
J.-S. Pan, S.-M. Chen, N.T. Nguyen (Eds.): ACIIDS 2012, Part III, LNAI 7198, pp. 197–205, 2012.
© Springer-Verlag Berlin Heidelberg 2012

An Iterative Stemmer for Tamil Language

Vivek Anandan Ramachandran1 and Ilango Krishnamurthi2

Department of Computer Science and Engineering, Sri Krishna College of Engineering and
Technology, Coimbatore – 641 008, Tamilnadu, India

{rvivekanandan,ilango.krishnamurthi}@gmail.com

Abstract. Stemming algorithm is a procedure that attempts to map all the
derived forms of a word to a single root, the stem. It is widely used in various
applications with the main motive of enhancing the recall factor. Apart from
English, researches on developing stemmers for both the native and the regional
languages are also being carried out. In this paper, we present a stemmer for
Tamil, a Dravidian language. Our stemmer effectiveness is 84.32%.

Keywords: Information Retrieval, Stemming, Tamil.

1 Introduction

A program that performs stemming is referred as a stemmer [1]. Stemmer attempts to
map a derived form of a word to its root. For example, stemmer maps the word
creation to the term cre. Resultant of a stemmer need not be a proper meaningful
word. This could be understood from the example as cre is not a meaningful word.

Stemmers are widely used in the query based systems such as web search engine,
question answering etc as a factor to retrieve more number of documents relevant to
the input . This is mainly due to the reason that such systems treat the word and its
derived forms as one and the same. For example, when a user wants to search the
documents with the term creating they might also need the documents with the term
creates or created.

In recent years web documents and other information are published in languages
other than English too. These published information made researchers to focus on the
need for developing computational supportive tools such as stemmer, lemmatizer,
parts-of-speech tagger etc for languages other than English. In this paper, we discuss
our experience in developing stemmer for Tamil1[2]. In this paper, we propose a
suffix stripping stemmer for Tamil.

This paper is organized as follows: In Section 2 we discuss the researches related
to our stemmer. In Section 3 we brief about the Tamil suffixes. The difficulties in
developing stemmer for Tamil language are highlighted in Section 4. In Section 5 we
describe about our algorithm. In Sections 6 and 7, we present the evaluation analysis
and the concluding remarks respectively.

1 Tamil is a Dravidian language. It is spoken majorly by the Tamil people of the Southern India

and Substantial minorities in Malaysia, Mauritius and Vietnam. Throughout the paper
transliterated form of Tamil as quoted in the Appendix Section is used.

198 V.A. Ramachandran and K. Ilango

2 Related Work

Earlier, stemmers were primarily developed for English language[3][4]. But later due
to the corpus growth of languages other than English, there was an increased demand
from the research community to develop stemmers for other languages too. In the
case of Indian languages, stemming was first reported for Hindi in 2003[5]. Slowly
investigations for other languages such as Bengali[6], Urdu[7], Malayalam[8] and
Punjabi [9]were also carried out. However, there is no readily available stemmer for
Tamil. In this paper, we present our research experiences in developing a Tamil
Stemmer.

To develop a stemmer for Tamil or any other languages, a basic approach to carry
out the process is required. The most common approaches used for developing a
stemmer are Brute force, Affix Stripping, N-Gram, Hidden Markov Model (HMM),
Corpus based technique, Clustering method, Finite-State-Automata method,
Morphological process, String distance measure, Hybrid approaches. Among all the
existing approaches, we make use of affix stripping because of its inherent support to
develop a stemming algorithm in an easier and faster way.

Most of the existing stemmers remove the suffixes based on the longest matching
word. For example among the matching suffixes ates, tes, es and s existing in the
word creates, the suffix ates will be removed by a stemmer. Similar to most of the
existing stemmers, we remove the suffixes based on the longest matching word.

To develop a stemmer for a language, a preliminary study on the possible suffixes
of a word in the corresponding language need to be taken. In the next Section, we
explain about the possible suffixes for Tamil.

