
 

J.-S. Pan, S.-M. Chen, N.T. Nguyen (Eds.): ACIIDS 2012, Part III, LNAI 7198, pp. 276–285, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

Modular Arithmetic and Fast Algorithm Designed  
for Modern Computer Security Applications 

Chia-Long Wu*  

Professor and Director of Aviation Communication Electronics Department  
Chinese Air Force Institute of Technology 

chialongwu@gmail.com 

Abstract. Modular arithmetic plays very crucial role for public key 
cryptosystems, such as the public key cryptosystem, the key distribution 
scheme, and the key exchange scheme.  Modular exponentiation is a common 
operation used by several public-key cryptosystems, such as the RSA 
encryption scheme and the Diffie-Hellman key exchange scheme. In this paper, 
we have proposed a new method to fast evaluate modular exponentiation, which 
combines the complement recoding method and canonical recoding technique.  
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1 Introduction 

Modular exponentiation is the fundamental operation in implementing circuits for 
cryptosystem, as the process of encrypting and decrypting a message requires 
modular exponentiation which can be decomposed into multiplications. In this paper, 
a proposed multiplication method utilizes the complement recoding method and 
canonical recoding technique. By performing complement representation and 
canonical recoding technique, the number of partial products can be further reduced. 
Exponentiation is a basic yet important operation for public key cryptography. In this 
paper, an efficient modular exponentiation method is proposed by adopting the binary 
method, common-multiplicand multiplication, complement method and signed-digit 
recoding method. Hamming weight plays an important part for complexity efficiency. 
On average, by performing minimal Hamming recoding method and signed-digit 
recoding method, the number of multiplications for our proposed algorithm can be 
reduced effectively, where k is the bit-length of the exponent E. We can therefore 
efficiently speed up the overall performance of the modular exponentiation [1].  

To compute modular exponentiation mod ,EC M N≡  (where C, M, E, and N are 

ciphertext, plaintext, public key, and modulus respectively) is very time-consuming 
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because the bit-length of E can be up to 2048 bits. Designing efficient algorithms that 
can speed up software and hardware implementation of modular exponentiation are 
often considered as practical significance for practical cryptographic applications such 
as the RSA public-key cryptosystem [1] and the ElGamal cryptosystem [2].  

Speeding up modular exponentiation mod ,EC M N≡  where ∑ =
×= k

i

i
ieE

1
2  and 

{ }1,0∈ie , is very crucial for public key cryptosystems (PKC). There are several well-

known algorithms for speeding up the exponentiations and the multiplications such as 
binary exponentiation method (sometimes called the square-and-multiply method) [3], 
signed-digit recoding method [4-11], exponent-folding-in-half method [12-13], 
Montgomery reduction method [14-15], common-multiplicand multiplication (CMM) 
method [16-19], and multi-exponentiation method [20-21], and so on. 

 The Hamming weight (the number of 1’s in the binary representation) plays an 
important role for the computational efficiency. A novel method for speeding up 
modular exponentiation by using binary exponentiation method, complement recoding 
method, and signed-digit recoding method is proposed in this paper. We can efficiently 
speed up the overall performance of modular exponentiation.  

 The rest of this paper is organized as follows. Some related methods are introduced 
in Section 2. In Section 3, the proposed algorithm for fast modular exponentiation is 
described. Then, the computational complexity of the proposed algorithm is analyzed in 
Section 4. Finally, we conclude this work and future works in Section 5 [28-30]. 

2 Mathematical Preliminaries 

2.1 The Binary Exponentiation Method 

Fast computations of the exponentiation can be classified into two approaches: the faster 
multiplication designs, and the development of novel exponentiation algorithms. The 
multiplication involves two basic operations, the generation of partial products and their 
accumulation. The binary exponentiation method [3] also called square-and-multiply 
method is a generally acceptable method for exponentiation. It can convert the modular 
exponentiation of NMC E mod≡  [23] into a sequence of modular 
multiplications. Let the exponent E have the binary representation ∑ =

×= k

i

i
ieE

1
2 , 

where { }1,0∈ie and k is the bit- length of the exponent E.  

