 is effective on HMAC as standardized in [33,26]
and CMAC as standardized in [28,69].

HMAC. HMAC [3] is a hash function-based MAC scheme that is extensively
standardized and has been widely deployed in practice. The MAC of a message
m with secret key k is HMACk(m) = Trunct (H(k ⊕ opad, H(k ⊕ ipad,m))),
where H : {0, 1}∗ → {0, 1}d is an iterated hash function, opad and ipad are
fixed strings, and Trunct is the truncation function that extracts the t most
significant bits of its input. The HMAC parameters are r (the bitlength of the
secret key k), t (the bitlength of MAC tags) and d (the output length of H ,
which is assumed to be an iterated hash function).

IETF RFC 4868 [44] specifies HMAC-SHA-256-128, i.e., HMAC with SHA-
256 [32] as the underlying hash function and parameters r=d=256 and t=128,
presumably intended to achieve a 128-bit security level. Since r % t, Attack 1 is
certain to fail when HMAC-SHA-256-128 is used in the multi-user setting.

HMAC is also standardized in FIPS 198-1[33], with recommendations for pa-
rameter sizes given in SP 800-107 [26]. It is stated in [26] that the “security
strength” of HMAC is the minimum of r and 2d, and the only requirement on
tag lengths is that t ≥ 8. Hence, if one were to use HMAC with SHA-1 [32]
(which has d=160) as the underlying hash function and select r=t=80, then the
resulting MAC scheme would be compliant with SP 800-107 and be expected to
achieve an 80-bit security level. However, this version of HMAC would succumb
to Attack 1 in the multi-user setting. Namely, by selecting n=220 and w=260,
after querying 220 users for the MAC of some fixed message m, the adversary
would be able to determine the secret key of one of the 220 users after performing
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about 260 MAC operations. Since the work can be easily and effectively paral-
lelized, the attack should be considered feasible today (cf. Remark 7).

The FIPS 198-1 standard allows 80-bit keys and 160-bit tags, i.e., r=80 and
t=160. Attack 1 also applies to this choice of parameters. In fact, since t% r, a
collision in the first phase of the attack will most likely be due to a key collision.
In general, having tag length to be greater than the key length will not provide
any additional resistance to Attack 1.

Remark 6. (number of users) The 220 users in the attack described above need
not be distinct pairs of entities. What is needed is 220 keys. An entity might
be engaged in multiple sessions with other entities, and might even have several
active sessions with the same entity. Thus, the attacks could be mounted with
far fewer than 220 different entities.

CMAC. CMAC is a block cipher-basedMAC scheme that has been standardized
in [28] and [69]. Let E denote a block cipher with key length r bits and block
length b bits. The r-bit key k is first used to generate two b-bit subkeys, k1 and
k2. The messagem is divided into blocksm1,m2, . . . ,mh, where each mi is b-bits
in length with the possible exception of mh, which might be less than b-bits long.
Now, if mh is b bits in length, then it is updated as follows: mh ← mh ⊕ k1.
Otherwise,mh is padded on its right with a single 1 bit followed by 0 bits until the
length of the padded mh is b bits; then mh is updated as follows: mh ← mh⊕k2.
Finally, one sets c0 = 0 and computes ci = Ek(ci−1⊕mi) for 1 ≤ i ≤ h. The tag
of m is defined to be CMACk(m) = Trunct(ch).

The standards [28] and [69] both use the AES block cipher (with r=b=128)
and do not mandate truncation, so we can take t=128. With these parameters,
CMAC in the multi-user setting is vulnerable to Attack 1. Indeed, after query-
ing n=232 users for the MAC of a fixed message m, the adversary is able to
compute the secret key of one of the users after performing about 296 MAC op-
erations. Although this workload is considered infeasible today, the attack does
demonstrate that CMAC-AES does not attain the 128-bit security level in the
multi-user setting.

Remark 7. (reducing the on-line running time) Hellman [39] introduced the idea
of time/memory trade-offs (TMTO) to search for a preimage of a target point in
the range of a one-way function. The idea is to perform a one-time precomputa-
tion and store some of the results, subsequent to which the on-line search phase
can be significantly sped up. Biryukov and Shamir [11] later applied TMTO
to stream ciphers. They considered the problem of inverting any one out of D
possible targets. Let N denote the size of the search space, M the amount of
memory required, and T the on-line time, and suppose that 1≤D≤T 2. Then the
Biryukov-Shamir TMTO can be implemented with these parameters provided
that they satisfy the so-called multiple-data trade-off curve TM2D2 = N2; the
precomputation time P is N/D. The multiple-data trade-off curve has natural
interpretations in other contexts. Biryukov et al. [10] considered the problem of
finding any one of D keys for a block cipher. An extensive analysis of TMTO
with multiple data in different cryptographic settings was carried out in [40].
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The multiple-data trade-off curve can be applied in the current context to
reduce the online search time. For HMAC with r=t=80 as considered above,
consider the function f : k $→ HMACk(m) where m is a fixed message. Treating
f as a one-way function, the adversary’s goal is to invert f on any one of the
n tag values f(k1), . . . , f(kn). For n = 220, the precomputation time is P = 260

and T and M satisfy TM2 = 2120. Setting T = M (as originally considered by
Hellman), we have T = M = 240. Thus, the adversary can find any one of 220

possible HMAC keys with an off-line computation of 260 HMAC invocations,
240 storage units, and an on-line search time of 240. Using presently available
storage and computer technology, this attack should be considered feasible.

For the CMAC example considered above with r=t=128, if the adversary
wishes to determine any one of n = 232 possible secret keys, the precomputation
time would be P = 296. The parameters T and M are related by TM2 = 2192,
so T = M = 264 is one solution. Hence, with 264 storage units, an on-line search
time of 264 will find one of 232 keys.

Remark 8. (two-key and three-key variants of CMAC ) The predecessors of CMAC
include a three-key variant called XCBC [12] and a two-key variant called TMAC
[49]. Interestingly, these predecessors are not vulnerable to Attack 1 due to the
use of multiple keys.

Remark 9. (comparison with birthday attacks) HMAC and CMAC are both vul-
nerable to the following birthday attack in the single-user setting. Suppose that
keys and tags are each r bits in length. The adversary collects message-tag pairs
(where the messages all have the same length) until two distinct messages m1

and m2 are found with the same tag τ . By the birthday paradox, the expected
number of pairs needed is approximately 2r/2. Then, for any string x, (m1, x)
and (m2, x) have the same tags (with high probability in the case of HMAC, and
with certainty in the case of CMAC). The attacker can then request for the tag
of (m1, x), thereby also obtaining the tag of (m2, x).

Note that Attack 1 can be successful by using signficantly fewer MAC queries,
and additionally needs to issue only one MAC query per user. Moreover, the
damage caused by Attack 1 is more severe than the birthday attack since the
former is a key recovery attack.

2.4 Analysis of Attack 1

The ideal MAC model for a MAC scheme {Hk : D → {0, 1}t}k∈K is the following.
Let F be the set of all functions from D to {0, 1}t. The set F is finite and can be
considered as the set of all strings of length #D over the alphabet {0, 1}t. A total
of 2r independent and uniform random choices are made from F , giving a family
of 2r independent random oracles. Each such oracle can be indexed by an r-bit
string. The resulting indexed family is the idealized version of a MAC scheme.
In what follows, {Hk}k∈K will denote an idealized MAC family. In particular,
the Hk’s will be considered to be independent uniform random oracles.

Consider the following procedure. Suppose k1, . . . , kn are chosen indepen-
dently and uniformly at random from K = {0, 1}r. Let m (a message) be an
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arbitrary element of D. Then, for i �= j, we will need to consider the event that
Hki(m) = Hkj (m). For the probability analysis, it will be useful to analyze this
event in terms of the following three events, the last two of which are conditional
events: (i) ki = kj ; (ii) Hki = Hkj given that ki �= kj ; and (iii) Hki(m) = Hkj (m)
given that ki �= kj and Hki �= Hkj . Clearly Pr[ki = kj ] = 2−r and Pr[Hki =
Hkj |ki �= kj ] = 1/#F = (2−t)#D. In practical applications, the maximum length
L of messages can be expected to be at least around 220 and so the probabil-
ity that Hki = Hkj given ki �= kj is negligible. Furthermore, for 1 ≤ s ≤ 2t,
the quantity s/#F is also negligible. We will use these approximations in the
remainder of the analysis.

The analysis of Attack 1 is done in two stages. In the first stage, we determine
values for n and w for which there is a significant probability of detecting a
collision. The second stage of the analysis considers the probability of the keys
� and ki being equal once a collision H�(m) = Hki(m) is detected.

Let W = {�1, . . . , �w} and consider the functions H�1 , . . . , H�w . Let A be the
event that these functions are distinct. Then

Pr[A] =

(
1− 1

#F
)(

1− 2

#F
)
· · ·

(
1− w − 1

#F
)
≈ 1.

The approximation is based on the fact that w2 is negligible in comparison
to #F = (2t)#D. Let C be the event that a collision occurs. Let Lst1 =
{Hk1(m), . . . , Hkn(m)} and Lst2 = {H�1(m), . . . , H�w(m)}. The event C is the
event Lst1 ∩ Lst2 �= ∅. Now,

Pr[C] = Pr[C|A] · Pr[A] + Pr[C|A] · Pr[A] ≈ Pr[C|A].
Let B1 be the event that the keys k1, . . . , kn are pairwise distinct. Then

Pr[B1] =

(
1− 1

2r

)
· · ·

(
1− n− 1

2r

)
≈ exp

(
− 1

2r
(1 + 2 + · · ·+ n− 1)

)

≈ exp

(
− n2

2r+1

)
≈ 1− n2

2r+1
.

As long as n2 & 2r+1, the probability of event B1 occurring will be almost equal
to 1. For the remainder of the analysis, we will assume that this condition holds.

Let B2 be the event that the functions Hk1 , . . . , Hkn are pairwise distinct.
Conditioned on the event B1, the probability of B2 occurring is almost equal 1.
This follows from an argument similar to the one which shows that Pr[A] ≈ 1.
We introduce three more approximations:

Pr[C] ≈ Pr[C|A] = Pr[C|A,B1] · Pr[B1] + Pr[C|A,B1] · Pr[B1]

≈ Pr[C|A,B1] (using Pr[B1] ≈ 1)

= Pr[C|A,B1, B2] · Pr[B2] + Pr[C|A,B2] · Pr[B2]

≈ Pr[C|A,B1, B2] (using Pr[B2] ≈ 1).

Let xi = Hki(m) for 1 ≤ i ≤ n and yj = H�j (m) for 1 ≤ j ≤ w. Conditioned
on the conjunction of B1 and B2, the values x1, . . . , xn are independent and
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uniformly distributed. Conditioned on event A, the values y1, . . . , yw are inde-
pendent and uniformly distributed. Hence, conditioned on the conjunction of A,
B1 and B2, the event C is the event that a list of n independent and uniform
values from {0, 1}t has a non-empty intersection with another list of w indepen-
dent and uniform values from {0, 1}t. By the birthday bound, this probability
becomes significant when the product n · w is some constant times 2t. As an
example, one may choose n = 2t/4 and w to be a constant times 23t/4.

Suppose now that a collision is detected. The probability that the collision is
due to a repetition of the keys can be estimated as follows. We have

Pr[Hki(m) = H�j (m)] = Pr[ki = �j] + Pr[Hki(m) = H�j (m)|ki �= �j] · Pr[ki �= �j ]

=
1

2r
+

(
1− 1

2r

)
·
(
Pr[Hki = H�j |ki �= �j ]

+ Pr[Hki(m) = H�j (m)|ki �= �j, Hki �= H�j ] · Pr[Hki �= H�j |ki �= �j]

)

=
1

2r
+

(
1− 1

2r

)(
1

#F +
1

2t

(
1− 1

#F
))

≈ 1

2r
+

1

2t
− 1

2t+r
= δ,

and hence

Pr[ki = �j |Hki(m) = H�j (m)] =
Pr[ki = �j, Hki(m) = H�j (m)]

Pr[Hki(m) = H�j (m)]

=
Pr[ki = �j]

Pr[Hki(m) = H�j (m)]
≈ 1

2rδ
=

2t+r

2r(2t + 2r − 1)
=

2t

2t + 2r − 1
.

If r = t, then the last value is approximately 1
2 . However, if r % t, then the

probability is essentially 0.

2.5 Fixes

We propose two generic countermeasures to Attack 1 on MAC schemes in the
multi-user setting.

Remark 10. (preventing replay attacks) Some MAC standards make provisions
for protecting against the replay of message-tag pairs. For example, NIST’s SP
800-38B [28] suggests that replay can be prevented by “incorporating certain
identifying information bits into the initial bits of every message. Examples
of such information include a sequential message number, a timestamp, or a
nonce.” We note that sequential message numbers and timestamps do not nec-
essarily circumvent Attack 1 because it is possible that each user selects the
same sequential message number or timestamp when authenticating the chosen
message m. Nonces can be an effective countermeasure provided that there is
sufficient uncertainty in their selection.

rMAC. One countermeasure is to randomize the conventional MAC scheme
{Hk}k∈K. That is, a user with secret key k now authenticates a message m by
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computing τ = Hk(s,m) where s ∈R {0, 1}r; the resulting tag is (s, τ). The
verifier confirms that τ = Hk(s,m). This modified MAC scheme is called rMAC
(randomized MAC).

Security of rMAC in the multi-user setting is defined analogously to security
of MAC*: The adversary A is given access to n rMAC oracles with secret keys
k1, k2, . . . , kn ∈R K and can corrupt any oracle (i.e., obtain its secret key).
Its goal is to produce a triple (i,m, (s, τ)) such that the ith oracle was not
corrupted, (m, (s, τ)) is a valid message-tag pair with respect to the ith oracle
(i.e, Hki(s,m) = τ), and m was not queried to the ith oracle. We denote A’s
task by rMAC*. When n = 1, then rMAC* is called rMAC1 (security of rMAC
in the single-user setting).

It is easy to verify that rMAC* resists Attack 1. Let us denote by P1 ≤b P2 a
reduction from problem P1 to problem P2 that has a tightness gap of b; if b = 1
then the reduction is tight. In §2.2 we showed that MAC1 ≤n MAC*, i.e., the
problem of breaking a MAC scheme in the single-user setting can be reduced to
breaking the same MAC scheme in the multi-user setting, but the reduction has a
tightness gap of n. Trivially, we have MAC* ≤1 MAC1. The reductionist security
proof in §2.2 can be adapted to show that rMAC1 ≤n rMAC*, and we trivially
have rMAC* ≤1 rMAC1. Moreover, it is easy to see that MAC1 ≤1 rMAC1
and hence MAC1 ≤n rMAC*. However, it is unlikely that a generic reduction of
rMAC1 to MAC1 exists because a MAC scheme {Hk}k∈K having the property
that there exists a (known) pair (s, τ) with s ∈ {0, 1}r, τ ∈ {0, 1}t andHk(s) = τ
for all k ∈ K would be considered insecure whereas the corresponding rMAC
scheme could well be secure.

We do not know a tighter security reduction from MAC1 to rMAC*, nor
do we know whether a tighter reduction is even possible (in general). However,
we would expect that rMAC* and MAC1 are tightly related in practice. One
approach to increasing confidence in rMAC* would be to derive tight lower
bounds for MAC1 and rMAC* in the ideal MAC model, and hope that these
lower bounds coincide.

fMAC. One drawback of rMAC is that tags are longer than before. An alter-
native countermeasure is to prepend all messages with a string that is fixed
and unique to every pair of users (and every session between them). That is, a
user with secret key k would authenticate a message m by computing the tag
τ = Hk(f,m), where f is the fixed and unique string that the user shares with
the intended recipient (for that session). All such strings are assumed to have
the same length, and this length is at least r. The strings are assumed to be
understood from context, so do not need to be transmitted. (For an example of
such strings, see §3.3.) The verifier confirms that τ = Hk(f,m). This modified
MAC scheme is called fMAC (fixed-string MAC).

Security of fMAC in the multi-user setting is defined analogously to security
of MAC*: The adversary A is given access to n fMAC oracles with secret keys
k1, . . . , kn ∈R K and fixed strings f1, . . . , fn, and can corrupt any oracle. Its goal
is to produce a triple (i,m, τ) such that the ith oracle was not corrupted, (m, τ) is
a valid message-tag pair with respect to the ith oracle (i.e, Hki(fi,m) = τ), and
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m was not queried to the ith oracle. We denote A’s task by fMAC*. When n = 1,
then fMAC* is called fMAC1 (security of fMAC in the single-user setting).

As was the case with rMAC*, it is easy to verify that fMAC* resists Attack 1.
Furthermore, one can show that fMAC* ≤1 fMAC1 and MAC1 ≤1 fMAC1 ≤n

fMAC*, while we do not expect there to be a generic reduction from fMAC1 to
MAC1. We do not know a tighter security reduction from MAC1 to fMAC*, nor
do we know whether a tighter reduction is even possible (in general). However,
we would expect that fMAC* and MAC1 are tightly related in practice. An
intuitive reason for why fMAC* can be expected to be more secure than MAC*
is that for fMAC* each of the n oracles available to the adversary can be viewed
as having been chosen from an independent family of MAC functions, whereas
in MAC* each of the n oracles available to the adversary is chosen from a single
family of MAC functions.

Remark 11. (use of MAC schemes) Higher-level protocols that use MAC schemes
for authentication generally include various data fields with the messages being
MAC’ed, thus providing adequate defenses against Attack 1. For example, IPsec
has an authentication-only mode [45] where a MAC scheme is used to authen-
ticate the data in an IP packet. Among these data fields are the source and
destination IP addresses, and a 32-bit “Security Parameter Index” (SPI) which
identifies the “Security Association” (SA) of the sending party.

3 NetAut

NetAut is a network authentication protocol proposed by Canetti and Krawczyk
[20] which combines a key establishment scheme with a conventional MAC
scheme in a natural way. In [20], a security model and definition for key estab-
lishment are proposed. Then, NetAut is proved to be a secure network authen-
tication protocol under the assumption that the underlying key establishment
and MAC schemes are secure. We describe several shortcomings in the analy-
sis of NetAut. The most serious of these shortcomings is the tightness gap in
the security proof, which we exploit to formulate concrete attacks on plausible
instantiations of NetAut.

3.1 Network Authentication

The NetAut protocol presented in [20] has two ingredients: a key establishment
protocol π and a MAC scheme. NetAut utilizes a session identifier s, which is a
string agreed upon by the parties before execution of the protocol commences.
It is assumed that no two NetAut sessions in which a party Â participates with
another party B̂ have the same session identifier.

In the initial stage of the NetAut protocol3, a party Â participates in a key
establishment session with another party B̂. Upon successful completion of the

3 Our description of NetAut is informal and omits a lot of details; the reader can refer
to [20] for a complete description.
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session, Â accepts a session key κ associated with the session identified by s
and (presumably) shared with B̂. Now, to send B̂ an authenticated message
m within session s, Â computes τ = MACκ(m) and sends (Â, s,m, τ) to B̂.
Similarly, upon receipt of a message (B̂, s,m, τ), Â computes τ ′ = MACκ(m)
and accepts if τ ′ = τ . At any point in time, Â can have multiple active sessions,
and can even have multiple active sessions with B̂.

The security model for NetAut is developed in two stages. The first stage
defines what it means for a key establishment protocol to be secure. The secu-
rity model, which has come to be known as the ‘CK model’, allows for multiple
parties and multiple sessions, and gives the adversary substantial powers includ-
ing the ability to learn some session keys, corrupt parties (learn all their secret
information), and learn some secret information that is specific to a particular
session. Informally speaking, a key establishment protocol is said to be secure if
no such adversary can distinguish the session key held by a fresh session from a
randomly-generated session key, where a ‘fresh’ session is one for which the ad-
versary cannot learn the corresponding session key through trivial means (such
as corrupting the party that participates in that session or simply asking for
the session key). A crucial feature of the definition is that any key establishment
protocol that satisfies the security definition can be appropriately combined with
secure MAC and symmetric-key encryption schemes to realize a ‘secure chan-
nel’. In this paper, we will only consider NetAut — the combination of a key
establishment protocol with a MAC scheme.

The second stage of the security model for NetAut starts with an idealized
notion called a session-based message transmission (SMT) protocol in the au-
thenticated links model. In the authenticated links model, the communications
links between any two parties is perfectly authenticated — the SMT protocol
is secure in this model by its very definition. A secure network authentication
protocol is then defined as one that ‘emulates’ SMT in the unauthenticated links
model in the sense that whatever an adversary can achieve against the protocol
can also be accomplished by an adversary against SMT in the authenticated
links model.

Canetti and Krawczyk prove that if π is a secure key establishment protocol
and the MAC scheme is secure (in the single-user setting), then NetAut is a
secure network authentication protocol. The proof and associated definitions are
long and intricate. In §3.2 we describe some pitfalls that arise in interpreting the
proof when NetAut is instantiated with the SIG-DH key establishment protocol.

3.2 A Concrete Analysis

For concreteness, we will consider the 80-bit security level. Let E be an elliptic
curve defined over Fp where p is a 160-bit prime. Suppose that N = #E(Fp) is
prime, so that the group E(Fp) of Fp-rational points offers an 80-bit security level
against attacks on the discrete logarithm problem. Let G be a fixed generator of
E(Fp). We consider CMAC at the 80-bit security level, i.e., with 80-bit keys and
80-bit tags; the block cipher SKIPJACK [56], which has 80-bit keys and 80-bit
blocks, is a suitable ingredient.
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In the SIG-DH key agreement scheme, sigÂ and sigB̂ denote the signing al-
gorithms of parties Â and B̂, respectively. It is assumed that each party has
an authenticated copy of the other party’s public verification key. The SIG-DH
scheme proceeds as follows. The initiator Â selects x ∈R [0, N − 1] and sends
(Â, s,X=xG) to party B̂. In response, B̂ selects y ∈R [0, N − 1] and sends
(B̂, s, Y=yG, sigB̂(B̂, s, Y,X, Â)) to Â and computes κ = yX . Upon receipt of
B̂’s message, Â verifies the signature, sends the message (Â, s, sigÂ(Â, s,X, Y, B̂))
to B̂, and computes the session key κ = xY associated with session s. Finally,
upon receipt of Â’s message, B̂ verifies the signature and accepts κ as the session
key associated with session s.

Canetti and Krawzcyk proved that SIG-DH is secure in the CK model un-
der the assumption that the decisional Diffie-Hellman problem4 in E(Fp) is in-
tractable (and the signature scheme is secure). The proof proceeds in two stages.
In the first stage, the basic Diffie-Hellman protocol is proven secure in the au-
thenticated links model under the assumption that DDH is intractable; this proof
has a tightness gap of n, the total number of sessions. In the second stage, SIG-
DH is proven secure (in the unauthenticated links model) under the assumption
that the basic Diffie-Hellman protocol is secure in the authenticated links model;
this proof has a tightness gap of 2n. However, these tightness gaps do not seem
to have any negative security consequences for SIG-DH.

Key Type Mismatch. The first problem encountered when using SIG-DH and
CMAC as the ingredients of NetAut is that the SIG-DH session keys are points
in E(Fp) whereas the CMAC secret keys are bit strings. This key type mismatch
can be rectified by the commonly-used method of using a key derivation function
KDF to derive a bit-string session key from the SIG-DH session key, i.e., the
session key is now KDF(xyG). We refer to the modified key agreement scheme
as hashed SIG-DH (HSIG-DH).

The KDF is generally modeled as a random oracle in security proofs. HSIG-
DH can then be proven secure under the assumption that the gap Diffie-Hellman
(GDH) problem5 is hard using standard techniques.

Keysize Mismatch. Security proofs for Diffie-Hellman key agreement proto-
cols in the random oracle model sometimes make the assumption that the prob-
ability of a KDF collision during the adversary’s operation is negligible (e.g.,
see [48,50,55]). If this probability were not negligible, then the adversary could
conceivably force two non-related sessions (called ‘non-matching’ sessions in the
literature) to compute the same session key — in that event, the adversary could
learn the session key from one session by asking for it and thereby obtain the
session key for the other session. Thus, because of the birthday paradox, at the
80-bit security level the assumption that the adversary has negligible probability

4 The decisional Diffie-Hellman (DDH) problem in E(Fp) is the problem of determin-
ing whether Z=xyG given G, X=xG, Y=yG and Z ∈ E(Fp).

5 The gap Diffie-Hellman (GDH) problem in E(Fp) is the problem of solving the
computational Diffie-Hellman (CDH) problem in E(Fp) given an oracle for the DDH
problem in E(Fp).



Another Look at Tightness 309

of obtaining a KDF collision requires that the KDF for HSIG-DH with our choice
of elliptic curve parameters should have 160-bit outputs. However we then have a
keysize mismatch since CMAC uses 80-bit keys. If the KDF is restricted to 80-bit
outputs, then the aforementioned proofs have a logical gap since the probability
of a KDF collision now becomes non-negligible.

One simple way to remove this gap is to include the identities of the commu-
nicating parties and the session identifier as input to the key derivation func-
tion (as is done in [70], for example), i.e., the HSIG-DH session key is now
KDF(Â, B̂, s, xyG). One can then argue that since the KDF is modelled as a
random oracle, the adversary must know the inputs to the KDF for the two
non-matching sessions (since the triples (Â, B̂, s) for the non-matching sessions
must be distinct) in order to detect the collision. In particular, the adversary
must know xyG — and such an adversary can be used to solve a CDH instance.

The Insecurity of NetAut. Attack 1 is applicable to our instantiation of Net-
Aut with HSIG-DH (with 80-bit session keys) and CMAC at the 80-bit security
level. Namely, the adversary monitors n = 220 NetAut sessions, each of which
is induced to transmit some fixed message m. Then, as explained in §2.3, the
adversary is able to deduce one of the 220 session keys and thereafter use it to
forge message-MAC pairs for that session.

We emphasize that the mechanisms of the attack are within the scope of the
security model for NetAut considered in [20]. However, the attack does not con-
tradict the security proof for NetAut given in [20, Theorem 12] for the following
reason. At one point in the proof it is shown that the probability that an adver-
sary succeeds in convincing a party Â that a message m was sent by party B̂ in
a particular session s even though B̂ did not send that message in that session is
negligible provided that the underlying MAC scheme is secure. The reductionist
proof for this claim (Lemma 13 of [20]) is analogous to the security proof for
MAC* given in §2.2, and hence has a tightness gap equal to the total number n
of sessions — this tightness gap is precisely what the attack exploits.

3.3 A Fix

One method for preventing the attack on NetAut described above is to use the
fMAC variant of the MAC scheme. Here, a natural candidate for the unique
fixed string f is the session identifier s and the identifiers of the communicating
parties, i.e., after parties Â and B̂ complete session s of HSIG-DH and estab-
lish a session key κ, the authentication tag for a message m is computed as
τ = MACκ(s, Â, B̂,m). This modification of NetAut resists Attack 1. However,
even with this modification we do not know a tight security reduction, so the
possibility of another attack that exploits the tightness gap cannot be ruled out.

4 Aggregate MAC Schemes

In the section, we show that some aggregate MAC schemes with non-tight se-
curity proofs and an aggregate designated verifier signature are vulnerable to
Attack 1 for certain choices of the underlying MAC scheme, e.g., CMAC with
80-bit keys and 80-bit tags.
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4.1 Aggregate MAC Schemes

Katz and Lindell [42] provided a formal security definition for the task of aggre-
gating MACs, proposed an aggregate MAC scheme, and gave a security proof
for their construction.

In the Katz-Lindell scheme, there are z parties, each of which randomly se-
lects an r-bit key ki for a deterministic MAC scheme; these keys are shared
with a central authority. When parties6 i1, i2, . . . , in wish to authenticate mes-
sages m1,m2, . . . ,mn, respectively, for the authority, they each compute τi =
MACki(mi). The aggregate tag is τ = τ1 ⊕ τ2 ⊕ · · · ⊕ τn. The authority verifies
the aggregate tag by computing the individual tags and checking that their xor
is equal to τ .

In the security model of [42], the adversary can corrupt any party, and in
addition can obtain the tag of any message from any party. The adversary’s goal
is to produce a set of party-message pairs (i1,m1), (i2,m2), . . . , (in,mn) (for any
n ≤ z) and an aggregate tag τ such that the tag passes the verification check
and there is at least one party-message pair (ij,mj) for which party ij has not
been corrupted and was never queried for the MAC of mj.

Katz and Lindell prove that their aggregate MAC scheme is secure provided
that the underlying MAC scheme is secure in the single-user setting. Their proof
is very similar to the one given for MAC* in §2.2, but is described asymptotically.
The total number of parties is z = p(r) for some unspecified polynomial p, and
the adversary A of the aggregate MAC scheme is assumed to be polynomially
bounded. The simulator B of A’s environment makes a guess for the index j,
and is successful in producing a forgery for the underlying MAC scheme provided
that its guess is correct. Since n ≤ z, the proof has a tightness gap of p(r).

It is easy to see that the Katz-Lindell aggregate MAC scheme succumbs to At-
tack 1. This security flaw in their scheme is a direct consequence of the tightness
gap in their proof.

As with rMAC, randomizing the MACs will prevent the attack. However,
since the randomizers would also have to be sent, this countermeasure defeats
the primary objective of the aggregate MAC scheme — a small aggregate tag.
A better solution would be to deploy fMAC as the underlying MAC scheme.

Hierarchical In-Network Data Aggregation. Chan, Perrig and Song [21]
presented the first provably secure hierarchical in-network data aggregation al-
gorithm. Such an algorithm can be used to securely perform queries on sensor
network data. A crucial component of the algorithm is the (independently discov-
ered) Katz-Lindell aggregate MAC scheme. In the data aggregation application,
each sensor node shares a secret key ki with the querier. At one stage of the
application, each node computes the tag τi = MACki(N,OK), where MAC is a
conventional MAC scheme, N is a nonce sent by the querier, and OK is a unique
message identifier. The aggregate tag is τ = τ1 ⊕ τ2 ⊕ · · · ⊕ τn. We emphasize
that the same nonce N and message identifier OK are used by each node. It
follows that the MAC scheme is vulnerable to Attack 1. In fact, the attack is

6 For simplicity, we assume the parties are distinct and hence n ≤ z.
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easier to mount in this setting because the application itself requires each node
to compute its tag on a fixed message. The security proof for the aggregate MAC
scheme given in [21, Lemma 11] is very informal and assumes “that each of the
distinct MACs are unforgeable (and not correlated with each other)”, and then
concludes that “the adversary has no information about this [aggregate tag].”

History-Free Aggregate MACs. Eikemeier et al. [31] presented and analyzed
a MAC aggregation algorithm where the aggregation of individual tags must be
carried out in a sequential manner, and where the aggregation algorithm de-
pends only on the current message being MAC’ed and on the previous aggregate
tag. They provided an elaborate security definition and a security proof for their
scheme. We note that their security model allows the adversary to query individ-
ual parties for tags of messages of the adversary’s choosing. Consequently, their
history-free aggregate MAC scheme succumbs to Attack 1. Not surprisingly, the
security reduction in [31] is non-tight, with a tightness gap of at least z (the
total number of parties).

4.2 Aggregate Designated Verifier Signatures

An aggregate designated verifier signature (ADVS) scheme combines the ideas of
aggregate signatures [17] and designated verifier signatures [41]. Bhaskar, Her-
ranz and Laguillaumie [8] introduced the notion of ADVS and proposed two
constructions in the public-key and identity-based settings. The constructions
at their core use a MAC scheme and the identical idea of MAC aggregation as
in Katz-Lindell (§4.1). The essential difference is that the common MAC key of
a sender and the designated verifier is derived from the discrete-log static keys
of the two parties through hashing.

It is easy to see that the Bhaskar et al. scheme is vulnerable to Attack 1. Such
an attack, though realistic, is not captured in the security model of [8] which is
essentially an adaptation of the aggregate signature security model of Boneh et
al. [17]. In particular, both models fail to capture the scenario where multiple
honest signers send individual as well as aggregated authenticated messages to a
designated verifier, and an adversary is trying to forge a non-trivial (aggregate)
signature involving at least one honest signer.

5 Symmetric-Key Encryption in the Multi-user Setting

Bellare, Boldyreva and Micali [2] proved that if a public-key encryption scheme
is secure in the single-user setting, then it is also secure in the multi-user setting.
Their security has a tightness gap equal to nqe, where n is the number of users
and qe is the number of encryptions performed by each user. They mention that
analogous results for symmetric-key encryption schemes can be easily proven. In
this section, we examine the security of authenticated encryption (AE) schemes
and stream ciphers in the multi-user setting.
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5.1 Deterministic Authenticated Encryption

Rogaway and Shrimpton [62] proposed the notion of ‘deterministic authenti-
cated encryption’ (DAE), presented a DAE scheme called Synthetic Initializa-
tion Vector (SIV), and proved the scheme secure. A primary motivation for their
work was that prior protocols for the ‘key-wrap problem’ had “never received a
provable-security treatment”.

Let E be a block cipher with r-bit keys and r-bit blocks. The SIV mode of
operation described in [62] uses CMAC and the counter (CTR) mode of operation
for E [27]; recall that in CTR mode encryption, a one-time pad is generated by
selecting a random IV which is repeatedly incremented and encrypted; the one-
time pad is then xored with the blocks of the plaintext to obtain the ciphertext7.
A plaintext message m is processed by first computing IV = CMACk′ (m) and
then c = CTRk′′ (IV,m). Here, the secret key is k = (k′, k′′), where k′ is a key
for CMAC and k′′ is a key for the block cipher E. The ciphertext is (IV, c).
To decrypt and verify, one computes m = CTRk′′ (IV, c) and verifies that IV =
CMACk′(m).

An Attack. For concreteness, suppose that SIV uses an 80-bit block cipher
(such as SKIPJACK) as the underlying block cipher for CTR mode encryption
as well as for CMAC. Our attack on SIV is a chosen-plaintext attack in the
multi-user setting. The adversary selects an arbitrary message m and obtains
the ciphertext (IVi, ci) from 220 parties i with secret key pairs ki = (k′i, k

′′
i ).

As in Attack 1, the adversary then finds k′j for some user j in about 260 steps.
Next, the adversary finds two equal-length messages m1 and m2 with m1 �=
m2 and CMACk′

j
(m1) = CMACk′

j
(m2); this can be accomplished in about 240

steps using the van Oorschot-Wiener collision finding algorithm [71]. Finally, the
adversary requests the encryption of m1 from party j, receiving the ciphertext
(IV1, c1). The adversary then computes the encryption of m2 as (IV1, c1⊕m1⊕
m2) as its forgery. It can easily be checked that this ciphertext will decrypt to
m2 and pass the verification check.

Our attack shows that, despite the provable security guarantees of SIV in
[62], this particular implementation of SIV does not achieve the desired 80-bit
security level in the multi-user setting. Note, however, that the attack may not
be relevant in the context of the key-wrap problem. Since “the plaintext carries
a key”, it will not be possible for the adversary to obtain 220 (IVi, ci) pairs on
the same message m.

A Fix. A possible countermeasure to the attack would be to encrypt IV under
k′′, i.e., the encryption of m would be (Ek′′ (IV ),CTRk′′ (IV,m)) where IV =
CMACk′(m).

7 In the interest of simplicity, our description of SIV omits some details from [62]. In
particular, we omit the header which in any case “may be absent”, and use CMAC
instead of CMAC*. These omissions do not have any bearing on our attack.
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5.2 Authenticated Encryption

In many AE schemes, including OCB [61,59], GCM [53] and PAE [63], the en-
cryption function uses a secret key k for a block cipher to map a nonce-message
pair (IV,m) to a ciphertext of the form (c, τ). For these AE schemes, the only
requirement on the IV is that it not be repeated with the same key. We consider
the scenario where keys, tags and blocks all have the same length.

An Attack. Fix a nonce-message pair (IV,m) and consider the function f :
k $→ τ , where τ is the tag of the AE encryption of (IV,m) under key k. Attack 1
can then be mounted (cf. Remark 7). The attack requires many users to perform
authenticated encryption of m with the fixed IV , but since the AE schemes only
mandate that the IV not be repeated with the same key, the attack is legitimate
in the multi-user setting.

Rogaway [60], on his web page that promotes OCB, states

In the past, one had to wait years before using a new cryptographic
scheme; one needed to give cryptanalysts a fair chance to attack the
thing. Assurance in a scheme’s correctness sprang from the absence of
damaging attacks by smart people, so you needed to wait long enough
that at least a few smart people would try, and fail, to find a damag-
ing attack. But this entire approach has become largely outmoded, for
schemes that are not true primitives, by the advent of provable security.
With a provably-secure scheme assurance does not stem from a failure
to find attacks; it comes from proofs, with their associated bounds and
definitions.