3 Tamil Suffixes

In Tamil, a word usually contains a root to which one or more affixes can be attached.
The affixes can be either a prefix or a suffix. We have designed our algorithm to
handle only Tamil suffixes, so we discuss only about it. Tamil word can have multiple
suffixes there is no exact limit for attaching the number of suffixes to a Tamil word.

To know about the possible suffixes that a word in Tamil language one can refer to
the flow charts [10] and [11]. Besides considering the possible suffixes forms of a
word, a stemming algorithm has to consider certain standard computing issues. In the
next Section, we explain the computing issues considered for developing our
stemmer.

4 Computing Issues

Developing a Tamil stemmer is not a straightforward task. In this Section, we explain the
major difficulties faced by us while designing the algorithm. They are briefed as
follows:

 An Iterative Stemmer for Tamil Language 199

4.1 Homographs

Homographs are the words that have identical pronunciations but different meanings. In
Tamil, there are numerous instances of homographs. For example, the word aaNTavan
denotes either the noun God or the verb ruled by a male formed from the root aaL. It is
difficult for a rule-based stemmer to map such terms to their root. Hence, we decided to
frame our algorithm by do not considering the homograph issues.

4.2 Irregular Verbs

Irregular verbs do not follow standard patterns in their tense form. For example, the
past tense of the verb say is said and not sayed. Mapping such forms of word to a
single root is a difficult task. Such cases exist in Tamil also. For example, the past,
present and future tense of the verb sol (say) are sonneen (I said), solkiReen (I am
saying) and solveen (I will say) respectively. Following the standard patterns the past
tense for sol should be solneen. However, this is not correct. Devising rules to handle
such case is arduous as it needs a deep look up dictionary. Hence, we decided to
consider this issue in the future version.

4.3 Proper Noun Derivations

A proper noun usually indicates a particular thing. In certain cases, proper noun end
letters match with the normal suffixes. Assuming those patterns to be suffixes, most
of the stemmers remove them from the proper noun. For example, Porter stemmer
maps the proper noun creator to cre due to the assumption that ator is a suffix. To
overcome such cases, it is very difficult to realize a proper noun by framing hand-
crafted rules. Therefore, similar to most of the algorithms, if the common suffix
patterns exist in a proper noun we decide to stem it. For example, our approach maps
iyakkiyavan (A person who operated) to iyakki (operated).

4.4 Handling Non Derived Words Ending with Usual Suffix Pattern

In some cases, word ends with few patterns that match with a suffix but that pattern
does not denote a suffix. For example:

• In English, the word ring contains ing which usually denotes a suffix but not in this
case.

• In Tamil, the word kathai (story) contains ai which usually denotes a suffix.

It could be inferred that to handle this case a stemmer needs a heavy look-up table and
this table cannot be constructed easily. So we decided to handle this case in the future
versions.

200 V.A. Ramachandran and K. Ilango

4.5 Study on the Number of Iterations Needed to Remove Suffixes

We have already mentioned that Tamil words can have multiple suffixes. It is
discussed in the previous Sections that the best way for removing multiple suffixes is
iterating the suffixes in the descending order of their length and removing the suffixes
in the input. But an interrogation arises on the following issue:

• For a stemmer to remove n suffixes in an input whether n iterations are needed or
it could be done with less than n iterations?

For addressing this issue, we discuss three cases:

4.5.1 For Removing n Suffixes Less than n-1 Iterations Are Needed
Consider the word nuulkaLiliruntu (from the book). It has three suffixes to be
removed viz. kaL, il and iruntu. In our rule-base three suffixes will be in the order
iruntu, kaL and il. However, in the example they are in the removal order iruntu, il
and kaL. So if our approach follows linear methodology the suffix iruntu and il
matches with the example. Therefore, they are stripped from nuulkaLiliruntu. So, the
resultant output is nuulkaL. However, the suffix kaL is not removed from the input.
During the next iteration the suffix kaL will be removed. So for removing 3 suffixes 2
iterations are needed.

