

J.-S. Pan, S.-M. Chen, N.T. Nguyen (Eds.): ACIIDS 2012, Part III, LNAI 7198, pp. 286–297, 2012.
© Springer-Verlag Berlin Heidelberg 2012

An Efficient Information System Generator

Ling-Hua Chang1 and Sanjiv Behl2

1 Kun Shan University of Technology, Department of Information Management
No. 949, Da Wan Rd., Tainan City, Taiwan, R.O.C.

2 Thomas Edison State College,
101 W. State St, Trenton, NJ 08608-1176

changlh@mail.ksu.edu.tw, sanbehl@yahoo.com

Abstract. We developed a new customized software tool for automatically
generating a complete Java program based on the values or parameters inputted
by the user. We call it an efficient Information System Generator or ISG for
short. It is efficient in terms of the processor usage and the development time. We
illustrate how it can be used by building a system for keeping track of student’s
scores that can be used by any faculty member who teaches multiple courses at a
university or a college. It can also be used for generating e-commerce web sites.

Keywords: Java GUI Generator, prototype, Information System Generator,
E-commerce Generator.

1 Introduction

We know that building a software system is a very time-consuming process and therefore
we designed a customized software tool to help people generate any information
(software) system instead of writing it themselves. We call this an Efficient Information
System Generator or ISG for short. For example, we can use ISG to generate a conference
system generator, which can be used to regenerate any conference system for any
company or institute after they understand the context of the whole conference. ISG can
also be used to generate e-commerce web sites, for instance the following website can be
generated using ISG - http://www.36086789.com/category-2-b0.html?=1013yyyy .

The system designers need to provide the graphical user interface and input data to
the ISG. The GUI interface includes how the input is obtained and the output is
displayed, as well as the relationship between the two. Once this information is
inputted, the ISG tool will convert it to the necessary Java code and database.

2 Related Work

Microsoft Excel [1] is a commercial spreadsheet application written and distributed by
Microsoft for Windows and Mac OS X. It has a “smart recalculation” feature where
when the cell data changes, only the data associated with it will be updated, and the user

 An Efficient Information System Generator 287

can immediately see the changes resulting from the change in the cell data. It also has
powerful graphics capabilities, so the users can see when the graphic data changes. We
hope that in the future ISG would be as simple to use as Excel is today.

There are many Java generators currently on the market like JFlex[2], BOUML[3],
Javadoc [4] and JAG[5]. JFlex is a lexical analyzer generator, BOUML generates the
code based on the definition made at the artifact, class, operation, relation, attribute and
extra member levels. Javadoc is the Java API Documentation and generates HTML
pages of API documentation from Java source files. JAG (Java Application
Generator) is an excellent tool and uses open source Apache Ant, a Java library and a
command-line tool. The system design provides the database, object, window frame
and files information, which can be generated to an information system that is built on
the J2EE platform. However we think that it is too difficult to use for most small and
medium enterprises.

UJECTOR [6] is a tool for creating executable code from UML Models. It uses
UML class, sequence and activity diagrams for automated code generation. It generates
structural code from the class diagram, and then adds behavioral aspects from the
sequence and activity diagrams. In the rule based production systems for automatically
generating Java code (or RPSAGJ) [7], the user writes the requirements in simple
English and the designed system is able to extract associated information after
compound analysis, which is then used to draw various UML diagrams as activity,
sequence, class and uses cases diagrams. The designed system has a robust ability to
create code automatically without external environment.

ISG is also a development tool for generating an information system which
incorporates the advantages of Excel and JAG and also introduces a prototyping output
design. We illustrate how our tool can be used to design and prototype the input and the
output layout for the system users and programmers. UJECTOR and RPSAGJ are
consistent with the UML models, however, the current version of ISG creates colorful,
attractive and user-friendly screens which can be used by an information system or for
generating any e-commerce web system. At present we are using ISG to develop a
business information system for East Land International Company. The screens
provided by UJECTOR and RPSAGJ are not very convenient or user-friendly for
entering data as they are in ISG. We are looking into incorporating their features in the
future versions of ISG.

3 ISG System Architecture

Since the ISG information system is a Java GUI tool, the user must provide system
analysis and system design information, including the panel design and its
functionalities, the relationship between the panels and where the data storage takes
place. ISG offers users interface screens which can be used for generating an
information system and has seven transformation functions - for building a database,
for building files, for linking to the next window, for building data processing window,
for displaying data, for previewing a designed window and for printing data. We now
discuss each transformation function individually.