In particular, he states that for OCB “the underlying definition is simple and
rock solid”. It is understandable that practitioners would be glad to hear the
recommendation that they can have confidence in a newly proposed protocol
solely based on the security proof, and need not wait for it to stand the test
of time. However, our attack on OCB, which is a practical one under certain
plausible assumptions, shows that it would be more prudent not to put all one’s
trust in a reductionist security proof and its associated definition, especially
if the proof has a large tightness gap or the definition does not allow for the
multi-user setting.

5.3 Disk Encryption

A disk encryption scheme is a special case of a tweakable enciphering scheme
(TES) [37] where the message length is fixed. More concretely, a message is a disk
sector and there is a ‘tweak’ which is the sector address. The tweak is not a nonce
in the sense that it can be reused for encryptions with the same key. Formally,
the encryption algorithm uses a secret key k to transform a tweak-message pair
(IV,m) to a ciphertext c, where c and m have the same length.

For disk encryption schemes such as EME [38], k is a key of a block cipher.
By treating c as a tag, one can apply Attack 1 to recover k. Note that since c
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will typically be much longer than k, a collision encountered during the attack
will most likely be due to a key collision. In the context of disk encryption, there
is no notion of session keys — the different keys would correspond to different
users. The encryption of a fixed tweak-message pair can be obtained by inducing
the users to encrypt the chosen message for the chosen disk sector.

Fixes for AE and Disk Encryption Schemes. In the multi-user setting,
one way to ensure that an r-bit security level is achieved against our attacks
(without changing the underlying block cipher) is to use multiple keys that
together are longer than r bits. Examples of such schemes are Poly1305-AES
[6] and the disk encryption schemes in [64]. The use of multiple keys, however,
does not immediately guarantee resistance to Attack 1 — as we have seen, SIV
is vulnerable to the attack since the first ciphertext component depends only on
the first SIV key – and hence the modification of a mode of operation to resist
Attack 1 should be done with care.

5.4 Stream Ciphers

A stream cipher with IV takes as input an r-bit key k and a v-bit IV and
produces a keystream which is then XORed with the message to obtain the
ciphertext. The usual requirement on the IV is that it should not be repeated
for the same key.

Fix a value IV0 for the IV and define a map f that takes k to the first r bits of
the keystream produced using k and IV0. In the multi-user setting, Attack 1 can
be mounted by inducing different users to encrypt known messages using IV0 and
their respective keys. Inverting f on any of the resulting keystreams yields one
of the secret keys. For concreteness, consider 80-bit keys and suppose that the
attacker is able to collect 220 targets. A TMTO attack using a precomputation
of 260 and memory and on-line time of 240 will (with high probability) find one
of the 220 keys. The attack parameters are feasible, thus bringing into question
the adequacy of 80-bit keys for stream ciphers with IV . The importance of this
issue can be seen in the context of the eSTREAM project [30] which recommends
80-bit stream ciphers such as Trivium.

Requiring that IVs be randomly generated does not circumvent the attack but
instead makes it somewhat easier to mount. This is because random IVs must
be communicated in the clear to a receiver. The attacker could then target the
receiver and obtain the first 80 bits of the keystream produced by the receiver.
Since a receiver expects IVs along with the ciphertext, an active attacker can
legitimately use the same IV0 for all the 220 receivers. In contrast, if the IV
is merely a nonce (such as a counter), then it may be more difficult to induce
all senders to use IV0. Note that the use of an authenticated encryption scheme
together with random IVs foils the attack. The attack can also be foiled by using
the technique employed in fMAC — prepending the IV with a string that is fixed
and unique among all sessions.
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6 Concluding Remarks

We showed that ignoring the tightness gaps in reductionist security proofs can
have damaging consequences in practice. Our examples involve MAC schemes in
the multi-user setting. In particular, the tightness gap in the natural reduction
from MAC1 to MAC* indicates a real security weakness, whereas the tightness
gap in the natural reductions from MAC1 to rMAC* and fMAC* do not seem to
matter in practice. Our examples illustrate the difficulty of interpreting a non-
tight security proof in practice. Although our examples all involve the multi-user
setting, we feel that they call into question the practical value of all non-tight
security proofs. We also demonstrated potential security weaknesses of provably-
secure authenticated encryption schemes in the multi-user setting.

Practitioners who use security proofs as a tool to assess the security of a cryp-
tographic system, but rely more heavily on extensive cryptanalysis and sound
engineering principles, should not be alarmed by our observations. On the other
hand, theoreticians who believe that a security proof is the essential, and per-
haps the only, way to gain confidence in the security of a protocol should be
much more skeptical of non-tight proofs (unless, of course, the proof is accom-
panied by a clearly-stated requirement that security parameters be increased to
accommodate the tightness gap) and perhaps even reject these proofs as mere
heuristic arguments for the protocol’s security.

Acknowledgments. We wish to thank Greg Zaverucha for bringing reference
[42] to our attention. We also thank Debrup Chakraborty, Koray Karabina,
Ann Hibner Koblitz, Neal Koblitz, Berkant Ustaoglu and Greg Zaverucha for
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Abstract. This paper proposes a novel construction, called duplex,
closely related to the sponge construction, that accepts message blocks
to be hashed and—at no extra cost—provides digests on the input blocks
received so far. It can be proven equivalent to a cascade of sponge func-
tions and hence inherits its security against single-stage generic attacks.
The main application proposed here is an authenticated encryption mode
based on the duplex construction. This mode is efficient, namely, enci-
phering and authenticating together require only a single call to the
underlying permutation per block, and is readily usable in, e.g., key
wrapping. Furthermore, it is the first mode of this kind to be directly
based on a permutation instead of a block cipher and to natively support
intermediate tags. The duplex construction can be used to efficiently re-
alize other modes, such as a reseedable pseudo-random bit sequence gen-
erators and a sponge variant that overwrites part of the state with the
input block rather than to XOR it in.

Keywords: sponge functions, duplex construction, authenticated en-
cryption, key wrapping, provable security, pseudo-random bit sequence
generator, Keccak.

1 Introduction

While most symmetric-key modes of operations are based on a block cipher
or a stream cipher, there exist modes using a fixed permutation as underlying
primitive. Designing a cryptographically strong permutation suitable for such
purposes is similar to designing a block cipher without a key schedule and this
design approach was followed for several recent hash functions, see, e.g., [15].

The sponge construction is an example of such a mode. With its arbitrarily
long input and output sizes, it allows building various primitives such as a stream
cipher or a hash function [5]. In the former, the input is short (typically the key
and a nonce) while the output is as long as the message to encrypt. In contrast,
the latter takes a message of any length at input and produces a digest of small
length.

Some applications can take advantage of both a long input and a long out-
put size. For instance, authenticated encryption combines the encryption of a
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message and the generation of a message authentication code (MAC) on it. It
could be implemented with one sponge function call to generate a key stream
(long output) for the encryption and another call to generate the MAC (long in-
put). However, in this case, encryption and authentication are separate processes
without any synergy.

The duplex construction is a novel way to use a fixed permutation (or trans-
formation) to allow the alternation of input and output blocks at the same rate
as the sponge construction, like a full-duplex communication. In fact, the duplex
construction can be seen as a particular way to use the sponge construction,
hence it inherits its security properties. By using the duplex construction, au-
thenticated encryption requires only one call to the underlying permutation (or
transformation) per message block. In a nutshell, the input blocks of the duplex
are used to input the key and the message blocks, while the intermediate output
blocks are used as key stream and the last one as a MAC.

Authenticated encryption (AE) has been extensively studied in the last ten
years. Block cipher modes clearly are a popular way to provide simultaneously
both integrity and confidentiality. Many block cipher modes have been proposed
and most of these come with a security proof against generic attacks—see [8]
for references. Interestingly, there have also been attempts at designing ded-
icated hybrid primitives offering efficient simultaneous stream encryption and
MAC computation, e.g., Helix and Phelix [16,31]. However, these primitives
were shown to be weak [22,24,32]. Another example of hybrid primitive is the
Grain-128 stream cipher to which optional built-in authentication was recently
added [33].

Our proposed mode shares with these hybrid primitives that it offers efficient
simultaneous stream encryption and MAC computation. It shares with the block
cipher modes that it has provable security against generic attacks. However, it
is the first such construction that (directly) relies on a permutation rather than
a block cipher and that proves its security based on this type of primitive. An
important efficiency parameter of an AE mode is the number of calls to the block
cipher or to the permutation per block. While encryption or authentication alone
requires one call per block, some AE modes only require one call per block for
both functions. The duplex construction naturally provides a good basis for
building such an efficient AE mode. Also, the AE mode we propose natively
supports intermediate tags and the authenticated encryption of a sequence of
messages.

Authenticated encryption can also be used to transport secret keys in a confi-
dential way and to ensure their integrity. This task, called key wrapping, is very
important in key management and can be implemented with our construction if
each key has a unique identifier.

Finally, the duplex construction can be used for other modes as well, such
as a reseedable pseudo-random bit sequence generator (PRG) or to prove the
security of an “overwrite” mode where the input block overwrites part of the
state instead of XORing it in.
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These modes can readily be used by the concrete sponge function Keccak
[10] and the members of a recent wave of lightweight hash functions that are
in fact sponge functions: Quark [1], Photon [18] and Spongent [12]. For these,
and for the small-width instances ofKeccak, our security bound against generic
attacks beyond the birthday bound published in [9] allows constructing solutions
that are at the same time compact, efficient and potentially secure.

The remainder of this paper is organized as follows. First, we propose a model
for authenticated encryption in Section 2. Then in Section 3, we review the
sponge construction. The core concept of this paper, namely the duplex con-
struction, is defined in Section 4. Its use for authenticated encryption is given
in Section 5 and for other applications in Section 6. Finally, Section 7 discusses
the use of a flexible and compact padding. For compactness reasons, the proofs
are omitted in this version and can be found in [8].

2 Modeling Authenticated Encryption

We consider authenticated encryption as a process that takes as input a key K,
a data header A and a data body B and that returns a cryptogram C and a tag
T . We denote this operation by the term wrapping and the operation of taking
a data header A, a cryptogram C and a tag T and returning the data body B if
the tag T is correct by the term unwrapping.

The cryptogram is the data body enciphered under the key K and the tag is
a MAC computed under the same key K over both header A and body B. So
here the header A can play the role of associated data as described in [26]. We
assume the wrapping and unwrapping operations as such to be deterministic.
Hence two equal inputs (A,B) = (A′, B′) will give rise to the same output (C, T )
under the same key K. If this is a problem, it can be tackled by expanding A
with a nonce.

Formally, for a given key length k and tag length t, we consider a pair of
algorithms W and U , with

W : Z
k
2 × (Z∗2)

2 → Z
∗
2 × Z

t
2 : (K,A,B)→ (C, T ) = W (K,A,B), and

U : Z
k
2 × (Z∗2)

2 × Z
t
2 → Z

∗
2 ∪ {error} : (K,A,C, T )→ B or error.

The algorithms are such that if (C, T ) = W (K,A,B) then U(K,A,C, T ) = B.
As we consider only the case of non-expanding encryption, we assume from now
on that |C| = |B|.

2.1 Intermediate Tags and Authenticated Encryption of a Sequence

So far, we have only considered the case of the authentication and encryption of
a single message, i.e., a header and body pair (A,B). It can also be interesting
to authenticate and encrypt a sequence of messages in such a way that the
authenticity is guaranteed not only on each (A,B) pair but also on the sequence
received so far. Intermediate tags can also be useful in practice to be able to
catch fraudulent transactions early.
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Let (A,B) = (A(1), B(1), A(2), . . . , A(n), B(n)) be a sequence of header-body
pairs. We extend the function of wrapping and unwrapping as providing encryp-
tion over the last body B(n) and authentication over the whole sequence (A,B).
Formally, W and U are defined as:

W : Z
k
2 × (Z∗2)

2+ → Z
∗
2 × Z

t
2 : (K,A,B)→ (C(last), T (last)) = W (K,A,B), and

U : Z
k
2 × (Z∗2)

2+ × Z
t
2 → Z

∗
2 ∪ {error} : (K,A,C, T (last))→ B(last) or error.

Here, (Z∗2)
2+ means any sequence of binary strings, with an even number of such

strings and at least two. To wrap a sequence of header-body pairs, the sender
calls W (K,A(1), B(1)) with the first header-body pair to get (C(1), T (1)), then
W (K,A(1), B(1), A(2), B(2)) with the second one to get (C(2), T (2)), and so on.
To unwrap, the receiver first calls U(K,A(1), C(1), T (1)) to retrieve the first body
B(1), then U(K,A(1), C(1), A(2), C(2), T (2)) to retrieve the second body, and so
on. As we consider only the case of non-expanding encryption, we assume that
|C(i)| = |B(i)| for all i.

2.2 Security Requirements

We consider two security notions from [28] and works cited therein, called pri-
vacy and authenticity. Together, these notions are central to the security of
authenticated encryption [2].

Privacy is defined in Eq. (1) below. Informally, it means that the output of
the wrapping function looks like uniformly chosen random bits to an observer
who does not know the key.

Advpriv(A) =
∣
∣
∣Pr[K

$←− Z
k
2 : A[W (K, ·, ·)] = 1]− Pr[A[R(·, ·)] = 1]

∣
∣
∣ , (1)

with R(A,B) = �RO(A,B)�|B(n)|+t where B(n) is the last body in A,B, |x| is
the bitlength of string x, �·�� indicates truncation to � bits and K

$←− Z
k
2 means

thatK is chosen randomly and uniformly among the set Zk
2 . In this definition, we

use a random oracle RO as defined in [3], but allowing sequences of one or more
binary strings as input (instead of a single binary string). Here, a random oracle
is a map from (Z∗2)

+ to Z∞2 , chosen by selecting each bit of RO(x) uniformly
and independently, for every input. The original definition can still be used by
defining an injective mapping from (Z∗2)

+ to Z∗2.
For privacy, we consider only adversaries who respect the nonce requirement.

For a single header-body pair, it means that, for any two queries (A,B) and
(A′, B′), we have A = A′ ⇒ B = B′. In general, the nonce requirement
specifies that for any two queries (A,B) and (A′, B′) of equal length n, we
have

pre(A,B) = pre(A′, B′)⇒ B(n) = B′(n),



324 G. Bertoni et al.

with pre(A,B) = (A(1), B(1), A(2), . . . , B(n−1), A(n)) the sequence with the last
body omitted. As for a stream cipher, not respecting the nonce requirement
means that the adversary can learn the bitwise difference between two plaintext
bodies.

Authenticity is defined in Eq. (2) below. Informally, it quantifies the proba-
bility of the adversary successfully generating a forged ciphertext-tag pair.

Advauth(A) = Pr[K
$←− Z

k
2 : A[W (K, ·, ·)] outputs a forgery]. (2)

Here a forgery is a sequence (A,C, T ) such that U(K,A,C, T ) �= error and that
the adversary made no query to W with input (A,B) returning (C(n), T ), with
C(n) the last ciphertext body of A,C. Note that authenticity does not need the
nonce requirement.

2.3 An Ideal System

We can define an ideal system using a pair of independent random oracles
(ROC,ROT). For a single header-body pair, encryption and tag computation
are implemented as follows. The ciphertext C is produced by XORing B with a
key stream. This key stream is the output of ROC(K,A). If (K,A) is a nonce,
key streams for different data inputs are the result of calls to ROC with differ-
ent inputs and hence one key stream gives no information on another. The tag
T is the output of ROT(K,A,B). Tags computed over different header-body
pairs will be the result of calls to ROT with different inputs. Key stream se-
quences give no information on tags and vice versa as they are obtained by calls
to different random oracles.

Let us define the ideal system in the general case, which we call ROwrap.
Wrapping is defined as W (K,A,B) = (C(n), T (n)), if A,B contains n header-
body pairs, with

C(n) = �ROC(K, pre(A,B))�|B(n)| ⊕B(n),

T (n) = �ROT(K,A,B)�t.

The unwrapping algorithm U first checks that T (n) = �ROT(K,A,B)�t and if
so decrypts each body B(i) = �ROC(K,A(1), B(1), A(2), . . . , A(i))�|C(i)| ⊕ C(i)

from the first one to the last one and finally returns the last one B(n) =
�ROC(K, pre(A,B))�|C(n)| ⊕ C(n).

The security of ROwrap is captured by Lemmas 1 and 2.

Lemma 1. Let A[ROC,ROT] be an adversary having access to ROC and ROT

and respecting the nonce requirement. Then, AdvprivROwrap(A) ≤ q2−k if the ad-
versary makes no more than q queries to ROC or ROT.

Lemma 2. Let A[ROC,ROT] be an adversary having access to ROC and ROT.
Then, ROwrap satisfies AdvauthROwrap(A) ≤ q2−k + 2−t if the adversary makes
no more than q queries to ROC or ROT.
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3 The Sponge Construction

The sponge construction [5] builds a function sponge[f, pad, r] with variable-
length input and arbitrary output length using a fixed-length permutation (or
transformation) f , a padding rule “pad” and a parameter bitrate r.

For the padding rule we use the following notation: the padding of a message
M to a sequence of x-bit blocks is denoted by M ||pad[x](|M |), where |M | is the
length of M . This notation highlights that we only consider padding rules that
append a bitstring that is fully determined by the length of M and the block
length x. We may omit [x], |M | or both if their value is clear from the context.

Definition 1. A padding rule is sponge-compliant if it never results in the
empty string and if it satisfies following criterion:

∀n ≥ 0, ∀M,M ′ ∈ Z
∗
2 : M �= M ′ ⇒ M ||pad[r](|M |) �= M ′||pad[r](|M ′|)||0nr

(3)

For the sponge construction to be secure (see Section 3.2), the padding rule
pad must be sponge-compliant. As a sufficient condition, a padding rule that is
reversible, non-empty and such that the last block must be non-zero, is sponge-
compliant [5].

3.1 Definition

The permutation f operates on a fixed number of bits, the width b. The sponge
construction has a state of b bits. First, all the bits of the state are initialized
to zero. The input message is padded with the function pad[r] and cut into
r-bits blocks. Then it proceeds in two phases: the absorbing phase followed by
the squeezing phase. In the absorbing phase, the r-bit input message blocks are
XORed into the first r bits of the state, interleaved with applications of the
function f . When all message blocks are processed, the sponge construction
switches to the squeezing phase. In the squeezing phase, the first r bits of the
state are returned as output blocks, interleaved with applications of the function
f . The number of iterations is determined by the requested number of bits.
Finally the output is truncated to the requested length. Algorithm 1 provides a
formal definition.

The value c = b−r is called the capacity. The last c bits of the state are never
directly affected by the input blocks and are never output during the squeezing
phase. The capacity c actually determines the attainable security level of the
construction [6,9].

3.2 Security

Cryptographic functions are often designed in two steps. In the first step, one
chooses a construction that uses a cryptographic primitive with fixed input and
output size (e.g., a compression function or a permutation) and builds a function
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Algorithm 1. The sponge construction sponge[f, pad, r]

Require: r < b

Interface: Z = sponge(M, �) with M ∈ Z
∗
2, integer � > 0 and Z ∈ Z

�
2

P = M ||pad[r](|M |)
Let P = P0||P1|| . . . ||Pw with |Pi| = r
s = 0b

for i = 0 to w do
s = s⊕ (Pi||0b−r)
s = f(s)

end for
Z = �s�r
while |Z| < � do

s = f(s)
Z = Z||�s�r

end while
return �Z��

that can take inputs and or generate outputs of arbitrary size. If the security
of this construction can be proven, for instance as in this case using the in-
differentiability framework, it reduces the scope of cryptanalysis to that of the
underlying primitive and guarantees the absence of single-stage generic attacks
(e.g., preimage, second preimage and collision attacks) [21]. However, generic
security in the multi-stage setting using the indifferentiability framework is cur-
rently an open problem [25].

It is shown in [6] that the success probability of any single-stage generic at-
tack for differentiating the sponge construction calling a random permutation or
transformation from a random oracle is upper bounded by 2−(c+1)N2. Here N
is the number of calls to the underlying permutation or its inverse. This implies
that any single-stage generic attack on a sponge function has success probability
of at most 2−(c+1)N2 plus the success probability of this attack on a random
oracle.

In [9], we address the security of the sponge construction when the message
is prefixed with a key, as it will be done in the mode of Section 5. In this specific
case, the security proof goes beyond the 2c/2 complexity if the number of input
or output blocks for which the key is used (data complexity) is upper bounded
by M < 2c/2−1. In that case, distinguishing the keyed sponge from a random
oracle has time complexity of at least 2c−1/M > 2c/2. Hence, for keyed modes,
one can reduce the capacity c for the same targeted security level.

3.3 Implementing Authenticated Encryption

The simplest way to build an actual system that behaves as ROwrap would
be to replace the random oracles ROC and ROT by a sponge function with
domain separation. However, such a solution requires two sponge function ex-
ecutions: one for the generation of the key stream and one for the generation
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of the tag, while we aim for a single-pass solution. To achieve this, we define
a variant where the key stream blocks and tag are the responses of a sponge
function to input sequences that are each other’s prefix. This introduces a new
construction that is closely related to the sponge construction: the duplex con-
struction. Subsequently, we build an authenticated encryption mode on top
of that.

4 The Duplex Construction

Like the sponge construction, the duplex construction duplex[f, pad, r] uses a
fixed-length transformation (or permutation) f , a padding rule “pad” and a
parameter bitrate r. Unlike a sponge function that is stateless in between calls,
the duplex construction accepts calls that take an input string and return an
output string depending on all inputs received so far. We call an instance of the
duplex construction a duplex object, which we denote D in our descriptions. We
prefix the calls made to a specific duplex object D by its name D and a dot.

Fig. 1. The duplex construction

The duplex construction works as follows. A duplex object D has a state of
b bits. Upon initialization all the bits of the state are set to zero. From then
on one can send to it D.duplexing(σ, �) calls, with σ an input string and � the
requested number of bits.

The maximum number of bits � one can request is r and the input string σ
shall be short enough such that after padding it results in a single r-bit block.
We call the maximum length of σ the maximum duplex rate and denote it by
ρmax(pad, r). Formally:

ρmax(pad, r) = min{x : x+ |pad[r](x)| > r} − 1. (4)

Upon receipt of a D.duplexing(σ, �) call, the duplex object pads the input string
σ and XORs it into the first r bits of the state. Then it applies f to the state
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Algorithm 2. The duplex construction duplex[f, pad, r]

Require: r < b
Require: ρmax(pad, r) > 0
Require: s ∈ Z

b
2 (maintained across calls)

Interface: D.initialize()
s = 0b

Interface: Z = D.duplexing(σ, �) with � ≤ r, σ ∈ ⋃ρmax(pad,r)
n=0 Z

n
2 , and Z ∈ Z

�
2

P = σ||pad[r](|σ|)
s = s⊕ (P ||0b−r)
s = f(s)
return �s��

and returns the first � bits of the state at the output. We call a blank call a
call with σ the empty string, and a mute call a call without output, � = 0. The
duplex construction is illustrated in Figure 1, and Algorithm 2 provides a formal
definition.

The following lemma links the security of the duplex construction to that of
the sponge construction with the same parameters, i.e., duplex[f, pad, r] and
sponge[f, pad, r]. Generating the output of a D.duplexing() call using a sponge
function is illustrated in Figure 2.

Lemma 3. [Duplexing-sponge lemma] If we denote the input to the i-th call
to a duplex object by (σi, �i) and the corresponding output by Zi we have:

Zi = D.duplexing(σi, �i) = sponge(σ0||pad0||σ1||pad1|| . . . ||σi, �i)

with padi a shortcut notation for pad[r](|σi|).

The output of a duplexing call is thus the output of a sponge function with
an input σ0||pad0 ||σ1||pad1|| . . . ||σi and from this input the exact sequence
σ0, σ1, . . . , σi can be recovered as shown in Lemma 4 below. As such, the duplex
construction is as secure as the sponge construction with the same parameters.
In particular, it inherits its resistance against (single-stage) generic attacks. The
reference point in this case is a random oracle whose input is the sequence of
inputs to the duplexing calls since the initialization.

Lemma 4. Let pad and r be fixed. Then, the mapping from a sequence of binary
strings (σ0, σ1, . . . , σn) with |σi| ≤ ρmax(pad, r) ∀i to the binary string s =
σ0||pad0||σ1||pad1|| . . . ||padn−1||σn is injective.

In the following sections we will show that the duplex construction is a powerful
tool for building modes of use.
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Fig. 2. Generating the output of a duplexing call with a sponge

5 The Authenticated Encryption Mode SpongeWrap

We propose an authenticated encryption mode SpongeWrap that realizes the
authenticated encryption process defined in Section 2. Similarly to the du-
plex construction, we call an instance of the authenticated encryption mode
a SpongeWrap object.

Upon initialization of a SpongeWrap object, it loads the key K. From then
on one can send requests to it for wrapping and/or unwrapping data. The key
stream blocks used for encryption and the tags depend on the key K and the
data sent in all previous requests. The authenticated encryption of a sequence of
header-body pairs, as described in Section 2.1, can be performed with a sequence
of wrap or unwrap requests to a SpongeWrap object.

5.1 Definition

A SpongeWrap object W internally uses a duplex object D with parameters
f, pad and r. Upon initialization of a SpongeWrap object, it initializes D and
forwards the (padded) key blocks K to D using mute D.duplexing() calls.

When receiving a W.wrap(A,B, �) request, it forwards the blocks of the
(padded) header A and the (padded) body B to D. It generates the cryptogram
C block by block Ci = Bi ⊕ Zi with Zi the response of D to the previous
D.duplexing() call. The �-bit tag T is the response of D to the last body block
(possibly extended with the response to additional blank D.duplexing() calls in
case � > ρ). Finally it returns the cryptogram C and the tag T .

When receiving a W.unwrap(A,C, T ) request, it forwards the blocks of the
(padded) header A toD. It decrypts the data body B block by block Bi = Ci⊕Zi

with Zi the response of D to the previous D.duplexing() call. The response of D
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to the last body block (possibly extended) is compared with the tag T received
as input. If the tag is valid, it returns the data body B; otherwise, it returns
an error. Note that in implementations one may impose additional constraints,
such as SpongeWrap objects dedicated to either wrapping or unwrapping.
Additionally, the SpongeWrap object should impose a minimum length t for
the tag received before unwrapping and could break the entire session as soon
as an incorrect tag is received.

Before being forwarded to D, every key, header, data or cryptogram block
is extended with a so-called frame bit. The rate ρ of the SpongeWrap mode
determines the size of the blocks and hence the maximum number of bits pro-
cessed per call to f . Its upper bound is ρmax(pad, r) − 1 due to the inclusion
of one frame bit per block. A formal definition of SpongeWrap is given in
Algorithm 3.

5.2 Security

In this section, we show the security of SpongeWrap against generic attacks.
To do so, we proceed in two steps. First, we define a variant of ROwrap for
which the key stream depends not only on A but also on previous blocks of B.
Then, we quantify the increase in the adversary advantage when trading the
random oracles ROC and ROT with a random sponge function and appropriate
input mappings.

For a fixed block length ρ, let

prei(A,B) = (A(1), B(1), A(2), . . . , B(n−1), A(n), �B(n)�iρ),

i.e., the last body B(n) is truncated to its first i blocks of ρ bits. We define
ROwrap[ρ] identically to ROwrap, except that in the wrapping algorithm, we
have

C(n) =�ROC(K, pre0(A,B))�|B(n)
0 | ⊕B

(n)
0

||�ROC(K, pre1(A,B))�|B(n)
1 | ⊕B

(n)
1

. . .

||�ROC(K, prew(A,B))�|B(n)
w | ⊕B(n)

w

for B(n) = B
(n)
0 ||B(n)

1 || . . . ||B(n)
w with |B(n)

i | = ρ for i < w, |B(n)
w | ≤ ρ and

|B(n)
w | > 0 if w > 0. The unwrap algorithm U is defined accordingly.
The schemeROwrap[ρ] is as secure asROwrap, as expressed in the following

two lemmas. We omit the proofs, as they are very similar to those of Lemma 1
and 2.

Lemma 5. Let A[ROC,ROT] be an adversary having access to ROC and ROT

and respecting the nonce requirement. Then, AdvprivROwrap[ρ](A) ≤ q2−k if the

adversary makes no more than q queries to ROC or ROT.
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Algorithm 3. The authenticated encryption mode SpongeWrap[f, pad, r, ρ]

Require: ρ ≤ ρmax(pad, r)− 1
Require: D = duplex[f, pad, r]

1: Interface: W.initialize(K) with K ∈ Z
∗
2

2: Let K = K0||K1|| . . . ||Ku with |Ki| = ρ for i < u, |Ku| ≤ ρ and |Ku| > 0 if u > 0
3: D.initialize()
4: for i = 0 to u− 1 do
5: D.duplexing(Ki||1, 0)
6: end for
7: D.duplexing(Ku||0, 0)

8: Interface: (C, T ) = W.wrap(A,B, �) with A,B ∈ Z
∗
2, � ≥ 0, C ∈ Z

|B|
2 and T ∈ Z

�
2

9: Let A = A0||A1|| . . . ||Av with |Ai| = ρ for i < v, |Av| ≤ ρ and |Av| > 0 if v > 0
10: Let B = B0||B1|| . . . ||Bw with |Bi| = ρ for i < w, |Bw| ≤ ρ and |Bw | > 0 if w > 0
11: for i = 0 to v − 1 do
12: D.duplexing(Ai||0, 0)
13: end for
14: Z = D.duplexing(Av||1, |B0|)
15: C = B0 ⊕ Z
16: for i = 0 to w − 1 do
17: Z = D.duplexing(Bi||1, |Bi+1|)
18: C = C||(Bi+1 ⊕ Z)
19: end for
20: Z = D.duplexing(Bw||0, ρ)
21: while |Z| < � do
22: Z = Z||D.duplexing(0, ρ)
23: end while
24: T = �Z��
25: return (C, T )

26: Interface: B = W.unwrap(A,C, T ) with A,C, T ∈ Z
∗
2, B ∈ Z

|C|
2 ∪ {error}

27: Let A = A0||A1|| . . . ||Av with |Ai| = ρ for i < v, |Av| ≤ ρ and |Av| > 0 if v > 0
28: Let C = C0||C1|| . . . ||Cw with |Ci| = ρ for i < w, |Cw | ≤ ρ and |Cw| > 0 if w > 0
29: Let T = T0||T1|| . . . ||Tx with |Ti| = ρ for i < x, |Cx| ≤ ρ and |Cx| > 0 if x > 0
30: for i = 0 to v − 1 do
31: D.duplexing(Ai||0, 0)
32: end for
33: Z = D.duplexing(Av||1, |C0|)
34: B0 = C0 ⊕ Z
35: for i = 0 to w − 1 do
36: Z = D.duplexing(Bi||1, |Ci+1|)
37: Bi+1 = Ci+1 ⊕ Z
38: end for
39: Z = D.duplexing(Bw||0, ρ)
40: while |Z| < � do
41: Z = Z||D.duplexing(0, ρ)
42: end while
43: if T = �Z�� return B0||B1|| . . . Bw else return Error
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Lemma 6. Let A[ROC,ROT] be an adversary having access to ROC and ROT.
Then, ROwrap satisfies AdvauthROwrap[ρ](A) ≤ q2−k + 2−t if the adversary makes
no more than q queries to ROC or ROT.

Clearly, ROwrap and ROwrap[ρ] are equally secure if we implement ROC and
ROT using a single random oracle with domain separation:ROC(x) = RO(x||1)
and ROT(x) = RO(x||0). Notice that SpongeWrap uses the same domain
separation technique: the last bit of the input of the last duplexing call is always
a 1 (resp. 0) to produce key stream bits (resp. to produce the tag). With this
change, SpongeWrap now works like ROwrap[ρ], except that the input is
formatted differently and that a sponge function replaces RO. The next lemma
focuses on the former aspect.

Lemma 7. Let (K,A,B) be a sequence of strings composed by a key followed
by header-body pairs. Then, the mapping from (K,A,B) to the corresponding
sequence of inputs (σ0, σ1, . . . , σn) to the duplexing calls in Algorithm 3 is injec-
tive.

We now have all the ingredients to prove the following theorem.

Theorem 1. The authenticated encryption mode SpongeWrap[f, pad, r, ρ]
defined in Algorithm 3 satisfies

AdvprivSpongeWrap[f,pad,r,ρ](A) < q2−k +
N(N + 1)

2c+1
and

AdvauthSpongeWrap[f,pad,r,ρ](A) < q2−k + 2−t +
N(N + 1)

2c+1
,

against any single adversary A if K
$←− Zk

2 , tags of � ≥ t bits are used, f is a
randomly chosen permutation, q is the number of queries and N is the number
of times f is called.

Note that all the outputs of SpongeWrap are equivalent to calls to a sponge
function with the secret key blocks as a prefix. So the results of [9] can also be
applied to SpongeWrap as explained in Section 3.2.

5.3 Advantages and Limitations

The authenticated encryption mode SpongeWrap has the following unique
combination of advantages:

– While most other authenticated encryption modes are described in terms of
a block cipher, SpongeWrap only requires on a fixed-length permutation.

– It supports the alternation of strings that require authenticated encryption
and strings that only require authentication.

– It can provide intermediate tags after each W.wrap(A,B, �) request.
– It has a strong security bound against generic attacks with a simple proof.
– It is single-pass and requires only a single call to f per ρ-bit block.
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– It is flexible as the bitrate can be freely chosen as long as the capacity is
larger than some lower bound.

– The encryption is not expanding.

As compared to some block cipher based authenticated encryption modes, it has
some limitations. First, the mode as such is serial and cannot be parallelized at
algorithmic level. Some block cipher based modes do actually allow paralleliza-
tion, for instance, the offset codebook (OCB) mode [27]. Yet, SpongeWrap
variants could be defined to support parallel streams in a fashion similar to tree
hashing, but with some overhead.

Second, if a system does not impose the nonce requirement on A, an attacker
may send two requests (A,B) and (A,B′) with B �= B′. In this case, the first
differing blocks of B and B′, say Bi and B′i, will be enciphered with the same key
stream, making their bitwise XOR available to the attacker. Some block cipher
based modes are misuse resistant, i.e., they are designed in such a way that
in case the nonce requirement is not fulfilled, the only information an attacker
can find out is whether B and B′ are equal or not [29]. Yet, many applications
already provide a nonce, such as a packet number or a key ID, and can put it
in A.

5.4 An Application: Key Wrapping

Key wrapping is the process of ensuring the secrecy and integrity of crypto-
graphic keys in transport or storage, e.g., [23,14]. A payload key is wrapped with
a key-encrypting key (KEK). We can use the SpongeWrap mode with K equal
to the KEK and let the data body be the payload key value. In a sound key
management system every key has a unique identifier. It is sufficient to include
the identifier of the payload key in the header A and two different payload keys
will never be enciphered with the same key stream. When wrapping a private
key, the corresponding public key or a digest computed from it can serve as
identifier.

6 Other Applications of the Duplex Construction

Authenticated encryption is just one application of the duplex construction. In
this section we illustrate it by providing two more examples: a pseudo-random
bit sequence generator and a sponge-like construction that overwrites part of the
state with the input block rather than to XOR it in.

6.1 A Reseedable Pseudo-random Bit Sequence Generator

In various cryptographic applications and protocols, random bits are used to
generate keys or unpredictable challenges. While randomness can be extracted
from a physical source, it is often necessary to provide many more bits than the
entropy of the physical source. A pseudo-random bit sequence generator (PRG)
is initialized with a seed, generated in a secret or truly random way, and it
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then expands the seed into a sequence of bits. For cryptographic purposes, it is
required that the generated bits cannot be predicted, even if subsets of the se-
quence are revealed. In this context, a PRG is similar to a stream cipher. A PRG
is also similar to a cryptographic hash function when gathering entropy coming
from different sources. Finally, some applications require a pseudo-random bit
sequence generator to support forward security: The compromise of the cur-
rent state does not enable the attacker to determine the previously generated
pseudo-random bits [4,13].

Conveniently, a pseudo-random bit sequence generator can be reseedable, i.e.,
one can bring an additional source of entropy after pseudo-random bits have
been generated. Instead of throwing away the current state of the PRG, reseeding
combines the current state of the generator with the new seed material. In [7] a
reseedable PRG was defined based on the sponge construction that implements
the required functionality. The ideas behind that PRG are very similar to the
duplex construction. We however show that such a PRG can be defined on top
of the duplex construction.