4.5.2 For Removing n Suffixes n Iterations Are Needed
Consider the word nuulkaLil (in the book). It has two suffixes to be removed kaL and.
In our rule-base two suffixes will be in the order kaL and il. However, in the example
they are in the removal order il and kaL. The first iteration removes the suffix il and
the second iteration removes the suffix kaL. So for removing 2 suffixes 2 iterations
are needed.

4.5.3 Ascending and Descending Order of Removal of Suffix Affecting the
Number of Iterations

Consider the word nuulkaLukkupatil (from the book). It has three suffixes to be
removed viz. kaL, ukku and patil. Our rule-base apart from the three suffixes kaL,
ukku and patil will also contain the suffixes il and kku which matches with the input.
They will be in the order patil, ukku, kku, kaL and il. Let us see what happens when
suffixes are iterated in ascending and descending order of the length.

• If suffixes are iterated in descending order of the length the suffix patil, ukku and
kaL will be removed in subsequent iterations and the final output will be nuul
which is the expected one.

• If suffixes are iterated in ascending order of the length only the suffix il will be
removed and the final output will be nuulkaLukkupat. But the desired output is
nuul.

 An Iterative Stemmer for Tamil Language 201

After analyzing the above three cases for an effective stemmer output we decided to
perform the following functionalities in our stemmer:

• Remove n suffixes in n iterations.
• Iterate the suffixes in the descending order of their length.

We also propose a novel single iteration approach for removing n suffixes in a single
iteration.

4.6 Handling Agglutinative Case

Tamil is an agglutinative language; a compound word can be formed from two or
more simple words without changing the meaning of the simple words. For example
consider the word maJainiir (Rain Water) formed from two simple words maJai
(Rain) and niir (Water). Consider the word maJainiiri_n (of the rain water). The word
is a derived form of maJai. Mapping the word maJainiiri_n to the simple word maJai
is a laborious task. So we decided to neglect mapping compound word to simple
word.

Apart from the above discussed computational issues, proper computational steps
should also be designed to develop a good stemmer. In the next Section, we explain
the design portion of our stemmers.

Table 1. Stemming Algorithm

Input Tamil String (Input), Suffix List (SL)

Output Root of the Input (Output)

Prerequisite The SL should be stored in descending order of suffixes length
`Function String stem (Input)
Begin

1. String Output,
2. String Temp-Output= ruleBase(Input)
3. While Input != Temp-Output

a. Temp-Output = ruleBase(Input)
b. Input = Temp-Output

4. return Output
End
Function String ruleBase (temp)
Begin

1. Flag = true
2. While (Flag)

a. Iterate all the suffix one by one
i. If the temp ends with any suffix (say Sf)

A. temp = temp – Sf
B. break

b. return temp
End

202 V.A. Ramachandran and K. Ilango

5 Design

Generally, for removing multiple suffixes existing in a word of any language iterative
stemmer is used. An iterative stemmer starting from the end of the inflected input
word will remove a longest matching suffix at a time and progress towards the root.
As discussed in our design section we have designed our stemmer to remove n
suffixes in n iterations. The algorithm pseudo-code is presented in Table 1. The list of
suffixes that our stemmer can handle is listed in Table 2.

Consider the input derived word choRkaLi_nil (in the words) derived from the
word chol(word). During the first , second and third iterations suffixes il , i_n and kaL
will be removed respectively. The output will be choR. Although the algorithm for
stemming Tamil words is designed successfully, it has to be evaluated. In the
following Section, we present the analysis carried out by us to study the algorithm’s
effectiveness.

