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Chapter 9 

Mesoscopic Modelling of Strain Localization  
in Plain Concrete 
Mesoscopic Modelling of Strain Localizat ion in Plain Concrete 

Abstract. The Chapter deals with modelling of strain localization in concrete at 
meso-scale. Concrete was considered as a composite material by distinguishing 
three phases: cement matrix, aggregate and interfacial transition zones. For FE 
calculations, an isotropic damage model with non-local softening was used.  The 
simulations were carried out with concrete specimens under uniaxial tension and 
bending. The effect of aggregate density, aggregate size, aggregate distribution, 
aggregate shape, aggregate stiffness, aggregate size distribution, characteristic 
length and specimen size was investigated. The representative volume element 
was also determined. 

A mechanism of strain localization strongly depends upon a heterogeneous 
structure of materials over many different scales, which changes e.g. in concrete 
from the few nanometers (hydrated cement) to the millimetres (aggregate 
particles). Therefore, to take strain localization into account, material composition 
(micro-structure) has to be taken into account (Nielsen et al. 1995, Bažant and 
Planas 1998, Sengul et al. 2002, Lilliu and van Mier 2003, Du and Sun 2007, 
Kozicki and Tejchman 2008, He et al. 2009, Skarżyński and Tejchman 2010). At 
the meso-scale, concrete can be considered as a composite material by 
distinguishing three important phases: cement matrix, aggregate and interfacial 
transition zones ITZs. In particular, the presence of aggregate and ITZs is 
important since the volume fraction of aggregate can be as high as 70-75% in 
concrete and ITZs are always the weakest regions in concrete. The concrete 
behaviour at the meso-scale fully determines the macroscopic non-linear 
behaviour. The advantage of meso-scale modelling is the fact that it directly 
simulates micro-structure and can be used to comprehensively study local 
phenomena at the micro-level such as the mechanism of the initiation, growth and 
formation of localized zones and cracks (He 2010, Kim and Abu Al-Rub 2011, 
Shahbeyk et al. 2011). Through that the mesoscopic results allow for a better 
calibration of continuum models enhanced by micro-structure and an optimization 
design of concrete with enhanced strength and ductility. The disadvantages are: 
very high computational cost, inability to model aggregate shape accurately  
and the difficulty to experimentally measure the properties of ITZs. All FE 
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investigations of a heterogeneous three-phase concrete material at the meso-level 
encompassing cement matrix, aggregates and an interfacial transition zone (ITZ) 
between the cement matrix and aggregates were performed with an isotropic 
damage constitutive model with non-local softening using a Rankine failure type 
criterion to define the equivalent strain measure ε  (Eqs. 3.35-3.40). The inclusions 
were assumed to be mainly in a circular shape randomly distributed according to a 
sieve curve (Fig. 9.1) and embedded in a homogeneous cement matrix. There are 
two widely used methods for the generation of randomly situated aggregate 
inclusions. The first one allows one to obtain a dense packing of aggregates in 
two-dimensional body of concrete using a Fuller distribution (van Mier et al. 
1995): 
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where p is the percentage weight of particles passing a sieve with the diameter D 
and Dmax is the size of a largest particle. Furthermore by using a cumulative 
distribution for a two-dimensional cross-section, the circle diameters for a 
concrete can be generated. The second method of particle generation used by 
Eckardt and Konke (2006) is more straightforward. First, a grading curve is 
chosen (based on experimental measurements). Next, the certain amounts of 
particles with defined diameters d1, d2 … dn are generated according to this curve. 
In our book, the latter method was used. The circles were randomly placed in the 
prescribed area starting with the largest ones and preserving a certain mutual 
distance (van Mier et al. 1995): 
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where D is the distance between two neighbouring particle centers, and D1 and D2 are 
the diameters of two neighboring aggregate particles. In the next step, the generated 
particle structure was overlaid with an irregular mesh of triangles. The finite elements 
belonging to cement matrix, aggregate inclusions and bond zones, respectively, had 
own different properties. It was assumed that the inclusions and bond zones had the 
highest and the lowest stiffness, respectively (van Mier et al. 1995). 

9.1   Uniaxial Tension 

The properties of the cement matrix, aggregate inclusions and bond zones used for 
FE calculations using an isotropic damage model with non-local softening are 
shown in Tab. 9.1 (Skarżyński and Tejchman 2009). The size of inclusions varied 
from amin=2.5 mm up to amax=5 mm. The size of bond zone elements, 0.25 mm 
(equal to 0.1×amin), was smaller than the size of cement matrix elements. The 
mesoscopic characteristic length of micro-structure was lc=0.5 mm. 
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Fig. 9.1 Approximation of non-linear grading curve with discrete numbers of aggregate 
sizes (Skarżyński and Tejchman 2010) 

Table 9.1 Material parameters assumed for uniaxial tension (Skarżyński and Tejchman 
2009) 

Material parameters Inclusions Cement matrix ITZ 
Modulus of elasticity 

E [GPa] 
30 25 20 

Poisson’s ratio  
ν [-] 

0.2 0.2 0.2 

Crack initiation strain parameter  
κ0 [-] 

0.5 8×10-5 5×10-5 

Residual stress level parameter  
α [-] 

0.95 0.95 0.95 

Slope of softening parameter  
β [-] 

500 500 500 

 
The calculations were carried out with periodic boundary conditions and 

material periodicity to avoid the effect of walls (van der Sluis 2001, Gitman 2006, 
Gitman et al. 2008). In the first case, the positions of nodes along corresponding 
specimen boundaries were the same before and after deformation. This is 
illustrated in Fig. 9.2, where an arbitrary periodically deformed unit cell under 
uniaxial extension conditions is shown. The deformation of each boundary pair is 
the same and the stresses are opposite in sign for each pair. The displacement 
boundary conditions are  

 

                                                 12 4 11 1u u u u− = − ,                                         (9.3) 

                                                22 1 21 2u u u u− = − ,                                         (9.4) 

                                                3 2 2 1u u u u− = − ,                                            (9.5) 
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where iju is the displacement for any material point along the boundary ijΓ  and 

iu  is the node displacement. From the periodicity equations (Eqs. 9.3-9.5) can be 

observed that the independent entities are 11Γ , 21Γ , 1u , 2u  and 4u , whereas the 

tied dependent entities are 22Γ , 12Γ  and 3u . 

In addition, to eliminate wall effects, the periodicity of the material was 
assumed (Gitman 2006). Figure 9.3 presents samples different unit cells A-F in a 
concrete specimen. The cells A, B, D and E are valid in the context of material 
periodicity. However, the cells C and F experience wall-effects since some edges 
are crossed by inclusions. In our calculations, we avoided inclusions penetrating 
through the unit cell boundaries by letting them re-appear at the opposite edge 
(Fig. 9.4).  

 

 

Fig. 9.2 Periodically deformed unit cell with boundaries RΓ  and nodes iv  (van der Sluis 

2001) 

 

Fig. 9.3 Distribution of different unit cells in a concrete specimen (Gitman 2006) 

A two-dimensional uniaxial tension test (Fig. 9.5) was performed with quadratic 
concrete specimens representing unit cells (Figs. 9.6-9.8) with periodicity of 
boundary conditions and material. For periodic boundary conditions, the 
displacements were suppressed in the node ‘1’ (Fig. 9.2). Furthermore, in the  
node ’2’, a non-zero displacement was prescribed in a horizontal direction while 
the displacement a vertical direction was suppressed. The displacement 
components of the node ‘3’ and ‘4’ were free and tied together. The vertical 
normal stress was obtained from the resultant vertical force along the top 
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boundary divided by the cross-sectional area (B×1 m, where B is the width of the 
cell) and the strain as the vertical displacement of the top boundary divided by the 
cell width B.  

First, concrete specimens of five different sizes were investigated. The smallest 
and the largest unit cells were 10×10 mm2 and 25×25 mm2, respectively (Fig. 9.6). 
For each specimen, five different stochastic realizations were performed (Fig. 9.7) 
with the aggregate density ρ kept constant (ρ=30%, ρ=45% and ρ=60%) (Fig. 9.8). 
Next, the calculations were carried out with a different characteristic length of 
micro-structure varying between lc=0.1 mm-2.0 mm. Later, the effect of an 
aggregate density (ρ=30%, ρ=45% and ρ=60%) on strain localization was 
investigated. In the final comparative calculations, non-locality was prescribed to 
the cement matrix only. 

 

 

Fig. 9.4 Simulation of material periodicity (Gitman 2006) 

 

Fig. 9.5 Uniaxial tension test (Skarżyński and Tejchman 2009) 

Effect of specimen size and realization 
Figures 9.9-9.11 present the resultant mean macroscopic stress-strain relationships 
for various specimen sizes and random distributions of aggregate with the material 
constants from Tab. 9.1 (lc=0.5 mm). The aggregate densities were ρ=30%, ρ=45% 
or ρ=60%, respectively. In turn, the influence of the specimen size on the 
evolution of the stress-strain curves for different aggregate densities is 
demonstrated in Fig. 9.12. The results evidently show that the stress-strain curves 
are the same independently of the specimen size, aggregate density and 
distribution of inclusions in an elastic regime only (almost up to the peak). 
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However, they are completely different in a softening regime after the peak is 
reached. An increase of the specimen size causes an increase of the material 
brittleness. The differences in the evolution of stress-strain curves in a softening 
regime are caused by strain localization contributing to a loss of the material 
homogeneity (Fig. 9.13). Strain localization in the form of a localized zone 
propagates between aggregates and can be strongly curved. The width of the 
calculated zone is about wc=(4×lc)=2 mm (with lc=0.5 mm). 