A duplex object can readily be used as a reseedable PRG. Seed material can
be fed via the σ inputs in D.duplexing() call and the responses can be used as
pseudo-random bits. If pseudo-random bits are required and there is no seed
available, one can simply send blank D.duplexing() calls. The only limitation
of this is that the user must split his seed material in strings of at most ρmax

bits and that at most r bits can be requested in a single call. This limitation
is removed in a more elaborate generator called SpongePRG presented in [8].
This mode is similar to the one proposed in [7] in that it minimizes the number
of calls to f , although explicitly based on the duplex construction.

6.2 The Mode Overwrite

In [17] sponge-like constructions were proposed and cryptanalyzed. In some of
these constructions, absorbing is done by overwriting part of the state by the
message block rather than XORing it in, e.g., as in the hash function Grindahl
[19]. These overwrite functions have the advantage over sponge functions that
between calls to f , only c bits must be kept instead of b. This may not be useful
when hashing in a continuous fashion, as b bits must be processed by f anyway.
However, when hashing a partial message, then putting it aside to continue later
on, storing only c bits may be useful on some platforms.

Defined in [8], the mode Overwrite differs from the sponge construction in
that it overwrites part of the state with an input block instead of XORing it in.
Such a mode can be analyzed by building it on top of the duplex construction. If
the first ρ bits of the state are known to be Z, overwriting them with a message
block Pi is equivalent to XORing in Z⊕Pi. In [8], we have proven that the security
of Overwrite is equivalent to that of the sponge construction with the same
parameter, but at a cost of 2 bits of bitrate (or equivalently, of capacity): one
for the padding rule (assuming pad10∗ is used) and one for a frame bit.
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7 A Flexible and Compact Padding Rule

Sponge functions and duplex objects feature the nice property of allowing a
range of security-performance trade-offs, via capacity-rate pairs, using the same
fixed permutation f . To be able to fully exploit this property in the scope of the
duplex construction, and for performance reasons, the padding rule should be
compact and should be suitable for a family of sponge functions with different
rates.

For a given capacity and width, the padding reduces the maximum bitrate of
the duplex construction, as in Eq. (4). To minimize this effect, especially when
the width of the permutation is relatively small, one should look for the most
compact padding rule. The sponge-compliant padding scheme (see Section 3)
with the smallest overhead is the well-known simple reversible padding, which
appends a single 1 and the smallest number of zeroes such that the length of the
result is a multiple of the required block length. We denote it by pad10∗[r](M).
It satisfies ρmax(pad10

∗, r) = r − 1 and hence has only one bit of overhead.
When considering the security of a set of sponge functions that make use of

the same permutation f but with different bitrates, simple reversible padding
is not sufficient. The indifferentiability proof of [6] actually only covers the in-
differentiability of a single sponge function instance from a random oracle. As
a solution, we propose the multi-rate padding, denoted pad10∗1[r](|M |), which
returns a bitstring 10q1 with q = (−|M | − 2) mod r. This padding is sponge-
compliant and has ρmax(pad10

∗1, r) = r − 2. Hence, this padding scheme is
compact as the duplex-level maximum rate differs from the sponge-level rate by
only two bits. Furthermore, in Theorem 2 we will show it is sufficient for the
indifferentiability of a set of sponge functions. The intuitive idea behind this is
that, with the pad10∗1 padding scheme, the last block absorbed has a bit with
value 1 at position r− 1, while any other function of the family with r′ < r this
bit has value 0.

Besides having a compact padding rule, it is also useful to allow the sponge
function to have specific bitrate values. In many applications one prefers to have
block lengths that are a multiple of 8 or even higher powers of two to avoid
bit shifting or misalignment issues. With modes using the duplex construction,
one has to distinguish between the mode-level block size and the bitrate of the
underlying sponge function. For instance in the authenticated encryption mode
SpongeWrap, the block size is at most ρmax(pad, r) − 1. To have a block size
with the desired value, it suffices to take a slightly higher value as bitrate r;
hence, the sponge-level bitrate may no longer be a multiple of 8 or of a higher
power of two. Therefore it is meaningful to consider the security of a set of sponge
functions with common f and different bitrates, including bitrates that are not
multiples of 8 or of a higher power of two. For instance, the mode SpongeWrap
could be based on Keccak[r = 1027, c = 573] so as to process application-level
blocks of ρmax(pad10

∗1, 1027)− 1 = 1024 bits [10].
Regarding the indifferentiability of a set of sponge functions, it is clear that the

best one can achieve is bounded by the strength of the sponge construction with
the lowest capacity (or, equivalently, the highest bitrate), as an adversary can
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always just try to differentiate the weakest construction from a random oracle.
The next theorem states that we achieve this bound by using the multi-rate
padding.

Theorem 2. Given a random permutation (or transformation) f , differenti-
ating the array of sponge functions sponge[f, pad10∗1, r] with 0 < r ≤ rmax

from an array of independent random oracles (ROr) has the same advantage as
differentiating sponge[f, pad10∗, rmax] from a random oracle.
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Blockcipher-Based Double-Length Hash

Functions for Pseudorandom Oracles

Yusuke Naito
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Abstract. PRO (Pseudorandom Oracle) is an important security of
hash functions because it ensures that the PRO hash function inher-
its all properties of a random oracle in single stage games up to the PRO
bound (e.g., collision resistant security, preimage resistant security and
so on). In this paper, we propose new blockcipher-based double-length
hash functions, which are PROs up to O(2n) query complexity in the
ideal cipher model. Our hash functions use a single blockcipher, which
encrypts an n-bit string using a 2n-bit key, and maps an input of ar-
bitrary length to an n-bit output. Since many blockciphers supports a
2n-bit key (e.g. AES supports a 256-bit key), the assumption to use the
2n-bit key length blockcipher is acceptable. To our knowledge, this is the
first time double-length hash functions based on a single (practical size)
blockcipher with birthday PRO security.

1 Introduction

The blockcipher-based design (e.g. [19,26]) is the most popular method for con-
structing a cryptographic hash function. A hash function is designed by the
following two steps: (1) designing a blockcipher and (2) designing a mode of
operation. MD-family [28,29], SHA-family [23] and SHA-3 candidates follow the
design method. Another design method is to utilize a practical blockcipher such
as AES. Such hash functions are useful in size restricted devices such as RFID
tags and smart cards: when implementing both a hash function and a blockci-
pher, one has only to implement a blockcipher. However, the output length of
practical blockciphers is far too short for a collision resistant hash function, e.g.,
128 bits for AES. Thus designing a collision resistant double length hash func-
tion (CR-DLHF) is an interesting topic. The core of the design of the CR-DLHF
is to design a collision resistant double-length compression function (CR-DLCF)
which maps an input of fixed length (more than 2n-bits) to an output of 2n-bit
length when using an n-bit output length blockcipher. Then the hash function
combined a domain extension (e.g. strengthened Merkle-Damg̊ard (SMD) [5,21]),
which preserves CR security, with the CR-DLCF yields a CR-DLHF. Many DL-
CFs, e,g,. [2,22,11,14,24,16,18], have been designed and the security is proven in
the ideal cipher (IC) model [8,11,17,9,24,15,30].

The indifferentiability framework was introduced by Maurer et al. [20], which
considers the reducibility of one system to another system. Roughly speaking,

A. Miri and S. Vaudenay (Eds.): SAC 2011, LNCS 7118, pp. 338–355, 2012.
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if a system F is indifferentiable from another system G up to q query complex-
ity, in single-stage games (e.g., IND-CCA, EUF-CMA, Collision game, Second
Preimage game, Preimage game and many others), any cryptosystem is at least
as secure under F as under G up to q query complexity. Recent proposed hash
functions, e.g. SHA-3 candidates, considered the security of the indifferentiabil-
ity from a random oracle (RO) (or Pseudorandom Oracle (PRO)). It ensures
that in single stage games the hash function has no structural design flows
in composition and has security against any generic attacks up to the PRO
query complexity. So it is important to consider PRO security when a DLHF is
designed.

Hereafter a blockcipher which encrypts an n-bit string using a k-bit key is de-
noted by (k,n)-BC. Gong et al. [10] proved that the prefix-free Merkle-Damg̊ard
using the PBGV compression function [25] is PRO up to O(2n/2) query complex-
ity as long as the (2n,n)-BC is IC. The PRO security is not enough because the
query complexity is 264 when n = 128. Chang et al. [3] and Hirose et al. [12] pro-
posed 2n-bit output length DLHFs using a compression function h : {0, 1}d →
{0, 1}n where d > 2n. Their proposals are PROs up to O(2n) query complexity
as long as h is a fixed input length RO (FILRO). Since IC where the plain text
element is fixed by a constant is FILRO, these hash functions can be modified to
blockcipher-based schemes which use a (d,n)-BC. However, practical blockciphers
(such as AES) don’t support d-bit key where d > 2n. Many other practical size1

blockcipher-based DLHFs were proposed, e.g., [2,22,11,14,24,16,18], while none
of them achieves PRO security.2 There is no hash function with birthday PRO
security, and thus, we rise the following question:

Can We Construct a DLHF from a “single practical size blockcipher”
with “birthday PRO security”?

In this paper, we propose DLHFs using a single (2n,n)-BC, which are PROs up
to O(2n) query complexity in the IC model. Since many blockciphers support 2n-
bit key length, e.g., AES supports 256-bit key length, and the existing DLCFs
(e.g., Hirose’s compression function [11], Tandem-DM [14], Abreast-DM [14],
and generalized DLCF [24]) use a (2n,n)-BC, the assumption to use a (2n,n)-
BC is acceptable. To our knowledge, our hash functions are the first time DLHFs
based on a practical size blockcipher with birthday PRO security.3 When n = 128
which is supported by AES, our hash functions have 2128 security. Since our hash
functions use only a single blockcipher, it is useful on size restricted devices when
implementing both a hash function and a blockcipher. (the hybrid encryption

1 “Practical size” is the size supported by practical blockciphers such as AES.
2 Since PRO security is stronger security than CR security, CR security does not guar-

antee PRO security.
3 Our hash functions don’t satisfy the stronger notion called reset indifferentiability

from RO, which ensure security in the multi-stage games [27]. Note that there is no
hash function satisfying the notion. Thus to propose the hash function is an open
problem.
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Fig. 1. Our DLHF using Hirose’s compression function

schemes use both a blockcipher and a hash function used in a key derivation
function, for example.)

Our DLHF. Our DLHFs, which use each of Hirose’s compression function,
Tandem-DM and Abreast-DM, iterate the compression function and use a new
post-processing function f at the last iteration which calls a (2n, n)-BC twice.
Our DLHFs are slightly lesser for speed than existing CR-DLHFs but have higher
security (birthday PRO security).

Let BC2n,n = (E, D) be a (2n,n)-BC where E is an encryption function and
D is a decryption function. Let DLCFBC2n,n be a DLCF: Hirose’s compression
function, Tandem-DM, or Abreast-DM. Let SMDDLCFBC2n,n : {0, 1}∗ → {0, 1}2n

be the SMD hash function using the compression function DLCFBC2n,n . Our
DLHF is defined as follows:

FBC2n,n(M) = fBC2n,n(SMDDLCFBC2n,n
(M))

where fBC2n,n(x) = E(x, c1)||E(x, c2) and c1 and c2 are n-bit constant values.
Note that the first element of the encryption function is the key element and the
second element is the plain text element. The DLHF using Hirose’s compression
function is illustrated in Fig. 1 where each line is n bits and IV [0], IV [1], C, c1

and c2 are constant values. Note that in this figure we omit the suffix free padding
function sfpad. So the hash function takes as its input a message M , sfpad(M) =
M1||M2|| · · · ||Ml with each block of n bits, and outputs the final value rv1||rv2.
We use the DLHF SMDDLCFBC2n,n

to compress an arbitrary length input into
an fixed input length value. Since SMD hash functions cannot be used as ROs
[4], the post-processing function fBC2n,n is used to guarantee PRO security.

The use of the constant values c1 and c2 in the post-processing function is
inspired by the design technique of EMD proposed by Bellare and Ristenpart
[1]. This realizes the fact that we can treat our hash function as a NMAC-like
hash function. Note that the security of EMD is proven when the compression
function is FILRO, while the security of our hash functions is proven when the
compression function is the DLCF in the IC model. So additional analyses are
needed due to the invertible property of IC and the structures of DLCFs.We thus
prove the PRO security of FBC2n,n by using three techniques: the PrA (Preimage
Aware) design framework of Dodis et al. [6], PRO for a small function [4], and
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indifferentiability from a hash function. The first two techniques are existing
techniques and the last technique is a new application of the indifferentiability
framework [20].

First, we prove that the DLCFs are PrA up to O(2n) query complexity. The
PrA design framework offers the hash functions which are PROs up to O(2n)
query complexity where FILRO is used as the post-processing function. Second,
we convert FILRO into the blockcipher-based post-processing function. We prove
that the post-processing function is PRO up to O(2n) query complexity in the
IC model (PRO for a small function). Then, we prove that the PRO security of
the post-processing function and the first PRO result ensure that the converted
hash functions are PROs up to O(2n) query complexity. We note that the hash
functions use two blockciphers.4 Finally, we consider the single-blockcipher-based
hash functions FBC2n,n . We prove that the single blockcipher-based hash func-
tions are indifferentiable from the two-blockciphers-based hash functions in the
IC model up to O(2n) query complexity (indifferentiability from a hash func-
tion). Then we show that the indifferentiable security result and the second PRO
result ensure that our hash functions are PROs up to O(2n) query complexity
in the IC model.

2 Preliminaries

Notation. For two values x, y, x||y is the concatenated value of x and y. For
some value y, x ← y means assigning y to x. ⊕ is bitwise exclusive or. |x| is
the bit length of x. For a set (list) T and an element W , T ← W means to
insert W into T and T ∪←− W means T ← T ∪ {W}. For some 2n-bit value x,
x[0] is the first n bit value and x[1] is the last n-bit value. BCd,n = (E, D) be
a blockcipher where E : {0, 1}d × {0, 1}n → {0, 1}n is an encryption function,
D : {0, 1}d × {0, 1}n → {0, 1}n is a decryption function, the key size is d bits
and the cipher text size is n bits. Cd,n = (EI , DI) be a ideal cipher (IC) where
EI : {0, 1}d×{0, 1}n→ {0, 1}n is an encryption oracle, DI : {0, 1}d×{0, 1}n →
{0, 1}n is a decryption oracle, the key size is d bits and the cipher text size is
n bits. Fa,b : {0, 1}a → {0, 1}b is a random oracle (RO). An arbitrary input
length random oracle is denoted by Fb : {0, 1}∗ → {0, 1}b. For any algorithm A,
we write Time(A) to mean the sum of its description length and the worst-case
number of steps.

Merkle-Damg̊ard [5,21]. Let h : {0, 1}2n × {0, 1}d → {0, 1}2n be a com-
pression function using a primitive P (more strictly hP ) and pad : {0, 1}∗ →
({0, 1}d)∗ be a padding function. The Merkle-Damg̊ard hash function MDh is
described as follows where IV is a 2n-bit initial value.
4 Two independent ideal cipher can be obtained from a single ideal cipher by victim-

izing one bit of the key space. So using a blockcipher with the 2n + 1-bit key space
and the n-bit key space, the hash functions which uses a single blockcipher can be
realized. But the size of the blockcipher is not a practical size.
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MDh(M)
z ← IV ;
Break pad(M) into d-bit blocks, pad(N) = M1|| · · · ||Ml;
for i = 1, . . . , l do z ← h(z, Mi);
Ret z;

We denote MDh, when padding pad is a suffix-free padding sfpad, by SMDh,
called strengthened Merkle-Damg̊ard. We assume that it is easy to strip padding,
namely that there exists an efficiently computable function unpad : ({0, 1}d)∗ →
{0, 1}∗ ∪ {⊥} such that x = unpad(pad(x)) for all x ∈ {0, 1}∗. Inputs to unpad
that are not valid outputs of pad are mapped to ⊥ by unpad.

Pseudorandom Oracle [20]. Let HP : {0, 1}∗ → {0, 1}n be a hash function
that utilizes an ideal primitive P . We say that HP is PRO if there exists an effi-
cient simulator S that simulates P such that for any distinguisher A outputting
a bit it is the case that

Advpro
HP ,S(A) = |Pr[AHP ,P ⇒ 1]− Pr[AFn,SFn ⇒ 1]|

is small where the probabilities are taken over the coins used the experiments. S
can make queries to Fn. The S’s task is to simulate P such that relations among
responses of (HP , P ) hold in responses of (Fn, S) as well.

Preimage Awareness [6,7]. The notion of preimage awareness is useful for
PRO security proofs of NMAC hash functions. We only explain the definition of
preimage awareness. Please see Section 3 of [7] for the spirit of the notion. Let
FP be a hash function using an ideal primitive P . The preimage awareness of
FP is estimated by the following experiment.

Exppra
F P ,P,E,A

x
$←− AP,Ex;

z ← FP (x);
Ret (x �= V[z] ∧Q[z] = 1);

oracle P(m)
c← P (m);
α

∪←− (m, c);
Ret c;

oracle Ex(z)
Q[z]← 1;
V[z]← E(z, α);
Ret V[z];

Here an adversary A is provided two oracles P and Ex. The oracle P provides
access to the ideal primitive P and records a query history α. The extraction
oracle Ex provides an interface to an extractor E , which is a deterministic al-
gorithm that uses z and the query history α of P , and returns either ⊥ or an
element x′ such that FP (x′) = z. If x′ can be constructed from α, it returns x′

and otherwise returns ⊥. In this experiment, the (initially everywhere ⊥) array
Q and the (initially empty) array V are used. When z is queried to Ex, Q[z]← 1
and then the output of E(z, α) is assigned to V[z]. For the hash function FP ,
the adversary A, and the extractor E , we define the advantage relation

Advpra
F P ,P,E = Pr[Exppra

F P ,P,E,A ⇒ true]
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where the probabilities are over the coins used in running the experiments. When
there exists an efficient extractor E such that for any adversary A the above
advantage is small, we say that FP is preimage aware (PrA).

The pra-advantage can be evaluated from the cr-advantage (collision resis-
tance advantage) and the 1-wpra (1-weak PrA) advantage [7]. The 1-WPrA
experiment is described as follows.

Exp1wpra
F P ,P,E+,A

x
$←− AP,Ex+ ;

z ← FP (x);
Ret (x �∈ L ∧ Q[z] = 1);

oracle P(m)
c← P (m);
α

∪←− (m, c);
Ret c;

oracle Ex+(z)
Q[z]← 1;
L← E+(z, α);
Ret L;

The difference between the 1-WPrA experiment and the PrA experiment is the
extraction oracle. In the 1-WPrA experiment, a multi-point extractor oracle
Ex+ is used. Ex+ provides an interface to a multi-point extractor E+, which is a
deterministic algorithm that uses z and α, and returns either ⊥ or a set of an
element in the domain of FP . The output (set) of E+ is stored in list L. Thus,
if L �= {⊥}, for any x′ ∈ L FP (x′) = z. In this experiment, an adversary A can
make only a single query to Ex+. For a hash function FP , an adversary A, and
a multi-point extractor E+, we define the advantage relation

Adv1wpra
F P ,P,E = Pr[Exp1wpra

F P ,P,E+,A ⇒ true]

where the probabilities are over the coins used in running the experiments. When
there exists an efficient multi-point extractor E+ such that the above advantage
is small for any adversary A, we say that FP is 1-WPrA.

The definition of the cr-advantage as follows. Let A be an adversary that
outputs a pair of values x and x′. To hash function FP using primitive P and
adversary A we associate the advantage relation

Advcr
F P ,P (A) = Pr[(x, x′) $←− AP : FP (x) = FP (x′) ∧ x �= x′]

where the probability is over the coins used by A and primitive P .
Then the pra-advantage can be evaluated as follows.

Lemma 1 (Lemmas 3.3 and 3.4 of [7]). Let E+ be an arbitrary multi-point
extractor. There exists an extractor E such that for any pra-advarsary Apra mak-
ing qe extraction queries and qP primitive queries there exists 1-wpra adversary
A1wpra and cr-adversary Acr such that

Advpra
F P ,P,E(Apra) ≤ qe · Adv1wpra

F P ,P,E+(A1wpra) + Advcr
F P ,P (Acr).

A1wpra runs in time at most O(qeTime(E+)) and makes the same number of P
queries as Apra. Acr asks qP queries and run in time O(qe · Time(E+)). E runs
in the same time as E+. �
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NMAC Hash Function. Let g : {0, 1}n → {0, 1}n be a function and HP :
{0, 1}∗ → {0, 1}n be a hash function using primitive P such that g is not used in
HP . Dodis et al. [7] proved that the PRO security of the NMAC hash function
g ◦HP can be reduced into the PrA security of HP .

Lemma 2 (Theorem 4.1 of [7]). Let P be an ideal primitive, g be a random
oracle and E be any extractor for HP . Then there exists a simulator S = (SP , Sg)
such that for any PRO adversary A making at most qF , qP , qg queries to its three
oracles (OF ,OP ,Og) where (OF ,OP ,Og) = (g ◦ HP , P, g) or (OF ,OP ,Og) =
(Fn, SP , Sg), there exists a PrA adversary B such that

Advpro
g◦HP ,S

(A) ≤ Advpra
HP ,P,E(B).

S runs in time O(qP +qg ·Time(E)). Let l be the length of the longest query made
by A to OH . B runs in time O(Time(A) + qF tH + qP + qg), makes qP + qHqF

queries, qg extraction queries, and outputs a preimage of length at most l where
for any input M to HP the output of HP (M) can be calculated within at most
tH times and qH queries to P . �

Dodis et al. proved that the SMD construction preserves the PrA security as
follows. Therefore, the PRO security of the NMAC hash function using the SMD
hash function can be reduced into the PrA security of the compression function.

Lemma 3 (Theorem 4.2 of [7]). Let hP be a compression function using
an ideal primitive P . Let Eh be an arbitrary extractor for hP . There exists an
extractor EH for SMDhP

such that for any adversary AH making at most qP

primitive queries and qe extraction queries and outputting a message at most l
blocks there exists an adversary Ah such that

Advpra

SMDhP
,P,EH

(AH) ≤ Advpra
hP ,P,Eh

(Ah)

EH runs in time at most l(Time(Eh) + Time(unpad)). Ah runs in time at most
O(Time(AH) + qel), makes at most qH + qP ideal primitive queries, and makes
at most qel extraction queries where qH is the maximum number of P queries to
calculate SMDhP

. �

3 Blockcipher-Based Double-Length Hash Functions for
PROs

Let BC2n,n = (E, D), BC1
2n,n = (E1, D1), BC2

2n,n = (E2, D2), and BC3
2n,n =

(E3, D3) be blockciphers. Let g : {0, 1}2n → {0, 1}2n be a function. In this
section, we propose the following DLHFs using a single blockcipher and prove
that our hash functions are PROs up to O(2n) query complexity in the IC model.

FBC2n,n(M) = fBC2n,n(SMDDLCFBC2n,n
(M))
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where fBC2n,n(x) = E(x, c1)||E(x, c2) such that c1 and c2 are n-bit different
constant values and are different from values which are defined by the compres-
sion function (see subsection 3.3). The hash functions use Hirose’s compression
function, Tandem-DM, and Abreast-DM as the underlying DLCF, respectively.
We prove the PRO security by the three steps. Each step uses the PrA design
framework, PRO for a small function and indifferentiability from a hash function,
respectively.

– Step 1. We prove that Hirose’s compression function, Tandem-DM, and
Abreast-DM are PrA up to O(2n) query complexity in the IC model. Lemma
2 and Lemma 3 then ensure that the following NMAC hash function is PRO
up to O(2n) query complexity as long as the blockcipher is IC and g is
FILRO.

F
g,BC1

2n,n

1 (M) = g(SMDDLCF
BC1

2n,n (M))

– Step 2. We prove that fBC3
2n,n is PRO up to O(2n) query complexity in the

IC model where c1 and c2 are n-bit different values. Then, we prove that
the PRO security of F1 and the PRO security of f ensure that the following
hash function is PRO up to O(2n) query complexity in the IC model.

F
BC2

2n,n,BC3
2n,n

2 (M) = fBC3
2n,n(SMDDLCF

BC2
2n,n (M))

– Step 3. This is the final step. We use the indifferentiability from a hash

function: we prove that FBC2n,n is indifferentiable from F
BC2

2n,n,BC3
2n,n

2 up to
O(2n) query complexity in the IC model. Then, we prove that the indiffer-
entiable result and the PRO security of F2 ensure that FBC2n,n is PRO up
to O(2n) query complexity in the IC model.

3.1 Step 1

We prove that Hirose’s compression function [11] is PrA up to O(2n) query
complexity as long as the blockcipher is an ideal cipher. Similarly, we can prove
that Abreast-DM and Tandem-DM [14] are PrA. We prove the PrA security in
the full version.

Definition 1 (Hirose’s Compression Function). Let BC1
2n,n = (E1, D1)

be a blockcipher. Let CFHirose[BC1
2n,n] : {0, 1}2n × {0, 1}n → {0, 1}2n be a com-

pression function such that (Gi, Hi) = CFHirose[BC1
2n,n](Gi−1||Hi−1, Mi) where

Gi, Hi, Gi−1, Hi−1 ∈ {0, 1}n and Mi ∈ {0, 1}n. (Gi, Hi) is calculated as follows:

Gi = Gi−1 ⊕ E1(Hi−1||Mi, Gi−1) (1)
Hi = C ⊕Gi−1 ⊕ E1(Hi−1||Mi, Gi−1 ⊕ C, ) (2)

We call the procedure 1 “first block” and the procedure 2 “second block”. �
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Lemma 4 (Hirose’s Compression Function is PrA). Let C1
2n,n =(E1I , D1I)

be an ideal cipher. There exists an extractor E such that for any adversary A
making at most qP queries to C2n,n and qe extraction queries we have

Advpra
CFHirose[C1

2n,n],C1
2n,n,E(A) ≤ 2q2

P

(2n − 2qP )2
+

2qP

2n − 2qP
+

2qP qe

(2n − qP )2

where E runs in time at most O(qeqP ). �

Proof. We prove that Hirose’s compression function is 1-WPrA, and then Lemma
1 gives the final bound. We note that Theorem 3 of [9] upperbounds the cr-
advantage of A by 2q2

P /(2n − 2qP )2 + 2qP /(2n − 2qP ), yielding the first two
terms.

Intuitively, the 1-WPrA game for the compression function is that A declares
a value z then an extractor outputs preimages, stored in L, of z which can be
constructed from input-output values of A’s queries to C1

2n,n. Then A outputs a
new preimage of z which is not stored in L. Note that A can adaptively query
to C1

2n,n. We define the multi-point extractor to utilize the preimage resistant
bound, proven in [9], of Hirose’s compression function as follows.

algorithm E+(z, α)
Let L be an empty list;
Parse (k1, x1, y1), . . . , (ki, xi, yi)← α; //E1(kj, xj) = yj

For j = 1 to i do
If z[0] = xj ⊕ yj then

y ← E1I(kj , xj ⊕ C);
If z[1] = C ⊕ xj ⊕ y then L

∪←− (xj ||k[0], k[1]);
If z[1] = xj ⊕ yj then

y ← E1I(kj , xj ⊕ C);
If z[0] = C ⊕ xj ⊕ y then L

∪←− ((xj ⊕ C)||k[0], k[1]);
If L is not an empty list then return L otherwise return ⊥;

If an input-output triple of the first block is defined, automatically the input of
the second block is defined, and vice versa, from the definition of the compression
function. For a query (z, α) to E+, when there is an input-output triple (k, x, y)
such that x⊕y = z[0], E+ checks whether the output of the second block is equal
to z[1] or not and if this holds the multi-point extractor stores it in the return
list L, and vice versa. Therefore, A must find a new preimage of z to win the 1-
WPrA experiment. Thus one can straightforwardly adapt the preimage resistant
advantage of the compression function (described in Theorem 5 of [9])5 because
the proof of Theorem 5 of [9] can be applied to the case that an adversary selects
an image z of the compression function and then finds the preimage of z. The
advantage is at most 2qP /(2n − qP )2. �	
5 Note that while the 1-WPrA bound is equal to the preimage bound, this is not trivial

because one needs to construct the extractor that converts the preimage bound into
the 1-WPrA bound.
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Lemma 4 ensures the following theorem via Lemma 2 and Lemma 3 where F1 is
PRO up to O(2n) query complexity.

Theorem 1. There exists a simulator S1 = (S1g, S1C) where S1C = (S1E , S1D)
such that for any distinguisher A1 making at most (qH , qg, qE , qD) queries to four
oracles which are (F1, g, E1, D1) or (F2n, S1g, S1E, S1D), we have

Advpro

F
g,C1

2n,n
1 ,S1

(A1) ≤ 2Q2
1

(2n − 2Q1)2
+

2Q1

2n − 2Q1
+

2lqgQ1

(2n −Q1)2

where S1 works in time O(qE + qD + lqgQ1)+ lqg×Time(unpad) and S1g makes
qg queries to F2n where l is the maximum number of n-bit blocks of a query to
F1/F2n, Q1 = 2l(qH + 1) + qE + qD. S1g simulates g, which makes one query
to F2n for one S1g query, and S1C, which makes no query, simulates the ideal
cipher. �

3.2 Step 2

Lemma 5 (fC3
2n,n is PRO). Let C3

2n,n = (E3I , D3I) be an ideal cipher. Let
g = F2n,2n. There exists a simulator S = (SE , SD) such that for any distin-
guisher A2 making at most qf , qE and qD queries to oracles (Of ,OE ,OD) where
(Of ,OE ,OD) = (fC3

2n,n , E3I , D3I) or (Of ,OE ,OD) = (g, SE , SD), we have

Advpro

f
C3
2n,n ,S

(A2) ≤ qf + qE + qD

2n

where S works in time O(qE+qD) and makes at most queries qE+qD. S simulates
the ideal cipher. �

We explain the intuition of the result of Lemma 5. The proof is given the full
version. An ideal cipher where the plain text is fixed by a constant value is RO. So
the first half value y1 of an output of f is randomly chosen from {0, 1}n and the
last half value is chosen from {0, 1}n\{y1}, while an output of RO is randomly
chosen from {0, 1}2n. The statistical distance appears in the PRO bound.

Theorem 1 and Lemma 5 ensure the following theorem where F2 using Hirose’s
compression function is PRO up to O(2n) query complexity in the IC model. We
prove the theorem in the full version. Similarly, we can prove the PRO security
of the hash functions using Tandem-DM and Abreast-DM, respectively.

Theorem 2 (F2 is PRO). There exists a simulator S2 = (S2, S3) where S2 =
(S2E, S2D) and S3 = (S3E, S3D) such that for any distinguisher A3 making at
most (qH , qE2, qD2, qE3, qD3) queries to five oracles which are (F2, E2, D2, E3, D3)
or (F2n, S2E , S2D, S3E, S3D), we have

Advpro

F
C2
2n,n,C3

2n,n
2 ,S2

(A3) ≤ 2Q2
2

(2n − 2Q2)2
+

2Q2

2n − 2Q2
+

2lq3Q2

(2n −Q2)2
+

qH + q3

2n
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where S2 works in time O(q2 + lq3Q2) + lq3 × Time(unpad) and S3 makes q3

queries to F2n where l is the maximum number of n-bit blocks of a query to
F2/F2n, Q2 = 2l(qH + 1) + qE2 + qD2, q2 = qE2 + qD2 and q3 = qE3 + qD3. �

3.3 Step 3

In this section, we consider the hash function using Hirose’s compression func-
tion. The same discussion can be applied to the hash functions using Tandem-DM
and Abreast-DM, respectively. The discussions are given in the full version.

When using Hirose’s compression function, we use the constant values c1 and
c2 of the post-processing function f such that c1 and c2 are not equal to C⊕IV [0]
and IV [0] where IV is the initial value of SMDDLCFBC2n,n and C is the constant
value used in Hirose’s compression function. If c1 and c2 which are equal to
C ⊕ IV [0] or IV [0] are used, we cannot prove the security of the hash function.
In this case, we fail to construct a simulator.

First, we define the indifferentiability from a hash function as follows.

Definition 2. Let HP1
1 : {0, 1}∗ → {0, 1}2n and HP2

2 : {0, 1}∗ → {0, 1}2n be
hash functions using ideal primitives P1 and P2, respectively. HP1

1 is indifferen-
tiable from HP2

2 if there exists a simulator S such that for any distinguisher A4

outputting a bit it is the case that

Advindif

H
P1
1 ,H

P2
2 ,S(A4) ≤ |Pr[AH

P1
1 ,P1

4 ⇒ 1]− Pr[AH
P2
2 ,SP2

4 ⇒ 1]|

is small where the probabilities are taken over the coins used the experiments. �
The following lemma is that F is indifferentiable from F2 up to O(2n) query
complexity in the IC model.

Lemma 6. Let C2n,n = (EI , DI) be an ideal cipher. Let C2
2n,n = (E2I , D2I)

and C3
2n,n = (E3I , D3I) be different ideal ciphers. There exists a simulator S =

(SE ,SD) such that for any distinguisher A4 making at most qF , qE and qD

queries to its oracles (OF ,OE ,OD) which are (F C2n,n , EI , DI) or (F
C2
2n,n,C3

2n,n

2 ,
SE ,SD), we have

Advindif

FC2n,n ,F
C2
2n,n,C3

2n,n
2 ,S

(A4) ≤ 14× (2(lqF + 1) + qE + qD)
2n − (2(lqF + 1) + qE + qD)

where S works in time O(3(qE + qD)) and makes at most ideal cipher queries
qE+qD. l is the maximum number of n-bit blocks of a query to OF . �

Proof. Without loss of generality, we omit the padding function of our hash
function which is more general case than including the padding function. In
Fig. 2, we define a simulator S = (SE ,SD) such that it simulates the ideal cipher
C2n,n = (EI , DI) and the relation among responses of (F C2n,n , EI , DI) holds in

responses of (F
C2
2n,n,C3

2n,n

2 ,SE ,SD) as well, namely, FS(M) = F
C2
2n,n,C3

2n,n

2 (M).
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simulator SE(k, x)

E01 If E[k, x] �=⊥ then ret E[k, x];
E02 If E[k, c1] =⊥,
E03 y ← E3I(k, c1);
E04 E[k, c1] ← y; D[k, y] ← c1;
E05 y ← E3I(k, c2);
E06 E[k, c2] ← y; D[k, y] ← c2;
E07 If x �= c1 and x �= c2,
E08 y ← E2I(k, x);
E09 E[k, x] ← y; D[k, y] ← x;
E10 Ret E[k, x];

simulator SD(k, y)

D01 If D[k, y] �=⊥ then ret D[k, y];
D02 If E[k, c1] =⊥,
D03 y ← E3I(k, c1);
D04 E[k, c1] ← y; D[k, y] ← c1;
D05 y ← E3I(k, c2);
D06 E[k, c2] ← y; D[k, y] ← c2;
D07 If D[k, y] =⊥,
D08 x ← D2I(k, y);
D09 E[k, x] ← y; D[k, y] ← x;
D10 Ret x;

Fig. 2. Simulator

Since E2I is used in inner calculations and E3I is used in the post-processing
calculations, if for a query (k, x) to SE (k, x) is used in the post-processing
calculations, it returns the output of E3I(k, x), and otherwise it returns the
output of E2I(k, x). Since in post-processing calculation the second value x of
a E query is c1 or c2, we define S such that SE(k, x) is defined by E3I(k, x), if
x = c1 or x = c2, and is defined by E2I(k, x) otherwise.6 E and D are (initially
everywhere ⊥) arrays.

We give the proof via a game-playing argument on the game sequences Game
0, Game 1, and Game 2. Game 0 is the F scenario and Game 2 is the F2

scenario. In each game, A4 can make queries to three oracles (OF ,OE ,OD).
Let Gj be the event that in Game j the distinguisher A4 outputs 1. Therefore,

Pr[AFC2n,n ,EI ,DI

4 ⇒ 1] = Pr[G0] and Pr[AF
C2
2n,n,C3

2n,n
2 ,SE ,SD

4 ⇒ 1] = Pr[G2]. Thus

Advindif

FC2n,n ,F
C2
2n,n

,C3
2n,n

2 ,S
(A4) ≤ |Pr[G1]− Pr[G0]|+ |Pr[G2]− Pr[G1]|

Game 0: Game 0 is the F scenario. So (OF ,OE ,OD) = (F C2n,n , EI , DI).

Game1:Wemodify the underlying functions (OE ,OD) from (EI , DI) to (SE ,SD).
So (OF ,OE ,OD) = (FS ,SE ,SD) where only S has oracle access to (C2

2n,n, C3
2n,n).