Table 2. Tamil Suffixes

etirttaaRpool appuRam tavira teRku uTa_n oTTi kiR

 aTuttaaRpool koNTiru muulam aa_na iyal iTam een

 veeNTiyiru veeNTum piRaku tolai avaL kiiJ aaL

 uNkaLee_n etirkku pi_npu ava_n mu_n ttal uL

vaJiyaaka aayiRRu pakkam illai avai tiir um

varaikkum veLiyil umee_n poola avar paar tt

 veeNTivaa kuRittu meelee aakum a_na atu il

 mu_n_naal maatiri kki_nR kiTTa paTi aam pp

patilaaka paarttu taaNTi ki_nR viTa aar ai

tavirttu naTuvil uTaiya pooTu meel aay al

illaamal vaTakku etiree oJiya kiJi kka ya

 veeNTaam meeRku uNkaL paNNu ukku iir nt

kuRukkee kuuTum aarkaL koNTu viTu kaL a

allaamal aTiyil vaittu aNTai chey oom p

varaiyil etiril kiiJee uLLee kiTa poo t

kuuTaatu aaTTam arukee taLLu muTi vaa u

 veLiyee appaal iirkaL paRRi ooTu i_n v

 iTaiyil iIruntu kaaTTu pinti koTu tal

 aakaatu chuRRi nookki patil kkiR vai

 kiJakku arukil viTTu mutal aa_n iru

 An Iterative Stemmer for Tamil Language 203

6 Evaluation

In general, evaluation signifies the act of assessing something. To evaluate our
stemmer we implemented our algorithm in Java. A sample screen shot of our stemmer
is shown in Figure 1.

After developing any stemmer it is important to analyze its capability, i.e., to
assess the range of the words that the system is able to stem properly. We requested
two students, none of whom are directly or indirectly involved with our project to
generate the corpus. They developed a Tamil corpus containing 36720 words derived
from 765 roots. The corpus is framed from different portions of Tamil newspapers
confining to various domains such as Business, Classifieds, Entertainment, Politics
and Sport.

Fig. 1. Sample screen shot of the Tamil Stemmer

It is important to remember as stated in the Introduction that the output of a
stemmer need not be a proper linguistic word. Therefore, correctness of a stemmer
does not denote the linguistic correctness. A stemmer is said to be accurate if it
conforms to the following conditions:

• If it maps all the derived forms of a word to a single root.
• The words mapped by it to a single stem are genuine linguistic variants.
• If it does not stem a non-suffix from a word.

If a stemmer does not map all the considered derived forms of word to a single stem
then the phenomenon is called Understemming. An instance of Understemming is a
stemmer conflating tried to tri and try to try instead of mapping both to try. Our
stemmers map cholvava_n (A man who is saying) to chol (say) and cho_n_nava_n (A
man who said) to cho_n_n instead of mapping both to chol.

If a stemmer maps the words to a single stem that are genuinely linguistic
invariants then the phenomenon is called Overstemming. An instance of
Overstemming is a stemmer conflating both the words cares and cars to car, instead
of mapping cares to care and cars to car. An example for Overstemming in our case
is our stemmers map both cheluttuki_nRava_n (A man who is riding) and

204 V.A. Ramachandran and K. Ilango

chelki_nRava_n (A man who is going) to chel (go) instead of mapping
cheluttuki_nRava_n to cheluttu (ride) and chelki_nRava_n to chel.

If a stemmer removes a nonsuffix from a word, it is called Mis-stemming. For
example, conflating the words reply to rep instead of conflating it to reply is called
Mis-stemming. Most of the stemmers do not give importance to Mis-stemming. This is
because it does not spoil the recall factor in an IR application. Due to the same reason,
we evaluate our stemmer using only Understemming and Overstemming. They are
calculated using the following formulas (1) and (2) respectively.

Understemming = (Number of variants understemmed/Total variants)*100% (1)

Overstemming = (Number of variants overstemmed/Total variants)*100% (2)

Evaluating our approach using the above-mentioned corpus containing 765 root
variants, we found that 84 and 36 were understemmed and overstemmed respectively.
Hence, The Understemming and overstemming values are 10.98 % and 4.70 %
respectively. Our stemmer effectiveness is calculated using the formula (3).