288 L.-H. Chang and S. Behl

3.1 Building a Database

ISG provides a function for building a database from a large collection of data that
allows users to search for and extract the needed information.

3.2 Building Files

ISG can load the Java Swing components or the data objects onto the memory and then
translate it into Java programs for an information system. For example, consider a
system for keeping track of the student’s scores in a course. Each teacher may teach 4
or 5 courses in a semester and needs to keep track of the student’s scores for all the
assignments and tests in a course. Therefore this system needs to provide the following
functions – to enable the entry of courses, the percentage rate of scores, a description of
the test scores, students’ names, homework or quiz scores, midterm scores and final
scores; and to show the score list and the students’ final grades. The data is stored using

Fig. 1. Class diagram for the file structure of the Student Scores system

object streams rather than regular streams. Because Java has persistence in
object-oriented circles [8], that means we can let the object layout on disk to be exactly
like the object layout in memory. So we save an object (the first created object) to disk
and objects that are created subsequently, whose memory addresses are stored in each
array, are managed and stored to the disk automatically. ISG file system introduces this
mechanism. For using this mechanism, we designed the file structure of the system as
shown in Fig 1. There are 4 object stream files in the system, each of which is
shown as an oval in the figure and labeled at the top of it – array_semester file,
array_labels file, array_classes file and array_percentage file. There are 3 arrays in the
array_semester file, which are shown below the top label in the array_semester
rectangle, for storing scores, grades and courses. Array s_cores is used to store
students’ scores for each class in this semester (shown in a separate rectangle), array

 An Efficient Information System Generator 289

g_rades is used to store the student’s final grades for each class, and array c_ourses is
used to store the course number and name for each course. An element of array s_cores
is an object of class typeofscore that contains four different arrays viz. attend_score,
quiz_HW_score, midterm_score and final_score array. They are used to store the
student’s scores for the various components that make up the final score or grade.
Array_percentage file stores information on the type of test like the midterm, final, or
homework-quiz, and the percentage weight of each in the final grade. Array_labels file
is used to describe the details of each test type such as chapter 1 homework assignment
or quiz on March 22 and those scores are counted in the quiz and homework scores.
Array_class file stores the student names and student ids.

Consider the array_semester file for illustrating how the object streams are stored in
a file. ISG creates an object. For example, the array_semester is an object type. Related
to it are objects typeofscore, finalgrades and courses which are stored in s_cores,
g_rades and c_ourses arrays respectively. Method add() is used to add an object to its
associated object array. For example, scores_add() adds a typeofscore object to the
s_cores array. Method remove() removes an object from its associated object array. For
example, scores_remove(int n) removes a typeofscore object from the array s_cores.
Method typeofscore_getSomescore(int n) is used to get a typeofscore object from the
array s_cores. Thus the file structure of Student scores system, with the arrays and the
methods provided makes it convenient to retrieve the data elements in any array.

Fig. 2. Building each file of the system

Fig. 3. Building each field of every class

290 L.-H. Chang and S. Behl

We now discuss how ISG builds the file system of the student scores system. Fig 2
shows a shot of the window that is used to create all the files and their objects for the
system, for the classes and files shown in Fig 1 viz. array_semester, typeofscore,
finalgrades, courses, array_labels, labels, label_descriptions, array_classes, classes,
students, array_percentage and percentage. Fig 3 is used to set the attributes of each
class. In the screen shot shown, the attributes of class semester are being set, which
from Fig 1 are g_rades, s_cores and c_ourses. The figure shows that each of these
attributes is a one dimensional array of the same size, and the data type of the arrays is
finalgrades, typeofscore and courses respectively. When the user presses the Translate
to a single object file button, array_semester.java program file will be created. Thus the
file structure shown in Fig 1 and the screen shots shown in Fig 2 and 3 can be used to
generate the Java classes that have the add, remove, etc methods which can be used to
manage an array.