We must show that the A4’s view has statistically close distribution in Game
0 and Game 1. Since the difference between the games is the underlying function,
we show that the output of the functions is statistically close; this in turn shows
that the A4’s view has statistically close distribution in Game 0 and Game 1.
First we rewrite S in Fig. 3. C3

2n,n is hard-coded in the steps e03-e05, e06-e08,
d03-05 and d06-08 where E2 and D2 are (initially everywhere ⊥) arrays to store
the output of the ideal cipher and TE2 and TD2 are (initially everywhere empty)
tables. Similarly, C3

2n,n is hard-coded in Steps e10-e11 and d10-d11 where E3 and
D3 are (initially everywhere ⊥) arrays to store the output of the ideal cipher. For
any k, if E2[k, x] �=⊥, E2[k, x] ∈ TE2[k], and if D2[k, y] �=⊥, D2[k, y] ∈ TD2[k].
6 If c1 and c2 which are equal to C⊕IV [0] or IV [0] are used, S cannot decide whether

using E2I or E3I .
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simulator SE(k, x)

e01 If E[k, x] �=⊥ then ret E[k, x];
e02 If E[k, c1] =⊥,

e03 y1
$←− {0, 1}n;

e04 E3[k, c1] ← y1; D3[k, y1] ← c1;
e05 E[k, c1] ← E3[k, c1]; D[k, y1] ← c1;

e06 y2
$←− {0, 1}n\{y1};

e07 E3[k, c2]
$←− y2; D3[k, y2] ← c2;

e08 E[k, c1] ← E3[k, c1]; D[k, y2] ← c1;
e09 If x �= c1 and x �= c2,

e10 y
$←− {0, 1}n\TE2[k];

e11 E2[k, x] ← y; D2[k, y] ← x;
e12 E[k, x] ← y; D[k, y] ← x;
e13 Ret E[k, x];

simulator SD(k, y)

d01 If D[k, y] �=⊥ then ret D[k, y];
d02 If E[k, c1] =⊥,

d03 y1
$←− {0, 1}n;

d04 E3[k, c1] ← y1; D3[k, y1] ← c1;
d05 E[k, c1] ← E3[k, c1]; D[k, y1] ← c1;

d06 y2
$←− {0, 1}n\{y1};

d07 E3[k, c2]
$←− y2; D3[k, y2] ← c2;

d08 E[k, c1] ← E3[k, c1]; D[k, y2] ← c1;
d09 If D[k, y] =⊥,

d10 x
$←− {0, 1}n\TD2[k];

d11 E2[k, x] ← y; D2[k, y] ← x;
d12 E[k, x] ← y; D[k, y] ← x;
d13 Ret x;

Fig. 3. Revised Simulator

Encryption Oracle EI(k, x)

01 If E[k, x] �=⊥, ret E[k, x];
02 If E[k, c1] =⊥,

03 E[k, c1]
$←− {0, 1}n;

04 D[k, E[c1, x]] ← c1;

05 E[k, c2]
$←− {0, 1}n\{E[k, c1]};

06 D[k, E[c2, x]] ← c2;
07 If x �= c1 and x �= c2,

08 E[k, x]
$←− {0, 1}n\TE [k];

09 D[k, E[k, x]] ← x;
10 Ret E[k, x];

Decryption Oracle DI(k, y)

11 If D[k, y] �=⊥, ret D[k, y];
12 If E[k, c1] =⊥,

13 E[k, c1]
$←− {0, 1}n;

14 D[k, E[c1, x]] ← c1;

15 E[k, c2]
$←− {0, 1}n\{E[k, c1]};

16 D[k, E[c2, x]] ← c2;
17 If D[k, y] �=⊥,

18 D[k, y]
$←− {0, 1}n\{TD[k]};

19 E[k, D[k, y]] ← y;
20 Ret D[k, y];

Fig. 4. Lazily-Sample Ideal Cipher

In the following, we use the lazily-sample ideal cipher in Fig. 4. E and D are
(initially everywhere ⊥) arrays and TE and TD (initially empty) tables. For any
(k, x) such that E[k, x] �=⊥, E[k, x] is stored in TE [k], and for any (k, y) such
that D[k, y] �=⊥, D[k, y] is stored in TD[k]. On a query which the key element
is k, first the output of EI(k, c1) is determined (steps 03-04 or steps 13-14) and
second the output of EI(k, c2) is determined (Steps 05-06 or Steps 15-16). Then
the outputs of EI(k, x) such that x �= c1 and x �= c2 are determined. Since
no adversary (distinguisher) learns EI(k, c1) and EI(k, c2) until querying the
corresponding value, the procedures of the steps 03-06 and 13-16 do not affect
the lazily-sample ideal cipher simulation.

We compare the simulator with the lazily-sample ideal cipher. In the simulator
and the ideal cipher, E[k, c1] and E[k, c2] (and also D[k, E[k, c1]] and D[k, E[k, c2]])
are chosen from the same distribution, while E[k, x] (and D[k, E[k, x]]) where
x �= c1 and x �= c2 is chosen different distribution. If in the step e10 y is randomly
chosen from TE2[k]∪{E[k, c1], E[k, c2]} and in the step d10 x is randomly chosen
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from TD2[k]∪{c1, c2}, then the output distribution of the simulator and the ideal
cipher is the same. That is, if any value y randomly chosen from {0, 1}n\TE2[k]
does not collide E[k, c1] and E[k, c2] and any value x randomly chosen from
{0, 1}n\TD2[k] does not collide c1 and c2, then the output distribution between
them is the same. Since for any k, the number of values in TE2[k] and TD2[k]
is at most 2lqF + qE + qD, the statistical distance of E[k, x] (and D[k, E[k, x]])
where x �= c1 and x �= c2 is at most 2/(2n− (2lqF + qE + qD)). So the statistical
distance of the simulator and the ideal cipher is at most (2lqF + qE + qD) ×
2/(2n − (2lqF + qE + qD)). We thus have that

|Pr[G1]− Pr[G0]| ≤ 2× (2lqF + qE + qD)
2n − (2lqF + qE + qD)

.

Game2:WemodifyOF fromFS toF
C2
2n,n,C3

2n,n

2 . So (OF ,OE ,OD)= (F
C2
2n,n,C3

2n,n

2 ,
SE ,SD) and this is the F2 scenario.

We show that unless the following bad events occur, the A4’s view of Game
1 and Game 2 is the same.

– Event B1: On some query (k, x) to SE , the output y is such that y ⊕ x is
equal to c1 or c2.

– Event B2: On some query (k, x) to SE , the output y is such that y ⊕ x⊕C
is equal to c1 or c2.

– Event B3: On some query (k, y) to SD, the output x is equal to c1 or c2 such
that x is defined in the step D08.

To prove this, we use the proof method in [4,13]. Specifically, we prove the
following two points.

1. In Game 1, unless the bad events occur, for any query M the output of

OF (M) is equal to that of F
C2
2n,n,C3

2n,n

2 (M). If this holds, the output distri-
bution of OF in Game 1 and Game 2 is equivalent.

2. In Game 2, unless the bad events occur, OE and OD are consistent with
OF as in Game 1. OF uses OE in Game 1 while does not in Game 2 (note
that in both games (OE ,OD) = (SE ,SD)). So if this holds, the difference
does not affect the output distribution of OE and OD, namely, the output
distribution of OE and OD in Game 1 and Game 2 is the same.

In the following, for input-output triple (k, x, y) of S we denote x ⊕ y by w,
namely, w = x⊕ y. Before proving the above two points, we define chain triples
and give a useful lemma.

Definition 3. (k1, x1, y1), . . . , (ki, xi, yi), (k′
1, x

′
1, y

′
1), . . . , (k′

i, x
′
i, y

′
i), (k, x, y),

(k′, x′, y′) stored in the simulator’s tables E, D are chain triples if for some M the
output of FS(M) can be obtained from the triples. That is, x1 = IV [0], k1[0] =
IV [1], kj = k′

j (j = 1, . . . , i), wj = xj+1 (j = 1, . . . , i− 1), wj ⊕ C = x′
j+1 (j =

1, . . . , i− 1), w′
j = kj+1[0] (j = 1, . . . , i− 1), x = c1, x′ = c2, k = k′, k[0] = wi,

k[1] = w′
i, M = k1[1]|| · · · ||ki[1], and y||y′ = FS(M).
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Lemma 7. For any chain triple (k1, x1, y1), . . . , (ki, xi, yi), (k′
1, x

′
1, y

′
1), . . . , (k′

i,

x′
i, y

′
i), (k, x, y), (k′, x′, y′), unless the bad events occur, FS(M) = F

C2
2n,n,C3

2n,n

2 (M)
where M = k1[1]|| · · · ||ki[1].

Proof. To contrary, assume that there exist chain triples (k1, x1, y1), . . . , (ki, xi, yi),

(k′
1, x

′
1, y

′
1), . . . , (k

′
i, x

′
i, y

′
i), (k, x, y), (k′, x′, y′) such thatFS(M) �=F

C2
2n,n,C3

2n,n

2 (M)
where M = k1[1]|| · · · ||ki[1]. Then, since the output of S is defined by E2I or E3I ,
one of the following events occur.

– Event 1: In the inner calculation of FS(M), some triple is defined by E3I .
That is, some of (k1, x1, y1), . . . , (ki, xi, yi), (k′

1, x
′
1, y

′
1), . . . , (k′

i, x
′
i, y

′
i), is

defined by E3I .
– Event 2: In the post-processing function calculation of FS(M), some triple

is defined by E2I . That is, (k, x, y) or (k′, x′, y′) is defined by E2I .

Consider Event 1. First consider the case that (kj , xj , yj) is defined by E3I . Since
x1 = IV [0], j �= 1. When the output of SE(kj , xj) is defined by E3I , xj = c1

or xj = c2. Which means that wj−1 = c1 or wj−1 = c2. So the bad event 1
occurs. Second consider the case that (k′

j , x
′
j , y

′
j) is defined by E3I . Similarly,

since x1 = IV [0]⊕ C, j �= 1. When the output of SE(kj , xj) is defined by E3I ,
xj = c1 or xj = c2. Which means that w′

j−1 ⊕ C = c1 or w′
j−1 ⊕ C = c2. So the

bad event 2 occurs.
Next consider Event 2. First consider the case that (k, x, y) is defined by E2I .

Then the triple is defined in SD because x = c1 (if the triple is defined in SE , it
is defined by E2I due to the condition of the step E07). So the triple is defined in
the step D08. The bad event 3 occurs. Finally, consider the case that (k′, x′, y′)
is defined by E2I . Then the triple is defined in SD because x = c2. So the triple
is defined in the step D08. The bad event 3 occurs. �	

Proof of Point 1. From the above lemma, unless the bad event occurs, the

output of OF (M) = FS(M) = F
C2
2n,n,C3

2n,n

2 (M).

Proof of Point 2. Since in Game 1 for any M the output ofOF (M) is calculated
by FS(M), we must show that in Game 2 the relation also holds, that is, unless
the bad events occur, for any chain triples (k1, x1, y1), . . . , (ki, xi, yi), (k′

1, x
′
1, y

′
1),

. . . , (k′
i, x

′
i, y

′
i), (k, x, y), (k′, x′, y′) the output of FS(M) is equal to OF (M) (=

F
C2
2n,n,C3

2n,n

2 (M)) where M = k1[1]|| · · · ||ki[1]. From the above lemma, unless the
bad event occurs, this holds.

The Bound of |Pr[G2]−Pr[G1]|. The above two points imply that unless the
bad events occur, the A4’s view of Game 1 and Game 2 is the same, and so we
have that

|Pr[G2]− Pr[G1]|
≤ 2×max{Pr[B11] + Pr[B21] + Pr[B31], Pr[B12] + Pr[B22] + Pr[B32]}
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where Bij is the event Bi in Game j. Since the number of queries to S in Game
1 is more than that in Game 2,

|Pr[G2]− Pr[G1]| ≤ 2× (Pr[B11] + Pr[B21] + Pr[B31]).

First, we evaluate the probability Pr[B11]. In Game 1, the number of queries to
S is at most 2(lqF + 1) + qE + qD. So the output is randomly chosen from at
least 2n − (2(lqF + 1) + qE + qD) values. We thus have that

Pr[B11] ≤ 2× (2(lqF + 1) + qE + qD)
2n − (2(lqF + 1) + qE + qD)

.

Second, we evaluate the probability Pr[B21]. From the same discussion as Pr[B11],

Pr[B21] ≤ 2× (2(lqF + 1) + qE + qD)
2n − (2(lqF + 1) + qE + qD)

.

Finally, we evaluate the probability Pr[B31]. A value in the step D08 is defined
by D2I . That is, in this case, the output of D2I is equal to c1 or c2. Since the
number of queries to C2

2n,n is at most 2(lqF +1)+ qE + qD, So the output of D2I

is randomly chosen from at least 2n − (2(lqF + 1) + qE + qD) values. We thus
have that

Pr[B11] ≤ (2(lqF + 1) + qE + qD)× 2
2n − (2(lqF + 1) + qE + qD)

.

We thus have that

|Pr[G2]− Pr[G1]| ≤ 2× 6× (2(lqF + 1) + qE + qD)
2n − (2(lqF + 1) + qE + qD)

Consequently, we can obtain the following bound.

Advindif

FC2n,n ,F
C2
2n,n,C3

2n,n
2 ,S

(A4) ≤ 14× (2(lqF + 1) + qE + qD)
2n − (2(lqF + 1) + qE + qD)

.

�	
Theorem 2 and Lemma 6 ensure the following theorem where F is PRO up
to O(2n) query complexity in the IC model. We prove the theorem in the full
version.

Theorem 3 (F is PRO). There exists a simulator S = (SE , SD) such that for
any distinguisher A making at most (qH , qE , qD) queries to three oracles which
are (F, EI , DI) or (F2n, SE , SD), we have

Advpro
FC2n,n,S(A) ≤ 2Q2

(2n − 2Q)2
+

2Q

2n − 2Q
+

2l(2q)Q
(2n −Q)2

+
qH + 2q

2n
+

14Q

2n −Q

where S works in time O(q + 2lqQ) + 2lq × Time(unpad) and makes 2q queries
to F2n where Q = 2l(qH + 1) + qE + qD and q = qE + qD. �
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4 Conclusion

We proposed new DLHFs constructed from a single practical size blockcipher,
where the key size is twice of the plaintext size. The security was proven by
that (1) the PRO security of F1 is proven by the PrA framework, (2) the PRO
security of F2 is proven by PRO for a small function and the result (1), and
(3) the PRO security of F is proven by indifferentiability from a hash function
and the result (2). Our schemes are the first time DLHFs achieving birthday
PRO security. This paper only considers PRO security, while the performance
evaluation is not considered. So the evaluation is a future work.
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ASC-1: An Authenticated Encryption

Stream Cipher
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Abstract. The goal of the modes of operation for authenticated en-
cryption is to achieve faster encryption and message authentication by
performing both the encryption and the message authentication in a sin-
gle pass as opposed to the traditional encrypt-then-mac approach, which
requires two passes. Unfortunately, the use of a block cipher as a building
block limits the performance of the authenticated encryption schemes to
at most one message block per block cipher evaluation.

In this paper, we propose the authenticated encryption scheme ASC-1
(Authenticating Stream Cipher One). Similarly to LEX, ASC-1 uses leak
extraction from different AES rounds to compute the key material that
is XOR-ed with the message to compute the ciphertext. Unlike LEX,
the ASC-1 operates in a CFB fashion to compute an authentication tag
over the encrypted message. We argue that ASC-1 is secure by reducing
its (IND-CCA , INT-CTXT) security to the problem of distinguishing the
case when the round keys are uniformly random from the case when the
round keys are generated by a key scheduling algorithm.

Keywords: authenticated encryption, stream ciphers, message authen-
tication, universal hash functions, block ciphers, maximum differential
probability.

1 Introduction

Confidentiality and message authentication are two fundamental information se-
curity goals. Confidentiality addresses the issue of keeping the information secret
from unauthorized users. Often, this is achieved by encrypting the data using
a symmetric-key encryption scheme. Message authentication addresses the is-
sues of source corroboration and improper or unauthorized modification of data.
To protect the message authenticity, the sender usually appends an authentica-
tion tag that is generated by the signing (tagging) algorithm of some message
authentication scheme.

Although symmetric-key encryption and message authentication have been
mainly studied in a separate context, there are many applications where both
are needed. The cryptographic schemes that provide both confidentiality and
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authenticity are called authenticated encryption schemes. The authenticated en-
cryption schemes consist of three algorithms: a key generation algorithm, an
encryption algorithm, and a decryption algorithm. The encryption algorithm
takes a key, a plaintext and an initialization vector and it returns a ciphertext.
Given the ciphertext and the secret key, the decryption algorithm returns plain-
text when the ciphertext is authentic, and invalid when the ciphertext is not
authentic. The scheme is secure if it is both unforgeable and secure encryption
scheme [1]. Two block cipher modes of operation for authenticated encryption,
IACBC and IAPM, supported by a claim of provable security were proposed in
[14]. Provably secure authenticated encryption schemes that use a block cipher
as a building block were also presented in [9,10,24]. The previous authenticated
encryption schemes use a block cipher as a building block. The duplex construc-
tion [2] iteratively applies a bijective transformation, and its main application
is authenticated encryption. One can also incorporate some message authentica-
tion mechanisms in a stream cipher. The drawback of this approach is that one
cannot reduce the security of the scheme to a well-known problem such as the
indistinguishability of block ciphers from random permutations. However, this
approach promises better efficiency. One such authenticated encryption scheme
is Helix [7]. Another example of a heuristically designed authenticated encryp-
tion scheme is SOBER-128 [11].

We propose the authenticated encryption scheme ASC-1. The design of the
scheme has roots in message authentication and encryption schemes that use
four rounds of AES [8] as a building block such as the LEX [3] stream cipher,
the ALRED [4,5] MAC scheme, and the MAC schemes proposed in [20,13]. How-
ever, unlike the previous constructions, we use a single cryptographic primitive
to achieve both message secrecy and authenticity. To argue the security of the
scheme, we show that the scheme is secure if one cannot tell apart the case when
the scheme uses random round keys from the case when the round keys are
derived by a key scheduling algorithm. Our information-theoretic security anal-
ysis uses the approach taken in [12,15,16,17,18,19,21,22] to provide differential
probability bounds.

2 ASC-1 Specification

ASC-1 is an authenticated encryption scheme. Its key size can vary depending
on the block cipher that is used. Our block cipher suggestion is AES with 128-bit
key. The encryption and decryption algorithms for a message M = m1||m2||m3

consisting of three 128-bit blocks are depicted in Figure 1.
The schemes uses a 56-bit representation of a counter that provides a unique

initialization vector for each encrypted message. The encryption algorithm de-
rives an initial state X0 and three keys K1,0, K2,0 and K3,0 by applying a block
cipher to 070||00||Cntr, 070||01||Cntr, 070||10||Cntr and l(M)||00000011||Cntr
respectively, where l(M) is a 64-bit representation of the bit length of the mes-
sage M . The message is then processed in a CFB-like mode using the 4R-AES
transformation. The 4R-AES transformation takes as input a 128-bit input state
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and outputs a 128-bit “random” leak ri and a 128-bit output state. The first
leak r1 is used to encrypt the first message block m1. The resulting ciphertext
block c1 is XOR-ed with the output state to give the input state for the second
4R-AES transformation. This process is repeated for all message blocks. The
leak from the last 4R-AES application is ignored, and its output h is encrypted
by K3,0 to give the authentication tag. The ciphertext consists of the counter
value, the ciphertext blocks and the authentication tag.

Fig. 1. The encryption and decryption algorithms of ASC-1. The message consists of
three blocks. The ciphertext consists of the counter value, three ciphertext block and an
authentication tag. The receiver recovers the original message and verifies its validity
by checking whether the re-computed authentication tag is equal to the received one.

The decryption algorithm uses the same secret key and the received counter
value to compute X0, K1,0, K2,0 and K3,0. The leak r1 derived by applying 4R-
AES to X0 is used to decrypt c1 into the original message block m1. The output
of the first 4R-AES is XOR-ed with the first ciphertext block to give the next
input state, and the process is repeated until all message blocks are recovered
and an authentication tag of the message is computed. If the computed tag is
same as the one that was received, then the decrypted message is accepted as
valid.

Although, we use 64-bit and 56-bit representations for the message length
and the counter, we assume that both the maximum message length and the
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maximum number of messages to be encrypted is 248. The message length might
not be a multiple of the block length. In this case, the last message block mn

with length ln < 128 is padded with zeros to get a 128-bit block m′n. A 128-bit
ciphertext block c′n is derived as c′n = m′n ⊕ rn, and it is XOR-ed with the n-th
output state to give the (n + 1)-st input state. However, the sender will not
transmit c′n, but cn, which consists of the first ln bits of c′n. This will enable the
receiver to recover the message length.

The 4R-AES transformation is depicted in Figure 2. Four AES rounds are ap-
plied to the initial state x = (x1, . . . , x16) to give a 128-bit leak r= l1..4||l5..8||l9..12
||l13..16 and an output state y = (y1, . . . , y16). Here, we assume that the key addi-
tion is the first operation of the AES rounds. Four bytes are leaked after the Mix-
Columns transformation in each round. The leak positions are same as in LEX.
However, unlike LEX, we add a whitening key byte before each extracted byte.

Fig. 2. The 4R-AES transfomration

The 4R-AES transformation uses five 128-bit keys: four round keys and one
whitening key. These keys are derived from the 256-bit key K1,0||K2,0 as follows.
The AES-256 key scheduling algorithm is applied to K1,0||K2,0 to derive 14
round keys K1,K2, . . . ,K14. The keys K2,K3,K4 and K5 are used as round
keys in the first 4R-AES transformation. The keys K7,K8,K9 and K10 are used
as round keys in the second 4R-AES transformation. The key K1 is used as a
whitening key in the second 4R-AES transformation, and the key K11 is used as
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a whitening key in the first 4R-AES transformation. The AES-256 key scheduling
algorithm is again applied to K13||K14 to derive 14 keys that are used by the
third and the fourth 4R-AES transformation, and the process is repeated as long
as we need new keys.

3 Authenticated Encryption Based on Leak-Safe AXU
(LAXU) Hash Functions

In this section, we introduce the concept of a leak-safe almost XOR universal
(LAXU) hash function, which is an extension of the notion of an AXU hash
function [23]. We also show how LAXU hash functions can be used to construct
an unconditionally secure authenticated encryption scheme. This construction is
used in the information-theoretic part of the security proof of ASC-1 in Section 4.

Definition 1 (LAXU). A family of hash functions H = {h(m) = (l, h)|m ∈
M, l ∈ {0, 1}k, h ∈ {0, 1}n} is leak-safe ε-almost XOR universal2, written ε-
LAXU2, if for all distinct messages m,m′ ∈M , for all leaks l ∈ {0, 1}k and any
constant c ∈ {0, 1}n,

Pr
h∈H

[πh(h(m)) ⊕ πh(h(m
′)) = c|πl(h(m)) = l] ≤ ε,

where πh(l, h) = h and πl(l, h) = l are projection functions.

One can use a LAXU hash function family as a building block to construct an
unconditionally secure authenticated encryption scheme as shown in Figure 3.
We assume that the message M consists of d n-bit blocks. Some techniques that
deal with arbitrary length messages are discussed later on. The ciphertext blocks
are computed as follows. A hash function hK1 is selected randomly from H and it
is applied to an initial value IV to get a leak l1 and hash value h1. The leak l1 is
used to encrypt the message blockm1 into a ciphertext block c1 = m1⊕l1. A new
hash function hK2 is randomly drawn from H. It is applied to i2 = h1⊕ c1⊕ k1,
where k1 is a random key, to get a leak l2 and hash value h2. The leak l2 is used
to encrypt the message block m2 into a ciphertext block c2, and the process is
repeated until the encryption of the last message block md. The authentication
tag τ is computed as τ = KT ⊕hd+1, where KT is a random n-bit key, and hd+1

is the hash value that is obtained by applying a randomly drawn hash function
hKd+1

to cd⊕ hd. The ciphertext C = IV ||c1||c2|| . . . ||cd||τ is a concatenation of
the initial value, the ciphertext blocks, and the authentication tag.

We assume that the recipient has knowledge of the secret keys that were
used to encrypt the message. The decryption and verification of the ciphertext
proceeds as follows. First, hK1 is applied to IV to get a leak l1 and hash value
h1. The leak l1 is used to decrypt the ciphertext block c1 into a message block
m1 = c1 ⊕ l1. Then, the hash function hK2 is applied to i2 = h1 ⊕ c1 ⊕ k1
to get a leak l2 and hash value h2. The second message block is obtained as
m2 = c2⊕ l2, and the process is repeated until all message blocks m1,m2, . . . ,md

are decrypted. To verify the authenticity of the received ciphertext, the recipient
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Fig. 3. An authenticated encryption scheme construction based on a LAXU hash func-
tion family in a CFB-like mode

recomputes the authentication tag τ as τ = hd+1 ⊕KT , where hd+1 is the hash
value that is obtained when applying hKd+1

to cd⊕hd. If the recomputed tag τ is
equal to the received tag τr, then the decryption algorithm outputs the message
M = m1||m2|| . . . ||md. Otherwise, the decryption algorithm outputs reject.
The following theorem establishes the security of the previous construction.

Theorem 1. Suppose that H = {h(m) = (l, h)|m ∈ {0, 1}n, l ∈ {0, 1}n, h ∈
{0, 1}n} is an ε-LAXU2 family of hash functions such that (i) πh(h(m)) is a
bijection, and (ii) Prh∈RH[πl(h(m)) = l|m] = 2−n for any message m and any
leak l. Then, the authenticated encryption scheme depicted in Figure 3 achieves:

1. perfect secrecy. The a posteriori probability that the message is M given a
ciphertext C is equal to the a priori probability that the message is M .

2. unconditionally secure ciphertext integrity. The probability that a computa-
tionally unbounded adversary will successfully forge a ciphertext is at most
qvε, where qv is the number of the verification queries that the adversary
makes.

Proof. The perfect secrecy of the scheme follows from the fact that the initial value
IV is independent of the message, and all li and the key KT have uniform proba-
bility distribution for any possible message. Amore formal analysis is given below.

Pr[M = m1|| . . . ||md|C = IV ||c1|| . . . ||cd||τ ] =
=

Pr[M = m1|| . . . ||md]× Pr[C = IV ||c1|| . . . ||cd||τ |M = m1|| . . . ||md]∑
M′ Pr[M′ = m′1|| . . . ||m′d]× Pr[C = IV ||c1|| . . . ||cd||τ |M′ = m′1|| . . . ||m′d]

=
Pr[M = m1|| . . . ||md]× 2−(d+1)n × Pr[IV ]

∑
M′ Pr[M′ = m′1|| . . . ||m′d]× 2−(d+1)n × Pr[IV ]

= Pr[M = m1|| . . . ||md].
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In the previous analysis, we used the fact that for any message M′:

Pr[C = IV ||c1|| . . . ||cd||τ |M′ = m′1|| . . . ||m′d] =
= Pr[c1|| . . . ||cd||τ |IV,M′]× Pr[IV |M′]
= Pr[l = m1 ⊕ c1|| . . . ||md ⊕ cd,KT = hd+1 ⊕ τ |IV,M′]× Pr[IV ]

= 2−(d+1)n × Pr[IV ].

There are two possible types of attacks when considering the authenticity of
the ciphertext: an impersonation attack and a substitution attack.

In the case of an impersonation attack, the attacker constructs and sends a
ciphertext to the receiver before he sees the encryption of the message. Due to
the fact that the key KT is uniformly random, the probability of success of an
impersonation attack is at most 2−n. If the adversary makes qI impersonation
attempts, then the probability that at least one of this attempts will be successful
ia 1− (1− 2−n)qI ≤ qI × 2−n.

In the case of substitution attack, the adversary has intercepted the ciphertext
of a given message and tries to replace it with a different ciphertext that will be
accepted as valid by the receiver. We will show that the probability of success
in this case is at most qS × ε, where qS is the number of substitution attempts
made by the adversary.

Suppose that C = IV ||c1|| . . . ||cd||τ is the ciphertext of a chosen message M
and C′ = IV ′||c′1|| . . . ||c′d||τ ′ is the substitution ciphertext. If the two ciphertexts
C and C′ differ only in their authentication tags (i.e., τ ′ �= τ , IV ′ = IV and
cj = c′j , 1 ≤ j ≤ d), then the probability of successful substitution is zero.
Therefore, the only interesting case is when the substitution ciphertext C′ and
the original ciphertext C differ in at least one block that is different from the
tag block.

Let 0 ≤ j ≤ d be the index of the first block where C and C′ differ, and let
Δij+1 = c′j ⊕ cj be the difference at the input of hKj+1 , with c0 = IV and c′0 =
IV ′. Then, due to the ε-LAXU and invertibility properties of H, we have that
Pr[Δhj+1 = 0|M,C,C′] = 0 and ∀Δ∈{0,1}n,Δ�=0 Pr[Δhj+1 = Δ|M,C,C′] ≤ ε,
where Δhj+1 is the difference at the output of hKj+1 . Hence, for the difference
Δij+2 = Δhj+1⊕Δcj+1, we get that ∀Δ∈{0,1}n Pr[Δij+2 = Δ|M,C,C′] ≤ ε. The
probability Pr[Δhj+2 = 0|M,C,C′] is equal to the probability that Pr[Δij+2 =
0|M,C,C′], and is at most ε. When the input difference Δij+2 is nonzero, we get
that ∀Δ∈{0,1}n,Δ�=0 Pr[Δhj+2 = Δ|M,C,C′] ≤ ε. If we continue in this manner,
we get that ∀Δ∈{0,1}n Pr[Δhd+1 = Δ|M,C,C′] ≤ ε. The substitution ciphertext
will be accepted as valid only if h′d+1⊕KT = τ ′, i.e., only if Δhd+1 = Δτ , where
Δτ = τ ⊕ τ ′. Given the previous analysis, this will happen with probability no
larger than ε.

The probability that at least one out of qS substitution queries will be success-
ful is at most qSε. The probability of success when making at most qv = qI + qS
verification queries is at most qvε due to the fact that ε ≤ 2−n. �

To deal with messages of arbitrary length, one can generate uniformly at random
a key KT for each possible message length. Now, if one substitutes a ciphertext
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with a different-length ciphertext, then the probability of success will be same as
for the impersonation attack (i.e., 2−n). In ASC-1, this is accomplished by having
the message length as a part of the input when generating K3,0.

4 Security of ASC-1

In this section, we show that if the block cipher used in ASC-1 is secure and one
cannot tell apart the case when ASC-1 uses random round keys from the case
when it uses round keys derived by a key scheduling algorithm, then ASC-1 is
secure authenticated encryption scheme.

4.1 The Information-Theoretic Case

Here, we establish the unconditional security of ASC-1 with random keys. First,
we consider the two round SPN structure of Figure 4. The input x = x1|| . . . ||xn

is an n×m-bit string. The key addition operator is the bitwise XOR operator.

Fig. 4. A two round SPN structure with a leak. Each of the n S-boxes is a non-linear
permutation on {0, 1}m, and the branch number of the linear mixing layer is n + 1.
Without loss of generality, we assume that the leak positions are the first s positions
of v (i.e., l = v1||v2|| . . . ||vs)
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The non-linear substitution layer consists of n S-boxes. Each S-box is a non-linear
permutation that transforms an m-bit string into an m-bit string. The mixing
layer is defined by an n×n matrix. It is linear with respect to bitwise XOR and
its branch number is n+ 1. We omit the mixing layer in the second round since
it does not affect our analysis. The leak l consists of s values v1, . . . , vs.

Each possible key k1,1, . . . , k1,n, k2,1, . . . k2,n, k3,1, . . . , k3,s defines a function
that maps the input x into an output y and a leak l. The collection of such
functions H2R forms a LAXU hash function family.

Lemma 1. Suppose that the keys in the transformation depicted in Figure 4 are
chosen uniformly at random. Then, we have that

Pr[Δy = Δy|x = x,x′ = x′, l = l] = Pr[Δy = Δy|Δx = x⊕ x′].

Proof. Suppose that a function h (i.e., the key k1,1, . . . , k1,n, k2,1, . . . , k2,n, k3,1,
. . . , k3,s) is selected uniformly at random from H2R. Let l be the leak that is
obtained when h is applied to an input x, and let x′ be an input bit string
distinct from x. The probability Pr[Δy = Δy|x = x,x′ = x′, l = l] is the
probability that the output difference y ⊕ y′ is Δy given x = x, x′ = x′ and
l = l. Due to the initial key addition, this probability is equal to the probability
Pr[Δy = Δy|Δx = x ⊕ x′, l = l] that the output difference is Δy given the
input difference is Δx = x⊕ x′ and the leak l. To prove the lemma, we use the
following observations:

1. Pr[Δu|Δx, l] = Pr[Δu|Δx], where Δu = (Δu1, . . . , Δun), Δui = ui ⊕ u′i.
That is the difference Δu given input difference Δx is independent of the
leak l. This is due to the second key addition, which makes the leak uniformly
distributed for any possible value Δu.

2. Pr[Δy|Δu, l] =
∏s

i=1 Pr[Δyi|Δui, vi] ×
∏n

i=s+1 Pr[Δyi|Δui]. Given the dif-
ference Δu, the probability of having a difference Δyi = yi⊕y′i at the output
of the i-th S-box of the second round is independent of the probability of
having a difference Δyj , j �= i at the output of some other S-box in the
second round.

3. Pr[Δyi|Δui, vi] = Pr[Δyi|Δui], i = 1, . . . , s. After the third key addition,
the input to the S-boxes is uniformly distributed and independent of the vi
values.

Using the previous observations, we can now prove the theorem.

Pr[Δy|Δx, l] =
∑

Δu

Pr[Δy|Δu,Δx, l] Pr[Δu|Δx, l]

=
∑

Δu

Pr[Δy|Δu, l] Pr[Δu|Δx]

=
∑

Δu

Pr[Δu|Δx]×
s∏

i=1

Pr[Δyi|Δui, vi]×
n∏

i=s+1

Pr[Δyi|Δui]

=
∑

Δu

Pr[Δu|Δx]×
s∏

i=1

Pr[Δyi|Δui]×
n∏

i=s+1

Pr[Δyi|Δui]
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=
∑

Δu

Pr[Δu|Δx]×
n∏

i=1

Pr[Δyi|Δui]

=
∑

Δu

Pr[Δy|Δu]× Pr[Δu|Δx]

= Pr[Δy|Δx]. �

Corollary 1. The family of functions H2R defined by the 2-round transforma-
tion depicted in Figure 4 is ε-LAXU2 with ε = DP2R, where DP2R is the maxi-
mum differential probability of the 2-round SPN structure when there is no leak.

Proof. Due to the previous lemma, we get that Pr[Δy = Δy|x = x,x′ = x′, l =
l] = Pr[Δy = Δy|Δx = x⊕ x′] ≤ DP2R. �

The previous results refer to two round SPN structures. In order to show that one
can use four AES rounds to construct a LAXU hash function, we will first con-
sider the composition of transformations depicted in Figure 5. The next lemma
establishes independence of the differential probability of F1 (resp., F2) from the
leak value l2 (resp., l1). This is due to the key addition operation that follows
F1 and precedes F2.

F1

k1

x1

l1

x2

k

F2

k2 l2

y2

y1

Fig. 5. A composition of a transformation F1, key addition and transformation F2.
The length of the F1’s output y1, the length of the F2’s input x2 and the length of the
key k are equal. Both F1 and F2“leak” a value (l1 and l2 resp.).

Lemma 2. The following holds for the differential probabilities of the transfor-
mations F1 and F2 depicted in Figure 5:

Pr[Δy1=Δy1|Δx1=Δx1, l1= l1, l2 = l2]= Pr[Δy1 = Δy1|Δx1 = Δx1, l1 = l1],

and

Pr[Δy2=Δy2|Δy1=Δy1, l1 = l1, l2 = l2] = Pr[Δy2=Δy2|Δy1=Δy1, l2= l2].
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Proof.

Pr[Δy1 = Δy1|Δx1 = Δx1, l1 = l1, l2 = l2]

=
∑

y1

Pr[Δy1 = Δy1,y1 = y1|Δx1 = Δx1, l1 = l1, l2 = l2]

=
∑

y1

(Pr[Δy1 = Δy1|y1 = y1, Δx1 = Δx1, l1 = l1, l2 = l2]×

×Pr[y1 = y1|Δx1 = Δx1, l1 = l1, l2 = l2])

=
∑

y1

(Pr[Δy1 = Δy1|y1 = y1, Δx1 = Δx1, l1 = l1]×

×Pr[y1 = y1|Δx1 = Δx1, l1 = l1])

= Pr[Δy1 = Δy1|Δx1 = Δx1, l1 = l1].

