

J.-S. Pan, S.-M. Chen, N.T. Nguyen (Eds.): ACIIDS 2012, Part III, LNAI 7198, pp. 276–285, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Modular Arithmetic and Fast Algorithm Designed
for Modern Computer Security Applications

Chia-Long Wu*

Professor and Director of Aviation Communication Electronics Department
Chinese Air Force Institute of Technology

chialongwu@gmail.com

Abstract. Modular arithmetic plays very crucial role for public key
cryptosystems, such as the public key cryptosystem, the key distribution
scheme, and the key exchange scheme. Modular exponentiation is a common
operation used by several public-key cryptosystems, such as the RSA
encryption scheme and the Diffie-Hellman key exchange scheme. In this paper,
we have proposed a new method to fast evaluate modular exponentiation, which
combines the complement recoding method and canonical recoding technique.

Keywords: Canonical recoding, modular arithmetic, complexity analyses, fast
algorithm design, public-key cryptosystem.

1 Introduction

Modular exponentiation is the fundamental operation in implementing circuits for
cryptosystem, as the process of encrypting and decrypting a message requires
modular exponentiation which can be decomposed into multiplications. In this paper,
a proposed multiplication method utilizes the complement recoding method and
canonical recoding technique. By performing complement representation and
canonical recoding technique, the number of partial products can be further reduced.
Exponentiation is a basic yet important operation for public key cryptography. In this
paper, an efficient modular exponentiation method is proposed by adopting the binary
method, common-multiplicand multiplication, complement method and signed-digit
recoding method. Hamming weight plays an important part for complexity efficiency.
On average, by performing minimal Hamming recoding method and signed-digit
recoding method, the number of multiplications for our proposed algorithm can be
reduced effectively, where k is the bit-length of the exponent E. We can therefore
efficiently speed up the overall performance of the modular exponentiation [1].

To compute modular exponentiation mod ,EC M N≡ (where C, M, E, and N are

ciphertext, plaintext, public key, and modulus respectively) is very time-consuming

* Corresponding author.

 Modular Arithmetic and Fast Algorithm Designed 277

because the bit-length of E can be up to 2048 bits. Designing efficient algorithms that
can speed up software and hardware implementation of modular exponentiation are
often considered as practical significance for practical cryptographic applications such
as the RSA public-key cryptosystem [1] and the ElGamal cryptosystem [2].

Speeding up modular exponentiation mod ,EC M N≡ where ∑ =
×= k

i

i
ieE

1
2 and

{ }1,0∈ie , is very crucial for public key cryptosystems (PKC). There are several well-

known algorithms for speeding up the exponentiations and the multiplications such as
binary exponentiation method (sometimes called the square-and-multiply method) [3],
signed-digit recoding method [4-11], exponent-folding-in-half method [12-13],
Montgomery reduction method [14-15], common-multiplicand multiplication (CMM)
method [16-19], and multi-exponentiation method [20-21], and so on.

 The Hamming weight (the number of 1’s in the binary representation) plays an
important role for the computational efficiency. A novel method for speeding up
modular exponentiation by using binary exponentiation method, complement recoding
method, and signed-digit recoding method is proposed in this paper. We can efficiently
speed up the overall performance of modular exponentiation.

 The rest of this paper is organized as follows. Some related methods are introduced
in Section 2. In Section 3, the proposed algorithm for fast modular exponentiation is
described. Then, the computational complexity of the proposed algorithm is analyzed in
Section 4. Finally, we conclude this work and future works in Section 5 [28-30].

2 Mathematical Preliminaries

2.1 The Binary Exponentiation Method

Fast computations of the exponentiation can be classified into two approaches: the faster
multiplication designs, and the development of novel exponentiation algorithms. The
multiplication involves two basic operations, the generation of partial products and their
accumulation. The binary exponentiation method [3] also called square-and-multiply
method is a generally acceptable method for exponentiation. It can convert the modular
exponentiation of NMC E mod≡ [23] into a sequence of modular
multiplications. Let the exponent E have the binary representation ∑ =

×= k

i

i
ieE

1
2 ,

where { }1,0∈ie and k is the bit- length of the exponent E.

It can be divided into two kinds of methods. One is the right to left binary
exponentiation method; the other is the left to right binary exponentiation method. The
right to left binary exponentiation method scans the exponent E from the least
significant bit (LSB) toward the most significant bit (MSB). It performs one
multiplication operation and one square operation when the exponent bit ei is 1 and
performs one square operation when the exponent bit ei is 0. It will be shown as
Algorithm 1[28-30].