3.3 Linking to the Next Window and Building a Data Processing Window

There are two types of windows provided in the ISG - a link to the next window (Fig 4)
and building a data processing window (Fig 5). Fig 4 shows the homepage of the
student’s scores system and has 5 buttons and one text field. The name of the directory
where the data is saved is entered into the textfield by the user. The figure shows the
directory as “Fall of 2011”, so all the data will be saved in a directory by that name.
Clicking on any of the buttons will take you to the corresponding window. Fig 5 shows
the records being entered by entering the course id and the course name in the
respective fields. In addition to that, object serialization mechanism [8] is used to fill
objects with data, which saves CPU execution time. These ideas were used to design
the following four different kinds of windows to manage data:

Fig. 4. A link to next window Fig. 5. A basic data processing window

 An Efficient Information System Generator 291

1. Basic data processing window (Fig 5) allows for the data of the same type to be
added, modified and deleted. Can use the add button to add a new record, and the
delete button to delete the corresponding record. Pressing the OK button saves
the data to an object stream file.

2. Basic data processing window plus more data attributes (Fig 6) has all the
features of the basic data processing window and shows more data attributes in a
panel at the square bottom. When the number of data attributes is more than can
be shown in the basic data processing window, then the additional attributes of a
record can be shown in the bottom panel. In the figure shown, the message at the
bottom of the window says “showing additional attributes of record 2 in the
bottom panel”, which means that the focus is on an attribute of record 2 and the
additional attributes of that record are being shown in the bottom panel.

3. Special data processing window (Fig 3) is obtained by adding insert buttons next
to the delete buttons in the basic data processing window. Pressing an insert
button displays an empty line of fields on top of the line whose insert button was
pressed, and can be used to enter a new record.

4. Special data processing window plus more data attributes - when you add a panel
at the bottom of the special data processing window for entering more attributes,
then you get this window.

Figures 6, 7 and 8 show the attributes that need to be set in order for the ISG to translate
it to a Java GUI program. For example, consider the window shown in Fig 5, which lets
a teacher enter the courses in a semester. Before ISG translates it, the user needs to enter
the window size and location on the screen, the fonts for displaying text and images,
etc. This information is needed by the Java layout manager for creating the window. Fig
6 displays the window where the users can enter each window’s name, frame title,
frame size, window location, window type and where the data was read from and where
the data will be written to. The oval mark in the figure shows the name of the window to
be course, frame title to be Enter courses, frame size to be 500 by 500, location to be
(0,0) and type of window to be basic data processing window.

Fig. 6. All the data processing windows of students’ score system will be set

292 L.-H. Chang and S. Behl

At the bottom of the Fig 6, there are three columns; where to read from files, class
files and where to store data. The where to read from files specifies the files the ISG
needs to read from. After users update Enter Courses data, the data will be written back
to the files specified by where to store data. Class files tells ISG where each data
attribute such as course id, course name and class name, is located. In Fig 8, the
rectangle on the right hand side shows the class diagram of the stored file
array_semester. Because ISG builds each file structure as an object stream file and
array will manage objects of the same class, therefore in the class diagram, it shows

Fig. 7. Selecting a panel to set its’ attributes

Fig. 8. Set Swing components of data processing window course

 An Efficient Information System Generator 293

that every object stored in the file will be stored in its associated array. Therefore the
objects created by class finalgrades are stored in array g_rades, the objects created by
class typeofscore are stored in array s_cores and the objects created by class coures are
stored in array c_ourses because the array_semester file stores student scores, final
grades and courses. In the Enter Courses window (Fig 5), the course id, course name
and class name entered by the users are stored in an object of class courses. This class
and its’ attributes course_id, course and class_s are shown in the rectangle on the right
hand side of Fig 8. Therefore in Fig 6, class courses should be selected in class files
column, in the where to read from files column semester should be selected and in the
where to store data column semester also should be selected. Fig 7 is used to select
panels located on the window - north, south, east or west panel. The center panel is
always there but the other four panels are selectable. ISG offers a color space for users
to set a background color for each chosen panel (see area marked with an oval with a ‘c’
on the top of Fig 7). Fig 8 is used to set the Swing components of the Enter courses
window (Fig 5). The labels at the top are implemented by using JLabels components,
and the textfields for entering the attributes of a record are implemented by using
JTextfield components. See the oval at the top in Fig 5, there are 3 labels in it viz.
course id, course name and class name.