Here we used the fact that

Pr[Δy1 = Δy1|y1 = y1, Δx1 = Δx1, l1 = l1, l2 = l2]

=
Pr[Δy1 = Δy1,y1 = y1, Δx1 = Δx1, l1 = l1, l2 = l2]

Pr[y1 = y1, Δx1 = Δx1, l1 = l1, l2 = l2]

=
Pr[l2 = l2|Δy1 = Δy1,y1 = y1, Δx1 = Δx1, l1 = l1]

Pr[l2 = l2|y1 = y1, Δx1 = Δx1, l1 = l1]
×

×Pr[Δy1 = Δy1,y1 = y1, Δx1 = Δx1, l1 = l1]

Pr[y1 = y1, Δx1 = Δx1, l1 = l1]

=
Pr[l2 = l2]× Pr[Δy1 = Δy1,y1 = y1, Δx1 = Δx1, l1 = l1]

Pr[l2 = l2]× Pr[y1 = y1, Δx1 = Δx1, l1 = l1]

= Pr[Δy1 = Δy1|y1 = y1, Δx1 = Δx1, l1 = l1].

The equalities Pr[l2 = l2|y1 = y1, Δx1 = Δx1, l1 = l1] = Pr[l2 = l2] and
Pr[l2 = l2|Δy1 = Δy1,y1 = y1, Δx1 = Δx1, l1 = l1] = Pr[l2 = l2] follow from
the fact that the value of the second leak l2 is independent of Δx1, y1, Δy1 and
l1 since x2 is uniformly distributed and independent of these values. Similarly,
we can show that

Pr[y1 = y1|Δx1 = Δx1, l1 = l1, l2 = l2] = Pr[y1 = y1|Δx1 = Δx1, l1 = l1].

This concludes the first part of the proof. The second equation of the lemma can
be proved in a similar fashion, and we omit its proof. �

Let us look now at the situation depicted in Figure 6. A keyed non-linear function
F is applied to a vector x of n input values (x1, . . . , xn) to produce a vector
y = (y1, . . . , yn) of n output values. Without loss of generality, we assume that
the first s output values are leaked after a uniformly random key is added to
them. The knowledge of the leak l′ = (l1, . . . , ls) does not change the output
differential probabilities of F .
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Fig. 6. The first s output values of a non-linear function F are “leaked” after a uni-
formly random key is added to them

Lemma 3. Let o = (l1, . . . , ls, ys+1, . . . , yn) denote the output of the transfor-
mation depicted in Figure 6. The following holds for the output differential prob-
ability Δo:

Pr[Δo(≡ Δy) = Δo|Δx = Δx, l = l, l′ = l′] = Pr[Δo = Δo|Δx = Δx, l = l]

Proof. Since the output values are leaked after the random key is added, they tell
nothing about the values y1, . . . , ys and do not affect the probability of having
output difference Δy.

Pr[Δo(≡ Δy) = Δo|Δx = Δx, l = l, l′ = l′]

=
∑

y

Pr[Δo = Δo,y = y|Δx = Δx, l = l, l′ = l′]

=
∑

y

(Pr[Δo = Δo|y = y,Δx = Δx, l = l, l′ = l′]×

×Pr[y = y|Δx = Δx, l = l, l′ = l′])

=
∑

y

Pr[Δo = Δo|y = y,Δx = Δx, l = l]× Pr[y = y|Δx = Δx, l = l]

= Pr[Δo = Δo|Δx = Δx, l = l]. �

The following theorem follows from the previous analysis.

Theorem 2. Suppose that the initial state and all the keys in ASC-1 are uni-
formly random, then the scheme provides:

– perfect secrecy, and
– unconditional ciphertext integrity, where the probability of success of any

adversary making qv verifying queries is at most qv × 2−113.

Proof. We will show here that if the (round) keys are selected uniformly at
random, then the family of functions defined by four rounds of AES with leak
extraction is an ε-LAXU2 hash function family with ε = 2−113. The first round
key additions in the 4R-AES transformations play the role of the keys ki of the
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construction depicted in Figure 3. Clearly, the transformation defined by four
rounds of AES is a bijection, and the leak values are uniformly random and
independent of the input due to the uniform probability distribution of the keys.
Therefore, the sufficient conditions of Theorem 1 are satisfied, and the scheme
provides perfect secrecy and unconditional ciphertext integrity.

In our analysis, we assume that the key addition is the first round operation
instead of a last one as in the AES specification. Furthermore, all the keys
are independent with uniform probability distribution. We use the following
notation:

– xi, i = 0, . . . , 3 is the input to the i-th round and consists of 16 bytes
xi,0, . . . , xi,15;

– yi, i = 0, . . . , 3 is the output of the MixColumns layer of the i-th round and
consists of 16 bytes yi,0, . . . , yi,15;

– zi, i = 0, . . . , 3 is the state after the leak extraction layer of the i-th round
and consists of 16 bytes zi,0, . . . , zi,15;

– li, i = 0, . . . , 3 is the leak extracted in the i-th round and consists of 4 bytes
li,0, . . . , li,15;

Suppose that x′0 and x′′0 are two distinct input values, and let us consider the
output difference Δz3 given the input difference Δx0 = x′0 ⊕ x′′0. By applying
the previously presented lemmas, we get:

Pr[Δz3 = Δz3|x′0 = x′0,x
′′
0 = x′′0 , l0 = l0, l1 = l1, l2 = l2, l3 = l3]

= Pr[Δz3 = Δz3|Δx0 = x′0 ⊕ x′′0 , l0 = l0, l1 = l1, l2 = l2, l3 = l3]

=
∑

Δz1

(Pr[Δz1 = Δz1|Δx0 = x′0 ⊕ x′′0 , l0 = l0, l1 = l1, l2 = l2, l3 = l3]× (1)

×Pr[Δz3 = Δz3|Δz1 = Δz1, Δx0 = x′0 ⊕ x′′0 , l0 = l0, l1 = l1, l2 = l2, l3 = l3])

=
∑

Δz1

(Pr[Δz1 = Δz1|Δx0 = x′0 ⊕ x′′0 , l0 = l0, l1 = l1]×

×Pr[Δz3 = Δz3|Δz1 = Δz1, l2 = l2, l3 = l3]) (2)

=
∑

Δz1

(Pr[Δz1 = Δz1|Δx0 = x′0 ⊕ x′′0 , l0 = l0]×

×Pr[Δz3 = Δz3|Δz1 = Δz1, l2 = l2]) (3)

=
∑

Δz1

Pr[Δz1 = Δz1|Δx0 = x′0 ⊕ x′′0 ]× Pr[Δz3 = Δz3|Δz1 = Δz1] (4)

= Pr[Δz3 = Δz3|Δx0 = x′0 ⊕ x′′0 ]
≤ DP4rAES,

where DP4rAES is the differential probability of the transformation defined by
four rounds (with no leak extraction) of AES when the round keys are random.
The equation (2) follows from Lemma 2, the equation (3) follows from Lemma 3,
and the equation (4) follows from Lemma 1.
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Having the previous inequality in mind, we get that the family of functions
defined by four rounds of AES with leak extraction is an ε-LAXU2 hash function
family with ε = DP4rAES ≤ 2−113 [18]. �

4.2 Computational Security Analysis of ASC-1

In the previous subsection, we showed that if all the keys and the initial state are
random, then ASC-1 is unconditionally secure authenticated encryption scheme.
However, the keys and the initial state of ASC-1 are derived by combining a block
cipher in a counter mode and a key scheduling algorithm. The security of the
scheme in this case is based on two assumptions:

– the block cipher (e.g., AES) is indistinguishable from a random permutation,
and

– one cannot tell apart the case when the initial state and the keys are random
from the case when the initial state X0 and the tag key K3,0 are random,
and the round keys are derived by applying a key scheduling algorithm to a
random initial key K1,0||K2,0.

The first assumption is a standard assumption that is used in many security
proofs such as the security proofs of the modes of operation for block ciphers. The
second assumption is a novel one, and should be examined with more scrutiny.
It asserts that an adversary cannot win in the following game. The adversary
is given two oracles, an encryption oracle and a decryption oracle. A random
coin b is flipped. If the outcome is zero, then a large table whose entries are
random strings is generated. The number of entries in the table is equal to
the maximum number of messages that can be encrypted. The length of each
random string in the table is sufficient to encrypt a message of a maximum
length. When the adversary submits an encryption query, the encryption oracle
gets the next random string from the table, extracts the initial value and all
the (round) keys from the random string, and encrypts the message. When the
adversary submits a decryption query, the decryption oracle gets the random
string corresponding to the counter value given in the ciphertext, and uses it to
decrypt the ciphertext. If the outcome of the coin flipping is one, then the random
strings in the table consist of four 128-bit random values: an initial state X0 and
three keys K1,0,K2,0 and K3,0. When the adversary asks an encryption query,
the encryption oracle uses the next available initial state and keys to encrypt the
message following the ASC-1 algorithm. When the adversary asks a decryption
query, the decryption oracle uses the initial state and keys corresponding to the
counter value given in the ciphertext to decrypt the ciphertext. The goal of the
adversary is to guess the outcome of the coin flipping. The adversary wins if it
can guess the value of b with probability significantly greater than 1

2 .
It is not uncommon to make the assumption that the round keys are random

when analyzing the security of cryptographic primitives. For instance, this as-
sumption is always made when proving the resistance of a block cipher to linear
and differential cryptanalysis (e.g., [22]). However, one can easily come up with
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a stream cipher that is secure when the random round keys assumption is made,
but is trivial to break otherwise. Since the design of ASC-1 was inspired by the
LEX stream cipher, we are going to address the known attacks on LEX:

– LEX applies iteratively a block cipher transformation to some initial state.
During this process some bytes are leaked from different rounds (i.e., states),
and then used as randomness to encrypt the message. The attack presented
in [6] analyzes the state differences to find highly probable differentials and
deduce the secret key. However, in our case, we do not use the same round
keys repeatedly. So, in order for a differential cryptanalysis to work, one has
to be able to guess the round key differences as well. Since these round keys
are far apart in the key scheduling process, this does not appear to be an
easy task.

– The attack presented in [25] looks for a repetition of a state, which can
be easily detected due to the fact that same states will generate the same
pseudo-random key material. The state in LEX is a 128-bit string since the
round keys are reused, and it is possible to find collisions. In our case, the
state is a 384-bit string, and finding collisions should not be a straightforward
problem.

– Some modified variants of the previous attacks might work if the key schedul-
ing algorithm generates short cycles. However, the probability of having a
cycle of length less than 264 when considering a random permutation on
{0, 1}256 is at most ≈ 2−128, and we are not aware of the existence of short
cycles.

It is not hard to show that given an adversary AROR that can distinguish the
ciphertext generated by ASC-1 from a random string, one can construct two
adversariesAPRP, which can tell apart the block cipher from a PRP, and AKSOR,
which can distinguish the case when the round keys are random from the case
when the round keys are derived by a key scheduling algorithm, such that at
least one of these adversary wins with significant probability. Namely, the APRP

and AKSOR will use their oracles to simulate ASC-1 and answer AROR’s queries.
The output of APRP and AKSOR will be same as AROR’s output. If the advantage
of AROR is non-negligible, then at least one of APRP and AKSOR will have non-
negligible advantage. A similar result will hold in the case of a forging adversary
AF . So, we have the following informal theorems.

Theorem 3. If the block cipher used by ASC-1 is a pseudo-random permutation
and one cannot tell apart the case when ASC-1 uses random keys from the case
when ASC-1 uses a key scheduling algorithm to derive the round keys, then ASC-
1 is a secure encryption scheme in the Real-Or-Random sense.

Theorem 4. If the block cipher used by ASC-1 is a pseudo-random permutation
and one cannot tell apart the case when ASC-1 uses random keys from the case
when ASC-1 uses a key scheduling algorithm to derive the round keys, then ASC-
1 is a secure message authentication scheme in the ciphertext-integrity sense.
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The definition of Real-Or-Random security of a symmetric encryption scheme
and the definition of a ciphertext integrity for an authenticated encryption
scheme can be found in [1].

5 Conclusions

We have proposed ASC-1, which is an authenticated encryption scheme that
is designed using a stream cipher approach instead of a block cipher mode ap-
proach. We argued the security of ASC-1 by showing that it is secure if one
cannot distinguish the case when the round keys are uniformly random from the
case when the round keys are derived by the key scheduling algorithm of ASC-1.
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Abstract. We provide several results on some families of twisted Jacobi
quartics. We give new addition formulæ for two models of twisted Jacobi
quartic elliptic curves, which represent respectively 1/6 and 2/3 of all
elliptic curves, with respective costs 7M + 3S + Da and 8M + 3S + Da.
These formulæ allow addition and doubling of points, except for points
differing by a point of order two.

Furthermore, we give an intrinsic characterization of elliptic curves
represented by the classical Jacobi quartic, by the action of the Frobenius
endomorphism on the 4-torsion subgroup. This allows us to compute the
exact proportion of elliptic curves representable by various models (the
three families of Jacobi quartics, plus Edwards and Huff curves) from
statistics on this Frobenius action.

1 Introduction

The interest for elliptic curves in cryptography arises from the fact that,
given suitable parameter choices, they provide an efficient representation of the
“generic group” model. However, the need for separate formulæ for point ad-
dition and doubling in Weierstraß coordinates critically exposes elliptic curve
arithmetic to side-channel analysis.

One family of countermeasures protecting against these attacks is the use of
a coordinate system that allows point additions and doublings to be performed
with the same formulæ. Namely, addition formulæ are said to be unified if they
also allow doubling of non-zero points, and complete if the allow addition of any
pair of points, identical or not, zero or not.

Some curve models with such properties, over a field of odd characteristic,
are:

– twisted Edwards curves [Edw07, BL07, BBJ+08, HWCD08], with equa-
tion ax2 + y2 = 1 + dx2y2, have a unified addition formula, that is complete
in some cases, costing 9M + Da + Dd [HWCD08];

– Jacobi quartics, with equation y2 = x4 + 2a x2 + 1, are unified [BJ03], and
have an addition formula costing 7M + 3S + Da [HWCD09];

– Huff cubics [JTV10], with equation ax(y2 − 1) = by(x2 − 1), have a unified
addition formula costing 11M.
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Not all elliptic curves transform to the Edwards or Jacobi quartic forms: only the
curves with a rational point of order four transform to Edwards curves [BBJ+08,
Theorem 3.3][Mor09], whereas the condition for Jacobi quartics is examined in
more detail in section 2.2 of this document. Since it is preferred that elliptic
curves used in cryptography have a group of prime order (as is the case, for
example, of NIST-recommended curves [Nat00]), they are not actually amenable
to Edwards or Jacobi quartic form.

Recent research activity has focused on counting elliptic curves in various
families using explicit computation of the j-invariant, for example in the fami-
lies of Doche-Icart-Kohel [DIK06] and Edwards [RFS10], Legendre [FW10], and
complete Edwards curves [AG11].

We count the Jacobi quartics using a direct method, relying on the action of
the Frobenius on the 4-torsion points of elliptic curves. Throughout this docu-
ment, k is a finite field of odd characteristic. Let E be an elliptic curve defined
over k. The 4-torsion subgroup E[4] of E has coordinates in the algebraic closure
of k, and is thus equipped with an action of the Frobenius endomorphism ϕ of k.
Since k has odd characteristic, by [Sil86, 6.4(b)], the group E[4] is isomorphic
to (Z/4Z)2, and the action ϕE (mod 4) of ϕ is given by a matrix in GL2(Z/4Z).
Finally, a change of basis of E[4] conjugates the matrix of ϕE (mod 4). There-
fore, to the curve E, one may canonically attach the conjugacy class of ϕE

(mod 4) in GL2(Z/4Z).
This work gives an intrinsic characterization of representability of elliptic

curves by the Jacobi quartic model (Theorem 5); this is given by a list of allowed
conjugacy classes for ϕE (mod 4). In particular, this does not depend on the rep-
resentation chosen for the curve. Thus, it allows us to give an asymptotic count
of the elliptic curves that can be represented as Jacobi quartics. This method
generalizes to other quadrics intersection models such as Edwards, Jacobi, and
Huff (Theorem 11).

Billet and Joye [BJ03, §3] also define a twist of the Jacobi model that repre-
sents all curves with at least one rational point of order two, and give unified
addition formulæ for these curves with a cost of 10M + 3S + 2D. We give here
improved addition formulæ for the two following variants of the twisted Jacobi
model:

– A 7M+3S+Da multiplication for the (2,2)-Jacobi quartic, which represents
all curves whose point group has (Z/2Z)× (Z/2Z) as a subgroup (1/6 of all
elliptic curves);

– A 8M + 3S + Da multiplication for the (2)-Jacobi quartic, which represents
all curves whose point group has (Z/2Z) as a subgroup (2/3 of all elliptic
curves).

These formulæ, as well as the Jacobi quartic formula from [HWCD09], are not
unified. They are, however, “complete except at 2”: any points P, Q such that
the formulæ don’t allow the computation of P +Q differ by a point of order two
(Propositions 6 and 8). Thus, these formulæ are usable for all computations in
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the subgroup of E(k) of points of order coprime to 2, and in particular in the
largest subgroup of E(k) of prime order, which the subgroup of cryptographic
significance.

2 Jacobi Quartics

2.1 Curve Equation

A Jacobi quartic is a projective curve with the quartic equation

y2 = x4 + 2ax2 + 1, (1)

where a ∈ k is a parameter. The discriminant of the right-hand side polynomial
is 28(a2 − 1)2; therefore, if a /∈ {−1, 1}, then the curve has the tacnode at the
point at infinity (0 : 1 : 0) as its only singular point. Resolution of this singularity
yields the intersection of two quadrics

JQa : y2 = z2 + 2ax2 + t2, x2 = z · t, (2)

where the tacnode (0 : 1 : 0) has the two antecedents (0 : 1 : ±1 : 0).
The curve JQa contains the four points with coordinates (x : y : z : t) equal

to (0 : 1 : 0 : ±1) and (0 : 1 : ±1 : 0). We fix ε = (0 : 1 : 0 : 1) as the neutral
point; the three others are then the three points of order two.

As JQa is a smooth intersection of two quadrics in the projective space
of dimension three, it is an elliptic curve, and the group law is defined by
coplanarity [Ono94, LS01]. Namely, let ε be the neutral point; then any three
points P1, P2, P3 have zero sum if the four points (ε, P1, P2, P3) are coplanar. Of
course, when two of the points, say P1 and P2, are identical, we replace P2 by
the direction of the tangent line at P1 to JQa.

We may then check that the addition formulæ for P3 = P1 + P2, where Pi =
(xi : yi : zi : ti), are

x3 = (x1y2 + y1x2) · (t1t2 − z1z2);
y3 = (y1y2 + 2ax1x2)(z1z2 + t1t2) + 2x1x2(z1t2 + t1z2);

z3 = (x1y2 + y1x2)2;

t3 = (t1t2 − z1z2)2.

(3)

The negative of the point (x : y : z : t) is (−x : y : z : t).
A speed-up of one multiplication is achieved [HWCD09] by observing that

z3 = (z1z2 + t1t2)(z1t2 + t1z2) + 2x1x2(2ax1x2 + y1y2), (4)

so that y3 + z3 factorizes as

y3 + z3 = (z1z2 + 2x1x2 + t1t2)(y1y2 + 2ax1x2 + z1t2 + t1z2). (5)

The cost of a point addition using (5) is 7M + 3S + Da.

Remark 1. The formulæ (3) are not unified. One checks that these formulæ yield

(x : y : z : t) + (−x : y : t : z) = (0 : 0 : 0 : 0). (6)

This situation is examined in more detail in the proposition 6 below.
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2.2 Representability

Proposition 2. Let E be an elliptic curve over the field k of characteristic �= 2.
Then E is isomorphic to a Jacobi quartic if, and only if, it has an equation of
the form

η2 = (ξ − r1)(ξ − r2)(ξ − r3)

such that r1, r2 and r3 ∈ k and at least one of the ri − rj for i, j ∈ {1, 2, 3},
i �= j, is a square.

Proof. Let E be such an elliptic curve and assume for example that r2 − r3 is a
square in k. We may then define parameters a, c, d ∈ k by

a =
r2 + r3 − 2r1

r2 − r3
, c =

r2 − r3

2
, 4d2 = r2 − r3. (7)

The equation of E may then be simplified to

2
(η

d

)2

=
(

ξ − r1

c

)(
ξ − r1

c
− a− 1

)(
ξ − r1

c
− a + 1

)
. (8)

We define coordinates (x, y, z, t) by the matrix relation

⎛

⎜
⎜
⎝

x
y
z
t

⎞
⎟
⎟⎠ =

⎛

⎜
⎜
⎝

0 2 0 0
0 0 1 1− a2

−2a 0 1 a2 − 1
2 0 0 0

⎞
⎟
⎟⎠

⎛

⎜
⎜
⎜
⎝

ξ−r1
c
η
d(

ξ−r1
c

)2

1

⎞
⎟
⎟
⎟⎠ . (9)

Then (x, y, z, t) satisfy the Jacobi quartic equations for JQa.
Conversely, the above computation shows that JQa is birationally equivalent

to the elliptic curve with equation 2η2 = ξ(ξ− a + 1)(ξ− a + 1), which amounts
to the Weierstraß equation in ( ξ

2 , η
2 ):

(η

2

)2

=
ξ

2

(
ξ

2
− a− 1

2

)(
ξ

2
− a + 1

2

)
. (10)

The right-hand side has the roots a+1
2 and a−1

2 , the difference of which is 1,
which is a square in k. �

Remark 3. If −1 is not a square in k, then exactly one of r1 − r2 and r2 − r1

is a square. Over such a field, an elliptic curve can be represented by a Jacobi
quartic if, and only if, it has a rational 2-torsion subgroup.

Remark 4. If E has full rational 2-torsion subgroup, then so does its quadratic
twist Ẽ, and at least one of E or Ẽ can be represented by a Jacobi quartic.
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Theorem 5. Let k be a finite field of characteristic �= 2, E be an elliptic curve
over k. Let ϕE be the representation of the Frobenius automorphism of k on E(k)
and ϕE (mod 4) be the action of ϕE on the 4-torsion group E[4].

Then E can be represented by a Jacobi quartic if, and only if, ϕE (mod 4) be-
longs to one of the following conjugacy classes in GL2(Z/4Z):

(
1 0
0 1

)
= id,

(
1 2
0 1

)
,

(−1 2
0 −1

)
,

(
1 0
0 −1

)
,

(
1 2
2 −1

)
. (11)

Proof. The condition that E has a rational 2-torsion subgroup is equivalent
to ϕE ≡ id (mod 2). It may be checked, for example by enumeration, that there
are exactly six such conjugacy classes of matrices in GL2(Z/4Z): namely, the
five classes of (11) and the class of −id.

Let q be the cardinality of k. Then, by the Hasse-Weil theorem [Sil86, Theorem
2.4], we have det(ϕE) = q. Therefore, if q ≡ −1 (mod 4), then detϕE ≡ −1
(mod 4) and thus ϕE (mod 4) is conjugate to one of the latter two matrices
of (11). In this case, Remark 3 shows that E is representable by a Jacobi quartic.

It remains to prove the case when q ≡ +1 (mod 4). In this case, there ex-
ists i ∈ k such that i2 = −1. Let (rn, 0), for n = 1, 2, 3, be the (rational) points
of order two of E and (ξn, ηn) be (not necessarily rational) points of order four
such that 2(ξn, ηn) = (rn, 0). The condition on (ξ1, η1) is equivalent to

(ξ1 − r1)2 = (r1 − r2)(r1 − r3), η2
1 = (r1 − r2)(r1 − r3)(2ξ1 − r2 − r3). (12)

Define d1 = r2 − r3, d2 = r3 − r1, and d3 = r1 − r2; by Proposition 2, repre-
sentability by a Jacobi quartic is equivalent to at least one of the dn being a
square in k. Two cases may occur:

(i) all dn reduce to the same class modulo squares in k×: then there exist cn ∈ k
and d ∈ k such that dn = c2

nd. The equations (12) may be rewritten as:

(ξ1 − r1)2 = −(c2c3d)2, η2
1 = −(c2c3d)2(c3 ± ic2)2d. (13)

We see that all ξn are rational, and therefore ϕE(ξn, ηn) = (ξn,±ηn). Thus,
ϕE (mod 4) is diagonalizable, and thus belongs to {id,−id}. The case ϕE ≡
+id (mod 4) is equivalent to η1 ∈ k and thus to d being a square. Therefore,
in the case (i), E is representable by a Jacobi quartic if, and only if, ϕE ≡ id
(mod 4).

(ii) not all the dn reduce to the same class modulo squares: then E can be
represented by a Jacobi quartic. Moreover, if for example d1 is a square
and d2 is not, then (ξ3 − r3)2 = −d1d2 is not a square, and therefore ξ3 /∈ k.
Thus, ϕE (mod 4) is not diagonalizable and belongs to one of the conjugacy

classes
(

1 2
0 1

)
,
(−1 2

0 −1

)
.

This shows that the cases where E transforms to a Jacobi quartic are exactly
the cases where ϕE (mod 4) is one of the five matrices listed above. �
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3 (2, 2) Jacobi Quartics

3.1 Curve Equation

We expand the definition of the Jacobi quartics to allow representability of all
curves with rational 2-torsion subgroup. To do this, we relax the condition that d,
as defined in equation (7), belong to k. We then obtain the quadric intersection

JQ
(2,2)
a,b : b x2 = zt, y2 = z2 + 2a x2 + t2. (14)

It is smooth when (a2−1)b �= 0. We note that for all λ ∈ k×, the curve JQ
(2,2)
λ2a,λ2b

is isomorphic to JQ
(2,2)
a,b by the coordinate change (λx : y : z : t). Therefore, we

may choose b to be either one or a (small) preset quadratic non-residue in k.
This curve has the rational points of order two

ω1 = (0 : 1 : 0 : −1), ω2 = (0 : 1 : 1 : 0), ω′
2 = ω2 + ω1 = (0 : 1 : −1 : 0).

(15)
The point addition formulæ are deduced from (3):

x3 = (x1y2 + y1x2) (z1z2 − t1t2)
y3 = (y1y2 + 2a x1x2) (z1z2 + t1t2) + 2b x1x2 (z1t2 + t1z2)

z3 = (z1z2 − t1t2)
2 = (z1z2 + t1t2)

2 − (2b x1x2)
2

t3 = b (x1y2 + y1x2)
2

y3 + t3 = (z1z2 + 2b x1x2 + t1t2) (y1y2 + 2a x1x2 + z1t2 + t1z2)

(16)

The full cost for a point addition is seen to be 7M+3S+Da+2Db. The advantage
of choosing a parameter b such that multiplication by b is fast is apparent. The
probability that all b < N are squares modulo p is asymptotically equivalent
to e−N , so that in practice we shall almost always be able to find such a b;
moreover, whether this is the case is easy to check by quadratic reciprocity.

Proposition 6. Let P1, P2 be two points of JQ
(2,2)
a,b such that the addition for-

mulæ (16) yield P3 = P1 +P2 = (0 : 0 : 0 : 0). Then we either have P2 = P1 +ω2

or P2 = P1 + ω′
2, where ωi are the points of order two defined in (15).

Proof. Let (xi : yi : zi : ti) be the coordinates of Pi. If x1 = x2 = 0, then
both points belong to the 2-torsion group and the result follows by enumeration,
so we may assume for example x1 �= 0. Since bx2

1 = z1t1, this implies z1 �= 0
and t1 �= 0.

The relations t3 = 0 and z3 = 0 then imply that there exist α, β ∈ k such
that P1 = (x1 : αx1 : βt1 : t1) and P2 = (x2 : −αx2 : z2 : βz2). Since bx2

1 = βt21,
there exists ξ ∈ k such that β = bξ2 and x1 = ξt1. Let η = ξα; then

P1 = (ξ : η : bξ2 : 1), P2 = (σξ : −ση : 1 : bξ2) for σ = ±1.

We then see that σ = 1 implies P2 = P1 + ω2 whereas σ = −1 implies P2 =
P1 + ω′

2. �
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3.2 Representability

Proposition 7. The (2, 2)-Jacobi quartics represent exactly all elliptic curves E
with rational 2-torsion subgroup.

Proof. Let E be a curve with three rational points of order two and the equation
η2 = (ξ − r1)(ξ − r2)(ξ − r3) and define, for any c ∈ k,

a = c−2(r2 + r3 − 2r1), b = c−2(r2 − r3), (17)

and coordinates (x : y : z : t) by
⎛

⎜⎜
⎝

x
y
z
t

⎞
⎟⎟⎠ =

⎛

⎜⎜
⎝

0 c 0 0
−2r1 0 1 r1(r2 + r3)− r2r3

−r2 − r3 0 1 r2r3

r2 − r3 0 0 −r1(r2 − r3)

⎞
⎟⎟⎠
⎛

⎜⎜
⎝

ξ
η
ξ2

1

⎞
⎟⎟⎠ . (18)

Then we see that (x : y : z : t) satisfy the quadric equations (14). �

4 (2)-Jacobi Quartics

4.1 Curve Equation

The (2)-Jacobi quartic is the intersection of the two quadrics

JQ
(2)
a,b : x2 = zt, y2 = z2 + 2a x2 + b t2. (19)

It is smooth (and thus an elliptic curve) whenever (a2− 1)b �= 0. For all λ ∈ k×,
JQ

(2)
λ2a,λ4b is isomorphic to JQ

(2)
a,b by the coordinate change (λx : y : z : λ2t).

The addition formulæ are given by

x3 = (x1y2 + y1x2) (z1z2 − bt1t2)
y3 = (y1y2 + 2ax1x2) (z1z2 + bt1t2) + 2bx1x2 (z1t2 + t1z2)

z3 = (z1z2 − bt1t2)
2

t3 = (x1y2 + y1x2)
2

(20)

The factorisation trick from [HWCD09] does not apply here, thus the total point
addition cost is 8M + 3S + Da + 2Db.

The point ω1 = (0 : 1 : 0 : −1) is of order two.

Proposition 8. Let P1, P2 be two points of JQ
(2)
a,b such that the addition for-

mulæ (20) yield P3 = (0 : 0 : 0 : 0). Then P1−P2 is a point of order two, distinct
from ω1.

Proof. After extending the scalars to k(
√

b), the curve JQ
(2)
a,b becomes isomorphic

to JQ
(2,2)

ab,
√

b
. The result follows from Proposition 6 on that curve. �
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4.2 Representability

Proposition 9. The (2)-Jacobi quartics represent exactly all elliptic curves E
with at least one rational point of order two.

Proof. Let E be a curve with one rational point of order two; then there ex-
ist r, s, p ∈ k such that E has the equation

E : η2 = (ξ − r)(ξ2 − sξ + p). (21)

We then define
a = s− 2r, b = s2 − 4p, (22)

and coordinates (x : y : z : t) by
⎛

⎜
⎜
⎝

x
y
z
t

⎞
⎟
⎟⎠ =

⎛

⎜
⎜
⎝

0 1 0 0
−2r 0 1 rs− p
−s 0 1 p
1 0 0 −r

⎞
⎟
⎟⎠
⎛

⎜
⎜
⎝

ξ
η
ξ2

1

⎞
⎟
⎟⎠ . (23)

We then see that these coordinates satisfy equations (19). �

5 Asymptotic Count of Various Elliptic Curve Models

This section gives the asymptotic probability that a random elliptic curve is
represented by one of the quadric intersection models presented above.

5.1 Statistics for the Frobenius Modulo 4

We use the fact that, given an elliptic curve E over a field k of characteristic �= 2,
the representability of E by the Jacobi, Edwards or Huff models is determined
by the conjugacy class of ϕE (mod 4).

For any real number x, let E (x) be the (finite) set of all isomorphism classes
of elliptic curves over finite fields Fq with q ≤ x and q odd.

Proposition 10. Let S ⊂ GL2(Z/4Z) be a conjugacy class. For any elliptic
curve E over a finite field k (of characteristic �= 2), let ϕE (mod 4) be the
conjugacy class of the representation of the Frobenius endomorphism of k on the
4-torsion subgroup of E.

Then we have the asymptotic probability

lim
x→∞P (ϕE ≡ S (mod 4) |E ∈ E (x)) =

#S

96
.

Proof. Let X(n) be the moduli space of elliptic curves over Fq equipped with
a basis for the n-torsion subgroup. Then the forgetful map X(4) → X(1) is
a covering with Galois group GL2(Z/4Z). According to the Artin-Čebotarev
theorem [Ser65, Theorem 7][CH11, Theorem 2] applied to this covering map,
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the set of elliptic curves over Fq with Frobenius class equal to S has a Dirichlet
density equal to #S/#GL2(Z/4Z). Finally, the group GL2(Z/4Z) is an extension
of GL2(F2), which is isomorphic to the symmetric group S3, by the group of
matrices ≡ 0 (mod 2), which is isomorphic to (Z/2Z)4; thus, it is a group of
order 96. �

We note that the Huff cubic ax(y2−1) = by(x2−1) is birationally equivalent to
the homogenous quadric intersection form uz = vt, zt = ab(u2+v2)−(a2+b2)uv
by the variable change t = (a2 − b2), z = (a2 − b2)xy, u = ax− by, v = bx− ay.

Theorem 11. The asymptotic proportion of elliptic curves in odd characteristic
representable by twisted Edwards, Jacobi quartics, or Huff models are listed in
the table below.

Curve q odd q ≡ +1 (mod 4) q ≡ −1 (mod 4)

Twisted Edwards 17/48 1/3 3/8
Jacobi quartic 5/32 7/48 1/6
(2, 2)-Jacobi quartic 1/6 1/6 1/6
(2)-Jacobi quartic 2/3 2/3 2/3
Huff 5/48 1/12 1/8

Proof. These elliptic curve models are all characterized by a set of conjugacy
classes of the Frobenius in GL2(Z/4Z); namely:

(i) the Jacobi quartics are characterized by the list of conjugacy classes of
Theorem 5;

(ii) the (2, 2)-Jacobi quartics are exactly the curves E satisfying ϕE ≡ id
(mod 2) (by Proposition 7);

(iii) the (2)-Jacobi quartics are exactly the curves such that ϕE has a fixed point
modulo 2 (by Proposition 9);

(iv) the twisted Edwards curves are exactly the curves with a rational 4-torsion
point [BBJ+08, Theorem 3.3], which means that ϕE has a fixed point mod-
ulo 4;

(v) the Huff curves are the curves that contain (Z/2Z) × (Z/4Z) as a sub-
group [JTV10, Theorem 2] and are thus the intersection of (2, 2)-Jacobi
quartics and Edwards curves.

In each case, the results follow by counting the number of such matrices
in GL2(Z/4Z). By the Hasse-Weil theorem, q = det(ϕE); consequently, the
conditional results on q (mod 4) are derived by counting the number of such
matrices with the suitable determinant.

For instance, the Jacobi quartics in the case where q ≡ +1 (mod 4) corre-

spond to the conjugacy classes of
(

1 0
0 1

)
,
(

1 2
0 1

)
and

(−1 2
0 −1

)
, with respective

cardinalities 1, 3 and 3. Therefore, asymptotically, 7/48 of all elliptic curves
with q ≡ +1 are isomorphic to a Jacobi quartic. �
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Remark 12. If the field k is a prime field then the results about some of these
families of curves may also be derived, in a similar way, from statistics about
the group structure of elliptic curves [Gek06, 2.18].

5.2 Summary of Quadrics Intersections

All coordinate systems in the following list may be represented as the smooth
intersection of two three-dimensional quadrics. For each, we list the cost for
a point addition according to literature, the condition for representability of a
curve by such a model, and the asymptotic probability that this model represents
a random curve, in the sense of Theorem 11.

Curve Condition Cost Probability

Twisted Edwards (Z/4Z) 9M + Da + Dd 17/48
Jacobi quartic (Z/2Z)2,

√
r1 − r2 7M + 3S + Da 9/32

(2, 2)-Jacobi (Z/2Z)2 7M + 3S + Da + 2Db 1/6
(2)-Jacobi (Z/2Z) 8M + 3S + Da + 2Db 2/3
Huff (Z/4Z)× (Z/2Z) 11M 5/48
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Abstract. In this paper we deal with 3-way split formulas for binary
field multiplication with five recursive multiplications of smaller sizes.
We first recall the formula proposed by Bernstein at CRYPTO 2009
and derive the complexity of a parallel multiplier based on this formula.
We then propose a new set of 3-way split formulas with five recursive
multiplications based on field extension. We evaluate their complexities
and provide a comparison.