It can be divided into two kinds of methods. One is the right to left binary 
exponentiation method; the other is the left to right binary exponentiation method. The 
right to left binary exponentiation method scans the exponent E from the least 
significant bit (LSB) toward the most significant bit (MSB). It performs one 
multiplication operation and one square operation when the exponent bit ei is 1 and 
performs one square operation when the exponent bit ei is 0. It will be shown as 
Algorithm 1[28-30]. 
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Algorithm 1. Right to Left binary exponentiation algorithm 

Input: Message: M; 
Exponent: E = (ekek-1…e2e1)2; 
Output: Ciphertext: C = ME; 
begin 
C = 1; 
S = M; 
for i = 1 to k do                                   /*scan from right to left */ 
{ if (ei = 1) then C = C×S;                                     /*multiply*/ 
S = S×S;}                                                   /*square*/ 
endfor 
end. 
 
The left to right binary exponentiation method scans the exponent E from the most 

significant bit (MSB) toward the least significant bit (LSB). It performs one 
multiplication operation when the exponent bit ei is 1 and performs one square operation 
when the exponent bit ei is 0. It will be shown as Algorithm 2 [25-27]. 

Algorithm 2. Left to Right binary exponentiation algorithm 

Input: Message: M; 
Exponent: E = (ekek-1…e2e1)2; 
Output: Ciphertext: C = ME; 
begin 
C = 1; 
S = M; 
for i = k to 1 do                                   /*scan from left to right */ 
{C = C×C;                                                   /*square*/ 
if (ei = 1) then C = C×S;}                                      /*multiply*/ 
endfor 
end. 
    
The computational complexity of both algorithms expresses as follows. On an 

average, we assume the occurrence probabilities for both bit “1” and bit “0” are the same 
i.e. {S×S} and {S×S, C×S} with the same probability. Then, the expectation value for 

bits “1” and “0” is the same “ 2
k

”, where k is the bit-length of the exponent E.  

2.2 The Bit-Complement Recoding Method 

To compute the modular exponentiation of NMC E mod≡ , we express the exponent 

E as a binary representation 1 2 1...k ke e e e− . Performing complements is advantageous in 
the speed up of exponential computations [24-26]. The equation and example will be 
shown as Equation 1. 

∑ =
×= k

i

i
ieE

1
2 = (ekek-1…e2e1)2 

1)0...10( bits)1( −−= + Ek ,  (1)

where 1 1...k kE e e e−= and ie = 0 if ie  = 1; ie = 1 if ie = 0, for i = 1, 2, …, k. 
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2.3 The Signed-Digit Recoding Method 

In a signed-digit number with radix 2, three symbols {1, 0, 1} are allowed for the 
digit set, in which 1 and 1  in bit position i represented 2i+  and 2i−  respectively 
[3]. It shows that the average Hamming weight of a k-bit canonically recorded binary 

number approaches 3

k
 as k → ∞ [4-5, 22]. We should note that a number using the 

digit {1, 0, 1} is not uniquely represented in binary signed-digit notation [6]. The 
equation and example will be shown as Algorithm 3 [25-29]. 

Algorithm 3. Signed-Digit Recoding Method 

Input: E = (ekek-1…e2e1)2; 
Output: ESD  
begin 
c1 = 0; rn+2=0; rn+1=0; 
for i = 1 to k do 

1
1 2

i i i
i

c e e
c +

+
+ +⎢ ⎥= ⎢ ⎥⎣ ⎦ ; 

12i i i ie c e c += + −  
endfor 
return ESD 
end. 

 
Since the addition of k bits can generate an integer with magnitude of log(k) bit 

addition, the cost needs only 
k

k)log(  k-bit additions. Here “A<<<8” stands for the 

integer which is obtained by the left-shift eight bits from the multiplicand A. Since the 

Hamming weight of multiplier B is larger than
2

k , the Hamming weight of B is 

1 1
( * )
2 2 4

k
k=  in average, i.e., *A B  needs 

4

k  k-bit additions. Therefore, we need 

two 2k-bit subtractions. Assume that both addition and subtraction have the same 
computational complexity [25-28]. 