 

                     
 
                    a)             b)               c)                       d) 

Fig. 9.6 Different size of concrete specimens: a) 10×10 mm2, b) 15×15 mm2, c) 20×20 
mm2, d) 25×25 mm2 (aggregate density ρ=30%) (Skarżyński and Tejchman 2009) 

 

Fig. 9.7 Different stochastic distribution of aggregate for a concrete specimen of 15×15 
mm2 (aggregate density ρ=30%) (Skarżyński and Tejchman 2009) 

           
                       a)                              b)                          c) 

Fig. 9.8 Different aggregate density ρ in concrete specimens: a) ρ=30%, b) ρ=45%, c) 
ρ=60% (Skarżyński and Tejchman 2009) 
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a) 

 
b) 

 
c) 

 
d) 

Fig. 9.9 Stress-strain curves with various sizes of concrete specimen and random distributions 
of aggregates: a) 10×10 mm2, b) 15×15 mm2, c) 20×20 mm2, d) 25×25 mm2 (characteristic 
length lc=0.5 mm, aggregate density ρ=30%) (Skarżyński and Tejchman 2009) 
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The results indicate that the RVE can be determined in a linear-elastic regime 
only (due to the lack of differences in the evolution of the stress-strain curves). 
However, it cannot be determined in a softening regime due to strain localization 
(Gitman et al. 2008).  

 
Effect of characteristic length of micro-structure 
The effect of a characteristic length of micro-structure on the stress-strain curve 
and strain localization is shown in Figs. 9.14-9.17. Figures 9.14 and 9.16 
demonstrate the influence of lc on the evolution of stress-strain curves with two 
different specimen sizes: 10×10 mm2 and 25×25 mm2, respectively. In turn,  
Figs. 9.15 and 9.17 present the distribution of a non-local softening strain measure 
for various lc changing between 0.1 mm and 2.0 mm.  

With increasing characteristic length, both specimen strength and width of a 
localized zone increase. On the other hand, softening decreases and material 
behaves more ductile. Thus, a pronounced size effect occurs. The width of a 
localized zone is about wc=4×lc independently of lc. A localized zone propagating 
in a cement matrix between aggregates is strongly curved with lc=0.25 mm-1.0 
mm, whereas becomes more straight for lc>1.0 mm (Fig. 9.17e).  

 
Effect of aggregate density 
Figure 9.18 demonstrates the effect of the aggregate density on the stress-strain 
curves for two specimen sizes: 20×20 mm2 and 25×25 mm2, respectively (ρ=30%, 
ρ=45% or ρ=60% with lc=0.5 mm).  

A localized zone is also influenced by aggregate spacing. With increasing 
aggregate density, a localized zone becomes slightly narrower (Fig. 9.19). This 
means that a characteristic length of micro-structure may not be related to the 
aggregate size only but also to the grain size of the cement matrix.  

 
Effect of non-locality range 
Figure 9.20 shows the influence of the range of non-locality on the stress-strain 
relationship. In contrast to above studies, where non-locality was prescribed to all 
3 phases of concrete, here, a cement matrix was solely assumed to be non-local 
due to fact that strain localization occurred only there. A characteristic length was 
again 0.5 mm. 

The effect of the non-locality range on results turned out to be insignificant 
since the range of averaging slightly decreased (Figs. 9.20 and 9.21).  



9.1   Uniaxial Tension 351
 

 
a) 

 
b) 

 
c) 

Fig. 9.10 Stress-strain curves for various sizes of concrete specimens and random distributions 
of aggregates: a) 10×10 mm2, b) 15×15 mm2, c) 20×20 mm2, d) 25×25 mm2 (characteristic 
length lc=0.5 mm, aggregate density ρ=45%) (Skarżyński and Tejchman 2009) 
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                                                                 d) 

Fig. 9.10 (continued) 

 
                                                                 a) 

 
  b) 

Fig. 9.11 Stress-strain curves for various sizes of concrete specimens and random distributions 
of aggregates: a) 10×10 mm2, b) 15×15 mm2, c) 20×20 mm2, d) 25×25 mm2 (characteristic 
length lc=0.5 mm, aggregate density ρ=60%) (Skarżyński and Tejchman 2009) 
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  c) 

 
  d) 

Fig. 9.11 (continued) 

 
  a) 

Fig. 9.12 Stress-strain curves for various sizes specimen sizes of concrete specimens and 
aggregate densities ρ: a) ρ=30%, b) ρ=45%, c) ρ=60% (characteristic length lc=0.5 mm) 
(Skarżyński and Tejchman 2009) 
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  b) 

 
  c) 

Fig. 9.12 (continued) 

 

Fig. 9.13 Distribution of non-local strain measure for different specimen sizes with two 
different stochastic realizations of aggregate density: a) 10×10 mm2, b) 15×15 mm2, c) 
20×20 mm2, d) 25×25 mm2 (characteristic length lc=0.5 mm, aggregate density ρ=30%) 
(Skarżyński and Tejchman 2009) 
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a)                     b)                             c)                                           d) 

Fig. 9.13 (continued) 

 

Fig. 9.14 Stress-strain curves for different characteristic lengths: a) lc=0.1 mm, b) lc=0.25 
mm, c) lc=0.5 mm, d) lc=1.0 mm, e) lc=2.0 mm (specimen size 10×10 mm2, aggregate 
density ρ=30%) (Skarżyński and Tejchman 2009) 

 
         a)                      b)                        c)                          d)                        e) 

Fig. 9.15 Distribution of non-local softening strain measure for different characteristic 
lengths lc: a) lc=0.1 mm, b) lc=0.25 mm, c) lc=0.5 mm, d) lc=1.0 mm, e) lc=2.0 mm 
(specimen size 10×10 mm2, aggregate density ρ=30%) (Skarżyński and Tejchman 2009) 
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Fig. 9.16 Stress-strain curves for different values of a characteristic length: a) lc=0.1 mm, b) 
lc=0.25 mm, c) lc=0.5 mm, d) lc=1.0 mm, e) lc=2.0 mm (specimen size 25×25 mm2, 
aggregate density ρ=30%) (Skarżyński and Tejchman 2009) 

 
a)                         b)                        c)                        d)                        e) 

Fig. 9.17 Distribution of non-local softening strain measure for different values of a 
characteristic length: a) lc=0.1 mm, b) lc=0.25 mm, c) lc=0.5 mm, d) lc=1.0 mm, e) lc=2.0 mm 
(specimen size 25×25 mm2, aggregate density ρ=30%) (Skarżyński and Tejchman 2009) 

 
  A) 

Fig. 9.18 Stress-strain curves for aggregate densities: (a) ρ=30%, (b) ρ=45%, (c) ρ=60% and 
cell sizes: (A) 20×20 mm2 (B) 25×25 mm2 (lc=0.5 mm) (Skarżyński and Tejchman 2009) 
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B) 

Fig. 9.18 (continued) 

9.2   Bending 

If the meso-structure of concrete is taken into account, such FE modeling is 
connected with a very large number of finite elements. To solve the problem 
practically, a macro-meso connection is used. It is done in a direct way, where a 
region with strain localization is considered at the meso-scale and a remaining 
region at the macro-level using a constitutive model. Alternatively, a 
computational homogenization is made using a multi-scale approach (Gitman et 
al. 2008, Geers et al. 2010, Kaczmarczyk et al. 2010). In this approach, the macro-
meso connection is used as a constitutive equation on the macro-level. Thus, 
instead of an explicit formulation of the stress-strain relation, the data from the 
meso-level is taken into account. The idea of such technique is as follows: the 
strain from the macro-level goes in the form of boundary conditions to the meso-
level, where a heterogeneous material behaviour is modeled, after which the 
reaction forces to boundary conditions are transformed by means of a 
homogenization technique (by changing the macro-level constitutive tangent 
stiffness) as stresses back to the macro-level. Different models for concrete can be 
used at meso-scale, e.g. discrete (interface element models (Carol et al. 2001), 
lattice approaches (Kozicki and Tejchman 2008), discrete element models DEM 
(Donze at al. 1999)) or continuum models (with cohesive elements (Kaczmarczyk 
et al. 2010), enhanced by a characteristic length of micro-structure (Gitman et al. 
2008) or using displacement discontinuities (Belytschko et al. 2001, 2009).  
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A) 

 
B) 

                          a)                                 b)                                   c) 

Fig. 9.19 Distribution of non-local softening strain measure for different aggregate 
densities: a) ρ=30%, b) ρ=45%, c) ρ=60% and specimen sizes: A) 20×20 mm2, B) 25×25 
mm2 (lc=0.5 mm) (Skarżyński and Tejchman 2009) 

 

 
      A) 