1 Introduction

Several cryptographic applications like those relying on elliptic curve cryptogra-
phy [7,9] or Galois Counter Mode [8] require efficient finite field arithmetic. For
example, ciphering a message using the ElGamal [3] scheme over an elliptic curve
requires several hundreds of multiplications and additions in the finite field.

In this paper we will consider only binary fields. A binary field F2n can be
viewed as the set of binary polynomials of degree < n. An addition of two el-
ements in F2n consists of a bitwise XOR of the n coefficients and it can be
easily implemented either in software or hardware. The multiplication is more
complicated: it consists of a polynomial multiplication and a reduction modulo
an irreducible polynomial. The reduction is generally quite simple since the ir-
reducible polynomial can be chosen as a trinomial or pentanomial. The most
challenging operation is thus the polynomial multiplication.

The degree n of the field F2n used in today’s elliptic curve cryptography (ECC)
is in the range of [160, 600]. For this size of polynomials, recursive methods like
Karatsuba [6] or Toom-Cook [11,12] are considered to be most appropriate. Sev-
eral parallel multipliers have been proposed based on such approaches [10,5].
They all have subquadratic arithmetic complexity, i.e., the number of bit oper-
ations is O(n1+ε), where 0 < ε < 1, and they are logarithmic in time. When
such a subquadratic complexity multiplier is implemented in hardware in bit
parallel fashion, well known approaches include 2-way split formulas with three
recursive multiplications and 3-way split formulas with six recursive multiplica-
tions [10,5]. Recently, Bernstein in [1] has proposed a 3-way split formula with
only five recursive multiplications.

A. Miri and S. Vaudenay (Eds.): SAC 2011, LNCS 7118, pp. 384–398, 2012.
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In this paper we also deal with the 3-way splits and propose new formulas
for binary polynomial multiplication with five recursive multiplications. We use
the extension field F4 to obtain a sufficient number of elements to be able to
apply the multi-evaluation (i.e., evaluation at multiple elements) and interpo-
lation method. This leads to Toom-Cook like formulas. We study the recursive
complexity of the proposed formulas and evaluate the delay of the corresponding
parallel multiplier.

The remainder of this paper is organized as follows: in Section 2 we review
the general method based on multi-evaluation and interpolation to obtain 3-way
split formulas. We then review Bernstein’s formula and evaluate a non-recursive
form of its complexity. In Section 3 we present a new set of 3-way formulas
based on field extension. We evaluate the complexity and the delay of a parallel
multiplier based on these formulas. Complexity comparison and some concluding
remarks are given in Section 4.

2 Review of 3-Way Splitting Methods for Polynomial
Multiplication

In this section we review the general approach to the design of 3-way split formu-
las for binary polynomial multiplication. Then we review the 3-way split methods
with five multiplications of [1] and study its complexity. Pertinent lemmas along
with their proofs are given in Appendix A.

2.1 General Approach to Design 3-Way Split Multiplier

A classical method to derive Toom-Cook like formulas consists of applying the
multi-evaluation and interpolation approach. Let us consider two degree n − 1
polynomials A(X) =

∑n−1
i=0 aiX

i and B(X) =
∑n−1

i=0 biX
i in R[X ], where R

is an arbitrary ring and n a power of 3. We split A and B in three parts:
A =

∑2
i=0 AiX

in/3 and B =
∑2

i=0 BiX
in/3, where Ai and Bi are degree n/3−1

polynomials. We replace Xn/3 by the indeterminate Y in these expressions of
A and B. We then fix four elements α1, . . . , α4 ∈ R plus the infinity element
α5 =∞. Finally we multi-evaluate A(Y ) and B(Y ) at these five elements and we
multiply term by term A(αi) and B(αi) for i = 1, . . . , 5, which provides C(αi)
of C(Y ) = A(Y )×B(Y ) at those five elements.

These five multiplications can be computed by recursively applying the same
process for degree n/3−1 polynomial in X . We then interpolate C(Y ) to obtain
its polynomial expression in Y . Specifically, if we define the Lagrange polynomial

as Li(Y ) =
∏4

j=1,j �=i

(
Y−αj

αi−αj

)
for i = 1, . . . , 4 and L∞ =

∏4
i=1(Y − αi) then

we have

C(Y ) =

4∑

i=1

Li(Y )C(αi) + C(∞)L∞(Y ).

We obtain the regular expression of C as a polynomial in X by replacing Y
by Xn/3.
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2.2 Bernstein’s 3-Way Split Formula

In this subsection, first we review the 3-way split formula with five recursive
multiplications presented by Bernstein in [1]. We then derive its complexity
results. We consider two degree n − 1 polynomials A and B in F2[X ] where n
is a power of 3. We split these two polynomials in three parts and then replace
Xn/3 by Y and consider them as polynomial in R[Y ] where R = F2[X ]

A = A0 +A1Y +A2Y
2 and B = B0 +B1Y +B2Y

2

with degX Ai, degX Bi < n/3. Bernstein uses a multi-evaluation and interpola-
tion approach by evaluating the polynomials at these five elements 1, 0, X,X+1
and ∞ of R ∪ {∞}. We denote C as the product of A and B. We then define
the pairwise products of the evaluations of A(Y ) and B(Y ) at 0, 1, X,X+1 and
∞ as follows

P0 = A0B0 (eval. at 0),
P1 = (A0 +A1 +A2)(B0 +B1 +B2) (eval. at 1),
P2 = (A0 +A1X +A2X

2)(B0 +B1X +B2X
2) (eval. at X),

P3 =
(
(A0 +A1 +A2) + (A1X +A2X

2)
)

× (
(B0 +B1 +B2) + (B1X +B2X

2)
)

(eval. at X + 1),
P4 = A2B2 (eval. at ∞).

Bernstein has proposed the following expressions for the reconstruction of C:

U = P0 + (P0 + P1)X and V = P2 + (P2 + P3)(X
n/3 +X), then

C = U + P4(X
4n/3 +Xn/3) +

(U + V + P4(X
4 +X))(X2n/3 +Xn/3)

X2 +X
.

(1)

2.3 Asymptotic Complexity of the Bernstein Method

We evaluate the complexity of the formula of Bernstein when they are applied
recursively. This complexity will be expressed in terms of the number of bit
addition denoted as S⊕(n) and the number of bit multiplication denoted S⊗(n).
The complexities of the computation of the five products P0, P1, P2, P3 and P4

are given in Table 7 in Appendix B. Note that the degrees of R3, R
′
3, R4 and R′4

are all equal to n/3+1, while the degrees of A0, B0, A2, B2, R1 and R′1 are equal
to n/3− 1. Consequently, the products P0, P1 and P4 have their degree equal to
(2n/3− 2) and the degrees of P2 and P3 are equal to (2n/3 + 2).

The formulas in Table 7 can be applied only once since the five products involve
polynomials of degreen/3−1 andn/3+1. In order to have a fully recursivemethod,
we express the product of degree n/3 + 1 polynomials in terms of one product of
degree n/3− 1 polynomial plus some additional non-recursive computations.

For this purpose, we consider P =
∑n/3+1

i=0 piX
i and Q =

∑n/3+1
i=0 qiX

i. We

first rewrite P as P = P ′+(pn/3X
n/3+pn/3+1X

n/3+1) and Q = Q′+(qn/3X
n/3+

qn/3+1X
n/3+1) and then if we expand the product PQ we obtain
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PQ = P ′Q′︸ ︷︷ ︸
M1

+(pn/3X
n/3 + pn/3+1X

n/3+1)Q′︸ ︷︷ ︸
M2

+(qn/3X
n/3 + qn/3+1X

n/3+1)P ′︸ ︷︷ ︸
M3

+(pn/3X
n/3 + pn/3+1X

n/3+1)(qn/3X
n/3 + qn/3+1X

n/3+1)︸ ︷︷ ︸
M4

.
(2)

The product M1 can be performed recursively since P ′ and Q′ are of degree
n/3− 1 each. The other products M2,M3 and M4 can be computed separately
and then added to M1. The computation of M2 and M3 is not difficult, each
consisting of 2n/3 bit multiplications and n/3−1 bit additions. We compute the
product M4 as follows

M4 = pn/3qn/3X
2n/3 + (pn/3+1qn/3 + pn/3qn/3+1)X

2n/3+1 + pn/3+1qn/3+1X
2n/3+2

and this requires one bit additions and four bit multiplications. Finally, the
complexities S⊕(n/3) and S⊗(n/3) consist of the complexity of each product Mi

plus 2n/3+1 bit additions for the sum of these five products. This results in the
following complexity:

{S⊕(n/3 + 2) = S⊕(n/3) + 4n/3,
S⊗(n/3 + 2) = S⊗(n/3) + 4n/3 + 4.

(3)

Explicit computations of the reconstruction. We now review the sequence of
computation proposed by Bernstein in [1] for the reconstruction. This sequence
first computes the two polynomials U and V defined in (1) and then computes
C. The details are given in Table 8 in Appendix B.

With regard to the division of W = (U +V +P4(X
4+X))(X2n/3+Xn/3) by

X2 + X in the reconstruction (1) (i.e., the computation of W ′ in Table 8), we
remark that W is of degree n, so we can write W = wnX

n + . . . + w1X + w0.
Since X2 +X = X(X + 1), the division can be performed in two steps: first we
divide W by X which consists of a shift of the coefficients of W and then we
divide W/X = wnX

n−1 + . . .+w1 by X +1. The result W ′ = W/(X2 +X) has
its coefficients defined as follows:

w′n−j = wn + wn−1 + · · ·+ wn−j+2.

These computations require n− 2 bit additions: we perform sequentially the
additions w′i = w′i+1 +wi+2 starting from w′n−2 = wn. The corresponding delay
is then equal to (n− 2)D⊕ where D⊕ is the delay of a bit addition.

Overall Arithmetic Complexity Now we evaluate the overall complexity of Bern-
stein’s method (Table 7 and 8 in Appendix B). By adding the number of bit
additions listed in the two tables in Appendix B we obtain S⊕(n) = 3S⊕(n/3)+
2S⊕(n/3 + 2) + 35n/3 − 12 and for the bit multiplication we have S⊗(n) =
3S⊗(n/3) + 2S⊗(n/3 + 2). In order to obtain a recursive expression of the com-
plexity, we replace S⊕(n/3+2) and S⊗(n/3+2) by their corresponding expression
in terms of S⊕(n/3) and S⊗(n/3) given in (3). We then obtain the following:

C =

{S⊕(n) = 5S⊕(n/3)− 43n
3 − 12,

S⊗(n) = 5S⊗(n/3) + 8n
3 + 8.
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Then we apply Lemma 1 from Appendix A and we obtain the following:

C =

{S⊕(n) = 37
2 nlog3(5) − 43n

2 + 3,

S⊗(n) = 7nlog3(5) − 4n− 2.
(4)

Delay of parallel computation based on Bernstein’s method Here we evaluate the
delay of a parallel multiplier based on Bernstein’s formula. We will denote D(n)
the delay required for a multiplication of two degree n − 1 polynomial where n
is a power of 3. The delay will be expressed in terms of the delay of bit addition
denoted as D⊕ and the delay of bit multiplication denoted as D⊗. For this, we
have drawn a data-flow graph of the multi-evaluation and the reconstruction
part of the computation. These graphs are shown in Figure 1, from which we
remark that the critical path delay is D(n/3) + (n+ 8)D⊕. For example, this is
the delay of the critical path which starts from A0 or A1 exiting at R4 in the
multi-evaluation, then goes through a multiplier of polynomial of degree n/3+1
which has a delay of D(n/3)+1 (cf. (2)), and finally enters the reconstruction in
P3 and ends at C. Since we have assumed that n is a power of 3, we transform

1
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1
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n 3

n

3
n

3
n

3
n

3
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3
n
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A1 A2

A0 A21R 4RR3

2P 3P 0P 1PP4

X2+X

Fig. 1. Multi-evaluation (left) and reconstruction (right) data flow

D(n) = D(n/3) + (n + 8)D⊕ into a non-recursive expression, by applying it
recursively and using D(1) = D⊗.

D(n) = (n+ 8)D⊕ + (n/3 + 8)D⊕ + (n/9 + 8)D⊕ + . . .+ (3 + 8)D⊕ +D⊗
= (8 log3(n) +

3n
2 − 3

2 )D⊕ +D⊗.
(5)

3 Three-Way Formulas Based on Field Extension

In this section we present an approach based on field extension which provides
3-way split formulas with five recursive multiplications. We consider two bi-
nary polynomials A =

∑n−1
i=0 aiX

i and B =
∑n−1

i=0 biX
i with n = 3�. As
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before, we split A and B in three parts A = A0 + A1X
n/3 + A2X

2n/3 and
B = B0 + B1X

n/3 + B2X
2n/3 where Ai and Bi have degree < n/3. We would

like to use the approach based on multi-evaluation at five elements reviewed in
Subsection 2.1. The problem we faced is that there are not enough elements in
F2: we can only evaluate at the two elements of F2 and at infinity. Bernstein
used the two elements X and X + 1 in order to overcome this problem. We use
here a different approach: in order to evaluate at two more elements we will
consider the method proposed in [2,12] which uses a field extension. Specifically,
we consider an extension F4 = F2[α]/(α

2 +α+1) of degree 2 of F2. Afterwards,
we evaluate the polynomials at 0, 1, α, α+ 1 and ∞. The resulting evaluations
and recursive multiplication are given below:

P0 = A0B0 in F2[X ],
P1 = (A0 +A1 +A2)(B0 +B1 +B2) in F2[X ],
P2 = (A0 +A2 + α(A1 +A2))(B0 +B2 + α(B1 +B2)), in F4[X ],
P3 = (A0 +A1 + α(A1 +A2))(B0 +B1 + α(B1 +B2)), in F4[X ],
P4 = A2B2 in F2[X ].

(6)

The reconstruction of C = A× B uses the classical Lagrange interpolation. An
arranged form of this interpolation is given below

C = (P0 +Xn/3P4)(1 +Xn) + (P1 + (1 + α)(P2 + P3))(X
n/3 +X2n/3 +Xn)

+α(P2 + P3)X
n + P2X

2n/3 + P3X
n/3 (7)

Note that if we evaluate a binary polynomial at 0, 1 or∞ we obtain a polynomial
in F2[X ] and on the other hand if we evaluate the same polynomial at α or α+1
we obtain a polynomial in F4[X ]. These multiplications are performed recursively
by splitting and evaluating at the same set of points recursively. We will give a
sequence of computations for (6) and (7) dealing with the two following cases:
the first case is when the formulas are applied to A and B in F4[X ] and the
second case is when A and B are in F2[X ].

3.1 Explicit 3-Way Splitting Formulas

In this subsection, we provide a sequence of computations for (6) and (7) when A
and B are taken in F4[X ] or in F2[X ]. We split the computations of (6) and (7)
in the three different steps . We first give the formulas for the multi-evaluation,
then for the products and finally for the reconstruction.

Multi-evaluation formulas. The proposed steps to compute the multi-evaluation
of A and B are detailed in Table 1. The formulas are the same for polynomials
in F4[X ] and in F2[X ]. The only difference between these two cases is the cost
of each computation. For the evaluation of the cost of each operation in F4[X ]
we have used the following facts:

• A sum of two elements of F4 is given by (a0 + a1α) + (b0 + b1α) = (a0 +
b0) + (a1 + b1)α and requires 2 bit additions. Consequently, the sum of two
degree d− 1 polynomials in F4[X ] requires 2d bit addition.
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Table 1. Cost of multi-evaluation for the new three-way split formulas

Computations Cost in F4 Cost in F2

#⊕ #⊕
R1 = A0 + A1, R′

1 = B0 +B1 4n/3 2n/3
R2 = A1 + A2, R′

2 = B1 +B2 4n/3 2n/3
R3 = αR2, R′

3 = αR′
2 2n/3 0

R4 = R1 +R3 (= A(α+ 1)), R′
4 = R′

1 +R′
3 4n/3 0

R5 = R4 +R2 (= A(α)), R′
5 = R′

4 +R′
2 4n/3 2n/3

R6 = R1 +A2 (= A(1)), R′
6 = R′

1 +B2 4n/3 2n/3

Total 22n/3 8n/3

Table 2. Cost of products for the new three-way split formulas

Computations Cost in F4 Cost in F2

#⊕ #⊗ #⊕ #⊗
P0 = A0B0 SF4,⊕(n/3) SF4,⊗(n/3) SF2,⊕(n/3) SF2,⊗(n/3)
P1 = R6R

′
6 SF4,⊕(n/3) SF4,⊗(n/3) SF2,⊕(n/3) SF2,⊗(n/3)

P2 = R5R
′
5 SF4,⊕(n/3) SF4,⊗(n/3) SF4,⊕(n/3) SF4,⊗(n/3)

P3 = R4R
′
4 SF4,⊕(n/3) SF4,⊗(n/3) SF4,⊕(n/3) SF4,⊗(n/3)

P4 = A2B2 SF4,⊕(n/3) SF4,⊗(n/3) SF2,⊕(n/3) SF2,⊗(n/3)
Total 5SF4 ,⊕(

n
3
) 5SF4,⊗(

n
3
) 3SF2,⊕(n

3
) + 2SF4 ,⊕(

n
3
) 3SF2,⊗(

n
3
) + 2SF4,⊕(

n
3
)

• The multiplication of an element a = a0 + a1α in F4 by α: it is given by
aα = a1 + (a0 + a1)α and thus requires one bit additions. This implies that
the multiplication of a degree d− 1 polynomial of F4[X ] by α requires d bit
additions.

When A and B are taken in F2[X ], we use the following facts to save some
computations

• Since the additions performed for R1, R2, R
′
1 and R′2 involve polynomials in

F2[X ] with degree n/3− 1, they all require n/3 bit additions.
• For R3 (resp. R′3), the multiplication of R2 (resp. R′2) by α is free since the
coefficients of the polynomial R2 (resp. R′2) are in F2.

• The addition in R4 (resp. R′4) involves a polynomial with coefficients in F2

and a polynomial with coefficients in αF2; it is thus free of any bit operation.
• The operation in each of R5, R

′
5, R6 and R′6 is an addition of polynomial in

F2[X ] with a polynomial in F4[X ] and thus no bit additions are required for
the coefficient corresponding to α.

Using these facts and also using that Ai and Bi are degree n/3 − 1 polynomials
and Pi is a degree 2n/3− 2 polynomial, we evaluate each step of Table 1 and then
deduce the complexity of the multi-evaluation by adding the cost of each step.

Recursive products. In Table 2 we give the cost of the five recursive products.
In the case of a multiplication in F4[X ], all the polynomials are in F4[X ] and
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Table 3. Three-way split formulas - Reconstruction

Reconstruction in F4

Computations #⊕
U1 = P2 + P3 4n/3− 2
U2 = αU1 (= α(P2 + P3)) 2n/3− 1
U3 = (1 + α)U1 (= (1 + α)(P2 + P3)) 0
U4 = P1 + U3 (= P1 + (1 + α)(P2 + P3)) 4n/3− 2

U5 = U4(X
n/3 +X2n/3 +X3n/3) 4n/3− 4

U6 = P0 +Xn/3P4 (= P0 +Xn/3P4) 2n/3− 2

U7 = U6(1 +Xn) (= P0 +Xn/3P4)(1 +Xn)) 0
C = U7 + U5 +XnU2 20n/3 − 10

+P2X
2n/3 + P3X

n/3

Total 36n/3 − 21

Reconstruction in F2

Computations #⊕
U1 = P2 + P3 4n/3− 2
U2 = [αU1]cte 0
U3 = [(1 + α)U1]cte 2n/3− 1
U4 = [P1 + U3]cte 2n/3− 1

U5 = [U4(X
n/3 +X2n/3 +X3n/3)]cte 2n/3− 2

U6 = [P0 +Xn/3P4]cte n/3− 1
U7 = [U6(1 +Xn)]cte 0
C = [U7 + U5 +XnU2]cte 10n/3 − 5

+P2X
2n/3 + P3X

n/3]cte
Total 21n/3 − 12

thus the cost of the recursive products are SF4,⊕(n/3) and SF4,⊗(n/3). For the
multiplication in F2[X ], there are three products which involve polynomials in
F2[X ] incurring a cost of SF2,⊕(n/3) and SF2,⊗(n/3); the two other products are
in F4[X ] and thus the corresponding cost is SF4,⊕(n/3) and SF4,⊗(n/3).

Reconstruction. In Table 3 we give the sequence of computations for the recon-
struction of the product C. For the computation in F4[X ], we evaluate the cost
of each computation by using the same facts as in the multi-evaluation compu-
tations. For the computation in F2, since the resulting polynomial C is in F2[X ]
we can save some computations. We use the following facts:

• P3 and P4 are degree 2n/3− 2 polynomials in F4[X ].

• P1, P2 and P5 are degree 2n/3 − 2 polynomials in F2[X ]; so we don’t need
to add their bits corresponding to α.

• The polynomial C is in F2[X ]; consequently, we do not need to compute the
coefficients corresponding to α. Indeed, if a = a0 + a1α and b = b0 + b1α we
denote [a+ b]cte = a0 + b0 which requires only one bit addition. We use the
same notation for the polynomials.
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3.2 Complexity Evaluation

We now evaluate the complexity of the formulas given in Tables 1, 2 and 3. We
first evaluate the complexity for a multiplication in F4[X ].

Complexity of the formulas in F4[X ] We obtain the following complexities in
terms of the number of bit additions and multiplications

{SF4,⊕(n) = 5SF4,⊕(n/3) + 58n/3− 21,
SF4,⊗(n) = 5SF4,⊗(n/3).

(8)

Now, in order to derive a non-recursive expression of the complexity, we need
to know the cost of a multiplication in F4. There are two ways to perform such
multiplication:

• The first method computes the product of a = a0 + a1α and b = b0 + b1α as
follows:

(a0 + a1α)× (b0 + b1α) = a0b0 + (a0b1 + a1b0)α+ a1b1(1 + α).

This requires 3 bit additions and 4 bit multiplications.
• The second method computes the product of a = a0 + a1α and b = b0 + b1α
as follows:

(a0 + a1α)× (b0 + b1α) = (a0 + a1)(b0 + b1)α+ (a0b0 + a1b1)(1 + α).

This requires 4 bit additions and 3 bit multiplications.

The choice among these methods depends on the relative cost of a bit addition
compared to that of a bit multiplication. If the bit multiplication is cheaper,
then the first method is advantageous, otherwise it is the second method.

Using Lemma 1 for (8) with the initial condition SF4,⊕(1) = 3 and SF4,⊗(1) =
4, the first method leads to the complexity C below. Similarly, using Lemma 1
for (8) with the initial condition SF4,⊕(1) = 4 and SF4,⊗(1) = 3, the second
method leads to the complexity C′ below.

C =

{SF4,⊕(n) = 107
4
nlog3(5) − 29n+ 21

4
,

SF4,⊗(n) = 4nlog3(5).
C′ =

{SF4,⊕(n) = 111
4
nlog3(5) − 29n + 21

4
,

SF4,⊗(n) = 3nlog3(5).
(9)

Complexity of recursive 3-way splitting multiplication in F2[X ] We evaluate now
the overall complexity of the proposed three-way split formulas for polynomials in
F2[X ]. If we add the complexity results given in Tables 1, 2 and 3, we obtain the
number of bit additions and bit multiplications expressed in terms of SF4,⊕(n/3)
and SF2,⊕(n/3) as follows

SF2,⊕(n) = 2SF4,⊕(n/3) + 3SF2,⊕(n/3) + 29n/3− 12,
SF2,⊗(n) = 2SF4,⊗(n/3) + 3SF2,⊗(n/3).

(10)
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We now derive a non-recursive expression from the previous equation. This is
done in two steps: we first replace SF4,⊗(n/3) and SF4,⊕(n/3) by their corre-
sponding non-recursive expression, then we solve the resulting recursive expres-
sion of SF2,⊕(n) and SF2,⊗(n). We can replace SF4,⊗(n/3) and SF4,⊕(n/3) by the
non-recursive expressions C or C′ given in (9). To this effort, since these com-
putations are essentially identical, we only treat in detail the computation of
SF4,⊕(n/3). In (10), we replace SF4,⊕(n/3) by its expression given in (9) and we
obtain SF2,⊕(n) = 3SF2,⊕(n/3)+

107
10 nlog3(5)− 29

3 n− 3/2. Then a direct applica-
tion of Lemma 2 from Appendix A yields a non-recursive expression as follows:
SF2,⊕(n) =

107
4 nlog3(5) − 29

3 n log3(n)− 55n
2 + 3

4 .
We then apply the same method to other complexities. Below we list the final

non-recursive expression for each case.

C =

⎧⎨
⎩
SF2,⊕(n) = 107

4
nlog3(5) − 29

3
n log3(n)

− 55n
2

+ 3
4

SF2,⊗(n) = 4nlog3(5) − 3n

C′ =
⎧⎨
⎩
SF2,⊕(n) = 111

4
nlog3(5) − 29

3
n log3(n)

− 57n
2

+ 3
4

SF2,⊗(n) = = 3nlog3(5) − 2n

(11)

3.3 Delay Evaluation

We evaluate the delay of the 3-way split multiplier by drawing the data flow of
the 3-way multiplier in F4[X ] and in F2[X ]. The sequence of operations for these
two cases (F4 and F2) are essentially the same: their only difference is on the
reconstruction: in the F2[X ] multiplication the operations are restricted to F2.
The data flow shown in Figure 2 is valid for both cases. We now evaluate the
critical path delay for the multiplication in F4[X ] and then for the multiplication
in F4[X ].
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3

Fig. 2. Multi-evaluation (left) and reconstruction (right) data flow
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Delay of the multiplier in F4[X ]. The critical path is made of the following three
parts:

• The critical path in the multi-evaluation data-flow begins in A2, goes through
three ⊕’s and one multiplication by α and then ends in R1. Since a multi-
plication by α consists of one bit addition, the delay of this critical path is
4D⊕.

• The path goes through a multiplier for degree n/3 − 1 polynomials with a
delay of DF4(n/3).

• Finally, in the reconstruction part, the path enters the reconstruction in P2

and goes through one multiplication by (1+α) and three additions and then
in a multi-input ⊕. A careful observation of this last multi-input addition
shows that the delay in terms of the 2-input ⊕ gate is 2D⊕. Consequently,
the critical path delay of this part is 6D⊕.

By summing up the above three delay components, we obtain a recursive ex-
pression of the delay as DF4(n) = 10DX +DF4(n/3). After solving this inductive
relation, we obtain the following non-recursive expression:

DF4(n) = (10 log3(n) + 2)D⊕ +D⊗. (12)

Delay of the multiplier in F2[X ]. The critical path is the same as the critical path
for the multiplication in F4[X ]. The only difference is that the multiplication by
α and (1 + α) does not give any delay since it consists of some permutation of
the coefficients. Consequently, the recursive expression of the delay is DF2(n) =
8DX +DF4(n/3) and this yields the corresponding non-recursive expression to be

DF2(n) = 10 log3(n)D⊕ +D⊗. (13)

4 Complexity Comparison and Conclusion

In this paper, we have first reviewed Bernstein’s recently proposed formula for
polynomial multiplication using the 3-way split that requires five recursive multi-
plications. We have carefully evaluated its cost and have provided a non-recursive
form of its complexity. We have then presented a new set of 3-way split formulas
for binary polynomial multiplication based on field extension. For the proposed
formulas, we have computed two non-recursive forms of the complexity: one min-
imizes the number of bit additions and the other minimizes the number of bit
multiplications. We have also evaluated the time delays of parallel multipliers
based on the proposed formulas.

Assuming that n is a power of three, the resulting complexities of Bernstein’s
and the proposed formulas are reported in Table 4. As it can be seen from
Table 4, in the asymptotic sense, the ratio of the total number of bit level
operations (addition and multiplication combined) of the Bernstein formula and

that of either of the proposed formulas is close to (18.5+7)
(26.75+4)

∼= 0.82. We can also

remark that the proposed method are less expensive in term of bit addition,
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consequently if the cost of a bit multiplication is twice the cost of a bit addition
then the complexity of the proposed method become smaller than the one of
Bernstein approach. On the other hand, when those formulas are applied to
parallel implementation for polynomial multipliers, Bernstein’s formula leads to
a time delay linear in n, while the proposed ones are logarithmic.

Table 4. Complexities of the three approaches considered in this article

Algorithm S⊕(n) S⊗(n) Delay

Bernstein [1]) 18.5nlog3(5) − 21.5n + 3 7nlog3(5) − 4n− 2 (1.5n+ 8 log3(n)− 1.5)D⊕
(C in (4) +D⊗
C from (11) 26.75nlog3(5) − 9.67n log3(n) 4nlog3(5) − 3n 10 log3(n)D⊕ +D⊗

−27.5n+ 0.75

C′ from (11) 27.75nlog3(5) − 9.67n log3(n) 3nlog3(5) − 2n 10 log3(n)D⊕ +D⊗
−28.5n+ 0.75

Improvement for multiplication of polynomials of size n = 2i · 3j. Our proposed
method can also be used to design efficient multipliers for more generic values
of n. To illustrate this point, we now consider the situation where we want to
perform A × B where A and B are of degree n − 1 where n = 2 · 3j. A direct
approach to perform this operation consists of first applying the Karatsuba for-
mula which breaks this multiplication into three multiplications of polynomials
of degree 3j − 1. If these three multiplications are performed using Bernstein’s
approach, then the cost of A × B is 3 times the complexity of one instance of
Bernstein’s approach plus 7n/2− 3 bit additions for Karatsuba.

This can be done more efficiently as follows. We perform this multiplica-
tion by first splitting the two polynomials in two parts A = A0 +Xn/2A1 and
B = B0 + Xn/2B1. We then perform A0 × (B0 + αB1) and A1 × (B0 + αB1)
using the proposed formulas for multiplication in F4[X ] of Subsection 3.1. This
provides the four products AiBj for i, j ∈ {0, 1}. The product C = A × B is
then reconstructed as C = A0C0 + Xn/2(A0B1 + A1B0) + B1A1X

n. The cost
of this approach is thus two times the cost a degree n/3 − 1 multiplications in
F4[X ] plus 2n bit additions for the reconstruction. The resulting complexities
are reported in Table 5.

Table 5. Complexities of a multiplication of polynomials of size n = 2 · 3j

Method S⊕(n) S⊗(n)
Karatsuba and Bernstein [1] (C in (4)) 20.1nlog3(5) − 35.75n + 6 7.6nlog3(5) − 6n− 6

With C from Subsection 3.1 19.37nlog3(5) − 29n+ 10.5 2.17nlog3(5) − 3n

With C′ from Subsection 3.1 20.1nlog3(5) − 29n+ 10.5 2.89nlog3(5) − 2n

Explicit complexity for polynomial multiplication with practical size. In Table 6
we give complexity results of polynomial multiplication for n = 2i ·3j with cryp-
tographic sizes, specifically, in the range [160, 500]. The complexities correspond
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to the combination of Karatsuba (cf [1]) and the formula of Bernstein or the
proposed formulas. To get the complexity based on the proposed formulas in
the special case where i ≥ 1 and j ≥ 1, we apply Karatsuba recursively up
to obtain polynomials of size 2 · 3j and then we apply the strategy presented
above to multiply such polynomials. The resulting complexity shows that, for
j ≥ 1 in n = 2i × 3j , our approach yields better space and time complexities
for the considered fields. The fact that our space complexity is better is due to
the terms −9.67n log3(n)) in C and C′ in (11) which are non-negligible for the
above-mentioned sizes of polynomials.

Table 6. Complexities for polynomial multiplication of size n = 2i · 3j ∈ [160, 500]

Method
162 = 2 · 34 192 = 26 · 3 216 = 23 · 33

#AND #XOR Del. #AND #XOR Del. #AND #XOR Del.

Karat. and Bern. [1] 12147 30036 155 15309 35472 29 20655 50397 72

Karat. and C in (11) 4757 26217 43 7533 30126 28 8271 42765 39

Karat. and C′ in (11) 3588 27386 43 5832 31827 28 6264 44772 39

Method
243 = 35 256 = 28 288 = 25 · 32

#AND #XOR Del. #AND #XOR Del. #AND #XOR Del.

Karat. and Bern. [1] 20901 52591 403 6561 34295 24 33291 79026 43

Karat. and C in (11) 11771 65167 50 6561 34295 24 14013 65661 35

Karat. and C′ in (11) 8889 68049 50 6561 34295 24 10692 68982 35

Method
324 = 22 · 34 384 = 27 · 31 432 = 24 · 33

#AND #XOR Del. #AND #XOR Del. #AND #XOR Del.
Karat. and Bern. [1] 36441 91239 158 45927 107757 32 61965 152700 75

Karat. and C in (11) 14271 79782 46 22599 91719 31 24813 129804 42

Karat. and C′ in (11) 10764 83289 46 17496 96822 31 18792 135825 42
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A Lemmas and Their Proofs

In this section we provide two lemmas which gives the non-recursive solution
to inductive expression. These solutions are required to obtain a non-recursive
expression of the complexity of the formula presented in the paper. The proof
of Lemma 1 can be found in [4].

Lemma 1. Let a, b and i be positive integers and assume that a �= b. Let n = bi,

a �= b and a �= 1. The solution to the inductive relation

{
r1 = e,
rn = arn/b + cn+ d,

is as follows

rn = (e+
bc

a− b
+

d

a− 1
)nlogb(a) − bc

a− b
n− d

a− 1
. (14)

Lemma 2. Let a, b and i be positive integers. Let n = bi and a = b and a �= 1.

The solution to the inductive relation

{
r1 = e,
rn = arn/b + cn+ fnδ + d,

is

rn = n

(
e+

fbδ

a− bδ
+

d

a− 1

)
− nδ

(
fbδ

a− bδ

)
+ cn logb(n)−

d

a− 1
. (15)

We prove the statement of Lemma 2 by induction on i where n = bi.

• For i = 1, i.e., n = b we have

rb = ar1 + fbδ + cb+ d = ae+ fbδ + cb+ d (16)

Now we compare this value of rb to the value given by the formula (15)

rb = ae+ fbδ(bδ−a)
bδ−a + cb logb(b) +

d(a−1)
a−1

= ae+ fbδ + bc+ d.

Consequently, the formula in (15) is correct for n = b.
• We assume now that the formula is true for i and we prove its correctness
for i+ 1. We first write

rbi+1 = arbi + fbiδ + cbi + d
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We then use the expression of rbi given by the induction hypothesis

rbi+1 = a
(
aie+ fbδ(bδi−ai)

bδ−a + cbi + d(ai−1)
a−1 )

)
+ fb(i+1)δ + cbi+1 + d

= ai+1e + fbδ
(

abδi−ai+1

bδ−a + bδi
)
+ c

(
iabi + bi+1

)
+ d

(
ai+1−a
a−1 + 1

)

= ai+1e + fbδ
(

abδ(i+1)−ai+1

bδ−a
)
+ cbi+1 logb(b

i+1) + d
(

ai+1−1
a−1

)

as required.

B Bernstein’s Three-Way Split Formula

In Table 7 we give the multi-evaluation and the products for Bernstein’s formula.

Table 7. Cost of multi-evaluation and products for Bernstein’s 3-way split formula

Operations Computations Cost
#⊕ #⊗

Multi-eval.

R1 = A0 + A1 + A2, R
′
1 = B0 +B1 +B2 4n/3 0

R2 = A1X + A2X
2, R′

2 = B1X +B2X
2 2n/3 − 2 0

R3 = A0 +R2, R′
3 = B0 +R′

2 2n/3 − 2 0
R4 = R1 +R2, R′

4 = R′
1 +R′

2 2n/3 − 2 0

Products

P0 = A0B0 S⊕(n/3) S⊗(n/3)
P1 = R1R

′
1 S⊕(n/3) S⊗(n/3)

P2 = R3R
′
3 S⊕(n/3 + 2) S⊗(n/3 + 2)

P3 = R4R
′
4 S⊕(n/3 + 2) S⊗(n/3 + 2)

P4 = A2B2 S⊕(n/3) S⊗(n/3)
Total 3S⊕(n

3
) + 2S⊕(n3 + 2) 3S⊗(n3 )

+10n/3 − 6 +2S⊗(n3 + 2)

In Table 8 we give explicit computations for the reconstruction of Bernstein’s
formula.