Stemmer Effectiveness = 100% - [Overstemming % + Understemming %] (3)

Effectiveness for our approach is 84.32 %. This is considerably a good value. Yet the
reason behind achieving a moderate effectiveness value is due to the factors discussed
in the Section 4.

7 Conclusion

In this paper, we hypothesize an Iterative Tamil Stemmer. Further, it should be noted that
we have evaluated the performance of our stemmer in terms of understemming and
overstmming as of now. The proposed stemmers need to be further evaluated with Tamil
IR system using factors such as precision, recall etc. Such evaluations will provide the
best trade-off between understemming and overstemming that can be obtained by
removing or adding a few suffixes in the list. This leads us to believe that our stemmers
will prove to be beneficial for Tamil Information Retrieval applications. The limitation
with the current version of our stemmers is their ability to handle only suffixes.
Investigation on handling prefixes is a part of our future work. It would also be
interesting to apply our algorithms to Tamil’s Sister languages such as Malayalam,
Telugu etc.

References

1. Kraaij, W., Pohlman, R.: Viewing Stemming as Recall Enhancement. In: The Proceedings
of the 19th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, pp. 40–48 (1996)

2. Germann, U.: Building a Statistical Machine Translation System from Scratch: How Much
Bang for the Buck Can We Expect? In: ACL 2001 Workshop on Data-Driven Machine
Translation, Toulouse, France (July 7, 2001)

 An Iterative Stemmer for Tamil Language 205

3. Lovins, J.B.: Development of a stemming algorithm. Mechanical Translation and
Computational Linguistics 11(1), 22–31 (1968)

4. Porter, M.F.: An Algorithm for Suffix Stripping. Program 14(3), 130–137 (1980)
5. Ramanathan, A., Rao, D.: A lightweight stemmer for Hindi. In: The Proceedings of the

10th Conference of the European Chapter of the Association for Computational Linguistics
(EACL) for South Asian Languages Workshop (April 2003)

6. Zahurul Islam, M., Nizam Uddin, M., Khan, M.: A Light Weight Stemmer for Bengali and
Its Use in Spelling Checker. In: Proceedings of 1st International Conference on Digital
Communications and Computer Applications (DCCA 2007), Irbid, Jordan, pp. 87–93
(2007)

7. Q.-A. Akram, Naseer, A., Hussain, S.: Assas-Band, an affix-exception-list based Urdu
stemmer. In: Proceedings of the 7th Workshop on Asian Language Resources (2009)

8. Malayalam Stemmer,
http://nlp.au-kbc.org/Malayalam_Stemmer_Final.pdf

9. Kumar, D., Rana, P.: Design and Development of a Stemmer for Punjabi. International
Journal of Computer Applications (0975–8887) 11(12) (December 2010)

10. Tamil Noun Flow Chart,
http://www.au-kbc.org/research_areas/nlp/projects/
morph/NounFlowChart.pdf

11. Tamil Verb Flow Chart,
http://www.au-kbc.org/research_areas/nlp/projects/
morph/VerbFlowChart.pdf

Appendix: Tamil Transliteration Scheme Used in This Paper

a aa i ii u uu e ee ai o oo au q

அ ஆ இ ஈ உ ஊ எ ஏ ஐ ஒ ஓ ஔ ஃ

k -N ch -n _n T N t n p m y r l v J L R

� � � � � � � � � � � � � � � � �

	An Iterative Stemmer for Tamil Language
	Introduction
	Related Work
	Tamil Suffixes
	Computing Issues
	Homographs
	Irregular Verbs
	Proper Noun Derivations
	Handling Non Derived Words Ending with Usual Suffix Pattern
	Study on the Number of Iterations Needed to Remove Suffixes
	Handling Agglutinative Case

	Design
	Evaluation
	Conclusion
	References