Fig. 9.20 Stress-strain curves for 2 different specimen sizes: A) 15×15 mm2, B) 25×25 mm2 
with a) non-locality prescribed to three phases and b) non-locality prescribed to cement 
matrix (aggregate density ρ=30%, characteristic length lc=0.5 mm) (Skarżyński and 
Tejchman 2009) 
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      B) 

Fig. 9.20 (continued) 

 
           a)                                              b) 

Fig. 9.21 Distribution of non-local softening strain measure for 2 different specimen sizes: 
A) 15×15 mm2, B) 25×25 mm2 with a) non-locality prescribed to three phases and b) non-
locality prescribed to cement matrix (aggregate density ρ=30%, characteristic length lc=0.5 
mm) (Skarżyński and Tejchman 2009) 

Experiments 
The three-point bending laboratory tests were carried out with concrete beams of a 
different size D×L (D - beam height, L=4×D - beam length) with free ends 
(Skarzyński et al. 2011), Fig. 9.22a. The beams were geometrically similar in two 
dimensions only for 2 reasons: a) to reduce the number of finite elements and the 
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related computation time in FE calculations at meso-scale (two-dimensional 
analyses were carried out instead of three-dimensional ones) and b) to avoid 
differences in the hydration heat effects which are proportional to the thickness of 
the member (Bažant and Planas, 1998). The following concrete beams were used: 
a) small-size beams 80×320 mm2, b) medium-size beams 160×640 mm2 and c) 
large-size beams 320×1280 mm2  (Fig. 9.22a). The thickness of beams was always 
the same b=40 mm, and the beams’ span was equal to 3×D. A notch with a height 
of D/10 mm was located at the mid-span of the beam bottom. The beams were 
subjected to a vertical displacement in the mid-point at a very slow rate. Two 
different fine-grained concrete mixes were composed of ordinary Portland cement, 
water and fine sand (with a mean aggregate diameter d50=0.5 mm and maximum 
aggregate diameter dmax=3.0 mm) or sand (d50=2.0 mm, dmax=8.0 mm) (Fig. 9.22b). 
The width and shape of a localized zone above the notch on the surface of beams 
was determined with a Digital Image Correlation (DIC) method which is an 
optical way to visualize surface displacements by successive post-processing of 
 

 
                                                                    a) 

 
        b) 

Fig. 9.22 Geometry of experimental concrete beams subjected to three-point bending: a) 
geometry (Le Bellěgo et al. 2003, Skarżyński et al. 2011), b) grading curve for fine sand 
(continuous line) and sand (discontinuous line) used for concrete (Skarżyński et al. 2011) 
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digital images taken at a constant time increment from a professional digital 
camera (based on displacements, strains can be calculated) (White et al. 2003). 
The experimental set-up and results were described in detail by Skarżyński et al. 
(2011). The beams of the same size were also used by Le Bellěgo et al. (2003). 

Figure 9.23 shows the formation of a localized zone on one side of the surface 
of a fine-grained small-size concrete beam above the notch from laboratory tests  
 

 

Fig. 9.23 Formation of localized zone with mean width of wc=3.5-4.0 mm directly above 
notch in 3 different experiments (‘a’, ‘b’ and ‘c’) with small-size notched fine-grained 
concrete beam 80×320×40 mm3 using DIC (vertical and horizontal axes denote coordinates 
in [mm] and colour scales strain intensity) (Skarżyński et al. 2011) 
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using a DIC (Skarżyński et al. 2011). A localized zone occurred always before the 
peak on the force-deflection diagram and was strongly curved. In some cases, it 
branched. The measured width of a localized zone above the notch increased 
during deformation due to concrete dilatancy (Fig. 9.24A) up to wc=3.5-4.0 mm 
(≤dmax) in the range of the deflection u=0.01-0.04 mm until a macro-crack was 
created. The maximum height of a localized zone above the notch was about 
hc=50-55 mm at u=0.04 mm (Fig. 9.24B). The width of a localized zone did not 
depend upon the concrete mix type and beam size (Skarżyński et al. 2011).  

 

 

Fig. 9.24 Evolution of width wc (A) and height hc (B) of localized zone with deflection u 
directly above notch in experiments with small-size notched beam 80×320×40 mm3 of fine-
grained concrete using DIC: a) aggregate d50=2 mm and dmax=8 mm, b) aggregate d50=0.5 
mm and dmax=3 mm (× - maximum vertical force, • - formation of macro-crack) 
(Skarżyński et al. 2011) 

FE results  
The FE-meshes including 12’000-1’600’000 triangular elements were assumed 
(Skarżyński and Tejchman 2010). The calculations were carried out with one set 
of material parameters for usual concrete only which was prescribed to finite 
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elements corresponding to a specified concrete phase (Tab. 9.2) using an isotropic 
damage model with non-local softening. The interface was again assumed to be 
the weakest component. In general, the material constants should be determined 
through laboratory tensile tests for each phase (that is certainly possible for 
aggregate and cement matrix but not feasible for ITZs). Since the material 
constants for aggregate and cement matrix were not separately determined with 
laboratory experiments, other relationships between material constants E and κ0 
were also possible to obtain a satisfactory agreement between experiments and FE 
analyses. 

Table 9.2 Material parameters assumed for three-point bending (Skarżyński and Tejchman 
2010) 

Material parameters Inclusions Cement 
matrix 

Interface 

Modulus of elasticity 
E [GPa] 

40 35 30 

Poisson’s ratio  
ν [-] 

0.2 0.2 0.2 

Crack initiation strain parameter  
κo [-] 

0.5 1×10-4 7×10-5 

Residual stress level parameter 
α [-] 

0.95 0.95 0.95 

Slope of softening parameter 
β [-] 

200 200 200 

 
 
Four different fine-grained concrete mixes were numerically analysed  

(Fig. 9.25). To reduce the number of aggregate grains in calculations, the size of 
the smallest inclusions had to be limited (Fig. 9.25). The aggregate size varied 
between the minimum value dmin=2 mm and maximum value dmax=8 mm with the 
mean value of d50=2 mm (aggregate size distribution curve ‘a’ of Fig. 9.25 
corresponding to the experimental one for sand concrete of Fig. 9.22b), dmin=2 mm 
and dmax=10 mm with d50=4 mm (aggregate size distribution curve ‘b’ of  
Fig. 9.25), dmin=2 mm and dmax=6 mm with d50=4 mm (aggregate size distribution 
curve ‘c’ of Fig. 9.25) and dmin=0.5 mm and dmax=3 mm with d50=0.5 mm 
(aggregate size distribution curve ‘d’ of Fig. 9.25 corresponding to the 
experimental one for fine sand concrete of Fig. 9.22b). 

The width of ITZs was assumed to be tb=0-0.75 mm. The size of finite elements 
was small enough to obtain objective results: sa=0.5 mm (aggregate), scm=0.1-0.2 
mm (cement matrix) and sITZ=0.05-0.1 mm (ITZ). The calculation time was about 
2-5 days using PC with CPU Q6600 2×2.4 GHz and 4 GB RAM. The aggregate 
density was ρ=30%, ρ=45% or 60%, respectively. 
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Fig. 9.25 Aggregate size distribution curves assumed for FE calculations (note that small 
aggregates were cut off to reduce the computation time) 

The following numerical calculation program was assumed. First, three beams 
of a different size of sand concrete were modeled: as a partially homogeneous and 
partially heterogeneous with a meso-section in the notch neighborhood and as an 
entirely heterogeneous beam at meso-scale. The width of a heterogeneous meso-
scale section bms varied between D/2 (40 mm) and D (80 mm) (D - beam height). 
These analyses allowed us to determine a representative width of a required 
heterogeneous region close to the notch. Next, the effect of different parameters 
was studied in a small-size beam. Finally, calculations were carried out with 
partially heterogeneous beams of a different size to determine a deterministic size 
effect. Three-five different stochastic realizations were usually performed for the 
same case. The width of the fracture process zone above the notch in all beams 
was determined at the deflection of u=0.15 mm on the basis of a non-local 
softening strain measure. As the cut-off value, minε =0.025 was always assumed at 

the maximum mid-point value of maxε =0.08-0.13. 
Our combined macro-mesoscopic simulations (Skarżyński and Tejchman 2010) 

are similar to a multi-scale approach using a Coupled Volume method where the 
size of a macro-element equals the size of a meso-cell (to avoid the assumption of 
any size of RVE) (Gitman et al. 2008). However, our simulations are faster 
because there is no need to continuously move between 2 calculation levels (the 
effect of an insignificant number of finite elements in a homogeneous beam region 
on the computation time is practically negligible).  

First, the macro-scale calculations were carried out. Concrete was treated as an 
entirely homogeneous one phase-material with the following material constants: 
E=38500 MPa, υ=0.2, κ0=1.3×10-4, α=0.95, β=400 and lc=2 mm. Totally, 12’000-
92’000 triangular elements were assumed. The size of triangular finite elements 
was s=1.5 mm (in the nearest neighbourhood of the notch). Figure 9.26 presents 
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the FE results of the nominal strength 21.5 /( )n Pl bDσ =  of 3 different concrete 
beams versus the normalized deflection u/D (P - vertical force, u - beam 
deflection, D - beam height, b - beam width, l=3×D - beam span) as compared to 
laboratory tests by Le Bellěgo et al. (2003). Figure 9.27 shows the distribution of a 
non-local softening strain measure in beams.  