278 C.-L. Wu

Algorithm 1. Right to Left binary exponentiation algorithm

Input: Message: M;
Exponent: E = (ekek-1…e2e1)2;
Output: Ciphertext: C = ME;
begin
C = 1;
S = M;
for i = 1 to k do /*scan from right to left */
{ if (ei = 1) then C = C×S; /*multiply*/
S = S×S;} /*square*/
endfor
end.

The left to right binary exponentiation method scans the exponent E from the most

significant bit (MSB) toward the least significant bit (LSB). It performs one
multiplication operation when the exponent bit ei is 1 and performs one square operation
when the exponent bit ei is 0. It will be shown as Algorithm 2 [25-27].

Algorithm 2. Left to Right binary exponentiation algorithm

Input: Message: M;
Exponent: E = (ekek-1…e2e1)2;
Output: Ciphertext: C = ME;
begin
C = 1;
S = M;
for i = k to 1 do /*scan from left to right */
{C = C×C; /*square*/
if (ei = 1) then C = C×S;} /*multiply*/
endfor
end.

The computational complexity of both algorithms expresses as follows. On an

average, we assume the occurrence probabilities for both bit “1” and bit “0” are the same
i.e. {S×S} and {S×S, C×S} with the same probability. Then, the expectation value for

bits “1” and “0” is the same “ 2
k

”, where k is the bit-length of the exponent E.

2.2 The Bit-Complement Recoding Method

To compute the modular exponentiation of NMC E mod≡ , we express the exponent

E as a binary representation 1 2 1...k ke e e e− . Performing complements is advantageous in
the speed up of exponential computations [24-26]. The equation and example will be
shown as Equation 1.

∑ =
×= k

i

i
ieE

1
2 = (ekek-1…e2e1)2

1)0...10(bits)1(−−= + Ek , (1)

where 1 1...k kE e e e−= and ie = 0 if ie = 1; ie = 1 if ie = 0, for i = 1, 2, …, k.

 Modular Arithmetic and Fast Algorithm Designed 279

2.3 The Signed-Digit Recoding Method

In a signed-digit number with radix 2, three symbols {1, 0, 1} are allowed for the
digit set, in which 1 and 1 in bit position i represented 2i+ and 2i− respectively
[3]. It shows that the average Hamming weight of a k-bit canonically recorded binary

number approaches 3

k
 as k → ∞ [4-5, 22]. We should note that a number using the

digit {1, 0, 1} is not uniquely represented in binary signed-digit notation [6]. The
equation and example will be shown as Algorithm 3 [25-29].

Algorithm 3. Signed-Digit Recoding Method

Input: E = (ekek-1…e2e1)2;
Output: ESD
begin
c1 = 0; rn+2=0; rn+1=0;
for i = 1 to k do

1
1 2

i i i
i

c e e
c +

+
+ +⎢ ⎥= ⎢ ⎥⎣ ⎦ ;

12i i i ie c e c += + −
endfor
return ESD
end.

Since the addition of k bits can generate an integer with magnitude of log(k) bit

addition, the cost needs only
k

k)log(k-bit additions. Here “A<<<8” stands for the

integer which is obtained by the left-shift eight bits from the multiplicand A. Since the

Hamming weight of multiplier B is larger than
2

k , the Hamming weight of B is

1 1
(*)
2 2 4

k
k= in average, i.e., *A B needs

4

k k-bit additions. Therefore, we need

two 2k-bit subtractions. Assume that both addition and subtraction have the same
computational complexity [25-28].

2.4 The Common-Multiplicand Multiplication Method

In 1993, Yen and Laih proposed the common-multiplicand multiplication (CMM)
method to improve the performance of the right-to-left binary exponentiation
algorithm for evaluating modular exponentiation “ modEM N ”. Here we concentrate
on the computations of {A ×Bi∣i = 1, 2,…, t; t ≥ 2}. The following variables are
required in the CMM method (for i = 1, 2,…, t) [25-27],

280 C.-L. Wu

Bcom = B1 AND B2 …AND Bt, (2)

Bi,c = Bi XOR Bcom, (3)

where “AND” and “XOR” are bitwise logical operators.
Hence Bi can be depicted as:

Bi = Bi,c + Bcom for i = 1, 2,…, t. (4)

Therefore, the common-multiplicand multiplications A×Bi (i = 1, 2,…, t) can be
computed with the assistance of A×Bcom as:

A×Bi = A×Bi,c + A×Bcom for i = 1, 2,…, t. (5)

In 1961, Avizienis proposed a signed-digit (SD) representation, also called redundant
number representations for parallel and high-speed arithmetic. A signed-digit vector
representation of an integer a in radix r is a sequence of digits 1 2 1 SD(, , ,)k ka a a a a+= …

with { }0, 1, , 1ia r∈ ± ± − for 0≥≥ ik , i.e., 1
1

ik
i ia a r+
=∑= × . In a binary signed-digit

number (BSD) system, three symbols {1 , 0, 1} are allowed for the digit set, the

symbol 1 is used to denote the value -1[28-30].
The basic idea of CMM method is to extract the common parts of multiplicands,

and save the number of binary additions for the computation of common parts. Let A
and Bis (i = 1, 2) be m-bit integers, the Hamming weights of Bi, Bcom and Bi,c are m/2,
m/2t and (m/2 − m/2t), respectively. By using the CMM method, the computations of
{A×B1, A×B2} can be represented as {A×B1,c + A×Bcom, A×B2,c + A×Bcom}.

The total number of binary additions for the common-multiplicand multiplications
evaluation is m/2t + t× (m/2 − m/2t). Without the CMM method, the multiplications
{A×B1, A×B2} are computed one after another independently using total t× (m/2)
binary addition. Thus, the performance improvement of the common-multiplicand
multiplication method shown above can be denoted as [28-30]:

1
2 .

(1) 2()
2 2 2

t

t t

mt
t

m m m t tt
−=

+ − ×+ × −

(6)

The auxiliary carry C0 is set to 0 and subsequently the binary number A is scanned
two bits at a time. The canonically recoded digit Bi and the next value of the auxiliary
binary variable Ci+1 for i = 0, 1, 2, … , n are generated as shown in Table 1.

Table 1. Canonical recoding table

Ai+1 Ai Ci Bi Ci+1

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
1
1
0
0

1

1
0

0
0
0
1
0
1
1
1

 Modular Arithmetic and Fast Algorithm Designed 281

3 The Proposed Signed-Digit Recoding Algorithm

In Section 2, we describe the binary exponentiation method, complement recoding
method, and signed-digit recoding method respectively. We combine these methods
as Algorithm 5 [28-30] to accelerate the exponentiation. Algorithm 4 is the signed-
digit recoding method and is depicted as follows).

Algorithm 4. Signed-Digit Recoding Algorithm

Input: Message: M;
Exponent: E = (ekek-1…e2e1)2;
Output: Ciphertext: C = ME;

begin
C = 1;
S = M;
for i = 1 to k do /*scan from right to left */
{if)1(=ie then ;mod)(NCSC ×≡ /*multiply*/

if)1(=ie then ;mod)(1 NCSC ×≡ −
.mod)(NSSS ×≡ /*square*/

end.

Algorithm 5. The Proposed Signed-Digit Recoding Algorithm

Input: Message: M;
Exponent: E = (ekek-1…e2e1)2;
Modulus: N;
Output: Cipher-text: NMC E mod≡

begin
Count the Hamming weight of E, denote as Ham(E).

if Ham(E)> 2

k

Perform the complement recoding and the signed-digit recoding procedures.
C = 1;

S =
1−M ;

for i=1 to k do
{if)1(=ie then ;mod)(NCSC ×≡

if)1(=ie then ;mod)(1 NCSC ×≡ −
() mod ; }S S S N≡ ×

else
Perform the signed-digit of E is SDE .
Call Signed-Digit Binary algorithm (M, E, N): C;
Output C;
end.

282 C.-L. Wu

4 The Complexity Analyses of the Proposed Algorithm

In this section, we will describe the computational complexity of the proposed
algorithm. The computational complexity of the proposed method is
1 log()

2* 5 0.333
3

k
k k

k
+ + ≈ k-bit additions that are faster than kk 75.0

4

3 ≈ in Yen-Laih

method, kk 719.0
32

23 ≈ in Wu-Chang method, kk 583.0
12

7 ≈ in Yen’s method and

1 log()
2* 5 0.5

2

k
k k

k
+ + ≈ in Chang- Kuo-Lin method. Here are the complete complexity

analyses.
We assume there are k bits in exponent E. There are two cases [28-30]:

Case 1: Ham(E)> 2

k
 and Case 2: Ham(E)

2

k≤ .

The computational complexity of NMC E mod≡ = (the computational complexity of
Step 1)+ (×

2

1 the computational complexity of Step 2) + (×
2

1 the computational

complexity of Step 3).