2.4 The Common-Multiplicand Multiplication Method 

In 1993, Yen and Laih proposed the common-multiplicand multiplication (CMM) 
method to improve the performance of the right-to-left binary exponentiation 
algorithm for evaluating modular exponentiation “ modEM N ”. Here we concentrate 
on the computations of {A  ×Bi∣i = 1, 2,…, t; t ≥ 2}. The following variables are 
required in the CMM method (for i = 1, 2,…, t) [25-27],  
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Bcom = B1 AND B2 …AND Bt,    (2)

Bi,c = Bi XOR Bcom, (3)

where “AND” and “XOR” are bitwise logical operators.  
Hence Bi can be depicted as: 

Bi = Bi,c + Bcom     for i = 1, 2,…, t.  (4)

Therefore, the common-multiplicand multiplications A×Bi (i = 1, 2,…, t) can be 
computed with the assistance of A×Bcom as: 

A×Bi  = A×Bi,c +  A×Bcom   for i = 1, 2,…, t.  (5)

In 1961, Avizienis proposed a signed-digit (SD) representation, also called redundant 
number representations for parallel and high-speed arithmetic. A signed-digit vector 
representation of an integer a in radix r is a sequence of digits 1 2 1 SD( , , , )k ka a a a a+= …  

with { }0, 1, , 1ia r∈  ± ± −  for 0≥≥ ik , i.e., 1
1

ik
i ia a r+
=∑= × . In a binary signed-digit 

number (BSD) system, three symbols {1 , 0, 1} are allowed for the digit set, the 

symbol 1  is used to denote the value -1[28-30]. 
The basic idea of CMM method is to extract the common parts of multiplicands, 

and save the number of binary additions for the computation of common parts. Let A 
and Bis (i = 1, 2) be m-bit integers, the Hamming weights of Bi, Bcom and Bi,c are m/2, 
m/2t and (m/2 − m/2t), respectively. By using the CMM method, the computations of 
{A×B1, A×B2} can be represented as {A×B1,c + A×Bcom, A×B2,c + A×Bcom}.  

The total number of binary additions for the common-multiplicand multiplications 
evaluation is m/2t + t× (m/2 − m/2t). Without the CMM method, the multiplications 
{A×B1, A×B2} are computed one after another independently using total t× (m/2) 
binary addition. Thus, the performance improvement of the common-multiplicand 
multiplication method shown above can be denoted as [28-30]: 

1
2 .

(1 ) 2( )
2 2 2

t

t t

mt
t

m m m t tt
−=

+ − ×+ × −

 
(6)

The auxiliary carry C0 is set to 0 and subsequently the binary number A is scanned 
two bits at a time. The canonically recoded digit Bi and the next value of the auxiliary 
binary variable Ci+1 for i = 0, 1, 2, … , n are generated as shown in Table 1. 

Table 1. Canonical recoding table 

Ai+1 Ai Ci Bi Ci+1

0 
0 
0 
0 
1 
1 
1 
1 

0 
0 
1 
1 
0 
0 
1 
1 

0 
1 
0 
1 
0 
1 
0 
1 

0 
1 
1 
0 
0 

1  

1  
0 

0 
0 
0 
1 
0 
1 
1 
1 
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3 The Proposed Signed-Digit Recoding Algorithm 

In Section 2, we describe the binary exponentiation method, complement recoding 
method, and signed-digit recoding method respectively. We combine these methods 
as Algorithm 5 [28-30] to accelerate the exponentiation. Algorithm 4 is the signed-
digit recoding method and is depicted as follows).  

Algorithm 4. Signed-Digit Recoding Algorithm 

Input: Message: M; 
Exponent: E = (ekek-1…e2e1)2; 
Output: Ciphertext: C = ME; 

begin 
C = 1; 
S = M; 
for i = 1 to k do                                   /*scan from right to left */ 
{if )1( =ie then ;mod)( NCSC ×≡                              /*multiply*/ 

if )1( =ie then ;mod)( 1 NCSC ×≡ −   
.mod)( NSSS ×≡                                             /*square*/ 

end. 
 