Table 8. Cost of reconstruction for Bernstein’s 3-way split formula

Computations #⊕

Reconstruction

S = P2 + P3, 2n/3 + 1

U = P0 + (P0 + P1)X
n/3 n− 2

V = P2 + S(Xn/3 +X) n+ 4
W = U + V + P4(X

4 +X) 7n/3− 3
W ′ = W/(X2 +X) n− 2

W ′′ = W (X2n/3 +Xn/3) 2n/3− 1

C = U + P4(X
4n/3 +Xn/3) +W ′′ 5n/3− 3

Total 25n/3 − 6

Let us clarify the computation of S in Table 8: the coefficients of X2n/3+2

and X2n/3+1 in P2 are the same as the coefficients of the corresponding terms
in P3, therefore the degree of P2 + P3 is of degree 2n/3 and this requires only
2n/3 + 1 bit additions.



Sublinear Scalar Multiplication

on Hyperelliptic Koblitz Curves

Hugo Labrande1 and Michael J. Jacobson Jr.2,�

1 ENS Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

hugo.labrande@ens-lyon.fr
2 Department of Computer Science, University of Calgary

2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
jacobs@cpsc.ucalgary.ca

Abstract. Recently, Dimitrov et. al. [5] proposed a novel algorithm for
scalar multiplication of points on elliptic Koblitz curves that requires a
provably sublinear number of point additions in the size of the scalar.
Following some ideas used by this article, most notably double-base ex-
pansions for integers, we generalize their methods to hyperelliptic Koblitz
curves of arbitrary genus over any finite field, obtaining a scalar multi-
plication algorithm requiring a sublinear number of divisor additions.
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1 Introduction

Following an idea proposed independently by Koblitz and Miller in 1985 (re-
spectively in [9] and [12]), elliptic and hyperelliptic curves over finite fields are
now widely used for cryptographic purposes. Operations are carried out in the
finite group of rational points of the elliptic curve; schemes such as ElGamal en-
cryption can be applied in this group. Due to particular properties of the group,
cryptography on elliptic curves offers security as strong as other algorithms (such
as the RSA algorithm, for instance) with keys of shorter lengths. Hyperelliptic
curve cryptosystems are interesting generalizations of elliptic curve cryptosys-
tems. Curves with a too high genus were shown to be cryptographically insecure
[7], but if the genus is small hyperelliptic curves can be used in some cryptosys-
tems, and represent an alternative that is as secure and efficient as elliptic curve
cryptosystems.

Anomalous binary elliptic curves (elliptic Koblitz curves), first introduced
by Koblitz in a 1992 article [10], are of particular interest in cryptographic
applications. Cryptographic schemes using elliptic curves are faster on Koblitz
curves than on any other type of curves. Moreover, secure Koblitz curves are
easy to find: all this make those curves very convenient for cryptography. Those
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curves can be used for instance in embedded systems, where the computing
power and the memory are limited.

The problem we deal with in this article is scalar multiplication, comput-
ing m-folds of elements of the group associated to the curve. This problem has
practical implications: cryptographic schemes in the group of an elliptic or hy-
perelliptic curve often require computing m-folds. Thus, by making scalar mul-
tiplication more efficient, we improve the speed of curve-based cryptosystems,
possibly making them more practical and applicable in a broader set of systems.

In [5] the authors present a method to compute m-folds of points (m ∈ Z) on
elliptic Koblitz curves requiring a sublinear (in the size of m) number of point
additions. The method involves finding a suitable triple-base τ -adic expansion
for a particular complex number τ. They also design an algorithm using double-
base expansions that, while not requiring a provably sublinear number of point
additions (although benchmarks and experimental results would let us think it
is), is efficient in practice. These represent the first result that breaks the barrier
of linearity in number of point additions; all previous algorithms were using a
linear number of them, and aimed at improving the O-constant.

In this paper, we generalize the methods of [5] to the case of scalar mul-
tiplication on hyperelliptic Koblitz curves of all characteristic and all genera.
We present a scalar multiplication algorithm with sublinear complexity (in the
number of divisor additions) using triple-base expansions, with carefully cho-
sen bases. Although mostly of theoretical interest due to large constants in the
O-notation, our algorithm does prove for the first time the existence of sublin-
ear divisor multiplication on hyperelliptic Koblitz curves. We also present an
algorithm using double-base expansions that is conjecturally sublinear and more
likely to perform well in practice.

The next two sections provide background on hyperelliptic Koblitz curves
and multi-base number systems. The sections that follow contain our results.
We first present our algorithm that uses triple-base expansions to achieve a
sublinear complexity in number of divisor additions, followed by our practical
double-base algorithm.

2 Hyperelliptic Koblitz Curves

More information on hyperelliptic curves can be found, for example, in [2, pp.81-
85].

Let q = pr be a prime power and let Fq be the finite field with q elements. A
(non-singular) hyperelliptic curve of genus g with one point at infinity is defined
by the equation

C : v2 + h(u)v = f(u),

where h, f ∈ Fq[X ], deg(h) ≤ g, f monic of degree 2g+1, and if y2+h(x)y = f(x)
for (x, y) ∈ Fq × Fq, then 2y + h(x) �= 0 or h′(x)y − f ′(x) �= 0.

Let Pic0(C(Fq)) denote the degree zero divisor class group of C over Fq.
Elements of Pic0(C(Fq)) can be represented uniquely using the Mumford repre-
sentation, a pair of polynomials [u, v], u, v ∈ Fq[x], deg v < deg u ≤ g, u monic,
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and u|f − v2−hv. Thus, each divisor can be represented by at most 2g elements
of Fq. The divisor corresponding to the principal ideals class is denoted div[1, 0].
The inverse of [u, v] is [u,−h− v], where the second entry is reduced modulo u,
and is thus efficiently computable. The group operation can be done using Can-
tor’s algorithm for any genus; for genus up to 4 more efficient explicit formulas
exist.

Hyperelliptic Koblitz curves are hyperelliptic curves defined over Fq but the
group Pic0(C(Fqn)) is considered over Fqn where n is prime. For example, one
of the hyperelliptic curves that is studied in [8] is the curve of genus 2

C : v2 + uv = u5 + u2 + 1

considered over F2n . Such curves are a generalization of the approach developed
in the elliptic case by Koblitz [10]. In a string of articles, some authors suc-
cessfully generalized Solinas’s scalar multiplication method [13] to hyperelliptic
curves to get fast algorithms for divisor multiplication on this type of Koblitz
curve. An article [8] describes the method for hyperelliptic curves of genus 2,
and subsequent work by Lange describes a generalization of the method for
hyperelliptic curves of all genera and for every characteristic [11] (see also [2,
Sections 15.1.2 and 15.1.3].

As in the elliptic case, one main interest in hyperelliptic Koblitz curves is that
scalar multiplication can be sped up by making use of the action of the Frobenius
endomorphism on elements in Pic0(C(Fq)). The Frobenius endomorphism τ over
Fqn is defined as x → xq. This operation is inherited by points on the curve
and by Pic0(C(Fq)). It operates on elements of Pic0(C(Fq)) given in Mumford
representation by

τ([u(x), v(x)]) = [τ(u(x)), τ(v(x))], where τ

(
d∑

i=0

uix
i

)

=

d∑

i=0

uq
ix

i .

In this manner, τ acts as an endomorphism on the group Pic0(C(Fq).
To generalize the methods discussed previously, we have to represent the

Frobenius endomorphism as a complex number τ . Let P be the characteristic
polynomial of the Frobenius endomorphism:

P (T ) = T 2g + a1T
2g−1 + ...+ agT

g + ag−1qT g−1 + ...+ a1q
g−1T + qg .

Let τ be a complex root of P ; since the Frobenius endomorphism and τ are both
roots of this polynomial, we can consider the Frobenius endomorphism as the
complex number τ . For example, in the case of the genus 2 Koblitz curve

C1 : v2 + uv = u5 + u2 + 1 ,

we may take τ = μ±i√4−μ
2 , where μ = 1±√17

2 .
The idea to improve scalar multiplication is to compute a base-τ expansion

of the scalar, enabling a version of binary exponentiation based on repeated
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applications of τ as opposed to doublings. As the computation of τ is negligible
compared to the cost of a doubling, this yields an especially efficient algorithm.

The problem of finding a τ -adic representation using this set of coefficients is
addressed in [11, Algorithm 5.19]. The algorithm attempts to compute a τ -adic

expansion of a given scalar using the digit set R = {0,±1, ...,±� qg−12 �}. Lange
proved [11, Theorem 5.5] that, unlike the elliptic case, the expansions produced
by this algorithm are not necessarily finite. Some criteria for non-finiteness are
provided in particular cases, and in general it is possible to check for a particular
curve whether periodic expansions occur by testing a set of elements in Z[τ ] of
bounded norm. These results use the following norm, which we also use in this
paper:

N (ζ) =

√√
√
√√

g∑

i=1

∣
∣
∣
∣
∣∣

2g−1∑

j=0

bjτ
j
i

∣
∣
∣
∣
∣∣

2

,

where ζ = b0+b1τ+· · ·+b2g−1τ2g−1 ∈ Z[τ ] and τ1, τ2, . . . , τg denote g conjugates
of τ (one of each conjugate pair).

In the case that expansions are finite, Lange proves [11, Theorem 5.16] that
the number of terms is bounded by n + 4g + 1. This bound is achieved by first
reducing the scalar modulo τn−1

τ−1 in Z[τ ], as in the elliptic case. The expected

number of non-zero terms in the expansion is qg−1
qg , yielding an algorithm that

requires the precomputation of � qg−12 � divisors and only qg−1
qg (n+4g+1) divisor

additions on average.
When compared to standard methods, Lange’s algorithm leads to a speed-up

of 1.5g as compared to the binary method and 1.3g compared to NAF. When
compared to a binary window method of width 2 (assuming q = 2 and g = 2),
the speed-up is 11/3. However, we notice that the asymptotic complexity (in
number of divisor additions) is still linear in the size of the scalar m assuming,
as is usually the case in cryptographic applications, that m ∈ O(qng). In the next
sections, we give two algorithms that achieve sublinear complexity, one provably
so and the other conjecturally.

3 Multi-base Number Systems

As in [5], the main tool we use to achieve sublinearity is multi-base expansions
of elements of Z[τ ].

Definition 1 (double-base expansions). Let P,Q,m ∈ Z[τ ]. An expression
of the form:

m =

d∑

i=1

riP
aiQbi ,

where 0 �= ri ∈ R ⊂ N and ai, bi ∈ Z≥0, is called a double-base representation or
{P,Q}-representation of m.
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Definition 2 (triple-base expansion). Let P,Q, S,m ∈ Z[τ ]. An expression
of the form:

m =

d∑

i=1

riP
aiQbiSci ,

where 0 �= ri ∈ R ⊂ N and ai, bi, ci ∈ Z≥0, is called a triple-base representation
or {P,Q, S}-representation of m.

Our definitions are adapted from [3,5], where integer scalars are considered, and
the digit set R = {±1}.

The motivation of applying multi-base expansions to the scalar multiplication
problem is that the number of non-zero terms in such an expansion, when using
appropriate bases, is sublinear in the size of the scalar. In the case of integer
bases and scalars, we have the following theorem.

Theorem 1. Given two primes p, q, every integer m has a {p, q}-representation
with a sublinear number of summands, i.e., it can be represented as the sum or
difference of at most O( logm

log logm ) integers of the form paqb for a, b ∈ N with

a, b ∈ O(logm).

Theorem 1 first appeared with proof in [3, Theorem 1] for bases p = 2 and
q = 3, but generalizes to any number of arbitrary distinct prime bases. The
representation can be computed using a greedy algorithm, namely computing
the largest integer of the form paqb less than or equal to m and repeating
with m − paqb. A result of Tijdeman [14] implies that there exists paqb with
m − m/(logm)C < paqb < m for some absolute constant C > 0; this implies
the running time and the bound on the exponents a and b occurring in the
representation of m.

Tijdeman’s result also holds for for complex bases provided that the norm of
one base is strictly greater than the other. For elliptic and hyperelliptic Koblitz
curves, we would like to use bases that are simple functions of τ, ideally τ
and τ − 1, so that the resulting scalar multiplication algorithm requires as few
divisor additions as possible. Unfortunately these bases have the same norm,
and the theoretical result does not apply. In [5], the authors get around this
problem by using a combination of triple-base representations in Z[τ ] and {2, 3}-
representations of integers, yielding an algorithm requiring only o(logm) point
additions. As that algorithm does not appear to be efficient in practice, an
algorithm using {τ, τ − 1}-representations is also presented that works well in
practice, despite having only conjectural sublinearity.

4 A Sublinear Divisor Multiplication Algorithm Using
Triple-Base Expansions

Our goal is to find a representation of an integer with a sublinear number of
summands that leads to a sublinear scalar multiplication algorithm. By sublin-
ear, we mean that the number of divisor additions is sublinear in the size of the
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integer. Our asymptotic statements in this section assume that the field size q
and genus g are fixed, so that the norm of the scalar tends to infinity, although
we also give the dominant terns in q and g as well.

In [5], the authors achieve this for elliptic curves by using {2, 3}-expansions
of integers and then replacing the 2s and 3s by expressions involving τ using

2 = τ(μ − τ)

3 = 1 + μτ − τ2 ,

where μ ∈ {±1} is a parameter indicating which of the two elliptic Koblitz curves
over F2 is used. We use a similar approach. We first select suitable bases for our
representation, that is two prime numbers that we can replace by polynomial
identities involving τ . Considering the characteristic polynomial of the Frobenius
endomorphism τ , we have the following identity:

qg = −τ2g − a1τ
2g−1 − ...− a1q

g−1τ = Q(τ).

Consider i, j ∈ Z such that qg + i and qg + j are prime. By Theorem 1, any
integer can be represented with a sublinear number of summands of the form
±(Q(τ)+ i)x(Q(τ)+ j)y . For convenience we call {τ,Q(τ)+ i, Q(τ)+ j}-integers
terms of the form ±τx(Q(τ) + i)y(Q(τ) + j)z , x, y, z ∈ Z.

First, note that the straightforward approach of computing a {qg + i, qg + j}
representation of the integer scalar m and performing the substitution does not
yield a sublinear algorithm. Although the number of terms in the expansion is
indeed sublinear, the number of required divisor additions may not be because
the required powers of qg + i and qg + j may be as large as logm. Instead, we
model our approach on that of [5] and obtain the following theorem.

Theorem 2. Let ζ ∈ Z[τ ], and assume that the τ-adic representation of ζ with

coefficients in R = {0,±1, . . . ,±� qg−12 �} is finite. Then, for g and q fixed, ζ can
be represented as the sum of at most

O

(
gqg

logN (ζ)

log logN (ζ)

)

{τ,Q(τ) + i, Q(τ) + j}-integers such that the largest power of both Q(τ) + i and
Q(τ) + j is O(qg [g+ logN (ζ)]α) for any real constant α such that 0 < α < 1/2.

Proof. Let α ∈ (0, 1/2). We first determine the τ -adic representation of ζ using
coefficients taken in R by using Algorithm 5.19 of [11]. As we assume the length
of this expansion is finite, Lemma 5.6 of [11] implies (see the discussion on p.58
of [11] ) that its length is l = O(logN (ζ) + g). For convenience, we denote
N0 = g + logqN (ζ).

Now, we break this representation in M = �N1−α
0 � blocks of O(Nα

0 ) coeffi-
cients each such that

ζ =
l∑

i=1

xiτ
i =

M−1∑

i=0

Ciτ
ik(where k = �l/M�).
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Using the fact that P (τ) = 0, we see that for i ∈ {0...M}, the ith block corre-
sponds to an element of the form

Ci =

2g−1∑

j=0

cijτ
i.

We note that, since the xi are in R (and thus bounded by O(qg)) and that there
are O(Nα

0 ) digits in each block, log cij is in O(qgNα
0 ).

We represent each cij in double-base representation using the prime integer
bases qg + i and qg + j. According to Theorem 1, and since both of our bases
are prime, these representations can be computed using the greedy algorithm of
[3], and have at most

O

(
qgNα

0

log qgNα
0

)

summands of the form (qg + i)x(qg + j)y where x, y ∈ O(qgNα
0 ). Then, since

qg = Q(τ), we substitute qg + i by Q(τ) + i and qg + j by Q(τ) + j to obtain a
{Q(τ) + i, Q(τ) + j}-expansion of each cij .

Next, we compute the {τ,Q(τ)+ i, Q(τ)+ j}-expansions of Ci by multiplying
the expansion of cij for each j ∈ {0...2g−1} by τ j , and adding the results. Thus,
the expansion of Ci has O(gqgNα

0 / log q
gNα

0 ) summands of the form ±τx(Q(τ)+
i)y(Q(τ) + j)z , with x ∈ {0...2g − 1} and y, z ∈ O(qgNα

0 ).
The last step is to compute the expansion of ζ from the expansions of the M

blocks Ci, by multiplying each Ci by τ il. We obtain a {τ,Q(τ) + i, Q(τ) + j}-
expansion of ζ that has

O

(
gqg

Nα
0

log qgNα
0

N1−α
0

)
= O

(
gqg

N0

log qgNα
0

)

terms, and in which the exponents of of Q(τ) + i and Q(τ) + j are O(qgNα
0 ).

Now, since

log qgNα
0 = g log q + log(g + logN (ζ))α

≥ α log(g + logN (ζ))

≥ α log logN (ζ)

assuming that g and q are fixed, we get that our number of terms in the end is
indeed

O

(
gqg

g + logN (ζ)

α log logN (ζ)

)
= O

(
gqg

logN (ζ)

log logN (ζ)

)

as required. ��
The proof of Theorem 2 is constructive in the sense that it leads immediately to
an algorithm to compute a {τ,Q(τ) + i, Q(τ) + j}-expansion of ζ ∈ Z[τ ].

This leads to the following algorithm for computing ζD using a sublinear
number of divisor additions in logN (ζ). The idea is, given the representation of
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ζ from Theorem 2, to compute (Q(τ)+ i)a(Q(τ)+ j)bD for all powers a, b in the
representation, use these to compute each term in the representation multiplied
by D, and then to add these together. We will prove that the sublinearity holds
for fixed g and q as long α is selected satisfying 0 < α < 1/2.

Algorithm 1. Divisor multiplication using triple-base expansions

Input: ζ = b0 + b1τ + ...+ b2g−1τ
2g−1 and D ∈ Pic0(C(Fq))

Output: ζD

1: Find i, j ∈ Z such that qg + i and qg + j are prime.
2: Compute a {τ,Q(τ )+ i,Q(τ )+ j}-expansion of ζ using Theorem 2 with any α such

that 0 < α < 1/2; store terms in L = {siτai(Q(τ )+ i)bi(Q(τ )+j)ci with 1 ≤ i ≤ d,
si = ±1, ai, bi ∈ Z≥0.

3: Compute A = max(bi) and B = max(ci).
4: Compute in succession for x ∈ {0...A} the divisor classes Dx = (Q(τ ) + i)Dx−1,

with D0 = D.
5: for x ∈ {0...A} do
6: Compute in succession for y ∈ {0...B} the divisor classes Fx,y = (Q(τ )+j)Fx,y−1,

with F (x, 0) = Dx.
7: end for
8: Res← div[1, 0]
9: for i = 1, . . . , d do
10: Res← Res+ siτ

aiFbi,ci

11: end for
12: return Res

Theorem 3. Algorithm 1 requires o(gqg logN (ζ)) divisor additions for fixed g
and q, i.e. the required number of divisor additions is sublinear in logN (ζ).

Proof. We analyze the algorithm step by step:

1. Step 1: this step does not require any divisor additions. We give here an
order of magnitude of i and j. By Chebyschev’s theorem, there is a prime
number between n and 2n for any integer n. Thus, we know there is a prime
number between �qg/2� and qg, and between qg and 2qg, and we can bound
|i| and |j| by qg.

2. Steps 2-3: these steps also require no divisor additions. Note that the greedy
algorithm of [3] can be used to compute the double-base representations of
the cij , and that consequently A,B ∈ O(logαN (ζ)).

3. Step 4: we compute A divisors, each one being derived from the previous one
by applying Q(τ) + i to it. Applying Q(τ) + i to a divisor D can be done as
follows:

(a) Compute rD for every r ≤ 2qg. Since the absolute value of every coeffi-
cient in Q(τ) is smaller than 22gqg/2 (see [15, p.378]) and |i| ≤ qg, every
coefficient of Q(τ)+i is bounded by 2qg. This step requires O(qg) divisor
additions.
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(b) Compute every term in Q(τ) + i by application of the Frobenius endo-
morphism and add those terms together. This step requires O(g) divisor
additions.

Thus, the complexity of this step is O(qg logαN (ζ)) divisor additions.
4. Step 5 to 7: we compute AB divisors by repeatedly applying Q(τ) + j to

the divisors computed in the previous step. As discussed in the analysis of
previous step (since we have |j| ≤ qg as well), each of those require O(qg)
divisor additions. The complexity of this step is O(qg log2αN (ζ)) divisor
additions.

5. Step 8 to 11: Since s = ±1, the number of point additions is equal to the
number of terms of the expansion, which by Theorem 2 is

O

(
gqg

logN (ζ)

log logN (ζ)

)
.

Now, since α < 1/2, the total number of divisor additions in Steps 4 and 5 is
o(qg logN (ζ)). Thus, the number of divisor additions for the entire algorithm is
o(qg logN (ζ)). ��

Note that, although the number of divisor additions required is sublinear, the
overall bit complexity of the algorithm is linear in qg logN (ζ). This is due to
the cost of computing the representation in Step 2. The first step of Theorem 2
is to compute the τ -adic expansion of ζ, which has complexity O(logN (ζ)). In
addition, double base expansions of the cij must be computed. From [4], the bit
complexity of each of these operations is in O(log cij) = O(qgNα

0 ). There are
2g ×M = 2g�N1−α

0 � of the cij , so the total bit complexity is in O(gqgN0) =
O(gqg logN (ζ)).

A straightforward application of this algorithm to ζ = m ∈ Z allows one
to compute mP in o(gqg logm) divisor additions, as logN (m) = log

√
gm2 ∈

O(logm). However, in the case that m is of the usual size used for crypto-
graphic applications, namely O((qn)g), we can do better by first reducing it
modulo τn − 1, as τn(D) = D in Pic0(C(Fqn)). If, as is also usual in crypto-
graphic applications, arithmetic is restricted to a large prime order subgroup of
Pic0(C(Fqn)), we can reduce the scalar by τn−1

τ−1 (see [11, p.65]). For M ≡ m

(mod τn−1
τ−1 ), we get logN (M) = O(n+2g) = O( logm

g log q +2g), as we are assuming
that logm = log qng. Thus, by applying our algorithm to M instead of m we
require the same number of divisor additions asymptotically, but would save a
factor of g.

Although our algorithm is sublinear in logm, it depends badly on q and
g. However, the most typical applications of Koblitz curves for cryptographic
purposes are with small q (to enable easy computation of group orders) and
small g (because g > 3 is insecure — see, for example, [2, Section 23.2.1]). Note
also that our result coincides with that of [5] for the elliptic case, where q = 2
and g = 1.

We note that this algorithm is asymptotically more efficient than previous
methods such as the double-and-add method (3/2gn log q divisor additions) or
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Lange’s method using single-base expansion ((1−1/qg)n divisor additions), since
its complexity is sublinear (o(g2qgn)). However, the presence of big constants in
the asymptotic complexity makes it likely less efficient than those algorithms
in practice; we stress that the point of this algorithm was to prove that there
exists a scalar multiplication algorithm that only requires a sublinear number of
divisor additions. Furthermore, we note that our asymptotics in the case g = 1
(elliptic case) and q = 2 is the same as in [5] – the primes being used in both
methods being 2 and 3.

5 A Practical Scalar Multiplication Algorithm Using
Double-Base Expansion

In [5], the authors also devise a scalar multiplication algorithm for elliptic Koblitz
curves using {τ, τ−1}-expansions that is designed to work well in practice. Even
though these bases have the same norm, and thus cannot be proved to yield
sublinear length representations using the results of [14], they were selected
because they are as cheap as possible to apply to a given point (0 or 1 addition
required). A greedy algorithm to compute representations is too expensive, as
it is not known how to efficiently compute the closest {τ, τ − 1} number to a
given element in Z[τ ]. Hence, a blocking strategy is used, in which each short
block of a τ -adic representation is replaced by a pre-computed optimal {τ, τ−1}
representation. Assuming that these bases do yield sublinear representations, it
is proved that the strategy yields a sublinear algorithm, and numerical results
were presented demonstrating its efficiency in practice.

We attempt to follow the same strategy with hyperelliptic Koblitz curves,
using bases τ and τ − 1, and terms of the form riτ

ai(τ − 1)bi , with r ∈ R =

{0,±1, . . . ,±� qg−12 �}. Our algorithm computes the τ -adic expansion of a given
scalar ζ ∈ Z[τ ] using Algorithm 5.19 of [11] and cut this representation into d
blocks of fixed size w. Each block corresponds to an element of Z[τ ], and we can
write:

ζ =

d−1∑

i=0

Niτ
iw .

The complete representation is obtained by replacing each Ni by its optimal
{τ, τ − 1}-representation obtained from a precomputed table.

We assume the following conjecture:

Conjecture 1. Let τ be a root of the characteristic polynomial of the Frobe-
nius endomorphism of a hyperelliptic Koblitz curve. Every ζ ∈ Z[τ ] with a
finite τ -adic representation using digits in R can be represented as the sum of

O( logN (ζ)
log logN (ζ) ) numbers of the form riτ

ai(τ − 1)bi , ri ∈ R.

This conjecture implies that the precomputed optimal representations of the
width-w blocks all have a sublinear number of terms. Numerical evidence (see,
for example, [5]), suggests that Conjecture 1 holds for elliptic curves. Our belief
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in the general conjecture for hyperelliptic curves is based on this evidence. Work
is underway to produce supporting numerical evidence for genus 2.

Assuming Conjecture 1,we obtain the following theorem.

Theorem 4. For fixed g and q, and assuming Conjecture 1, every ζ ∈ Z[τ ] with
a finite τ-adic expansion using digits in R can be represented as the sum of at
most O(logN (ζ)/ log logN (ζ)) {τ, τ − 1}-integers such that the largest power of
τ − 1 is O(logN (ζ)/ log logN (ζ)).

Proof. The method used here is exactly the same as the proof of Theorem 5 of [5]:
cut the τ -adic representation of ζ in log logN (ζ) blocks, each of which is of length
O(logN (ζ)/ log logN (ζ)). If each block is replaced by a representation with a
sublinear number of terms, which is possible by Conjecture 1, then both the total
number of terms and the highest power of τ−1 are in O(logN (ζ)/ log logN (ζ)).

��
The resulting algorithm is presented in Algorithm 2. We note that the bigger
the block size, the better our algorithm performs thanks to the optimality of
the precomputed table. However, this has to be balanced by the increase storage
cost for the larger table.

Algorithm 2. Blocking algorithm for computing {τ, τ − 1}-expansions
Input: ζ ∈ Z[τ ], block size w, precomputed table of the minimal {τ, τ − 1}-expansion

of every μ =
∑w−1

i=0 diτ
i, di ∈ R.

Output: List L of {τ, τ − 1}-integers representing the double-base expansion of ζ.

1: L← ∅
2: Compute the τ -adic expansion of ζ to get an expression of the form ζ =

∑d−1
i=0 diτ

i.
3: for j = 0 to 	l/w
 do
4: Find minimal {τ, τ − 1}-expansion of

∑w−1
i=0 di+jwτ

i from the precomputed table
5: Multiply by τ jw and add to L
6: end for
7: return L

Our algorithm can be used for scalar multiplication as follows. To simplify the

analysis we assume that the {τ, τ−1}-expansion is of the form ζ =
∑max(ai)

l=0 (τ−
1)l

∑max(ai,l)
i=0 ri,lτ

ai,l , where max(ai,l) is the maximal power of τ that is mul-
tiplied by (τ − 1)l in the expansion and ri,j ∈ R. We then denote rl(ζ) =
∑max(ai,l)

i=0 ri,lτ
ai,l , and thus ζ =

∑max(ai)
l=0 (τ − 1)lrl(ζ). The algorithm is pre-

sented in Algorithm 3.
The number of divisor additions required to compute ζD is equal to the

number of terms in the expansion plus max(ai)� q
g−1
2 �. Provided Conjecture 1

holds, Theorem 4 implies that the total number of divisor additions is sublinear
in log ζ. As before, if we assume that integer scalars of size O(qng) are used,
then reducing the scalar modulo (τn − 1)/(τ − 1) and applying the algorithm
also requires a sublinear number of divisor additions.
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Algorithm 3. Scalar multiplication using {τ, τ − 1}-expansions
Input: ζ ∈ Z[τ ], D ∈ Pic0(C(Fq))
Output: ζD

1: Compute rl(ζ) for 0 ≤ l ≤ max(ai) such that ζ =
∑max(ai)

l=0 (τ − 1)lrl(ζ)) using
Algorithm 2.

2: D0 ← D
3: Q← div[1, 0]
4: for l = 0 to max(ai) do
5: Compute rDl for r ∈ R.
6: S ← rl(m)Dl (τ -adic scalar multiplication using the rDl)
7: Dl+1 ← τDl −D (application of τ − 1)
8: Q← Q+ S
9: end for
10: return Q

6 Conclusion and Future Work

This paper successfully generalizes ideas taken from the elliptic case to achieve
improved algorithms for computing m-folds of divisor classes on hyperelliptic
Koblitz curves. However, there are still a number of ways this work could be
expanded.

As indicated earlier, Algorithm 1 requires provably (and unconditionally) sub-
linear number of divisor additions, but only in the asymptotic sense. The O-
constants involved are almost certainly too large for it to be efficient in practice.
The blocking algorithm, Algorithm 3, is more promising for practical applica-
tions, but numerical experiments are required in order to determine its com-
plexity in practice. Most importantly, we need to determine whether sufficiently
short (τ, τ − 1)-representations of all length w τ -adic numbers can be found,
i.e., providing numerical evidence in support of Conjecture 1. If such short rep-
resentations can be found, then the algorithm should compare favorably to the
methods in [11], and a careful implementation, possibly generalizing ideas in [6]
to compute (τ − 1)D efficiently, will be required. This is work in progress.

We also base our result on the hypothesis that all τ -adic expansions that we
consider are finite. Although this is the case in many hyperelliptic Koblitz curves,
the possibility of periods arising can be a concern in practice. We still have
to come up with ways to understand those periods better, and devise efficient
methods to deal with them or to avoid them completely.

Finally, we note that our double-base algorithm requires a modest amount
of storage in order to achieve computational improvements. Although the pre-
computed table used can be viewed as part of the domain parameters, for it
does not depend on m or on the divisor class D, an efficient memory-free divisor
multiplication algorithm, such as that of [1] in the case of elliptic Koblitz curves,
is still left to find, as it would allow the most memory-constrained systems to
enjoy this speedup as well.
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Abstract. An asymmetric pairing e : G2 ×G1 → GT is considered such
that G1 = E(Fp)[r] and G2 = Ẽ(Fpk/d)[r], where k is the embedding
degree of the elliptic curve E/Fp, r is a large prime divisor of #E(Fp),
and Ẽ is the degree-d twist of E over Fpk/d with r | Ẽ(Fpk/d). Hashing to
G1 is considered easy, while hashing to G2 is done by selecting a random
point Q in Ẽ(Fpk/d) and computing the hash value cQ, where c · r is the

order of Ẽ(Fpk/d). We show that for a large class of curves, one can hash
to G2 in O(1/ϕ(k) log c) time, as compared with the previously fastest-
known O(log p). In the case of BN curves, we are able to double the
speed of hashing to G2. For higher-embedding-degree curves, the results
can be more dramatic. We also show how to reduce the cost of the final-
exponentiation step in a pairing calculation by a fixed number of field
multiplications.

Keywords: Pairing-based cryptography, fast hashing, final exponenti-
ation.

1 Introduction

Let E be an elliptic curve defined over Fp and let r be a large prime divisor
of #E(Fp). The embedding degree of E (with respect to r, p) is the smallest
positive integer k such that r | pk − 1. The Tate pairing on ordinary elliptic
curves maps two linearly independent rational points defined over the order-r
groups G1, G2 ⊆ E(Fpk) to the group of r-th roots of unity of the finite field
Fpk . In practice, the Tate pairing is computed using variations of an iterative
algorithm that was proposed by Victor Miller in 1986 [21]. The result is in the
quotient group F∗pk/(F

∗
pk)

r and is followed by a final exponentiation in order to
obtain a unique representative.

Efficient realizations of the Tate pairing have been intensively pursued in
recent years. Using different strategies, that research effort has produced sev-
eral remarkable algorithm improvements that include: construction of pairing-
friendly elliptic curves with prescribed embedding degree [4,8,23], decreases of
the Miller loop length [3,13,14,29], and reductions in the associated towering
field arithmetic costs [6,11,15,17].

A. Miri and S. Vaudenay (Eds.): SAC 2011, LNCS 7118, pp. 412–430, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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With the increase in efficiency of the Miller loop calculation, the final expo-
nentiation step has become more of a computational bottleneck. Several research
works have reported more refined methods for computing the final exponentia-
tion on pairings defined over ordinary elliptic curves [6,12,26]. In particular, the
results by Scott et al. [26] represent the current state-of-the-art in this topic, as
can be verified from the fact that most recent implementations of pairings (see
for example [1,5]) have obtained significant accelerations by computing the final
exponentiation according to the vectorial addition chain based method described
in that work.

Another important task related to pairing computation that has been less
studied is the problem of generating random points in G1 and G2, known in the
literature as hashing to G1 and hashing to G2, respectively. The group G1 is
defined as E(Fp)[r]. Hashing to G1 is normally seen as a straightforward task,
whereas hashing to G2 is considered more challenging.

The customary method for representing G2 is as the order-r subgroup of
Ẽ(Fpk/d), where Ẽ is the degree-d twist of E over Fpk/d with r | #Ẽ(Fpk/d); here
#S denotes the cardinality of S. Hashing to G2 can be accomplished by finding
a random point Q ∈ Ẽ(Fpk/d) followed by a multiplication by c = #Ẽ(Fpk/d)/r.
The main difficulty of this hashing is that c is normally a relatively large scalar
(for example, larger than p). Galbraith and Scott [10] reduce the computational
cost of this task by means of an endomorphism of Ẽ. This idea was further
exploited by Scott et al. [27], where explicit formulae for hashing to G2 were
given for several pairing-friendly curves.

In this work, we offer improvements in both the final exponentiation and hash-
ing to G2. We draw on the methods that Vercauteren [29] employed to reduce the
cost of the Miller function. Our results for the final exponentiation reduce the
cost by a fixed number of operations in several curves, a modest but measurable
improvement. Nonetheless, the techniques we use can be applied to increase the
speed of hashing as well, saving a fixed number of point additions and doublings.
Our framework for fast hashing produces more dramatic results. For example,
we estimate that for BN curves [4] at the 128-bit security level, our results yield
a hashing algorithm that is at least two times faster than the previous fastest-
known algorithm. For higher-embedding-degree curves, the results can be more
dramatic.

The rest of this paper is organized as follows. In Section 2 we review Ver-
cauteren’s “optimal” pairings. Sections 3 and 4 present our lattice-based method
for computing the final exponentiation and exponentiation examples for several
emblematic pairing-friendly elliptic curves, respectively. Sections 5 and 6 give
our lattice-based approach for hashing to G2 and hashing for several families of
elliptic curves.

2 Background

The Tate pairing is computed in two steps. First, the Miller function value f =
fr,P (Q) ∈ F∗pk is computed. This gives a value in the quotient group F∗pk/(F

∗
pk)

r.
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Second, to obtain a unique representative in this quotient group, the value f is
raised to the power (pk − 1)/r.

The Miller function is computed using a square-and-multiply algorithm via
the following relation

fa+b,P = fa,P fb,P
�aP,bP

v(a+b)P
.

Using this method, the function fr,P can be computed in log r steps.
The eta and ate pairings reduces the length of the Miller loop from log r

to log |t| ≤ 1
2 log p, where t is the trace of the p-power Frobenius acting on E

[2,14]. The R-ate pairing [18] provided further improvement, reducing the Miller
loop to length (1/ϕ(k)) log r in some cases. This idea was further generalized by
Vercauteren [29] to reduce the Miller loop length to (1/ϕ(k)) log r for all curves.
The idea behind Vercauteren’s result lies in the fact that for h(p) =

∑s
i=0 hip

i

divisible by r, we have

f
h(p)/r
r,P = gP

s∏
i=0

fhi,piP f
hi

pi,P ,

where gP is the product of s lines. By observing that f
(pk−1)/r
r,P , f

(pk−1)/r
p,P , . . . ,

f
(pk−1)/r
ps,P are pairings, it follows that

(

gP

s∏
i=0

fhi,piP

)(pk−1)/r
(1)

is a pairing. By choosing a polynomial h with small coefficients, Vercauteren
showed that the loop length for each Miller function in (1) can be reduced to at
most (1/ϕ(k)) log r.