 

 

Fig. 9.26 Calculated and experimental nominal strength 1.5Pl/(bD2) versus normalised 
beam deflection u/D (u - beam deflection, D - beam height): A) FE-results, B) experiments 
by Le Bellěgo et al. (2003), 1) small-size beam, 2) medium-size beam, 3) large-size beam 
(homogeneous one-phase material, lc=2 mm) (Skarżyński and Tejchman 2010) 

 

Fig. 9.27 Distribution of non-local strain measure above notch from numerical calculations 
with homogeneous one-phase material (at u/D=0.5) for small-size (top row), medium-size 
(medium row) and large-size beam (bottom row) (Skarżyński and Tejchman 2010) 
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The numerical strength results are in a satisfactory agreement with tests by Le 
Bellěgo et al. (2003). The size effect is realistically described (nominal strength 
and material ductility increase with decreasing beam size). The width of a 
localized zone above the notch is about wc=6.0 mm=3×lc=4×s (at u/D=0.5) and 
approximately corresponds to the measured maximum value of wc (5.5 mm) by 
DIC. However, in contrast to experiments, the calculated localized zones are 
always straight (an assumption of a stochastic spatially correlated distribution of 
tensile strength in the beam did not significantly affect their shape, Chapter 8).  

 
Effect of width of meso-scale region 
Figure 9.28 demonstrates the load-deflection curves obtained for two different 
aggregate distributions to determine a realistic width of a meso-scale region close 
to the notch (to reduce computation time). Concrete was treated in a meso-scale 
region as a random three-phase heterogeneous material with circularly-shaped 
aggregate using material constants from Tab. 9.2. In the remaining region, the 
material was homogeneous one-phase material (E=38500 MPa, υ=0.2, κ0=1.3× 
10-4, α=0.95, β=200). The beam size was 80×320 mm2. The width of a meso-scale 
region was bms=40 mm or bms=80 mm (Fig. 9.29). Totally 65’000-110’000 finite 
elements were assumed. The characteristic length was lc=1.5 mm and the 
aggregate density 30%. An entirely heterogeneous beam with 365000 elements 
served as the reference beam. For a comparison, a stochastic distribution of 
aggregate was always the same in a meso-scale section. Figure 9.30 shows the 
distribution of a non-local softening parameter above the notch.  

The results show that the effect of the width of the meso-scale region on the 
results can be significant if bms≤D/2. However, if the width of a meso-scale region 
close to the notch equals D=80 mm, the results of forces and strains with an 
entirely and a partially heterogeneous beam are similar. In further calculations to 
save computational time, a representative meso-scale section was assumed to be 
always equal to the beam height bms=D (i.e. 80 mm for a small-size beam, 160 
mm for a medium-size beam and 320 mm for a large-size beam).  

 

 

Fig. 9.28 Calculated force-deflection curves for two different random distributions of 
aggregate in small-size beam 80×320 mm2 of sand concrete (d50=2 mm, dmax=8 mm, lc=1.5 
mm): a) entirely heterogeneous beam, b) partially heterogeneous beam with width of meso-
scale section of bms=80 mm, c) partially heterogeneous beam with width of the meso-scale 
section of bms=40 mm (Skarżyński and Tejchman 2010) 
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Fig. 9.29 FE mesh: three-phase heterogeneous concrete in notch neighbourhood with round 
shaped aggregate, cement matrix and interfacial transition zones ITZ and one-phase 
homogeneous concrete in remaining region (Skarżyński and Tejchman 2010) 

 

 
a) 

 
b) 

Fig. 9.30 Calculated distribution of non-local strain measure above notch (small size beam 
80×320 mm2, lc=1.5 mm) for gravel concrete (d50=2 mm, dmax=8 mm): a) entirely 
heterogeneous beam, b) partially heterogeneous beam with width of meso-scale section of 
bms=80 mm, c) partially heterogeneous beam with width of the meso-scale section of 
bms=40 mm (Skarżyński and Tejchman 2010) 
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c) 

Fig. 9.30 (continued) 

Next the numerical 2D effect of different parameters such as the aggregate 
distribution, aggregate volume, aggregate shape, aggregate stiffness, bond 
thickness, notch size and characteristic length on the material behaviour (load-
deflection curve and strain localization) was investigated for the small concrete 
beam 80×320 mm2. The parameters were varied independently. 

 
Effect of stochastic aggregate distribution 
The effect of a random distribution of round-shaped aggregate particles in the 
concrete beam on the force-deflection diagram and width of a localized zone is 
shown in Figs. 9.31 and 9.32. The aggregate volume was ρ=45% using two 
aggregate size distribution curves ‘a’ (d50=2 mm, dmax=8 mm) and ‘d’ (d50=0.5 
mm, dmax=3 mm) of Fig. 9.25, respectively. The ITZ thickness was tb=0.25 mm. 

All stochastic force-deflection curves are obviously the same in the almost 
entire elastic regime. However, they are significantly different at and after the 
peak (Fig. 9.31) due to a localized zone propagating between aggregate 
distributed at random, which is always non-symmetric and curved (Fig. 9.32). 
The difference in the strength is about 10-20%. The calculated width of a 
localized zone is approximately wc=4.5 mm=3×lc=9×scm independently of dmax 
and d50 (as in our tests, Skarżyński et al. 2011). The calculated localized zone is 
created at about u/D=0.0003 (u=0.024 mm) and its width increases during the 
deformation process. 

A similar strong stochastic effect was also observed in FE calculations by 
Gitman et al. (2007) and He (2010). Surprisingly, a negligible stochastic effect 
was found in FE simulations by Kim and Abu Al-Rub (2011). 
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Fig. 9.3l Calculated force-deflection curves for fine-grained concrete beam (lc=1.5 mm, 
ρ=45%, tb=0.25 mm): A) with aggregate size distribution curve ‘a’ of Fig. 9.25 (d50=2 mm and 
dmax=8 mm) and B) with aggregate size distribution curve ‘d’ of Fig. 9.25 (d50=0.5 mm and 
dmax=3 mm) for three random distributions of circular aggregates (curves ‘a’, ‘b’ and ‘c’)  

Effect of aggregate shape and aggregate size distribution 
To model the effect of the aggregate shape, four different grain shapes were taken 
into account, namely: circular, octagonal, irregular (angular) and rhomboidal  
(Fig. 9.33) keeping always the volume fraction and centres of grains constant 
(lc=1.5 mm, ρ=60%, tb=0.25 mm).  
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Fig. 9.32 Calculated localized zone in fine-grained concrete beam in notch region based on 
distribution of non-local strain measure corresponding to load-deflection curves ‘a’, ‘b’ and 
‘c’ of Figs. 9.31A and 9.31B (lc=1.5 mm, ρ=45%, tb=0.25 mm) 

The aggregate shape can have a different influence on the beam ultimate 
strength depending upon the aggregate size distribution (Figs. 9.34 and 9.35). For 
the aggregate size distribution of Fig. 9.25a, the ultimate beam strength is the 
highest for rhomboidal-shaped particles and the lowest for octagonal-shaped 
particles (Figs. 9.33a, 9.35B and 9.35D). This difference equals even 30%. In the 
case of the aggregate size distribution curve of Fig. 9.25b, the ultimate beam 
strength is similar for all assumed particle shapes (Fig. 9.34B). For the aggregate 
size distribution of Fig. 9.25c, angular-shaped inclusions have the lower tensile 
strength than circular grains (Fig. 9.35C). From simulations follows that the mean 
tensile strength is usually higher with the larger mean grain size and the narrower 
grain range (Figs. 9.34A, 9.34B, 9.34C and 9.35).  
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Fig. 9.33 Aggregate shape assumed in calculations: a) circular, b) octagonal, c) irregular 
(angular), d) rhomboidal 

 

Fig. 9.34 Calculated force-deflection curves for different aggregate shape of Fig. 9.33: a) 
circular, b) octagonal, c) irregular (angular), d) rhomboidal (fine-grained concrete beam 
80×320 mm2, lc=1.5 mm, ρ=60%, tb=0.25 mm) and different aggregate size distributions of 
Fig. 9.25: A) d50=2 mm and dmax=8 mm (curve ‘a’), B) d50=4 mm and dmax=10 mm (curve 
‘b’), C) d50=4 mm and dmax=6 mm (curve ‘c’) 
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The width of a localized zone equals approximately wc=3 mm for ρ=60% and is 
not influenced by the aggregate shape, aggregate distribution, mean and maximum 
grain size (Fig. 9.36). In turn, the form of a localized zone is strongly affected by 
the aggregate shape contributing thus to the different strength. The calculated 
width of a localized zone is in good agreement with our experiments with fine-
grained concrete (Figs. 9.23 and 9.24A). Our outcome is in contrast to statements 
by Bažant and Pijauder-Cabot (1989), and Bažant and Oh (1983) wherein the 
width of a localized zone in usual concrete was estimated to be dependent upon 
dmax. It is also in contrast to experimental results by Mihashi and Nomura (1996) 
which showed that the width of a localized zone in usual concrete increased with 
increasing aggregate size. The differences between our and the experimental 
results (Bažant and Oh 1983, Mihashi and Nomura 1996) lie probably in a 
different concrete mix, specimen size and loading type. For instance, in our other 
tests with large reinforced concrete beams 6.0 m long without shear reinforcement 
under bending, the width of a localized zone in usual concrete was about 15 mm 
indicating that lc=5 mm (Syroka and Tejchman 2011). This problem merits further 
experimental and numerical investigations. 