The second and the third items “ 2

1
” in the above equation mean the probabilities of

Ham(E)>
2

k and Ham(E)
2

k≤ .

Assume that the multiplicand A and multiplier B are k-bit unsigned binary
numbers. The computational complexity of *P A B= is defined as “ (the

computational complexity of Step 1) + (×
2
1

the computational complexity of Step 2) +

(×
2

1
the computational complexity of Step 3)”. The second and the third items “ 2

1
” in

the above equation mean the probabilities of Ham(B) > 2

k
 and Ham(B) 2

k≤ .

Now we describe the computational complexity of Step 1, Step 2(Case 1) and Step 3

(Case 2) respectively. First, we define S DE a binary signed-digit representation for

E and
SDE a binary signed-digit representation for E respectively.

Then, the computational complexity is counted on the number of k-bit multiplication
[28-30].
Step 1: scan E from LSB to MSB
We scan E from the least significant bit (LSB) toward the most significant bit (MSB)

to sum them up and check if Ham(E)> 2

k
. The computational complexity of this step

is much less than that of multiplication [28-30].

Step 2: Ham(E)>
2

k

We consider 1’s complement of E as E , i.e. Ham
2

)(
k

E < . We can replace

NMC E mod≡ by (1)bits (1)bits SD(10...0) 1 (10...0) 1
mod mod .k kE E

C M N M N+ +− − − −≡ ≡ On an

 Modular Arithmetic and Fast Algorithm Designed 283

average, the Hamming weight of
SDE is

63
1

2
kk =× , where “

3

1 ” is non-zero digit

probability for
SDE by using signed-digit recoding method [28-30].

 NMNMC E modmod 2)1111100001(≡≡

(1)bits 11bits

(10 0) 1 (100000000000) 0000011110 1mod modk E
M N M N+ − − − −≡ ≡…

(1)bits SD 11bits

(10 0) 1 (100000000000) 0000100010 1mod modk E
M N M N+ − − − −≡ ≡…

11bits(100000000000) 1 0000100010 1(())modM M M N− −≡ × ×

 (7)

where k is the bit-length of the exponent and E=(1111100001)2.

5 Conclusions

In this paper, we have proposed a fast method to efficiently evaluate modular
multiplication, which combines the complement recoding method and canonical
recoding technique [29-30]. The computational complexity of the proposed method is
faster than Yen-Laih method, Wu-Chang method [12], Yen’s method [17] and in
Chang- Kuo-Lin method [24-28]. We can efficiently speed up the overall
performance of multiplication operation by using the proposed algorithm.

As the modular squaring operation in finite field can be done by a simple shift
operation when a normal basis is used, and the modular multiplications and modular
squaring operations in our proposed signed-digit recoding scheme can be executed in
parallel, by using our proposed generalized r-radix signed-digit folding algorithm,
hardware design and parallel technique, we can effectively decrease the
computational complexity [27-30].

References

1. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and
public key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

2. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)

3. Knuth, D.E.: The Art of Computer Programming, 3rd edn. Seminumerical Algorithms,
vol. 2. Addison-Wesley, MA (1997)

4. Yang, W.C., Guan, D.J., Laih, C.S.: Algorithm of asynchronous binary signed-digit
recording on fast multi-exponentiation. Applied Mathematics and Computation 167(1),
108–117 (2005)

5. Koc, C.K., Johnson, S.: Multiplication of signed-digit numbers. Electronics Letters 30(11),
840–841 (1994)

6. Avizienis: Signed-digit number representations for fast parallel arithmetic. IRE
Transactions on Electronic Computers 10, 389–400 (1961)

7. Arno, S., Wheeler, F.S.: Signed digit representations of minimal Hamming weight. IEEE
Transactions on Computers 42(8), 1007–1010 (1993)

284 C.-L. Wu

8. Syuto, M., Satake, E., Tanno, K., Ishizuka, O.: A high-speed binary to residue converter
using a signed-digit number representation. IEICE Transaction on Information and
Systems E85-D(5), 903–905 (2002)

9. Heuberger, C., Prodinger, H.: Carry propagation in signed digit representations. European
Journal of Combinatorics 24(3), 293–320 (2003)

10. Joye, M., Yen, S.M.: Optimal left-to-right binary signed-digit recoding. IEEE Transactions
on Computers 49(7), 740–748 (2000)