3 A Lattice-Based Method for Efficient Final
Exponentiation

The exponent e = (pk − 1)/r in the final exponentiation can be broken into two
parts by

(pk − 1)/r = [(pk − 1)/Φk(p)] · [Φk(p)/r],

where Φk(x) denotes the k-th cyclotomic polynomial [17]. Computing the map

f $→ f (pk−1)/Φk(p) is relatively inexpensive, costing only a few multiplications,
inversions, and very cheap p-th powerings in Fpk . Raising to the power d =
Φk(p)/r is considered more difficult.

Observing that p-th powering is much less expensive than multiplication, Scott
et al. [26] give a systematic method for reducing the expense of exponentiating
by d. They showed that by writing d = Φk(p)/r in base p as d = d0 + d1p +
· · · + dϕ(k)−1pϕ(k)−1, one can find short vectorial addition chains to compute

f $→ fd much more efficiently than the naive method. For parameterized curves,
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more concrete results can be given. For instance, Barreto-Naehrig curves [4]
are constructed over a prime field Fp, where p is a large prime number that
can be parameterized as a fourth-degree polynomial p = p(x), x ∈ Z. The
result of Scott et al. gives an algorithm to compute f $→ fd, by calculating
three intermediate exponentiations, namely, fx, (fx)x, (fx2

)x, along with a short
sequence of products. By choosing the parameter x ∈ Z to have low hamming
weight, the total cost of computing f $→ fd is 3

4 log p field squarings plus a small
fixed-number of field multiplications and squarings.

Using the fact that a fixed power of a pairing is also a pairing, it suffices
to raise to the power of any multiple d′ of d, with r not dividing d′. Based
on this observation, we present a lattice-based method for determining d′ such
that f $→ fd′

can be computed at least as efficiently as f $→ fd. For Barreto-
Naehrig and several other curves, explicit d′ polynomials yielding more-efficient
final exponentiation computations are reported. However, it is noted that the
main bottleneck remains, namely the exponentiation by powers of x.

In the case of parameterized curves, the key to finding suitable polynomials d′

is to consider Q[x]-linear combinations of d(x). Specifically, we consider Q-linear
combinations of d(x), xd(x), . . . , xdeg r−1d(x). To see why this set of multiples of
d(x) suffices, consider f ∈ Fpk with order dividing Φk(p). Since r(x)d(x) = Φk(p),

it follows that f r(x)d(x) = 1 and so fxdeg rd(x) is the product of Q-powers of f ,

fxd(x), . . . , fxdeg r−1d(x).
Now, consider an arbitrary Q-linear combination d′(x) of the elements d(x),

xd(x), . . . , xdeg r−1d(x). Following the method of Scott et al. [26], d′(x) can be
written in base p(x) as d′(x) = d′0(x) + d′1(x)p(x) + · · · + d′φ(k)−1(x)p(x)

φ(k)−1 ,
where each d′i has degree less than the degree of p. Set d′i = di,0 + xdi,1 + · · ·+
xdeg p−1di,deg p−1 and assume that di,j ∈ Z for 0 ≤ i ≤ ϕ(k) − 1, 0 ≤ j ≤
deg(p(x))− 1. Then fd′(x) can be computed in two steps as explained next.

First, the exponentiations fx, . . . , fxdeg p−1

are performed. From these in-
termediate exponentiations, terms of the form fxjpi

can be easily calculated.
Second, a vectorial addition chain containing the di,j-s is found. This allows

to compute fd′(x) from terms of the form fxjpi

using the work of Olivos [24].
The advantage of allowing multiples of d(x) for this computation is to provide
more flexibility in the choices of the exponents d′(x) =

∑
di,jx

jpi with di,j ∈ Z,
that can potentially yield shorter addition chains, which in turn means a more-
efficient final exponentiation calculation. However the savings are necessarily
modest, since as in the method of Scott et al. [26], the main expense in this

exponentiation process comes from computing the terms fx, . . . , fxdeg p−1

.
In order to find efficient polynomials d′(x), let us construct a rational matrix

M ′ with dimensions deg r × ϕ(k) deg p such that
⎡⎢⎢⎢
⎣

d(x)
xd(x)

...
xdeg r−1d(x)

⎤⎥⎥⎥
⎦
= M ′

⎛

⎜⎜
⎜
⎝

⎡⎢⎢⎢
⎣

1
p(x)
...

p(x)ϕ(k)−1

⎤⎥⎥⎥
⎦
⊗

⎡⎢⎢⎢
⎣

1
x
...

xdeg p−1

⎤⎥⎥⎥
⎦

⎞

⎟⎟
⎟
⎠

.
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Here ⊗ denotes the Kronecker product and the (i, u+ v deg p)-th entry of M ′ is
du,v, where xi−1d(x) =

∑
du,vx

v−1pu−1.
Elements in the rational lattice formed by the matrix M ′ correspond to Q-

linear combinations d′(x) of d(x), xd(x), . . . , xdeg r−1d(x). Short vectorial addi-
tion chains can be produced from the elements of M ′ with small integer entries.
The LLL algorithm of Lenstra, Lenstra, and Lovasz [19] produces an integer
basis of an integer matrix with small coefficients. Let us consider the integer
matrix M constructed from M ′ as the unique matrix whose rows are multiples
of the rows of M ′ such that the entries of M are integers, and the greatest com-
mon divisor of the set of entries is 1. Next, the LLL algorithm is applied to M
to obtain an integer basis for M with small enties. Finally, small integer linear
combinations of these basis elements are examined with the hope of finding short
addition chains. It is worth mentioning that even if these results do not yield
an advantage over the results of Scott et al. [26], since the lattice contains an
element corresponding to d(x), the method described in this section includes the
results of that work.

In the next section, the main mechanics of our method are explained by
applying it to the computation of the final exponentiation step of several pairing-
friendly families of curves.

4 Exponentiation Examples

4.1 BN Curves

BN curves [4] have embedding degree 12 and are parameterized by x such that

r = r(x) = 36x4 + 36x3 + 18x2 + 6x+ 1

p = p(x) = 36x4 + 36x3 + 24x2 + 6x+ 1

are both prime.
The value d = Φk(p)/r = (p4 − p2 + 1)/r can be expressed as the polynomial

d = d(x) = 46656x12 + 139968x11 + 241056x10 + 272160x9

+ 225504x8 + 138672x7 + 65448x6 + 23112x5

+ 6264x4 + 1188x3 + 174x2 + 6x+ 1.

At first glance, it appears that exponentiations by multiples of large powers of
x are required. However, following the work of Scott et al. [26], d can be written
in base p such that the degree of the coefficients is at most 3. In particular,

d(x) = −36x3 − 30x2 − 18x− 2

+ p(x)(−36x3 − 18x2 − 12x+ 1)

+ p(x)2(6x2 + 1)

+ p(x)3.
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Scott et al. [26] applied the work of Olivos [24] to compute the map f $→ fd

using vectorial addition chains. From the above representation for d, vectorial
addition chains can be used to compute f $→ fd using 3 exponentiations by x,
13 multiplications, and 4 squarings.

For the method described in Section 3, consider multiples of d represented in
the base p with coefficients in Q[x]/(p(x)).

A 4× 16 integer matrix M is found such that

⎡⎢⎢
⎣

d(x)
xd(x)

6x2d(x)
6x3d(x)

⎤⎥⎥
⎦ = M

⎛

⎜
⎜
⎝

⎡⎢⎢
⎣

1
p(x)
p(x)2

p(x)3

⎤⎥⎥
⎦⊗

⎡⎢⎢
⎣

1
x
x2

x3

⎤⎥⎥
⎦

⎞

⎟
⎟
⎠ .

The first row in M corresponds to the final exponentiation given by Scott et al.
[26]. Any non-trivial integer linear combination of the rows corresponds to an ex-
ponentiation. For computational efficiency, a linear combination with coefficients
as small as possible is desired.

None of the basis vectors returned by the LLL algorithm has an advantage
over [26]. However, if small integer linear combinations of the short vectors re-
turned by the LLL algorithm are considered, a multiple of d which corresponds
to a shorter addition chain could potentially be found. A brute force search of
linear combinations of the LLL basis yields 18 non-zero vectors with maximal
entry 12. Among these vectors we consider the vector

(1, 6, 12, 12, 0, 4, 6, 12, 0, 6, 6, 12,−1, 4, 6, 12),
which corresponds to the multiple d′(x) = λ0 + λ1p + λ2p

2 + λ3p
3 = 2x(6x2 +

3x+ 1)d(x), where

λ0(x) = 1 + 6x+ 12x2 + 12x3

λ1(x) = 4x+ 6x2 + 12x3

λ2(x) = 6x+ 6x2 + 12x3

λ3(x) = −1 + 4x+ 6x2 + 12x3.

The final exponentiation which results can be computed more efficiently without
using addition chains.

First, the following exponentiations are computed

f $→ fx $→ f2x $→ f4x $→ f6x $→ f6x2 $→ f12x2 $→ f12x3

which requires 3 exponentiations by x, 3 squarings, and 1 multiplication. The
terms a = f12x3 · f6x2 · f6x and b = a · (f2x)−1 can be computed using 3
multiplications. Finally, the result fd′

is obtained as

[a · f6x2 · f ] · [b]p · [a]p2 · [b · f−1]p3

which requires 6 multiplications.
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In total, our method requires 3 exponentiations by x, 3 squarings, and 10
multiplications. 1

4.2 Freeman Curves

Freeman curves [7] have embedding degree k = 10 and are parameterized by x
as follows

r = r(x) = 25x4 + 25x3 + 15x2 + 5x+ 1

p = p(x) = 25x4 + 25x3 + 25x2 + 10x+ 3.

For d = Φ10(p)/r = (p4 − p3 + p2 − p + 1)/r, let us consider a 4 × 16 integer
matrix M such that

⎡⎢⎢
⎣

d(x)
xd(x)

5x2d(x)
5x3d(x)

⎤⎥⎥
⎦ = M

⎛

⎜⎜
⎝

⎡⎢⎢
⎣

1
p(x)
p(x)2

p(x)3

⎤⎥⎥
⎦⊗

⎡⎢⎢
⎣

1
x
x2

x3

⎤⎥⎥
⎦

⎞

⎟⎟
⎠ .

In the lattice spanned by M , there exist two short vectors,

±(1,−2, 0,−5,−1,−4,−5,−5, 1, 3, 5, 5, 2, 5, 5, 5).
Both of these vectors have maximal coefficient 5. Consider the vector correspond-
ing to the multiple

d′(x) = (5x3 + 5x2 + 3x+ 1)d(x) = λ0 + λ1p+ λ2p
2 + λ3p

3,

where

λ0(x) = 1− 2x− 5x3

λ1(x) = −1− 4x− 5x2 − 5x3

λ2(x) = 1 + 3x+ 5x2 + 5x3

λ3(x) = 2 + 5x+ 5x2 + 5x3,

Now, the map f $→ fd′
can be computed as

f $→ fx $→ f2x $→ f4x $→ f5x $→ f5x2 $→ f5x3

,

followed by

A = f5x3 · f2x, B = A · f5x2

,
C = f2x · f, D = B · fx · f,

and finally

fd′
= [A−1 · f ] · [B−1 · C−1]p · [D]p

2 · [C ·D]p
3

,

requiring a total of 12 multiplications, 2 squarings, and 3 exponentiations by x.

1 We ignore the relatively inexpensive p-power Frobenius maps. Since the embedding

degree k is even, we have that f−1 = fpk/2

for all f in the cyclotomic subgroup
of Fpk . That is, inversion can be done using a p-power Frobenius. Hence, we ignore
inversions as well.
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4.3 KSS-8 Curves

KSS-8 curves [16] have embedding degree k = 8 and are parameterized by x
such that

r = r(x) =
1

450
(x4 − 8x2 + 25),

p = p(x) =
1

180
(x6 + 2x5 − 3x4 + 8x3 − 15x2 − 82x+ 125)

are both prime. For d = Φk(p)/r, we compute an integer matrix M such that

⎡⎢⎢
⎣

6d(x)
(6/5)xd(x)
(6/5)x2d(x)
(6/5)x3d(x)

⎤⎥⎥
⎦ = M

⎛

⎜⎜
⎜
⎜
⎜
⎜
⎝

⎡⎢⎢
⎣

1
p(x)
p(x)2

p(x)3

⎤⎥⎥
⎦⊗

⎡⎢⎢⎢⎢⎢⎢
⎣

1
x
x2

x3

x4

x5

⎤⎥⎥⎥⎥⎥⎥
⎦

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎠

.

Note that since x needs to be chosen as a multiple of 5, the rows of M correspond
to integer multiples of d(x). We obtain a short vector corresponding to the
multiple

d′(x) =
6x

5
d(x) = λ0 + λ1p+ λ2p

2 + λ3p
3

of d(x), where

λ0 = 2x4 + 4x3 + 5x2 + 38x− 25

λ1 = −x5 − 2x4 − x3 − 16x2 + 20x+ 36

λ2 = x4 + 2x3 − 5x2 + 4x− 50

λ4 = 3x3 + 6x2 + 15x+ 72.

We use addition chains to compute fd′
. First, write fd′

as

fd′
= y10y

2
1y

3
2y

4
3y

5
4y

6
5y

15
6 y167 y208 y259 y3610y

38
11y

50
12y

72
13

and compute the yi’s. The yi’s can be computed from f , fx, . . . , fx5

using only
multiplications and Frobenius maps.

Next, we find an addition chain containing all the powers of the yi’s. With
the inclusion of the element 10, we obtain

{1, 2, 3, 4, 5, 6, 10, 15, 16, 20, 25, 36, 38, 50, 72}.
The work of Olivos gives an efficient method for producing a vectorial addition
chain from an addition chain and states the computational expense of computing
the final result fd′

from the yi’s.
The computation of the yi’s requires 5 exponentiations by x, and 6 multi-

plications. The addition chain requires 7 multiplications and 7 squarings. The
conversion to a vectorial addition chain requires 13 multiplications. In total, we
require 5 exponentiations by x, 26 multiplications, and 7 squarings to compute
the map f $→ fd′

.
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4.4 KSS-18 Curves

KSS-18 curves [16] have embedding degree k = 18 and a twist of order d = 6.
These curves are parameterized by x such that

r = r(x) =
1

343
(x6 + 37x3 + 343)

p = p(x) =
1

21
(x8 + 5x7 + 7x6 + 37x5 + 188x4

+ 259x3 + 343x2 + 1763x+ 2401)

are both prime. For d = Φk(p)/r, we compute an integer matrix M such that

⎡⎢⎢⎢⎢⎢⎢
⎣

3d(x)
(3/7)xd(x)

(3/49)x2d(x)
(3/49)x3d(x)
(3/49)x4d(x)
(3/49)x5d(x)

⎤⎥⎥⎥⎥⎥⎥
⎦

= M

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

⎡⎢⎢⎢⎢⎢⎢
⎣

1
p(x)
p(x)2

p(x)3

p(x)4

p(x)5

⎤⎥⎥⎥⎥⎥⎥
⎦

⊗

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1
x
x2

x3

x4

x5

x6

x7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

.

Since 7 divides x, the rows of M correspond to integer multiples of d(x). We

find a short vector corresponding to the multiple d′(x) = 3x2

49 d(x) = λ0 + λ1p+
λ2p

2 + λ3p
3 + λ4p

4 + λ5p
5 of d(x), where

λ0 = x6 + 5x5 + 7x4 + 21x3 + 108x2 + 147x,

λ1 = −5x5 − 25x4 − 35x3 − 98x2 − 505x− 686,

λ2 = −x7 − 5x6 − 7x5 − 19x4 − 98x3 − 133x2 + 6,

λ3 = 2x6 + 10x5 + 14x4 + 35x3 + 181x2 + 245x,

λ4 = −3x5 − 15x4 − 21x3 − 49x2 − 254x− 343,

λ5 = x4 + 5x3 + 7x2 + 3.

Proceeding as in the KSS-8 example, we construct an addition chain

{1, 2, 3, 5, 6, 7, 10, 14, 15, 19, 21, 25, 35, 38, 49, 73,
98, 108, 133, 147, 181, 245, 254, 343, 490, 505, 686}.

Once again, applying Olivos’ method for computing a short vectorial addition
chain, we can compute the map f $→ fd using 7 exponentiations by x, 52 mul-
tiplications, and 8 squarings.

4.5 A Comparison with Scott et al.

In Table 1, we compare our results against those given by Scott et al. [26].
Although operation counts are given for only the vectorial addition portion of
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Table 1. A comparison of our final exponentiation method with the method of Scott et
al. [26]. ‘M’ denotes a multiplication and ‘S’ denotes a squaring. Both methods require
the same number of exponentiations by x, determined by the curve.

Curve Scott et al. This work

BN 13M 4S 10M 3S
Freeman 14M 2S 12M 2S
KSS-8 31M 6S 26M 7S
KSS-18 62M 14S 52M 8S

the exponentiation, the total cost can easily be computed from their work. The
operation counts are given for field multiplications and squarings only, since
the number of exponentiations by x is fixed for each curve and computing p-th
powers maps is comparatively inexpensive.

For example, let us consider the case of BN curves parameterized with x =
−262−254+244, which yields a 127-bit security level [5]. Further, assume that the
relative cost of a field multiplication compared to a cyclotomic squaring on Fpk

is given as M ≈ 4.5S [1,15]. Then, the total cost to perform the exponentiations

fx, (fx)x, (fx2

)x, is of around 3 · �log2 x� = 183 cyclotomic squarings. Using the
results reported in Table 1, this gives an approximate cost for the hard part of
the final exponentiation of 187S + 13M ≈ 245S for the method of Scott et al.
and 186S + 10M ≈ 231S using our method.

5 A Lattice-Based Method for Hashing to G2

Let E be an elliptic curve over Fp with r, a large prime divisor of n = #E(Fp),
and let k > 1 be the embedding degree of E. Let q be an arbitrary power of p.
An elliptic curve Ẽ defined over Fq is said to be a degree-d twist of E over Fq,

if d is the smallest integer such that Ẽ and E are isomorphic over Fqd . If p ≥ 5,
the only possible degrees of twists are those integers d which divide either 4 or 6.
Since our examples deal only with curves where the degree of the twist divides
the embedding degree k, we assume that d divides k and set q = pk/d. However,
with some modifications, the preliminary discussion and results apply to curves
where d does not divide k.

Hess et al. [14] show that there exists a unique non-trivial twist Ẽ of E over
Fq such that r divides #Ẽ(Fq). If d = 2, then #Ẽ(Fq) = q + 1 + t̂, where t̂ is
the trace of the q-power Frobenius of E. In fact, the order of any twist can be
found by first determining the trace t̂ of the q-power Frobenius of E from the
trace t of the p-power Frobenius of E via the Weil Theorem and then using a
result given by Hess et al.[14].

The trace tm of the pm-power Frobenius of E for an arbitrary m can be
determined using the recursion t0 = 2, t1 = t, and ti+1 = t · ti − p · ti−1 for
all i > 1 [20]. After computing the trace t̂ of the q-power Frobenius of E, the
possible values for the trace t̃ of the q-power Frobenius of Ẽ over Fq can be

determined using Table 2 [14], where D is the discriminant of E and f̂ satisfies

t̂2 − 4q = Df̂2.
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Table 2. Possible values for the trace t̃ of the q-power Frobenius of a degree-d twist
Ẽ of E

d 2 3 4 6

t̃ −t̂ (±3f̂ − t̂)/2 ±f̂ (±3f̂ + t̂)/2

The group G2 can be represented as Ẽ(Fq)[r]. In order to hash to G2, it

suffices to hash to a random point Q ∈ Ẽ(Fq) followed by a multiplication by

the cofactor c = #Ẽ(Fq)/r, to obtain the element cQ ∈ Ẽ(Fq)[r]. Let φ : Ẽ → E
be an efficiently-computable isomorphism defined over Fqd and let π be the p-
th power Frobenius on E. Scott et al. [27] observed that the endomorphism
ψ = φ−1 ◦ π ◦ φ can be used to speed up the computation of Q $→ cQ. The
endomorphism ψ satisfies

ψ2P − tψP + pP =∞ (2)

for all P ∈ Ẽ(Fq) [9, Theorem 1]. The cofactor c can be written as a polynomial
in p with coefficients less than p. Scott et al. use this representation of c and
reduce using (2) so that c is expressed as a polynomial in ψ with coefficients less
than p. For parameterized curves, the speedup in the cost of computing Q $→ cQ
can become quite dramatic. For example, MNT curves have embedding degree
k = 6 and are parameterized by x such that

p(x) = x2 + 1

r(x) = x2 − x+ 1

are both prime. It can be shown that

c(x)P = (x4 + x3 + 3x2)P = (p2 + (x + 1)p− x− 2)P

= ψ(2xP ) + ψ2(2xP ).

It suffices to multiply by a multiple c′ of c such that c′ �≡ 0 (mod r). Combining
this observation with a new method of representing c in base ψ, we prove the
following theorem.

Theorem 1. Suppose that Ẽ(Fq) is cyclic and p ≡ 1 (mod d). Then there exists
a polynomial h(z) = h0 + h1z + · · ·+ hϕ(k)−1zϕ(k)−1 ∈ Z[z] such that h(ψ)P is

a multiple of cP for all P ∈ Ẽ(Fq) and |hi|ϕ(k) ≤ #Ẽ(Fq)/r for all i.

The proof of Theorem 1 is divided into two parts. We first prove a technical
lemma and then show how the polynomial h can be obtained using an integer-
lattice technique. Let f , f̃ be such that t2−4p = Df2 and t̃2−4q = Df̃2, where
D is the discriminant. It also holds that n+ t = p+ 1 and ñ+ t̃ = q + 1, where
ñ = #Ẽ(Fq).

Recall that the endomorphism ψ : Ẽ → Ẽ is defined over Fqd . In the following

lemma, it is proved that ψ fixes Ẽ(Fq) as a set.
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Lemma 1. If p ≡ 1 (mod d), then ψP ∈ Ẽ(Fq) for all P ∈ Ẽ(Fq).

Proof. From the work of Hess et al. we have that the twist is defined by first
selecting γ ∈ Fqd such that γd ∈ Fq. The map φ is then defined by φ(x, y) =

(γ2x, γ3y) and hence ψ is defined by ψ(x, y) = (γ2(p−1)xp, γ3(p−1)yp). Now,
γd ∈ Fq and p − 1 ≡ 0 (mod d) yield γp−1 ∈ Fq, which in turn implies that

ψ(x, y) ∈ Ẽ(Fq) for (x, y) ∈ Ẽ(Fq). ��
The following lemma illustrates the effect of ψ on elements in Ẽ(Fq).

Lemma 2. If p ≡ 1 (mod d), gcd(f̃ , ñ) = 1, and Ẽ(Fq) is a cyclic group, then

ψP = aP for all P ∈ Ẽ(Fq), where a is one of (t+f(t̃−2)/f̃)/2, (t−f(t̃−2)/f̃)/2.
Proof. Since Ẽ(Fq) is cyclic and ψ fixes Ẽ(Fq), there exists an integer a such

that ψP = aP for all P ∈ Ẽ(Fq). By solving for a in (2) and using the fact that
t2 − 4p = Df2, we obtain

a ≡ 1

2
(t±

√
t2 − 4p) ≡ 1

2
(t±

√
Df2) ≡ 1

2
(t± f

√
D) (mod ñ).

Working modulo ñ, we observe that Df̃2 = t̃2 − 4q = t̃2 − 4t̃ + 4 = (t̃ − 2)2

and so
√
D ≡ ±(t̃ − 2)/f̃ (mod ñ). Without loss of generality, let f , f̃ be such

that a = 1
2 (t+ f

√
D) and

√
D ≡ (t̃− 2)/f̃ (mod ñ). Then, since P ∈ Ẽ(Fq) has

order dividing ñ, it follows that

ψP = aP =

(
1

2
(t+ f

√
D)

)
P =

(
1

2
(t+ f(t̃− 2)/f̃)

)
P.

��
In the space of polynomials h ∈ Q[z] such that h(a) ≡ 0 (mod c), we wish to find
an h with small integer coefficients. Ignoring the small coefficient requirement
for the moment, h(z) = c and h(z) = zi − ai satisfy the required condition for
all integers i. Furthermore, any linear combination of these polynomials satisfies
this condition.

Since π acting on E(Fpk) has order k and ψ is an automorphism when re-

stricted to the cyclic group Ẽ(Fq), the automorphism ψ acting on Ẽ(Fq) has
order k. Hence, the integer a satisfies Φk(a) ≡ 0 (mod ñ). Therefore, the poly-
nomial h(z) = zi − ai with i ≥ ϕ(k) can be written as a linear combination
(modulo c) of z − a, . . . , zϕ(k)−1 − aϕ(k)−1. For this reason, the polynomials of
higher degree are excluded in the following construction.

Notice that polynomials h ∈ Z[z] such that h(a) ≡ 0 (mod c) correspond to
points in the integer lattice generated by the matrix

[
c 0
a Iϕ(k)−1

]
,

where a is the column vector with i-th entry −ai. Consider the convex set
C ⊆ R

ϕ(k) generated by all vectors of the form (±|c|1/ϕ(k), . . . ,±|c|1/ϕ(k)). The
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volume of C is 2ϕ(k)|c| and the lattice above has volume |c|. By Minkowski’s
Theorem [22], the region C contains a lattice point. Hence, there exists a non-
zero polynomial h with coefficients at most |c|1/ϕ(k) such that h(a) ≡ 0 (mod c).
This concludes the proof of Theorem 1. ��

6 Hashing Examples

6.1 BN Curves

BN curves are parameterized by

p(x) = 36x4 + 36x3 + 24x2 + 6x+ 1

r(x) = 36x4 + 36x3 + 18x2 + 6x+ 1

t(x) = 6x2 + 1

f(x) = 6x2 + 4x+ 1

where

t(x)2 − 4p(x) = −3f(x)2
r(x) + t(x) = p(x) + 1

q(x) = p(x)2.

After computing the trace t̂ of the q-power Frobenious of E, we compute f̂ such
that 4q − t̂ = −3f̂2. Using t̂ and f̂ , we find the twist Ẽ(Fq) is parameterized by

ñ(x) = q(x) + 1− (3f̂(x) + t̂(x))/2

= (36x4 + 36x3 + 18x2 + 6x+ 1)(36x4 + 36x3 + 30x2 + 6x+ 1)

t̃(x) = 36x4 + 1

We have that c(x) = p(x)+t(x)−1 is such that ñ(x) = r(x)c(x). Using Lemma 2,
we obtain

a(x) =
1

2
(t+ f(t̃− 2)/f̃)

= −1

5
(3456x7 + 6696x6 + 7488x5 + 4932x4 + 2112x3 + 588x2 + 106x+ 6).

As a sobriety check, note that a(x) ≡ p(x) (mod r) and thus ψQ = a(x)Q =
p(x)Q for all Q ∈ Ẽ(Fq)[r].

We construct the following lattice and reduce the −a(x)i entries modulo c(x):
⎡⎢⎢
⎣

c(x) 0 0 0
−a(x) 1 0 0
−a(x)2 0 1 0
−a(x)3 0 0 1

⎤⎥⎥
⎦→

⎡⎢⎢
⎣

36x4 + 36x3 + 30x2 + 6x+ 1 0 0 0
48/5x3 + 6x2 + 4x− 2/5 1 0 0
36/5x3 + 6x2 + 6x+ 1/5 0 1 0
12x3 + 12x2 + 8x+ 1 0 0 1

⎤⎥⎥
⎦ .
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From this lattice, we find the polynomial h(z) = x + 3xz + xz2 + z3. Working
modulo ñ(x), we have that

h(a) = −(18x3 + 12x2 + 3x+ 1)c(x)

and since gcd(18x3 +12x2 +3x+1, r(x)) = 1, the following map is a homomor-
phism of Ẽ(Fq) with image Ẽ(Fq)[r]:

Q $→ xQ+ ψ(3xQ) + ψ2(xQ) + ψ3(Q).

We can compute Q $→ xQ $→ 2xQ $→ 3xQ using one doubling, one addition, and
one multiply-by-x. Given Q, xQ, 3xQ, we can compute h(a)Q using three ψ-
maps, and three additions. In total, we require one doubling, four additions, one
multiply-by-x, and three ψ-maps. As seen in Table 3 on page 428, the previous
fastest-known method of computing such a homomorphism costs two doublings,
four additions, two multiply-by-x’s, and three ψ-maps.

6.2 Freeman Curves

Freeman curves [7] have embedding degree k = 10 and are parameterized by x
as follows

r = r(x) = 25x4 + 25x3 + 15x2 + 5x+ 1

p = p(x) = 25x4 + 25x3 + 25x2 + 10x+ 3.

Since Freeman curves do not have a fixed discriminant, the algorithm given
in the proof of Lemma 2 does not directly apply. However, we are able to apply
the techniques of Scott et al. on c(x), xc(x), x2c(x), x3c(x) and then use our
method from Section 3.

We find a short vector corresponding to the multiple h(a) = λ0+λ1a+λ2a
2+

λ3a
3 of c, where λ = (λ0, λ1, λ2, λ3, λ4) is such that

λ0(x) = 10x3 + 5x2 + 4x+ 1

λ1(x) = −3x
λ2(x) = −10x3 − 10x2 − 8x− 3

λ3(x) = −5x3 − 5x2 − x

λ4(x) = −5x3 + 2.

Using the addition chain {1, 2, 3, 4, 5, 8, 10}, we can compute h(a)Q using four-
teen additions, four doublings, three multiply-by-x’s, and four ψ maps.

6.3 KSS-8

KSS-8 curves [16] have embedding degree k = 8 and are parameterized by x
such that

r = r(x) =
1

450
(x4 − 8x2 + 25)

p = p(x) =
1

180
(x6 + 2x5 − 3x4 + 8x3 − 15x2 − 82x+ 125)
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are both prime. Set q = pk/d = p2. There exists a degree-4 twist Ẽ(Fq) of order

ñ(x) =
1

72
(x8 + 4x7 + 6x6 + 36x5 + 34x4 − 84x3 + 486x2 + 620x+ 193)r(x).

Set c(x) = ñ(x)/r(x). After some work, we discover that ψ is such that ψQ = aQ
for all Q ∈ Ẽ(Fq) where

a =
1

184258800

(− 52523x11 − 174115x10 + 267585x9 − 193271x8

− 325290x7 + 15093190x6 − 29000446x5− 108207518x4

+ 235138881x3 + 284917001x2− 811361295x− 362511175
)
.

As we’ve done previously, we find a short basis for the lattice generated by the
matrix

⎡⎢⎢
⎣

c(x) 0 0 0
−a(x) 1 0 0
−a(x)2 0 1 0
−a(x)3 0 0 1

⎤⎥⎥
⎦

and discover a short vector corresponding to the multiple

h(a) =
1

75
(x2 − 25)c(x) = λ0 + λ1a+ λ2a

2 + λ3a
3

of c such that λ = (λ0, λ1, λ2, λ3) = (−x2 − x, x− 3, 2x+ 6,−2x− 4).
For an element Q ∈ Ẽ(Fq), we can compute h(a)Q with the following sequence

of calculations. We compute Q $→ xQ $→ (x+ 1)Q $→ (x2 + x)Q and Q $→ 2Q $→
4Q which requires one addition, two doublings, and two multiply-by-x’s. Then
we compute

λ0Q = −(x2 + x)Q

λ1Q = (x+ 1)Q− 4Q

λ2Q = 2(x+ 1)Q+ 4Q

λ3Q = −2(x+ 1)Q− 2Q

which requires three more additions and another doubling. Finally, we compute

h(a)Q = λ0Q+ ψ(λ1Q) + ψ2(λ2Q) + ψ3(λ3Q)

which requires three more additions and three ψ maps.
In total, we require seven additions, three doublings, two multiply-by-x’s, and

three ψ maps to compute Q $→ h(a)Q.
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6.4 KSS-18

KSS-18 curves [16] have embedding degree k = 18 and a twist of order d = 6.
These curves are parameterized by x such that

r = r(x) =
1

343
(x6 + 37x3 + 343)

p = p(x) =
1

21
(x8 + 5x7 + 7x6 + 37x5 + 188x4

+ 259x3 + 343x2 + 1763x+ 2401)

are both prime. We find that

c(x) =
1

27

(
x18 + 15x17 + 96x16 + 409x15 + 1791x14 + 7929x13 + 27539x12

+ 81660x11 + 256908x10 + 757927x9 + 1803684x8

+ 4055484x7 + 9658007x6 + 19465362x5 + 30860595x4

+ 50075833x3 + 82554234x2 + 88845918x+ 40301641
)
.

Constructing our lattice, we obtain the vector corresponding to the multiple

h(a) = − 3

343
x(8x3 + 147)c(x) = λ0 + λ1a+ λ2a

2 + λ3a
3 + λ2a

4 + λ3a
5

of c(x), where

λ0 = 5x+ 18

λ1 = x3 + 3x2 + 1

λ2 = −3x2 − 8x

λ3 = 3x+ 1

λ4 = −x2 − 2

λ5 = x2 + 5x.

We construct the addition chain {1, 2, 3, 5, 8, 10, 18}, from which we can compute
Q $→ h(a)Q using sixteen additions, two doublings, three multiply-by-x’s, and
five ψ maps.

6.5 Comparison with Previous Work

In Table 3, we compare our results to the work of Scott et al. [27,28]. In the
proceedings version [27] of their work, the authors assume that the identity
Φk(ψ)P = ∞ holds for all points P in Ẽ(Fq). However, there exist concrete
examples showing that this identity does not hold for some curves. In partic-
ular, MNT and Freeman curves do not satisfy this identity in general. On the
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Table 3. A comparison of our hashing algorithm with the hashing algorithm of Scott
et al. ‘A’ denotes a point addition, ‘D’ denotes a point doubling, ‘X’ denotes a multi-
plication by x, and ‘ψ’ denotes an application of the map ψ.

Curve Scott et al. This work

BN 4A 2D 2X 3ψ 4A 1D 1X 3ψ
Freeman 20A 5D 3X 4ψ 14A 4D 3X 4ψ
KSS-8 22A 5D 5X 2ψ 7A 3D 2X 3ψ
KSS-18 59A 5D 7X 4ψ 16A 2D 3X 5ψ

other hand, the identity ψk/2P = −P is critically used in the eprint version [28]
of their work. Fortunately, all curves except the MNT curve can be explicitly
shown to satisfy the identity ψk/2P = −P . In practice, we’ve found that MNT
curves also satisfy this property. More work needs to be done to determine the
structure of the twist and the action of ψ on various subgroups of the twist.

We use the eprint version [28] to represent Scott et al.’s operation counts
on Freeman curves. We have verified that the identity Φk(ψ)P = ∞ holds for
BN, KSS-8, and KSS-18 curves and use the counts from the proceedings version
[27] of their work for those curves in Table 3. Since the multiplications by x
dominate the other operations, it can be seen that our hash algorithm is ap-
proximately twice as fast as that of Scott et al. for BN curves. For the KSS-8
curve we see a 5

2 -fold improvement, and for the KSS-18 curves, we see a 7
3 -fold

improvement.

7 Conclusion

We shown that both the final exponentiation and hashing to G2 tasks can be
efficiently performed by adapting the lattice-based framework that Vercauteren
utilized in [29] for finding optimal pairings. Let us recall that an optimal pairing
as defined in [29] computes the Miller loop in just log2r/φ(k) iterations.

Scott et al. [26] showed that by writing d = Φk(p)/r in base p as d =
d0 + d1p + · · · + dϕ(k)−1pϕ(k)−1, one can find short vectorial addition chains to

efficiently compute the hard part of the final exponentiation f $→ fd. This work
presents a lattice-based method for determining a multiple d′ of d, with r not
dividing d′ such that f $→ fd′

can be computed at least as efficiently as f $→ fd

and where d′(x) is written in base p(x) as d′(x) = d′0(x) + d′1(x)p(x) + · · · +
d′φ(k)−1(x)p(x)

φ(k)−1. In theorem 1 it was proved that there exists a polynomial

h(z) = h0 + h1z + · · ·+ hϕ(k)−1zϕ(k)−1 ∈ Z[z] such that every point P ∈ Ẽ(Fq),

can be hashed to G2 by computing h(ψ)P , where |hi|ϕ(k) ≤ #Ẽ(Fq)/r for all i.
Vercauteren’s lattice-based framework reveals the crucial role that φ(k) plays

for defining upper bounds on the optimal length of the Miller loop and on the
final exponentiation and hashing to G2 computational efforts. This makes us
conclude that the optimal solutions of these three problems are tightly related
on an eternal golden braid.
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Reinhard, Jean-René 230
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