 

 

Fig. 9.35 Calculated force-deflection curves for different aggregate shape of Fig. 9.33: A) 
circular, B) octagonal, C) irregular (angular), D) rhomboidal (fine-grained concrete beam 
80×320 mm2, lc=1.5 mm, ρ=60%, tb=0.25 mm) and different aggregate size distribution of 
Fig. 9.25: a) d50=2 mm and dmax=8 mm (curve ‘a’), b) d50=4 mm and dmax=10 mm (curve 
‘b’), c) d50=4 mm and dmax=6 mm (curve ‘c’) 
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According to Kim and Abu Al-Rub (2011) the aggregate shape has a weak 
effect on the ultimate strength of concrete and on the strain to damage-onset, but 
significantly affects the crack initiation, propagation and distribution. The stress 
concentrations at sharp edges of polygonal particles cause that the ultimate tensile 
strength and strain at the damage onset are the highest for circular grains model. 
Similar conclusions were derived by He et al. (2009) and He (2010).  

 

 

Fig. 9.36 Calculated localized zone based on distribution of non-local strain measure in 
fine-grained concrete beam in notch region corresponding to load-deflection curves ‘a’, ‘b’, 
‘c’ and ‘d’ of Figs. 9.34A, 9.34B and 9.34C (lc=1.5 mm, ρ=60%, tb=0.25 mm) 

Effect of volume fraction of aggregate 
Circular grains with the volume of ρ=30%, ρ=45% and ρ=60% were used (lc=1.5 
mm, tb=0.25 mm), Fig. 9.37. Figures 9.38 and 9.39 demonstrate the effect of the 
aggregate volume in fine-grained concrete beam with the aggregate size 
distributions ‘a’ of Fig. 9.25 (d50=2 mm, dmax=8 mm) and ‘d’ of Fig. 9.25 (d50=0.5 
mm, dmax=3 mm). 

In our FE simulations, the Young modulus and ultimate beam strength increase 
with increasing aggregate density in the range of 30%-60% (Fig. 9.38). This 
increase certainly depends on material parameters assumed for separated concrete 
phases, in particular for ITZs being always the weakest parts in concrete. 
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The width and shape of a localized zone are influenced by the aggregate 
volume; a localized zone becomes narrower with increasing aggregate volume: 
wc=6 mm at ρ=30%, wc=4.5 mm at ρ=45% and wc=3 mm at ρ=60% (Fig. 9.39).  

 

 

Fig. 9.37 Concrete beams with different volume fraction of aggregate ρ in region close to 
notch: a) ρ=30%, b) ρ=45% and c) ρ=60% using grain size distribution ‘a’ of Fig. 9.25 

According to Kim and Abu Al-Rub (2011) the Young modulus linearly 
increases with increasing aggregate volume, and the tensile strength decreases 
with increasing aggregate density up to ρ=40% and increases next from ρ=40% up 
to ρ=60%. The strain at the damage linearly decreases with increasing aggregate 
volume. He et al. (2009) and He (2010) concluded that concrete with a higher 
packing density of aggregate up to 50% has a decreasing tensile strength (due to a 
higher number of very weak interfacial transitional zones around aggregate). It 
seems that the property of ITZ (stiffness, strength and width) is essential for the 
global strength versus ρ.  

 
Effect of ITZ thickness 
The interfacial transition zone (ITZ) is a special region of the cement paste around 
particles, which is perturbed by their presence. Its origin lies in the packing of the 
cement grains against the much larger aggregate which leads to a local increase in 
porosity (micro-voids) and a presence of smaller cement particles. A paste with 
lower w/c (higher packing density) or made with finer cement particles leads to  
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ITZ of smaller extent. This layer is highly heterogeneous and damaged and thus 
critical for the concrete behaviour (Srivener et al. 2004, Mondal et al. 2009). An 
accurate understanding of the properties and behaviour of ITZ is one of the most 
important issues in the meso-scale analysis because damage is initiated at the 
weakest region and ITZ is just this weakest link in concrete. We assumed that 
ITZs have the reduced stiffness and strength as compared to the cement matrix 
(Tabl.9.2). 

 

 

Fig. 9.38 Calculated load-deflection curves for different volume fractions ρ of circular 
aggregate: a) ρ=30%, b) ρ=45% and c) ρ=60% (concrete beam 80×320 mm2, lc=1.5 mm, 
tb=0.25 mm, A) aggregate size distribution ‘a’ of Fig. 9.25 (d50=2 mm, dmax=8 mm), B) 
aggregate size distribution ‘d’ of Fig. 9.25 (d50=0.5 mm, dmax=3 mm) 

Figures 9.40 and 9.41 demonstrate the effect of the ITZ thickness in a fine-
grained concrete beam of circular grains with the aggregate size distribution ‘a’ of 
Fig. 9.25 (d50=2 mm, dmax=8 mm) assuming the aggregate volume fraction ρ=45% 
and ρ=60% (lc=1.5 mm). Since there is very limited data on the thickness of ITZ, 
the thickness tb in our study was assumed to be 0 mm, 0.05mm (He et al. 2011,  
He 2010), 0.25 mm (Gitman et al. 2007) and 0.75 mm. 
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Fig. 9.39 Calculated localized zone based on distribution of non-local strain measure in 
fine-grained concrete beam 80×320 mm2 (lc=1.5 mm, tb=0.25 mm) corresponding to load-
deflection curves ‘a', 'b' and 'c' of Figs. 9.38A and 9.38B 

The results show that the thickness and strength of ITZs strongly affect both the 
load-displacement response and shape of localized zone. Since ITZ is the weakest 
phase, the ultimate beam strength decreases with increasing bond thickness  
(Fig. 9.40). This result is in agreement with those by He et al. (2009), He (2010) 
and Kim and Abu Al-Rub (2011). However, the residual strength rather increases 
with increasing bond thickness as in calculations by Kim and Abu Al-Rub (2011). 
The width of a localized zone is wc=4.5 mm (ρ=45%) and wc=3 mm (ρ=60%) and 
is not affected by the ITZ size tb (Fig. 9.41).  

 
Effect of notch size 
Figures 9.42 and 9.43 demonstrate the effect of the notch size on the load-
deflection diagram and strain localization in a fine-grained concrete beam with a 
random distribution of aggregate ‘a’ of Fig. 9.25 (d50=2 mm to dmax=8 mm) using 
circular aggregate volume ρ=30% and ρ=60% (lc=1.5 mm, tb=0.25 mm). The 
notch size was 0×0 mm2, 3×3 mm2 and 6×3 mm2 (width×height), respectively. 
The beam without notch was modelled as entirely heterogeneous to be sure that a 
localized zone occurs in a meso-region. 
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The ultimate beam strength is higher with decreasing notch size (Fig. 9.42). The 
notch size has no influence on the width of a localized zone (wc=6 mm at ρ=30% 
and wc=3 mm at ρ=60% (Fig. 9.43). 

 

 
Fig. 9.40 Numerical effect of different ITZ thickness tb in FE calculations on load-
deflection curve: a) tb=0 mm, b) tb=0.05 mm, c) tb=0.25 mm and d) tb=0.75 mm, A) ρ=45%, 
B) ρ=60% (fine-grained concrete beam 80×320 mm2, lc=1.5 mm, circular grains with size 
distribution ‘a’ of Fig. 9.25 (d50=2 mm, dmax=8 mm) 

Effect of aggregate stiffness 
Figure 9.44 shows the effect of the aggregate stiffness in a small size beam 
(80×320 mm2, d50=4 mm and dmax=10 mm, ρ=60%, tb=0.25 mm, lc=1.5 mm). The 
calculations were carried out with weak aggregate (which had the same properties 
as ITZ of Tab. 9.2).  

For the weak aggregate, a localized zone can propagate through weak grains. 
The vertical force is obviously smaller and the width of a localized zone is higher 
as compared to the results with the strong aggregate (strong aggregate - wc=3.3 
mm, weak aggregate - wc=5.8 mm). 
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Fig. 9.41 Numerical effect of different bond thickness tb in FE calculations on distribution 
of non-local strain measure close to beam notch corresponding to load-deflection curves 
‘a’, ‘b’, ‘c’ and ‘d’ of Figs. 9.40A and 9.40B 

Effect of characteristic length of micro-structure 
The effect of a characteristic length of micro-structure on the load-deflection 
diagram and strain localization is shown in Figs. 9.45 and 9.46 using the same 
stochastic distribution of circular aggregate (lc changed between 0.5 mm and  
5 mm). 