For the labels, we set the names and parameters of the JLabel components (t_type
and course id for the first one, and so on). For the text fields, we set the names and sizes
of the JTextfield components (type_t and 10 for the first one, and so on). We can also
specify constraints on the data that can be entered into the text fields. For example, we
can specify that the text field for entering the class name has to be not empty, and only
chinese values can be entered in it. This can be accomplished by setting the parameters
shown inside the rectangle shown near the middle of the figure. Associated Attribute
(bottom right, Fig 8) is used to specify where in the file each data will be stored. Since
ISG file structure is an object stream file, each entry data will be stored in an object of
some class. In Fig 5, when users enter course id, course name and class name, they
actually type in the following text fields viz. type_t, course_t and class_t separately.
The data they enter is encapsulated into an object of class courses with attributes
course_id, course and class_s. Therefore the value of associated attribute course_id is
set to what is entered in textfield type_t, course is set to value entered in textfield
course_t, and class_s is set to value entered in textfield class_t. The Associated
Attribute rectangle only shows class_t. ISG knows how to get and set these attributes
since they are entered by the user, but doesn’t know where to start searching from until
it finds the value of the needed attribute class_s. That information can be specified in
the Path rectangle (bottom left of the figure). The Fig 8 specifies the path of the
course_id and course or class_s.

We mentioned earlier that ISG builds object stream files using Java persistence
which means that the object layout on a disk is exactly like the object layout in memory.
Therefore we save an object to disk and then the memory addresses of the objects that
are created subsequently are stored in each array. For example, ISG creates an object of
class array_labels and then stores many memory addresses of objects of class labels in
array array_labels. Later, there are many objects of class label_descriptions are created
and then store their memory addresses in array labels.

However if the file system is complicated, it would not be easy for the users to
remember it. Therefore ISG provides a class diagram of stored files to help users to set

294 L.-H. Chang and S. Behl

the PATH and Associated Attribute. For our student’s courses system example, the
class diagram of array_semester file will be displayed (see the right top rectangle in Fig
8) when the Path button is pressed. From the class diagram, we know course id, course
name and class name are stored in an object of class courses and its associated attribute
is course_id, course and class_s. Therefore these objects will be stored in an array
c_ourses and that is one of arrays stored in an object of class array_semester. PATH (in
the left bottom of Fig 8) is used for ISG to translate how to retrieve attribute course_id,
attribute course and attribute class_s easily. The class diagram shows only class
array_semester and class course needed in this window. Therefore we know the object
array_semester is stored in file and in this object contains 3 arrays. There is only array
courses what we need and which store objects of class courses with values of course_id,
course and class_s. Therefore we need to get object array_semester first and then each
object with course_id, course and class_s will be stored in array c_ourses. Therefore,
users will set path to array_semester first and then c_ourses next (see in Fig 8). ISG got
these values of path and then it is every easy for ISG to translate it into a data
processing window course.java and also includes where and how to input or output
these data. The advantage of this idea is the file structure introduced is very useful for
ISG to retrieve every attribute of an object with users helping to offer these parameters.

3.4 Displaying and Printing the Data

There are three sets of data to be displayed for the Student scores system viz. quiz or
homework_scores, midterm scores and final scores. Query data is displayed in a table
and can be sorted. Users can press the print button to print the table.

3.5 Previewing a Designed Window

Pressing the next button in figure 7 will translate all the Swing components of the
already set data processing window course (see Fig 8) to Java GUI programs and then
pressing the preview button will compile and execute these programs and then show the
designed data processing window on the screen (see Fig 5). The users can go back and
forth through the windows by pressing the next and previous page buttons. When the
whole system is done, it can be shown to the users to give them an idea of what the
system might be like or how it will work. If they have any new ideas or suggestions or if
this prototype is rejected, the feedback can be used to modify it. This cycle can be
repeated until an acceptable or desired system is created. Can press the reset button to
go back to the original values or the original state and can start over again.

4 Experimental Results and Analysis

4.1 Improving CPU Efficiency

The CPU time is one of the most important resources and determines how fast a
program executes. Therefore we used a Linked queue [9] data structure to manage the
GUI, which lets us easily create a window by adding, deleting, or modifying the Swing

 An Efficient Information System Generator 295

components to the window. Linked queue (see figures 9, 10) is a data structure that uses
object reference variables to create links between objects and is large enough to hold
the numeric address of an object. It is a dynamic data structure because its size grows
and shrinks as needed to accommodate the number of elements stored.