11. Koren: Computer Arithmetic Algorithms, 2nd edn. A. K. Peters, MA (2002)
12. Lou, D.C., Chang, C.C.: Fast exponentiation method obtained by folding the exponent in

half. Electronics Letters 32(11), 984–985 (1996)
13. Lou, D.C., Wu, C.L., Chen, C.Y.: Fast exponentiation by folding the signed-digit exponent

in half. International Journal of Computer Mathematics 80(10), 1251–1259 (2003)
14. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of

Computation 44(170), 519–521 (1985)
15. Tenca, F., Koc, C.K.: A scalable architecture for modular multiplication based on

Montgomery’s algorithm. IEEE Transactions on Computers 52(9), 1215–1221 (2003)
16. Yen, S.M., Laih, C.S.: Common-multiplicand-multiplication and its applications to public

key cryptography. Electronics Letters 29(17), 1583–1584 (1993)
17. Yen, S.M.: Improved common-multiplicand-multiplication and fast exponentiation by

exponent decomposition. IEICE Transaction on Fundamentals E80-A(6), 1160–1163
(1997)

18. Wu, T.C., Chang, Y.S.: Improved generalization common-multiplicand-multiplications
algorithm of Yen and Laih. Electronics Letters 31(20), 1738–1739 (1995)

19. Ha, C., Moon, S.J.: A common-multiplicand method to the Montgomery algorithm for
speeding up exponentiation. Information Processing Letters 66(2), 105–107 (1998)

20. Dimitrov, V.S., Jullien, G.A., Miller, W.C.: Complexity and fast algorithms for multi-
exponentiations. IEEE Transactions on Computers 49(2), 141–147 (2000)

21. Chang, C.C., Lou, D.C.: Parallel computation of multi-exponentiation for cryptosystems.
International Journal of Computer Mathematics 63(1-2), 9–26 (1997)

22. Wu, C.-L., Lou, D.-C., Lai, J.-C., Chang, T.-J.: Fast modular multi-exponentiation using
modified complex arithmetic. Applied Mathematics and Computation 186(2), 1065–1074
(2007)

23. Stallings, W.: Cryptography and Network Security Principles and Practice, 3rd edn.
Prentice-Hall, NY (2002)

24. Chang, C.C., Kuo, Y.T., Lin, C.H.: Fast algorithms for common multiplicand
multiplication and exponentiation by performing complements. In: Proceeding of 17th
International Conference on Advanced Information Networking and Applications, pp.
807–811 (March 2003)

25. Wu, C.L.: Fast modular multiplication based on complement representation and canonical
recoding. In: The 7th Conference of Crisis Management (CMST 2009), Tainan, Taiwan,
pp. 1–8 (November 27, 2009)

26. Wu, C.L.: Modular exponentiation arithmetic and number theory for modern cryptographic
security applications. In: 8th Conference of Crisis Management (CMST 2010),
CCM1010002IFS, Kaohsiung, Taiwan, pp. 169–176 (2010)

27. Wu, C.L.: High performance of modular arithmetic and theoretical complexity analyses.
In: Proceedings of the 7th Pacific Symposium on Flow Visualization and Image Processing
(PSFVIP-7), pp. 18–35 (November 2009)

 Modular Arithmetic and Fast Algorithm Designed 285

28. Wu, C.L., Lou, D.C., Chang, T.-J., Chen, C.-Y.: Fast modular exponentiation algorithm
theoretical design and numerical analysis for modern cryptographic applications. In: 17th
National Defense Science Technology Symposium (ND17), Taoyuan, Taiwan, November
27-28, vol. 5-1–5-7 (2008)

29. Wu, C.-L.: Complexity analyses and design for cryptographic modular algorithm. In: 2011
Symposium on Communication Information Technology on Management and Application,
Paper No. 0505, Kaohsiung, A2: Communication Theory, pp. 1–6 (2011)

30. Wu, C.-L.: Fast Montgomery binary algorithm for information security. In: 2011
International Symposium on NCWIA, Paper No. 111, Kaohsiung, D6: Information
Systems and Innovative Computing, pp. 1–5 (2011)

	Modular Arithmetic and Fast Algorithm Designed for Modern Computer Security Applications
	Introduction
	Mathematical Preliminaries
	The Binary Exponentiation Method
	The Bit-Complement Recoding Method
	The Signed-Digit Recoding Method
	The Common-Multiplicand Multiplication Method

	The Proposed Signed-Digit Recoding Algorithm
	The Complexity Analyses of the Proposed Algorithm
	Conclusions
	References