With increasing characteristic length, both beam strength and width of a 
localized zone strongly increase since the material softening decreases and 
material becomes more ductile. A pronounced deterministic size effect occurs. A 
localized zone propagating in a cement matrix between aggregate grains is 
strongly curved at lc=0.5-2.5 mm, whereas it becomes more straight at lc>2.5 mm. 
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It is about: wc=2.9-17.6 mm=(3.5-5.9)×lc=(5.8-35.2)×d50 at ρ=30%, wc=2.5-16.7 
mm=(3.0-5.0)×lc=(1.25-8.35)×d50 at ρ=45% and wc=2.4-13.9 mm=(2.3-
4.7)×lc=(0.6-3.47)×d50 at ρ=60% (Tab. 9.3). It always decreases with increasing ρ 
(Tab. 9.3). A characteristic length of micro-structure is not uniquely connected to 
the aggregate size.  
 

 

Fig. 9.42 Numerical effect of notch size on force-deflection curve for two different 
aggregate densities: a) 0×0 mm2, b) 3×3 mm2 and c) 6×3 mm2, A) ρ=30%, B) ρ=60% (fine-
grained concrete beam 80×320 mm2, lc=1.5 mm, circular aggregate distribution ‘a’ of  
Fig. 9.25 with d50=2 mm and dmax=8 mm) 

Figure 9.47 shows the evolution of the width and height of the localized zone 
from FE calculations. The FE results of Fig. 9.47 are similar as in the experiments 
(Fig. 9.25). The calculated maximum width is 3.25 mm (3.5-4.0 mm in tests) and 
height 55 mm (50-55 mm in tests) at u=0.2 mm. The calculated localized zone 
strongly forms (linearly) before and after the maximum vertical force in the range 
of u=0.025-0.05 mm (width) and of u=0.025-0.1 mm (length). The mean 
propagation rate of the calculated localized zone versus the beam deflection is 
similar as in experiments, although is more uniform (Fig. 9.48). In the experiments, 
a macro-crack occurred at about u=0.04 mm, which cannot be captured by our 
model. In order to numerically describe a macro-crack, a discontinuous approach 
has to be used (e.g. XFEM or cohesive crack model, Chapter 4). 
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Fig. 9.43 Numerical effect of notch size on distribution of non-local strain measure close to 
beam notch corresponding to load-deflection curves ‘a’, ‘b’ and ‘c’ of Figs. 9.42A and 
9.42B 

Effect of beam size 
The effect of the beam size is presented in Figs. 9.49 and 9.50. Figure 9.49 shows 

the numerical results of the nominal strength 21.5 /( )n Pl bDσ =  versus the 

normalized deflection u/D for three different concrete beams compared to tests by 
Le Bellěgo et al. (2003). Concrete was treated as an one-phase material with a 
heterogeneous three-phase section close to the notch (bms=D) using material 
constants from Tab. 9.2. The following amount of triangular finite elements was 
used: 110’000 (small beam), 420’000 medium beam and 1’600’000 (large beam). 
In turn, Figure 9.50 presents the distribution of a non-local softening strain 
measure in beams. The calculations were carried out with gravel concrete of 
dmax=8 mm, aggregate density of ρ=30% and a characteristic length of lc=1.5 mm.  
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Fig. 9.44 Effect of aggregate stiffness on force-deflection curve and distribution of non-
local strain measure close to beam notch: a) strong circular aggregate, b) weak circular 
aggregate (fine-grained concrete beam 80×320 mm2, lc=1.5 mm, circular aggregate 
distribution ‘c’ of Fig. 9.25 with d50=4 mm and dmax=10 mm, ρ=60%) 

The numerical results are in a satisfactory agreement with tests by Le Bellěgo 
et al. (2003). The deterministic size effect is realistically modelled in calculations. 
The width of the localized zone above the notch at u/D=0.5 is 6 mm (ρ=30%) for 
all beam sizes. The localized zone propagating between aggregate is always 
strongly curved, what satisfactorily reflects the experimental results. 
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Fig. 9.45 Calculated load-deflection curves for different characteristic lengths lc: a) 
lc=0.5 mm, b) lc=1.5 mm, c) lc=2.5 mm and d) lc=5 mm (concrete beam 80×320 mm2, 
ITZ thickness tb=0.25 mm), A) volume fraction of circular aggregate ρ=30% (concrete 
mix ‘d’ of Fig. 9.25 with d50=0.5 mm and dmax=3 mm), B) volume fraction of circular 
aggregate ρ=45% (concrete mix ‘a’ of Fig. 9.25 with d50=2 mm and dmax=8 mm),  
C) volume fraction of angular aggregate ρ=60% (concrete mix ‘b’ of Fig. 9.25 with d50=4 
mm and dmax=10 mm) 

Figure 9.51 shows a comparison between the measured and calculated size 
effect for concrete beams. In addition, the results of a deterministic size effect law 
by Bažant, Eq. 5.5 (Bažant and Planas 1998, Bažant 2004) are enclosed (which is 
valid for structures with pre-existing notches, Chapter 8). The experimental and 
theoretical beam strength shows a strong parabolic size dependence. The 
experimental and numerical results match quite well the size effect law by Bažant 
(Bažant and Planas 1998). 

 



9.2   Bending 383
 

 

Fig. 9.46 Calculated localized zone based on distribution of non-local strain measure for 
different characteristic lengths lc: a) lc=0.5 mm, b) lc=1.5 mm, c) lc=2.5 mm and d) lc=5 mm 
(concrete beam 80×320 mm2, bond thickness tb=0.25 mm), A) volume fraction of circular 
aggregate ρ=30% (concrete mix ‘d’ of Fig. 9.25 with d50=0.5 mm and dmax=3 mm), B) 
volume fraction of circular aggregate ρ=45% (concrete mix ‘a’ of Fig. 9.25 with d50=2 mm 
and dmax=8 mm), C) volume fraction of angular aggregate ρ=60% (concrete mix ‘b’ of  
Fig. 9.25 with d50=4 mm and dmax=10 mm) 

Table 9.3 Calculated width of localized zone with different characteristic length lc and 
volume fraction ρ  
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Fig. 9.47 The calculated evolution of width (A) wc and height hc (B) of localized zone 
versus beam deflection u: a) concrete mix ‘a’ of Fig. 9.25 with d50=2 mm and dmax=8 mm, 
irregular aggregate, ρ=60%, lc=1.5 mm, b) concrete mix ‘b’ of Fig. 9.25 with d50=4 mm and 
dmax=10 mm, octagonal aggregate, ρ=60%, lc=1.5 mm, c) concrete mix ‘c’ of Fig. 9.25 with 
d50=4 mm and dmax=6 mm, circular aggregate, ρ=60%, lc=1.5 mm, d) concrete mix ‘a’ of 
Fig. 9.25 with d50=2 mm and dmax=8 mm, circular aggregate, ρ=60%, beam without notch, 
lc=1.5 mm (• - maximum vertical force) 
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Fig. 9.48 Comparison between measured (a) and calculated (b) evolution of width of 
localized zone wc versus beam deflection u (maximum vertical force occurs at deflection 
u=0.035 mm) 

 

 

Fig. 9.49 Calculated nominal strength 1.5Pl/(bD2) versus normalised beam deflection 
u/D (u - beam deflection, D - beam height): A) FE-results, B) experiments by Le 
Bellěgo et al. (2003): 1) small-size beam, (2) medium-size beam, (3) large-size beam 
(three-phase random heterogeneous material close to notch, bms=D) (Skarżyński and 
Tejchman 2010) 
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Fig. 9.50 Calculated distribution of non-local strain measure above notch from numerical 
calculations (at u/D=0.5) in small-size, medium-size and large-size beam (random 
heterogeneous three-phase material close to notch, bms=D) (Skarżyński and Tejchman 
2010) 

 

 

Fig. 9.51 Calculated and measured size effect in nominal strength 1.5Pl/(bD2) versus beam 
height D for concrete beams of a similar geometry (small-, medium- and large-size beam): 
a) our laboratory experiments, b) our FE-calculations (homogeneous one-phase material), 
c) our FE-calculations (heterogeneous material close to notch, bms=D), d) size effect law by 
Bažant (2004), Eq. 5.5, e) experiments by Le Bellěgo et al. (2003) (Skarżyński and 
Tejchman 2010) 
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9.3   Representative Volume Element 

Thus, the most important issue in multi-scale analyses is determination of an 
appropriate size for a micro-structural model, so-called representative volume 
element RVE. The size of RVE should be chosen such that homogenized 
properties become independent of micro-structural variations and a micro-
structural domain is small enough such that separation of scales is guaranteed. 
Many researchers attempted to define the size of RVE in heterogeneous materials 
with a softening response in a post-peak regime (Hill 1963, Bažant and Pijauder-
Cabot 1989, Drugan and Willis 1996, Evesque 2000, van Mier 2000, Bažant and 
Novak 2003, Kanit et al. 2003, Kouznetsova et al. 2004, Gitman et al. 2007, 
Skarżyński and Tejchman 2009). The last outcomes in this topic show, however, 
that RVE cannot be defined in softening quasi-brittle materials due to strain 
localization since the material loses then its statistical homogeneity, Chapter 9.1 
(Gitman et al. 2007, Skarżyński and Tejchman 2009, 2010). Thus, each multi-
scale approach always suffers from non-objectivity of results with respect to a cell 
size. RVE solely exists for linear and hardening regimes. 