For example, consider the four classes of students we discussed earlier. We use an
array to represent the four school classes and then another array classes to represent
students of each class. Because an array is a convenient data structure for storing
objects and each array element implementations is efficient, we only allocate enough
space per element for the object reference variable. If managed properly, by using an
appropriate initial capacity and then expanding it as needed, this additional space is not
a problem. Therefore we use an array to store a collection.

4.2 ISG has a Quick Development Process Time

ISG helps to develop a prototype quickly which allows the objectives to be tested and
developed even further. ISG uses the concept of a spiral model [10] in which feedback
from the earlier prototype is used to further refine it. Thus ISG is a user-friendly and
efficient program generating software tool which can be used to generate Java programs.

ISG can be used to generate a prototype quickly which can then be shown to the
system designers and users. When they see this prototype and start using the system,
they might find some functions that does not meet their needs, or certain functionality
that is missing. That information can be used by the developers to revise the system to
meet users’ requirements. Since changes can be done quickly by using our ISG, it can
help users understand what they need and what the information system should be like,
thus resulting in an end product which would be much better than what it would be
otherwise. Since ISG can save time in writing, debugging and testing the program, it
would also lower the cost of producing software written in Java.

296 L.-H. Chang and S. Behl

5 Conclusions and Future Work

We showed how our efficient information system generator was used to develop a
system for keeping track of student’s scores by generating a total of 56 Java GUI
programs. ISG is also very efficient since, for instance, it translated 300 lines of code in
the system we illustrated in just 32 milliseconds.

We are currently developing an I-Conference generator that can generate JSP code
for a conference system. A conference is a meeting of people who "confer" about a
topic. When you need to develop a conference system for your department, school,
institute or company for example, you can use ISG to help you implement it after you
do the analysis and design. I-Conference generator is a GUI interface for translating the
input provided by the user to JSP or HTML programs. The user provides the name of
each web page and their corresponding documents or information resources on the
Web. After the Web pages have been created, the user needs to specify what the data (in
the text fields of the Web pages) is about and where to store it (such as in a database
table or a file). The generator will then convert it to the appropriate JSP code, which can
be stored on a server and the conference can be installed on a Web site. The GUI
interfaces can be completely generated by ISG regardless of how many windows are
needed.

Our ISG is not 100% ready at the moment for generating all of the GUI windows for
an I-Conference. We still need to add more functions to the data processing windows.
Since the four types of data processing windows we discussed use a fixed-length record
format, we need to change that as records are rarely of the same length. Therefore we
need to add different length records format for building the data processing windows.

We are in collaboration with East Land International Company Limited for
developing a business information system for them. It is an international business
company that exports glass containers and health food. We will be developing an
information system for them that would involve computing the monthly shipping
amount, generating reports on their monthly earnings, profit, orders, etc.

References

1. Excel (2010), http://office.microsoft.com/en-us/excel/
2. JFlex- The Fast Scanner Generator for Java, http://jflex.de/
3. BOUML- a free UML 2 tool box,

http://bouml.free.fr/doc/javagenerator.html
4. javadoc - Java API Documentation Generator,

http://download.oracle.com/javase/1.4.2/docs/tooldocs/
windows/javadoc.html

5. JAG- Java Application Generator, http://jag.sourceforge.net/
6. Usman, M., Nadeem, A., Kim, T.-H.: UJECTOR: A tool for Executable Code Generation

from UML Models. IEEE Advanced Software Engineering & Its Applications, 165–170
(2008)

 An Efficient Information System Generator 297

7. Bajwa, I.S., Siddique, M.I., Choudhary, M.A.: Rule based Production Systems for
Automatic Code Generation in Java. IEEE Digital Information Management, 300–305
(2006)

8. Horstmann, C.S., Cornell, G.: Core Java Volume I–Fundamentals, 8th edn. Sun
Microsystems Press, Prentice Hall (2008)

9. Lewis, J., Chase, J.: Java Software Structures designing and using data structures. Pearson
Education Inc. (2005)

10. Whitten, J.L., Bentley, L.D., Dittman, K.C.: System analysis design methods. McGraw-Hill
(2004)

	An Efficient Information System Generator
	Introduction
	Related Work
	ISG System Architecture
	Building a Database
	Building Files
	Linking to the Next Window and Building a Data Processing Window
	Displaying and Printing the Data
	Previewing a Designed Window

	Experimental Results and Analysis
	Improving CPU Efficiency
	ISG has a Quick Development Process Time

	Conclusions and Future Work
	References