Algorithm 5. The Proposed Signed-Digit Recoding Algorithm 

Input: Message: M; 
Exponent: E = (ekek-1…e2e1)2; 
Modulus: N; 
Output: Cipher-text: NMC E mod≡  

begin 
Count the Hamming weight of E, denote as Ham(E). 

if Ham(E)> 2

k
 

Perform the complement recoding and the signed-digit recoding procedures. 
C = 1; 

S = 
1−M ; 

for i=1 to k do 
{if )1( =ie then ;mod)( NCSC ×≡  

if )1( =ie then ;mod)( 1 NCSC ×≡ −  
( ) mod ; }S S S N≡ ×  

else 
Perform the signed-digit of E  is SDE . 
Call Signed-Digit Binary algorithm (M, E, N): C; 
Output C; 
end. 
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4 The Complexity Analyses of the Proposed Algorithm 

In this section, we will describe the computational complexity of the proposed 
algorithm. The computational complexity of the proposed method is 
1 log( )

2* 5 0.333
3

k
k k

k
+ + ≈  k-bit additions that are faster than kk 75.0

4

3 ≈  in Yen-Laih 

method, kk 719.0
32

23 ≈ in Wu-Chang method, kk 583.0
12

7 ≈ in Yen’s method and 

1 log( )
2* 5 0.5

2

k
k k

k
+ + ≈  in Chang- Kuo-Lin method. Here are the complete complexity 

analyses.  
We assume there are k bits in exponent E. There are two cases [28-30]: 

Case 1: Ham(E)> 2

k
 and Case 2: Ham(E)

2

k≤ . 

The computational complexity of NMC E mod≡ = (the computational complexity of 
Step 1)+ ( ×

2

1 the computational complexity of Step 2) + ( ×
2

1 the computational 

complexity of Step 3).  

The second and the third items “ 2

1
” in the above equation mean the probabilities of 

Ham(E)>
2

k  and Ham(E)
2

k≤ . 

Assume that the multiplicand A and multiplier B are k-bit unsigned binary 
numbers. The computational complexity of *P A B=  is defined as “ (the 

computational complexity of Step 1) + ( ×
2
1

the computational complexity of Step 2) + 

( ×
2

1
the computational complexity of Step 3)”. The second and the third items “ 2

1
” in 

the above equation mean the probabilities of Ham(B) > 2

k
 and Ham(B) 2

k≤ . 

Now we describe the computational complexity of Step 1, Step 2(Case 1) and Step 3 

(Case 2) respectively. First, we define S DE  a binary signed-digit representation for 

E  and 
SDE  a binary signed-digit representation for E  respectively.  

Then, the computational complexity is counted on the number of k-bit multiplication 
[28-30].  
Step 1: scan E from LSB to MSB 
We scan E from the least significant bit (LSB) toward the most significant bit (MSB) 

to sum them up and check if Ham(E)> 2

k
. The computational complexity of this step 

is much less than that of multiplication [28-30]. 

Step 2: Ham(E)>
2

k
 

We consider 1’s complement of E as E , i.e. Ham
2

)(
k

E < . We can replace 

NMC E mod≡  by ( 1)bits ( 1)bits SD(10...0) 1 (10...0) 1
mod mod .k kE E

C M N M N+ +− − − −≡ ≡  On an 
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average, the Hamming weight of 
SDE is 

63
1

2
kk =× , where “

3

1 ” is non-zero digit 

probability for 
SDE  by using signed-digit recoding method [28-30]. 

       NMNMC E modmod 2)1111100001(≡≡  

          
( 1)bits 11bits

(10 0) 1 (100000000000) 0000011110 1mod modk E
M N M N+ − − − −≡ ≡…

 

          
( 1)bits SD 11bits

(10 0) 1 (100000000000) 0000100010 1mod modk E
M N M N+ − − − −≡ ≡…

 

          
11bits(100000000000) 1 0000100010 1( ( ) )modM M M N− −≡ × ×  

 (7)

where k is the bit-length of the exponent and E=(1111100001)2. 

5 Conclusions 

In this paper, we have proposed a fast method to efficiently evaluate modular 
multiplication, which combines the complement recoding method and canonical 
recoding technique [29-30]. The computational complexity of the proposed method is 
faster than Yen-Laih method, Wu-Chang method [12], Yen’s method [17] and in 
Chang- Kuo-Lin method [24-28]. We can efficiently speed up the overall 
performance of multiplication operation by using the proposed algorithm.  

As the modular squaring operation in finite field can be done by a simple shift 
operation when a normal basis is used, and the modular multiplications and modular 
squaring operations in our proposed signed-digit recoding scheme can be executed in 
parallel, by using our proposed generalized r-radix signed-digit folding algorithm, 
hardware design and parallel technique, we can effectively decrease the 
computational complexity [27-30].  
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