The intention of our FE investigations is to determine RVE in concrete under 
tension using two alternative strategies (one of them was proposed by Nguyen et 
al. 2010) (Skarżyński and Tejchman al. 2012). Concrete was assumed at meso-
scale as a random heterogeneous material composed of three phases. The FE 
calculations of strain localization were carried out again with a scalar isotropic 
damage with non-local softening (Tab. 9.4). The interface was assumed to be the 
weakest component (Lilliu and van Mier 2003) and its width was 0.25 mm 
(Gitman et al. 2007). For the sake of simplicity, the aggregate was assumed in the 
form of circles. The number of triangular finite elements changed between 4’000 
(the smallest specimen) and 100’000 (the largest specimen). The size of triangular 
elements was: sa=0.5 mm (aggregate), scm=0.25 mm (cement matrix) and sitz=0.1 
mm (interface). To analyze the existence of RVE under tension, a plane strain 
uniaxial tension test was performed with a quadratic concrete specimen 
representing a unit cell with the periodicity of boundary conditions and material 
periodicity (Chapter 9.1), Fig. 9.52.  

The unit cells of six different sizes were investigated b×h: 5×5 mm2, 10×10 
mm2, 15×15 mm2, 20×20 mm2, 25×25 mm2 and 30×30 mm2, respectively. For 
each specimen, three different stochastic realizations were performed with the 
aggregate density of ρ=30% (the results for ρ=45% and ρ=60% showed the same 
trend). A characteristic length of micro-structure was assumed to be lc=1.5 mm 
based on DIC and numerical studies with an isotropic damage model (Chapter 
9.2). Thus, the maximum finite element size in 3 different concrete phases was not 
greater than 3×lc to obtain mesh-objective results (Bobiński and Tejchman 2004, 
Marzec et al. 2007). 
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Table 9.4 Material properties assumed for FE calculations of 2D random heterogeneous 
three-phase concrete material (Skarżyński and Tejchman 2012) 

Parameters Aggregate Cement matrix ITZ 

Modulus of elasticity E 
[GPa] 

30 25 20 

Poisson's ratio υ [-] 0.2 0.2 0.2 

Crack initiation strain κ0 [-] 0.5 8×10-5 5×10-5 

Residual stress level α [-] 0.95 0.95 0.95 

Slope of softening β [-] 200 200 200 

 

 

Fig. 9.52 Deformed three-phase concrete specimen with periodicity of boundary conditions 
and material periodicity (Skarżyński and Tejchman 2012) 

Standard averaging approach 
The standard averaging is performed in the entire specimen domain (Chapter 9.1). 
The homogenized stress and strain are defined in two dimensions as 

                   
int
yf

b
σ< >=                     and                       u

h
ε< >= ,                (9.4) 

where int
yf  denotes the sum of all vertical nodal forces in the ‘y’ direction along 

the top edge of the specimen (Fig. 9.5), u is the prescribed vertical displacement in 
the ‘y’ direction and b and h are the width and height of the specimen. 

Figure 9.53 presents the stress-strain relationships for various cell sizes and two 
random aggregate distributions with the material constants of Tab. 9.5 (lc= 
1.5 mm). In the first case, the aggregate distribution was similar and in the second 
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case it was at random in different unit cells. The results show that the stress-strain 
curves are the same solely in an elastic regime independently of the specimen size, 
aggregate density and aggregate distribution. However, they are completely 
different at the peak and in a softening regime. An increase of the specimen size 
causes a strength decrease and an increase of material brittleness (softening rate). 
The differences in the evolution of stress-strain curves in a softening regime are 
caused by strain localization (in the form of a curved localized zone propagating 
between aggregates, Figs. 9.54 and 9.55) contributing to a loss of material 
homogeneity (due to the fact that strain localization is not scaled with increasing 
specimen size). The width of a calculated localized zone is approximately wc=3 
mm=2×lc=12×scm (unit cell 5×5 mm2), wc=5 mm=3.33×lc=20×scm (unit cell 10×10 
mm2) and wc=6 mm=4×lc=24×scm (unit cells larger than 10×10 mm2).  

Figure 9.56 presents the expectation value and standard deviation of the tensile 
fracture energy Gf versus the specimen height h for 3 different realizations. The 
fracture energy Gf was calculated as the area under the strain-stress curves gf 
multiplied by the width of a localized zone wc 

                                     
2

1

( d )

a

f f c c

a

G g w wσ ε= × = < > < > × .                         (9.4) 

The integration limits ‘a1’ and ‘a2’ are 0 and 0.001, respectively. The fracture energy 
decreases with increasing specimen size without reaching an asymptote, i.e. the size 
dependence of RVE exists (since a localized zone does not scale with the specimen 
size). Thus, RVE cannot be found for softening materials and a standard averaging 
approach cannot be used in homogenization-based multi-scale models. 

 

 
a) 

Fig. 9.53 Stress-strain curves for various sizes of concrete specimens and two different 
random distributions of aggregate (a) and (b) using standard averaging procedure 
(characteristic length lc=1.5 mm, aggregate density ρ=30%) (Skarżyński and Tejchman 2012) 
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b) 

Fig. 9.53 (continued) 
 

 

Fig. 9.54 Distribution of non-local softening strain measure for various specimen sizes and 
stress-strain curves of Fig. 9.53a using standard averaging procedure (characteristic length 
lc=1.5 mm, aggregate density ρ=30%) (Skarżyński and Tejchman 2012) 
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Fig. 9.55 Distribution of non-local softening strain measure for various specimen sizes and 
stress-strain curves of Fig. 9.53b using standard averaging procedure (characteristic length 
lc=1.5 mm, aggregate density ρ=30%) (Skarżyński and Tejchman 2012) 

 

 

Fig. 9.56 Expected value and standard deviation of tensile fracture energy Gf versus 
specimen height h using standard averaging (aggregate density ρ=30%) (Skarżyński and 
Tejchman 2012) 
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Localized zone averaging approach 
Recently, the existence of RVE for softening materials was proved (based on 
Hill’s averaging principle) for cohesive and adhesive failure by deriving a 
traction-separation law (for a macro crack) instead of a stress-strain relation from 
microscopic stresses and strains (Verhoosel et al. 2010a, 2010b). This was 
indicated by the uniqueness (regardless of a micro sample size) of a macro 
traction-separation law which was obtained by averaging responses along 
propagating micro discrete cracks. Prompted by this approach and the fact that a 
localized zone does not scale with the micro specimen size, Nguyen et al. (2010) 
proposed an approach where homogenized stress and strain were averaged over a 
localized strain domain in softening materials rather (which is small compared 
with the specimen size) than over the entire specimen. We used this method in this 
paper. In this approach, the homogenized stress and strain are 

            
1

m z
z Az

dA
A

σ σ< >=                   and              
1

z

m z
z A

dA
A

ε ε< >=  ,        (9.5) 

where Az is the localized zone area and σm and εm are the meso-stress and meso-
strain, respectively. The localized zone area Az is determined on the basis of a 

distribution of the non-local equivalent strain measure ε . As the cut-off value 

min 0.005ε =  is always assumed at the maximum mid-point value usually equal to 

max 0.007 0.011ε = − . Thus, a linear material behaviour is simply swept out 
(which causes the standard stress-strain diagrams to be specimen size dependent), 
and an active material plastic response is solely taken into account. 

Figure 9.57 presents the stress-strain relationships for various specimen sizes 
and two random aggregate distributions with the material constants from Tab. 9.5 
(lc=1.5 mm) for the calculated localized zones of Figs. 9.54 and 9.55. These stress-
strain curves in a softening regime (for the unit cells larger than 10×10 mm2) are 
in very good accordance with respect to their shape. In this case, the statistically 
representative volume element exists and is equal to 15×15 mm2.  

Figure 9.58 presents the expectation value and standard deviation of the tensile 
fracture energy Gf versus the specimen height h for 3 different realizations. The 
integration limits were a1=0 and a2=0.004. The fracture energy decreases with 
increasing specimen size approaching an asymptote when the cell size is 15×15 
mm2. Thus, the homogenized stress-strain relationships obtained are objective 
with respect to the micro sample size. RVE does not represent the entire material 
in its classical meaning, but the material in a localized zone. 

 
Varying characteristic length approach 
With increasing characteristic length, both specimen strength and width of a 
localized zone increase. On the other hand, softening decreases and material 
behaves more ductile. Taking these two facts into account, a varying characteristic  
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length related to the reference specimen size (assumed as 15×15 mm2 or 30×30 
mm2) is introduced (to scale the width of a localized zone with varying specimen 
height) according to the formula  

                                          15 15

15
v
c c

h
l l ×= × [mm]

[mm]
                                         (9.6) 

or 

                                               30 30

30
v
c c

h
l l ×= × [mm]

[mm]
,                                  (9.7) 

where lc
15×15=lc

30×30=1.5 mm is a characteristic length for the reference unit cell 
15×15 mm2 or 30×30 mm2 and h is the unit cell height. A larger unit cell than 
30×30 mm2 can be also used (the width of a localized zone in the reference unit 
cell cannot be too strongly influenced by boundary conditions, as e.g.. the cell size 
smaller than 10×10 mm2). The characteristic length lv

c is no longer a physical 
parameter related to non-local interactions in the damaging material, but an 
artificial parameter adjusted to the specimen size.  

The stress-strain relationships for various specimen sizes and various 
characteristic lengths are shown in Figs. 9.59 and 9.60. A characteristic length 
varies between lc=0.5 mm for the unit cell 5×5 mm2 and lc=3.0 mm for the unit 
cell 30×30 mm2 according to Eq. 9.6, and between lc=0.25 mm for the unit cell 
5×5 mm2 and lc=1.5 mm for the unit cell 30×30 mm2 according to Eq. 9.7. The 
width of a calculated localized zone (for the reference unit cell 15×15 mm2) is 
approximately wc=2 mm=4×lc=8×scm (cell 5×5 mm2), wc=4 mm=4×lc=16×scm 
(cell 10×10 mm2), wc=6 mm=4×lc=24×scm (cell 15×15 mm2), wc=8 
mm=4×lc=32×scm (cell 20×20 mm2), wc=10 mm=4×lc=40×scm (cell 25×25 mm2) 
and wc=12 mm=4×lc=48×scm (cell 30×30 mm2) (Figs. 9.61 and 9.62). The width 
of a calculated localized zone (for the reference unit cell 30×30 mm2) is 
approximately wc=1 mm=4×lc=4×scm (cell 5×5 mm2), wc=2 mm=4×lc=8×scm (cell 
10×10 mm2), wc=3 mm=4×lc=12×scm (cell 15×15 mm2), wc=4 mm=4×lc=16×scm 
(cell 20×20 mm2), wc=5 mm=4×lc=20×scm (cell 25×25 mm2) and wc=6 
mm=4×lc=24×scm (cell 30×30 mm2) (Figs. 9.63 and 9.64). A localized zone is 
scaled with the specimen size. Owing to that the material does not lose its 
homogeneity and its response during softening is similar for the cell 15×15 mm2 
and larger ones. Thus, the size of the representative volume element is again 
equal to 15×15 mm2. 

The expected value and standard deviation of the unit fracture energy gf=Gf/wc 
versus the specimen height h are demonstrated in Fig. 9.65. With increasing cell 
size, the value of gf stabilizes for the unit cell of 15×15 mm2. 
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a) 

 

 
b) 

Fig. 9.57 Stress-strain curves for various sizes of concrete specimens and two different 
random distributions of aggregate (a) and (b) using localized zone averaging procedure 
(characteristic length lc=1.5 mm, aggregate density ρ=30%) (Skarżyński and Tejchman 2012) 

 

Fig. 9.58 Expected value and standard deviation of tensile fracture energy Gf versus 
specimen height h using localized zone averaging (aggregate density ρ=30%) (Skarżyński 
and Tejchman 2012) 
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a) 

 
b) 

Fig. 9.59 Stress-strain curves for various sizes of concrete specimens and two different 
random distributions of aggregate (a) and (b) using varying characteristic length approach 
(reference unit size 15×15 mm2, characteristic length according to Eq. 9.6, aggregate density 
ρ=30%) (Skarżyński and Tejchman 2012) 
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a) 

 

 
b) 

Fig. 9.60 Stress-strain curves for various sizes of concrete specimens and two different 
random distributions of aggregate (a) and (b) using varying characteristic length approach 
(reference unit size 30×30 mm2, characteristic length according to Eq. 9.7, aggregate density 
ρ=30%) (Skarżyński and Tejchman 2012) 
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Fig. 9.61 Distribution of non-local softening strain measure for various specimen sizes and 
stress-strain curves from Fig. 9.59a using varying characteristic length approach (reference 
unit size 15×15 mm2,  characteristic length according to Eq. 9.6, aggregate density ρ=30%) 
(Skarżyński and Tejchman 2012) 
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Fig. 9.62 Distribution of non-local softening strain measure for various specimen sizes and 
stress-strain curves from Fig. 9.59b using varying characteristic length approach (reference 
unit size 15×15 mm2,  characteristic length according to Eq. 9.6, aggregate density ρ=30%) 
(Skarżyński and Tejchman 2012) 
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Fig. 9.63 Distribution of non-local softening strain measure for various specimen sizes and 
stress-strain curves from Fig. 9.60a using varying characteristic length approach (reference 
unit size 30×30 mm2,  characteristic length according to Eq. 9.7, aggregate density ρ=30%) 
(Skarżyński and Tejchman 2012) 
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Fig. 9.64 Distribution of non-local softening strain measure for various specimen sizes and 
stress-strain curves from Fig. 9.60b using varying characteristic length approach (reference 
unit size 30×30 mm2, characteristic length according to Eq. 9.7, aggregate density ρ=30%) 
(Skarżyński and Tejchman 2012) 
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       a) 

 
      b) 

Fig. 9.65 Expected value and standard deviation of unit fracture energy gf versus specimen 
height h using varying characteristic length approach: a) reference cell size 15×15 mm2, b)  

reference cell size 30×30 mm2 (aggregate density ρ=30%) (Skarżyński and Tejchman 2012) 

The following conclusions can be drawn from our mesoscopic non-linear FE-
investigations of strain localization in concrete under tensile loading: 

• The 2D representative volume element (RVE) can be determined in quasi-
brittle materials using both a localized zone averaging approach and a varying 
characteristic length approach. In the first case, the averaging is performed over 
the localized domain rather than over the entire domain, by which the material 
contribution is swept out. In the second case, the averaging is performed over 
the entire domain with a characteristic length of micro-structure being scaled 
with the specimen size. In both cases, convergence of the stress-strain diagrams 
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for different RVE sizes of a softening material is obtained for tensile loading. 
The size of a two-dimensional statistically representative volume element is 
approximately equal to 15×15 mm2. 

• An isotropic continuum damage model with non-local softening is able to 
capture the mechanism of evolution of strain localization in concrete under 
tensile loading treated at the meso-scale as a heterogeneous three-phase 
material. 

• Material micro-structure on the meso-scale has to be taken into account in 
calculations of strain localization to obtain a proper shape of a localized zone. 

• The representative volume element (RVE) cannot be defined in quasi-brittle 
materials with a standard averaging approach (over the entire material domain) 
due to occurrence of a localized zone whose width is not scaled with the 
specimen size. The shape of the stress-strain curve depends on the specimen 
size beyond the elastic region. RVE can be found in homogeneous materials 
only. 

• The 2D representative volume element (RVE) can be determined in quasi-
brittle materials using both a localized zone averaging approach and a varying 
characteristic length approach. In the first case, the averaging is performed over 
the localized domain rather than over the entire domain, by which the material 
contribution is swept out. In the second case, the averaging is performed over 
the entire domain with a characteristic length of micro-structure being scaled 
with the specimen size. In both cases, convergence of the stress-strain diagrams 
for different RVE sizes of a softening material is obtained for tensile loading. 
The size of a two-dimensional statistically representative volume element is 
approximately equal to 15×15 mm2. 

• The calculated strength, width and geometry of the localized zone are in a 
satisfactory agreement with experimental measurements when a characteristic 
length is about 1.5 mm. 

• The load-displacement evolutions strongly depend on material parameters 
assumed for separated concrete phases and a statistical distribution of 
aggregate. The ultimate beam strength certainly increases with increasing 
characteristic length, aggregate stiffness, mean aggregate size and decreasing 
ITZ thickness. It may increase with increasing volume fraction of aggregate. It 
is also dependent upon aggregate shape. 

• Tensile damage is initiated first in the ITZ region. This region is found to have 
a significant impact on the fracture behaviour and strength of concrete. 

• The width of a localized zone increases with increasing characteristic length 
and decreasing aggregate volume. It may increase if it propagates through weak 
grains. It is not affected by the aggregate size, aggregate shape, stochastic 
distribution, ITZ thickness and notch size. The width of a calculated localized 
zone above the notch changes from about 2×lc (ρ=60%) up to 4×lc (ρ=30%) at 
lc=1.5 mm. If lc=5 mm, the width of a calculated localized zone above the notch 
changes from 2.8×lc (ρ=60%) up to 3.5×lc (ρ=30%). 

• The calculated increment rate of the width of a localized zone is similar as in 
experiments. 
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• Concrete softening is strongly influenced by the statistical distribution of 
aggregate, characteristic length, volume fraction of aggregate, aggregate shape, 
aggregate stiffness and ITZ thickness. 

• Beams strength increases with increasing characteristic length, aggregate 
density and aggregate roughness and decreasing beam height. It depends also 
on the aggregate distribution. 

• The localized zone above the notch is strongly curved with lc=1.0-2.5 mm. 

The mesoscopic modelling allows for a better understanding of the mechanism of 
strain localization. However, it cannot be used for engineering problems due to a 
long computation time and too small knowledge on both properties of meso-phases 
in concrete and a stochastic distribution of aggregate which are of a major 
importance. A direct link between a characteristic length and material micro-
structure remains still open. To realistically describe the entire fracture process in 
concrete, a combined continuous-discontinuous numerical approach has to be used. 
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